
Chapter 2
The Physical Manifold

2.1 Manifolds

The basic concept of a physical space was formulated by Kant in his Critique of
Pure reason 1781, where he used the word mannigfaltigkeit to describe the set of all
space and time perceptions [42]. Except for the lack of specification of a geometry
and of the measurement conditions, Kant’s concept of physical space is very close
to our present notion of space–time.

The same word mannigfaltigkeit was used by Riemann in 1854, with a slightly
different meaning to define his metric geometry. Riemann was less emphatic on the
observational detail and more concerned with the geometry itself, the idea of prox-
imity of the objects, and with the notion of the shape or topological qualities. These
concepts were introduced by Riemann in his original paper [5]. Since Riemann’s
paper used very little mathematical language and expressions, it led to different
interpretations. The impact of that paper on essentially all modern physics, geom-
etry, mathematical analysis, and the subsequent technology, we can hardly avoid
commenting on some fundamental aspects of Riemann’s geometry and how it is
used today.

Riemann’s paper was translated to English in 1871 by Clifford where the word
mannigfaltigkeit was translated to “manifold,” and this was subsequently adopted
as the translation of mannigfaltigkeit in all current dictionaries. Inevitably, in the
translation process, some of the original concepts of Kant, specially the percep-
tion aspect, was shaded by the concept of topological space, another invention of
Riemann in the same paper [5, 43, 44].

The topological space of Riemann is the same as we understand today: Any
set endowed with a collection of open sets such that their intersections and unions
are also open sets and that such collection covers the whole manifold. With such
topology we may define the notions of limits and derivatives of functions on
manifolds [44].

Such topology is primarily borrowed from the metric topology of the parameter
space IRn , so that the standard mathematical analysis in Euclidean spaces can be
readily used [43, 45–48]. Once this choice is made, then it is possible to define
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10 2 The Physical Manifold

other topological basis, although they are not always practical as the borrowed
topology of IRn . One drawback of the borrowed topology is that a manifold can
be described as being locally equivalent to IRn , leading to the wrong interpretation
that the manifold is composed of dimensionless points, like those of the IRn . This
conflicts with the Kant description of manifolds as a set of perceptions, unless we
understand that point particles are not really points but just a mathematical name,
capable of carrying physical qualities such as mass, charge, energy, and momenta,
thus occupying a non-zero volume. In this sense a point particle can be a galaxy, an
elephant, a membrane, a string, or a quark, as long as it can be assigned a time and
position (as if endowed with a global positioning system (GPS)). Thus, the local
equivalence between a manifold and the parameter space IRn does not extend to the
physical meaning of the manifold. Here and in the following we use the concept of
manifold as a physical space (in the sense of Kant) and often refer to its objects as
points, not to be confused with the points of the parameter space.

Another topic on manifolds which deserves a comment is the choice of IRn as
the parameter space. For some, the physical space is composed primarily of ele-
mentary particles and as such they should be parameterized by a discrete set and
not continuous because particles are of quantum nature, characterized by a discrete
spectra of eigenvalues. It is also argued that the differentiable nature associated with
Riemann’s topology of open sets can be replaced by a discrete topology. Thus,
the usual differential equations are replaced by finite difference equations. In this
interpretation the continuum would be only a non-fundamental short sight view of
a discrete physical space [49–52].

On the other hand, the choice of IRn as the parameter space makes sense when
we consider that the observers, the observables, and the conditions of measurement
are defined primarily by classical observers using classical physics based on the
continuum. After all, it was the differentiable structure that allowed those classical
observers and their instruments to construct quantum mechanics, the present notion
of elementary particles and their observables, defined by the eigenvalues of the
Casimir operators of the Poincaré group. One of the most complete discussions on
this fundamental subject was presented by Weyl, when he combines the foundations
of mathematics with that of physics [53, 54]. In this book we base our arguments
on the type of spectra of the Casimir operators. We do not see why the discrete
spin spectrum of eigenvalues should be favored in presence of the spectrum of the
mass operator of the Poincaré group, which, unlike the spin spectrum, is continu-
ous (although assuming only discrete values) [31, 33]. In this sense we agree with
Weyl’s conclusion that the parameter space is IRn , where continuous fields gives the
fundamental physical structures with the quantum masses, spins, color, strangeness,
etc. as secondary characteristics.

After these considerations we may proceed with the standard definition and prop-
erties of manifolds as found in most textbooks:

Definition 2.1 (Manifold) A manifold M is a set of objects (generally called points
and denoted by p) with the following properties:
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(a) For each of these objects we may associate n coordinates in IRn , by means of
an 1:1 map σ :M → IRn ,

σ(p) = (x1, x2, . . . , xn)

with inverse σ−1 : IRn →M such that

σ−1((x1, x2, . . . , xn)) = p

(b) Given another such map τ , associate with the same p another set of coordinates
τ :M → IRn ,

τ(p) = (x ′1, x ′2, . . . , x ′n)

with inverse

τ−1((x ′1, x ′2, . . . , x ′n)) = p

Then the composition φ = σ−1 ◦ τ : IRn → IRn is the same as a coordinate
transformation in IRn : x ′i = φi (x j ) (see Fig. 2.1).

(c) For all points of M we can define one such map and the set of such maps covers
the whole M .

Fig. 2.1 Manifold

The maps σ, τ, . . . are called charts and the set of all charts is called an atlas of M .
A differentiable manifold is a manifold for which φ is a differentiable map in IRn .
In this case we say that the differentiable manifold M has a differentiable atlas. The
smallest n required to form an atlas is called the dimension of the manifold.
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From the inverse σ−1 of each chart we may obtain a topology in M in the
following way: Denoting by ∨q an open set in IRn , then all points in this open
set are mapped by σ−1 in an open set ∪p in M (Fig. 2.1). Thus, we obtain the
borrowed topology in M , where all topological properties of IRn are transferred to
M , including the Hausdorff property meaning that for each object in M there is a
neighborhood containing another object of M .

The simplest examples of manifolds are the already known curves and surfaces
of IR3. The coordinate space IRn itself is a trivial manifold, whose charts are identity
maps. Less trivial examples are the space–times as we shall see later.

A differentiable map between two arbitrary manifolds can be defined through
the use of the borrowed topology as follows: Let M and N be manifolds with
dimensions m and n, respectively. A map F : ∪p → ∪q , with ∪p ∈ M and
∪q ∈ N , is said to be differentiable if for any chart σ in M , and any chart τ in N ,
the composition

τ ◦ F ◦ σ−1 : ∨ → ∨′

is a differentiable map from IRm to IRn . A homeomorphism F between manifolds is
an invertible map such that τ◦F◦ σ−1 is continuous. If this map is also differentiable
then F is called a diffeomorphism (Fig. 2.2).

As an example consider that M ≡ IR and N is an arbitrary manifold. Then it
follows from the above definition that the map

α : ∪t → ∪′, ∪′ ∈ N , t ∈ ∪t ⊂ IR

is differentiable when the composition

Fig. 2.2 Manifold mappings
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I ◦ α ◦ σ−1 = α ◦ σ−1 : IR→ IRn

is differentiable (here the chart of IR is the identity map I ).
A continuous curve in N is a simple continuous map α(t) : IR → N . A

differentiable curve in N occurs when the map α is differentiable. If in addition
the derivative dα/dt does not vanish, we have a regular curve in N . From Fig. 2.3
we see that the curve in N is the image of a curve in IRn by the inverse chart.
In particular, when IR is replaced by one of the coordinate axis xα of the IRn , the
curve α(xα) is called the coordinate curve in the manifold, whose parameter is the
coordinate itself xα .

From the definition it follows that in general a manifold is not a vector space.
Therefore the notions of force, pressure, momenta, and other physical fields that
depend on the specification of a direction on different points of a manifold are
not defined. This may seem conflicting with the concept of a manifold as a set of
observations because these observations involve interactions or forces. Vectors and
vector fields are implemented in the differentiable structure of manifolds in the form
of tangent vectors.

Definition 2.2 (The Tangent Bundle) A tangent vector to a manifold M at a point p
is a tangent vector to a curve on M passing through p. To define a tangent vector to
a curve on M , consider the set of all differentiable functions defined in M , F (M ),
and f ∈ F (M ). The tangent vector field to the curve α(t) at the point p = α(t0)
can be defined by the operation

d

dt
f (α(t))�t0 =

∂ f

∂xβ
dαβ

dt
�p

Fig. 2.3 Curve on a manifold
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The derivative d/dt f (α(t))�t0 is called the directional derivative of f with respect
to the vector α′(t0) = vp. It is also denoted by

α′(t0)[ f ] = vp[ f ] = d f

dt
�p

The set of all tangent vectors to M at p generates a tangent space, denoted by
TpM , with respect to the vector addition rule at p: if vp = α′(t0) and wp = β ′(t0)
are tangent vectors to two curves passing through p, then the linear combination
mvp + nwp = u p defines another curve γ (t) in M with tangent γ ′(t0) = u p

passing through the same point γ (t0) = p. Clearly such rule does not apply to
tangent vectors in different points of M , so that tangent vectors and tangent spaces
to a manifold are only locally defined. In some textbooks a tangent vector at p is
called a vector applied to a point.

Since M has dimension n, TpM has dimension n and a basis of TpM is com-
posed of n linearly independent vectors, tangent to n curves in M . In particular,
these curves can be taken to be the curves defined by the coordinates xα with tangent
vectors

eα[ f ] = α′(xα)[ f ]�p = ∂ f

∂xβ
dxβ

dxα
�p = ∂ f

∂xα
�p

Since this applies to all differentiable functions we may omit f and write the tangent
basis as an operator

eα = ∂

∂xα

Such basis is naturally called the coordinate basis of TpM .
The collection T M of all tangent spaces to M in all points of M , endowed with

a diffeomorphism π : T M → IR, is called the total tangent space (or simply the
total space). The tangent bundle of M is the triad

(M , π, T M )

where the manifold M is called the base manifold and π is called the projection
map. Each tangent space TpM ∈ T M is called a fiber over p.

The projection π identifies on M the tangency point of TpM . Each tangent
vector can be written as a pair vp = (p, v) while v is the vector properly. The
projection of the pair gives π(p, vp) = p. On the other hand, its inverse π−1 gives
the whole tangent space at p:

π−1(p) = Tp(M ) ∈ T M

The total space T M contains all tangent spaces in all points of M , so that it is
composed of ordered pairs like (p, v), where p ∈M and v ∈ TpM (Fig. 2.4).
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Fig. 2.4 The tangent bundle

Since M is a manifold with n dimensions, it follows that TpM is also n-
dimensional. Consequently, the set of all pairs (p, v) ∈M × Tp(M ) is a manifold
with dimension 2n.

A well-known example is given by the configuration space of a mechanical sys-
tem of idealized point particles defined in a region of a space–time M . Supposing
that all constraints to the motion are removed, we obtain a reduced representation
space in which we mark ordered pairs (xi , ẋ i ), i = 1 . .N , where xi denotes the
coordinate of the system and ẋ i denotes the components of its velocity vector. This
set of ordered pairs is the total space T M of the tangent bundle called the represen-
tation space.

The equations of motion of a mechanical system described in the configuration
space are derived from a Lagrangian L (xi , ẋ i ), which is a differentiable function
defined on the total space L : T M → IR [55]. Classical mechanical systems
evolved somewhat independently of the concept of manifold and the coordinates xi

were once called generalized coordinates [56].

Definition 2.3 (Tangent Vector Fields) The concept of tangent vector field arises
naturally after the definition of the tangent bundle as a map V : M → T M such
that it associates with each element p ∈M a tangent vector V (p) ∈ TpM .

A cross section of the tangent bundle is a map S :M → T M such that π ◦ S =
I . It follows that a vector field is a particular cross section such that it specifies a
vector V (p) = vp ∈ Tp(M ).

Clearly, the set of vector fields on a manifold does not generate a vector space
because we cannot sum vectors belonging to different tangent spaces.

The concept of directional derivative of a function with respect to a tangent vec-
tor can be easily extended to the directional derivative of a function with respect to
a vector field: Consider a vector vp = V (p) and a curve α(t) such that p = α(t0)
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and α′(t0) = vp. Let f be a differentiable function on M . Then we may calculate
the directional derivative

vp[ f ] = d

dt
f (α(t))�t=t0

where we have denoted p = α(t0) and α′(t0)i = vi (p). In local coordinates {xα},
the above expression is equivalent to

vp[ f ] =
∑

α′α(t)�t=t0
∂ f

∂xα
�p

Thus, replacing vp = V (p) and α′α(t)|t=t0 = V α(p) we obtain

V (p)[ f ] =
∑

V α(p)
∂ f

∂xα
(p)

Supposing that this holds true for all p belonging to the region of M , we may simply
suppress the point p, thus producing the directional derivative of f with respect to
the vector field V in a coordinate basis:

V [ f ] =
∑

V α ∂ f

∂xα

where V α denotes the components of the vector field V in the chosen coordinates
{xα}.

Consider two manifolds M and N and a differentiable map F :M → N . The
derivative map of F , denoted by F∗, is a linear map between the respective total
spaces,

F∗ : T M → T N

such that for a differentiable function f : N → IR and vp ∈ TpM , the result
F∗(vp)[ f ] is the same as the directional derivative of f ◦ F with respect to vp:

F∗(vp)[ f ] = vp[ f ◦ F]

The linearity of F∗ is a consequence of the properties of the directional derivative:

F∗(avp + bwp)[ f ] = (avp + bwp)[ f ◦ F] = aF∗(vp)[ f ] + bF∗(wp)[ f ]

As an example consider that vp = α′(t0) is a tangent vector to a curve α(t) at a
point p = α(t0) ∈M . The curve α(t) is mapped by F to a curve of N given by

β(t) = F(α(t))
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By the above definition it follows that

F∗(α′(t0))[ f ] = F∗(vp)[ f ] = vp[ f ◦ F(α(t))] = vp[ f (F(α))] = vp[ f (β)]

and from the definition of the directional derivative we obtain

vp[ f (β(t))] = d

dt
[ f (β(t))]�t=t0 = β ′(t0)[ f ]

so that

F∗(α′(t0))[ f ] = β ′(t0)[ f ]

In other words, if β = F(α), then the tangent vector to β at the point F(p) ∈ N is
β ′ = F∗(α′(t0)).

Definition 2.4 (Vector Bundle) Quite intuitively the definition of tangent bundle can
be extended to the more general notion of vector bundle as follows: Given a man-
ifold M , we may attach to each point p a local vector space Vp, not necessarily
tangent to a curve in M . Then we may collect these vector spaces in a total space
V , so that we can identify the point p ∈ M where Vp is defined, called the fiber
over p, defined by a projection map π : V →M . This vector bundle is represented
by the triad

(M , π, V )

Clearly, the tangent bundle is a particular example of vector bundle. A less trivial
example is given by the normal bundle where the fiber over p is a vector space Np

orthogonal to the tangent spaces TpM . Another example of vector bundle is given
by the space of matrices attached at each point of M .

When all fibers Vp of a vector bundle have the same dimension, they are all
isomorphic to a single vector space Σ , called the typical fiber. A particularly inter-
esting case occurs when the total space is the Cartesian product V =M × Σ , the
vector bundle is called a product vector bundle, or simple product bundle, written as

(M , π, M ×Σ)

In this case, the total space M ×Σ can be graphically represented by a box, which
represents the fiber bundle, with M in the base and Σ in the vertical side. Each
element of this total space is just the pair (p, v) where the vector v represents any
vector in each fiber. Because of this, these vector bundles are sometimes referred to
as trivial vector bundles.
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2.2 Geometry of Manifolds

A manifold does not necessarily come with a geometry, that is, with a measure of
distances or of angles, so that we may draw parallel lines satisfying Euclid’s axioms.
A geometry can be implemented on a manifold as follows1:

Definition 2.5 (Metric Geometry on a Manifold) The most intuitive way to con-
struct parallel lines in the Euclidean space is to use a graduated rule or metric
geometry. This intuitiveness is a consequence of the fact that IR3 is a manifold and
also a vector space in which a scalar product is globally defined.

To define the same notion of parallels in a manifold M is a little more compli-
cated. First, we need to define the metric by the introduction of a scalar product of
vectors on the manifold. Since manifolds do not have vectors, we may locally define
the metric in each tangent space as a map

< , >: TpM × TpM → IR

such that it is (a) bilinear and (b) symmetric. There is a third condition in Euclidean
geometry which says that it should be positive definite: Given a vector v, then (c)
||v||2 =< v, v >≥ 0, and ||v||2 =< v, v >= 0 ⇐⇒ v = 0. This condition is
omitted when we consider that geometry is an experimental science, whose results
depend on the definition of the observers, of the observed object, and of the methods
of observations. Thus the condition (c) may hold under certain measurements and
not in others.2

Since the scalar product is locally defined, the metric components in an arbitrary
basis

gμν =< eμ, eν >

are also locally defined. This makes it difficult to define distances between two dis-
tinct points of the manifold connected by a curve α(t), for in principle the metric
varies from point to point. Therefore, the comparison of distances in different points
requires an additional condition that the line element

ds2 = gμνdxμdxν

remains the same. Such isometry exists naturally in Galilean, Newtonian, and
Minkowski’s space–times, but there is no preliminary provision for it in general
relativity. In this case (as in arbitrary metric manifolds), the metric components vary

1 A geometry can be of two basic kinds: The metric geometries based on the notion of distance
or a graduated rule; the other is the affine geometries based on the notion of parallel transport of a
vector field along a curve, keeping a constant angle with the tangent vector to that curve [5, 57].
2 In mathematical analysis when the condition (c) is omitted the analysis is referred to as analysis
in Lorentzian manifolds.
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from point to point, so that the measurements of distances between lines depend on
the existence of an affine connection which is compatible with the metric geometry.
This affine connection was defined by Levi-Civita, using the Christoffel symbols
(see below).

Definition 2.6 (Affine Geometry) An affine geometry on a manifold M is defined
by the existence of parallel transport of a vector field W along a curve α(t) on M ,
such that the angle between W and the tangent vector to α(t) remains constant.
Therefore, it offers an alternative but essential way to trace parallel lines in a mani-
fold prior to the definition of a metric. Let us detail how this works.

Given a vector field W on a manifold M , its covariant derivative with respect
to the vector field V = α′(t) tangent to a curve α(t) at a point p = α(t0) is the
measure of the variation of W along α:

∇V W (p) = d

dt
W (α)

⌋

t=t0

(2.1)

satisfying the following properties (a and b are numbers and f is a real function
defined on M ):

(a) ∇V (aW + bW ′) = a∇V W + b∇V W ′
(b) ∇aV+bV ′(W ) = a∇V W + b∇V ′W
(c) ∇V f = V [ f ]
(d) ∇V ( f W ) = V [ f ]W + f∇V W .

These properties correspond to similar properties that hold in the particular case
of IRn , when we use arbitrary base vectors [58]. It is clear from the above definition
that the covariant derivative of a vector field in M with respect to a tangent vector
of TpM is again a tangent vector field of the same space. It is also clear that it does
not depend on the previous existence of a metric.

The above definition of covariant derivative can be easily extended to the region
of definition of the involved vector fields, without specifying the point p = α(t0).
Denoting by V = α′(t) the tangent vector field to a curve α(t), then (2.1) gives

∇α′W = d

dt
W (α)

providing a measure of how the vector field W varies along the curve α(t).

Definition 2.7 (Parallel Transport) In the case when

∇α′W = d

dt
W (α) = 0

we say that the field W is parallel transported along α(t).
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Thus, the existence of a covariant derivative is intimately associated with the exis-
tence of an affine geometry, and the covariant derivative operator ∇ is also referred
to as the affine connection operator.

Let {eα} be a set of n tangent vector fields to M , such that at each point p,
{eα(p)} is a basis of Tp(M). Such basis is sometimes referred to as a field basis.
Then the covariant derivative of eα with respect to another field basis eβ is a linear
combination of the same field basis:

∇eαeβ = Γ
γ
αβeγ (2.2)

where the coefficients Γ γ
αβ are called the connection coefficients or the Christof-

fel symbols. By different choices of the way in which the covariant derivative acts
on the basis, we obtain different geometries. Thus, for example we can have Rie-
mann, Weyl, Cartan, Einstein–Cartan, and Weitzenbock geometries, depending on
the properties of these coefficients.

In the case of the Riemann geometry, the connection coefficients Γ γ
αβ are sym-

metric in the sense that

∇eαeβ = ∇eβ eα

or equivalently, the symmetry is explicit in the two lower indices of the Christoffel
symbols:

Γ
γ
αβ = Γ

γ
βα

Here and in the following we use the choice of Riemann and Einstein, with a sym-
metric connection.

In order to write the components of the covariant derivative, let us write the
vector fields in an arbitrary field basis: W = Wαeα and V = V βeβ . From the above
properties of the covariant derivatives, we obtain

∇V W = ∇V (Wαeα) = V [Wα]eα +Wα∇V eα =
(

V β ∂W γ

∂xβ
+WαV βΓ

γ
αβ

)

eγ

where in the last expression we have made a convenient change in the summing
indices.

Taking in particular V = eα , and using the semicolon to denote the components
of the covariant derivative, it follows that

∇eμW = Wβ ;μeβ

where we have denoted the components of the covariant derivative of W as

Wβ ;μ =
(
∂Wβ

∂xμ
+W γ Γ β

γμ

)

(2.3)
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The affine geometry can be made compatible with the metric geometry under
the condition that the metric behaves as a constant with respect to the covariant
derivative. This is what Riemann did when he postulated that the covariant derivative
of the metric tensor g is zero:

(∇eρ g)μν = 0 (2.4)

This is called the metricity condition of the affine connection, and it is often written
in terms of the components as gμν;ρ = 0. As we recall from the introduction, this
condition was tentatively modified by Weyl in his 1919 theory.

2.3 The Riemann Curvature

The geometry of surfaces of IR3 tells us that the shape of a surface depends on how
it deviates from the local tangent plane. This characterizes a topological property
of the surface, allowing to distinguish, for example, a plane from a cylinder. This
variation of the local tangent plane can be studied alternatively by the variation of
the normal vector field to the surface, and it is called the extrinsic curvature of the
surface. It is extrinsic because it depends on a property that lies outside the surface.

Definition 2.8 (The Riemann Tensor) Consider two curves in a manifold M , α and
β intersecting at a point A, with unit tangent independent vectors U and V respec-
tively. Then make a parallel displacement of V and U along the curves α and β,
respectively, as indicated in Fig. 2.5. At the points B and C draw the curves α1 and β1
with tangent vectors parallel to U and V , respectively, obtaining the parallelogram.
Next, consider a third vector field W , linearly independent from U and V , at the

Fig. 2.5 The Riemann curvature
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point A, and drag it along the curve β from A to B. Then drag it from B to D along
the curve α1. The result of such operation is the vector field

W ′ = ∇U∇V W

On the other hand, dragging W from A to C and from C to D we obtain another
vector

W ′′ = ∇V∇U W

The difference W ′ −W ′′ gives the Riemann curvature tensor3 of M [43, 47]

R(U, V )W = (∇U∇V −∇V∇U )W = [∇U ,∇V ]W (2.5)

As we see, this result does not depend on a metric, and from our previous comment,
it is actually necessary to be so before any notion of constant distance is defined.

In the particular case of a flat plane of IR3 the Riemann tensor vanishes. There-
fore, Riemann’s idea of curvature is compatible with the geometry of surfaces in
IR3, at least for some basic figures. However, it is not sufficient to distinguish a
plane from a cylinder or, in fact, from an infinite variety of ruled surfaces. It is
also interesting to note that for surfaces of IR3 the Riemann tensor coincides with
the Gaussian curvature K = k1k2, where k1 and k2 are the principal curvatures
measured by the maximum and minimum deviations of the normal vector field (see,
e.g., [48, 58]). The Egregium theorem of Gauss shows that indeed K can be defined
entirely as an intrinsic property of the surface.

The components of the Riemann tensor of a manifold M in an arbitrary tangent
basis {eμ} can be obtained from (2.5) when the operator is applied to the basis
vectors, reproducing another vector

R(eα, eβ)eγ = ∇eα∇eβ eγ −∇eβ∇eαeγ = Rαβγ
δeδ (2.6)

Using the metric we may also write Rαβγ δ = Rαβγ δgδε.
From (2.2), the Christoffel symbols of the first kind are defined as

Γαβγ = gγ δΓαβ
δ

and using Riemann’s metricity condition (2.4) we find the expression of the
Christoffel symbols of the first kind in terms of the derivatives of the metric

Γαβγ = 1

2
(gαγ,β + gβγ,α − gαβ,γ )

which is symmetric in the first two indices Γαβγ = Γβαγ .

3 In general U, V,W need not be linearly independent, but in this case we need to add the term
∇[U,V ]W to compensate for the linear dependency in the construction of the parallelogram.
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Replacing these components in (2.5) we obtain the components of the Riemann
tensor:

Rαβγ ε = Γβεα;γ − Γβεγ ;α + Γ μ
βγ Γαεμ − Γ μ

βαΓγ εμ (2.7)

From this expression we derive the following properties:

Rαβγ ε = −Rβαγ ε (2.8)

Rαβγ ε = −Rαβεγ (2.9)

Rαβγ ε = Rγ εαβ (2.10)

Rαβγ ε + Rαεβγ + Rαγ εβ = 0 (2.11)

Finally the covariant derivative of Riemann’s tensor gives the Bianchi’s identities

Rαβγ ε;μ + Rαβεμ;γ + Rαβμγ ;ε = 0 (2.12)

Ricci’s curvature tensor is derived from Riemann’s tensor by a contraction

Rαε = gβγ Rαβγ ε (2.13)

On the other hand, the contraction of Ricci’s tensor gives the scalar curvature (or the
Ricci scalar curvature).

R = gαβ Rαβ (2.14)

We shall return to the Riemann tensor in the latter sections, showing that it has the
same structure for gravitation and for the gauge field strengths.

Example 2.1 (Geodesic) A geodesic in a manifold M is a curve such that its tangent
vector is transported parallel to itself :

∇α′α′ = 0

From (2.3) we may derive the equation of a geodesic α(t), with parameter t , in coor-
dinate basis. Taking V = W = α′ = ∑ xμeμ, and using the geodesic definition,
we obtain

d2xμ

dt2
+ Γ μ

αβ

dxα

dt

dxβ

dt
= 0 (2.15)

In particular, for M = IRn this is the equation for a straight line in arbitrary coor-
dinates.

As an exercise on the equivalence between metric and affine geometries under
(2.4), let us show that geodesics generalize the concept of straight lines in the sense
that describe the smallest distance between two points of M , measured by a metric
associated with a scalar product <,>.
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Consider a family of curves passing through two arbitrary points p and q in M ,
defined by the displacement of a vector field W over the geodesic α:

γ (t, u) = α(t)+ uW (α(t))

It follows that γ ′ = dγ /dt = α′ + udW/dt and dγ /du = W . The arc-length
between p and q along any curve of the family is given by

S(u) =
∫ t

o

√
< γ ′, γ ′ >dt

The variation of this arc-length with respect to the family parameter u is

d S

du
=
∫ t

0

<
dγ ′
du , γ

′ >
√
< γ ′, γ ′ >

dt

Since W is an arbitrary vector field we may take in particular W = α′, so that
dγ /du = W = α′. Using the fact that the two parameters are independent we
obtain

dγ ′

du
= d

dt

dγ

du
= dα′

dt
= ∇α′α′

Since α is a geodesic, we necessarily have

d S

du
=
∫ t

0

< ∇α′α′, γ ′ >√
< γ ′, γ ′ >

dt = 0

showing that S is a maximum or a minimum. The maximum is infinity and therefore
it is not interesting. The minimum occurs in the geodesic.
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