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Preface

The four fundamental forces in nature, gravitation, electromagnetic, weak, and
strong nuclear forces, are based on a single idea of the 19th century, the Riemann
curvature. The vast amount of experimental data and theoretical development in high
energy physics has confirmed that concept. Only very recently, Einstein’s gravita-
tional field, which originated the geometric paradigm for physics, has shown signs
that it needs an improvement to explain the gravitational observations in modern
cosmology, where Einstein’s gravitational field can describe only about 4% of the
gravitational interaction in the universe. On the other hand, at the quantum scale
Einstein’s gravitational field has resisted all attempts to quantization. Therefore,
something appears to be missing to complete the idea of Riemann.

In the past 20 years we have debated with colleagues, teachers, collaborators, and
students on the different forms in which geometry and the physics of the fundamen-
tal interactions mix. The overall feeling is that the understanding of the geometry of
the fundamental interactions has become too complex to grasp within the standard
professional lifetime of a graduate student of physics, mathematics, astronomy, and
engineering to understand what is going on, specially within the current productivity
syndrome. Hence the proposal of this book to supply a blend of what is known and
what is not explained.

Therefore, the program of this book is about theoretical research with emphasis
on inducing a debate, whenever possible, on how to fix and improve existing theories
which have reached their applicability and prediction limits. We start with concepts
of physical space since Kant, going through the evolution of the idea of space–
time, symmetries and its associated connections, the Yang–Mills theory, and ending
with gravitation, including a conceptual discussion on the deficiencies of Riemann
curvature, which is the central theme of the book.

The author wishes to thank the many contributions resulting from classroom and
coffee break debates during the years when we have lectured on the subject. He
also thanks the suggestions and comments from colleagues of the Mathematics and
Physics departments on earlier drafts, from which much was learned.

Brasilia, Brazil M.D. Maia
December 2010
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Chapter 1
The Fundamental Interactions

The four fundamental interactions that we recognize today are the gravitational,
electromagnetic, weak and strong nuclear forces. So far they have been sufficient
to describe most of the observed properties of matter, but it is not impossible that
some other force will assume such fundamental role in the future. However, not
everyone agrees that there are compelling evidences for such assumption, at least
within a simple and understandable argument in the Occam sense.1 Indeed, recent
cosmological evidences show that the remaining 96% of the known universe may be
filled with something that we do not quite understand, and this is very appropriately
called the dark component of the universe, composed of dark matter showing attrac-
tive gravitation and dark energy showing something like a repulsive gravitation.
They are dark because they cannot be seen, like ordinary matter.

The missing matter in galaxies and clusters was noted in 1933 by Fritz Zwicky,
when he was observing the rotation of stars in galaxies using Newton’s gravitational
law. The name dark matter is credited to Vera Rubin in 1970 [1, 2]. Dark energy is
far more recent, appearing in 1998 as a possible explanation for the accelerated
expansion of the universe, observed by search teams looking at very distant type
Ia supernovae [3]. An alternative current thinking about dark energy is that it is
the quantum vacuum, something like the void proposed by Thomas Bradwardine in
another dark age [4], but a void endowed with some energy. Such new cosmology
is an integrated science involving not only optical ground-based and space tele-
scopes and radio telescopes operating in a wide rage of frequencies up to x-rays but
also gravitational wave detectors, cosmic ray detectors, deep underground neutrino
experiments and high energy particle colliders, and geometry and mathematical
analysis.

On the theoretical side of these fascinating and hard to ignore facts, there is a
strong competition between explanations, not all of them following Occam’s maxim
or the existence of a classical or quantum void. The ideas vary from the supposed
existence of new and exotic forms of matter; or that space–time may have more

1 The maxim that the true explanation for some natural phenomenon is also the simplest one is
generally attributed to William de Occam, a Franciscan friar and philosopher from the middle ages
period.

M.D. Maia, Geometry of the Fundamental Interactions,
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2 1 The Fundamental Interactions

than the usual four dimensions; or that space–time may have a foam-like structure
formed by “atoms” of space–time; or that space–time is as smooth as possible; or
that the universe exists because we are here; or several combinations of these. Here
we present just a glimpse of these concepts that are part of well-established theories.
We will not discuss other theories which are not proven consistent either theoreti-
cally or experimentally. We start at the beginning, with the ideas of geometry and
topology of Riemann which emerged around 1850 [5, 6].

Since the advent of Riemann’s concepts of curvature of a manifold, it has become
the main tool behind all the modern theories of fundamental interactions. In the
following sections we will discuss the essential ideas of Riemann, Lie, Weyl,
Einstein, and others and how they have established such stronghold for modern
science.

As we shall see, the Riemann curvature depends on the preliminary notion of
an affine connection or equivalently of a covariant derivative. On the other hand,
as a consequence of Noether’s theorem, the curvature appears as observables in
nature, responsible for the fundamental interactions. Therefore, we may pause for a
reflection on the possibility that geometry and analysis are ultimately dependent on
the underlying physics of the fundamental interactions [7].

Einstein’s general relativity of 1916 set the geometrical paradigm that we use
today based on the notion of curvature set by Riemann. Thus, we no longer think
of gravitation as a force, but rather as a curvature of space–time, as compared with
the idealized Minkowski’s flat space–time. It was only after 1954, with the works
of C. N. Yang and R. Mills, that it was understood that the other three fundamental
interactions, known as gauge interactions, also have the same curvature meaning.
However, this latter development is not intuitive and it took a long time to mature [8].

The development of gauge theory started in 1919, with two independent ideas.
The first one was the proposal of Hermann Weyl to describe a geometrical theory
of the electromagnetic field [9]. The second one was the development by Emmy
Noether of very general theorems concerning the construction of the observables of
a physical theory, starting from the knowledge of its symmetries [10].

Weyl’s original idea was to generalize Einstein’s gravitational theory by incorpo-
rating the electromagnetic field as part of the space–time geometry: He reasoned that
in the same way as the gravitational field is defined by the quadratic form defined in
space–time

ds2 = gμνdxμdxν

where the coefficients gμν are solutions of Einstein’s equations, the electromagnetic
field would be defined by the coefficients of a linear form

d A = Aμdxμ

where Aμ are the components of the electromagnetic four-vector potential. To
achieve such geometric unification of gravitation and electromagnetism, Weyl
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modified the metric affine connection condition gμν;ρ = 0 (the so-called metricity
condition of Riemann’s geometry), where the semicolon denotes Riemann’s covari-
ant derivative, by the more general condition [9]

gμν;ρ = −2Aρgμν (1.1)

In this way Weyl hoped to obtain the electromagnetic field described by the Maxwell
tensor

Fμν = ∂Aμ

∂xν
− ∂Aν

∂xμ

satisfying Maxwell’s equations

Fμν ;ν = Jμ (1.2)

Fμν;ρ + Fρμ;ν + Fνρ;μ = 0 (1.3)

where the partial derivatives (,) are replaced by the covariant derivative (;) defined
by Weyl’s connection satisfying condition (1.1) and where Jμ are the components
of the four-dimensional current density (see e.g., [11]).

Weyl’s proposal did not succeed essentially because in translating Maxwell’s
equations to his new geometry, the Poincaré symmetry was lost and so also the com-
patibility with the gauge transformations of the electromagnetic potential. Indeed,
the above expressions for Fμν are covariant (that is, they keep the same form on
both sides) under the Poincaré transformations in space–time and also under the
transformations of the electromagnetic potential given by

A′μ = Aμ + ∂μθ(x) (1.4)

where, as indicated, the parameter θ(xμ) is a function of the space–time coordi-
nates. These transformations are not a consequence of the Poincaré transformations
of coordinates, but they form a group by their own properties, acting in the space
of the potentials, in such a way that they are compatible with the Poincaré coor-
dinate symmetry. Therefore, when Weyl tried to write the gauge transformations
(1.4) of the electromagnetic field in a curved space–time, the Poincaré symmetry
was replaced by the group of diffeomorphisms of coordinate transformations of
the curved space–time. In doing so, the mentioned compatibility between the two
symmetries was lost. This result implied that at each point of the curved space–
time, the potential Aμ would not behave as the known electromagnetic potential
(which can be calibrated by all observers in the orderly way dictated by (1.4)).
In the Weyl proposal, the two symmetries would lead to unpredictable results
for the electromagnetic field. In view of such inconsistency, Weyl abandoned his
theory.

The solution to Weyl’s gauge inconsistency appeared only after the development
of quantum theory. In 1927 Vladmir Fock and Fritz London suggested that Weyl’s
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idea could in principle make sense in quantum mechanics, where the gauge trans-
formation (1.4) would be replaced by a unitary gauge transformation like [12, 13]

A′μ = eiΘ(x)Aμ

Since in quantum theory only the norm ||Aμ|| is an observable, the above unitary
transformation would not affect the observable potentials themselves, regardless of
the type of coordinate transformations. Consequently, the Fock–London suggestion
would apply only to a quantum version of the electromagnetic theory, with the above
unitary gauge transformations.

With this new interpretation, Weyl reconsidered his theory in 1929, when he
introduced the concept of gauge transformations in the sense that it is used today,
specially including the “local gauge transformations” in which the parameters are
dependent on coordinates. Such unitary gauge transformation would be understood
as an intrinsic property of the quantum electromagnetic field, retaining its Poincaré
invariance in the classical limit [14]. In this case, the diffeomorphism invariance
of his theory would not interfere with the unitary transformations of that quantum
gauge transformations.

However, little was known in 1929 about the quantum behavior of electrody-
namics. With the lack of experimental support to the quantum interpretation, Weyl’s
theory entered into a second dormant period lasting to about 1945, when new prop-
erties of fields and elementary particles would become more evident. The resulting
theory called quantum electrodynamics (or QED) associated with the one-parameter
unitary gauge group U (1) was described by J. Schwinger around 1951 [15]. Instead
of describing just the already known classical electromagnetic interaction between
charged particles, in QED the interaction between charged particles was intermedi-
ated by photons.

The second important contribution to gauge theory from the period 1918 to 1919
was the theorem by Emmy Noether showing how to construct the observables of a
physical theory, starting from the knowledge of its Lagrangian and its symmetries
[10]. Although the motivations and results of Weyl and Noether were independent,
they met at the point where Noether introduced a matrix-vector quantity (a vec-
tor whose components are matrices) to obtain the divergence theorem in the case
where the parameters depended on the coordinates. Later on it was understood that
Noether’s matrix-vector defined the same gauge potential when it is written in the
adjoint representation of the Lie algebra of the gauge group. Then the properties
of the adjoint representations of the Lie algebras of local symmetry groups became
central to the development of gauge theory. More than that, Noether’s theorem made
it possible to predict new results from gauge theories. It also meant that the gauge
potentials are observables and not just mathematical corrections to derivatives and
to the divergence theorem.

In 1956 Yakir Aharonov and David Bohm suggested an experiment to find an
observable effect associated with the magnetic potential vector A (and not by the
magnetic field B) itself, on the electron deviation in a double slot experiment. The
proposed experiment used a long spiral coil parallel to the slots, in such a way
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that the magnetic field being confined to the center of the coil would not interfere
directly on the electron beam [16]: The experiment was realized in 1960, showing
that indeed there was shift on the phase of the wave function, given explicitly by the
vector potential

Ψ ′ = e−
ie
h̄

∮
c<A,d�>

Ψ (1.5)

where the integral is calculated on the closed path c formed by the electron beams in
Fig. 1.1. Since this is essentially the consequence of a phase transformation depend-
ing on the local coordinates, this experiment can also be seen as a confirmation of
the Fock and London interpretation.

The rest of the history of development of gauge theory represents an exuberant
mixture of theory and experiment, mainly because it depended on the development
of nuclear theory and indeed on the whole phenomenology of particle physics. The
reader may find details in, e.g., [17–19] among other fine reviews.

In 1932 Werner Heisenberg had already proposed that protons and neutrons could
be described as being distinct states of one same particle, the nucleon [20]. This
nucleon was consistently described by a new quantum number, the isotopic spin (or
isospin), mathematically described by the SU (2) group. This is formally similar to
the orbital spin, but here it is regarded as an internal symmetry. However, a major
difference with the QED gauge theory is that the SU (2) isospin symmetry is a global
symmetry, in the sense that its parameters do not depend of the coordinates [21].

In 1954 Yang and Mills proposed a generalization of electrodynamics, where
the U (1) group was replaced by the local SU (2) group. In this case, instead of a
vector potential Aμ, the proposed theory has a non-Abelian 2 × 2 matrix-vector
potential Aμ, whose components are defined in the Lie algebra of the new symme-
try [22], similar to the matrix-vector invented by Noether. However, the physical
interpretation of the local SU (2) required further developments, like the Weinberg–
Salam theory.

Fig. 1.1 The Aharonov–Bohm experiment
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In the period 1967–1968, Weinberg and Salam independently proposed a unifi-
cation of the electrodynamics with the weak nuclear force called the electroweak
theory based on the symmetry SU (2) × U (1) [23–25]. This theory predicted three
intermediate particles with integer spins, the W+, W−, and Z0 bosons, whose exis-
tence was confirmed experimentally at CERN in 1983, producing also the experi-
mental evidence of the SU (2) gauge theory.

The existence of sub-nuclear particles called quarks (the word quark was
extracted from Finnegan’s Wake [26] by Gell-Mann in 1964). In 1961 Gell-Mann
and independently Yuval Ne’eman had formulated a particle classification scheme
called the eightfold way, which after much hard work resumed in the SU (3) sym-
metry [27, 28]. In this scheme quarks were held together by gluons in a more gen-
eral model of strong nuclear interactions, today understood as a Yang–Mills theory
with eight local parameters organized in a local SU (3) gauge symmetry. The SU (3)
group contains SU (2) and U (1) as subgroups associated with the isospin and hyper-
charge, respectively. The four remaining parameters would describe the components
of the strong nuclear force called gluons, represented in the Lie algebra of SU (3)
as the bounding force between quarks. The result is a theory of strong interactions
nicknamed quantum chromodynamics (QCD). At the time of this writing, quarks
were never observed as free particles but always bounded to another by gluons.
Summarizing, the original works of Weyl and Noether took shape with the name of
gauge field theory (or Yang–Mills theory), involving three of the four fundamental
interactions, associated with the local gauge symmetries U (1), SU (2), and SU (3),
respectively.

Those three groups can be seen as parts or subgroups of a larger symmetry group,
the combined symmetry group. The simplest combined symmetry is just the Carte-
sian product U (1) × SU (2) × SU (3), which forms the basic or standard model of
particle interactions. It was soon found that the standard model is not sufficient
to describe other aspects of the structure of particle physics, like, for example,
their organization into families. Thus, a more general group of symmetries was and
still is sought for, which can eventually lead to a grand unification theory (GUT),
involving the three gauge interactions. Suggested candidates are SU (5), SU (6),
SO(10), and products of these and other symmetries. More recently the exceptional
groups such as E7 or E8 have emerged as a necessary component of such scheme
[29].

Since all possible combinations of gauge symmetries are relativistic, they should
also combine with the Poincaré group as the symmetry of Minkowski’s space–time.
This is necessary because the experimental basis of particle physics is constructed
with the representations of that group [30]. This fact opened another problem: In
1964 O’Raifeartaigh showed that an arbitrary combination between gauge sym-
metries and the Poincaré group implied that all particles belonging to the same
spin multiplet would have the same mass, which is of course not correct. In 1967
O’Raifeartaigh’s theorem was generalized by Coleman and Mandula, with the same
conclusion: The combined gauge–Poincaré symmetry is not compatible with the
experimental facts at the level of energies where the particle masses are evaluated.
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This mass splitting problem became known as the no-go theorem for the compati-
bility between particle physics and gauge theory.

A more detailed analysis of these theorems shows that the difficulty lies in
the translational subgroup of the Poincaré group. The conclusion is that either the
Poincaré translations are left aside, or else the Lie algebra structure should change,
or finally that the combined symmetry would not hold at the level of measurement
of the particle masses [31–33]. Clearly, such fundamental issues required a radical
solution if the whole scheme of gauge theories was to succeed.

Among these proposed solutions, one suggested the replacement of the Poincaré
group by the deSitter group, which have the same number of parameters as the
Poincaré group [34]. This choice would be naturally justified by the presence of the
cosmological constant in Einstein’s equations, which forbids the Poincaré symmetry
in favor of the deSitter group. The currently observed acceleration of the universe
finds in the cosmological constant a simple explanation, provided the cosmological
constant problem can be explained.

In 1972 Roger Penrose, with different motivations, suggested that the transla-
tional symmetry could be hidden by use of the conformal group which is also a
symmetry of Maxwell’s equations [35]. The violation of the causality was perhaps
the main restriction imposed on the use of the conformal group as a fundamental
symmetry of physics. Further considerations on the conformal symmetry emerged
again in 1998 for a possible mechanism to conciliate particle physics and grav-
itation. This was codenamed the ADS/CFT correspondence: Conformal invariant
field theories can set in correspondence with isometric invariant fields in the five-
dimensional anti-deSitter space. Since all known gauge fields are quantized, the
ADS/CFT correspondence can be used to define quantum theory in a gravitational
background [36] sometimes together with supersymmetric theories. Supersymme-
try was introduced in 1974 by J. Wess and B. Zumino, as a modification of the
Poincaré Lie algebra structure such that particles with half and integer spins would
be interchangeable [37]. Since the generators of infinitesimal transformations of this
new symmetry do not close as a Lie algebra, the resulting “graded Lie algebra” in
principle would solve the mass splitting problem.

However, we cannot give up the Poincaré symmetry at the cost of having to define
a new particle physics, based either on the deSitter group or on a supersymmetric
group. As it was found later on, supersymmetry has to be broken at the lower levels
of energies where the standard model of particle interactions applies. To the present,
none of the new particles predicted by supersymmetric theory were found.

The presently adopted option to solve the mentioned no-go theorem is the so-
called Higgs mechanism for spontaneous breaking of symmetries, proposed by
Higgs in 1964. Essentially, the Higgs field is a postulated scalar field required to
break the combined symmetry, so that the observed masses of the particle multiplets
become distinct [38, 39].

Gravitation remains a great mystery. Assuming that the standard theory of grav-
itation is Einstein’s general relativity, it still cannot explain the motion of stars in
galaxies and clusters; the early inflation and the currently observed accelerated
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expansion of the universe. It has also resisted all attempts to be compatible with
quantum mechanics even after nearly a century of hard work on its quantization.

The earliest consideration on quantum gravity was made by Planck in 1907,
when he attempted to define a natural system of physical units, in which Newton’s
gravitational constant G, the speed of light c, and Planck’s reduced constant h̄ have
value 1, and everything else would be measured in centimeters. The result is that
quantum gravity would exist only at the energy level of 1019 Gevs, at the small
length of 10−33 cm, which defines the so-called Planck regime [40]. This regime
created the hierarchy problem of the fundamental interactions, because all other
fundamental interactions exist at ≈103 GeVs and nothing happens in between these
limits. Another problem associated with the Planck regime is that it holds only in
the border between three theories, Newtonian gravity, special relativity, and general
relativity, each one with different symmetries and therefore with different observers.
As a way to maintain a special system of units, the physics at such triple border is
difficult to understand. Yet, there are over 20 theories of quantum gravity proposed
up to the present ranging from the ADM program from the early 1960s, to string
theory and loop quantum gravity, to massive gravity, all depending on the Planck
regime.

In 1971 ’tHooft showed that all gauge theories are finite when quantized by
perturbative processes [41]. Therefore, if gravitation could be written as a gauge
theory, then in principle we could apply ’tHooft’s result to obtain a quantum theory
of gravity. However, in spite of the many efforts made to write a gauge theory of
gravity, it is not yet clear what is the appropriate gravitational gauge symmetry. We
will return to this topic in the last chapter.

We can say that the history of the fundamental interactions is a monument to
the human effort to understand nature, written in a rich mathematical language.
Our objective is to discuss the various concepts involved, such as manifolds, space–
times, basic field theory, symmetry, Noether’s theorem, connections, culminating
with our central theme, the Riemann curvature.



Chapter 2
The Physical Manifold

2.1 Manifolds

The basic concept of a physical space was formulated by Kant in his Critique of
Pure reason 1781, where he used the word mannigfaltigkeit to describe the set of all
space and time perceptions [42]. Except for the lack of specification of a geometry
and of the measurement conditions, Kant’s concept of physical space is very close
to our present notion of space–time.

The same word mannigfaltigkeit was used by Riemann in 1854, with a slightly
different meaning to define his metric geometry. Riemann was less emphatic on the
observational detail and more concerned with the geometry itself, the idea of prox-
imity of the objects, and with the notion of the shape or topological qualities. These
concepts were introduced by Riemann in his original paper [5]. Since Riemann’s
paper used very little mathematical language and expressions, it led to different
interpretations. The impact of that paper on essentially all modern physics, geom-
etry, mathematical analysis, and the subsequent technology, we can hardly avoid
commenting on some fundamental aspects of Riemann’s geometry and how it is
used today.

Riemann’s paper was translated to English in 1871 by Clifford where the word
mannigfaltigkeit was translated to “manifold,” and this was subsequently adopted
as the translation of mannigfaltigkeit in all current dictionaries. Inevitably, in the
translation process, some of the original concepts of Kant, specially the percep-
tion aspect, was shaded by the concept of topological space, another invention of
Riemann in the same paper [5, 43, 44].

The topological space of Riemann is the same as we understand today: Any
set endowed with a collection of open sets such that their intersections and unions
are also open sets and that such collection covers the whole manifold. With such
topology we may define the notions of limits and derivatives of functions on
manifolds [44].

Such topology is primarily borrowed from the metric topology of the parameter
space IRn , so that the standard mathematical analysis in Euclidean spaces can be
readily used [43, 45–48]. Once this choice is made, then it is possible to define
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other topological basis, although they are not always practical as the borrowed
topology of IRn . One drawback of the borrowed topology is that a manifold can
be described as being locally equivalent to IRn , leading to the wrong interpretation
that the manifold is composed of dimensionless points, like those of the IRn . This
conflicts with the Kant description of manifolds as a set of perceptions, unless we
understand that point particles are not really points but just a mathematical name,
capable of carrying physical qualities such as mass, charge, energy, and momenta,
thus occupying a non-zero volume. In this sense a point particle can be a galaxy, an
elephant, a membrane, a string, or a quark, as long as it can be assigned a time and
position (as if endowed with a global positioning system (GPS)). Thus, the local
equivalence between a manifold and the parameter space IRn does not extend to the
physical meaning of the manifold. Here and in the following we use the concept of
manifold as a physical space (in the sense of Kant) and often refer to its objects as
points, not to be confused with the points of the parameter space.

Another topic on manifolds which deserves a comment is the choice of IRn as
the parameter space. For some, the physical space is composed primarily of ele-
mentary particles and as such they should be parameterized by a discrete set and
not continuous because particles are of quantum nature, characterized by a discrete
spectra of eigenvalues. It is also argued that the differentiable nature associated with
Riemann’s topology of open sets can be replaced by a discrete topology. Thus,
the usual differential equations are replaced by finite difference equations. In this
interpretation the continuum would be only a non-fundamental short sight view of
a discrete physical space [49–52].

On the other hand, the choice of IRn as the parameter space makes sense when
we consider that the observers, the observables, and the conditions of measurement
are defined primarily by classical observers using classical physics based on the
continuum. After all, it was the differentiable structure that allowed those classical
observers and their instruments to construct quantum mechanics, the present notion
of elementary particles and their observables, defined by the eigenvalues of the
Casimir operators of the Poincaré group. One of the most complete discussions on
this fundamental subject was presented by Weyl, when he combines the foundations
of mathematics with that of physics [53, 54]. In this book we base our arguments
on the type of spectra of the Casimir operators. We do not see why the discrete
spin spectrum of eigenvalues should be favored in presence of the spectrum of the
mass operator of the Poincaré group, which, unlike the spin spectrum, is continu-
ous (although assuming only discrete values) [31, 33]. In this sense we agree with
Weyl’s conclusion that the parameter space is IRn , where continuous fields gives the
fundamental physical structures with the quantum masses, spins, color, strangeness,
etc. as secondary characteristics.

After these considerations we may proceed with the standard definition and prop-
erties of manifolds as found in most textbooks:

Definition 2.1 (Manifold) A manifold M is a set of objects (generally called points
and denoted by p) with the following properties:
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(a) For each of these objects we may associate n coordinates in IRn , by means of
an 1:1 map σ :M → IRn ,

σ(p) = (x1, x2, . . . , xn)

with inverse σ−1 : IRn →M such that

σ−1((x1, x2, . . . , xn)) = p

(b) Given another such map τ , associate with the same p another set of coordinates
τ :M → IRn ,

τ(p) = (x ′1, x ′2, . . . , x ′n)

with inverse

τ−1((x ′1, x ′2, . . . , x ′n)) = p

Then the composition φ = σ−1 ◦ τ : IRn → IRn is the same as a coordinate
transformation in IRn : x ′i = φi (x j ) (see Fig. 2.1).

(c) For all points of M we can define one such map and the set of such maps covers
the whole M .

Fig. 2.1 Manifold

The maps σ, τ, . . . are called charts and the set of all charts is called an atlas of M .
A differentiable manifold is a manifold for which φ is a differentiable map in IRn .
In this case we say that the differentiable manifold M has a differentiable atlas. The
smallest n required to form an atlas is called the dimension of the manifold.
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From the inverse σ−1 of each chart we may obtain a topology in M in the
following way: Denoting by ∨q an open set in IRn , then all points in this open
set are mapped by σ−1 in an open set ∪p in M (Fig. 2.1). Thus, we obtain the
borrowed topology in M , where all topological properties of IRn are transferred to
M , including the Hausdorff property meaning that for each object in M there is a
neighborhood containing another object of M .

The simplest examples of manifolds are the already known curves and surfaces
of IR3. The coordinate space IRn itself is a trivial manifold, whose charts are identity
maps. Less trivial examples are the space–times as we shall see later.

A differentiable map between two arbitrary manifolds can be defined through
the use of the borrowed topology as follows: Let M and N be manifolds with
dimensions m and n, respectively. A map F : ∪p → ∪q , with ∪p ∈ M and
∪q ∈ N , is said to be differentiable if for any chart σ in M , and any chart τ in N ,
the composition

τ ◦ F ◦ σ−1 : ∨ → ∨′

is a differentiable map from IRm to IRn . A homeomorphism F between manifolds is
an invertible map such that τ◦F◦ σ−1 is continuous. If this map is also differentiable
then F is called a diffeomorphism (Fig. 2.2).

As an example consider that M ≡ IR and N is an arbitrary manifold. Then it
follows from the above definition that the map

α : ∪t → ∪′, ∪′ ∈ N , t ∈ ∪t ⊂ IR

is differentiable when the composition

Fig. 2.2 Manifold mappings
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I ◦ α ◦ σ−1 = α ◦ σ−1 : IR→ IRn

is differentiable (here the chart of IR is the identity map I ).
A continuous curve in N is a simple continuous map α(t) : IR → N . A

differentiable curve in N occurs when the map α is differentiable. If in addition
the derivative dα/dt does not vanish, we have a regular curve in N . From Fig. 2.3
we see that the curve in N is the image of a curve in IRn by the inverse chart.
In particular, when IR is replaced by one of the coordinate axis xα of the IRn , the
curve α(xα) is called the coordinate curve in the manifold, whose parameter is the
coordinate itself xα .

From the definition it follows that in general a manifold is not a vector space.
Therefore the notions of force, pressure, momenta, and other physical fields that
depend on the specification of a direction on different points of a manifold are
not defined. This may seem conflicting with the concept of a manifold as a set of
observations because these observations involve interactions or forces. Vectors and
vector fields are implemented in the differentiable structure of manifolds in the form
of tangent vectors.

Definition 2.2 (The Tangent Bundle) A tangent vector to a manifold M at a point p
is a tangent vector to a curve on M passing through p. To define a tangent vector to
a curve on M , consider the set of all differentiable functions defined in M , F (M ),
and f ∈ F (M ). The tangent vector field to the curve α(t) at the point p = α(t0)
can be defined by the operation

d

dt
f (α(t))�t0 =

∂ f

∂xβ
dαβ

dt
�p

Fig. 2.3 Curve on a manifold
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The derivative d/dt f (α(t))�t0 is called the directional derivative of f with respect
to the vector α′(t0) = vp. It is also denoted by

α′(t0)[ f ] = vp[ f ] = d f

dt
�p

The set of all tangent vectors to M at p generates a tangent space, denoted by
TpM , with respect to the vector addition rule at p: if vp = α′(t0) and wp = β ′(t0)
are tangent vectors to two curves passing through p, then the linear combination
mvp + nwp = u p defines another curve γ (t) in M with tangent γ ′(t0) = u p

passing through the same point γ (t0) = p. Clearly such rule does not apply to
tangent vectors in different points of M , so that tangent vectors and tangent spaces
to a manifold are only locally defined. In some textbooks a tangent vector at p is
called a vector applied to a point.

Since M has dimension n, TpM has dimension n and a basis of TpM is com-
posed of n linearly independent vectors, tangent to n curves in M . In particular,
these curves can be taken to be the curves defined by the coordinates xα with tangent
vectors

eα[ f ] = α′(xα)[ f ]�p = ∂ f

∂xβ
dxβ

dxα
�p = ∂ f

∂xα
�p

Since this applies to all differentiable functions we may omit f and write the tangent
basis as an operator

eα = ∂

∂xα

Such basis is naturally called the coordinate basis of TpM .
The collection T M of all tangent spaces to M in all points of M , endowed with

a diffeomorphism π : T M → IR, is called the total tangent space (or simply the
total space). The tangent bundle of M is the triad

(M , π, T M )

where the manifold M is called the base manifold and π is called the projection
map. Each tangent space TpM ∈ T M is called a fiber over p.

The projection π identifies on M the tangency point of TpM . Each tangent
vector can be written as a pair vp = (p, v) while v is the vector properly. The
projection of the pair gives π(p, vp) = p. On the other hand, its inverse π−1 gives
the whole tangent space at p:

π−1(p) = Tp(M ) ∈ T M

The total space T M contains all tangent spaces in all points of M , so that it is
composed of ordered pairs like (p, v), where p ∈M and v ∈ TpM (Fig. 2.4).
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Fig. 2.4 The tangent bundle

Since M is a manifold with n dimensions, it follows that TpM is also n-
dimensional. Consequently, the set of all pairs (p, v) ∈M × Tp(M ) is a manifold
with dimension 2n.

A well-known example is given by the configuration space of a mechanical sys-
tem of idealized point particles defined in a region of a space–time M . Supposing
that all constraints to the motion are removed, we obtain a reduced representation
space in which we mark ordered pairs (xi , ẋ i ), i = 1 . .N , where xi denotes the
coordinate of the system and ẋ i denotes the components of its velocity vector. This
set of ordered pairs is the total space T M of the tangent bundle called the represen-
tation space.

The equations of motion of a mechanical system described in the configuration
space are derived from a Lagrangian L (xi , ẋ i ), which is a differentiable function
defined on the total space L : T M → IR [55]. Classical mechanical systems
evolved somewhat independently of the concept of manifold and the coordinates xi

were once called generalized coordinates [56].

Definition 2.3 (Tangent Vector Fields) The concept of tangent vector field arises
naturally after the definition of the tangent bundle as a map V : M → T M such
that it associates with each element p ∈M a tangent vector V (p) ∈ TpM .

A cross section of the tangent bundle is a map S :M → T M such that π ◦ S =
I . It follows that a vector field is a particular cross section such that it specifies a
vector V (p) = vp ∈ Tp(M ).

Clearly, the set of vector fields on a manifold does not generate a vector space
because we cannot sum vectors belonging to different tangent spaces.

The concept of directional derivative of a function with respect to a tangent vec-
tor can be easily extended to the directional derivative of a function with respect to
a vector field: Consider a vector vp = V (p) and a curve α(t) such that p = α(t0)
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and α′(t0) = vp. Let f be a differentiable function on M . Then we may calculate
the directional derivative

vp[ f ] = d

dt
f (α(t))�t=t0

where we have denoted p = α(t0) and α′(t0)i = vi (p). In local coordinates {xα},
the above expression is equivalent to

vp[ f ] =
∑

α′α(t)�t=t0
∂ f

∂xα
�p

Thus, replacing vp = V (p) and α′α(t)|t=t0 = V α(p) we obtain

V (p)[ f ] =
∑

V α(p)
∂ f

∂xα
(p)

Supposing that this holds true for all p belonging to the region of M , we may simply
suppress the point p, thus producing the directional derivative of f with respect to
the vector field V in a coordinate basis:

V [ f ] =
∑

V α ∂ f

∂xα

where V α denotes the components of the vector field V in the chosen coordinates
{xα}.

Consider two manifolds M and N and a differentiable map F :M → N . The
derivative map of F , denoted by F∗, is a linear map between the respective total
spaces,

F∗ : T M → T N

such that for a differentiable function f : N → IR and vp ∈ TpM , the result
F∗(vp)[ f ] is the same as the directional derivative of f ◦ F with respect to vp:

F∗(vp)[ f ] = vp[ f ◦ F]

The linearity of F∗ is a consequence of the properties of the directional derivative:

F∗(avp + bwp)[ f ] = (avp + bwp)[ f ◦ F] = aF∗(vp)[ f ] + bF∗(wp)[ f ]

As an example consider that vp = α′(t0) is a tangent vector to a curve α(t) at a
point p = α(t0) ∈M . The curve α(t) is mapped by F to a curve of N given by

β(t) = F(α(t))
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By the above definition it follows that

F∗(α′(t0))[ f ] = F∗(vp)[ f ] = vp[ f ◦ F(α(t))] = vp[ f (F(α))] = vp[ f (β)]

and from the definition of the directional derivative we obtain

vp[ f (β(t))] = d

dt
[ f (β(t))]�t=t0 = β ′(t0)[ f ]

so that

F∗(α′(t0))[ f ] = β ′(t0)[ f ]

In other words, if β = F(α), then the tangent vector to β at the point F(p) ∈ N is
β ′ = F∗(α′(t0)).

Definition 2.4 (Vector Bundle) Quite intuitively the definition of tangent bundle can
be extended to the more general notion of vector bundle as follows: Given a man-
ifold M , we may attach to each point p a local vector space Vp, not necessarily
tangent to a curve in M . Then we may collect these vector spaces in a total space
V , so that we can identify the point p ∈ M where Vp is defined, called the fiber
over p, defined by a projection map π : V →M . This vector bundle is represented
by the triad

(M , π, V )

Clearly, the tangent bundle is a particular example of vector bundle. A less trivial
example is given by the normal bundle where the fiber over p is a vector space Np

orthogonal to the tangent spaces TpM . Another example of vector bundle is given
by the space of matrices attached at each point of M .

When all fibers Vp of a vector bundle have the same dimension, they are all
isomorphic to a single vector space Σ , called the typical fiber. A particularly inter-
esting case occurs when the total space is the Cartesian product V =M × Σ , the
vector bundle is called a product vector bundle, or simple product bundle, written as

(M , π, M ×Σ)

In this case, the total space M ×Σ can be graphically represented by a box, which
represents the fiber bundle, with M in the base and Σ in the vertical side. Each
element of this total space is just the pair (p, v) where the vector v represents any
vector in each fiber. Because of this, these vector bundles are sometimes referred to
as trivial vector bundles.
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2.2 Geometry of Manifolds

A manifold does not necessarily come with a geometry, that is, with a measure of
distances or of angles, so that we may draw parallel lines satisfying Euclid’s axioms.
A geometry can be implemented on a manifold as follows1:

Definition 2.5 (Metric Geometry on a Manifold) The most intuitive way to con-
struct parallel lines in the Euclidean space is to use a graduated rule or metric
geometry. This intuitiveness is a consequence of the fact that IR3 is a manifold and
also a vector space in which a scalar product is globally defined.

To define the same notion of parallels in a manifold M is a little more compli-
cated. First, we need to define the metric by the introduction of a scalar product of
vectors on the manifold. Since manifolds do not have vectors, we may locally define
the metric in each tangent space as a map

< , >: TpM × TpM → IR

such that it is (a) bilinear and (b) symmetric. There is a third condition in Euclidean
geometry which says that it should be positive definite: Given a vector v, then (c)
||v||2 =< v, v >≥ 0, and ||v||2 =< v, v >= 0 ⇐⇒ v = 0. This condition is
omitted when we consider that geometry is an experimental science, whose results
depend on the definition of the observers, of the observed object, and of the methods
of observations. Thus the condition (c) may hold under certain measurements and
not in others.2

Since the scalar product is locally defined, the metric components in an arbitrary
basis

gμν =< eμ, eν >

are also locally defined. This makes it difficult to define distances between two dis-
tinct points of the manifold connected by a curve α(t), for in principle the metric
varies from point to point. Therefore, the comparison of distances in different points
requires an additional condition that the line element

ds2 = gμνdxμdxν

remains the same. Such isometry exists naturally in Galilean, Newtonian, and
Minkowski’s space–times, but there is no preliminary provision for it in general
relativity. In this case (as in arbitrary metric manifolds), the metric components vary

1 A geometry can be of two basic kinds: The metric geometries based on the notion of distance
or a graduated rule; the other is the affine geometries based on the notion of parallel transport of a
vector field along a curve, keeping a constant angle with the tangent vector to that curve [5, 57].
2 In mathematical analysis when the condition (c) is omitted the analysis is referred to as analysis
in Lorentzian manifolds.
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from point to point, so that the measurements of distances between lines depend on
the existence of an affine connection which is compatible with the metric geometry.
This affine connection was defined by Levi-Civita, using the Christoffel symbols
(see below).

Definition 2.6 (Affine Geometry) An affine geometry on a manifold M is defined
by the existence of parallel transport of a vector field W along a curve α(t) on M ,
such that the angle between W and the tangent vector to α(t) remains constant.
Therefore, it offers an alternative but essential way to trace parallel lines in a mani-
fold prior to the definition of a metric. Let us detail how this works.

Given a vector field W on a manifold M , its covariant derivative with respect
to the vector field V = α′(t) tangent to a curve α(t) at a point p = α(t0) is the
measure of the variation of W along α:

∇V W (p) = d

dt
W (α)

⌋

t=t0

(2.1)

satisfying the following properties (a and b are numbers and f is a real function
defined on M ):

(a) ∇V (aW + bW ′) = a∇V W + b∇V W ′
(b) ∇aV+bV ′(W ) = a∇V W + b∇V ′W
(c) ∇V f = V [ f ]
(d) ∇V ( f W ) = V [ f ]W + f∇V W .

These properties correspond to similar properties that hold in the particular case
of IRn , when we use arbitrary base vectors [58]. It is clear from the above definition
that the covariant derivative of a vector field in M with respect to a tangent vector
of TpM is again a tangent vector field of the same space. It is also clear that it does
not depend on the previous existence of a metric.

The above definition of covariant derivative can be easily extended to the region
of definition of the involved vector fields, without specifying the point p = α(t0).
Denoting by V = α′(t) the tangent vector field to a curve α(t), then (2.1) gives

∇α′W = d

dt
W (α)

providing a measure of how the vector field W varies along the curve α(t).

Definition 2.7 (Parallel Transport) In the case when

∇α′W = d

dt
W (α) = 0

we say that the field W is parallel transported along α(t).
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Thus, the existence of a covariant derivative is intimately associated with the exis-
tence of an affine geometry, and the covariant derivative operator ∇ is also referred
to as the affine connection operator.

Let {eα} be a set of n tangent vector fields to M , such that at each point p,
{eα(p)} is a basis of Tp(M). Such basis is sometimes referred to as a field basis.
Then the covariant derivative of eα with respect to another field basis eβ is a linear
combination of the same field basis:

∇eαeβ = Γ
γ
αβeγ (2.2)

where the coefficients Γ γ
αβ are called the connection coefficients or the Christof-

fel symbols. By different choices of the way in which the covariant derivative acts
on the basis, we obtain different geometries. Thus, for example we can have Rie-
mann, Weyl, Cartan, Einstein–Cartan, and Weitzenbock geometries, depending on
the properties of these coefficients.

In the case of the Riemann geometry, the connection coefficients Γ γ
αβ are sym-

metric in the sense that

∇eαeβ = ∇eβ eα

or equivalently, the symmetry is explicit in the two lower indices of the Christoffel
symbols:

Γ
γ
αβ = Γ

γ
βα

Here and in the following we use the choice of Riemann and Einstein, with a sym-
metric connection.

In order to write the components of the covariant derivative, let us write the
vector fields in an arbitrary field basis: W = Wαeα and V = V βeβ . From the above
properties of the covariant derivatives, we obtain

∇V W = ∇V (Wαeα) = V [Wα]eα +Wα∇V eα =
(

V β ∂W γ

∂xβ
+WαV βΓ

γ
αβ

)

eγ

where in the last expression we have made a convenient change in the summing
indices.

Taking in particular V = eα , and using the semicolon to denote the components
of the covariant derivative, it follows that

∇eμW = Wβ ;μeβ

where we have denoted the components of the covariant derivative of W as

Wβ ;μ =
(
∂Wβ

∂xμ
+W γ Γ β

γμ

)

(2.3)
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The affine geometry can be made compatible with the metric geometry under
the condition that the metric behaves as a constant with respect to the covariant
derivative. This is what Riemann did when he postulated that the covariant derivative
of the metric tensor g is zero:

(∇eρ g)μν = 0 (2.4)

This is called the metricity condition of the affine connection, and it is often written
in terms of the components as gμν;ρ = 0. As we recall from the introduction, this
condition was tentatively modified by Weyl in his 1919 theory.

2.3 The Riemann Curvature

The geometry of surfaces of IR3 tells us that the shape of a surface depends on how
it deviates from the local tangent plane. This characterizes a topological property
of the surface, allowing to distinguish, for example, a plane from a cylinder. This
variation of the local tangent plane can be studied alternatively by the variation of
the normal vector field to the surface, and it is called the extrinsic curvature of the
surface. It is extrinsic because it depends on a property that lies outside the surface.

Definition 2.8 (The Riemann Tensor) Consider two curves in a manifold M , α and
β intersecting at a point A, with unit tangent independent vectors U and V respec-
tively. Then make a parallel displacement of V and U along the curves α and β,
respectively, as indicated in Fig. 2.5. At the points B and C draw the curves α1 and β1
with tangent vectors parallel to U and V , respectively, obtaining the parallelogram.
Next, consider a third vector field W , linearly independent from U and V , at the

Fig. 2.5 The Riemann curvature
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point A, and drag it along the curve β from A to B. Then drag it from B to D along
the curve α1. The result of such operation is the vector field

W ′ = ∇U∇V W

On the other hand, dragging W from A to C and from C to D we obtain another
vector

W ′′ = ∇V∇U W

The difference W ′ −W ′′ gives the Riemann curvature tensor3 of M [43, 47]

R(U, V )W = (∇U∇V −∇V∇U )W = [∇U ,∇V ]W (2.5)

As we see, this result does not depend on a metric, and from our previous comment,
it is actually necessary to be so before any notion of constant distance is defined.

In the particular case of a flat plane of IR3 the Riemann tensor vanishes. There-
fore, Riemann’s idea of curvature is compatible with the geometry of surfaces in
IR3, at least for some basic figures. However, it is not sufficient to distinguish a
plane from a cylinder or, in fact, from an infinite variety of ruled surfaces. It is
also interesting to note that for surfaces of IR3 the Riemann tensor coincides with
the Gaussian curvature K = k1k2, where k1 and k2 are the principal curvatures
measured by the maximum and minimum deviations of the normal vector field (see,
e.g., [48, 58]). The Egregium theorem of Gauss shows that indeed K can be defined
entirely as an intrinsic property of the surface.

The components of the Riemann tensor of a manifold M in an arbitrary tangent
basis {eμ} can be obtained from (2.5) when the operator is applied to the basis
vectors, reproducing another vector

R(eα, eβ)eγ = ∇eα∇eβ eγ −∇eβ∇eαeγ = Rαβγ
δeδ (2.6)

Using the metric we may also write Rαβγ δ = Rαβγ δgδε.
From (2.2), the Christoffel symbols of the first kind are defined as

Γαβγ = gγ δΓαβ
δ

and using Riemann’s metricity condition (2.4) we find the expression of the
Christoffel symbols of the first kind in terms of the derivatives of the metric

Γαβγ = 1

2
(gαγ,β + gβγ,α − gαβ,γ )

which is symmetric in the first two indices Γαβγ = Γβαγ .

3 In general U, V,W need not be linearly independent, but in this case we need to add the term
∇[U,V ]W to compensate for the linear dependency in the construction of the parallelogram.
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Replacing these components in (2.5) we obtain the components of the Riemann
tensor:

Rαβγ ε = Γβεα;γ − Γβεγ ;α + Γ μ
βγ Γαεμ − Γ μ

βαΓγ εμ (2.7)

From this expression we derive the following properties:

Rαβγ ε = −Rβαγ ε (2.8)

Rαβγ ε = −Rαβεγ (2.9)

Rαβγ ε = Rγ εαβ (2.10)

Rαβγ ε + Rαεβγ + Rαγ εβ = 0 (2.11)

Finally the covariant derivative of Riemann’s tensor gives the Bianchi’s identities

Rαβγ ε;μ + Rαβεμ;γ + Rαβμγ ;ε = 0 (2.12)

Ricci’s curvature tensor is derived from Riemann’s tensor by a contraction

Rαε = gβγ Rαβγ ε (2.13)

On the other hand, the contraction of Ricci’s tensor gives the scalar curvature (or the
Ricci scalar curvature).

R = gαβ Rαβ (2.14)

We shall return to the Riemann tensor in the latter sections, showing that it has the
same structure for gravitation and for the gauge field strengths.

Example 2.1 (Geodesic) A geodesic in a manifold M is a curve such that its tangent
vector is transported parallel to itself :

∇α′α′ = 0

From (2.3) we may derive the equation of a geodesic α(t), with parameter t , in coor-
dinate basis. Taking V = W = α′ = ∑ xμeμ, and using the geodesic definition,
we obtain

d2xμ

dt2
+ Γ μ

αβ

dxα

dt

dxβ

dt
= 0 (2.15)

In particular, for M = IRn this is the equation for a straight line in arbitrary coor-
dinates.

As an exercise on the equivalence between metric and affine geometries under
(2.4), let us show that geodesics generalize the concept of straight lines in the sense
that describe the smallest distance between two points of M , measured by a metric
associated with a scalar product <,>.
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Consider a family of curves passing through two arbitrary points p and q in M ,
defined by the displacement of a vector field W over the geodesic α:

γ (t, u) = α(t)+ uW (α(t))

It follows that γ ′ = dγ /dt = α′ + udW/dt and dγ /du = W . The arc-length
between p and q along any curve of the family is given by

S(u) =
∫ t

o

√
< γ ′, γ ′ >dt

The variation of this arc-length with respect to the family parameter u is

d S

du
=
∫ t

0

<
dγ ′
du , γ

′ >
√
< γ ′, γ ′ >

dt

Since W is an arbitrary vector field we may take in particular W = α′, so that
dγ /du = W = α′. Using the fact that the two parameters are independent we
obtain

dγ ′

du
= d

dt

dγ

du
= dα′

dt
= ∇α′α′

Since α is a geodesic, we necessarily have

d S

du
=
∫ t

0

< ∇α′α′, γ ′ >√
< γ ′, γ ′ >

dt = 0

showing that S is a maximum or a minimum. The maximum is infinity and therefore
it is not interesting. The minimum occurs in the geodesic.



Chapter 3
Symmetry

Weyl’s classic book on symmetry conveys the idea that the notion of symmetry
is not just an art or an invention of the mind, but part of the observational struc-
ture of nature [59]. However, the awareness of the importance of symmetry in
physics became clear only after the debate on the negative result of the Michelson–
Morley experiment and the subsequent interpretation of the relative motion between
observers and observables given by Einstein. This interpretation led us to the emer-
gence of the Poincaré symmetry. From then on, the structure of Lie symmetry has
become the essential tool to the understanding of the fundamental interactions.

3.1 Groups and Subgroups

A group G is a set composed of elements a, b, c, . . . , endowed with a closed oper-
ation (generically denoted by ∗) such that

(a) The operation is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c;
(b) There is a neutral or identity element 1: a ∗ 1 = 1 ∗ a = a; and
(c) For each element a ∈ G, there is an inverse element denoted by a−1 such that

a−1 ∗ a = a ∗ a−1 = 1.

For an Abelian or commutative group we also have a ∗ b = b ∗ a. The number
of elements in a group is called the order of the group. A group of infinite order has
infinite elements.

A subset H ⊂ G is a subgroup of G, when its elements form a group with the
same operation of G. If H ⊂ G, H �= G, then H is a proper subgroup of G. It is
easy to see that the identity of G must be also contained in all subgroups of G.

Like a manifold, a group can be parameterized by a set of real numbers
(θ1, . . . , θN ), given by 1:1 maps or charts X : G → IRN such that for each element
r ∈ G we have an element of IRN

X (r) = (θ1, . . . , θ N )

and conversely, given a point in IRN we obtain an element of G

M.D. Maia, Geometry of the Fundamental Interactions,
DOI 10.1007/978-1-4419-8273-5_3, C© Springer Science+Business Media, LLC 2011
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r = X−1(θ1, . . . , θN ) = X−1(θ)

The dimension of a group is the maximum number N of independent parameters
required to describe any element of the group.

Given two elements r = X1(θ) and s = Y−1(θ ′), the group composition gives
r ∗ s = X−1(θ) ∗ Y−1(θ ′) = t = Z−1(θ ′′) ∈ G. The parameters θ ′′ must then be
related to θ and θ ′ as

θ ′′ = Z ◦ (X−1(θ) ∗ Y−1(θ ′)) = f (θ, θ ′) (3.1)

Since these charts cover the whole group, they form an atlas similar to the case of
differentiable manifolds. Then the above condition (3.1) must be satisfied for all
elements of the group (such condition does not exist in differentiable manifolds).

When the parameters vary continuously within a given interval on IRN and (3.1)
is a homeomorphism we have a continuous group. This is less demanding than the
differentiable manifold structure where the relation between the parameters (the
coordinates) is a diffeomorphism. However, later on we shall be using an even
stronger condition imposed by Lie, where (3.1) is required to be an analytic function.

For notational simplicity, from now on we will omit the ∗ operation and write it
simply as a product.1 Thus r ∗ s is written simply as rs.

Definition 3.1 (Cosets and Normal Subgroups) Consider a subgroup of H ⊂ G and
r a specific element of G. Then the set denoted by

r H = {r x | x ∈ H}

is called the left coset of H . Similarly we may define the right coset of H denoted
by Hr . It follows from this definition that r H �= H because r is not necessarily
in H . However, r H necessarily contains r because as a subgroup H contains the
identity 1. Hence r = r1 ∈ r H .

Given two left cosets (or right cosets) of a subgroup H in G, aH and bH , if
they possess a common element then they are necessarily identical.

Indeed, consider the left cosets A = aN and b = bN and let x be a common
element belonging to A and B. Then we may write x = ar, x = bs, r, s ∈ H , it
follows that ar = bs and therefore, a = bs r−1 = bt, t = sr−1 ∈ H . Conse-
quently,

aH = {am |m ∈ H} = {btm |m, t ∈ H} = {bn | n ∈ H} = bH

A subgroup N in G such that its left and right cosets are equal is called an invariant
(or normal) subgroup of G. From the defining condition aN = Na, it follows that

1 Except for additive groups where the operation is a sum and the neutral element is zero.
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N = a−1 Na = {q = a−1xa | x ∈ N , a ∈ G}

In other words, the elements of an invariant subgroup belong to a class of equiva-
lence where they differ by an equivalence relationship q ∼ x defined by q = a−1xa.

An interesting property is that if A = aN and B = bN are cosets of an invariant
subgroup N , then the set C = AB = {xy ∈ G | x ∈ A and y ∈ B} is also a coset of
G. Indeed, writing x = ap and y = bq, p, q ∈ N , it follows that the elements of C
have the form xy = apbq. Since N is an invariant subgroup the left and right cosets
of N are identical. Hence, if p, q ∈ N then aga−1 = r and bab−1 = a where
r, s ∈ s. Therefore, ap = cp and bs = sb and a f = apbq = apsb. However,
p, s ∈ N , ps ∈ N , and using again the fact that N is invariant, psb = bm, m ∈ N .
Consequently, xy = abm = cm, c = ab, which implies that xy belongs to a left
coset of N , C = AB = cN .

The above result suggests the construction of a product operation between cosets
of a group G as follows: Given two left cosets A and B defined by the same invariant
subgroup N in G, then C = AB is also a left coset cN where c = ab, A = aN
and B = bN .

It can be easily seen that this product defines a group, where the identity element
is N :

A = AN = {xy = cm | c = a1, m ∈ N } = {z = am |m ∈} = A

the inverse of A = aN is A−1 def= a−1 N :

C = AA−1 = {xy = cm|c = aa−1 = 1, m ∈ N } = {z = m|m ∈ N } = N .

Finally, the product of cosets is associative: If A = aN , B = bN , C = cN , then
(AB)C = (ab)cN = a(bc)N = A(BC).

The set of all cosets of an invariant subgroup N , like A = aN , defines a group,
called the quotient group G/N , with respect to the above defined coset product.

3.2 Groups of Transformations

Groups can be studied by themselves as abstract groups. On the other hand, sym-
metry groups are transformation groups, whose elements are operators acting on a
space or manifold. We shall be dealing mostly with transformation groups, separated
in two cases which are of immediate interest to field theory and to the fundamental
interactions. They are groups of coordinate transformations acting on the coordi-
nates of a space–time manifold and the groups of field transformations acting on
field variables.

The groups of coordinate transformations act on the coordinate spaces of the
manifolds, changing a given coordinate system to another as
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x ′i = f i (x1, x2, . . . , xn, θ1, θ2, . . . , θN ) = f i (xμ, θa) (3.2)

where in the abbreviated notation xμ are the old coordinates and θa are the param-
eters of the group.

A simple example of a coordinate transformation group is given by a group of
linear operators acting on the parameter space IR3 of some three-dimensional man-
ifold. If (eμ) is an arbitrary basis of IR3, then the action of the group on that space
can be obtained by the action of the group on that basis. For a linear operator r ∈ G
the result is a linear combination of the same basis elements:

r(ei ) = r j
i e j

The quantities r j
i define a matrix in that basis which represents the group action.

Definition 3.2 (Representations of a Group) A representation of an abstract group
G by a transformation group G ′ is a homomorphism R : G → G ′. In the product
notation the homomorphism writes as

R(xy) = R(x)R(y) (3.3)

Of particular importance is a linear representation of a group G, which is the homo-
morphism

R : G → G ′

where G ′ is a group of linear operators acting on some vector space V , called the
representation space.

Therefore, for each element r of the group G there is a corresponding operator
R(r) acting linearly on the representation space. Since R is a homomorphism,

R(rs) = R(r)R(s)

From the properties of groups it follows that R(r) = R(r1) = R(r)R(1).
Hence R(1) = 1 and R(r−1) = R(r)−1.

Therefore, to find a linear representation of a given group, we need in the first
place to define a representation space where a transformation group G ′ acts linearly.
Then determine how the group G ′ acts on that space. Finally, choose a basis of the
representation space.

Generally speaking, given one basis {ηi } in the representation space, the linear
representation is defined by the coefficients Ri

j in the operation

R(r)ηi = R
j

i (r) η j

Note also that a homomorphism between groups is not necessarily a 1:1 map. In
particular we may have several objects in G ′ corresponding to the identity element
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of G. The set of all such elements is called the kernel of the representation. Denoting
this kernel by K , the above definition says that R(K ) = 1.

A faithful linear representation of a group is a linear representation which is 1:1.
That is,

R(r) = R(s) ⇐⇒ r = s

In this case the kernel contains only the identity element: K = {1}.

3.3 Lie Groups

A continuous group is such that its elements vary continuously with its parameters.
The relation between parameters (3.1) can be just a homeomorphism: continuous
with an inverse which is also continuous.

Like in a manifold a continuous group may have an induced topology from its
parameter space, so that the operations of limits and derivatives can be defined.
From this topology it is easy to infer that we may define continuous curves on a
continuous group G as a continuous map α : IR → G, with tangent vector at a
point r = α(t0) ∈ G, given by α′(t) = dα/dt�t0 as long as the relation between the
parameters (3.1) remains valid.

Consequently we may define on a continuous group some topological properties
and classify them according to topological characteristics such as

1. When any two elements of a continuous group G can be connected by any con-
tinuous curve or by a continuous sequence of segments of continuous curves,
then G is called a connected group.

2. A group G is multiple connected when there are multiple curves connecting
any two elements of G, but they cannot be continuously deformed into one
another.

3. A group is compact when each of its parameters θa varies in a closed and limited
interval.

Definition 3.3 (Lie Group) A continuous group G is a Lie group when the com-
position between the parameters (3.1) is analytic in the sense that f (θ, θ ′) can be
represented by converging positive power series [60]. We will see the relevance of
this condition when discussing Lie’s theorem.

A coordinate transformation produced by a Lie group acting on a differentiable
manifold can be written as

x ′μ = f μ(xν, θa) (3.4)

where f μ = x ′μ are differentiable functions of the coordinates xμ, but as a con-
sequence of the analyticity of (3.1), they are analytic functions of the parame-
ters θa . The local inverse transformation can be either postulated or derived from
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the condition that the transformation (3.4) is also regular in x , that is, when the
Jacobian matrix

J ( f ) =
(
∂x ′μ

∂xν

)

is non-singular.
A natural linear representations of the Lie group of a coordinate transformations

on a manifold is given by the action of the group in the tangent and cotangent spaces,
using, respectively, the coordinate basis {eμ = ∂/∂xμ} and its dual {eμ = dxμ}.
Taking an arbitrary element r ∈ G, its action on the coordinates also changes the
tangent basis as

e′μ =
∂

∂x ′μ
= R(r)eμ =

∑
R(r)μ

νeν =
∑

R(r)μ
ν ∂

∂xν

where R(r)μν denote the matrix elements of the linear representation defined in the
tangent space.

Similarly, we obtain the dual representation of the same group using the cotan-
gent space, with the dual coordinate basis {eμ = dxμ}. In this basis the linear
representation is given by

e′μ = dx ′μ =
∑

R∗(r)μνeν =
∑

R∗(r)μνdxν

where R∗(r)μν denote the matrix elements of the dual linear representation defined
in the cotangent space.

More generally we may consider the group G acting on the fibers Vp defined
on an arbitrary vector bundle (M , π, V ), where each fiber Vp is a vector space in
which a generic field Ψ , is defined.

Like in the tangent spaces, the action of the group on these fields can be defined
by its action on a field basis of these spaces. For example, denoting a basis in one
such space by {ηi }, then the group action on a vector Vp can be determined by its
action on that basis as

η′i = R(r)ei =
∑

R(r)i
jη j (3.5)

and a similar linear representation can be defined in the dual basis of the dual
fiber V ∗p .

The following table shows some examples of Lie symmetry groups which are
relevant for the current development of the theory of the fundamental interactions.
Some of these groups will be also discussed in the next sections. For more on excep-
tional groups see, e.g., [61].
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Group Name Group elements Parameters

Galilean group 3 rotations + 3 boosts + 3 translations
+ 1 time scale

10

General Galilean
group

3 Rotations + 3 general boosts + 1 time
scale +Newton’s potential gauge

10

P4 Poincaré group 6 Pseudo-rotations + 4 translations 10
C0 Conformal group Poincaré subgroup + SCTa + dilatations

+ inv.
15

d Sn deSitter group Pseudo-rotations on n-dimensional
positive sphere

n(n + 1)/2

Ad Sn Anti-deSitter groups Pseudo-rotations on n-dimensional
negative sphere

n(n + 1)/2

GL(N , IR) Real linear group Real N × N matrices N 2

SL(N ) Special linear group Complex N × N matrices with
determinant 1

2(N 2 − 1)

SL(N ) Unimodular group Real N × N matrices N 2 − 1
U (N ) Unitary group Unitary matrices N 2

SU (N ) Special unitary
group

Unitary matrices with determinant 1 N 2 − 1

SO(N ) Special orthogonal
group

Real orthogonal matrices with
determinant 1

N (N − 1)/2

G2 Smallest
exceptional group

Automorphisms of octonions 14

E8 Largest exceptional
group

The symmetry group of its Lie algebra 248

aSpecial conformal transformations

3.4 Lie Algebras

The relevance of continuous groups for the study of symmetries is that they allow us
to consider infinitesimal transformations defined by when the parameters are small
in the presence of unity. As before, we start with the simpler case of a group of
coordinate transformations on a manifold M .

3.4.1 Infinitesimal Coordinate Transformations

Consider a coordinate transformation described in (3.4) x ′μ = f μ(xν, θa), fol-
lowed by a second transformation to another set of coordinates close to x ′μ. By the
continuity of the group, the parameters of this second transformation must corre-
spond to a small deviation from θ . That is,

x ′′μ = f μ(xν, θa + δθa)

Next, expand this function in a Taylor series around δθμ = 0. Keeping only the first
power of δθ , we obtain
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x ′′μ = f μ(xμ, θa)+
∑ ∂ f μ(x, θa + δθa)

∂θa

⌋

δθ=0
δθa = x ′μ+aμa (x)δθ

a = x ′μ+ξμ

where we have denoted ξμ = aμa (x ′)δθa(x, θ), called the infinitesimal descriptor
of the transformation. As a consequence of (3.1), these functions are also analytic
in θa .

The array aμa depend on x and θ so that the inverse transformation exists only if
it has rank equal to the smallest value between N and n. Simplifying, we may drop
the excess primes to write the above infinitesimal coordinate transformation as

x ′μ = xμ + ξμ (3.6)

To obtain the transformations of fields consider first the infinitesimal coordinate
transformation on a differentiable real function F on the manifold

d F = ∂F

∂xμ
dxμ = ∂F

∂xμ
aμa (x)δθ

a = δθa Xa F

where we have introduced a linear operator acting on the space of all such differen-
tiable functions on M by

Xa =
∑

aμa (x)
∂

∂xμ
(3.7)

Using these operators the infinitesimal variation of the function can be expressed as

F ′ = F + d F = (1+
∑

δθa Xa)F

In particular, taking F to be any coordinate xμ we obtain our previous infinitesimal
coordinate transformation (3.6).

The linear operators (3.7) generate an N -dimensional vector space with the oper-
ations of sum and multiplication by numbers given by

(aXa + bYa) f = aXa f + bYa f, a, b ∈ IR

Indeed, suppose that there are constants ca ∈ IR, such that
∑

ca Xa = 0. Applying
this to xμ, we obtain

∑
ca Xa xμ = 0

Replacing definition (3.7), we obtain
∑

caaμa = 0. Since the matrix ai
a(x) has rank

equal to the smallest value between N and n, it follows that ca = 0. Therefore, the
operators Xa are independent and generate a vector space called the space of the
linear operators of the Lie Group G, denoted by G .
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3.4.2 Infinitesimal Transformations on Vector Bundles

The situation here is similar to the previous case, with the difference that G acts on
the fibers V of an arbitrary vector bundle, not necessarily resulting from a coordi-
nate transformation.

Denoting a generic field defined in that vector bundle by Ψ : M → T V and
denoting a field basis ηi , we may express the field as

Ψ = Ψ iηi

The infinitesimal transformation of the field is obtained as in the case of coordinates,
where instead of a transformation of the coordinates xμ we have a transformation
of the components Ψ i by the action of the group G, denoted by

Ψ ′i = f i (Ψ j , θa)

which is followed by another transformation close to the first, given by

Ψ ′′i = f i (Ψ ′ j , θb + δθb)

Expanding f i in Taylor series around δθb = 0 and keeping only the first powers of
δθb we obtain as before

Ψ ′′i = f i (Ψ ′ j , θb)+
∑ ∂ f i (Ψ ′ j , θb + δθb)

∂θc

⌋

δθ=0
δθc = Ψ ′i + ai

b(Ψ )δθ
b

(3.8)

where we have denoted ai
b(Ψ ) =

∂ f i

∂θb

⌋

δθ=0
. Therefore, the infinitesimal variations

of the field components are

δΨ i = ai
b(Ψ )δθ

b (3.9)

and the infinitesimal variation of a function (or better, of a functional of the field
such as, for example, the Lagrangian), of the field F(Ψ ), resulting from the above
infinitesimal transformation is

δF = ∂F

∂Ψ i
δΨ i = ∂F

∂Ψ i
ai

b(Ψ )δθ
b = δθb Xb F

where we have denoted the linear operators

Xa =
∑

ai
a(Ψ )

∂

∂Ψ i
(3.10)

These operators act on the space of all differentiable functions on M .
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In particular, applying Xa to the field components Ψ α we obtain

XaΨ
i = ai

b (3.11)

The commutator or Lie bracket between these operators is defined by

[Xa, Xb]F = Xa(Xb F)− Xb(Xa F) (3.12)

where F is an arbitrary function. Replacing the above expressions for Xa we find
that

[Xa, Xb] =
(

ak
a
∂a j

b

∂Ψ k
− ak

b
∂a j

a

∂Ψ k

)
∂

∂Ψ j
(3.13)

A non-trivial result obtained by Marius Sophus Lie in 1872 shows that for a Lie
group the commutators between two linear operators define an algebra in the space
G generated by {Xα}. The mathematical and physical implications of Lie’s theorem
reside in the fact that under the conditions defining the Lie group, it is sufficient to
work with the above-mentioned algebra of linear operators.

Except for a few discrete symmetries, all relevant symmetries of the fundamental
interactions satisfy these conditions. The result of Lie is part of the development
of field theory and particle physics from the 20th century onward. Actually, the
results derived by Noether and Wigner suggest that any present or future theoretical
proposals to modify the Lie symmetry structure must be checked against the theoret-
ical and experimental results that are currently dependent on the Lie theorem. This
classic and non-trivial theorem can be shown in different ways. In the following we
present some of its details [62–64].

Theorem 3.1 (Lie) The commutator between two linear operators Xa of a Lie group
is a linear combination of these operators

[Xa, Xb] = fab
c Xc

where fab
c are constants, called the structure constants of the group.

Consider a Lie group G with parameters θ , acting on the fiber Vp of a vector
bundle

(M , π, V )

Consider two consecutive infinitesimal transformations of the Lie group, one with
increment θ+δθ to the original values θ and the other with increments θ+dθ . From
(3.1) and the definition of a Lie group, it follows that there is an analytic function
between these parameters:
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θa + dθa = φa(θ, θ + δθ)

The first-order terms of the Taylor expansion of this function around the identity
(here represented by θ = 0) gives a relation between the increments dθ and δθ as

dθa = φ(0, 0)+
∑ ∂φa(θ, θ + δθ)

∂δθb
�θ=0 δθ

b =
∑

b

Fb
aδθb (3.14)

where we have denoted

Fb
a(δθ) = ∂φa(θ, θ + δθ)

∂δθb

⌋

θ=0

We note that φ(0, 0) is the relation between the parameter of the identity transfor-
mation (θ = 0) and itself, so that φ(0, 0) = 0.

From the existence of the inverse element of a group, it follows that the relation
(3.1) must also be invertible. That is, there exists the inverse matrix F−1b

a(θ) and
the inverse relation is given by δθa = F−1a

b(δθ)dθb.

Replacing this in the differential dΨ = Ψ ′′ − Ψ ′ given by (3.8) we obtain

dΨ i = ∂ f i (Ψ j , θb)

∂θb
dθb =

∑
ai

aF−1a
b(θ)dθ

b

from which we obtain

∂ f i

∂θb
=
∑

ai
aF−1a

b(θ) (3.15)

Now, since the transformation function f i are analytic in θ they satisfy the Leibniz
derivative rule, and the last expression gives

∂ai
cF
−1c

b

∂θa
= ∂ai

cF
−1c

a

∂θb

or equivalently

ai
c

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

+F−1c
b
∂ai

c

∂θa
−F−1c

a
∂ai

c

∂θb
= 0 (3.16)

However, from (3.8), ai
c depends on θa only through Ψ i , so that

∂ai
c

∂θa
= ∂ai

c

∂Ψ j

∂Ψ j

∂θa
= ∂ai

c

∂Ψ j
a j

dF−1d
a

Consequently, (3.16) becomes
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ai
c

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

+ ∂ai
c

∂Ψ j
a j

dF−1d
aF−1c

b − ∂ai
c

∂Ψ j
a j

dF−1d
bF
−1c

a = 0

Therefore, multiplication of this by F a
mF b

n gives

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

F a
mF b

n ai
c=−a j

d
∂ai

c

∂Ψ j

(
δd

mδ
c
n−δd

n δ
c
m

)
=a j

m
∂ai

n

∂Ψ j
−a j

n
∂ai

m

∂Ψ j

(3.17)

defining a function of the parameters θ by

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

F a
mF b

n = f c
mn(θ) (3.18)

or equivalently

∂F−1b
a

∂θc
− ∂F−1b

c

∂θa
= f b

mn(θ)F
−1m

cF
−1n

a (3.19)

(3.17) can be written in the more compact form

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j
= f c

mn(θ)a
i
c (3.20)

To end the theorem we have to show that f c
mn(θ) are constants. For this purpose,

take the partial derivatives of the above expression with respect to θb, obtaining

∂ f c
mn(θ)

∂θb
ai

c + f c
mn(θ)

∂ai
c

∂Ψ k

∂Ψ k

∂θb
= ∂

∂Ψ k

(

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j

)
∂Ψ k

∂θb

or

ai
c
∂ f c

mn(θ)

∂θb
=
[

∂

∂Ψ k

(

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j

)

− f c
mn(θ)

∂ai
c

∂Ψ k

]
∂Ψ k

∂θb

Since f a
bc(θ) depend only on θ , the derivative of (3.20) with respect to Ψ k gives

∂

∂Ψ k

(

ai
n
∂a j

m

∂Ψ j
− a j

m
∂ai

m

∂Ψ j

)

= f c
mn(θ)

∂ai
c

∂Ψ k

so that the right-hand side of the previous expression vanishes and consequently

ai
c
∂ f c

mn(θ)

∂θb
= 0
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Since the matrix ai
b has rank less than or equal to the smallest value between

N and n, it follows that

∂ f c
mn(θ)

∂θa
= 0

showing that f b
mn(θ) are in fact constants. Replacing this result in (3.13) we obtain

the Lie theorem

[Xa, Xb] = f c
ab Xc (3.21)

This implies that the space generated by {Xa} defines an algebra with the product
(the Lie product) defined by the commutator. The result is called Lie algebra of the
group G denoted by G . The constants f c

ab are antisymmetric in the lower indices
f c
ab = − f c

ba .
Another property of the Lie algebra is that it is non-associative. Instead of the

associativity, it satisfy the Jacobi identity

[[Xc, Xa], Xb] + [[Xb, Xc], Xa] + [[Xa Xb], Xc] = 0

or in terms of the structure constants

f p
ca f n

pb + f p
bc f n

pa + f p
ab f n

pc = 0 (3.22)

One interesting aspect of Lie’s theorem is that almost everything can be done
within the Lie algebra, including the representations of the Lie group [62]. This is
a consequence of the analytical property which implies that it is possible to recover
the full group starting from the Lie algebra.

Theorem 3.2 (The Inverse of Lie Theorem) A finite transformation of a Lie group
G can be obtained from the converging series of infinitesimal transformations gen-
erated by its Lie algebra G .

In fact, consider a set of constants f c
ab satisfying (3.19) and (3.20). This means

that there are functions F−1a
b and ai

a satisfying the equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂F−1b
a

∂θc
− ∂F−1b

c

∂θa
= f b

mnF−1m
c F−1n

a

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j
= f c

mnai
c

(3.23)

Replacing F−1a
b from (3.15) and applying the initial condition (corresponding to

the identity transformation)

F a
b (0) = δa

b (3.24)
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we may solve in principle (3.23) for the functions F−1b
a . However, it is easier and

more intuitive to change the parameterization of the group to a more convenient one,
called the vector parameterization defined by

θa = saτ

whose geometrical interpretation is as follows: each set of values (θ1, . . . , θ N )

defines a straight line with parameter τ in the space of parameters, passing through
the origin and with direction sa . Then, each transformation of the group corresponds
to a point in such line. The identity transformation (conventionally described by
θa = 0) corresponds to origin τ = 0.

In this new parameterization the operation of the group in a space V can be
described by the line operator S(τ ) = S(s1τ, . . . , s N , τ ) such that for each set
of constant values of s1, . . . , s N , the operator depends only on τ defined in the
straight line. Then, the transformation of the field from Ψ i (0) to Ψ i (τ ) can be
represented by

Ψ i (τ ) = S(τ )Ψ i (0) (3.25)

where the operator S(τ ) still needs to be defined. For this, consider the variation of
the field along the line

dΨ i (τ )

dτ
= ∂Ψ i

dθa

dθa

dτ
= ∂Ψ i

∂θa
sa = saF−1b

a(s, τ )XbΨ
i

where in the last equal sign we have used (3.15). Consequently, the variation of Ψ α

can be expressed as ∂Ψ i/∂τ = ∂S/∂τΨ i (0). The derivative of (3.25) compared
with the above expression gives a differential equation for S(τ ):

d S(τ )

dτ
= saF−1b

a(s, τ )Xb S(τ )

This equation can be integrated with the boundary condition S(0) = 1 at τ = 0,
compatible with (3.24), obtaining

d S(τ )

dτ

⌋

τ=0
= sa Xa

From the analytic dependence on the parameters it follows that S(τ ) is also analytic
in τ , so that it can be represented by a converging positive power series

S(τ ) = S(0)+ τ d S

dτ

⌋

τ=0
+ · · ·

or, using the above initial conditions,
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S(τ ) = 1+ τ sa Xa + · · ·

Therefore, for each straight line defined by the parameters sa , we may obtain the
finite operation of the group. Then, for other finite group operations we only add the
rotations of the straight line around the origin. This completes the theorem.

To obtain the finite transformations of a field Ψ we just apply the operator S(τ )
to Ψ i (0), obtaining

Ψ i (τ ) = Ψ i (0)+ τ sa XaΨ
i (0)+ · · ·

From the above theorems it follows also that the existence of Lie subgroups implies
the existence of Lie subalgebras, that can be characterized by the structure constants.

As an example, if H is a subgroup of a Lie group G with p parameters, then the
commutator of two linear operators of H belongs to H :

[Xa Xb] = f c
ab Xc, c = 1, . . . , p,

f c
ab = 0, c = p + 1, . . . , N .

In particular, using the structure constants we may characterize Lie invariant
subalgebras. From this we may define a simple Lie algebra (when it does not have
proper invariant subalgebras) which corresponds to a simple group. A semi-simple
Lie algebra (which does not have any Abelian invariant subalgebras) also corre-
sponds to a semi-simple Lie group [63, 64] (these properties make an interesting
exercise).

Definition 3.4 (Adjoint Representations of Lie Algebras) A representations of a Lie
algebra G is a homomorphism

R : G → G ′

where G ′ is an algebra of linear operators on a space V , such that

R([Xa, Xb]) = [R(Xa),R(Xb)]

From the definition of Lie algebra it follows immediately that

[R(Xa),R(Xb)] = f c
abR(Xc) (3.26)

A consequence of the inverse theorem of Lie is that the representation of a Lie
algebra induces the representation of the corresponding Lie group.

Similar to the representations of groups, the representations of Lie algebras are
not unique, as they depend on the choice of the representation space, on their
action of the algebra on that space, and finally on the choice of the basis of the
representation space. Once the action of the algebra and the representation space is
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chosen, we may finally take a basis of that space and apply the Lie algebra operators
R(Xa) on that basis:

R(Xa)(ηi ) =
∑

R(Xa)
j
iη j (3.27)

where R(Xa)
j
i denote the components of the representation matrix.

One particularly interesting representation of a Lie algebra is defined by the space
of the Lie algebra itself, using the basis {Xa}, the same where the structure constants
were defined. In this basis the algebra acts in the following way:

G̃ (Xa)Xb
def= [Xa, Xb] = f c

ab Xc

where we have used a special notation G̃ for this representation, which explicitly
tells that the representation space is the space of the Lie algebra itself.

Comparing with (3.27), the matrix elements of the adjoint representation asso-
ciated with the basis (taking ηi = Xa) are G̃ (Xa)Xb = G̃ (Xa)

c
b Xc. Therefore, it

follows from (3.26) that the matrix elements of the adjoint representation are the
structure constants of the Lie algebra

G̃ (Xa)
c

b = f c
ab (3.28)

In the adjoint representation all relevant group quantities are characterized by the
structure constants.

Definition 3.5 (Casimir Operators) Given two operators A = Aa Xa and B = bb Xb

defined in the adjoint representation of a Lie algebra G , we may define the product
of the two operators consistently with the Lie algebra product as

G̃ (A)G̃ (B)Xc = [A, [B, Xc]] = Aabb[Xa, [Xb, Xc]] = Aa Bb f m
bc f n

am Xn

Since {Xa} are linearly independent vectors, the above expression defines a matrix
with components

(G̃ (A)G̃ (B))nc = Aa Bb f m
bc f n

am

whose trace is

tr(G̃ (A)G̃ (B)) =
∑

c

(G̃ (A)G̃ (B))cc = Aa Bb f m
bn f n

am

This is a symmetric bilinear form which defines a scalar product in the Lie algebra
space <,>: G × G → IR. It can be written as

< A, B >= gab Aa Bb, where gab = f n
am f m

bn (3.29)
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This product is called the Killing form [65]. When the coefficients gab define an
invertible matrix, we obtain a scalar product defining a metric geometry in the space
of the Adjoint representation.

The Casimir operators of a Lie algebra are defined in the basis {Xa} by

C2 = gab Xa Xb = f n
am f m

bn Xa Xb

C3 = f p
am f m

bn f n
cp

...

Ck = f mk
a1m1

f m1
a2m2
· · · f mk−1

ak mk Xa1 Xa2 · · · Xak

They are invariant operators in the sense that they do not depend on the choice of
basis in the Lie algebra.

The importance of the Casimir operators resides in the fact that the classification
of the unitary irreducible representations of a Lie algebra (or of a Lie group) is given
by the eigenvalues of these operators. In particular, Eugene Wigner showed that in
the case of the Poincaré group, there are only two Casimir operators: The eigen-
values of the operator C2 (the mass operator) acting on a Hilbert space gives the
mass of the relativistic particles. On the other hand the eigenvalues of the operator
C3 (the spin operator) gives the spins of these particles [30]. This result provided a
deep insight into the structure of the physical manifold.

The spectrum of the eigenvalues of the spin operator is discrete (formed by inte-
gers and semi-integers). On the other hand the spectrum of the mass operator is
continuous, with isolated points (that is, not all real values appear).



Chapter 4
The Algebra of Observables

Observables are measurable quantities such as mass, energy, momentum, spin, and
other parameters which are defined in the physical manifold. Together with the
notions of physical space and of symmetry groups, the observables and the con-
ditions of observations complete the basic elements of a physical theory.

The observables themselves are usually invariant quantities in the sense that they
can be measurable by different observers in different times. In this chapter we study
the mathematical structure of observables, which may be in general derived from a
tensor structure, but which is usually described as scalar, vector, and spinor fields.

The complete structure of observables depends on the other attributes of a physi-
cal theory, including the admissible observers and the definition of the conditions of
observations. So, in a sense it requires a complete theory or unified theory. An early
version of such theory of everything was proposed in the 1940s by Arthur Eddington
under the name of Fundamental Theory. This is an unfinished work, proposing to
unify all observable structures in terms of a single algebraic structure that he called
the algebra of observables [66, 67].

Since all physical fields can be represented as scalars, vectors or spinors, pos-
sessing some kind of algebraic structure (defined over some vector space), then in a
less pretentious fashion than Eddington’s algebra we may describe the observables
by means of the tensor algebra on the physical manifold.

The scalar fields physical (represented by differentiable functions belonging to an
infinite dimensional space) which are usually described as being devoid of algebraic
structure can be described as tensors of order zero. We shall see that tensors are a
very convenient structure to manifestly display the symmetry properties of these
observables.

Tensors appeared as a means to describe the tensions or pressures on the different
faces of a crystal or a solid object which requires a different vector field with tangent
and normal components to each face. The same is true for any other observable
whose existence is detected by some radiation, or by collisions with high energy
probes.

Tensors were also known by the name of absolute differential calculus. This was
essentially due to the fact that the observations must be written in a way that all
observers in a theory can recognize the same expression. Thus, the variations of
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DOI 10.1007/978-1-4419-8273-5_4, C© Springer Science+Business Media, LLC 2011
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tensors from one coordinate system to another can be easily detected, regardless
of the used reference frame. This implies that not only the object in itself, but the
reference frame in which its attributes are defined have a general transformation
rule. This is deeply related to the notion of a mathematical analysis that takes into
consideration the variations of the observable and the reference frame [68].

We will consider initially tensors defined on the tangent and the cotangent bun-
dles of the physical manifold. In subsequent chapters we will see that these observ-
ables may also be defined as objects defined in a more general vector bundle.

4.1 Linear Form Fields

In Chapter 2 we have described tangent vector fields as defined on a tangent bundle
on a manifold M . Here we will extend those notions to the corresponding dual
tangent bundle or cotangent bundle.

From linear algebra we have learned that for any given vector space V there is a
dual vector space V ∗, composed of all linear maps ϕ : V → IR. Likewise, a linear
form or one-form in an n-dimensional manifold M is just a map

φp : TpM → IR

such that it is linear on TpM

φp(avp + bwp) = aφp(vp)+ bφp(wp)

We may define a sum of linear forms φp and ψp and a product of linear forms by
numbers a and b as follows:

(aφp + bψp)(vp) = aφ(vp)+ bψ(vp)

Then, it follows from these definitions that the set of all linear forms at a point of
M generates a vector space denoted by T ∗p M , called the dual tangent space TpM .

One basic example of linear form on a manifold is given by the differential of a
function f on M , defined by

d f (vp)
def= vp[ f ] =

∑
vβ

∂xα

∂xβ
∀vp ∈ TpM

Taking in particular f to be one of the coordinates of M , xα , we obtain from the
above definition

dxα(vp) = vp[xα] =
∑

vβ
∂xα

∂xβ
= vα

Therefore, for an arbitrary function f , we may always write
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d f (vp) = vp[ f ] =
∑

vα
∂ f

∂xα
(p) =

∑ ∂ f

∂xα
(p)dxα(vp)

Assuming that this expression holds for any vector vp at any point p we may just
drop the vector and write the result simply as

d f =
∑ ∂ f

∂xα
dxα

which coincides with the usual expression of the differential of a real function
on M .

The above example justifies the name differential form because a linear form can
always be written as the differential of some function: φ = d f . It also suggests
that the notion of differential of a function can be axiomatized as a linear algebra. It
can be argued that such identification is deceiving because we knew beforehand the
concept of derivative of f , resulting from the topology of open sets as discussed in
Chapter 1.

Another classic example of linear form is given by the scalar product of M
defined by a map <,> : TpM × TpM → IR which is bilinear and symmetric.
Denoting by < eα, eβ >= gαβ the components of the scalar product in the basis
{eα}, it follows that the real function of the tangent space

φp =< vp, >

is a linear form because φp(wp) =< vp, wp > is bilinear.
The dual tangent space T ∗p M is the vector space generated by all linear forms

on TpM . Its dimension is the same as that of TpM . To see this, consider any linear
form (at any point p) φ written as the differential of some function f . Applying this
form to the vectors of a coordinate basis {eα = ∂/∂xα} of TpM , we obtain

φ(eβ) = d f (eβ) =
∑ ∂ f

∂xα
dxα(eβ) = ∂ f

∂xβ

In particular taking f = xβ we obtain

dxβ(eα) =
∑ ∂xβ

∂xα
= δβα

which can be seen as a non-homogeneous linear system of equations in dxα , for
each of the n coordinates of M . To see that these solutions are linearly independent,
suppose that we have a null linear combination

∑
cαdxα = 0

Applying to eβ , we obtain the necessary and sufficient condition for linear indepen-
dency cβ = 0.
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The dual basis of {eα} denoted by {eα} (note the position of the index) is defined
by the conditions

eα(eβ) = δαβ

In particular {dxα} is the dual basis of the coordinate basis {∂/∂xα} of TpM .
The existence of dual vector spaces in a physical manifold has a profound impli-

cation to the structure of the fundamental interactions, although this is not explicit.
This duality means that any vector in TpM can be associated with an one-form of
T ∗p M and vice versa, vp ←→ φp and φp ←→ vp. In other words, T ∗p M is a vector
space isomorphic to TpM .

However, this isomorphism was established by means of the choice of a particular
basis. It does not matter which basis we choose, but it holds only with such a choice.
Such isomorphism is sometimes called non-natural. In physics we need to make sure
that the use of this isomorphism holds independently of the choice of basis.

As an example of the duality, consider the tangent vector vp = ∑ vαeα and the
function φ : TpM → IR given by the scalar product

φp(eα) =< vp, eα >=
∑

vβgβαv
α =

∑
vαv

α

where we have denoted vα = gβαvβ . Therefore, we may associate with the basis
vector eα the one-form

eβ
def= < eβ, >

so that eβ(eα) =< eβ, eα >= gαβ . Furthermore, if v =∑ vαeα , then

eβ(v) =< eβ, v >=
∑

vαgαβ = vβ

Consequently, given the vector vp = ∑ vαeα ∈ TpM , the associated one-form
defined by the scalar product is

φp =
∑

gαβv
βeα =

∑
Vαeα

That is, if vα are the components of vp, the components of the one-form φp are
vα =∑ gαβvβ . In the coordinate basis {dxα} the one-form is written as

φp =
∑

vαdxα

whereas vβ are the components of vp in the basis {∂/∂xβ} of TpM .
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Summarizing, the isomorphism between vector and forms is given by the
correspondence

vp =
∑

vα
∂

∂xα
←→ φp =

∑
vαdxα

Definition 4.1 (The Cotangent Bundle) Clearly, we may repeat all that was done
with the tangent bundle to a cotangent bundle to a manifold M defined as the
triad

(M , π, T ∗M )

where T ∗M is the collection of all cotangent spaces in all points of M .
Similar to the definition of tangent vector fields we may define a cotangent vector

field (or a one-form field, or yet a covariant vector field) as a map

φ :M → T ∗M

which associates with each point p ∈ M a linear form φ(p) ∈M .
Recall from Chapter 2 that if we have a map F :M → N such that F(p)→ q,

then we have a linear map, the derivative map F∗ : TpM → TqN . Similarly we
may define the dual derivative map as the map

F∗ : T ∗F(p)N ← T ∗p M

such that for a given vector vp ∈M , we have

Fig. 4.1 The derivative map and its dual
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F∗(φF(p))(vp) = φ(F∗vp)

Notice that the derivative map has the same direction of F , but F∗ has the opposite
direction as shown in Fig. 4.1. For this reason F∗ is frequently referred to as a
pullback map.

4.2 Tensors

Consider two vector spaces U and V with dimensions m and n, respectively. Then
we may define the Cartesian product U×V , which is a vector space with dimension
m + n, composed of all ordered pairs (u, v), u ∈ U , v ∈ V . The tensor product
between U and V is a vector space with dimensions m×n, denoted by U ⊗V , such
that it associates with the pair (u, v) ∈ U ×V , a vector, denoted by u⊗v, satisfying
the following conditions:

(a) The map is bilinear

{
u ⊗ (av + bw) = au ⊗ v + bu ⊗ w

(au + bv)⊗ w = au ⊗ w + bv ⊗ w

(b) If {eα} is a basis of U and { fa} is a basis of W , then {eα ⊗ fa} is a basis of
U ⊗W .

The bilinear characteristic is consistent with the property that W = U ⊗ V is a
vector space, so that there are numbers p, q, r , and s, and such that

p u ⊗ u′ + qu ⊗ v′ + rv ⊗ u′ + sv ⊗ v′ = (au + bv)⊗ (a′u′ + b′v′)

This implies that the dimension of the tensor product is mn.
The objects of the tensor product space W = U ⊗ V are called second-order

tensors. In the basis {eα ⊗ fa} it is written as

S = u ⊗ v =
∑∑

uαvaeα ⊗ fa

The tensor product of a space V by itself can be repeated an arbitrary number r
of times and their elements are called contravariant tensor of order r or of order [ r

0]
(see below).

On the other hand, the tensor product of the dual space U∗ with the dual V ∗
is another vector space U∗ ⊗ V ∗ with dimension mn. The s-times repeated tensor
product of U∗ with itself is a covariant tensor of order s or of order [ 0

s ].
In the case of a manifold M , tensors are defined through a vector bun-

dle (M , π, V ) and its dual (M , π, V ∗), obtaining the tensor product bundle
(M , π, V ⊗ V ∗).



4.2 Tensors 49

In particular we may consider the r -repeated tensor product of the tangent space
TpM and the s-repeated tensor product of its dual T ∗p M , obtaining the tangent

tensor product bundle (M , π,
r⊗ T M ⊗ s⊗ T ∗M ) whose fibers are the spaces

TpM
r
s =

r⊗ TpM⊗
s⊗ T ∗p M (4.1)

and whose elements are called mixed tangent tensors of order [rs ].
By extension of this concept, we define a tensor of order [00], or tensor of order

0, which is a scalar function or a scalar field.
A tangent tensor of order [rs ] in M can be written in the coordinate basis {eμ =

∂/∂xμ} and its dual {eμ = dxμ} as

S = Sα,...,γ
β,...,ε(eα ⊗ · · · ⊗ eγ )⊗ (eβ ⊗ · · · ⊗ eε)

The collection of all such tensors in all points of M defines the total space T r
s M

of a new vector bundle or tensor bundle (M , π, T r
s M ). With this bundle we may

define a tensor field of order [rs ] on M as a map

S :M → T r
s M

such that for each p ∈M it associates a tensor of order [rs ].
The designation of covariant and contravariant tensors is a consequence of the

coordinate transformations in tangent spaces. This can be understood from the
extension of the map between two tensor bundles.

Theorem 4.1 Let F :M → N be a diffeomorphism and S an r-contravariant and
s-covariant tensor field on M belonging to TpM r

s . Then there is a derivative map
F∗ for each TpM and a “pull back” map F∗ for each TpM ∗. These maps induce
a dual derivative map

F∗∗ : TpM
r
s → TF(p)(N )rs

given by

F∗∗ (s) = (sμ,...,νρ,...,σ )(F∗(eμ)⊗ · · · ⊗ F∗(eν))⊗ (F∗(eρ)⊗ · · · ⊗ F∗(eσ )) (4.2)

This theorem is a direct extension of the previous definitions of the derivative and
the pullback maps to the tensor bundle and needs no further comment. However, in
the particular case where M = N and where F is a coordinate transformation
in M , the expressions of F∗∗ (s) give the transformation of the components of the
tensor field

s′α,...,γ β,...,ε = ∂xμ

∂x ′α
· · · ∂xν

∂x ′γ
· ∂x ′β

∂xρ
· · · ∂x ′ε

∂xσ
sρ,...,σ μ,...,ν
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As we see, each component of the tensor with upper indices sρ,...,σ μ,...,ν transforms
with the inverse of the Jacobian matrix J−1 = (∂xμ/∂x ′α) of the coordinate trans-
formation, so that these components are said to be contravariant. On the other hand,
the lower indices transform with the Jacobian matrix J = (∂x ′β/∂xρ), so that these
components are said to be covariant. This is a little confusing because the compo-
nents transform in the inverse sense of the basis. Figure 4.1 may help to make this
clearer.

4.3 Exterior Algebra

As we have seen, a one-form in an n-dimensional manifold M is just a linear map
φ : TpM → IR. The set of all such one-forms in TpMn is the dual vector space
T ∗p M .

A two-form in M is bilinear and alternate map

ω : TpM × TpM → IR

The alternate condition means that ω(vp, wp) = −ω(wp, vp).
The set of all two-forms on M , denoted by T ∗2p M , is a vector space with respect

to the sum operation

(ω + ω′)(vp, wp) = ω(vp, wp)+ ω′(vp, wp)

and products by real numbers

(αω)(vp, wp) = α(ω(vp, wp))

As an example consider two one-forms φ and ψ in M . Then, the determinant
defined as an operator in T M × T M

∣
∣
∣
∣
∣
∣

φ(vp) φ(wp)

ψ(vp) ψ(wp)

∣
∣
∣
∣
∣
∣
= φ(vp)ψ(wp)− φ(wp)ψ(vp)

defines a two-form on M because it is real, bilinear, and alternate.
In particular for φ = dxμ and ψ = dxν , vp = eρ = ∂/∂xρ and wp = eσ =

∂/∂xσ we obtain

∣
∣
∣
∣
∣
∣

dxμ(eρ) dxμ(eσ )

dxν(eρ) dxν(eσ )

∣
∣
∣
∣
∣
∣
= δμρ δ

ν
σ − δμσ δνρ (4.3)



4.3 Exterior Algebra 51

This result suggests that the symbolic determinants, where its entries are opera-
tors on pairs of vectors (v,w) and they should not be regarded as numbers (other-
wise they would be zero),

∣
∣
∣
∣
∣
∣

dxμ dxμ

dxν dxν

∣
∣
∣
∣
∣
∣

(4.4)

are linearly independent. To see this, consider the coefficients cμν such that

∑
cμν

∣
∣
∣
∣
∣
∣

dxμ dxμ

dxν dxν

∣
∣
∣
∣
∣
∣
= 0

Applying to the pair of the coordinate basis vectors (eρ, eσ ) and remembering the
dual basis definition dxμ(eρ) = δ

μ
ρ it follows from (4.3) that

∑
cμν
(
dxμ(eρ)dxμ(eσ )− dxμ(eσ )dxν(eρ)

) = cρσ − cσρ = 0

Due to the alternate condition, only the anti-symmetric components of cρσ survive
in the above sum. Therefore cρσ − cσρ = 2cρσ = 0 which means that determinants
(4.4) are linearly independent.

Actually any two-form can be written as a linear combination of the two-forms
(4.4). Let ω be an arbitrary two-form. Then ω(eμ, eν) = 2aμν are real numbers and
with them we construct another two-form:

ψ =
∑

aμν

∣
∣
∣
∣
∣
∣

dxμ dxμ

dxν dxν

∣
∣
∣
∣
∣
∣

It follows that

ψ(eρ, eσ ) =
∑

aμν

∣
∣
∣
∣
∣
∣

dxμ dxμ

dxν dxν

∣
∣
∣
∣
∣
∣
(eμ, eν) = aμν

∣
∣
∣
∣
∣
∣

dxμ(eρ) dxμ(eσ )

dxν(eρ) dxν(eσ )

∣
∣
∣
∣
∣
∣
= ω(eρ, eσ )

so that ψ = ω. The properties of the symbolic determinant (4.4) suggest the
notation

dxμ ∧ dxν
def=
∣
∣
∣
∣
∣
∣

dxμ dxμ

dxν dxν

∣
∣
∣
∣
∣
∣

(4.5)
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so that any two-form can be written as

ω =
∑

ω(eμ, eν)dxμ ∧ dxν

Consequently {dxμ∧dxνμν} defines a basis of the space of two-forms T 2∗
p M . Taking

the dimension of the manifold M to be n, the alternate condition gives a total of
n(n−1)/2 independent elements in that basis, so that it has n(n−1)/2 dimensions.

Definition 4.2 (k-Forms) The concept of two-forms extends naturally to k-forms in
M as a map

ξ : TpM × TpM × · · · × TpM → IR (k-factors)

such that it is k-linear and alternate.
The alternate condition means that for any set of indices {μ1, μ2, . . . , μk}, we

have

ξ(eμ1, . . . , eμk ) = ε1 ,... , k
μ1,...,μk

ξ(e1, . . . , ek)

where

ε1,... ,k
μ1,...,μk

=
⎧
⎨

⎩

+1 if μ1, . . . , μk is an even permutation of 1, . . . , k
−1 if μ1, . . . , μk is an odd permutation of 1, . . . , k
0 in all other cases

(4.6)

is a generalization of the Levi-Civita permutation symbol to k dimensions. The set
of all such k-forms endowed with the sum and multiplication operations by numbers
defines a vector space T k∗

p M .
Again, we may use the determinant polynomial structure to generate k-forms.

For example, if φ, ψ , and ζ are three-forms, then the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣

φ(u p) φ(vp) φ(wp)

ψ(u p) ψ(vp) ψ(wp)

ζ(u p) ζ(vp) ζ(wp)

∣
∣
∣
∣
∣
∣
∣
∣
∣

= φ ∧ ψ ∧ ζ(u p, vp, wp)

is trilinear and alternate.
Likewise, using the same arguments for two-forms, the k × k symbolic determi-

nants are k-forms
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dxμ1 ∧ · · · ∧ dxμk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dxμ1 dxμ1 · · · dxμ1

dxμ2 dxμ2 · · · dxμ2

...

dxμk dxμk · · · dxμk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

They define a base of the space of k-forms denoted by T k∗
p M . Thus, any k-form

can be written as

ξ =
∑

ξμ1μ2···μk dxμ1 ∧ · · · ∧ dxμk

Notice that the number of k-forms which are linearly independent depends on the
dimensions n of the manifold M . For example,

If n = 3 and k = 1 we have three independent two-forms.
If n = 3 and k = 2 we have again three independent two-forms.
If n = 3 and k = 3 we have just one three-form.

To see the last case in more detail, consider the basis of T 3∗
p M given by the

determinant

dxμ ∧ dxν ∧ dxρ(e1, e2, e3) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

δ
μ
1 δ

μ
2 δ

μ
3

δν1 δν2 δν3

δ
ρ
1 δ

ρ
2 δ

ρ
3

∣
∣
∣
∣
∣
∣
∣
∣
∣

, μ, ν, ρ = 1, . . . , 3

It is clear that this is different from zero only when μ �= ν �= ρ, so that we have in
fact only one element in the basis.

On the other hand, if n = 3 and k > 3 the basis elements will have always
two equal indices, so that they vanish. Therefore all k-forms in an n-dimensional
manifold, with k > n, are necessarily zero.

In general we can summarize this result as

dim T ∗kp M = Ck
n =

n(n − 1)(n − 2) · · · (n − k + 1)

k

Definition 4.3 (The Exterior Product) The properties of determinant (4.5) convey
naturally to a product operation as follows: Given the spaces T ∗kp M and T ∗�p M , the
exterior product between them is a map

∧ : T ∗kp M × T ∗�p M → T ∗k+�p M

which associates with the pair (φ,ψ)
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φ =
∑

aμ1,...,μk dxμ1 ∧ · · · ∧ dxμk

ψ =
∑

b j1,..., j�dx j1 ∧ · · · ∧ dx j�

a (k + �)-form φ ∧ ψ given by

φ ∧ ψ =
∑

cμ1,...,μk+� dxμ1 ∧ · · · ∧ dxμk+�

As an example consider a three-dimensional manifold M . The exterior product of
the one-form

φ = 3dx1 + x2dx3 ∈ T ∗p M

with the two-form

ψ = 4xzdx1 ∧ dx2 ∈ T ∗2p M

is the three-form on M given by

φ ∧ ψ = 4zx3dx1 ∧ dx2 ∧ dx3 ∈ T ∗3p M

From the properties of forms in three-dimensional spaces it follows that this three-
form is isomorphic to a one-form.

Exercise 4.1 As an exercise show that if φ is a k-form, ψ an �-form, ζ an m-form,
and f a scalar function defined on an n-dimensional manifold M , then the exterior
product satisfies the properties

(a) Associativity: (φ ∧ ψ) ∧ ζ = φ ∧ (ψ ∧ ζ )
(b) Anticommutativity: φ ∧ ψ = (−1)k+lψ ∧ φ
(c) Distributivity: φ ∧ (ψ + ζ ) = φ ∧ ψ + φ ∧ ζ (for � = m)
(d) Product by scalar functions: f ∧ ψ = fψ

The inclusion of the property (d) and the definition of tensors of order [00] make
the exterior algebra on a manifold M consistent with the tensor algebra obtained
with all skew-symmetric tensors in M .

For example the exterior product of two one-forms written as

φ ∧ ψ =
∑

wμνdxμ ∧ dxν

corresponds to a rank-2 anti-symmetric tensor:

w = wμν(e
μ ⊗ eν − eν ⊗ eμ)



4.3 Exterior Algebra 55

and vice versa: Given an anti-symmetric rank-2 tensor, it corresponds to a two-form,
which corresponds to the exterior product of two one-forms.

Exercise 4.2 Show that the vector product of IR3 corresponds to the exterior product
of the two corresponding one-forms.

From the above properties we may infer that in principle we could use just the
tensor algebra instead of detailing the exterior algebra as we did. However, the exte-
rior product allows us to write the operations of anti-symmetric tensors in a more
compact form and easier to interpret. For that reason it is convenient to use the
exterior algebra concomitantly with the tensor algebra.

For example, the surface integral of an anti-symmetric tensor (where the index
anti-symmetrization is indicated by the square brackets within the indices)

∫ ∫
T[μν]dxμdxν

is equivalent to the surface integral of a two-form
∫ ∫

Tμνdxμ ∧ dxν .

Definition 4.4 (k-Form Fields) Given the cotangent bundle with total space T ∗kM ,
a k-form field in M is a map

ω :M → T k∗M

such that it associates with each point of M a k-form ω(p). In coordinate basis this
k-form field can be expressed as

ω =
∑

ωμ1,...,μk dxμ1 ∧ · · · ∧ dxμk

When the components ωμ1,...,μρ are differentiable functions on M then ω is called
a differentiable k-form field.

Definition 4.5 (Exterior Derivative) Let ω be a k-form of T ∗kp (M ) written in coor-
dinate basis as

ω =
∑

ωμ1,...,μk dxμ1 ∧ · · · ∧ dxμk

The exterior derivative dω of ω is a map

d : T ∗kp (M )→ T ∗k+1
p (M )

which associates with ω a (k + 1)-form given by

dω =
∑

(dωμμ1,...,μk ) ∧ dxμ1 ∧ · · · ∧ dxμk

where dωμ1,...,μk is the differential of each scalar component as a scalar field.
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The exterior derivative satisfies the following properties (exercise):

(a) The exterior derivative of a zero-form f (x) is the one-form given by the differ-
ential d f (x).

(b) If φ and ψ are k-forms, then d(aφ + bψ) = a dφ+b dψ a, b ∈ IR.
(c) If f is a zero-form, then d( f φ) = d f ∧ φ + f dφ.
(d) If φ is a k-form and ψ is an �-form, then

d(φ ∧ ψ) = dφ ∧ ψ − (−1)(k+�)φ ∧ dψ

As an example, consider the exterior derivative of the one-form φ =∑φμdxμ,
obtaining the two-form

dφ =
∑

dφμ ∧ dxμ =
∑ ∂φμ

∂xν
dxν ∧ dxμ

As we have seen, all (n+1)-forms defined on an n-dimensional manifold vanish,
so that the exterior derivative of an n-form in an n-dimensional manifold necessarily
vanishes.

Since the coordinates xμ are zero-forms in M , their exterior derivatives are
one-forms dxμ defining a basis of T ∗p M , which is the dual basis of Tp M .

Example 4.1 (Curl of a Vector) Consider a one-form φ = ∑φμ dxμ in IR3. The
exterior derivative of φ is a two-form

dφ =
∑

dφν ∧ dxν =
∑ ∂φν

∂xμ
dxμ ∧ dxν

which has three independent components, so that it is equivalent to some one-form,
which is associated with a vector v =∑φμ(∂/∂xμ), with components given by

dφ =
((

∂φ1

∂x2
− ∂φ2

∂x1

)

,

(
∂φ1

∂x3
− ∂φ3

∂x1

)

,

(
∂φ2

∂x3
− ∂φ3

∂x2

))

In other words, the exterior derivative of φ is equivalent to the rotational ∇ × V .



Chapter 5
Geometry of Space–Times

The concept of space–time is discussed in several publications on philosophy and
on the foundations of physics [69, 70]; here we are interested in knowing how the
physics of space–time determines the geometry. In this, we were much influenced
by Penrose’s writings and lectures [71].

As we have detailed in the introduction, we take the physical manifold as the
space of perceptions in the sense of Kant. These perceptions are in one way or
another associated with a physical interaction, from which we eventually extract
the geometry. Thus, a space–time is the physical manifold endowed with a notion
of geometry determined by a physical process. As it is evident, the observational
methods evolve with technology, so that the concept of space–time is not static. In
the following we review this process of evolution from Galilei to Einstein’s general
relativity. Later on we discuss some future perspectives.

A first point to be made clear is that as a set of observers and observables all
space–times are four dimensional. This is consistent with the structure of Maxwell’s
equations describing the electromagnetic field. This will be made clear later on, and
it is a consequence of the dual properties of electromagnetic field, and in general
of the Yang–Mills field, from the point of view of both experimental evidences and
mathematical consistency. On the other hand, we shall see also that the gravitational
interactions in the sense of Einstein do not have the same gauge structure and there-
fore they do not have the same dimensionality limitations.

5.1 Galilean Space–Time

The “Galilean” space–time which we will denote by G4 is a four-dimensional man-
ifold, with a geometry and symmetry defined by the motion of a free particle, along
geodesics defined by Newton’s first law and the absolute time.

The notion of absolute time introduced by Newton in his Principia reads as [72]
follows: “Absolute, universal, true and mathematical time exists by itself and flows
equably, without relating to anything external.”

M.D. Maia, Geometry of the Fundamental Interactions,
DOI 10.1007/978-1-4419-8273-5_5, C© Springer Science+Business Media, LLC 2011
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Unlike the three space-like coordinates, we have no control of the absolute time
(it exists by itself ). The absoluteness of time means that it is independent of the
position of the observer (it flows equably). Therefore, it follows from the above
definition that absolute time transforms only in scale and origin. That is, if t is an
absolute time, then

t ′ = at + b, a �= 0

where a and b are constants, is another absolute time. From this transformation
property it follows that the absolute time can be regarded as a regular function (its
derivative never vanishes) and so it serves as a kind of special coordinate, with
an arbitrary non-zero scale (a) and an arbitrary origin (b). Since the absolute time
transforms only into another absolute time, the Galilean space–time has a “product
topology,” characterized by

G4 = IR3 × IR

where IR represents the absolute time axis. The topological product means that time
never mixes with the three coordinates in IR3. Therefore, the Galilean space–time
is a four-dimensional physical manifold with absolute time.

As we all know, the absolute time implies the existence of some kind of instan-
taneous communication between all observers belonging to the same space-like
hypersurface defined for a value t = t0, regardless of where they are. The concept of
“distant instantaneous interaction” presented a major difficulty for the development
of physics, something that was only solved with the special theory of relativity in
the beginning of the 20th century.

A simultaneity section at t0 is a submanifold of G4 defined at the instant t = t0
by the set

Σt0 = {p ∈ G4 | t (p) = t0}

One interesting consequence of this definition is that two simultaneous sections do
not intersect or else they coincide.

Indeed, suppose that we have a point p0 common to two simultaneous sections:
p0 ∈ Σt1 and p0 ∈ Σt2 . Then t (p0) = t1 and t (p0) = t2 so that t1 = t2 and from
the definition it follows that

Σt1 = {p ∈ G4 | t (p) = t1} = {p ∈ G4 | t (p) = t2} = Σt2

We say that the absolute time induces a foliation of the Galilean space–time, where
each “leaf” is a simultaneity section Σt . In other words, the Galilean space–time is
the total space of a vector bundle, where the fibers are simultaneity sections and the
base manifold is the time axis as shown in Fig. 5.1.
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Fig. 5.1 The Galilean
space–time G4

Fig. 5.2 Projecting the
Galilean space–time on IR3

The four-dimensional curve γ shown in Fig. 5.2 represents the time and space
evolution or the world-line of an event in space–time G4. The product topology
allows us to write the Galilean space–time as if the particles in motion are points of
IR3 written as coordinates depending on the absolute time. This is pictured in the
projection IR3 of Fig. 5.2 where the world-lines are projected as three-dimensional
trajectories in a special three-dimensional manifold.

As already commented the observables have mass, charge, spins, and energy, so
that they cannot be identified with the points in the parameter space IR3(t) of the
simultaneous sections. In spite of this difference, by abuse of language we refer to
these as point particles in IR3. It is in this projection that Newton’s first law was
established as

d2xi (t)

dt2
= 0, i = 1, . . . , 3 (5.1)

Noting that d2t/dt2 = 0, (5.1) can be extended to the four-dimensional Galilean
physical space–time as

d2xα

dt2
= 0, α = 1, . . . , 4

where we have identified x4 = t .
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To obtain the geometry from this equation, compare it with the geodesic equation
(2.15) in G4 with parameter t ,

d2xα

dt2
+ Γ α

βγ

dxβ

dt

dxγ

dt
= 0

from which we obtain a homogeneous system of equations on Γ α
βγ

Γ α
βγ

dxβ

dt

dxγ

dt
= 0 (5.2)

This system can be solved by using a coordinate system in which the geodesics are
straight lines given by

xi (t) = ai t + pi , ai , pi constants

which can be easily extended to all four indices.
Since by definition G4 has a geometry and symmetry defined by Newton’s first

law, it follows that the space–time is parameterized by such coordinates everywhere,
so that the Galilean space–time is globally equivalent to IR3 × IR. The illusion is
almost complete and we all think of the first Newton’s law as established for point
particles in IR3 × IR.

Finally note that (5.1) does not have the same form in different coordinate sys-
tems. For example, for an observer sitting in a carrousel in motion there will be an
additional centrifugal force attached to (5.1), with respect to an observer sitting on
the ground. Therefore, (5.1) will look different for the two observers. The character
of “law” attached to (5.1) means that the equation must be understood equally by
the observers who agree with that same expression. The observer sitting on the
carrousel will not agree with the one sitting on the ground. This means that (5.1)
is not invariant under an arbitrary coordinate transformation of G4, but only to the
coordinate transformations belonging to the symmetry of (5.1).

Suppose that we have a transformation xi → x ′i , such that d2xi/dt2 = 0 and
d2x ′i/dt2 = 0. We find that the equation is not the same for an arbitrary transfor-
mation, but only those like (exercise)

⎧
⎨

⎩

xi =∑ ai
j x j + ci t + di , A = matrix(ai

j ), AAT = 1, ci , di = constants

t ′ = at + b, a, b = constants a �= 0
(5.3)

where AT is the transpose of A, the set of such transformations define a group with
respect to the composition of transformations. It is known as the restricted Galilean
group (or simply the Galilean group).
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5.2 Newton’s Space–Time

The Newtonian space–time denoted here by N4 is a four-dimensional manifold with
absolute time, in which the trajectory of a particle with mass m, under the influence
of gravitation only (a free falling particle), is a geodesic defined by Newton’s gravi-
tational law:

F = G
mm′

r2
(5.4)

To compare with the geodesic differential equation, let us first write (5.4) as a dif-
ferential equation.

Consider a unit test particle under the influence of the gravitational field of a
spherically distributed infinitesimal mass m′ = dm with uniform density ρ. Using
spherical coordinates (r, θ, ϕ) we may write the elementary mass of each shell as

dm = ρ r2 sin θ dr dθ dϕ

Assuming that Newton’s gravitational force derives from a time-independent
potential φ, F = −∇φ, we obtain by integrating on the spherical solid
angle 4π , it follows that

∇2φ = −4πGρ (5.5)

which is Poisson’s equation for the Newtonian gravitational potential. In the left-
hand side we have applied the divergence theorem with a minus sign to account for
the conventional outward orientation of the sphere.

The geodesic equation of motion of the free falling test particle with unit mass is
obtained by replacing the gravitational force for a unit mass by F = −∇φ = a(t).
This is a three-dimensional expression but since d2t/dt2 ≡ 0 and using the fact
that φ is not time dependent, we may use again the notation x4 = t and write the
geodesic equation of motion as a four-dimensional equation

d2xα

dt2
= − ∂φ

∂xα

Comparing this equation with the geodesic equation written with the same absolute
time parameter t

d2xα

dt2
+ Γ α

βγ

dxβ

dt

dxγ

dt
= 0

we obtain

Γ α
βγ

dxβ

dt

dxγ

dt
= ∂φ

∂xα
(5.6)
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Fig. 5.3 The Newtonian
space–time

so that the affine connection coefficients Γ α
βγ are determined by the gravitational

potential φ.
Recalling that the absolute time implies the existence of simultaneity sections,

like in the Galilean case, the simultaneity sections do not intersect, but they are
not necessarily flat because the geodesic lines are not necessarily straight lines as
illustrated in Fig. 5.3. Since each of these simultaneity sections is a hypersurface of
N4 defined by a value of t , they may be defined by an equation like

t (x1, x2, x3) = constant

These are time-oriented surfaces, with normal vectors ηα = ∂t/∂xα . Therefore,
(5.6) may be solved in terms of the normal vectors to give

Γ α
βγ (φ) = ∂φ

∂xγ
ηαηβ (5.7)

showing how the Newtonian gravitational potential determines the connection. The
three-dimensional projection is also shown.

Similar to the case of the Galilean space–time, this determines an affine geometry
in N4.

5.2.1 The Curvature of Newton’s Space–Time

As we see in Chapter 2, the existence of a connection determines a curvature tensor.
Therefore, the connection determined by the Newtonian gravitational potential must
also have a Riemann-like curvature.

For that purpose consider two free falling particles a and b along two neighboring
geodesics in N4, under the influence of Newton’s gravitational potential satisfying
Poisson’s equation (5.5).

Along this fall, the particles exchange signals to one another, with speed P ,
traveling through the smallest distance between them, so that in each simultaneity
section they follow a geodesic (the signal geodesic), such that when the particle a
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Fig. 5.4 Geodesic deviation
in N4

reaches the position a′, the particle b will reach the position b′ (Fig. 5.4), in such a
way that we obtain a closed, four-sided geodesic figure, satisfying the equations

∇T T = 0 the fall geodesics (5.8)

∇P P = 0 the signal geodesics (5.9)

∇T P = ∇P T the closure condition (5.10)

Replacing these conditions in the expression of the Riemann tensor (2.5) we obtain

R(T, P)T = ∇T∇P T = ∇T∇T P

Since P is velocity vector of the signal, its time variation must equal the fall accel-
eration of fall a:

∇T P = a = Signal acceleration during the fall (5.11)

On the other hand, we obtain the same Riemann tensor by reversing the path order
so that R(T, P)P = −R(T, P)T . Therefore, from the closure condition we obtain

R(T, P)T = −∇P∇T P = −∇P a (5.12)

which describes the geodesic deviation with respect to the Newtonian connection
defined by the Newtonian potential (5.7).

To see the relation of the above curvature to the Newtonian gravitational field,
consider a coordinate basis, where the tangent vector T to the fall geodesic coincides
with the time base vector which we denote by e4. In this case, T α = δα4 . On the other
hand, take the tangent vector P to the signal geodesic tangent to a simultaneity
section, aligned to any spatial base vector ei , i = 1, . . . , 3. Remembering from
Chapter 2 that in a general basis the components of the Riemann tensor are given by
R(eμ, eν)eρ = Rμνρσ eσ , we obtain in our coordinate basis

R(e4, ei )e4 = R4 i 4
σ eσ = −(∇ei a)

σ eσ = aσ ,i eσ (5.13)
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Therefore, we obtain for each simultaneity section R4i4
α = aα,i . After exchanging

the positions of the first two indices and summing the three-dimensional trace of
this expression obtained for σ = i , and using the definition of the Ricci tensor, we
find from (5.12)

Ri44
i = −ai

,i

where the middle term is the trace of the Ricci tensor of each simultaneity section.
Noting that the last term in this expression is the divergence of the acceleration
of the falling particle, we obtain for a particle of unit mass the three-dimensional
divergence of the Newtonian equation

ai
,i =< ∇, a >=< ∇, F >= −∇2φ = 4πGρ

which is equivalent to the geometric equation

R44 = −4πGρ (5.14)

Therefore, Newton’s gravitational field can be understood as a curvature of the
simultaneity sections produced by the matter distribution of density ρ. Since the
Newtonian gravitational potential is static, this interpretation can be extended to the
curvature of the Newtonian space–time.
As it happened with the Galilean space–time, Newton’s gravitational law, including
the above geometric interpretation, is not valid in an arbitrary coordinate system.
The coordinate transformations must also involve the gauging or calibration of the
Newtonian gravitational potential and vice versa. Therefore, the resulting group
of symmetry of Newton’s law, called the generalized Galilean group, is given by
(exercise)

Generalized Galilean group

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi =∑ Ai
j x j + ci (t), i, j = 1, . . . , 3

t ′ = at + b, a, b constants, a �= 0

φ′ = φ −∑3
i=1

d2ci

dt2
xi

(5.15)

where again A is an orthogonal matrix AAT = 1 and ci (t) are three differentiable
functions of the Newtonian time, whose values depend on how φ changes. When
c(t) = constant we recover the Galilean group.

5.3 The Minkowski Space–Time

The original equations of the electromagnetic field were written as if they were
defined in the Galilean space–time, invariant under the Galilean group. From these
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equations we derive the wave equations for the electric field E and magnetic field B,
with speed propagation equal to the speed of light in vacuum c. This conveyed
the idea that light is an electromagnetic phenomenon which propagates with finite
speed in vacuum. Since the Galilean space–time required instantaneous interactions
at distance, the propagation of electric and magnetic waves in the Galilean space–
time required the existence of a hypothetical media, a fluid called the “lumiferous
ether” or simply the “ether.” However, the negative result of the Michelson and
Morley experiment to measure the interference of that “ether” on the propagation
of light, repeated several times between 1891 and 1898, showed that the existence
of such fluid was not consistent with the description of light as an electromagnetic
phenomenon. In spite of several alternative explanations, in 1904 Lorentz showed
that Maxwell’s equations are not invariant under the Galilean group, but rather under
the Lorentz/Poincaré group composed of pseudo-rotations described by a pseudo-
orthogonal matrix A and translations pα:

x ′α = Aα
βxβ + pα

where A is such that AηAT = η, with

η =

⎛

⎜
⎜
⎝

1
1

1
−1/c2

⎞

⎟
⎟
⎠ (5.16)

and where c denotes the speed of light in vacuum. The Galilean transformations are
obtained in the particular case where v << c.

This convinced Einstein in 1905 that the ether did not exist and therefore that
the Galilean group should be replaced by the Lorentz/Poincaré group. It was also
necessary to modify the traditional law of addition of velocities v = v1 + v2 based
in the instantaneous signal propagation to a new expression compatible with finite
speed for light:

v = v1 + v2

1+ v1v2
c2

When v1, v2 << c we obtain the Galilean law of addition of velocities. If v1 is
the velocity of the source and v2 is the light speed c, the above addition law gives
again c, showing that light speed in vacuum is constant in value and also in its
independency from the speed of the source.

However, it was only in 1908 that Hermann Minkowski proposed a new geometry
compatible with the Lorentz/Poincaré transformations and with Einstein’s special
relativity, inventing the Minkowski space–time in his opening speech. This is too
well known, but it is never too much to remind that this is an experimental result as
it was emphatically said by Minkowski: “The views of space and time which I wish
to lay before you have sprung from the soil of experimental physics, and therein lies
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their strength. They are radical. Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of union of the two will
preserve an independent reality [73].”

Of course, there is no room for the absolute time in the Minkowski conception of
space–time, but the concept of time is still present as a local time, which is nothing
but the arc-length of a time-like curve, with the physical dimension adjusted to time:
dτ = −ds/c.

Contrasting with the Galilean and the Newtonian space–times which have affine
geometries, the Minkowski space–time M4 has a metric geometry defined by the
metric (5.16) written in Cartesian coordinates. Thus, the norm of a vector in the
Minkowski space–time is

‖w‖2 = ημνw
μwν = (w1)2 + (w2)2 + (w3)2 − c2(w4)2

where the minus sign in the fourth component implies that we may have a null
vector, with zero norm but not being identically zero. When such null vector denotes
the position of a point (an event) in Minkowski’s space–time, we obtain the equation
of a cone

(x1)2 + (x2)2 + (x3)2 − c2(x4)2 = 0

The existence of null vectors requires the adaptation of some well-established theo-
rems that are traditionally proved only for Euclidean metrics.1 In geometry we talk
about a “null curve” when its tangent vector is a null vector. An infinitesimal arc
element of such a curve is (denoting dx4 = dτ )

ds2 = (dx1)2 + (dx2)2 + (dx3)2 − c2dτ 2 = 0

Denoting the three-dimensional components of the local velocity vector by vi =
dxi/dτ , we obtain

v2
1 + v2

2 + v2
3 = c2

so that the “light cone” is a three-dimensional surface of M4 where particles travel
with the speed of light.

Since the Poincaré transformations do not treat time as a separate parameter, the
absolute Newtonian time no longer exists in M4. In its place, each point (or better,
each event) has its own “proper time,” as a true local coordinate. With the elimina-
tion of the absolute time, the Newtonian concepts of instantaneous communications
at distance and of simultaneity sections no longer exist.

1 For some reason these revisions are frequently referred to as “analysis on Lorentzian metrics” in
mathematical texts.
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In 1909–1910 it was found that Maxwell’s equations are also invariant under a
larger 15-parameter group, called the conformal group denoted by C0. It contains
the 10-parameter Poincaré group as a subgroup, plus a four-parameter special trans-
formation, plus the one-parameter metric dilation ημν = Ωημν , and finally a param-
eterless inversion |X |′ = 1/|X | taking the origin X = 0 to infinity [74, 75].

The conformal symmetry was soon forgotten because it requires that the electro-
magnetic wave equation maintained the advanced potential A(x + vt) as well as the
retarded potential A(x − vt). We normally keep only the retarded potential simply
because the advanced component appears before the wave is emitted.

Causality was at that time a stronghold of physics: “The past must be divided
from the future by the present. A denial of these facts would be a denial of our
most primitive intuitions about time-order” [76]. This requirement has been recently
neglected, perhaps because as it happens with space, time is also more complicated.
To understand this we need to discuss in the next concept of space–time.

5.4 Space–Times in General Relativity

In the same way as the Newtonian space–time generalizes the Galilean space–time
by incorporating the gravitational field in its geometry, we may say that general
relativity generalizes the Minkowski space–time by incorporating the relativistic
gravitational field in its geometry.

It is not sufficient to adapt the Newtonian gravitational field to Minkowski’s
space–time because of the difference of symmetries between the two theories.
In fact, denoting by Uμ the components of the velocity vector of a particle in
the Minkowski space–time, the right-hand side of Poisson’s equation (5.5) can be
written as

4πρ = 4π

c2
ρημνUμU ν

The energy–momentum tensor of a system of non-interacting particles (a dust) in
special relativity is

Tμν = ρUμU ν

Replacing these expressions in (5.5), we obtain

ημν
∂2φ

∂xμ∂xν
= −4π

c2
Tμν

or, using the fact that the Newtonian gravitational potential is static (do not depend
on time), the equation of the Newtonian gravitational field written in the Minkowski
space–time reads as
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�2φ = −4π

c2
Tμν (5.17)

where �2 denotes the D’Alambertian operator ημν(∂2/∂xμ∂xν). However, this is
just a cosmetic effect which does not change the fact that (5.5) is invariant under
the Galilean group, including the existence of the absolute time, and not under the
Lorentz/Poincaré group. A new equation which is consistent with special relativity
is required.

As in the Newtonian case, the new gravitational equation can be derived starting
from the principle that relativistic free falling particles also follow a geodesic. How-
ever, we no longer have the simultaneity sections and light signals propagate along
null geodesics. With these observations we may derive a similar geodesic deviation
equation (5.12).

Again using a co-moving coordinate system where T has the direction of e4 and
using the metricity condition gμν;α = 0 required in general relativity, we obtain an
equation similar to (5.13) except that now the indices count from one to four and we
are not required to take the trace of the equation

Rβ
α = −aβ ;α (5.18)

From this point on, the arguments are different from the Newtonian case, because
instead of a system of free particles Einstein’s theory admits a more general distribu-
tion of particles, which may or may not interact with each other, each one following
a trajectory α and velocity Uα , described by a symmetric energy–momentum tensor
Tαβ . Therefore, the above relativistic equations (5.18) can be expressed in terms of
the symmetric tensor Tαβ as

Rμν = −8πGTμν

where the factor 8 appears in the right-hand side because Tμν is a symmetric tensor
(so that instead of 4πρ as in (5.14) we could write 4π(Tμν + Tνμ), which is the
same as 8πTμν).

Einstein noted that the above equation is inconsistent, because the energy–
momentum tensor is always conserved in the sense that Tμν ;ν = 0 (we will detail
this together with Noether’s theorem in Chapter 6), but the left-hand side of the
above equation does not satisfy the same condition. To correct this problem Einstein
replaced the Ricci tensor Rμν by another tensor

Gμν = Rμν − 1

2
Rgμν

called the Einstein tensor, constructed with gμν and its derivatives up to second
order and such that Gμν ;ν = 0 (the contracted Bianchi identity). Cartan showed
that the most general solution for this condition is
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Gμν = Rμν − 1

2
Rgμν +Λgμν

where Λ is a constant, called the cosmological constant. Thus, replacing Rμν by this
tensor in the above equation we obtain Einstein’s equations

Gμν = 8πGTμν (5.19)

The energy–momentum tensor of a perfect fluid with density ρ and pressure p is
written in co-moving coordinates as

Tμν = (p + ρ)UμUν − pgμν

The inclusion of Λ in (5.19) has been controversial, starting with Einstein him-
self. It was not included in the original equation of 1916. Then, in his search for
a cosmological solution he proposed the inclusion of Λ. Soon after, he withdrew
the constant saying that it was a mistake. In 1917 William deSitter showed to Ein-
stein cosmological solutions generated only by ±Λ, called today the deSitter and
anti-deSitter solutions, respectively.

Since Λ arises from the contracted Bianchi identity, it can be determined when
the appropriate boundary conditions are considered. Using the present astronomical
data, the measured value of Λ is (10−46 Gev4/c2), so that it does not play any
significant role in local gravitational fields. However, at the cosmological scale of
distances it has been claimed to be the explanation for a phenomenon observed
since 1998, called the accelerated expansion of the universe. Indeed, taking the plus
sign and placing Λgμν on the right-hand side of (5.19), it can be interpreted as the
energy–momentum tensor of a special fluid with state equation p = −ρ. At the
cosmological scale, the negative pressure exerts a tension which would explain the
accelerating effect on the expansion of the universe.

It is also possible to give a physical interpretation to Λ, by placing it on the right-
hand side of (5.19) and comparing it with the quantum fluctuations of the vacuum
states (see Chapter 7) in quantum field theory. It is found that the vacuum states sum
up to a constant value < ρvac >, so that −8πG < ρvac > gμν could cancel with
Λgμν . However, it was found that this theoretical value is much larger, about 10120

orders of magnitude than the observed value. Such enormous difference cannot be
explained with the known procedures in quantum field theory. This “cosmological
constant problem” is currently regarded as the most difficult problem in theoretical
physics [77].

The principle of general covariance states that any coordinate system can be
used to write Einstein’s and all pertinent equations. As we have seen in Chapter 1,
the coordinates on a manifold are related by the chart composition

φ = σ ◦ τ−1 : IRn → IRn
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which is a diffeomorphism of IRn . Therefore the principle of general covariance
is also referred to as diffeomorphism invariance. This principle represents a strong
contrast with Newtonian theories and special relativity, which specify special types
of coordinates.

The equivalence principle is another postulate of general relativity, allowing the
distinction of a gravitational field produced by a mass from that produced by an
accelerated system [78]. It can also be seen as a statement restoring the meaning of
physical manifold given to a space–time solution of Einstein’s equations. Indeed,
from the mathematical definition and the discussion in Chapter 2, a manifold is
locally equivalent to IRn . On the other hand as a space of perceptions involving
observers and observables, the physical manifold only makes sense if we have at
least two separated events, and therefore it would never be locally equivalent to IR4

unless it is flat.
Einstein’s equations are derived from the Einstein–Hilbert variational principle

δ

δgμν

∫
R
√−gdv = 0

where R = gμν Rμν is the Ricci scalar curvature derived from the Riemann tensor.
The factor

√−g is the determinant of the Jacobian matrix of a coordinate trans-
formation, required in conformity with the diffeomorphism invariance and with the
transformation of coordinates in a volume integral. The meaning of the Einstein–
Hilbert principle seems clear, although it is seldom mentioned: It means that the
space–time based on Riemann’s geometry of the curvature is the smoothest possible.

The concept of time in general relativity is that of a mere coordinate. Together
with the principle of general covariance, time has lost its special characteristic which
it has in Newtonian mechanics and in special relativity.

Einstein’s equations admit solutions which are compatible with a topology of
the type IR3 × IR regardless of whether the metric is static or not. These solutions
constitute the bulk of the physical tests of general relativity. However, when we try
to apply these topologically special solutions to situations where a dynamical struc-
ture is strictly dependent on time, the theory fails. The prime example where this
occurs is given by the ADM (or 3+1) decomposition of space–time to the canonical
quantum gravity program. In quantum mechanics (in the Schrödinger) sense the
Hamiltonian operator is equivalent to the time translation operator. As it happens
the Hamiltonian vanishes in a covariant formulation of the ADM decomposition.
Several attempts have been made to fix this problem, as for example using Dirac’s
procedure for constrained systems. It failed to work because the Poisson bracket
structure is not diffeomorphism invariant. This is called the time problem in gen-
eral relativity, and it remains open [79]. One possible alternative is to consider the
symmetry of the space–time foliation [80].

Perhaps the ultimate meaning of the principle of general covariance is that time
is not relevant to the description of the space–time manifold, except in particular
situations. After all, it is possible to describe motion by means of any parameter.
Indeed, given a point p in a physical manifold and a tangent vector vp, we may
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construct a continuous curve with arbitrary parameter y, defined by a map α(y) =
hy(p), so that for any value of y, regardless of whether it is time like or space
like, it can even be a scalar field defined on Euclidean space–time, we obtain a
continuous sequence of points in the same physical space. This continuous sequence
of points does not follow from any postulated dynamics, but from a well-known
group structure, called the one-parameter group of diffeomorphism given by the
composition map hyoh′y(p) = hy+y′(p), h0(p) = p, hy−y(p) = h0(p). The curve
α(y) is called the orbit of p and its tangent vector is the velocity of propagation.
Now, given any observable Ω , we may evaluate its variation along the orbit, by the
Lie derivative £α′Ω [81].



Chapter 6
Scalar Fields

Classical field theory results from a natural extension of classical mechanics, when
the system of particles is extended to the limit where their coordinates are no longer
enumerable. A simple but very intuitive example is given in [55, 82].

We emphasize what we have already said in Chapter 1: Point particles do not
exist as a physically observable object, carrying mass, charge, momentum, spin, and
other attributes in space–time. Regardless of these attributes they always correspond
to mathematical points in the parameter space IRn which is not locally equivalent to
the physical manifold.

By the duality principle of quantum mechanics all fields satisfying a wave equa-
tion are related to a particle with a certain spin or intrinsic angular momentum.
The spin-statistics theorem says that particles with integer spin obey the Bose–
Einstein statistical interpretation (so they are called bosons). Thus, scalar fields
correspond to particles of spin 0. Vector fields correspond to particles of spin 1
and symmetric tensor fields of second order correspond to particles of spin 2. On
the other hand, particles of half-integer spin are described by spinor fields and they
obey the Fermi–Dirac statistical interpretation and for this reason they are called
fermions.

Scalar fields play an important role in field theory, mainly because the simplicity
of its structure (there is just one component) and their derivatives originate the force
fields. The best known scalar field is the Newtonian gravitational field or scalar
potential, and perhaps the most sought after scalar field (or fields) is the Higgs
field (which has not yet been seen in nature), but its existence is required for the
success of the whole field theory program. We shall see why it is so in the next
sections.

Unless explicitly stated we will be working in Minkowski space–time M4. As
already mentioned all fields, including the scalar fields (seen as a tensor of order
[00]), are defined in a vector bundle based on Minkowski’s space–time and with total
space T V

(M4, π, T V )

Therefore, in a very general sense we define the following.
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Definition 6.1 (Physical Field) A physical field on a manifold M is a map

Ψ :M → T V

such that to each point p ∈ M , it associates a vector belonging to a local vec-
tor space Vp. Furthermore, the field is a solution of the Euler–Lagrange equations
defined by a Lagrangian functional, resulting from the action principle

δA = δ

∫

Ω

L (Ψ,Ψ,μ, xμ) d4x = 0

where Ω is a region in space–time with boundary ∂Ω .

The necessity and existence of an action principle in the above definition is
not present in the mathematical definition of a vector field, but it is unavoidable
in physics.

The idea of an action principle originated with Pierre de Maupertuis when he was
the director of the Berlin Academy of Science, when searching for a mathematical
proof for the existence of God [83]. His reasoning was if everything in nature was
created by God, then a mathematical function capable of describing the properties
of all object in nature would be a mathematical representation of God.

Maupertuis went as far as proposing the mathematical expression, called the
(“divine”) action as

A = matter × motion × space

Obviously this action is clearly too simple to accomplish such grand objective, and it
triggered heavy criticisms by contemporary German mathematicians. In his defense,
his friend Leonhard Euler proposed a generalization of the Maupertuis action, stat-
ing that it should be an integral over the sum of elementary actions of the Maupertuis
type d A = mvds. This sum led to the Euler action integral

A =
∫

mvds

where m represents the mass (matter), with velocity v (motion), and ds is the dis-
tance (space) [84]. Euler also implemented the condition that the actual description
of nature resulted from the extremal values of the action (a maximum or a mini-
mum). In other words, the condition to reproduce a physical effect is that the action
should be stationary: δA = 0.

The Euler formulation is considerably better than the Maupertuis action, but
clearly it is not sufficient to describe nature. Thus, Lagrange suggested the idea of
integrating infinitesimal actions of more elementary processes, defined by a general
function of the field variables and its first derivative (a functional), composing a
physical system. This function is what we call today the Lagrangian of the physical
system [85].
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The proposal of Lagrange provides the most general action for the Maupertuis
proposition, but without his theological motivation. Yet, the fact that the action
principle works remains somewhat mysterious: For every known fundamental the-
ory there is a Lagrangian from which we derive the equations describing the dynam-
ics of the system. Furthermore, as we shall see in Chapter 8, from the Lagrangian
and its symmetries we may derive the observables of the theory. We are not very far
from Maupertuis idea when looking for a unified theory of fields.

An improvement over such metaphysical situation was achieved by William
Rowan Hamilton in 1833, when he modified the action principle, replacing the
Lagrangian by a new function, called today the Hamiltonian, which has the inter-
pretation of energy. We shall return to this point below.

Denoting a general field by Ψ the Lagrangian is a functional depending on
the field and its first derivatives1 seen as independent variables. Thus the Euler–
Lagrange action writes as

A =
∫

Ω

L (Ψ,Ψ,μ)dv

where the integration extends over the volume of the region Ω of space–time where
Ψ is defined. Under the condition that the variation δΨ vanishes in the boundary
∂Ω , the variational principle δA = 0 gives the Euler–Lagrange field equations [55].

∂L

∂Ψ
− ∂

∂xμ

(
∂L

∂Ψ,μ

)

= 0 (6.1)

describing the dynamics of field Ψ . Since any field is defined as Ψ : M → T V ,
they are functions of the coordinates. Their partial derivatives Ψ,μ are often referred
to as the “field velocity” in analogy with the case of classical particle physics. Thus,
the field Lagrangian is a function defined on the total space T V , acting as the con-
figuration space of the field L : T V → IR3 and as such is often called a functional
in the sense of a function of functions of the coordinates.

Complementing the analogy with the particle mechanics we may define the “field
momentum” by the components

πμ = ∂L

∂Ψ,μ

Usually L is a quadratic function of the field velocities Ψ,μ, and from its definition
the momentum turns out to be a real linear function of the field velocities. In this
sense, the momentum can be seen as a linear form on T V , which as we have seen
belong to the dual space T V ∗. This space is isomorphic to T V , where the isomor-
phism is non-natural, depending on the definition of a basis of the field space T V .

1 Higher derivatives are also considered in special cases.
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Using a Legendre transformation we obtain the Hamiltonian of the field defined
by a map H : T V ∗ → IR

H (Ψ, π) =
∑

πμΨ,μ −L

in which the explicit dependence on Ψ,μ is replaced by πμ. The action integral
derived by Hamilton is

A =
∫

H dv (6.2)

Under the condition that δA = 0, we obtain the Hamilton equations

dΨ

dτ
= δH

δπ
(6.3)

dπ

dτ
= −δH

δΨ
(6.4)

Therefore we have at least two formulations for the classical field theory: the repre-
sentation space formulation using the Lagrangian and the Euler–Lagrange equations
and the phase space formulation using the Hamiltonian and Hamilton’s equations
[55, 86, 87].

The Hamiltonian formulation is the result of an effort of Hamilton to understand
the nature of the variational principles. Why does (6.2) work in the sense that they
reproduce the known laws of physics? The explanation given by Hamilton is that for
closed physical systems, where the potential energy is conserved, the Hamiltonian is
the total energy of the system H = T +U . Then, nature as a closed system works
in such a way that it spends the minimal energy. This is a reasonable explanation
in replacement for the theological proposition of Maupertuis, as long as we know
about the total energy of the universe. As we recall from the introduction, only about
4% of it is known. In this context Leibniz interpreted Hamilton’s principle stating
that the universe in which we live is the best among all possible universes.

Since the total energy of a closed system is conserved, it is of particular impor-
tance for the cases where the field has the smallest potential energy. Using the lan-
guage of “state of a system” in quantum mechanics, this is referred to as the state of
minimum energy of the system or the vacuum state of the system defined by

∂U

∂Ψ
= 0

Thus, the vacuum state does not necessarily mean the same as empty (or void) space
in the sense of classical mechanics, but a state from which we cannot extract further
energy.
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6.1 Classic Scalar Fields

Consider a vector bundle (T V , π,M ) where the total space T V = F (M ) is
composed of the spaces of real (or complex) differentiable functions defined on M .
A scalar field on M is a map

ϕ :M → F (M)

which associates with each point in M a real (or complex) value ϕ(p), satisfying a
variational principle defined by the Lagrangian L (φ, φ, μ, xμ).

Let us review the most common examples:

Example 6.1 (The Newtonian Gravitational Field) Newton’s gravitational field is
perhaps the most common scalar field that we feel in our everyday life.

Consider again the second Newton’s law for gravitation:

F = G
m × m′

r3
r

where Newton’s gravitational constant G was introduced to convert the physical
units [M]2/[L]2 to the units of force. The gravitational potential satisfies the Poisson
equation (5.5)

∇2φ = −4πGρ

Notice the important fact that G is a dimensional constant. As we have seen, it
depends on the integration over solid angles for spherical shells. Thus, if the dimen-
sion of space changes to something else, the solid angle also changes and G must
adjust its physical dimensions accordingly.

Newton’s gravitational equation has agreed with the observations for a wide
range of distances. Its validity for small distances has been tested using the Casimir
effect, telling that it holds up to 10−3 mm, but showing signs of disagreement in the
range below 10−4 mm [88].

On the other hand, one of the earliest tests of general relativity shows that
Newton’s gravitation does not describe correctly the Mercury perihelion, a sign that
it may not hold beyond the Solar System. In spite of this, it has been assumed to
hold near the core of spiral galaxies, although the motion of stars in these galaxies
away from the core does not agree with Newton’s law [1, 2].

The Lagrangian for the Newtonian gravitational field is

L = 1

2

∑
δi jφ,iφ, j + 4πGρ

Due to the absolute character of the Newtonian time, the Euler–Lagrange equations
(6.1) must be written with the time variable separated from the space coordinates:



78 6 Scalar Fields

∂L

∂φ
− ∂

∂xi

(
∂L

∂φ,i

)

− ∂

∂t

(
∂L

∂φ̇

)

= 0

where φ̇ denotes the derivative with respect to the absolute time. As we have seen
in Chapter 5, this field induces an affine connection in Newton’s space–time and
Poisson’s equation can also be written in terms of the Riemann curvature tensor.

Example 6.2 (The Klein–Gordon Field) The Klein–Gordon field appeared in an
attempt to derive the relativistic electron equation in 1926, before the discovery
of Dirac’s equation [89]. The starting point is Schrödinger’s equation in quantum
mechanics

i h̄
dΨ

dt
= Ĥ Ψ (6.5)

where Ĥ denotes the Hamiltonian operator and t is the absolute time. A coordinate
transformation that involves a mixture of time and space coordinates will not keep
the same equation. Indeed, consider a system composed of a single free particle with
mass m and momentum ℘ has a Hamiltonian composed only of the kinetic energy
H = E = ℘2/2m. Applying the classical quantum correspondence ℘ ↔ h̄∇,
H ↔ Ĥ (6.5) becomes

i h̄
dΨ

dt
= h̄2

2m
∇2Ψ

Suppose that this equation is written in the Minkowski space–time with metric ηαβ ,
and invariant under the Lorentz transformation:

x ′α =
∑

Aα
βxβ, AηAT = η

Denoting the transformed wave function by Ψ ′(x ′), the transformation of the
Schrödinger equation gives

i h̄

(

A4
4
∂Ψ ′

∂x ′4
+
∑

Ai
4

dΨ ′

dx ′i

)

= h̄2

2m

(∑
δi j ∂2Ψ ′

∂x ′i∂x ′ j
+ Aα

4 Aβ

4
∂2Ψ ′

∂x ′α∂x ′β

)

where we have denoted x4 = ct and x ′4 = ct ′.
This requires the particular Lorentz transformation that maps time into time only,

that is, when A4
4 = 1 and Ai

4 = 0. However, the first term (the Laplace operator)
on the right-hand side is not invariant under a more general Lorentz transformation.
The second term is not invariant at all and it cannot be eliminated, except if we
impose an additional condition on Ψ ′. Therefore, Schrödinger’s equation (6.5) is
indeed non-relativistic.
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One possible explanation for the above result is that we have used the wrong
expression for the kinetic energy ℘2/2m, which is Newtonian and distinct from the
relativistic kinetic energy which is

E2 = −℘2c2 + m2
0c4 (6.6)

where m0 denotes the rest mass and ℘ = (p1, p2, p3). Replacing this expression in
(6.5), we obtain

i h̄
dΨ

dt
=
√
−℘2c2 + m2

0c4 Ψ

Again, applying the correspondence principle ℘ → i h̄∇ and after expanding the
root term, the above expression leads to the equation

i h̄
dΨ

dt
= m0c2

√

1− h̄2

m0c2
Ψ ≈

(

1− h̄2∇2

m0c2
+ h̄4∇4

2m2
0c4
· · ·
)

Ψ

Neglecting the higher order powers of h̄ in this expansion, we obtain again some-
thing proportional to ∇2Ψ ′ and, therefore, even using the relativistic kinetic energy
(6.5) is not invariant under the Lorentz symmetry.

The above failure to write a relativistic Schrödinger equation could be explained
as a consequence of the series expansion. This could be avoided by taking the square
of the operators in Schrödinger’s equation. But, of course, the result would be an
entirely new equation. Indeed, replacing dΨ/dt by d2Ψ ′/dt2, we obtain the equa-
tion describing a new field denoted by ϕ

−h̄2 d2ϕ

dt2
= E2ϕ

where E is the relativistic kinetic energy (6.6):

c2h̄2
(

∂2

c2∂t2
−∇2 − m0c2

h̄2

)

ϕ = 0

Denoting x4 = ct and m2 = m0c2/h̄2 we obtain the Klein–Gordon field describing
a relativistic field ϕ equation

(
�2 − m2

0

)
ϕ = 0 (6.7)

which is truly invariant under the Lorentz transformations.
Notice that in principle ϕ can be any type of field but when it is a scalar function

it correctly describes a particle with mass m and spin 0, the neutral scalar meson.
However, it does not describe the intended relativistic electron which was its original
motivation.
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The Klein–Gordon equation can be derived from Lagrangian

L = 1

2

(
ημνϕ,μϕ,ν + m2ϕ2

)
(6.8)

where the mass of the spin-0 particle appears as a coefficient of ϕ2. The emergence
of a term proportional to square of the field in the Lagrangian of an arbitrary field
has been consistently associated with mass and therefore it is called the mass term
of the field. We shall see the importance of this in subsequent examples.

To find the Hamiltonian of the Klein–Gordon field, we start by defining the
momentum

πμ = ∂L

∂ϕ,μ
= ημνϕ,ν

Applying in the Legendre transformation we obtain the Hamiltonian of the Klein–
Gordon field ϕ

H =
∑

πμϕ,μ −L = 1

2

(
πμπμ + m2ϕ2

)
= T +U

where T (ϕ,μ) = πμπμ is the kinetic term and U (ϕ) = mϕ2 is the potential energy
of the field.

As a simple exercise, show that the vacuum state of the Klein–Gordon field is the
point ϕ = 0 in the parabola (U (ϕ), ϕ).

Example 6.3 (Complex Scalar Field) The suggestion of Fock–London to make
Weyl’s theory compatible with quantum theory by using a unitary transformation
like

ϕ′ = ϕ eiθ0 (6.9)

may also apply to scalar fields, where the parameter θ may be independent of the
space–time coordinates (called global gauge transformations) or not (called local
gauge transformations). In the global case it is easy to see that (6.7) is invariant
under such transformation.

Such invariance of the Klein–Gordon implies that the Klein–Gordon scalar field
is necessarily complex. Denoting by VC the vector space of all complex functions,
we construct a complex vector bundle (M4, π, T V ). Then the complex scalar
Klein–Gordon field can be formally defined by a map

ϕ :M4 → T VC

such that it assigns a complex vector at each point of M and such that it must satisfy
a variational principle derived by the Lagrangian
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L = ημνϕ,μϕ
∗
,ν + m2ϕϕ∗ (6.10)

which generalizes the Klein–Gordon Lagrangian. Notice that both ϕ and its complex
conjugate ϕ∗ appear in the Lagrangian. The Euler–Lagrange equations calculated
with the complex conjugate ϕ∗ and with respect to ϕ are, respectively,

(�2 − m2)ϕ = 0 and (�2 − m2)ϕ∗ = 0

which are the complex conjugates of each other. The Lagrangian (6.10) is invariant
under the global gauge transformations (6.9).

On the other hand, remembering the original problem of Weyl, and the solution
presented by Fock–London as described in Chapter 1, we may ask if the complex
Lagrangian is also invariant under local gauge symmetries. To see this consider the
local gauge transformation

ϕ′ = ϕeiθ(x) (6.11)

Replacing in the Lagrangian (6.10), we obtain

L = ημν
(
θ,μθ,νϕϕ

∗ + iθ,μϕ
∗
,νϕ + iθ,νϕ,νϕ

∗)− m2ϕϕ∗

We clearly see that the resulting Lagrangian is different from (6.10), meaning that
(6.11) is not a symmetry of the complex scalar field.

On the other hand, as we have seen in Chapter 3, a Lie group of transformations
such as (6.11) can be completely determined by a sequence of infinitesimal transfor-
mations. Therefore, considering only an infinitesimal transformation characterized
by small values of its parameters θ2 << θ in (6.11)

ϕ′ ≈ (1+ iθ)ϕ (6.12)

Neglecting higher powers of θ and replacing in L (ϕ′) we obtain

L (ϕ′) = ημν∂μϕ
′∂νϕ′∗ − m2ϕ′ϕ′∗

= L (ϕ)+ iημνθ,μ(ϕϕ∗,ν − ϕ∗ϕ,ν)+ 0(θ2)

This Lagrangian could be re-written as

L (ϕ) = ημν(ϕ,μ + iθ,μϕ)(ϕ,ν + iθ,νϕ)
∗ + m2ϕϕ∗

which suggests the definition of a covariant derivative operator

Dμϕ
def= ϕ,μ + iθ,μϕ = (∂μ + iθ,μ)ϕ (6.13)
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With this definition the Lagrangian can be written as

L (ϕ) = ημν(Dμϕ)(Dνϕ)
∗ + m2ϕϕ∗ (6.14)

Except by the exchange of the partial derivative ∂μ by the “covariant derivative”
Dμ, the new form of the Lagrangian looks exactly as (6.10). In other words, if we
had written from the start (6.10) with Dμ, as in (6.14), then the scalar field would
also be invariant under the local transformations.

In the particular case when θ=constant, the new derivative Dμ becomes the usual
partial derivative. As we shall see, the whole concept of gauge theory demands a
more complete mathematical analysis based on covariant derivatives. More impor-
tantly, we will see also that the existence of such covariant analysis is founded on
observations.

6.2 Non-linear Scalar Fields

Here we generalize the Klein–Gordon equations by replacing the mass term mϕ by
an analytical function of ϕ, F(ϕ)

�2ϕ + F(ϕ) = 0 (6.15)

By analytic we mean that F can be represented by a converging positive power
series of ϕ:

F(ϕ) =
∞∑

0

λnϕ
n

In particular, assuming that for a given integer N we have ϕN+1 << ϕN , then
the series reduces to a polynomial of degree N . We see that the example of the
Klein–Gordon equation is the particular case when N = 1 and λ1 = m2. Other
choices of F(ϕ) give some very interesting non-linear scalar fields.

Example 6.4 (Higgs Quartic Potential) Consider now that F(ϕ) is a particular poly-
nomial of order 3 with coefficients

λ0 = 0, λ1 = μ2, λ2 = 0, λ3 = λ

3! , λ > 0

From (8.8) the field equation becomes

(�2 + μ2)ϕ + λ

3!ϕ
3 = 0

which is obtained from the Lagrangian

L = 1

2
ημνϕ,μϕ,ν −U (ϕ)
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where we have denoted the potential

U (ϕ) = −1

2
μ2ϕ2 − λ

4!ϕ
4

Because of the existence of the last term of fourth power in ϕ, this example is often
referred to as the quartic potential theory or simply as the λφ4 theory.

Since the equation is non-linear, the field ϕ is self-interacting, meaning that it
can be generated by itself, even in the case of the vacuum.

The above equation can be easily extended to the case of a complex scalar field
by replacing ϕ2 → ϕϕ∗. Like in the previous example, the Lagrangian becomes
invariant under the local gauge transformations, ϕ′ = eiθ(x)ϕ, provided the partial
derivatives are replaced by the covariant derivatives Dμ = ∂μ + iθμ (exercise).

Like in the case of the Klein–Gordon Lagrangian, the vacuum states of this field
are solutions of

∂U

∂ϕ
= 0

or, equivalently,

ϕ

(

μ2 + λ

3!ϕ
2
)

= 0

whose solutions depend on the sign of μ2. Therefore we have two cases to consider:
(a) If μ2 > 0 the only solution is ϕ = ϕ0 = 0, where U (ϕ0) = 0.

In this case, the curve (U, ϕ) shows a parabola with minimum value at zero.
(b) If μ2 < 0, then besides ϕ = 0 we have also two other real solutions

ϕ =
√
−6μ2

λ
= a, ϕ = −

√
−6μ2

λ
= −a

The curve (U (ϕ), ϕ) is a quartic curve (Fig. 6.1) intersecting a straight line in four
points at most.

Fig. 6.1 Quartic potential
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The vacuum states have a reflection symmetry ϕ′ = −ϕ, which is discrete in the
sense that its parameter assumes only the values 1 and −1. Since the vacuum states
of ϕ are the states of minimum energy, these two vacuum points are the possible
points of rest of the field. When the field ϕ chooses to rest in any of these vacuum
states, say ϕ = a, then this becomes the state of lowest energy, or the true vacuum.
Since they have the same minimal energy they are equivalent and there is no way
we can decide which one the field chooses, except by an outside interference.

This is the beginning of an interesting story: Supposing the state of lowest energy
has been chosen by the system to be at ϕ = a, the number −μ2 = m must be
real. Comparing with the mass term of the Klein–Gordon Lagrangian, we obtain the
equivalent to a “mass term” of the quartic potential theory, as a real factor of ϕ2:

L (ϕ) = 1

2

(
ημν∂μϕ

′∂νϕ + mϕ2
)
− λ

4! (ϕ + a)4

We say that the choice of one vacuum state represents the breaking of the vacuum
symmetry ϕ → −ϕ. That is, when the symmetry of the vacuum ceases to exist by
a spontaneous choice of the vacuum state, we obtain a mass term. This is the basic
example of the so-called Higgs mechanism, a new concept in field theory called
the spontaneous symmetry breaking of the vacuum symmetry introduced in 1964
by P. Higgs and T. B. Kibble [38, 39]. Its importance lies in the obtention of mass
by symmetry breaking of a field theory without mass term. The term spontaneous
results from the fact that it occurs with minimal energy, independently of any exter-
nal action.

Example 6.5 (A Pair of Scalar Fields) To obtain further insight into the symmetry
breaking mechanism consider the Lagrangian with quartic interaction, involving two
independent complex scalar fields:

L (ϕ1, ϕ2) = 1

2

2∑

i=1

ημνϕ∗i,μϕi,ν +U (ϕi )

where the potential energy is

U (ϕi ) = μ2

(
2∑

i=1

ϕiϕ
∗
)

+ λ

4!

(
2∑

i=1

ϕiϕ
∗
i

)2

and where λ > 0 but the sign of μ is arbitrary. As in the previous example, this
Lagrangian is invariant under the discrete symmetry ϕ′i = −ϕi . However, here we
have another symmetry, which is the rotation in the plane (ϕ1, ϕ2) given by

ϕ′1 = ϕ1 cos θ − ϕ2 sin θ

ϕ′2 = ϕ1 sin θ + ϕ2 cos θ
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where θ is the rotation angle. Again, this angle can be independent of the coordinates
(a global symmetry) or it may depend of the coordinates of the space-time (a local
symmetry).

The above Lagrangian can be better understood if we take the two independent
scalar fields as generating a two-dimensional space of functions with basis {ϕ1, ϕ2}
(since each function is an infinite dimensional vector we may say that this space is
a two-dimensional space of functions). In such basis the above transformation may
be written in terms of a matrix representation

u =
(

cos θ − sin θ
sin θ cos θ

)

such that uu† = 1 and det u = 1. Therefore we may identify this group as being
the unitary group U (1) generated by the single parameter θ . The matrices u of the
representation act as ϕ′ = uϕ on the space of columns

ϕ =
(
ϕ1
ϕ2

)

, ϕ† = (ϕ∗1 , ϕ∗2 )

In this notation, notice that
∑

i ϕ
2
i = ϕ†ϕ and

∑
i η

μνϕ
†
i,μϕi,ν = ημνϕ†

,μϕ,ν .
The vacuum states of this system are given by the solutions of

∂U

∂ϕi
=
(

μ2 + λ

3! (ϕ
2
1 + ϕ2

2)

)

ϕi = 0, i = 1, 2

Therefore, for μ2 > 0 only the origin ϕ1 = ϕ2 = 0 represents a real vacuum.
On the other hand, when μ2 < 0 (denote μ2 = −m2), we obtain an equation

ϕ2
1 + ϕ2

2 =
6m2

λ

which defines a circle in the plane (ϕ1, ϕ2). The infinite points of this circle represent
vacuum solutions of the system, which are mapped one onto another by the above-
mentioned rotation group.

As in the previous examples, when the system spontaneously chooses to rest
in any of these points, we have a spontaneous breaking of the vacuum symmetry.
For example, the choice ϕ1 =

√
6m2/a breaks the vacuum symmetry and as in the

previous example, we say that ϕ1 acquires a mass while ϕ2 is a solution that remains
without mass (Fig. 6.2).

Next we ask if the same system has a local gauge symmetry, when θ is a function
of the coordinates, that is, with the transformation

ϕ′ = eiθ(x)ϕ, uu† = 1
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Fig. 6.2 The Mexican hat
quartic potential for two
scalar fields

In this case the vacuum symmetry is given by the same group U (1), but it is locally
defined. Following the same procedure as in the previous examples, the potential
energy is not affected but the partial derivatives of the kinetic term must consider
the coordinate dependence of the matrices u. Therefore, we have ϕ′,μ = u,μϕ+uϕ,μ
and ϕ

′†
,μ = ϕ†u†

,μ + ϕ†
,μu† so that

ημνϕ′†,μϕ′,ν = ημν
(
ϕ†u†

,μu,νϕ + ϕ†u,μuϕ,ν + ϕ†
,μu,νuϕ

)

As we see, the result is not the same as the original kinetic term ημνϕ†
,μϕ,ν . There-

fore the Lagrangian is not invariant under the local U (1) symmetry. However, it is
possible to redefine the derivative so as to make the Lagrangian invariant under the
local gauge transformations. For that purpose consider an infinitesimal value of θ
such that θ2 << θ when we obtain

u(θ) =
(

cos θ − sin θ
sin θ cos θ

)

≈
(

1 −θ
θ 1

)

= σ0 − θ iσ2

From this we find that u u† ≈ 1, u†
,μu,ν ≈ 0, and uu,μ ≈ −iσ2θ,μ. It follows that

ημνϕ′†,μϕ′,ν = −ημν
(
ϕ†
,μθνϕ + ϕ†θ,μϕ,ν

)
iσ2

or, after defining the covariant derivative operator

Dμ = σ0∂μ − θ,μiσ2
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we obtain the invariant Lagrangian

L (ϕ) = 1

2
ημν(Dμϕ)

†(Dνϕ)+U (ϕ)

The above example may be generalized to the case where we have N scalar fields
ϕi . Then we have an important result:

Theorem 6.1 (Goldstone) Given N independent complex scalar fields, ϕi , i =
1, . . . , N, in a Lagrangian L = T − U, which is invariant under an n-parameter
local field symmetry G, with parameters θa, a = 1, . . . , n, then there are at most P
non-trivial vacuum states, where P is the rank of the matrix (∂2U (ϕ)/∂ϕi∂ϕ j ).

Using the same matrix notation, the N scalar fields can be seen as the components
of a covariant vector (a column):

ϕ =

⎛

⎜
⎜
⎜
⎝

ϕ1
ϕ2
...

ϕN

⎞

⎟
⎟
⎟
⎠

Then, the Lagrangian of the system can be written as

L (ϕ) = 1

2
ημνϕ†

,μϕ,ν −U (ϕ)

Using a basis of the field space comprising N independent vectors {ϕi }, an infinites-
imal transformation of the group G acting on that basis is given by

δϕk =
∑

a

θa Xaϕk

where Xa denote the operators of the Lie algebra of G. Then, the vacuum states of
the system are given by the solutions of

δkU (ϕ) = ∂U

∂ϕk
δϕk = ∂U

∂ϕk

∑

a

θa Xaϕk = 0

Since all parameters are independent we obtain the condition

∂U

∂ϕk
(Xaϕk) = 0

Deriving this equation with respect to ϕ�, we obtain

∂2U

∂ϕk∂ϕ�
Xaϕk + ∂U

∂ϕk
Xaδkl = 0

Since the vacuum solutions satisfy the condition ∂U/∂ϕk = 0, the last equation
reduces to the matrix equation
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M Xaϕ = 0

where we have denoted the matrix M = (∂2U/∂ϕi∂ϕ j ) and Xa are matrices defined
in representation of the Lie algebra of G. Therefore, the vacuum states are solutions
of a homogeneous system.

There are two cases to analyze:

(a) If det M �= 0, then multiplying the above equation by M−1 we obtain Xaϕ = 0.
Since the matrices Xa represent a basis of the Lie algebra of G, it follows that
ϕ = 0. In this case the vacuum states trivially coincide with the origin of the
space of solutions.

(b) If det M = 0, then the homogeneous system has a non-trivial solution, although
not complete. That is, the number of non-zero solutions is equal to the number
P of lines and columns of the largest sub-matrix of M which has a non-zero
determinant (the rank of M). In this case, there are N − P solutions which are
not determined by the above equation are called the Goldstone bosons of the
system [90, 91].

Example 6.6 (Topological Solitons) Returning to equation (6.15), consider that
F(ϕ) is represented by a converging power series to the periodic function
α/β sin(βϕ), where α, β are arbitrary constants. Proceeding in the usual way we
obtain the field equations

�2ϕ + α

β
sin(βϕ) = 0 (6.16)

This equation follows from the Lagrangian

L = 1

2
ημν∂μϕ∂νϕ −U (ϕ)

U (ϕ) = − α

β2
(cos(βϕ)− 1)

Notice that (6.16) is a non-linear equation whose solutions depend on the constants
α and β. A well-known example corresponds to β = 1 and α = m2 > 0, giving the
“Sine–Gordon equation”

�2ϕ + m2 sinϕ = 0

This equation does not have exact solutions in arbitrary dimensions [92]. However,
there is a solution in two dimensions known as the topological soliton, representing
a stable field with finite energy, which propagates without dispersion. Note also that
for small values of ϕ we have sin ϕ ≈ ϕ, so that we recover the linear Klein–Gordon
equation.

As an exercise, find all vacuum states for solitons.



Chapter 7
Vector, Tensor, and Spinor Fields

7.1 Vector Fields

The prime example of a vector field is the electromagnetic field in Minkowski
space–time. It is an essential component of the development of modern physics,
including the emergence of relativity and the relevance of the concept of symmetry
in physics. Due to the importance of this combination of theoretical and experimen-
tal results to the development of gauge theory let us briefly review the basics of
the electromagnetic field (for more details, see, e.g., [93]) and some more advanced
topics involving its interactions with scalar fields.

7.1.1 The Electromagnetic Field

The systematic observations of electricity is credited to Stephen Grey and François
da Fay between 1736 and 1739. However, real progress was possible only after
the Leyden (Holland) bottles were made in 1746. Quantitative results started to
show up around 1777 with the invention of the torsion balance by Charles Augustin
Coulomb, leading to the Coulomb law:

F = K
qq ′

r2

r
r
, K = constant

The systematic study of the electric current was possible only after 1794 with the
invention of the electric battery by Allesandro Volta, allowing for the use of the
electric current in a controlled way. The electromagnetism appeared around 1819,
after Hans Christian Oersted observed that magnetic forces, originally observed only
with permanent magnets, could also be induced by the presence of varying electric
current. The relation between this magnetic field and the derivative of the current
with respect to time was discovered by André Marie Ampére in 1819, leading to a
differential expression for the Coulomb law.

Ampère imagined the electric current as formed by small cylindrical moving
sections with length d� and area A of the conductor, with charge density ρ, so that

M.D. Maia, Geometry of the Fundamental Interactions,
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the charge in each section is dq = ρdV = ρd�d A. Replacing in Coulomb’s law he
obtained a differential expression for the electric force

|dF| = K
qρAd�

r2

The experimental observation by Michael Faraday that this force induced a mag-
netic attraction between two close wires led to the concept of magnetic induction
and magnetic field flux and eventually to the Faraday law of 1831 stating that, The
variation of the magnetic flux with time induces an electric current on a conductor
which is proportional to that variation.

The final step in this rather complex development was given by Jean-Baptiste
Biot and Félix Savart in 1822, obtaining the expression

Fmag = K ′ d� ∧ d�′

r
, K ′ = constant

where d� and d�′ are the tangent vectors to two small cylindrical sections of two
conductors separated by a distance r .

Thus the electric and magnetic fields which were originally thought to be
two independent fields become related to each other. However, the differential
second-order equations describing these two fields were not quite consistent. The
completion of the consistency process was elaborated in 1861 by James Clark
Maxwell [94].

Of course, the electric and magnetic field equations were originally written with
the absolute time t and consequently with the idea of simultaneity sections Σt as in
the Galilean space–time. They were expressed in terms of the scalar φ and vector
potentials A as

B = ∇ ∧ A, E = −∇φ − 1

c

∂A
∂t

(7.1)

From these expressions we obtain immediately two homogeneous equations

< ∇,B >= 0, ∇ ∧ E+ 1

c

∂B
∂t
= 0 (7.2)

The two remaining equations, the Coulomb and Ampère equations, involve electri-
cal charges and current

∇2φ = −4πρ, ∇2 A = −4π

c
J+ 1

c

∂E
∂t

Originally these equations were inconsistent because the Faraday and Ampère equa-
tions hold under different conditions. This was fixed by Maxwell, and today they
combine in the four Maxwell’s equations
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< ∇,B >= 0 (7.3)

∇ ∧ E+ 1

c

∂B
∂t
= 0 (7.4)

< ∇,E >= 4πρ (7.5)

∇ ∧ B− 1

c

∂E
∂t
= −4πJ (7.6)

Only the last two (non-homogeneous) equations are the Euler–Lagrange equations
with respect to the vector potential A and the scalar potential φ in the Lagrangian

L = < E,E > − < B,B >

8π
− ρφ− < J,A > (7.7)

This Lagrangian is invariant under a special local transformation of the potential
functions given by

A′ = A+∇θ (7.8)

φ′ = φ − 1

c

∂θ

∂t
(7.9)

where the parameter θ is a function of the space–time coordinates.
The invariance of the Lagrangian under the above transformations follows

directly from the fact that in (7.1), the expressions of E and B are invariant under
the above transformations. Indeed

E′ = −∇φ − 1

c

∂

∂t
∇θ − 1

c

∂A
∂t
+ 1

c

∂

∂t
∇θ = −∇φ − 1

c

∂A
∂t
= E

B′ = ∇ ∧ (A+∇θ) = ∇ ∧ A = B

Consequently, Maxwell’s equations also do not change under the same transforma-
tions.

The set of transformations (7.8) and (7.9) constitute a group with respect to the
composition

A′ = A+ ∇θ, A′′ = A′ + ∇θ ′

φ′ = φ − 1

c

∂A
∂t

, φ′′ = φ′ − 1

c

∂θ ′

∂t

which combine into transformations of the same kind
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A′′ = A+ ∇(θ + θ ′) = A+∇θ ′′

φ′′ = φ − 1

c

∂

∂t
(θ + θ ′) = φ − 1

c

∂θ ′′

∂t

The identity transformation corresponds to θ = constant. Choosing this constant to
be zero, the inverse of a transformation corresponds naturally to −θ . We may easily
check that the above composition is associative. Since the order of composition
does not affect the result we have an Abelian group, where the only parameter θ is
a function of the coordinates. This is the electromagnetic gauge group. This group
is a Lie group with one coordinate-dependent parameter. Therefore, this group is
isomorphic to the local group of rotations SO(2) and as we have seen also to the
local unitary group U (1).

With the appropriate choice of conditions imposed on θ , we obtain different solu-
tions of Maxwell’s equations. The two most common choices are as follows:

(a) The Lorentz gauge
From (7.8) and (7.9) we may write

< ∇,A′ >=< ∇,A > +∇2θ

1

c

∂φ

∂t
= 1

c

∂φ

∂t
− 1

c

∂2θ

∂t2

so that

(

< ∇,A′ > + 1

c

∂φ′

∂t

)

=
(

< ∇,A > + 1

c

∂φ

∂t

)

+∇2θ − 1

c2

∂2θ

∂t2

Therefore, assuming that θ is such that

∇2θ − 1

c

∂2θ

∂t2
= 0 (7.10)

it follows that

< ∇,A′ > + 1

c

∂φ′

∂t
=< ∇,A > − 1

c

∂φ

∂t
= C

where C is a constant. In particular choosing this constant to be C = 0, we
obtain the Lorentz gauge condition

< ∇,A > −1

c

∂φ

∂t
= 0

which is compatible with the electromagnetic wave solution of Maxwell’s
equations.



7.1 Vector Fields 93

(b) The Coulomb gauge
Here we consider a more restrictive condition where the scalar potential does
not depend on time. Then we obtain

< ∇,A >= 0

Replacing this in Maxwell’s equations we obtain

∇2φ = 4πρ

which is Poisson’s equation for a charge density ρ(x, t) and whose solution
describes the Coulomb potential for the electrostatic field of an isolated particle.

7.1.2 The Maxwell Tensor

The development of the electromagnetic theory in the beginning of the 20th century
led to the conclusion that Maxwell’s theory written in the Galilean space–time with
its simultaneous sections was not compatible with the explanations of the negative
results of the Michelson–Morley experiment on the propagation of light within the
context of the Galilean space–time. This resulted in the theory of special relativity
based on the Minkowski space–time previously described. Then Maxwell’s equa-
tions are more appropriately written in the Minkowski space–time, using the concept
of proper time denoted by τ . Correspondingly, the Galilean group was replaced by
the Poincaré group and the light speed was assumed to be a fundamental constant
of nature.

The electromagnetic field which was written as a pair of vectors (E,B) can now
be more appropriately written as an anti-symmetric rank two tensor field composed
of the components of E and B given by (7.1):

Ei = −∂iφ − 1

c

∂

∂τ
Ai (7.11)

Bi = ∂ j Ak −∇k A j (i, j, k cyclic = 1, 2, 3) (7.12)

Define the tensor F = (Fμν) by its components

Fi j = ∂i A j − ∂ j Ai , Fii = 0

Fi4 = ∂i A4 − ∂4 Ai , F44 = 0

where we have denoted ∂4 = 1
c
∂
∂τ

. Introducing the potential four-vector

A = (A,−φ) = (A1, A2, A3, A4)

and denoting its individual components by Aμ, the expressions of Fμν can be sum-
marized as
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Fμν = ∂μAν − ∂ν Aμ, μ; ν = 1, . . . , 4

Therefore, comparing with (7.11) and (7.12) we obtain

F12=∂1 A2−∂2 A1= B3, F13=∂1 A3−∂3 A1=−B2, F23=∂2 A3−∂3 A2= B1,

Fi4 = ∂i A4 − ∂4 Ai = −∂iφ − ∂

∂τ
Ai = Ei , F44 = 0

In a shorter notation we may write

Fi4 = Ei , Fi j = εi jk Bk (7.13)

where εi jk is the standard Levi-Civita permutation symbol for i, j, k = 1, . . . , 3.
Explicitly, we obtain an array (it is not a matrix)

(Fμν) =

⎛

⎜
⎜
⎝

0 −E3 −E2 −E3
E1 0 B3 B2
E2 −B3 0 −B1
E3 −B2 B1 0

⎞

⎟
⎟
⎠

which is known as the covariant Maxwell tensor. The corresponding contravariant
tensor has components

Fμν = ημρηνβFρβ

In order to write Maxwell’s equations in terms of the Maxwell tensor, we start
with the components of the two non-homogeneous equations (7.5) and (7.6)

∑
∂i Ei = 4πρ

∑
εi jk∂ j Bk − 1

c

∂Ei

∂τ
= −4π Ji

Using (7.13), the two non-homogeneous equations correspond to

∑
∂i Fi4 = 4πρ

∑
∂ j Fi j − 1

c

∂Fi4

∂τ
= −4π Ji

However, F j4 = −Fj4 and Fi j = Fi j so that

−∑ ∂ j F j4 = 4πρ (Coulomb)
∑

∂ j Fi j + ∂4 F j4 = J (Ampère)
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Defining the four-dimensional current (J,−cρ) = (J1, J2, J3, J4) with components
Jμ and Jμ = ημρ Jρ , it follows that the above two equations can be summarized as

Fμν
,ν = 4π

c
Jμ

On the other hand, the two homogeneous Maxwell’s equations are

∑
∂i Bi = 0,

∑
εi jk∂ j Ek + 1

c

∂Bi

∂τ
= 0

which can also be written in terms of Fμν as

∂iεi jk Fjk = 0

εi jk∂ j Fk4 + 1

c

∂

∂τ
εi jk Fjk = 0

or, using the four-dimensional Levi-Civita permutation symbol

εμνρσ =
⎧
⎨

⎩

1 if μνρσ is an even permutation of 1234
− 1 if μνρσ is an odd permutation of 1234

0 in any other case

The last two equations can be summarized as

εμνρσ ∂νFρσ = 0

Therefore the four Maxwell’s equations are equivalent to

Fμν
,ν = 4π Jμ (7.14)

εμνρσ ∂νFρσ = 0 (7.15)

which are known as the manifestly covariant Maxwell’s equations, having the same
shape in any Lorentz frame in Minkowski’s space–time.

7.1.2.1 The Lagrangian of the Electromagnetic Field

The Lagrangian of the electromagnetic field (7.7) can be written in terms of the
Maxwell tensor Fμν . For that purpose consider the four-vectors Jμ and Aμ defined
previously and define the Lorentz-invariant quantity

ημν Aμ Jν =< J,A > + ρφ

On the other hand, from the components of E and B written in terms of Fμν we
obtain
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< E,E >=
∑

Ei Ei = −
∑

F14 F14 −
∑

F24 F24 −
∑

F34 F34

and

< B,B >=
∑

Bi Bi = F12 F12 + F13 F13 + F23 F23

Therefore,

< E,E > − < B,B >= 1

2
FμνFμν

where the factor 1/2 was included to compensate for the repeated terms in the sum
of the right-hand side. Therefore, the Lagrangian of the electromagnetic field (mul-
tiplied by 4π ) is

L = 1

4
FμνFμν − 4π JμAμ (7.16)

To see that this form of the Lagrangian leads directly to the covariant equations let
us calculate the variation with respect to Aμ

∂L

∂Aμ

= 4π Jμ and
∂L

∂Aμ,ν

= 1

2
Fρσ ∂Fρσ

∂Aμ,ν

= 1

2

(
δαρ δ

ν
σ − δνρδμσ

)
Fρσ = Fμν

Consequently, the electromagnetic Euler–Lagrange equations are

Fμν
,ν = 4π Jμ (7.17)

The other two equations (the homogeneous equations) are obtained directly from the
expressions of E and B in terms of A and φ. For this reason they are often referred
to as non-dynamical equations. Indeed, they are part of an identity satisfied by Fμν
as we shall see later.

7.1.3 The Nielsen–Olesen Model

The Nielsen–Olesen model arose originally from an attempt to describe a quantized
magnetic flux [95]. Consider that we have a scalar field ϕ and the electromagnetic
field Fμν , as if they are non-interacting, given by the Lagrangian

L = 1

4
FμνFμν + ημνϕ∗,μϕ,ν −U (ϕ) (7.18)

The first term is just the electromagnetic Lagrangian, the second term is the kinetic
term of the scalar field ϕ, and the third term is the potential energy of ϕ chosen to
be a generalization of the quartic scalar potential seen in the previous chapter
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U (ϕ) = −2αβϕ∗ϕ + α2(ϕ∗ϕ)2

where α, β are constants. Notice that there is not an explicit interaction term
involving the two fields, so they behave as if they were two independent fields.

As we have seen in the last section, the electromagnetic field is invariant under
the gauge transformation (7.8) and (7.9), which can now be written in terms of the
components of the four-vector potential as

A′μ = Aμ + θ(x),μ
On the other hand, from the same arguments seen in the study of the quartic potential
in the previous chapter, the scalar field component in the Lagrangian is invariant
under the global U (1) transformations, but not under the local U (1) group given by
the transformations

ϕ′ = eiθ ′(x)ϕ

Therefore, the Nielsen–Olesen Lagrangian also has two independent local gauge
groups: the gauge group of the electromagnetic field with parameter θ(x) and the
unitary gauge group U (1) of the scalar field with parameter θ ′(x). As we have seen,
the latter gauge transformation is not a symmetry, unless we take infinitesimal trans-
formations like in (6.12), and replacing the partial derivatives in the Lagrangian by
the more general covariant derivative (6.13) Dμ = I∂μ + iθ ′,μ.

To solve the problem of handling two independent gauge transformations Nielsen
and Olesen proposed that they are different manifestations of the same group, by
assuming that

iθ ′,μ = g Aμ, g = constant (7.19)

With such condition, the Lorentz gauge implies that ∂μθ ′,μ ≡ g∂μAμ = 0. There-
fore, using the Lorentz gauge, the two gauge symmetries become just one, namely
U (1), and the gauge covariant derivative becomes

Dμ = ∂μ + iθ ′,μ = ∂μ + g Aμ (7.20)

Then the original Lagrangian can be rewritten with Dμ in place of the partial deriva-
tive ∂μ:

L = 1

4
FμνFμν + ημν(Dμϕ)

∗(Dνϕ)−U (ϕ) (7.21)

With this covariant derivative the Lagrangian becomes constant under the local
gauge U (1).

Since Dμ depends on Aμ, the original Nielsen–Olesen Lagrangian acquired an
interaction term that did not exist before. To see this term explicitly, let us expand
the covariant derivatives
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L = 1

4
FμνFμν + ημν

(
ϕ∗,μϕ,ν + g Aμϕ

∗ϕ,ν + g Aνϕ
∗
,μϕ + g2 AμAνϕ

∗ϕ
)
−U (φ)

where the interaction terms are those involving products of both fields and their
derivatives. The emergence of the interaction has some interesting physical conse-
quence.

7.1.3.1 The Meissner Effect

The Euler–Lagrange equations obtained from (7.21) with respect to Aμ are

Fμν
,μ − g ημν[ϕ∗,νϕ + ϕ,νϕ∗ + 2g Aνϕ

∗ϕ] = 0 (7.22)

and with respect to ϕ they are

gημν
[

Aμ(Dνϕ)
∗ − ∂U (ϕ)

∂ϕ
− gημνDν(ϕϕ

∗)
]

= 0 (7.23)

(here we have written these equations using Dμ just for convenience. The Euler–
Lagrange equations are usually written with the ordinary derivatives.) Since Aμ are
the components of the electromagnetic potential, it must also satisfy the dynamical
Maxwell’s equations (7.17). Therefore, replacing the Maxwell tensor Fμν in (7.22),
we obtain a total of eight equations and only five unknowns Aμ and ϕ, so that the
system is over-determined. This means that we cannot guarantee that the system
remains consistent in its evolution.

The excess of equations can be lessened by reducing the number of dimensions
from 4 to 3 = 2 + 1 (with coordinates x ,y,t). There is no fundamental implication
in this, as it means only that the sought solution is valid only in a three-dimensional
subspace-time of space–time. In this case we obtain a compatible system with five
equations. From (7.22) a solution of this system on empty space (Jμ = 0), is
given by

Aμ = −
(ϕϕ∗,μ − ϕ∗ϕ,μ)

2g ϕϕ∗
(7.24)

Replacing this in (7.23) we obtain an equation involving only ϕ(x, y, t).
In a practical application of this solution, consider that S is a flat surface limited

by a circle c with radius r , in a region where there is no electrical current. Using the
center of the circle as the center of a polar system of coordinates (r, θ, t) we may
express the solution ϕ = √ f (r)eiθ . Replacing this solution in (7.22) we obtain the
electromagnetic potential Aμ in terms of f (r) and θ .

We may choose the radius of the circle such that ϕ∗ϕ = 1. In this normaliza-
tion, the magnetic field generated by this (2+1)-potential vector, as always, given by
B = ∇ ∧ A, produces a magnetic flux across an arbitrary surface S in the (x, y)
plane, limited by a closed curve c, given by
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Φ =
∫ ∫

< B, d Sn >=
∫ ∫

< ∇ ∧ A, d Sn >=
∮

c
Aμdxμ

In the traditional electromagnetic field, this flux would be given by a current in c.
Since here we have a vacuum solution (Jμ = 0), then the flux should also be zero.
However, using the above solution we find that

Φ =
∮

Aμdxμ = n

g

∮
θ,μdxμ = nπ

g

where n is the number of times in which the circle is run. Contrary to the expecta-
tions it is not zero, but it is discrete, depending on this integer n.

This result was confirmed by an experiment by Walther Meissner and Robert
Ochsenfeld in 1933 and is known as the Meissner effect [96]. The circle c was drawn
in a neutral metal plate (without any electrical current). A coil with n turns (called
the winding number) with the same diameter as the circle was placed orthogonally
to the plate. When a current flows in the coil, a magnetic flux should be produced
on the disk drawn in the plate, but classically and at room temperature that flux is
shielded by the plate itself. Nonetheless, at the critical temperature, they observed a
flux distribution on the opposite side of the plate. The only possible interpretation
of this somewhat strange result is that of a tunneling effect of a quantum magnetic
flux. Within the assumptions made, the quantum effect on the flux appears under
extremely low temperatures. When the temperature rises the quantum flux disap-
pears.

When the plate is kept at room temperature and the magnetic field is produced by
a cooled permanent magnet, then the flux causes a levitating effect on the magnet.
The Meissner effect is thus responsible for the ongoing experiments on magnetic
levitation and applications in public transportation.

The existence of a quantized flux only on one side of the plane may be also
interpreted as the result of quantum magnetic monopole called the ’tHooft-Polyakov
monopole [97, 98]. As in the example given by (6.1), the corresponding magnetic
charge can be obtained by a symmetry breaking mechanism. More specifically, con-
sider (7.21) where the parameters are chosen to be α2 = λ/3! > 0 and 2αβ = μ2.
Then the minimal energy condition ∂U/∂ϕ = 0 gives

ϕ∗
(

μ2 + λ

3! (ϕ
∗ϕ)
)

= 0

Therefore, if μ2 > 0, the only solution ϕ = 0. On the other hand, if μ2 = −m2 < 0,
then we have an infinite number of non-trivial vacuum states given by

ϕ0 = ±
√

6m2

λ
eiθ
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When any of these infinite vacua states is chosen for a value of θ , the gauge symme-
try of the field ϕ is broken and the Lagrangian acquires a mass term m2 (proportional
to ϕ∗ϕ), which can be interpreted as the magnetic mass of the monopole.

7.2 Spinor Fields

The best way to define spinor fields is through a particular tensor structure called a
Clifford algebra defined on space–time.

Definition 7.1 (Clifford Algebras) The Clifford algebra C1n generated by an
n-dimensional vector space V is the quotient of the tensor algebra V ⊗ V by the
bilateral ideal I , defined by a bilinear form B in V and denoted by [99]

C1n = (V ⊗ V )/I

A bilinear form is a map B : V × V → IR, which is linear in both arguments
B(v,w) ∈ IR. The above expression defines a subspace of the tensor algebra V ⊗V
given by the condition

v⊗ w+ w⊗ v = B(v,w)

This specifies that the rank-2 tensors in C1n are symmetric tensors (V ⊗ V ) and that
they are proportional to B(v,w). In terms of a basis {eα} of V the bilateral ideal
corresponds to imposing to the tensor algebra the condition

eα ⊗ eβ + eβ ⊗ eα = B(eα, eβ)

In general the tensor product notation in C1n is simplified to eα ⊗ eβ + eβ ⊗ eα =
eαeβ + eβeα . Denoting the coefficients of the bilinear form by B(eα, eβ) = 2gαβ ,
we may write the Clifford algebra as

eαeβ + eβeα = 2gαβe0 (7.25)

where e0 denotes the identity element of the algebra:

eαe0 = e0eα

The dimension of C1n is given by the maximum number 2n of linearly independent
elements of the algebra obtained with the independent products of the generators.
Therefore, a generic element of C1n is given by the linear combination of the gener-
ators and their independent products:

X = X0e0 + Xαeα + Xαβeαeβ + · · · + Xαβ...γ eαeβ, · · · , eγ
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Example 7.1 (Complex Algebra) The complex algebra is the simplest Clifford alge-
bra C11 = C1, with just one generator e1 = i plus the identity element e0 = 1. The
dimension of the algebra is 21 = 2, and its generic elements are like

X = X0e0 + X1e1 = X01+ X1i

It is usual to consider the real IR as a Clifford algebra with just the identity element,
denoted by C10 = IR.

After the complex algebra, the better known Clifford algebra is the quaternion
algebra (or hypercomplex algebra) defined by William Hamilton in 1843 [100].

Example 7.2 (Quaternions) The quaternion algebra is the Clifford algebra C12 gener-
ated by a two-dimensional vector space.

Denoting by {eα} an orthonormal basis of the three-dimensional space, with met-
ric coefficients δαβ , the quaternion algebra is given by the multiplication table

e1e2 + e2e1 = 0
e1e0 = e1, e2e0 = e2
e1e1 = e2e2 = −e0

Denoting e3 = e1e2 and X12 = X3, the quaternion can be written as

X = X0eo + X1e1 + X2e2 + X3e3

and the multiplication table can be simplified to

eαeβ + eβeα = −2ηαβe0, e0eα = eαe0 = eα, α, β, . . . 1..3 (7.26)

The conjugate of a quaternion is defined by

ēα = −eα, ē0 = e0

and the norm of a quaternion is

||X ||2 = X X̄ = X2
0 + X2

1 + X2
2 + X2

3

It should be mentioned that the complex and the quaternion algebras are the
only associative normed division algebras, that is, such that ||AB|| = ||A||||B|| and
(AB)C = A(BC) (by extension the set of real numbers is considered as a Clifford
algebra generated by the identity only). The division algebra property is relevant to
the construction of the standard mathematical analysis based on the properties of
limits and derivatives, allowing us to write

lim
Δx→0

||ΔF(x)

Δx
|| = lim

Δx→0

||ΔF(x)||
||Δx ||
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The set of real numbers IR is a division algebra because we have the same division
property, where in fact the concept appeared in the first place. There is a fourth
division algebra called the octonion algebra with seven generators, although it is
not associative. We shall return to it at the end in connection with the SU (3) gauge
theory.

Definition 7.2 (Spinors) Spinors are vectors of a representation of the group of
automorphisms of a Clifford algebra defined on space–time, satisfying a given vari-
ational principle:

Given an algebra A , an n-dimensional matrix representation of it is a homomor-
phism

R : A → Mn×n

where Mn×n denotes the n × n matrix algebra. Denoting by R(X) and R(Y ) the
matrix representing X , Y ∈ A , the homomorphism condition says that the product
of the algebra goes into the product of matrices R(XY ) = R(X)R(Y ).

Any matrix representation of an algebra can be seen as linear operators on some
vector space S , whose vectors are represented by a column

ϕ =

⎛

⎜
⎜
⎜
⎝

ϕ1
ϕ2
...

ϕN

⎞

⎟
⎟
⎟
⎠

(7.27)

In particular, we may construct spinor representations of Clifford algebras defined
on a space–time. The basic example is the representations of the quaternion alge-
bra given by the Pauli matrices associated with the spin properties of particles in
quantum mechanics [101]. The Pauli matrices can be written in a variety of ways,
corresponding to equivalent representations. Here we use the following:

σ0 =
⎛

⎝
1 0

0 1

⎞

⎠ , σ1 =
⎛

⎝
0 1

1 0

⎞

⎠ , σ2 =
⎛

⎝
0 − i

i 0.

⎞

⎠ , σ3 =
⎛

⎝
1 0

0 − 1

⎞

⎠

(7.28)

such that they satisfy the multiplication table

⎧
⎪⎨

⎪⎩

σiσ j + σ jσi = −2δi jσ0

σ0σi = σiσ0

σ0σ0 = σ0

which is the same multiplication table of the quaternion algebra.
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The above representation can be used as the basis to construct a matrix repre-
sentation of any Clifford by tensor products of matrices, known as the Brauer–Weyl
representation or simply as the Weyl representation [102]:

⎧
⎪⎨

⎪⎩

Pα = σ2 ⊗ σ2 ⊗ · · · ⊗ σ2 ⊗ σ1 ⊗ σ0 ⊗ · · · ⊗ σ0 ⊗ σ0

Pn+1 = σ2 ⊗ σ2 ⊗ · · · · · · · · · · · · · · · · · · · · · ⊗ σ2 ⊗ σ2

Qα = σ2 ⊗ σ2 ⊗ · · · ⊗ σ2 ⊗ σ3 ⊗ σ0 ⊗ · · · ⊗ σ0 ⊗ σ0

where the matrices σ1 and σ3 occupy the α position. The tensor product ⊗ is taken
to be from left to right (that is, each entry of the left matrix is multiplied by the
whole right matrix).1

The column vectors (7.27) of the representation space S of a matrix representa-
tion of a Clifford algebra are called spinors. From the above Brauer–Weyl represen-
tations we may conclude that the spinors of a representation of C1n with n generators
{eα} have N = 2[n]/2 independent components, where [n] = n for even n and
[n] = n − 1 for odd n.

An important result shows that C12n+1 ≈ C12n/C1, where the right-hand side
denotes the Clifford algebra on the complex field (with complex coefficients). Thus,
the Dirac matrices in five dimensions are essentially the same as Dirac matrices in
four dimensions.

An interesting case occurs in eight dimensions, where the spinors have 28/2 = 16
components, but they split in two equivalent halves with eight components each
[103]. If in addition these spinors are real, then each half spinor space is isomorphic
to the generator space of the Clifford algebra.

Example 7.3 (Pauli Spinors) The Pauli matrices (7.28) define two-component spinor
representation of the quaternion algebra. Indeed, the quaternion algebra is the
Clifford algebra C12 with two generators in the case of a two-dimensional (complex)
spinor representation S2. Thus, we obtain a two-dimensional spinor field in M ,
defined by

Ψ :M → S2

which gives a two-component spinor at each point of the space–time

Ψ (p) =
(
Ψ1
Ψ2

)

p

1 Tensor products in general are non-commutative. Here, Brauer and Weyl prescribed a specific
way to do it. It is possible to reverse the order, obtaining a different representation. Other spinor
representations, such as the Majorana and Majorana–Weyl, different from the one above are also
used in field theory.
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Example 7.4 (Dirac Spinors) The Dirac spinors are vectors of the four-dimensional
spinor representation of the Clifford algebra C14, generated by a four-dimensional
space.

Taking the generating space to be Minkowski’s space–time {eμ}, together with
the identity element e0, we obtain an algebra with 16 components, whose general
element is written as

X = X0e0+ Xαeα + Xαβeαeβ + Xαβγ eαeβeγ + · · · + X1234e1e2e3e4

The Brauer–Weyl matrix representation (simply known as the Weyl representation)
of this algebra gives the 2[4]/2 × 2[4]/2 matrices which are the Dirac matrices

γ1 =

⎛

⎜
⎜
⎜
⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞

⎟
⎟
⎟
⎠
, γ2 =

⎛

⎜
⎜
⎜
⎝

0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

⎞

⎟
⎟
⎟
⎠
, γ3 =

⎛

⎜
⎜
⎜
⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞

⎟
⎟
⎟
⎠
, γ4 =

⎛

⎜
⎜
⎜
⎝

0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

⎞

⎟
⎟
⎟
⎠

These matrices act as linear operators on a four-dimensional complex space V4,
which is the Dirac spinor space in the Minkowski space–time

ψ =

⎛

⎜
⎜
⎝

ψ1
ψ2
ψ3
ψ4

⎞

⎟
⎟
⎠

satisfying Dirac’s equation for a relativistic charged particle with spin 1/2 and
mass m

(γ μ∂μ − m)ψ = 0 (7.29)

This equation can be derived from the Dirac Lagrangian [104]

L = ψ̄(γ μ∂μ + m)ψ (7.30)

where we have denoted ψ̄ = ψ†γ 5, and where ψ† = (ψT )∗ and γ 5 = γ1γ2γ3γ4.

7.2.1 Spinor Transformations

Since spinor fields are derived from representations of Clifford algebras, the (inter-
nal) automorphisms of these algebra correspond to a spinor transformation, that is,
given a map τ : C1n → C1n defined by e′μ = τeμτ−1, such that it maintains invariant
the multiplication table
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τeμeντ
−1 + τeνeμτ

−1 = gμνe0

It follows that these automorphisms necessarily correspond to isometries of the met-
ric in the generating space. In the case of a matrix representation, the operators τ
correspond to a matrix acting on the spinor space as

Ψ ′ = R(τ )Ψ

In quantum mechanics, spinors represent quantum states and therefore these matrix
transformations R(τ ) correspond to unitary matrix operators denoted by u, such
that uu† = 1 and acting on the spinors as Ψ ′ = uΨ .

Example 7.5 (Transformations of Dirac Spinors) Let us detail the transformation
of the Lagrangian of the Dirac spinor field under a unitary gauge transformation
Ψ ′ = uΨ , of the local group U (1): u = eiθ(x)e0. The derivative of the transformed
spinor gives

Ψ ′,μ = eiθ(x)Ψ,μ + iθ,μeiθ(x)Ψ

and similarly for Ψ̄ ′. Replacing these transformations in the Dirac Lagrangian (7.30)
we find that

L (Ψ ′) = e−iθ(x)Ψ̄ [γ μ(eiθΨ,μ + iθ,μeiθΨ )] − mΨ̄ Ψ

= Ψ̄ (γ μ∂μ − m)Ψ + iθ,μΨ̄ Ψ

We see clearly that the Lagrangian is not invariant due to the presence of the deriva-
tive of the parameter θ . However, as it happened in the case of the complex scalar
field, taking an infinitesimal transformation and defining the covariant derivative

γ μDμ = γ μ∂μ + iθ,μ

Then the Lagrangian becomes invariant:

L (ψ ′) = ψ̄(iγ μDμ − m)Ψ = L (ψ)

Example 7.6 (Isospin) Returning to the quaternion algebra C12 satisfying the mul-
tiplication table (7.26), we have an algebra that is invariant under the group of
rotations SO(3) (that can be seen as a subgroup of the Galilei group in G4). When
this algebra is represented by the Pauli matrices (7.28), the corresponding quantum
states describe the orbital spin states.

On the other hand, we also have an internal action of the same algebra, but which
has nothing to do with the rotations in space–time. The matrix representations of
this global automorphism produce two-component spinors called isospin, which
transforms as
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(
Ψ ′1
Ψ ′2

)

= eiΘ
(
Ψ1
Ψ2

)

where now θ is the parameter of the global gauge symmetry. The matrix represen-
tation of the automorphism is the same as Pauli matrices, but to avoid confusion we
use a different notation

τ0 =
⎛

⎝
1 0

0 1

⎞

⎠ , τ1 =
⎛

⎝
0 1

1 0

⎞

⎠ , τ2 =
⎛

⎝
0 − i

i 0

⎞

⎠ , τ3 =
⎛

⎝
1 0

0 − 1

⎞

⎠



Chapter 8
Noether’s Theorem

A major contribution to the development of the physics of fundamental interactions,
in fact for the whole physics, was the theorem developed by Emmy Noether in
1918 [10, 105, 106], showing how to construct the observables of a theory, given
its Lagrangian and Lie symmetry groups. Following Lopes, for pedagogical pur-
poses we divide the theorem in three parts, one for each kind of symmetry con-
sidered: transformation of coordinates in space–time, global gauge transformations,
and local gauge transformations [107]. We also include separately the specific case
of general relativity with its peculiar diffeomorphism invariance. In all cases we
will denote by Ψ (x) some field (scalar, vector, tensor, spinor) defined in space–time
M , satisfying the Euler–Lagrange field equations derived from a Lagrangian L ,
generally depending on Ψ (x) and its first derivatives

L = L (Ψ,Ψ,λ)

8.1 Noether’s Theorem for Coordinate Symmetry

The coordinate symmetry of a field Ψ (x) defined in any space–time specifies the
transformation of coordinates which leaves the field equations in the same form.
This is in fact the very basic origin of symmetry which becomes important after
the discovery of the Lorentz/Poincaré transformations. Here and in all subsequent
cases we will be using Lie symmetry groups and the corresponding Lie algebra.
Therefore, it is sufficient to consider an infinitesimal coordinate transformation like

x ′μ = xμ + ξμ (8.1)

where ξμ is the descriptor introduced in (8.1).
Coordinate transformations can be interpreted in two different ways: as a passive

change of coordinates of the same point, for example, from Cartesian coordinates to
spherical coordinates and as an active coordinate transformation, meaning transfor-
mation between coordinates of different points, say resulting from a motion. From
the point of view view of tangent bundles, the first case represents a map in each

M.D. Maia, Geometry of the Fundamental Interactions,
DOI 10.1007/978-1-4419-8273-5_8, C© Springer Science+Business Media, LLC 2011

107



108 8 Noether’s Theorem

Fig. 8.1 Map between fibers from a coordinate transformation

fiber over the same point of M . In the latter case, we have a map between two
different points of M as shown in Fig. 8.1.

Depending on the nature of the field Ψ , the coordinates transformation may pro-
duce two kinds of variations.

(a) The functional variation which takes into consideration only the functional
dependence of the field

δFΨ = Ψ (x ′)− Ψ (x)

In particular this applies to all scalar fields, and also for each individual component
of any vector, tensor, or spinor field. Thus, the infinitesimal functional variation δF
of any field under the infinitesimal coordinate transformation can be obtained from
the Taylor expansion of Ψ (x + ξ), keeping only the first power of θ :

δFΨ =
∑

δθaaμa (x)
∂Ψ

∂xμ
(8.2)

The designation of functional variation is used also for the variation of a function
of field variables, such as the Lagrangian. In this case, the functional analysis may
require a more complicated study on the topology of open sets defined in the space
of the field in question. However, in most applications including that of gauge fields
on a manifold, the topological basis comes from the coordinate space. Therefore
the derivative resumes the application of simple chain rule for derivatives. This, of
course, depends on the field structure, as for example if it is commutative or not.

(b) The algebraic variation occurs when the field has an explicit algebraic nature,
such as vector, tensor, or spinor. In this case, we need also to evaluate the change
of the components of the field Ψ which is independent of the functional variation,
but it depends on the nature of each type of field. We will denote this variation
generically by
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δAΨ = Ψ ′(x)− ψ(x)

Since this algebraic variation depends on each type of field, we may start by
examples.

The algebraic variation of a scalar field is by its own definition equal to zero.
On the other hand, the algebraic variation of a vector field A given by its con-

travariant components is given by the contravariant tensor transformation. For an
infinitesimal transformation like in (8.1)

A′μ = ∂x ′μ

∂xρ
Aρ = (δμρ + ξμ,ρ)Aρ =

∑
δθaaμa,ρ(x)Aρ = x ′μ

Therefore,

δA Aμ =
∑

δθaaμa,ρ(x)Aρ (8.3)

Similarly, for a rank-2 contravariant tensor field we have for an infinitesimal
coordinate transformation

δATμν = ∂x ′μ

∂xρ
∂x ′ν

∂xσ
T ρσ =

∑
δθa(aνa,ρ(x)T

ρμ + aνa,σ (x)T
μσ ) (8.4)

As a last example consider the transformation of spinor fields. Since by defini-
tion the spinors are objects of the representation space of the Clifford algebra, they
transform as

Ψ ′ = τ(θ)Ψ

where τ is a transformation of the automorphisms of the algebra, corresponding to
the coordinate transformation. In particular for an infinitesimal coordinate transfor-
mation with infinitesimal parameters δθa , the transformation of Ψ is a deviation
from the identity I

τ(δθ)Ψ ≈
(

I +
∑

aa(x)δθ
a
)
Ψ

so that the infinitesimal algebraic transformations of a spinor field are

δAΨ = τ(δθ)Ψ − Ψ =
∑

aa(x)δθ
aΨ (8.5)

From examples (8.3), (8.4), and (8.5), we conclude that in general the algebraic
variation of any field under coordinate transformations is a function of the coordi-
nates, of the field and it is proportional to the parameters. This can be summarized as

δAΨ =
∑

a

Ga(x, Ψ )δθ
a (8.6)



110 8 Noether’s Theorem

where Ga denotes N functions of the coordinates and of the field, which are specified
within a given transformation.

The total variation of the field is the result of the combined functional and alge-
braic changes, defined by

δTΨ = Ψ ′(x ′)− Ψ (x) (8.7)

The total variation of a field corresponding to an infinitesimal coordinate transfor-
mation is given by

δTΨ =
∑

Fa(x, Ψ, Ψ,μ)δθ
a (8.8)

where Fa(x, Ψ, Ψ,μ), a = 1 . . . N , are N functionals defined in the space of the
field Ψ . In fact, starting from (8.7) we obtain

δTΨ = Ψ (x ′)− Ψ (x) = Ψ ′(x ′)− Ψ (x ′)+ Ψ (x ′)− Ψ (x) = δA(x
′)− δF(x)

where we notice that the algebraic variation is the same in all points and that it is
independent of the functional variation, that is, δAΨ (x ′) = δAΨ (x). Consequently,
using (8.2) and (8.6), the total variation is

δTΨ (x) =
∑

a

(
Ga(x, Ψ )+ aμa (x)Ψ,μ

)
δθa (8.9)

The parenthesis is composed of functions of x , Ψ , and first derivatives of Ψ .
Denoting Fa(x, Ψ, Ψ,μ) = (Ga(x, Ψ )a+aμa (x)Ψ,μ), we obtain the expression (8.8)
for the total variation. Notice that Fa has the same algebraic structure as if Ψ .

Consider the examples:
For a vector field Aμ, we have functional and algebraic variations so that the total

variation is given by

δT Aμ = A′μ(x ′)− Aμ(x) =
∑(

∂aμa
∂xρ

Aρ + ∂Aμ

∂xρ
aρa

)

δθa

Comparing with (8.8) we obtain the functions

Fμ
a (Aμ, Aμ

ρ , xμ) =
∑(

∂aμa
∂xρ

Aρ + ∂Aμ

∂xρ
aρa

)

For a rank-2 tensor field the total variation from an infinitesimal coordinate trans-
formation x ′μ = xμ + ξμ is

δTTμν = T ′μν(x ′)− Tμν(x) = Tμν
,τ ξ

τ + Tμσ ξνσ + T νσ ξμ,σ
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Therefore we have

Fμν
a (T, T,λ, x) =

∑(
∂Tμν

∂xτ
aτa + Tμσ ∂aνa

∂xσ
+ T νσ ∂aμa

∂xσ

)

The procedure is similar for other tensors.

Theorem 8.1 (Noether’s Theorem for Coordinate Symmetries) Given the
Lagrangian for a field Ψ defined in a closed region Ω of space–time with bound-
ary ∂Ω , such that it is invariant under an N-parameter infinitesimal coordinate
transformation, then there are N quantities

N λ
a =

∂L

∂Ψ,λ
(Fa − Ψ,μaμa )+L aλa (8.10)

which are conserved in the sense that

N λ
a,λ = 0

Consider the action for the field Ψ for which we use the short notation

A(Ψ,Ω) =
∫

Ω

L (Ψ (x))dv

Under an infinitesimal coordinate transformation the action is scalar depending on
the limits of integration and hence it has functional variation only:

δT A = A(Ψ ′,Ω ′)− A(Ψ,Ω)

where Ω ′ is the same region Ω except that it is described by the new coordinates
x ′μ. After summing and subtracting A(Ψ,Ω ′), we obtain

δT A = A(Ψ ′,Ω ′)− A(Ψ,Ω ′)+ A(Ψ,Ω ′)− A(Ψ,Ω)

or equivalently

δT A =
∫

Ω ′
L (Ψ ′(x ′))dv′−

∫

Ω ′
L (Ψ (x ′)dv′+

∫

Ω ′
L (Ψ (x ′))dv′ −

∫

Ω

L (Ψ (x))dv

=
∫

Ω ′

[
L (Ψ ′(x ′))−L (Ψ (x ′))

]
dv′ +

∫

Ω ′
L (Ψ (x ′))dv′ −

∫

Ω

L (Ψ (x))dv

(8.11)

The term in brackets represents the algebraic variation of L which is a scalar
functional, depending on an algebraic field Ψ , so that there is an algebraic variation

δAL = [L (Ψ ′(x ′))−L (Ψ (x ′))]
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On the other hand from elementary calculus we know that

∫

Ω ′
f (x ′)dv′ =

∫

Ω

f (x) det J dv

where J is the Jacobian matrix of the infinitesimal coordinate transformation
x ′μ = xμ + ξμ

J (x, x ′) =
(
∂x ′μ

∂xν

)

=
(

δμν +
∂ξμ

∂xν

)

and

det J = 1+ δμν
∂δxμ

∂xν
= 1+

∑ ∂ξμ

∂xμ

Therefore dv′ =
(

1+
∑

∂ξμ/∂xμ
)

dv and the total variation (8.11) is

δT A =
∫

Ω

δAL (Ψ (x))

(

1+
∑ ∂ξμ

∂xμ

)

dv+
∫

Ω

L (Ψ (x))

(

1+ ξμ

∂xμ

)

−
∫

Ω

L (Ψ (x))dv

=
∫

Ω

[

δAL (Ψ (x))+δAL (Ψ (x))
∂ξμ

∂xμ
+L (Ψ (x))

∂ξμ

∂xμ

]

dv

As we commented before, the algebraic variation of the Lagrangian functional is not
zero and from (8.6) it is proportional to δθ . Therefore, the second term in the above
integral is quadratic in δθa (the descriptor ξ is proportional to δθ ) and consequently
it can be neglected. Consequently

δT A =
∫

Ω

[

δAL (Ψ (x))+L (Ψ (x))
∂δξμ

∂xμ

]

dv

Now, δAL = ∂L

∂Ψ
δAΨ + ∂L

∂Ψ,λ
δA(Ψ,λ) so that

δT A =
∫

Ω

[
∂L

∂Ψ
δAΨ + ∂L

∂Ψ,λ
δA(Ψ,λ)+L (Ψ )

∂ξμ

∂xμ

]

dv

Using the Euler–Lagrange equations obtained from the variational principle
(remembering that in the derivation of these equations the variation of Ψ vanishes
at the boundary ∂Ω)

∂L

∂Ψ
= ∂

∂xλ

(
∂L

∂Ψ,λ

)
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Therefore,

δT A =
∫

Ω

[
∂

∂xλ

(
∂L

∂Ψ,λ

)

δAΨ + ∂L

∂Ψ,λ
δAΨ,λ + ∂L

∂xλ
δxλ +L (Ψ )

∂

∂xλ
(ξλ)

]

dv

or

δT A =
∫

Ω

∂

∂xλ

[
∂L

∂Ψ,λ
δAΨ +L ξλ

]

dv (8.12)

where we have used the fact that the variation δ is independent of the partial
derivative δAΨ,λ = (∂/∂xλ)δAΨ . Using the definition ξλ = ∑ aλa δθ

a and from
the comparison between (8.8) and (8.9) we may write δAΨ =

(
Fa − Ψ,λaλa

)
δθa .

Therefore,

δT A =
∫

Ω

∂

∂xλ

[
∂L

∂Ψ,λ
(Fa − Ψ ,λaλa )+L aλa

]

δθadv

Denoting

N λ
a =

∂L

∂Ψ,λ
(Fa − Ψ,μaμa )+L aλa (8.13)

and considering that the variational principle is maintained along the total variation
δT A = 0, we obtain the equation

∫

Ω

δθa ∂

∂xλ
N λ

a dv = 0

However, δθa are linearly independent parameters (which are also independent of
xμ), so that

∫

Ω

∂

∂xλ
N λ

a dv = 0

Therefore, ifΩ is a closed region, applying the divergence theorem to Na , we obtain
the null divergence of Na

∂

∂xλ
N λ

a = N λ
a,λ = 0

which proves the theorem.
To understand this result consider in particular that Ω is limited by two space-

like hypersurfaces, S1 and S2, close to each other and a time-like hypersurface S3
(Fig. 8.2).
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Fig. 8.2 Boundaries of a
closed region in M

∫

Ω

N λ
a,λdv =

∫

S
< Na, d Sn >=

∫

S1

N 1
a d S1 +

∫

S2

N 2
a d S2 +

∫

S3

N 3
a d S3 = 0

Under the conditions in which the variational principle was defined, the integral over
S3 vanishes. After reorienting S1, it follows that the quantity

∫

S1

N 1
a d S1 =

∫

S2

N 2
a d S2

is independent of the surface S. In other words, it is the same along the evolution of
the field.

The object N λ
a , called the Noether quantity, belongs to the same algebra in

which the field Ψ is defined. It is defined up to the addition of a term proportional
to a tensor with zero divergence. In fact if T λν

a is such that T λν
a,λ = 0, then the

expression N ′λ
a = N λ

a + T λν
a,ν gives the same zero divergence property

N ′λ
a,λ = N λ

a,λ + T λν
a,λ = N λ

a,λ = 0

8.2 Noether’s Theorem for Gauge Symmetries

In the cases of gauge symmetries, that is, transformations of the field variable which
are not generated by coordinate transformations, leaving the Lagrangian invariant,
we also obtain conserved quantities from Noether’s theorem, provided the symme-
tries are of the Lie type.

As we have seen in previous examples there are two major types of gauge trans-
formations: global when the parameters of the group do not depend on the coordi-
nates and local when the parameters depend on the coordinates. For each of these
cases it is also usual to separate the gauge transformations in two kinds, depending
on how the group acts:



8.2 Noether’s Theorem for Gauge Symmetries 115

Ψ ′ = Ψ + ξ(x) (8.14)

Ψ ′ = eiχ(x)Ψ (8.15)

respectively called gauge transformations of the first and the second kind. The first
kind is like the gauge transformation in the electromagnetic theory. The second kind
(also called a phase transformation) is like the unitary transformations in quantum
mechanics.

Using the Lie algebra structure these two kinds of gauge transformations can
be resumed in just one form when infinitesimal transformations are considered.
Indeed, in the first kind (8.14) ξ has the same algebraic structure as the field Ψ .
Therefore we may write it in terms of the field basis of the field space. Actually,
since the field Ψ is also written in the same basis we may write ξ as ξ = iζ(θ, x)Ψ ,
where ζ is an analytic complex function of the parameter θ . For an infinitesimal δθ
we may expand this function in θ , keeping only the linear terms ξ = ∑ aaδθ

aΨ .
The analyticity allows us to rebuild the finite transformations as in all Lie groups.
Therefore the infinitesimal transformations of the first kind can be written as
Ψ ′ = Ψ + ∑ aaδθ

aΨ . On the other hand, in the transformation of the second
kind (8.15), χ is a scalar function which depends also analytically on θ . Therefore,
we may expand the exponential and χ , keeping only the linear term in θ , obtaining
χ = ∑ aa(x)δθa . Summarizing, for infinitesimal transformations of Lie groups,
the two kinds of gauge transformations may be written as

Ψ ′ = Ψ +
∑

aa(x)δθ
aΨ (8.16)

From its own nature, the gauge transformations do not produce a functional vari-
ation of the fields. Consequently, the total variation is the same as the algebraic
variation. Using the notation for the total variation we may write

δTΨ =
∑

a

Fa(x, Ψ )δθ
a (8.17)

Notice that contrary to the case of coordinate transformations, the gauge transfor-
mation represents a map from a fiber to the same fiber as indicated in Fig. 8.3.

Theorem 8.2 (Noether’s Theorem for Global Gauge Symmetry) Given a field Ψ

defined by a Lagrangian L (Ψ ), invariant under a local Lie gauge symmetry G,
there are N conserved quantities given by

N λ
a =

∂L

∂Ψ,λ
Fa(Ψ ), a = 1, . . . , M

Indeed, in a global gauge transformation the parameters do not depend on the coor-
dinates. Using the same notation of the previous theorem, consider the total variation
of the Lagrangian δTL = L (Ψ ′(x)) −L (Ψ (x)). Therefore the total variation of
the action is
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Fig. 8.3 Gauge transformation

δT A = A(Ψ ′,Ω)− A(Ψ,Ω)

Unlike the case of coordinate transformations the region Ω does not change.
Therefore

δT A =
∫

Ω

[L (Ψ ′(x))−L (Ψ (x))]dv =
∫

Ω

δTL dv

However,

δTL = ∂L

∂Ψ
δTΨ + ∂L

∂Ψ,λ
δTΨ,λ

where δTΨ and δTΨ,λ are given by (8.17) and its derivative. Therefore, the total
variation of the action is

δT A =
∫

Ω

(
∂L

∂Ψ
δTΨ + ∂L

∂Ψ,λ
δTΨ,λ

)

dv (8.18)

Assuming that the gauge transformation is a symmetry of the system and using the
Euler–Lagrange equations

∂L

∂Ψ
= ∂

∂xλ

(
∂L

∂Ψ,λ

)

we obtain (remembering that here δθa does not depend on xi )
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δT A = δθa
∫

Ω

∂

∂xλ

(
∂L

∂Ψ,λ
Fa

)

dv = 0

or denoting the Noether quantity

N λ
a =

∂L

∂Ψ,λ
Fa (8.19)

For a closed region where L and Ψ and the derivatives Ψ,λ are continuous, we
obtain the conserved quantities

N μ
a,μ = 0

As in the previous theorem, we may apply the divergence theorem to obtain the
conserved quantities (8.19).

Theorem 8.3 (Noether’s Theorem for Local Gauge Symmetry) Given a field Ψ by
a Lagrangian L (Ψ ) invariant under a local Lie gauge symmetry G, there are N
quantities

N λ
a = ∂L

∂Ψ,λ
Fa

which are conserved in the sense that DλN λ
a = 0, where Dλ = I∂,λ + Aλ, are

matrices defined in the Lie algebra of G and where the matrix Aλ has entries Aa
λ b

defined by Noether’s condition

∑
Fa

∂δθa

∂xλ
=
∑

a

Fa Aa
λ bδθ

b

As in the last case we have the same total variation

δT A =
∫ (

∂

∂xλ

(
∂L

∂Ψ,λ

)

δTΨ + ∂L

∂Ψ,λ
δTΨ,λ

)

dv

Using the expressions δTΨ,λ = (∂/∂xλ)δTΨ and δTΨ = Fa(x, Ψ )θa , after apply-
ing the Euler–Lagrange equations, we obtain

δT A =
∫

Ω

∂

∂xλ

(
∂L

∂Ψ,λ
δTΨ )

)

dv =
∫

Ω

∂

∂xλ

(
∂L

∂Ψ,λ
Faδθ

a
)

dv = 0

In contrast with the previous case, here we cannot remove δθa from the bracket
because δθa depends on the coordinate xμ. However, expanding the indicated
derivatives we find
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∫

Ω

[
∂

∂xλ

(
∂L

∂Ψ,λ
Fa

)

δθa + ∂L

∂Ψ,λ
Fa

∂δθa

∂xλ

]

dv = 0 (8.20)

As we see, the term between square brackets is not a divergent. Noether avoided this
difficulty by adding and subtracting the term

∑

a

∂L

∂Ψ,λ
Fa Aa

λ bδθ
b

and imposing that Aa
λ b satisfy the “Noether condition” (this is not a commonly used

designation but just a reference name for later use)

∑

a

Fa
∂δθa

∂xλ
−
∑

a

Fa Aa
λ bδθ

b=0 (8.21)

Noting that the parameter indices are the same as that of the Lie algebra we may
anticipate that these conditions define the components Aa

λ b of a vector-matrix Aλ

called the gauge connection or the gauge field, defined in the Lie algebra of G. We
shall see this in more detail in the next sections.

To find the conserved quantities, add and subtract the above-mentioned terms to
(8.20), obtaining

∫ [
∂

∂xλ

(
∂L

∂Ψ,λ
Fa

)

δθa+ ∂L

∂Ψ,λ
Fa

∂δθa

∂xλ
+ ∂L

∂Ψ,λ
Fa Aa

λnδθ
b− ∂L

∂Ψ,λ
Fa Aa

λnδθ
b
]

dv = 0

and applying (8.21), it follows that

∫

Ω

∂

∂xλ

(
∂L

∂Ψ,λ
Fa + ∂L

∂Ψ,λ
Fb Ab

λ a

)

δθadv = 0

In this way we have managed to get δθa out of the derivative and the above integral
can be written as

∫ [(
∂

∂xλ
δa

b + Aa
λb

)(
∂L

∂Ψ,λ
Fb

)]

δθbdv = 0

or after denoting the vector-matrix derivative operator

Da
λb = δa

b∂,λ + Aa
λb

we may write

∫

Ω

[

Da
λb

(
∂L

∂Ψ,λ
Fa

)]

δθbdv = 0
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Using the notation

N λ
a = ∂L

∂Ψ,λ
Fa

it follows that

∫

Ω

(
Da
λ bN

λ
a
)
δθbdv = 0

Assuming that the integrand is differentiable and that the integration region Ω is
closed, we obtain

(
Da
λ bN

λ
a
)
δθb = 0

However, δθa are linearly independent parameters so that

Dλ
a
bN λ

a = 0 (8.22)

Using a matrix notation, looking at N λ as a column vector, we may write this
expression as

DλN
λ = 0, Dλ = I∂λ + Aλ

which is a generalization of the divergence of N λ, with respect to the generalized
derivative Dλ.

The relevant fact to be noted here is that Aa
λ b defined by the above expression

is a vector-matrix field with respect to the space–time index λ, with matrix indices
a, b belonging to the Lie algebra of the gauge group.

We shall see that Aλ is a connection associated with that adjoint representation
of the Lie symmetry group.

Remark. For simplicity the above results were obtained by considering a real
field Ψ . However, to keep up with the unitary gauge transformations the field
becomes complex. Thus, depending on its construction the Lagrangian must also
contain the complex conjugate fields. For example, for a conserved complex scalar
field ϕ, of the complex Klein–Gordon field (6.10), the Lagrangian depends also
on ϕ∗

L = L (ϕ, ϕ∗, ϕ,λ, ϕ∗,λ) (8.23)

In these cases we must calculate the variations of the Lagrangian with respect to the
field and of its complex conjugate in such a way that the conserved quantities N λ

a ,
which are observables, must be real:
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N λ
a =

∂L

∂ϕ,λ
Fa(ϕ)+ ∂L

∂ϕ∗,λ
Fa(ϕ

∗)

For complex matrix fields the situation is slightly more complicated because we
need to consider the Hermitian conjugate fieldΨ †, instead of the complex conjugate.
Since the resulting expressions for the Hermitian conjugate are similar to those of
the field itself it is usual just to add to the conserved quantity just the symbol +HC
to indicate “plus the Hermitian conjugate expression.”

Let us detail the above remark for the case of the local gauge transformation of
(8.23).

For an infinitesimal transformation of the unitary group ϕ′(x) = u(x)ϕ′(x) =
eiθ(x)ϕ, u∗u = 1, the total variation of ϕ and of its derivative is

δTϕ = iθϕ and δTϕ,λ = i(θϕ,λ + ϕθ,λ) (8.24)

and similarly for ϕ∗. Then the total variation of the Lagrangian is

δTL = ∂L

∂ϕ
δTϕ + ∂L

∂ϕ,λ
δTϕ,λ + ∂L

∂ϕ∗
δTϕ
∗ + ∂L

∂ϕ∗,λ
δTϕ
∗
,λ

or using the notation +HC also for the complex conjugate we may write

δTL = iθ

(
∂L

∂ϕ
δTϕ + ∂L

∂ϕ,λ
δTϕ,λ

)

+ iθ,λ
∂L

∂ϕ,λ
ϕ + HC

Applying the Euler–Lagrange equations

δTL = iδθ

(
∂

∂xλ

(
∂L

∂ϕ,λ

)

δTϕ + ∂L

∂ϕ,λ
δTϕ,λ

)

+ iδθ,λ
∂L

∂ϕ,λ
+ HC

= iδθ
∂

∂xλ

(
∂L

∂ϕ,λ
δTϕ

)

+ iδθ,λ

(
∂L

∂ϕ,λ
δTϕ

)

+ HC

= iδθ

[

∂λ + δθ,λ

δθ

](
∂L

∂ϕ,λ
δTϕ

)

+ HC (8.25)

showing that it is the existence of the derivative of the parameter that prevents the
emergence of the divergence term. Noether’s theorem for local gauge symmetry tells
that this can be fixed by changing the partial derivative ∂λϕ to the gauge covariant
derivative

Dλϕ = (∂λ + i Aλ)ϕ

where Aλ is a 1 × 1 matrix-vector field such that its components satisfy Noether’s
condition
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F
∂δθ

∂xλ
= F Aλδθ

Here in this simple case we may cancel the function F , yielding to the simpler
solution

Aλ = δθ,λ

δθ

which is consistent with the vanishing of δTL in (8.25).
Therefore, the covariant derivative becomes Dλ = ∂λ + iθ,λ/θ and the invariant

Lagrangian must be rewritten in terms of this derivative as

L = L (ϕ, Dλϕ, ϕ
∗, (Dλϕ)

∗)

In this case the Noether quantity is just a vector (a 1×1 matrix) with components

N λ = ∂L

∂ϕ,λ
ϕ + HC

which is conserved in the sense that DλN λ = 0.
An interesting question is: How does a gauge field A transform under a local

gauge transformation?

Theorem 8.4 (Gauge Transformation of A) Given a fieldΨ and a local gauge trans-
formation, Ψ ′ = uΨ , the gauge field transforms as

A′μ = u Aμu−1 + u,μu−1

Indeed, consider the gauge transformation acting as an operator in the space of the
field Ψ ′ = uΨ . The transformation of the gauge covariant derivative of Dμ! =
(I∂μ + Aμ)! is

(DμΨ )
′ = ((∂μ + Aμ)Ψ )

′ = (∂μ + A′μ)uΨ = ∂μ(uΨ )+ A′μuΨ

On the other hand, u also acts as an operator on the derivative of the field (DμΨ )
′ =

u(DμΨ ). Comparing this with the above expression we obtain

u(DμΨ ) = ∂μ(uΨ )+ A′μuΨ

or,

u(I∂μ + Aμ)Ψ = u,μΨ + u∂μΨ + A′μuΨ

Multiplying this expression at left by u−1 and at right by u, gives after canceling Ψ
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A′μ = u Aμu−1 + u,μu−1 (8.26)

Theorem 8.5 (Noether’s Theorem in General Relativity) Given an infinitesimal
coordinate transformation in a space–time of general relativity and a field Ψ mini-
mally coupled to the gravitational field, then the energy–momentum tensor of Ψ is
conserved as long as there exists a Killing vector field in the space–time.

One fundamental property of general relativity is that it is invariant under the
diffeomorphism group of the space–time (the diffeomorphism invariance of the the-
ory). The minimal coupling of a field Ψ with gravitation represents the simplest
way to implement the general covariance to Ψ . In such procedure we just replace
the partial derivatives by the covariant derivative, without adding any new terms
proportional to the Riemann tensor and its contractions.

Consider an infinitesimal coordinate transformation in an arbitrary space–time
solution of Einstein’s equations

x
′α = xα + ξα

where the descriptor ξ is a differentiable function of the coordinates and an analytic
function of the parameters. Expanding ξα gives

ξα =
N∑

m=0

aαa θ
a

The action integral for the field Ψ minimally coupled to the gravitational field gμν
is then written as

A =
∫

Ω

L (Ψ,Ψ;μ)dv

which differs from the Minkowski field theory in that now we have the covariant
derivative defined by the metric connection. Therefore, the total variation of the
action resulting from the total variation of Ψ and its covariant derivative is

δT A =
∫

Ω

(
∂L

∂Ψ;λ
δTΨ +L ξλ

)

;λ
dv

Recalling the definition of the total variation of a field given by (8.9), it is depen-
dent on the field and its (partial) derivatives: δTΨ =∑(Fa − Ψ,λaλa )δθ

a . We may
simplify this expression by defining a new functional F̃λaλa = Fa , so that

δTΨ = (F̃λ − Ψ,λ)aλa θa

Denoting Uλ = (F̃λ −Fλ) we may finally rewrite the total variation of Ψ as
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δTΨ = Uλξ
λ

and the total variation of the action is

δT A =
∫

Ω

(
∂L

∂Ψ;λ
Uμξ

μ +L ξλ
)

;λ
dv =

∫

Ω

[(
∂L

∂Ψ;λ
Uμ +L δλμ

)

ξμ
]

;λ
dv = 0

Denoting the symmetric energy-momentum tensor of the field by Tμν = gλνT λ
μ

with

T λ
μ =

∂L

Ψ;λ
Uμ +L δλμ

and defining the Noether quantity N λ = T λ
μξ

μ, we obtain

∫

Ω

(T λ
μξ

μ);λdv =
∫

Ω

N λ;λdv = 0 (8.27)

which is equivalent to the Noether theorem for local gauge (8.22). The difference
is that here we have a coordinate transformation of the group diffeomorphisms of
the space–time manifold (which is an infinite Lie group), and the connection is
introduced independently by a postulate.

Nonetheless, assuming that the integrand in (8.27) is differentiable, it is possible
to determine conserved quantities for a closed region of integration. Calculating the
covariant derivative we find that

N λ;λ = T λ
μ;λξμ + T λμξμ;λ = 0

Since Tμν = gμλT ν
λ is a symmetric tensor, the last term in the above expression is

equivalent to ξ(μ;λ). Therefore, the quantity

T λ
μ;λ = 0

is conserved in the sense of Noether’s theorem only if we have

ξ(μ;λ) = 0

This is called the Killing equation defining an infinitesimal isometric coordinate
transformation in the space–time and ξ is a Killing vector field.

Since not all solutions of Einstein’s equations admit Killing vector fields, actu-
ally only a very small class of solutions has such isometry groups, the existence of
conserved quantities in the sense of Noether is very restricted in general relativity.



Chapter 9
Bundles and Connections

In previous chapters we have described how the notion of symmetry of a physical
theory forced us to change the definition of derivative of a field so as to make
the action principle invariant. The invariance of the action means that it must be
the same for all observers (when considering coordinate transformations) and for
the observable fields (when referring to gauge transformations). It has to be such
invariant to fulfill the purposes of Maupertuis, Euler, Lagrange, and Hamilton. The
modification of the derivative is quite intuitive when we are talking about coordinate
transformations, but it is less intuitive when we are talking about field theory. In this
chapter we will introduce the basic tools to the formal definition of gauge covariant
derivatives.

Starting with the more intuitive coordinate transformations, we have a very naive
notion of Euclidean 3-dimensional background Euclidean space where we make fre-
quent use of Cartesian coordinates defined in an absolute (or canonical) reference
frame. The necessity to change coordinates away from the Cartesian system was
regarded as a way to simplify the equations and not as a fundamental issue. How-
ever, as we have already exemplified in the previous chapters, in doing mathematical
analysis in a physical manifold we no longer have the Cartesian frames at our dis-
posal. In order to make sense as an invariant property to the allowed observers, the
notion of derivative needs to be modified by the introduction of a connection or
covariant derivative. In the following we generalize the notions of vector bundles
to principal fiber bundles, so that we may incorporate a symmetry group to our
physical manifold structure [108–112].

9.1 Fiber Bundles

Definition 9.1 (Fiber Bundle) Consider an n-dimensional differentiable manifold
M , to each point p of which there is an attached another m-dimensional manifold
Bp. The word attachment means that in principle there is not any specific relation-
ship between M and Bp, besides the point of contact. Then we may collect all these
manifolds Bp in a set T B, in such a way that we may identify the contact point p
in M by a map π : T B → M . The differentiable fiber bundle with base M and
total space T B is the triad

M.D. Maia, Geometry of the Fundamental Interactions,
DOI 10.1007/978-1-4419-8273-5_9, C© Springer Science+Business Media, LLC 2011
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(M , π, T B)

If p ∈M , then the map s(p)→ T B such that s(p) ◦ π = 1 is called a section of
the fiber bundle, all it does is to identify the fiber Bp ⊂ T B.

The tangent bundle is a particular fiber bundle. Higher order tangent bundles such
as the osculating paraboloid to a surface are interesting non-trivial examples.

Other examples are given by Galilean and Newton’s space–time in which the total
space is the space–times and the fibers are of the three-dimensional simultaneity
sections. In both cases the base space is the absolute time axis IR.

Given a fiber bundle (M , π, T B) and neighborhood of a point x , ∪x ⊂M , we
may define a local fiber bundle as the restriction of a fiber bundle to the points of ∪x

Local fiber bundle = (∪x , π, T B�∪x )

As interesting examples consider the cylinder (Fig. 9.1) and Möbius strip
(Fig. 9.2) as fiber bundles.

Fig. 9.1 Cylinder fiber
bundle

Fig. 9.2 The Möbius fiber
bundle
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The cylinder can be described as a fiber bundle with a circle S1 as the base space
and where each fiber is a segment of line (a compact manifold) with fixed length �.
The total space is then the set of lines in the rectangle IR2, with identified lateral
sides forming a cylinder, where the fibers are the line segments at each point, and
the total space is the cylinder itself

(S1, π, S1 × �)

On the other hand, by giving a rotation of each fiber around the middle line, we
obtain as the total space the Möbius strip itself

(S1, π, Möbius)

The helicity of the fibers prevents the identification of the total space Möbius with
S1 × �. However, locally they can be identified.

9.2 Base Morphisms

Consider two fiber bundles (M , π, T B) and (M ′, π, T B′). A morphism between
them is a differentiable map

ϕ : T B→ T B′

such that it takes a fiber of T B into a fiber of T B′. In particular, two differentiable
fiber bundles are isomorphic when ϕ is 1:1. If we take the bases M and M ′ to be
the same, then we have a base-isomorphism.

Definition 9.2 (Trivial Fiber Bundle) A fiber bundle with base M and fibers Bp is
said to be a trivial fiber bundle when the total space is the Cartesian product of the
base M with a manifold Σ that is isomorphic to all fibers Bp

(M , π, M ×Σ)

Σ is called the typical fiber.

The designation trivial fiber bundle results from the fact that the total space can
be represented by a box where its elements (x, v) with x ∈ M and v ∈ Σ are the
sides of the box: In a trivial fiber bundle the fiber over p is

Bp = (p,Σ) = {(p, y), ∀ y ∈ Σ}

A simple example of trivial fiber bundle is the cylinder bundle shown in Fig. 9.1.
In the particular case where the typical fiber Σ is a vector space we have a trivial
vector bundle.
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Definition 9.3 (Trivialization of Fiber Bundles) A fiber bundle is said to be trivial-
izable when there is a base morphism

(M , π, T B)→(M , π, M ×Σ)

Note from this definition that for a given fiber bundle we may have several differ-
ent trivializations, even considering those with the same typical fiber Σ , but with
different base morphisms.

Fig. 9.3 Trivialization of a
fiber bundle

Example 9.1 (Galilean Space–Time) As we have seen, the Galilean space–time G4
is the total space of a fiber bundle where the fibers are the simultaneity sections Σt

and the base space is the absolute time axis IR.

(IR, π, G4)

In that space–time each simultaneous sections Σt is isomorphic to IR3, so that G4 =
IR× IR3. Therefore this fiber bundle is trivialized by the existence and the properties
of the absolute time:

(IR, π, G4)−→(IR, π, IR × IR3)

Since G4 is parameterized by IR4, it follows that the trivialization can be defined by
a specific choice of coordinate chart of G4 which are compatible with the Galilean
group. For each Galilean transformation we have a trivialization, with the same
typical fiber IR3.

In general when a symmetry is not specified then the coordinates are mapped
onto one another by the diffeomorphism group of the manifold. In this case, two
trivializations of the same fiber bundle are said to be compatible when there is a
diffeomorphism between the two typical fibers. Given a fiber bundle (M , π, T B),
and two trivializations of it given by

φ : T B→M ×Σ and φ′ : T B→M ×Σ
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Fig. 9.4 Compatible
trivializations

then the two trivializations are said to be equivalent when there is a base morphism
ϕ such that the typical fiber of one is mapped in the typical fiber of the other, that is,

ϕ : Σ → Σ ′

Since π = π ′ ◦ ϕ we obtain

ϕ = π ′−1 ◦ π

which is the compatibility condition for equivalence. Two trivializations of the same
fiber bundle are said to be equivalent when there is a base morphism between them.

Definition 9.4 (Local Trivialization) A given fiber bundle (M , π, T B) is locally
trivializable when

a) ∀x ∈M , there is a neighborhood ∪x and manifold Σ such that

T B�∪x = ∪x ×Σ

b) The manifold Σ is diffeomorphic to all fibers.

Example 9.2 (The Möbius Strip) An example of locally trivial fiber bundle is given
by the Möbius strip. All fibers are equal segments of lines but they have different
orientations (a helicity), which are diffeomorphic to a single segment.

Example 9.3 (The Newtonian Space–Time) Another example is given by Newton’s
space–time N4 associated with the fiber bundle

(IR, π,N 4)

As in the Galilean case, the base of the fiber bundle is the absolute time axis. How-
ever, the simultaneity sections are only locally defined in the neighborhood ∪t of
the time interval, isomorphic to IR3. Therefore, Newton’s space–time is only locally
trivialized by the absolute time and its properties

(IR, π,N4)→ (∪t , π,∪t × IR3)
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Trivializations of a fiber bundle can be associated with a symmetry group. For
example, the transformations of coordinates of the Galilean group with a fixed origin
(that is, not considering translations) are orthogonal transformations belonging to
the group SO(3). Since this is a three-parameter Lie group it is isomorphic to IR3.
In other words, the trivialization of the Galileo space–time can be written as

(IR, π, G4)→ (IR, π, IR × IR3)→ (IR, π, IR × SO(3))

Similarly, for the Newtonian space–time, the generalized Galilean group

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′i = Aμ
j x j + ci (t)

t ′ = at + b

φ′ = φ + ∂2ci (t)

∂t2
xi

and all simultaneity sections are locally isomorphic to IR3. Fixing c(x) = 0
the group resumes to S0(3) and we obtain the local trivialization with the same
group

(IR, π, N4)→ (IR, π, ∪t × IR3)→ (∪t , π, ∪t × SO(3))

These particular examples suggest the emergence of another type of fiber bundle
which is associated with a Lie symmetry group G, called the principal fiber bundle
of G.

9.3 Principal Fiber Bundles

Definition 9.5 (Principal Fiber Bundle) The principal fiber bundle or simply the
principal bundle of a Lie group G is a fiber bundle with base M and where G acts
on the total space B as a map between fibers. To make explicit the presence of G,
a principal fiber bundle is usually denoted by a ordered tetrad

(G, M , π, T B)

The requirement that G is a Lie group will become clear in the next chapter. For
now, it is sufficient to remind the fact that for a Lie group we can always deal with
infinitesimal transformations, leading to its Lie algebra G . Therefore, the principal
fiber bundle of a Lie group can be always written in terms of its Lie algebra as

(G , M , π, T B)

From now on we shall refer to principal fiber bundles using only its Lie algebra.
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Trivializations of principal fiber bundles are defined as before, given by a base
morphism ϕ : T B→ Σ ×M , with the additional condition that the Lie algebra G
acts linearly upon the typical fiber Σ

G : Σ → Σ

leading to the trivial principal bundle

(G , M , π, M ×Σ)

where, as we said, the operators of G act as linear operators on the typical fiber Σ .
A particularly interesting trivialization is that defined by the space of the Lie alge-

bra itself: A trivialization of the principal bundle induces a particular representation
of the Lie algebra where the representation space, is the space of the Lie algebra.
This particular representation was defined in Chapter 3 as the adjoint representation
of G . As we recall, this representation is defined by the structure constants of the
group.

Reciprocally, the adjoint representation of the Lie algebra of a group G induces
a trivialization of the principal fiber bundle of G.

The adjoint representation of a Lie algebra was defined as operators acting on the
space of the Lie algebra, acting on its basis {Xa} as

G̃ (Xa)Xb
def= [Xa, Xb] = f c

ab Xc

Therefore, the adjoint representation is unique as it is completely determined by
the structure constants of the group f c

ab. This uniqueness is relevant because as
we remember, in general, representations of a group are arbitrarily chosen. This is
not the case of the adjoint representation which is self-contained in the Lie algebra
structure.

From now on, we will denote the adjoint representation of a Lie algebra G by
G̃ . It is the same algebra whose space is acted upon by the group (or algebra).
Therefore, the trivialization of the principal bundle of a Lie group G by the adjoint
representation of its Lie algebra is

(G̃ , M , π, M × G̃ )

As we see there is a notational redundancy, where G̃ shows repeatedly. It is no longer
necessary to specify the Lie algebra twice, and it has become common practice to
denote the trivialized principal fiber bundle by the adjoint representation simply by
the usual ordered triad

(M , π, M × G̃ )

Using the adjoint representation we may reexamine the two previous examples.
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Example 9.4 (Trivialization of the Galilean Space–Time) Taking the Lie algebra
GSO(3) as a subalgebra of the Galilean group defined in the Galilean space–time,
the principal fiber bundle of this group is

(GSO(3),IR, ), π, G4)

which is trivialized to

(GSO(3),IR, ), π, IR ×Σ)

where the typical fiber Σ is isomorphic to all simultaneity sections and isomorphic
to IR3, upon which the GSO(3) group acts. In particular taking Σ to be the space of
the Lie algebra G̃SO(3), we obtain the adjoint representation G̃SO(3) and therefore
the trivialization.

9.4 Connections

The purpose of the trivialization of a principal bundle by the adjoint representation
is to obtain a connection.

As we have seen, in the adjoint representation the Lie algebra acts on itself,
inducing a trivialization of the principal fiber bundle of G with base M to

(M , π, M × G̃ )

In this trivial fiber bundle the fibers are all isomorphic to the Lie algebra space G .
Now, suppose that our field Ψ defined on M by a Lagrangian L (Ψ,Ψ,μ) has

a Lie symmetry group G. This means that G and hence its Lie algebra G act on
Ψ , keeping the Lagrangian invariant. Since in the adjoint representation G̃ acts on
the algebra space G , then in this representation Ψ corresponds to an element of G .
Using this double role of the adjoint representation, we may express the field Ψ as
linear combination of the Lie algebra basis {Xa}

Ψ =
∑

Ψ a Xa

or equivalently, the field can also be written in terms of the dual of the Lie algebra
G̃ ∗. This provides another equivalent trivialization of the principal fiber bundle of
G, the dual adjoint trivialization

(M , π, M × G̃ ∗)
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Using this representation, the same field Ψ is written in terms of the dual basis
{Xa} of the Lie algebra (defined by Xa(Xb) = δa

b ), so that Ψ is now regarded as a
one-form field:

Ψ =
∑

Ψa Xa

We may now consider the three types of symmetry:

(a) When G is a coordinate symmetry, such as the Poincaré group, we may express
the coordinate transformation generally as

x ′μ = f μ(xν, θa)

Then by its definition {Xa} can be expressed directly in terms of the coordinate
basis as (from (3.7))

Xa =
∑

aμa (x)
∂

∂xμ

and its dual

Xa =
∑

aa
μ(x)dxμ

Therefore, in the dual adjoint representation of a coordinate transformation we
may express the field as a one-form field

Ψ =
∑

Ψa Xa =
∑

Ψaaa
μ(x)dxμ =

∑
Ψμdxμ

where we have denoted Ψμ = Ψaaa
μ(x). Therefore the exterior derivative of the

field Ψ gives a two-form field

d ∧ Ψ =
∑

dΨμ ∧ dxμ =
∑ ∂Ψμ

∂xν
dxν ∧ dxμ

(b) In the case of a global gauge symmetry of a field defined on a space–time, the
gauge transformation is

Ψ ′μ = f μ(Ψ, θ)

where in the global case, θ does not depend on the coordinates of the space–
time. Therefore, given the adjoint representation of the Lie algebra of the gauge
group with generators Xa , by the same token we may express the field Ψ in
terms of the Lie algebra basis {Xa}, or of its dual {Xa} as
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Ψ =
∑

Ψ a Xa =
∑

Ψa Xa (9.1)

Since in the global case Xa do not depend on the coordinates xμ, the exterior
derivative of Ψ is a two-form field given by

d ∧ Ψ =
∑

dΨa ∧ Xa

However, the components Ψa of the field are functions of the space–time coor-
dinates, so that we may write dΨa = Ψa,μdxμ. Consequently, as in the previous
case, the exterior derivative of Ψ can also be written in terms of the dual basis
of the tangent bundle of M as

d ∧ Ψ =
∑

dΨa ∧ Xa = −
∑

Ψa,μXa ∧ dxμ (9.2)

(c) For local gauge symmetries, the group and its Lie algebra are locally defined.
Therefore its base {Xa} and the dual {Xa} also depend on the coordinates of
M . In this case, the exterior derivative acts on both factors of the one-form
field

Ψ =
∑

Ψa Xa (9.3)

as

d ∧ Ψ =
∑

dΨa ∧ Xa + Ψa d ∧ Xa (9.4)

where d ∧ Xa is a two-form. As such it can be expressed as an exterior product
of Xa with another one-form ωa

b belonging to the same space:

d ∧ Xa =
∑

ωa
b ∧ Xb

Now, we have a more complicated situation as compared with (9.2), because
we need to relate also the one-form Xb to the cotangent coordinate basis dxμ

(Fig. 9.5). This relation is formally done by the derivative map of a base mor-
phism between the cotangent bundle (M , π, T M ∗) and the trivialized dual
principal fiber bundle (M , π, G̃ ∗) which is defined by the Jacobian matrix(
∂ f a

∂xμ

)

of the transformation between basis

Xa = ∂ f a

∂xμ
dxμ (9.5)

With this transformation we may express

d ∧ Xa = ωa
b ∧

∂ f b

∂xμ
dxμ = ωa

μ ∧ dxμ



9.4 Connections 135

Fig. 9.5 Correspondence
between Xa and dxμ

where we have denoted

ωa
μ = ωa

b
∂ f b

∂xμ

Since ωa
μ is a one-form with components in the dual adjoint representation G̃ ∗,

it may be expressed in terms of the dual basis {Xa} as

ωa
μ = −Aa

bμXb

After inverting the order of the last exterior product and replacing in (9.4), we
obtain

d ∧ Ψ = Ψa,μdxμ ∧ Xa − Ψa Aa
μb Xb∧ = (δa

b∂μ + Aa
μb) Ψa dxμ ∧ Xb

or, denoting

Da
μb = δa

b∂μ + Aa
μb (9.6)

we may write the exterior derivative of the field for a local gauge symmetry as

d ∧ Ψ =
∑

Da
μb Ψa dxμ ∧ Xb

The expression Da
μb Ψa extends the exterior derivative by the inclusion of the

coefficients Aa
μb defined in the Lie algebra of the local symmetry group.

Definition 9.6 (Gauge Connection) Given a Lie group G acting as symmetry of a
physical field Ψ the vector-matrix derivative operator

D = I d + A (9.7)



136 9 Bundles and Connections

is called the covariant exterior derivative operator relative to the gauge connection
matrix-vector A. The vector components in space-time are

Dμ = I∂μ + Aμ (9.8)

with matrix components Da
μb defined in the Lie algebra of the symmetry group.

However, to be consistent with the usual derivative operator and the covari-
ant derivative defined in the geometry of manifolds of Chapter 2 and the exterior
derivative defined in Chapter 4, the operator (9.8) must satisfy the formal conditions
(which are typical of derivatives):

1) D ∧ (αΨ + βΦ) = αD(Ψ )+ βD(Φ)
2) D ∧ f = d f (x)
3) D ∧ ( f (x)Ψ ) = d f (x) ∧ Ψ + f (x)DΨ
4) D ∧ (Ψ ∧Φ) = (DΨ ) ∧Φ + Ψ ∧ (DΦ)
where f (x) is a scalar function defined in M .

It is important to observe that Aμ was not really postulated or defined. They are
just coefficients of the variation of the Lie algebra basis in terms of the covariant
coordinate basis {dxμ}. On the other hand, it was derived from a symmetry group
of a Lagrangian, so that it must coincide with the same coefficients of the deriva-
tive operator (8.22) defined in Noether’s theorem for local gauge transformations,
which has also components in the Lie algebra. Therefore, the above connection
components Aa

μb are the same as those introduced by Noether, satisfying Noether’s
condition (8.21)

∑

a

Fa
∂θa

∂xμ
=
∑

a

Fag Aa
μ b θ

b

Consequently the local gauge derivative used in Noether’s theorem is the same
covariant derivative obtained above from the Lie algebra trivialization of the sym-
metry group.

Summarizing, we have seen that a principal fiber bundle of a Lie symmetry group
G, defined on a space–time M of some field Ψ , can be trivialized by taking the dual
adjoint representation of the Lie algebra of G, G̃ ∗, when the total space becomes a
product of the base by a typical fiber

(M , G, π, T B)→ (M , π, M × G̃ ∗)

Here T B is the total space where the fields are defined as maps Ψ :M → T B.
The trivialization is a direct consequence of the fact that the symmetry group G

acts on the field manifold T B and also on any of its representation space. Such
scheme is very general, but in the particular case of the adjoint representation of the
Lie algebra of G, the field becomes a vector in the Lie algebra or in its dual G̃ ∗.

In the case where the Lie groups are locally defined, the dependence of the
parameters on the coordinates implies that the basis of its Lie algebra {Xa} defined
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in (3.7) also depends on the coordinates of M . In such cases the trivialization of the
principal bundle by the adjoint representation implies that the field is expressed as

Ψ (xμ) = Ψ a(xμ)Xa(x
μ) = Ψa(x

μ) Xa(xμ)

where both the components and the basis vectors depend on the coordinates xμ. The
consequence of this double dependence on the coordinates (of the components and
of the basis vectors) is the emergence of an affine connection and of the exterior
covariant derivative in local gauge fields defined by

D ∧ Ψ = dΨa Xa + Ψa ∧ d Xa

or

D ∧ Ψ = Da
μbΨa dxμ ∧ Xb

where Da
μb are components of the exterior covariant derivative matrix operator

Dμ = I∂μ + Aμ

with entries defined in the adjoint representation of the Lie algebra. Thus, in matrix
notation we may write the gauge covariant derivative operator as matrix-vector oper-
ator D:

D = Dμdxμ (9.9)

We say that the matrix-vector Aμ are the components of the connection associated
with the Lie group G.

Since in Noether’s theorem Ab
μa were not really defined we still do not know

what the connection is. We only know that it is required to define the conserved
quantities for local gauge symmetries. The Yang–Mills theory described in the next
section defines such connection.



Chapter 10
Gauge Fields

10.1 Gauge Curvature

The connection associated with local gauge symmetry seen in the last chapter is not
complete because its components Ab

μa were not determined. To finish the theory we
need to go one step further, by associating with it a curvature and the corresponding
field equations.

The concept of curvature in gauge theory is the same introduced by Riemann
in 1850. This is not always readily appreciated because there are two different
usages for the designation Riemann tensor. One is the general definition of the
Riemann tensor by a displacement of a vector field around a parallelogram as seen in
Chapter 2. The other, more common in the applications to Einstein’s equations, is the
expression of the Riemann tensor specifically calculated for the metric connection.

The first case is more general because any additional condition imposed on the
connection can be made afterward. To avoid confusion some authors refer to the
second case as “non-Riemannian geometry” [113], while the designation of Rie-
mannian geometry is reserved for the specific case of a metric connection.

To see that the expression of the Riemann curvature tensor is independent of the
choice of connection let us recall from Chapter 2 the expression for the Riemann
tensor for the metric connection when we have two linearly independent tangent
vector fields. In the particular case of a tangent basis {eμ} we obtain

R(eμ, eν) = (∇μ∇ν −∇ν∇μ) = [∇μ,∇ν] (10.1)

where we have simplified the notation ∇eμ to ∇μ. Notice that this is anti-symmetric
in the two indices and consequently it cannot be confused with the Ricci tensor. To
avoid notational confusion we denote the Riemann curvature operator by

Rμν = [Dμ, Dν] (10.2)

This is the same expression for the Riemann curvature (10.1) before the Levi-Civita
connection is chosen. In this case, applying the above operator to a basis vector
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eρ , we obtain from its definition a linear combination of the tangent basis, whose
coefficients Rμνρσ are components of the Riemann tensor in that basis

Rμν eρ = R(eμ, eν) eρ = Rμνρ
σ eσ (10.3)

These components can be calculated for any given connection in terms of its
Christoffel symbols. In the following we define the curvature tensor for a connection
defined in a given Lie algebra.

Definition 10.1 (Curvature Two-Form) Consider a vector-matrix one-form gauge
connection A defined in space–time, with matrix components defined in the Lie
algebra G of a local gauge symmetry group G. The curvature two-form of A is a
two-form given by the exterior covariant derivative of A

F = D ∧ A = (d + A) ∧ A = d ∧ A + A ∧ A (10.4)

The last term has the meaning of the anti-symmetric tensor product of the matrix A
by itself, so that it is not necessarily zero [17, 108, 112].

Theorem 10.1

F = D ∧ A = Fμνdxμdxν, where Fμν = [Dμ, Dν]

From the above definition and the properties of the exterior covariant derivative
(9.8), we obtain

F = D ∧ A = d ∧
(∑

Aμdxμ
)
+
∑

μ<ν

AμAνdxμ ∧ dxν =
∑

μ<ν

Aμ,νdxμ ∧ dxν +
∑

μ<ν

AμAνdxμ ∧ dxν =
∑[

(∂μAν − ∂ν Aμ)+ (AμAν − Aν Aμ)
]

dxμdxν
(10.5)

In these expressions we have used the fact that Fμν is an anti-symmetric tensor, so
that the sum

∑
Fμνdxμ ∧ dxν contains twice the same terms. To avoid the dou-

ble counting of indices it is sufficient to remove the wedge of the exterior product
and unrestrict the sum.1 This is equivalent to writing two-forms as anti-symmetric

1 Since any product of indices can be decomposed as half the sum of the symmetrized product and
anti-symmetrized product, respectively, μν = ((μν)+ [μν])/2, the unrestricted sum of a product
of a symmetric tensor and an anti-symmetric tensor cancels the symmetric terms automatically.
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tensors. Thus, for example, the above expression can be written with an unrestricted
Einstein summation convention as

F = Fμνdxμdxν

On the other hand, the components of the exterior covariant derivative are Dμ =
I∂μ + Aμ. Defining the gauge curvature operator

Fμν = [Dμ, Dν]

we obtain for an arbitrary function f

Fμν f = [Dμ, Dν] f = Dμ(Dν( f ))− Dν(Dμ( f ) =
(∂μ + Aμ)(∂ν + Aν) f − (∂ν + Aν)(∂μ + Aμ) f =
∂μ∂ν f + ∂μAν f + Aν∂μ f + Aμ∂μ f − AμAν f−
(∂ν∂μ f + ∂ν Aμ f + Aμ∂ν f + Aν∂ν f − Aν Aμ f ) =
(
∂μAν − ∂ν Aμ) f + [Aμ, Aν]

)
f

Removing f and comparing the last row with the last row of (10.5), we conclude that

F = D ∧ A = Fμνdxμdxν, Fμν = [Dμ, Dν] (10.6)

Therefore the concept of gauge curvature is the same as the Riemann curvature
operator, differing only by the choice of connection.

Theorem 10.2

D ∧ F = 0

Taking the exterior covariant derivative of (10.1) and using the properties of Dμ,
we obtain a three-form

D ∧ F = D ∧ (D ∧ A) =
∑

μ<ν<ρ

(DρFμν) dxρ ∧ dxμ ∧ dxν =
∑

μ<ν<ρ

Dρ[Dμ, Dν]dxρ ∧ dxμ ∧ dxν

Remembering the anti-symmetry properties of the factors we may write this result as

D ∧ F =
∑
[Dρ, [Dμ, Dν] ]dxρdxμdxν
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However, the three-dimensional anti-symmetrization symbol applies to any fixed
sequence of indices (and not necessarily to just 1,2,3). That is, εμνραβγ is 1 for even
permutations of (μ, ν, ρ) with respect to (α, β, γ ); −1 for odd permutations; and 0
in any other case. Thus, and we may write the above expression as

[Dρ, [Dμ, Dν]] = εαβγμνρ [Dα, [Dβ, Dγ ]]

Therefore,

D ∧ F=
∑

ε
ρμν
αβγ [Dρ, [Dμ, Dν]]dxαdxβdxγ

Since Dα is an operator defined in a Lie algebra, the Jacobi identity

[A, [B,C]] + [C, [A, B]] + [B, [C, A]] = 0

applies for any cyclic choice of the triad of indices (α, β, γ ). Therefore we may
write

∑
ε
ρμν
αβγ [Dρ, [Dμ, Dν]] = [Dα, [Dβ, Dγ ]]+[Dγ , [Dα, Dβ ]]+[Dβ, [Dγ , Dα]] = 0

Consequently,

D ∧ F = 0 (10.7)

From (10.4) the above expression can also be written as D ∧ D ∧ A = 0, which is
sometimes written as D2 A = 0.

This is as far as we may go without specifying the connection Aμ. Just as a
reminder, it appeared for the first time in Noether’s theorem for local gauge fields
and later on, we understood that the same quantity acts as a connection which is
required to make the Lagrangian invariant. Equation (10.7) by itself is not sufficient
to determine Aμ because it is in fact just an identity.

In order to make further progress, we need to specify an equation for the con-
nection and the Lie symmetry that defines it. In contrast with general relativity
where the connection is postulated, here the connection is a dynamical field in itself,
called the gauge field. The development of this concept started in 1954 with Yang
and Mills, and as it turned out, it is responsible for the description of three of the
four fundamental interactions, named after the three gauge symmetry groups, U (1),
SU (2), and SU (3). In the following we will examine each of these three gauge
symmetries, starting with the electromagnetic theory.

10.2 The U(1) Gauge Field

The U (1) gauge field is the electromagnetic theory, described as connection theory
of the local U (1) group. As such, it serves as a paradigm for all other gauge theories.
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It is relevant to remind that the electromagnetic theory is the result of the intense
experimental research as described in Chapter 7. We have also seen in the same
chapter that the infinitesimal gauge transformations of the electromagnetic potential
can be written as an infinitesimal rotation of the local SO(2) group. This group is
isomorphic to the unitary group U (1), giving the infinitesimal transformations of
the electromagnetic four-potential as

A
′
μ = Aμ + iθ,μ (10.8)

On the other hand, we have also seen in the previous chapter how a generic
gauge connection associated with a Lie-type symmetry group G can be derived by
the trivialization obtained by the adjoint representation of the Lie algebra. This gave
us a general recipe for deriving covariant derivatives of fields for any field theory.

Therefore, in principle we may derive the electromagnetic potential as a con-
nection, by constructing the dual adjoint representation of the Lie algebra of the
electromagnetic gauge group U (1). As it happens, the Lie algebra GU (1) has only
one basis element X which can be expressed as

X = aμ
∂

∂xμ
, with dual X∗ = aμdxμ (10.9)

Therefore, the Lie algebra of that group, GU (1), is Abelian because the Lie product
vanishes: [X, X ] = 0. This means that all of its structure constants also vanish, and
we cannot derive the electromagnetic potential directly from it.

However, from (10.9) we see also that the only surviving Lie algebra operator X
can be written as a linear combination of the (coordinate) basis, either of the tangent
or of the cotangent bundle of Minkowski’s space–time TpM . Therefore, expression
(10.9) indicates that the principal bundle of U (1) can also be trivialized by a base
morphism of a fiber bundle in which the total space is the Cartesian product between
the base space M and the dual of Minkowski’s tangent space–time.

(M4, U (1), π, T B)→ (M4, π, M4 ×M ∗)

Actually this is an example of equivalent trivializations, producing equivalent rep-
resentations of the group U (1). O one is the adjoint representation and the other is
a 1× 1 irreducible unitary representation of a subgroup of the Lorentz group.

In Chapter 3 we have seen that we may define representations of a Lie algebra
with different dimensions, but they may be decomposed into smaller representa-
tions up to a certain size, when they are called irreducible matrix representations.
For example, a representation of a Lie algebra may be formed by diagonal block
matrices of different sizes, [A], [B], etc., so that the representation may decompose
as a direct product of smaller representations
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⎛

⎜
⎜
⎝

[A]
[B]
[C]
[D]

⎞

⎟
⎟
⎠ = [A] ⊗ [B] ⊗ [C] ⊗ [D]

In particular when the Casimir operator of smallest order of a semi-simple group
is proportional to the identity matrix, then the above decomposition is completely
reducible, when the diagonal blocks are also diagonal. (This is one of the lemmas
of Schur; see, e.g., [63].)

In the case of a semi-simple group we obtain an Abelian 1 × 1 representation,
although it is not constructed with the structure constants. Thus, the connection one-
form associated with this irreducible representation is naturally written in coordinate
basis as (10.9). A is a 1 × 1 matrix one-form where its components Aα are real
functions

A = Aμdxμ

The covariant derivative associated with this connection is also written as
D = Dμdxμ where Dμ = ∂μ + Aμ. From the fact that A is a 1 × 1 matrix it
follows that [Aα, Aβ ] = 0. Consequently

A ∧ A =
∑

α<β

Aα Aβdxα ∧ dxβ = [Aα, Aβ ]dxαdxβ = 0

Hence,

D ∧ A = d ∧ A + [A, A] = d ∧ A (10.10)

and the curvature of this connection is

F = D ∧ A = d ∧ A = (∂α Aβ − ∂β Aα)dxαdxβ (10.11)

so that

Fαβ = ∂α Aβ − ∂β Aα (10.12)

which are the components of Maxwell’s tensor, provided they satisfy Maxwell’s
equations. This can be seen from the following:

Taking the covariant derivative of F according to (10.11), we obtain a three-form
(here it may be easier to follow the arguments using the explicit exterior product)

D ∧ F =
∑

α<β<γ

Fαβ,γ dxγ ∧ dxα ∧ dxβ
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However, in four dimensions a three-form is isomorphic to a one-form, as given by
the relation

dxγ ∧ dxα ∧ dxβ = εγαβδdxδ (10.13)

so that we may write the previous expression as

D ∧ F =
∑

εγαβδFγα,βdxδ

Now, applying the homogeneous Maxwell’s equations (7.15) εγαβδFβδ
,β = 0, it

follows that

D ∧ F = 0

This is the same result expressed as (10.7) which holds independently of the dynam-
ical principle and is equivalent to the Jacobi identity. It corresponds to the two
homogeneous Maxwell’s equations (Biot–Savart and Faraday).

On the other hand, the dual of the Maxwell tensor F∗ is defined by the
components

F∗αβ = εαβγ δFγ δ (10.14)

so that F∗ is a dual curvature two-form

F∗ =
∑

F∗γ δ dxγ ∧ dxδ =
∑

εαβγ δFγ δdxα ∧ dxβ

Using (10.10), the covariant derivative of this dual is again a three-form

D ∧ F∗ =
∑

εαβγ δFγ δ
,μ dxμ ∧ dxα ∧ dxβ

which in four dimensions (and only in four dimensions) is also isomorphic to a
one-form

D ∧ F∗ =
∑

εαβγ δFγ δ
,με

μαβνdxν

or using the properties of the four-dimensional anti-symmetrization symbol: εαβγ δ

is equal to 1 for even combinations of 1234; to −1 for odd combinations; and 0 in
any other cases, it follows that εαβγ δεμαβν = δ

μ
[γ δνδ].

Therefore,

D ∧ F∗ =
∑

Fμν
,νdxν
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Now, applying the non-homogeneous Maxwell’s equations from (7.14) we obtain

D ∧ F∗ = 4π J

where J denotes the electric current four-vector in Minkowski’s space–time.
We conclude that Maxwell’s electromagnetic theory is the gauge field theory for

the U (1) gauge group, whose connection is the electromagnetic four-vector defined
in Minkowski’s space–time, satisfying Maxwell’s equations

{
D ∧ F = 0

D ∧ F∗ = 4π J
(10.15)

The electric and magnetic fields are the components of the curvature two-form F.
The Lagrangian of the electromagnetic field in terms of the Maxwell curvature

operator is given by (7.16):

L = 1

4
FμνFμν (10.16)

where Fμν is given by (10.12). As we see, there are only kinetic terms in this
Lagrangian. Comparing with the Klein–Gordon equation, it does not have a mass
term. Since this Lagrangian is invariant under the electromagnetic gauge transfor-
mations, we cannot recover a mass by such transformations. This means that the
connection Aμ is a massless field. This will be also a feature of the next gauge fields.

10.3 The SU(2) Gauge Field

In 1954 Yang and Mills proposed a generalization of the local U (1) gauge theory,
where the gauge group would be replaced by the local SU (2) group. The motivation
in doing so was an attempt to explain the isospin. Differently from the global isospin,
the proposed distinction between protons and neutrons should be local, different at
each point. This would be similar to the local gauge symmetry of the electromag-
netic field, but with the local SU (2) gauge symmetry.

Consider a two-component spinor field defined in the two-dimensional com-
plex spinor space, on which the SU (2) Lie group acts as a local transformation
group S2,

Ψ =
(
Ψ1
Ψ2

)

The transformation of the local U (1) group can be summarized as

Ψ ′ = uΨ = F(Ψ, θ) (10.17)
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The SU (2) group is composed of 2× 2 matrix operators with parameters aab

u =
(

a11 a12
a21 a22

)

to which we add the unitary and unimodular conditions, respectively, described by
uu† = 1 and det u = 1. They give the following equations for the parameters:

|a11|2 + |a12|2 = 1

|a21|2 + |a22|2 = 1

a11a∗21 + a12a∗22 = 0

a11a22 − a12a21 = 0

From these equations we conclude that there are only three independent parame-
ters. This Lie group is isomorphic to SO(3), also with three parameters. Such 1:1
correspondence with rotations resembles the quantum mechanical spin, with the
difference that here this SO(3) results from a field transformation, instead of the
coordinate transformation.

From the general theory of connections described in the previous chapter, the
adjoint representation of the local Lie algebra GSU (2) trivializes the principal fiber
bundle of SU (2) to

(M4, π, M4 × G̃4
∗
SU (2))

As it happened in the electromagnetic case, we may use another more convenient
group to realize the trivialization. Here, for example, we may use the isomorphism
between SU (2) and SO(3) and the isomorphism between the SO(3) and the group
of automorphisms of the quaternion algebra C12 described in Chapter 7, which gen-
erates as the group of transformations of two-component spinors. Therefore, by
this double isomorphism we find that the local SU (2) spinors are the same spinors
associated with the local two-component spinors derived from the local quaternion
matrix representation.

We have a similar situation with the previous example: the action of the group on
the SU (2) field is the same as the quaternion spinor representation, which in turn
is the same as the action of the group of automorphism of the quaternion algebra
in the matrix representation. As such they are vectors of the matrix representation
of the C12 algebra written in the same basis given by the Pauli matrices. It must be
emphasized, however, that these Pauli matrices do not refer to the orbital spin of
non-relativistic quantum mechanics, but to a relativistic internal quantum number,
which is the intended generalization of the global isospin to the local isospin.

In order to avoid confusion with the usual Pauli matrices of the orbital spin, we
use a different notation as follows:

τ0 =
(

1 0
0 1

)

, τ1 =
(

0 1
1 0

)

, τ2 =
(

0 −i
i 0

)

, τ3 =
(

1 0
0 −1

)

(10.18)
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satisfying the same multiplication table for the SO(3) Pauli matrices

τiτ j + τ jτi = 2δi jτ0, i, j = 1, . . . , 2

τ1τ2 = τ3

From the isomorphism between the Lie algebra GSU (2) and SO(3) and the isomor-
phism between the later and a subgroup of the automorphisms of quaternions, the
adjoint representation of GSU (2) can be expressed in terms of the above matrices.
Including the identity matrix τ0, we may express any operator of the adjoint repre-
sentation of the GSU (2) by τi :

Ψ = Ψ 0τ0 +
3∑

1

Ψ iτi =
3∑

0

Ψμτμ =
3∑

0

Ψμτ
μ

where indices are risen and lowered by the Minkowski metric.
Likewise, the gauge potential A and the gauge covariant derivative are repre-

sented as operators in the same Lie algebra, written in terms of the isospin matrices
basis {τμ}. Then the proposition of Yang and Mills was to write the field equations
for A similar to Maxwell’s, now called the Yang–Mills equations. The solutions
of these equations give the connection components Aμ, from which we obtain the
SU (2) connection as a quaternion field

A =
3∑

0

Aμτμ =
3∑

0

Aμτ
μ

Unlike Maxwell’s potential, these are 2 × 2 matrices which do not commute with
each other.

Therefore, the Lagrangian of this generalization of the electromagnetic field is
similar to (10.16). Since now the curvature tensor Fμν is a matrix and the Lagrangian
by definition a scalar functional of the field, and its derivatives, Yang and Mills
proposed that we should take the trace of the resulting matrix:

LSU (2) = 1

4
tr FμνFμν = 1

4
tr ημρηνσ FμρFνσ (10.19)

where Fμν is

Fμν = [Dμ, Dν] = ∂μAν − ∂ν Aμ + [Aμ, Aν]

The Euler–Lagrange equations are expressed in the usual functional way as

∂LSU2

∂Aρ

= ∂

∂xσ
∂LSU (2)

∂Aρ,σ
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When calculating the derivatives with respect to a non-commutative variable we
need to be careful with the order of the factors. Considering the order and the trace
we obtain the Euler–Lagrange equations

Fμν
,ν = [Aν, Fμν] (10.20)

Comparing with the non-homogeneous Maxwell equations (7.17), we see that the
right-hand side plays the role of the current Jμ. This term does not appear in
the U (1) theory because the potential Aμ commutes with everything. The term
[Aν, Fμν] in (10.20) is typical of the non-linearity of the Yang–Mills for non-
Abelian gauge fields and it is called the Yang–Mills current. The result was at the
time of its proposal something entirely new, within the context of the weak nuclear
interaction and its unification with the electromagnetic interaction, known as the
electroweak unification.

However, it is also possible to have a solution for the SU (2) Yang–Mills field
without any current, called the instanton.

Example 10.1 (Instantons) Consider an SU (2) gauge field with an additional
condition

F∗ = ±F

called the self-dual and anti-self-dual conditions, respectively. In any of these cases
the equations become similar to the vacuum Maxwell’s equations

D ∧ F = 0 and D ∧ F∗ = 0 (10.21)

In spite of this simplification the equations remain non-linear because the matri-
ces Aμ do not commute. For the relation between instantons and mathematics and
applications, see [114–117].

A particular solution of the SU (2) Yang–Mills equations using the quaternion
basis (10.18) was presented by M. F. Atiyah. The idea is to find an appropriate
quaternion function whose differential provides the SU (2) connection satisfying
the (10.21) conditions [118].

To see how this works, consider a point in Minkowski’s space–time with coor-
dinates xμ. It corresponds to a quaternion variable, written in the Pauli basis as
X =∑3

0 xμτμ. In particular Atiyah considered two quaternion functions

f (X) = X̄

1+ |X |2 =
x0τ0 −∑3

1 xiτi

1+ x02 +∑3
1 xi 2

(10.22)

and its quaternion conjugate

f̄ (X) = X

1+ |X |2 =
x0τ0 +∑3

1 xiτi

1+ x02 +∑3
1 xi 2

(10.23)
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such that the SU (2)-gauge potential is the differential d f (X) of these functions.
However, since this potential corresponds to a vector in space–time, we need to
extract the vector components of the quaternion d f (X). This is obtained by sim-
ply taking the imaginary components of the quaternion differential of the functions
f (X):

A(X) = 1

2
(d f (X)− d̄ f (X))

However, quaternion analysis is non-commutative. That is, left and right differ-
entials are not equal and can only be understood within the context of non-
commutative field theory, of which quaternion analysis is a particular example
[119–121]. Therefore, when expressing in terms of quaternions we may also have
left and right SU (2) gauge fields. The left derivative of a quaternion function can be
defined by the traditional limit, using the mentioned division algebra property:

f ′(X) = lim
ΔX→0

[
f (X +ΔX)− f (X)

]
ΔX−1

and similarly for the right derivative is

′ f = (X) lim
ΔX→0

ΔX−1 [ f (X +ΔX)− f (X)
]

These are generally not equal (see, e.g., [122, 123] and references therein).
In view of this, the left differential of a quaternion function can be defined as

d f (x) = f ′(x)dx

Using the Pauli basis this can be written as

d f = (U 0τ0+U aτa)(dx0τ0 + dxbτb)=
= (U 0dx0 +U adxa)τ0 + (U 0dxa +U adx0 + εabcU bdxc)τa

Thus the left vector-matrix connection is given by the vector part of this left differ-
ential:

A(X) = 1

2
(d f (X)− d̄ f (X)) =

∑
Aμ(X)dxμ = A0dx0 + Ai dxi

where the components Aμ are expressed in terms of the 2×2 matrices of the SU (2)
Lie algebra as

A0 = ∓
∑ xiτi

1+ |X |2 and A j =
∑ x0τ j

1+ |X |2 ∓
εi jk xiτk

1+ |X |2
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With these components we construct the SU (2) covariant derivative of the operators
Dμ = I∂μ+ Aμ and the corresponding curvature two-form F = Fμνdxμdxν , with
Fμν = [Dμ, Dν]. After some algebra, denoting d X = dxατα , we obtain

F = ∓ d X ∧ d X̄

(1+ |X |2)2

where (considering the restricted sums on the wedge products)

d X ∧ d X̄ = −(dx0 ∧ dxiτi + dxi ∧ dx jεi jkek)

Therefore,

F = ±dx0 ∧ dxiτi

(1+ |X |2)2 ±
εi jkdxi ∧ dxkτk

(1+ |X |2)2

so that the components Fμν are

F0i = ±dx0 ∧ dxiτi

(1+ |X |2)2 and Fi j = ±εi jkτk

(1+ |X |2)2

We find that indeed the proposed functions represent solutions of the SU (2)
Yang–Mills equations such that F = ±F∗ [118].

The emergence of the unification scheme of Weinberg and Salam, called the
electroweak unification, invariant under the U (1) × SU (2) gauge group, helped to
understand the meaning of the Yang–Mills proposition [24, 25]. The original deriva-
tion of the electroweak unification was based on phenomenological arguments, but
it is compatible with the general theory of connections. Essentially, consider a rel-
ativistic electron interacting with a U (1) field in the Minkowski space–time and
interacting with a Yang–Mills SU (2) gauge field.

The Lagrangian of this system is composed of the Dirac Lagrangian

L = LSU (2)(Aμ, Aμ,ρ)+LDirac(Ψ,Ψ,μ)

which is invariant under the U (1) local gauge group and a SU (2) invariant
Yang–Mills Lagrangian

LSU (2) = 1

4
tr FμνFμν

The Dirac Lagrangian is

LDirac = iΨ̄ γ μ∂μΨ − mΨ̄ Ψ
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Apparently there is no interaction term. However, like in the Nielsen–Olesen exam-
ple an explicit interaction term may emerge when we rewrite the total Lagrangian
with the appropriate covariant derivative, derived from the combined symmetry
U (1)× SU (2).

Denoting the gauge potential of the combined symmetry by A,μ, and the cor-
responding covariant derivative by Dμ = i∂μ + Aμ, we may rewrite the total
Lagrangian in the invariant form as

LEW = 1

4
tr FμνFμν + iΨ̄ γ μDμΨ − mΨ̄ Ψ + HC

where Fμν = [Dμ, Dν].
The Euler–Lagrange equations with respect to Ψ give the Dirac equation

(iγ μ∂μ − m)Ψ + iγμAμΨ = 0

where we notice the emergence of the interaction term involving AμΨ . On the other
hand, the Euler–Lagrange equations with respect to Aμ give the Yang–Mills equa-
tion for the SU (2) field with a Dirac current

tr F∗ρσ ,σ = 2i tr Ψ̄ γ ρΨ

However, since we have non-Abelian local symmetry we would expect to see also
the emergence of the Yang–Mills current.

The Yang–Mills current is hidden because the trace was unduly maintained in
the Yang–Mills equation. This can be corrected by taking the exterior product of
the above equation by dxρ and adding to both sides of the result the trace of the
Yang–Mills current tr (dxρ ∧ [Aσ , F∗ρσ ]), obtaining

tr dxρ ∧ (F∗ρσ ,σ + [Aσ , F∗ρσ ]) = 2i tr dxρΨ̄ γ ρΨ + tr dxρ ∧ [Aσ , F∗ρσ ]

or, equivalently,

tr dxρ ∧ Dσ F∗ρσ = 2i tr dxρ ∧
(

Ψ̄ γ ρΨ + 1

2i
[Aσ , F∗ρσ ]

)

Now, removing the trace of this equation we obtain a more general equation

dxρ ∧ Dσ F∗ρσ = 2idxρ ∧
(

Ψ̄ γ ρΨ + 1

2i
[Aσ , F∗ρσ ]

)

so that we obtain the equation for Aμ including the Yang–Mills current. The bracket
in the right-hand side gives the total (electroweak) current

4π J ∗EW
def= 2idxρ ∧

(

Ψ̄ γ ρΨ + 1

2i
[Aσ , F∗ρσ ]

)
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so that the U (1)× SU (2) Yang–Mills equation simplifies to

D ∧ F∗ = 4π J ∗EW (10.24)

The current J ∗EW is conserved in the same sense of Noether’s theorem, with zero
divergence:

DαDβF∗αβ = 4πDα J ∗αEW = 0

As in the other cases, the homogeneous equations correspond to the Bianchi identity

D ∧ F = 0 (10.25)

The Yang–Mills equation (10.24) can now be solved for A and the corresponding
field strength can be experimentally verified. The unification holds for energies of
the order of 100 GeV.

The Weinberg–Salam theory predicted the existence of the W± and the Z0

bosons, which were found later on in collisions involving protons and antiproton
(see, e.g., [18, 19]).

10.4 The SU(3) Gauge Field

The SU (3) Yang–Mills theory is a result of the development of the quark model
for strong interactions. Quarks appeared after an extensive period of modeling the
strong nuclear interaction.

In 1964 Gell-Mann and Ne’eman proposed that the interaction within the nucleon
should have a symmetry similar to that of the SU (3) group, with an added prop-
erty called color (often denoted SU (3)c). Therefore, a theory of strong nuclear
interactions could in principle be described as a gauge theory of the SU (3)c local
symmetry.

The SU (3) gauge theory is a theory in the making with some open problems,
like for example the confinement of quarks and the determination of the minimum
mass of the glue-balls. The consistency of the entire gauge theory depends on the
solution these problems [123].

Just like the U (1) and the SU (2) cases, at least in principle we may derive the
equations for the SU (3) group gauge theory. It is a Lie group with a Lie algebra
GSU (3) generated by 3× 3 complex unitary matrices with determinant 1 and dimen-
sion 8.

Following the general scheme the connection for such gauge theory can be
obtained from the trivialization of the principal bundle of SU (3) by its dual adjoint
representation

(M4, SU (3), π, T B)→ (M4, π,M4 × G̃ ∗SU (3))
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In such trivialization, the algebra acts on the field and at the same time on the space
of the Lie algebra. With this double role played by the adjoint representation the
gauge field can be written as a vector-matrix of the same space of the algebra. Thus,
denoting by {Xa} the basis of the Lie algebra G̃SU (3) and its dual by {Xa}, we may
write the SU (3) invariant field as

Ψ = Ψ a Xa = Ψa Xa, a = 1, . . . , 8

and the SU (3) gauge exterior covariant derivative of Ψ can be written as

D ∧ Ψ = DμΨ ∧ dxμ

where Dμ has components Db
μa = δb

a∂μ − g Ab
μa x and where Ab

μa are the compo-
nents of the SU (3) connection Aμ defined in space–time.

In the two previously seen gauge fields, the U (1) electromagnetic field and the
SU (2) weak interaction field, we have expressed the solutions in terms of division
algebras, respectively the complex and the quaternion algebras. The division prop-
erty was important to define the mathematical analysis and in the determination of
solutions. Is this a mere coincidence, or would the fundamental gauge interactions
have to do with the structure of division algebras?

In the light of this question it seems logical to revise the next division algebra,
the octonion algebra OI (which is not a Clifford algebra), for a possible descrip-
tion of the SU (3) gauge field. This has been proposed in the past by several
authors; the result is less clear than in the quaternion case for the SU (2) gauge field
[124–126]. The interesting aspect to be considered is that the group of automor-
phisms of the octonion algebra is a subgroup of the exceptional Lie algebra G2, the
smallest among the known exceptional Lie algebras.

The octonion algebra is the largest of the normed division algebras, with seven
generators plus a unit element, satisfying the multiplication table (where A, B =
1, . . . , 7)

e1e2 = e3, e5e1 = e6, e6e2 = e5

e4e7 = e1, e6e7 = e3, e5e7 = e2

eAeB + eB, eA = −2δAB

eAe0 = e0, eA

This implies also that (as it occurs with the Lie algebras) the octonion algebra is
non-associative:

[eA, [eB , eC ]] �= [[eA, eB], eC ]

Instead, it satisfies the Jacobi-like relation

[eA, [eB , eC ]] + [eC , [eA, eB]] + [eB, [eC , eA]] = 0
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An octonion is written in the above basis as

X = X0e0 + Xi ei , i = 1, . . . , 7

with conjugate (similar to the quaternion algebra) X̄ = X0e0 − Xi ei and the norm
of an octonion is

||X ||2 = X X̄ = X0
2 +

7∑

0

X A2

The analytical conditions for the existence of analytical functions of octonions (in
the sense of the Cauchy–Riemann conditions) are even more restrictive than those
for quaternions. In view of this, like in the case of quaternions we also consider
separate left and right derivatives of octonion functions.

The group of automorphisms of the octonion algebra is a 14-parameter excep-
tional Lie group denoted by G2, which is the smallest among the exceptional Lie
groups [61]. Therefore, the group of automorphisms of the octonions is not isomor-
phic to the gauge group SU (3). Nonetheless, it is possible to fix one of the octonion
basis elements to obtain seven possible subalgebras, each of which has a subgroup
of automorphisms isomorphic to SU (3) [124]. For example, by excluding (or fixing)
e7 in the above multiplication table, we obtain a subalgebra of the octonions with
seven generators. Denoting by f1, . . . , f7 these generators Gell-Mann showed that
they satisfy a Lie-like product

[ fa, fb] = f̄abc fc

where f̄abc are called the Gell-Mann structure constants, as they keep a correspon-
dence with the SU (3) Lie algebra. Thus, we choose one among the seven possible
Gell-Mann sub-algebras of the octonion algebra to represent the SU (3) symmetry.

In any of these subalgebras the SU (3) field is written in the Gell-Mann basis and
its dual f i , plus the identity element f 0 is written as

Ψ =
7∑

0

Ψ a fa

The SU (3) gauge covariant derivative of this field, written in the same basis, is

D ∧ Ψ = (I d + A) ∧
(

7∑

0

Ψ a fa

)

satisfying the same general rules for exterior covariant derivatives. We may express
this derivative in the dual coordinate basis {dxμ} as

D ∧ Ψ =
∑

(δa
b∂,μ + Aa

μb)Ψa dxμ ∧ f b
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where Ab
μa are the matrix components of the SU (3) gauge potential in the

Gell-Mann basis. The SU (3) field strengths Fμν = [Dμ, Dν] and the dual F∗μν
are expressed in the same Gell-Mann basis.

Therefore, in principle we may write the Yang–Mills equations and hopefully
solve them in Aμ written in the octonion subalgebra. This may not be so simple
because of the non-linearity, because of the large algebra involved, and because we
still need to decide what to do with the remaining six subalgebras.

Following the example of the electroweak theory, it is possible that the solution
of these difficulties can be obtained by combining the SU (3) symmetry with the
other gauge theories, and perhaps even with gravitation [129].

Exercise (SU(3) Instantons) Following the example of the SU (2) field, verify the
existence of self-dual and anti-self-dual SU (3) gauge fields.

Suggestion: following a procedure similar to the case of quaternions devised by
Atiyah, look for an octonion function like F(X) = X̄

1+|X |2 , written in the Gell-Mann
basis. Then check against the SU (3) Yang–Mills vacuum equations D ∧ F = 0
and D ∧ F∗ = 0.



Chapter 11
Gravitation

11.1 The Riemann Curvature

The gravitational interaction is at the same time the simplest and the most
complicated interaction as compared with the three other fundamental interactions.
This apparent paradox exists because gravitation does not seem to fit in the same
scheme of the gauge interactions as described in the preceding chapters. Contrarily
to the gauge theories, Einstein’s gravitation has not been quantized, either from the
canonical, or from the perturbative points of view [41, 127]. On the side of classical
physics the theory can describe the gravitational field of only about 4% of the known
universe. The remaining 96% produces a gravitational effect that is not included in
Einstein’s theory of gravitation.

Einstein’s gravitation provided the geometrical paradigm from which we have
modeled the other interactions. Indeed, as we have seen in Chapters 2, 5, and 10,
the basic structure present in all fundamental interactions is the Riemann tensor
written in coordinate independent form as a linear operator defined by two linearly
independent vector fields U, V as

R(U, V )W = [∇U ,∇V ]W (11.1)

where ∇ is the covariant derivative of the Levi-Civita connection.
The curvature expression (11.1) was derived by the transport of a vector field W

along a closed parallelogram, constructed by two other independent vector fields
U and V and their parallel transports as described in Fig. 2.5. This construction is
independent of the choice of the space where the operator acts and it is independent
of a previous choice of the connection. Finally it is independent of the choice of a
basis in that space. As we said before, the Riemann curvature was conceived at the
time when Riemann was defining also his metric geometry, so that the association of
the above expression with a metric connection is very common, albeit unnecessary.
As evidenced by the Yang–Mills theory, the same expression holds for all other
fundamental interactions, when the symmetry of the field is defined. This result is
supported by a vast experimental background.

M.D. Maia, Geometry of the Fundamental Interactions,
DOI 10.1007/978-1-4419-8273-5_11, C© Springer Science+Business Media, LLC 2011
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In particular, considering the tangent spaces to a Riemannian manifold and
choosing a tangent basis {eμ}, the Riemann curvature tensor (11.1) is usually
expressed by its components in that basis as

R(eμ, eν)eρ = Rμνρ
σ eσ = [∇μ,∇ν]eρ (11.2)

where we simplified the notation ∇μ = ∇eμ .
In the Riemannian geometry, the association of the connection with a metric

gμν is made with the additional assumption that gμν;p = 0, called the metricity
condition as explained in Chapter 2. By expressing this operation in terms of the
Christoffel symbols ∇μeν = Γ

ρ
μνeρ , after a cyclic permutation of the indices, sum-

ming the two first results, and subtracting the third, we obtain the Levi-Civita metric
connection of Riemann’s metric geometry [48]

Γ ρ
μν =

1

2
gρσ (gμσ,ν + gνσ,μ − gμν,σ ) (11.3)

The Riemann tensor derived from the above connection was applied by Einstein
in 1916 to obtain the gravitational field equations. These equations were strongly
motivated by Newton’s gravitational theory, which as seen in Chapter 5 can also
be formulated in geometrical terms. This geometrical interpretations of Newton’s
gravitation led to a simple derivation of Einstein’s equations, which is now derived
from the Einstein–Hilbert action principle, with respect to the metric

δ

δgμν

∫
R
√−gdv = 0 (11.4)

where R denotes the Ricci scalar R = gμρgνσ Rμνρσ .
Although this is seldom mentioned, we find it relevant in the present discussion

to assign a geometrical interpretation to the Einstein–Hilbert action principle: Since
the curvature scalar R is the simplest scalar term directly derived from the Riemann
tensor, then (11.4) has the meaning that the gravitational field follows from the
smoothest possible geometry, in the sense that it corresponds to the smallest possible
variations of the Riemann curvature.

In relativistic cosmology the above interpretation of the variational principle can
be rephrased a la Leibniz, by saying the universe where we live is the smoothest
among all possible universes.

There is an alternative procedure to the variation of (11.4) which is called the
Palatini formulation of Einstein’s gravitation. In this formulation, the connection
and the metric are initially considered to be two independent variables. Only after
the metricity condition ∇g = 0 is imposed we obtain the Levi-Civita connection
[128]. The Palatini formulation has been applied in the comparison between gravi-
tation and gauge theory [127].

The symmetry of Einstein’s theory was chosen in a separate postulate to be
the group of diffeomorphism of the space–time. That is, unlike the case of special
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relativity all coordinate systems of the space–time are equally good, meaning that
no observer is preferred in detriment of another. Such democratic principle is often
claimed to be a strong aspect of Einstein’s theory (without any political connotations
intended). On the other hand, the diffeomorphism invariance of the theory has been
the source of the main difficulties of Einstein’s theory, mainly with respect to a
quantum theory of gravity. Indeed, the diffeomorphism group is a Lie group with
infinite dimensions, whose unitary irreducible representations required in quantum
gravity are very difficult if not impossible to classify.

As we have seen in Chapter 9, the concept of curvature in gauge theories is the
same as in (11.1). The difference with general relativity resides in the choice of
the connection. Following the example of the electromagnetic field, Yang and Mills
proposed that the field strengths of the gauge fields are given by the curvature

F(U, V ) = [DU , DV ] (11.5)

where now Dμ = I∂μ + Aμ is the covariant derivative associated with the connec-
tion Aμ.

Thus, different from the postulated Levi-Civita metric connection of general rel-
ativity, where the metric is determined by solving Einstein’s equations, in gauge
theory the gauge connection is determined as a solution of the gauge field equations
resulting from the variational principle

δ

δAμ

∫
1

4
trFμνFμνdv = 0 (11.6)

Therefore, the single idea of Riemann curvature has provided us with two suc-
cessful variational principles (11.4) and (11.6), which are able to describe all known
fundamental interactions and have predicted new results. The question that remains
is, if we take the Riemann curvature as a fundamentally proved concept, why do we
need two different variational principles? Can gravitation be derived from (11.6) or
can all gauge fields be derived from (11.4)? In the search for a unity of physics, both
possibilities have been tried, but they are not conclusive. New alternatives based on
entirely different principles have also been proposed, sometimes even dispensing
with the whole concept of continuity, fields, and interactions. In the following we
will discuss, even if briefly, some of the above questions on the unity of the action
principles involving the Riemann concept of curvature [129].

11.2 Gauge Gravity

The suggestion that gravitation based on Einstein’s theory or a slight modification of
it can be described as a gauge theory appeared around 1960, when various authors
proposed the use of the Poincaré group of the tangent Minkowski’s space–times as
the gauge group of gravitation. That suggestion leads to the emergence of torsion in



160 11 Gravitation

space–time, associated with the translational subgroup of the Poincaré group. The
physical meaning of that torsion remains unclear.

On the other hand, to be a gauge theory the Einstein variational principle should
be changed to something like in (11.5) [130]. This means a really fundamental mod-
ification of Einstein’s theory.

In more general terms, back in 1962 Cornelius Lanczos conjectured that
Einstein’s gravitation could have properties similar to gauge theories, including the
dualities of the Riemann tensor. That is, the four-index Riemann tensor components
would be derived from a three-index connection Aαβγ [131]. This has led to an
intense search for such three index connections. In spite of the many efforts, the
existence of such potential was shown only in particular instances [132–135].

Clearly, if we wish to compare any two theories they must be written in the
same mathematical language. In this sense, to describe gravitation as a gauge theory
gravitation must be written in the language of gauge theory and not vice versa.
This implies that such gauge theory of gravitation must have a Yang–Mills type
Lagrangian, written in terms of the curvature operators. In this case, the appropriate
procedure would be like in the standard Yang–Mills theory: identify a local gauge
symmetry of gravitation as a Lie group; write its Lie algebra; write the correspond-
ing curvature operator; and finally write the Yang–Mills equations. Only then we
solve these equations to determine the gauge connection.

From these general lines we may conclude that Einstein’s theory of gravi-
tation is not a gauge theory of gravitation, for several reasons: To start with,
the Einstein–Hilbert Lagrangian (11.1) is linear on the Riemann curvature tensor,
whereas in gauge theory the Lagrangian is quadratic in the Riemann curvature
tensor as (11.5). Second, the diffeomorphism invariance of the base space (the
space–time) may interfere with the determination of the connection expressed in
terms of dxμ. However, nothing prevents the construction of an alternative gauge
theory of gravitation, as long as it is motivated by the solutions of the current
problems of gravitation: That is, hopefully quantizable in the sense described by
’tHooft [41] and hopefully being capable of explaining the 96% of the gravita-
tional field of the universe. In the following we will describe the general lines of
what the gauge theory of gravitation should look like, including the possible gauge
symmetries.

We start with a principal bundle (M , G, π, T B) of a Lie symmetry group G
for a Yang–Mills type Lagrangian constructed with the Riemann curvature of the
manifold acting on a total space T B, defined on a four-dimensional space–time
manifold M . As in the general case, the principal bundle is trivialized by the dual
of the adjoint representation of the Lie algebra M × G ∗.

The Yang–Mills gravitational Lagrangian for the Riemann curvature (11.1)
should be like in all other Yang–Mills fields

L = 1

4
trRμνR

μν (11.7)
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where R = [Dμ, Dν] and Dμ = I∂μ+ Aμ. The connection Aμ is to be determined
by solving the Yang–Mills equations resulting from the above Lagrangian.

In practice we need to write the components of (11.7) in the basis {eμ} of the
dual Lie algebra G ∗ of the symmetry group G (not yet defined) to obtain a vector-
matrix in the Lie algebra. Then the Yang–Mills Lagrangian for the gravitational field
would be:

RμνRμν(eρ) = Rμνρ
σRμν(eσ ) = Rμνρ

σ Rμν
στ eτ = Rμνρσ Rμνστ eτ

Taking its trace and replacing in (11.7) we obtain the Yang–Mills gravitational
Lagrangian, for an yet unspecified gauge symmetry

L = 1

4
trRμνρσ Rμνρσ (11.8)

The inclusion of
√−g is optional, depending on whether the diffeomorphism invari-

ance is postulated or not.
The above Lagrangian looks like one of the so-called f (R) (quadratic) gravita-

tional theories, defined by a Lagrangian like L = f (R)
√

g, where f is an arbitrary
function of scalars built with the Riemann tensor. The field equations are the same
Yang–Mills equations.

The local gauge symmetry of the Lagrangian (11.8) cannot be arbitrarily chosen.
This is dictated by the necessity to have special relativity as the limit of vanishing
gravitation. Furthermore, the chosen gauge symmetry must be able to mix with the
other gauge groups. Here we discuss only three examples:

The simplest choice of symmetry is a local Lorentz symmetry acting on each
tangent fiber of the space–time, whose connection is defined by the solutions of the
field equations derived from (11.7). Its Lie algebra is well established and we may
readily construct its adjoint representation (which is locally defined).

Local Lorentz gauge symmetry has been suggested by several authors (see, e.g.,
[136, 137]). The most attractive property of one such theory is that it is compatible
with the combination with the other gauge symmetries in the standard model, which
becomes

Lorentzlocal ×U (1)× SU (2)× SU (3)

There are two good arguments to exclude the complete Poincaré group as a gauge
symmetry. One of them is that the Lie algebra operators of the translations always
commute, so that the curvature operators associated with these translations vanish,
and they do not contribute to the Lagrangian. However, the translations can be asso-
ciated with torsion, which lead either to the Einstein–Cartan theory or to a pure
torsion theory. In such case, we need to reinterpret gauge theory also as a torsion
theory.

The second reason to avoid the Poincaré symmetry is the mixing symmetry prob-
lem mentioned in the introduction: If we combine the Poincaré group with the other
gauge symmetries like in the above Cartesian product, we end up having all particles
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belonging to the same spin multiplet, also with the same mass, which is not true.
This is again a consequence of the translational subgroup of the Poincaré group.
Therefore the inclusion of the complete Poincaré symmetry as the gauge group of
gravitation will not describe the known spectrum of particle mass and spins.

One possible way out of this difficulty is to replace the Poincaré group by the
deSitter symmetry in four-dimensional space–time with a constant curvature Λ. By
a process known as the Inonu–Wigner group contraction, we obtain the Poincaré
group when Λ→ 0 [138].

Another possibility to incorporate the translational symmetry as part of the local
gauge symmetry is to consider the 15-parameter local conformal group in each tan-
gent space–time [35]. The Yang–Mills equations are invariant under the conformal
group and the whole Poincaré group is a subgroup of it.

The conformal group is isomorphic to the pseudo-orthogonal group SO(4, 2)
and the representations of it have been classified [139]. The group SO(4, 2) can be
interpreted as the group of isometries in a six-dimensional space with two time-like
dimensions.

Since the Yang–Mills equations are consistent only in four dimensions, the only
way to write the Yang–Mills equations in a six-dimensional space is to have the
four-dimensional space–time as a subspace embedded in that space.

The conformal invariance of Maxwell’s equations was discovered in 1909/1910
[74, 75]. However, two factors have contributed to its early dismissal: One was
the fact that it is not causal. That means that we need to consider the advanced
component of the electromagnetic potential, something that was not understood,
and perhaps it is not yet understood today, even considering Feynman’s discussion
on that subject in 1942 [140]. The other factor was that its association with a six-
dimensional space–time, with two times, was not really very attractive in a period
when almost everyone thought that three dimensions were enough.

Until recently causality was one stronghold against speculative theories [76].
However, at the quantum level it may appear different. The use of the conformal
group has been recently explored as a way to study quantum fields in presence of
the gravitational field. It originated with a conjecture known as the ADS/CFT cor-
respondence, by means of which the quantization of the standard gauge theories in
Minkowski space–time can be transferred to a curved space–time, so that eventually
it induces quantum fluctuations of the metric geometry [36]. The ADS stands for
the anti-deSitter space–time which is a four-dimensional subspace of M6(4, 2). In
this particular line of thought we may consider the universal covering group of the
conformal group which is SU (2, 2)local, also known as the twistor group or the local
gauge group, suggesting the extended gauge unification to

SU (2, 2)local ×U (1)× SU (2)× SU (3)

where hopefully the implications of the translational subgroup will not show up. We
should note in passing that the same twistor group has been present in one recent
revision of the string program [141].
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11.3 Loop Gravity

One interesting question is, why was the Riemann curvature defined by transport of
a vector field W along a four-sided parallelogram? Could it be derived by a three-
sided figure, or perhaps an infinite number of small line segments? What prevents
us considering the definition of the same concept using just the transport of W along
a single continuous loop? Actually nothing, but the curvature operator will depend
on the loop path followed by W . The expression of the Riemann curvature in a
closed loop γ was evaluated by Wilson in 1973 for a three-dimensional surface in a
four-dimensional space–time [142].

Consider the transport of a tangent vector field along a single continuous loop γ ,
starting and ending at point p. As in Fig. 2.5, the end vector W ′ does not coincide
with the original vector W . Their difference can be expressed by the loop integral
[142, 143]

R(Γ ) = Pe
∮
γ Γi dxi

, i = 1, . . . , 3 (11.9)

where the coefficients Γi are the components of the affine connection ∇ evaluated
in a base of the three-dimensional space (a triad, in the used language). P is an
ordering fact which depends on the path integration.

It follows that the circular motion of the basis characterizes a local group, called
the group of holonomy of the triad. This is a Lie group with three parameters, so
that it is isomorphic to SO(3), which in turn is isomorphic to SU (2). The ordering
factor P is defined by the orientation of the transport along the closed curve.

Admitting that Γi are continuous functions of the coordinates along the loop,
the exponential in (11.9) is a well-defined real analytic function represented by the
standard exponential converging positive power series

e
∮
γ Γi dxi = 1+

∮

γ

Γi dxi +
(∮

γ

Γi dxi
)2

+ · · · (11.10)

Therefore, (11.9) is a well-defined function of the connection Γi , describing the
classical curvature of the three-dimensional surface in the sense of Riemann.

The quantum version of (11.9) can be obtained by applying the classical quantum
correspondence

Γi ←→ i h̄ ˆAi , i = 1, . . . , 3 (11.11)

where ˆAi denote the three-dimensional components of the quantized SU (2) gauge
potential. As we have seen in the discussion of the Yang–Mills theory in the previous
section, the Lie algebra of SU (2) can be written in terms of the Pauli matrices as
Γ = dΓμσμ, so that the connection one-form can be expressed as

ˆAμdxμ = dΓμσ
μ
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In this representation ˆAμ are quaternion fields. Thus, the three-dimensional cur-
vature operator (11.9) leads to the quantum curvature operator of the three-
dimensional hypersurface

R̂(A ) =Peih̄
∮
γ
ˆAi dxi

, i = 1, . . . , 3 (11.12)

where the three-dimensional components ˆAi are obtained from the imaginary (vec-
tor) part of the full quaternion ˆAμ [118].

Hence the quantum fluctuations of the SU (2) gauge field ˆAi in the exponential
function induce the quantum fluctuations of the three-dimensional curvature and
consequently the quantum fluctuations of the gravitational field [144].

The difficulty facing (11.12) is the same as we discussed in the quaternion
representation of instantons in the previous chapter. By the same token, the ana-
lytical properties of the quaternion exponential of a quaternion function are not
well defined to be rightfully represented by a convergence of positive power series.
Therefore, to proceed with this interesting proposal for quantum gravity, either we
define analytical quaternion functions, including the quaternion exponential by the
power series, or else we reinvent the integral (11.12) as a limit of a discrete curva-
ture, which means a discrete geometry. The latter option caused a change of course
in the original induced quantization program of Ashtekar, where the integral could
be derived from a discrete space–time structure [145, 146].

Quite justifiable this later phase of loop quantum gravity has been imple-
mented by an earlier discrete space–time structure described by Penrose, called
Spin Network. In essence, this is a projective space where the projective rays (or
lines) are associated with the possible eigenvalues of the spin Casimir operator of
the Lorentz group [147].

11.4 Deformable Gravity

Since all field strengths in gauge and gravitation use the same concept of curvature,
we infer that the importance of Riemann curvature to the fundamental interactions
is enormous. However, the local shape of Riemannian space–time is not uniquely
determined by the Riemann tensor. So, the observed fundamental interactions do not
correspond to a specific geometry, but to a class of equivalence of geometries. The
ambiguity of the Riemann curvature to determine the shape was noted by Riemann
in his original paper: ...We may, however, abstract from external relations by consid-
ering deformations which leave the lengths of lines within the surfaces unaltered, i.
e, by considering arbitrary bendings – without stretching – of such surfaces, and
by regarding all surfaces obtained from one another in this way as equivalent.
Thus, for example, arbitrary cylindrical or conical surfaces count as equivalent
to a plane...[5].

Does this difference in shape make a difference to physics? From the point of
view of gauge theory, the shape difference seems to be less critical. After all, the
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connections are determined from the Riemann curvature and so, regardless of any
possible ambiguity that the curvature may have, the experimental evidences in high
energy physics give a solid support for the standard gauge theory. On the other
hand, in Einstein’s gravitation the connection is postulated and the observables of
the gravitational field are determined by the eigenvalues of the Riemann tensor. As
we have already commented the experimental tests for the gravitational interaction
in cosmology do not correspond to gravitation described by Einstein’s equations.

The problem of the shape ambiguity of Riemann tensor appeared in the early days
of the Riemann geometry, long before it was used to describe the gravitational field.
The concern then had to do with the lack of intuitiveness of the Riemann tensor,
which should convey the idea of shape of the manifold. In particular for a physical
manifold such shape should be an observable.

The earliest known proposition to solve this problem was given by Luigi Schlaefli
in 1871, when he conjectured that the shape of a Riemannian manifold could be
defined if the Riemannian manifolds could be embedded in a 1:1 fashion into a
higher-dimensional space [148]. In this way, the Riemann curvature of the space–
time can be compared with the Riemann curvature of the embedding space, such
that their difference defines the shape in terms of the extrinsic curvature. Since the
embedding is a 1:1 map, after the characterization of the shape we could reverse
the embedding and return to the intrinsic geometry, but now knowing about the
shape defined by the extrinsic curvature, for example, telling the difference between
a plane and a cylinder. This would be like some kind of fine-tuning the Riemann
curvature or, if you like, the gravitational field.

Therefore, Schlaefli’s conjecture provided the definitive solution for the shape
problem of the Riemann geometry, but it was not so easy to implement because it
depended on the development and solutions of the Gauss–Codazzi–Ricci equations.
These are non-linear equations involving the metric, gμν , the extrinsic curvature
kaμν , and the third fundamental form Aμab as independent variables. They are the
integrability conditions for the existence of the embedding [48].

Earlier theorems on the solutions of the Gauss–Codazzi–Ricci equations made
explicit use of the expansion of the embedding functions in positive power series
(analytic functions) [149, 150]. The general solution of the local embedding prob-
lem based on differentiable functions was derived by John Nash in 1956, using a
process of smooth deformation of Riemannian manifolds [151].

Nash’s Local Embedding for Space–Times
Nash’s theorem was originally shown for positive definite metrics but it was soon
extended to non-positive metrics. The smoothing process is generally considered
to be difficult to understand and we will present an alternative and much simpler
derivation of the Nash geometric flow condition. The theorem can be announced as:

Given a space–time M̄4, such that its isometric local embedding in a larger
Riemannian manifold VD, by a regular and differentiable map X : M̄ → VD,
is known. Then it is possible to smoothly deform the metric of M̄ along the extra
dimensions to obtain another embedded geometry space–time. Using the inverse
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embedding map, the deformed space–time may be removed from the embedding to
obtain the intrinsic four-dimensional deformed space–time.

For simplicity we will show the result for only one extra dimension, so that all
deformations are limited to fit into the same five-dimensional space. The theorem
holds for any number of dimensions and metric signatures, but here we set D = 5.
It is interesting to notice that the signature of the embedding space is not open to
choice [152] the signature of the extra dimensions is not open to choice, but they are
determined by the embedding equations.

Denote the metric components of the embedding space by G AB , the metric of
M by ḡμν both in arbitrary coordinates. The embedding map is a vector of VD ,
with components X A. The unit vector orthogonal to the embedded geometry has
components ηA. Then the isometric embedding is defined by

X A
,μX B

,νG AB = ḡμν, X A
,μη̄

B G AB = 0, η̄Aη̄B G AB = 1 (11.13)

The extrinsic curvature of V̄n is by definition the projection of the variation of η on
the tangent plane and is given by [48]

k̄μν = −X̄ A
,μη̄

B
,νG AB = X A

,μν η̄
B G AB (11.14)

Consider the one-parameter group of diffeomorphisms defined in VD , applied to
points in M4 by a map

hy(p) : VD → VD

defining a curve in VD , called the orbit of p, with parameter y, passing through p,
and with tangent vector at p given by the orthogonal unit vector:

α(y) = hy(p), α′(p) = η(p)

From the fundamental theory of curves we know that such a curve exists and it is
unique.

The group properties are characterized by the composition map defined by

hyohy′(p) = hy+y′(p), h0(p) = p, hy−y = h0(p) = p

Applying such diffeomorphism to all points in a neighborhood ∪p of p, we
obtain a local congruence of orbits in VD , each orbit with its own parameter y.
The resulting set of points is an aleatory distribution, not necessarily characterizing
an embedded submanifold. For this we need further conditions.

Given a geometric object Ω̄ at a point in M̄ , the Lie transport of Ω̄ for a distance
δy along the orbit produces a new object given by [81]

Ω = Ω̄ + δy£ηΩ̄
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where £η denotes the Lie derivative of Ω̄p with respect to η.
In particular, the Lie transport of the Gaussian frame {X A

μ, η̄
A
a } of M gives

Z A
,μ = X A

,μ + δy £ηX A
,μ = X A

,μ + δy ηA
,μ (11.15)

ηA = η̄A + δy [η̄, η̄]A = η̄A (11.16)

The set of coordinates Z A obtained by integrating these equations may describe
another embedded differentiable manifold in VD only if they satisfy the new embed-
ding equations

Z A
,μZ B

,νG AB = gμν, Z A
,μη

B G AB = 0, ηAηB G AB = 1 (11.17)

Replacing (11.15) and (11.16) in (11.17) and using definition (11.14) we obtain
the new components

gμν = ḡμν − 2yk̄μν + y2ḡρσ k̄μρ k̄νσ (11.18)

kμν = k̄μν − 2yḡρσ k̄μρ k̄νσ (11.19)

and taking the derivative of (11.18) with respect to y and comparing with (11.19)
we obtain Nash’s geometric flow condition

kμν = −1

2

∂gμν
∂y

(11.20)

Actually (11.20) has been in use in general relativity since 1971, under the designa-
tion of York relation in the study of initial value condition in the 3+1 decomposition
of space–time when y is taken as the time variable1 [155].

To complete Nash’s theorem we require that (11.17) be integrated. Only then Z A

will describe the embedding map of the deformed Riemannian manifold M4. This
is obtained by solving the integrability conditions for (11.17). They are the Gauss–
Codazzi equations (In the case of just one extra dimension the Ricci equation does
not exist.) obtained from the components of the Riemann tensor 5 RABCD of VD , in
the Lie transported Gaussian frame:

1 Although the idea of smooth deformation of a Riemannian geometry is older, it has become
popular only recently in the form of Rμν = − 1

2
∂gμν
∂y where Rμν is the Ricci tensor and y represents

any coordinate in the manifold. This expression was inspired by the Fourier law on heat flow
and was successfully applied to solve the Poincaré conjecture on the continuous deformation of
a compact three-dimensional manifold into a sphere [153, 154]. Unfortunately the Ricci flow is
non-relativistic and it is not compatible with Einstein’s gravitation in four dimensions.
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5 RABCD Z A
,αZ B

,β ZC
,γ Z D

,δ = Rαβγ δ +(kαγ kβδ−kαδkβγ ) (11.21)

5 RABCD Z A
,αZ B

,β ZC
,γ η

D = kα[β;γ ] (11.22)

Considering that the embedding of the original manifold M satisfies the Gauss–
Codazzi equations, it follows that the above equations are automatically satisfied
when we apply (11.15) and (11.16). Then using the the Weingarten equation we may
finally determine Z . It is important to observe that Z remains a regular function so
that the local inverse of Z determines the new and deformed [48].

From the first of these equations (Gauss’ equation) we clearly see how Schlaefli’s
solution of the shape ambiguity in Riemann’s tensor is solved: The Riemann tensor
of the embedded manifold is compared with the Riemann tensor of the host space,
and their difference is given by the extrinsic curvature. The second equation defines
a condition on the extrinsic curvature in terms of other components of the Riemann
tensor of the embedding space.

Deformable Gravity
Applying the above deformation condition to a space–time of general relativity,
obtain new Einstein’s equations in four dimensions describing a deformed gravity
as follows.

The physical interpretation of (11.20) is that the gravitational field represented
by the metric of space–time propagates along the extra dimensions of the embed-
ding space as well as propagating in the space–time itself in accordance with Ein-
stein’s equations. However, the propagation along the extra dimensions is given by
the extrinsic curvature. Clearly these two different forms of propagation must be
consistent. This is obtained by a definition of the geometry of the embedding space.
Since the embedding is isometric, the deformed metric is induced by the metric of
the embedding space. Therefore, the metric geometry of the embedding space is also
derived from the same Einstein–Hilbert principle, leading to the higher dimensional
Einstein’s equations. In the case of five dimensions these equations are

5 RAB − 1

2
5 RGAB = G∗T ∗AB (11.23)

where G∗ is a new gravitational constant compatible with the higher dimensional
geometry [156] and where T ∗AB denotes the components of the energy–momentum
tensor of the known material sources capable of interacting with the electromag-
netic and nuclear forces. As we have seen in Chapter 10, these are composed
of the ordinary matter and gauge fields consistently defined and observed in the
four-dimensional space–times only. Thus, in order to reproduce the 4-dimensional
Einstein’s equations, this corresponds to say that the projected components of the
right hand side of (7.1) are
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G∗Z A
,μZ B

,νT ∗AB = 8πGTμν

Z A
,μη

B T ∗AB = 0

ηAηB T ∗AB = 0

Therefore the projected components of (11.23) gives the four-dimensional Einstein’s
equations for the deformed space–time

Rμν − 1

2
Rgμν − Qμν = 8πGTμν (11.24)

k ρ

μ;ρ − h,μ = 0 (11.25)

where we have denoted the mean curvature of the space–time by h = √gμνkμν ,
Gaussian curvature by K = √kμνkμν , and

Qμν = gρσ kμρkνσ − kμνh − 1

2

(
K 2 − h2

)
gμν (11.26)

The tensor Qμν , called the deformation tensor does not appear in the usual
Einstein’s equations. It is conserved in the sense that

Qμν ;ν = 0 (11.27)

so that it is an observable in space–time representing the missing shape information,
under the conditions of Noether’s theorem described at the end of Chapter 8. In other
words, there are observables effects in space–time associated with the extrinsic cur-
vature.

11.5 Kaluza–Klein Gravity

The success of Einstein’s theory of geometrical gravitation motivated the possibility
that the original Riemannian paradigm should be modified to include the other three
fundamental interactions. This would be a reversal of the current trend to define
a gauge theory of gravitation. In the Kaluza–Klein program all gauge interactions
are contained in the same Einstein–Hilbert principle, but applied to a higher dimen-
sional Riemannian manifold.

Kaluza–Klein theory was defined in 1920 by Theodore Kaluza as a five-
dimensional theory based on the Einstein–Hilbert principle, proposing a unifica-
tion of the electromagnetic and gravitational fields. The theory was made more
consistent by Felix Klein in 1926. Much later in 1963 Kaluza–Klein theory was
generalized to include all gauge fields [157].

The theory assumes that the physical space is a Riemannian manifold with a
product topology V4× BN , where V4 denotes a space–time of general relativity and
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BN is an N–dimensional compact space. The geometry of the total space was also
defined by Einstein–Hilbert in 4 + N dimensions. Only in 1984 it was understood
that the Kaluza–Klein theory was not able to reproduce the observations at the level
of the electroweak theory.

Essentially, the problem of the proposed theory resided in the compact internal
space BN which was proposed to have diameter equal to Planck’s length, 10−33cm.
This would guarantee that this space would not be “visible” by any known gauge
probes. However, when evaluating the behavior of fermions described by the higher
dimensional Dirac equation, it was found that at the lower energy limit of the
theory, at the electroweak scale, the fermion mass term generated by the internal
components would not go away, perturbing the observed behavior (the chirality) of
fermions at the electroweak level [158]. Within the assumed postulates of the theory,
mainly the product topology, there was nothing to be done. A number of schemes
were proposed to save the theory, but after 20 years of hard work the theory was
abandoned by 1985 (see, e.g., [159, 160]).
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