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Abstract: In recent years, compelling evidence has been gathered that supports a role for 
epigenetic alterations in the pathogenesis of systemic lupus erythematosus (SLE). 
Different blood cell populations of SLE patients are characterized by a global loss of 
DNAmethylation. This process is associated with defects in ERKpathway signalling K
and consequent DNMT1 downregulation. Hypomethylation of gene promoters has 
been described, which permits transcriptional activation and therefore functional 
changes in the cells and also hypomethylation of the ribosomal RNRR A gene cluster. 
!����� ��	� ��	����	�� ����	��� ���	������� �	�	��������� ��	� �	�	�� �����	�� ���
autoreactivity (ITGAL), osmotic lysis and apoptosis (PRF1, MMP14 and LCN2), 
�����	��
�	�	��������̂ $_���<����`���������̂ ||~&�<��Q"�{"�	����	��������̂ $��'�
and CD40LG) and cytokine pathways (CSF3R, IL-4, IL-6 and IFNGR2). DNA
methylation inhibitors are also known to induce autoreactivity in vitro and cause a 
�
��"��	����	��	��������%������	�����	�	��
���	�������������	�����������������	�
been described in SLE. CD4+ lymphocytes undergo global histone H3 and H4
deacetylation and consequent skewed gene expression. Although multiple lines of 
evidence highlight the contribution of epigenetic alterations to the pathogenesis of 
lupus in genetically predisposed individuals, many questions remain to be answered. 
Attaining a deeper understanding of these matters will create opportunities in the 
promising area of epigenetic treatments.

Epigenetic Contributions in Autoimmune Disease, edited by Esteban Ballestar. 
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the 


����������������"�����"�
	�����������������	������������������
��	����������	�	���	�

��`��������� ���� ��������	�� ��=���%1,2 This disease can affect all sexes, ethnicities

and ages although the highest prevalence is in women of African descent during their 

reproductive years.1,3 The prevalence of SLE in Northern Europeans has been estimated 

at approximately 40 cases per 100,000 persons, in contrast to more than 200 per 100,000 

persons among African-American populations.4 Women are most commonly affected 

and the female to male ratio is 9:1. With respect to life expectancy, the 15-year survival 

rate is currently around 80% and the pattern of mortality is bimodal, with some dying 

earlier from consequences of the active autoimmune disease and others dying later from 

atherosclerotic cardiovascular disease.5

SLE is characterized by a broad range of clinical manifestations and unpredictable

exacerbations and remissions.All systems and organs can be affected through autoantibody 

�	����	����`��������%�$����	���������	�����������	���	����������������
�������

SLE, since 85% of patients develop various rashes, although there is a wide range of 

symptoms that do not include skin1,6 (Table 1). The diagnosis of SLE is based on eleven

criteria established by the American Rheumatism RR Association: malar rash, discoid 

rash, photosensitivity, oral ulcers, arthritis, serositis, renal disorder, neuropsychiatric 

alterations, haematological disorders, immunological alterations and the presence of 

antinuclear antibodies. At least four of these criteria are required to make the diagnosis 

with certainty.

The pathogenesis of SLE is complex and remains unclear. However, alterations of 

apoptotic processes and altered cytokine levels are two major mechanisms contributing 

to the loss of tolerance and consequent development of autoantibody production. 

!���������	�� ��� �
�
������ ��	� ��	� �����	� ��� ���������	��� ����� �����	� ��`���������

injury through autoantibody production. Moreover, this altered process may explain 

the fact that SLE autoantibodies mainly react with intracellular components. Defects in 

Table 1. Symptoms described in SLE patients1,6

Affected Organ Symptoms

����
	���� Fever, fatigue, weight loss

Circulatory system Heart failure, pericarditis, endocarditis, myocarditis, 

coronary thrombosis

Cutaneous system Rash, photosensitivity, alopecia, changes in pigmentation

Gastrointestinal system Abdominal pain, peritonitis, pancreatitis, mesenteric

vasculitis, nausea, dyspepsia

Haematological system Leucopenia, lymphopenia, anaemia, thrombocytopenia

Musculoskeletal system Arthralgia, myalgia, arthritis

Nervous system Headache, mood, cognitive and movement disorders,

psychosis, delirium, seizures

Pulmonary system Pleuritis, dyspnea, serositis, pneumonitis, haemoptysis

Renal system Glomerulonephritis, hypertension, haematuria, oedema, 

hyperlipidaemia.

Reproductive system Miscarriage, pre-eclampsia, intrauterine growth restriction
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apoptotic clearance and alterations of complement components related to phagocytosis

have also been described.7 Both alterations could lead to aberrant antigen uptake by 

antigen-presenting cells (APCs) and consequent presentation to B and T cells. On the

���	����������������������	��	��	����������	�����������
���	�������	��	�������	���	��

(GCs) has been described in a subgroup of SLE patients. These phagocytes rarely contain

apoptotic material. Mistakes in the elimination of apoptotic B cells induced after somatic 

mutation, or other cells undergoing apoptosis such as monocytes and macrophages, 

could be a source of autoantigen release. This apoptotic debris could then be presented 

by germinal node follicular dendritic cells (FDCs), providing survival and stimulatory

signals for autoreactive B cells.8 Autoantibody production against nuclear antigens

is a hallmark of systemic lupus erythematosus. These antibodies are responsible for 

��`�����������=�����������������	����
	������������������	�������	�������_��

diagnosis, prognosis and patient management. Moreover, these antibodies can bind to

Table 2. Main autoantibodies described in SLE patients

Autoantibody Prevalence Autoantigen

Antigen 

Location Tissue Target

Anti-dsDNA �'"�'¬ Ds genetic mate-

rial

Nuclear Kidney and 

skin

Antinucleosomes �'"�'¬ Histones Nuclear Kidney and 

skin

Anti-Ro (SS-A)AA ��"�'¬ 52 KDa or 60KDa 

proteins

Nuclear Kidney, skin, 

foetal heart, 

lung

Anti-Sm &'"�'¬ Spliceosomal 

snRNP

Nuclear Foetal heart

Anti-La (SS-B) &'"�'¬ 48 KDa transcrip-

tion terminator 

protein

Nuclear Kidney

Anti-ribosomal-P &�¬ 60S ribosomal 

subunit phosphop-

roteins (P0,P1, P2)

Nuclear Kidney, 

brain, liver

Anti-nRNP ��"�'¬ Spliceosomal 

snRNP

Nuclear Muscles, 

circulatory 

system

Anti-KuKK �'"�'¬ P70/p80 DNA

reparation proteins

Nuclear Joins, heart, 

lung

Anti-NMDA

receptor

��"�'¬ NMDA Receptor Membrane Brain

Antiphospholipids �'"�'¬ Phospholipids Membrane and 

extracellular

Circulatory 

system

Anti-� actinin �'¬ �-actinin Cytoplasm Kidney

Anti-C1q �'"�'¬ C1q complement 

component

Extracellular Kidney

Ds (double-stranded), Sm (Smith), nRNP (nuclear riboprotein), snRNP (small nuclear riboprotein),

NMDA (N.-methyl-D-aspartate.2,6,9,127-132
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autoantigens or crossreact with other components blocking or increasing the functions 

�����	�������	��%�|��	�������'���������������
	�������	�����	��		���	�����	�����������

which are to nuclear autoantigens and some are correlated with effects on tissues, disease 

manifestations and clinical stage (Table 2). For example, the anti-double-stranded DNA

^����"����!<���������������	�������
	���������������������_�������	��������	�	��	�����

50-80% of lupus patients at some point during the course of the disorder, but in fewer 

than 0.5% of healthy people. However, the anti-dsDNA antibody is not very sensitive 

due in part to its transience. The presence of this autoantibody tends to be associated with

clinical activity.9 #��		�������'¬������	�_���
�
�����������������
	�������	����
�	���	�

��	����	�����������������	������������������	��	���%10 Autoantibodies are also present in

healthy people, where they have a nonpathological role.11 The main difference between 


�����	����_���������������	����������	�����	�����
	�
	������	�������������������	�

pathogenic forms, which is due to the strong stimulation of B cells by CD4� lymphocytes 

that induces an antibody switch from IgM to IgG and a change in the molecular sequence 

of the secreted antibody.2 Cytokines are also involved in SLE. Indeed, patients who

suffer from lupus are characterized by the “interferon signature”, due to overexpression

of Type I interferons. Several cytokines and cytokine regulators are altered in SLE for 

genetic or epigenetic reasons. For example, a polymorphism of interferon regulatory factor 

5 (IRF5) is an important risk factor for SLE development and a decrease of interleukin

2 production has been reported in T cells from SLE patients.12,13 In contrast, increased 

serum interleukin 10 levels are associated with SLE activity.14

Currently, experts do not fully understand the aetiology of SLE. A combination of 

�	�	�������������������	������	�	��������������������	������	�
���������	�	�
�	��%�{�	

most widely accepted model of the disease highlights the importance of environmental 

events or factors in the onset of the pathology when the genetic context is predisposing. 

Genetic susceptibility is an important source of risk for developing SLE, as family 

aggregation and concordant twin research shows. One such study reported a concordance 

rate for SLE of over 25% in monozygotic twins compared with 2% in dizygotic siblings.15

SLE is a multifactorial disease with complex genetics. Linkage and association studies 

���	���	����	������
	��������������	������������
����	�	�
�	��2,16,17 (Table 3). Some 

genes included in the disease susceptibility regions code for important immune system 

proteins, especially those of the cytokine signal transduction pathways, apoptosis and 

complement systems. Alterations of these genes can lead to a loss of tolerance and 

increased apoptosis of lymphocytes and monocytes. Hormonal and sexual genetic factors 

are also implicated in SLE aetiology, since �85% of lupus patients are women, most of 

them of childbearing age. However there is also a greater prevalence of SLE in men with

Klinefelter’s syndrome suggesting that having 2 X chromosomes is also important for 

disease development.18 Oral contraception increases the risk of SLE development and the 

����	�������	�	��������`��	�%19 Conversely, menopause induces the opposite effects.20

Hormonal analysis of women affected by SLE indicates an increase in prolactin levels

and estradiol hydroxylation and a decrease in androgen levels in some patients.21-24 The

��	������	�	�������	�������		��������	����������	��������_�������	����	�����	�	

prolactin and estrogens exacerbate the symptomatology in contrast to a suppressive effect 

of androgens.25-27 Chimerism, the presence of cells from one individual in another person,

is another potential aetiological factor in autoimmune disorders. Chimerism has been

detected in a high percentage of women with SLE. Moreover, injection of chimeric cells 

into healthy mice induces a lupus-like disorder, indicating a potential role for this process

in SLE aetiology.28 Other evidence also suggests that viruses, such as Epstein-Barr virus
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Table 3. Candidate risk loci in SLE development2,16,17

Name Location Function

ATG5 6q21 Apoptosis. Ubiquitination

BANK1 4q22-q24 Q��	"�
	������������%�#����	����
���	�����	���	�������%

BLK/

FAM167A77

8p23-p22 Kinase. Immune adaptive system regulation/Unknown 

function.

C1q 1p36 Complement system member. Immune innate system 

regulation.

C2 6p11-21 Complement system member. Immune innate system 

regulation.

C4A 6p21.3 Complement system member. Immune innate system 

regulation.

C4B 6p11-21 Complement system member. Immune innate system 

regulation.

Chrom 8p21.1 8p21.1 Unknown function.

Chrom 

5q33.3

5q33.3 Unknown function.

Chrom 1q25.1 1q25.1 Unknown function.

CRP 1q21-23 C-reactive protein. Clearing apoptotic debris. Immune 

innate system regulation.

FCGR2A 1q23 Receptor. Immune innate system regulation.

FCGR2B 1q22 Receptor. Immune innate system regulation.

FCGR3A 1q23 Receptor. Immune innate system regulation.

FCGR3B 1q23 Receptor. Immune innate system regulation.

HLA 6p11-21 Human leukocyte antigen. Immune adaptive system 

regulation.

ICA1 7p22 Unknown function.

IRAK1 Xq28 Kinase. IL1R pathway.R

IRF5 7q32 TF. Interferon pathway. Apoptosis. Immune adaptive system 

regulation.

ITGAM 16p11.2 Adherence and phagocytosis. Immune innate system 

regulation

IKZF1 7p13-p11.1 TF. Lymphoid differentiation.LL

LYNLL 8q13 Kinase. Innate and adaptive immune system regulation.

MBL2 10q11-21 Mannose-binding lectin. Complement. Immune innate 

system regulation.

MECP2 Xq28 Methyl CpG binding protein

NMNAT2 1q25 Nicotinamide mononucleotide adenyltransferase

PARPP P 1q41-42 Apoptosis regulation.

PDCD1 2q37.3 B- and T-cell differentiation and apoptosis. Adaptive 

immune system regulation

PHRF1 11p15.5 Transcription.TT

PTPN22 1p13 Phosphatase. TCR pathway. R Adaptive immune system 

regulation.

PXK 3p14.3 �����	%�#�`����������	�
���	%

SCUBE1 22q13 #�`����������	�
���	%

continued on next page
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(EBV), or viral retro-elements, including human endogenous retrovirus (HERVs), are 

possible factors in SLE development through molecular mimicry or mutational mechanisms. 

In the particular case of EBV, increases in the percentage of infected B cells, in the viral 

load and in the viral gene expression have been described in SLE patients in comparison

with healthy people. Such differences also occur between quiescent and active SLE in

people.29,30 In mice, immunization with the EBV nuclear antigen 1 (EBNA-1) induces

production of Smith (Sm)-antibodies and anti-double-stranded DNA-antibodies.31 The

molecular mimicry of EBV may also be important because the Sm autoantigen is similar 

to EBNA-1 protein and both can induce lupus-like autoantibodies following direct 

immunization. Moreover, anti-Ro antibody crossreacts with EBNA-1 antigen.32,33 Likewise, 

retrotransposable elements, mainly human endogenous retrovirus (HERVs), are implicated RR

in SLE aetiology.34 Molecular mimicry between retroviral proteins and autoantigens has

�		����	����	�����_���
���	���%�����	���
	���	�$"}�����
�'�Gag protein shares ag
homologous region and therefore crossreacts with human U1snRNP protein. Moreover,RR

these repetitive sequences have the ability to deregulate immune genes in cis or trans,

provoking loss of autotolerance. The MRL/lpr mouse model is a clear example in which

the integration of a transposable element in the Fas gene alters the apoptosis process

and induces SLE development by producing a nonfunctional Fas protein.35 Finally, the

environment plays a key role in SLE development. More than 100 drugs have been

reported to cause a lupus-like disease and this disorder disappears after withdrawl of 

the compound. The drugs most commonly causing a lupus-like disease are hydalazine,

quinidine, procainamide, phenytoin, isoniazid and d-penicillamine.1 Exposure to sunlight,

silica, mercury or pesticides are other common factors that unleash SLE development.36

The majority of these drugs or exposures induce, directly or indirectly, changes in DNA

�	�������������������	�����������������������������	���
������	����	
��	�	��������_��%

There is no permanent cure for SLE yet. Current treatments ameliorate symptoms 

����	���������`����������������������	���������%�{�	���	��������"��`����������������

�������������	����������"��`�����������	����������������	���������������������������

immunosuppressive medications such as mycophenolate mofetil or cyclophophamide, 

remains the most common treatment for SLE. In recent years, new strategies based on 

Table 3. Continued

Name Location Function

STAT4TT 2q32 TF. Cytokine response (IL12). CD4+ differentiation.

TLR5 1q41-42 Antigen receptor. Innate immune system regulation

TNFAIP3 6q23 {���
������%�!
�
�����%�#�`��������%�#����	������	

system regulation.

TNFSF4 1q25 Cytokine. T-cell-APC interaction. Adaptive immune system

regulation.

TREX1 3q21 Exonuclease. Repair system. Granzyme A-mediated apop-

tosis

TYK2 19p13.2 Kinase. Cytokines and interferon pathway.

UBE2L3 22q11.21 Ubiquitination

XKR6 8p23.1 Unknown function

ZNF432 16q12 Transcription factor.TT Adaptive immune system regulation

Chrom (Chromosome), TCR (R T-cell receptor), TF (transcriptional factor).
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antibodies to immune cells, immunoadsorption and plasmapheresis, among others, have

permitted some improvements in the treatment, although great efforts are still needed to

���������	�����_��%�!���������	���	����	
��	�	������	��
����������	�������
�����	����

�	
������������=	����	%1

THE ROLE OF EPIGENETICS IN SLE

�
��	�	����� ��� ��	� ��� ��	� ����� ��
���� 	�
������� �	��� ��� ����	�����	%� _���	

������������	��	��	
��	�	��������&�������	�����	
�����	��		�����	�����	������������

disease pathogenesis, although much of the terrain remains unexplored.37 Epigenetics,

the study of reversible and potentially heritable changes in gene expression that do not 

depend on changes in DNA sequence, includes marks such as DNA methylation and 

������	��������������������	��	���	��	���������
���	�����������	����	��	�
�	����
	%

Epigenetic regulation is essential for the normal development and function of the immune

����	�����������
��������������	���������	�������������	��������	���	������	��	��		�

a correctly functioning defence system and autoimmunity.38

Autoimmune diseases such as SLE arise when the immune system recognizes

self-ff components of the body as damaged materials and reacts against them. Several lines

of evidence indicate that environmental factors, including diet and lifestyle, can modulate

the onset of SLE in a genetically predisposed person in part through epigenetic changes. 

For example, several drugs and ultraviolet light trigger a lupus-like disease in genetically

predisposed people and twin studies reveal incomplete concordance (25-57%) between 

monozygotic siblings and a lower percentage among dizygotic ones (2-9%) indicating a

requirement for exogenous triggers from the environment.39,40

#����	����������	��������	��	��	����	�������		�����
����������������	��	��������	

an overview of the implications of epigenetics in SLE pathogenesis and to summarize

objectives for the near future.

CHANGES IN DNA METHYLATION OCCUR IN SLE

DNA Methylation: A Fundamental Epigenetic Mechanism

DNA methylation is the most extensively studied of the epigenetic mechanisms.

In non-embryonic mammals, DNA methylation consists of the postsynthetic addition

������	��������
������	������������������	��������	�^$<�
��������	����������	��������

a CpG dinucleotide.41,42 CpG dinucleotides are statistically underrepresented in the 

genome due to spontaneous deamination of methylcytosines (mCs) to form thymidine 

during evolution.43 In contrast, CpGs cluster in regions known as CpG islands that 

frequently coincide with gene regulatory sequences. With the exception of imprinted 

�	�	����"���������	��	�	�������	�����������	"�
	������	�	���$
�������������	����

genomes are generally unmethylated and consequently permit transcription of the affected 

gene.44 However, the majority of CpGs are located within intronic and intergenic DNA

regions, particularly within the repetitive sequences and in normal cells these CpGs are 

methylated, thereby ensuring genomic stability and parasitic sequence silencing.45,46

��!��	���������
���	�� ��	� 	�������	����������	�	�
�	������ ��	��	��������!

methyltransferases (DNMTs) 3A and 3B and are maintained during mitosis by the 
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maintenance methyltransferase DNMT1.47 DNA demethylation is also an epigenetic

mechanism although its importance remains controversial. Unlike passive demethylation,

the mechanism for active demethylation is still unclear, although it may be catalyzed by an 

enzymatic complex made up of a deaminase (AID), a glycosylase (MBD4) and gadd45�.48

Impaired DNA Methylation in SLE

The importance of DNA methylation in autoimmunity and especially in SLE, was 

established in the 1990s and has since been consolidated by many other observations. 

{�	������	���	��	���� ��	� �����	�	��������!��	����������������������������� ��	�

induction of self-ff reactivity in CD4� T cells by 5-azacytidine (5-aza C). Human or mouse

CD4� T cells treated with 5-aza C or other DNA methylation inhibitors can be activated 

by autologous macrophages alone, responding to self-ff major histocompatibility complex

^|}$<�##���	��	������������	�������	?���	�	��������
	����������	�%49-53 Moreover,

the adoptive transfer of CD4� T cells treated with 5-aza C, procainamide or hydralazine

into syngeneic mice induces a lupus-like disease. Notably, several medications, such as

procainamide, hydralazine and 5-aza C and ultraviolet light, all inhibit DNA methylation,

induce or aggravate SLE and trigger CD4� T-cell autoreactivity in mice and humans.52,54

Interestingly, mutations in the epigenetic machinery can cause other immune problems 

Figure 1. Altered immunological processes in SLE due to gene promoter demethylation. SLE is 
characterized by DNA methylation decrease in several gene promoters and this epigenetic deregulation
induces autoreactivity (LFA-1), osmotic lysis and apoptosis (PRF1, MMP14 and LCN2), impaired antigen 

�	�	�������� ^$_���<� ���� ��`��������� ^||~&�<� ��� �	� ��� �	�	����	�� Q"{"�	� ���	�������� ^$��'
and CD40LG) and cytokine signalling (CSF3R, CD70, CD40LG IL-4, IL-6 and I FNGR2).
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����	%���	�	���
	������	�#$��^�������	���	������	�����	������������������������

abnormalities) syndrome, a disorder produced by a DNMT3B mutation and characterized 

���Q��	��������	���	���%�!����	�������	�����	����������������������������������
gene which develops lupus-like disease.55 Interestingly, SLE is characterized by an 

increased apoptotic rate of peripheral monocytes, macrophages and lymphocytes coupled 

with impaired clearance of the resultant cellular debris, which provides a major source 

of autoantigens.56,57 In addition, hypomethylated DNA, such as apoptotic or microbial

DNA, is more antigenic than normal or necrotic DNA, which are characterized by a

higher degree of methylation.58,59 Thus, BALB/c mice immunized with apoptotic DNA

develop a lupus-like disease, unlike mice immunized with necrotic or normal DNA. In 

addition, demethylation of necrotic or normal genetic material results in the induction of 

the pathogenic state.60 These results suggest that circulating apoptotic DNA may mimic

microbial DNA, potentially inducing autoimmunity.61,62 ��������������������
������	

correlation between T-cell DNA hypomethylation, aging and increased probability of SLE

development has been established.63,64 {����������	�	������������	��	�����	���
������	

of DNA methylation alterations in SLE pathogenesis is beyond doubt (Fig. 2).

A Global Decrease of DNA Methylation Characterizes SLE Individuals

{�	��	��������
��	��		����!���
��	�������������_���
�����	�	�������������

proposed in the 1980s, but its direct involvement was not demonstrated until 1990

when Richardson and colleagues demonstrated impaired DNA methylation in SLE T

cells.65 {�	�	������������	��		������������	���������
	������	����	���	�	����	���

Figure 2. Relationship between DNA methylation and healthy biological systems. Treatment of human
or mouse healthy CD4� T cells with DNA methylation inhibitors induces loss of global methylation,
activation of parasitic sequences and gene overexpression. All of these epigenetic changes provoke CD4�

T-cell autoreactivity and consequent self-ff tolerance break. Adoptive transference of these treated cells into 
healthy mice as well as administration of DNA methylation inhibitors or injection of hypomethylated 
DNA in this animal induces lupus-like disease.
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and similar results have been obtained from the analysis of subacute cutaneous lupus

erythematosus (SCLE) patients.66-68�{�	�	��	
��������	������������	��@	����	��
	�����

�	�
�
����������������	����	
��	�	������	�������%�#��
������������������������	��	��	

�����!��	��������������		����	����	�����$��� T cells but no differences have been

detected in other peripheral blood populations.68 Moreover, the methylation level of 

peripheral blood T cells from patients with active SLE is lower than that from patients 

with the inactive disease, emphasizing a direct relationship between lupus symptoms

and DNA methylation.65 The loss of global methylation can induce activation of 

endogenous retroviruses and dormant transposons, erase imprinting signals and 

�	�	����	��	�	� 	�
�	������� ��	������ �����	"��	����	� ��� ��	����� ����	?�	��	%69

Regarding parasitic DNA activation, a controversial role for HERV in SLE aetiology

due to molecular mimicry has been proposed. Indeed, the levels of transcription and 

translation of HERV clone 4-1 as well as of the production of antibodies against this 

�	�����������	�����������������	�����_���
���	����������������������������%70-72 In

addition, the peptide p15E derived from the HERV clone 4-1 is able to induce the same 

immune abnormalities associated with SLE.73 As mentioned above, DNA methylation

is maintained by DNMT1, an enzyme regulated by the ras-MAPK pathway.74 Similar to 

DNA methylation, CD4� T cells of SLE patients also have lower DNMT1 activity levels

and the decrease is associated with disease activity.67,74,75 �	�	��������	�����	���	����	��

impaired protein kinase C (PKC) delta phosphorylation as being responsible for the

ras-MAPK pathway alteration and subsequent decrease in DNMK T1.76 According to other 

reports, treating CD4� T cells with hydralazine, which inhibits ERK pathway signalling 

by preventing PKC delta phosphorylation, also induces autoreactivity in vitro and 

lupus-like disease in vivo.52,54 Similarly, the PKC delta knockout mouse model develops

SLE77(Fig. 3). Expression analysis of other epigenetic effector molecules, such as the 

methyl-CpG binding domain proteins (MBDs), have been performed in SLE patients

although no compelling evidence has emerged due to the contradictory results.66,68,78

Interestingly, several animal models have been used to study SLE because of the many 

clinical features they share with human lupus, and impaired DNA methylation has been 

reported in some of these. One example is the MRL/lpr mouse, in which insertion of an

endogenous retrovirus into the Fas gene causes defective elimination of self-ff reactive T

cells due to impaired apoptosis and lupus-like autoimmunity.79 T cells in the lymphatic 

nodules and thymus of the MRL/lpr mouse are globally hypomethylated compared to

the MRL�/�strain.80 Moreover, changes in DNA methylation levels have been detected 

in different lymphatic tissues with aging in this mouse strain, correlating with SLE


����	�����%�_
	�����������������������	�	��	�����	������		���	�	��	�����
	��
�	��

blood in contrast to the methylation loss detected in axillary lymph nodes and thymus 

and an increase in the spleen.80 !�� ��� �������� ��|{&� 	�
�	������ ��� ������������

lower in CD4� T cells from 16-week-old MRL/lpr mice with active disease compared 

to younger mice in which autoimmunity has not yet been detected.81 In contrast to SLE

patients and other animal models, administration of 5-aza C to MRL/lpr mice has a

protective effect, prolonging survival and reducing the splenomegaly, lymphadenopathy 

and autoantibody titers, although this may be due to DNA synthesis inhibition by

5-aza C, similar to other drugs used to treat human lupus, such as azathioprine or 

mycophenylate mofetil82,83 (Fig. 4).
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gene expression and provides genomic stability in close collaboration with histone
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the methylation of repetitive sequences allows silencing of parasitic elements and 

represses chromosomal recombination.84 As promoter regions occupy a negligible

genomic area compared with repetitive sequences, global methylation changes are
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cluster as a region that is susceptible to the development of hypomethylation in SLE. 

The ribosomal gene is a repetitive sequence of about two megabases located in the 

short arms of acrocentric chromosomes.85 The 18S and 28S regions undergo a loss

of methylation and are overexpressed in SLE patients relative to healthy siblings.67

These alterations can induce an increase in ribosomal particles that may provoke the

synthesis of autoantibodies against them. Other repetitive sequences, such as D4Z4, 

Figure 3. Epigenetic alterations of CD4� T cells of SLE patients. Human SLE CD4� T cells are 
characterized by global DNA hypomethylation and histone 3 and 4 loss of acetylation. Decreased DNA
methylation results from the low level of expression of DNMT1 due to altered PKC phosphorylation
and provokes gene and repetitive sequence overexpression. Global hypoacetylation induces skewed 
�	�	� ��������
����� ���� ����� ��	�	�� 	�
�	������ 
���	� ���� �	� �	�	��	�� ��� }�!$� ����������� ����� ���
TSA DNMT1 (DNA methyltransferase 1), PKC (protein kinase C), H (histone), TSA (trichostatin A).
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associated with SLE have been detected67 (Fig. 3).

Even though repetitive sequence hypomethylation is the main factor responsible

for the decrease in global DNA methylation, changes in gene promoters can also occur.

Indeed, there is strong evidence of gene deregulation due to impaired DNA methylation;

and T cells are particularly susceptible to gene promoter demethylation in lupus. One 

example of a gene characterized by loss of promoter methylation in SLE is CD11a. This 

gene (also called ITGAL) encodes one of the two proteins that comprise lymphocyte 

function-associated antigen-1 (LFA-1), an adhesion molecule of the integrin family

involved in T-cell activation and signalling.86,87 LFA-1 helps immunological synapse

formation, conferring stability to the MHCII-TCR complex and costimulating T

cells. Increases in the LFA-1 protein, such as occurs with CD11a overexpression, can

��	�����	����	��
������������	������@������	���	�������������	�������������	�{"�	�

Figure 4. Epigenetic alterations of MRL/lpr SLE mouse model. The MRL/lpr model is characterized 
��� ����� �����	�� ��� ��!� �	��������� ���� ������	� ������������� ���
��	�� ����� ���� ����	� ������%�
Lymph nodes and thymus DNA have low levels of methylation compared with spleen genomic material,
which experiences methylation gain. These alterations correlate with altered gene expression. Unlike 
in humans, administration of DNMT inhibitors, such as 5-aza cytidine, has a protective effect. MRL/
lpr splenocytes are characterized by global histone 3 and 4 hypermethylation and hypoacetylation and 
consequent altered gene expression. Administration of HDAC inhibitors improves kidney disease and 
�	�	� 	�
�	������ 
���	�%� �"�@�"$� ^�"�@�� �������	<�� }�!$� ^������	� �	��	����	�<�� }� ^������	<%
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antigen/MHC receptor with MHC molecules alone.50 An upstream region of the ITGAL

promoter enriched in Alu repeats is characterized by a loss of methylation that induces 

gene overexpression in CD4� and CD8� T cells of SLE patients.51,88 Indeed, a direct 

correlation between disease activity and degree of CD11a promoter demethylation has

been reported. Treatment with DNA demethylating drugs such as 5-aza C, procainamide 

or hydralazine induces a similar loss of methylation and stronger gene expression as 

well as conferring autoreactivity in vitro and lupus-like disease in vivo.51 Moreover, the 

stable transfection of healthy T cells with an ITGAL expression construct induces the 

same effects.53,62,88 Interestingly, this gene is damaged in a wide range of leukaemias

and lymphomas.89,90 Another example is the perforin (PRF1) gene,91 a sequence that 

encodes a protein that integrates into target cell membranes, where it forms lethal

pores.92,93 PRF1 overexpression is positively correlated with disease activity in CD4� T

cells of SLE and SCLE patients as result of promoter hypomethylation.91,94 The stronger 

expression may partly be responsible for the promiscuous T-cell-mediated killing of 

�������	�����������
���	���������
��	��_���
�����	�	���%91 Similarly, CD4� cells of 

healthy people become autoreactive killers of autologous monocytes after treatment with 

DNA methylation inhibitors and this property can be inhibited by adding the perforin

inhibitor concanamycin A to the cells.91 In addition to PRF1 and CD11a, CD70 and 

CD40LG are also methylation-sensitive genes in SLE. CD70, also known as TNFSF7 

or CD27L, is a member of the tumour necrosis factor (TNF) family. This protein is a B

cell costimulatory molecule mainly synthesized by activated B and T cells.93 The CD70

promoter is hypomethylated in CD4� T cells of SLE and SCLE patients and this loss 

of methyl groups causes an increase in transcription.95-97 CD70 transfection of healthy 

CD4� T cells or treating CD4� cells with DNA methylation inhibitors also causes an

increase in CD70 transcription and translation levels. Moreover, coculturing the treated 

or transfected cells with autologous B cells induces IgG overproduction, while the

addition of antibodies against CD70 abrogates this increased production.95 Similarly

to CD70, CD40LG (also termed TNFSF5 or CD154) is also a B cell costimulatory 

molecule. Interestingly, it is encoded on the X-chromosome. For that reason, one copy 

in women is uniquely methylated and consequently silenced, while men have just one

unmethylated copy. Indeed, the CD40LG regulatory region is hypomethylated in CD4�

T cells of women with active SLE, promoting overexpression of the molecule.98,99 This

could explain the striking propensity for females to develop SLE. Several interleukins,

such as IL-4 and IL-6, can also be overexpressed due to DNA demethylation, similarly

to the previous examples.100 Although T cells are the best studied and most frequently 

altered cell type in SLE, other genes may be susceptible to impaired DNA methylation

������	���	���
	�%�����	���
	����	��������������	�������	����	����	������	�	�������
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Extending the study to a larger and more diverse population, the loss of methylation

of eight gene promoters (IFNGR2, MMP14, LCN2, CSF3R, PECAM1, CD9, AIM2

AND PDX1<� ���� ������	�� ���� ��	� ����� ��	� ��� ��	�	� �	�	�� �	�	� ������ ��� ���	

�������������	���	��	�
�	�����67 (Figs. 1 and 3).

Mouse models are also used to study SLE pathogenesis and thereby detect genes

that are deregulated by epigenetic mechanisms. For example, MRL/lpr mice share

��	� ��
���	��$��'��	���������
���	������_���
���	��������������������
�������

role for this gene in lupus pathogenesis.81 Conversely, the proto-oncogene c-myc is

exclusively overexpressed due to gene promoter demethylation in this mouse model, 

unlike in humans101,102(Fig. 4).
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In conclusion, important genes are characterized by impaired DNA methylation in 

SLE, which gives rise to increased autoreactivity (ITGAL), osmotic lysis and apoptosis 

^~��&��||~&����$��<�������`���������^||~&�<������	�����	�	�������������	�

presentation (CSF3R), B- T-cell interaction (CD70, CD40LG) and cytokine signalling

(CSF3R, IL-4, IL-6, IFNGR2)(Fig. 1).

CHANGES IN HISTONE MODIFICATIONS ARE ALSO INVOLVED

IN SLE PATHOGENESIS
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Histones are nuclear proteins that associate with DNA to form nucleosomes, enabling 

it to be packaged into the nucleus and regulating its expression. Histones have tails that 
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moieties such as methyl, phosphate or acetyl groups, among others.103,104 The combination 
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sites, regulating accessibility to different regulatory proteins.105,106
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As mentioned above, an increased apoptotic rate coupled with impaired clearance of 

apoptotic debris characterizes SLE.56 During apoptosis, chromatin is cleaved by caspases,

endonucleases and granzyme B as well as undergoing the addition or elimination of histone 
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the immune system, aggravating or inducing SLE development.107 There is compelling 
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For example, the lupus mouse-derived monoclonal antibody KM-2 mainly recognizes 

acetylated lysine 8, 12 and 16 in histone H4. Four hours after inducing apoptosis, 

the affected cells exhibit increased histone acetyl transferase (HAT) expression and 

reduced levels of histone deacetylases (HDAC), allowing H4 acetylation.108 Moreover,

the apoptosis-induced acetylation on lysine 12 of H2B is a target for predisease lupus

mouse antibodies.109
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as well. Histone alterations are also detected in SLE cells and correlate with aberrant gene 
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in SLE mouse models. In vivo administration of HDAC inhibitors, such as trichostatin

A (TSA), suberoylanilide hydroxamic acid (SAHA) and others, ameliorates kidney 

disease in MRL/lpr mice without changing autoantibody titers.110,111 Administration of 

HDAC inhibitors to MRL/lpr splenocytes reduces the expression of various cytokines,

including IL-6, IL-10, IL-12, or TNF-�.110,111 Indeed, a mouse model characterized by 

an HDAC p300 mutation exclusively in B cells develops lupus-like disease.112 A recent 

study has also analyzed H3 and H4 methylation and acetylation levels in splenocytes

of MRL/lpr mice. Global hypoacetylation and hypermethylation (excluding H3K4 

methylation) relative to the control MRL/MPJ mouse model has been reported and novel
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MRL/lpr splenocytes, CD4� T cells of SLE patients with active disease are characterized 

by global H3 and H4 hypoacetylation and disease activity correlates inversely with H3

acetylation.114 This T cell subset overexpresses IL-10 and CD154 and underproduces 

IFN-�. Further, treating SLE CD4� cells with TSA reverses the skewed gene expression.115

|������	�������	�	�
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analysis, 179 genes have been characterized as likely to undergo H4 hyperacetylation in

monocytes of SLE patients. The acetylation-enriched genes mainly affect macrophage

activation, cell proliferation, central nervous system toxicity and antiviral immunity and 

they also have potential IRF1 binding sites within the 5 Kb upstream region.KK Although 

many genes are hyperacetylated, only twelve of them are known to exhibit expression

changes. Moreover, treating these macrophages with IFN� increased expression of the

179 selected genes and induced acetylation of histones located in 199 promoter genes.116

{�	�	��	����������������������	���	������	�	��������	�����������������_�����������

suggest the possibility of using them in epigenetic treatments (Fig. 3).

POTENTIAL USE OF EPIGENETIC DRUGS FOR SLE TREATMENT
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its extensive involvement in different diseases. Compelling evidence demonstrating a role 

for epigenetic dysregulation in SLE emerged several years ago, is now widely accepted 

and holds promise for therapeutic applications. One of the most important aspects of 

epigenetic regulation is the possibility of reversion through the use of drugs that inhibit 

the epigenetic machinery. In fact, some of these compounds are already being used in

preclinical and clinical phases for the treatment of haematological malignancies following

their approval by the US Food and Drug Administration.117 The effects of DNMTs and 
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using these inhibitors for disease amelioration. Indeed, studies based on treatments

with HDAC inhibitors highlight the ability of these drugs to reverse the skewed gene

expression associated with lupus and to modulate immune system activity and reduce 

��`��������%118,119 Before designing a therapeutic approach, an in-depth understanding

is required of the epigenetic alterations of each cell type associated with the disease. To

this end, we need to develop and use SLE animal models as well as create cell lines in 

which to test the agents. Problems associated with human studies can be resolved using

in vitro and animal models, although one must always bear in mind their limitations

and corroborate the results in SLE patients. In addition, a more exhaustive study of the

relationship between cancer and autoimmunity will help us extrapolate our extensive

knowledge of epigenetic deregulation in cancer to SLE.120 Further, a new gene expression 

regulator, known as microRNRR A (miRNRR A), is attracting attention because of its involvement 

in many disorders.121,122 miRNRR As are noncoding RNRR A molecules, around 22 nucleotides 

long, that regulate the expression of target genes through various posttranscriptional 

mechanisms.123 {�	�����	������������������	���������!����	�����	�	������	�
�	��	����

lupus patients and normal controls together with a recent description of their epigenetic

regulation (including DNA methylation-dependent regulation of miRNRR A expression)

suggests a potential role for epigenetic dysregulation of miRNRR A in SLE.124-126 For this
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reason, miRNRR As are potential players in SLE pathogenesis as well as potential therapeutic

targets and diagnosis biomarkers.121

CONCLUSION
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sequences and miRNRR As that occur in lupus and the exhaustive study of the epigenetic
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��	�	��������������	������

against SLE in the immediate future.
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