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PREFACEFF

During the past few years, attention towards epigenetics has experienced an

unprecedented growth. Interestingly, despite that epigenetics has become a very popular 

term in molecular biology and biomedicine, its definition still is in evolution, perhaps

because the boundaries of epigenetic regulation and epigenetic phenomena are still 

unkown. Recenly, Adrian Bird has proposed a unifying definition of epigenetic events

as the structural adaptation of chromosomal regions so as to register, signal or perpetuate

altered activity states. Both geneticists and epigeneticists study the gene; however, 

whereas the former focus on the gene sequence, the latter see gene function as not merely

dependent on the DNA sequence but rather depending on the way in which the gene isA

packaged, signalized and used by transcription factors to become functional or silent,

and ready to respond to external stimuli.

Epigenetic modifications have direct impact on cell function and identity, and 

the generation of aberrant patterns of epigenetic marks is associated with disease. 

Identification of epigenetic alterations in cancer has been the motor force for the

development of strategies and technologies. However, whereas the field of cancer 

epigenetics is reaching a degree of maturity, the study of epigenetic alterations in most 

genetically complex diseases still remains relatively unexplored. The possibility of 

using compounds that can reverse epigenetic modification patterns has also opened new

prospects and resulted in further attraction not only to the research community but also

to the pharmaceutical industry. 

This volume focuses on the relevance of epigenetic mechanisms in autoimmune 

disease. An overview of some of the key concepts in epigenetics, chromatin and the 

interaction with transcription factors will be introduced in the first two chapters. Then,

general aspects of lymphocyte biology and immune function that are susceptible of 

modulation by epigenetic modifications will be presented in subsequent chapters. A

chapter specifically focused on DNA methylation and autoreactivity has also been A

included. The role of the environment in the development of autoimmune diseases has 

been recognized for years, and it is evidenced by the high discordance rate of monozygotic 

twins for most autoimmune diseases. The specific influence of environmental factors,

particularly infectious agents such as the Epstein-Barr virus, has been shown to influence 
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or trigger the autoimmune response. These aspects will also be represented in the book.

Also, the possibility that imprinting, a well studied mechanism of epigenetic control, 

could participate in autoimmune disease will be discussed.

In subsequent chapters, two autoimmune diseases for which the best examples 

of epigenetic defects have been reported will be extensively discussed, specifically

systemic lupus erythematosus and rheumatoid arthritis. Factors influencing the generation

epigenetic changes for these and other autoimmune diseases will be presented in different 

chapters of the book.

Finally, the possibilities of using epigenetics-based therapies in the context of 

autoimmune diseases will be discussed. We have witnessed the approval of some of 

these epigenetic compounds for the treatment of another group of hematological system 

diseases, including acute myeloid leukemia, myelodysplastic syndromes and specific types

of lymphomas. Finally, the application of novel methods to characterize the epigenetic 

profile will be presented.

I hope that this volume provides some new directions for future research in

autoimmune disease. Finally, I would like to thank not only all contributors of this volume

but also researchers in the epigenetics and chromatin field who have pushed forward this 

area with their excellent contributions.

Esteban Ballestar, PhD
Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
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CHAPTER 1R

AN INTRODUCTION TO EPIGENETICS

Esteban Ballestar
Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), IDIBELL, 
Barcelona, Spain
Email: eballestar@idibell.org

Abstract: ������������	�������������������������
��	�����������	������	
��	�	����������������
�����

�������������	�����
	����	����
���������������
�����
���
	�������
�����������!�
replication and repair processes and also indirect effects on the aforementioned 
processes through the organization of DNA architecture within the cell nucleus. 
���������� ��	� ��
	� ��� 	
��	�	���� ������������� ��� �	��
������ �����	"�
	�����
expression, genomic imprinting or X-chromosome inactivation is widely recognized. 
#��������������	��	����
	����	
��	�	�������������������������	

�����	�	�������������
�	�	
�
�	��������		������
����	�������	���	��������������������	������	
��	�	����
alterations in human disease. Particular attention has been focused on the study of 
epigenetic alterations in cancer, which is the subject of intense multidisciplinary 
efforts and has an impact not only in understanding the mechanisms of epigenetic 
regulation but also in guiding the development of novel therapies for cancer treatment. 
#������������������	������	�	����������	�����������#������	���	���"$	�����	�	�
Instability-Facial anomalies (ICF) or Rett syndromes are directly associated with 
defects in elements of the epigenetic machinery. More recently, epigenetic changes in 
cardiovascular, neurological and autoimmune disorders as well as in other genetically 
complex diseases have also started to emerge. All these examples illustrate the 
widespread association of epigenetic alterations with disease and highlight the need 
of characterizing the range and extension of epigenetic changes to understand their 
contribution to fundamental human biological processes.

INTRODUCTION

The size and complexity of eukaryotic genomes has evolved in association with

the generation of mechanisms that are able to manage the genetic information that is

�		�	���������	�	����
	�����
�����
�����
�����������%�$�����	������������&'��m-diameter 
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eukaryotic nucleus has to accommodate an enormous length of DNA (in the order of 

��������	�����	����	�	�*�	�	�<���	

�����	�������	�������=������

	��	�>�����
�������

to optimize folding of DNA in such a tiny compartment and secondly, how to make 

���	����
	���!��	?�	��	�� �������

��	��		�	������
	���������������� ����������� ��	���

lifetime. Folding of DNA within the cell nucleus is achieved through its interaction with 

histones and other types of proteins, characteristic of chromatin. Regarding the second 

aspect, i.e., how DNA sequences retain the ability to stay functional despite their folding

within chromatin, it is now obvious that the mere availability of transcription factors or 

DNArepair machinery cannot simply overcome the repressive effect of chromatin without 

additional help. Epigenetic marks provide cells with a dynamic signaling system that 

���
�����	���
�@	����	��	���	������

������	��
	������	��
����������	�	�	�
�	�����

and accurate tuning of DNA replication and repair processes, as well as the appropriate 

nuclear organization in a manner adapted to particular physiological situations. These 

epigenetic marks are established and maintained by different groups of enzymes which 

��	� �
	�����

�� ����	�	�� ��� ��	��� ����	��� �	������ 
��������� �������� ����	�	��� ���
	���

������������	�������������	��
���	�
�������	�������	���
������
��������������	���	����
�

step of a cell signaling cascade.

EPIGENETIC MODIFICATIONS ARE ESSENTIAL FOR CER LL

IDENTITY AND FUNCTION

Q�����

����	

��	����	���	���	
��	�	��������������������������	��������������������

different groups of macromolecules: DNA and histones. DNA methylation is a major 

	
��	�	��������������������������	��� ������������� ��� ��	�	����
����	������ 	�
�	������

patterns in multicellular organisms.1 In mammals, DNA methylation is restricted to

cytosines in the context of CpG dinucleotide sequences, whose presence in the genome

is much lower than expected based on GC content and exhibit a non uniform distribution. 

CpG sites can be present in the genome at high density in regions known as CpG islands, 

that are 0.4-3 kb in length, are relatively rich in G � C (�55%) and are enriched in the 

CpG dinucleotide relative to the remainder of the genome regions.2 In the human genome,

CpG islands are in and near approximately 76% of promoters of genes.3,4 It has been 

proposed that methylation occurring at CpGs located in repetitive and parasitic elements 

plays a role in their stabilization.5 Also, methylation of repetitive elements appears to

contribute in the maintenance of nuclear architecture and organization of heterochromatic

domains.6 On the other hand, the majority of promoter CpG islands remain unmethylated 

under physiological conditions.7 Methylation and subsequent transcriptional repression

��	� �����	�� ��� �� �	
����	
�� ���

� �	�� ��� �	�	��� ���
������ ���	� �����	"�
	����8,9 and 

imprinted genes,10 as well as those in the inactive X-chromosome of females.11 The fact 

that promoter CpG islands can be unmethylated in both expressing and nonexpressing

tissues indicates that the activity of the associated genes is not controlled by methylation. 

It is nonetheless widely believed that cytosine methylation regulates development. Many

of the expression-methylation studies involve non-CpG island genes, which tend to have 

light and variable cytosine methylation that may be less in cells that express the gene. A

standard method to map the methylation status of CpGs is based on the treatment of DNA

����������������
��	��������	��
����������	������������	���
��	���������	������������
�

��	�	����	���
��	���������	���	�������������	�����

��	������	�������	?�	������̂ Q_<%12
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DNA methylation is a postreplicative process. The methyl group is transferred 

from S-adenosyl methionine to cytosines in DNA by DNA methyltransferases (DNMT)

������	����������������
�	�����	�`�

�������	�	������������	����	�������������

	�	
�

out of the DNA helix into an extrahelical position so that the enzyme can access and 

methylate the cytosine.13 {�	������
��������
�������|{��������
��	�������	��	��	��

[see for a review Goll and Bestor].14 DNMT1 has been considered to be devoted to the

maintenance of methylation patterns across DNA replication cycles, however whether 

faithful maintenance methylation is enforced by other factors that inhibit the de novo

activity of DNMT1 in vivo (no such factors have been described) or the protein has 

de novo activity in vivo remains an unresolved issue. DNMT3A and DNMT3B have 

been proposed to be implicated in de novo methylation. They have a close homologue, 

DNMT3L, that lacks a conserved PWWP domain present in DNMT3a/b, is essential 

for establishment of maternal genomic imprints in the growing oocyte and at dispersed 

repeated sequences in the prospermatogonia. Finally, DNMT2 is an enigmatic DNMT

that, despite its conservation across species and its expression in all sort of tissues, appears 

to lack catalytic activity.

In general, DNA methylation is considered to be a stable epigenetic mark, although

�	��������� ��� �����	� ��!� �	�	���
������ ���	� �		�� �	
���	�� ��� ������ ��� �
	����

physiological contexts, including development and cell differentiation.15,16 In contrast with 

��	�
�	���	���	����������������	�������	�������
�	�����
��������������������������!

methylation, there is some controversy with respect to the enzymatic activities involved 

in active demethylation. Genetic and biochemical studies in Arabidopsis demonstrated 

that a subfamily of DNA glycosylases function to promote DNA demethylation through a

base excision-repair pathway. These specialized bifunctional DNA glycosylases remove

the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, resulting 

�������
�����������	���

	�������������	���
��	���������	����
	����	��������	����������

DNA polymerase and ligase enzymes. Evidence suggests that active DNA demethylation 

in mammalian cells is also mediated at least in part by a base excision repair pathway 

where activation-induced cytosine deaminases (AID) convert 5-methylcytosine to thymine 

followed by G/T mismatch repair by the DNA glycosylase MBD4 or TDG.17-19 However 

other possible mechanisms of active DNA demethylation have also been proposed.
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source of epigenetic information. Core histones are the building elements of the octameric 
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at different amino acid residues. There are over sixty different sites on histones where 
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take place on histones. Additional complexity comes also from the fact that methylation 

at lysines or arginines may be one of three different forms: mono-, di-, or trimethyl for 

lysines and mono- or di- (asymmetric or symmetric) for arginines. This vast array of 
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coupled to gene array technology (ChIP-on-chip) has revolutionized our ability to monitor 
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and chromatin organization.20 For instance, reversible acetylation of histone lysines at their 

N-terminal tails is generally associated with transcriptional activation,21 although there 
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that it is acetylated (see for example refs. 22 and 23). On the other hand, methylation of 

histones can occur in lysine and arginine residues; the functional consequences depend 

�����	���
	�����	����	������
	��������	��������������	�%24-26 For instance, methylation 

of H3 at K427 and R1728 is closely linked to transcriptional competence, whereas

methylation of H3 at K9, or H4 at K20, is associated with transcriptional repression.29,30

{�	���	����������������	�	�@��	����������	��������������������		����	�������������	��	�
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������31 methylation,32

phosphorylation,33 ubiquitination,34 ADP-ribosylation,35 sumoylation,36 deimination37,38

and proline isomerization.39
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involve alterations in DNA sequence. The use of the term “heritable” has been eliminated 
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by the genome (e.g., on chromatin) that is not coded by DNA. However the classic term,
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function that is transmitted from generation to generation.Anumber of cellular phenotypes 

are transmitted in this way, including imprinting (discussed in Chapter 8), X chromosome 

inactivation, aging, heterochromatin formation, reprogramming and gene silencing. In 

addition there are environmentally induced changes, which are passed on from generation 

to generation, without the need for the original stimulus.
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the methylation status of the DNA. The mechanisms by which promoter CpG island 
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histones. This process has been reported to occur place through the direct recruitment of 

������	�������������	�@��	�������|{�40 and other nuclear factors such as methyl-CpG 

binding domain (MBD) proteins.41,42 Additional mechanistic connections between elements

��� ��	� ������	� ������������ ���� ��!� �	���
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Polycomb group (PcG) protein EZH2, which catalyzes methylation of K27 of histone 
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Therefore, histone modification patterns can be established through DNA

methylation-associated mechanisms or, alternatively, in a DNA methylation-independent 
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genomic loci depends on the availability of particular transcription factors or through the 


�����"�	
	��	����	�
���	�������
	����	�	
��������������������	������������	�������������

enzymes.

In multicellular organisms, cells usually respond to environmental or intracellular 

signals in a manner that depends on the participation of transcription factors which often 

recruit epigenetic enzymes.46 Within any particular organism, different cell lineages share

a common genome although available sets of transcription factors and epigenetic marks
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of transcription factors are also transmitted through successive rounds of DNA replication 
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and cell division. However, disruption of a variety of pathways results in different types

of epigenetic alterations, some of which have already been associated with disease.

EPIGENETIC DEREGULATION MECHANISMS IN HUMAN DISEASE

{�	� �	���������� ��� ��	� ���	�
�	��� ������	��	� ���� ����������	� ��� 	
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towards Epigenetics. Cells from most cancer types suffer dramatic changes in their DNA
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decrease in the global content of 5-methylcytosine, which can be mainly attributed to

loss of methylation at repetitive sequences.47,48 However, the promoter CpG islands of 

many tumor suppressor genes become hypermethylated and this process represents an

important mechanism by which these genes are inactivated.49����
�����
����������	�
���
	

of promoter CpG island hypermethylation of candidate genes encouraged the view that 
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	����%50,51 This notion has been 
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Several lines of evidence indicate that hypermethylation of tumor-suppressor genes
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hypermethylation occurs early in cancer. This is the case of p14ARF in colorectal

adenomas54 and hMLH1 in endometrial hyperplasias55 and gastric adenomas.56 A second 

observation highlighting the functional relevance of promoter CpG island hypermethylation

in tumorigenesis is its occurrence in the absence of genetic mutations. Both events 

(genetic and epigenetic) abolish normal gene function and their coincidence in the same 

allele would be redundant from an evolutionary point of view. However, one of the main 
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and progression of a tumor is the demonstration of the existence of relevant biological

consequences associated with the epigenetic inactivation of a particular gene. A classical 

example of this statement is represented by the hypermethylation of the DNA repair 

gene O6-methylguanine DNA methyltransferase (MGMT).57 The MGMT gene product 

removes the promutagenic O6-methylguanine, generated from the addition of a methyl

group to the base guanine, which is then read as an an adenine by DNA polymerases and 

thus may generate G to A mutations. It has been shown that the DNA repair gene MGMT

is transcriptionally silenced by promoter hypermethylation in primary human tumors.58

These tumors might accumulate a considerable number of G to A transitions, some of 

them affecting key genes, in a similar way that loss of the hMLH1 mismatch repair 
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hypermethylation- associated inactivation of MGMT gives rise to the appearance of G to

A transition mutations in the oncogene K-ras59 and the universal tumor suppressor p5360
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cause genetic lesions in genes that are of key importance in the development of cancer.

As mentioned above, the comprehensive analysis of methylation in many different 

tumor types and gene promoters has provided evidence for the existence of the 
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a high concentration of CpG-rich sequences. However, under physiological circumstances

most CpG island promoters remain unmethylated. It has been speculated on the existence
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of mechanisms that would normally prevent unscheduled methylation at CpG islands and 

for some reasons those mechanisms would lose stringency in cancer cells. Many other 

questions then arise including the reason why certain CpG islands (while others never do) 

become methylated in cancer and whether this is a targeted process or a random one.

Genome-wide analysis of DNA methylation changes in cancer cells have shed some 
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distinct functional categories, have common sequence motifs in their promoters and are 

found in clusters on chromosomes.61 These results are consistent with the hypothesis that 
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mechanism. Schlesinger and colleagues44 showed that genes methylated in colon cancer 
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on K27. The early establishment of this chromatin mark in unmethylated promoter CpG 

island-containing genes early in development and then maintained in differentiated cell 

types by the presence of an EZH2-containing Polycomb complex suggests that PcG 
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normal cells, the presence of this complex brings about the recruitment of DNMTs, 
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novo methylation is preprogrammed by an established epigenetic system that normally 

has a role in marking embryonic genes for repression.44
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by multiple mechanisms. In addition to PcG mediated-connections between histone 
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methylation-dependent silencing. In this context, MBD proteins have been proposed to 

play a pivotal role.62 MBD proteins have the ability to bind selectively to methylated 

CpGs and recruit different HDAC- and HMT-containing complexes.42 In addition to 

the association of MBDs, promoter CpG island hypermethylation has been found to be 

associated with a decrease in the acetylation levels of histones H3 and H4 and loss of 

3mK4 of histone H3.62 In contrast, hypomethylation of repetitive sequences in cancer 

is associated with a loss of monoacecetyl K16 and trimethyl K20 of histone H4.63,64 It 

has been suggested that this change could be associated with changes in the expression 
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The importance of epigenetic mechanisms involved in the pathogenesis of cancer is 

also revealed by a mechanism frequently found in hematopoietic malignancies. In leukemias

and lymphomas, in contrast to most solid tumors, an additional mechanism for epigenetic

dysregulation arises from the occurrence of nonrandom chromosomal translocations 

that disrupt genes residing in the translocation breakpoint region. In many cases, genes 

residing at these breakpoint regions are epigenetic enzymes or transcription factors that 

can themselves recruit epigenetic enzymes and are directly involved in hematopoietic

cell differentiation, apoptosis, or proliferation. Therefore, generation of fusion proteins 

through this mechanism is commonly associated with epigenetic dysregulation at the 

target sites of the enzymes involved. These chromosomal translocations indicate how 

disruptions of the function of the enzymes that control chromatin structure can cause 
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causes cellular transformation. Typical examples of proteins include MLL(mixed-lineage 
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which is associated with HATs or HDACs and PML, whose frequent fusion partner 

^�!�<������		���	�����	��������	������������������	
��	�	���������	��%67

Our knowledge on the importance of epigenetic alterations in cancer has greatly

increased in the last few years. The contribution of DNA methylation-dependent 
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in hematological malignancies, the epigenetic switch at many genomic sites is also

commonly recognized. We need a better understanding on the causes that result in

epigenetic deregulation in cancer. Mapping epigenomic changes, at the DNAmethylation,
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ground to address these issues.

Despite the enormous efforts invested in epigenetics studies, our knowledge on

epigenetic alterations in other disease contexts is relatively poor. Epigenetic alterations

occur in a wide range of biological scenarios, including the occurrence of genetic defects

in the enzymes that regulate the epigenetic balance or epigenetic changes that result from

a change in the environment. Although the best studied relationship between epigenetic

alterations and disease are in the context of cancer, a number of diseases have proved 
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an epigenetic component has been recognized includes diseases for which there is a

genetic defect involving proteins implicated in the maintenance of epigenetic regulation.

#�����������
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Instability-Facial anomalies (ICF) syndrome or Rett syndrome among others.

ICF syndrome, a rare autosomal recessive disorder characterized by the presence
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heterochromatin, has been shown to be associated with mutations in DNMT3B. Epigenetic 

alterations associated with this defect include hypomethylation at various repetitive

sequences68 and chromosomal territory reorganization which may have an impact in

alterations of gene expression of many genes.69 In Rett syndrome, an X-linked dominant 

neurodevelopmental disorder affecting almost exclusively girls, mutations in MECP2,

the archetypical member of the MBD family, have been found to be present in up to

80% of classical cases.70 It has been proposed that loss of function of MECP2 results in 

the DNA methylation-dependent deregulation of genes,71 although more recently it has 

been proposed that binding of MeCP2 outside gene boundaries may organize chromatin

into functionally important domains or loops of imprinted regions, thereby modulating

gene expression in either a positive or a negative manner.72

In other groups of disorders, genetic defects have been associated with clear distinctive

epigenetic defects. This is for instance the cases of facioscapulohumeral muscular 

dystrophy (FSHD), where the deletion of a critical number of repetitive elements (D4Z4)

is associated with hypomethylation,73 or the imprinting disorders Beckwith-Wiedemann 

syndrome (BWS) and the Prader-Willi/Angelman syndromes (PWS/AS), where deletion 

of imprinting control regions results in biallelic expression of associated genes.74

The existence of an epigenetic component has been suggested for many other diseases 

for which a direct genetic defect is not obvious or complex genetic patterns have been

suggested. This is for instance the case of autoimmune or neurological disorders and 

cardiovascular disease. The evidence for an epigenetic component in these diseases has

been highlighted by the existence of discordance rates in sets of monozygotic twins.75
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factors.76 More recent studies have addressed the relevance of epigenetic differences

between twins discordant for autoimmune diseases.77,78

Our knowledge on the epigenetic contribution for these diseases requires additional 
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to the generation of epigenetic changes should be investigated.

The availability of novel technologies for the genome-wide analysis of epigenetic 
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implications (discussed in Chapter 12). Initial high-throughput studies looking for 

epigenomic changes in atutoimmune disease, such as those carried out for systemic lupus 

erythematosus,77 multiple sclerosis78 or Type 1 diabetes79 ����
�������	��		������	�����

the range and extent of epigenetic alterations in this set of complex disorders.

CONCLUSION
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major elements of the epigenetic signaling system and have a direct impact in the cell

transcriptome, as well as in DNA repair and replication. The aberrant establishment 
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ultimately disease. This has been extensively studied for cancer and various genetic
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reversion of epigenetic alterations has attracted researchers to investigate the epigenetic 

component of genetically complex diseases, including autoimmune disorders.
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proteins with chromatin components and the subsequent expression of differential
genetic programs is the major determinant of developmental decisions. The last 
�	���� ���	� �		�� ��� 	�
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our understanding of the basic principles of gene expression control. While many
questions are still open, we are now at the stage where we can exploit this knowledge
to address questions of how deregulated gene expression and aberrant chromatin
programming contributes to disease processes. This chapter will give a basic
introduction into the principles of epigenetics and the determinants of chromatin
structure and will discuss the molecular mechanisms of aberrant gene regulation
����
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INTRODUCTION

The range of diseases found to have an epigenetic component responsible for aberrant 

gene regulation is steadily increasing and diseases of blood cells represent some of the 
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growth, differentiation and activation status of blood cells and when these are dysregulated 

the result can be either leukemia with aberrant growth and differentiation, or autoimmune 
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In this chapter we will introduce the basic concepts of chromatin structure and the 

processes that control gene expression by modifying chromatin. We will draw upon 

Epigenetic Contributions in Autoimmune Disease, edited by Esteban Ballestar.
©2011 Landes Bioscience and Springer Science+Business Media.
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examples from both our own work and the work of others to illustrate the role that 
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disease. To introduce some of these concepts we will also discuss the consequences of 

the reprogramming of the transcriptional regulatory network in leukemic cells that result 
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THE ROLE OF TRARR NSCRIPTION FACTORS AND CHROMATIN 

STRUCTURE IN ESTABLISHING PATTERNS OF GENE EXPRESSION

Gene expression programs are established during cell differentiation by the concerted 
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differentiation and activation. Transcription factors perform multiple functions: they
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neighboring DNA-sequences or even several kilobases away,1 respond to extracellular 

signals and most importantly, recruit nonDNA-binding factor complexes that cooperate 

to either maintain the active state, or initiate the establishment of an inactive state. 

These factors, in turn, exert their effects largely at the level of chromatin structure by

creating permissive or nonpermissive states. The genome exists naturally in a repressed 

state by virtue of the fact that regulatory and coding DNA sequences are for the most 

part occluded by nucleosomes which assemble into highly condensed and inaccessible

��������	�%�Q	���	����	�	������	�	�
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for the binding of transcription factors required for transcription initiation and secondly,

to modify the histones within nucleosomes and reorganize the higher order chromatin

structure to create an environment permissive for the passage of RNRR A polymerases.

Gene expression programs are typically controlled by transcription factors that are

expressed in a temporal sequence during differentiation. Factors such as RUNX1, GUU ATA-2 

and PU.1 play pivotal roles in enabling early stages in blood cell differentiation, whereas
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which play important roles in maintaining the balance between effector and regulatory T
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as a result of external signals. This is true for inducible factors such as NFAT, AP-1 

and NF-�B that play essential roles in mediating responses to immune stimuli. Both the 

developmentally regulated and the inducible classes of transcription factors can contribute

to an aberrantly active immune system.

In addition to exerting transient inducible effects, transcription factors can also 

introduce stably maintained chromatin alterations. In some cases, transcription factors can 

establish an imprint within chromatin, creating a memory of a previous stimulatory event 

which persists after inducible transcription has ceased. For example, we and others have 
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chromatin structures that can persist many cell cycles after the stimulus is withdrawn and 

which can remain as long-lived imprints in memory T cells for example.2,3 Alternatively, 
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cascade of events that become self-ff perpetuating during blood cell differentiation even

after the subsequent removal of the differentiation initiating factor.4,5
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BASIC FEATURES OF CHROMATIN STRUCTURE

The vast majority of the genome (�99%) exists as nucleosomes comprising �146 bp 

of DNA wrapped around an octamer of histone proteins made up of two molecules each 

of histones H2A, H2B, H3 and H4.6,7 As depicted in Figure 1, nucleosomes assemble 

�������	
"���	�����	����������
�����������������	�}�*}�����	���������	����	��������80 

Figure 1. Nucleosome structure. Cartoon representation of the structure of the nucleosome based on the 
X-Ray crystal structure.7 Nucleosomes are assembled in a stepwise manner from 146 bp of DNA which
����� �	������� ���� ������	� }�*}�� ���	��� ��� ����� �� �	����	�� ���� ��	�� ���� ������	� }�!*}�Q� ���	��� ��
form the histone octamer. In a nucleosome, the DNA makes 1.7 turns around the histone octamer. In
the side-view of a nucleosome presented here, we have depicted the nearest 0.85 coil of DNA (73 bp)
in black and the far-side 0.85 coil of DNA in grey. In the exploded view at the bottom, where the 
upper and lower faces of the nucleosome are separated, it can be seen that a nucleosome comprises 
two symmetrical halves. Each half contains one molecule of each of the four core histones which each
make two major contacts with the DNA. The positively charged lysine-rich histone tails do not adopt a
rigid structure but extend out from the nucleosome and have the potential to wrap around the DNA.
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bp of DNA and then incorporating two histone H2A/H2B dimers to form a nucleosome

particle comprising 146 bp of DNA coiled 1.7 times around the histone octamer core.

This model illustrates the fact that nucleosome stability is maintained by multiple contacts

along the entire length of the nucleosomal DNA, with each of the eight histone molecules 

�	����������=��������������������	
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has the histone N-terminal tails protruding from the nucleosome core particle, because
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and function of chromatin.

Individual nucleosomes are organized into highly regular arrays where they are

separated by linker regions of �50 bp of DNA, to give an overall average repeat length 

of �190-200 bp.8-10 Chains of nucleosomes essentially never exist in a completely

decondensed drawn out state, but are arranged in a zig-zag conformation within a highly 

complex higher order structure. Despite decades of investigation, the precise details of 
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����	�	��������������	���̂ ���%��!<�8-11 which then assemble further as even more compact 

structures,12 in which much of the DNA is inaccessible (Fig. 2). This higher order folding

is mediated in part by histone H1 which occupies about 20 bp of the linker region between 

nucleosomes and in part by the positively charged histone tails that extend out from the

nucleosome and most likely wrap around the DNA.6

Only about 1% of the genome exists in a decondensed accessible state in any one cell.

These accessible regions exist as DNase I hypersensitive sites (DHSs)13 where regulatory 
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this probably involves displacement or disruption of nucleosomes that would otherwise 

occupy these regions (Fig. 2B). It is also taken for granted that a passing polymerase 

must transiently create open regions of chromatin (Fig. 2C). This appears to be driven by 

chromatin remodeling factors and histone acetyltransferases (HATs) associated with the 

polymerase complex and is reversed by factors such as histone deacetylases (HDACs) 

recruited to chromatin that has just been transcribed (Fig. 2C).14,15 One of the purposes

of this cycle is to maintain transcribed genes in a predominantly condensed state so as

to suppress cryptic promoters.14

The histone tails are subject to a bewildering number of posttranslational 
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and threonine phosphorylation, lysine ubiquitination, poly-ADP ribosylation, lysine 

sumoylation, arginine deimination and proline isomerisation.16 ����� ������������

is installed by different families of enzymatic activities, such as HATs, histone 

methyltransferases (HMTs), kinases or ubiquitin ligases. Depending on the transcriptional
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(e.g., histone H3 K9 acetylation and K4 methylation) or the inactive (e.g., histone H3

K9 methylation) transcriptional state.

#����������������	�����������������	���������������������������	����������������������	��

also has a direct effect on overall chromatin structure. For example, histone acetylation leads

to the neutralization of the positively charged lysines in the histone tails and to a reduced 

level of compaction, as seen after acetylation of histone H4 K16 (Fig. 2).17 Activation of 

enhancers and promoters, and the process of transcription, are also accompanied by the 

replacement of canonical histones with variant histones, such as H2AZ or H3.3 which 
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Figure 2. }�
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level, nucleosomes are thought to zig-zag backwards and forward within chromatin. The precise details
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more complex higher-order structures in vivo; B) At active promoters and enhancers it is thought that 
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that much of the nucleosomal DNA is rendered accessible. TFs recruits HATs such as CBP that create
a more open chromatin structure and chromatin remodelers such as SWI/SNF that can directly disrupt 
���*��� �	
����	� ���
	����	��� $<� �
��������� 
�
��	���	�� ������ �� ����	��� ��� ������������� ���� ��������
that act directly on chromatin. It is likely that these include HATs that can acetylate histone H4 K16, 
�� ������������ ������	��� ��� �	����	��	� ���������� ���� ���	�� �������� ����� ��� }|{�� ����� ����	?�	��
�
trigger the recruitment of HDACs such as Rpd3S that return chromatin to the deacetylated once the 
polymerase has passed.14
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displacement of nucleosomes at promoters by the basal transcription machinery.18

THE ROLE OF EPIGENETIC MECHANISMS IN CELL DIFFERENTIATION

Research investigating the basis of cell differentiation in the hematopoietic system was

instrumental in the development of the concept that stem cells and multipotent precursor 

cells activate extended sets of genes at low level prior to differentiation.19 In this context 

��� ��� ��
������� ������	� ����� 
��	��	��
	�������������� ��	� �	��������������	�	
�
�	���
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potential involve not only the upregulation of genes important for the development of 

�
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inappropriate genes that exist in an activated state in stem cells. This is a general principle

of pattern formation that is common to all multicellular organisms and it implies that a 

regulatory machinery exists which maintains genes in their respective active and silent 

states and thus maintains cellular identity. It also follows that during the proliferative

phases of cell differentiation, such “epigenetic” states have to be faithfully copied during 

cell division.20 Another important principle of epigenetics is that such regulatory states

can be maintained in the absence of the original initiator.21 #����	�
�����	����������������

progress has been made to identify and characterize the components of the epigenetic

regulatory machinery. It is beyond the scope of this chapter to review its full complexity

but the next chapters will review the general principles and discuss the role of the main
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DNA METHYLATION
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In mammals, DNA methylation most commonly involves a symmetrical conversion to

�"�	���
�������	�����������!������������$
���	?�	��	�%�{���������������������������	��

by DNA methyltransferases (DNMTs) that include DNMT3a and DNMT3b which

methylate cytosines de novo and DNMT1 which requires a methylated cytosine at one

strand of newly replicated DNAand functions to maintain previously installed methylation

states during replication.22,26 DNMT3a contacts chromatin in cooperation with DNMT3L

������	������������������	�}������	���
�������������������
������������������|{����

and thereby suppresses DNA methylation in active regions.25,27,28

Most of the CpG elements in the genome are, by default, maintained in the methylated 

state if they exist outside of active regions. A side effect of DNA methylation is that CG

sequences are relatively rare in the genome, due to the propensity of 5-methylcytosine to 

mutate to thymidine. The genome also includes many promoter regions that are highly

enriched in CpG sequences, termed CpG islands, that are resistant to DNA methylation.

}��	�	�����	�	�$����
�������	���	��	
�	�����������������	�����������	��
����������
����

cell diseases and cancer.29�����	���

	������������������������	��������!��	���
������

within the promoter CpG islands of tumor suppressor genes in myelodysplastic disorders,30

which are now sometimes treated with the “epigenetic” drug 5-Azacytidine to reduce

genome-wide levels of DNA methylation.31
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A recent unbiased genome-wide analysis of sequence patterns characterizing DNA

�	���
����������	����	����	���
	�������������
��������������������������	�$����
����������

were resistant to de novo methylation. Furthermore, this resistance correlated with the 

������������	�	����	���	�	����		������
�	�������	�	��
	�������������
�������������32 strongly 

suggesting that the same factors are responsible for the protection of these sequences 

from DNA methylation (Fig. 3). How methyl groups are removed from DNA during 

normal mammalian cell differentiation is still not completely understood and various

mechanisms have been proposed.33

It was recently shown that the balance between the methylated and nonmethylated 

DNA state at CpG islands is controlled in part by proteins containing CXXC motifs that 

bind to nonmethylated CG sequences (Fig. 3). CXXC domain proteins include the H3K4

HMT Set1 and Cfp1 (also known as CGBP or CXXC1) which associates with the H3K4 

HMTs Set1 and MLL1.34-37 CXXC proteins also include Tet1 which a member of the Tet 

family proteins that hydroxylate 5-methylcytosine.38,39

As modeled in Figure 3, the CXXC and HMT proteins provide potential mechanisms 

for maintaining regions of high CpG content in an unmethylated state. After Tet1 becomes 

Figure 3. Mechanisms that regulate CpG island activation and repression. CG islands are normally
��������	�������������	�����	�����
	�������������
�������������^{��<����������	�����	������$��$��������
proteins that bind to non-acetylated CpG elements. The balance can be shifted from the activated state
^��
<� ��� ��	� �	
�	��	�� ����	� ^������<� ��� ��	� �	
�"�	���������� ������������� ��� ��!� �	���
������ ����
H3K9 methylation.
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recruited to nonmethylated CpG sequences it can presumably modify and eliminate any

adjacent methylation of CpG sequences. Either MLL1 or the Cfp1/Set1 complex can

also bind to nonmethylated CpG sequences34,40 and introduce the H3K4 trimethylation 

mark (H3K4me3) which suppresses recruitment of the DNMT3a/DNMT3L complex.25

{�	�|	�}�����������������

����������	���
	�����

����������������	���	������37 but 
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�����	����	�������������������	������������������	�	�������	����	��	����

transcription. Cfp1 was recently shown to play a major genome-wide role in maintaining 

$
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Conversely, CpG islands can also be repressed and maintained in a repressed state 

�����	�����	������!��	���
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cooperate to maintain the repressed state by promoting recruitment of the H3K9 HMT

G9a and DNMTs.23-25 Once methylated, CpG islands bind proteins containing methylated 

methyl-CpG binding domains (MBDs) which recruit H3K9 HMTs and HDACs.However,

mechanisms controlling the balance of methylation are highly complex with the same 

proteins in some cases involved in both activation and repression. Hence, Cfp1 can also 

recruit DNMT1 and loss of Cfp1 leads to a decrease, not an increase, in levels of DNA

methylation within both repeat elements and single copy genes.41 This may indicate

that the net balance of Cfp1 function is different at CpG islands, where it is required to

introduceH3K4me3, as opposed to interspersed CpG elements where it may promote DNA

methylation. MBD1 and DNMT1 also each have both CXXC domains and methylated 

CpG binding domains meaning that they can drive repression of CpG islands if there is

an absence of activating factors.40

Tet family proteins are also targets for mutations in blood cell diseases42 and this could 

account for the aberrant methylation of CpG island promoters in myeloid malignancies.30

The Tet2 gene is frequently mutated in Chronic Myelomonocytic Leukemia (CMML)43,44

and the Tet1 gene (previously termed LCX) is involved in chromosomal translocations in

Acute Myeloid Leukemia (AML).45 Interestingly, Tet2 lacks a CXXC domain, meaning

that another class of factor is required to direct Tet2 to CpG elements and this represents

another potential point for epigenetic dysregulation.

HISTONE MODIFICATIONS MARKING THE INACTIVE

TRARR NSCRIPTIONAL STATE

In the absence of transcriptional activators, the chromatin of genes adopts a heritable

silent state by default, or even a heterochromatic state with distinct biochemical features.

DNA of heterochromatic genes is highly methylated and compacted, and harbor inactive

histone marks such as methylated histone H3 K9 or K27 which are deposited by the HMTs

Su(var)3.9 and EZH2 respectively, the latter being a component of the polycomb family of 
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serve as binding sites for “readers” of the epigenetic code.46 The best-characterized examples 

for such interactions are the recognition of methylated CGs by MBD proteins47 and the 

binding of heterochromatin protein 1 (HP1) family members to trimethylated histone

H3 lysine 9.48,49 All of these proteins associate with highly cooperative macromolecular 

���

	�	����������
��	�������	�������!�������������	�@��	��������	���	���	"�����

���	�

inactive mark, or remove active marks and thus sustain an inactive chromatin structure.
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both associate with histone deacetylases (HDACs), (ii) DNMT1 interacts with the H3 K9 

HMT G9a50 and (iii) HP1 interacts with both HDACs and DNMTs.51,52

Similar to DNA methylation, the aberrant deposition of inactive histone marks is a 

��

�����������	��	�
���	��	�%�_���	���	�	����������������	������

������
����������

and get rewritten depending on the transcription cycle and the presence and absence of 

extracellular signals,53 the deposition of an inactive histone mark per se does not lead to

permanent gene silencing. However, as described above, one of the hallmarks of cancer 

cells is the permanent silencing of CpG island promoters of important tumour suppressor 

genes by aberrant DNA-methylation. It has recently been shown that the binding of such 

sequences by polycomb complexes and the concomitant deposition of methylated H3 K27 
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�����������	��54,55

again indicating that the gene silencing machinery operates in a highly cooperative fashion.

{�	�	�	�
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locks genes into a permanently inactive state.22

CHROMATIN MODIFICATIONS ACCOMPANYING GENE ACTIVATION
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their differential activities.56,57 The fact that such patterns are not random, and change in 

response to extracellular stimuli,58 already hints at the fact that the epigenetic regulatory
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to the �1% of the genome that comprises the regulatory elements active in any one cell 

type by creating highly accessible nucleosome-free regions that exist as DHSs.13 In

most cases this involves the cooperative action of different transcription factors, but in 

some cases the creation of these DHSs is initiated by specialized pioneer factors that 

have the intrinsic ability to bind to chromatin compacted by histone H1.59����	���
	����

factors, such as the transcription factors NFAT and NF-�B, are intimately associated 

with the induction of DHSs within promoter and enhancer elements in response to

�������������������	�����
��"��`��������������
�%60,61 NFAT is a key mediator of T

cell receptor (TCR) signaling, whereas NF-�Q�������	���	����������
��"��`���������

signals such as bacterial lipopolysaccharide (LPS). These types of factors play a key

role in creating access for and assisting the recruitment of other factors and represent a 

pivotal point at which the normal tight control over gene expression can be overridden 

in a disease context.

Once bound to DNA, transcription factors recruit a host of chromatin modifying

��������	�%�Q	���	����	�������	�������������������	����	�����	������	����	���
����	������

ATP dependent nucleosome remodeling complexes such as SWI/SNF and ISWI that either 

disrupt or reposition nucleosomes and mobilize arrays of nucleosomes.62-65 Remodelers

can serve both to create nucleosome-free sites for regulatory factors and polymerases 

and to render nucleosome organization highly dynamic. Remodeling activities play

essential roles in mediating inducible responses within the immune system and we have
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observed that NFAT-dependent enhancers function in part by mediating long-range

mobilization of nucleosomes, creating a highly disorganized and dynamic nucleosome 

array.66,67 #�� ���������� �	� ����	�� ����� ��������
����� �������� �����	�� ��� ��`���������

stimuli can activate promoters driving the expression of noncoding RNRR As which alter 

the nucleosomal architecture of cis-regulatory elements by the process of transcription 

itself.68 Many inducible transcription factors, including for example AP-1 and CREB, 

which mediate responses within the immune system, have the ability to recruit HATs 

such as CBP and p300. This typically leads to the creation of a hyperacetylated and more

open state at promoters and enhancers.62-65

_���
��� ��� �	��������� ������������ ��	� �������	� ����	�� ������	� �������������

characteristic for active genes reinforce the active state by providing interaction modules for 

the transcription machinery. For example, HATs such as GCN5 and subunits of chromatin 

remodelers such as Brg1 possess bromodomains that recognize H3 K9 acetylation.69,70
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by that of TFIID which is part of the basal transcription machinery.71 Moreover, it has 
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active transcriptional state during cell division.72 However, for normal development it is 

of vital importance that complexes reinforcing the activated state are tightly regulated. 

One of the major causes of leukemia is the generation of aberrant epigenetic regulatory

proteins as a result of chromosomal translocations. Fusing heterologous domains can 
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Nup98.73 The expression of such a dominant-negative fusion protein leads to a targeting 

of a nonfunctional complex to H3 lysine di/trimethylated sites where it blocks the 

demethylation of histones. This causes the maintenance of the active state and eventually, 

a block in cell differentiation and leukemia.

EPIGENETICS MEETS CHRONIC INFLAMMATION IN LEUKEMIA

One of the hallmarks of many cancers is their aberrant growth, which is based on the 

fact that many tightly regulated growth-controlling signaling processes are dysregulated 

and constitutively active in these cells. This is achieved by either autocrine/paracrine 

stimulation of growth factor receptors or the mutation of other molecules involved 

in transmitting such signals into the nucleus. In blood cells, this involves signaling 

molecules such as cytokines, cytokine receptors and kinases, as well as transcription 

factors integrating immune responses. For example, the direct activation of Ras pathways 

and/or the suppression or mutation of negative regulators of cytokine signaling pathways 

can lead to activation of genes such as GM-CSF and hypersensitivity to GM-CSF in

myeloid malignancies.74-78

{�	�����	?�	��	������	�������������������������`��������������
������������������
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factors linking such signals to gene expression control are constitutively active, with the

most important factor being NF-�B.79 In human Hodgkin’s lymphoma (HL), the constitutive

activation of this transcription factor is required for the survival of leukemic cells.80 In

the majority of cases, HL cells originate from germinal center B cells, but have lost 

����������	���Q��	

��
	������	�	�	�
�	������
������%81,82 Interestingly, these cells also

express lineage inappropriate genes, including the receptor for colony-stimulating-factor 

1 (CSF1R or cR -FMS) which is the main growth factor receptor for the macrophage
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lineage.82,83 Moreover, it was recently shown that these cells also express CSF-1 itself 

and this autocrine/paracrine stimulation is required for HL cell survival.84 However, the

most intriguing result from the same study was that aberrant expression of the CSF1R
gene was not driven by its normal promoter, but originated from an aberrantly activated 

long terminal repeat (LTR) promoter of the THE1B family of repeats located 6.5 kb

upstream of the normal transcription start site. LTRs are remnants of retroviral insertions
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silenced during embryonic development and this silencing is strictly maintained by

DNA methylation and the action of corepressors recruiting HDACs that maintain the

presence of inactive histone marks. Moreover, the activation of THE1B elements in HL

cells was not restricted to one genomic location, but was a widespread phenomenon.

As it turned out, HL cells have lost expression of the corepressor MTG8/CBFA2T3 

(otherwise known as ETO2). In addition, THE1B elements contain functional binding

sites for inducible transcription factors, including NF-�B, which are required to activate 
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control combined with constitutive activation of otherwise inducible transcription factors 
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LTR promoters. R The consequences of these events are cells of B cell origin that have 
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THE ROLE OF EPIGENETIC MECHANISMS IN AUTOIMMUNITY

The role of this chapter has up until now been to introduce basic concepts of chromatin 

structure and the epigenetic mechanisms that control the function of the genome in normal

cells and in disease. However, we also need to at least touch on the role of epigenetics in 
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be discussed in the following chapters. There is now abundant evidence that disturbance 

of epigenetic mechanisms in the immune system can lead to autoimmune disease, 

with perhaps the best example being Systemic Lupus Erythematosus (SLE),85-87 which 

will be discussed in depth in this volume in Chapter 9. This is a disease where there

is a prevalence of global DNA hypomethylation and demethylation of the regulatory 
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�%85,88 Furthermore,

DNA demethylating agents are able to induce lupus-like symptoms.86 Abnormal patterns 

of histone acetylation are also found in T cells from lupus patients. Atopy is another 

condition where DNA demethylation of genes such as interferon gamma can contribute 

to autoimmunity.85

CONCLUSION

The few examples described in this chapter graphically demonstrate that the interplay 

of transcription factors with the epigenetic regulatory machinery is at the heart of many 
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����	��������	��������	��	�	���������������	�
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for each individual disease. The major challenge for the future will be to delineate the 

mechanisms common to aberrant gene regulation involved in individual disease processes 

and identify targets for their correction. A tall order.
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Abstract: Lymphocyte differentiation from haematopoietic stem cells (HSCs) is a multi-step
process in which lineage fate choices are made at crucial branch points. Plasticity
of common precursors is evidenced by presence of transcriptionally favourable
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specialisation of lymphocytes requires further plasticity, to allow differentiation onto
short term effectors cells, or long term memory circulating and resident cells. Impaired 
differentiation of lymphocytes or deregulated or unbalanced production of certain
lymphocytes subsets underlies the pathogenesis of lymphoproliferation, autoimmunity
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INTRODUCTION

Epigenetic marks modulate gene expression without variations in DNA sequence.The 
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of CpG dinucleotides, a proportion of which cluster in CpG islands located in the promoter 
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of coding genes and are mostly unmethylated, whereas methylation leads to repression 

of gene transcription.1 Increasing evidences demonstrate a role of epigenetic alterations

in the aetiology of human diseases, like cancer and more recently autoimmunity.2,3

DIFFERENTIATION OF COMMON LYMPHOCYTE PRECURSORS

In adults, lymphocytes, like other blood cell types, are derived from haematopoietic

stem cells (HSCs) resident in the bone marrow.4,5 Moving down the haematopoietic 

differentiation tree,HSCs gradually lose self-ff renewing potential, as indicated reconstitution

	�
	���	���������	
���
��	���	��
�	����������

��	����	���	��������������
���"�	�������

short-term capacity for multilineage reconstitution in different HSCs subpopulations.6

Self-ff renewing is completely abrogated in multipotent precursors (MPPs) that can 

differentiate however into separate lymphoid and myeloid lineages by the initiation of 

differentiation programs in which gradually the capacity of generating different cells

types is lost and the compromise with a given cell type increases.7 In the classical model

of haematopoietic differentiation, a common lymphoid progenitor (CLP) and a common

myeloid progenitor (CMP) derived from MPPs were ascribed differentiation potential

for each of the separate branches.8 A fundamental role for the IL7 signalling in mouse

lymphocyte development pointed to the expression of the IL-7R� chain as a main marker 

differentiating the CLP and the MLP.9,10 Interestingly, IL-7R�–/– mice lack peripheral–

T and B lymphocytes whereas human with null mutations in this gene present T cell
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an example of how, being an excellent tool for understanding of the immune system,
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are capable of forming all T, B and NK lymphocytes, whereas MK LPs further subdivided 

in bipotent megakaryocyte/erythroid or macrophage/granulocyte progenitors.11 In recent 

years, this model has been revised as several evidences from different research groups 

indicate that commitment to the lymphoid lineage is dependent on step-wise lost of 

pluripotency for other cells types. Before committing to the lymphoid lineage, MPPs lose
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by MPPs towards a progenitor with lymphoid and granulocyte/monocyte potential, the 

lymphoid-primed multipotent progenitors (LMPPs).4 This population are precursors of 

early thymic progenitors (ETPs) that migrate to the thymus to start the T-cell differentiation 

and CLPs that lose macrophage/granulocyte differentiation potential and will further 

develop to B and NK lymphocytes (K Fig. 1).
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certain bone marrow microenviroments or niches, in which a complex interplay of 

progenitors, endothelial cells and the cytokine milieu promote each particular differentiation
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signalling.4 The mechanisms that govern cell differentiation at molecular level consist in
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well characterised.

Gene expression analyses have revealed that HSCs and lymphoid and myeloid 

progenitors show certain promiscuity,12,13 expressing both typical lymphoid and myeloid 

genes at a low level. This “lineage priming” appears to be a critical step for further 
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commitment, leaving lineage-associated genes exposed for recruitment of transcription 

factors and further modulation of chromatin in subsequent lineage differentiation steps.12,14
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of genes associated with different other lineages (lineage commitment) are needed for 

the differentiation of a certain progeny.12

Figure 1. The global haematopoiesis and the crucial branch points at lymphocyte differentiation are 
depicted. Key transcription factors mediating cell fate commitments are highlighted in grey.
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transcription factors and remodelling of chromatin structure mediated by epigenetic 
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mouse HSCs and MPPs.15 Patterns of H3K4me2 are similar in multipotent populations, 

being more prominent at enhancer regions. This is consisting with a transcriptionally 

permissive status and promiscuous gene “priming” for expression. H3K4me3, a marker 
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closest precursors. In contrast, H3K27me3 which has been associated with silent genes

was prominent at the promoter of genes in the cells most distant to those expressing

the genes.15 Similar results have been obtained on multipotent human progenitors from

cord blood,16 in which many lymphoid and myeloid-associated genes are associated 

with acetylated H4 and H3 and H3K4me2 but not repressive H3K9me3 or H3K27me3
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lymphoid or the myeloid lines is associated with loss of H3 and H4 acetylation and the 
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These results indicate that pluripotency is associated with permissive structures for gene 
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determine active and inactive genes.

EARLY T- AND B-CELL COMMITMENT

At LMPPs, the action of two key transcription factors, Ikaros and PU.1, tags cells

towards lymphoid differentiation by differentiation of early thymic progenitors (ETPs)

and common lymphoid progenitors (CLPs) that will differentiate to T, B and NKs cells

respectively.14 At the molecular level, both can act as repressors or activators of gene 
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The initiation of a B-cell progeny is driven by cooperation of the transcription factors
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fully commitment to the B-cell path.14 Pax5 is the essential transcription factor for full 
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deletion of Pax5 in mature B cells induces de differentiation, plasticity and even T-cell 

generation.18 The T-cell potential relies on the Notch signalling pathway, prevented by

the transcriptional repressor LRF.19 B-cell fate is rescued by inhibition of Notch signalling

and Pax5 promotes the commitment to B cell partially by the inhibition of Notch.17 The

most consensuated opinion is that CLPs are LMPPs in the process of being committed 

to the B-cell fate.14 Although is clear that T and B cells share a common progenitor, 

the precise point of divergence of the two lines is debated. CLPs can sustain T-cell 

production when injected in the thymus, but LMPPs already express chemokine receptors
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retain myeloid potential, indicating that are not derived from CLPs but more multipotent 

progenitors.20,21 ETPs cease their B-cell differentiation potential upon Notch signalling, 
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T-cell transcription factors like Gata3 and TCF1.22 Notch signalling has revealed a clue

repressor of non-T cell programs.

REARRARR NGEMENT OF ANTIGEN RECEPTORS

{�	���

��������{�����Q��	

�������	�	�
�	���������	���	�	
�����	����	�������	��{

cell and B-cell receptors (TCR and BR CR respectively).R 23 This requires a sophisticated 
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genes by recombinant activating genes (RAG)-1 and 2 proteins that bind appropriate

recombination signal sequences (RSS) and repair of the DNA breaks by the ubiquitous

repairing machinery. The impairment of the recombination process leads to absence of 
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lymphoproliferation, therefore the recombination process must be tightly regulated.23

One level of regulation is the strict control of RAG gene expression at differentiation 

steps in which recombination occurs.24 Other mechanisms must account for lineage and 
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proposed, in which RSS are in closed non accessible chromatin until proper signals are

received.25,26 This is consistent with germline transcription of the heavy chain locus, a 

phenomenon largely known to be associated with recombination.

In early B-cell progenitors and before DH to JH recombination, H3 acetylation is

abundant in a region extended from DH to C�, extending later on to the VH region. 

This is probably related with accessibility of the recombinases to the DNA. Additional 
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whereas H3K9methylation correlates inversely.27-29

Hypermethylation blocks recombination as has been shown with recombination

substrates methylated in vitro.30,31 In vivo, methylation could prevent recombination by

regulating chromatin accessibility or masking RSS signals. In mouse, IL-7 signalling is

crucial for lymphocyte development and IL7R–/–RR ����	�
�	�	����	�	�	��������	���	����–

and absent �	 T cells, due to lack of recombination at the �	 locus.32,33 This locus is 

methylated in the absence of IL-7R signalling and this could contribute to the recruitment R

of deacetylases, as suggested by the induction of recombination by the histone deacetylase 

inhibitor trichostatin A (TSA) in the absence of IL-7 signalling.34,35 On the other hand, 
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recombination.23

Genomic methylation impacts not only on recombination. In vivo experiments 
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a role for methylation in lymphocyte development and immune response.36 Lsh is 

a chromatin remodeler that links remodelling and DNA methylation. Lsh is mostly

detected in precursors and activated lymphocytes.23 Rag–/– mice reconstituted with Lsh–/–

lymphocyte precursors showed circulating but reduced numbers of T and B lymphocytes

in thymus, spleen and lymph nodes. Proliferative responses to polyclonal mitogens

were reduced and T cells showed increased apoptosis upon stimulation.36 Thus global

hypomethylation does not prevent maturation and differentiation of lymphocytes, but 

impacts on their global production and survival.23 Another important phenomenon 

associated with methylation in developing lymphocytes is allelic exclusion. This is a

mechanism by which only one of the two alleles for the antigen receptor undergoes 
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recombination.37�|����
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at the variable region of the antigen receptor, a fundamental principle for the antigen 

driven clonal expansion of lymphocytes.

GENERARR TION OF B CELLS

The combined activity of E2A, EBF and Pax5 promotes transcription of key B cell

genes like mb-1 (Ig�), B29 (Ig
), �5 and VpreB (subrogate light chain) and cd19.14

~���	���� �����	�� ��� ����	� �	�	�� ���������	�� ���	��	�� ����� ��	� �	������	�� � heavy

chain, to the generation of the B-cell receptor (BCR).38,39 The mb-1 gene promoter is 

methylated at CpG dinucleotides in HSCs and EBF and E2A promote demethylation 

and accessibility to Pax5.40 Chromatin remodelling also participate in this regulation, 

as recently demonstrated in culture B cells. Knockdown of different components of theKK

SWI/SNF and Mi-2/NuRD complexes result respectively in inhibition or enhancement of 

Mb-1 transcription promoted by Pax5.41 Epigenetic control of early B-cell development 

occurs also at the Cd19 locus.39 !�� �
���	��� 	�����	�� ��� ����� �	���	

	�� ��� |~~���

facilitating binding of E2A and EBF and Pax5 in pro-B cells.42 The expression of a

functional pre-BCR is a crucial step in B-cell development.R 38,43 Once the � heavy chain

has been rearranged it is tested by surface expression in conjunction with subrogate light 

chain (�5 and VpreB). The � heavy chain lacks signalling capacity that is provided by the

cytoplasm motifs of Ig� and Ig
 to complete the pre-BCR. Signalling by this receptor is a 

fundamental checkpoint in early B maturation, by promoting proliferation and expansion

of B precursors that have successfully rearranged the heavy chain gene and subsequent 

conversion to pre-B cells. Mutations in components of the pre-BCR (R � heavy chain, �5,

Ig� and Ig
) or molecules that participate in pre-BCR signalling (BR TK and BK LNK) are

associated in humans to block of B-cell differentiation at the pro-B stage, lack of mature

B cells in the periphery and agammaglobulinaemia.38,43������	��������

��������������	�

pre-BCR in needed for the rearrangement of the immunoglobulin R � light chain locus and 
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pre-BCR signalling.R 44 Successful rearrangement of light chain will allow the expression 

of the BCR in the immature B cell that will leave the bone marrow and circulate in the R

periphery as a mature B cell.

Sustained expression of Pax5 is fundamental to maintain the B-cell commitment in

the periphery. Pax5–/– KO mice express EBF and E2A, whereas in EBF–/– and E2– A–/– mice–

Pax5 expression is repressed, indicating that Pax5 acts downstream EBF and E2A.14 Pax5

has two promoters, a TATA-containing upstream promoter used by B cells and that is

inactivated by dense CpG hypermethylation and a TATA-less promoter downstream used 

by other Pax-5 expressing cells that is repressed by histone deacetylation.45 Additionally

a potent enhancer in intron 5 that is methylated in stem cells becomes active in MPPs.46

The promoter region is repressed by the Polycomb group in non-B cells and activated 

at the pro-B cell trough chromatin remodelling induced by EBF.46 Both promoters and 

enhancer are fully active in mature lymphocytes. Pax5 maintains B-cell identity by
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pro-B cells have revealed that Pax5-activated genes contain epigenetic activating marks,

such H3 acetylation and H3K4me2 and H3K4me3. In Pax5–/–��	

����	�	��������������–

are very reduced or lost.47-51
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PERIPHERARR L B AND PLASMATIC CELL DIFFERENTIATION

Terminal B-cell differentiation and activation are dependent on antigen recognition 

by the BCR and co stimulatory pathways. R Once a naive mature B cells is activated a 

further specialization decision is taken.52 At this point some level of plasticity in B cells

is present, as suggested by relatively low levels of histone methylation and high levels

of histone acetylation.53 Activated B cells can enter the germinal centre reaction for 
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immunoglobulin class switch recombination (CSR). This path is governed by the Bcl6

transcriptional repressor, expressed at low levels in mature naive B cells but rapidly

up-regulated in some B cells after antigen stimulation. Alternatively the B cell can
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under the action of plasma cell master regulator Blimp-1. These processes are mutually

exclusive. By repressing Blimp-1, Bcl6 prevents plasma cell differentiation. Plasma cell

formation implies a tremendous change in B-cell phenotype and morphology. For this

the complete B-cell expression program has to be repressed, including Pax5 and Bcl6
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ensure a resting state.39,54 Expression of XBP-1, a transcriptional factor that regulates

antibody secretion is induced by removal of its repressor Pax5.

The mechanisms of gene repression used by Bcl6 and Blimp-1 are varied. Bcl-6 

interacts with MTA-3, a subunit of the repressor Mi-2/NuRD complex expressed in germinalRR

centre B cells.55 The function of this complex requires deacetylation of the central core

of Bcl6 itself and of locus-associated histones to repress Blimp-1 expression. Once the

germinal centre reaction is completed, if antigen persists plasma cells producing high
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Bcl6 phosphorylation and ubiquitinylation, targeting Bcl6 for proteosomal degradation.54

This releases Blimp-1 repression and permits plasma cell differentiation. The repressive 
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competition for promoter biding with activators, association with corepressors that use 

histone deacetylases or H3K9 methyltransferases.54 The latest is likely to be the core of 

sustained gene expression pattern in plasma cells.

DEFECTS IN B-CELL DIFFERENTIATION: IMMUNODEFICIENCIES

~��������������	���	���	��^~#��<���	����	�������������	�	���	�	��������
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rare diseases affecting the immune system. Most syndromes are monogenic disorders that 

follow a mendelian inheritance. The syndromes arise as consequence of the role of the 

mutated gene in the immune cell differentiation. Examples are recombinant activating 
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(SCID), or � heavy chain in autosomal recessive agammaglobulinaemia with absence 

of mature B cells.38 Others impair the expression or function of surface or intracellular 

proteins that are necessary for lymphocyte activation or regulated function and the
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traditional genetics has not proved to be very successful identifying the missing gene
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observe many different course and severities in patients with similar mutations, even

within a family.43

A possible pathogenic relation between altered epigenetic control of 
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syndrome is a rare autosomal recessive entity and the only human disease associated 
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mutations in the DNA methyltransferase 3B (DNMT3B) gene and present a primary

�������	���	���� ����� ��
�������
���
���	����� 
	������ ��� �	����	��� �	�
�������

and intestinal infections, impaired B-cell terminal differentiation and occasional T-cell

defects, that can predispose to opportunistic infections.56 Most ICF patients carry 

mutations in the catalytic domain of the DNA methyltransferase 3B (DNMT3B) gene. 

Marked hypomethylation of satellite centromere-adjacent heterochromatin is associated 

with decondensation and chromosomal elongations with formation of multiradials.56

ICF patients present normal numbers of peripheral B cells, but these are only a naive

phenotype, as no memory B cells or plasma cells are present in peripheral blood or the

gut. Furthermore, this B cell pool is enriched in potentially self-ff reactive cells indicating

that negative selection and clonal deletion mechanisms are impaired. ICF patients do 

not typically develop autoimmunity, suggesting that cells are anergic or silenced in

vivo.57 DNMT3B mutations cause deregulation of lymphogenesis associated genes

expression. Upregulated genes are associated with low-level DNA methylation in normal
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particularly H3K27m3 and gain of H3K9 acetylation and H3K4me3.58 The advance in 
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and the analysis of those events in cells from ICF and PID syndromes could shed some

light in those syndromes that do not seem to follow a mendelian inheritance or for 

which substantial heterogeneity in the phenotype is well observed.

CONCLUSION
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clarify our understanding of the molecular bases of several immune related diseases. 

Contribution of epigenetic alterations to lymphoid malignancies is well established.

Evidences for a similar importance in autoimmune conditions are also being unravelled. 

�	�	���������������	���	��������
����

�����	�
	��%�!
�������	���	��	����	����

������	��

��	�����	
���
�����	���������
	����	
��	�	�����	�	��
���������
��������������	���	���

is already in place.
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Abstract: This chapter describes recent advances in our understanding how epigenetic events
control immune functions with emphasis on transcriptional regulation of major 
histocompatibility complex Class I (I MHC-I) and II Class II (I MHC-II) genes. MII HC-I and 
MHC-II molecules play an essential role in the adaptive immune response by virtue
of their ability to present peptides, respectively to CD8� and CD4� T cells. Central 
to the onset of an adequate immune response to pathogens is the presentation of 
pathogen-derived peptides in the context of MHC-II molecules by antigen presenting 
cells (APCs) to CD4� T cells of the immune system. In particular dendritic cells
are highly specialized APCs that are capable to activate naïve T cells. Given their 
central role in adaptive immunity, MHC-I and I MHC-II genes are regulated in a tight I
fashion at the transcriptional level to meet with local requirements of an effective
�����	�"�
	����� �����	� �	�
���	%� #�� ��	�	� �	��
������ 
���	��	�� ��	 MHC2TA
encoded Class II transactivator (CIITA) plays a crucial role. CIITA is essential for 
transcriptional activation of all MHC-II genes, whereas it plays an ancillary functionI
in the transcriptional control of MHC-I genes.I The focus of this chapter therefore
will be on the transcription factors that interact with conserved cis-acting promoter 
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how genetic and epigenetic mechanisms contribute to T helper cell differentiation.
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INTRODUCTION

The products of the MHC Class I (MHC-I) and MHC Class II (MHC-II) genes 

encode cell-surface glycoproteins involved in the binding and presentation of antigenic

peptides to the T-cell receptors (TCRs) of T-lymphocytes. MHC-I proteins present 

peptides from endogenous sources, such as those derived from viruses, to CD8� T cells,

whereas MHC-II molecules mainly present peptides from exogenous sources, such

as those derived from extracellular pathogens, to CD4� T cells. These tri-molecular 

���	������������|}$��
	
���	�����{$����	��	����
������	��	�	���������������	�"�
	����

immune responses.

The MHC-I gene cluster encodes the highly polymorphic classical MI HC-I 

molecules (Human Leukocyte Antigen (HLA)-A, -B and -C) and the less polymorphic

nonclassical MHC-Ib molecules (HLA-E, -F and -G). Whereas the classical MHC-I

molecules play essential roles in the detection and elimination of virus-infected cells,

tumor cells and transplanted allogeneic cells, the MHC-Ib molecules have specialized 

immune regulatory functions (reviewed in 1). All cell surface expressed MHC-I and 

MHC-Ib molecules are associated with the nonpolymorphic 
2-microglobulin. The

MHC-II genes encode the polymorphic HLA-DR, -DQ and -DP molecules, which 

are expressed as �- and 
-chain heterodimers on the cell surface. MHC-II molecules 

are central in the initiation of cellular and humoral immune responses, but they have 

also been implicated as contributing factors for a variety of autoimmune disorders. In 

contrast to MHC-I molecules, which are expressed in a constitutive fashion on almost 

�
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and is restricted to professional antigen presenting cells (APCs) of the immune system 

(reviewed in ref. 1). These APCs include dendritic cells, macrophages and B cells. All

other cell types lack constitutive expression of MHC-II molecules, but their expression

�����	������	��������	�������	�������������`����������������	�����������#��� is the

most potent, or upon activation, such as in human T cells.2 Because of their crucial role

in the adaptive immune response, the genes encoding MHC-I and MHC-II molecules 

are tightly regulated by genetic and epigenetic mechanisms at the transcriptional level

to provide an effective immune response against pathogens.

In its natural state, DNA is packaged into chromatin, a highly organized and dynamic

protein-DNA complex, which consists of DNA, histones and nonhistone proteins. The

fundamental subunit of chromatin, the nucleosome, is composed of an octamer of four core

histones: two each of H2A, H2B, H3 and H4 surrounded by 146 bp of DNA.3 Epigenetic 

�����	����	�������������������	�������	����	�����������������������������	������	���!�

sequence and determine the accessibility of chromatin. In this way, global gene activation 
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key epigenetic chromatin marks.4-6��
��	�	��������������������������	����
�����
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others acetylation and methylation of lysine residues, phosphorylation of serine residues 

�����	���
����������������	��	����	�%�{�	���������������	������������������������	�������

is read by nonhistone proteins and have varying effects on chromatin structure and gene 

accessibility.4 As a rule of thumb, conformationally relaxed chromatin (euchromatin) is 

a hallmark of potentially active genes and is associated with hypomethylation of CpG 

dinucleotides in DNA and acetylated histones. Compact chromatin (heterochromatin) is 

associated with transcriptionally silent genes and is associated with DNA hypermethylation
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on gene expression depends on the exact lysine residue methylated and the number of 

added methyl groups.7-11
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DNA methyltransferases (DNMTs) and lysine acetyltransferases (KATs) and lysine 

methyltransferases (KMTs), which are increasingly being implicated as direct or indirect 
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������������������%12-15 In this way these enzymes promote a 

return to respectively repressive or active chromatin structure. In addition to this, histone 
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that triple methylated lysine 9 in histone H3 (H3K9me3) creates a binding platform for 

the various Heterochromatin Protein-1 (HP1) isoforms, which associate with Dnmt-1, 

Dnmt3a and Dnmt3b.7,16-19 In addition, the KMTase Enhancer of Zeste Homologue-2 

(EZH2 or KMT6), which trimethylates lysine 27 in histone H3 (H3K27me3), interacts 

with Dnmt’s and in this way EZH2 recruits Dnmt activities to target promoters for CpG

methylation.20�!�����	��
�����	�	��	�	����
	�	
��	�	����
���	��	����	"���	��	�	�	�
�	������

patterns required for fundamental processes in the immune system such as cell activation, 

proliferation and differentiation. Moreover, it has also become apparent in recent years that 
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contributing to the disease.21

In the next paragraphs we will discuss the genetic and epigenetic mechanisms 

that direct transcriptional regulation of genes devoted to antigen presentation and to 

differentiation of T helper cells.

TRARR NSCRIPTIONAL REGULATION OFMHC GENES

Activation of MHC-I genes, with the exception of I HLA-G, is mediated by 

several conserved regulatory elements within the various promoters: enhancer A, 

IFN-stimulated response element (ISRE) and the SXY-module (comprising the S, 

X1, X2 and Y-boxes). These conserved regulatory elements play an important role

in the inducible and constitutive expression of MHC-I genes (reviewed in ref. 1). I Of

these regulatory elements, the SXY-module is also present is the promoters of MHC-II
�	�	��^���%�&<%�{�	��	?�	��	�������	�	�"�
	������
����	��������	������������	�������	

SXY-module is highly conserved and critical for its functioning in constitutive and 

inducible-transcriptional activation of MHC-I and I MHC-II genes.I 22,23 The SXY-module

is cooperatively bound by a multi-protein complex containing regulatory factor X (RFX;

consisting of RFX5, RFXB/ANK and RFXAP),24-27 cyclic-AMP response element 

binding protein (CREB)/activating transcription factor (ATF)22,28 and nuclear factor 

Y (NFY).29,30 This complex acts as an enhanceosome driving transactivation of these 

genes.22,31 In addition to these factors that assemble directly to the X1/X2 and Y box

sequences, the co-activator CIITA (Class II transactivator) is also required. CIITA is 

essential for MHC-II transcription,I 32 whilst it contributes to the activation of MHC-I 

promoters.33 Given the essential role of CIITA in MHC-II transcription, constitutive I
expression of CIITA coincides with constitutive MHC-II molecule expression in 

!~$������������	���������	
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expression of CIITA can be induced by IFN� resulting in inducible MHC-II expression 

at the cell surface. Thus CIITA acts as a molecular switch for MHC-II expression.

Expression of MHC-II��	�	������
�	������
	�������������������������	���������������I
remodeling at the MHC-II genes.I This is illustrated by the notion that IFN�-induced 

MHC-II expression results in an increase in histone H3 and H4 acetylation in addition

����������	��	������	�}����	�������������������	�|}$"##�
�����	������
	����	��	��	�

in H3K9me3 was noted.34

LYSINE ACETYLTRARR NSFERARR SE/DEACETYLASE ACTIVITIES

AND CIITA

CIITA exerts its transactivating function through protein-protein interactions with the

components of the MHC-enhanceosome bound to the proximal SXY regulatory module

in MHC promoters.31,35,36 This interaction of CIITA with the MHC-enhanceosome allows 

for the subsequent association of CIITA with the KATs p300 (KAT3b)/CREB binding

protein (CBP or KAT3a) and p300/CBP-associated factor (PCAF or KAT2b), which

promote transcription of MHC-I andI MHC-II genes by providing a more open chromatinI
structure.22,23,37-39 Furthermore, CIITA also recruits the coactivator-associated arginine

methyltransfease-1/protein arginine N-methyltransferase 4 (CARM1/PRMT4).40,41

Besides acting as a platform for recruitment of KAT activities for transcriptional 

Figure 1. Schematic view of the factors and epigenetic events governing MHC-II transcription. ShownI
are the proximal SXY module and a distal XY element. The proximal SXY module is cooperatively
bound by a multiprotein complex consisting of RFX (comprising RFXB/ANK, RFX5 and RFXAP),
CREB/ATF and NFY. A similar binding pattern is observed for the more distal XY elements. CIITA
interacts with the components of the multiprotein complex to positively regulate MHC-II transcription. I
$##{!� �	������� ������	� ������������ 	�@��	�� ��� �	���
	�� ��� ��	� �	���� ����� ��� �!{�� ���� ��	� �	�	��

chromatin remodeler BRG1. CIITA has the capacity to self associate and this self association may
allow bridging of the factors bound to the distal XY elements with the factors bound to the proximal
SXY module to form a chromatin loop.
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control of MHC-I and I MHC-II genes,I CIITA itself contains intrinsic KAT activity.42

CIITA-mediated transactivation of MHC promoters was found to rely on this intrinsic

KAT activity, which maps to a region in its N-terminus.42 This KAT activity of CIITA

is regulated by its C-terminal GTP-binding domain and is stimulated by GTP.42

Interestingly, the CIITA KAT activity was found to bypass TATA Box Binding Protein 

(TBP)-associated factor 250kD (TAFII250) in MHC-I promoter activation.42 Moreover, 
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���������$##{!����	
�����$Q~����*���~$!������
	�����
����	��	����	�����������	

bipartite nuclear localization signal in the amino-terminal region of CIITA governs its 

nuclear accumulation.39 As such these KATs control indirectly transcription of MHC-I
and MHC-II genes.I

In addition to KATs, CIITA also associates with lysine deacetylases (KDACs),

which were found to interfere with CIITA function. KATs and KDACs thereby act 

as molecular switches for CIITA-mediated transcriptional activation/silencing of 

MHC genes. In this respect, it was found thatC KDAC1 and KDAC2 interfere in the 

transcriptional transactivation function of CIITA following IFN� induction.43,44 It has 

been shown in mice that the KDAC1/KDAC2-associated repressor SIN3 homolog 

!� ^�_���!<� ��

��	�� ����� ����������� ��� $##{!� ��������%43 Endogenous CIITA and 

KDAC2 interact and KDAC2 has the potential to deacetylate CIITA in cultured cells.44

As a result, CIITA is targeted to proteosomal degradation, which leads to a decreased 

interaction of CIITA with the RFX component RFX5 in a deacetylation dependent 

manner.44 Together, these observations reveal that these KDAC activities affect CIITA

function on the one hand by disrupting assembly of the MHC-enhanceosome, while on

the other hand they interfere in CIITA interactions with the MHC-enhanceosome. The

Switch/Sucrose NonFermentable (SWI/SNF) ATPase Brahma-related gene 1 (BRG-1)

also associates with CIITA and is required for the CIITA-mediated induction of MHC-II 
genes.45 The association of CIITA and BRG-1 suggest that the ATP-dependent chromatin 

remodeling SWI/SNF complex is recruited by CIITA to MHC-II promoters to control 

transcription of MHC-II genes.I
Besides the crucial role of the proximal SXY-module in MHC-II promoters in 

the transcriptional regulation of MHC-II genes, the appropriate temporal and spacial I
expression of MHC-II genes in vivo also requires the involvement of additional, I
long-range regulatory elements. In these processes X-Y or X-box like sequences in the

MHC-II region play an important role.I 46 It has been found that interactions between the 

proximal elements and more distal X-Y or X-box like sequences (2.3 kb upstream of 

the HLA-DRA promoter) result in epigenetic changes at the MHC-II promoter.47,48 In

one model, RFX and CIITA can interact with the proximal SXY-module and with distal 

X-Y or X-box like sequences to form a chromatin loop.47 Binding of CIITA to the distal 

X-box like sequences has been demonstrated by a chromatin looping technique.47 This

chromatin loop results in enhanced histone acetylation.49 Likewise, the transcriptional

insulator CCCTC binding factor (CTCF) was found to control MHC-II gene expressionI
through long-distance chromatin interactions.50 The intergenic DNA of the HLA-DRB1
and HLA-DQA1 genes hosts a region that was bound by CTCF and acts as a potent 

enhancer-blocking element.51 This element and its bound factors was found to interact 

with HLA-DRB1 and HLA-DQA1 genes as determined in a quantitative 3C assay—an

assay to detect long-distance chromatin interactions.50 Subsequently it was demonstrated 

that CTCF associates with CIITA and RFX5 suggesting that the CTCF bound region

������	�`�������}�!"��Q&�����}�!"��!&�
������
�
�����	����������	����%50
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EPIGENETIC REGULATION OFMHC2TA TRARR NSCRIPTION

As detailed above, CIITAis the ‘master regulator’ of MA HC-II expression.32 Transcriptional 

regulation of MHC2TA, the gene encoding CIITA, is mediated through the activity of 

four independent promoter units (CIITA-PI through CIITA-PIV) (Fig. 2A).52 These
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Figure 2. A) Schematic overview of the MHC2TA multipromoter region. Shown are the four MHC2TA
promoters: CIITA-PI through CIITA-PIV. Grey spheres show BRG-1 binding sites relative to PIV. B)
Factors and elements governing CIITA-PIII transactivation in B cells. Shown is the core promoter region 
of CIITA-PIII and the interacting factors. The localization of the various protein/DNA-binding elements 
is indicated relative to the transcription start site. Of these factors CREB/ATF has been shown to activate 
CIITA-PIII and this transactvation can be enhanced by p300/CBP. E47, PU.1 and IRF4 synergize to direct 
CIITA-PIII expression solely in B cells. C) Factors and elements governing CIITA-PIV transactivation
��
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directly together with USF1 to the GAS/E box motif in CIITA-PIV. Indirectly, STAT1 induces IRF1,
which subsequently participates in the activation of CIITA-IV through binding to the ISRE. D) Model 
for chromatin loop formation of the MHC2TA� ��
��
�����	�� �	����� ���	�� #��¤ stimulation involving 
BRG1-dependent distal enhancers (adapted from ref. 107). Grey spheres represent the relative locations 
of the BRG1-dependent distal enhancers, which interact weakly with each other and CIITA-PIV before
#��¤� �����
�����%� {�	�	� ���	��������� ��	� �����
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������ ��������
����� ��� ��	�
CIITA-PIV isoform.
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and CIITA-PIII are used for the constitutive expression in dendritic cells and in B cells, 

respectively.52 CIITA-PIV has been shown to be the promoter predominantly involved 

in IFN�-inducible expression.53-55 In addition, in human non-B cells, CIITA-PIII can also 

be activated by IFN� through an element located 2 kb upstream of the core CIITA-PIII

promoter.55-57 CIITA-PIII has also been shown to be employed by human T cells upon

activation.2,58 {�	� 
�����	�� ��������� ��� $##{!"~##� ��� ���
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of approximately 14 kb.52

Several regulatory elements in MHC2TA promoters and interacting factors that are 
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following stimulation with IFN�, occupation of the GAS-box and the ISRE in CIITA-PIV

by signal transducer and activator of transcription (STAT)-1 and the STAT-1 target gene

interferon regulatory factor (IRF)-1 is crucial.53 Furthermore interaction of STAT-1with 

upstream stimulatory factor (USF)-1 bound to the E-box adjacent to the GAS is required 

for stable interaction (Fig. 2C).53 The IFN�-mediated activation of CIITA-PIV also results

in increased histone H3 and H4 acetylation at CIITA-PIV.59 This increase in histone 

acetylation in CIITA-PIV chromatin is already noted prior to recruitment of IRF-1 to the 

CIITA-PIV promoter.59 Interestingly, BRG-1 was also found to be an important factor in

the IFN�-mediated transcriptional activation of CIITA-PIV (which will be discussed further 

in the last paragraph of this section).60 This notion is derived from studies with cells that 

lack expression of BRG-1, which failed to induce IFN�-mediated CIITA expression.60

The transcription factor CREB-1 was found to play a key role in the activation of 

CIITA-PIII through its interaction with CRE-binding sites in the activation response 

element (ARE)-2 and, depending on the cellular context, in the 5�-UTRof R CIITA-PIII.2,56,58

The KAT CBP was shown to enhance CREB-1 mediated activation of CIITA-PIII in B 

cells.56 CIITA-PIII also contains a composite PU.1/IRF-binding element (Site C) and 2
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CIITA.61 In B cells the Ets/ISRE-consensus element is bound by PU.1 and IRF-4, whereas 

the basic helix-loop-helix factor E47 interacts with the E-box motifs. PU.1, IRF-4 and 
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activation of CIITA-PIII (Fig. 2B).61 {��������������������	�	����	����	�~�%&��#��"������

E47 play an important role in B-cell differentiation and activation. These observations 

therefore provide a link between MHC-II mediated antigen presentation in B cells and 

B-cell differentiation and activation events.61

During B-cell differentiation to plasma cells, expression of CIITA is extinguished 

coinciding with loss of MHC-II cell surface expression.62 This extinction of CIITA and 

resulting MHC-II molecule expression in plasma cells is mediated by the transcriptional 

repressor B lymphocyte-induced maturation protein 1 (Blimp-1, also known as Positive 

Regulatory Domain I-Binding Factor 1, PRDI-BF1).63,64 The silencing of CIITAexpression

mediated by CIITA-PIII in plasma cells is most likely resulting from binding of Blimp-1

to the Ets/ISRE-consensus element (Site C) thereby disrupting the interaction of PU.1/

IRF-4 to this element.48,63,64

Interestingly, besides its repressive activity on CIITA-PIII transactivation, there is 

also more recent evidence that PRDI-BF1 mediates also repression of CIITA-PIV.65

The fact that transcriptional repression by Blimp-1/PRDIRR -BF1 involves recruitment of 

KDKK ACs, in particular KDKK AC1 and KDKK AC2 and the lysine methyltransferase KMKK T1C (also

known as G9a), which catalyses dimethylation of lysine 9 in histone H3 (H3K9me2), this 

provides a strong link with epigenetic silencing of MHC2TAff  in plasma cells involving histone
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��	��
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������������������%48,66,67 Indeed it was demonstrated by chromatin 

immunoprecipitation (ChIP) that differences in the levels of activating and repressive

histone marks exists involving CIITA-PIII chromatin between B cells and plasma cells.68

In plasma cells lacking CIITA expression, histone marks associated with gene transcription 

such as H3 and H4 acetylation and H3K4me2 and KK H3K4me3 are lost at KK CIITA-PIII, while

the repressive H3K9me2 mark is increased.68 Interestingly these histone marks were found 

also to exist at CIITA-PI,CIITA-PII and CIITA-PIV, revealing the involvement of the entire 

MHC2TA multipromoter region. As a consequence of the repressive histone marks and 

resulting chromatin inaccessibility, the binding of the CIITA-PIII interacting transcription 

factors (Sp-1, CREB-1, E47, PU.1, IRF-4) was lost in plasma cells.68

Chromatin remodeling also plays an important role in MHC2TA transcription in dendritic 

cell maturation.69,70 Differentiation of monocytes into immature dendritic cells results in the 

induction of the CIITA-PI isoform, which directs expression of MHC-II genes. In immatureI
dendritic cells, MHC-II molecules are largely retained in intracellular compartments. Upon UU

maturation of dendritic cells, the peptide/MHC-II complexes are assembled and transported 

to the cell surface. During maturation of dendritic cells the increase of transported MHC-II 

molecules at the cell surface is accompanied by rapid transcriptional silencing of MHC2TA
transcription.69 The transcriptional inactivation of the MHC2TA multi-promoter locus is

mediated by global histone deacetylation involvingCIITA-PI,CIITA-PIII and CIITA-PIV69.

Notably, during differentiation of monocytes into dendritic cells in a mouse model by

mGM-CSF, activation of CIITA-PI is accompanied by an increase in histone H3 and H4 

acetylation.70 This increase in histone H3 and H4 acetylation was found to be blocked by

IL-10, which resulted in inhibition of MHC2TA transcription.70

Distal elements and chromatin-remodeling also play an essential role in the

transcriptional regulation of MHC2TA.71 As mentioned before, MHC2TA has four 
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Transcriptional activation of the main IFN�-responsive (CIITA-PIV) promoter was

found to be dependent on the interaction with distal elements at -50kb and -8kb, which

formed a loop with CIITA-PIV as determined by a chromatin conformation capture

assay.71 Contact was also detected between elements at -50kb and -16 kb. In these

long-range interactions, BRG1, the ATPase driving the chromatin remodeling complex

SWI-SNF (also called BAF), was constitutively bound to sites at -50kb, -16kb, -8kb

and �59kb and also CIITA-IV as detailed above (Fig. 2D).71 Thus BRG-1 not only is an

important factor in the CIITA-mediated activation of MHC-II genes, but also controls 

the transcriptional activation of MHC2TA through long-range chromatin interactions

and promoter interactions.

EPIGENETICMHC2TA SILENCING IN CANCER

Downregulation of expression of MHC molecules is frequently noted in tumor cells.

The low or lack of cell surface expression of both classes of MHC molecules impairs

cellular immune recognition and resulting T-cell-mediated tumor eradication. Several 
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the transcriptional silencing of MHC2TA and resulting extinction of MHC-II genes inI
cancer. In several cancer cell types, the lack of IFN�-induced MHC2TA transcription is 

associated with CpG dinucleotide methylation of CIITA-PIV and also of CIITA-PIII 

DNA.72-81 Besides CpG dinucleotide methylation, it has been suggested that the lack of 



44 EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE

IFN-�-induced transcription of MHC2TA in several cancer types is also associated with

histone deacetylase activities.82-86

Of interest is the observation made in uveal melanoma tumor cell lines.87 It was 

demonstrated that histone methylation played an important role in MHC2TA transcriptional

silencing. The strongly reduced expression levels of CIITA after IFN�-induction in an 

uveal melanoma cell line were found not to correlate with CpG dinucleotide methylation

��� $##{!"~#�� ��!�� ���� ����� ����� 
	�	
�� ��� ��	� }�����	�� ������	� ������������ ���

CIITA-PIV chromatin as determined by ChIP.87 Consistent with the transcriptionally 

silent state of MHC2TA was the lack of RNRR A polymerase II recruitment into CIITA-PIV

chromatin after IFN�-induction in this cell line, while at the same timeCIITA-PIV activating 

transcription factors were recruited.87 RNRR A interference-mediated silencing of expression

of the KMTase EZH2, resulted in an increment in CIITA mRNRR A expression levels after 

IFN� induction. These observations suggest that EZH2 is involved in the transcriptional

downregulation of IFN�-induced expression of CIITA in uveal melanoma. Notably, the

transcriptional silencing of MHC2TA by histone methylation in the absence of CpG 
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premarks genes for de novo methylation in cancer.88 It could therefore be argued that the
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MHC2TA in the complete shut down of MHC-II mediated antigen presentation functions.

EPIGENETIC CONTROL OF T HELPER CER LL DIFFERENTIATION

All T cells derive from the same precursor: the naïve T cell, which becomes activated 

after encounter of antigen in the context of MHC-II molecules at the cell surface of 

APC. After antigenic stimulation in the context of MHC-II, these naïve T cells can be

differentiated into diverse T helper cell subsets, which include Th1, Th2, Th17 or Treg.
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are also regulated by epigenetic processes (for recent reviews see refs. 89-93). These 

epigenetic mechanisms are necessary to stably maintain gene expression patterns in the 

differentiated T helper cells and to eliminate the need for feedback loops.

The differentiation of naïve T cells into Th1 or Th2 is determined by the cytokines

IL12 and IL4, respectively. In response to these signals, transcription is initiated of lineage

�
	������������	��	�	�����
����� IFN�NN  and IL4.92 The IFN�NN  and IL4 loci are maintained 

in a ‘poised’ state in naïve T cells—i.e., they show both repressive and activating

epigenetic marks—allowing rapid, early transcription. For instance, the IL4 promoter 

region exhibits a low basal level of histone H3 acetylation and DNA hypomethylation,

�����
����������	
�	����	�}�����	��������������%102 In Th1 cells expression of IFN�
is preceded by remodelling of the IFN�NN  locus.94,95 Whereas in the differentiation to Th2 

cells, IL-4 expression is preceded by remodelling of the IL4 locus, similarly to the IFN�NN
locus remodelling in Th1 cells. Upon initial stimulation of naïve T cells, the lineage 

determining factors GATA3 and T-bet mediate many of the structural changes to the

chromatin.90,92 These factors will render the IFN�NN  or IL4 genes, in respectively Th1 and 

Th2 cells, accessible to regulatory enzymes and other transcription factors.96-98 This is 

illustrated by the notion that an increase in the level of expression of IFN� was found 

in T cells from Dnmt knockout mice and in t T cells treated with DNMT inhibitors.99-101
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When naïve T cells are stimulated under Th1 conditions, transcription activating

chromatin marks at the IL4 locus are replaced with repressive marks, whereas the

contrary happens under Th2 stimulating conditions (e.g., at the IFN�NN locus)(reviewed in 

103). Interestingly, differentiated T helper cells display an unconventional association 

of Polycomp Group (PcG) proteins.104 Various members of the PcG family of proteins,

including EZH2, bound to actively transcribed IFN�NN  and IL4 genes in differentiating Th1and 

Th2 cells.104 {���������������	��������������������������
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might also act as a facilitator of gene transcription in T-lymphocyte differentiation. This 

might be achieved possibly through long-range interactions with distal regulatory elements.

The transcription factors T-bet and GATA3 are considered to be driving forces in 

Th1 or Th2 differentiation respectively. The Foxp3 transcription factor is considered the 

master switch for Treg. The promoter of the Foxp3 transcription factor showed differences 

in methylation levels between Tregs and non-Treg CD4� cells.105 Furthermore, this study

also showed differences in activating histone marks (H3Ac, H4Ac and H3K4me3) in

Foxp3 promoter chromatin. Epigenetic regulation of T cell subtypes has also been shown

in vivo. Mice which were treated with the KDAC inhibitor Trichostatin A showed an

increase in Foxp3� CD4� Treg cells in the lymphoid tissues.106

CONCLUSION

CIITA plays a central role in the control of constitutive and induced MHC-II geneI
transcription whereas it plays an ancillary function in constitutive and induced MHC-I
gene transcription. The CIITA mediated transactivation of MHC-II and I MHC-I genes isI
achieved through its interaction with the MHC-enhanceosome bound to the conserved 

SXY-module in MHC-II and MHC-I (with the exception of HLA-G) promoters. When

bound to the MHC-enhanceosome, CIITA acts as a platform recruiting various activities

involved in histone acetylation and deacetylation in the transcriptional control of MHC 
genes. Furthermore, CIITA is also central to recruitment of more general chromatin

remodeling activities and long-range chromatin interactions of MHC-II promoters with 

distal elements. These activities mediated by CIITA provide tight control of transcription

of these genes dedicated to antigen presentation. Moreover, the MHC2TA gene itself is

tightly regulated at the transcriptional level by both genetic and epigenetic mechanisms.
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In addition, transcriptional activation of MHC2TA is mediated also through long-range 

chromatin interactions. Because of the involvement of epigenetic mechanisms in the

transcriptional control of MHC2TA and T helper differentiation, deviations in these

tightly regulated epigenetic mechanisms as observed under pathological conditions such

as in cancer and autoimmune disease might provide an opportunity for pharmacological

interference targeting the enzymes that modify DNA and histones.
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Abstract: Although not exclusive, mounting evidence supports the fact that DNA methylation
at CpG dinucleotides controls B-cell development and the progressive elimination
or inactivation of autoreactive B cell. Indeed, the expression of different B cell
�
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cytokine production are tightly controlled by DNA methylation. Among normal B
cells, the autoreactive CD5+ B cell sub-population presents a reduced capacity to
methylate its DNA that leads to the expression of normally repressed genes, such as
the human endogenous retrovirus (HERV). In systemic lupus erythematosus (SLE)
patients, the archetype of autoimmune disease, autoreactive B cells are characterized 
by their inability to induce DNA methylation that prolongs their survival. Finally,
treating B cells with demethylating drugs increased their autoreactivity. Altogether 
this suggests that a deeper comprehension of DNA methylation in B cells may offer 
opportunities to develop new therapeutics to control autoreactive B cells.
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In B cells, like in other cells, CpG dinucleotides are globally methylated with the exception 

of the CpG rich regions called CpG islands. CpG islands are important for control of gene 

expression and it has been estimated that 50% of human RNRR A polymerase II-transcribed 

genes possess CpG islands. Using a high resolution technique to map the entire B-cell 

CpG methylome, it was observed that 10% of the promoters were repressed by DNA

Epigenetic Contributions in Autoimmune Disease, edited by Esteban Ballestar.
©2011 Landes Bioscience and Springer Science+Business Media.
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methylation when analyzing peripheral blood B cells.1 The CpG methylation process is
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DNMT1, DNMT3a, DNMT3b, DNMT3L and DNMT2. DNMT1 preferentially methylates 

hemi-methylated DNA, such as appear during cellular division, whereas DNMT3a and 

DNMT3b are involved in the de novo introduction of methyl groups on unmethylated 

DNA. Methylated CpG can limit transcription directly or indirectly via the recruitment 

of transcriptional repressors, such as the methyl-CpG binding domain proteins (MBD) a

group that includes MBD1-4 and MECP. In their turn, MBDs can recruit other repressors 

like the histone deacetylases (HDAC). HDACs are histone posttranslational modifying

enzymes that introduce positive charges in the histone amino terminal protruding tail and 

permit interactions with the negatively charged DNA, leading to DNA compaction and 
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such as methylation (me), ubiquitination, phosphorylation, sumoylation, deimination/

citrullinisation, ADP ribosylation and proline isomerisation.2 Among them, some are

repressive (H3K9me2/3,H3K27me3 and H4K20me2/3) while others have been associated 

with active transcription (H3K4me2, H3K36me2/3 and H3K79me2). As a consequence,
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divided into dense regions referred to as heterochromatin (increased DNA methylation,

histone deacetylation and histone hypermethylation) and into less dense regions referred 

to as euchromatin (decreased CpG DNA methylation, increased histone acetylation and 

decreased histone methylation). In lymphocytes, including B cells, epigenetic mechanisms 

may be reversed and these changes can be rapid, particularly during the cell cycle, in

response to a stimulus or after exposure to environmental factors.

B CELLS AND DNA METHYLATION

B-Cell Development

As represented in Figure 1, B-cell development can be divided into three steps. 

First step, in the bone marrow, B-cell maturation starts from a lymphoid stem cell that 

differentiates to a progenitor B (pro-B) cell, to a precursor B (pre-B) cell and to an

immature B cell. Bone marrow B-cell differentiation is concomitant with the progressive 

rearrangement of the B-cell receptor (BCR). Second step, immature B cells migrate to

the spleen wherein they differentiate through a transitional stage into follicular B cells

or marginal zone B cells according to the antigen stimulation if it is T-cell dependant or 

not, respectively. The transitional B-cell stage is crucial to the acquisition of the B-cell

repertoire (positive selection) and to the elimination of autoreactive B cells (negative

selection). In humans, circulating transitional B cells have been characterized; they

are CD10�, CD24�, CD38�� and CD5�.3 Third step, follicular B cells proliferate in the

germinal center (GC) of lymphoid follicles and differentiate into GC B cells that express
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memory B cells or plasma cells.

The transcription factor Pax5 plays a crucial role in B-cell development by controlling 

the commitment of lymphoid progenitors into the B-cell lineage and later by controlling 

the evolution from pro-B cells to mature B cells at different check points. Pax5 expression

is controlled by DNA methylation. Indeed, analysis of the CpG methylation status at the

Pax5 locus by Decker et al has revealed that Pax5 regulatory elements are progressively 
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demethylated.4 In lymphoid stem cells, the enhancer but not the promoter starts to be

demethylated and from the pro-B cell to the mature B cells both elements are demethylated. 

At the plasma cell stage, the promoter is remethylated and Pax5 is not expressed. In 
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controls Pax5 binding and transcription factor activity. Thus, explaining that CD79a/

Ig� expression starts in pro-B cell, CD19 in preB cell and the human telomerase reverse 

transcriptase in mature B cell.5

B-Cell Receptor

As demonstrated by Sakano et al, sequential rearrangements of the immunoglobulin 

(Ig) genes are necessary to produce the BCR.6 #����	��������	
����	��	������	�	�������	���

the DH to JH Ig heavy chain in pro-B cells, followed by VH to DH-JH rearrangement at the

pre-B cell stage forming the pre-BCR. When IgH is completed, the Ig light chain starts

its VL to JL rearrangement which also proceeds in a stepwise manner since kappa chain 

rearrangement precedes lambda chain rearrangement. The rearrangement is initiated 

by two enzymes, Rag1 and Rag2, which form a complex with the well conserved 

Figure 1. Model of B-cell development. B-cell development occurs in both the bone marrow and 
peripheral lymphoid tissues such as the spleen and can be divided into three stages. In bone marrow, the 
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In peripheral lymphoid tissues, the second stage, B cells undergo a process of positive and negative 
selection to eliminate autoreactive cells. Both receptor editing/revision and clonal deletion are important 
at this stage. Cells completing selection will mature into follicular B cells (or marginal zone B cells).
In the germinal center of lymphoid follicles, the third stage and following an immune response, antigen 
selected B cells develop into either plasmocyte (antibody-secreting B cell) or memory B cells.
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recombination sequence signal (RSS). In GC, the expression of the activation-induced 

cytidine deaminase (AID) is critical for somatic hypermutation of Ig V-region genes and 

class-switch recombination of C-region genes.

Since BCR rearrangement may be mutagenic or may produce autoreactive Ig, such R

a mechanism needs to be hightly regulated. The accessibility hypothesis was proposed to
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control chromatin accessibility through DNA methylation and histone posttranslational 
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methylated before V(D)J recombination and undergoes demethylation during gene

rearrangement.7 (2) Demethylation on the Ig light chain occurs after demethylation 

on the Ig heavy chains.8 (3) DNA binding and subsequent recombination by Rag1 and 

Rag2 enzymes is affected when the RSS sequences are methylated.9 (4) The methylation 
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infrequently rearranged VH genes.10 ^�<�_���������
	�������������	���`�	��	�������!

methylation since CpG methylation represses AID expression and protects deamination 

of cytosine to uracil by AID.11-12
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In addition to antibody (Ab) production and antigen presentation, B cells are able

to produce cytokines. According to Harris et al and following antigen stimulation, naïve

B cells differentiate themselves into effector B cells of Type 1 (Be1) or Type 2 (Be2).13

On one hand, Be1 cells produce Type 1 cytokines like IFN-� that provide protection

against intracellular pathogens and cancer and, on the other hand, Be2 cells produce

Type 2 cytokines like IL-4, IL-5 and IL-13 that are involved in host defense against 

parasites. In T cells the choice between Type I (IFN�, IL-2) and Type 2 cytokines (IL-4, 

IL-5, IL-6 and IL-13) is orchestrated by DNA methylation and histone acetylation.14 A

demonstration that DNA methylation controls cytokine production in B cells has not 

been provided, but may be suspected.

CD5� B CELLS

$����������	�����	�������{"�	

�����	�������	�	��	�����������	�����Q��	

���	�	��	����

as B1 cells as opposed to conventional B2 cells that did not express CD5. B1 cells are 

further divided into B1a and B1b B cells, the latter sharing all the properties of B1a except 

the cell surface expression of CD5.15 Different functions were ascribed for CD5� B cells: 

(1) CD5� Q��	
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source of natural Abs; (2) Repeated BCR stimulation of B cells leads toR CD5 expression 

that controls B-cell activation, maintains transitional and mature B cells in anergy and 

contributes to the re-expression of Rag1/Rag2 and BCR Ig light chain revision;R 3,16-18 (3) 

CD5� B cells may also exert their effect through the production of interleukin (IL)-10,

which is an immunoregulatory cytokine. Il-10 production is related to the expression of 

CD5 since transfection of B cells with CD5 is associated with IL-10 production.19 The 

role of IL-10 on autoimunity is controversial, on the one hand, IL-10 is exacerbated in 

SLE patients and, on the other hand, a protective role for IL-10 has been demonstrated 

in vivo.20-21
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CD5� B Cells Are Hypomethylated

The human CD5 gene, which possesses 11 exons, is located on chromosome 11 at 

position 11q12.2 adjacent to CD6 (Fig. 2). The CD5 and CD6 genes derive from a common
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150-200 million years ago, explaining that CD5 and CD6 are highly conserved in avian,

bovine, rodent and human. In addition, at the divergence between monkeys from the old 

world and the new world, around 25 million years ago, a human endogenous retrovirus

^}���<��������	����	����	��¥�
������������	�$���
����%22 HERV-CD5 retrovirus is 5,254

bp long and possesses two long terminal repeats (LTR) plus nonfunctional gag-pol and 

env elements.

In B1a and B1b B cells isolated from humans two transcripts are expressed,23 a classical 

one called CD5-E1A and a fusion transcript, called CD5-E1B, that contains the 5’ LTR

part of the HERVRR -CD5 element (exon 1B) and the CD5 gene (exons 2-11). Transcription 

of the fusion transcript CD5-E1B is controlled by DNA methylation and its expression

is restricted to B cells.24���!��	���
�������	
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the activity of the DNMT1 which is reduced in CD5-E1B positive cells (B1a and B1b) in

comparison to B2 cells (Fig. 3). In a second instance, it was observed that B cells treated 

with DNMT inhibitors like procainamide, 5-azacytidine and PD98059 leads to CD5-E1B 

overexpression. Finally, analysis of theCpG sites in the HERVRR -CD5 5’LTR using methylation R
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methylation status of the U3 promoter present in the 5’LTR is inversely proportional toR

CD5-E1B expression in B cells (techniques are summarized in Fig. 4).

Figure 2. Characterization of CD5 gene. CD5 and CD6 genes have evolved from the duplication of a
common ancestral gene. The human CD5 gene maps to the chromosome (Chr) 11q12.2 region, 82kb 
downstream from the human CD6 gene. A human endogenous retrovirus (HERV) element is integrated 
in the 5� region of human CD5.



55DNA METHYLATION AND B-CELL AUTORAA EACTIVITY

Endogenous Retrovirus Expression Is Impaired in CD5� B Cells

In addition to CD5-E1B up-regulation, DNA hypomethylation observed in CD5�
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based on the observation that HRES-1, another HERV element, is repressed by DNA

methylation in B2 cells while the other genes tested (Pax5, CD70, CD19 and Syk)

were demethylated.25 HERVs represent 8% of human chromatin and their contribution

to lymphocyte autoreactivity is strongly suspected. Several mechanisms have been

proposed to explain how HERV elements contribute to autoreactivity (see review 26 for 

references). (1) HERV-encoded proteins are considered as foreign antigens that stimulate

B cells to produce Abs. Among anti-HERV Abs some of them might cross-react with

self proteins by molecular mimicry. For example, Abs against HRES-1 p30gag that 

cross-react with the nuclear autoantigen U1-snRNP are detected in up to 50% in SRR LE

compared to less than 5% in controls. (2) HERV proteins may act as superantigens which

could induce expansion of autoreactive T cells. (3) HERVs may induce immune response

dysregulation through their capacity to modulate T-cell activation, cytokine expression 

and they can activate innate immunity by pattern recognition receptors. (4) HERVs may

act as insertional mutagens causing activation, inhibition or alternative splicing of genes

involved in immune regulation. One example is the insertion of a HERV element in the

CD5 gene that generates the fusion transcript CD5-E1B (see above). CD5-E1B encodes a

truncated cytoplasmic protein able to interact with the classical form of CD5, CD5-E1A,

forming intracellular aggregates when co-expressed in the same cell.24 Such an interaction 

is suspected to contribute to B-cell autoreactivity by downregulating a BCR dampener.R 15

Figure 3. B1 cells are characterized by a reduced capacity to methylate their DNA. A) B1 cells can
be discriminated based on their membrane cell surface expression of CD5 and CD45RA.23 B) The 
CD5 gene generates two transcripts CD5-E1A and CD5-E1B that are expressed at the cell surface
or intracellularly, respectively. CD5-E1A predominates in B1a cells in contrast to CD5-E1B that 
predominates in B1b B cells. C) Expression of CD5-E1B is controlled by DNA methylation and its 
expression is inversely proportional to the expression of DNA methyl transferase 1 (DNMT1) as 
determined by real time PCR.
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AUTOREACTIVE B CELLS

Animal Models

Observing that prolonged treatment with isoniazid, an antituberculous drug, was 
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long-term oral administration was tested in normal mice.27 After several weeks murine B

cells became autoreactive, antinuclear Abs appeared and the mice developed an SLE-like

disease that disappeared after the drug was removed (Fig. 5). Such an effect has been

reproduced with procainamide and 5-azacytidine, two other DNA methylation inhibitors
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more recently.28�Q��	
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inhibitors and subsequently reintroduced in syngenic mice by adoptive transfer. This led 

to the detection of antinuclear Abs in the recipient. Of note, the effect is not restricted 

to B cells, since Richardson’s group has also demonstrated that adoptive transfer of 

DNA hypomethylated CD4� T cells, not CD8� T cells, induced an SLE-like disease with 

glomerulonephritis and anti-dsDNA Ab deposition in the kidney.29

Figure 4. Methods of DNA methylation analysis. A) Methylation-sensitive endonucleases are used to 
assess the methylation status of CpG sites within a CpG island. This assay is based on the inability 
of a methylation sensitive restriction enzyme (Hpa II) to digest methylated II CpG sites, in contrast to a 
methylation insensitive restriction enzyme (Msp I). Digested DNII A is analysed by polymerase chain reaction
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that converts unmethylated-cytosine residues to uracil, methylated-cytosine remains unaffected.
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DNA Methylation Is Impaired in SLE B Cells

In SLE, peripheral blood mononuclear cells (PBMC) are characterized by a global 

DNAhypomethylation status.This was elegantly demonstrated byJavierre and colleagues 

who compared pairs of monozygotic twins discordant for SLE, rheumatoid arthritis

(RA) and dermatomyositis (DM).30 Indeed, in comparison to the corresponding healthy 

sibling, PBMC isolated from SLE patients, but neither RA nor DM patients, present a 

profound DNA methylation defect associated with DNMT1 and DNMT3b reduction 

and histone acetylation. Among PBMC from SLE patients, CD4��{��	
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reported to present DNA methylation abnormalities and recently we have also observed 

that SLE B cells were defective in their capacity to methylate DNA.25,31 Such a defect 

has been related to a blockage in the PKC delta/Erk pathway that regulates DNMTs

expression.32 The reason for the initial defect is currently unknown but transgenic 

mice defective for PKC delta developed an SLE-like disease with B-cell expansion, 

autoantibody production, IL-6 overexpression and had the constitution of ectopic GC

in the absence of stimulation.33

IL-6 is a multifunctional cytokine involved in B-cell differentiation/maturation, 

Ig secretion and T-cell functions. A relation between the IL-6 level detected in the 

sera and lupus disease activity has been reported, thus providing a clue implicating 

IL-6 in B-cell autoreactivity.34 In mice, the treatment of lupus prone mice with an

Figure 5. Epigenetic alterations in B cells contribute to the pathogenesis of lupus. Both, the long-term 
oral administration of DNMT inhibitors like hydralazine or isoniazide on one hand (left), or adoptive
transfer of bone marrow B cells pretreated with the same drugs to naïve syngeneic mice on the other 
hand (right), resulted in autoantibody production and a lupus-like disease.
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anti-IL-6 mAb prevents the development of an SLE-like disease and the production of 

anti-dsDNA Abs.35 The impact of IL-6 in autoreactivity is not completely understood 

but we have recently proposed that IL-6, by blocking the cell cycle progression at the

G0/G1 interface in B cells, controls DNMT1 expression.25,36,37 Such assertion is based 

on the observation, in one hand, that addition of IL-6 to normal B cells is associated 

with a reduction of DNA methylation and DNMT1, while, on the other hand, blocking 

abnormal IL-6 production with an anti-IL-6-receptor mAb restores DNA methylation in

SLE B cells. Interestingly, DNA methylation plays an essential role in IL-6 silencing,
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ICF Syndrome and Autoreactivity
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syndrome (ICF) is a rare genetic disease, less than 50 cases have been reported world 

wide, that displays DNA hypomethylation.40 In the majority of cases, ICF is related to

mutations in the catalytic domain of the DNMT3b gene. ICF diagnosis is associated 

with hypogamma-globulinemia or agamma-globulinemia, normal peripheral blood 

B cell number and cytogenetic abnormalities involving chromosomes 1, 16 and 

sometimes 9 in mitogen-stimulated lymphocytes. Analysing B cells from ICF patients,

BlancoBetancourt, et al have observed that peripheral B cell express autoreactive BCRs,

and that terminal differentiation is blocked at the transitional stage.40 Thus, it could be 

suspected that DNA methylation controls the negative selection of transitional B cells

through an unknown mechanism.

CONCLUSION

Evidence for a role for DNA methylation in the pathogenesis of SLE and common

autoimmune diseases has emerged. Patients with SLE have global hypomethylation of 

DNA with a decrease in the activity of the DNMTs that affects primarily lymphocytes. 

However and particularly in B cells, the pathways that control DNA methylation 

and the pathways that are controlled by DNA methylation are poorly understood. 

Consequently, a better understanding of these pathways may constitutes a revolution

in our comprehension of autoreactive B cells.41
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Abstract: Autoimmune diseases, which comprise over 80 clinically distinct conditions, are 
characterized by the presence of autoantibodies or autoreactive T cells directed 
against self structures (autoantigens). While these often incurable disorders appear to 
be rapidly increasing in recognition throughout the world, their rarity, heterogeneity 
and complex etiologies have limited our understanding of their pathogeneses. The 
precise mechanisms for the development of autoimmune diseases are not known, 
however, evidence from many complementary lines of investigation suggests that 
autoimmune diseases result from the interactions of both environmental and genetic 
risk factors. While considerable progress has been made in understanding multiple 
genetic risk factors for many autoimmune diseases, relatively little information is 
now available regarding the role of the environment in the development of these 
illnesses. This chapter examines the limited but growing evidence for the role of 
the environment in the development and progression of autoimmune diseases, 
��	��
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mechanisms by which these agents may induce and sustain autoimmune processes 
and the approaches needed to better understand these issues in the future. Identifying 
��	��	�	����������������	����	�	��������	�������	���
���������������������	��	���
���
the promise of allowing for the prevention of some illnesses through avoidance of 
environmental risk factors by genetically susceptible individuals or via gene or 
other therapies to correct the effects of deleterious genetic risk factors in the case 
of unavoidable environmental agents.
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INTRODUCTION

Autoimmune diseases are pathologic conditions associated with self-ff reactive
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symptoms and laboratory features that include characteristic autoantibodies or self-ff directed 

T-cell responses. Data regarding their incidence and prevalence are limited, but many 

investigators believe they are increasing for unknown reasons.1,2 Collectively, over 80
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5 to 8 percent of the population.3 Autoimmune diseases can affect one or more organs
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Table 1. Diseases with evidence supporting an autoimmune etiology. Source: American 

Autoimmune Related Diseases Association (http://www.aarda.org/)
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diagnose. Autoimmune diseases also may share many clinical features and risk factors,

so that a patient may suffer from more than one autoimmune disorder, or multiple

autoimmune diseases may occur in the same family. Since all the autoimmune diseases

are mediated by the immune system, the basic treatment is similar and involves the use

of immunosuppressive agents and sometimes adjunct or supportive management with

occupational or physical therapy. For these and other reasons, the autoimmune diseases

should be thought of as a family of related disorders that should be studied collectively

as well as individually.4

Mechanisms for the development of autoimmune diseases remain obscure despite 

intense investigation, yet a consensus is emerging that they likely occur as a result of 
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individuals.5 Despite the great progress that has been made in understanding a number 

of major histocompatibility complex (MHC) and nonMHC genetic risk factors for 

autoimmune diseases,6 relatively little information is now available regarding the role
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the result of the rarity of these conditions, the lack of easy-to-use and validated exposure
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of many environmental exposures that occur frequently are related to disease, the little

formal training in environmental medicine, the few resources dedicated to this area and 
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conditions.

It appears that multiple genes need to be present in an individual to induce autoimmune

disease7 and similarly, multiple environmental exposures may also need to occur in a 
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particular sequence, or in tandem, to provoke the chronic immune activation that leads to 

autoimmunity.8 Thus, lessons might be learned from studies of similar diseases, such as

cancers, which like autoimmune diseases, are complex conditions in which many genetic

and environmental risk factors must interact in a correct sequence, before development 

of disease.9 For example, a genetic, epigenetic or immune regulatory change induced 

by one exposure may be necessary before a subsequent exposure can have its effect. 

Alternatively, mixtures of exposures, including possible combinations of infectious 

and non-infectious agents, perhaps occurring during critical physiologic windows when 

persons may be more susceptible to them, may be necessary in order to overcome immune 

tolerance and induce autoimmunity. Additional general principles from the study of 

cancer that might be relevant to autoimmunity include: (1) the clinical, pathologic and 
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sizes from many environmental exposures requiring large samples for most studies; (3) 

the possible requirement for inducers, promoters and sustainers of disease at different 

points in the pathogenetic process; (4) the requirement for interaction with key genetic 

susceptibility factors; and (5) possible long latencies from exposure to pathogenic 

agents to the development of immune system alteration and then additional delays to 

the development of pathology.10 This latter principle is supported by studies suggesting

that cytokine and chemokine elevations, immune activation and autoantibodies precede

the development of clinical disease by months to years.11-13

In the context of this chapter, environmental exposures will be considered to be all 

those factors that are not inherited. These are often divided into two general categories, 

infectious agents—which include viruses, bacteria and parasites—and non-infectious 

agents—including foods, drugs, devices, occupational exposures, lifestyle patterns, 

chemical components of air and water, radiation and other incidental exposures.

EVIDENCE SUGGESTING ENVIRONMENTAL AGENTS PLAY A ROLE

IN THE DEVELOPMENT OF AUTOIMMUNE DISEASE

The evidence that environmental agents may play a pathogenic role in autoimmune 

disease comes from many complementary lines of study (Table 2). Although some of these
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that most autoimmune diseases do have an important environmental component.5,14

An important line of evidence for the role of the environment is that for autoimmune 

diseases there is generally much less than 50% disease concordance in monozygotic 

twins.14,15 Although this may possibly be due to stochastic or other events, this consistent 

low level of disease concordance in genetically identical persons among all autoimmune 

disorders studied, as well as the many other lines of evidence implicating environmental 
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environmental, epigenetic or other factors.
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a clinical disorder, which develops soon after a novel exposure (challenge), resolves

when the exposure is removed (dechallenge) and then recurs after reintroduction of the 

same exposure (rechallenge).16 $
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chemical entities such as drugs, foods, or inhaled toxicants whose effects are short-lived 



67ENVIRONMENTAL AGENTS AND AUTOIMMUNAA E DISEASES

and resolve if the agent is removed. Many xenobiotics (compounds found in an organism 

but which are not normally produced or expected to be present in it), however, cannot 

be removed after exposing an organism to them and in these cases this approach is

not usually helpful. Exposures in this category include inhaled silica, vaccines, some

petrochemicals and medical implants.

The unusual time-space associations of disease onset with some autoimmune illnesses 

also imply that nongenetic factors play a role in disease development. Examples here are

more preliminary and sometimes have not been reproduced, allowing for the possibility
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have found that certain autoimmune disorders have a seasonal onset17 or that there is a
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associations with birth dates20,21 implying that certain exposures at certain times of the

year may alter the target tissues or immune systems of fetuses or neonates resulting

in later autoimmunity. Infections are often presumed to be the source of seasonal or 

geographic associations, yet the immune system, like other organ systems, has cyclic

patterns22 that are likely related to light exposure and mediated by melatonin or other 

neurohormones.23 Additionally, many non-infectious exposures are seasonal, including

exposures to pesticides, chemicals in sunscreens and certain air or water pollutants, so 
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gradients in disease prevalence or incidence have also been found for some autoimmune

diseases. These investigations include associations with latitude, suggesting a role of 

ultraviolet radiation or other associated effects in either inducing disease, as may be the 

case for dermatomyositis,24,25 or protecting from disease, as may be the case in multiple 

sclerosis and Type 1 diabetes.26

Table 2. Lines of evidence supporting the role of environmental agents in the development 

of autoimmune disease

1. Low disease concordance in monozygotic twins

2. Temporal associations with some environmental exposures and later disease onset TT

(challenge)

3. Disease resolution or improvement after removal of the suspect agent (dechallenge)

4. Disease recurrence or worsening after re-exposure to the suspect agent (rechallenge)

5. Seasonality in birth dates in some autoimmune diseases or phenotypes

6. Seasonality in disease onset in some autoimmune diseases or phenotypes

7. Geographic clustering with the onset of disease or disease prevalence

8. Changes in the prevalence or incidence of disease over time

9. Changes in disease frequency when genetically similar cohorts move to different 

geographic locations
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11. Genetic risk factors for autoimmune disease regulate immune responses to environmental

agents

12.Higher rates of disease in certain occupations

13. Higher rates of disease after higher doses of or more prolonged exposure (a dose-response

effect)

14. Epidemiologic associations between particular exposures and certain diseases

|����	��������	�	�	��	���%
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Changes in the incidence or prevalence of disease over time also suggest a nongenetic

etiology given the slow rate of genetic change in a population. Type 1 diabetes, multiple

sclerosis, myasthenia gravis, primary biliary cirrhosis Crohn’s disease,SLE and myositis 

all appear to be increasingly prevalent, while rheumatoid arthritis may be decreasing in 

frequency in some populations.1,27-31 Studies of genetically similar populations who move

to live under different conditions are also interesting. The incidence of both multiple 

sclerosis and Type 1 diabetes changed as members of a population moved to new regions 

with higher incidence rates.32,33
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agents with disease—carefully controlled and adequately powered epidemiologic

studies—are limited.5 Large, well-designed, multicenter and sometimes international

studies, using appropriate controls and collecting adequate information to minimize 
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risk factors for each disease or phenotype.

DEFINING ENVIRONMENTALLY ASSOCIATED AUTOIMMUNE DISEASES
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����������	�����������%2 This is further complicated by 

medical-legal issues often involved in a number of environmental exposures. To address
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Rheumatology EnvironmentallyRR Associated Rheumatic Disease Study Group—developed RR

consensus on a general structural framework to address this issue and divided the process 

into four stages.16
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clinically suspected of resulting from an exposure (Table 3). The consensus of the group is 
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of attribution elements are present.16 A total of at least four of eight possible attribution 
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primary elements are: (1) temporal plausibility, taking into account the pharmacokinetics 

and pharmacodynamics of the agent, the minimum induction time and maximum latency 

that are thought to be possible; (2) exclusion of other likely causes for the case based 

on prior experience with the clinical entity and the agent in question; (3) dechallenge 

if possible (clinical evidence for resolution or improvement in the case after removing 

the suspect agent); (4) rechallenge if appropriate (clinical evidence for the reinitiation

or exacerbation of the case if it is appropriate to give the agent to the patient again) and 

(5) biologic plausibility based on the known effects of the agent. An additional three 

secondary elements are: the publication of reports of similar cases (analogy); publication 
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a more prolonged period is needed for development of disease (a dose-response effect). 

Also, information regarding the history and clinical examination, laboratory and biopsy 

results, demographic details, the family history of similar disorders, knowledge of prior 

infections or physiology-altering exposures, all prior clinical diagnoses and the type/

route/dose/duration/source of the exposure should be detailed in the report.

The second stage involves testing the possible association via epidemiologic 

studies, using surveillance criteria, to evaluate the relationship between a given exposure 
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and a given syndrome, or by in vitro, in vivo or animal studies as appropriate. Other 

approaches could be used, such as case-control settings, to determine if the cases that 

develop after the environmental exposure differ clinically or genetically from those with

similar diseases without the exposure or differ from subjects similarly exposed who do

not develop disease.

If convincing evidence is obtained that the association is plausible, then the third 

stage will develop preliminary criteria for that environmentally associated disease.

$
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patients with one disorder from closely related diseases. Approaches involving Delphi

or Nominal Group Techniques using expert committees and appropriate mathematical 

algorithms could be used to develop these criteria.34 Symptom, sign and laboratory criteria
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of constituent elements. The fourth stage repeats the same processes used in the third 
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This proposed staging structure has certain limitations, including that the decision as

to when to progress from one stage to the next stage remain somewhat subjective, yet it 
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of the environmental agents into groups with levels of evidence for their association

������
	������������	�%�{�	�����	���
����	�����������������������	
���	��������������

environmental agents suspected of being associated with autoimmune diseases today

remain in Stages 1 or 2.

Table 3. ~��
��	�� ����	�� ���� ��	��������� ���� �	������ 	�������	���

�� ��������	��

autoimmune diseases

Stage Description

Proposed Nomenclature for 

the Syndrome (Example)

Stage 1—

Proposing the  

association

$��	��	
�������	��	�������	?���	�

criteria, propose a possible 

������������������
	������
�����
�

syndrome with a given exposure

Syndrome following 

exposure (Rheumatoid 

Arthritis following Hepatitis 

B vaccination)

Stage 2—T— esting TT

the association

After a number of such cases are 

reported, surveillance criteria 

are proposed and epidemiologic 

and laboratory studies test that 

hypothesis

Cardinal signs, symptoms 

and labs but without 

the putative exposure 

(Eosinophilia Myalgia 

syndrome)

_���	��¨�	������

criteria for the 

condition

If studies above support the as-
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environmental disease

Exposure-associated disorder 

(L  tryptophan-associated 

Eosinophilia Myalgia 

syndrome)

_���	��¨�	������

criteria for the 

condition

$���	������	��	���	��	�������	��	��

as necessary as additional data 

are obtained about the disease to 

���������	������������

Exposure-induced disorder 

(Hydralazine-induced 

Lupus-like disorder)
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ENVIRONMENTAL AGENTS ASSOCIATED WITH AUTOIMMUNE

DISEASES

Infectious Agents

Viruses, bacteria and parasites have all been proposed as possible triggers of 

autoimmune diseases and yet they also may modulate immune function to possibly prevent 

the development of autoimmune disease.35 In fact, the ‘hygiene hypothesis’ proposes that 

the recent increases in immune-mediated diseases in developed countries might be related 
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�`���%

While many case reports and small case series describe the development of various 

autoimmune diseases following infections, few epidemiologic investigations have 

addressed this issue.36 Controlled studies suggest an increased risk for rheumatoid arthritis 

and SLE after certain infections by measuring the presence of antibodies to various viral 

components of Epstein-Barr virus (EBV), Cytomegalovirus (CMV) and Herpes virus in

sera or via questionnaires.5 The evidence that suggests EBV is associated with autoimmune

diseases includes an increased presence of antibodies to viral peptides and the ability

to amplify EBV genomes by PCR in more autoimmune disease subjects compared toR

controls, as well as similarities between the products of EBV genes and autoantigens.37

For further reading on EBV effects on epigenetic control see Chapter 7.

Parvovirus B19 can induce a transient reactive polyarthritis, but several investigations

have also suggested parvovirus might be an etiologic agent in autoimmune diseases.5 In

children with an acute onset of arthritis, those with IgM antibodies to B19 developed a

chronic arthritis indistinguishable from juvenile rheumatoid arthritis, while those children

who lacked IgM antibodies to B19 did not progress to a chronic form of arthritis.38 In a

carefully conducted study in juvenile dermatomyositis, however, investigators failed to
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New immunologic and molecular screening technologies should allow for the 
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Drugs

Drugs are some of the best recognized and most often reported agents associated with 

autoimmunity and autoimmune diseases (Table 4). It is not necessarily the case, however,

that drugs are more likely than other chemicals to result in autoimmunity. Rather, it is 

likely that the widespread use and careful monitoring of drugs by many parties, along 

with the regulatory oversight and adverse event reporting systems in many countries, has 

focused more attention on drugs. Also, the rapid metabolism and ease of collection of 

dechallenge and rechallange evidence has allowed associations in individual patients to 

be more carefully documented. Hundreds of drugs have been associated in case reports 

or published case series with a number of immune-mediated or autoimmune illnesses, yet 

few have met the consensus criteria described above to allow exclusion of confounding

factors. Both chemicals and biologic agents used as drugs have been associated with 

autoimmune disease.

Lupus-like disorders seem to be the most common autoimmune conditions to 

develop after drug use.43 These are often characterized by autoantibodies to histones and 

single-stranded DNA, rather than autoantibodies to double stranded DNA as are found 
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more often in idiopathic lupus. Drug related lupus also differs from idiopathic lupus

in having more frequent arthritis and less frequent neurologic and renal involvement,

as well as having possibly different genetic risk factors. This appears to be a general 

phenomenon in that many cases of drug-linked disorders often differ from the idiopathic

forms in clinical, serologic or genetic features. Nonetheless, the data are very limited 

in this regard and there are examples where the drug-related cases do not differ from

idiopathic ones.

In terms of possible mechanisms for drug-related autoimmunity, there are no

common drug structures, binding sites, functions, pathways, metabolites or other features

among them that consistently allow prediction of their toxicity. Therefore, a current 

understanding of the pathogeneses of these syndromes remains incomplete. Collecting

adequate numbers of cases in repositories to decipher the genetic and other risk factors

Table 4. Selected drugs associated in multiple case reports or in case series with autoimmune 

disorders

Drug Associated Autoimmune Disorders

�-methyldopa lupus-like syndrome, hemolytic anemia, thrombocytopenia

allopurinol lupus-like syndrome, vasculitis

anti-TNF� agents lupus-like syndrome, hepatitis

bleomycin scleroderma

captropril lupus-like syndrome, vasculitis, membranous glomerulopathy

chlorpromazine lupus-like syndrome, hemolytic anemia

D-penicillamine lupus-like syndrome, myositis, hypothyroidism, Goodpasture’s

estrogens lupus-like syndrome, myositis

gold salts lupus-like syndrome, membranous glomerulopathy

hydralazine lupus-like syndrome, vasculitis

interferon-alpha/beta lupus-like syndrome, antiphospholipid syndrome, arthritis,

hemolytic anemia, thrombocytopenia, hepatitis, myositis,

hypothyroidism

interferon-gamma lupus-like syndrome, myositis, arthritis, hypothyroidism

interleukin-2 scleroderma, antiphospholipid syndrome, arthritis,

hypothyroidism

iodine hypothyroidism

isoniazid lupus-like syndrome, arthritis, hepatitis, vasculitis,

hypothyroidism

L-tryptophan EMS, scleroderma, myositis, neuropathies

lipid-lowering agents lupus-like syndrome, myositis, hepatitis

penicillins hemolytic anemia, lupus-like syndrome

phenytoin scleroderma, lupus-like syndrome, hepatitis, thrombocytopenia

procainamide lupus-like syndrome

propylthiouracil lupus-like syndrome, ANCA+ vasculitis, myositisAA

quinidine lupus-like syndrome, arthritis, thrombocytopenia

rifampicin thrombocytopenia, vasculitis

sulphonamides lupus-like syndrome, vasculitis

tetracyclines lupus-like syndrome, arthritis, vasculitis

Reviewed in references 71, 72, 77-80; ANCA: antineutrophil cytoplasmic antibodies; EMS: eosino-

philia myalgia syndrome.
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that result in drug-induced diseases so that they can someday be predicted and prevented 

would be a fruitful approach in this area.

Occupational Exposures

Limited but growing epidemiologic and experimental data have linked a number of 

occupational exposures to autoimmune diseases (Table 5). Silica, solvents, pesticides 

and ultraviolet radiation are of particular concern.5,10 Strong associations have been 

reported in investigations of silica dust and rheumatoid arthritis, lupus, scleroderma 

and antineutrophil cytoplasmic autoantibody (ANAA CA) associated glomerulonephritis.44

Table 5. Occupational exposures associated with autoimmune diseases in epidemiologic

studies

Exposure Disease Summary of Results

Crystalline 

silica

Scleroderma

Rheumatoid

arthritis

Lupus

ANCA � vasculitis

3-fold increased risk in 4 occupational cohort 

studies; mixed results in 5 population-based 

case-control studies

3-fold (or higher) increased risk in 5 occupational

cohort studies

>10 fold increased risk in 3 occupational cohort 

studies

4-fold increased risk in 3 case-control studies

Ionizing

radiation

Autoimmune thyroid 

disease

�3.5 risk in females among 4299 workers in 

Pomerania.

Solvents Scleroderma

Undifferentiated 

connective tissue 

disease

Rheumatoid 

arthritis

Multiple sclerosis

Mixed results, but some evidence of 2-3 fold 

����	��	�������������
	�������
�	����^	%�%��
�����

thinners and removers, trichloroetheylene) and with 

“any” solvent

2-fold increased risk with paint thinners and 

removers, mineral spirits; 3-fold increased risk 
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2-fold increased risk among spray painters and 

lacquer workers

2-3 fold increased risk with solvent exposures in 

most studies

Mercury Lupus �3 fold risk in the Carolina Lupus Study

Mineral oil Rheumatoid arthritis Slight increased risk in Swedish men

Pesticides Rheumatoid arthritis

Lupus

Weak associations (relative risks <2.0 seen with 

pesticide exposure and in farmers and horticultural 

workers

�4 fold risk after mixing pesticides

Ultraviolet 

radiation

Multiple sclerosis Reduced risk (OR 0.74) of multiple sclerosis and R

mortality with increased occupational exposure to

sunlight

Reviewed in reference 10 and reference 5 with additional information from reference 81. OR: odds 

ratio; ANCA: antineutrophil cytoplasmic antibodies.
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Less strong associations are seen for solvent exposures (in scleroderma, undifferentiated 

connective tissue disease and multiple sclerosis) and for farming or pesticide exposures

(in rheumatoid arthritis).

Assessing the role of occupational exposures in disease presents a number of 
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acutely and none that capture lifetime cumulative exposures: (2) few validated and easy

to use occupational exposure questionnaires; (3) limited power of relatively small studies

resulting in imprecise risk estimates; and (4) possible confounding from multiple exposures 
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Non-Occupational Exposures

Many other non-occupational exposures have been studied and have been proposed 

to be associated with autoimmune diseases (Table 6). Evidence supporting these proposed 

associations include case reports, case series, in vitro assays, animal model studies
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independent study.45

Smoking tobacco has been reported to result in increased risks of rheumatoid arthritis,

autoimmune thyroid disease and Crohn’s disease in several studies, but inconsistent 

results were found in studies of smoking and SLE. Of interest, smoking appears to be

associated with a reduced risk of ulcerative colitis implying that different compounds in

tobacco smoke may alter risk for different diseases in a variety of ways or have different 

effects in different genetic backgrounds.

Heavy metals, including mercury, cadmium, gold salts and beryllium have been

associated with different diseases, some of which have features of autoimmunity. Also,
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to these compounds, which appear to differ in different genetic backgrounds.46

Vaccines have raised controversy relating to concerns about their involvement in

a number of different diseases. Because they are foreign proteins often injected with

adjuvants into muscle to induce immune responses, immune-mediated adverse events

would not be unexpected.47,48 A number of autoimmune diseases have been reported to

develop following various vaccinations, yet only a few have been deemed associated 

with disease by the Advisory Committee on Immunization Practices49 and are now

compensated by the National Vaccine Injury Compensation Program (http://www.

hrsa.gov/vaccinecompensation/). These include chronic arthritis after rubella virus

vaccines, thrombocytopenic purpura after measles vaccines and brachial neuritis or 
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are possibly caused by immunizations, as suggested by case reports or animal models,
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Medical devices, particularly silicone breast implants, remain controversial agents

that have been proposed to be associated with multiple autoimmune or connective tissue

disorders. Studies have been hampered by litigation involved in adverse events following

silicone implants and the lack of adequate regulatory review prior to their initial use.

Nonetheless, most studies, although underpowered for rare disorders, have not found 
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studied.53,54 An investigation of 37 patients with the rare autoimmune muscle disease called 
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immunogenetic backgrounds compared to 453 myositis patients without implants.55 Of

interest, collagen implants have also been associated with the development of myositis.56

And, recent reports of multiple cases of scleroderma following silicone breast implants

suggest that additional studies in this area may be warranted.57

Table 6. Non-occupational exposures proposed as possible risk factors for autoimmune 

diseases

Exposure Disease Comments and References

Cigarette smok-kk

ing

Rheumatoid 

arthritis

Autoimmune

thyroid disease

#�`���������

bowel disease

Lupus

Studies suggest relative risks of 1.5-3 with a greater 

effect in men, seropositive disease and those with

the shared RA epitope82-84

Meta-analyses suggest 2-3 fold increased risks of 

Grave’s and Hashimoto’s85

Smoking increases risks for Crohn’s disease but 

decreases risks for ulcerative colitis86

Increased risk in current smokers87

Dietary gluten Celiac disease Gluten-induces disease in genetically susceptible 

hosts88

Dietary meat  

and protein

Rheumatoid 

arthritis

Increased risk noted in a European study89

Heavy metals Multiple 

syndromes

“Pink disease” (acrodynia) and glomerulopathy 

from mercury toxicity; related syndromes with 

elements of autoimmunity from cadmium and gold 

salt toxicity; granulomatous pneumonitis from 

beryllium exposure; support for genetic risk factors 

in animal models90-92

Hormones Lupus Mixed results but larger studies suggest a trend for 

estrogens5

Vaccines Multiple 

syndromes

Arthritis after rubella virus vaccines; thrombo-

cytopenia after measles vaccines; Guillain-Barre 

�������	����	������	�`��������	������	�������

controversy remains over others50

Collagen 

implants

Myositis In one study OR 
 5.1; 95% CI, 2.3 to 9.6 for all

forms of myositis56

Silicone 

implants

Multiple 

syndromes

|���������	����������������������������������-

mon autoimmune diseases;51,52 rare or atypical
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inadequately studied.53,54

Stress Grave’s disease Stressful life events preceding the diagnosis 

�	�	�����������
������	�������������
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 6.3,

CI 
 2.7–14.7.59

Ultraviolet 

radiation

Lupus

Dermatomyositis 

and anti-Mi-2 

antibodies

Increased risk with >1 severe sunburn in youth93

Positive correlation of the proportion of dermato-

myositis and anti-Mi-2 antibodies with global 

surface sunlight intensity on 4 continents 24 and in 

women in the US.25
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Stressful life events may boost immune responses through induction of TNTT F-alpha, IL-1

and IL-8 and by inhibitingTGF-beta production.58 Therefore, conditions that are associated 
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preceded the development of many autoimmune diseases. A large population-based, case 

control study of Grave’s disease showed that patients had more negative life events in 

the 12 months preceding the diagnosis of Grave’s and negative life-event scores were 

�
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������	�%59 Other diseases have not been adequately studied.

THE IMPORTANCE OF GENE-ENVIRONMENT INTERACRR TIONS

IN AUTOIMMUNE DISEASES

Most common human diseases likely arise from a combination of genetic and 
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risk and focusing preventative measures at the individual level.14,60 The familial nature of 

many complex diseases suggests an underlying genetic susceptibility, but environmental

or epigenetic factors must be important since in many conditions monozygotic twins are

often not concordant for disease.61 {�	�����	������	��������	����������������
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traits will show gene-environment interaction when studied in adequate detail with 

appropriately powered analyses. Yet, these data are not available in adequate numbers

of individuals to allow for these analyses to be performed for most diseases. Evidence 

of statistical interactions between genetic and environmental risk factors is often used as 

evidence for the existence of an underlying mechanistic interaction. Gene-environment 

interactions may be additive or multiplicative or they may be negative (or antagonistic)

when protective genes or protective environmental exposures interact. Figure 1 depicts

the possible interactions of environmental agents and genetics to result in the development 

of autoimmune phenotypes and emphasizes the role of possible protective factors.

The complex pattern of inheritance of most human diseases suggests that interactions 

of multiple unlinked genes and likely multiple environmental factors are needed to

produce the phenotype.8 Genetic hallmarks of complex phenotypes are: (1) that the alleles
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for the development of disease and (2) that these alleles are not severe, null mutations,

but rather are often functional and relatively common in the general population. Data

suggest that most of these alleles have arisen because of random mutation and positive

selection in past environments, but these same alleles are often disadvantageous in our 

current environments that include many drugs and other chemical compounds, as well

as infectious agents, that were not present during most of human evolution.62 Thus, the 

understanding of environmental factors and their effects should always consider the 

contributing roles of genetic risk and protective factors.63

POSSIBLE MECHANISMS BY WHICH ENVIRONMENTAL AGENTS MAY

INDUCE AUTOIMMUNE DISEASE

The mechanisms for the role of environmental agents in inducing autoimmune diseases

are poorly understood. Yet, a variety of theories have been put forward to explain how
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xenobiotics and other exposures may induce disease.45 The diversity of these theories
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environmentally associated diseases. Evidence also implies that different pathogenic

mechanisms are likely at work in different syndromes.

One popular theory for how chemicals may induce autoimmunity is their binding

to self molecules to induce novel structures, which then overcome immune tolerance.

This “hapten hypothesis” is supported by clinical and laboratory evidence in the case of 

drug-induced hematologic autoimmune disorders.64 Agents may also alter the cellular 

level or location of autoantigens or decrease their removal. An example of this would 

be ultraviolet radiation, which is known to upregulate certain autoantigens, alter their 

subcellular distribution and induce apoptotic cells, which are cleared at a slower rate 

in autoimmune individuals.65-68 ~���"�����
������
� ������������ ��� 
���	���� ���� �
��

induce an immune attack. This has been postulated to occur when tobacco smoke alters

broncho-alveolar cell proteins by inducing citrillination, changing the amino acid arginine to 

citrulline. Such citrullinated proteins are common targets for autoantibodies in rheumatoid 

arthritis.69 |�
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���	�������	�������	���
���	���

that cross-reacts with a host antigen and this process is likely responsible for rheumatic

fever following 
 hemolytic streptococcus infection as well as ant-Sm autoantibodies in 

lupus patients following EBV infection.5 Other studies have found that over expression 

of CD70, a T-cell costimulatory molecule encoded by the TNFSF7 gene, on7 CD4�

Figure 1. Possible phenotypes of autoimmune diseases resulting from different gene–environment 
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in their indivisible form could be called elemental disorders. These are represented here as spheres,
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abnormalities. Each elemental disorder could result from a unique pathogenesis as a result of the
���	��������� �	��		�� ��	� �	�	������ ���� ������	��� �	�	���� ���� 	�������	���
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represents an individual’s genome and each hexagon a particular environmental exposure. As shown, 
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other combinations have no effect or can even be protective (as indicated by an X). RA, rheumatoid 
arthritis; SLE, systemic lupus erythematosus. Reproduced with permission from reference 5.
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lupus T cells, as well as on procainamide- and hydralazine-treated T cells, is due to

demethylation of a genetic element that suppresses CD70 expression when methylated.70
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to drugs, chemicals and other environmental agents may contribute to the induction of 

autoimmunity. Direct activation of the immune system occurs after the use of a number 

of therapeutic cytokines, including Type I interferons and interleukins and is the likely

mechanism for the development of a number of autoimmune diseases following their 

use.71,72 Other agents, including crystalline silica and certain silicones, also likely induce

autoimmunity and autoimmune disorders via their direct effects on immune activation.73

An overall understanding of mechanisms for environmental effects needs to 
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A hypothesis that addresses this issue has been termed the “elemental disorder hypothesis”.

This concept posits that each autoimmune disease, as currently recognized, contains

many stable and distinct phenotypes, which in their indivisible form are referred to as

elemental disorders.5,74� #�� ����� ��	������� ���	
	�	���
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sign-symptom-laboratory complex that results from a distinct pathogenesis as a result 
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(Fig. 1). If this concept is true, elemental disorders are likely complicating most studies 

of disease today via “comparisons of apples and oranges”. Identifying elemental disorders
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decrease the numbers of individuals needed for genetic, environmental, pathogenic and 
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prevention of some illnesses by avoidance of environmental risk factors or via gene or 

���	����	��
���������	����	
	�	�������	�	����������������%�{�	��	������������	�	��������

environmental protective factors is equally important as these could also be harnessed 

to possibly prevent disease.

As mentioned before, many of the principles of carcinogenesis could be applied to 

the development of autoimmune diseases. The general concept here is that the pathogenic 

process could involve multiple sequential stages and that each stage may be dependent 

on the effects of prior agents. Beginning with genetic susceptibility, the action of one or 

more initiators of immune dysregulation that induce autoantibodies (autoimmunity) may
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CONCLUSION

Understanding the interactions of those elements that are necessary for autoimmune

disease development offers the promise of preventing or treating autoimmune diseases

in novel ways. To accomplish this, however, critical questions remain to be answered.
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What are the detailed pathogenic mechanisms involved? Is every autoimmune disease,

as currently understood, actually composed of many subsets or “elemental disorders”,
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cured, or even prevented through answers to some of the above questions?



78 EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNAA E DISEASE

���� ���

	�� ���� ����	�����
�� ��������
� 	�������	��� ���

����	�� 	�
����	�

assessments. Because more than 80,000 chemicals are registered for use in commerce in 

the United States to be included in our foods, personal care products, drugs, household 

cleaners and a host of industrial processes, we do not know the full range of environmental

agents we are exposed to on a daily basis. Additionally, the long term effects of most of 

these chemicals on the immune system are unknown.

Parallel to whole genome scans, which have revolutionized our thinking about 

genetic risk factors for disease, the possibility of whole environmental scans should also 

be explored. Such global approaches appear daunting today, but new integrated systems

biology methods, along with nanotechnology techniques for real-time individual analyte 

measurements in multiple tissues and worldwide geographic information systems and 

remote sensing measurements offer promise in this area.75,76 Additionally, integrating

validated exposure questionnaires with biomarkers for exposures from RNRR A expression

signatures, proteomic or metabolomic analyses and antibody microarrays to capture the
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environmental risk factors in the future.62

Many other challenges have prevented further understanding of the environmental 

risk factors that might trigger autoimmune diseases in genetically susceptible individuals. 

Nevertheless, a number of coordinated initiatives may be useful in overcoming these 

obstacles and making more progress in the future. These include: developing more

validated exposure assessment tools and bioassays; increased training in the evaluation of 

environmental exposures; additional data on the incidence, prevalence and demographic 

information for autoimmune diseases; integrated databases and biorepositories; better 

coordination between animal model and human studies; increased worldwide integration 

of environmental exposures with geographic information systems. Critical for all these 

efforts is increased funding for understanding the environmental exposures that initiate, 

promote and sustain autoimmune disorders. These investments are likely very cost 
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the public health.
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Abstract: Epstein–Barr virus (EBV) is a human herpesvirus that persists in the memory B-cells
of the majority of the world population in a latent form. Primary EBV infection is
asymptomatic or causes a self-ff limiting disease, infectious mononucleosis. Virus
latency is associated with a wide variety of neoplasms whereof some occur in
immune suppressed individuals. Virus production does not occur in strict latency.
The expression of latent viral oncoproteins and nontranslated RNRR As is under 
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in a complete silencing of the EBV genome in memory B cells, or in a cell-type
dependent usage of a couple of latency promoters in tumor cells, germinal center 
B cells and lymphoblastoid cells (LCL, transformed by EBV in vitro). Both, latent 
and lytic EBV proteins elicit a strong immune response. In immune suppressed and 
infectious mononucleosis patients, an increased viral load can be detected in the blood.
Enhanced lytic replication may result in new infection- and transformation-events
and thus is a risk factor both for malignant transformation and the development of 
autoimmune diseases. An increased viral load or a changed presentation of a subset 
of lytic or latent EBV proteins that cross-react with cellular antigens may trigger 
pathogenic processes through molecular mimicry that result in multiple sclerosis
(MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).

INTRODUCTION

Epstein-Barr virus (EBV), a ubiquitous human �-herpesvirus, causes usually

asymptomatic infection in children.Upon primary infection of adolescents or adults, however, UU

Epigenetic Contributions in Autoimmune Disease, edited by Esteban Ballestar.
©2011 Landes Bioscience and Springer Science+Business Media.
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infectious mononucleosis (IM) may develop.Amonoclonal EBV-infection of tumor cells is 

observed in a wide variety of human lymphomas, like Burkitt’s lymphoma (BL), Hodgkin’s

lymphoma (HL), extranodal natural killer (NK) T cell lymphoma, or lymphoproliferations

in severely immune suppressed patients (posttransplant lymphoproliferative disease, PTLD)

and epithelial cancers, like undifferentiated nasopharyngeal carcinoma (NPC), gastric 

carcinoma, or possibly breast carcinoma and leiomyosarcoma, a mesothelial tumor (for 

review see refs. 1,2). Furthermore, EBV is associated with a panel of common autoimmune

diseases, like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and multiple 

sclerosis (MS) (for review see ref. 3).

NATURARR L HISTORY

Altogether, about 90% of the world population is infected with EBV. The virus is

secreted by the salivary glands and transmitted through direct contact between mother 

and child. When transmitted, EBV infects either squamous epithelial cells or resting

B lymphocytes close to the surface of tonsillar epithelia or other lymphoid organs in

Waldeyer’s ring. The B cells by themselves are considered necessary and possibly even
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for transfering the virus to other individuals and for establishing latency in B cells.4

In industrialized countries, primary infection in up to 50% of cases occurs later than 
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through intimate contacts between adolescents, hence, a synonym for IM is kissing disease. 

After an incubation time of two to four weeks, primary infection may be accompanied 

by symptoms like tonsillitis, fever, malaise, lymphadenopathy in up to 50% of cases, the

more severe courses being diagnosed as IM, sometimes with hepatosplenomegaly and 

skin rash. Primary infection of B cells in the oropharynx leads to a general infection of 

the circulating blood B cell pool, normally in the range of 0,1 to 1%, in extreme cases 

of 10% of all circulating B cells and up to 50% of all circulating memory B cells.6 EBV 

infected B cells in lymphoid organs and in the blood proliferate in response to the latent 

viral proteins and RNRR As.7 Besides, they easily switch to the lytic cycle of virus replication, 

important for the viral spread between cells. The large number of infected B cells in the

peripheral blood expressing numerous highly immunogenic viral antigens elicits a vigorous 

immune response which clears the infection8 (for review see ref. 9). Defence cells can 

amount to 60% of all white blood cells, like in acute leukemia. Clinical symptoms are

only relieved with the decline of both the infected B cells and activated T cells.10

ESTABLISHMENT OF EBV LATENCY

There are two different models on the natural course of primary B-cell infection

and the establishment of EBV latency. One model suggests that EBV infects naive B

cells and induces their proliferation via expression of EBV-encoded nuclear antigens

(EBNAs) and latent membrane proteins (LMPs) (latency Class III, see below).11,12 In this

model, EBV accompanies the physiological antigen activation of B cells and changes its

expression program in dependence of the B-cell differentiation stage. Thus, EBV infected 

B cells enter the germinal centre (GC) where they stay protected from apoptosis through 

the expression of several viral latency gene products. Finally, the cells are thought to
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mature into resting memory B cells that either do not express the EBNAs at all (latency

Class 0) or express EBNA 1 only when they divide (latency Class I). Contrary, through 

laser capture microdissection of IM tonsils, EBV-infected cells were not found to pass 

through a physiological GC reaction, but GC or memory B cells were directly infected 

by EBV.13,14 The directly infected GC cells differentiated into memory B cells without 
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cells do mostly not participate in normal GC reactions, because a normal GC reaction

would result in clones of hundreds to thousands of infected B cells.15,16 It is clear that 

in vitro EBV is equally able to infect both naive and memory B cells.17 In summary, a 

small number of EBV-infected cells may regularly undergo abortive GC reactions. The

strong constitutive CD40-related signal of LMP1 seems to prohibit the formation of a 

normal GC.18 Rarely, EBV may indeed participate in GC reactions, but only under the 

nonphysiological conditions of antigenic hyperstimulation of the B-cell system, e.g., 

when the organism is infected by malaria, by other parasites or infectious mononucleosis 

(HIV), or after organ transplantation.19-21

After the acute phase of primary infection is over, the virus persists lifelong in the 

organism, residing latently in memory B cells. Almost all viral promoters are silenced by 

epigenetic mechanisms in latency. Therefore, neither lytic replication nor EBV-mediated 

activation of B-cell proliferation takes place. Due to the viral retreat into surface epithelia 

and due to the minimal gene expression program in memory B cells, EBV remains nearly 

invisible for the immune system. Lytic reactivation starts with the overexpression of two 

viral immediate early (IE) switch genes BRLF1 and BZLF1,coding for transcription factors 
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The EBV infected plasma cell is usually killed in the process of lytic reactivation.

LATENCY-ASSOCIATED VIRARR L GENE PRODUCTS

Latently infected cell lines and tumor cells may be described by their distinct viral gene

expression patterns. EBV latency classes are divided into two major groups, based on the 

activity of the viral C promoter (Cp) linked with the expression of the main transforming 

protein EBNA224 (for review see ref. 2 and references therein; see also below).
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gene expression patterns that exclude EBNA2. Class I latency in BL biopsies is the 

prototype of Cp-off latency. Only two noncoding small RNRR As (EBERs), a family of 

multiply-spliced BamHI A rightward transcripts (BARTs), including its intronic cluster 

of 22 microRNRR As (miRNRR As)25-28 and the nuclear antigen EBNA1 are expressed. In

Class II latency, as typically found in HD, two LMPs are expressed, in addition. Resting 

memory B cells either do not express the EBNAs at all (latency 0) or just EBNA1, when 

they divide. In the epithelial Class I/II cancers NPC and gastric carcinoma, BARF1 is

latently expressed, in addition.

The second group (latency Class III, Cp-on latency) is characterized through the

expression of all EBV latency genes including the major immortalizing transcription factor 

EBNA2. Class III latency cells, as found in lymphoblastoid cell lines (LCLs) and in most 

cells of the classical PTLDs, express the EBERs, the BARTs, all six EBNAs, including the

BHRF1-cluster of 3 miRNRR As25,26 and the LMPs. By and by, all EBV latency genes have 
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been implicated either in cell transformation and immortalization, mostly accompanied 

with Cp-on latency, or in oncogenesis that is primarily accompanied with Cp-off latency.

CpG METHYLATION OF EBV GENOMES AND LATENCY PROMOTERS

Based on the analysis of dinucleotide frequencies, Honess et al. suggested that 

after establishing latency EBV genomes are subjected to methylation in their natural

host cells.29 Indeed, although unmethylated double stranded linear EBV genomes are

packaged into the virions during lytic replication, high resolution methylation mapping
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methylated in certain regions in normal B lymphocytes present in peripheral blood.30,31

The viral genomes in latently infected cell lines are subject to extensive epigenetic 

silencing as well. A systematic study revealed that the latent EBV genomes are highly

methylated in BL biopsies and cell lines (latency I) and nude mouse passaged NPC lines

(latency II), whereas LCLs (latency III) carried hypomethylated or unmethylated viral 

episomes.32 This suggested that de novo methylation of latent EBV genomes by cellular 
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The methylation patterns of the currently known viral latency promoters were 

extensively studied in different EBV latency classes in various cell types. These include

the EBER promoters (EBER R1p and EBER2p), the alternative promoters for EBNA

transcripts (Wp, Cp and Qp), the promoter (BARTp or CSTp) for the complementary

strand transcripts, the LMP2A promoter LMP2Ap and the bidirectional promoter for 

LMP1 and LMP2B (for review see refs. 33,34). With the exception of Qp, the methylation

status of latent EBV promoters correlates remarkably well with promoter activity.

Certain regions of the latent EBV genomes are exempt from methylation even in cells 

carrying highly methylated viral episomes. These include the latent origin of EBV DNA

replication (oriP) and the EBER 1 and 2 transcription units.R 35,36 In addition, switching on 

of Cp where transcripts for EBNA 1-6 are initiated was accompanied by demethylation 

of its regulatory region.37� #������������������	���������������������	��������������
	��

chromatin structure also regularly mark the active EBV latency promoters.3 These data

support the idea that functionally important regions carry unique epigenetic marks even 

in viral episomes characterized by high overall CpG methylation.

THE EBV LATENCY GENE PRODUCTS

EBERs. The EBER genes code for two small nuclear R RNRR As.38,39 The abundantly

transcribed EBERs are complexed with the La protein that plays a role in systemic lupus 

erythematosus and ribosomal protein L22.40,41 They also bind to the double stranded 

RNRR A dependent protein kinase PKR42,43 and thereby block the interferon-� dependent 

signal transduction pathway that would normally induce apoptosis in a virus infected 

cell. The EBERs have been shown to exert anti-apoptotic and tumorigenic functions.44,45

Furthermore, besides blocking PKR, there must be additional ways for the EBERs to

block apoptosis.46,47 A substantial amount of EBER1 was found to be released from 

EBV-infected cells.48 This may have important implications for immunopathologic

diseases, including autoimmune phenomena, because EBER1 induced signaling from

toll-like receptor 3 (TLR3) and maturation of dendritic cells (DCs) in vitro. The EBER1 
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stimulated DCs produced interferon-
 (IFN-
) and interleukin 12 (IL-12). It is important to 

note that sera from patients with infectious mononucleosis, chronic active EBV infection 

and EBV-associated haemophagocytic lymphohistiocytosis contained a higher level of 

EBER1 than sera obtained from healthy individuals.48

EBNAs. The Epstein-Barr viral nuclear antigens (EBNAs) are mostly transcription

factors that play a critical role in the maintenance of the viral episome, in the immune

recognition of infected cells and the process of cellular immortalization and morphological 

transformation.

EBNA1. EBNA1 is a transcription and replication factor binding to the latent viral

replication origin oriP and to Qp (Figs. 1 and 2). EBNA1 messages are also expressed 

in lytic infection, from the lytic cycle promoter Fp. It is the only viral replication factor 

required for nuclear maintenance and cell cycle regulated replication of the viral genome 

via oriP. By binding EBNA1, the FR element of oriP works as a long distance enhancer 

for several viral promoters and as a nuclear matrix attachment element.49-53 Almost the

entire N-terminal half of the EBNA1 protein is composed of an irregular copolymer of 

the amino acids glycine and alanine that prevents EBNA1 from being degraded by the

proteasome54 (Fig. 1). Nevertheless, EBNA1 is an immunogenic viral protein that may 

play an important role in autoimmune diseases55,56 (see below; Table 1; Figs. 1 and 2).

EBNA2. EBNA2 is the viral protein mainly responsible for transactivating the major 

latency promoters Cp, LMP1p and LMP2Ap and cellular promoters involved in the

Figure 1. Peptides and domains of EBNA1 associated with autoimmune diseases. On the upper part 
��� ��	� ����	� ��&� ���� ���� �	������	� �
����	"�������	"����� 
������� �	������� ���"!�!� ������� ���� ��
glycine-glycine-alanine-rich region inhibiting proteasome-mediated degradation of EBNA1. Numbers 
indicate amino acid positions. Black rectangles within the white bars indicate peptides or domains 
associated with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis 
(RA). The peptide PRHRD seems to be involved in the pathogenesis of both MS and SLE.
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Table 1. Latent Epstein-Barr virus proteins implicated in the pathogenesis of autoimmune

diseases

Protein Peptide or Domain Disease Suggested Mechanism

EBNA1 PRHRD MS Cross reaction with myelin basic protein

QKRPS MS Cross reaction with myelin basic protein

aa 302-641 MS Cross reaction with myelin basic protein

GGSGSGPRHRDGVRR SLE Cross reaction with the Ro 60 kDa protein

PPPGRRP SLE Antigenic mimicry with Sm B’/B epitopes’
aa 35-58 SLE Cross reaction with the Sm D1 protein

aa 451-461 SLE Cross reaction with Sm proteins

gly-ala repeat RA Cross reaction with collagen and keratin

gly-arg rich regions RA Deamination, citrullination, cross reaction

with citrullinated cellular proteins

EBNA2 aa 354-373 SLE Cross reaction with the Sm D1 protein

aa 1-116 SLE Cross reaction with Sm proteins

MS: multiple sclerosis; SLE: systemic lupus erythematosus; RA: rheumatoid arthritis.

Figure 2. A model of EBNA1 interacting with DNA. The DNA binding and dimerization domain of 
EBNA1 (residues 461-607, implicated in the pathogenesis of systemic lupus erythematosus) is shown 
as a dimer, contacting DNA. Numbers indicate amino acid positions in the chains of monomer a and 
�%� {�	� ����	� ���� �	�	���	�� ������ ��	� $���	��� 
������� ���� ��	� ~���	��� ����� Q���� ^���	
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immortalization and morphological transformation of B cells in vitro (establishment of 

LCLs). Viruses carrying an EBNA2 deletion are unable to transform B cells.57,58 Promoter 

activation by EBNA2 is through indirect binding to promoter DNA via interaction 

with a cellular protein, CBF1.59�_
	���������	�������Q�!���������������	���	��	
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genes for the B-cell growth receptor CD23 and the EBV receptor CD21.60,61 EBNA2 

makes the resting B-cell enter the cell cycle and switch from G0 to G1. Similarly to 

EBNA1, EBNA2 may also contribute to the pathogenesis of autoimmune diseases 

(Table 1, Fig. 3).
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transformation process. Its mRNRR A is transcribed across the internal W repeat. Viruses 
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EBNA3. Among the EBNA3 protein family, EBNA3A and C are required for the 

morphological transformation of B lymphocytes, just like EBNA2, while EBNA3B mutant 
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Like EBNA2, all three members of the EBNA3 protein family interact with promoter 

DNA of many genes through binding CBF1 and modulate the transcriptional effects of 

EBNA2, mostly negatively.67-69

BARTs. The BamHI A region transcripts (BARTs), also called complementary strand 

transcripts (CSTs) are at particularly high levels expressed in NPC cells, at lower levels

also in BL, LCL, gastric carcinoma and in HD cells. The CSTs are an mRNRR A family 

with complex splicing pattern of partially overlapping exons. Possibly they play a role 

in tumorigenesis.70 The expression and function of their open reading frames RPMS1,

A73, BARF0 and RK-BARF0 is under investigation.71 Like the EBNA3 proteins, they

seem to modulate EBNA2 transcriptional activation through the CBF1 binding sites of 

promoter DNA and to modify Notch signaling pathways.72,73

LMPs. The LMPs (LMP1, LMP2A, LMP2B) are integral membrane proteins that 

can modulate signal transduction. LMP2A blocks B-cell receptor (BCR) signalling and 

induction of lytic EBV infection via BCR crossR -linking, while LMP1 affects the CD40 

signal transduction pathway. LMP1 also upregulates the B-cell activation molecules,

B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL), both 

TNF-receptor-like cell surface receptors. BAFF overexpression correlates with systemic 

lupus erythematosus. Thus, through the overexpression of B-cell activators, EBV might 

be involved in the development of autoimmune diseases, too.74 LMP1 and LMP2A allow

the EBV infected B cell to survive independently of its contact with the antigen and with 

Figure 3. Peptides and domains of EBNA2 associated with autoimmune disease. Polyproline designates 
a proline rich region; GLY-ARG stands for a glycine-arginine-rich region. Numbers indicate amino
acid positions. Black rectangles within the white bar indicate domains associated with systemic lupus
erythematosus (SLE).
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the T helper cell. Therefore, both membrane receptors can contribute to the apoptosis

resistance of the infected cell in a vulnerable phase of B-cell differentiation. LMP2A is

expressed from the LMP2A promoter, whereas in epithelial cells LMP1 is transcribed 

from the terminal repeat promoter for LMP1.75,76 Furthermore, a bidirectional promoter 

used in lymphoid cells for both LMP1 and LMP2B and a shorter splice form of LMP2A, 

has been described earlier.75,77 LMP2B is a negative-regulator of LMP2A. Thus LMP2B

overexpression increased the magnitude of EBV switching from its latent to its lytic form 

upon BCR crossR -linking.78,79 Due to an increased apoptosis resistance, LMP2A might 

promote autoimmune responses through bypassing tolerance checkpoints.80 In addition,

both LMP1 and LMP2A may alter cellular gene expression patterns via up-regulation of 

DNA methyltransferase 1 (DNMT1) that results in CpG methylation mediated silencing

of distinct promoters.81,82

miRNAs. These are encoded in two clusters and processed from the BHRF1 and 

BART transcripts. Their function is unknown in most cases. However, miR-BHRF1-3

downregulates the interferon-inducible T-cell attracting chemokine CXCL11/I-TAC in

diverse EBV-positive non-Hodgkin’s lymphoma cell lines.83 miR-BART-22 modulates 

LMP2A expression in NPC cells.84 Several BART-cluster 1 miRNRR As downregulate 

LMP1 protein expression.85 miR-BART-2 downregulates the viral polymerase protein 

BALF5.86 miR-BART-5 is abundantly expressed in NPC and gastric carcinoma cells. It 

modulates the pro-apoptotic protein “p53 upregulated modulator of apoptosis” (PUMA)

to facilitate the survival of infected tumor cells.87 miR-BART2-5p downregulates NK-cell 

ligand MICB, thereby mediating immune evasion of infected cells.88

MOLECULAR MECHANISMS OF EBV ASSOCIATED

AUTOIMMUNE DISEASES

A causal role in the generation of malignancies is well established for EBV. 

EBV-infected tumors are characterized by a high load of genetic and epigenetic

alterations of the cellular genomes (for review see ref. 89). In addition to a series of 

malignancies, the evidence for an involvement of EBV in the generation of autoimmune
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association of frequent autoimmune diseases, like multiple sclerosis (MS), systemic 

lupus erythematosus (SLE) and rheumatoid arthritis (RA) with EBV-infection has been

extensively reviewed.3,90 The generation of autoreactive T cell clones during infectious

mononucleosis, the antigenic cross-reactivity between viral antigens and self antigens,

i.e., molecular mimicry, or the immortalization of preexisting autoreactive B cells 

through infection with EBV, with the consequent enhancement of autoimmunity may

be the molecular mechanisms involved in EBV triggering the loss of self tolerance 

which leads to autoimmunity.90 While molecular mimicry is conceivable for all 

viruses, its ability to latently infect and immortalize B cells makes EBV unique in this 

respect.91 Autoimmune diseases are complex and multifactorial, as genetic, epigenetic

and environmental risk factors are always involved. A familial predisposition may be

explained by a common overlapping set of susceptibility genes for autoimmunity in 

general.92 Many autoimmune diseases occur with higher frequency in women. Therefore, 

sex hormones may play a role. Since one of two X chromosomes is silenced in female

cells, epigenetic dysregulation on the inactive X may also contribute to more frequent 

autoimmune disease in women. A multitude of genes involved in immune defects and 
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the development of autoimmunity is located on the X chromosome. Some of them are 

epigenetic regulatory genes (for review see refs. 93,94).

MULTIPLE SCLEROSIS
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and demyelination within the central nervous system (for review see refs. 95,96). MS

seems to be based on a hyperreactive immune system and an increased vulnerability of 

the blood brain barrier.97 Autoreactive T cells against myelin basic protein and glia cells

are supposed to play a key role in the molecular pathology. Diverse infectious agents,

including the reactivation of human endogenous retroviruses (HERVs), have been

considered as cofactors.95,98,99 Transcriptional functions of EBV transactivate human 

endogenous retroviruses (HERVs) which may be toxic for oligodendrocytes.100,101

Metaanalysis showed a clear epidemiological connection between EBV infection 

and MS. EBV infection by itself is a risk factor, since infection in early childhood leads 

to an MS risk in the young adult age 10 fold higher than in non-infected individuals. 

Correspondingly, pediatric MS patients showed far higher EBV seropositivity rates than 

healthy children.102,103 Among adults, nearly all MS patients are seropositive to EBV, in 

contrast to control groups.104 Besides infection itself, EBV infection that occurs too late in 

life, namely in the adolescent age, leading to IM constitutes another risk factor, confering

a further two- to threefold increase of the risk to develop MS.95,104,105 Correspondingly, 

an epidemiological link between the diverse EBV-associated diseases HD, MS and NPC

may be measurable in very large population samples.106

Several studies showed an altered immune response against EBV in MS patients. 
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found years before MS outbreak.107,108 Contrary to EBNA1, a high antibody titer against 

VCA seemed to be protective against MS.109 Antibodies from the CSF of MS patients 

reacted with EBNA1 at a very high frequency, while antibodies from control CSFs were 

mostly unreactive.There are protein homologies between EBNA1 and myelin basic protein

(MBP) that might explain a potential cross-reactivity of EBNA1 antibodies against MBP110

(Table 1, Fig. 1). Antibodies in the CSF of MS patients directed against the two EBV 

antigens, EBNA1 and BRRF2 have been found to represent the most frequent oligoclonal 

�
	�������	�%111 Furthermore, peptide mimics have been found between myelin basic protein

(MBP) and viral peptides that are recognized by the same CD4�T-cell receptor.112 A strong

cross-reactivity was found between peptides from MBP amino acids 85-99 and the viral

DNA polymerase BALF5 amino acids 627-641 (Table 2). Both peptides have a different 

amino acid sequence, but due to structural similarities are recognized by the same T-cell

receptor in the context of the two different HLA DR2 haplotypes that remarkably confer 

the strongest genetic risk for MS. DRB1*1501 presents the MBP peptide and DRB5*0101

the EBV peptide.113 EBV reactive T cells recognizing EBV infected B-cells were isolated 

from the CSF of a small panel of MS patients.114 CD4� T cells cross-reacting with MBP

and EBV BALF5 were also found in the blood or CSF of two MS patients. T cell clones

established from the CSF of one patient cross-recognized both peptides.115
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and the epitope recognition of EBNA1 by CD4� T cells was broader in MS patients.56

Contrary, the frequency of CD8� T cells against EBV did not differ between patients 

and the healthy.56,116 Also the EBV genome load in the peripheral blood of MS patients 

was the same as in the healthy.56

Recently, EBV RNRR A and immunoreactivity for EBV antigens have been found in B

cells within white matter lesions and meningeal ectopic follicles in the brains of a high

rate of MS patients.117�^�����	��	���		��	��%�&&�"&�'<%�{�	�	�����������	����

����
��	���

as other groups could not reproduce them.121-123 The discrepancy might be explained by 
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case, it is important to clarify the controversy.

SYSTEMIC LUPUS ERYTHEMATOSUS

_��� ��� �� �������� ��`��������� ��
������	�� ���������	� ���	��	�� ������ ����
��

attacks the skin, joints, kidneys and central nervous system, but can damage any other 

organ. It is characterized by the regular presence of a set of IgG autoantibodies against 

nuclear antigens (antinuclear antibody, ANAA A), like the Ro/La-complex including the viral 

EBER-RNRR As,40 cellular chromatin including dsDNA, spliceosomal Sm components and 

spliceosomal nRNP (nuclear ribonucleoprotein) components, or other nuclear antigens.RR

Epitope spreading has been regularly observed with the duration of clinical disease. 

Deposited immune complexes can lead to organ failure in the long run.

More than 20 genetic loci associated with SLE have been described, with the MHC-II

locus playing an important role (for review see ref. 93). Interestingly, the X-linked gene

for “Methyl-CpG binding protein 2” (MeCP2) at Xq28 which contributes to chromatin 

silencing has also been associated with lupus.124 Impaired DNA methylation in T cells 

may constitute an important epigenetic mechanism for SLE development. The treatment 

of CD4� T cells with 5-azacytidine or other demethylating drugs led to the recognition 

of inappropriate antigens and to autoimmunity. This correlated with the demethylation 

of a set of genes involved in the interaction between T-cell receptor and self Class II 

MHC antigens. The injection of such demethylated cells into syngeneic mice led to a 

lupus like disease (for review see ref. 93). A conditional Erk pathway signaling defect 

in a transgenic mouse model led to the same epigenetic dysregulation of DNMT1 and 

the overexpression of methylation sensitive genes as in T cells of SLE patients and also 

Table 2. Lytic Epstein-Barr virus proteins implicated in the pathogenesis of autoimmune

diseases

Protein Peptide or Domain Disease Suggested Mechanism

BRRF2 Full length protein; aa 385-537 MS ?

BALF5 TGGVYHFVKKHVHES MS Antigenic mimicry

BALF4 QKRAAQRAA RA Shared epitope with HLA antigens

BOLF1 TYWQLNQNL JIA Antigenic mimicry, EBV-VV self

and SLTRDDAEYL HLA cross-reactive T cells

BALF2 ATEEEEEAVAA JIA Antigenic mimicry, EBV-VV self 

HLA cross-reactive T cells

MS: multiple sclerosis; RA: rheumatoid arthritis; JIA: juvenile idiopathic arthritis.
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to the production of autoantibodies.125 Therefore, demethylated autoreactive CD4� cells

seem to break self tolerance and activate SLE in the genetically predisposed. For further 

reading on DNA methylation changes in SLE see Chapter 9.

{�	����"&�"�������!��
���	�� ��� ��	?�	��
�� ��

��	�� ��� 
��
������ �������	��

cancers. Transgenic mice overexpressing miR-17-92 in their lymphocytes developed 

lymphoproliferations, autoimmunity and SLE-like disease.This miRNRR Acluster suppressed 

the tumor suppressor PTEN and the proapoptotic protein Bim.126 Bim expression was 

regularly found to be downregulated through epigenetic silencing in EBV-infected B 

cells, but not in EBV-negative cells.127 Thus, Bim silencing may provide a connection

between SLE and EBV infection.

Among all infectious agents, seroreactivity to EBV is most closely associated with 
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SLE trigger. Several case reports describe the beginning of a SLE immediately after 

IM (for review see refs. 128,129). Several cases of EBV-associated hemophagocytic 

syndrome in SLE have been reported (for review see ref. 129). 99% of SLE patients have 

antibodies against EBV, while only 90% of the general population is seropositive.130
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adults. While 99% of young SLE patients are seropositive, only 70% of the general age 

cohort react to EBV.131 Furthermore, SLE onset is frequently preceded by primary EBV 

���	�����������	������	���������������
��������������������%130 Early autoantibodies in a

subset of SLE patients against amino acids 169 to 180 TKYKQRNGWSRR HK of the Ro 

60kD protein classically cross-reacted with amino acids 58 to 72 GGSGSGPRHRDGVRR

of the EBV protein EBNA1 (Table 1, Fig. 1). Rabbits immunized with either peptide 

developed antibodies against additional epitopes within Ro 60kD, but also against 
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observed in human disease. Furthermore, either peptide led to the rapid appearance of 

severe SLE symptoms in rabbits, including kidney damage and leukopenia and a regular 

crossreactivity of antibodies to both peptides.132 {�	�_��Q*Q �����
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seems to be a common founder autoantigen in many SLE patients.133,134 Epitope spreading 
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peptides in different animal species.133,135,136 �������� ������@	������� ����_��Q*Q �

octapeptides PPPGMRPP and PPPGIRGP developed autoantibodies against those 

peptides, but also against many other autoantigenic structures typical for SLE and also

develop clinical symptoms typical for human SLE.137 Development of autoantibodies in 

a cohort of pediatric patients was frequently preceded by anti-EBNA1 antibodies. While

EBNA1 antibodies in the healthy are mostly directed against the large glycine-alanine 

repeat of EBNA1, the EBNA1-antibodies of SLE patients mostly reacted against other 

epitopes including ones crossreactive to Ro and Sm.138 Antigenic mimicry was found 
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motif PPPGRRP (Table 1, Fig. 1). Therefore, it was possible to trigger clinical SLE in

rabbits through immunization with the EBV peptide PPPGRRP.139 Expression of the 
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dsDNA.140 !�����������
�
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phage display library mimicked a peptide sequence from the viral major DNA binding

protein of EBV.141 Another crossreactivity in a subset of SLE patients was found between 

amino acids 354 to 373 of EBNA2 peptide GRGKGKSRDKQRKPGGPWRP and amino

acids 101 to 119 of lupus Sm D1 antigenic peptide GRGRGRGRGRGRGRGGPRR142



93EPIGENETIC DYSREGULATION OF EPSTEIN-BARR VIRUS LATENCY

(Table 1, Fig. 3). Sm D1 peptide 95 to 119 showed cross-reactivity also with EBNA1

peptide 35 to 58.143 �����	������������
	�������	������������	�
��
��	������	
���
	�����

the Sm proteins were found to cross-react to the poly-proline tracts at the carboxy

terminus (amino acids 451 to 641) of EBNA1 (Table 1, Figs. 1 and 2) and the amino

terminus (amino acids 1 to 116) of EBNA2 in SLE and other systemic connective 

tissue diseases144 (Table 1, Fig. 3). One may speculate, that on the genetic background 

of SLE patients the production of EBV induced autoantibodies cannot be controlled 
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While antigenic mimicry might explain the initiation of SLE through EBV, there

is also a different steady state response of the SLE patients’ immune system to latent 
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patients than normal controls carried EBV genomes in their blood.145 The number 

of EBV infected B cells in the blood of SLE patients was approximately elevated 

10 fold comparable to the ranges that are found in the immunosuppressed and the

overall viral genome load was up to 40 fold higher in SLE patients, however, even 

without immunosuppressive medication.146-148 While their B cells are not intrinsically

defective, SLE patients most likely have defects in several subsets of their T cells and 

are, therefore, unable to control latent EBV infection.147,149,150 This may indicate that 

EBV infection is actually not causal for SLE, but that this underlying T-cell immune

dysfunction may be the cause of both, an easier infectability through EBV and a

tendency to develop autoimmune disease. In addition, one may speculate that the

increased portion of EBV infected B cells may contribute to autoantibody production

in SLE patients.146

How an increased EBV load could initiate or perpetuate SLE remains to be

determined. It is noteworthy however, that LMP1 (one of the EBV encoded oncoproteins, 

see above) induces B cells to express BAFF (B-cell-activating factor belonging to 

the TNF family).74 Induction of BAFF by LMP1 appears to be an important link 

between EBV infection and the genesis of autoimmune diseases, because it connects 

a latent viral protein to the defects of B-cell tolerance checkpoints described in SLE 

patients.151 Thus, BAFF overexpression potentially induced by EBV may subvert 

B-cell self tolerance.

LMP1, in addition to upregulating BAFF expression, also induced APRIL, a

proliferation inducing ligand in B-cells and could trigger T-cell independent Ig heavy 

chain switch.74 LMP2A, another EBV encoded transmembrane protein could trigger 

class switch recombination, too, although to a lesser extent than LMP1.74 Switching

to IgG may lower the sensitivity of B cells to negative regulatory signals mediated by 

CD22.152 Both LMP1 and LMP2 expression was detected in 29% and 18% of enriched 

B-cell samples of SLE patients, respectively.148 We conclude, therefore, that EBV has 

the means to initiate and perpetuate key pathological changes related to SLE.

RHEUMATOID ARTHRITIS

RA is an extremely widespread systemic autoimmune disease with a highly disabling 

impact that affects about 2% of the world population (for review see refs. 93,153). It 

����������	��@	����������`������������
�����������$��� T cells and NK cells into the K
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a pathogenic role (for review see ref. 154). Just as for MS and SLE, both environmental
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and genetic risk factors play an interconnected role (for review see ref. 155). Epigenetic 

dysregulation may play a role in the aberrant gene expression pattern and reactivation 

����#��&��	��������
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����%156 For further reading on epigenetic 

aspects of RA pathogenesis see Chapter 10. Several genetic loci are associated with 

RA risk, especially the alleles HLA-DRB1*0401, 0404, 0405, 0408 within the MHC-II

complex.93,157,158 These alleles contain peptide sequence homologies to EBV glycoprotein 

gp110 (BALF4). BALF4 is normally one of the most abundant EBV proteins in late lytic

infection and also serves as a target of antibody dependent cell-mediated cytotoxicity 

against EBV-infected cells.159 The so called shared epitope motif QKRAA is the strongest 

known genetic risk factor for developing RA160 (Table 2). Antigenic homologies have 

been observed between EBV proteins BOLF1, a viral tegument protein and BALF2, the 

major viral DNA binding protein and presumable DNA recombinase161 and MHC-DRB1

allele epitopes (Table 2). Those crossreactivities seem to play a pathogenic role in juvenile

idiopathic arthritis.162

Further observations also suggest a role for EBV in the pathogenesis of RA.163

EBV antibodies against VCA, EBNA and EA antigens are increased, EBV-infected cell 
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is elevated about 10 fold.164,165 Furthermore, the synovia of RA patients is frequently

infected with EBV.164,166 There are occasional reports of antiviral treatment ameliorating

RA symptoms in severely ill patients.154,167 Another possible treatment option besides

acyclovir and derivatives may be the use of retinoic acids that are strongly inhibitory for 

the proliferation of EBV infected lymphoblasts.168

Autoantibodies in RA are cross-directed both against the glycine-alanine repeat of 

�Q�!&���������������

��	�������	�������
��	���������	����	��	���������169-173 (Table 1,

Fig. 1). Further autoantibodies are directed against the shared epitope motif QKRAA,

both within the EBV glycoprotein gp110 (BALF4) and at amino acid position 70 to 74

of the third hypervariable region of the 
-chain of the HLA-DRB1*0401 protein.160,174

Furthermore, suppressor T-cell function is impaired in RA patients.175 In RA patients that 

carry the shared antigen epitope at their DRB1 locus the frequency of T cells recognizing

gp110 of EBV is decreased which might lead to a poor T cell control of EBV infection.176

Further, there is a clonal expansion of a dysfunctional population of CD8� suppressor T
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that recognize EBV antigens including lytic antigens from the immediate early and early 

class.178,179��	������	��
���	���� 
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citrulline instead of arginine are found in the synovia of RA patients.180 Also EBNA1 

can become deiminated within its glycine-arginine rich sequences (Table 1, Fig. 1). The 

citrullinated sequence of EBNA1 might induce anticitrullinic antibodies in RA patients.181

Autoantibodies against those citrullinated proteins play a role in the development of RA and 

��	����
���
	�����������	���������������!%182 Furthermore, anticitrulline autoantibodies are

found years before disease onset and are, therefore, predictive for later RAdevelopment.183

CONCLUSION

EBV may trigger autoimmunity through diverse mechanisms (Tables 3 and 4). 

Another possibility, however, may be that there are host factors predisposing both for 

autoimmunity and for a dysregulated immune response against EBV. For example, a

dysfunction of regulatory T cells might lead both to an increased tendency towards 
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autoimmunity and to a hyperreactive immune response against EBV. Therefore, a 

causal relationship between EBV infection and autoimmunity is not proven so far.

The ultimate test of causality might be established through the introduction of an

EBV vaccination for certain risk groups.184,185 In addition, a molecular link between
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Table 3. Mechanisms implicated in Epstein-Barr virus-associated autoimmune

phenomena

Mechanism Autoimmune Disease

Generation of autoreactive T-cell clones MS

(in infectious mononucleosis patients?)

Antigenic cross reactivity/mimicry MS, SLE, RA

Immortalization of preexisting autoreactive B-cells MS (?), SLE (?), RA (?)

by Epstein-Barr virus infection

MS: multiple sclerosis; SLE: systemic lupus erythematosus; RA: rheumatoid arthritis.

Table 4. Potential mechanisms facilitating the development of Epstein-Barr virus-

associated pathogenetic and patho-epigenetic changes in major autoimmune diseases

Mechanism

Autoimmune 

Disease

1. Increased viral load due to the activation of lytic EBV replication 

���*�����������	���������
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MS (?), SLE, 

RA

2. Activation of TLR3 and induction of dendritic cell maturation and 

IFN-
 and IL-12 production by EBER1 RNA released from EBV 

infected cells

MS, SLE, RA

3. Epigenetic dysregulation of latent EBV gene expression in memory B 

cells, resulting in 4, 5, 6, 7, 8, 9, 10 and 11

MS, SLE, RA

4. Silencing of cellular gene sets by promoter methylation due to the 

up-regulation of DNMT1 by LMP1 and LMP2A (e.g., Bim, coding 

for a proapoptotic protein)

MS, SLE, RA

5. Induction of BAFF by LMP1 resulting in the subversion of B-cell

tolerance

MS, SLE, RA

6. Induction of APRIL by LMP1, facilitating B-cell proliferation MS, SLE, RA

7. Induction of T-cell independent Ig heavy chain switch by LMP1 and 

LMP2A modulating B-cell sensitivity to regulatory signals

MS, SLE, RA

8. Expression of EBNA2 leading to the expansion of B-cells carrying 

EBV genomes

MS, SLE, RA

9. miRNAs processed from EBV transcripts may affect B-cell 

maturation and contribute to the subversion of self-ff tolerance

MS, SLE, RA

10. EBNA2 and EBV-VV encoded miRNAs may alter cellular gene 

expression patterns and direct thereby B-cell migration to 

atopic sites

MS (?)

11. miR-BART2-5p may down-regulate the NK-cell ligand MICB,

resulting in immune evasion

MS, SLE, RA
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cells and of the immune system may also be suitable to establish a causal relationship

between EBV-infection and autoimmunity.
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��	��	����	�
��������	�	�������	������	�������������
different types of peas.1 From these results arose his principle of equivalence: the
gene will have the same behaviour whether it is inherited from the mother or the 
father. Today, several key exceptions to this principle are known, for example 
sex-linked traits and genes in the mitochondrial genome, whose inheritance patterns
are referred to as ‘non mendelian’. A third, important exception in mammals is that 
of genomic imprinting, where transcripts are expressed in a monoallelic fashion 
from only the maternal or the paternal chromosome. In this chapter, we discuss how 
parent-of-ff origin effects and genomic imprinting may play a role in autoimmunity 
�����
	��
��	�������
����	������!��������`�	��	���	�	�
�	������������������	��
autoimmune associated genes.

INTRODUCTION

Discovery of Genomic Imprinting

{�	������	���	��	�������
�����������	����	����������	�����������������
	���������	��

experiments.2,3 Mouse embryos were manipulated to contain either two maternal or 

paternal pronuclei, creating gynogenetic, or androgenetic embryos, respectively. Both

sets of embryos failed to develop to term, with the gynogenetic embryos (containing

only maternal chromosomes) developing a small embryo but with complete atrophy

of extra-embryonic tissues. The androgenetic embryos (containing only paternal

chromosomes) were characterised by overgrowth of the extra-embryonic tissues and 

Epigenetic Contributions in Autoimmune Disease, edited by Esteban Ballestar. 
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almost total absence of the embryo proper.2 These pioneering experiments highlighted 

���� ��	� ����� ���	� ����� ��	� ���	���
� ���� 
��	���
� �	���	�� ��� �� ��

���� �	

� ��	� ����

functionally equivalent and therefore contain regions whose function is dependent on 


��	���
�������%�{�	�����������
��	������������"	?����
	��	��	�	���	����	��������	�

due to the existence of rare cases of uniparental disomy (UPD). UPD is the inheritance 

of both autosomal chromosomes from one parent and it was observed that inheritance of 

opposite parental UPDs resulted in different phenotypes that were often reciprocal.4 It was

�
��������	���	����	����	����
	���������	��	�
	���	�����������	��������
����	���	�	����

��	����	�%5 Since the discovery of Igf2���
�����&''���
����	���	�	�����	��		����	����	��

in mice, with around half showing conserved monoallelic expression in humans (www.

geneimprint.com). Imprinted genes have been shown to be important regulators of fetal 

and extra-embryonic growth and neurological development, through controlling cell

signaling, cell cycle, metabolism and apoptosis.

Uniparental disomy also occurs in humans and for some human chromosomes are

associated with disease due to the presence of imprinted genes on those chromosomes. 

The clearest example of reciprocal UPDs causing different phenotypes in humans is that 

of the behaviour syndromes Prader-Willi (PWS) and Angelman syndrome (AS), caused by

a maternal or paternal UPD of chromosome 15, respectively.6,7 It is also well known that 

UPDs affecting chromosome 14 cause different abnormal growth phenotypes that change

according to the parental origin of the UPD.8 Other examples are Beckwith-Wiedemann

syndrome (BWS), where babies are macrosomic and Silver-Russell syndrome (SRR RS),

where the babies are growth restricted. BWS is caused by a paternal UPD of chromosome

11 and SRS by a maternal UPD of chromosome 7.9,10

GENOMIC IMPRINTING

�	������ ��
�������� ��� ��	� �
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	����� 	�
�	��������� �� �	�	��	
	��������� ����
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�	���	��������
������	��	��������	�`��	�����

����%11 Since the two

copies of autosomes in mammals are identical at the DNA sequence level, the difference 

in expression must be controlled by an epigenetic mechanism.12 The term epigenetic

refers to heritable changes that do not involve a change in the DNA nucleotide sequence.

{�	�	����
��	���!��	���
����������
��������
������
�������	�������������������������

the status of chromatin, the molecule that eukaryotic DNA is packaged into. Chromatin

consists of nucleosomes, formed by wrapping 146 base pairs of DNA around an octamer 

of four core histone proteins (H2A, H2B, H3 and H4). Depending on the methylation

������������	���!��������	��������	������������	�����������������	������������������
��

an active or repressive status, named euchromatin and heterochromatin, respectively.

Genes subject to genomic imprinting constitute a particularly interesting example

of epigenetic regulation, since there are active and repressed alleles of the same gene

within a single cell. The allelic differences in transcriptional activity originate from the

distinct patterns of chromatin structure, due to differential DNA methylation at CpG

�����
	����	�� ���� ����
	��� ������	� ������������%13,14� {�	� �
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	����	�	��������������	��

throughout somatic development. Regions that display differential DNA methylation

(DMRs) in the germ line are referred to as primary imprinting marks. If a DMR has beenR

shown to be indispensable for monoallelic expression in gene targeting experiments, it 
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is referred to as an Imprinting Control Region (ICR). Commonly, imprinted genes are

grouped together in clusters, controlled in cis by a single ICR.

Epigenetic Mechanisms and Imprinting

��!��	���
������������	��	����
������������������!�������	����
���	����
	������	�	

regulation, genome defense through transcriptional silencing of retrotransposons and 

genome stability.15 It is characterized by the transfer of methyl groups to the carbon 5 of 

cytosine molecules (5-mC) and leads to the recruitment of methyl-CpG binding domain

and other transcriptional regulators. Methylated DNA tends to have a closed chromatin

����������������������������	���������������
�����

���	
�	����	�������	�������������%�

This contrasts with unmethylated DNA, which is associated with permissive histone

���������������������
	������������������������%

DNA methylation is catalyzed by the DNA methyltransferases (DNMTs) that are 

�
�����	���������������
�	�>���|{&�������|{�%16 The DNMT1 family includes the 

most abundant DNA methyltransferase in somatic cells, DNMT1, which is responsible 

for copying DNA methylation patterns to the daughter strands during DNA replication 

���� �	
���%� !�� �����	� �
	����� ��|{&� ^��|{&�<� ��� ����
�	�� ��� �����	����	� ���

DNA-methylation at DMRs during early stages of embryo development.17 The DNMT3 

family includes two active forms, DNMT3A and DNMT3B and one regulatory

factor, DNMT3-Like protein (DNMT3L). Both DNMT3A and DNMT3B have de 

novo methyltransferase activity enhanced by DNMT3L18,19 although DNMT3A is the

�	���
�����	���	��
	�����

���	?���	��������!��	���
����������|��������	����	�	�%20,21

Recently, it has been suggested that DNMT3 could also be associated with DNA methylation

maintenance during DNA replication together with DNMT1.22

�������
��������
��
��	�����

Histone proteins, particularly in their N-terminal tails, are subject to a large number 

���
��������
������
�������������%23 Acetylation of lysines is generally associated with 

transcriptional activation. In contrast, the functional consequences of histone methylation,

�������������������
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competence, whereas methylation of H3K9 and K20 is associated with transcriptional 

repression. Further complexity comes from the fact that methylation at lysines can be 

in the form of either mono-, di- or trimethylation at lysines and mono- or dimethylation 

(asymmetric or symmetric) at arginines. Histone methylation marks at lysine and arginine 

residues are relatively stable and can carry epigenetic information from one somatic cell 

generation to the next.

Regions of differential DNA methylation with imprinted loci are often, but not 
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����	
��� ��������	�� ����� ����	�	����
� ���������� ������������%� |	���
��	�� �
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and H2AK119u1.24-27 This heritable repression is due to the coupling of the Polycomb

group 1 (PcG) proteins and DNA methyltransferases to form a silencing complex.28

���	���
��	���	��������	����

	�������
	�������	���������������������������
�����

H3K9ac and H3K4me2/3.14 Recently it has been shown that certain imprinted genes, not 

associated with differential DNA methylation at their own promoters, have allelic histone 

���������������������	��	?���	����������������������������
�������%24,25,29,30
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{�	�	��	�	��
�
���	�������������	�������������� ����|�����	���������	����� ��	�

opposing actions of two sets of proteins, the histone acetyltransferases (HAT)/histone 

deacetylases (HDACs) and the histone methyltransferases (HMT)/histone demethylases 

(KDM).31-33� {�	�	� 
���	���� �
	�����

�� ������� �	������ ������	� �	����	�%� #�� ������ ��	�

acquisition of differential DNA methylation in the maternal germ-line has recently

�		������������	?���	���	���	
�����	��������������	�}����������	��	�	���
��	�!��&*

KDM1B to remove H3K4me before the DNA can become methylated.34 This process also

demonstrates that the biochemical components associated with genomic imprinting are

identical to those involved in cell differentiation. This suggests that imprinted regulation

��	�������	?���	����?�	������	����������������

	
�������	�	��	�����������������������	

and therefore may be equally prone to epigenetic deregulation during the development 

of disease states and cancer.

EXAMPLE OF AN IMPRINTED REGION: H19/IGF2// LOCI—AN ANCIENT

IMPRINTED DOMAIN

{�	� ����� ��
����	�� �	�	� ��� �	� �	�����	�� ���� 
��	���

�� 	�
�	��	�� Igf2, which 

is crucial during murine embryogenesis and is implicated in the growth disorders

Beckwith-Wiedemann syndrome (BWS) [MIM 130650], Silver-Russell syndrome RR

(SRS) [MIM 180860] and tumorigenesis in humans.35-37 The H19/IGF2 locus is the best 

molecularly characterized imprinted domain in both humans and mice (see Fig. 1). In

the mouse, dozens of targeted deletions have delineated the numerous cis-acting control

	
	�	�������������������������	��@�����������		������������	���	���������������
	����

epigenetic and cytogenetic defects.38,39 To date, this gene cluster represents the most 

	��
��������
�� ����	��� ��
����	�� 
����� ��	����	�%40 The domain has two reciprocally 

expressed, imprinted transcripts, the maternally expressed, noncoding H19 gene and the 

potent growth factor IGF2, which is expressed solely from the paternal allele.41 Although 

the function of IGF2 as member of the insulin family of peptide growth factors is well

known, the function of the H19 noncoding RNRR A is still poorly understood.42 Recently,

this alternatively spliced, capped and polyadenylated RNRR A has been reported to be a

pri-RNRR A for the microRNRR A miR-675.40,43�{��������������� ��
������� ��

������������

discussed later, suggesting that not all cellular responses due to epigenetic deregulation

of this locus are caused by IGF2.

IMPRINTING REGULATION AT H19/IGF2//  DOMAIN

The expression of the H19 and Igf2 genes is controlled by the differential DNA

methylation status of the H19-ICR (also known as the H19 differentially methylated 

domain or DMD), which is located upstream of the H19 transcription start site.44

This ICR is one of the few known paternally DNA methylated ICRs in the genome. 

Regions of paternal DNA methylation, established somatically after fertilization,

��	��
���
�	�	��������������������
��
	��������	�����	���	�
�

������	 H19 promoter 

and the remainder, DMR0, DMR1 and DMR2, spread throughout the IGF2 gene 

(see Fig. 1).45 Continued research into the imprinting control of this domain reveals

a complicated regulatory mechanism that utilizes multiple enhancers, differentially

�	���
��	���	������^�|��<�����������	
	�	�����������	���������������������

	��
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H19 transcript, contains several CCCTC-binding factor (CTCF) binding sites.48 These

confer the ICR’s function as a methylation-sensitive insulator between the multiple Igf2
promoters and enhancers located downstream of H19. On the unmethylated maternal

allele, CTCF binds to form a boundary that prevents the Igf2 promoters interacting with

the enhancers, whereas on the DNA methylated paternal allele, CTCF cannot bind and 

the Igf2 promoters freely associate with the enhancer to bring about expression from

the paternal allele only.48,49 ��������	�������������������������
���	��	����?�	�^�$<�

it has been shown that on the maternal allele, CTCF binding mediates the formation of 

a tight, transcriptionally inactive loop around the Igf2 gene. This involves interactions

between the maternal allele of the H19-ICR, the matrix attachment region 3 (MAR3)50

and Igf2 DMR1, a region previously shown to be a methylation-sensitive silencer. On

the paternal allele, the enhancer can form a methylation-sensitive, active chromatin 

domain through the interaction of the DNA methylated H19-ICR allele with the DNA

methylated Igf2 DMR2.46,47

Apart from the intrachromosomal interactions at the imprinted H19-IGF2
locus, mediated by CTCF activity, it is notable that interchromosomal interactions

have been reported that involve CTCF binding at the H19-ICR. The H19-ICR was 

shown to interact and colocalize with the non-imprinted Wsb1/Nf1 genes on mouse

chromosome 11.51�{�����	
��������
�����
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��	��

allele of the H19-ICR associating with the paternal Wsb1/Nf1 domain. In addition, the 

maternal allele of the H19-ICR was shown to interact directly with the DMRs for the 

imprinted genes Impact, Kcnq1 and Napil5.52 More recently it has been reported that 

the H19-ICR forms interchromosomal interactions that control expression of several

other imprinted genes to form an imprinted gene network, all of which contain CTCF

sites.53,54

These higher order chromatin loops have been shown to require the sister chromatid 

cohesion protein, Cohesin. Cohesin binds to the same sites as CTCF, implicating a 

CTCF-Cohesin complex in regulating gene expression. Utilizing RNRR Ai depletion, Nativio

et al, have shown that a lack of SCC1, a cohesin subunit, results in deregulated H19/
IGF2 imprinting, implying that both CTCF and cohesin are required for appropriate

monoallelic expression.55 The CTCF-Cohesin complex is also known to be involved in

V(D)J recombination during B lymphocyte development56 and for appropriate T-helper 

cell expression of the IFNG gene,57 but it is currently unknown whether the H19-ICR

interacts with these additional CTCF-cohesin hubs during B- and T-cell differentiation.

AUTOIMMUNITY AND IMPRINTING

Autoimmune diseases are characterised by the failure of self-ff tolerance and a subsequent 

immune response against the body’s own cells. There are currently eight distinct human 

phenotypes caused by mutations or epimutations in imprinted genes, with none of these 

�
	����� ������	��� �������� �	����	�� ��� ���������	� ���	��	%� }��	�	��� ��� �	� ��������

below, there is evidence that genomic imprinting may play a role in the development and 

progression of autoimmune disorders.
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THE INVOLVEMENT OF IMPRINTED GENES IN TYPE 1 DIABETES

For many years it has been known that both B and Tcells contribute to the pathogenesis 

������������	����	��	�%�#�������	�	���	�
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	�����������	�	��������`�	��	��Q"�����

T-cell differentiation or function may play a role. The paternally expressed DLK1 gene

maps to the IG-DMR regulated domain on human chromosome 14 (see Fig. 1). DLK1 is 

involved in NOTCH dependent signaling that helps transitional B cells develop through

cell-cell interactions with stromal cells. Mice that lack Dlk1 expression have an increased 

number of early lineage B cells, but a decreased number of recirculated B cells in the

bone marrow. In addition, Dlk1 null mice show abnormal levels of preimmune serum

�������
���
����������	����	���	�������	�"�
	�����������
������	��	�
���	%58 In 

��������������
��	����
���
	����DLK1 in autoimmune disorders, DNA association studies 

using the human Genome-Wide Association (GWA) dataset has shown that paternal

inheritance of a rs941576 SNP variant, located within the within the DLK1-DIO3 locus,

is a risk allele for Type 1 diabetes.59 Insulin Type 1 diabetes mellitus (IDDM) is a

multi-system metabolic disease resulting from impaired insulin function, which results

in characteristic hyperglycemia and ketoacidosis. Several mechanisms are involved 

in its pathogenesis, including the delayed-type hypersensitivity reactions mediated by 

CD4� TH1 cells that react with islet cell antigens, cytolytic T-lymphocyte mediated 

lysis of islet cells, production of cytokines TNK and IL-1 that damage the pancreas 

and production of autoantibodies against islet cells and insulin.

Multiple genes are involved in IDDM, with the majority of attention focusing on 

the human leukocyte antigen (HLA) genes. HLA genes encode antigen-presenting 

molecules that initiate T-lymphocyte proliferation after having bound “foreign” peptides 

and are key in selective loss of B cells. The HLA-DR2 and -DR4 loci are associated with 

increased susceptibility to IDDM in white Europeans.60 It has been suggested that the

genetics of HLA susceptibility show parent-of-ff origin effects, with the nontransmitting

maternal HLA-DQ2 or -DQ8 alleles being a risk factor,61 but these observations are

disputed.62,63 ����}�!��	�	���
������������	������	����	��	%�{�	����������	���	����	��

was the insulin gene (INS) itself, with the variable number tandem repeats (VNTR) 

in the 5�-upstream promoter region being associated with disease susceptibility. The

INS gene is a paternally expressed imprinted gene,S 64 and lies next to the paternally

expressed IGF2 gene (see Fig. 1). In rare cases it has been shown that INS transcription S
produces a polycystonic read through transcript that includes the IGF2 exons,65 but 

the function of this transcript is unknown. The expression level of INS is regulated S
by the VNTR. The shorter class I alleles correlate with higher expression in pancreas,

but lower levels in thymus.66,67 These shorter alleles are positively associated with 

IDDM, while the longer class III alleles are protective.68 Two studies have suggested 

that the sensitization to insulin may occur during early life, as a result of ineffective

tolerance induction by the decreased expression of insulin in the thymic epithelium

in individuals with the VNTR class 1 allele. However, as tantalizing as this theory is,

a study in 90 IDDM patients failed to show any association for insulin autoantibody 

levels with INS-VNTR genotype.69
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PARENT-OF-ORIGIN ASSOCIATION WITH AUTOIMMUNE DISEASES

From the earliest genetic studies on twins, there has been strong evidence for a genetic

component in the aetiology of autoimmunity.70 Much has been learned about the genes

involved in autoimmune disease by linkage analyses in families and genome-wide scans.

Most autoimmne diseases are polygenic, with individuals inheriting polymorphisms that 

���������	�������	��	�����	
����
����������`�	��	��	
�"��
	����	%�|��������	
����
����
���

��	����	����
����
���	�����������
��������������������������	�	����������������

��	�
�
�������	��������	����	���������	�����	��������������	����	��	�%�#��		������	

HLA alleles within the MHC II region on human chromosome 6 show higher frequencies

in various autoimmune patients than in controls. Psoriatic arthritis (PsA) is the combination 

of two recognised autoimmune diseases, severe arthritis and psoriasis,71 which shows a less 

pronounced association with the MHC. Linkage analyses in 906 Icelandic PsA patients

show some evidence for imprinted transmission at chromosome 16q. Higher LOD scores

were observed when the study was restricted to pairs of affected relatives in whom the 

last transmission came from the father.72 This is not the only report of nonMHC linkage 

in autoimmune phenotypes where LOD scores increased or decreased when the analysis 

was conditioned on parental transmission; this phenomenon has also been observed for 

both IDDM and Crohns disease.73,74 Indeed, analysis of the UK genomeK -wide scan data 

revealed evidence for paternal association at D16S3098 in IDDM, which overlaps the 
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IS LOSS-OF-IMPRINTING INVOLVED IN RHEUMATOID ARTHRITIS?

A joint linkage and imprinting analysis performed by Zhou et al on Genetic Analysis 

Workshop 15 (GAW15) data highlighted rheumatoid arthritis (RA) regions that might 

�	���
����	���������	���	����	���	���������
	������������������������
��	��������������

analysis.76 This suggests that genomic imprinting is not involved in RA, however, reports 

have indicated that loss-of-ff imprinting (LOI) of IGF2������������������
������
���������!�
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In rheumatoid arthritis, the synovial membrane, which surrounds the joint space, becomes
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These cytokines, that include IL-1 and TNF, are intense stimuli for resident synovial 
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enzymes that destroy the underlying cartilage and bone.
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from which they are derived.78�#��	�	�����
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tissue show high expression of IGF2. Subsequent work showed that this increase was

due to LOI.77,78 Thus, the disruption to IGF2 might be involved in the aetiopathogenesis 

of RA by increasing the overall expression level of this potent mitogen.

Expression of IGF2ff has also been shown to be involved in aberrant T-cell activation.79

The expression of IGF2 in normal mononuclear cells in peripheral blood is imprinted, 

suggesting that the monoallelic paternal expression is maintained in differentiated 
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hematopoietic cells. However, one study observed LOI in all informative normal bone

marrow samples, whereas corresponding peripheral blood shows normal monoallelic

expression, suggesting that the high proliferation rates in the bone marrow cells requires 

a peak of IGF2 to stimulate division.79 In unstimulated T cells, IGF2 is monoallelically

expressed, however, cultured lymphocytes exposed to PHA show LOI that persists for 

72 hours, which results in a two-to six-fold increase of IGF2 compared to resting T cells.

This indicates that careful regulation of IGF2ff  expression is required during both expansion

in bone marrow, but also in T-cell stimulated proliferation (Fig. 2). However, this LOI of 

IGF2 was not observed in lymphocytes isolated from RA patients.80 It is therefore unclear 

whether LOI of IGF2 in RA is maintained after T-cell activation in vivo, however, this

mechanism maybe relevant in other, yet to be studied, autoimmune disorders.

FOOD FOR THOUGHT—IMPRINTED miRNAs INFLUENCING

AUTOIMMUNE GENES?

MicroRNRR As are small noncoding RNRR A molecules (22-23 nucleotides) that 

posttranscriptionally regulate gene expression by targeting the 3� untranslated regions
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miRNRR A-mediated gene regulation is critical for normal cellular functions such as cell 

cycle, differentiation and apoptosis and if the process is compromised through genetic 

ablation of the miRNRR A machinery or the deregulation of individual miRNRR A, then this 

could lead to impaired immunological function and autoimmunity.

Figure 2. The involvement of IGF2 in the aetiology of rheumatoid arthritis. Increased IGF2 expression 
is observed T-cell activation, but it is currently unknown whether a concurrent increase in miR-483 
also occurs. Loss-of-ff imprinting of IGF2� �����������	�������
��
��	��������������
������
���%�{�	�	��	

�
are responsible for pannus formation and ultimately joint erosion.
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It is estimated that almost 30% of all mRNRR As are regulated by miRNRR As, with

each miRNRR A having multiple target mRNRR As.81 Additionally, roles for miRNRR As in 

antigen receptor expression and successful lymphocyte-restricted gene expression are 

emerging.82 A recent analysis of predicted miRNRR A-mediated regulation of 72 Lupus 

susceptibility genes in humans revealed numerous target sites for over 140 miRNRR As 
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protein products with enormous precision to maintain the balance between immunity and 

tolerance.83 Overlap amongst targets of individual miRNRR As is considerable, with the 11 

miRNRR As within the DLK1-DIO3 imprinting cluster predicted to regulate 48 systemic 

lupus erythematosus (SLE) susceptibility genes. Indeed, this observation is not just 

limited to SLE, as when Royo et al extend the analysis to include all 19 miRNRR As that 

map to imprinted loci,84 it becomes evident that these imprinted miRNRR As have seed 

target sites in many autoimmune associated genes, relating to many disorders (Table1).

Table 1. A comprehensive list of imprinted miRNRR As that potentially regulate genes 

involved in autoimmune diseases. All the miRNRR A-target gene interactions are catalogued 

in the TargetScan and miRBase databases

Autoimmune Disease Candidate Gene miRNA miRNA Region

CeD HLA-DQA1 miR-665 DLK1-DIO3 (14q32)

MS HLADRB1  

HLA-B miR-483 IGF2-H19 (11p15.5)

Psoriasis HLA-C miR-665 DLK1-DIO3 (14q32)

 miR-370

LCE3D miR-296 GNAS (20q13.3)S
Crohn’s IL23R  

NOD2 miR-483 IGF2-H19 (11p15.5)

 miR-431 DLK1-DIO3 (14q32)

CCR6 miR-433

TNFSF15 miR-127

 miR-433

 miR-432

CDKAL1 miR-335 MEST (7q32.2)T
 miR-432 DLK1-DIO3 (14q32)

 miR-296 GNAS (20q13.3)S
RA PTPN22 miR-335 MEST (7q32.2)T

HLADRB1 miR-665 DLK1-DIO3 (14q32)

SLE HLA-DQA1  

BLK miR-298 GNAS (20q13.3)S
T1D PTPN22 miR-335 MEST (7q32.2)T

C10orf59 miR-665 DLK1-DIO3 (14q32)

CTLA4 miR-432

 miR-493

IL27 miR-296 GNAS (20q13.3)
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CONCLUSION

A role for imprinted genes in B- and T-cell development and activation is becoming
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that any epigenetic disruption to the imprinting mechanism will affect the allelic expression 

of not only imprinted mRNRR As but also the miRNRR As, with the knock-on effect of altering
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Abstract: In recent years, compelling evidence has been gathered that supports a role for 
epigenetic alterations in the pathogenesis of systemic lupus erythematosus (SLE). 
Different blood cell populations of SLE patients are characterized by a global loss of 
DNAmethylation. This process is associated with defects in ERKpathway signalling K
and consequent DNMT1 downregulation. Hypomethylation of gene promoters has 
been described, which permits transcriptional activation and therefore functional 
changes in the cells and also hypomethylation of the ribosomal RNRR A gene cluster. 
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autoreactivity (ITGAL), osmotic lysis and apoptosis (PRF1, MMP14 and LCN2), 
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and CD40LG) and cytokine pathways (CSF3R, IL-4, IL-6 and IFNGR2). DNA
methylation inhibitors are also known to induce autoreactivity in vitro and cause a 
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been described in SLE. CD4+ lymphocytes undergo global histone H3 and H4
deacetylation and consequent skewed gene expression. Although multiple lines of 
evidence highlight the contribution of epigenetic alterations to the pathogenesis of 
lupus in genetically predisposed individuals, many questions remain to be answered. 
Attaining a deeper understanding of these matters will create opportunities in the 
promising area of epigenetic treatments.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the 
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������	�� ��=���%1,2 This disease can affect all sexes, ethnicities

and ages although the highest prevalence is in women of African descent during their 

reproductive years.1,3 The prevalence of SLE in Northern Europeans has been estimated 

at approximately 40 cases per 100,000 persons, in contrast to more than 200 per 100,000 

persons among African-American populations.4 Women are most commonly affected 

and the female to male ratio is 9:1. With respect to life expectancy, the 15-year survival 

rate is currently around 80% and the pattern of mortality is bimodal, with some dying 

earlier from consequences of the active autoimmune disease and others dying later from 

atherosclerotic cardiovascular disease.5

SLE is characterized by a broad range of clinical manifestations and unpredictable

exacerbations and remissions.All systems and organs can be affected through autoantibody 
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SLE, since 85% of patients develop various rashes, although there is a wide range of 

symptoms that do not include skin1,6 (Table 1). The diagnosis of SLE is based on eleven

criteria established by the American Rheumatism RR Association: malar rash, discoid 

rash, photosensitivity, oral ulcers, arthritis, serositis, renal disorder, neuropsychiatric 

alterations, haematological disorders, immunological alterations and the presence of 

antinuclear antibodies. At least four of these criteria are required to make the diagnosis 

with certainty.

The pathogenesis of SLE is complex and remains unclear. However, alterations of 

apoptotic processes and altered cytokine levels are two major mechanisms contributing 

to the loss of tolerance and consequent development of autoantibody production. 
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injury through autoantibody production. Moreover, this altered process may explain 

the fact that SLE autoantibodies mainly react with intracellular components. Defects in 

Table 1. Symptoms described in SLE patients1,6

Affected Organ Symptoms

����
	���� Fever, fatigue, weight loss

Circulatory system Heart failure, pericarditis, endocarditis, myocarditis, 

coronary thrombosis

Cutaneous system Rash, photosensitivity, alopecia, changes in pigmentation

Gastrointestinal system Abdominal pain, peritonitis, pancreatitis, mesenteric

vasculitis, nausea, dyspepsia

Haematological system Leucopenia, lymphopenia, anaemia, thrombocytopenia

Musculoskeletal system Arthralgia, myalgia, arthritis

Nervous system Headache, mood, cognitive and movement disorders,

psychosis, delirium, seizures

Pulmonary system Pleuritis, dyspnea, serositis, pneumonitis, haemoptysis

Renal system Glomerulonephritis, hypertension, haematuria, oedema, 

hyperlipidaemia.

Reproductive system Miscarriage, pre-eclampsia, intrauterine growth restriction
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apoptotic clearance and alterations of complement components related to phagocytosis

have also been described.7 Both alterations could lead to aberrant antigen uptake by 

antigen-presenting cells (APCs) and consequent presentation to B and T cells. On the
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(GCs) has been described in a subgroup of SLE patients. These phagocytes rarely contain

apoptotic material. Mistakes in the elimination of apoptotic B cells induced after somatic 

mutation, or other cells undergoing apoptosis such as monocytes and macrophages, 

could be a source of autoantigen release. This apoptotic debris could then be presented 

by germinal node follicular dendritic cells (FDCs), providing survival and stimulatory

signals for autoreactive B cells.8 Autoantibody production against nuclear antigens

is a hallmark of systemic lupus erythematosus. These antibodies are responsible for 
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diagnosis, prognosis and patient management. Moreover, these antibodies can bind to

Table 2. Main autoantibodies described in SLE patients

Autoantibody Prevalence Autoantigen

Antigen 

Location Tissue Target

Anti-dsDNA ­�'"�'¬ Ds genetic mate-

rial

Nuclear Kidney and 

skin

Antinucleosomes ­�'"�'¬ Histones Nuclear Kidney and 

skin

Anti-Ro (SS-A)AA ­��"�'¬ 52 KDa or 60KDa 

proteins

Nuclear Kidney, skin, 

foetal heart, 

lung

Anti-Sm ­&'"�'¬ Spliceosomal 

snRNP

Nuclear Foetal heart

Anti-La (SS-B) ­&'"�'¬ 48 KDa transcrip-

tion terminator 

protein

Nuclear Kidney

Anti-ribosomal-P ­&�¬ 60S ribosomal 

subunit phosphop-

roteins (P0,P1, P2)

Nuclear Kidney, 

brain, liver

Anti-nRNP ­��"�'¬ Spliceosomal 

snRNP

Nuclear Muscles, 

circulatory 

system

Anti-KuKK ­�'"�'¬ P70/p80 DNA

reparation proteins

Nuclear Joins, heart, 

lung

Anti-NMDA

receptor

­��"�'¬ NMDA Receptor Membrane Brain

Antiphospholipids ­�'"�'¬ Phospholipids Membrane and 

extracellular

Circulatory 

system

Anti-� actinin ­�'¬ �-actinin Cytoplasm Kidney

Anti-C1q ­�'"�'¬ C1q complement 

component

Extracellular Kidney

Ds (double-stranded), Sm (Smith), nRNP (nuclear riboprotein), snRNP (small nuclear riboprotein),

NMDA (N.-methyl-D-aspartate.2,6,9,127-132
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autoantigens or crossreact with other components blocking or increasing the functions 
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which are to nuclear autoantigens and some are correlated with effects on tissues, disease 

manifestations and clinical stage (Table 2). For example, the anti-double-stranded DNA
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50-80% of lupus patients at some point during the course of the disorder, but in fewer 

than 0.5% of healthy people. However, the anti-dsDNA antibody is not very sensitive 

due in part to its transience. The presence of this autoantibody tends to be associated with

clinical activity.9 #��		�������'¬������	�_���
�
�
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������	������������������	��	���%10 Autoantibodies are also present in

healthy people, where they have a nonpathological role.11 The main difference between 
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pathogenic forms, which is due to the strong stimulation of B cells by CD4� lymphocytes 

that induces an antibody switch from IgM to IgG and a change in the molecular sequence 

of the secreted antibody.2 Cytokines are also involved in SLE. Indeed, patients who

suffer from lupus are characterized by the “interferon signature”, due to overexpression

of Type I interferons. Several cytokines and cytokine regulators are altered in SLE for 

genetic or epigenetic reasons. For example, a polymorphism of interferon regulatory factor 

5 (IRF5) is an important risk factor for SLE development and a decrease of interleukin

2 production has been reported in T cells from SLE patients.12,13 In contrast, increased 

serum interleukin 10 levels are associated with SLE activity.14

Currently, experts do not fully understand the aetiology of SLE. A combination of 
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most widely accepted model of the disease highlights the importance of environmental 

events or factors in the onset of the pathology when the genetic context is predisposing. 

Genetic susceptibility is an important source of risk for developing SLE, as family 

aggregation and concordant twin research shows. One such study reported a concordance 

rate for SLE of over 25% in monozygotic twins compared with 2% in dizygotic siblings.15

SLE is a multifactorial disease with complex genetics. Linkage and association studies 
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genes included in the disease susceptibility regions code for important immune system 

proteins, especially those of the cytokine signal transduction pathways, apoptosis and 

complement systems. Alterations of these genes can lead to a loss of tolerance and 

increased apoptosis of lymphocytes and monocytes. Hormonal and sexual genetic factors 

are also implicated in SLE aetiology, since �85% of lupus patients are women, most of 

them of childbearing age. However there is also a greater prevalence of SLE in men with

Klinefelter’s syndrome suggesting that having 2 X chromosomes is also important for 

disease development.18 Oral contraception increases the risk of SLE development and the 

����	�������	�	��������`��	�%19 Conversely, menopause induces the opposite effects.20

Hormonal analysis of women affected by SLE indicates an increase in prolactin levels

and estradiol hydroxylation and a decrease in androgen levels in some patients.21-24 The
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prolactin and estrogens exacerbate the symptomatology in contrast to a suppressive effect 

of androgens.25-27 Chimerism, the presence of cells from one individual in another person,

is another potential aetiological factor in autoimmune disorders. Chimerism has been

detected in a high percentage of women with SLE. Moreover, injection of chimeric cells 

into healthy mice induces a lupus-like disorder, indicating a potential role for this process

in SLE aetiology.28 Other evidence also suggests that viruses, such as Epstein-Barr virus
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Table 3. Candidate risk loci in SLE development2,16,17

Name Location Function

ATG5 6q21 Apoptosis. Ubiquitination

BANK1 4q22-q24 Q��	

"�
	�����������
�%�#����	����
���	�����	���	��
�����%

BLK/

FAM167A77

8p23-p22 Kinase. Immune adaptive system regulation/Unknown 

function.

C1q 1p36 Complement system member. Immune innate system 

regulation.

C2 6p11-21 Complement system member. Immune innate system 

regulation.

C4A 6p21.3 Complement system member. Immune innate system 

regulation.

C4B 6p11-21 Complement system member. Immune innate system 

regulation.

Chrom 8p21.1 8p21.1 Unknown function.

Chrom 

5q33.3

5q33.3 Unknown function.

Chrom 1q25.1 1q25.1 Unknown function.

CRP 1q21-23 C-reactive protein. Clearing apoptotic debris. Immune 

innate system regulation.

FCGR2A 1q23 Receptor. Immune innate system regulation.

FCGR2B 1q22 Receptor. Immune innate system regulation.

FCGR3A 1q23 Receptor. Immune innate system regulation.

FCGR3B 1q23 Receptor. Immune innate system regulation.

HLA 6p11-21 Human leukocyte antigen. Immune adaptive system 

regulation.

ICA1 7p22 Unknown function.

IRAK1 Xq28 Kinase. IL1R pathway.R

IRF5 7q32 TF. Interferon pathway. Apoptosis. Immune adaptive system 

regulation.

ITGAM 16p11.2 Adherence and phagocytosis. Immune innate system 

regulation

IKZF1 7p13-p11.1 TF. Lymphoid differentiation.LL

LYNLL 8q13 Kinase. Innate and adaptive immune system regulation.

MBL2 10q11-21 Mannose-binding lectin. Complement. Immune innate 

system regulation.

MECP2 Xq28 Methyl CpG binding protein

NMNAT2 1q25 Nicotinamide mononucleotide adenyltransferase

PARPP P 1q41-42 Apoptosis regulation.

PDCD1 2q37.3 B- and T-cell differentiation and apoptosis. Adaptive 

immune system regulation

PHRF1 11p15.5 Transcription.TT

PTPN22 1p13 Phosphatase. TCR pathway. R Adaptive immune system 

regulation.

PXK 3p14.3 �����	%�#�`����������	�
���	%

SCUBE1 22q13 #�`����������	�
���	%

continued on next page
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(EBV), or viral retro-elements, including human endogenous retrovirus (HERVs), are 

possible factors in SLE development through molecular mimicry or mutational mechanisms. 

In the particular case of EBV, increases in the percentage of infected B cells, in the viral 

load and in the viral gene expression have been described in SLE patients in comparison

with healthy people. Such differences also occur between quiescent and active SLE in

people.29,30 In mice, immunization with the EBV nuclear antigen 1 (EBNA-1) induces

production of Smith (Sm)-antibodies and anti-double-stranded DNA-antibodies.31 The

molecular mimicry of EBV may also be important because the Sm autoantigen is similar 

to EBNA-1 protein and both can induce lupus-like autoantibodies following direct 

immunization. Moreover, anti-Ro antibody crossreacts with EBNA-1 antigen.32,33 Likewise, 

retrotransposable elements, mainly human endogenous retrovirus (HERVs), are implicated RR

in SLE aetiology.34 Molecular mimicry between retroviral proteins and autoantigens has
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homologous region and therefore crossreacts with human U1snRNP protein. Moreover,RR

these repetitive sequences have the ability to deregulate immune genes in cis or trans,

provoking loss of autotolerance. The MRL/lpr mouse model is a clear example in which

the integration of a transposable element in the Fas gene alters the apoptosis process

and induces SLE development by producing a nonfunctional Fas protein.35 Finally, the

environment plays a key role in SLE development. More than 100 drugs have been

reported to cause a lupus-like disease and this disorder disappears after withdrawl of 

the compound. The drugs most commonly causing a lupus-like disease are hydalazine,

quinidine, procainamide, phenytoin, isoniazid and d-penicillamine.1 Exposure to sunlight,

silica, mercury or pesticides are other common factors that unleash SLE development.36

The majority of these drugs or exposures induce, directly or indirectly, changes in DNA
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There is no permanent cure for SLE yet. Current treatments ameliorate symptoms 
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immunosuppressive medications such as mycophenolate mofetil or cyclophophamide, 

remains the most common treatment for SLE. In recent years, new strategies based on 

Table 3. Continued

Name Location Function

STAT4TT 2q32 TF. Cytokine response (IL12). CD4+ differentiation.

TLR5 1q41-42 Antigen receptor. Innate immune system regulation

TNFAIP3 6q23 {���
������%�!
�
�����%�#�`��������%�#����	������	

system regulation.

TNFSF4 1q25 Cytokine. T-cell-APC interaction. Adaptive immune system

regulation.

TREX1 3q21 Exonuclease. Repair system. Granzyme A-mediated apop-

tosis

TYK2 19p13.2 Kinase. Cytokines and interferon pathway.

UBE2L3 22q11.21 Ubiquitination

XKR6 8p23.1 Unknown function

ZNF432 16q12 Transcription factor.TT Adaptive immune system regulation

Chrom (Chromosome), TCR (R T-cell receptor), TF (transcriptional factor).
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antibodies to immune cells, immunoadsorption and plasmapheresis, among others, have

permitted some improvements in the treatment, although great efforts are still needed to
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THE ROLE OF EPIGENETICS IN SLE
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disease pathogenesis, although much of the terrain remains unexplored.37 Epigenetics,

the study of reversible and potentially heritable changes in gene expression that do not 

depend on changes in DNA sequence, includes marks such as DNA methylation and 
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Epigenetic regulation is essential for the normal development and function of the immune
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a correctly functioning defence system and autoimmunity.38

Autoimmune diseases such as SLE arise when the immune system recognizes

self-ff components of the body as damaged materials and reacts against them. Several lines

of evidence indicate that environmental factors, including diet and lifestyle, can modulate

the onset of SLE in a genetically predisposed person in part through epigenetic changes. 

For example, several drugs and ultraviolet light trigger a lupus-like disease in genetically

predisposed people and twin studies reveal incomplete concordance (25-57%) between 

monozygotic siblings and a lower percentage among dizygotic ones (2-9%) indicating a

requirement for exogenous triggers from the environment.39,40
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an overview of the implications of epigenetics in SLE pathogenesis and to summarize

objectives for the near future.

CHANGES IN DNA METHYLATION OCCUR IN SLE

DNA Methylation: A Fundamental Epigenetic Mechanism

DNA methylation is the most extensively studied of the epigenetic mechanisms.

In non-embryonic mammals, DNA methylation consists of the postsynthetic addition

������	���
�����
������	������������������	��������	�^$<�
��������	������
����	��������

a CpG dinucleotide.41,42 CpG dinucleotides are statistically underrepresented in the 

genome due to spontaneous deamination of methylcytosines (mCs) to form thymidine 

during evolution.43 In contrast, CpGs cluster in regions known as CpG islands that 

frequently coincide with gene regulatory sequences. With the exception of imprinted 
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genomes are generally unmethylated and consequently permit transcription of the affected 

gene.44 However, the majority of CpGs are located within intronic and intergenic DNA

regions, particularly within the repetitive sequences and in normal cells these CpGs are 

methylated, thereby ensuring genomic stability and parasitic sequence silencing.45,46

��!��	���
������
���
	�� ��	� 	����
���	����������	�	
�
�	������ ��	��	��������!

methyltransferases (DNMTs) 3A and 3B and are maintained during mitosis by the 
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maintenance methyltransferase DNMT1.47 DNA demethylation is also an epigenetic

mechanism although its importance remains controversial. Unlike passive demethylation,

the mechanism for active demethylation is still unclear, although it may be catalyzed by an 

enzymatic complex made up of a deaminase (AID), a glycosylase (MBD4) and gadd45�.48

Impaired DNA Methylation in SLE

The importance of DNA methylation in autoimmunity and especially in SLE, was 

established in the 1990s and has since been consolidated by many other observations. 

{�	������	���	��	���� ��	� ����
�	�	��������!��	���
�������������������������� ��	�

induction of self-ff reactivity in CD4� T cells by 5-azacytidine (5-aza C). Human or mouse

CD4� T cells treated with 5-aza C or other DNA methylation inhibitors can be activated 

by autologous macrophages alone, responding to self-ff major histocompatibility complex

^|}$<�##���
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	������������	�����
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	����������	�%49-53 Moreover,

the adoptive transfer of CD4� T cells treated with 5-aza C, procainamide or hydralazine

into syngeneic mice induces a lupus-like disease. Notably, several medications, such as

procainamide, hydralazine and 5-aza C and ultraviolet light, all inhibit DNA methylation,

induce or aggravate SLE and trigger CD4� T-cell autoreactivity in mice and humans.52,54

Interestingly, mutations in the epigenetic machinery can cause other immune problems 

Figure 1. Altered immunological processes in SLE due to gene promoter demethylation. SLE is 
characterized by DNA methylation decrease in several gene promoters and this epigenetic deregulation
induces autoreactivity (LFA-1), osmotic lysis and apoptosis (PRF1, MMP14 and LCN2), impaired antigen 
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and CD40LG) and cytokine signalling (CSF3R, CD70, CD40LG IL-4, IL-6 and I FNGR2).
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abnormalities) syndrome, a disorder produced by a DNMT3B mutation and characterized 
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gene which develops lupus-like disease.55 Interestingly, SLE is characterized by an 

increased apoptotic rate of peripheral monocytes, macrophages and lymphocytes coupled 

with impaired clearance of the resultant cellular debris, which provides a major source 

of autoantigens.56,57 In addition, hypomethylated DNA, such as apoptotic or microbial

DNA, is more antigenic than normal or necrotic DNA, which are characterized by a

higher degree of methylation.58,59 Thus, BALB/c mice immunized with apoptotic DNA

develop a lupus-like disease, unlike mice immunized with necrotic or normal DNA. In 

addition, demethylation of necrotic or normal genetic material results in the induction of 

the pathogenic state.60 These results suggest that circulating apoptotic DNA may mimic

microbial DNA, potentially inducing autoimmunity.61,62 ����

����������������
������	

correlation between T-cell DNA hypomethylation, aging and increased probability of SLE

development has been established.63,64 {�������
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of DNA methylation alterations in SLE pathogenesis is beyond doubt (Fig. 2).

A Global Decrease of DNA Methylation Characterizes SLE Individuals
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proposed in the 1980s, but its direct involvement was not demonstrated until 1990

when Richardson and colleagues demonstrated impaired DNA methylation in SLE T

cells.65 {�	�	������������	��		������������	�������
��
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Figure 2. Relationship between DNA methylation and healthy biological systems. Treatment of human
or mouse healthy CD4� T cells with DNA methylation inhibitors induces loss of global methylation,
activation of parasitic sequences and gene overexpression. All of these epigenetic changes provoke CD4�

T-cell autoreactivity and consequent self-ff tolerance break. Adoptive transference of these treated cells into 
healthy mice as well as administration of DNA methylation inhibitors or injection of hypomethylated 
DNA in this animal induces lupus-like disease.
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and similar results have been obtained from the analysis of subacute cutaneous lupus

erythematosus (SCLE) patients.66-68�{�	�	��	
��������	��
����������	��@	����	��
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detected in other peripheral blood populations.68 Moreover, the methylation level of 

peripheral blood T cells from patients with active SLE is lower than that from patients 

with the inactive disease, emphasizing a direct relationship between lupus symptoms

and DNA methylation.65 The loss of global methylation can induce activation of 

endogenous retroviruses and dormant transposons, erase imprinting signals and 
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Regarding parasitic DNA activation, a controversial role for HERV in SLE aetiology

due to molecular mimicry has been proposed. Indeed, the levels of transcription and 

translation of HERV clone 4-1 as well as of the production of antibodies against this 
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addition, the peptide p15E derived from the HERV clone 4-1 is able to induce the same 

immune abnormalities associated with SLE.73 As mentioned above, DNA methylation

is maintained by DNMT1, an enzyme regulated by the ras-MAPK pathway.74 Similar to 

DNA methylation, CD4� T cells of SLE patients also have lower DNMT1 activity levels

and the decrease is associated with disease activity.67,74,75 �	�	��������	�����	���	����	��

impaired protein kinase C (PKC) delta phosphorylation as being responsible for the

ras-MAPK pathway alteration and subsequent decrease in DNMK T1.76 According to other 

reports, treating CD4� T cells with hydralazine, which inhibits ERK pathway signalling 

by preventing PKC delta phosphorylation, also induces autoreactivity in vitro and 

lupus-like disease in vivo.52,54 Similarly, the PKC delta knockout mouse model develops

SLE77(Fig. 3). Expression analysis of other epigenetic effector molecules, such as the 

methyl-CpG binding domain proteins (MBDs), have been performed in SLE patients

although no compelling evidence has emerged due to the contradictory results.66,68,78

Interestingly, several animal models have been used to study SLE because of the many 

clinical features they share with human lupus, and impaired DNA methylation has been 

reported in some of these. One example is the MRL/lpr mouse, in which insertion of an

endogenous retrovirus into the Fas gene causes defective elimination of self-ff reactive T

cells due to impaired apoptosis and lupus-like autoimmunity.79 T cells in the lymphatic 

nodules and thymus of the MRL/lpr mouse are globally hypomethylated compared to

the MRL�/�strain.80 Moreover, changes in DNA methylation levels have been detected 

in different lymphatic tissues with aging in this mouse strain, correlating with SLE
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blood in contrast to the methylation loss detected in axillary lymph nodes and thymus 

and an increase in the spleen.80 !�� ��� �������� ��|{&� 	�
�	������ ��� ����������
��

lower in CD4� T cells from 16-week-old MRL/lpr mice with active disease compared 

to younger mice in which autoimmunity has not yet been detected.81 In contrast to SLE

patients and other animal models, administration of 5-aza C to MRL/lpr mice has a

protective effect, prolonging survival and reducing the splenomegaly, lymphadenopathy 

and autoantibody titers, although this may be due to DNA synthesis inhibition by

5-aza C, similar to other drugs used to treat human lupus, such as azathioprine or 

mycophenylate mofetil82,83 (Fig. 4).
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gene expression and provides genomic stability in close collaboration with histone
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the methylation of repetitive sequences allows silencing of parasitic elements and 

represses chromosomal recombination.84 As promoter regions occupy a negligible

genomic area compared with repetitive sequences, global methylation changes are
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cluster as a region that is susceptible to the development of hypomethylation in SLE. 

The ribosomal gene is a repetitive sequence of about two megabases located in the 

short arms of acrocentric chromosomes.85 The 18S and 28S regions undergo a loss

of methylation and are overexpressed in SLE patients relative to healthy siblings.67

These alterations can induce an increase in ribosomal particles that may provoke the

synthesis of autoantibodies against them. Other repetitive sequences, such as D4Z4, 

Figure 3. Epigenetic alterations of CD4� T cells of SLE patients. Human SLE CD4� T cells are 
characterized by global DNA hypomethylation and histone 3 and 4 loss of acetylation. Decreased DNA
methylation results from the low level of expression of DNMT1 due to altered PKC phosphorylation
and provokes gene and repetitive sequence overexpression. Global hypoacetylation induces skewed 
�	�	� ��������
����� ���� ����� �
�	�	�� 	�
�	������ 
���
	� ���� �	� �	�	��	�� ��� }�!$� ����������� ����� ���
TSA DNMT1 (DNA methyltransferase 1), PKC (protein kinase C), H (histone), TSA (trichostatin A).
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associated with SLE have been detected67 (Fig. 3).

Even though repetitive sequence hypomethylation is the main factor responsible

for the decrease in global DNA methylation, changes in gene promoters can also occur.

Indeed, there is strong evidence of gene deregulation due to impaired DNA methylation;

and T cells are particularly susceptible to gene promoter demethylation in lupus. One 

example of a gene characterized by loss of promoter methylation in SLE is CD11a. This 

gene (also called ITGAL) encodes one of the two proteins that comprise lymphocyte 

function-associated antigen-1 (LFA-1), an adhesion molecule of the integrin family

involved in T-cell activation and signalling.86,87 LFA-1 helps immunological synapse

formation, conferring stability to the MHCII-TCR complex and costimulating T

cells. Increases in the LFA-1 protein, such as occurs with CD11a overexpression, can
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Figure 4. Epigenetic alterations of MRL/lpr SLE mouse model. The MRL/lpr model is characterized 
��� �
���
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������ ���� ������	� ������������� ���
��	�� ����� ���� ����	� ������
%�
Lymph nodes and thymus DNA have low levels of methylation compared with spleen genomic material,
which experiences methylation gain. These alterations correlate with altered gene expression. Unlike 
in humans, administration of DNMT inhibitors, such as 5-aza cytidine, has a protective effect. MRL/
lpr splenocytes are characterized by global histone 3 and 4 hypermethylation and hypoacetylation and 
consequent altered gene expression. Administration of HDAC inhibitors improves kidney disease and 
�	�	� 	�
�	������ 
���
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antigen/MHC receptor with MHC molecules alone.50 An upstream region of the ITGAL

promoter enriched in Alu repeats is characterized by a loss of methylation that induces 

gene overexpression in CD4� and CD8� T cells of SLE patients.51,88 Indeed, a direct 

correlation between disease activity and degree of CD11a promoter demethylation has

been reported. Treatment with DNA demethylating drugs such as 5-aza C, procainamide 

or hydralazine induces a similar loss of methylation and stronger gene expression as 

well as conferring autoreactivity in vitro and lupus-like disease in vivo.51 Moreover, the 

stable transfection of healthy T cells with an ITGAL expression construct induces the 

same effects.53,62,88 Interestingly, this gene is damaged in a wide range of leukaemias

and lymphomas.89,90 Another example is the perforin (PRF1) gene,91 a sequence that 

encodes a protein that integrates into target cell membranes, where it forms lethal

pores.92,93 PRF1 overexpression is positively correlated with disease activity in CD4� T

cells of SLE and SCLE patients as result of promoter hypomethylation.91,94 The stronger 

expression may partly be responsible for the promiscuous T-cell-mediated killing of 

�������	�����������
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�����	�	���%91 Similarly, CD4� cells of 

healthy people become autoreactive killers of autologous monocytes after treatment with 

DNA methylation inhibitors and this property can be inhibited by adding the perforin

inhibitor concanamycin A to the cells.91 In addition to PRF1 and CD11a, CD70 and 

CD40LG are also methylation-sensitive genes in SLE. CD70, also known as TNFSF7 

or CD27L, is a member of the tumour necrosis factor (TNF) family. This protein is a B

cell costimulatory molecule mainly synthesized by activated B and T cells.93 The CD70

promoter is hypomethylated in CD4� T cells of SLE and SCLE patients and this loss 

of methyl groups causes an increase in transcription.95-97 CD70 transfection of healthy 

CD4� T cells or treating CD4� cells with DNA methylation inhibitors also causes an

increase in CD70 transcription and translation levels. Moreover, coculturing the treated 

or transfected cells with autologous B cells induces IgG overproduction, while the

addition of antibodies against CD70 abrogates this increased production.95 Similarly

to CD70, CD40LG (also termed TNFSF5 or CD154) is also a B cell costimulatory 

molecule. Interestingly, it is encoded on the X-chromosome. For that reason, one copy 

in women is uniquely methylated and consequently silenced, while men have just one

unmethylated copy. Indeed, the CD40LG regulatory region is hypomethylated in CD4�

T cells of women with active SLE, promoting overexpression of the molecule.98,99 This

could explain the striking propensity for females to develop SLE. Several interleukins,

such as IL-4 and IL-6, can also be overexpressed due to DNA demethylation, similarly

to the previous examples.100 Although T cells are the best studied and most frequently 

altered cell type in SLE, other genes may be susceptible to impaired DNA methylation
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Extending the study to a larger and more diverse population, the loss of methylation

of eight gene promoters (IFNGR2, MMP14, LCN2, CSF3R, PECAM1, CD9, AIM2

AND PDX1<� ���� ������	�� ���� ��	� ����� ��	� ��� ��	�	� �	�	�� �	�	� ������ ��� ���	

����������
���	���	��	�
�	�����67 (Figs. 1 and 3).

Mouse models are also used to study SLE pathogenesis and thereby detect genes

that are deregulated by epigenetic mechanisms. For example, MRL/lpr mice share

��	� ��
���	��$��'��	���
������
���
	������_���
���	��������������������
�������

role for this gene in lupus pathogenesis.81 Conversely, the proto-oncogene c-myc is

exclusively overexpressed due to gene promoter demethylation in this mouse model, 

unlike in humans101,102(Fig. 4).
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In conclusion, important genes are characterized by impaired DNA methylation in 

SLE, which gives rise to increased autoreactivity (ITGAL), osmotic lysis and apoptosis 

^~��&��||~&����$��<�������`���������^||~&�<������	
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presentation (CSF3R), B- T-cell interaction (CD70, CD40LG) and cytokine signalling

(CSF3R, IL-4, IL-6, IFNGR2)(Fig. 1).

CHANGES IN HISTONE MODIFICATIONS ARE ALSO INVOLVED

IN SLE PATHOGENESIS
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Histones are nuclear proteins that associate with DNA to form nucleosomes, enabling 

it to be packaged into the nucleus and regulating its expression. Histones have tails that 
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moieties such as methyl, phosphate or acetyl groups, among others.103,104 The combination 
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sites, regulating accessibility to different regulatory proteins.105,106
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As mentioned above, an increased apoptotic rate coupled with impaired clearance of 

apoptotic debris characterizes SLE.56 During apoptosis, chromatin is cleaved by caspases,

endonucleases and granzyme B as well as undergoing the addition or elimination of histone 
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the immune system, aggravating or inducing SLE development.107 There is compelling 
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For example, the lupus mouse-derived monoclonal antibody KM-2 mainly recognizes 

acetylated lysine 8, 12 and 16 in histone H4. Four hours after inducing apoptosis, 

the affected cells exhibit increased histone acetyl transferase (HAT) expression and 

reduced levels of histone deacetylases (HDAC), allowing H4 acetylation.108 Moreover,

the apoptosis-induced acetylation on lysine 12 of H2B is a target for predisease lupus

mouse antibodies.109
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as well. Histone alterations are also detected in SLE cells and correlate with aberrant gene 
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in SLE mouse models. In vivo administration of HDAC inhibitors, such as trichostatin

A (TSA), suberoylanilide hydroxamic acid (SAHA) and others, ameliorates kidney 

disease in MRL/lpr mice without changing autoantibody titers.110,111 Administration of 

HDAC inhibitors to MRL/lpr splenocytes reduces the expression of various cytokines,

including IL-6, IL-10, IL-12, or TNF-�.110,111 Indeed, a mouse model characterized by 

an HDAC p300 mutation exclusively in B cells develops lupus-like disease.112 A recent 

study has also analyzed H3 and H4 methylation and acetylation levels in splenocytes

of MRL/lpr mice. Global hypoacetylation and hypermethylation (excluding H3K4 

methylation) relative to the control MRL/MPJ mouse model has been reported and novel
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113(Fig. 4).
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MRL/lpr splenocytes, CD4� T cells of SLE patients with active disease are characterized 

by global H3 and H4 hypoacetylation and disease activity correlates inversely with H3

acetylation.114 This T cell subset overexpresses IL-10 and CD154 and underproduces 

IFN-�. Further, treating SLE CD4� cells with TSA reverses the skewed gene expression.115
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analysis, 179 genes have been characterized as likely to undergo H4 hyperacetylation in

monocytes of SLE patients. The acetylation-enriched genes mainly affect macrophage

activation, cell proliferation, central nervous system toxicity and antiviral immunity and 

they also have potential IRF1 binding sites within the 5 Kb upstream region.KK Although 

many genes are hyperacetylated, only twelve of them are known to exhibit expression

changes. Moreover, treating these macrophages with IFN� increased expression of the

179 selected genes and induced acetylation of histones located in 199 promoter genes.116
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suggest the possibility of using them in epigenetic treatments (Fig. 3).

POTENTIAL USE OF EPIGENETIC DRUGS FOR SLE TREATMENT
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its extensive involvement in different diseases. Compelling evidence demonstrating a role 

for epigenetic dysregulation in SLE emerged several years ago, is now widely accepted 

and holds promise for therapeutic applications. One of the most important aspects of 

epigenetic regulation is the possibility of reversion through the use of drugs that inhibit 

the epigenetic machinery. In fact, some of these compounds are already being used in

preclinical and clinical phases for the treatment of haematological malignancies following

their approval by the US Food and Drug Administration.117 The effects of DNMTs and 
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using these inhibitors for disease amelioration. Indeed, studies based on treatments

with HDAC inhibitors highlight the ability of these drugs to reverse the skewed gene

expression associated with lupus and to modulate immune system activity and reduce 

��`��������%118,119 Before designing a therapeutic approach, an in-depth understanding

is required of the epigenetic alterations of each cell type associated with the disease. To

this end, we need to develop and use SLE animal models as well as create cell lines in 

which to test the agents. Problems associated with human studies can be resolved using

in vitro and animal models, although one must always bear in mind their limitations

and corroborate the results in SLE patients. In addition, a more exhaustive study of the

relationship between cancer and autoimmunity will help us extrapolate our extensive

knowledge of epigenetic deregulation in cancer to SLE.120 Further, a new gene expression 

regulator, known as microRNRR A (miRNRR A), is attracting attention because of its involvement 

in many disorders.121,122 miRNRR As are noncoding RNRR A molecules, around 22 nucleotides 

long, that regulate the expression of target genes through various posttranscriptional 

mechanisms.123 {�	�����	������������������	���������!����	�����	�	����
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lupus patients and normal controls together with a recent description of their epigenetic

regulation (including DNA methylation-dependent regulation of miRNRR A expression)

suggests a potential role for epigenetic dysregulation of miRNRR A in SLE.124-126 For this
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reason, miRNRR As are potential players in SLE pathogenesis as well as potential therapeutic

targets and diagnosis biomarkers.121

CONCLUSION
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sequences and miRNRR As that occur in lupus and the exhaustive study of the epigenetic
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against SLE in the immediate future.
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Abstract: In this chapter, we discuss the current understanding of the possible epigenetics changes 
that occur in rheumatoid arthritis. In particular, we describe that deregulation of DNA
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rheumatoid arthritis. In addition, we discuss the role of rheumatoid arthritis synovial 
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in this chapter. In conclusion, we discuss the possible use of epigenetic therapy and 
describe future experiments that can elucidate further the epigenetic changes observed 
in the disease.

INTRODUCTION
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etiology that causes joint destruction. It is known as an autoimmune disease and is

characterised by polyarticular pain, swelling, morning stiffness, malaise and fatigue.
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usually affects the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints 
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RA were drafted in 1956 by the American College of Rheumatology (RR ACR) and revised 

in 1987 in order to provide guidelines for clinical trials.

The etiology of RA remains still unknown. It has been hypothesised that infectious
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components of the joints.1 Environmental factors have also been implicated in the development 

of RA such as smoking. The genetic predisposition to RA of individuals with HLADRB1RR
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clonal response.2

However, to cause autoimmunity other factors are also required. In contrast to
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not involve a change in the DNA sequence. In this chapter, we will mainly consider two 
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alterations play a role in numerous diseases, including cancer and developmental diseases.3
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event involved in chromatin structure, genomic imprinting, inactivation of the X chromosome, 
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by the DNA methyltransferases (DNMTs) and is interpreted by the methyl-CpG binding 

proteins. DNA methyltransferases are not limited to catalyzing DNA methylation, but also

take part in the regulation of gene expression through interactions with other proteins that 

repress transcription and modify chromatin structure. Importantly, the replication of DNA

methylation marks during mitosis is sensitive to the environment and exogenous agents that 

decreases S-adenosylmethionine levels, or decrease DNA methyltransferase 1 (DNMT1)

levels or enzyme activity, result in failure to replicate the patterns. Errors will be accumulated 

over successive cell divisions. In this model, this causes aberrant expression of genes 
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methylation, etc.—serve as signals, referred as the histone code, that renders the genome
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a balance between histone acetyltransferases (HAT) and histone deacetylases (HDAC) 
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Environmental insults trigger a response of the immune system and local activation of 
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predisposition and epigenetic settings and is the response of a healthy organism (Fig. 1).

Figure 1. Central role of epigenetics in the pathogenesis of rheumatoid arthritis.
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Loss of self tolerance leads to autoimmunity and rheumatoid arthritis.The chronic activation
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GENETICS AND ENVIRONMENT

Rheumatoid arthritis (RR RA) is a systemic disease affecting approximately 1% of the
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immune system, a hyperplastic synovial tissue and destruction of the joints by synovial
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contribution to RA and a high concordance rate in monozygotic twins (12-30%).4 The

HLA genes at 6p21 show the strongest linkage to RA. In particular, HLA-DRB1 allele 

variants are associated to increased susceptibility.5 However, familial risk due to the HLA

genes has been estimated to be only 15-30%, suggesting that other genes or factors play 
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The limited historical descriptions of RAbefore industrialization suggest that changing 
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medieval skeletons in the United Kingdom failed to show any evidence of RA, while the

disorder is now present in 1% of the population.8�{���������		��������	�����#��
������

Egypt. Increased urbanization has been associated with an increased prevalence of RA.

Another hypothesis is that RA was a New World disease which subsequently spread to
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��	����������������	�����	%9 Investigation of the skeletons of American Indians revealed 

that RA did exist in the New World prior to the voyages of Columbus and even those 

Figure 2. ~�����	�	���������	�����������������%�{��	

�������������
������
�����������
���
���
��	���
�����%



140 EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNAA E DISEASE

attributed to the Vikings. The arthritis in ancient American Indians of Tennessee (more than 

4,000 years ago) is indistinguishable from contemporary RA. The female predominance 

(3:1), nature of bone involvement, X-ray appearance and distribution of joint involvement 

are identical to that found in living patients. According to this hypothesis, RA started 

as a disease of American Indians, who are still predisposed to this potentially crippling 
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subsequently to Europe. These data indicate the presence of RA in a very small area of 

southwestern Kentucky, west-central Tennessee and northwestern Alabama in the archaic 

period (5000-500 BC). This was followed by a minor spread to Ohio in the Woodland 

period (500 BC-1000 AD). Finally, an explosive spread occurred after the late 18th 
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that time (Paris 1785). The nature of the disease may have altered at that time. Either the 

expression changed and it became more severe or the incidence of disease increased.10 If

this is true,American Indians should have old recepies against arthritides. Indeed, this is the

case. Mashed yucca root mixed with water and swallowed is an American Indian arthritis 

remedy. The Cherokee Indians took the powered root of Aralia racemosa (“spikenard”)

as a tea for RA. They also pounded the root and applied it as a poultice to painful areas 

of the body. The spreading of the disease in the 18th century would suggest an infectious 

origin. Current models of RA propose that the initiating event is a T-cell response to an

agent acquired from the environment, but the nature of this trigger is uncertain. Potential

candidates implicated in an infectious etiology include Mycobacterium tuberculosis,

Escherichia coli, Proteus mirabilis, Epstein-Barr virus, Parvovirus B19 and retroviruses.

This was suggested to be supported by increased antibody titers to the infectious organism 

in RA or the possibility of molecular mimicry. A bacterial life form, E. insidiosa, can

produce RA in deer, swine and dogs and a number of animals, including man, birds and 
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that they had some recognition of the connection between this infection and arthritis.11

The importance of environmental factors in RA is suggested for example by the lower 

prevalence in rural Africans than in their counterparts who migrated to the towns.12
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Thus, high birth weight is positively associated and breast-feeding is negatively associated 

with RA.13 High weight at one year of age is associated with occurrence of rheumatoid 

factors (RF).14 RF are autoantibodies (IgA, IgM or IgG) that recognize the Fc parts of 

other antibodies and thus form immune complexes.

#�������������������������������������	�������	��		�������������	�	���������������

among adult women. Sharing a bedroom during childhood is associated with a lower risk 

of being RF positive.15 Thus, it appears that higher growth and less exposure to infections 

may increase the likelihood of developing RA and the RA-associated autoantibody RF.

Parallels exist between an effect of hygiene on RF production and the effect of hygiene

on allergy and asthma.

Such observations gave rise to the so-called “hygiene-hypothesis”: Decreased 

infectious exposure is associated with increased allergy in the developed world.16 This

could be also the case for RA. It has been concluded that a developing immune system

exposed to improved standards of hygiene is more likely to produce RF and perhaps begin

the pathological process that leads to RA. Common mechanisms may be shared between

autoimmune and allergic disease whereby infections at critical periods of development 

produce permanent and ultimately damaging changes in immune functioning. These, in
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to disease.

Smoking is associated with an increased risk for developing RA and a more severe

disease outcome.17 The presence of risk factor PTPN22 (R620W variant) interacts with 

heavy cigarette smoking in a synergistic manner in RA.7 Sirtuins (SIRTs) that deacetylate 
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expression could represent a link between smoking and epigenetics.18,19 Infection and 

nutrition also were proposed to play a role in the disease.20,21

EPIGENETIC CONTROL OF IMMUNE SYSTEM IN RHEUMATOID

ARTHRITIS

The use of HDAC inhibitors as therapeutic agents has been explored in RA.22 In the 

RA synovial tissue, however, the balance of HAT and HDAC activities appears clearly in 

favour of HATs or a loss of HDAC activity.23 The expression of the different HDACs has

to be studied in the various subpopulations. Possibly, the effect of HDAC inhibitors could 

be mediated by nonhistone substrates. For example, TSA may inhibit NO production.24
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be found in 50-80% of the patients. In the presence of calcium ions, peptidylarginine 
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citrulline residues. Mammalian PADI enzymes are involved in a number of regulatory

processes during cell differentiation and development such as skin keratinization, myelin 

maturation and histone deimination. PADI-4, localized in the nucleus, is overexpressed in

RA synovial tissues.25 This enzyme could represent a link between high risk to develop 

RA and production of autoantibodies against citrullinated peptides.5 Whether histone

deimination is involved in the disease, however, is unknown. PADIs could play a role

also in multiple sclerosis, in which the PADI-2 promoter is hypomethylated and the

protein is overexpressed.26 PADI-2 catalyses the myelin basic protein citrullination that 

results in a loss of myelin stability.

T- cell DNA is demethylated in RA and as in SLE, this may result in the generation

of autoreactive T cells.27 Interleukin-2 and Tumor Necrosis Factor alpha (TNF�) are

regulated by epigenetics, their promoters being demethylated in activated T cells and in

mature monocytes respectively. More relevant in the context of the disease was the report 

of a single unmethylated CpG motif in the 5� regulatory region of the interleukin-6 (IL-6) 

gene in peripheral blood mononuclear cells taken from patients with RA.28 The effector 
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matrix-degrading enzymes which lead to a progressive destruction of cartilage and bone.29
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and amortises the joint to minimize the friction. In RA, the synovial tissue overgrows as
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rate of the resident cells.
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EPIGENETIC CONTROL OF RHEUMATOID ARTHRITIS

SYNOVIAL FIBROBLASTS
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multipotent cells that reside in various human tissues and have the potential to differentiate 
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����%30 They are readily available

reservoirs of reparative cells that are capable of mobilizing, proliferating and differentiating 

into the appropriate cell type in response to certain environmental signals. The development 

of mesenchymal stem cells is dependent on the microenvironment, such as stimulation 

from growth factors. Fibroblasts are metabolically active cells that have critical roles in 
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from their normal, relatively quiescent phenotype, in which they are involved in the slow 

turnover of the extracellular matrix, to a proliferative and contractile phenotype termed 
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in response to their microenvironment. To produce such characteristics, certain genes 
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These patterns of gene expression are, in large part, under epigenetic control (Fig. 3).
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property of these cells. When co-implanted with human cartilage into severe, combined 
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aggressive phenotype and the resistance to apoptosis.
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human immune system.31 {��������	
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production of matrix-degrading enzymes and adhesion molecules. The “imprinted”
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characteristics commonly associated with transformed cells.32�_������
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patients with RA show “spontaneous” activities, associated with aggressive behavior and 

����	�	����������	��������
������
��������
���	������������	�������������������
��������
�

�����
����%�����	���

	���!_���
"�	��
��	�
����"�����	�	����
	�������������	�������

enzymes, adhesion molecules and produce cytokines, including interleukin-6 (IL-6).33-36

These observations of an intrinsically activated cellular phenotype prompted us to search
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LINE-1 is reactivated in the RA synovial lining and at sites of cartilage and bone 

invasion.37-39The expression of LINE-1 proteins in RA synovial tissues is associated with

a partially hypomethylated promoter region.40 In normal cells, repetitive sequences such

as LINE-1, Alu and �-satellite repeats are silenced by methylation and their expression 

�����	`	����
���
���!���
��	���
�����%�{�����	�	��
��	

�
����	��������������
�������

����	?�	��	������!��������
������
������	����	��	���
����������	�����	���������	��
��

transmitted from mother to daughter cells. The incorrect methylation patterns induce 

either cellular dedifferentiation or a completely new phenotype. The cause could be a 
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Other diseases have also been associated with decreased activity of Dnmts. For example, 
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is an autosomal-recessive disease that is associated with abnormal DNA methylation and 

mutations in the catalytic domain of DNMT3b.41 {�	����	��	�����	���������	���	����

as a result of reduced immunoglobulin levels and involves chromosomal instability due 

to hypomethylation of satellite repeats.

With regard to the potential role of genomic hypomethylation in generating aggressive

SFs, we hypothesized that the RASF phenotype could be mimicked in normal SFs by 

inhibition of DNMT1, for example by chronic treatment with a nontoxic dose of the 

DNA methyltransferase inhibitor 5-azacytidine.40 In this study, about 200 genes were 

found to be chronically upregulated more than twofold by DNA hypomethylation, 

which was associated with enhanced protein expression in most cases. Furthermore, 
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such as tumor necrosis factor alpha, interleukin-1 beta and IL-6 have multiple and 
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with proliferating cell nuclear antigen (PCNA) at the DNA replication fork to ensure the
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worsen with each cell cycle. Alternatively, the ability to demethylate DNA actively has

been attributed to various factors, including growth arrest and the p53-effector protein 

Gadd45a, a small p38 mitogen-activated protein kinase-binding molecule.44 Interestingly,

mice lacking the gene encoding Gadd45a develop autoimmunity.45 Possibly, disruption
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RA-like behaviour.46

This raises also the question whether the global genomic hypomethylation is 

�����
���	��������

��	������
	�����
�����	����
	��	���
��������������������	����	���

various tumors. At least one example is reported in the literature, i.e., by silencing the

death receptor 3, which could, at least in part, explain the relative resistance to apoptosis 
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X-CHROMOSOME INACTIVATION

Worldwide, 0.8% of the population has RA, with 80% of patients developing their 

condition between 35 and 50 years of age; 67% of people with rheumatoid arthritis 

are women. The predominance of females among patients with autoimmune diseases

suggests possible involvement of a defective X chromosome inactivation. X chromosome 

inactivation is an epigenetic event resulting in multiple levels of control for modulation of 

the expression of X-linked genes in normal female cells such that there remains only one 

active X chromosome in the cell.The extent of this control is unique among the chromosomes 

and has the potential for problems when regulation is disrupted.48 Chromosome-wide 

inactivation is initiated by the expression of the long nonprotein-coding Xist RNRR A. 

This RNRR A is transcribed from the Xic gene on the future inactive X chromosome and 

accumulates over this chromosome triggering transcriptional silencing. Autoantibodies 

against structures of the inactivated X chromosome, colocalized with the Xist RNRR A, were

reported in serum of patients with SLE.49
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chromosome inactivation is a multistep process that comprises an ordered series of 
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Polycomb group proteins, which are known to be required for maintaining the repression 

of homeobox (Hox) genes, has been implicated in the transition from the initiation phase 

to the maintenance phase of X chromosome inactivation. HOX genes are transcription 
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in vertebrates. Particularly, the Hox D family is involved in limb formation in mice and 

chicks. Both Hox 4C and Hox D9 are over-expressed in RA synovial tissues.50-51

Compared to the active chromosome, the inactivated X chromosome has high levels 

of DNA methylation, low levels of histone acetylation, low levels of histone H3 K4 

trimethylation and high levels of histone H3 K9 trimethylation, all of which are associated 

with gene silencing. In RA synovial tissues, high levels of histone acetylation is reported.23

Nonrandom X chromosome inactivation could be a factor in the development of 

autoimmune diseases. Hypothesized was that, in young females, the presentation of 

self-ff antigens could be biased by antigen-presenting cells during thymic development 

of tolerance for self-ff antigens. If self-ff antigens from the inactivated parentally derived 

X chromosome were not represented, then negative selection of auto-reactive T cells

towards those self-ff antigens could not occur.52 Evidence linking skewed X chromosome

inactivation to autoimmunity was reported in RA.53

An important factor in RA is the abnormal pattern of methylation. 5-methylcytosine 

residues in the DNA are formed from the transfer of the methyl group from 

S-adenosylmethionine to the C-5 position of cytosine by the DNMts. A hypothesis has 
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been proposed that explains some autoimmune diseases as occurring due to loss of dosage 

compensation of X-linked polyamine genes at Xp22.1, which impact on intracellular 

methylation.54 In this regard it is of interest that the polyamines, spermidine and spermin,

are produced from ornithine after activation of the enzyme ornithine decarboxylase,
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is required for the conversion into polyamines (putrescine, spermidine and spermine) (Fig. 

4). The genes related to Xp22.1 are spermine synthase, which catalyse the conversion

of spermidine into spermine and spermidine/spermine–N1–acetyltransferase (SSAT1),

which recycles spermine and spermidine into putrescine. The expression of these enzymes
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In accordance with the hypothesis of an increased polyamine recycling, urinary polyamine 
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OA or healthy controls; they correlated to the degree of joint functional damage and 

radiological progression.58 An over-expression of SSAT1 may result in a decrease of 
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AGING, EPIGENETICS AND AUTOIMMUNITY

Various epidemiological studies support the increasing risk of RA during aging.

{�	� �����	� ����	�� ���	���	�� ����������� �����	�� ������� ������ ������ ���� 
	��� ��

autoimmune disease. For example, rheumatoid factor increases during aging.59 The

Figure 4. Biosysnthesis and recycling of polyamines, competition with dimethyltransferases for the
pool of S-adenonsylmethionine.
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expansion of the T-cell population of CD4� CD28- is linked to aging and is tought to be 

associated with RA.60 These cells are autoreactive, resistant to apoptosis and secrete large 
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with the severity of RA. Also, B- cells of elderly persons produce antibodies that have 
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occurred in elderly healthy persons.61 In addition, the transcription factor NFk-beta that 

�	��
��	����	�	�
�	���������������	������
��"��`����������	�	������	��	������������%62

{�	�	���	������������`���������������	���	?�	���������������������������	���������	��

with rheumatoid arthritis. Deregulation of the epigenome could be a consequence of 

changes in the immune system. Epigenetic studies in monozygotic twins showed that 
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the twins had large differences in epigenetic marks if they have developed a disease or 

they lived in different environments. An interesting study using monozygotic twins for 
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with SLE, when compared with the healthy twin.64 Also in the same study the authors 

observed changes in CpG areas and expression of ribosomal RNRR A genes. Other studies 

have measured the global DNA methylation levels and the methylation of CpG marks in 

Alu repeats and found that they are reduced during aging.65 Furthermore, recent studies

showed that certain genes become either hypermethylated or hypomethylated in animals

depending on their age.66�{�	�	������	�����	��		������������	������	��
	����%�{����

changes in epigenetic marks occurring during aging should be taken into consideration 

in studies investigating DNA methylation in rheumatoid arthritis.

CONCLUSION AND OUTLOOK

The pathogenesis of rheumatoid arthritis as described in this chapter is poorly

understood; clearly, it has both genetic and environmental components. How environmental

factors contribute to the development of this disease is still largely unknown. However, 
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susceptibility (and perhaps even severity) through epigenetic mechanisms. In this regard,

the investigation of the discordance in disease between monozygotic twins could be of 

special interest. Monozytic twins accumulate epigenetic differences during their lifetime

that can be attributed to environmental factors, such as smoking, infections, nutrition,

reproduction and exposition to xenobiotics.

Recent data have demonstrated that global genomic hypomethylation might play a
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the effector cells of joint damage; genes overexpressed in this context contribute to the 
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general activation of the cell is still not known; possibly, methylation-sensitive transcription

factors are involved. It can be expected that in some cases, global DNA hypomethylation
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cancers. However, the hypomethylated cells often showed a decreased expression of 

DNMT1 that represent a strategy to avoid transformation, i.e., a random methylation of 
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cells in the case that genes of the cell cycle or in the regulation of apoptosis are affected.
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hierarchy of the events need to be investigated. A whole epigenome approach would be

useful, using e.g., tiling arrays. The cause of epigenetic disorders could be multiple, from 

	�������	���
������
�����	���`�����������
�	�������������	��	���	��������������NMT1

and/or an increased recycling of polyamines. Reversing DNA hypomethylation could 

be a challenge for the future, for example by a treatment with S-adenosylmethionine

and inhibiting the recycling of polyamines. However, inhibiting SSAT1 also might be

necessary to block the increased consumption of S-adenosylmethionine.Clearly, different 

mechanisms of deregulation probably account for each of the diseases, including various
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therapies on an epigenetic basis, it is interesting to note that HDAC inhibitors have
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However, it will be important to develop inhibitors selective for HDAC isoenzymes.

Chromatin immunoprecipitation in conjunction with microarray hybridization or coupled 
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group box 1) and methyl binding proteins, that can regulate gene transcription in RA

should be investigated.
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Abstract: There is growing evidence for a role for epigenetic mechanisms in the development 
of autoimmune diseases. In most cases of autoimmune disease the precise epigenetic
mechanism involved remains to be resolved, however DNA hypomethylation
accompanied by hypoacetylation of histone H3/H4 is commonly observed. Due to
the reversible nature of epigenetic marks their maintenance enzymes such as DNA
methyltransferases (DNMTs), histone deacetylases (HDACs) and histone lysine
methyltransferases (HKMT) are attractive drug targets. Small molecule inhibitors
��� ������	� ������������ ���� ��!� �	���
������ �����	����	� ��	� ����	�����
��
becoming available and will be useful chemical biological tools to dissect epigenetic
mechanisms in these diseases.However, although epigenetic therapies used in cancer 
treatment are a promising starting point for the exploration of autoimmune disease
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chronic diseases or for use as chemopreventative agents.

INTRODUCTION
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has triggered extensive research into epigenetic drug development. Since research into 

autoimmune diseases has also revealed that epigenetic mechanisms contribute to the

development of autoimmune diseases, epigenetic therapies from the cancer arena seem 

to be a promising starting point for the exploration of autoimmune disease treatment. 

Due to the reversible nature of epigenetic marks their maintenance enzymes such as 

DNA methyltransferases (DNMTs), histone deacetylases (HDACs) and histone lysine
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methyltransferases (HKMT) are attractive drug targets. So far, a few promising compounds 

that target such epigenetic maintenance enzymes are in cancer clinical trials or registered 

for use against certain malignancies. Although in most cases of autoimmune disease the

precise epigenetic mechanism involved remains to be resolved, it appears that one common

feature is DNA hypomethylation which is accompanied by hypoacetylation of histone

H3/H4. Options for epigenetic therapies are so far limiting, however we will discuss

one of the most promising druggable targets: histone deacetylases (HDACs). Since the

epigenetic mechanisms of most autoimmune diseases have not been fully resolved yet, 

additional epigenetic targets and future perspectives will also be discussed.

THE CLASSES OF HDACs AND THEIR INHIBITORS

The enzymes removing acetyl-groups of histone tails are known as histone

deacetylases (HDACs) and are presented by two distinct protein classes, the SIR2 family

of NAD�-dependent HDACs (Class III) and the classical HDAC family. The latter 

consists of two different phylogenetic groups, namely Class I and Class II whose action 

is zinc dependent.1 The HDACs of Class I are most closely related to the S. cerevisiae
transcriptional regulator RPD3, whereas class II HDACs share homology with HDAC1, 

another yeast deacetylase (see ref. 2). HDAC functions and main targets are presented 

in Table 1.
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inhibit an entire class.3 Despite these hurdles, investigations are underway and the subsequent 

paragraph introduces the most common HDAC inhibitors (HDACi) and their targeted 

classes. Interest in further HDACi development for cancer therapy has been fuelled by the 

over-expression of HDAC1 in colon and several other tumor types and the suppression of 

tumor growth following knock-down of formerly over-expressed HDACs.4

HDAC inhibitors have demonstrated antitumor activity in clinical trials and one drug

of this class, Vorinostat (SAHA), is US Food and Drug Administration approved for the

treatment of cutaneous T-cell lymphoma. The hydroxamic acid moiety of inhibitors such

as Vorinostat directly interact with the zinc ion at the base of the catalytic pocket.5 Due 

to fundamental epigenetic differences of normal and tumor cells, HDACi are proposed 

to selectively kill tumor cells at lower concentrations than normal cells, suggesting the 

existence of an optimal therapeutic window.6 Although the majority of HDACi drug 
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agents has been proposed.7 �	�	��������	�����	���������	�
��	����
�����"��`���������������

of several HDACi in animal studies and therefore opened a new path for the treatment of 

autoimmune diseases.8 Such animal model studies have suggested that HDACi may be

a promising experimental chemical tool, especially for the treatment of chronic immune

������`���������������	�������������	������������������^�!<��
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bowel disease (IBD), multiple sclerosis and systemic lupus erythematosus (SLE).8

The following Table 2 gives a brief overview of different HDACi classes and their 

compounds which are currently either in clinical studies or approved.

HDACs interact with multiple protein complexes as well as histones, have multiple

additional protein targets, some of which can be found listed in Table 3. Therefore,
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on the histone acetylation status itself, but also on other acetylated proteins in the cell.

For example, acetylation of p53 is required for its transcription independent functions 

associated with activation of the pro-apoptotic gene (BAX), reactive oxygen species

production and apoptosis in response to HDACis. For instance, the acetylation of p53 

prevented the formation of the Ku70KK -BAX complex, thereby enhancing apoptosis.9

HDACi can selectively alter gene transcription, partly through chromatin remodelling 

and partly through changes in the structure of proteins in transcription factor complexes.10

It is worth emphasizing that important regulatory proteins such as hormone receptors, 

Table 1. Histone deacetylases families and their known functions

HDAC Class Name Function

HDAC class I HDAC1 and HDAC2 Complex dependent; found in Sin2, NuRD and 

Co-REST, can act directly on DNA-binding 

proteins (YY1, Rb binding protein 1 and SP1), RR

phosphorylation required for function

HDAC3 SMRT and N-CoR are necessary for activity, R

is able to form oligomers with other HDACs 

like HDAC4 and 5, but mostly it interacts with 

itself, may have role in cell cycle progression

HDAC8 Similar to HDAC3, probably very low 

abundance of expression

HDAC class II HDAC6 Exhibits two catalytical domains in tandem, 

has signal for ubiquitination, probably 

particularly prone to degradation, functions as 

tubulin deacetylase but it is also found in the 

nucleus together with HDAC11

HDAC10 Exists in two splice variants, interacts with 

HDAC1, 2, 3, 4, 5 and 7

HDAC4 Exhibits binding domains for CTBP, MEF2; 

amongst others it shows interaction with 

BCL6, CBX5, MAPK1, RbRR AP40 and HDAC3

HDAC5 Interacts only with HDAC3 and MEF2. 

Deacetylates core histones (H2A, H2B, H3 

and H4); is also involved in muscle matura-

tion by repressing transcription of myocyte 

enhancer MEF2C

HDAC7 Deacetylates core histones (H2A, H2B, H3 

and H4), also involved in muscle maturation 

by repressing transcription of myocyte 

enhancer factors such as MEF2A, MEF2B

and MEF2C. May be involved in Epstein-Barr 

virus (EBV) latency, possibly by repressing 

the viral BZLF1 gene

HDAC9a, 9b, HDRP Are splice variants, HRDP lacks the catalytic 

domain but it is able to recruit HDAC3. All

three interact with MEF2 indicating a function 

in muscle differentiation

continued on next page
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chaperon proteins and cytoskeleton proteins, which regulate cell proliferation, immune

response and cell death, are nonhistone protein targets of HDACi. The acetylation status

of several important gene regulator and transcription factors associated with cellular 

immunity is well known, such as E2F1, p53, STAT1, STAT3 and NF-�B and importantly

all of those genes have been shown to respond to HDACi treatment.11-16 STAT1, STAT3

and NF-�B are often considered to be “master immune” regulatory transcription factors

and since their activity is directly regulated by acetylation, HDACi treatment can lead 

to changes of their downstream targets such as changes in cytokine levels and effects

on immune cell functions.17 Thus, the expression of downstream target genes might be

affected following HDACi treatment through hyperacetylation of STAT1, STAT3 and 

NF-�B, rather than through histone hyperacetylation affecting transcription of these genes. 

Furthermore, increasing evidence supports a role for acetylation of transcription factors 

in mediating the selective induction of apoptotic genes in response to DNA damage such 

as the acetylation of p53 following DNA damage.18 Lastly, HDACi treatments are also 

known to elevate reactive oxygen species (ROS) levels, which can induce cell death in 

a manner independent of caspase activation (see ref. 3).

HDAC11 HDAC11 More closely related to class I than to class II,

not present in any known HDAC complex

HDAC class

III—SIR2

family

SIRT1 Deacetylates histones (preference for H4K16),

PCAF/MyoD, EP300, TAF168, HTATSF1,

TP53, XRCC6, NKRF and forkhead proteins.

Regulation of insulin and glucose homeosta-

sis, fat reduction and neuron survival

SIRT2 Predominantly cytoplasmatic, deacetylates

-tubulin and histones, overexpression delays

mitosis, SIRT2 colocalises with chromatin

during G2/M transition, preference for H4K16

in vitro

SIRT3 Localized to mitochondrial matrix, deacety-

lates in vitro, multiple substrates including

histones and tubulin, may be important under 

conditions of energy limitations

SIRT4TT Localized to mitochondria and lacks detect-

able deacetylase activity but shows ADP-

ribosyltransferase activity

SIRT5 Localized to mitochondria with weak 

deacetylase activity and no apparent ADP-

ribosyltransferase activity

SIRT6 Nuclear protein, regulates DNA repair, role in

aging

SIRT7 Localized to nucleolus and promotes rRNA

transcription, associated with RNA pol I, so

far, no deacetylase activity measured, but 

activity NAD-dependent

Table 1. Continued

HDAC Class Name Function
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A number of animal experiments in a range of autoimmune disease models point 
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�����������������%19 One example is 

rheumatoid arthritis (RA).20 In RA, the HDACs antirheumatic properties are proposed as 

being due to the inhibition of the nuclear factor kappa B (NF-�B), leading to the suppression
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Interestingly, in the human cartilage, matrix lying chondrocytes also responded well to 
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mediator expression21 and decreased expression of MMPs, thereby preventing the

degradation of collagen and aggrecan.22 Furthermore, in a rat adjuvant-induced arthritis

model p16 and p21 in RASFs were induced following Phenylbutyrate and TSA treatment,

which has been suggested to be linked to preventing further pannus formation, cartilage

and bone destruction and also to reduced joint swelling.23 TSA treatment also sensitized 

RASFs for TRAIL-induced apoptosis24 and in combination with ultrasound induced 
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Table 2. Classes and names of common HDAC inhibitors, their targets and clinical trial 

status. HDAC, histone deacetylase; HDACi, HDAC inhibitors, N/A, not available. 

Class of HDACi Compounds HDAC TargetTT Clinical TrialsTT

Hydroxamate Suberoylanilide hydroxamic 

acid (SAHA, Vorinostat)

Class I, II Approved for 

advanced T cell 

lymphoma

PXD101, LAQ824, LBH589 Class I, II Phase II

Trichostatin (TT TSA),AA Class I, II N/A//

����`������_���
������_��	����

bishydroxamic acid (SBHA), AA

Azelaic bishydroxamic acid 

(A(( BHA), AA CG-1521

N/A// N/A//

Pyroxamide Class I, 

unknown effect 

on class II

Phase I

SK-7041, SK-7068 HDACs1 and 2 N/A//

TubacinTT HDAC6 N/A//

Alipathic acid Phenylbutyrate, Valproic acid 

(VPAPP )AA

Class I, II Phase I, II

AN-9 (prodrug), Savicol N/A// N/A//

Baceca Class I Phase I, II

Benzamide MS-275 HDACs 1, 2, 3 

and slightly 8

Phase I, II

MGCD0103 HDAC1, 2, 3, 11 Phase I, II

Cyclic peptide Depsipeptide (FK228) Class I Phase I, II

Trapoxin TT A Class I, II N/A//

Apicidin HDAC 1, 3 N/A//

CHAPs Class I N/A//

Reproduced from: Chapman-Rothe N, Brown R. Future Med Chem 2009; 1(8):1481-1495;67 with 

permission of Future Science Ltd.
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Similarly, in preclinical rodent models of Type-II collagen-induced arthritis, HDACis

Vorinostat and Entinostat soothed paw swelling and decreased bone erosion and bone

resorption which are key complications of the disease.26 Comparable results were achieved 
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cartilage destruction in a mouse autoantibody-induced arthritis model.27 Romidepsin also

�������	��������	�	������������������
���	��	��	��{��� and IL-1 levels in synovial

tissues mainly through the re-expression of p16 and p21.28 Comparable results were

achieved with the ITF-2357 inhibitor.29

The inhibition of NF-�B activation in macrophages through the local administration
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bowel mouse diseases (IBD) model.30,31 Moreover in preclinical mouse disease models

the administration of Vorinostat and Valporate improved colitis induced via a clear 
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SLE is characterized by increased cytokine levels, deregulated autoantibody production
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glomerulonephritis and spleen weight which was accompanied by suppression of 
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axonal loss. Here, TSA also improved the disability in the relapsing phase of experimental

autoimmune encephalomyelitis (EAE), a widely-employed rodent model of MS.34,35

Lastly, a recent report showing the over-expression of HDAC1 in psoriatic skin, points

towards another possible application range for HDACis.36

Table 3. Proteins targeted by histone deacetylases

Function Proteins

DNA binding transcrip-

tional factors

P53, c-Myc, AML1, BCL-6, E2F1, E2F2, E2F3, GATA-1, 

GATA-2, GATA-3, GATA-4, Ying Yang 1 (YY1), NF-�B,

MEF2, CREB, HIF-1a, BETA2, POP-1, IRF-2, IRF-7, SRY, RR

EKLF

Steroid receptors Androgen receptor, estrogen receptor a, glucocorticoid 

receptor

Transcription coregulatorsTT RB, DEK, MSL-3, HMGI(Y)/HMGA1, CtBP2, PGC-1�

Signalling mediators STAT3, Smad7, 
-catenin, IRS-1

DNA repair enzymes Ku70, WKK RN, TDG, NEIL2, FEN1

Nuclear import Rch1, importin-�7

Chaperon protein HSP90

Structural protein �-tubulin

#�`����������	������ HMGB1

Viral proteins E1A, L-HDAg, S-HDAg, T-antigen, HIV TatTT

Table adapted from Bolden et al, 2006.3
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As promising as the available HDAC inhibitors are, their great disadvantage is the 
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undergoing clinical evaluation.18�!
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pan-HDACis have proven useful in the treatment of certain cancers, where they are given 

over a short time period to a life-threatening disease, their use to treat chronic conditions

over extended periods of time raises different issues. HDAC inhibitors are generally

well tolerated with limited hematological toxicity, however dose dependent toxicities
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toxicity is also a consistent feature, with asymptomatic T wave changes being a frequent 
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has been observed with all the pan-HDACi studied and despite the different chemical 

properties of these drugs suggesting a drug class effect common to all pan-HDACis. It 
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when inhibited, will have to be considered.

DNMT INHIBITORS

Although so far there is no evidence for a global hypermethylation occurring in
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appear to gain aberrant methylation in some of the WNT signalling genes during disease 

progression. This progressive feature starts at an early event in the disease and seems

to be limited to the methylation of WNT signalling genes during the development of 

IBD-associated neoplasis. Moreover, methylation of APC1A, APC2, SFRP1 and SFRP2 

appears to mark the progression of IBD colitis to IBD-associated neoplasia.37

One of the most studied and advanced drug class of epigenetic therapies are DNMT

inhibitors (DNMTis). At present DNMTis are either based on cytidine derivatives,

nucleosides which are incorporated into DNA during DNA replication, or small molecule 

compounds directly targeting DNMTs, such as catalytic site inhibitors.38 Once derivatives

are incorporated into DNA, due to the replacement of the N at position 5 of cytidine as in

5-azacytosine (Vidaza) and 5-aza-2�-deoxycytidine (Decitabine/Dacogen), they impede

the resolution of a covalent reaction intermediate, preventing the release of the DNMT.39

Through the degradation of DNMT adducts methyltransferase activity is eventually

depleted. Subsequent cell divisions will lead to an increasing loss of DNA methylation. 

In haematological cancer both drugs restored activity of epigenetically silenced tumor 

suppressor genes (see ref. 40). An increasing number of putative nonnucleoside DNMTis 

are now being examined for demethylating activity.38 However, their demethylating 

activity and ability to induce gene re-expression remains controversial and bench

marking studies have shown substantially lower activity of the nonnucleoside inhibitors

compared to nucleoside inhibitors.41,42 Another alternative to nucleoside DNMTis is 

the oligonucleotide (20mer) antisense inhibitor of DNMT1, MG98. Although this 

second-generation inhibitor down-regulates DNMT1 in vitro and there is evidence of 

suppression of DNMT1 expression in some patients treated with MG98, a downstream 

effect of DNA demethylation was not detectable in tumor or surrogate tissues comparable 

to that observed for nucleoside DNMTis.43,44
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incorporation into DNA inducing DNA damage, both of which most likely will lead to

unwanted side effects in patients. Their toxicity, such as myelosuppression, will be dose

limiting and limit their biological effectiveness.45 Furthermore, nucleoside DNMTs are 

unlikely to be of value in the treatment of chronic diseases or if used as a preventative

agent, where repeat treatments over prolonged periods of time are required. Nucleoside 

inhibitors such as Azacytidine are suspected human carcinogens based on induction of 

malignant tumors at multiple tumor sites in multiple species of experimental animal.46
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Another approach to target methylation dependent silencing at CpG islands could be

to inhibit the mediators of DNA methylation’s effects on gene expression, rather than the

mark itself. So far, there are three domains known to target methylated DNA. Methyl-CpG

binding domain proteins (MBDs) are represented by MBD1, MBD2, MBD4 and MECP2;
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and lastly the SRA-domain proteins UHRF1 and UHRF2 recognize hemi-methylated 

DNA.47,48 All three classes of proteins have a crucial role in linking DNA methylation with

transcriptional silencing. Their binding to methylated (or hemi-methylated) DNA allows

the recruitment of protein complexes which include chromatin modifying enzymes such

as HDACs, which in turn can lead to epigenetic silencing. Recently, the role of UHRF1

as a drug-target has been reviewed (see ref. 49). MBD proteins may also be potential 

targets for epigenetic therapies which would reactivate gene expression by inhibiting the 

repressive effects of MBD dependent epigenetic silencing. Unlike nucleoside DNMT

inhibitors, the reversal of methylation-dependent silencing by an MBD inhibitor would 

be predicted to be independent of DNA replication and may have a greater level of 
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DNA methylation at nontranscribed regions on genomic integrity.

DNA DEMETHYLASES

One common and frequently occurring feature of autoimmune diseases is the global 

hypomethylation of T cells and, at least in SLE and RA patients this epigenetic feature 

might be a disease triggering event.50,51 The demethylation of DNA can occur through 

either passive and/or active mechanisms. Passive DNA demethylation usually depends on

DNA replication and is due to inactive or reduced active maintenance DNMTs leading to

a loss of DNA methylation in the newly synthesized strand. Active DNA demethylation

on the other hand can occur independent of DNA replication by demethylating enzymes.
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has been hypothesized that the demethylation may be achieved through a base excision

repair pathway, where initially a deamination step converts the 5-methylcytosine (5-

meC) to thymine before the DNA glycosylase is able to act (see ref. 52). In this scenario

the DNA glycosylase would cleave the glycoside bond between the 5-meC base and the

deoxyribose, thereby creating a so called AP site. Subsequently, the AP endonuclease

���
���	���	���	��	��������	���	����������
����������
����	���	��

	�������	���!



158 EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNAA E DISEASE

polymerase and ligase, leading to an unmethylated C. Such activity has been found in

vitro for the chicken and the human methyl binding domain protein 4 (MBD4),53 however 

it should be emphasized that MBD4 shows a much stronger G/T mismatch repair activity

in vitro and that in mbd4-knockout mice no DNA demethylation was observed.54,55

Direct excision of the methyl group via hydrolysis could be a second possibility 

how active DNA demethylation is achieved. This would result in the replacement of the 

methyl group by a hydrogen atom followed by the release of methanol.52 Such a reaction 

was reported to be carried out by the methyl binding domain protein MBD2, however 
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not been reproduced by others.56,57 Nevertheless, SLE patients displayed global DNA

hypomethylation in CD4� T cells and two potential DNA demethylases MBD2 and 

MBD4 were both considerably up-regulated58 potentially pointing towards a potential

drug target. However, these patients also showed a decrease in DNMT1 expression,59

weakening the argument for a demethylase activity of MBD2 or 4 being responsible for 

the hypomethylation.

Another member of the MBD family, MBD3, has recently been shown to induce DNA
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seems to be localized to promoter regions with intermediate CpG density and interestingly, 
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Also an attractive possibility of active DNA demethylation is the enzymatic 

deamination of 5-meC to T, combined with G/T mismatch repair via DNA glycosylases.61
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cancer cells where de novo DNMTs (DNMT3a and DNMT3b) were found to convert 

5-meC to thymine, which then was removed via the G/T mismatch base excision repair 

pathway.62

Lastly, 5-meC may also be oxidised to 5-hydroxymethylcytosine (5-hmC).52 The

alpha-ketoglutarate and Fe(II)-dependent enzyme TET1 has been shown to convert 

5-meC to 5-hmC in cultured cells.63 The demethylation might then occur via an active 

mechanism where e.g., 5-hmC is converted to thymine via a DNA glycosylase-based 

repair pathway or a passive mechanism since 5-hmC is an unfavourable substrate for 

the maintenance DNMT1.63

!
���������������
�������������
������	������	���!��	�	���
��	������		��������	���

it is very likely that active DNA demethylation plays an important role in development and 

diseases such as cancer and autoimmune diseases. More work will be required to validate

demethylases and associated activities as targets in animal or cell line models. While 

MBDs have been suggested as potential anticancer targets using siRNRR A and transgenic 

knock-outs,64-66 it remains unclear how druggable they will be.67 However, these models

may allow investigation of MBDs as targets in immune diseases.

CONCLUSION

There is growing evidence for a role for epigenetic mechanisms in the development 
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methylation maintenance are increasingly becoming available and will be useful chemical

biological tools to dissect epigenetic mechanisms in these diseases. However, although 

epigenetic therapies used in cancer treatment are a promising starting point for the
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and less toxic agents. Current epigenetic therapies are not suitable for the treatment of 

chronic diseases or as chemo-preventative agents. Hopefully a greater understanding of 

key mechanisms and targets may allow more rational approaches to epigenetic therapies
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agents.
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Abstract: Nowadays, epigenetics is one of the fastest growing research areas in biomedicine.
Studies have demonstrated that changes in the epigenome are not only common
in cancer, but are also involved in the pathogenesis of noncancerous diseases
like immunological, cardiovascular, developmental and neurological/psychiatric
disorders. At the same time, during the last years, a technological revolution has
���	��

��	������	��	
�����	
��	������������������	��	�������	����������	
��	�	���
changes throughout the whole genome. Microarray technologies and more recently,
the development of next generation sequencing devices are now providing researchers
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in normal tissues and diseases. This chapter will review the currently available
high-throughput techniques for studying the epigenome and their applications for 
characterizing human diseases.

INTRODUCTION

In the last years, it has become evident that genetics alone cannot explain phenotypic 

manifestations. Instead, it is clear that a given phenotype is rather caused by an interplay 

between genetic and environmental cues. Exactly in this interface is where epigenetics 

plays an essential role, as it constitutes the molecular language through which genome 

and environment communicate with each other.1,2��
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without altering the DNA sequence itself,3 �
������� �� ���	� ���
����	� �	�������� ���

epigenetic events was recently proposed as “the structural adaptation of chromosomal

regions so as to register, signal or perpetuate altered activity states”.4

Epigenetic Contributions in Autoimmune Disease, edited by Esteban Ballestar.
©2011 Landes Bioscience and Springer Science+Business Media.
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The most widely studied epigenetic changes are DNA methylation of cytosines
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methylation, phosphorylation and ubiquitination.3,5 Although the present chapter will 
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like nuclear positioning, noncoding RNRR As and microRNRR As, are also associated with gene 

regulation and chromatin structure.6-8

It is beyond doubt that new theories and models in biomedical sciences are not only 

caused by the creativity of scientists but also to the development of new methods and 
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the introduction of a large number of new techniques that gradually moved from the analysis 

of few genes to the whole epigenome, giving rise to the term epigenomics.9-14 Since the

development of microarray-based approaches for epigenomics, the number of studies

aimed at characterizing the epigenome under normal and altered conditions has grown
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represents an important breakthrough in biomedicine, is the application of next-generation 
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�%13,15

The goal of this chapter will be to review the currently available techniques for studying

the epigenome and their applications for characterizing human diseases.

DETECTION OF DNA METHYLATION CHANGES

A Historical Perspective

The initial efforts to study the epigenome started in the 1970s. At that time, studies

were focused on the measurement of global DNA methylation content and the analysis

of particular sequences by Southern blot analyses using methylation-sensitive restriction

endonucleases. The limitations of the latter method (e.g., large amounts of high-quality

DNA, sequence biases and problems with incomplete digestions) made the study of 
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allowed scientists to easily study DNA methylation.16�_����������
��	�������	�
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of converting unmethylated cytosine into uracil whereas methylated cytosine remains 
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widely available and a large number of studies were published from the late 1990s on.17

However, these PCR based approaches are restricted to the study of few candidate genesR

and are not suitable as screening techniques to identify novel markers. To overcome this,
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Genomic Scanning (RLGS), which combine the use of methylation-sensitive restriction

endonucleases with 1D or 2D electrophoresis have been established.18,19 These techniques

��	����	���������������	�	����	�������	�����	����	���������	�	����
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a control and a test sample has to be cloned and sequenced. Two important steps forward 

have been made in the recent years with the introduction of the microarray technology20

and next-generation sequencing,21 which have provided the basis for a new revolution in

epigenetics. These two methods will be explained in detail in the sections below.
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Several strategies have been developed to analyze DNA methylation changes with 
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to differentiate methylated and unmethylated cytosines and according to the type and 

resolution of the microarray platform.

Basically, there are three different options to prepare the samples for DNA methylation

analyses. These are based either on digesting the DNA with methylation-sensitive

or -insensitive restriction endonucleases, on isolating the methylated fraction of the genome 
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Examples of methods exploiting the endonuclease digestion approach are

Differential Methylation Hybridization (DMH), HpaII tiny fragment Enrichment by 

Ligation-mediated PCR (R HELP) or NotI digestion coupled with BAC arrays.22-24 The use

of methylation-sensitive enzymes is biased by the fact that not all CpG islands contain

enzyme recognition sites. Therefore, not all the CpG islands in the genome can be

interrogated. To partially overcome this limitation, a recent technical report has applied 

different combinations of four methylation-sensitive enzymes (i.e., HpaII, Hin6I, AciI

and HpyCH4IV), which cover approximately 41% of all CpGs across the genome.25
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by applying antibodies or recombinant proteins binding to methylated cytosines, which is 
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5-methylcytosine to immunoprecipitate the methylated fraction of the genome.26,27 Other 

techniques use recombinant proteins containing methyl-CpG binding domains of proteins


��	�|Q�&��|Q�������|Q���&����
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��	����!�����������%26,28,29 Also, an 

indirect way of detection methylated regions of the genome is by a classical chromatin

immunoprecipitation (ChIP) with antibodies against MBDs.30 These methods present also

some limitations like the low resolution based on the size of immunoprecipitated DNA

fragments (�200-1000 bp) and that the level of enrichment of methylated DNA depends

on the abundance of CpGs in a given sequence.31

The third approach for array-based detection of DNA methylation is the application

�������
��	���	���	��%�!��	�

���	������	�������������
��	���	����

�������	�����	?�	��	�

variation by converting unmethylated cytosines into uracil (thymine after a PCR reaction) R

���� 
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methods already existing for single nucleotide polymorphism (SNP) analysis, which are 
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(C) or to the unmethylated (U/T) allele.32,33 As compared to the previous two strategies,

this method allows to detect methylation changes of individual CpGs.

The methods mentioned above allow a direct detection of DNA methylation patterns. 

However, there is an additional, but indirect, way for detecting hypermethylated genes.

{�����	������
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demethylating agents like 5-aza-2�-deoxycytosine (5-AZA), so that hypermethylated 

genes become reactivated after treatment.34 Although this technique has allowed the

detection of novel cancer-related hypermethylated genes, 5-AZA is highly toxic to the

cells and can alter the expression levels of many genes regardless of their methylation

status, leading to a high false positive and false negative rate and a thorough and time

consuming data validation.35
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In terms of microarray platforms, there is also a wide range of them available for 

DNA methylation analysis, which differ in resolution, number and type of genomic

regions detected. The initially applied microarrays used spotted CpG island clones.36

These arrays are biased towards those clones contained in the available libraries and 

therefore, are not representative for the complete genome.Additionally, regulatory regions 

of special interest might not be present. Microarrays containing BAC/PAC clones have

been also used for epigenomic studies.23,27,37 Although tiling BAC/PAC arrays containing 

the complete genome are available, the resolution of BAC/PAC arrays is limited by the

size of the inserts (�100-200 Kb). KK Thus, only a global epigenetic signature for that large
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These arrays have been substituted in the last years by microarrays containing short 

oligonucleotides (usually ranging from 25 to 75 bp), which can reach a very high resolution, 

are commercially available and can be easily customized according to the user’s needs.

Available high-density oligonucleotide arrays for epigenomics include e.g., promoter 

arrays and CpG island arrays. Also, oligonucleotide tiling arrays have also been also

developed, which contain up to several millions of oligonucleotides and virtually cover 
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���������������^Arabidopsis thaliana^̂ ).38

One of the limitations of the methods quoted above is that they only provide a blurry
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treatment of the test DNA, oligonucleotide annealing to the methylated or unmethylated 
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for the methylated or unmethylated allele and hybridization onto a random bead array.
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individual CpGs located in the promoter regions of selected genes.32,40 A similar approach 
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the methylation status of 27.578 CpGs located in the promoter regions of 14.475 genes 
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direct, array-based capture and enzymatic scoring of the CpG loci.41,42

Additionally, an alternative approach to microarray hybridization or sequencing

has been also developed to measure DNA methylation and is based on matrix-assisted 
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strategy, called EpiTYPER platform, has been developed by Sequenom and relies on theR
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CpG nucleotides for hundreds of genes.

In spite of the development of a wide range of microarray-based technologies to study

the epigenome, they all show differences in terms of sample preparation, resolution, type 
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analyze the data. Most importantly, none of the microarray-based techniques for DNA
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resolution.
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The complete characterization of the human DNA methylome of a given sample 
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dinucleotides per diploid cell. Although this is far from the abilities of current microarray

platforms, the recent development of next-generation sequencing devices is starting to

make this achievement possible.13

Nowadays, there are different devices that use new technologies to rapidly sequence 

several gigabases of DNA. These technologies are based e.g., on pyrosequencing using 

millions of picoliter-scale reactions (454/Roche), sequencing by synthesis either clonal 

(Genome Analyzer/Illumina) or single-molecule (Helicos/Helicos Bioscience), or 

sequencing by ligation (SOLiD/ABI, Polonator/Dover Systems, Complete Genomics), 

and are able to sequence up to 200 gigabases of DNA (and the human genome is made 

of �3.1 gigabases) in a single experiment.21,44

These next-generation sequencing technologies can be applied to sequence DNA

pretreated to obtain the methylated fraction of the genome. (Table 1) For instance, 

several strategies have been developed to library preparations from methylation-sensitive

endonucleases followed next-generation sequencing, like HELP-Seq,45 Methyl-Seq46 or 

methylation-sensitive cut counting (MSCC).47 In the case of library preparations with 

material immunoprecipitated with an antibody against 5-methylcytosine, the technique 

called MeDIP-Seq.48 However, although these techniques show advantages over their 

microarray-based counterparts, they cannot provide quantitative information about 
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DNA in several variants. For instance, the 454/Roche technology has been used to rapidly

sequence 125 amplicons with a mean almost 1700 reads per amplicon.49 However, the 
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sequence complexity, as 4 bases are mostly reduced to 3 for unmethylated cytosines. 
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(WGSBS) has been recently achieved for small eukaryotic genomes likeA. thaliana54,55 and 

also for human genomes.56,57 Most interestingly, these studies in humans have surprisingly

discovered that stem cells show abundant DNA methylation in nonCG contexts (mCHG 
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for stem cells and disappears upon cell differentiation.56,57

GENOME-WIDE DETECTION OF HISTONE MODIFICATIONS

As compared to the variety of methods available to characterize DNA methylation at the
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analysis is mostly based on a single technique, the so called chromatin immunoprecipitation 
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steps: an initial crosslink between histones and DNA by formaldehyde is performed,
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proteins by reversing the crosslinks and subsequent DNA extraction. The DNA isolated 
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and can be then used for microarray-based studies.58,59 The main limitations of ChIP are 
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availability of fresh or frozen material (whole cells are required) and the large amounts 

of cells required (approximately �107). Some recent publications have also optimized 

protocols for ChIP that use a smaller amount of cells (e.g., as little as 100 cells), which
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stem cells or clinical samples.60-62

The immunoprecipitated DNA is then subjected to analysis, either by conventional
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One is to use oligonucleotide-based microarrays, that can contain up to millions of oligos

located e.g., promoter regions, or CpG islands or the whole-genome for tiling arrays.63
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next-generation sequencing to analyze the immunoprecipitated DNA, technique called 

ChIP-Seq.15 This new method has several advantages over the microarrays like higher 

resolution, less noise and greater coverage. In terms of platforms, the Illumina/Solexa

Genome Analyzer has been used in the great majority of the publications on ChIP-Seq, 

but other next-generation sequencing platforms mentioned previously can also be used 

for sequencing immunoprecipitated DNA.

PROFILING EPIGENETIC CHANGES IN HUMAN DISEASE

It is known that many essential physiological processes like development,

establishment of tissue identity, X-chromosome inactivation, chromosomal stability 

and gene transcription are regulated by epigenetic mechanisms.3 Additionally, multiple

factors, like aging, nutrition, exposure to metals or maternal behavior in early childhood 

are able to induce epigenetic changes.64-66 These environmentally-induced epigenetic
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in adulthood.67 Interestingly, there is evidence showing that monozygotic twins acquire 

epigenetic and phenotypic changes throughout life,68,69 which supports the concept that 
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Given the importance of epigenetic mechanisms, it is not surprising that alterations 

in the epigenetic pattern are associated with a wide range of diseases. As different 

tissues and cell types of our body have different epigenomes (Fig. 1), an essential issue

when attempting to characterize the epigenome of human diseases is to use the right 

test and control samples. For any disease or condition, the target tissue or cell type that 
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cancer or brain in neurological diseases. As normal controls, healthy matched tissues

must be analyzed to be able to detect disease-associated epigenetic changes and not 
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Epigenetics and Cancer

As compared to epigenetic patterns in normal cells, cancer cells are characterized 
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aberrations affecting both content and distribution of DNA methylation and histone 

������������%10,71-73 So far, DNA methylation and especially tumor suppressor gene
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like P16/INK4A, P14/ARF, FF MLH1 or MGMT and DNT A methylation patterns allow 

the differentiation of distinct cancer entities.76,77 However, with the advent of the

science of epigenomics, a more precise and less biased delineation of the cancer cell

epigenome is becoming accessible, which is now providing a new generation of genes

epigenetically-deregulated in cancer. As shown in a microarray experiment illustrated 

Figure 1. Epigenetic profiling of normal tissues. Heatmap from a hierarchical cluster analysis of 
DNA methylation data generated with the bead-array technology (Illumina Inc.)32 in different normal
tissue samples. A color version of this image is available online at http://www.landesbioscience.
com/curie/.
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in Figure 2, cancer cells show a large number of differentially methylated genes as

compared to normal cells.

Furthermore, epigenomic studies are now comparing DNA methylation patterns with

genome-wide genetic, developmental and transcriptional patterns, which is offering new

possibilities for understanding the processes underlying carcinogenesis.78-82

Figure 2.� �
��	������ 
���
���� ��� ����	�� �	

�%� }	����
� ����� �� ��	��������
� �
���	�� ���
����� ��� ��!�
methylation data generated with the bead-array technology (Illumina Inc.)32 in different cancer cell lines
and normal controls. Cancer cell lines are characterized by an intense disruption of the DNA methylome.
A color version of this image is available online at http://www.landesbioscience.com/curie/.
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Table 1. Techniques used for genome-wide DNA methylation analyses using microarrays 

and next generation sequencing

Method Principle Ref.

Microarray-based

RLGS Methylation-sensitive restriction digestion � 2D

electrophoresis

19

MCA Methylation-sensitive restriction digestion � print-

ed membranes/dot-blot analyisis or microarray

hybridization

114,115

DMH Methylation-sensitive restriction digestion �
microarray hybridization

22

AIMS Methylation-sensitive restriction digestion � 1D

electrophoresis

18

MSO microarray Q���
��	�����	����� � PCR � bead array hybridization 33

ChIP-on-chip Chromatin immunoprecipitation with antibodies 

against MBDs � microarray hybridization

30

NotI digestionI
coupled to BAC

array

Methylation-sensitive restriction digestion �
microarray hybridization

23

MeDIP-on-chip Isolation by 5-Methylcytosine antibody � microarray 

hybridization

27

MCIp-on-chip Isolation by MBD-Fc beads � microarray hybridization 26

HELP Methylation-sensitive restriction digestion �
microarray hybridization

24

|	���
�����"�
	����

bead arrays

Q���
��	�����	����� ���

	
	��
	�����
���	��	��	����� �
bead array hybridization

32

MSNP Methylation-sensitive restriction digestion � SNP-chip

hybridization

116

MMASS Combinations of methylation-sensitive restriction

digestions � microarray hybridization

117

MIRA-assisted 

microarray analysis

#��
����������	���
��	����!�����������������	�|Q��*

MBD3L1 complex � microarray hybridization

28

MSDK Methylation-sensitive restriction digestion � SAGE 118

aPRIMES Differential restriction and competitive hybridization

of methylated and unmethylated DNA

119

��
�	������
���
���

after demethylation

Treatment with demethylating agentsTT � expression

microarray in cells with and without treatment

120

Next generation sequencing-based

Methyl–seq Sequencing-by-synthesis of libraries constructed 

from size-fractionated HpaII or MspI digests that are

compared with randomly sheared fragments

46

HELP–seq HpaII tiny fragment enrichment by ligation-mediated 

PCR followed by sequencingR

45

MSCC }
�##����	��������

��	�������	���	������`�����������

with a TypeTT -IIs restriction enzyme (MmeI) and adap-

tor ligation and then sequencing.

47

continued on next page
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Epigenetics and Nonmalignant Diseases

Although most of our knowledge on the association between epigenetics and 

disease is derived from cancer, nowadays there is increasing interest in understanding
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cardiovascular, developmental and neurological/psychiatric disorders.

Classical autoimmune disorders, such as systemic lupus erythematosus (SLE)

is epigenetically characterized by massive global hypomethylation83,84 and also the

��
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	������	�	������������������	�	�������������"���	����!������

discordant monozygotic twins.85

In the case of cardiovascular diseases, which is one of the most mortal diseases

in Western countries, studies have shown that hypomethylation of genomic DNA is

present in human atherosclerotic lesions. Furthermore, DNA methylation changes at the

promoter region of several genes involved in the pathogenesis of atherosclerosis, such as

extracellular superoxide dismutase, estrogen receptor-�, endothelial nitric oxide synthase 

and 15-lipoxygenase have also been described.86-88

The association between epigenetics and developmental disorders is evidenced by

the fact that some of these disorders are caused by mutations of genes involved in the
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���"�����


anomalies (ICF) syndrome is caused by mutations in the DNA methyltransferase 3A

gene (DNMT3A)(( ,89 Rett syndrome is caused by mutations in the methyl CpG binding 

protein 2 gene (MeCP2),90,91 RubinsteinRR -Taybi syndrome is caused by mutations in the 

gene encoding the histone acetyltransferase CREB binding protein gene (CREBBP)92 or 

_������������	��������	�������
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receptor-binding SET domain-containing protein 1 gene (NSD1)(( .93

Also, additional developmental disorders are associated with alterations in the

epigenetic phenomenon of imprinting.94,95 {����
�	���	��������	��	��������	
��	�	���
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differential expression of the two alleles of the gene in somatic cells of the offspring.

Several disorders are caused by genetic (like deletions, uniparental disomies or mutations)

MeDIP–seq Methylated DNA immunoprecipitation followed by

sequencing

48

PCR ampliconsR -Seq _���
���	��������
��	��	?�	�����������
��

	�~$��

amplicons

49

RRBS Selection of only some regions of the genome for se-

quencing by size-fractionation of DNA fragments after 

BglII digestion121 or after MspI digestion

50

BC–seq Selection of only some regions of the genome for 

sequencing by array or liquid solution capture

121

BSPP Selection of only some regions of the genome for 

sequencing by using padlock capture

52

WGSBS {�	���	�������������������
��	 � sequencing 54-57

Table 1. Continued

Method Principle Ref.
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changes in imprinted regions of the genome or epigenetic defects. Classical examples

of imprinting disorders are the Prader-Willi (PWS) and Angelman syndromes (AS).96

These two phenotypically-different syndromes are caused by the same genetic defect, 

but depending on the parental chromosome showing the alteration (paternal or maternal)
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of the imprinted genes on chromosome region 15q11–q13, while AS affects maternally 

imprinted genes in the same region.96

In neurodegenerative and psychiatric pathologies, several recent reports have started 

to indicate that they are associated with an epigenetic component.97 Neurodegenerative 

disorders like Alzheimer’s disease98,99 and Parkinson’s disease100 have been associated 

�������!��	���
�����������	������
	������	�	�����	�	���}��������������	��	��		��

����	���������	������������	�����������	������������
��	���
���	��
������������������

histone H3 K9 trimethylation.101,102 Psychiatric disorders like schizophrenia and bipolar 

disorder have also been linked with DNA methylation changes as compared to control

brain samples.103 In any case, these studies are still preliminary and future research using 

genome-wide methods needs to be done to determine the exact role of epigenetics in 

these diseases and identify the target genes.

CONCLUSION AND FUTURE PERSPECTIVES

The science of epigenomics is one of the most exciting areas in biomedicine today.The 

detection of epigenetic patterns in health and disease will not only help us to understand 

the origins and pathobiology of human diseases but also provide a framework for new 

therapies. After the completion of the human genome, epigeneticists world-wide are now 

claiming for an international effort to characterize the epigenome.104-110 This endeavor is
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altered throughout life in adaptation to novel environmental cues.69 To reach that aim, 

several national and international initiatives have been already started.111 Such initiatives

will certainly take advantage of the rapidly evolving technologies for high-throughput 

�	?�	�����������	��	���	"���	���!��	���
����������������	���������������
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technologies are gradually becoming economically more accessible and at the same time

are increasing their throughput, both in terms of generating more reads and sequencing

larger fragments, which will make subsequent bioinformatic analyses more reliable.
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����������	�����%56 Finally, the use of 

Nanopore Sequencing, a novel technology that will be able to differentiate methylated from

unmethylated cytosines will certainly herald a new era in DNA methylation analyses, as the

entire DNA methylome will be directly sequenced without previous bisultife treatment.112

At the pathophysiological level we have to consider that the epigenetic code is only 

one layer of information. The complete understanding of the cell physiology under normal 

and altered conditions will require the integration of the genome, epigenome, transcriptome 

and proteome under the point of view of a systems biology approach. This strategy 

should also include information about life style and environmental exposures because 

both health and disease are caused by an interplay between genome and environment.
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cellular system113 will be of great importance to understand the mechanisms underlying

normal and altered physiology.
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