
CHAPTER 11

Atomistic Theory of the Optical Properties

11.1. Survey

In the preceding chapter, the optical constants and their relationship to
electrical constants were introduced by employing the “continuum theory.”
The continuum theory considers only macroscopic quantities and interre-
lates experimental data. No assumptions are made about the structure of
matter when formulating equations. Thus, the conclusions which have been
drawn from the empirical laws in Chapter 10 should have general validity as
long as nothing is neglected in a given calculation. The derivation of the
Hagen–Rubens equation has served as an illustrative example for this.

The validity of equations derived from the continuum theory is, however,
often limited to frequencies for which the atomistic structure of solids does
not play a major role. Experience shows that the atomistic structure does not
need to be considered in the far infrared (IR) region. Thus, the Hagen–Rubens
equation reproduces the experimental results of metals in the far IR quite well.
It has been found, however, that proceeding to higher frequencies (i.e., in the
near IR and visible spectrum), the experimentally observed reflectivity of
metals decreases faster than predicted by the Hagen–Rubens equation
(Fig. 11.1(a)). For the visible and near IR region an atomistic model needs
to be considered to explain the optical behavior of metals. Drude did this
important step at the turn of the 20th century. He postulated that some
electrons in a metal can be considered to be free, i.e., they can be separated
from their respective nuclei. He further assumed that the free electrons can be
accelerated by an external electric field. This preliminary Drude model was
refined by considering that the moving electrons collide with certain metal
atoms in a nonideal lattice.
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The free electrons are thought to perform periodic motions in the alter-
nating electric field of the light. These vibrations are restrained by the
abovementioned interactions of the electrons with the atoms of a nonideal
lattice. Thus, a friction force is introduced, which takes this interaction into
consideration. The calculation of the frequency dependence of the optical
constants is accomplished by using the well-known equations for vibrations,
whereby the interactions of electrons with atoms are taken into account by a
damping term which is assumed to be proportional to the velocity of the
electrons. The free electron theory describes, to a certain degree, the disper-
sion of the optical constants of metals quite well. This is schematically
shown in Fig. 11.1(a), in which the spectral dependence of the reflectivity
is plotted for a specific case. The Hagen–Rubens relation reproduces the

Figure 11.1. Schematic frequency dependence of the reflectivity of (a) metals, (b) dielec-

trics, experimentally (solid line) and according to three models.
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experimental findings only up to 1013 s�1. In contrast to this, the Drude
theory correctly reproduces the spectral dependence of R even in the visible
spectrum. Proceeding to yet higher frequencies, however, the experimen-
tally found reflectivity eventually rises and then decreases again. Such
an absorption band cannot be explained by the Drude theory. For its
interpretation, a new concept needs to be applied.

Lorentz postulated that the electrons should be considered to be bound to
their nuclei and that an external electric field displaces the positive charge of
an atomic nucleus against the negative charge of its electron cloud. In other
words, he represented each atom as an electric dipole. Retracting forces were
thought to occur which try to eliminate the displacement of charges. Lorentz
postulated further that the centers of gravity of the electric charges are
identical if no external forces are present. However, if one shines light onto
a solid, i.e., if one applies an alternating electric field to the atoms, then the
dipoles are thought to perform forced vibrations. Thus, a dipole is considered
to behave similarly as a mass which is suspended on a spring, i.e., the
equations for a harmonic oscillator may be applied. An oscillator is known
to absorb a maximal amount of energy when excited near its resonance
frequency (Fig. 11.2). The absorbed energy is thought to be dissipatedmainly
by diffuse radiation. Figure 11.2 resembles an absorption band as shown in
Fig. 11.1.

Forty or fifty years ago, many scientists considered the electrons in
metals to behave at low frequencies as if they were free and at higher
frequencies as if they were bound. In other words, electrons in a metal
under the influence of light were described to behave as a series of classical
free electrons and a series of classical harmonic oscillators. Insulators and
semiconductors, on the other hand, were described by harmonic oscillators
only, see Fig. 11.1(b).

We shall now treat the optical constants of materials by applying the
above-mentioned theories.

Figure 11.2. Frequency dependence of the amplitude of a harmonic oscillator that is excited

to perform forced vibrations, assuming weak damping. n0 is the resonance frequency.
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11.2. Free Electrons Without Damping

We consider the simplest case at first and assume that the free electrons are
excited to perform forced but undamped vibrations under the influence of an
external alternating field, i.e., under the influence of light. As explained
in Section 11.1, the damping of the electrons is thought to be caused
by collisions between electrons and atoms of a nonideal lattice. Thus, we
neglect in this section the influence of lattice defects. For simplicity, we treat
the one-dimensional case because the result obtained this way does not
differ from the general case. Thus, we consider the interaction of plane-
polarized light with the electrons. The momentary value of the field strength
of a plane-polarized light wave is given by

E ¼ E 0 exp iotð Þ; (11.1)

whereo ¼ 2pn is the angular frequency, t is the time, and E 0 is the maximal
value of the field strength. The equation describing the motion of an electron
that is excited to perform forced, harmonic vibrations under the influence of
light is (see Appendix 1 and (7.6))

m
d2x

dt2
¼ eE ¼ eE 0 exp iotð Þ; (11.2)

where e is the electron charge, m is the electron mass, and e · E is the
modulus of the excitation force. The stationary solution of this vibrational
equation is obtained by forming the second derivative of the trial solution
x ¼ x0 exp(iot) and inserting it into (11.2). This yields

x ¼ � eE

m4p2n2
: (11.3)

The vibrating electrons carry an electric dipole moment, which is the
product of the electron charge, e, and displacement, x, see (9.12). The
polarization, P, is defined to be the sum of the dipole moments of all Nf

free electrons per cubic centimeter:

P ¼ exNf : (11.4)

The dielectric constant can be calculated from polarization and electric field
strength by combining (9.14) and (9.15):

e ¼ 1þ P

e0E
: (11.5)

Inserting (11.3) and (11.4) into (11.5) yields

ê ¼ 1� e2Nf

4p2e0mn2
: (11.6)
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(It is appropriate to use in the present case the complex dielectric constant,
see below.) The dielectric constant equals the square of the index of
refraction, n, (see (10.12)). Equation (11.6) thus becomes

n̂2 ¼ 1� e2Nf

4p2e0mn2
: (11.7)

We consider two special cases:

(a) For small frequencies, the term e2Nf/4p
2e0mn

2 is larger than one. Then
n̂2 is negative and n̂ imaginary. An imaginary n̂ means that the real part
of n̂ disappears. Equation (10.25) becomes, for n ¼ 0,

R ¼ n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2
¼ 1þ k2

1þ k2
¼ 1;

i.e., the reflectivity is 100% (see Fig. 11.3).
(b) For large frequencies (UV light), the term e2Nf/4p

2e0mn
2 becomes

smaller than one. Thus, n̂2 is positive and n̂ � n real (but smaller than
one). The reflectivity for real values of n̂, i.e., for k ¼ 0, becomes

R ¼ n� 1ð Þ2
nþ 1ð Þ2 ;

i.e., the material is essentially transparent for these wavelengths (and
perpendicular incidence) and therefore behaves optically like an insula-
tor, see Fig. 11.3.

We define a characteristic frequency, n1, often called the plasma fre-
quency, which separates the reflective region from the transparent region
(Fig. 11.3). The plasma frequency can also be deduced from (11.6) or (11.7).
We observe in these equations that e2Nf/4p

2e0m must have the unit of the
square of a frequency, which we define to be n1. This yields

n21 ¼
e2Nf

4p2e0m
: (11.8)

Figure 11.3. Schematic frequency dependence of an alkali metal according to the free

electron theory without damping. n1 is the plasma frequency.
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Because of (11.8) we conclude from (11.6) that the dielectric constant
becomes zero at the plasma frequency. ê ¼ 0 is the condition for a plasma
oscillation, i.e., a fluid-like oscillation of the entire electron gas. We will
discuss this phenomenon in detail in Section 13.2.2.

The alkali metals behave essentially as shown in Fig. 11.3. They are
transparent in the near UV and reflect the light in the visible region. This
result indicates that the s-electrons5 of the outer shell of the alkali metals can
be considered to be free.

Table 11.1 contains some measured, as well as some calculated, plasma
frequencies. For the calculations, applying (11.8), one free electron per atom
was assumed. This means that Nf was set equal to the number of atoms per
volume, Na. (The latter quantity is obtained by using

Na ¼ N0 � d
M

; (11.9)

where N0 is the Avogadro constant, d ¼ density, and M ¼ atomic mass.)
We note in Table 11.1 that the calculated and the observed values for n1

are only identical for sodium. This may be interpreted to mean that only in
sodium does exactly one free electron per atom contribute to the electron
gas. For other metals an “effective number of free electrons” is commonly
introduced, which is defined to be the ratio between the observed and
calculated n21 values:

n21 observedð Þ
n21 calculatedð Þ ¼ Neff : (11.10)

The effective number of free electrons is a parameter of great interest,
because it is contained in a number of nonoptical equations (such as the Hall
constant, electromigration, superconductivity, etc.). Since for most metals
the plasma frequency, n1, cannot be measured as readily as for the alkalis,
another avenue for determining Neff has to be found. For reasons which will
become clear later, Neff can be obtained by measuring n and k in the red or

Table 11.1. Plasma Frequencies and Effective Numbers of Free Electrons for

Some Alkali Metals.

Metal Li Na K Rb Cs

n1 (10
14 s�1), observed 14.6 14.3 9.52 8.33 6.81

n1 (10
14 s�1), calculated 19.4 14.3 10.34 9.37 8.33

l1 nm (¼ c/n1), observed 150 210 290 320 360

Neff [free electrons/atom] 0.57 1.0 0.8 0.79 0.67

5See Appendix 3.
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IR spectrum (i.e., in a frequency range without absorption bands, Fig. 11.1)
and by applying

Neff ¼ 1� n2 þ k2ð Þ n24p2e0m
e2

: (11.10a)

Equation (11.10a) follows by combining (11.6) with (10.10) and replacing
Nf by Neff.

11.3. Free Electrons With Damping (Classical Free
Electron Theory of Metals)

The simple reflectivity spectrum as depicted in Fig. 11.3 is seldom found
for metals. We need to refine our model. We postulate that the motion of
electrons in metals is damped. More specifically, we postulate that the
velocity is reduced by collisions of the electrons with atoms of a nonideal
lattice. Lattice defects may be introduced into a solid by interstitial atoms,
vacancies, impurity atoms, dislocations, grain boundaries, or thermal
motion of the atoms.

To take account of the damping, we add to the vibration equation (11.2) a
damping term, g(dx/dt), which is proportional to the velocity (See Appendix 1
and (7.7)):

m
d2x

dt2
þ g

dx

dt
¼ eE ¼ eE 0 exp iotð Þ: (11.11)

We determine first the damping factor, g. For this we write a particular
solution of (11.11) which is obtained by assuming that the electrons
drift under the influence of a steady or slowly varying electric field (see
Section 7.3) with a velocity v0 ¼ const. through the crystal. (The drift
velocity of the electrons, which is caused by an external field, is super-
imposed on the random motion of the electrons.) The damping is depicted to
be a friction force which counteracts the electron motion. v0 ¼ const. yields

d2x

dt2
¼ 0: (11.12)

By using (11.12), Equation (11.11) becomes

eE

g
¼ dx

dt
¼ v0: (11.13)

The drift velocity is

v0 ¼ j

eNf

(11.14)
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(see (7.4)), where j is the current density (i.e., that current which passes
through an area of one square centimeter). Nf is the number of free electrons
per cubic centimeter. The current density is connected with the d.c. conduc-
tivity, s0, and the field strength, E , by Ohm’s law (7.2),

j ¼ s0E : (11.15)

Inserting (11.14) and (11.15) into (11.13) yields

g ¼ Nfe
2

s0
: (11.16)

Thus, (11.11) becomes

m
d2x

dt2
þ Nfe

2

s0

dx

dt
¼ eE ¼ eE 0 exp iotð Þ: (11.17)

We note that the damping term in (11.17) is inversely proportional to the
conductivity, i.e., proportional to the resistivity. This result makes sense.

The stationary solution of (11.17) is obtained, similarly as in Section 11.2,
by differentiating the trial solution x ¼ x0 exp (iot) by the time, and
inserting first and second derivatives into (11.17), which yields

�mo2xþ Nfe
2

s0
xoi ¼ E e: (11.18)

Rearranging (11.18) provides

x ¼ E

Nfeo
s0

i� mo2

e

: (11.19)

Inserting (11.19) into (11.4) yields the polarization,

P ¼ eNfE

Nfeo
s0

i� mo2

e

: (11.20)

With (11.20) and (11.5) the complex dielectric constant becomes

ê ¼ 1þ P

e0E
¼ 1þ 1

2pe0n
s0

i� m4p2e0
Nfe2

n2
: (11.21)

The termNf e
2/m4p2e0 is set, as in (11.8), equal to n21, which reduces (11.21) to

ê ¼ 1þ 1

2pe0n
s0

i� n2

n21

¼ 1þ n21

in
2pe0n21
s0

� n2
: (11.22)
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The term 2pe0n21=s0 in (11.22) has the unit of a frequency. Thus, for
abbreviation, we define a damping frequency

n2 ¼ 2pe0n21
s0

¼ 2pe0n21r0: (11.23)

(Table 11.2 lists values for n2 which were calculated using experimental
r0 and n1 values.) Now (11.22) becomes

ê ¼ 1þ n21
inn2 � n2

; (11.24)

where ê is, as usual, identical to n̂2,

n̂ð Þ2 ¼ n2 � 2nki� k2 ¼ 1� n21
n2 � nn2i

: (11.25)

Multiplying the numerator and denominator of the fraction in (11.25) by the
complex conjugate of the denominator (n2 þ nn2i) allows us to equate
individually real and imaginary parts. This provides the Drude equations
for the optical constants,

n2 � k2 ¼ e1 ¼ 1� n21
n2 þ n22

(11.26)

and

2nk ¼ e2 ¼ n2
n

n21
n2 þ n22

; (11.27)

with the characteristic frequencies

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Nf

4p2e0m

s
(11.8)

and

n2 ¼ 2pe0n21
s0

: (11.23)

Table 11.2. Resistivities and Damping Frequencies for Some Metals.

Metal Li Na K Rb Cs Cu Ag Au

r0 (mO cm)a 8.55 4.2 6.15 12.5 20 1.67 1.59 2.35

n2 (10
12 s�1) 10.1 4.8 3.1 4.82 5.15 4.7 4.35 5.9

a Handbook of Chemistry and Physics, 1977; room-temperature values.
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The functions e2 (absorption) and e1 (which is proportional to the dielectric
polarization, see Fig. 9.19), are plotted in Figs. 11.4 and 11.5 as a function of
frequency, making use of (11.27) and (11.26).

11.4. Special Cases

For the UV, visible, and near IR regions, the frequency varies between 1014

and 1015 s�1. The average damping frequency, n2, is 5 � 1012 s�1

(Table 11.2). Thus, n2 � n22. Equation (11.27) then reduces to

e2 ¼ n2
n
n21
n2
: (11.28)

With n � n1 (Table 11.1) we obtain

e2 � n2
n
: (11.29)

Figure 11.5. The dielectric polarization, e1 ¼ n2 � k2, as a function of frequency according
to the Drude theory for metals (schematic).

Figure 11.4. The absorption, e2 ¼ 2nk, versus frequency, n, according to the free electron

theory (schematic).
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Equation (11.29) confirms that e2 plotted versus the frequency yields a
hyperbola with n2 as parameter (Fig. 11.4).

For very small frequencies n2 � n22
� �

, we may neglect n2 in the denomi-
nator of (11.27). This yields, with (11.23),

nkn ¼ s
4pe0

¼ 1

2

n21
n2

¼ s0
4pe0

: (11.30)

Thus, in the far IR the a.c. conductivity, s, and the d.c. conductivity, s0, may
be considered to be identical. We have already made use of this condition in
Section 10.6. In general, however, s is not identical to the d.c. conductivity,
s0. (The same is true for the dielectric constant, e.)

11.5. Reflectivity

The reflectivity of metals is calculated using (10.29) in conjunction with
(11.26) and (11.27), see Fig. 11.6. We notice that the experimental behavior
for not-too-high frequencies (Fig. 11.1) is essentially reproduced. See also
in this context the experimentally obtained reflectivities in Figs. 13.7,
13.10, and 13.12. For higher frequencies, however, we need to resort to
a model different from the one discussed so far. This will be done in the
next chapter.

Figure 11.6. Calculated spectral reflectivity for a metal using the exact Drude equation

(solid line), and the Hagen–Rubens equation (10.34) using n1 ¼ 2 � 1015 s�1 and n2 ¼
3.5 � 1012 s�1.
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11.6. Bound Electrons (Classical Electron Theory
of Dielectric Materials)

The preceding sections have shown that the optical properties of metals
can be described and calculated quite well in the low-frequency range by
applying the free electron theory. We mentioned already that this theory
has its limits at higher frequencies, at which we observe that light is
absorbed and reflected by metals as well as by nonmetals in a narrow
frequency band. To interpret these absorption bands, Lorentz postulated
that the electrons are bound to their respective nuclei. He assumed that
under the influence of an external electric field, the positively charged
nucleus and the negatively charged electron cloud are displaced with
respect to each other (Fig. 11.7). An electrostatic force tries to counteract
this displacement. For simplicity, we describe the negative charge of the
electrons to be united in one point. Thus, we describe the atom in an
electric field as consisting of a positively charged core which is bound
quasielastically to one electron (electric dipole, Fig. 11.8). A bound
electron, thus, may be compared to a mass which is suspended from a

Figure 11.7. An atom is represented as a positively charged core and a surrounding,

negatively charged electron cloud (a) in equilibrium and (b) in an external electric field.

Figure 11.8. Quasi-elastic bound electron in an external electric field (harmonic oscillator).

238 III. Optical Properties of Materials



spring. Under the influence of an alternating electric field (i.e., by light),
the electron is thought to perform forced vibrations. For the description of
these vibrations, the well-known equations of mechanics dealing with a
harmonic oscillator may be applied. This will be done now.

We first consider an isolated atom, i.e., we neglect the influence of the
surrounding atoms upon the electron. An external electric field with force

eE ¼ eE 0 exp iotð Þ (11.31)

periodically displaces an electron from its rest position by a distance x. This
displacement is counteracted by a restoring force, k � x, which is propor-
tional to the displacement, x. Then, the vibration equation becomes (see
Appendix 1)

m
d2x

dt2
þ g0

dx

dt
þ kx ¼ eE 0 exp iotð Þ: (11.32)

The factor k is the spring constant, which determines the binding strength
between the atom and electron. Each vibrating dipole (e.g., an antenna)
loses energy by radiation. Thus, g0(dx/dt) represents the damping of the
oscillator by radiation (g0 ¼ damping parameter). The stationary solution of
(11.32) for weak damping is (see Appendix 1)

x ¼ eE 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q exp i ot� fð Þ½ 	; (11.33)

where

o0 ¼ 2pn0 ¼
ffiffiffiffi
k
m

r
(11.34)

is called the resonance frequency of the oscillator, i.e., that frequency at
which the electron vibrates freely without an external force. f is the phase
difference between forced vibration and the excitation force of the light
wave. It is defined to be (see Appendix 1)

tanf ¼ g0o
m o2

0 � o2
� � ¼ g0n

2pm n20 � n2
� � : (11.35)

As in the previous sections, we calculate the optical constants starting with
the polarization, P, which is the product of the dipole moment, e � x, of one
dipole times the number of all dipoles (oscillators), Na. As before, we
assumed one oscillator per atom. Thus, Na is identical to the number of
atoms per unit volume. We obtain

P ¼ exNa: (11.36)
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Inserting (11.33) yields

P ¼ e2NaE 0 exp i ot� fð Þ½ 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q : (11.37)

With

exp i ot� fð Þ½ 	 ¼ exp iotð Þ � exp �ifð Þ (11.38)

we obtain

P ¼ e2NaEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q exp �ifð Þ; (11.39)

which yields with (11.5) and (10.12)

ê ¼ n2 � k2 � 2nki ¼ 1þ e2Na

e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q exp �ifð Þ: (11.40)

Equation (11.40) becomes with6

exp �ifð Þ ¼ cosf� i sinf; (11.41)

n2 � k2 � 2nki ¼ 1þ e2Na

e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q cosf

� i
e2Na

e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q sinf:
(11.42)

The trigonometric terms in (11.42) are replaced, using (11.35), as follows:

cosf ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2f

p ¼ m o2
0 � o2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q ; (11.43)

sinf ¼ tanfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2f

p ¼ g0offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q : (11.44)

6See Appendix 2.
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Separating the real and imaginary parts in (11.42) finally provides the
optical constants

e1 ¼ n2 � k2 ¼ 1þ e2mNa o2
0 � o2

� �
e0 m2 o2

0 � o2
� �2 þ g02o2

h i ;

that is,

e1 ¼ 1þ e2mNa n20 � n2
� �

e0 4p2m2 n20 � n2
� �2 þ g02n2

h i ; (11.45)

and

e2 ¼ 2nk ¼ e2Nag0o

e0 m2 o2
0 � o2

� �2 þ g02o2
h i ;

or

e2 ¼ e2Nag0n

2pe0 4p2m2 n20 � n2
� �2 þ g02n2

h i : (11.46)

The frequency dependencies of e1 and e2 are plotted in Figs. 11.9 and 11.10.
Figure 11.9 resembles the dispersion curve for the index of refraction as it is
experimentally obtained for dielectrics. Figure 11.10 depicts the absorption
product, e2, in the vicinity of the resonance frequency, n0, (absorption band)
as experimentally observed for dielectrics. Equations (11.45) and (11.46)
reduce to the Drude equations for n0 ! 0 (no oscillators).

Figures 11.9 and 11.10. Frequency dependence of the dielectric polarization, e1 ¼ n2 � k2,
and absorption, e2 ¼ 2nk, as calculated with (11.45) and (11.46), respectively, using charac-

teristic values for Na and g0.
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*11.7. Discussion of the Lorentz Equations
for Special Cases

11.7.1. High Frequencies

We observe in Fig. 11.10 that e2 approaches zero at high frequencies and
far away from any resonances (absorption bands). In the same frequency
region, e1 ¼ n2 � k2 and, thus, essentially n, assumes the constant value 1
(Fig. 11.9). This is consistent with experimental observations that X-rays are
not refracted and are not absorbed by many materials. (Note, however, that
highly energetic X-rays interact with the inner electrons, i.e., they may be
absorbed by the K, L, . . ., etc. electrons. Metals are, therefore, opaque for
high-energetic X-rays).

11.7.2. Small Damping

We consider the case for which the radiation-induced energy loss of the

oscillator is very small. Then, g0 is small. With g0n2 � 4p2m2 n20 � n2
� �2

(which is only valid for n 6¼ n0), equation (11.45) reduces to

e1 ¼ n2 � k2 ¼ 1þ e2Na

4p2e0m n20 � n2
� � : (11.47)

Figure 11.11 depicts a sketch of (11.47). We observe that for small damping,
e1 (and thus essentially n

2) approaches infinity near the resonance frequency.
A dispersion curve such as Fig. 11.11 is indeed observed for many dielectrics
(glass, etc.).

Figures 11.11 and 11.12. The functions e1 (n2) and e2, respectively, versus frequency

according to the bound electron theory for the special case of small damping.
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11.7.3. Absorption Near n0

Electrons absorb most energy from light at the resonance frequency, i.e.,
e2 has a maximum near n0. For small damping, the absorption band becomes
an absorption line (see Fig. 11.12). Inserting n ¼ n0 into (11.46) yields

e2 ¼ e2Na

2pe0g0n0
; (11.48)

which shows that the absorption becomes large for small damping (g0).

11.7.4. More Than One Oscillator

At the beginning of Section 11.6 we assumed that one electron is quasie-
lastically bound to a given nucleus; in other words, we assumed one
oscillator per atom. This assumption is certainly a gross simplification, as
one can deduce from the occurrence of multiple absorption bands in experi-
mental optical spectra. Thus, each atom has to be associated with a number
of i oscillators, each having an oscillator strength, fi. The ith oscillator
vibrates with its resonance frequency, n0i. The related damping constant is
gi0. (This description has its equivalent in the mechanics of a system of mass
points having one basic frequency and higher harmonics.) If all oscillators
are taken into account, (11.45) and (11.46) become

e1 ¼ n2 � k2 ¼ 1þ e2mNa

e0

X
i

fi n20i � n2
� �

4p2m2 n20i � n2
� �2 þ g0i2n2

;

e2 ¼ 2nk ¼ e2Na

2pe0

X
i

fing0i
4p2m2 n20i � n2

� �2 þ g0i2n2
:

(11.49)

(11.50)

Equations (11.49) and (11.50) reduce for weak damping (see above) to

e1 ¼ n2 � k2 � n2 ¼ 1þ e2Na

4p2e0m

X
i

fi
n20i � n2

; (11.51)

e2 ¼ 2nk ¼ e2Na

8p3e0m2

X
i

fing 0
i

n20i � n2
� �2 : (11.52)
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11.8. Contributions of Free Electrons and Harmonic
Oscillators to the Optical Constants

In the previous section, we ascribed two different properties to the electrons
of a solid. In Section 11.4 we postulated that Nf electrons move freely in
metals under the influence of an electric field and that this motion is damped
by collisions of the electrons with vibrating lattice atoms and lattice defects.
In Section 11.6 we postulated that a certain number of electrons are quasie-
lastically bound to Na atoms which are excited by light to perform forced
vibrations. The energy loss was thought to be by radiation.

The optical properties of metals may be described by postulating a certain
number of free electrons and a certain number of harmonic oscillators. Both
the free electrons and the oscillators contribute to the polarization. Thus, the
equations for the optical constants may be rewritten, by combining (11.26),
(11.27), (11.49), and (11.50),

e1 ¼ 1� n21
n2 þ n22

þ e2mNa

e0

X
i

fi n20i � n2
� �

4p2m2 n20i � n2
� �2 þ g02i n2

; (11.53)

e2 ¼ 2nk ¼ n2
n

n21
n2 þ n22

þ e2Na

2pe0

X
i

fing0i
4p2m2 n20i � n2

� �2 þ g02i n2
: (11.54)

Figures 11.13 and 11.14 depict schematically the frequency dependence
of e1 and e2 as obtained by using (11.53) and (11.54). These figures also

Figures 11.13 and 11.14. Frequency dependence of e1 and e2 according to (11.53) and

(11.54). (i ¼ 1). f ¼ free electron theory; b ¼ bound electron theory; S ¼ summary curve

(schematic).
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show the contributions of free and bound electrons on the optical constants.
The experimentally found frequency dependence of e1 and e2 resembles
these calculated spectra quite well. We will elaborate on this in Chapter 13,
in which experimental results are presented.

Problems

1. Calculate the reflectivity of sodium in the frequency ranges n > n1 and n < n1 using the
theory for free electrons without damping. Sketch R versus frequency.

2. The plasma frequency, n1, can be calculated for the alkali metals by assuming one free
electron per atom, i.e., by substituting for Nf the number of atoms per unit volume

(atomic density, Na). Calculate n1 for potassium and lithium.

3. Calculate Neff for sodium and potassium. For which of these two metals is the assump-

tion of one free electron per atom justified?

4. What is the meaning of the frequencies n1 and n2? In which frequency ranges are they

situated compared to visible light?

5. Calculate the reflectivity of gold at n ¼ 9 � 1012 s�1 from its conductivity. Is the

reflectivity increasing or decreasing at this frequency when the temperature is increased?

Explain.

6. Calculate n1 and n2 for silver (0.5 � 1023 free electrons per cubic centimeter).

7. The experimentally found dispersion of NaCl is as follows:

l [mm] 0.3 0.4 0.5 0.7 1 2 5

N 1.607 1.568 1.552 1.539 1.532 1.527 1.519

Plot these results along with calculated values obtained by using the equations of the

“bound electron theory” assuming small damping. Let

e2Na

4p2e0m
¼ 1:81� 1030 s�2 and n0 ¼ 1:47� 1015s�1:

8. The optical properties of an absorbing medium can be characterized by various sets of

parameters. One such set is the index of refraction and the damping constant. Explain

the physical significance of those parameters, and indicate how they are related to the

complex dielectric constant of the medium. What other sets of parameters are commonly

used to characterize the optical properties? Why are there always “sets” of parameters?

9. Describe the damping mechanisms for free electrons and bound electrons.

10. Why does it make sense that we assume one free electron per atom for the alkali metals?

11. Derive the Drude equations from (11.45) and (11.46) by setting n0 ! 0.

12. Calculate the effective number of free electrons per cubic centimeter and per atom for

silver from its optical constants (n ¼ 0.05 and k ¼ 4.09 at 600 nm). (Hint: Use the free
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electron mass.) How many free electrons per atom would you expect? Does the result

make sense? Why may we use the free electron theory for this wavelength?

13. Computer problem. Plot (11.26), (11.27), and (10.29) for various values of n1 and n2.
Start with n1 ¼ 2 � 1015 s�1 and n2 ¼ 3.5 � 1012 s�1.

14. Computer problem. Plot (11.45), (11.46), and (10.29) for various values of Na, g0, and
n0. Start with n0 ¼ 1.5 � 1015 s�1 and Na ¼ 2.2 � 1022 cm�3 and vary g0 between 100

and 0.1.

15. Computer problem. Plot (11.51), (11.52), and (10.29) by varying the parameters as in the

previous problems. Use one, two or three oscillators. Try to “fit” an experimental curve

such as the ones in Figs. 13.10 or 13.11.
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