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Preface to the Fourth Edition

The present textbook, which introduces my readers to elements of solid state
physics and then moves on to the presentation of electrical, optical, mag-
netic, and thermal properties of materials, has been in print for 25 years, i.e.
since 1985 when the first edition appeared. It has received quite favorable
acceptance by students, professors, and scientists who particularly appre-
ciated that the text is easy to understand and that it emphasizes concepts
rather than overburdening the reader with mathematical formalism. I am
grateful for all the kind comments which reached me either by personal
letters or in reviews found in scientific journals and on the internet.

The third edition was published in 2001, and was followed by a revised
printing in 2005. My publisher therefore felt that a new edition would be in
order at this time to give me the opportunity to update the material in a field
which undergoes explosive development. I do this update with some reluc-
tance because each new edition increases the size (and unfortunately also
the price) of a book. It is not my goal to present an encyclopedia on the
electronic properties of materials. I still feel that the book should contain
just the right amount of material that can be conveniently covered in a
15-week/3-credit hour course. Thus, the added material was restricted to the
newest developments in the field. This implies that the fundamentals,
particularly in Part I and at the beginning of Parts II to V, remained
essentially untouched. However, new topics have been added in the “applied
sections”, such as energy-saving light sources, particularly compact fluores-
cence light fixtures, organic light-emitting diodes (OLEDs), organic photo-
voltaics (OPV cells), optical fibers, pyroelectricity, phase-change memories,
blue-ray disks, holographic versatile disks, galvanoelectric phenomena
(emphasizing the entire spectrum of primary and rechargeable batteries),
graphene, quantum Hall effect, iron-based semiconductors (pnictides), etc.,
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to mention just a few subjects. The reader should find them interesting and
educational.

As usual, a book of this wide variety of topics needs the advice of a number
of colleagues. I am grateful for the help of Drs. Paul Holloway, Wolfgang
Sigmund, Jiangeng Xue, Franky So, Jacob Jones, Thierry Dubroca, all of the
University of Florida, Dr. Markus Rettenmayr (Friedrich-Schiller-Universit€at
Jena, Germany), and to Grif Wise.

Gainesville, Florida Rolf E. Hummel
September 2010
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Preface to the Third Edition

Books are seldom finished. At best, they are abandoned. The second edition
of “Electronic Properties of Materials” has been in use now for about seven
years. During this time my publisher gave me ample opportunities to update
and improve the text whenever the book was reprinted. There were about six
of these reprinting cycles. Eventually, however, it became clear that sub-
stantially more new material had to be added to account for the stormy
developments which occurred in the field of electrical, optical, and magnetic
materials. In particular, expanded sections on flat-panel displays (liquid
crystals, electroluminescence devices, field emission displays, and plasma
displays) were added. Further, the recent developments in blue- and green-
emitting LED’s and in photonics are included. Magnetic storage devices
also underwent rapid development. Thus, magneto-optical memories,
magneto-resistance devices, and new magnetic materials needed to be
covered. The sections on dielectric properties, ferroelectricity, piezoelec-
tricity, electrostriction, and thermoelectric properties have been expanded.
Of course, the entire text was critically reviewed, updated, and improved.
However, the most extensive change I undertook was the conversion of all
equations to SI-units throughout. In most of the world and in virtually all of
the international scientific journals use of this system of units is required. If
today’s students do not learn to utilize it, another generation is “lost” on this
matter. In other words, it is important that students become comfortable with
SI units.

If plagiarism is the highest form of flattery, then I have indeed been
flattered. Substantial portions of the first edition have made up verbatim
most of another text by a professor in Madras without giving credit to where
it first appeared. In addition, pirated copies of the first and second editions
have surfaced in Asian countries. Further, a translation into Korean
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appeared. Of course, I feel that one should respect the rights of the owner of
intellectual property.

I am grateful for the many favorable comments and suggestions promul-
gated by professors and students from the University of Florida and other
schools who helped to improve the text. Dr. H. R€ufer fromWacker Siltronic
AG has again appraised me of many recent developments in wafer fabri-
cation. Professor John Reynolds (University of Florida) educated me on
the current trends in conducting polymers. Drs. Regina and Gerd M€uller
(Agilent Corporation) enlightened me on recent LED developments.
Professor Paul Holloway (University of Florida) shared with me some
insights in phosphors and flat-panel displays. Professor Volkmar Gerold
(MPI Stuttgart) was always available when help was needed. My thanks go
to all of them.

Gainesville, Florida Rolf E. Hummel
October 2000

viii Preface to the Third Edition



Preface to the Second Edition

It is quite satisfying for an author to learn that his brainchild has been
favorably accepted by students as well as by professors and thus seems to
serve some useful purpose. This horizontally integrated text on the elec-
tronic properties of metals, alloys, semiconductors, insulators, ceramics, and
polymeric materials has been adopted by many universities in the United
States as well as abroad, probably because of the relative ease with which
the material can be understood. The book has now gone through several
reprinting cycles (among them a few pirate prints in Asian countries). I am
grateful to all readers for their acceptance and for the many encouraging
comments which have been received.

I have thought very carefully about possible changes for the second
edition. There is, of course, always room for improvement. Thus, some
rewording, deletions, and additions have been made here and there. I with-
stood, however, the temptation to expand considerably the book by adding
completely new subjects. Nevertheless, a few pages on recent developments
needed to be inserted. Among them are, naturally, the discussion of ceramic
(high-temperature) superconductors, and certain elements of the rapidly
expanding field of optoelectronics. Further, I felt that the readers might be
interested in learning some more practical applications which result from
the physical concepts which have been treated here. Thus, the second edition
describes common types of field-effect transistors (such as JFET, MOSFET,
and MESFET), quantum semiconductor devices, electrical memories (such
as D-RAM, S-RAM, and electrically erasable-programmable read-only
memories), and logic circuits for computers. The reader will also find an
expansion of the chapter on semiconductor device fabrication. The principal
mechanisms behind some consumer devices, such as xerography, compact
disc players, and optical computers, are also discussed.
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Part III (Magnetic Properties of Materials) has been expanded to include
more details on magnetic domains, as well as magnetostriction, amorphous
ferromagnetics, the newest developments in permanent magnets, new mag-
netic recording materials, and magneto-optical memories.

Whenever appropriate, some economic facts pertaining to the manu-
facturing processes or sales figures have been given. Responding to occa-
sional requests, the solutions for the numerical problems are now contained
in the Appendix.

I am grateful for valuable expert advice from a number of colleagues,
such as Professor Volkmar Gerold, Dr. Dieter Hagmann, Dr. H. R€ufer,
Mr. David Malone, Professor Chris Batich, Professor Rolf Haase,
Professor Robert Park, Professor Rajiv Singh, and Professor Ken Watson.
Mrs. Angelika Hagmann and, to a lesser extent, my daughter, Sirka Hummel,
have drawn the new figures. I thank them for their patience.

Gainesville, Florida Rolf E. Hummel
1993
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Preface to the First Edition

Die meisten Grundideen der
Wissenschaft sind an sich einfach

und lassen sich in der Regel
in einer f€ur jedermann
verst€andlichen Sprache

wiedergeben.

—ALBERT EINSTEIN

The present book on electrical, optical, magnetic, and thermal properties of
materials is, in many aspects, different from other introductory texts in solid
state physics. First of all, this book is written for engineers, particularly
materials and electrical engineers who want to gain a fundamental under-
standing of semiconductor devices, magnetic materials, lasers, alloys, etc.
Second, it stresses concepts rather than mathematical formalism, which
should make the presentation relatively easy to understand. Thus, this
book provides a thorough preparation for advanced texts, monographs, or
specialized journal articles. Third, this book is not an encyclopedia. The
selection of topics is restricted to material which is considered to be
essential and which can be covered in a 15-week semester course. For
those professors who want to teach a two-semester course, supplemental
topics can be found which deepen the understanding. (These sections are
marked by an asterisk [*].) Fourth, the present text leaves the teaching of
crystallography, X-ray diffraction, diffusion, lattice defects, etc., to those
courses which specialize in these subjects. As a rule, engineering students
learn this material at the beginning of their upper division curriculum. The
reader is, however, reminded of some of these topics whenever the need
arises. Fifth, this book is distinctly divided into five self-contained parts
which may be read independently. All are based on the first part, entitled
“Fundamentals of Electron Theory”, because the electron theory of materi-
als is a basic tool with which most material properties can be understood.
The modern electron theory of solids is relatively involved. It is, however,
not my intent to train a student to become proficient in the entire field of
quantum theory. This should be left to more specialized texts. Instead, the
essential quantum mechanical concepts are introduced only to the extent to
which they are needed for the understanding of materials science. Sixth,
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plenty of practical applications are presented in the text, as well as in the
problem sections, so that the students may gain an understanding of many
devices that are used every day. In other words, I tried to bridge the gap
between physics and engineering. Finally, I gave the treatment of the optical
properties of materials about equal coverage to that of the electrical proper-
ties. This is partly due to my personal inclinations and partly because it is
felt that a more detailed description of the optical properties is needed since
most other texts on solid state physics devote relatively little space to this
topic. It should be kept in mind that the optical properties have gained an
increasing amount of attention in recent years, because of their potential
application in communication devices as well as their contributions to the
understanding of the electronic structure of materials.

The philosophy and substance of the present text emerged from lecture
notes which I accumulated during more than twenty years of teaching.
A preliminary version of Parts I and II appeared several years ago in Journal
of Educational Modules for Materials Science and Engineering 4, 1 (1982)
and 4, 781 (1982).

I sincerely hope that students who read and work with this book will
enjoy, as much as I, the journey through the fascinating field of the physical
properties of materials.

Each work benefits greatly from the interaction between author and
colleagues or students. I am grateful in particular to Professor R.T. DeHoff,
who read the entire manuscript and who helped with his inquisitive mind to
clarify many points in the presentation. Professor Ken Watson read the part
dealing with magnetism and made many helpful suggestions. Other collea-
gues to whom I am indebted are Professor Fred Lindholm, Professor Terry
Orlando, and Dr. Siegfried Hofmann. My daughter, Sirka Hummel, con-
tributed with her skills as an artist. Last, but not least, I am obliged to my
family, to faculty, and to the chairman of the Department of Materials
Science and Engineering at the University of Florida for providing the
harmonious atmosphere which is of the utmost necessity for being creative.

Gainesville, Florida Rolf E. Hummel
1985
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PART I

FUNDAMENTALS OF
ELECTRON THEORY



CHAPTER 1

Introduction

The understanding of the behavior of electrons in solids is one of the keys
to understanding materials. The electron theory of solids is capable of
explaining the optical, magnetic, thermal, as well as the electrical properties
of materials. In other words, the electron theory provides important funda-
mentals for a technology which is often considered to be the basis for
modern civilization. A few examples will illustrate this. Magnetic materials
are used in electric generators, motors, loudspeakers, transformers, tape
recorders, and tapes. Optical properties of materials are utilized in lasers,
optical communication, windows, lenses, optical coatings, solar collectors,
and reflectors. Thermal properties play a role in refrigeration and heating
devices and in heat shields for spacecraft. Some materials are extremely
good electrical conductors, such as silver and copper; others are good
insulators, such as porcelain or quartz. Semiconductors are generally poor
conductors at room temperature. However, if traces of certain elements are
added, the electrical conductivity increases.

Since the invention of the transistor in the late 1940s, the electronics
industry has grown to an annual sales level of about five trillion dollars.
From the very beginning, materials and materials research have been the
lifeblood of the electronics industry.

For the understanding of the electronic properties of materials, three
approaches have been developed during the past hundred years or so which
differ considerably in their philosophy and their level of sophistication. In the
nineteenth century, a phenomenological description of the experimental
observation was widely used. The laws which were eventually discovered
were empirically derived. This “continuum theory” considered only macro-
scopic quantities and interrelated experimental data. No assumptions were
made about the structure of matter when the equations were formulated. The

R.E. Hummel, Electronic Properties of Materials 4th edition,
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conclusions that can be drawn from the empirical laws still have validity, at
least as long as no oversimplifications are made during their interpretation.
Ohm’s law, the Maxwell equations, Newton’s law, and the Hagen–Rubens
equation may serve as examples.

A refinement in understanding the properties of materials was accom-
plished at the turn to the twentieth century by introducing atomistic
principles into the description of matter. The “classical electron theory”
postulated that free electrons in metals drift as a response to an external
force and interact with certain lattice atoms. Paul Drude was the principal
proponent of this approach. He developed several fundamental equations
that are still widely utilized today. We will make extensive use of the
Drude equations in subsequent parts of this book.

A further refinement was accomplished at the beginning of the twentieth
century by quantum theory. This approach was able to explain important
experimental observations which could not be readily interpreted by classi-
cal means. It was realized that Newtonian mechanics become inaccurate
when they are applied to systems with atomic dimensions, i.e., when
attempts are made to explain the interactions of electrons with solids.
Quantum theory, however, lacks vivid visualization of the phenomena
which it describes. Thus, a considerable effort needs to be undertaken to
comprehend its basic concepts; but mastering its principles leads to a much
deeper understanding of the electronic properties of materials.

The first part of the present book introduces the reader to the funda-
mentals of quantum theory. Upon completion of this part the reader should
be comfortable with terms such as Fermi energy, density of states, Fermi
distribution function, band structure, Brillouin zones, effective mass of
electrons, uncertainty principle, and quantization of energy levels. These
concepts will be needed in the following parts of the book.

It is assumed that the reader has taken courses in freshman physics,
chemistry, and differential equations. From these courses the reader should
be familiar with the necessary mathematics and relevant equations and
definitions, such as:

Newton’s law: force equals mass times acceleration (F ¼ maÞ; (1.1)

Kinetic energy: Ekin ¼ 1
2
mv2 ðv is the particle velocityÞ; (1.2)

Momentum: p ¼ mv; (1.3)

Combining (1.2) and (1.3) yields Ekin ¼ p2

2m
; (1.4)

Speed of light: c ¼ nl ðn ¼ frequency of the light wave, and
l its wavelengthÞ; (1.5)

Velocity of a wave: v ¼ nl; (1.6)

Angular frequency: o ¼ 2pn; (1.7)

Einstein’s mass---energy equivalence: E ¼ mc2: (1.8)

4 I. Fundamentals of Electron Theory



It would be further helpful if the reader has taken an introductory course
in materials science or a course in crystallography in order to be familiar
with terms such as lattice constant, Miller’s indices, X-ray diffraction,
Bragg’s law, etc. Regardless, these concepts are briefly summarized in this
text whenever they are needed. In order to keep the book as self-contained as
possible, some fundamentals in mathematics and physics are summarized in
the Appendices.

1. Introduction 5



CHAPTER 2

The Wave-Particle Duality

This book is mainly concerned with the interactions of electrons with matter.
Thus, the question “What is an electron?” is quite in order. Now, to our
knowledge, nobody has so far seen an electron, even by using the most
sophisticated equipment. We experience merely the actions of electrons,
e.g., on a cathode-ray television screen or in an electron microscope. In each
of these instances, the electrons seem to manifest themselves in quite a
different way, i.e., in the first case as a particle and in the latter case as an
electron wave. Accordingly, we shall use, in this book, the terms “wave” and
“particle” as convenient means to describe the different aspects of the
properties of electrons. This “duality” of the manifestations of electrons
should not overly concern us. The reader has probably been exposed to a
similar discussion when the properties of light have been introduced.

We perceive light intuitively as a wave (specifically, an electromagnetic
wave) which travels in undulations from a given source to a point of obser-
vation. The color of the light is related to its wavelength, l, or to its
frequency, n, i.e., its number of vibrations per second. Many crucial experi-
ments, such as diffraction, interference, and dispersion clearly confirm the
wavelike nature of light. Nevertheless, at least since the discovery of the
photoelectric effect in 1887 by Hertz, and its interpretation in 1905 by
Einstein, we do know that light also has a particle nature. (The photoelectric
effect describes the emission of electrons from a metallic surface that has
been illuminated by light of appropriately high energy, e.g., by blue light.)
Interestingly enough, Newton, about 300 years ago, was a strong proponent
of the particle concept of light. His original ideas, however, were in need of
some refinement, which was eventually provided in 1901 by quantum
theory. We know today (based on Planck’s famous hypothesis) that a certain

R.E. Hummel, Electronic Properties of Materials 4th edition,
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minimal energy of light, i.e., at least one light quantum, called a photon,
with the energy

E ¼ nh ¼ o\; (2.1)

needs to impinge on a metal in order that a negatively charged electron may
overcome its binding energy to its positively charged nucleus and escape
into free space. (This is true regardless of the intensity of the light.) In (2.1)
h is the Planck constant whose numerical value is given in Appendix 4.
Frequently, the reduced Planck constant

\ ¼ h

2p
(2.2)

is utilized in conjunction with the angular frequency, o ¼ 2pn (1.7). In
short, the wave-particle duality of light (or more generally, of electromag-
netic radiation) had been firmly established at the beginning of the twentieth
century.

On the other hand, the wave-particle duality of electrons needed more
time until it was fully recognized. The particle property of electrons, having
a rest mass m0 and charge e, was discovered in 1897 by the British physicist
J.J. Thomson at the Cavendish Laboratory of Cambridge University in
an experiment in which he observed the deviation of a cathode ray by
electric and magnetic fields. These cathode rays were known to consist of
an invisible radiation that emanated from a negative electrode (called a
cathode) which was sealed through the walls of an evacuated glass tube that
also contained at the opposite wall a second, positively charged electrode.
It was likewise known at the end of the nineteenth century that cathode rays
travel in straight lines and produce a glow when they strike glass or some
other materials. J.J. Thomson noticed that cathode rays travel slower than
light and transport negative electricity. In order to settle the lingering
question of whether cathode rays were “vibrations of the ether” or instead
“streams of particles”, he promulgated a bold hypothesis, suggesting that
cathode rays were “charged corpuscles which are miniscule constituents
of the atom”. This proposition—that an atom should consist of more than
one particle—was startling for most people at that time. Indeed, atoms were
considered since antiquity to be indivisible, that is, the most fundamental
building blocks of matter.

The charge of these “corpuscles” was found to be the same as that carried
by hydrogen ions during electrolysis (about 10–19 C). Further, the mass of
these corpuscles turned out to be 1/2000th the mass of the hydrogen atom.

A second hypothesis brought forward by J.J. Thomson, suggesting that
the “corpuscles of cathode rays are the only constituents of atoms”, was
eventually proven to be incorrect. Specifically, E. Rutherford, one of
Thomson’s former students, by using a different kind of particle beam,
concluded in 1910 that the atom resembled a tiny solar system in which a
few electrons orbited around a “massive” positively charged center. Today,
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one knows that the electron is the lightest stable elementary particle of
matter and that it carries the basic charge of electricity.

Eventually, it was also discovered that the electrons in metals can move
freely under certain circumstances. This critical experiment was performed
by Tolman who observed inertia effects of the electrons when rotating
metals.

In 1924, de Broglie, who believed in a unified creation of the universe,
introduced the idea that electrons should also possess a wave-particle
duality. In other words, he suggested, based on the hypothesis of a general
reciprocity of physical laws, the wave nature of electrons. He connected
the wavelength, l, of an electron wave and the momentum, p, of the particle
by the relation

lp ¼ h: (2.3)

In 1926, Schr€odinger gave this idea of de Broglie a mathematical form. In
1927, Davisson and Germer and, independently in 1928, G.P. Thomson (the
son of J.J. Thomson; see above) discovered electron diffraction by a crystal,
which finally proved the wave nature of electrons.

What is a wave? A wave is a “disturbance” which is periodic in position
and time. (In contrast to this, a vibration is a disturbance which is only
periodic in position or time.1) Waves are characterized by a velocity, v, a
frequency, n, and a wavelength, l, which are interrelated by

v ¼ nl: (2.4)

Quite often, however, the wavelength is replaced by its inverse quantity
(multiplied by 2p), i.e., l is replaced by the wave number

k ¼ 2p
l
: (2.5)

Concomitantly, the frequency, n, is replaced by the angular frequency o ¼ 2
pn (1.7). Equation (2.4) then becomes

v ¼ o
k
: (2.6)

One of the simplest waveforms is mathematically expressed by a sine (or
a cosine) function. This simple disturbance is called a “harmonic wave”.
(We restrict our discussion below to harmonic waves since a mathematical
manipulation, called a Fourier transformation, can substitute any odd
type of waveform by a series of harmonic waves, each having a different
frequency.)

1A summary of the equations which govern waves and vibrations is given in Appendix 1.
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The properties of electrons will be described in the following by a
harmonic wave, i.e., by a wave function C (which contains, as outlined
above, a time- and a space-dependent component):

C ¼ sinðkx� otÞ: (2.7)

The wave in (2.7) travels in the positive x-direction, see Problem 7 and
Equation A.18 in Appendix 1.

This wave function does not represent, as far as we know, any physical
waves or other physical quantities. It should be understood merely as a
mathematical description of a particle (the electron) which enables us to
calculate its actual behavior in a convenient way. This thought probably
sounds unfamiliar to a beginner in quantum physics. However, by repeated
exposure, one can become accustomed to this kind of thought.

The wave-particle duality may be better understood by realizing that the
electron can be represented by a combination of several wave trains having
slightly different frequencies, for example, o and o þ Do, and different
wave numbers, k and k þ Dk. Let us study this, assuming at first only two
waves, which will be written as above:

C1 ¼ sin½kx� ot� (2.7)

and

C2 ¼ sin ðk þ DkÞx� ðoþ DoÞt½ �: (2.8)

Superposition of C1 and C2 yields a new wave C. With sin aþ sin b ¼
2 cos 1

2
ða� bÞ � sin 1

2
ðaþ bÞ we obtain

C1 þC2 ¼ C ¼ 2 cos
Do
2

t� Dk
2
x

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Modulated
amplitude

� sin k þ Dk
2

� �
x� oþ Do

2

� �
t

� �
:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sine wave

(2.9)

Equation (2.9) describes a sine wave (having a frequency intermediate
between o and o þ Do) whose amplitude is slowly modulated by a cosine
function. (This familiar effect in acoustics can be heard in the form of
“beats” when two strings of a piano have a slightly different pitch. The
beats become less rapid the smaller the difference in frequency, Do,
between the two strings until they finally cease once both strings have
the same pitch, (2.9).) Each of the “beats” represents a “wave packet”
(Fig. 2.1). The wave packet becomes “longer” the slower the beats, i.e.,
the smaller Do. The extreme conditions are as follows:

(a) No variation in o and k (i.e., Do ¼ 0 and Dk ¼ 0). This yields an “infinitely

long” wave packet, i.e., a monochromatic wave, which corresponds to the

wave picture of an electron (see Fig. 2.2).
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(b) Alternately, Do and Dk could be assumed to be very large. This yields short

wave packets. Moreover, if a large number of different waves are combined

(rather than only two waves C1 and C2), having frequencies o þ nDo (where

n ¼ 1, 2, 3, 4, . . .), then the string of wave packets shown in Fig. 2.1 reduces to
one wave packet only. The electron is then represented as a particle. This is

shown in Fig. 2.3, in which a number of C-waves have been superimposed on

each other, as just outlined. It is evident from Fig. 2.3 that a superposition of,

say, 300 C-waves yields essentially one wave packet only.

Different velocities need to be distinguished:

(a) The velocity of thematter wave is called the wave velocity or “phase velocity”,
v. As we saw above, the matter wave is a monochromatic wave (or a stream of

particles of equal velocity) whose frequency, o, wave-length, l, momentum, p,
or energy, E, can be exactly determined (Fig. 2.2). The location of the particles,

however, is undetermined. From the second part of (2.9) (marked “sine wave”),

we deduce

v ¼ x

t
¼ oþ Do=2

k þ Dk=2
¼ o0

k0
; (2.6a)

which is a restatement of (2.6). We obtain the velocity of a matter wave that

has a frequency o þ Do/2 and a wave number k þ Dk/2. The phase velocity

varies for different wavelengths (a phenomenon which is called “dispersion”,

Figure 2.2. Monochromatic matter wave (Do and Dk ¼ 0). The wave has constant ampli-

tude. The matter wave travels with the phase velocity, v.

Figure 2.1. Combination of two waves of slightly different frequencies. DX is the distance

over which the particle can be found.
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and which the reader knows from the rainbow colors that emerge from a prism

when white light impinges on it).

(b) We mentioned above that a particle can be understood to be “composed of” a

group of waves or a “wave packet”. Each individual wave has a slightly

different frequency. Appropriately, the velocity of a particle is called “group

velocity”, vg. The “envelope” in Fig. 2.1 propagates with the group velocity, vg.
From the left part of (2.9) (marked “modulated amplitude”) we obtain this

group velocity

vg ¼ x

t
¼ Do

Dk
¼ do

dk
: (2.10)

Equation (2.10) is the velocity of a “pulse wave”, i.e., of a moving particle.

The location X of a particle is known precisely, whereas the frequency is not.
This is due to the fact that a wave packet can be thought to “consist” of several
wave functions C1, C2, . . . , Cn, with slightly different frequencies. Another
way of looking at it is to perform a Fourier analysis of a pulse wave (Fig. 2.4)

Figure 2.3. Superposition of C-waves. The number ofC-waves is given in the graphs. (See

also Fig. 2.1 and Problem 2.8.)
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which results in a series of sine and cosine functions (waves) which have
different wavelengths. The better the location, DX, of a particle can be
determined, the wider is the frequency range, Do, of its waves. This is one
form of Heisenberg’s uncertainty principle,

Dp � DXs h; (2.11)

stating that the product of the distance over which there is a finite probability
of finding an electron, DX, and the range of momenta, Dp (or wave-lengths
(2.3)), of the electron wave is greater than or equal to a constant. This means
that both the location and frequency of an electron cannot be accurately
determined at the same time.

A word of encouragement should be added at this point for those readers
who (quite legitimately) might ask the question: What can I do with wave
functions which supposedly have no equivalent in real life? For the inter-
pretation of the wave functions, we will use in future chapters Born’s
postulate, which states that the square of the wave function (or because C
is generally a complex function, the quantity CC*) is the probability of
finding a particle at a certain location. (C* is the complex conjugate quantity
of C.) In other words,

CC�dx dy dz ¼ CC� dt (2.12)

is the probability of finding an electron in the volume element dt. This makes
it clear that in wave mechanics probability statements are often obtained,
whereas in classical mechanics the location of a particle can be determined
exactly. We will see in future chapters, however, that this does not affect the
usefulness of our results.

Finally, the reader may ask the question: Is an electron wave the same
as an electromagnetic wave? Most definitely not! Electromagnetic waves
(radio waves, infrared radiation (heat), visible light, ultraviolet (UV) light,
X-rays, or g-rays) propagate by an interaction of electrical and magnetic
disturbances. Detection devices for electromagnetic waves include the
human eye, photomultiplier tubes, photographic films, heat-sensitive
devices, such as the skin, and antennas in conjunction with electrical
circuits. For the detection of electrons (e.g., in an electron microscope or
on a television screen) certain chemical compounds called “phosphors” are
utilized. Materials which possess “phosphorescence” (see Section 13.8)

Figure 2.4. Particle (pulse wave) moving with a group velocity vg (Do is large).
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include zinc sulfide, zinc–cadmium sulfide, tungstates, molybdates, salts of
the rare earths, uranium compounds, and organic compounds. They vary in
color and strength and in the length in time during which visible light is
emitted.

At the end of this chapter, let us revisit the fundamental question that
stood at the outset of our discussion concerning the wave-particle duality:
Are particles and waves really two completely unrelated phenomena? Seen
conceptually, they probably are. But consider (2.9) and its discussion. Both
waves and particles are mathematically described essentially by the same
equation, i.e., the former by setting Do and Dk ¼ 0 and the latter by making
Do and Dk large. Thus, waves and particles appear to be interrelated in a
certain way. It is left to the reader to contemplate further on this idea.

Problems

1. Calculate the wavelength of an electron which has a kinetic energy of 4 eV.

2. What should be the energy of an electron so that the associated electron waves have a

wavelength of 600 nm?

3. Since the visible region spans between approximately 400 nm and 700 nm, why can the

electron wave mentioned in Problem 2 not be seen by the human eye? What kind of

device is necessary to detect electron waves?

4. What is the energy of a light quantum (photon) which has a wavelength of 600 nm?

Compare the energy with the electron wave energy calculated in Problem 2 and discuss

the difference.

5. A tennis ball, having a mass of 50 g, travels with a velocity of 200 km/h. What is the

equivalent wavelength of this “particle”? Compare your result with that obtained in

Problem 1 above and discuss the difference.

6. Derive (2.9) by adding (2.7) and (2.8).

7. Show that the C-wave of equation (2.7) travels in the positive x-direction. Hint: The

maximal amplitude of theC-wave in (2.7) should be the same for t = 0 and t = t1. Add Dx
to x for t = t1 and use x = v.t and Equation (2.6).

*8. Computer problem.
(a) Insert numerical values of your choice into (2.9) and plot the result. For example, set

a constant time (e.g. t ¼ 0) and vary Dk.
(b) Add more than two equations of the type of (2.7) and (2.8) by using different values

of Do and plot the result. Does this indeed reduce the number of wave packets, as

stated in the text? Compare to Fig. 2.3.

14 I. Fundamentals of Electron Theory



CHAPTER 3

The Schr€odinger Equation

We shall now make use of the conceptual ideas which we introduced in the
previous chapter, i.e., we shall cast, in mathematical form, the description of
an electron as a wave, as suggested by Schr€odinger in 1926. All “deriva-
tions” of the Schr€odinger equation start in one way or another from certain
assumptions, which cause the uninitiated reader to ask the legitimate ques-
tion, “Why just in this way?” The answer to this question can naturally be
given, but these explanations are relatively involved. In addition, the “deri-
vations” of the Schr€odinger equation do not further our understanding of
quantum mechanics. It is, therefore, not intended to “derive” here the
Schr€odinger equation. We consider this relation as a fundamental equation
for the description of wave properties of electrons, just as the Newton
equations describe the matter properties of large particles.

3.1. The Time-Independent Schr€odinger Equation

The time-independent Schr€odinger equation will always be applied when
the properties of atomic systems have to be calculated in stationary condi-
tions, i.e., when the property of the surroundings of the electron does not
change with time. This is the case for most of the applications which will be
discussed in this text. Thus, we introduce, at first, this simpler form of the
Schr€odinger equation in which the potential energy (or potential barrier), V,
depends only on the location (and not, in addition, on the time). Therefore,
the time-independent Schr€odinger equation is an equation of a vibration.
It has the following form:

R.E. Hummel, Electronic Properties of Materials 4th edition,
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r2cþ 2m

\2
ðE� VÞc ¼ 0; (3.1)

where

r2c ¼ @2c
@x2

þ @2c
@y2

þ @2c
@z2

; (3.2)

and m is the (rest) mass of the electron,2 and

E ¼ Ekin þ V (3.3)

is the total energy of the system. E provides values for allowed energies
once c and V are given, as we shall see later on.

In (3.1) we wrote for the wave function a lowercase c, which we will use
from now on when we want to state explicitly that the wave function is only
space dependent. Thus, we split from C a time-dependent part:

Cðx; y; z; tÞ ¼ cðx; y; zÞ � eiot: (3.4)

*3.2. The Time-Dependent Schr€odinger Equation

The time-dependent Schr€odinger equation is a wave equation, because it
contains derivatives of C with respect to space and time (see below, (3.8)).
One obtains this equation from (3.1) by eliminating the total energy,

E ¼ nh ¼ o\; (2.1)

where o is obtained by differentiating (3.4) with respect to time:

@C
@t

¼ cioeiot ¼ Cio: (3.5)

This yields

o ¼ � i

C
@C
@t

: (3.6)

Combining (2.1) with (3.6) provides

E ¼ � \i

C
@C
@t

: (3.7)

2In most cases we shall denote the rest mass by m instead of m0.

16 I. Fundamentals of Electron Theory



Finally, combining (3.1) with (3.7) yields

r2C� 2mV

\2
C� 2mi

\

@C
@t

¼ 0: (3.8)

It should be noted here that quantum mechanical equations can be obtained
from classical equations by applying differential operators to the wave
function C (Hamiltonian operators). They are

E ¼̂ � \i
@

@t
(3.9)

and

p ¼̂ � \ir: (3.10)

When these operators are applied to

Etotal ¼ Ekin þ Epot ¼ p2

2m
þ V (3.11)

we obtain

�\i
@C
@t

¼ \2i2

2m
r2Cþ VC; (3.12)

which yields, after rearranging, the time-dependent Schr€odinger equation (3.8).

*3.3. Special Properties of Vibrational Problems

The solution to an equation for a vibration is determined, except for certain
constants. These constants are calculated by using boundary or starting
conditions

ðe.g:; c ¼ 0 at x ¼ 0Þ: (3.13)

As we will see in Section 4.2, only certain vibrational forms are possible
when boundary conditions are imposed. This is similar to the vibrational
forms of a vibrating string, where the fixed ends cannot undergo vibrations.
Vibrational problems that are determined by boundary conditions are called
boundary or eigenvalue problems. It is a peculiarity of vibrational pro-
blems with boundary conditions that not all frequency values are possible
and, therefore, because of

E ¼ nh; (3.14)

not all values for the energy are allowed (see next chapter). One calls the
allowed values eigenvalues. The functionsc, which belong to the eigenvalues
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and which are a solution of the vibration equation and, in addition, satisfy the
boundary conditions, are called eigenfunctions of the differential equation.

In Section 2 we related the product cc* (which is called the “norm”) to
the probability of finding a particle at a given location. The probability of
finding a particle somewhere in space is one, orð

cc� dt ¼
ð
jcj2 dt ¼ 1: (3.15)

Equation (3.15) is called the normalized eigenfunction.

Problems

1. Write a mathematical expression for a vibration (vibrating string, for example) and for a

wave. (See Appendix 1.) Familiarize yourself with the way these differential equations are

solved. What is a “trial solution?” What is a boundary condition?

2. Define the terms “vibration” and “wave”.

3. What is the difference between a damped and an undamped vibration? Write the appro-

priate equations.

4. What is the complex conjugate function of:

(a) x̂ ¼ aþ bi; and
(b) C ¼ 2Ai sin ax.
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CHAPTER 4

Solution of the Schr€odinger Equation
for Four Specific Problems

4.1. Free Electrons

At first we solve the Schr€odinger equation for a simple but, nevertheless,
very important case. We consider electrons which propagate freely, i.e., in a
potential-free space in the positive x-direction. In other words, it is assumed
that no “wall,” i.e., no potential barrier (V), restricts the propagation of the
electron wave. The potential energy V is then zero and the Schr€odinger
equation (3.1) assumes the following form:

d2c
dx2

þ 2m

\2
Ec ¼ 0: (4.1)

This is a differential equation for an undamped vibration3 with spatial
periodicity whose solution is known to be3

cðxÞ ¼ Aeiax; (4.2)

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m

\2
E:

r
(4.3)

(For our special case we do not write the second term in (A.5)3,

u ¼ Aeiax þ Be�iax; (4.4)

because we stipulated above that the electron wave3

CðxÞ ¼ Aeiax � e�iot (4.5)

3See Appendix 1.
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propagates only in the positive x-direction and not, in addition, in the nega-
tive x-direction.)

From (4.3), it follows that

E ¼ \2

2m
a2: (4.6)

Since no boundary condition had to be considered for the calculation of the
free-flying electron, all values of the energy are “allowed,” i.e., one obtains
an energy continuum (Fig. 4.1). This statement seems to be trivial at this
point. The difference to the bound electron case will become, however,
evident in the next section.

Before wemove ahead, let us combine equations (4.3), (2.3), and (1.4), i.e.,

a ¼
ffiffiffiffiffiffiffiffiffi
2mE

\2

r
¼ p

\
¼ 2p

l
¼ k; (4.7)

which yields

E ¼ \2

2m
k2: (4.8)

The term 2p/l was defined in (2.5) to be the wave number, k. Thus, a is
here identical with k. We see from (4.7) that the quantity k is proportional to
the momentum p and, because of p ¼ mv, also proportional to the velocity
of the electrons. Since both momentum and velocity are vectors, it follows
that k is a vector, too. Therefore, we actually should write k as a vector
which has the components kx, ky, and kz:

jkj ¼ 2p
l
: (4.9)

Since k is inversely proportional to the wavelength, l, it is also called the
“wave vector.” We shall use the wave vector in the following sections
frequently. The k-vector describes the wave properties of an electron, just
as one describes in classical mechanics the particle property of an electron
with the momentum. As mentioned above, k and p are mutually propor-
tional, as one can see from (4.7). The proportionality factor is 1=\.

Figure 4.1. Energy continuum of a free electron (compare with Fig. 4.3).
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4.2. Electron in a Potential Well (Bound Electron)

We now consider an electron that is bound to its atomic nucleus. For
simplicity, we assume that the electron can move freely between two
infinitely high potential barriers (Fig. 4.2). The potential barriers do not
allow the electron to escape from this potential well, which means that
c ¼ 0 for x c 0 and x s a. We first treat the one-dimensional case just as
in Section 4.1, i.e., we assume that the electron propagates only along the
x-axis. However, because the electron is reflected on the walls of the well, it
can now propagate in the positive, as well as in the negative, x-direction.
In this respect, the present problem is different from the preceding one. The
potential energy inside the well is zero, as before, so that the Schr€odinger
equation for an electron in this region can be written, as before,

d2c
dx2

þ 2m

\2
Ec ¼ 0: (4.10)

Because of the two propagation directions of the electron, the solution of
(4.10) is

c ¼ Aeiax þ Be�iax (4.11)

(see Appendix 1), where

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m

\2
E:

r
(4.12)

We now determine the constants A and B by means of boundary condi-
tions. We just mentioned that at x c 0 and x s a the c function is zero.
This boundary condition is similar to that known for a vibrating string,
which does not vibrate at the two points where it is clamped down. (See also
Fig. 4.4(a).) Thus, for x ¼ 0 we stipulate c ¼ 0. Then we obtain from (4.11)

B ¼ �A: (4.13)

Figure 4.2. One-dimensional potential well. The walls consist of infinitely high potential

barriers.
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Similarly, we stipulate c ¼ 0 for x ¼ a. Using this boundary condition and
(4.13), equation (4.11) becomes

0 ¼ Aeiaa þ Be�iaa ¼ Aðeiaa � e�iaaÞ: (4.14)

With the Euler equation

sinr ¼ 1

2i
ðeir � e�irÞ (4.15)

(see Appendix 2), we rewrite Equation (4.14)

A eiaa � e�iaa� � ¼ 2Ai � sin aa ¼ 0: (4.16)

Equation (4.16) is only valid if sin aa ¼ 0, i.e., if

aa ¼ np; n ¼ 0; 1; 2; 3; . . . (4.17)

(because 2, A, and i cannot be zero).
Substituting the value of a from (4.12) into (4.17) provides

En ¼ \2

2m
a2 ¼ \2p2

2ma2
n2; n ¼ 1; 2; 3 . . . (4.18)

(We exclude n ¼ 0, which would yield c ¼ 0, that is, no electron wave.) We
notice immediately a striking difference from the case in Section 4.1. Because
of the boundary conditions, only certain solutions of the Schr€odinger equation
exist, namely those for which n is an integer. In the present case the energy
assumes only those values which are determined by (4.18). All other energies
are not allowed. The allowed values are called “energy levels.” They are
shown in Fig. 4.3 for a one-dimensional case. Because of the fact that an
electron of an isolated atom can assume only certain energy levels, it follows
that the energies which are excited or absorbed also possess only discrete
values. The result is called an “energy quantization.” The lowest energy that
an electron may assume is called the “zero-point energy”. It can be calcu-
lated from (4.18) for n ¼ 1. In other words, the lowest energy of the electron
is not that of the bottom of the potential well, but rather a slightly higher
value.

Figure 4.3. Allowed energy values of an electron that is bound to its atomic nucleus. E is the

excitation energy in the present case.C ¼ \2p2=2ma2, see (4.18). (E1 is the zero-point energy).
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We discuss now the wave function, c, and the probabilitycc* for finding
an electron within the potential well (see Chapter 2). According to (4.11),
(4.13), and the Euler equation (4.15), we obtain within the well

c ¼ 2Ai � sin ax; (4.19)

and the complex conjugate of c

c* ¼ �2Ai sin ax: (4.20)

The product cc* is then

cc* ¼ 4A2sin2ax: (4.21)

Equations (4.19) and (4.21) are plotted for various n-values in Fig. 4.4. From
Fig. 4.4(a), we see that standing electron waves are created between the
walls of the potential well. Note that integer multiples of half a wavelength
are equal to the length, a, of the potential well. The present case, in its
mathematical treatment, as well as in its result, is analogous to that of a
vibrating string.

Of special interest is the behavior of the function cc*, i.e., the probabil-
ity of finding the electron at a certain place within the well (Fig. 4.4(b)). In
the classical case the electron would travel back and forth between the walls.
Its probability function would therefore be equally distributed along the
whole length of the well. In wave mechanics the deviation from the classical
case is most pronounced for n ¼ 1. In this case, cc* is largest in the middle
of the well and vanishes at the boundaries. For n ¼ 2, the probability of
finding an electron at the center of the well (and at the boundaries) is zero,
whereas the largest cc* is found at 1

4
a and 3

4
a. For successively higher

n-values, i.e., for higher energies, the wave mechanical values for cc* are
eventually approaching the classical value.

In order to deepen the understanding of the behavior of bound electrons,
the reader is reminded of the Rutherford model (Chapter 2), in which the

Figure 4.4. (a) c function and (b) probability function cc* for an electron in a potential well
for different n-values. (c) Allowed electron orbit of an atom.
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electrons are described to move in distinct orbits about a positively charged
nucleus. Similarly, as shown in Fig. 4.4(a), the electron waves associated
with an orbiting electron have to be standing waves. If this were not the case,
the wave would be out of phase with itself after one orbit. After a large
number of orbits, all possible phases would be obtained and the wave would
be annihilated by destructive interference. This can only be avoided if a
radius is chosen so that the wave joins on itself (Fig. 4.4(c)). In this case the
circumference, 2pr, of the orbit is an integer multiple, n, of the wavelength,
l, or

2pr ¼ nl; (4.22)

which yields

r ¼ l
2p

n: (4.23)

This means that only certain distinct orbits are allowed, which brings us
back to the allowed energy levels which we discussed above. Actually, this
model was proposed in 1913 by Niels Bohr.

*For the above discussions, we did not need to evaluate the constant ‘A’.
Those readers who are interested in this detail may simply rewrite (4.21) in
conjunction with (3.15):ða

0

cc* dx ¼ 4A2

ða
0

sin2ðaxÞ dx ¼ 4A2

a
�1

2
sin ax cos axþ ax

2

� �a
0

¼ 1:

(4.24)

Inserting the boundaries in (4.24) and using (4.17) provides

A ¼
ffiffiffiffiffi
1

2a

r
: (4.25)

*The results that are obtained by considering an electron in a square well
are similar to the ones which one receives when the wave mechanical proper-
ties of a hydrogen atom are calculated. As above, one considers an electron
with charge �e to be bound to its nucleus. The potential, V, in which the
electron propagates is taken as the Coulombic potential V ¼ �e2/(4pe0r).
Since V is a function of the radius, r, the Schr€odinger equation is more
conveniently expressed in polar coordinates. Of main interest are, again, the
conditions under which solutions to this Schr€odinger equation exist. The
treatment leads, similarly as above, to discrete energy levels:

E ¼ � me4

2ð4pe0\Þ2
1

n2
¼ �13:6 � 1

n2
ðeVÞ: (4.18a)

The main difference compared to the square well model is, however, that the
energy is now proportional to �1/n2 (and not to n2 as in (4.18)). This results
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in a “crowding” of energy levels at higher energies. The energy at the lowest
level is called the ionization energy, which has to be supplied to remove an
electron from its nucleus. Energy diagrams, as in Fig. 4.5, are common in
spectroscopy. The origin of the energy scale is arbitrarily set at n ¼ 1 and
the ionization energies are counted negative. Since we are mainly concerned
with the solid state, the detailed calculation of the hydrogen atom is not
treated here.

*So far, we have considered the electron to be confined to a one-dimen-
sional well. A similar calculation for a three-dimensional potential well
(“electron in a box”) leads to an equation which is analogous to (4.18):

En ¼ \2p2

2ma2
n2x þ n2y þ n2z

� �
: (4.26)

The smallest allowed energy in a three-dimensional potential well is
occupied by an electron if nx ¼ ny ¼ nz ¼ 1. For the next higher energy
there are three different possibilities for combining the n-values; namely,
(nx, ny, nz) ¼ (1, 1, 2), (1, 2, 1), or (2, 1, 1). One calls the states which have
the same energy but different quantum numbers “degenerate” states. The
example just given describes a threefold degenerate energy state.

4.3. Finite Potential Barrier (Tunnel Effect)

Let us assume that a free electron, propagating in the positive x-direction,
encounters a potential barrier whose potential energy, V0, (“height” of the
barrier) is larger than the total energy, E, of the electron, but is still finite
(Fig. 4.6). For this case we have to write two Schr€odinger equations, which
take into account the two different areas. In region I (x < 0) the electron is
assumed to be free, and we can write

ðIÞ d2c
dx2

þ 2m

\2
Ec ¼ 0: (4.27)

Figure 4.5. Energy levels of atomic hydrogen. E is the binding energy.
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Inside the potential barrier (x > 0) the Schr€odinger equation reads

ðIIÞ d2c
dx2

þ 2m

\2
E� V0ð Þc ¼ 0: (4.28)

The solutions to these equations are as before (see Appendix 1):

ðIÞ c1 ¼ Aeiax þ Be�iax; (4.29)

where

a ¼
ffiffiffiffiffiffiffiffiffi
2mE

\2

r
; (4.30)

and

ðIIÞ cII ¼ Ceibx þ De�ibx; (4.31)

with

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

\2
ðE� V0Þ:

r
(4.32)

A word of caution has to be inserted here. We stipulated above that V0 is
larger than E. As a consequence of this (E � V0) is negative and b becomes
imaginary. To prevent this, we define a new parameter:

g ¼ ib: (4.33)

This yields, for (4.32),

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

\2
V0 � Eð Þ

r
: (4.34)

The parameter g is now prevented under the stated conditions from becom-
ing imaginary. Rearranging (4.33) to obtain

b ¼ g
i

(4.35)

and inserting (4.35) into (4.31) yields

cII ¼ Cegx þ De�gx: (4.36)

V

V0

0
0 X

I II

Figure 4.6. Finite potential barrier.
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Next, one of the constants C or D needs to be determined by means of a
boundary condition:
For x ! 1 it follows from (4.36) that

cII ¼ C � 1 þ D � 0: (4.37)

The consequence of (4.37) could be that cII and therefore cIIcII
* are infinity.

Since the probability
R
cc*dt can never be larger than one (certainty, see

Equ. 3.15), cII ! 1 is no solution. To avoid this, C has to go to zero:

C ! 0: (4.38)

Then, (4.36) reduces to

cII ¼ De�gx; (4.39)

which reveals that the c-function decreases in Region II exponentially, as
shown in Fig. 4.7. The decrease is stronger the larger g is chosen, i.e., for a
large potential barrier, V0.

If the potential barrier is only moderately high and relatively narrow, the
electron wave may continue on the opposite side of the barrier. This
behavior is analogous to that for a light wave, which likewise penetrates
to a certain degree into a material and whose amplitude also decreases
exponentially, as we shall see in the optics part of this book, specifically
in Fig. 10.4. The penetration of a potential barrier by an electron wave is
called “tunneling” and has important applications in solid state physics
(tunnel diode, tunnel electron microscope, field ion microscope). Tunneling
is a quantum mechanical effect. In classical physics, the electron (particle)
would be described to be entirely reflected back from the barrier (at x ¼ 0) if
its kinetic energy is smaller than V0.

*For the complete solution of the behavior of an electron wave that
penetrates a finite potential barrier (Fig. 4.6), some additional boundary
conditions need to be taken into consideration:

0

V0

I II

X

e–γx
ψ

Figure 4.7. c-function meeting a finite potential barrier.
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(1) The functions cI and cII are continuous at x ¼ 0. As a consequence, cI � cII

at x ¼ 0. This yields, with (4.29), (4.36), and (4.38),

Aeiax þ Be�iax ¼ De�gx:

With x ¼ 0, we obtain

Aþ B ¼ D: (4.40)

(2) The slopes of the wave functions in Regions I and II are continuous at x ¼ 0,

i.e., (dcI/dx) � (dcII/dx). This yields

Aiaeiax � Biae�iax ¼ �gDe�gx: (4.41)

With x ¼ 0, one obtains

Aia� Bia ¼ �gD: (4.42)

Inserting (4.40) into (4.42) yields

A ¼ D

2
1þ i

g
a

� �
(4.43)

and

B ¼ D

2
1� i

g
a

� �
: (4.43a)

From this, the c-functions can be expressed in terms of a constant D.
Figure 4.8 illustrates the modification of Fig. 4.4(a) when tunneling is
taken into consideration. A penetration of the c-function into the potential
barriers is depicted.

Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical axis

have been shifted for clarity.)
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4.4. Electron in a Periodic Field of a Crystal
(The Solid State)

In the preceding sections we became acquainted with some special cases,
namely, the completely free electron and the electron which is confined to a
potential well. The goal of this section is to study the behavior of an electron
in a crystal. We will see eventually that the extreme cases which we treated
previously can be derived from this general case.

Our first task is to find a potential distribution that is suitable for a solid.
From high resolution transmission electron microscopy and from X-ray
diffraction investigations, it is known that the atoms in a crystal are arranged
periodically. Thus, for the treatment of our problem a periodic repetition of
the potential well of Fig. 4.2, i.e., a periodic arrangement of potential wells
and potential barriers, is probably close to reality and is also best suited for a
calculation. Such a periodic potential is shown in Fig. 4.9 for the one-
dimensional case.4

The potential distribution shows potential wells of length a, which we call
Region I. These wells are separated by potential barriers of height V0 and
width b (Region II), where V0 is assumed to be larger than the energy E of
the electron.

This model is certainly a coarse simplification of the actual potential
distribution in a crystal. It does not take into consideration that the inner
electrons are more strongly bound to the core, i.e., that the potential function
of a point charge varies as 1/r. It also does not consider that the individual
potentials from each lattice site overlap. A potential distribution which takes
these features into consideration is shown in Fig. 4.10. It is immediately
evident, however, that the latter model is less suitable for a simple calcula-
tion than the one which is shown in Fig. 4.9. Thus, we utilize the model
shown in Fig. 4.9.

Figure 4.9. One-dimensional periodic potential distribution (simplified) (Kronig-Penney

model).

4R. De. L. Kronig and W.G. Penney, Proc. Roy. Soc. London, 130, 499 (1931).
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We now write the Schr€odinger equation for Regions I and II:

ðIÞ d2c
dx2

þ 2m

\2
Ec ¼ 0; (4.44)

ðIIÞ d2c
dx2

þ 2m

\2
ðE� V0Þc ¼ 0: (4.45)

For abbreviation we write, as before,

a2 ¼ 2m

\2
E; (4.46)

and

g2 ¼ 2m

\2
ðV0 � EÞ: (4.47)

(g2 is chosen in a way to keep it from becoming imaginary, see Section 4.3.)
Equations (4.44) and (4.45) need to be solved simultaneously, a task which
can be achieved only with considerable mathematical effort. Bloch5 showed
that the solution of this type of equation has the following form:

cðxÞ ¼ uðxÞ � eikx (4.48)

(Bloch function), where u(x) is a periodic function which possesses the
periodicity of the lattice in the x-direction. Therefore, u(x) is no longer a
constant (amplitude A) as in (4.2), but changes periodically with increasing x
(modulated amplitude). Of course, u(x) is different for various directions in
the crystal lattice.

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin

potential).

5F. Bloch, Z. Phys. 52, 555 (1928); 59, 208 (1930).
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The reader who is basically interested in the results, and their implica-
tions for the electronic structure of crystals, may skip the mathematical
treatment given below and refer directly to (4.67).

Differentiating the Bloch function (4.48) twice with respect to x provides

d2c
dx2

¼ d2u

dx2
þ du

dx
2ik � k2u

	 

eikx: (4.49)

We insert (4.49) into (4.44) and (4.45) and take into account the abbrevia-
tions (4.46) and (4.47):

ðIÞ d2u

dx2
þ 2ik

du

dx
� k2 � a2
� �

u ¼ 0; (4.50)

ðIIÞ d2u

dx2
þ 2ik

du

dx
� ðk2 þ g2Þu ¼ 0: (4.51)

Equations (4.50) and (4.51) have the form of an equation of a damped
vibration. The solution6 to (4.50) and (4.51) is

ðIÞ u ¼ e�ikxðAeiax þ Be�iaxÞ; (4.55)

ðIIÞ u ¼ e�ikxðCe�gx þ DegxÞ: (4.56)

We have four constants A, B, C, and D which we need to dispose of
by means of four boundary conditions: The functions c and dc/dx pass
over continuously from Region I into Region II at the point x ¼ 0.
Equation I ¼ Equation II for x ¼ 0 yields

Aþ B ¼ Cþ D: (4.57)

(du/dx) for I ¼ (du/dx) for II at x ¼ 0 provides

Aðia� ikÞ þ Bð�ia� ikÞ ¼ Cð�g� ikÞ þ Dðg� ikÞ: (4.58)

Further, c, and therefore u, is continuous at the distance (a þ b). This
means that Equation I at x ¼ 0 must be equal to Equation II at x ¼ a þ b,

6Differential equation of a damped vibration for spatial periodicity (see Appendix 1)

d2u

dx2
þ D

du

dx
þ Cu ¼ 0: (4.52)

Solution:

u ¼ e�ðD=2ÞxðAeidx þ Be�idxÞ; (4.53)

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C� D2

4
:

r
(4.54)
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or, more simply, Equation I at x ¼ a is equal to Equation II at x ¼ �b
(see Fig. 4.9). This yields

Aeðia�ikÞa þ Beð�ia�ikÞa ¼ CeðikþgÞb þ Deðik�gÞb: (4.59)

Finally, (du/dx) is periodic in a + b:

Aiða�kÞeiaða�kÞ�BiðaþkÞe�iaðaþkÞ ¼�Cðgþ ikÞeðikþgÞbþDðg� ikÞeðik�gÞb:

(4.60)

The constants A, B, C, and D can be determined by means of these four
equations which, when inserted in (4.55) and (4.56), provide values for u.
This also means that solutions for the function c can be given by using
(4.48). However, as in the preceding sections, the knowledge of the c
function is not of primary interest. We are searching instead for a condition
which tells us where solutions to the Schr€odinger equations (4.44) and
(4.45) exist. We recall that these limiting conditions were leading to the
energy levels in Section 4.2. We proceed here in the same manner. We use
the four equations (4.57)–(4.60) and eliminate the four constants A–D. (This
can be done by simple algebraic manipulation or by forming the determinant
out of the coefficients A–D and equating this determinant to zero). The
lengthy calculation provides, using some Euler equations,7

g2 � a2

2ag
sinhðgbÞ � sinðaaÞ þ coshðgbÞ cosðaaÞ ¼ cos kðaþ bÞ: (4.61)

For simplification of the discussion of this equation we make the follow-
ing stipulation. The potential barriers in Fig. 4.9 will be of the kind such that
b is very small and V0 is very large. It is further assumed that the product
V0b, i.e., the area of this potential barrier, remains finite. In other words, if
V0 grows, b diminishes accordingly. The product V0b is called the potential
barrier strength.

If V0 is very large, then E in (4.47) can be considered to be small
compared to V0 and can therefore be neglected so that

g ¼
ffiffiffiffiffiffi
2m

\2

r ffiffiffiffiffi
V0

p
: (4.62)

Multiplication of (4.62) by b yields

gb ¼
ffiffiffiffiffiffi
2m

\2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV0bÞb

p
: (4.63)

Since V0b has to remain finite (see above) and b ! 0 it follows that gb
becomes very small. For a small gb we obtain (see tables of the hyperbolic
functions)

7See Appendix 2.
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coshðgbÞ � 1 and sinh(gbÞ � gb: (4.64)

Finally, one can neglect a2 compared to g2 and b compared to a (see (4.46),
(4.47), and Fig. 4.9) so that (4.61) reads as follows:

m

a\2
V0b sin aaþ cos aa ¼ cos ka: (4.65)

With the abbreviation

P ¼ maV0b

\2
(4.66)

we finally get from (4.65)

P
sin aa
aa

þ cos aa ¼ cos ka: (4.67)

This is the desired relation which provides the allowed solutions to the
Schr€odinger equations (4.44) and (4.45). We notice that the boundary
conditions lead to an equation with trigonometric function similarly as in
Section 4.2. Therefore, only certain values of a are possible. This in turn
means, because of (4.46), that only certain values for the energy E are
defined. One can assess the situation best if one plots the function P(sin
aa/aa) þ cos aa versus aa, which is done in Fig. 4.11 for P ¼ (3/2)p. It is of
particular significance that the right-hand side of (4.67) allows only certain
values of this function because cos ka is only defined between þ1 and �1
(except for imaginary k-values). This is shown in Fig. 4.11, in which the
allowed values of the function P(sin aa/aa) þ cos aa are marked by heavy
lines on the aa-axis.

We arrive herewith at the following very important result: Because aa is
a function of the energy, the above-mentioned limitation means that an
electron that moves in a periodically varying potential field can only occupy
certain allowed energy zones. Energies outside of these allowed zones or

Figure 4.11. Function P(sin aa/aa) + cos aa versus aa. P was arbitrarily set to be (3/2)p.
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“bands” are prohibited. One sees from Fig. 4.11 that with increasing values
of aa (i.e., with increasing energy), the disallowed (or forbidden) bands
become narrower. The size of the allowed and forbidden energy bands
varies with the variation of P. Below, four special cases will be discussed.

(a) If the “potential barrier strength” V0b (see Fig. 4.9) is large, then, according

to (4.66), P is also large and the curve in Fig. 4.11 proceeds more steeply. The

allowed bands are narrow.

(b) If the potential barrier strength, and therefore P, is small, the allowed bands

become wider (see Fig. 4.12).

(c) If the potential barrier strength becomes smaller and smaller and finally dis-

appears completely, P goes toward zero, and one obtains from (4.67)

cos aa ¼ cos ka (4.68)

or a ¼ k. From this it follows, with (4.46), that

E ¼ \2k2

2m
:

This is the well-known equation (4.8) for free electrons which we
derived in Section 4.1.

(d) If the potential barrier strength is very large, P approaches infinity. However,

because the left-hand side of (4.67) has to stay within the limits �1, i.e., it has

to remain finite, it follows that

sin aa
aa

! 0;

i.e., sin aa ! 0. This is only possible if aa ¼ np or

a2 ¼ n2p2

a2
for n ¼ 1; 2; 3; . . . (4.69)

Figure 4.12. Function P(sin aa/aa) + cos aa with P ¼ p/10.
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Combining (4.46) with (4.69) yields

E ¼ p2\2

2ma2
� n2;

which is the result of Section 4.2, equation (4.18).

We summarize (Fig. 4.13): If the electrons are strongly bound, i.e., if the
potential barrier is very large, one obtains sharp energy levels (electron in
the potential field of one ion). If the electron is not bound, one obtains a
continuous energy region (free electrons). If the electron moves in a periodic
potential field, one receives energy bands (solid).

The widening of the energy levels into energy bands and the transition
into a quasi-continuous energy region is shown in Fig. 4.14. This widening
occurs because the atoms increasingly interact as their separation distance
decreases. The arrows a, b, and c refer to the three sketches of Fig. 4.13.

Figure 4.14. Widening of the sharp energy levels into bands and finally into a quasi-

continuous energy region with decreasing interatomic distance, a, for a metal (after calcula-

tions of Slater). The quantum numbers are explained in Appendix 3.

Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and (c) elec-

trons in a solid.
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Problems

1. Describe the energy for:

(a) a free electron;

(b) a strongly bound electron; and

(c) an electron in a periodic potential.

Why do we get these different band schemes?

2. Computer problem. Plot cc* for an electron in a potential well. Vary n from 1 to �100.

What conclusions can be drawn from these graphs? (Hint: If for large values for n you

see strange periodic structures, then you need to choose more data points!)

3. State the two Schr€odinger equations for electrons in a periodic potential field (Kronig–

Penney model). Use for their solutions, instead of the Bloch function, the trial solution

cðxÞ ¼ Aeikx:

Discuss the result. (Hint: For free electrons V0 ¼ 0.)

*4. When treating the Kronig–Penney model, we arrived at four equations for the constants

A, B, C, and D. Confirm (4.61).

5. The differential equation for an undamped vibration is

a
d2u

dx2
þ bu ¼ 0; (1)

whose solution is

u ¼ Aeikx þ Be�ikx; (2)

where

k ¼
ffiffiffiffiffiffiffiffiffi
b=a:

p
(3)

Prove that (2) is indeed a solution of (1).

6. Calculate the “ionization energy” for atomic hydrogen.

7. Derive (4.18a) in a semiclassical way by assuming that the centripetal force of an

electron, mv2/r, is counterbalanced by the Coulombic attraction force, �e2/4pe0r
2,

between the nucleus and the orbiting electron. Use Bohr’s postulate which states that the

angular momentum L ¼ mvr (v ¼ linear electron velocity and r ¼ radius of the orbiting

electron) is a multiple integer of Planck’s constant (i.e., n � \). (Hint: The kinetic energy
of the electron is E ¼ 1

2
mv2.)

8. Computer problem. Plot equation (4.67) and vary values for P.

9. Computer problem. Plot equation (4.39) for various values for D and g.

10. The width of the potential well (Fig. 4.2) of an electron can be assumed to be about 2 Å.

Calculate the energy of an electron (in Joules and in eV) from this information for

various values of n. Give the zero-point energy.
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CHAPTER 5

Energy Bands in Crystals

5.1. One-Dimensional Zone Schemes

We are now in a position to make additional important statements which
contribute considerably to the understanding of the properties of crystals.
For this we plot the energy versus the momentum of the electrons, or,
because of (4.8), versus the wave vector, k. As before, we first discuss the
one-dimensional case.

The relation between E and kx is particularly simple in the case of free
electrons, as can be seen from (4.8),

kx ¼ const:E1=2: (5.1)

The plot of E versus kx is a parabola (Fig. 5.1).
We return now to (4.68), which we obtained from (4.67) for P ¼ 0 (free

electrons). Because the cosine function is periodic in 2p, (4.68) should be
written in the more general form

cos aa ¼ cos kxa � cos kxaþ n2pð Þ; (5.2)

where n ¼ 0, �1, �2, . . . . This gives

aa ¼ kxaþ n2p: (5.3)

Combining (4.8),

a ¼
ffiffiffiffiffiffi
2m

\2

r
E1=2;

with (5.3) yields

kx þ n
2p
a

¼
ffiffiffiffiffiffi
2m

\2

r
E1=2: (5.4)

R.E. Hummel, Electronic Properties of Materials 4th edition,
DOI 10.1007/978-1-4419-8164-6_5, # Springer ScienceþBusiness Media, LLC 2011
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We see from (5.4) that in the general case the parabola, shown in Fig. 5.1, is
repeated periodically in intervals of n · 2p/a (Fig. 5.2). The energy is thus a
periodic function of kx with the periodicity 2p/a.

We noted, when discussing Fig. 4.11, that if an electron propagates in a
periodic potential we always observe discontinuities of the energies when
cos kxa has a maximum or a minimum, i.e., when cos kxa ¼ �1. This is only
the case when

kxa ¼ np; n ¼ �1; �2; �3; . . . ; (5.5)

or

kx ¼ n � p
a
: (5.6)

At these singularities, a deviation from the parabolic E versus kx curve
occurs, and the branches of the individual parabolas merge into the neigh-
boring ones.8 This is shown in Fig. 5.3.

Figure 5.2. Periodic repetition of Fig. 5.1 at the points kx ¼ n · 2p/a. The figure depicts a

family of free electron parabolas having a periodicity of �2p/a.

Figure 5.1. Electron energy E versus the wave vector kx for free electrons.

8If two energy functions with equal symmetry cross, the quantum mechanical “noncrossing rule”

requires that the eigenfunctions be split, so that they do not cross.
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The aforementioned consideration leads to a very important result. The
electrons in a crystal behave, for most kx values, like free electrons, except
when kx approaches the value n · p/a.

Besides this “periodic zone scheme” (Fig. 5.3), two further zone
schemes are common. In the future we will use mostly the “reduced zone
scheme” (Fig. 5.4), which is a section of Fig. 5.3 between the limits �p/a.
In the “extended zone scheme” (Fig. 5.5), the deviations from the free
electron parabola at the critical points kx ¼ n · p/a are particularly easy to
identify.

Occasionally, it is useful to plot free electrons in a reduced zone scheme.
In doing so, one considers the width of the forbidden bands to be reduced
until the energy gap between the individual branches disappears completely.
This leads to the “free electron bands” which are shown in Fig. 5.6 for a
special case. The well-known band character disappears for free electrons,
however, and one obtains a continuous energy region as explained in
Section 4.1. As before, the shape of the individual branches in Fig. 5.6 is

Figure 5.4. Reduced zone scheme. (This is a section of Fig. 5.3 between �p/a and þp/a.)

Figure 5.3. Periodic zone scheme.
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due to the 2p/a periodicity, as a comparison with Fig. 5.2 shows. From (5.4),
it follows that

E ¼ \2

2m
kx þ n

2p
a

� �2
; n ¼ 0; �1; �2; . . . : (5.7)

Figure 5.6. “Free electron bands” plotted in the reduced zone scheme (cubic primitive

crystal structure). Compare this figure with the central portion of Fig. 5.2, that is, with the

region from zero to p/a. Note the sameness of the individual bands.

Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are shown, see

Section 5.2.

40 I. Fundamentals of Electron Theory



By inserting different n-values in (5.7), one can calculate the shape of the
branches of the free electron bands. A few examples might illustrate this:

n ¼ 0 yields E ¼ \2

2m
k2x parabola with 0 as originð Þ;

n ¼ �1 yields E ¼ \2

2m
kx � 2p

a

� �2
parabola with

2p
a

as origin

� �
;

specifically, for kx ¼ 0 follows E ¼ 4
p2\2

2ma2
;

and for kx ¼ p
a
follows E ¼ 1

p2\2

2ma2
:

The calculated data are depicted in Fig. 5.6. (The calculation of the remain-
ing branches (bands) is left to the reader, see Problem 5.)

One important question has remained essentially unanswered: What do
theseE versus |k| curves really mean? Simply stated, they relate the energy of
an electron to its k-vector, i.e., with its momentum. They provide in principle
quite similar information as, for example, a distance versus time diagram for
a moving car, or a “stress-strain diagram” in mechanical metallurgy, or
a “phase diagram” in materials science. All these diagrams relate in graphic
form one parameter with another variable in order to provide an easier
interpretation of data. We shall eventually learn to appreciate complete
band diagrams in later chapters, from which we will draw important conclu-
sions about the electronic properties of materials.

In Figs. 5.3, 5.4, and 5.5 the individual allowed energy regions and the
disallowed energy regions, called band gaps, are clearly seen. We call the
allowed bands, for the time being, the n-band, or the m-band, and so forth.
In later sections and particularly in semiconductor physics (see Chapter 8)
we will call one of these bands the valence band (because it contains the
valence electrons) and the next higher one the conduction band.

An additional item needs to be mentioned: It is quite common to use the
word “band” for both the allowed energy regions, such as the n-band or the
m-band, as well as for the individual branches within a band as seen, for
example, in Fig. 5.6. As a rule this does not cause any confusion.

Finally, we need to stress one more point: The wave vector k is inversely
proportional to the wavelength of the electrons (see equation (4.9)). Thus, k
has the unit of a reciprocal length and is therefore defined in “reciprocal
space.” The reader might recall from a course in crystallography that each
crystal structure has two lattices associated with it, one of them being the
crystal (or real) lattice and the other the reciprocal lattice. We will show in
Section 5.5 how these two lattices are related. The following may suffice for
the moment: each lattice plane in real space can be represented by a vector
which is normal to this plane and whose length is made proportional to the
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reciprocal of the interplanar distance. The tips of all such vectors from sets
of parallel lattice planes form the points in a reciprocal lattice. An X-ray
diffraction pattern is a map of such a reciprocal lattice.

5.2. One- and Two-Dimensional Brillouin Zones

Let us again inspect Fig. 5.5. We noticed there that the energy versus kx curve,
between the boundaries �p/a and þp/a, corresponds to the first electron
band, which we arbitrarily labeled as n-band. This region in k-space between
�p/a and þp/a is called the first Brillouin zone (BZ). Accordingly, the area
between p/a and 2p/a, and also between�p/a and�2p/a, which corresponds
to the m-band, is called the second Brillouin zone. In other words, the lowest
band shown in Fig. 5.5 corresponds to the first Brillouin zone, the next higher
band corresponds to the second Brillouin zone, and so on. Now, we learned
above that the individual branches in an extended zone scheme (Fig. 5.5) are
2p/a periodic, i.e., they can be shifted by 2p/a to the left or to the right. We
make use of this concept and shift the branch of the second Brillouin zone on
the positive side of the E � (kx) diagram in Fig. 5.5 by 2p/a to the left, and
likewise the left band of the second Brillouin zone by 2p/a to the right. A
reduced zone scheme as shown in Fig. 5.4 is the result. Actually, we projected
the second Brillouin zone into the first Brillouin zone. The same can be done
with the third Brillouin zone, etc. This has very important implications: we do
not need to plot E versus k-curves for all Brillouin zones; the relevant
information is, because of the 2p/a periodicity, already contained in the
first Brillouin zone, i.e., in a reduced zone scheme.

We now consider the behavior of an electron in the potential of a two-
dimensional lattice. The electron movement in two dimensions can be
described as before by the wave vector k that has the components kx and ky,
which are parallel to the x- and y-axes in reciprocal space. Points in the kx � ky
coordinate system form a two-dimensional reciprocal lattice (see Fig. 5.7).
One obtains, in the two-dimensional case, a two-dimensional field of allowed
energy regions which corresponds to the allowed energy bands, i.e., one
obtains two-dimensional Brillouin zones.

We shall illustrate the construction of the Brillouin zones for a two-
dimensional reciprocal lattice (Fig. 5.7). For the first zone one constructs
the perpendicular bisectors on the shortest lattice vectors, G1. The area that
is enclosed by these four “Bragg planes” is the first Brillouin zone. For the
following zones the bisectors of the next shortest lattice vectors are con-
structed. It is essential that for the zones of higher order the extended
limiting lines of the zones of lower order are used as additional limiting
lines. The first four Brillouin zones are shown in Fig. 5.8. Note that all the
zones have the same area. The first four shortest lattice vectors G1 through
G4 are drawn in Fig. 5.7.

42 I. Fundamentals of Electron Theory



The significance of the Brillouin zones will become evident in later
sections, when the energy bands of solids are discussed. A few words of
explanation will be given here, nevertheless. The Brillouin zones are useful
if one wants to calculate the behavior of an electron which may travel in a
specific direction in reciprocal space. For example, if in a two-dimensional
lattice an electron travels at 45� to the kx-axis, then the boundary of the
Brillouin zone is reached, according to Fig. 5.8, for

Kx

Ky

π / a

π / a

Figure 5.8. The first four Brillouin zones of a two-dimensional, cubic primitive reciprocal

lattice.

G1

G1

Ky

G1

G1

G2 G4

G4

G3

Kx

Figure 5.7. Four shortest lattice vectors in a kx � ky coordinate system and the first Brillouin

zone in a two-dimensional reciprocal lattice. (Cubic primitive crystal structure.)
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kcrit ¼ p
a

ffiffiffi
2

p
: (5.8)

This yields with (4.8) a maximal attainable energy of

Emax ¼ \2

2m
k2crit ¼

p2\2

a2m
: (5.8a)

On the other hand, the boundary of a Brillouin zone is reached at

kcrit ¼ p
a

(5.9)

when an electron moves parallel to the kx- or ky-axes. The largest energy that
electrons can assume in this second case is only

Emax ¼ 1

2

p2\2

a2m

� �
: (5.9a)

Once the maximal energy has been reached, the electron waves form
standing waves (or equivalently, the electrons are reflected back into the
Brillouin zone).

The consequence of (5.8) and (5.9) is an overlapping of energy bands
which can be seen when the bands are drawn in different directions in k-space
(Fig. 5.9). We will learn later that these considerations can be utilized to
determine the difference between metals, semiconductors, and insulators.

*The occurrence of critical energies at which a reflection of the electron
wave takes place can also be illustrated in a completely different way. This
will be done briefly here because of its immediate intuitive power. We
consider an electron wave that propagates in a lattice at an angle y to a set
of parallel lattice planes (Fig. 5.10). The corresponding rays are diffracted
on the lattice atoms. At a certain angle of incidence, constructive interfer-
ence between rays 10 and 20 occurs. It has been shown by Bragg that each ray

Figure 5.9. Overlapping of allowed energy bands.
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which is diffracted in this way can be considered as being reflected by a
mirror parallel to the lattice planes. In other words, at a critical angle the
“reflected” rays will be enhanced considerably. This is always the case when
the path difference 2a sin y is an integer multiple of the electron wavelength
l, i.e., when

2a sin y ¼ nl; n ¼ 1; 2; 3; . . . (5.10)

(Bragg relation). With (4.9) one obtains, from (5.10),

2a sin y ¼ n
2p
k

and therefore

kcrit ¼ n
p

a sin y
: (5.11)

For perpendicular incidence (y ¼ 90�) equation (5.11) becomes (5.9). On
the other hand, if y ¼ 45�, one obtains (5.8).

Equation (5.11) leads to the result that for increasing electron energies a
critical k-value is finally reached for which “reflection” of the electron wave
at the lattice planes occurs. At this critical k-value the transmission of an
electron beam through the lattice is prevented. Then, the incident and the
Bragg-reflected electron wave form a standing wave.

*5.3. Three-Dimensional Brillouin Zones

In the previous section, the physical significance of the Brillouin zones was
discussed. It was shown that at the boundaries of these zones the electron
waves are Bragg-reflected by the crystal. The wave vector |k| ¼ 2p/l was

Figure 5.10. Bragg reflection of an electron wave in a lattice. The angle of incidence is y.
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seen to have the unit of a reciprocal length and is therefore defined in the
reciprocal lattice. We will now attempt to construct three-dimensional
Brillouin zones for two important crystal structures, namely, the face-
centered cubic (fcc) and the body-centered cubic (bcc) crystals. Since the
Brillouin zones for these structures have some important features in com-
mon with the so-called Wigner–Seitz cells, it is appropriate to discuss, at
first, the Wigner–Seitz cells and also certain features of the reciprocal lattice
before we return to the Brillouin zones at the end of Section 5.5.

*5.4. Wigner–Seitz Cells

Crystals have symmetrical properties. Therefore, a crystal can be described
as an accumulation of “unit cells.” In general, the smaller such a unit cell,
i.e., the fewer atoms it contains, the simpler its description. The smallest
possible cell is called a “primitive unit cell.” Frequently, however, a larger,
nonprimitive unit cell is used, which might have the advantage that the
symmetry can be better recognized. Body-centered cubic and face-centered
cubic are characteristic representatives of such “conventional” unit cells.9

The Wigner–Seitz cell is a special type of primitive unit cell that shows
the cubic symmetry of the cubic cells. For its construction, one bisects the
vectors from a given atom to its nearest neighbors and places a plane
perpendicular to these vectors at the bisecting points. This is shown in
Fig. 5.11 for the bcc lattice.

Figure 5.11. Wigner–Seitz cell for the body-centered cubic (bcc) structure.

9A lattice is a regular periodic arrangement of points in space; it is, consequently, a mathematical

abstraction. All crystal structures can be traced to one of the 14 types of Bravais lattices (see

textbooks on crystallography).
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In the fcc lattice, the atoms are arranged on the corners and faces of a
cube, which is equivalent to the center points of the edges and the center of
the cell (Fig. 5.12). The Wigner–Seitz cell for this structure is shown in
Fig. 5.13.

Figure 5.12. Conventional unit cell of the fcc structure. In the cell which is marked black,

the atoms are situated on the corners and faces of the cubes. In the white cell, the atoms are at

the centers of the edges and the center of the cell.

Figure 5.13. Wigner–Seitz cell for the fcc structure. It is constructed from the white cell

which is marked in Fig. 5.12.
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*5.5. Translation Vectors and the Reciprocal Lattice

In Fig. 5.14(a) the fundamental vectors t1, t2, t3 are inserted in a unit cell of a
cubic primitive lattice. By combination of these “primitive vectors” a trans-
lation vector,

R ¼ n1t1 þ n2t2 þ n3t3; (5.12)

Figure 5.14. (a) Fundamental lattice vectors t1, t2, t3 in a cubic primitive lattice. (b)

Fundamental lattice vectors in a conventional (white) and primitive, noncubic unit cell

(black) of a bcc lattice. The axes of the primitive (noncubic) unit cell form angles of 109� 280.
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can be defined. Using this translation vector it is possible to reach, from a
given lattice point, any other equivalent lattice point. For this, the factors n1,
n2, n3 have to be integers. In Fig. 5.14(b) the fundamental vectors t1, t2, t3
are shown in a conventional unit cell of a bcc lattice.

Similarly, as above, we now introduce for the reciprocal lattice three
vectors, b1, b2, b3, and a translation vector

G ¼ 2pðh1b1 þ h2b2 þ h3b3Þ; (5.13)

where h1, h2, and h3 are, again, integers. (The factor 2p is introduced for
convenience. In X-ray crystallography, this factor is omitted.)

The real and reciprocal lattices are related by a definition which states
that the scalar product of the vectors t1 and b1 should be unity, whereas the
scalar products of b1 and t2 or b1 and t3 are zero:

b1 � t1 ¼ 1; (5.14)

b1 � t2 ¼ 0; (5.15)

b1 � t3 ¼ 0: (5.16)

Equivalent equations are defined for b2 and b3. These nine equations can be
combined by using the Kronecker-Delta symbol,

bn � tm ¼ dnm; (5.17)

where dnm ¼ 1 for n ¼ m and dnm ¼ 0 for n 6¼ m. Equation (5.17) is from
now on our definition for the three vectors bn, which are reciprocal to the
vectors tm. From (5.15) and (5.16) it follows10 that b1 is perpendicular to t2
and to t3, which means that t2 and t3 form a plane perpendicular to the vector
b1 (Fig. 5.15). We therefore write11

Figure 5.15. Plane formed by t2 and t3 with perpendicular vector b1.

10The scalar product of two vectors a and b is a · b ¼ ab cos(ab). If i, j, and l are mutually

perpendicular unit vectors, then we can write i · j ¼ j · l ¼ l · i ¼ 0 and i · i ¼ j · j ¼ l · l ¼ 1.
11The vector product of two vectors a and b is a vector which stands perpendicular to the plane

formed by a and b. It is i � i ¼ j � j ¼ l � l ¼ 0 and i � j ¼ l and j � i ¼ �1.
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b1 ¼ const: t2 � t3: (5.18)

To evaluate the constant, we form the scalar product of t1 and b1 (5.18) and
make use of (5.14):

b1 � t1 ¼ const: t1 � t2 � t3 ¼ 1: (5.19)

This yields

const: ¼ 1

t1 � t2 � t3
: (5.20)

Combining (5.18) with (5.20) gives

b1 ¼ t2 � t3

t1 � t2 � t3
: (5.21)

Equivalent equations can be obtained for b2 and b3:

b2 ¼ t3 � t1

t1 � t2 � t3
; (5.22)

b3 ¼ t1 � t2

t1 � t2 � t3
: (5.23)

Equations (5.21)–(5.23) are the transformation equations which express the
fundamental vectors b1, b2, and b3 of the reciprocal lattice in terms of real
lattice vectors.

As an example of how these transformations are performed, we calculate
now the reciprocal lattice of a bcc crystal. The real crystal may have the
lattice constant “a.” We express the lattice vectors t1, t2, t3 in terms of the
unit vectors, i, j, l in the x, y, z coordinate system (see Fig. 5.14(b)):

t1 ¼ a

2
ð�iþ jþ lÞ; (5.24)

or, abbreviated,

t1 ¼ a

2
ð�111Þ (5.25)

and

t2 ¼ a

2
ð1�11Þ; (5.26)

t3 ¼ a

2
ð11�1Þ: (5.27)

To calculate b1, using (5.21), we form at first the vector product12

12a � b ¼
i j l

ax ay az
bx by bz

������
������ :
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t2 � t3 ¼ a2

4

i j l

1 �1 1

1 1 �1

�������

�������
¼ a2

4
ðiþ jþ lþ l� iþ jÞ ¼ a2

4
ð2jþ 2lÞ

¼ a2

2
ðjþ lÞ (5.28)

and the scalar13 product

t1 � t2 � t3 ¼ a3

4
ð�iþ jþ lÞ � ð0þ jþ lÞ ¼ a3

4
ð0þ 1þ 1Þ ¼ a3

2
: (5.29)

Combining (5.21) with (5.28) and (5.29) yields

b1 ¼
a2

2
ðjþ lÞ
a3

2

¼ 1

a
ðjþ lÞ; (5.30)

or

b1 ¼ 1

a
ð011Þ: (5.31)

Similar calculations yield

b2 ¼ 1

a
ð101Þ; (5.32)

b3 ¼ 1

a
ð110Þ: (5.33)

In Fig. 5.16, the vectors b1, b2, b3 are inserted into a cube of length 2/a.
We note immediately an important result. The end points of the reciprocal
lattice vectors of a bcc crystal are at the center of the edges of a cube. This
means that points of the reciprocal lattice of the bcc structure are identical to
the lattice points in a real lattice of the fcc structure, see Fig. 5.12. Con-
versely, the reciprocal lattice points of the fcc structure and the real lattice
points of the bcc structure are identical.

In Section 5.2, we constructed two-dimensional Brillouin zones by draw-
ing perpendicular bisectors on the shortest lattice vectors. Similarly, a three-
dimensional Brillouin zone can be obtained by bisecting all lattice vectors b
and placing planes perpendicular on these points. As has been shown in
Section 5.4, this construction is identical for a Wigner–Seitz cell. A com-
parison of the fundamental lattice vectors b and t gives the striking result
that theWigner–Seitz cell for an fcc crystal (Fig. 5.13) and the first Brillouin
zone for a bcc crystal (Fig. 5.17) are identical in shape. The same is true for

13
a · b ¼ axbx þ ayby þ azbz.
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the Wigner–Seitz cell for bcc and the first Brillouin zone for fcc. Thus, a
Brillouin zone can be defined as aWigner–Seitz cell in the reciprocal lattice.

From (5.31) it can again be seen that the reciprocal lattice vector has the
unit of a reciprocal length.

*5.6. Free Electron Bands

We mentioned in Section 5.1 that, because of the E(k) periodicity, all
information pertaining to the electronic properties of materials is contained
in the first Brillouin zone. In other words, the energy Ek0 for k

0 outside the

Figure 5.17. First Brillouin zone of the bcc crystal structure.

Figure 5.16. Lattice vectors in reciprocal space of a bcc crystal. The primitive vectors in the

reciprocal lattice are (because of (5.13)) larger by a factor of 2p. The lattice constant of the
cube then becomes 2p · 2/a.
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first zone is identical to the energy Ek within the first zone if a suitable
translation vector G can be found so that a wave vector k0 becomes

k0 ¼ kþG: (5.34)

We have already used this feature in Section 5.1, where we plotted one-
dimensional energy bands in the form of a reduced zone scheme. We
proceed now to three-dimensional zone pictures. We might correctly expect
that the energy bands are not alike in different directions in k-space. This
can be demonstrated by using the “free electron bands” which we introduced
in Fig. 5.6. We explain the details using the bcc crystal structure as an
example.

In three dimensions the equation analogous to (5.7) reads

Ek0 ¼ \2

2m
ðkþGÞ2: (5.35)

In Fig. 5.17 three important directions in k-space are inserted into the first
Brillouin zone of a bcc lattice. They are the [100] direction from the origin
(G) to point H, the [110] direction from G to N, and the [111] direction
from G to P.14 These directions are commonly labeled by the symbols D,
S, and L, respectively. Figure 5.18 depicts the bands, calculated by using
(5.35), for these distinct directions in k-space. The sequence of the indi-
vidual subgraphs is established by convention and can be followed using
Fig. 5.17.

We now show how some of these bands are calculated for a simple case.
We select the G � H direction as an example. We vary the modulus of the
vector kGH � kx between 0 and 2p/a, the latter being the boundary of the
Brillouin zone (see Fig. 5.16).15 For this direction, (5.35) becomes

E ¼ \2

2m

2p
a
xiþG

� �2
; (5.36)

where x may take values between 0 and 1. To start with, let G be 0. Then
(5.36) reads

E ¼ \2

2m

2p
a

� �2
ðxiÞ2 � Cx2 (5.37)

14Directions in unit cells are identified by subtracting the coordinates of the tail from the

coordinates of the tip of a distance vector. The set of numbers thus gained is inserted into square

brackets; see textbooks on materials science.
15The attentive reader may have noticed that the boundary of the first Brillouin zone in the kx
direction for the bcc lattice is 2p/a, and not p/a as for the cubic primitive unit cell (Fig. 5.6). This

can be convincingly seen by comparing Figs. 5.13, 5.16, and 5.17.
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(see footnote 10), where

C ¼ \2

2m

2p
a

� �2
¼ 2\2p2

ma2
: (5.38)

This yields the well-known parabolic E(k)-dependence. The curve which
represents (5.37) is labeled (000) in Fig. 5.18, because h1, h2, and h3 in
(5.13) are all zero for G ¼ 0.

Now we let h1 ¼ 0, h2 ¼ �1, and h3 ¼ 0. Then we obtain, by using
(5.13) and (5.32),

G ¼ � 2p
a
ðiþ lÞ: (5.39)

Combining (5.36) with (5.38) and (5.39) provides

E ¼ \2

2m

2px
a

i� 2p
a
ðiþ lÞ

� �2
¼ C½iðx� 1Þ � l�2

¼ C½ðx� 1Þ2 þ 1� ¼ Cðx2 � 2xþ 2Þ
(5.40)

Figure 5.18. Energy bands of the free electrons for the bcc structure. The numbers given on

the branches are the respective hi values (see the calculation in the text). Compare to Fig. 5.6.

C ¼ \22p2=ma2, see (5.38).
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(see footnote 10), which yields for

x ¼ 0 ! E ¼ 2C

and for

x ¼ 1 ! E ¼ 1C:

We obtain the band labeled ð0�10Þ in Fig. 5.18. Similarly, all bands in
Fig. 5.18 can be calculated by variation of the h values and k-directions
and by using (5.35).

The free electron bands are very useful for the following reason: by
comparing them with the band structures of actual materials, an assessment
is possible if and to what degree the electrons in that material can be
considered to be free.

In Figs. 5.19 and 5.20 the first Brillouin zone and the free electron bands
of the fcc structure are shown.

Figure 5.20. Free electron bands of the fcc structure. The letters on the bottom of the graphs

correspond to letters in Fig. 5.19 and indicate specific symmetry points in k-space.

Figure 5.19. First Brillouin zone of the fcc structure.
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5.7. Band Structures for Some Metals
and Semiconductors

Those readers who have skipped Sections 5.3 through 5.6 need to familiarize
themselves with the (three-dimensional) first Brillouin zone for the face
centered cubic (fcc) crystal structure (Fig. 5.19). The [100], the [110], and
the [111] directions in k-space are indicated by the letters G � X, G � K, and
G � L, respectively. Other directions in k-space are likewise seen. These
specific symmetry points and directions are selected by convention from a
much larger number of possible directions. They sufficiently characterize the
properties of materials, as we will see below.

We inspect now some calculated energy-band structures. They should
resemble the one shown in Fig. 5.4. In the present case, however, they are
depicted for more than one direction in k-space. Additionally, they are
displayed in the positive k-direction only, similarly as in Fig. 5.6 or 5.20.

We start with the band diagram for aluminum, Fig. 5.21. We recognize
immediately the characteristic parabola-shaped bands in the kx(G � X)
direction as seen before in Fig. 5.4. Similar parabolic bands can be detected
in the G � K and the G � L directions. The band diagram for aluminum
looks quite similar to the free electron bands shown in Fig. 5.20. This
suggests that the electrons in aluminum behave essentially free-electron-
like (which is indeed the case).

We also detect in Fig. 5.21 some band gaps, for example, between the X4
0

and X1 symmetry points, or between W3 and W2
0. Note, however, that the

individual energy bands overlap in different directions in k-space, so that as
a whole no band gap exists. (This is in marked difference to the band
diagram of a semiconductor, as we shall see in a moment.) The lower,

Figure 5.21. Energy bands for aluminum. Adapted from B. Segal, Phys. Rev. 124, 1797
(1961). (The meaning of the Fermi energy will be explained in Section 6.1.)
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parabola-shaped bands are associated with the aluminum 3s electrons (see
Appendix 3). These bands are therefore called “3s bands”. The origin of the
energy scale is positioned for convenience in the lower end of this s-band.

Next, we discuss the band structure for copper, Fig. 5.22. We notice in
the lower half of this diagram closely spaced and flat running bands.
Calculations show that these can be attributed to the 3d-bands of copper
(see Appendix 3). They superimpose the 4s-bands (which are heavily
marked in Fig. 5.22). The band which starts at G is, at first, s-electron-
like, and becomes d-electron-like while approaching point X. The first half
of this band is continued at higher energies. It is likewise heavily marked.
It can be seen, therefore, that the d-bands overlap the s-bands. Again, as for
aluminum, no band gap exists if one takes all directions in k-space into
consideration.

As a third example, the band structure of silicon is shown (Fig. 5.23). Of
particular interest is the area between 0 and approximately 1 eV in which
no energy bands are shown. This “energy gap,” which is responsible for
the well-known semiconductor properties, will be the subject of detailed
discussion in a later chapter. For semiconductors, the zero point of the
energy scale is placed at the bottom of this energy gap, even though other
conventions are possible and in use.

Finally, the band structure of gallium arsenide is shown in Fig. 5.24. The
so-called III–V semiconductor compounds, such as GaAs, are of great
technical importance for optoelectronic devices, as we will discuss in later
sections. They have essentially the same crystal structure and the same total

Figure 5.22. Band structure of copper (fcc). Adapted from B. Segal, Phys. Rev. 125, 109
(1962). The calculation was made using the l-dependent potential. (For the definition of the

Fermi energy, see Section 6.1.)
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Figure 5.24. Calculated energy band structure of GaAs. Adapted from F. Herman and

W.E. Spicer, Phys. Rev. 174, 906 (1968).

Figure 5.23. Calculated energy band structure of silicon (diamond-cubic crystal structure).

Adapted from M.L. Cohen and T.K. Bergstresser, Phys. Rev. 14, 789 (1966). See also

J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B14, 556 (1976).
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number of valence electrons as the element silicon. Again, a band gap is
clearly seen.

It should be mentioned, in closing, that the band structures of actual
solids, as shown in Figs. 5.21–5.24, are the result of extensive, computer-
aided calculations, and that various investigators using different starting
potentials arrive at slightly different band structures. Experimental investi-
gations, such as measurements of the frequency dependence of the optical
properties, can help determine which of the various calculated band struc-
tures are closest to reality.

5.8. Curves and Planes of Equal Energy

We conclude this chapter by discussing another interesting aspect of the
energy versus wave vector relationship.

In one-dimensional k-“space” there is only one (positive) k-value which
is connected with a given energy (see Fig. 5.1). In the two-dimensional case,
i.e., when we plot the electron energy over a kx � ky plane, more than one
k-value can be assigned to a given energy. This leads to curves of equal
energy, as shown in Fig. 5.25. For a two-dimensional square lattice and for
small electron energies, the curves of equal energy are circles. However, if
the energy of the electrons is approaching the energy of the boundary of
a Brillouin zone, then a deviation from the circular form is known to
occur. This is shown in Fig. 5.26, where curves of equal energy for a
two-dimensional square lattice are inserted into the first Brillouin zone. It
is of particular interest that the energy which belongs to point K in Fig. 5.26

Figure 5.25. Electron energy E versus wave vector k (two-dimensional). This figure demon-

strates various curves of equal energy for free electrons.
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is larger than the energy which belongs to point X (see (5.8a) and (5.9a)).
Consequently, the curves of equal energy for the first Brillouin zone may
extend into the second zone. This leads to an overlapping of energy bands as
schematically shown in Fig. 5.9, and in the band structures of
Figs. 5.21–5.24. For copper and aluminum the band overlapping leads to
quasi-continuous allowed energies (in different directions of k-space). For
semiconductors the band overlapping is not complete, which results in the
already-mentioned energy gap (Figs. 5.23 and 5.24).

In three-dimensional k-space one obtains surfaces of equal energy. For
the free electron case and for a cubic lattice they are spheres. For a
nonparabolic E-(k) behavior these surfaces become more involved. This is
demonstrated in Fig. 5.27 for a special case.

Figure 5.26. Curves of equal energy inserted into the first Brillouin zone for a two-

dimensional square lattice.

Figure 5.27. A particular surface of equal energy (Fermi surface, see Section 6.1) and the

first Brillouin zone for copper. Adapted from A.B. Pippard, Phil. Trans. Roy. Soc. London,
A 250, 325 (1957).
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Problems

1. What is the energy difference between the points L2
0 and L1 (upper) in the band diagram for

copper?

2. How large is the “gap energy” for silicon? (Hint: Consult the band diagram for silicon.)

3. Calculate how much the kinetic energy of a free electron at the corner of the first Brillouin

zone of a simple cubic lattice (three dimensions!) is larger than that of an electron at the

midpoint of the face.

4. Construct the first four Brillouin zones for a simple cubic lattice in two dimensions.

5. Calculate the shape of the free electron bands for the cubic primitive crystal structure for

n ¼ 1 and n ¼ �2 (see Fig. 5.6).

6. Calculate the free energy bands for a bcc structure in the kx-direction having the following

values for h1/h2/h3: (a) 111; (b) 001; and (c) 010. Plot the bands in k-space. Compare with

Fig. 5.18.

7. Calculate the main lattice vectors in reciprocal space of an fcc crystal.

8. Calculate the bands for the bcc structure in the 110 [G � N] direction for: (a) (000);

(b) ð0�10Þ; and (c) 111.

9. If b1 · t1 ¼ 1 is given (see equation (5.14)), does this mean that b1 is parallel to t1?

5. Energy Bands in Crystals 61



CHAPTER 6

Electrons in a Crystal

In the preceding chapters we considered essentially only one electron, which
was confined to the field of the atoms of a solid. This electron was in most
cases an outer, i.e., a valence, electron. However, in a solid of one cubic
centimeter at least 1022 valence electrons can be found. In this section we
shall describe how these electrons are distributed among the available
energy levels. It is impossible to calculate the exact place and the kinetic
energy of each individual electron. We will see, however, that probability
statements nevertheless give meaningful results.

6.1. Fermi Energy and Fermi Surface

The Fermi energy, EF, is an important part of an electron band diagram.
Many of the electronic properties of materials, such as optical, electrical, or
magnetic properties, are related to the location of EF within a band.

The Fermi energy is often defined as the “highest energy that the elec-
trons assume at T ¼ 0 K”. This can be compared to a vessel, like a cup, (the
electron band) into which a certain amount of water (electrons) is poured.
The top surface of the water contained in this vessel can be compared to the
Fermi energy. The more electrons are “poured” into the vessel, the higher
the Fermi energy. The Fermi energies for aluminum and copper are shown
in Figs. 5.21 and 5.22. Numerical values for the Fermi energies for some
materials are given in Appendix 4. They range typically from 2 to 12 eV.

The above-stated definition, even though convenient, can occasionally be
misleading, particularly when dealing with semiconductors. Therefore, a
more accurate definition of the Fermi energy will be given in Section 6.2.

R.E. Hummel, Electronic Properties of Materials 4th edition,
DOI 10.1007/978-1-4419-8164-6_6, # Springer ScienceþBusiness Media, LLC 2011
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We will see there that at the Fermi energy the Fermi function, F(E), equals
1
2
. An equation for the Fermi energy is given in (6.11).

In three-dimensional k-space the one-dimensional Fermi energy is
replaced by a Fermi surface. The energy surface shown in Fig. 5.27 is the
Fermi surface for copper.

6.2. Fermi Distribution Function

The distribution of the energies of a large number of particles and its change
with temperature can be calculated by means of statistical considerations.
The kinetic energy of an electron gas is governed by Fermi–Dirac statistics,
which states that the probability that a certain energy level is occupied by
electrons is given by the Fermi function, F(E),

FðEÞ ¼ 1

exp
E� EF

kBT

� �
þ 1

: (6.1)

If an energy level E is completely occupied by electrons, the Fermi
distribution function F(E) equals 1 (certainty); for an empty energy level
one obtains F(E) ¼ 0. EF is the Fermi energy which we introduced in
Section 6.1, kB is the Boltzmann constant, and T is the absolute temperature.
In Fig. 6.1, the Fermi function is plotted versus the energy for T ! 0 by
using (6.1). One sees from this figure that at T ¼ 0 all levels that have an
energy smaller than EF are completely filled with electrons, whereas higher
energy states are empty.

The Fermi distribution function for higher temperatures T 6¼ 0ð Þ is shown
in Fig. 6.2. It is noticed there that F(E) varies around EF in a gradual manner
and not by a step as for T ¼ 0. To characterize this behavior, one says that
F(E) is “smeared out,” i.e., it is extended to an energy interval 2DE. This

Figure 6.1. Fermi distribution function, F(E), versus energy, E, for T ¼ 0. (For E > EF and

T ! 0 (6.1) yields F(E) ! 0).
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decrease in F(E) with increasing energy is heavily exaggerated in Fig. 6.2.
DE at room temperature is in reality only about 1% of EF.

At high energies (E � EF) the upper end of the Fermi distribution func-
tion can be approximated by the classical (Boltzmann) distribution function.
This is best seen from (6.1) in which for large energies the exponential factor
becomes significantly larger than 1. Then, F(E) is approximately

FðEÞ � exp � E� EF

kBT

� �� �
: (6.1a)

Equation (6.1a) is known to be the Boltzmann factor, which gives, in
classical thermodynamics, the probability that a given energy state is occu-
pied. The F(E) curve for high energies is thus referred to as the “Boltzmann
tail” of the Fermi distribution function.

Of particular interest is the value of the Fermi function F(E) at E ¼ EF

and T 6¼ 0. As can be seen from (6.1) and Fig. 6.2, F(E) is in this particular
case 1

2
. This serves as a definition for the Fermi energy, as outlined in

Section 6.1.

6.3. Density of States

We are now interested in the question of how energy levels are distributed
over a band. We restrict our discussion for the moment to the lower part of
the valence band (the 3s-band in aluminum, for example) because there the
electrons can be considered to be essentially free due to their weak binding
force to the nucleus. We assume that the free electrons (or the “electron
gas”) are confined in a square potential well (box) from which they cannot
escape. The dimensions of this potential well are thought to be identical to
the dimensions of the crystal under consideration. Then our problem is
similar to the case of one electron in a potential well of size a, which we
treated in Section 4.2. By using the appropriate boundary conditions, the

Figure 6.2. Fermi distribution function for T 6¼ 0.
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solution of the Schr€odinger equation yields an equation that has the same
form as (4.18) or (4.26),

En ¼ p2\2

2ma2
n2x þ n2y þ n2z

� �
; (6.2)

where nx, ny, and nz are the principal quantum numbers and a is now the
length, etc., of the crystal. Now we pick an arbitrary set of quantum numbers
nx, ny, nz. To each such set we can find a specific energy level En, frequently
called “energy state”. An energy state can therefore be represented by a
point in quantum number space (Fig. 6.3). In this space, n is the radius from
the origin of the coordinate system to a point (nx, ny, nz) where

n2 ¼ n2x þ n2y þ n2z : (6.3)

Equal values of the energy En lie on the surface of a sphere with radius n. All
points within the sphere therefore represent quantum states with energies
smaller than En. The number of quantum states, �, with an energy equal to or
smaller than En is proportional to the volume of the sphere. Since the
quantum numbers are positive integers, the n-values can only be defined
in the positive octant of the n-space. One-eighth of the volume of the sphere
with radius n therefore gives the number of energy states, �, the energy of
which is equal to or smaller than En. Thus, with (6.2) and (6.3), we obtain

� ¼ 1

8
� 4
3
pn3 ¼ p

6

2ma2

p2\2

� �3=2
E3=2: (6.4)

Differentiation of � with respect to the energy E provides the number of
energy states per unit energy in the energy interval dE, i.e., the density of
the energy states, briefly called density of states, Z(E):

Figure 6.3. Representation of an energy state in quantum number space.
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d�

dE
¼ ZðEÞ ¼ p

4

2ma2

p2\2

� �3=2
E1=2 ¼ V

4p2
2m

\2

� �3=2
E1=2 (6.5)

(a3 is the volume, V, that the electrons can occupy).
The density of states plotted versus the energy gives, according to (6.5),

a parabola. Figure 6.4 shows that at the lower end of the band considerably
fewer energy levels (per unit energy) are available than at higher energies.
One can compare the density of states concept with a high-rise apartment
building in which the number of apartments per unit height (e.g., 8 ft) is
counted. To stay within this analogy, only a very few apartments are
thought to be available on the ground level. However, with increasing
height of the building, the number of apartments per unit height becomes
larger.

The area within the curve in Fig. 6.4 is, by definition, the number of states
that have an energy equal to or smaller than En. Therefore, one obtains, for
an area element d�,

d� ¼ ZðEÞ � dE; (6.6)

as can be seen from (6.5) and Fig. 6.4.

6.4. Complete Density of States Function Within a Band

We have seen in Section 6.3 that for the free electron case the density of
states has a parabolic E versus Z(E) relationship. In actual crystals, however,

dh

dE

EF

E

Z(E )

n-Band

Figure 6.4. Density of states Z(E) within a band. The electrons in this band are considered to
be free. Note, that the density of states, as shown in this figure, is only parabolic for the three-

dimensional case (solids). Z(E) looks different for the two-dimensional case (quantum well),

one-dimensional case (quantum wire), or zero-dimensional case (quantum dot). See for

example Fig. 8.33(c). However, since we are discussing here only solids, the representation

as shown above is correct and sufficient.
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the density of states is modified by the energy conditions within the first
Brillouin zone. Let us consider, for example, the curves of equal energy
depicted in Fig. 5.26. For low energies, the equal energy curves are circles.
Thus, the electrons behave free-electron like for these low energies. The
density of states curve is then, as before, a parabola. For larger energies,
however, fewer energy states are available, as is seen in Fig. 5.26. Thus, Z
(E) decreases with increasing E, until eventually the corners of the Brillouin
zones are filled. At this point Z(E) has dropped to zero. The largest number
of energy states is thus found near the center of a band, as shown schema-
tically in Fig. 6.5.

6.5. Population Density

The number of electrons per unit energy, N(E), within an energy interval dE
can be calculated by multiplying the number of possible energy levels, Z(E),
by the probability for the occupation of these energy levels. We have to
note, however, that because of the Pauli principle, each energy state can be
occupied by one electron of positive spin and one of negative spin,16 i.e.,
each energy state can be occupied by two electrons. Therefore,

NðEÞ ¼ 2 � ZðEÞ � FðEÞ (6.7)

n-Band

Z(E)0

E

Figure 6.5. Schematic representation of the complete density of states function within a

band.

16See Appendix 3.
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or, with (6.1) and (6.5),

NðEÞ ¼ V

2p2
2m

\2

� �3=2
E1=2 1

exp
E� EF

kBT

� �
þ 1

: (6.8)

N(E) is called the (electron) population density. We see immediately that
for T ! 0 and E < EF, the function N(E) equals 2 · Z(E) because F(E) is
unity in this case. For T 6¼ 0 and E ’ EF, the Fermi distribution function
(6.1) causes a smearing out of N(E) (Fig. 6.6).

The area within the curve in Fig. 6.6 represents the number of electrons,
N�, that have an energy equal to or smaller than the energy En. For an energy
interval between E and E þ dE, one obtains

dN� ¼ NðEÞdE: (6.9)

We are now in a position to calculate the Fermi energy by making use of
(6.8) and (6.9). We consider the simple case T ! 0 and E < EF, which
yields F(E) ¼ 1. Integration from the lower end of the band to the Fermi
energy, EF, provides

N� ¼
ðEF

0

NðEÞdE ¼
ðEF

0

V

2p2
2m

\2

� �3=2
E1=2 dE ¼ V

3p2
2m

\2

� �3=2
E
3=2
F : (6.10)

Rearranging (6.10) yields

EF ¼ 3p2
N�

V

� �2=3 \2
2m

: (6.11)

We define N0 ¼ N�/V as the number of electrons per unit volume. Then
we obtain

dE

dN*

N(E)

n-Band
T π 0

T = 0

E

EF

Figure 6.6. Population density N(E) within a band for free electrons. dN* is the number of

electrons in the energy interval dE.
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EF ¼ 3p2N
0

� �2=3 \2
2m

: (6.11a)

It should be noted that N� was calculated for simplicity for T ! 0 and
E < EF. This does not limit the applicability of (6.11), however, since the
number of electrons does not change when the temperature is increased. In
other words, integrating from zero to infinity and using T 6¼ 0 would yield
essentially the same result as above.

6.6. Consequences of the Band Model

We mentioned in Section 6.4 that, because of the Pauli principle, each
s-band of a crystal, consisting of N atoms, has space for 2N electrons, i.e.,
for two electrons per atom. If the highest filled s-band of a crystal is
occupied by two electrons per atom, i.e., if the band is completely filled,
we would expect that the electrons cannot drift through the crystal when an
external electric field is applied (as it is similarly impossible to move a car in
a completely occupied parking lot). An electron has to absorb energy in
order to move. Keep in mind that for a completely occupied band higher
energy states are not allowed. (We exclude the possibility of electron jumps
into higher bands.) Solids in which the highest filled band is completely
occupied by electrons are, therefore, insulators (Fig. 6.7(a)).

In solids with one valence electron per atom (e.g., alkali metals) the
valence band is essentially half-filled. An electron drift upon application of
an external field is possible; the crystal shows metallic behavior (Fig. 6.7(b)).

Bivalent metals should be insulators according to this consideration,
which is not the case. The reason for this lies in the fact that the upper

Figure 6.7. Simplified representation for energy bands for (a) insulators, (b) alkali metals,

(c) bivalent metals, and (d) intrinsic semiconductors.
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bands partially overlap, which occurs due to the weak binding forces of
the valence electrons on their atomic nuclei (see Fig. 5.9). If such an over-
lapping of bands occurs, the valence electrons flow in the lower portion of
the next higher band, because the electrons tend to assume the lowest
potential energy (Fig. 6.7(c)). As a result, bivalent solids may also possess
partially filled bands. Thus, they are also conductors.

We shall see in Chapter 8 that the valence as well as the conduction bands
of semiconductors can accommodate 4N electrons. Because germanium
and silicon possess four valence electrons, the valence band is completely
filled with electrons. Intrinsic semiconductors have a relatively narrow
forbidden energy zone (Fig. 6.7(d)). A sufficiently large energy can, there-
fore, excite electrons from the completely filled valence band into the empty
conduction band and thus provide some electron conduction.

This preliminary and very qualitative discussion on electronic conduction
will be expanded substantially and the understanding will be deepened in
Part II of this book.

6.7. Effective Mass

We implied in the previous sections that the mass of an electron in a solid is
the same as the mass of a free electron. Experimentally determined physical
properties of solids, such as optical, thermal, or electrical properties, indi-
cate, however, that for some solids the mass is larger while for others it is
slightly smaller than the free electron mass. This experimentally determined
electron mass is usually called the effective mass, m�. The deviation of m�

from the free electron mass17 m0 can be easily appreciated by stating the
ratio m�/m0, which has values slightly above or below 1 (see Appendix 4).
The cause for the deviation of the effective mass from the free electron mass
is usually attributed to interactions between the drifting electrons and the
atoms in a crystal. For example, an electron which is accelerated in an
electric field might be slowed down slightly because of “collisions” with
some atoms. The ratio m�/m0 is then larger than 1. On the other hand, the
electron wave in another crystal might have just the right phase in order that
the response to an external electric field is enhanced. In this case, m�/m0 is
smaller than 1.

We shall now attempt to find an expression for the effective mass. For
this, we shall compare the acceleration of an electron in an electric field
calculated by classical as well as by quantum mechanical means. At first,
we write an expression for the velocity of an electron in an energy band.

17We shall use the symbol m0 only when we need to distinguish the free electron (rest) mass from

the effective mass.
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We introduced in Chapter 2 the group velocity, i.e., the velocity with which
a wave packet moves. Let o be the angular frequency and |k| ¼ 2p/l
the wave number of the electron wave. Then, the group velocity is, accord-
ing to (2.10),

vg ¼ do
dk

¼ d 2pnð Þ
dk

¼ d 2pE=hð Þ
dk

¼ 1

\

dE

dk
: (6.12)

From this we calculate the acceleration

a ¼ dvg
dt

¼ 1

\

d2E

dk2
dk

dt
: (6.13)

The relation between the energy E and the wave number |k| is known from
the preceding sections. We now want to determine the factor dk/dt. Forming
the first derivative of (4.7) ðp ¼ \kÞ with respect to time yields

dp

dt
¼ \

dk

dt
: (6.14)

Combining (6.14) with (6.13) yields

a ¼ 1

\2
d2E

dk2
dp

dt
¼ 1

\2
� d

2E

dk2
� dðmvÞ

dt
¼ 1

\2
d2E

dk2
F; (6.15)

where F is the force on the electron. The classical acceleration can be
calculated from Newton’s law (1.1)

a ¼ F

m
: (6.16)

Comparing (6.15) with (6.16) yields the effective mass

m� ¼ \2
d2E

dk2

� ��1

: (6.17)

We see from (6.17) that the effective mass is inversely proportional to the
curvature of an electron band. Specifically, if the curvature of E ¼ f (k) at a
given point in k-space is large, then the effective mass is small (and vice
versa). When inspecting band structures (Fig. 5.4 or Figs. 5.21–5.24) we
notice some regions of high curvature. These regions might be found,
particularly, near the center or near the boundary of a Brillouin zone. At
these places, the effective mass is substantially reduced and may be as low
as 1% of the free electron massm0. At points in k-space for which more than
one electron band is found (G-point in Fig. 5.23, for example) more than one
effective mass needs to be defined.

We shall demonstrate the k-dependence of the effective mass for a simple
case and defer discussions about actual cases to Section 8.4. In Fig. 6.8(a) an
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ideal electron band within the first Brillouin zone is depicted. From this curve,
both the first derivative and the reciprocal function of the second derivative,
i.e., m�, have been calculated. These functions are shown in Fig. 6.8(b) and
(c). We notice in Fig. 6.8(c) that the effective mass of the electrons is small
and positive near the center of the Brillouin zone and eventually increases for
larger values of kx. We likewise observe in Fig. 6.8(c) that electrons in the
upper part of the given band have a negative effective mass. A negative mass
means that the “particle” under consideration travels in the opposite direction
to an applied electric force (and opposite to an electron.) An electron with a
negative effective mass is called a “defect electron” or an “electron hole”. (It
is, however, common to ascribe to the hole a positive effective mass and a
positive charge instead of a negative mass and a negative charge.) Electron
holes play an important role in crystals whose valence bands are almost filled,
e.g., in semiconductors. Solids which possess different properties in various
directions (anisotropy) have a different m* in each direction. The effective
mass is a tensor in this case. An electron/hole pair is called an “exciton”.

Figure 6.8. (a) Simple band structure, as shown in Fig. 5.4. (b) First derivative and

(c) inverse function of the second derivative of the curve shown in (a).
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It should be noted here for clarification that an electron hole is not
identical with a positron. The latter is a subatomic particle like the electron,
however with a positive charge. Positrons are emitted in the b-decay or are
found in cosmic radiation. When positrons and electrons react with each
other they are both annihilated under emission of energy.

6.8. Conclusion

The first part of this book is intended to provide the reader with the
necessary tools for a better understanding of the electronic properties of
materials. We started our discussion by solving the Schr€odinger equation for
the free electron case, the bound electron case, and for electrons in a crystal.
We learned that the distinct energy levels which are characteristic for
isolated atoms widen into energy bands when the atoms are moved closer
together and eventually form a solid. We also learned that the electron bands
have “fine structure,” i.e., they consist of individual “branches” in an energy
versus momentum (actually k) diagram. We further learned that some of
these energy bands are filled by electrons, and that the degree of this filling
depends upon whether we consider a metal, a semiconductor, or an insula-
tor. Finally, the degree to which electron energy levels are available within a
band was found to be nonuniform.We discovered that the density of states is
largest near the center of an electron band. All these relatively unfamiliar
concepts will become more transparent to the reader when we apply them in
the chapters to come.

Problems

1. What velocity has an electron near the Fermi surface of silver? (EF ¼ 5.5 eV).

2. Are there more electrons on the bottom or in the middle of the valence band of a metal?

Explain.

3. At what temperature can we expect a 10% probability that electrons in silver have an

energy which is 1% above the Fermi energy? (EF ¼ 5.5 eV).

4. Calculate the Fermi energy for silver assuming 6.1 � 1022 free electrons per cubic

centimeter. (Assume the effective mass equals the free electron mass.)

5. Calculate the density of states of 1 m3 of copper at the Fermi level (m* ¼ m0, EF ¼
7 eV). Note: Take 1 eV as energy interval. (Why?)

6. The density of states at the Fermi level (7 eV) was calculated for 1 cm3 of a certain metal

to be about 1021 energy states per electron volt. Someone is asked to calculate the

number of electrons for this metal using the Fermi energy as the maximum kinetic

energy which the electrons have. He argues that because of the Pauli principle, each
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energy state is occupied by two electrons. Consequently, there are 2 � 1021 electrons in

that band.

(a) What is wrong with that argument?

(b) Why is the answer, after all, not too far from the correct numerical value?

7. Assuming the electrons to be free, calculate the total number of states below E ¼ 5 eV in

a volume of 10�5 m3.

8. (a) Calculate the number of free electrons per cubic centimeter in copper, assuming that

the maximum energy of these electrons equals the Fermi energy (m* ¼ m0).

(b) How does this result compare with that determined directly from the density and the

atomic mass of copper? Hint: Consider equation (7.5)

(c) How can we correct for the discrepancy?

(d) Does using the effective mass decrease the discrepancy?

9. What fraction of the 3s-electrons of sodium is found within an energy kBT below the

Fermi level? (Take room temperature, i.e., T ¼ 300 K.)

10. Calculate the Fermi distribution function for a metal at the Fermi level for T 6¼ 0.

11. Explain why, in a simple model, a bivalent material could be considered to be an

insulator. Also explain why this simple argument is not true.

12. We stated in the text that the Fermi distribution function can be approximated by

classical Boltzmann statistics if the exponential factor in the Fermi distribution function

is significantly larger than one.

(a) Calculate E � EF ¼ nkBT for various values of n and state at which value for n,

exp
E� EF

kBT

� �

can be considered to be “significantly larger” than 1 (assume T ¼ 300 K).

(Hint: Calculate the error in F(E) for neglecting “1” in the denominator.)

(b) For what energy can we use Boltzmann statistics? (Assume EF ¼ 5 eV and E � EF ¼
4kBT.)
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PART II

ELECTRICAL PROPERTIES
OF MATERIALS



CHAPTER 7

Electrical Conduction in Metals
and Alloys

7.1. Introduction

The first observations involving electrical phenomena probably began
with the study of static electricity. Thales of Miletus, a Greek philosopher,
discovered around 600 BC that a piece of amber, having been rubbed with a
piece of cloth, attracted feathers and other light particles. Very appropri-
ately, the word electricity was later coined by incorporating the Greek word
elektron, which means amber.

It was apparently not before 2300 years later that man became again
interested in electrical phenomena. Stephen Gray found in the early 1700s
that some substances conduct electricity whereas others do not. In 1733
DuFay postulated the existence of two types of electricity, which he
termed glass electricity and amber electricity dependent on which material
was rubbed. From then on a constant stream of well-known scientists
contributed to our knowledge of electrical phenomena. Names such as
Coulomb, Galvani, Volta, Oersted, Ampère, Ohm, Seebeck, Faraday,
Henry, Maxwell, Thomson, and others, come to mind. What started
2600 years ago as a mysterious effect has been applied quite recently in
an impressive technology that culminated in large-scale integration of
electronic devices.

A satisfactory understanding of electrical phenomena on an atomistic
basis was achieved by Drude at the turn of the twentieth century. A few
decades later quantum mechanics refined our understanding. Both, the
classical as well as the quantum concepts of electrical phenomena will be
covered in the chapters to come. Special emphasis is placed on the descrip-
tion of important applications.
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7.2. Survey

One of the principal characteristics of materials is their ability (or lack of
ability) to conduct electrical current. Indeed, materials are classified by this
property, that is, they are divided into conductors, semiconductors, and non-
conductors. (The latter are often called insulators or dielectrics.) The conduc-
tivity, s, of different materials at room temperature spans more than 25 orders
of magnitude, as depicted in Fig. 7.1. Moreover, if one takes the conductivity
of superconductors, measured at low temperatures, into consideration, this
span extends to 40 orders of magnitude (using an estimated conductivity for
superconductors of about 1020 1/O cm). This is the largest known variation in
a physical property and is only comparable to the ratio between the diameter
of the universe (about 1026 m) and the radius of an electron (10�14 m).

It is generally accepted that in metals and alloys the electrons, particu-
larly the outer or valence electrons, play an important role in electrical
conduction. Therefore, it seems most appropriate to make use of the electron
theory that has been developed in the foregoing chapters. Before doing so,
the reader is reminded of some fundamental equations of physics pertaining
to electrical conduction. These laws have been extracted from experimental
observations. Ohm’s law,

V ¼ RI; (7.1)

relates the potential difference, V (in volts), with the electrical resistance,
R (in ohms i.e. O), and the electrical current, I (in amps). Another form of
Ohm’s law,

j ¼ sE ; (7.2)

links current density,

j ¼ I

A
; (7.2a)

Figure 7.1. Room-temperature conductivity of various materials. (Superconductors, having

conductivities many orders of magnitude larger than copper, near 0 K, are not shown. The

conductivity of semiconductors varies substantially with temperature and purity.) It is

customary in engineering to use the centimeter as unit of length rather than the meter. We

follow this practice.
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i.e., the current per unit area (A/cm2), with conductivity, s (1/O cm), and
electric field strength,1

E ¼ V

L
(7.3)

(V/cm). (In general, E and j are vectors. For our purpose, however, we need
only their moduli.) The current density is frequently expressed by

j ¼ Nve; (7.4)

where N is the number of electrons (per unit volume), v their velocity, and
e their charge. The resistance of a conductor can be calculated from its
physical dimensions by

R ¼ Lr
A

; (7.4a)

where L is the length of the conductor, A is its cross-sectional area, and r is
the specific resistance, or resistivity (O cm). We define

r ¼ 1

s
: (7.4b)

The reciprocal of the ohm (O) is defined to be 1 siemens (S); see Appendix 4.

We discussed in Chapter 2 the existence of two alternatives to describe
an electron. First, we may consider the electrons to have a particle nature.
If this model is utilized, one can explain the resistance by means of colli-
sions of the drifting electrons with certain lattice atoms. The more collisions
are encountered, the higher is the resistance. This concept qualitatively
describes the increase in resistance with an increasing amount of lattice
imperfections. It also explains the observed increase in resistance with
increasing temperature: the thermal energy causes the lattice atoms to
oscillate about their equilibrium positions (see Part V), thus increasing the
probability for collisions with the drifting electrons.

Second, one may consider the electrons to have a wave nature. The matter
waves may be thought to be scattered by lattice atoms. Scattering is the
dissipation of radiation on small particles in all directions. The atoms absorb
the energy of an incoming wave and thus become oscillators. These oscilla-
tors in turn re-emit the energy in the form of spherical waves. If two or more
atoms are involved, the phase relationship between the individual re-emitted
waves has to be taken into consideration. A calculation2 shows that for a
periodic crystal structure the individual waves in the forward direction are
in phase, and thus interfere constructively. As a result, a wave which

1We use for the electric field strength a script E to distinguish it from the energy.
2L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York (1953).
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propagates through an ideal crystal (having periodically arranged atoms)
does not suffer any change in intensity or direction. In other words, the
electron wave passes without hindrance through an ideal crystal. (Only its
velocity is modified.) This mechanism is called coherent scattering.

If, however, the scattering centers are not periodically arranged (impurity
atoms, vacancies, grain boundaries, thermal vibration of atoms, etc.) the
scattered waves have no set phase relationship and the wave is said to be
incoherently scattered. The energy of incoherently scattered waves is
smaller in the forward direction, that is, the matter wave loses energy.
This energy loss qualitatively explains the resistance. The wave picture
provides, therefore, a deeper understanding of the electrical resistance in
metals and alloys. In the following two sections we shall calculate the
resistance or equivalently, the electrical conduction, using, at first, the
particle and then the wave concept.

7.3. Conductivity—Classical Electron Theory

Our first approach towards an understanding of electrical conduction is to
postulate, as Drude did, a free “electron gas” or “plasma,” consisting of the
valence electrons of the individual atoms in a crystal. We assume that in a
monovalent metal, such as sodium, each atom contributes one electron to this
plasma. The number of atoms, Na, per cubic centimeter (and therefore the
number of free electrons in a monovalent metal) can be obtained by applying

Na ¼ N0d
M

; (7.5)

where N0 is theAvogadro constant, d the density, andM the atomic mass of
the element. One calculates about 1022 to 1023 atoms per cubic centimeter,
i.e., 1022 to 1023 free electrons per cm3 for a monovalent metal.

The electrons move randomly (in all possible directions) so that their
individual velocities in the absence of an electric field cancel and no net
velocity results. This situation changes when an electric field is applied. The
electrons are then accelerated with a force eE towards the anode and a net
drift of the electrons results, which can be expressed by a form of Newton’s
law (F ¼ ma)

m
dv

dt
¼ eE ; (7.6)

where e is the charge of the electrons and m is their mass. Equation (7.6)
implies that as long as an electric field persists, the electrons are constantly
accelerated. Equation (7.6) also suggests that after the field has been
removed, the electrons keep drifting with constant velocity through the
crystal. This is generally not observed, however, except for some materials
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at very low temperatures (superconductors). The free electron model
needs, therefore, an adjustment to take into account the electrical resistance.

An electron, accelerated by an electric field, may be described to increase
its drift velocity until it encounters a collision. At this time, the electron
has acquired the drift velocity vmax which it may lose, all or in part, at the
collision (Fig. 7.2(a)). Alternatively, and more appropriately, one may
describe an electron motion to be counteracted by a “friction” force gv
which opposes the electrostatic force eE . We postulate that the resistance
in metals and alloys is due to interactions of the drifting electrons with some
lattice atoms, i.e., essentially with the imperfections in the crystal lattice
(such as impurity atoms, vacancies, grain boundaries, dislocations, etc.).
Thus, (7.6) is modified as follows:

m
dv

dt
þ gv ¼ eE ; (7.7)

where g is a constant. The second term in (7.7) is a damping or friction force
which contains the drift velocity, v, of the electrons. The electrons are
thought to be accelerated until a final drift velocity vf is reached (see
Fig. 7.2(b)). At that time the electric field force and the friction force are
equal in magnitude. In other words, the electrons are thought to move in a
“viscous” medium.

For the steady state case (v ¼ vf) we obtain dv/dt ¼ 0. Then (7.7)
reduces to

gvf ¼ eE ; (7.8)

which yields

g ¼ eE

vf
: (7.9)

Figure 7.2. (a) Schematic representation of an electron path through a conductor (containing

vacancies, impurity atoms, and a grain boundary) under the influence of an electric field. This

classical model does not completely describe the resistance in materials. (b) Velocity

distribution of electrons due to an electrostatic force and a counteracting friction force.

The electron eventually reaches the final velocity vf.
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We insert (7.9) into (7.7) and obtain the complete equation for the drifting
electrons under the influence of an electric field force and a friction force:

m
dv

dt
þ eE

vf
v ¼ eE : (7.10)

The solution to this equation3 is

v ¼ vf 1� exp � eE

mvf
t

� �� �� �
: (7.11)

We note that the factor mvf=eE in (7.11) has the unit of a time. It is
customary to define this quantity

t ¼ mvf
eE

; (7.12)

as a relaxation time (which can be interpreted as the average time between
two consecutive collisions). Rearranging (7.12) yields

vf ¼ teE
m

: (7.13)

We make use of (7.4), which states that the current density, j, is proportional
to the velocity of the drifting electrons and proportional to the number of
free electrons, Nf (per cm

3). This yields, with (7.2),

j ¼ Nfvfe ¼ sE : (7.14)

Combining (7.13) with (7.14) finally provides the sought-for equation for
the conductivity,

s ¼ Nfe
2t

m
: (7.15)

Equation (7.15) teaches us that the conductivity is large for a large number
of free electrons and for a large relaxation time. The latter is proportional to
the mean free path between two consecutive collisions. Themean free path
is defined to be

l ¼ vt: (7.15a)

3The reader may convince himself/herself of the correctness of this solution by inserting (7.11) and

its first derivative by time into (7.10). Further, inserting t ! 1 into (7.11) yields correctly v ¼ vf
(Fig. 7.2(b)). See also Problem 8.
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7.4. Conductivity—Quantum Mechanical Considerations

It was stated above that the valence electrons perform, when in equilibrium,
random motions with no preferential velocity in any direction. One can
visualize this fact conveniently by plotting the velocities of the electrons in
velocity space (Fig. 7.3(a)). The points inside a sphere (or inside a circle when
considering two dimensions) correspond to the endpoints of velocity vectors.
The maximum velocity that the electrons are able to assume at T ¼ 0 is the
Fermi velocity, vF (i.e., the velocity of the electrons at the Fermi energy).
The sphere having vF as a radius represents, therefore, the Fermi surface. All
points inside the Fermi sphere are occupied. As a consequence the velocity
vectors cancel each other pairwise at equilibrium and no net velocity of the
electrons results.

If an electric field is applied, the Fermi sphere is displaced opposite to
the field direction, i.e., towards the positive end of the electric field, due to the
net velocity gain of the electrons (Fig. 7.3(b) dashed circle). The great majority
of the electron velocities still cancel each other pairwise (shaded area).
However, some electrons remain uncompensated; their velocities are shown
cross hatched in Fig. 7.3(b). These electrons cause the observed current. The
Drude description of conduction thus needs a modification. In the classical
picture one would assume that all electrons drift, under the influence of an
electric field, with a modest velocity. Quantummechanics, instead, teaches us
that only specific electrons participate in conduction and that these electrons
drift with a high velocity which is approximately the Fermi velocity vF.

An additional point needs to be discussed and leads to an even deeper
understanding. The largest energy which the electrons can assume in a metal
at T ¼ 0 is the Fermi energy EF (Chapter 6). A large number of electrons
actually possess this very energy since the density of states and thus the
population density is highest around EF (Fig. 7.4). Thus, only a little extra
energy DE is needed to raise a substantial number of electrons from the
Fermi level into slightly higher states. As a consequence, the energy (or the
velocity) of electrons accelerated by the electric field E is only slightly

ΔV

v(k)y v(k)y

v(k)x

v'(k)y

Fermi Surface

vF

– +

v(k)x

v1
v2

v3

v4

v5

(a) (b)

Figure 7.3. Velocity of electrons in two-dimensional velocity space. (a) Equilibrium and (b)

when an electric field is applied. The shaded areas to the left and right of the v(k)y-axis are of
equal size. They cancel each other. The cross-hatched area remains uncompensated.
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larger than the Fermi energy EF (or the Fermi velocity vF) so that for all
practical purposes the mean velocity can be approximated by the Fermi
velocity, vF. We implied this fact already in our previous discussions.

We now calculate the conductivity by quantum mechanical means and
apply, as before, Ohm’s law j ¼ sE , (7.2). The current density j is, as
stated in (7.4), the product of the number of electrons, the electron velocity,
and the electron charge. In our present case, we know that the velocity of
the electrons which are responsible for the electron conduction is essen-
tially the Fermi velocity, vF. Further, the number of electrons which need to
be considered here is N0, i.e., the number of displaced electrons per unit
volume, as shown in Fig. 7.4. Thus, (7.4) needs to be modified to read

j ¼ vFeN
0: (7.16)

The number of electrons displaced by the electric field E is

N0 ¼ N EFð ÞDE (7.17)

(see Fig. 7.4), which yields for the current density

j ¼ vFeN EFð ÞDE ¼ vFeN EFð Þ dE
dk

Dk: (7.18)

The factor dE/dk is calculated by using the E versus |k| relationship known
for free electrons (4.8), i.e.,

E ¼ \2

2m
k2: (7.19)

Taking the first derivative of (7.19) yields, with k ¼ p=\ (4.7),

dE

dk
¼ \2

m
k ¼ \2p

m\
¼ \mvF

m
¼ \vF: (7.20)

Figure 7.4. Population density N(E) versus energy for free electrons (see Fig. 6.5) and

displacement DE by an electric field (see Fig. 7.3(b)). N0 is the number of displaced electrons

per unit volume (see (6.11a)) in the energy interval DE. N(E) is defined per unit energy and,

in the present case, also per unit volume, see (6.8).
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Inserting (7.20) into (7.18) yields

j ¼ v2FeN EFð Þ\Dk: (7.21)

The displacement, Dk, of the Fermi sphere in k-space under the influence of
an electric field can be calculated by using (7.6) and p ¼ \k (4.7):

F ¼ m
dv

dt
¼ d mvð Þ

dt
¼ dp

dt
¼ \

dk

dt
¼ eE ; (7.22)

which yields

dk ¼ eE

\
dt;

or

Dk ¼ eE

\
Dt ¼ eE

\
t; (7.23)

where t is the time interval Dt between two “collisions” or the relaxation
time (see Section 7.3). Inserting (7.23) into (7.21) yields

j ¼ v2Fe
2N EFð ÞE t: (7.24)

One more consideration needs to be made. If the electric field vector points
in the negative v(k)x direction, then only the components of those velocities
that are parallel to the positive v(k)x direction contribute to the electric
current (Fig. 7.5). The v(k)y components cancel each other pairwise. In
other words, only the projections of the velocities vF on the positive
v(k)x-axis (vFx ¼ vF cos y) contribute to the current. Thus, we have to sum
up all contributions of the velocities in the first and fourth quadrants in
Fig. 7.5, which yields

Figure 7.5. Two-dimensional velocity space.
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j ¼ e2N EFð ÞE t
ðþp=2

�p=2
vF cos yð Þ2 dy

p

¼ e2N EFð ÞE t v
2
F

p

ðþp=2

�p=2
cos2y dy

¼ e2N EFð ÞE t v
2
F

p
1

4
sin 2yþ y

2

� �þp=2

�p=2
;

j ¼ 1

2
e2N EFð ÞE tv2F:

A similar calculation for a spherical Fermi surface yields

j ¼ 1

3
e2N EFð ÞE tv2F: (7.25)

Thus, the conductivity finally becomes, with s ¼ j=E (7.2),

s ¼ 1

3
e2v2FtN EFð Þ: (7.26)

This quantum mechanical equation reveals that the conductivity depends
on the Fermi velocity, the relaxation time, and the population density (per
unit volume). The latter is, as we know, proportional to the density of states.
Equation (7.26) is more meaningful than the expression derived from the
classical electron theory (7.15). Specifically, (7.26) contains the information
that not all free electrons Nf are responsible for conduction, i.e., the conduc-
tivity in metals depends to a large extent on the population density of the
electrons near the Fermi surface. For example, monovalent metals (such as
copper, silver, or gold) have partially filled valence bands, as shown in
Figs. 5.22 or 6.7. Their electron population densities near their Fermi energy
are high (Fig. 7.6), which results in a large conductivity according to (7.26).

Figure 7.6. Schematic representation of the density of states (Fig. 6.6) and thus, with minor

modifications, also the population density (6.7). Examples for highest electron energies for a

monovalent metal (EM), for a bivalent metal (EB), and for an insulator (EI) are indicated.
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Bivalent metals, on the other hand, are distinguished by an overlapping of
the upper bands and by a small electron concentration near the bottom of
the valence band, as shown in Fig. 6.7(c). As a consequence, the electron
population near the Fermi energy is small (Fig. 7.6), which leads to a
comparatively low conductivity. Finally, insulators and semiconductors
have, under certain conditions, completely filled electron bands, which
results in a virtually zero population density near the top of the valence
band (Fig. 7.6). Thus, the conductivity in these materials is extremely small.

7.5. Experimental Results and Their Interpretation

7.5.1. Pure Metals

The resistivity of a metal, such as copper, decreases linearly with decreasing
temperature until it reaches a finite value (Fig. 7.7) according to the empirical
equation

r2 ¼ r1 1þ a T2 � T1ð Þ½ �; (7.27)

where a is the linear temperature coefficient of resistivity. We postulate that
thermal energy causes lattice atoms to oscillate about their equilibrium
positions, thus increasing the incoherent scattering of the electron waves
(or equivalently, increasing the number of electron-atom collisions). The
residual resistivity, rres, is interpreted to be due to imperfections in the
crystal, such as impurities, vacancies, grain boundaries, or dislocations.
The residual resistivity is essentially not temperature-dependent. According to

Figure 7.7. Schematic representation of the temperature dependence of the resistivity of

copper and various copper–nickel alloys. rres is the residual resistivity.
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Matthiessen’s rule the resistivity arises from independent scattering processes
which are additive, i.e.,

r ¼ rth þ rimp þ rdef ¼ rth þ rres: (7.28)

The thermally induced part of the resistivity, rth, is called the ideal resistiv-
ity, whereas the resistivity that has its origin in impurities (rimp) and defects
(rdef) is summed up in the residual resistivity. The number of impurity
atoms is generally constant in a given metal or alloy. The number of
vacancies or grain boundaries, however, can be changed by various heat
treatments. For example, if a metal is annealed at temperatures close to its
melting point and then rapidly quenched into water at room temperature,
its room-temperature resistivity increases noticeably due to quenched-in
vacancies. Frequently, this resistance increase diminishes during room-
temperature aging or annealing at slightly elevated temperatures due to
the annihilation of some vacancies. Likewise, recrystallization, grain
growth, and many other metallurgical processes change the resistivity of
metals. As a consequence of this, and due to its simple measurement, the
resistivity is one of the most widely studied properties in materials research.

It is interesting to compare the thermally induced change in conductivity
in light of the quantummechanical and classical models. The number of free
electrons, Nf, essentially does not change with temperature. Likewise, N(E)
changes very little with T. However, the mean free path, and thus the
relaxation time, decreases with increasing temperature (due to a large rate
of collisions between the drifting electrons and the vibrating lattice atoms).
This, in turn, decreases s according to (7.15) and (7.26), in agreement with
the observations in Fig. 7.7. Thus, both models accurately describe the
temperature dependence of the resistivity.

7.5.2. Alloys

The resistivity of alloys increases with increasing amount of solute content
(Fig. 7.7). The slopes of the individual r versus T lines remain, however,
essentially constant. Small additions of solute cause a linear shift of the r
versus T curves to higher resistivity values in accordance with Matthiessen’s
rule. This resistivity increase has its origin in several mechanisms. First, atoms
of different size cause a variation in the lattice parameter and, thus, in electron
scattering. Second, atoms having different valences introduce a local charge
difference that also increases the scattering probability. Third, solutes which
have a different electron concentration compared to the host element alter
the position of the Fermi energy. This, in turn, changes the population density
N(E) according to (6.8) and thus the conductivity, see (7.26).

Various solute elements might alter the resistivity of the host material to
different degrees. This is demonstrated in Fig. 7.8. Experiments have shown
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that the resistivity of dilute single-phase alloys increases with the square of
the valence difference between solute and solvent constituents (Linde’s
rule, Fig. 7.8(b)). Thus, the electron concentration of the solute element,
i.e., the number of additional electrons the solute contributes, clearly plays a
vital role in the resistance increase, as already mentioned above.

The isothermal resistivity of concentrated single-phase alloys often has
a maximum near 50% solute content, as shown in Fig. 7.9 (solid line).
Specifically, the residual resistivity of these alloys depends, according to
Nordheim’s rule, on the fractional atomic compositions (XA and XB) of the
constituents

r ¼ XArA þ XBrB þ CXAXB; (7.29)

where C is a materials constant. Nordheim’s rule holds strictly only for a
few selected binary systems, because it does not take into consideration the

Figure 7.9. Schematic representation of the resistivity of ordered and disordered copper–

gold alloys.

Figure 7.8. Resistivity change of various dilute silver alloys (schematic). Solvent and solute

are all from the fifth period. (a) Resistivity change versus atomic % solute and (b) resistivity

change due to 1 atomic % of solute.
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changes in the density of states with composition. This is particularly true
for alloys containing a transition metal.

The resistivity of two-phase alloys is, in many instances, the sum of the
resistivities of each of the components, taking the volume fractions of each
phase into consideration. However, additional factors, such as the crystal
structure and the kind of distribution of the phases in each other, must also
be considered. The concentration dependence of the resistivity of two-phase
alloys does not exhibit a maximum, as in Fig. 7.9, but resembles instead a
linear interpolation between the resistivities of the individual phases.

Some alloys (copper with small amounts of iron, for example) show
a minimum in the resistivity at low temperatures. This anomaly is due to
additional scattering of electrons by the magnetic moments of the solutes
and is a deviation from the Matthiessen rule (Kondo effect).

The property of certain materials to conduct electricity, albeit with some
resistance, is utilized for resistors in electrical circuits (to limit the current
flow), or for generating heat (strip heaters, portable radiators, furnaces, etc.).
The “Joule heating”, or power, P, thus produced is proportional to the
resistance of the wire and the square of the current:

P ¼ I2R: (7.30)

One common type of resistor is made from carbon-composites. Others are
wire-wound, for example, around a ceramic body. They employ alloys of
high resistivity (about 10�4 O cm), such as nichrome (nickel-chromium),
and need to withstand corrosion and be suitable for high temperatures.
Other resistors may consist of metal films on glass or ceramic substrates.
Integrated circuits use silicon technology for the same purpose. Resistors
having a fixed value are color-coded to indicate their nominal resistance, the
tolerance of this value, and the rated wattage (see table in Appendix 4).
Variable resistors, having a sliding contact, are either wire-wound or of the
carbon-composite type.

7.5.3. Ordering

Solute atoms are generally randomly distributed in the solvent. Thus, the
number of centers where incoherent scattering occurs increases proportion-
ally with the number of substitutional atoms. If, however, the solute atoms
are periodically arranged in the matrix, i.e., if, for example, in a 50/50 alloy
the A and B atoms alternately occupy successive lattice sites, then the
electron waves are coherently scattered. This causes a decrease in resistivity
(and an increase in the mean free path) (Fig. 7.9). Only selected alloys,
such as Cu3Au, CuAu, Au3Mn, etc., show a tendency towards long-range
ordering.

The ordered state can be achieved by annealing an alloy of appropriate
composition slightly below the order–disorder transition temperature (about

92 II. Electrical Properties of Materials



395�C in Cu3Au) followed by a moderate cooling rate, or by slowly cooling
from above the transition temperature. Long-range ordering causes super-
lattice lines in X-ray patterns.

The disordered state can be obtained at room temperature by quenching
the alloy rapidly in ice brine from slightly above the transition temperature.
Annealing above this transition temperature destroys the ordering effect. In
some alloys, however, such as in CuAu, the tendency towards ordering is so
strong that even near the melting point some ordering remains.

Some alloys, such as a-copper–aluminum, exhibit a much smaller resis-
tance decrease by annealing below a certain ordering temperature. This
effect is called short-range ordering and has been found to be due to
small domains in which the atoms are arranged in an ordered fashion. In
the short-range ordered state the A–B interactions are slightly stronger than
the A–A or B–B interactions. (Short-range ordering can be identified by
using small-angle X-ray scattering. It causes small and broad intensity
increases between the regular diffraction lines.4)

7.6. Superconductivity

Superconductors are materials whose resistivities become immeasurably
small or actually become zero below a critical temperature, Tc. The most
sensitive measurements have shown that the resistance of these materials in
the superconducting state is at least 1016 times smaller than their room
temperature values. (See, in this context, Fig. 7.1.) So far, 27 elements,
numerous alloys, ceramic materials (containing copper oxide), and organic
compounds (based, e.g., on selenium or sulfur) have been discovered to
possess super-conductivity (see Table 7.1). Their Tc values range between
0.01 K and 138 K. Some metals such as cesium become superconducting
only if a large pressure is applied to them. The superconducting transition is
reversible. The superconducting state has to be considered as a separate
state, distinct from the liquid, solid, or gaseous states. It has a higher degree
of order—the entropy is zero.

Seventy-five years after the first discovery of superconductivity in mer-
cury (H.K. Onnes, Leiden/Holland, 1911) a new class of superconductors
was found by Bednorz and M€uller (Z€urich/Switzerland, 1986) which
involved copper oxide-based ceramics. These materials displayed a tran-
sition temperature almost twice that of what has been known so far. This
observation triggered an immense research effort virtually everywhere in
the world involving billions of dollars in research money and thousands of
scientists who competed for finding the most advantageous superconducting

4H. Warlimont, ed., Order–Disorder Transformations in Alloys, Springer-Verlag, Berlin (1974).
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compound. As a result of this endeavor, within a few years, new copper
oxide-based compounds were found that were named 1-2-3 superconductors
because of the characteristic molar ratios between rare earth to alkaline earth
to copper (see Table 7.1). Eventually, ceramic materials having critical
temperatures above 77 K were synthesized, which were euphorically called
“high-Tc superconductors.” Superconductors having a Tc above 77 K
(boiling point of liquid nitrogen) are technologically interesting because
they do not require liquid helium (boiling point 4 K) or liquid hydrogen
(boiling point 20 K) for cooling.

Recently, a new class of superconductors, which is based on layers of iron
and arsenic (among others) has been discovered. Examples are parent
compounds consisting of LaOFeAs, BaFe2As2, FeSe, and iron phosphide.
In many respects, these so called pnictides (i.e. compounds of the nitrogen
group), also called iron-based superconductors or ferropnictides have
some properties similar to the cuprates (compounds based on copper
anions). LaOFeAs is not superconducting, but becomes superconducting
when some of the oxygen is replaced by up to 11% fluorine (Tc ¼ 26 K).
Replacing the lanthanum with cerium, samarium, neodymium and/or pra-
seodymium leads to a Tc of about 52 K. Doped FeSe has a Tc of 8 K at normal
pressure and a Tc of 27 K under high pressure. Moreover, the parent
compound is antiferromagnetic. This property is destroyed by increased
doping, leading to superconductivity. But there also exist differences
among the cuprates. The mechanisms still need to be sorted out.

A zero resistance combined with high current densities makes super-
conductors useful for strong electromagnets, as needed, e.g., in magnetic

Table 7.1. Critical Temperatures of Some Superconducting Materials.

Materials Tc [K] Remarks

Tungsten 0.01 —

Mercury 4.15 H.K. Onnes (1911)

Sulfur-based organic superconductor 8 S.S.P. Parkin et al. (1983)

Nb3Sn and Nb–Ti 9 Bell Labs (1961), Type II

V3Si 17.1 J.K. Hulm (1953)

Nb3Ge 23.2 (1973)

La–Ba–Cu–O 40 Bednorz and M€uller (1986)
YBa2Cu3O7 � x

a 92 Wu, Chu, and others (1987)

RBa2Cu3O7 � x
a �92 R ¼ Gd, Dy, Ho, Er, Tm, Yb, Lu

Bi2Sr2Ca2Cu3O10 + d 113 Maeda et al. (1988)

Tl2CaBa2Cu2O10 + d 125 Hermann et al. (1988)

HgBa2Ca2Cu3O8 + d 134 R. Ott et al. (1995)

Hg0.8Tl0.2Ba2Ca2Cu3O8.33 138 At ambient pressure

LaOFeAs + F 26 H. Hosono et al. (2008)

aThe designation “1-2-3 compound” refers to the molar ratios of rare earth to alkaline earth to copper.
(See chemical formula.)
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resonance imaging devices (used in medicine), high-energy particle accel-
erators, or electric power storage devices. (The latter can be appreciated
by knowing that once an electrical current has been induced in a loop
consisting of a superconducting wire, it continues to flow without significant
decay for several weeks.) Further potential applications are lossless power
transmission lines, high-speed levitated trains, more compact and faster
computers, or switching devices called cryotrons. (The latter device is
based on the destruction of the superconducting state in a strong magnetic
field, see below).

Despite the above-mentioned discoveries and achievements, supercon-
ducting electromagnets for high magnetic fields are, as of this writing, still
manufactured from “old-fashioned” Nb–Ti or Nb3Sn alloys (and not from
ceramic superconductors) for reasons which will be discussed in the next
section. The wires for the electromagnets are composed of fine filaments
of a Nb–Ti alloy, each of which is only micrometers in diameter. They are
imbedded in a matrix of nearly pure copper (for flexibility). We shall cover
the basic concepts for these applications in the following sections.

7.6.1. Experimental Results

When the temperature of a superconducting material is lowered, the transi-
tion into the superconducting state is generally quite sharp for pure and
structurally perfect elements (Fig. 7.10). A temperature range of less than
10�5 K has been observed in pure gallium. In alloys, however, the transition
may be spread over a range of about 0.1 K. Ceramic superconductors
generally display an even wider spread in transition temperatures.

The transition temperature, Tc, often varies with the atomic mass, ma,
according to

ma
a � Tc ¼ const:; (7.31)

Figure 7.10. Schematic representation of the resistivity of pure and impure superconducting

elements. Tc is the transition or critical temperature.
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where a is a materials constant (Isotope effect). As an example, Tc for
mercury varies from 4.185 K to 4.146 K when ma changes from 199.5 to
203.4 atomic mass units.

Elimination of the superconducting state does not only occur by raising
the temperature, but also by subjecting the material to a strong magnetic
field. The critical magnetic field strength, Hc, above which superconduc-
tivity is destroyed, depends upon the temperature at which the material is
held. In general, the lower the sample temperature, the higher the critical
field Hc (Fig. 7.11(a)). One finds

Hc ¼ H0 ¼ 1� T2

T2
c

� �
; (7.32)

where H0 is the critical magnetic field strength at 0 K. Ceramic super-
conductors usually have a smaller Hc than metallic superconductors, i.e.,
they are more vulnerable to lose superconductivity by a moderate magnetic
field.

As already mentioned above, one of the main applications of super-
conductors is in wires for the windings of high-strength electromagnets.
We will learn in Chapter 14 that considerable currents are needed for these
large field strengths. Now, conventional wires, when passed by large cur-
rents, generate substantial amounts of resistive heating, see (7.30), which
needs to be removed somehow, for example, by water cooling. On the other
hand, superconducting wires that have a zero resistance below Tc are free of
the resistive power loss. In this case, however, a cooling below Tc is still
needed. In practice, it is a weighting between acquisition price and operation

Superconducting
state

Superconducting
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Normal state

(a) (b)

Normal state

Tc
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Ho

Tc T0
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T

Figure 7.11. (a) Dependence of critical field strength, Hc, at which superconductivity is

destroyed, in relation to the temperature of the specimen. (b) The limits of superconductivity

are defined in a critical T-H-I-diagram.
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cost which commands the decision whether a superconducting or a normal
electromagnet is used.

One limiting factor for ultrahigh field strengths is that the magnetic field
thus produced can reach Hc, so that the superconducting state is eventually
destroyed by its own magnetic field. Moreover, another limiting parameter
exists, namely, the critical current, Ic, above which superconductivity
disappears. All taken, an interrelationship between temperature, current,
and magnetic field strength is observed: an increase in one of these para-
meters decreases the critical value of the remaining two. In other words,
superconductivity is only present when temperature, magnetic field strength,
and current remain within a “critical space” in a T-H-I-diagram, as depicted
in Fig. 7.11(b).

Two classes of superconducting materials are distinguished. In type I
superconductors the destruction of the superconducting state by a magnetic
field, i.e., the transition between the superconducting and normal state,
occurs sharply (Fig. 7.12). The critical field strength Hc is relatively low.
Thus, type I superconductors are generally not used for coils for super-
conducting magnets. In type II superconductors the elimination of the
superconducting state by a magnetic field is gradual. The superconducting
properties are extended to a field Hc2, which might be 100 times higher than
Hcl (Fig. 7.13(a)). Because of this stronger resistance against the magneti-
cally induced destruction of the superconducting state, type II superconduc-
tors are mainly utilized for superconducting solenoids. Magnetic fields of
several tens of tesla (hundreds of kilogauss) have been achieved with these
materials. Among the type II superconductors are transition metals and
alloys consisting of niobium, aluminum, silicon, vanadium, lead, tin, tita-
nium, and, in particular, Nb3Sn or Nb–Ti. Ceramic superconductors also
belong to this group. (The terms “type I or type II superconductors” are
often used likewise when the abrupt or gradual transition with respect to
temperature is described, see Fig. 7.10).

Figure 7.12. Schematic representation of the resistivity of a type I (or soft) superconductor
when a magnetic field of field strength H is applied. These solids behave like normal

conductors above Hc.
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The interval between Hc1 and Hc2 represents a state in which super-
conducting and normal conducting areas are mixed in the solid. Specifically,
one observes small circular regions, called vortices or fluxoids, which are in
the normal state and which carry the smallest possible unit of a magnetic
flux, called a flux quantum,

f0 ¼
h

2e
¼ 2:07� 10�15 T �m2

� �
: (7.33)

The vortices are surrounded by large, superconducting regions.
The fluxoids are parallel to the magnetic field lines and are regularly

arranged in space, thus forming essentially a two-dimensional superlattice
(Fig. 7.13(b)). (The regular arrangement of the fluxoids stems mainly from
the fact that they repel each other.) One would therefore expect that a current
which flows perpendicular to these fluxoids (as is the case for electromag-
nets) would always find an unobstructed path through the superconducting
matrix and thus would exhibit unlimited superconductivity. However, since
the current in an electromagnet flows at a right angle to the magnetic field, a
so-called Lorentz force is created, which pushes the fluxoids perpendicular
to the current and the magnetic field directions see Fig. 8.11. Thus, the
moving fluxoids may become obstacles for the drifting electrons. As a
result, the current is reduced, or equivalently, the electrical resistance is
increased. The obstruction does not occur, however, when the fluxoids are
pinned to their positions, for example, by microstructural inhomogeneities
in the matrix, such as grain boundaries, dislocations, or fine particles of the
alloying components. This fluxoid pinning has been achieved by heat
treatment and by plastic deformation, for example, by wire drawing. It is
the basis for the presently used Nb3Sn superconducting magnets.

Figure 7.13. (a) Schematic representation of the resistivity of a type II (or hard) superconduc-
tor. The region betweenHc1 andHc2 is called the vortex state. AboveHc2, the solid behaves like

a normal conductor. (b) Schematic representation of fluxoids in a superconducting matrix.
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Fluxoid pinning and resultant large critical currents have not yet been
achieved in ceramic superconductors. The reason for this lies in the fact
that thermally induced lattice vibrations make fluxoid pinning at higher
temperatures (100 K) considerably more difficult than at much lower
temperatures.

It is noted in passing that superconducting materials have exceptional
magnetic properties. For example, a permanent magnet levitates in mid-air
above a piece of a superconducting material that is cooled below Tc. We
shall return to the magnetic properties of superconductors in Section 15.1.1.

Ceramic superconductors seem to be characterized by two-dimensional
sheets of atoms, a Cu–O nonstoichiometry (i.e., a limited amount of an
oxygen deficiency, see Fig. 7.14), a reduced lattice parameter between the
copper atoms, and a tetragonal (high temperature) to orthorhombic (below
room temperature) transition. Only the orthorhombic modification is super-
conducting. Further, ceramic superconductors appear to be antiferromagnetic (see
Section 15.1.4). Thus, the superconductivity is most likely connected to the
entire lattice structure.

Figure 7.14. Room-temperature unit cell of YBa2Cu3O7�x. The structure is an orthorhombic

layered perovskite (BaTiO3) containing periodic oxygen vacancies. Two examples for oxygen

vacancies are indicated by a “V.” Adapted from M. Stavola, Phys. Rev. B, 36, 850 (1987).
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Despite their considerably higher transition temperatures, ceramic
superconductors have not yet revolutionized new technologies, mainly
because of their inherent brittleness, their incapability of carrying high
current densities, and their environmental instability. These obstacles
may be overcome eventually, e.g., by using bismuth-based materials that
are capable of carrying high currents when cooled to about 20 K or by
utilizing composite materials, i.e., by inserting the ingredient oxide pow-
ders into silver tubes and sintering them after plastic deformation (e.g.,
wire pulling). Other techniques employ depositions of ceramic supercon-
ducting films on ductile substrates. Additions of silver into some ceramic
superconductors improve their environmental stability (by reducing the
porosity of the material) without lowering Tc. In any event, the further
development of superconducting materials should be followed with great
anticipation.

*7.6.2. Theory

Attempts to explain superconductivity have been made since its discovery in
1911. One of these theories makes use of the two-fluid model, which
postulates superelectrons that experience no scattering, have zero entropy
(perfect order), and have long coherence lengths, i.e., an area 1000 nm wide
over which the superelectrons are spread. The London theory is semi-
phenome-nological and dwells basically on the electrodynamic properties.
The BCS theory (which was developed in 1957 by Bardeen, Cooper, and
Schrieffer) is capable of explaining the properties of conventional super-
conductors reasonably well. However, it does not seem to satisfactorily
interpret high-temperature (ceramic) superconductors. The BCS theory is
quite involved. Phenomenological descriptions of the concepts leading to
this theory are probably simplifications of the actual mechanisms which
govern superconduction and may thus provide temptations for misleading
conclusions. (As is so often the case in quantummechanics, the mathematics
is right—it is only our lack of imagination that holds us back from correctly
interpreting the equations.) Nevertheless, a conceptual description of the
BCS theory and its results is attempted.

One key to the understanding of the BCS theory is accepting the existence
of a pair of electrons (Cooper pair) that has a lower energy than two
individual electrons. Imagine an electron in a metal at T ¼ 0 K (no lattice
vibrations). This electron perturbs the lattice slightly in its neighborhood.
When such an electron drifts through a crystal the perturbation is only
momentary, and, after passing, a displaced ion reverts back into its original
position. One can consider this ion to be held by springs in its lattice
position, so that after the electron has passed by, the ion does not simply
return to its original site, but overshoots and eventually oscillates around its
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rest position. A phonon is created.5 This phonon in turn interacts quickly
with a second electron, which takes advantage of the deformation and
lowers its energy. Electron 2 finally emits a phonon by itself, which interacts
with the first electron and so on. It is this passing back and forth of phonons
which couples the two electrons together and brings them into a lower
energy state (Fig. 7.15). One can visualize that all electrons on the Fermi
surface having opposite momentum and opposite spin (i.e., k " and �k #)
form those Cooper pairs (Fig. 7.16), so that these electrons form a cloud of
Cooper pairs which drift cooperatively through the crystal. Thus, the super-
conducting state is an ordered state of the conduction electrons. The scat-
tering on the lattice atoms is eliminated, thus causing a zero resistance, as
described similarly in Section 7.5.3 where we observed that ordering of the
atoms in a crystal lattice reduces the resistivity.

One further aspect has to be considered. We just mentioned that the
electrons of a Cooper pair have a lower energy than two unpaired electrons.
Thus, the Fermi energy in the superconducting state may be considered to be
lower than that for the nonsuperconducting state. This lower state is sepa-
rated from the normal state by an energy gap, Eg (Fig. 7.17). The energy gap
stabilizes the Cooper pairs against small changes of net momentum, i.e.,
prevents them from breaking apart. Such an energy gap of about 10�4 eV
has indeed been observed by impinging IR radiation on a superconductor at
temperatures below Tc and observing an onset of absorption of the IR
radiation.

Figure 7.15. Schematic of a Cooper pair.
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Figure 7.16. Fermi sphere, Fermi surface, and Cooper pair in a metal.

5A phonon is a lattice vibration quantum. We will describe the properties of phonons in Chapter 20.
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An alternate method for measuring this gap energy is by utilizing the
Josephson effect. The experiment involves two pieces of metal, one in the
superconducting state and the other in the normal state. They are separated
by a thin insulating film of about 1 nm thickness (Fig. 7.18(a)). A small
voltage of proper polarity in the millivolt range applied to this device raises
the energy bands in the superconductor. Increasing this voltage eventually
leads to a configuration where some filled electron states in the supercon-
ductor are opposite to empty states in the normal conductor (Fig. 7.18(b)).
Then the Cooper pairs are capable of tunneling across the junction similarly
as described in Section 4.3. The gap energy is calculated from the threshold
voltage at which the tunneling current starts to flow.

E

EF for
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state

Z(E)
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Figure 7.17. Density of states, Z(E), versus electron energy in the superconducting state.
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Figure 7.18. Josephson junction (a) in the unbiased state (b) with applied voltage across the

junction which facilitates tunneling in the indicated direction.
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In closing, we would like to revisit the electron–phonon coupling
mechanism, which is believed to be the essential concept for the interpre-
tation of superconduction, at least for metals and alloys. It has been
explained above that in the normal state of conduction (above Tc) strong
interactions between electrons and phonons would lead to collisions (or
scattering of the electron waves), and thus to electrical resistance, whereas
at low temperatures the same interactions would cause Cooper pairs to
form and thus promote superconduction. This would explain why the noble
metals (which have small electron–phonon interactions) are not super-
conducting. In other words, poor conductors in the normal state of con-
duction are potential candidates for high-Tc superconductors (and vice
versa). Ceramic and organic superconductors fit into this scheme. Still,
some scientists believe that phonons are involved in the coupling process
only at very low temperatures (e.g., below 40 K). At somewhat higher
temperatures, when phonons cause substantial scattering of the electrons,
excitons (i.e., electron-hole pairs) may link electrons to form Cooper pairs,
as suggested by A. Little for organic superconductors. Still other scientists
propose resonating valence bonds as a coupling mechanism for high-Tc
superconductors.

7.7. Thermoelectric Phenomena

Assume that two different types of materials (e.g., a copper and an iron wire)
are connected at their ends to form a loop, as shown in Fig. 7.19. One of the
junctions is brought to a higher temperature than the other. Then a potential

V

Fe

Cu

0°C Heat

Figure 7.19. Schematic representation of two thermocouples made of copper and iron which

are brought in contact with each other (Seebeck effect).
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difference, DV, between these two thermocouples is observed which is
essentially proportional to the temperature difference, DT, where

DV
DT

¼ S (7.34)

is called the thermoelectric power, or the Seebeck coefficient (after its
inventor, T.J. Seebeck, a German physicist who discovered, in 1821, that a
thermoelectric circuit like the one just described deflected a close-by com-
pass needle). A thermoelectric power of several microvolts per degree is
commonly observed. As an example, the frequently used copper/constantan
(Cu–45% Ni) combination yields about 43 mV/K. It has a useful range
between �180 and þ400�C. For higher temperatures, thermocouples of
chromel (90%Ni–10%Cr) and alumel (95%Ni–2%Mn–2%Al) or platinum/
Pt–13%Rh (up to 1700�C) are available. Some semiconductors have See-
beck coefficients that reach into the millivolt per degree range, that is, they
are one or two orders of magnitude higher than for metals and alloys.
Among them are bismuth telluride (Bi2Te3), lead telluride (PbTe), and
silicon–30% germanium alloys.

Thermocouples made of metal wires are utilized as rigid, inexpensive,
and fast probes for measuring temperatures even at otherwise not easily
accessible places. Thermoelectric power generators (utilizing the above-
mentioned semiconductors) are used particularly in remote locations of the
earth (Siberia, Alaska, etc.). They contain, for example, a ring of thermo-
couples, arranged over the glass chimney of a kerosene lamp which is
concomitantly used for lighting. The temperature difference of 300�C thus
achieved yields electric power of a few watts or sometimes more, which can
be used for radios or communication purposes. Heat produced by the decay
of radioisotopes or by small nuclear reactors yields thermoelectric power for
scientific instruments on the moon (e.g., to record moon quakes) and for
relaying the information back to earth. In solar thermoelectric generators
sunlight is concentrated by concave mirrors on thermocouples. Most of the
above-described devices have an efficiency between 5 and 10%.

A reversion of the Seebeck effect is the Peltier effect: A direct electric
current that flows through junctions made of different materials causes one
junction to be cooled and the other to heat up (depending on the direction of
the current); see Fig. 7.20(a). Lead telluride or bismuth telluride in combi-
nation with metals are frequently used. One particularly effective device for
which temperature differences up to 70�C have been achieved is shown in
Fig. 7.20(b). It utilizes n- and p-type semiconductors (see Section 8.3) in
conjunction with metals. Cooling occurs on those junctions that are
connected to the upper metal plate (1 and 2), whereas heat develops on
the lower junctions 3 and 4. The heat on the lower plate is removed by water
or air cooling. The above-quoted temperature drop can even be enhanced by
cascading several devices, that is, by joining multiple thermoelectric
refrigerators for which each stage acts as the heat sink for the next.
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The thermoelectric effects can be explained by applying elements of
electron theory as described in the previous sections: When two different
types of conducting materials are brought into contact, electrons are trans-
ferred from the material with higher Fermi energy (EF) “down” into the
material having a lower EF until both Fermi energies are equal. As a
consequence, the material that had the smaller EF assumes a negative charge
with respect to the other. This results in the above-mentioned contact
potential between the materials. The contact potential is temperature-
dependent. Specifically, when a material is heated, a substantial number of
electrons are excited across the Fermi energy to higher energy levels. These
extra electrons drift to the cold junction, which becomes negatively charged
compared to the hot junction. The equivalent is true for the Peltier effect:
The electrons having a larger energy (that is, those having a higher EF) are
caused by the current to transfer their extra energy into the material having a
lower EF, which in turn heats up. Concomitantly, the material having a
higher EF is caused to lose energy and thus becomes colder.

7.8. Galvanoelectric Phenomena (Batteries)

7.8.1. Primary Cells

The method of obtaining steady electricity, involving two different metals
and an electrolyte, goes back to the famous experiment by Luigi Galvani,
(an anatomy professor at the Italian City of Bologna), who observed in 1786
that legs from freshly killed frogs twitched, when connected to a copper
hook and an iron railing. This experiment was explained in 1790 by Count
Alessandro Volta, an Italian physics professor, who postulated that the
chemical action of the bodily fluid of frogs and two different metals
produced electricity. Based on Galvani’s observation, Volta combined a
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Figure 7.20. Thermoelectric refrigeration devices which make use of the Peltier effect.

(a) Principle arrangement. (b) Efficient device utilizing p- and n-type semiconductors (see

Section 8.3) in conjunction with metals.
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series of “galvanic cells” to make a battery6 which was named a voltaic
pile. He utilized for his battery alternating stacked silver and zinc disks
which were separated from each other by paper that was moistened with a
salt solution. The more noble metal (e.g. copper and silver in the above-
mentioned cases) provides the plus polarity of the galvanic cell (called the
cathode), whereas the less noble metal (e.g. iron or zinc) is termed the
negative pole or anode.

In 1836 Daniell introduced the copper/zinc galvanic cell in which the
electrodes were immersed in sulfate solutions of their respective metals, see
Fig. 7.21. To explain the mechanisms involved, the Cu/Zn cell is used as an
example. We consider two half-cells which are separated by a semiperme-
able membrane which allows the SO4

�� ions to pass freely. When a load is
applied to the cell, an oxidation process occurs at the negative electrode
which releases Zn ions into the ZnSO4 solution and provides electrons. As a
consequence, the Zn electrode is eventually reduced in size. Concomitantly,
the same number of electrons is accepted by the positive electrode (e.g. Cu)
which gains in size by picking up Cu-ions from the copper sulfate solution.
The pertinent reaction equations are thus as follows:

Zn ! Zn2þ þ 2e�

Cu2þþ 2e� ! Cu

The galvanic cell essentially “dies” when all the Zn metal is used up or
the electrolyte is exhausted. It should be noted that most galvanic cells
contain only one electrolyte.

Zn Cu

V

+

Oxidation of Zn Reduction of Cu

Semipermeable membrane

CuSO4
Electrolyte

ZnSO4
Electrolyte

Zn++Zn++

Zn++

SO4

_ _

_ _

Cu++

Cu++
Cu++

Figure 7.21. Schematic representation of a copper–zinc galvanic cell.

6The word “battery” is commonly used interchangeably for only one or several galvanic cells

which are connected in series.
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The positive electrode of a Leclanché cell (invented ~1860) consists of a
mixture of manganese dioxide and carbon powder packed around a carbon
rod. A zinc container serves as the negative electrode. The electrolyte is a
paste i.e. a watery solution of ammonium chloride and zinc chloride which
are thickened by a swelling substance such as flour. This paste permeates a
paper separator between the electrodes. The reaction equations are similar,
as above with the modification that the electrons combine with the manga-
nese dioxide (MnO2) and the water to form manganese oxide (Mn2O3) and
hydroxide ions (OH�):

2MnO2 þH2Oþ 2e� ! Mn2O3þ 2OH�

(A secondary reaction yields ammonia (NH3) and water when the negative
hydroxide ions combine with positive ammonium ions (NH4

þ) that form
when ammonium chloride (NH4Cl) is dissolved in water.) The Leclanché
cell, often also called a dry cell or carbon-zinc cell, is the inexpensive
workhorse for general purpose applications, such as flashlights, toys, radios,
tape recorders, and low power uses. It provides about 1.5 V at open circuit
when new. Unfortunately, the electrolyte eventually corrodes the zinc con-
tainer which could cause leakage of the electrolyte and damage to the device
in which the battery is inserted. To prevent corrosion, the zinc has been
amalgamated (up to one weight% mercury per cell) which is environmen-
tally questionable when the battery is discarded into a land fill. Today most
dry cells (including the alkaline cell, below) utilize corrosion inhibitors like
indium, alloyed into zinc, or use ultra-pure Zn instead. Thus, in general
these newer batteries can be disposed of after exhaustion without major
environmental concerns.

The alkaline cells are in many respects similar to the carbon–zinc
batteries with the exception that the negative electrode consists of porous
zinc that, because of its larger surface, oxidizes more readily than a solid Zn
electrode. Further, the electrolyte consists of highly caustic potassium
hydroxide which is a better electron conductor and therefore allows larger
currents. Alkaline batteries last about 5 to 8 times longer than Leclanché
cells but cost somewhat more. The specific energy is about 20% to 30%
higher than that for the Leclanché cell.

Themercury cell consists of a zinc anode, a mercury oxide cathode, and
potassium hydroxide as electrolyte. Its main advantage is that the cell
voltage remains constant during use. It is therefore primarily utilized for
hearing aids and sensitive scientific instruments. Because of environmental
concerns with disposal, some countries do not allow sale of mercury-
containing batteries or have very stringent recycling requirements.

A somewhat different cell is the zinc-air battery which possesses an up
to 5 times higher energy density compared to the devices discussed so far.
The reason for this is that oxygen from the atmosphere is the reactant for one
of the electrodes (the cathode), whereas in many other systems the oxidant
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must be contained (packaged) in the cell which adds weight. The overall
chemical reaction is accordingly

2 Znþ O2 ! 2 ZnO:

The anode consists of a jelly-type mixture of amalgated zinc powder and a
highly conductive solution of KOH in water, (which serves as the electro-
lyte). The cathode is made of catalyzed carbon which reduces oxygen
from the air. The air flows into the cell through small holes, drilled into
the corrosion resistant nickel can. During shipping and storing, these holes
are sealed by an adhesive tape to prevent air penetration. Shortly before
service, the tape is removed which activates the cell. Once the tab is peeled
off, the cell capacity reduces to 50% of its original value in 3-12 weeks,
depending on cell size and temperature. With the seal in place, the cell can
be stored for about 3 years. The nominal cell voltage is between 1.4 V and
theoretically 1.65 V. Zinc-air batteries are used in hearing aids, medical
devices, pagers, and film cameras. Their cost is relatively low.

Finally, the silver-oxide battery, (also called silver-zinc battery) has a
40% longer run time than lithium-ion batteries. It has an open potential of
1.86 V, and a high energy to weight ratio. The cost is, however, large due to
the price of silver. The cathode consists of silver oxide and the anode is
made of zinc. These electrodes are immersed in an electrolyte of KOH or
NaOH. The overall chemical reaction is

Znþ Ag2O ! ZnOþ 2Ag:

Silver-zinc batteries contain generally about 0.2% mercury to prevent zinc
corrosion. However, mercury-free silver-oxide batteries are available since
2004. Silver-oxide batteries are used for button cells (hearing aids) and
specialty space applications where price does not play a role.

All taken, primary batteries are designed for one-time use, that is, as a
rule, they cannot be recharged and need to be discarded (Exceptions exist).
The energy provided by them ranges from about $100 per KW�h (flashlight
batteries) to $5,000 per KW�h for batteries used in watches or hearing aids.
These figures compare to about $0.14 per KW�h for household currents.

7.8.2. Secondary Cells

Rechargeable batteries are called secondary batteries. The price per KW�h
is spread over several use cycles, for example $5 per KW�h for a Nickel–
Cadmium battery (see below). In principle, the chemical reaction which is
used for providing energy can be reversed in these devices. Important para-
meters for rechargeable batteries are the specific charge given in A�h per kg,
the attainable specific energy (in W�h/kg) and the efficiency which is in the
neighborhood of about 50 to 80% due to heat and chemical losses. Assuming
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an efficiency per charge cycle of 99%, the available stored energy after
100 cycles is reduced to 37% of the original value, and to less than 1%
after 500 cycles! Let us look now at a few important secondary battery types.

The lead storage battery, invented in 1859 by Gaston Planté, is still the
dominant workhorse for starting automobiles, power supplies in cars, and
many emergency lights. In principle, it can be built using two identical lead
electrodes which are immersed in dilute sulfuric acid (H2SO4). In this case,
it needs to be electrically “charged” before usage. In practice, however, the
negative electrode utilizes a gridmade of a lead–antimony alloy whose open
spaces are filled with lead in spongy form. The positive electrode consists of
lead dioxide (PbO2). The chemical reaction during discharge on the negative
electrode is

Pbþ SO4
�� ! PbSO4 þ 2e�;

whereas on the positive terminal the reaction is

PbO2þ 4Hþ þ SO4
�� þ 2e� ! PbSO4þ 2H2O:

During discharge, the cell produces water (see the equation above) and thus
dilutes the sulfuric acid eventually to a point that does not allow any further
chemical reactions. At that time, the battery needs to be connected to an
external power supply (of the same polarity!) which forces the above
reactions to occur in the reverse direction. In practice, however, a lead-
acid cell is often trickle charged, that is, a voltage is almost constantly
provided to the battery by the alternator. The lead cell provides about 2 V at
open circuit. A number of these cells are commonly connected in series to
yield a higher voltage. The specific energy of the lead cell is at most
30–40 W�h per kg, (energy density 120–170 W�h/L), and the efficiency is
near 50%. Corrosion of the grid and the development of hydrogen and
oxygen gases lead eventually to a loss of water which needs to be occasion-
ally resupplied. This disadvantage can be largely reduced by a closed battery
system which provides, however, a slightly reduced voltage.

Rechargeable Alkaline Manganese (RAM) cells are similar in con-
struction to the above-mentioned Zn-MnO2 primary batteries. RAMs are
quite popular in many countries and are thus, among the most-sold, small
rechargeables. Special features are: (1) a micro-porous separator which
prohibits shorts between the electrodes by Zn-dendrites, (2) an addition of
Ag2O to the positive mass which fosters the oxidation of hydrogen, and (3)
addition of BaSO4 to MnO2 which enhances the recharging properties of
MnO2. Several 100 recharge cycles are possible; however, this will eventu-
ally yield only 30 to 40% of the original capacity. The specific energy is
about 90 to 100W�h/kg. RAMs can be considered as environmentally safe if
no Hg is used in the Zn (see above).

The nickel–cadmium storage battery (invented 1899 by Waldemar Jun-
ger) utilizes Cd as the negative electrode and nickel hydroxide (NiOOH)
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at the positive terminal. The electrolyte consists of an alkaline solution
of potassium hydroxide (KOH) in water. Ni–Cd’s provide an open circuit
voltage of 1.35 V, have a specific energy of about 50W�h/kg, (and an energy
density of 120–170 W�h/L).The reaction equation on the negative electrode
during discharge is

Cdþ 2OH� ! Cd OHð Þ2 þ 2e�

At the positive terminal we observe:

NiOOHþH2Oþ 1e� ! Ni OHð Þ2þOH�

The above reactions occur in the opposite directions during charging.
Ni–Cd’s can be manufactured air-tight but corrosion reactions in the cells
eventually lead to self-discharging. Ni–Cd batteries are mainly used in cell
phones, laptops, tooth brushes, cordless power drills, garden tools, and other
portable equipment, e.g. for airplanes and space applications. One of their
main characteristics is the “memory effect”, that is the battery remembers the
voltage in the charge cycle where previous rechargings began. It is assumed
that under partial discharge/recharge condition the intermetallic compound
Ni5Cd21 is formed on the Cd electrode. Reducing the cell voltage by at least
0.2 V or better occasional complete discharge alleviates this effect. Even
though Ni–Cd’s are widely used, they will be eventually phased out because
of their toxic cadmium content, which is an environmental handicap, pre-
venting disposal in land-fills. They should be recycled. Ni-Cd’s will proba-
bly be replaced by nickel–metal hydride batteries; see next paragraph.
However, Ni seems to cause some environmental concern in land-fills too.

Nickel–metal hydride (Ni–MH) batteries have a storage capacity which
is roughly twice as large as the above-discussed Ni–Cd’s. The specific
energy is about 80 W�h/kg and the open circuit voltage of one cell is
1.35 V. The positive electrode consists, as above, of NiOOH. The negative
electrode material of the form AB5 or AB2 can store and release large
amounts of hydrogen ions (oxidation and reduction respectively) per vol-
ume. In essence, the H+-ions are transferred through the alkaline electrolyte
from one electrode to the other. The A-metal in AB5 alloys are for example
pure or blends of La, Ce, Nd, Pr, or other lanthanides, whereas the B-metal
consists of Ni, or Co (with small additions of Al, Si, and Mn).The A-metals
in AB2 are V, Ti, or Zr, whereas B stands for Ni, Co, Mn, Al, or Cr.
The listed additive elements are used for different purposes, for example
for increasing the hydrogen storage capability, corrosion resistance, or
reversibility of the reactions. The “classic memory effect” (see above)
does not occur in Ni–MH’s.

The Lithium-ion cell (invented in 1912 by G.N. Lewis and developed by
M.S. Whittingham in the 1970s) is one of the most important batteries from
a commercial point of view because of its light weight, high open circuit
voltage (around 4 V), high specific energy (about 130W�h/kg), non-aqueous
chemistry, lack of memory effect (see above), small self-discharge rate
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(about 5–10% per month compared to 30% in Ni–MH batteries and 10% in
Ni–Cd’s), and environmental safety when disposed. Indeed, Li-ion cells are
now the most-sold batteries in Japan. Thus, Li-ions are the subject of, as of
this writing, a stormy research activity in particular with respect to new
materials.7 The main concerns are, however, some safety problems (fire or
explosion) which have lead to recalls because of thermal runaway and cell
rupture when overheated, overcharged, or mistreated (e.g. shorts). Specific
built-in circuits prevent charging at excessive high voltages or charging
below a threshold voltage. Li-ion batteries are typically used at present for
laptops, power tools, electric cars, camcorders, etc. The materials used in
lithium-ion batteries are so manifold that a complete list would only confuse
the reader. Instead, a characteristic example (not necessarily the most
efficient one) is given for demonstrating the typical electrochemistry
involved. The negative electrode (anode) of this storage device is often
made from porous carbon (graphite), whereas the positive electrode (cath-
ode) consists of a metal oxide, such as lithium cobalt oxide (LiCoO2) or a
spinel such as lithium manganese oxide. The electrolyte is a lithium salt in
an organic solvent such as organic carbonates containing complexes of
lithium ions. (Since pure Li reacts violently with water a non-aqueous
electrolyte and hermetic sealing against external moisture is imperative.)
The principal mechanism during discharge is as follows: positive lithium
ions are extracted from the negative electrode (leaving electrons behind) and
inserted into the positive electrode (called intercalation). During charging
the reverse process takes place. Specifically, on the positive electrode
(LiCoO2), xLi-ions are extracted:

LiCoO2 ! xLiþ þLiX�1CoO2 þXe�

and inserted into the negative (carbon) electrode:

xLiþ þXe� þ 6C ! LiXC6:

In other words, the current in both directions within the battery is carried by
the movement of lithium ions (and outside, of course, by electrons), once a
load is connected to the terminals.

Li-ion batteries are not without flaws. For one, they have a somewhat
poor life cycle (300 to 500 charges/discharges). Specifically, the Li+ trans-
port is increasingly impeded by deposits which form in the electrolyte and
which gradually decrease the conductivity and thus, the current which can
be drawn. This requires more frequent charging. Second, the shelf life, i.e.
without use, is said to be 3–5 years. Third, elevated temperatures (storage of

7A.K. Shukla and T.P. Kumar, Materials for next-generation lithium batteries, Current Science,
94, 314, (2008); M.S. Whittingham, Materials Challenges Facing Electrical Energy Storage,
MRS Bulletin, 23, 411,(2008); Journal of Materials Science, August 2010: Special issue on latest

materials development for batteries, capacitors, and related items.
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laptops in hot cars and poorly ventilated laptops!) diminish permanently the
storage capacity. Specifically, Li-ion batteries lose irreversibly 20% to 30%
of their capacity per year, depending on their storage temperature. (They
should be stored in a cool place at 40% charge.) Fourth, power tools which
require large currents are better served with Ni-Cd’s or Ni–MH batteries.
Fifth, they are expensive to manufacture. Finally, safety concerns, particu-
larly for batteries with high energy density (electric cars) and after mechan-
ical abuse, have been mentioned already at the beginning. It is, however,
anticipated that the above-explained problems will be solved over time.

A new type of storage device, namely a high-temperature battery, based
on sodium exists, such as the Na-NiCl2 cell, and the Na-S cell in which
liquid sodium is separated by solid electrolytes made from ceramic materi-
als (sodium-b-alumina) that have an exceptionally high ionic conductivity.
These devices are still in development and will not be discussed further here.

Finally, another type of “rechargeable” storage cell, called the flow
battery has been developed, in which the electrolyte is pumped from an
external tank through the device and this way converts chemical energy
directly to electricity. The process is reversible and thus, can be utilized to
store wind, solar and cheap night-time electricity. The flow battery functions
on the fuel-cell principle whereas a fuel (e.g. hydrogen or methanol) and an
oxidant (e.g. oxygen or air) undergo electron transfer reactions at the anode
and cathode respectively. The anode and cathode are separated by an ion
exchange membrane. Among the various types of flow batteries are the
redox (reduction-oxidation) device in which the electroactive components
are dissolved in an electrolyte. Examples are the polysulfide bromide bat-
tery, and the uranium redox flow battery. In hybrid flow batteries, the
electroactive components are deposited as a solid layer. Examples are the
zinc-bromide, cerium-zinc, and the all-lead flow batteries.

7.8.3. Closing Remarks

The development of new, stronger, and improved rechargeable battery
systems is to a large extent politically motivated and driven. Governments
in many industrialized countries and regions (particularly in California)
are interested in “pollution free”, or at least pollution-reduced vehicles.
Rechargeable batteries as a sole energy source for propelling cars are often
considered to be the solution. However, one has to take into consideration that
the electricity required for charging the batteries need to be produced first; this
occurs generally in power plants which utilize mostly coal, petroleum, or
natural gas as fuels. (50% of the electricity in the USA and Germany is
produced by coal, in contrast to 81% in China, 68% in India, and 5% in
France, amounting to 41% as world average). These power plants also emit
CO2 and other pollutants (sulfur, mercury, nitrogen) into the atmosphere. One
should also keep in mind that transmission losses to the consumer, losses
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when charging batteries (about 50%), and consumed energy to manufacture
batteries may contribute likewise, in an indirect way, to energy consumption
and pollution. The same is true for solar energy systems and atomic reactors
(with all their problems) which need years to reach the break-even point at
which energy consumption for production and emission of pollutants are
compensated. In this respect, the specific energy contained in gasoline or
Diesel oil (about 12,000 W�h/kg) does not look too bad. The cost per mile
derived from electricity stemming from a household outlet is higher than that
obtained using a Diesel engine. Moreover, Diesel engines can be made
so energy efficient and pollution-reduced today that they compare quite
favorably with (more expensive) hybrid automobiles (that utilize a gasoline
back-up engine for recharging the battery and capture the energy, evolved
from braking. This makes particularly sense for inner city traffic with frequent
stop and go maneuvers). Some consideration should also be given to the
distance one can drive before recharging of the battery is required which for
lead-batteries is about 60 km (37 miles), and about 40–80 km (25–50 miles)
for a lithium-ion battery, weighing each between 300 and 400 kg. These
values are reduced in cold weather when electric heating is required. In short,
matters do not look as favorable for battery-propelled cars as some proponents
want us to believe (except for niche markets such as intercity delivery and
utility repair trucks). This does not mean that new energy sources will not
be found and used in the future (e.g. fusion). Conservation of energy and
electrically propelled public transportation systems seem to be among the
better alternatives. Finally, batteries are not the only available storage devices
for energy, particular for smoothing out energy peaks. Among the alternative
storage devices are super-capacitors (10 W�h/kg), flywheels, superconducting
magnetic energy storage systems, electrolysis of water in combination with
hydrogen fuel cells (1,100 W�h/kg), flow batteries, and reservoirs in which
water is pumped up during off-peak hours.

Problems

1. Calculate the number of free electrons per cm3 for gold using its density and its atomic mass.

2. Does the conductivity of an alloy change when long-range ordering takes place? Explain.

3. Calculate the time between two collisions and the mean free path for pure copper at room

temperature. Discuss whether or not this result makes sense. Hint: Take the velocity to be

the Fermi velocity, vF, which can be calculated from the Fermi energy of copper EF ¼ 7 eV.

Use otherwise classical considerations and Nf ¼ Na.

4. Electron waves are “coherently scattered” in ideal crystals at T ¼ 0. What does this

mean? Explain why in an ideal crystal at T ¼ 0 the resistivity is small.

5. Calculate the number of free electrons per cubic centimeter (and per atom) for sodium

from resistance data (relaxation time 3.1 � 10�14 s).
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6. Give examples for coherent and incoherent scattering.

7. When calculating the population density of electrons for a metal by using (7.26), a value

much larger than immediately expected results. Why does the result, after all, make sense?

(Take s ¼ 5 � 105 1/O cm; vF ¼ 108 cm/s and t ¼ 3 � 10�14 s.)

8. Solve the differential equation

m
dv

dt
þ eE

vF
v ¼ eE (7.10)

and compare your result with (7.11).

9. Consider the conductivity equation obtained from the classical electron theory. According

to this equation, a bivalent metal, such as zinc, should have a larger conductivity than a

monovalent metal, such as copper, because zinc has about twice as many free electrons as

copper. Resolve this discrepancy by considering the quantum mechanical equation for

conductivity.
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CHAPTER 8

Semiconductors

8.1. Band Structure

We have seen in Chapter 7 that metals are characterized by partially filled
valence bands and that the electrons in these bands give rise to electrical
conduction. On the other hand, the valence bands of insulators are com-
pletely filled with electrons. Semiconductors, finally, represent in some
respect a position between metals and insulators. We mentioned in Chapter
6 that semiconductors have, at low temperatures, a completely filled valence
band and a narrow gap between this and the next higher, unfilled band. The
latter one is called the conduction band. We discuss this now in more
detail.

Because of band overlapping, the valence as well as the conduction bands
of semiconductors consist of mixed (hybrid) s- and p-states. The eight
highest s þ p states (two s- and six p-states)8 split into two separate
(s þ p) bands,8 each of which consists of one s- and three p-states (see
Fig. 8.1). The lower s-state can accommodate one electron per atom,
whereas the three lower p-states can accommodate three electrons per
atom. The valence band can, therefore, accommodate 4Na electrons. (The
same is true for the conduction band.) Because germanium and silicon
possess four valence electrons per atom (group IV of the Periodic Table),
the valence band is completely filled with electrons and the conduction band
remains empty.

A deeper understanding of this can be gained from Fig. 8.2, which depicts
part of a calculated band structure for silicon. Consider at first that electrons

8See Appendix 3.

R.E. Hummel, Electronic Properties of Materials 4th edition,
DOI 10.1007/978-1-4419-8164-6_8, # Springer ScienceþBusiness Media, LLC 2011
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are “filled” into these bands like water being poured into a vessel. Then,
of course, the lowest s-state will be occupied first. Since no energy gap
exists between the top of the s-state and the next higher p-state, additional
electrons will immediately start to occupy the p-states. This process pro-
ceeds until all three lower p-states are filled. All of the 4Na electrons of
the semiconductor are accommodated now. Note that no higher energy band
touches the p-states of the valence band. Thus, an energy gap exists between
the filled valence and the empty conduction band. (As was shown in
Fig. 5.23, the bands in different directions in k-space usually have different
shapes so that a complete assessment can only be made by inspecting the
entire band structure.)
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Figure 8.1. Sharp energy levels, widening into bands, and band overlapping with decreasing

atomic distance for covalent elements. (Compare with Fig. 4.14.)
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Figure 8.2. Schematic band structure of silicon in the kx (or X) direction (plotted in the

reduced zone scheme). The separation of the two highest p-states in the valence band is

strongly exaggerated. Compare with the complete band structure of Fig. 5.23.
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All materials which have bonds characterized by electron sharing (cova-
lent bonds) have in common the above-mentioned hybrid bands (Fig. 8.1).
An important difference is the magnitude of the gap energy, Eg, between the
conduction band and the valence band. As can be seen from Table 8.1, the
gap energies for group IV elements decrease with increasing atomic num-
ber. Diamond, for example, has a gap energy of 5.48 eV and is, therefore, an
insulator (at least at and below room temperature) whereas the Eg for silicon
and germanium is around 1 eV. Gray tin, finally, has an energy gap of only
0.08 eV. (It should be noted in passing that the utilization of diamond as an
extrinsic semiconductor has been demonstrated.)

The gap energy is slightly temperature dependent according to the empir-
ical equation

EgT ¼ Eg0 � xT2

T þ yD
; (8.1)

where Eg0 is the band gap energy at T ¼ 0 K, x � 5 � 10�4 eV/K, and yD is
the Debye temperature (see Table 19.2). It is noted that Eg becomes smaller
with increasing temperature. For example, the temperature dependence of
Eg for Si is �2.4 � 10�4 eV/K (see Appendix 4).

8.2. Intrinsic Semiconductors

Semiconductors become conducting at elevated temperatures. In an intrinsic
semiconductor, the conduction mechanism is predominated by the proper-
ties of the pure crystal. In order for a semiconductor to become conducting,
electrons have to be excited from the valence band into the conduction
band where they can be accelerated by an external electric field. Likewise,
the electron holes which are left behind in the valence band contribute
to the conduction. They migrate in the opposite direction to the electrons.
The energy for the excitation of the electrons from the valence band into
the conduction band stems usually from thermal energy. The electrons
are transferred from one band into the next by interband transitions.

Table 8.1. Gap Energies for Some Group IV Elements at

0 K (see also Appendix 4).

Element Eg [eV]

C (diamond) 5.48

Si 1.17

Ge 0.74

Sn (gray) 0.08
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We turn now to a discussion of the Fermi energy in semiconductors. We
learned in Section 6.2 that the Fermi energy is that energy for which the
Fermi distribution function equals 1

2
. (It is advisable to keep only this

“definition” of the Fermi energy in mind. Any other definition which
might give a correct understanding for metals could cause confusion for
semiconductors!) The probability that any state in the valence band of an
intrinsic semiconductor at T ¼ 0 K is occupied by electrons is 100%, i.e.,
F(E) ¼ 1 for E < Ev (Fig. 8.3). At higher temperatures, however, some of
the electrons close to the top of the valence band have been excited into
the conduction band. As a consequence, the probability function F(E) is
slightly reduced at the top of the valence band for T > 0 K.

On the other hand, no electrons are found at T ¼ 0 K in the conduction
band. Thus, the Fermi distribution function for E > E0 must be zero. Again,
for higher temperatures, a small deviation from F(E) ¼ 0 near the bottom of
the conduction band is expected (Fig. 8.3). The connection between the two
branches of the F(E) curve just discussed is marked with a dashed line in
Fig. 8.3. This connecting line does not imply that electrons can be found in
the forbidden band since F(E) is merely the probability of occupancy of an
available energy state. (A detailed calculation provides a slightly modified
F(E) curve whose vertical branches extend further into the forbidden band.)

Our discussion leads to the conclusion that the Fermi energy, EF (i.e., that
energy where FðEÞ ¼ 1

2
), is located in the center of the forbidden band.

In other words, for intrinsic semiconductors we find EF ¼ �Eg/2 when the
zero point of the Energy scale is placed at the bottom of the conduction
band.

We may also argue somewhat differently: For T > 0 K the same amount
of current carriers can be found in the valence as well as in the conduction
band. Thus, the average Fermi energy has to be halfway between these
bands. A simple calculation confirms this statement. (Problem 3 in this

Conduction
band

Valence
band

0 1/2 1 F(E)

Eg EF

EV

E0

E

Figure 8.3. Schematic Fermi distribution function and Fermi energy for an intrinsic semi-

conductor for T > 0 K. The “smearing out” of the Fermi distribution function at E0 and EV is

exaggerated. For reasons of convenience, the zero point of the energy scale is placed at the

bottom of the conduction band.

118 II. Electrical Properties of Materials



chapter should be worked at this point to deepen the understanding.) We
implied in our consideration that the effective masses of electrons and holes
are alike (which is not the case; see Appendix 4).

Of special interest to us is the number of electrons in the conduction band.
From the discussion carried out above, we immediately suspect that a large
number of electrons can be found in the conduction band if Eg is small and,
in addition, if the temperature is high. In other words, we suspect that the
number of electrons in the conduction band is a function of Eg and T.
A detailed calculation, which we will carry out now, verifies this suspicion.

In Section 6.4 we defined N* to be the number of electrons that have an
energy equal to or smaller than a given energy, En. For an energy interval
between E and E + dE, we obtained (6.9),

dN* ¼ NðEÞ dE; (8.2)

where

NðEÞ ¼ 2 � ZðEÞ � FðEÞ (8.3)

was called the population density (6.7) and

ZðEÞ ¼ V

4p2
2m

\2

� �3=2
E1=2 (8.4)

is the density of states (6.5). In our particular case, the Fermi distribution
function, F(E), can be approximated by

FðEÞ ¼ 1

exp
E� EF

kBT

� �
þ 1

’ exp � E� EF

kBT

� �� �
(8.5)

because E � EF is about 0.5 eV and kBT at room temperature is of the order
of 10�2 eV. Therefore, the exponential factor is large compared to 1
(Boltzmann tail). We integrate over all available electrons that have ener-
gies larger than the energy at the bottom of the conduction band (E ¼ 0),
and obtain, with (8.2), (8.4), and (8.5),9

N* ¼ V

2p2
� 2m

\2

� �3=2 ð1
0

E1=2 � exp � E� EF

kBT

� �� �
dE

9The integration should actually be done over the states in the conduction band only. However,

since the probability factor F(E) is rapidly approaching zero for energies E > EF, the substitution

of infinity for the upper limit does not change the result appreciably. This substitution brings the

integral into a standard form, namely:

ð1
0

x1=2e�nxdx ¼ ð1=2nÞ
ffiffiffiffiffiffiffiffi
p=n

p
:
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or

N* ¼ V

2p2
� 2m

\2

� �3=2

exp
EF

kBT

� �ð1
0

E1=2 � exp � E

kBT

� �� �
dE: (8.6)

Integration9 yields

N* ¼ V

2p2
2m

\2

� �3=2

exp
EF

kBT

� �
kBT

2
pkBTð Þ1=2

¼ V

4

2mkBT

p\2

� �3=2

exp
EF

kBT

� �
:

(8.7)

Introducing EF ¼ �Eg/2 (see above) and the effective mass ratio10 me*=m0

we then obtain, for the number of conduction-band electrons per unit
volume, Ne ¼ N*/V,

Ne ¼ 1

4

2m0kB

p\2

� �3=2 me*

m0

� �3=2
T3=2 exp � Eg

2kBT

� �� �
: (8.8)

The constant factor
1

4

2m0kB

p\2

� �3=2
has the value 4.84 � 1015 (cm�3 K�3/2).

Thus, we can write for (8.8)

Ne ¼ 4:84� 1015
me*

m0

� �3=2

T3=2 exp � Eg

2kBT

� �� �
: (8.9)

We see from (8.9) that the number of electrons in the conduction band per
cm3 is a function of the energy gap and the temperature, as expected. We
further notice that the contribution of a temperature increase to Ne resides
mostly in the exponential term and only to a lesser extent in the term T3=2.
A numerical evaluation of (8.9) tells us that the number of electrons per cubic
centimeter in silicon at room temperature is about 109 (see Problem 1). In
other words, at room temperature, only one in every 1013 atoms contributes
an electron to the conduction. This explains the poor conduction of Si, see
Fig. 7.1. We shall see in the next section that in extrinsic semiconductors
many more electrons can be found in the conduction band.

The electron and hole density is shown in Fig. 8.4 for an intrinsic
semiconductor. The number of electrons is given by the area enclosed by
the Z(E) curve and F(E) ¼ exp[�(E � EF)/kBT] (8.6).

As implied before, the number of electrons in the conduction band must
equal the number of holes in the valence band. This means that an identical

10Note that m ¼ m0, see Section 6.7 and Footnote 17 in Section 6.7.
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equation to (8.8) can be written for the holes if we assume m�
e � m�

h, which
is not strictly true.11 (An additional term, which is usually neglected,
modifies EF slightly.)

The conductivity11 of an intrinsic semiconductor is not determined by
the number of electrons and holes alone. The mobility11, m, of the current
carriers,

m ¼ v

E
; (8.10)

i.e., their (drift) velocity per unit electric field, also contributes its share to
the conductivity, s. An expression for the conductivity is found by combin-
ing (7.2),

j ¼ sE ; (8.11)

and (7.4),

j ¼ Nve; (8.12)

with (8.10), which yields

s ¼ N
v

E
e ¼ Nme: (8.13)

Taking both electrons and holes into consideration we can write

s ¼ Neeme þ Nhemh;

s ¼ 4:84� 1015
m*

m0

� �3=2
T3=2e me þ mhð Þ exp � Eg

2kBT

� �� �
;

(8.14)
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Density of holes, Nh
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–

Z(E)

exp
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KBT

Figure 8.4. Density of electrons (Ne) and holes (Nh) for an intrinsic semiconductor.

11For numerical values, see the tables in Appendix 4.
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where the subscripts e and h stand for electrons and holes, respectively.
With increasing temperatures, the mobility of the current carriers is reduced
by lattice vibrations (Fig. 8.5(a)). On the other hand, around room tempera-
ture, an increasing number of electrons are excited from the valence band
into the conduction band, thus strongly increasing the number of current
carriers, Ne and Nh (Fig. 8.5(b)). The conductivity is, according to (8.14), a
function of these two factors whereby N is dominating (Fig. 8.5(c)).

At low temperatures the electrons are incoherently scattered by impurity
atoms and lattice defects. It is therefore imperative that semiconductor
materials are of extreme purity. Methods to achieve this high purity will
be discussed in Section 8.7.11.

8.3. Extrinsic Semiconductors

8.3.1. Donors and Acceptors

We learned in the previous section that in intrinsic semiconductors only a
very small number of electrons (about 109 electrons per cubic centimeter)
contribute to the conduction of the electric current. In most semiconductor
devices, a considerably higher number of charge carriers are, however,
present. They are introduced by doping, i.e., by adding small amounts of
impurities to the semiconductor material. In most cases, elements of group
III or V of the periodic table are used as dopants. They replace some regular
lattice atoms in a substitutional manner. Let us start our discussion by
considering the case where a small amount of phosphorus (e.g., 0.0001%)
is added to silicon. Phosphorus has five valence electrons, i.e., one valence
electron more than silicon. Four of these valence electrons form regular
electron-pair bonds with their neighboring silicon atoms (Fig. 8.6). The
fifth electron, however, is only loosely bound to silicon, i.e., the binding

Figure 8.5. Schematic representation of the temperature dependence of (a) electron and hole

mobilities, (b) number of carriers in an intrinsic semiconductor, and (c) conductivity for an

intrinsic semiconductor. (T is given in Kelvin).
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energy is about 0.045 eV (see Appendix 4 and Problem 10.) At slightly
elevated temperatures this extra electron becomes disassociated from its
atom and drifts through the crystal as a conduction electron when a voltage
is applied to the crystal. Extra electrons of this type are called “donor
electrons.” They populate the conduction band of a semiconductor, thus
providing a contribution to the conduction process.

It has to be noted that at sufficiently high temperatures, in addition
to these donor electrons, some electrons from the valence band are also
excited into the conduction band in an intrinsic manner. The conduction
band contains, therefore, electrons from two sources, the amount of which
depends on the device temperature (see Section 8.3.3). Since the conduction
mechanism in semiconductors with donor impurities (P, As, Sb) is predo-
minated by negative charge carriers (electrons) these materials are called
n-type semiconductors. The electrons are the majority carriers.

A similar consideration may be done with impurities from the third group
of the Periodic Chart (B, Al, Ga, In). They possess one electron less than
silicon and, therefore, introduce a positive charge cloud into the crystal
around the impurity atom. The conduction mechanism in these semicon-
ductors with acceptor impurities is predominated by positive carriers
(holes) which are introduced into the valence band. They are therefore
called p-type semiconductors.

8.3.2. Band Structure

The band structure of impurity or extrinsic semiconductors is essentially the
same as for intrinsic semiconductors. It is desirable, however, to represent in

Figure 8.6. Two-dimensional representation of the silicon lattice. An impurity atom of

group V of the periodic table (P) is shown to replace a silicon atom. The charge cloud

around the phosphorus atom stems from the extra phosphorus electron. Each electron pair

between two silicon atoms constitutes a covalent bond (electron sharing). The two electrons

of such a pair are indistinguishable, but must have opposite spin to satisfy the Pauli principle.
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some way the presence of the impurity atoms by impurity states. It is
common to introduce into the forbidden band so-called donor or acceptor
levels (Fig. 8.7). The distance between the donor level and the conduction
band represents the energy that is needed to transfer the extra electrons into
the conduction band. (The same is true for the acceptor level and valence
band.) It has to be emphasized, however, that the introduction of these
impurity levels does not mean that mobile electrons or holes are found in
the forbidden band of, say, silicon. The impurity states are only used as a
convenient means to remind the reader of the presence of extra electrons or
holes in the crystal.

8.3.3. Temperature Dependence of the Number of Carriers

At 0 K the excess electrons of the donor impurities remain in close proxim-
ity to the impurity atom and do not contribute to the electric conduction. We
express this fact by stating that all donor levels are filled. With increasing
temperature, the donor electrons overcome the small potential barrier
(Fig. 8.7(a)) and are excited into the conduction band. Thus, the donor
levels are increasingly emptied and the number of negative charge carriers
in the conduction band increases exponentially, obeying an equation similar
to (8.9). Once all electrons have been excited from the donor levels into the
conduction band, any further temperature increase does not create additional
electrons and the Ne versus T curve levels off (Fig. 8.8). As mentioned
before, at still higher temperatures intrinsic effects create additional elec-
trons which, depending on the amount of doping, can outnumber the elec-
trons supplied by the impurity atoms.

Similarly, the acceptor levels do not contain any electrons at 0 K. At
increasing temperatures, electrons are excited from the valence band into
the acceptor levels, leaving behind positive charge carriers. Once all acceptor
levels are filled, the number of holes in the valence band is not increased
further until intrinsic effects set in.

~0.01 eV

~leV

(a) (b)

Figure 8.7. (a) Donor and (b) acceptor levels in extrinsic semiconductors.
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8.3.4. Conductivity

The conductivity of extrinsic semiconductors can be calculated, similarly as
in the previous section (8.13), by multiplying the number of carriers by the
mobility, m, and electron charge, e. Around room temperature, however,
only the majority carriers need to be considered. For electron conduction,
for example, one obtains

s ¼ Ndeeme; (8.15)

where Nde is the number of donor electrons and me is the mobility of the
donor electrons in the conduction band. As mentioned above, it is reason-
able to assume that, at room temperature, essentially all donor electrons
have been excited from the donor levels into the conduction band (Fig. 8.8).
Thus, for pure n-type semiconductors, Nde is essentially identical to the
number of impurities (i.e., donor atoms), Nd. At substantially lower tem-
peratures, i.e., at around 100 K, the number of conduction electrons needs to
be calculated using an equation similar to (8.8).

Figure 8.9 shows the temperature dependence of the conductivity. We
notice that the magnitude of the conductivity, as well as the temperature
dependence of s, is different for various doping levels. For low doping rates
and low temperatures, for example, the conductivity decreases with increas-
ing temperature (Fig. 8.9(b)). This is similar to the case of metals, where the
lattice vibrations present an obstacle to the drifting electrons (or, expressed
differently, where the mobility of the carriers is decreased by incoherent
scattering of the electrons). However, at room temperature intrinsic effects
set in, which increase the number of carriers and therefore enhance the
conductivity. As a consequence, two competing effects determine the con-
ductivity above room temperature: an increase of s due to an increase in the
number of electrons, and a decrease of s due to a decrease in mobility. (It
should be mentioned that the mobility of electrons or holes also decreases

Figure 8.8. Schematic representation of the number of electrons per cubic centimeter in the

conduction band versus temperature for an extrinsic semiconductor with low doping.
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slightly when impurity atoms are added to a semiconductor.) For high
doping levels, the temperature dependence of s is less pronounced due
to the already higher number of carriers (Fig. 8.9(a)). The resistivity (1/s)
of p-and n-doped silicon at room temperature is given in graphical form in
Appendix 4.

8.3.5. Fermi Energy

In an n-type semiconductor, more electrons can be found in the conduction
band than holes in the valence band. This is particularly true at low tem-
peratures. The Fermi energy must therefore be between the donor level
and the conduction band (Fig. 8.10). With increasing temperatures, an
extrinsic semiconductor becomes progressively intrinsic and the Fermi
energy approaches the value for an intrinsic semiconductor, i.e., �(Eg/2).
[Similarly, the Fermi energy for a p-type semiconductor rises with increas-
ing temperature from below the acceptor level to �(Eg/2).]

Figure 8.9. Conductivity of two extrinsic semiconductors, (a) relatively high doping and

(b) low doping. Nd ¼ number of donor atoms per cubic centimeter.

donor levels
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Figure 8.10. Fermi level of an n-type semiconductor as a function of temperature.

Nd � 1016 (atoms per cubic centimeter).
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*8.4. Effective Mass

Some semiconductor properties can be better understood and calculated
by evaluating the effective mass of the charge carriers. We mentioned in
Section 6.7 that m* is inversely proportional to the curvature of an electron
band. We now make use of this finding.

Let us first inspect the upper portion of the valence bands for silicon
near G (Fig. 8.2). We notice that the curvatures of these bands are convex
downward. It is known from Fig. 6.8 that in this case the charge carriers
have a negative effective mass, i.e., these bands can be considered to be
populated by electron holes. Further, we observe that the curvatures of the
individual bands are slightly different. Thus, the effective masses of the
holes in these bands must likewise be different. One distinguishes appropri-
ately between light holes and heavy holes. Since two of the bands, namely,
those having the smaller curvature, are almost identical, we conclude that
two out of the three types of holes are heavy holes.

We turn now to the conduction band of silicon and focus our attention on
the lowest band (Fig. 8.2). We notice a minimum (or valley) at about 85%
between the G and X points. Since the curvature at that location is convex
upward, we expect this band to be populated by electrons. (The energy surface
near the minimum is actually a spheroid. This leads to longitudinal and
transverse masses m1* and mt*.) Values for the effective masses are given
in Appendix 4. Occasionally, average effective masses are listed in the
literature. They may be utilized for estimates.

8.5. Hall Effect

The number and type of charge carriers (electrons or holes) that were
calculated in the preceding sections can be elegantly measured by making
use of the Hall effect. Actually, it is quite possible to measure concentrations
of less than 1012 electrons per cubic centimeter in doped silicon, i.e., one can
measure one donor electron (and therefore one donor atom) per 1010 silicon
atoms. This sensitivity is several orders of magnitude better than in any
chemical analysis.

We assume for our discussion an n-type semiconductor in which the
conduction is predominated by electrons. Suppose an electric current has a
current density j, pointing in the positive x-direction (which implies by
definition that the electrons flow in the opposite direction). Further we
assume that a magnetic field (of magnetic induction B) is applied normal
to this electric field in the z-direction (Fig. 8.11). Each electron is then
subjected to a force, called the Lorentz force, which causes the electron
paths to bend, as shown in Fig. 8.11. As a consequence, the electrons
accumulate on one side of the slab (in Fig. 8.11 on the right side) and are
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deficient on the other side. Thus, an electric field is created in the (negative)
y-direction which is called the Hall field. In equilibrium, the Hall force

FH ¼ �eE y (8.16)

balances the above-mentioned Lorentz force

FL ¼ vxBze; (8.17)

which is proportional to the velocity, vx, of the electrons, the magnetic
induction Bz, and the electron charge, e. FH + FL ¼ 0 yields, for the Hall
field,

E y ¼ vxBz: (8.18)

Combining (8.18) with (7.4) (and knowing that the current is directed in a
direction opposite to the electron flow; see above)

jx ¼ �Nvxe (8.19)

yields for the number of conduction electrons (per unit volume)

N ¼ jxBz

eE y
¼ IxBzLy

AxeVy
; (8.20)

where Ax is the area perpendicular to the electron flow and Vy is the Hall
voltage measured in the y-direction.

e–

+

–

–

jx
–Vx

Bz

y

Figure 8.11. Schematic representation of the Hall effect in an n-type semiconductor (or a

metal in which electrons are the predominant current carriers).
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The variables on the right side of (8.20) can all be easily measured and
the number of conduction electrons can then be calculated. Quite often, a
Hall constant

RH ¼ � 1

Ne
(8.21)

is defined which is inversely proportional to the density of charge carriers,
N. The sign of the Hall constant indicates whether electrons or holes
predominate in the conduction process. RH is negative when electrons are
the predominant charge carriers. (The electron holes are deflected in the
same direction as the electrons but travel in the opposite direction.)

There exists an anomalous Hall effect also called extraordinary Hall
effect which is observed in ferromagnetic materials and induces an addition
to the ordinary Hall effect. This contribution is larger than the ordinary Hall
effect and is caused by the magnetization of the conductor. Its origin is still
being debated.

The Hall conductivity, sy, has been found to be quantized at multiples of
e2/h (where h, is as usual, the Planck constant). This quantum Hall effect
(QHE) can be particularly observed for very clean Si or GaAs, at very low
temperatures (around 3 K) and very high magnetic fields (e.g. 18 Tesla). If
multiple integers of e2/h are found, one refers to it as the integer quantum
Hall effect which is explained by postulating single particle orbitals of an
electron in a magnetic field (Landau quantization). When rational fractions,
u, of e2/h are observed (where u ¼ 1/3, 1/5. 5/2, 12/5, . . . is called the filling
factor), the phenomenon is termed the fractional quantum Hall effect which
is explained by electron–electron interactions. Since the QHE can be mea-
sured to an accuracy of nearly one part per billion, it is used as a standard for
the electrical resistance. (h/e2 ¼ 25812.807557 O is called the von Klitzing
constant or “quantum of resistance”). Interestingly enough, the QHE was
first measured (by von Klitzing in 1980) in silicon field-effect transistors in
which the electron concentration, N, can be continuously varied by changing
the gate voltage, (see Section 8.7.9). The Hall effect is then measured by
analyzing the Hall voltage as a function of the gate voltage. Plateaus are
observed when the ratio between N and the number of flux quanta (the
smallest unit of magnetic flux which can be enclosed in an electron orbit) is
an integer. The Nobel Price in physics was awarded in 1985 to von Klitzing
for discovering the integer QHE, whereas Tsui, St€ormer, and Laughlin
obtained it in 1998 for the fractional QHE.

8.6. Compound Semiconductors

Gallium arsenide (a compound of group III and group V elements of the
Periodic Table) is of great technical interest, partially because of its large
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band gap,12 which essentially prevents intrinsic contributions in impurity
semiconductors even at elevated temperatures, partially because of its larger
electron mobility,12 which aids in high-speed applications, and particularly
because of its optical properties, which result from the fact that GaAs is a
“direct-band gap” material (see Chapter 12). The large electron mobility in
GaAs is caused by a small value for the electron effective mass, which in
turn results from a comparatively large convex upward curvature of the
conduction electron band near G. (See in this context the band structure of
GaAs in Fig. 5.24.) The electrons which have been excited into the conduc-
tion band (mostly from donor levels) most likely populate this high curva-
ture region near G.

The atomic bonding in III–V and II–VI semiconductors resembles that of
the group IV elements (covalent) with the additional feature that the bond-
ing is partially ionic because of the different valences of the participating
elements. The ionization energies12 of donor and acceptor impurities in
GaAs are as a rule one order of magnitude smaller than in germanium or
silicon, which ensures complete ionization even at relatively low tempera-
tures. The crystal structure of GaAs is similar to that of silicon. The gallium
atoms substitute for the corner and face atoms, whereas arsenic takes the
places of the four interior sites (zinc-blende structure).

The high expectations that have been set for GaAs as the semiconductor
material of the future have not yet materialized to date. It is true that GaAs
devices are two and a half times faster than silicon-based devices, and that
the “noise” and the vulnerability to cosmic radiation is considerably reduced
in GaAs because of its larger band gap. On the other hand, its ten-times
higher price and its much greater weight (dSi ¼ 2.3 g/cm3 compared to
dGaAs ¼ 5.3 g/cm3) are serious obstacles to broad computer-chip usage or
for solar panels. Thus, GaAs is predominantly utilized for special applica-
tions, such as high-frequency devices (e.g., 10 GHz), certain military pro-
jects, or satellite preamplifiers. One of the few places, however, where GaAs
seems to be, so far, without serious competition is in optoelectronics (though
even this domain appears to be challenged according to the most recent
research results).

We will learn in Part III that only direct band-gap materials such as GaAs
are useful for lasers and light-emitting diodes (LED). Indirect-band gap
materials, such as silicon, possess instead the property that part of the energy
of an excited electron is removed by lattice vibrations (phonons). Thus, this
energy is not available for light emission. We shall return to GaAs devices in
Section 8.7.9.

GaAs is, of course, not the only compound semiconductor material which
has been heavily researched or is being used. Indeed, most compounds

12See the tables in Appendix 4.
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consisting of elements of groups III and V of the periodic table are of some
interest. Among them are GaP, GaN, InP, InAs, InSb, and AlSb, to mention
a few.12 But also, group II–VI compounds, such as ZnO, ZnS, ZnSe, CdS,
CdTe, or HgS are considered for applications. These compounds have
in common that the combination of the individual elements possesses an
average of four valence electrons per atom because they are located at equal
distances from either side of the fourth column. Another class of compound
semiconductors is the group IV–VI materials,12 which include PbS, PbSe,
and PbTe. Finally, ternary alloys, such as AlxGa1�xAs, or quaternary alloys,
such as AlxGa1�xAsySb1�y, are used. Most of the compounds and alloys are
utilized in optoelectronic devices, e.g., GaAs1�xPx for LEDs, which emit
light in the visible spectrum (see Part III). AlxGa1�xAs is also used in
modulation-doped field-effect transistors (MODFET).

Finally, silicon carbide is the most important representative of the group
IV–IV compounds. Since its band gap is around 3 eV, a-SiC can be used for
very-high-temperature (700�C) device applications and for LEDs that emit
light in the blue end of the visible spectrum. SiC is, however, expensive and
cannot yet be manufactured with reproducible properties. Ga–N–In have
now replaced SiC as blue-emitting LEDs, see p. 280.

Doping of GaAs could be accomplished, for example, by an excess of Ga
atoms (p-type) or an excess of As (n-type). However, typical dopants for
p-type GaAs are C, Be, Zn. Si doping yields an n-type semiconductor.
Molecular beam epitaxy (MBE) allows the production of the wanted com-
pounds and dopings.

8.7. Semiconductor Devices

8.7.1. Metal–Semiconductor Contacts

If a semiconductor is coated on one side with a metal, a rectifying contact
or an ohmic contact is formed, depending on the type of metal used. Both
cases are equally important. Rectifiers are widely utilized in electronic
devices, e.g., to convert alternating current into direct current. However,
the type discussed here has been mostly replaced by p–n rectifiers. On the
other hand, all semiconductor devices need contacts in which the electrons
can easily flow in both directions. They are called ohmic contacts because
their current–voltage characteristic obeys Ohm’s law (7.1).

At the beginning of our discussion let us assume that the surface of an
n-type semiconductor has somehow been negatively charged. The negative
charge repels the free electrons that had been near the surface and leaves
positively charged donor ions behind (e.g., As+). Any electron that drifts
toward the surface (negative x-direction in Fig. 8.12(a)) “feels” this repel-
ling force. As a consequence, the region near the surface has fewer free
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electrons than the interior of the solid. This region is called the depletion
layer (or sometimes space-charge region).

In order to illustrate the repelling force of an external negative charge,
it is customary to curve the electron bands upward near the surface. The
depletion can then be understood by stating that the electrons assume the
lowest possible energy state (or colloquially expressed: “The electrons like
to roll downhill”). The depletion layer is a potential barrier for electrons.

Similarly, if a p-type semiconductor is positively charged at the surface,
the positive carriers (holes) are repelled toward the inner part of the crystal
and the band edges are bent downward (Fig. 8.12(b)). This represents
a potential barrier for holes (because holes “want to drift upward” like a
hydrogen-filled balloon).

8.7.2. Rectifying Contacts (Schottky Barrier Contacts)

It is essential for further discussion to introduce the work function, f,
which is the energy difference between the Fermi energy and the ionization
energy. In other words, f is the energy which is necessary to transport an
electron from EF to infinity. (Values for f are given in Appendix 4.)

Let us consider a metal and an n-type semiconductor before they are
brought into contact. In Fig. 8.13(a) the Fermi energy of a metal is shown to
be lower than the Fermi energy of the semiconductor, i.e., fM > fS.
Immediately after the metal and semiconductor have been brought into
contact, electrons start to flow from the semiconductor “down” into the
metal until the Fermi energies of both solids are equal (Fig. 8.13(b)). As a
consequence, the metal will be charged negatively and a potential barrier is
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Figure 8.12. (a) Band diagram for an n-type semiconductor whose surface has been nega-

tively charged. (b) Band diagram for a p-type semiconductor, the surface of which is

positively charged. X is the distance from the surface.
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formed just as shown in Fig. 8.12. This means that the energy bands in the
bulk semiconductor are lowered by the amount fM � fS with respect to a
point A.

In the equilibrium state, electrons from both sides cross the potential
barrier. This electron flow constitutes the so-called diffusion current. The
number of electrons diffusing in both directions must be identical for the
following reason: the metal contains more free electrons, but these electrons
have to climb a higher potential barrier than the electrons in the semicon-
ductor, whose conduction band contains fewer free electrons.

Similarly, if a p-type semiconductor is brought into contact with a metal
and fM < fS, then electrons diffuse from the metal into the semiconductor,
thus charging the metal and, therefore, the surface of the semiconductor
positively. Consequently, a “downward” potential barrier (for the holes) is
formed (Fig. 8.14).

In addition to the diffusion current just mentioned, a “drift current”
needs to be taken into consideration. Let us assume that an electron–hole
pair was thermally created in or near the depletion layer. Then, the thermally
created electron in the conduction band is immediately swept down the
barrier, and the hole in the valence band is swept up the barrier. This drift
current is usually very small (particularly if the band gap is large, such as in
GaAs) and is relatively insensitive to the height of the potential barrier. The
total current across a junction is the sum of drift and diffusion components.

The potential barrier height for an electron diffusing from the semicon-
ductor into the metal is fM � fS (see Fig. 8.13(b)). This potential differ-
ence is called the contact potential. The height of the potential barrier from
the metal side is fM � w, where w is the electron affinity, measured from
the bottom of the conduction band to the ionization energy (vacuum level)
(Fig. 8.13(a)).

fM–χ fM–fS

EF

EF

EF

Metal n-type semiconductor
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χ
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Figure 8.13. Energy bands for a metal and an n-type semiconductor (a) before and (b) after

contact. fM > fS. The potential barrier is marked with heavy lines. w is the electron affinity.
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We shall now estimate the net current that flows across the potential
barrier when a metal and an n-type semiconductor are connected to a d.c.
source (biasing). At first, the metal is assumed to be connected to the
negative terminal of a battery. As a result, the metal is charged even more
negatively than without bias. Thus, the electrons in the semiconductor are
repelled even more, and the potential barrier is increased (Fig. 8.15(a)).
Further, the depletion layer becomes wider. Because both barriers are now
relatively high, the diffusion currents in both directions are negligible.
However, the small and essentially voltage-independent drift current still
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Figure 8.15. Metal–semiconductor contact with two polarities: (a) reverse bias and (b)

forward bias. The number of electrons that flow in both directions and the net current is

indicated by the length of the arrows. The potential barriers are marked by heavy lines.
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Figure 8.14. Energy bands for a metal and a p-type semiconductor (a) before and (b) after

contact. fM < fS.
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exists, which results in a very small and constant net electron current from
the metal into the semiconductor (reverse bias, Fig. 8.15(a)).

If the polarity of the battery is reversed, the potential barrier in the
semiconductor is reduced, i.e., the electrons are “driven” across the barrier
so that a large net current from the semiconductor into the metal results
(forward bias). The depletion layer is narrow (Fig. 8.15(b)). The voltage–
current characteristic of a rectifier is shown in Fig. 8.16(a). Rectifiers of this
type are used to convert alternating current into direct current, Fig. 8.16(b).

The current that flows from the metal into the semiconductor is

IMS ¼ ACT2 exp � fM � w
kBT

� �� �
; (8.22)

(see Fig. 8.13b) where A is the area of the contact and C is a constant. The
current flowing from the semiconductor into the metal is

ISM ¼ ACT2 exp � fM � fS � eV

kBT

� �� �
; (8.23)

where V is the bias voltage (which has the sign of the polarity of the metal)
and e is the electronic charge. The net current Inet ¼ ISM � IMS consists of
two parts, namely, the saturation current (occasionally called the genera-
tion current)13

Figure 8.16. (a) Characteristic of a rectifier. The reverse current is grossly exaggerated!

(b) Voltage versus time curves to demonstrate the behavior of an alternating current and a

current for which the negative voltage has been eliminated.

13For low enough temperatures, one can assume fS � w; see Figs. 8.10 and 8.13.

8. Semiconductors 135



IS ¼ ACT2 exp � fM � fS

kBT

� �� �
(8.24)

and a voltage-dependent term. The net current is then obtained by combin-
ing (8.23), and (8.24),

Inet ¼ IS exp
eV

kBT

� �
� 1

� �
: (8.25)

We see from (8.25) that for forward bias (positive V) the net current
increases exponentially with voltage. Figure 8.16 reflects this behavior.
On the other hand, for reverse bias (negative V) the current is essentially
constant and equal to �IS. The saturation current is about three orders of
magnitude smaller than the forward current. (It is shown exaggerated in
Fig. 8.16.)

We shall learn in Section 8.7.4 that the same rectifying effect as discussed
above can also be achieved by using a p–n diode. There are, however, a few
advantages in using the metal/semiconductor rectifier. First, the conduction
in a metal/semiconductor device involves, naturally, one type of conduction
carrier (e.g., electrons) only. Thus, no mutual annihilation of electrons and
holes can occur. As a consequence of this lack of “carrier recombination,”
the device may be switched more quickly from forward to reverse bias and is
therefore better suited for microwave-frequency detectors. Second, the
metal base provides better heat removal than a mere semiconductor chip,
which is helpful in high-power devices.

8.7.3. Ohmic Contacts (Metallizations)

In Fig. 8.17(a) and (b), band diagrams are shown for the case where a metal
is brought into contact with an n-type semiconductor. It is assumed that
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Figure 8.17. Ohmic contact between metal and n-type semiconductor (fM < fS). (a) Metal

and semiconductor are separate. (b) Metal and semiconductor are in contact. (c) Current–

voltage characteristic.
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fM < fS. Thus, electrons flow from the metal into the semiconductor,
charging the metal positively. The bands of the semiconductor bend “down-
ward” and no barrier exists for the flow of electrons in either direction. In
other words, this configuration allows the injection of a current into and out
of the semiconductor without suffering a sizable power loss. The current
increases, in essence, linearly with increasing voltage and is symmetric
about the origin as Ohm’s law requires (Fig. 8.17(c)). Accordingly, this
junction is called an ohmic contact. A similar situation exists for a p-type
semiconductor and fM > fS.

Aluminum is frequently used formaking the contact between a device (e.g.,
the p-region of a rectifier) and the external leads. Aluminum bonds readily
to Si or SiO2 if the device is briefly heated to about 550

�C after Al deposition.
Since aluminum has a larger work function than silicon (see Appendix 4) the
contact to a p-region is ohmic. Additionally, the diffusion of aluminum into
silicon yields a shallow and highly conductive p+-region.14

Now, aluminum is likewise used as a contact material for n-type silicon.
To prevent a rectifying contact in this case, one usually lays down a heavily
doped and shallow n+-layer14 on top of the n-region. Since this n+-layer is
highly conductive and is made to be very thin, tunneling through the barrier
accomplishes the unhindered electron flow (see Sections 4.3 and 8.7.8).

8.7.4. p–n Rectifier (Diode)

We learned in Section 8.7.2 that when a metal is brought into contact with an
extrinsic semiconductor, a potential barrier may be formed which gives rise
to the rectifier action. A similar potential barrier is created when a p-type
and an n-type semiconductor are joined.

As before, electrons flow from the higher level (n-type) “down” into the
p-type semiconductor so that the p-side is negatively charged. This proceeds
until equilibrium is reached and both Fermi energies are at the same level.
The resulting band diagram is shown in Fig. 8.18.

Consider first the conduction band only. The electrons that want to
diffuse from the n-region into the p-region encounter a potential barrier
near the junction. For statistical reasons, only a few of them have enough
energy to climb the barrier and diffuse into the p-region. The electrons in the
p-region, on the other hand, can easily diffuse “down” the potential barrier
into the n-region. Note that only a few electrons exist in the conduction band
of the p-region. (They have been thermally excited into this band by
intrinsic effects.) In the equilibrium state the number of electrons crossing
the junction in both directions is therefore identical. (The same is true for the
holes in the valence band.)

14The superscript plus means heavily doped region.
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When an external potential is applied to this device, effects similar to the
ones described in Section 8.7.2 occur: connecting the positive terminal of a
d.c. source to the n-side withdraws electrons and holes from the depletion
area which becomes wider and the potential barrier grows higher (Fig. 8.19
(a and b)). As a consequence, only a small drift current (from intrinsic
effects) exists (reverse bias). On the other hand, if the n-side is charged
negatively, the barrier decreases in height and the space charge region
narrows. A large net electron flow occurs from the n-type region to the
p-type region (forward bias, Fig. 8.19(c) and (d)).

In Fig. 8.19(a) and (c) “quasi-Fermi levels” for electrons and holes are
shown. They are caused by the fact that the electron density varies in the
junction from the n-side to the p-side by many orders of magnitude, while
the electron current is almost constant. Consequently, the Fermi level must
also be almost constant over the depletion layer.

It has to be emphasized that the current in a p–n rectifier is the sum of
both electron and hole currents. The net current may be calculated by using
an equation similar to (8.25) whereby the saturation current, IS, in the
present case is a function of the equilibrium concentration of the holes in
the n-region (Chn), the concentration of electrons in the p-region (Cep), and
other device parameters. The saturation current in the case of reverse bias is
given by the Shockley equation, which is also called the ideal diode law:

IS ¼ Ae
CepDep

Lep
þ ChnDhn

Lhn

� �
; (8.26)

where the D’s and L’s are diffusion constants and diffusion lengths, respec-
tively (e.g.,Dep ¼ diffusion constant for electrons in the p-region, etc.). The
diffusion constant is connected with the mobility, m, through the Einstein
relation:
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Figure 8.18. Schematic band diagram for a p–n junction (diode) in equilibrium.
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Dep ¼
mepkBT

e
(8.27)

(see textbooks on thermodynamics). The minority carrier diffusion length is
given by a reinterpretation of a well-known equation of thermodynamics,

Lep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dep � tep

p
; (8.28)

where tep is the lifetime of the electrons in the p-type region before these
electrons are annihilated by recombination with holes. In order to keep the
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reverse current small, both Chn and Cep (minority carriers) have to be kept at
low levels (compared to electrons and holes introduced by doping). This
can be accomplished by selecting semiconductors having a large energy gap
(see tables in Appendix 4) and by high doping.

8.7.5. Zener Diode

When the reverse voltage of a p–n diode is increased above a critical value,
the high electric field strength causes some electrons to become accelerated
to a velocity at which impact ionization occurs [Fig. 8.20(a)]. In other
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Figure 8.20. (a) Electron avalanche created at breakdown voltage. (b) Tunneling (Zener

breakdown). (c) Voltage–current characteristic of a p–n diode exhibiting a breakdown
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140 II. Electrical Properties of Materials



words, some electrons are excited by the electric field from the valence band
into the conduction band, leaving behind an equal number of holes. The free
electrons (and holes) thus created are likewise accelerated and create new
electron–hole pairs, etc., until eventually a breakdown occurs, i.e., the
reverse current increases quite rapidly (Fig. 8.20(c)). The breakdown volt-
age, which is the result of this avalanching process, depends on the degree
of doping: the higher the doping, the lower the breakdown voltage. Alterna-
tively to this avalanche mechanism, a different breakdown process may
take place under certain conditions. It occurs when the doping is heavy and
thus the barrier width becomes very thin (i.e., <10 nm). Applying a high
enough reverse voltage causes the bands to shift to the degree that some
electrons in the valence band of the p-side are opposite to empty states in the
conduction band of the n-material. These electrons can then tunnel through
the depletion layer, as described in Sections 4.3 and 8.7.8 and depicted in
Fig. 8.20(b). Tunneling (or Zener breakdown) takes place usually at low
reverse voltages (e.g., below about 4 volts for silicon-based diodes),
whereas avalanching is the mechanism that occurs when the reverse voltage
is large.

The breakdown effect just described is used in a circuit to hold a given
voltage constant at a desired level (Fig. 8.20(d)). The Zener diode is therefore
utilized as a circuit protection device. The Zener diode is generally not
destroyed by the breakdown, unless excessive heat generation causes it to
melt.

8.7.6. Solar Cell (Photodiode)

A photodiode consists of a p–n junction (Fig. 8.21). If light of sufficiently
high energy falls on or near the depleted area, electrons are lifted from
the valence band into the conduction band, leaving holes in the valence
band. The electrons in the depleted area immediately “roll down” into the
n-region, whereas the holes are swept into the p-region. These additional
carriers can be measured in an external circuit (photographic exposure
meter) or used to generate electrical energy. In order to increase the effec-
tive area of the junction, the p-type region is made extremely thin (1 mm)
and light is radiated through the p-layer (Fig. 8.21(a)). Since the p-layer is
thin, the electric energy must be collected on the front surface, utilizing
narrow metal electrodes (e.g., Al) which are arranged in the form of stripes,
see Fig. 8.21(b). A single junction, single-crystalline silicon photovoltaic
device has an open circuit voltage of approximately 0.6 V and a load voltage
around 0.45 V. This performance can be considerably improved by multi-
junction solar cells. As an example, Fig. 8.21(c) depicts a three-layer device
which yields a load voltage of 2.3 V and an open circuit voltage of 2.66 V at
28�C. For understanding this increase in output voltage, one needs to know
that semiconductors absorb the sunlight only in a small energy (wavelength)
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region which is determined by its bandgap. Stacking various semiconduc-
tors with different bandgaps uses the solar spectrum more completely and
allows adding the individually obtained voltages. Each of the solar cells is
connected to the next by a wide-bandgap tunnel junction (very heavily
doped p- and n-layers, see Fig. 8.24). The top solar cell has the widest
bandgap and thus, absorbs the green end of the solar spectrum. The photons
that have a lesser energy and thus, have not yet been absorbed pass to the
next (lower) junction which has a smaller bandgap and are absorbed there to
a certain degree etc. Light with energies less than the smallest bandgap is not
absorbed at all and cannot contribute to the power output of the solar cell.
On the other hand, light with energies greater than the widest bandgap will
be indeed absorbed, but this portion of the energy will quickly be lost via
thermalization i.e., the created electron/hole pairs lose their energy via
phonons (heat). In short, this higher energy is also not available for extract-
ing useful power. Three additional items have to be considered: the semi-
conductor bandgaps in a multijunction device need to be current matched
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Figure 8.21. Solar cells; (a) Side view; the p-region is only about 1 mm thick. (b) Front view.
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because the solar cell with the lowest generated current limits the output
from the other two junctions. Further, the output voltage is temperature
dependent; specifically, the higher the temperature, the lower the voltage.
Finally, the doping level of a device also influences its open circuit voltage.

The electron–hole pairs that are created some distance away from the
depleted region are generally not separated by the junction field and
eventually recombine; they do not contribute to the electric current. How-
ever, some electrons or holes which are within a diffusion length from the
depleted region drift into this area and thus contribute to the current. In
semiconducting materials that contain only a few defects (such as grain
boundaries, dislocations, and impurities) the electrons or holes may diffuse
up to 200 mm before they get trapped, whereas in semiconducting materials
containing a large number of defects the diffusion length decreases to
10 mm. The closer a carrier was created to the p–n boundary, the larger is
its chance of contributing to the current (Fig. 8.22).

The thin p-type layer (Fig. 8.21(a)) introduces an internal resistance to the
collection current, which reduces the efficiency of the energy conversion. At
present, the maximal efficiency of a photovoltaic device, involving a three-
layer technology (Fig 8.21(c)) and concentrated sunlight is 41.6%. Produc-
tion cells always have a lower efficiency i.e. in the 20–25% range for
terrestrial applications and about 30% for devices used in space. Current
terrestrial concentrator solar cells have a minimum average efficiency at
maximum power of 38.5% at 50W/cm2. The energy needed to produce such
a device (including mounting and installation) is recovered in about 6 years
when the collector is located in North Africa or Central America. (Installa-
tion in central Europe or the northern states of the USA and Canada may
double the energy recovery time.) The cost of photovoltaic devices (pres-
ently $6–$8 per installed watt) can be reduced by utilizing polycrystalline,
less purified, or amorphous silicon, but at the expense of efficiency. As an
example, photovoltaics made of commercial, hydrogen-doped amorphous
silicon (see Section 9.4) have an efficiency of only 6–8%, but its invested
energy for production and mounting is recovered in just 1 year. The

Figure 8.22. Schematic representation of the contribution of electrons and holes to the

photocurrent (I) with respect to the distance x from the p–n junction.

8. Semiconductors 143



efficiency of this device has been enhanced to 12% in laboratory experi-
ments. The goal is to produce for terrestrial applications inexpensive solar
cells having 20% efficiency or better and a lifetime of about 20 years. The
lifetime is reduced when the metal contacts (grids) to the semiconductor
corrode. Despite the fact that photovoltaics are still relatively inefficient,
their worldwide sale has grown for the past 10 years by more than 15% per
year and has reached now the $2 billion mark, while the cost has steadily
decreased. The most recent development employs dye-coated titanium
dioxide and an electrochemical cell which mimics the role of chlorophyll
in photosynthesis.

The photovoltaic cell depicted in Fig. 8.21(a) has one inherent disadvan-
tage: the impinging light has to travel first through the p-type layer (however
thin it may be) before it eventually reaches the depleted (active) area. This
attenuates its intensity to a certain degree. In addition, the incoming light is
somewhat blocked by the metal electrodes, which cover part of the face of
the cell. The resulting loss in efficiency is a trade-off for a large surface area
(which is often desirable to increase power). For telecommunication appli-
cations however, for which high efficiency is more important, a rather
ingenious alternative design can be used. Imagine that the light impinges
transversely on (or better, along) the depletion layer. For this the beam is
channeled-in from the side by a light-conducting device such as an optical
fiber or a wave guide (Fig. 8.23). In order to increase the effective area, i.e.,
the width, W, of the depletion region, the photodiode is strongly reverse-
biased and the doping of one of the semiconductors is comparatively light.
(For details refer to Fig. 8.19(a).) The efficiency is further maximized by
increasing the length of the depletion layer, L. This device yields almost
100% quantum efficiency.

The quantum efficiency can be calculated by the equation

� ¼ 1� exp �aWð Þ
1þ aL

; (8.29)

Figure 8.23. Schematic of a transverse-type photodiode that is connected to a light-carrying

medium such as an optical fiber or a waveguide (L � 100 nm).
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where a is a parameter that determines the degree of photon absorption by
the electrons (a is defined in (10.22)). As an example, for a GaAs photodiode
the n-region is lightly doped because the electron mobility in GaAs is much
larger than the hole mobility, see Appendix 4. This shifts the depleted region
towards the n-side. On the other hand, the p-region is heavily doped (and
thin) in order to minimize its resistance.

The incoming light that is modulated by information (such as the spoken
word in telecommunications) modulates, in turn, the electrical current in the
photodiode. This transforms a signal which is transmitted by light into an
electrical signal. We shall return to this topic and to other optoelectronic
devices in Part III. In particular, organic photovoltaic cells will be exten-
sively discussed in Section 13.8.15 once we have acquired some knowledge
about organic semiconductors in Chapter 9.1.

*8.7.7. Avalanche Photodiode

This device is a p–n photodiode that is operated in a high reverse bias mode,
i.e., at near-breakdown voltage. The electrons and holes that were created by
transitions from the valence band into the conduction band by the incident
light are accelerated through the depleted area with a high velocity. As a
consequence, they ionize the lattice atoms and generate secondary hole–
electron pairs, which, in turn, are accelerated, thus generating even more
hole–electron pairs. The result is a photocurrent gain, which may be between
10 and 1000. The avalanche photodiode is ideally suited for low-light-level
applications, because of its high signal-to-noise ratio, and for very high
frequencies (GHz). It is particularly used for detectors in long-distance,
fiber-optics telecommunication systems. See in this context Fig. 8.23.

*8.7.8. Tunnel Diode

So far, we have restricted our discussion mostly to the case for which
the electrons drift from the n-type to the p-type semiconductor by way of
“climbing” a potential barrier. Another electron transfer mechanism is
possible, however. If the depleted area is very narrow (approximately 10
nm) and if certain other requirements (see below) are fulfilled, electrons
may tunnel through the potential barrier. (See in this context Fig. 4.7,
Fig. 8.20(b), and equation (4.39).) Heavy doping (e.g., 1020 impurity
atoms per cubic centimeter) yields this condition.

The situation can best be understood by inspecting Fig. 8.24(a), in which
a schematic band diagram of a tunnel diode is shown. Because of the high
doping level, the Fermi energy extends into the valence band of the p-type
semiconductor and into the conduction band of the n-type semiconductor.
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In the equilibrium state, the same amount of electrons is tunneling through
the potential barrier in both directions, i.e., no net current flows.

If a small reverse bias is applied to this device (Fig. 8.24(b)), the potential
barrier is increased as usual and the Fermi energy, along with the top and
bottom of the bands in the p-area, is raised. This creates empty electron
states in the conduction band of the n-type semiconductor opposite from
filled states in the valence band of the p-type semiconductor. As a conse-
quence, some electrons tunnel from the p-type to the n-type semiconductor,
as indicated by an arrow. An increase in the reverse voltage yields an
increase in the electron current through the device (see Fig. 8.24(f)).

Let us now consider several forward voltages. A small forward bias
(Fig. 8.24(c)) creates just the opposite of that seen in Fig. 8.24(b). Electrons
are tunneling through the potential barrier from the conduction band of the
n-type semiconductor into empty states of the valence band of the p-type
semiconductor. The applied voltage needs to be only several millivolts and
it produces a forward current of about one milliamp.
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If, however, the voltage is increased to, say, 100 mV, the potential barrier
might be decreased so much that, opposite to the filled n-conduction states,
no allowed empty states in the p-area are present [Fig. 8.24(d)]. (The area
opposite to the filled n-conduction states may be the forbidden band.) In
this case, no tunneling takes place. As a consequence of this, the current
decreases with increasing forward voltage, as shown in Fig. 8.24(f). We
experience a negative current–voltage characteristic.

Finally, if the forward voltage is increased even more, the electrons in the
conduction band of the n-type semiconductor obtain enough energy to climb
the potential barrier to the p-side just as in a regular p–n junction. As a
consequence, the current increases with voltage, just as in Fig. 8.16(a).

Of particular interest is the range in which a negative voltage–current
characteristic is experienced. One has to bear in mind that all other electrical
devices have a positive voltage–current characteristic, i.e., they dissipate
energy. Therefore, if a tunnel diode is connected to properly dimensioned
resistors and capacitors, a simple oscillator can be built which does not lose
energy because the net resistance is zero. Those devices can oscillate at
frequencies up to 1011 cycles per second.

8.7.9. Transistors

Bipolar Junction Transistor. An n–p–n transistor may be considered to be
an n–p diode back-to-back with a p–n diode. A schematic band diagram for
an unbiased n–p–n transistor is shown in Fig. 8.25. The three connections of
the transistor are called emitter (E), base (B), and collector (C).

n np

B
E C

Conduction
band

Valence
band

EF

Emitter Base Collector

Figure 8.25. Schematic band diagram of an unbiased n–p–n bipolar junction transistor.
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If the transistor is used for the amplification of a signal, the “diode”
consisting of emitter and base is forward biased, whereas the base–collector
“diode” is strongly reverse biased (Fig. 8.26(a)). The electrons injected into
the emitter, therefore, need to have enough energy to be able to “climb” the
potential barrier into the base region. Once there, the electrons diffuse
through the base area until they have reached the depletion region between
base and collector. Here, the electrons are accelerated in the strong electric
field produced by the collector voltage (Fig. 8.26(b)). This acceleration causes
amplification of the input a.c. signal.

One may consider this amplification from a more quantitative point
of view. The forward biased emitter–base diode is made to have a small
resistivity (approximately 10–3 O cm), whereas the reverse biased base–
collector diode has a much larger resistivity (about 10 O cm). Since the
current flowing through the device is practically identical in both parts, the
power (P ¼ I2R) is larger in the collector circuit. This results in a power gain.

The electron flow from emitter to collector can be controlled by the bias
voltage on the base: a large positive (forward) bias decreases the potential
barrier and the width of the depleted region between emitter and base
(Fig. 8.19). As a consequence, the electron injection into the p-area is
relatively high. In contrast, a small, but still positive base voltage results
in a comparatively larger barrier height and in a wider depletion area, which
causes a smaller electron injection from the emitter into the base area.
In short, the voltage applied between emitter and base modulates the transfer
of the electrons from the emitter into the base area. As a consequence, the
strong collector signal mimics the waveform of the input signal. This feature
is utilized for the amplification of music or voice, etc.

In another application, a transistor may be used as an electronic switch.
The electron flow from emitter to collector can be stopped completely (or
turned on) by an appropriate base voltage. This virtue is used for logic and
memory functions in computers (see Section 8.7.12).

Figure 8.26. (a) Biasing of an n–p–n bipolar transistor. (b) Schematic band diagram (partial)

of a biased n–p–n bipolar transistor. (c) Symbol used for a bipolar n–p–n transistor.
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The device shown in Fig. 8.26 is called a “bipolar transistor”; the current
passes in series through n-type as well as through p-type semiconductor
materials.

Some details need to be added about technical features of the bipolar
transistor. In order to obtain a large electron density in the emitter, this area
is heavily doped. In the p-doped base area, the drifting electrons are subject to
possible recombination with holes. Therefore, the number of holes there has
to be kept to a minimum, which is accomplished by light doping. (Light
doping also reduces the unwanted injection of hole current into the base.)
Recombination is further decreased by making the base region extremely
thin, i.e., 10�5–10�7 m. A narrow base region has a beneficial side effect: it
increases the frequency response. (The reciprocal of the electron transit time
equals the highest possible frequency at which amplification can be achieved.)
The doping rate of the collector area is in general not critical. Usually, the
doping is light for high gain and low capacitance of the device. The voltage–
current characteristics for a transistor are shown in Fig. 8.27.

In p–n–p transistors, the majority carriers are holes. The function and
features of a p–n–p transistor are similar to an n–p–n transistor.

Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET). A
field-effect transistor consists of a channel through which the charge carriers
(e.g., electrons in Fig. 8.28) need to pass on their way from a source (S) to the
drain (D). The conducting path (source, channel, and drain) is made of the
same kind of semiconducting material only, e.g., n-type. (This is in contrast
to the bipolar transistor shown in Fig. 8.26, in which the current passes in
series through n-type as well as through p-type semiconductor materials.)
Field-effect transistors are therefore designated as unipolar. The electrons
that flow from the source to the drain can be controlled by an electric field
which is established by applying a voltage to the so-called gate (G).

A periodic variation of the gate voltage varies the source to drain current
in the same manner (quite similar to the way the electron flow between

Figure 8.27. Schematic collector voltage–current characteristics of a transistor for various

emitter currents. Ic ¼ collector current, Ie ¼ emitter current, and Vc ¼ collector voltage.

8. Semiconductors 149



emitter and collector in a bipolar transistor is modulated by the base
voltage). The gate electrode is electrically insulated from the channel by a
thin oxide layer which prevents a d.c. current to flow from gate to channel.

Two types of MOSFETs are common; the depletion-type MOSFET
depicted in Fig. 8.28(a) consists of high-doped source and drain regions
and a low-doped channel, all of the same polarity (e.g. n-type). (The high
doping facilitates low-resistance connections.) The n-channel MOSFET is
laid down on a p-type substrate called the body.

The channel width is controlled by the voltage between gate and body.
Specifically, a negative charge on the gate drives the channel electrons away
from the gate and towards the substrate, similarly as is illustrated in
Fig. 8.12. In short, the channel can be made to be partially depleted of
electrons, i.e., the conductive region of the channel becomes narrowed by a
negative gate voltage. The more negative the gate voltage (VG), the smaller
the current through the channel from source to drain until eventually the
current is pinched off (see Fig. 8.28(c).) For the above reasons, this device is
called a depletion-type metal-oxide semiconductor field-effect transistor or
“normally on” MOSFET.
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positive gate voltages (dashed portion of the curve) the device can operate in the “enhance-

ment mode” (see Fig. 8.29(c)).
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An alternative to the depletion-type MOSFET that we just discussed is the
enhancement-type MOSFET. Figure 8.29 shows that this device does not
possess a built-in channel for electron conduction, i.e., at least as long as no
gate voltage is applied. In essence, there is no electron flow from source to
drain for a zero gate voltage. The device is therefore called a “normally-off”
MOSFET. If, however, a large enough positive voltage is applied to the gate,
most of the holes immediately below the gate oxide are repelled, i.e., they
are driven into the substrate, thus removing possible recombination sites.
Concomitantly, negative charge carriers are attracted into this channel (called
the inversion layer). In short, a path (or a bridge) for the electrons between
source and drain can be created by a positive gate voltage. The metal-oxide
semiconductor technology, particularly, the enhancement-type MOSFETs,
dominate the integrated circuit industry at present. They are utilized in mem-
ories, microcomputers, logic circuits, amplifiers, analog switches, and opera-
tional amplifiers. They possess very high input impedances,15 thusminimizing
Joule heating.
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P (substrate)
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– + +

Gate (G) Drain (D)

Oxide

Body (B)
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Figure 8.29. (a) Enhancement (normally-off)-type n-channel MOSFET. For details, see the

caption of Fig. 8.28. (b) Circuit symbol. (The broken line indicates that the path between S

and D is normally interrupted.) (c) Gate voltage (VG)/drain current (ID) characteristic. VT is

the threshold gate voltage above which a drain current sets in.

15The term impedance is used to describe the a.c. resistance, which may consist of ohmic,

capacitive, and inductive parts.
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Depletion-type and enhancement-type MOSFET technologies that utilize
n-channels (as depicted in Figs. 8.28 and 8.29) are summarized by the name
“NMOSFET” (in contrast to “PMOSFET”, which employs devices with
p-channels). If both an n-channel and a p-channel device are integrated
on one chip and wired in series, the technology is labeled “CMOSFET”
which stands for complementary MOSFET. This tandem device has become
the dominant technology for information processing, because of its low
operating voltage (0.1 V), low power consumption (heat!), and short chan-
nel length with accompanying high speed. Alternative names for MOSFET
are MOST (metal–oxide–semiconductor transistor) or MISFET (metal–in-
sulator–semiconductor field-effect transistor).

A few words on device geometry, etc., of a MOSFET, as shown in
Fig. 8.28, may be useful. In order to obtain a short switching time and a
high-frequency response, the channel length has to be short. The highest
possible frequency at which amplification can be achieved equals the inverse
of the electron source-to-drain transit time. The width of the device has to be
kept small in order to reduce the cross-sectional area and, thus, the power
density. (This reduces the heat which needs to be removed.) As an example,
the channel length may be about 1 mm, the device width may be a few
micrometers, and the field oxide thickness may be near 0.05 mm. The doping
of the p-area needs to be small to sustain a high resistance and thus, a high
electric field (	106 V/cm) across the junction without current breakdown.
The metal layer is generally made of aluminum. Alternate materials are
highly doped silicon, refractory metals such as tungsten, or silicides of
refractory metals such as TiSi or MoSi.

*Junction Field-Effect Transistor (JFET). The JFET consists again of a
channel through which the carriers (electrons in Fig. 8.30) pass from source
to drain. This electron flow is controlled by an electric field which is
established by applying a negative voltage to the p-doped gate, to stay
within the example of Fig. 8.30. In other words, the p–n gate-to-channel
diode is reverse biased. This reverse biasing increases the width of the
depletion layer (see Fig. 8.19) thus causing the conducting channel to
become narrower. (Close to the drain terminal, the p–n junction is more
reverse biased which results in a wider depletion layer near the drain.) A
zero bias voltage on the gate results in a maximal source-to-drain current.
A reverse voltage on the gate depletes the source-to-drain electron flow. A
very large reverse current eventually pinches the current off. Junction field-
effect transistors are therefore said to be of the depletion or “normally-on”
type.

Junction field-effect transistors can be used as amplifiers, exploiting the
effect that a small change in the gate voltage causes a large change in the
channel current. Since the gate-to-channel p–n junction is reverse biased,
only a minute current flows in the gate/source circuit (Fig. 8.16). The input
impedance15 is therefore high (but not as high as in a MOSFET).
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JFETs which use n-type semiconductors for the channel material, as
depicted in Fig. 8.30, are appropriately called n-channel field-effect transis-
tors. The reader may correctly suspect that a p-channel field-effect transistor
uses holes as charge carriers, n-type semiconductors as gate materials, and a
reversal of the polarities of all voltages for its operation. The arrow in the
circuit symbol (Fig. 8.30(b)) for p-channel transistors points away from
the gate.

Bipolar transistors in combination with JFETs are called “BIFETs.” They
are used in high-performance linear circuits. If a JFET structure employs a
metal– semiconductor junction, often in combination with n-type GaAs, a
“MESFET” device is created, which is used for amplifiers and logic circuits
in the gigahertz range (see next section).

A MODFET (modulation-doped field-effect transistor) consists of a thin
layer of aluminum–gallium–arsenide deposited on an undoped GaAs sub-
strate. This device is even faster than a MESFET, because the absence of
impurity atoms increases the distance that an electron or a hole can travel
before a collision with a foreign atom occurs.

*Gallium Arsenide Metal–Semiconductor Field-Effect Transistor
(MESFET). Users of computers demand still higher switching speeds
than the present 10�9 s cut-off or cut-on times achieved with silicon
technology. Gallium arsenide, with its almost sixfold larger electron mobil-
ity compared to silicon (see Appendix 4), seems to be the answer. A quick
inspection of the relevant band diagrams (Figs. 5.23 and 5.24) indeed

Figure 8.30. (a) Schematic representation of an n-channel junction field-effect transistor.

The dark areas symbolize the metal contacts (e.g., aluminum). (b) Circuit symbol for an

n-channel JFET. Note: In a p-channel JFET the arrow points away from the channel.
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confirms that the curvature of the conduction band near G is larger for GaAs
than the comparable band for silicon (close to the X symmetry point) which
translates into a smaller effective mass and, thus, into the just-mentioned
larger electron mobility for GaAs. However, the upper valence bands for
both materials are almost identical and fairly flat. Thus, the effective masses
of the holes for GaAs and silicon are rather large and their hole mobilities
are consequently small (see also Appendix 4). A transistor that aims to
exploit the higher electron mobility in GaAs should therefore utilize n-type
GaAs only.

Figure 8.31 depicts a metal–semiconductor field-effect transistor
(MESFET), which consists of an n-doped, thin GaAs active layer situated
over a semi-insulating (Cr-doped) GaAs slab. Three metal contacts provide
the source, the gate, and the drain areas. The gate metal forms, together with
the underlying semiconductor, a Schottky barrier (see Section 8.7.2). If fM

is larger than fS and the gate metal is negatively charged, a reverse bias
results (Fig. 8.15(a)). The larger the reverse bias, the wider the depletion
region. If the depletion region is caused to fill essentially the entire active
layer, any attempted electron flow from source to drain is stopped (or
pinched off). A small negative gate voltage (or no gate voltage at all) allows
an almost unhindered source-to-drain electron flow. The device shown in
Fig. 8.31 is therefore a depletion- (or normally-on) type FET (see also
Fig. 8.28(c)).

For high-speed, low-power applications, however, the normally-off GaAs
MESFET is even better suited. For this device, the active layer is made so
thin that the depletion area between the metal and the GaAs (Fig. 8.15) fills
the entire active layer.16 As a consequence, the active layer below the gate

0 Volt
Source Gate Drain

n-GaAs Active layer

Semi-insulating GaAs

+

Figure 8.31. Schematic representation of a GaAs MESFET (Metal–semiconductor field-

effect transistor). Source and drain metallizations (dark areas) are selected to form ohmic

contacts with the n-doped GaAs. The gate metal forms, with the n-doped GaAs, a Schottky-

barrier contact.

16The depletion layer width in GaAs varies with impurity concentration between 3 mm for 1014 cm–3

and 0.05 mm for 1018 impurity atoms per cubic centimeter.

154 II. Electrical Properties of Materials



metal electrode is depleted of electrons without necessitating an applied
voltage. A positive gate voltage is then required to attract electrons into the
depletion area, thus making it conductive. Given the above-described GaAs
device, the speed, i.e., the response time of the source-to-drain current to a
change in the gate voltage, can be further increased by decreasing the length
of the gate, which is presently about 1 mm.

Several effects may, however, offset the superior electron mobility in
GaAs. First, the time required to reach the breakdown voltage under the
influence of a reverse voltage (see Fig. 8.20(c)) is only two and a half times
faster than in silicon. As we know from Fig. 8.20(a), this breakdown
electric field triggers a helpful self-ionizing avalanche that multiplies the
number of electrons. Second, a transistor of any type can be made to switch
faster by applying more power to it. This, in turn, increases the heat which
needs to be dissipated. Now, silicon has a three-times larger thermal
conductivity than GaAs (see Appendix 4). Thus, silicon switches can be
made much smaller than those made of GaAs. Since the speed of a device
also depends on the length the electrons have to travel, a very small silicon
device may well switch as fast as a large device made of GaAs. Third, the
electron drift velocity depends upon the electric field strength. At low field
strengths, the GaAs drift velocity is indeed substantially larger than for
silicon (Fig. 8.32). However, as the field strength increases, the drift
velocity for silicon and GaAs becomes nearly identical. This has its reason
in the extra and slightly higher energy states that silicon possesses near the
X-symmetry point (Fig. 5.23), in which electrons can be scattered after they
have collided with structural imperfections of the crystal lattice.

Knowing the facts presented above, it seems understandable why some
leading semiconductor manufacturers have left the GaAs field. However,
the pendulummay soon swing in the other direction, as suggested in the next
section.

GaAs

SI

0.2

0.1
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Figure 8.32. Average electron drift velocity as a function of electric field strength for GaAs

and silicon.
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*8.7.10. Quantum Semiconductor Devices

It is the ultimate goal of industry to make semiconductor switches for
computer applications as small, as fast, as inexpensive, and as efficient as
possible. Conventional field-effect transistors pose, ultimately, certain lim-
itations towards progressive miniaturization: the smaller they become, the
less effective they switch, owing to current leakage, and particularly
because of impurities or lattice defects that scatter the moving electrons in
ultrasmall devices to an intolerable degree. There are also processing lim-
itations caused by the presently used photolithography techniques. Quantum
structures are said to be the devices of the future that may overcome these
shortcomings.

In order to explain the nature of a quantum device, we need first to recall
that the electron states for bulk crystalline solids consist of continuous
energy bands, such as the valence band or the conduction band (Fig. 8.2).
We also recall that the density-of-states curve has a parabolic shape in this
case (Fig. 6.4). If, however, the dimensions of a crystalline solid are reduced
to the size of the wavelength of electrons (e.g., 20 nm for GaAs), the
formerly continuous energy bands split into discrete energy levels, similarly
as is known from Section 4.2, where we treated the behavior of one electron
in a potential well. In essence, the same type of calculation presented in
Section 4.2 is carried out for quantum devices. Thus, results equivalent to
(4.18) are obtained. Further, when the dimensions are reduced to the degree
as outlined above, and under certain other conditions (see below), the
density of states becomes discontinuous, i.e., Z(E) also becomes quantized
(see Fig. 8.33(c)). The mechanism associated with these effects is, therefore,
quite appropriately called size quantization.

Let us demonstrate size quantization for a particular case in which a
small–band gap material is sandwiched between two layers of a “wide”–
band gap material. Specifically, a cube-shaped piece of GaAs whose lateral
dimensions are made to be about 20 nm is layered between two similarly
shaped cubes made of aluminum– gallium–arsenide, which in turn are sand-
wiched between two longer slabs consisting of n-doped GaAs (Fig. 8.33(a)).
This configuration, for which all three dimensions of the center materials
have values near the electron wavelength, is called a quantum dot (in
contrast to a two-dimensional “confinement,” which is termed quantum
wire, or a one-dimensional confinement, named quantum well).

Figure 8.33(b) depicts simplified electron bands for the quantum dot
structure shown in Fig. 8.33(a). AlGaAs is a “wide”–band gap material
whose electron affinity (Fig. 8.13) is smaller than that of GaAs. Thus, its
conduction band is at a higher energy compared to the conduction band of
GaAs. This results in a potential barrier between the two GaAs regions. In
general, an electron in the n-doped GaAs area does not possess enough
energy for climbing this potential barrier or otherwise diffusing into the
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adjacent regions (Fig. 8.34(a)). If, however, a sufficiently large voltage is
applied to this device, the conduction band of the n-doped GaAs is raised to
a level at which its conduction electrons are at the same height as an empty
energy state of the center GaAs region (Fig. 8.34(b)). At this point the
electrons are capable of tunneling through the potential barrier formed by
the AlGaAs region and thus reach one of these discrete energy levels. The
tunneling is quite effective because of the large density of states that is
associated with these quantum states (Fig. 8.33(c)).

If a slightly higher (or somewhat smaller) voltage is applied, the electrons
of the n-doped GaAs are no longer at par with an empty energy level and the

Figure 8.33. (a) Schematic representation of a quantum dot structure (“zero-dimensional

case”). (b) Energy levels for GaAs for the quantum dot structure depicted in (a). (Note: The
gap energy difference between GaAs (Eg ¼ 1.42 eV) and AlGaAs is greatly exaggerated.

This difference may be as small as 0.2 eV.) (c) Discontinuous density of energy states for a

quantum dot structure. The dashed parabola indicates the density of states for a bulk crystal,

as is known from Fig. 6.4.
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tunneling comes to a near standstill. This causes a current–voltage charac-
teristic with negative differential resistance, i.e., a region in which the
current decreases as the applied voltage increases (see Fig. 8.35).

An interrelated effect to size quantization is resonance, which enhances
the tunneling current. Once a specific voltage, the resonating voltage, has
been reached, the electron waves inside the center region are reflected back
and forth between the walls. In essence, constructive interference occurs
between the waves traveling in opposite directions.

A further advancement of the quantum device introduced so far consists
of an array of a multitude of quantum wells stacked on top of each other.
This periodic arrangement of wide–band gap and narrow–band gap materi-
als is called a superlattice. It introduces an artificial periodicity into the
solid, caused by the multiple atomic layers of one type of material in
sequence with multiple atomic layers of another type. By this mode of

Figure 8.34. Parts of two energy band structures for the quantum device shown in Fig. 8.33.

For simplicity, only the conduction bands are shown. (a) No applied voltage. (b) With applied

voltage, which facilitates electron tunneling from the conduction band of the n-doped GaAs

into an empty energy level of the center GaAs region.
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varying the structural parameters of a solid, new electronic properties can be
engineered.

Quantum devices are about one-hundredth of the size of presently known
FETs. Thus, major problems have still to be overcome concerning inter-
connections, device architecture, and fabrication of three-terminal devices.
It has been speculated, however, that once these problems have been solved
the reduction in cost per function might be as large as ten-thousand-fold.

8.7.11. Semiconductor Device Fabrication

The evolution of solid-state microelectronic technology started in 1947
with the invention of the germanium point contact transistor by Bardeen,
Brattain, and Shockley at Bell Laboratories. Until then, electronic devices
used vacuum tubes invented in 1906 by Lee deForest, as well as silicon,
copper oxide, or germanium rectifiers. (The latter was discovered in 1915 by
M. Benedicks). The development went via the germanium junction transistor
(Shockley, 1950), the silicon transistor (Shockley, 1954), the first integrated
circuit (Kilby, Texas Instruments, 1959), the planar transistor (Noyce and
Fairchild, 1962), and the planar epitaxial transistor (Texas Instruments,
1963) to the ultra-large-scale integration (ULSI) of today with several
millions of transistors on one chip. Attempts are now made to reach one
billion transistors per chip, called gigascale integration (GSI). We have
discussed in the previous sections some obstacles to this goal, which are
imposed to a large degree by the “materials barrier.” (However, device
limits, circuit limits, and system limits likewise play a role.) Silicon has
been the principal semiconductor material used in the past 50 years even
though solid-state electronics technology actually started with germanium,
which could be manufactured in these early days in comparatively ultrapure
form. No other electronic material has a combination of so many favorable
properties. Most of all, silicon is abundant; 28% of the earth’s crust consists

Figure 8.35. Current–voltage characteristic of a quantum dot device as depicted in

Figs. 8.33 and 8.34.
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of silicon in one way or another. (Silicon is behind oxygen, the second most
abundant chemical element.) The raw material (sand, i.e., quartzite) is
inexpensive. The native oxide, silicon dioxide (SiO2), is an excellent insula-
tor. The band gap is large enough to guarantee stable electrical properties at
moderate temperatures. The heat conductivity is relatively large. Further,
silicon forms almost perfect (dislocation-free) single crystals. And finally,
silicon is nontoxic, i.e., environmentally safe. Still, for special applications
and possibly gigascale integration, compound semiconductors need to be
considered, as discussed in the previous chapters.

The starting material for silicon wafer fabrication is sand (SiO2), which is
electromet reduced (in an arc furnace) with coal, etc., to 98% silicon. This
powdered raw silicon is reacted with hydrogen chloride to form trichlorosi-
lane gas (Si + 3HCl ! SiHCl3 + H2), which is fractionally distilled for
purification and subsequently reduced with hydrogen to polycrystalline sili-
con (SiHCl3 + H2 ! Si + 3HCl). From here on, several methods for single
crystal growth are used. In the predominantly utilized crystal pulling process,
invented in 1918 by J. Czochralski, the high-purity silicon is melted in a
fused-silica (SiO2) crucible, which is, in turn, supported by a carbon crucible
(Fig. 8.36(a)). A seed crystal (mainly (100) or (111) orientation), held on a
rod, initially touches the melt and is then slowly lifted, employing a with-
drawal speed of about 1 mm per minute. Concomitantly, the crucible as well
as the pulling rod are rotated in opposite directions at about 50 revolutions per
minute. The entire system is enclosed in a chamber that is either slightly
evacuated (a few Torrs) or backfilled with argon or helium. The starting
crystal must initially have a thin neck to produce a dislocation-free crystal
(invented in 1959 by W. Dash). Proper cooling and pulling speeds allow one
to control the diameter of the evolving single crystal rod. Specifically, the
initial pulling speed needs to be large so that the dislocations are frozen-in and
thus cannot propagate further into the single-crystal rod.

Since the crucible consists of SiO2 and of carbon, some oxygen and
carbon are introduced into the silicon during melting (about 5 � 1017 oxy-
gen atoms and about 2 � 1016 carbon atoms per cubic centimeter). Other
foreign elements of high-purity silicon are generally in the 1010–1013 per
cubic centimeter range. Oxygen and carbon impurities are electrically inac-
tive because they form inert compounds with silicon (e.g., SiO2 or SiC).
However, their presence in high concentrations leads to the premature
breakdown of p–n junctions. Harmful impurities and tiny defects can be
trapped (gettered) either at a specially prepared back side of the wafer (e.g.,
by mechanically introduced dislocations) or inside the crystal on very small
SiO2 precipitates. All taken, the surface layer (several mm thick) on which
the transistor is manufactured (Fig. 8.29) needs to be free of oxygen atoms,
whereas inside the wafer a high defect density is beneficial for gettering. This
configuration is achieved by heating a wafer near 1000�C, which causes the
migration of the mobile oxygen atoms to the surface where a large number of
them are removed through evaporation.
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A lower oxygen concentration (1016 atoms/cm3) can be achieved involv-
ing the crucibleless float-zone technique (Fig. 8.36(b)). At first, a pure,
polycrystalline silicon rod is manufactured by resistive-heating a silicon
filament (8 mm wide, 2 m long) in a trichlorosilane and hydrogen atmo-
sphere. As mentioned above, this reduces the SiHCl3 to silicon, which is
slowly deposited on the 1000�C hot silicon filament. The polysilicon rod
thus grown is vertically inserted into a vacuum chamber with a single
crystalline seed crystal at its bottom, and then rotated. An induction-heated
ring-shaped furnace is slowly moved along the rod, which melts, at first, a

Figure 8.36. Techniques for single-crystal growth. (a) Czochralski method. Heating is

performed by radio frequency coils or (for big crucibles) by resistance heating. (b) Float

zone method. (c) Bridgman method (demonstrated for GaAs). (d) A 300 mm (12 inch) silicon

single crystal is removed from the crucible. (Courtesy Wacker Siltronic AG).
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part of the seed crystal, and then consecutive small zones (a few cm long)
from the bottom up, thus eventually forming a large single crystal as an
extension of the seed crystal. The float-zone technique is also used for
purification purposes (zone refining). Wafers produced by this method are
substantially more expensive than Czochralski wafers with the added disad-
vantage that less oxygen gettering can take place. However, float-zone single
crystals are a necessity when the whole wafer thickness is required for the
electrical function of discrete transistors, such as for high-power applications.

The Bridgman technique is rarely used for silicon production. It is,
however, frequently applied to grow single-crystalline GaAs. The Bridgman
method involves the melting of polycrystalline material in a long (silicon-
nitride coated) carbon crucible or fused quartz crucible which, in turn, is
placed into a horizontally arranged, sealed quartz tube. A traveling furnace
with two different heating zones melts the ingot as well as part of a single-
crystal seed which is placed next to it. In the case of GaAs (Fig. 8.36(c)),
some extra arsenic, located in the low-temperature (618�C) part of the tube,
provides an overpressure of arsenic to maintain stoichiometry. Moving the
hot zone of the furnace slowly away from the melt causes gradual solidifi-
cation and eventually an extension of the single crystal into the entire rod.

The two-zone furnace is also used to melt separately arsenic and gallium in
individual boats, which facilitates the synthesis of GaAs over a period of
many hours.

Once the rods have been obtained, they are sliced, lapped, etched, and
polished to obtain the 0.3–0.4 mm thick wafers. At present, up to 200 mm

Figure 8.36. (Continued)
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(8 in.) diameter silicon wafers are commercially available; the trend goes,
however, towards the 300 mm (12 in.) disc, see Fig. 8.36(d).

Next, the devices are fabricated on (or in) these wafers in extremely clean
rooms, applying surface oxidation, photolithography, etching, and (most of
all) by introducing various dopants involving successive and often quite
elaborate manufacturing steps. The most important of these production steps
are illustrated in Fig. 8.37 and described in detail below. A simplified
example of the final product is depicted in Fig. 8.38, which contains some

Figure 8.37. Photoresist (PR) masking sequence to obtain a p–n–p bipolar transistor.
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basic electronic components on one common substrate. Millions of these
elements are squeezed on a, say, 6 � 6 mm2 area, and hundreds of these
complete circuits (properly interconnected) are fabricated together on one
wafer. After electrical testing, the individual chips are cut apart with a
diamond-tipped saw. The functional chips are finally packaged in hermeti-
cally sealed containers and sold.

The individual manufacturing steps shown in Fig. 8.37 are as follows:

Oxidation. Silicon dioxide forms readily on silicon by placing the wafer
into a tube furnace, heated between 900� and 1200�C, and exposing it to
water vapor and possibly oxygen. This wet or steam oxidation is much faster
than dry oxidation for which oxygen without steam is reacted with the
silicon slice. Occasionally, silicon nitride replaces SiO2.

Photolithography. In order to be able to etch small openings through an
SiO2 layer at a desired place, the silicon dioxide needs first to be coated with
a protective layer called the photoresist, which, after exposure to UV light
and subsequent developing, remains on the substrate. Thus, a mask (compa-
rable to a photographic negative) has to be produced that contains a pattern
of nontransparent areas. The mask/photoresist/wafer sandwich is then
exposed to UV light. During the subsequent developing process, the unex-
posed photoresist is dissolved at the places where the SiO2 needs to be
removed. The remaining photoresist protects the SiO2 from the etching
solution.

Oxide Etch. Wet chemical removal of the SiO2 layer is accomplished by
applying hydrofluoric acid (HF) at room temperature. The underlying sili-
con is not attacked by this etchant (this would require a HNO3/HF solution).
Wet chemical etching poses, however, some problems if submicron geome-
tries need to be produced, since the etchant attacks not only vertically but
also laterally, causing line broadening by undercutting. Thus, dry etching
techniques, such as ion etching or reactive plasma etching, are increasingly
utilized. Ion etching involves the removal of the exposed material by
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bombardment with energetic noble gas ions (such as argon). Since ion
etching removes SiO2 as well as the underlying silicon, the bombarding
time has to be carefully controlled. Plasma etching, on the other hand, uses a
chemical reaction that converts the substance to be etched into a volatile
compound by utilizing a chemically active gas such as halocarbons (CF4) in
a plasma chamber.

Photoresist Strip. This process is accomplished by a simple chemical
dissolution reaction.

Doping. In the pioneering times of semiconductor fabrication, the infusion
of donor or acceptor elements into silicon was mainly done out of the gas
phase with subsequent drive-in diffusion at temperatures near or above
1000�C. Though this process worked quite well initially, increasing miniatur-
ization demanded a more precise doping technique. Thus, ion implantation
has mainly been utilized since the early 1970s. This technique involves the
ionization of the species to be implanted and their subsequent acceleration
towards the substrate in an electric field. (The silicon needs to be shielded
where implantation is unwanted.) The range where the heavy dopants come
to rest in the silicon substrate obeys a Gaussian distribution. The collision-
induced lattice damage, needs to be removed in a subsequent processing step.
Annealing between 700� and 1000�C for a short time restores the original
lattice symmetry and also causes the dopants to become electrically active.

Another method used for special purposes (low-level, extremely homo-
geneous doping) utilizes a neutron-irradiation-induced process that trans-
forms Si into P. Specifically, the silicon isotope 14

30Si, which accounts for
3.1% of the atoms in common Si, is bombarded with a neutron, thus forming

14
31P, which transforms with a half-time of 2.6 hours (under emission of an
electron) into the stable 15

31P.

Metallization. The internal connections between the individual transistors,
etc., are accomplished by narrow and thin (about 1mm thick) metal films.
Until recently, these metallizations consisted of aluminum with 2 to 4% Cu
and possibly 1% Si. Due to the high current densities involved (several 106

A/cm2) and the sharp bends of theses strips, some holes and extrusions
(called hillocks) may be formed after a certain time of operation, causing
interruption of the current paths and thus failure of the device. This process
is dubbed electromigration. In essence, a momentum exchange between the
accelerated electrons and the metal ions pushes some metal ions from the
negative side to the positive end of the thin film stripe, causing voids to form
near the cathode. Copper metallizations laid down by electroplating (dama-
scene process) rather than by physical vapor deposition or sputtering pro-
vide some enhancement of the lifetime and a better conductivity which
translates into less Joule-heating. However, the copper needs to be pre-
vented from diffusing into the silicon device where it would cause trapping
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of charge carriers. Thus, a barrier layer between Cu and Si consisting of,
for example, Ti–N or Ta–N or pure Ta needs to be inserted. For high-
temperature applications and GaAs devices metal silicides are occasionally
utilized as connecting stripes.

Passivation. The last layer on a chip is designed to protect the device from
the environment and mechanical damage during packaging. Silicon dioxide
has been used in the past for this purpose. However, SiO2 is extremely brittle
and cracks readily. Thus, more ductile insulators, such as silicon nitride,
phosphosilicate glass, or polyimide, are now used. Still, phosphorus from
the phosphosilicate glass could leach out in time and when combined with
residual absorbed water may form phosphoric acid, which causes corrosion.
On the other hand, polyimide is somewhat permeable and, thus, may allow
water penetration.

Packaging. The individual chips (after having been cut from the wafer using
a diamond blade saw) are bonded to headers and then sealed. 85% of the chips
are currently encapsulated in plastics even though this packaging technique
does not provide a complete hermetic seal from possible hostile environ-
ments. Ceramic packaging consisting of aluminum nitride, silicon carbide, or
glass, having an internal cavity for chip mounting, provides a better seal, but
this is more expensive. For plastic packaging, the chip is commonly bonded to
a metal frame by a eutectic alloy (low melting point), or by polyimide
adhesives, or a heat-conducting epoxy. These adhesives must provide for
adequate removal of the heat that is generated in the chip.

Next, electrical connections between chip pads and the external leads are
performed, utilizing extremely thin (30 mm) gold wires (thermal-sonic
bonding). Subsequently, the device is encapsulated in a dense and rigid
plastic, using for example a transfer molding process that requires pressure
and heat (about 175�C). Among other techniques are reaction-injection, or
radial spread molding. Materials for the envelopes include epoxy, silicone,
thermoplastics, and certain polymer blends called interpenetrating polymer
networks. It is of utmost importance that chip and envelope do not possess a
thermal expansion mismatch in order to prevent stress and cracking of
the chip.

Other packaging methods involve hermetically sealed metal cans, all
ceramics, or the glob top process, in which a drop of epoxy resin is placed
on top of a chip on a ceramic header which, when cured, forms a shiny black
hemisphere.

The pins extruding from the packaged device are either arranged on the
two opposing long sides, called the dual-in-line package (DIP), or on all four
sides, dubbed the quadpack. Up to 200 pins per device, having a separation
distance of only 0.64 mm, are possible when a second row of pins inside the
outer row is used. The pins are eventually plugged into a socket or soldered
to copper pads located on the surface of a circuit board (surface mount
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technology). In another design, the pins are inserted through holes on a
circuit board and then connected by soldering.

The bottleneck for accomplishing ever-increasing speeds in computers is
the transfer time of the electrons from one chip to the next. Thus, multichip
modules (MCM), i.e., the mounting of many chips into one package, will be
increasingly used in the future to eliminate interchip delays. The drawback
of this technique is that a single defective chip could make all the remaining
chips worthless. In addition, it requires intercompany cooperation since one
manufacturer does not usually produce all types of chips.

Recent Developments. The trend towards increasing the number of devices
per chip continues. For example, in 1985 one million storage elements
(1 Mbit) went into mass production. The 1 Mbit chip eventually was suc-
ceeded by 4, 16, 64, and 256 Mbit devices. Now 1 gigabit chips and
higher, hosting billions of elements are in the market. In general, the number
of transistors on a chip doubles every 18 months (other sources say every
12 months) (Moore’s rule). Each further advancement step, however, creates
new problems which need to be solved. Specifically, when the number of
devices per chip is increased, the width of the structures is generally reduced
in order to keep the total size of the chips at reasonable dimensions. Along
with the rise in the number of devices per chip, the size of the structures has
continuously fallen from 2 mm for the 64 Kbit chip to 0.25 mm for the
256 Mbit chip. This poses increasingly higher demands on the wafer quality.
For example, the allowable deviation from a completely flat wafer may be
only fractions of micrometers (e.g., 0.13 mm). An improved flatness is
accomplished by double-sided lapping, grinding, and particularly polishing.
An even better surface quality can be achieved by epitaxially growing a
silicon layer onto a silicon wafer. For this, silicon is slowly deposited at
high temperatures out of the gas phase on a Si wafer at a rate of micrometers
per minute so that each silicon atom has enough time to find its proper place in
the lattice of the growing interface. (Pulling a crystal from the crucible at this
rate would require about one year.) An epitaxial Si layer on a Si substrate has
an added advantage: The low electrical resistance between epi-layer and
substrate prevents a “latchup,” that is, a coupling effect between p–n–p and
neighboring n–p–n transistors through recombination of the different types of
charge carriers.

In order to achieve the just-mentioned ultra-small structures, optical
photolithography is partially replaced by electron beam or X-ray lithogra-
phy, which allow a much finer definition of the device features because of
the smaller wavelengths involved.

A further increase in the number of elements per chip area is achieved by
stacking the elements in several levels. This task is certainly not trivial and
causes in addition heat removal problems. Nevertheless, up to three levels
have been accomplished so far. A typical chip requires about 600 processing
steps and about 2 months of production time.
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At the end of this chapter, a few remarks on economics may be of
interest. The fabrication of solid-state microelectronic devices (chips) was
in 1996 an $850 billion per year industry (worldwide) and a $5 trillion
business in 2009. This figure does not include the factory sales of complete
electronic systems in which these chips are incorporated (which is a factor
of 10 higher). The increase in value of the packaged circuit compared to
the raw material is roughly 10 millionfold if the starting material (sand) is
valued at a transportation cost of 3 cents per kilogram. The raw silicon can
be purchased for a few dollars per kg. The 98% pure polysilicon already
represents a value of $60 per kilogram and the silicon wafer sells for $2,000
per kilogram (about $100 for an 8 in. wafer or $1,000 per 12 inch wafer).
The next steps are big jumps: the processed wafer is valued at $25,000 per
kilogram, the raw chip costs $110,000, and the packaged chip is finally sold
to the computer manufacturers for $300,000 per kilogram.

Let us look at the economic picture from another point of view. As one
might expect, it takes a substantial amount of energy to produce a wafer.
The largest part (about 400 kWh/kg) is already consumed to produce the
polysilicon. Or, put differently: the energy consumption for melting and
purification alone is 1000 kWh for 1 m2 of wafer surface. Production of
single crystals by the Czochralski method requires another 150 kWh for
1 m2 of silicon surface. Doping, etc., consumes 25–50 kWh/m2 (depending
on the complexity of the device). All taken, including packaging, etc.,
roughly 1400 kWh are expended by the time microelectronic devices
have been fabricated on a 1 m2 silicon surface. (See, in this context, also
Sections 8.7.6 and 9.4.)

*8.7.12. Digital Circuits and Memory Devices

The reader might legitimately wonder at this point how transistors are used
in computers and similar devices. Even though this topic sidetracks the flow
of our presentation somewhat, a few introductory remarks on switching
devices, information processing, and information storage may nevertheless
be of interest. We need to start with the recognition that electronic data-
processing systems use binary digits, i.e., zeros and ones as carriers for
information. As an example, the numeral sequence “0010” means in the
binary system the decimal number “two,” whereas 0101 represents the
decimal number 5. The first digit at the right of a binary number represents
20, the next digits represent, consecutively, 21, 22, 23, etc. A binary digit, or
a bit, is the smallest possible piece of information. (A group of related bits,
e.g., 8 bits for word processing, is called a byte.) A “zero” in the present
context means that the electric current is off, whereas a “one” means that the
current is on. So much about preliminaries.

Let us begin with an “AND” device. We inspect the normally-off
MOSFET in Fig. 8.29 and see that a voltage on the drain terminal is only
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obtained if we apply voltages simultaneously to the source and the gate
terminals. In other words, a source voltage and a gate voltage cause a
voltage on the drain terminal, see Fig. 8.39(a). The circuit resembles a
gate in a fence and is therefore called an AND gate. The circuit symbol
for an AND gate is depicted in Fig. 8.39(b).

Next, we discuss the inverter circuit. It consists of two normally-off
MOS transistors which are wired in series (Fig. 8.40). The upper or load
transistor (whose channel is made long and narrow to restrict the current

Figure 8.39. (a) AND gate and (b) circuit symbol for an AND gate. (Compare to Fig. 8.29).

Figure 8.40. Inverter made of two “normally-off” (n-channel, enhancement-type)

MOSFETs (NOT gate). (a) circuit; (b) symbol in wiring diagram. (VDD means “Drain

power supply voltage”.) The load transistor may be replaced by a (poly-silicon) resistor or

an enhancement-type p-channel MOSFET.
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flow) is always kept “on” by connecting the driving voltage to its gate. If a
high enough voltage is simultaneously applied to the gate of the lower or
input transistor, then this lower MOSFET likewise becomes conducting
and the driving voltage drains through both transistors into the ground. As
a consequence, the output voltage at terminal Q is nearly zero. Thus, the
inverter circuit inverts a “one” signal on the input terminal into a “zero”
signal on the output terminal (and vice versa). The circuit symbol for an
inverter (or “NOT gate”) is shown in Fig. 8.40(b).

We have just mentioned that the current through the load transistor is
relatively small due to its special design. Still, an inverter which essentially
does not consume any power (except during switching) would be even more
desirable. This is accomplished by CMOS technology, i.e., by using an
enhancement-type p-channel MOSFET as a load transistor, and an enhance-
ment-type n-channel MOSFET as an input transistor. Unless the circuit is
switching, one MOSFET is always off (not conducting current) whereas the
other is on. Since the two MOSFETs are connected in series similarly as in
Fig. 8.40, little power (except due to leakage current) is consumed. It is
left to the reader to draw up and discuss the appropriate circuit diagram. (See
Problem 18.)

The next logic device that we discuss is a “NAND” circuit. It consists of a
load MOSFET, wired in series with two (or more) input transistors. All
MOSFETs shown in Fig. 8.41 are of the “normally-off” type. Assume that
high enough voltages are applied to the gates of both input transistors to

Figure 8.41. (a) NAND gate and (b) circuit symbol for a NAND digital function.
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make them conducting. Thus, the output terminal Q is connected to ground,
i.e., the output voltage is almost zero. Since input voltages on the gates of
the A and the B transistors inverts the input signal from “one” to “zero,” we
call the present logic building block an “AND” gate combined with a “NOT
circuit” and term the entire digital function “NOT–AND” or a “NAND” gate
for short. The reader may convince himself that the output is always “one”
when at least one of the input voltages is “zero.” On the other hand, if both
inputs are “one,” the output is “zero.”

In an “OR” gate (Fig. 8.42) the output voltage Q is “one” when either
A or B (or both) possess a voltage. Otherwise Q is “zero.”

Finally, in a “NOR” circuit, the input transistors are again wired in
parallel (Fig. 8.43). Applying high enough gate voltages to one or all of
them causes the output voltage to be “zero.” The circuit is appropriately
called “NOT–OR” or “NOR.” Evidently, the output voltage is only “one” if
all input voltages are “zero.”

In short, the five basic building blocks that are obtained by properly
circuiting one or more transistors are AND, NAND, OR, NOR, and NOT.
(See also Problem 21.)

We are ultimately interested in knowing how a memory device works,
i.e., we are interested in a unit made of transistors which can store informa-
tion. For comparison, a toggle switch that turns a light on or off can be
considered to be a digital information storage device. It can be flipped on
and then flipped off to change the content of its information. Appropriately,
the device that we are going to discuss is called a flip-flop. Let us assume
that a flip-flop has a built-in latch to prevent the accidental change of

Figure 8.42. OR logic circuit with circuit symbol.
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information. This is done electronically by combining a NOT gate with two
AND gates, as shown in the left part of Fig. 8.44. (The output of an AND
gate is zero as long as one of the inputs is zero!) It is left to the reader to
figure out the various combinations. As an example, if the gate is unlatched
(1) and the data input is 1, we obtain “zero” on the R terminal and “one” on
the S terminal.

The flip-flop on the right part of Fig. 8.44 consists of two NOR gates
which are cross-coupled. (Remember that the output of a NOR is always

Figure 8.44. SRAM memory device called R–S flip-flop with latch. (The bar on a letter

signifies the complement information).

Figure 8.43. NOR logic circuit with circuit symbol.
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zero when at least one input is one, and it is one when both inputs are zero.)
The above example with R ¼ 0 and S ¼ 1 yields a “one” at the output
terminal Q (and a “zero” at the complement output �Q), i.e., D and Q are
identical. The information that is momentarily fed to the D terminal and into
the system is permanently stored in the flip-flop even when the wires R and
S are cut off. The cross-coupling keeps the two NOR gates mutually in
the same state at least as long as a driving voltage remains on the devices.
In short, one bit of information has been stored.

Let us now latch the gating network, i.e., let G be “zero.” Whatever
option the data input D will assume in this case, the output Q will always be
“one,” as the reader should verify. In other words, the latching prevents an
accidental change of the stored information. On the other hand, latching and
unlatching by itself does not change the information content of the flip-flop
either!

The device described above is called a static random-access memory
or, in short, an “S-RAM”, because the information remains permanently in
the storage unit. The memory cell shown in Fig. 8.44 can evidently store
only one bit of information. Let us now imagine a two-dimensional array of
these storage elements, connected in a number of horizontal and vertical
lines (Fig. 8.45). A designated memory element, being located at the cross
point of a specific row and a specific column wire, can then be exclusively
addressed by sending an electrical impulse through both wires simulta-
neously. One of these wires operates on the gating input (Fig. 8.44), the
other one activates the data input. As we have discussed above, only a
simultaneous activation of both input wires can change the information
content of a flip-flop. An array of 32 columns and 32 rows of memory
elements constitutes 1024 bits of information storage, or one kilobit. (Yes, a
K bit is not 1,000 bits.)

Figure 8.45. Schematic representation of a two-dimensional memory addressing system. By

activating the #2 row wire and the #3 column wire, the content of the cross-hatched memory

element (situated at their intersection) can be changed.

8. Semiconductors 173



In order to reduce the area on a chip and the power consumption of a
storage device, a memory cell different from the above-introduced flip-flop
is frequently used. It is called the one-transistor dynamic random-access
memory (DRAM, pronounced D-RAM). The information is stored in a
capacitor, which can be accessed through an enhancement-type transistor
(Fig. 8.46). Only concomitant voltages on gate and source allow access to
the capacitor. Since the stored charge in a capacitor leaks out in a few
milliseconds, the information has to be “refreshed” every 2 milliseconds by
means of refresh circuits. No voltage on the capacitor is used as a “zero,”
whereas a certain voltage on the capacitor represents the “one” logic.

The 256 Megabit chip combines a multitude of these or similar building
blocks through ultra-large-scale integration (ULSI) on one piece of silicon
the size of a finger nail.

The memory devices discussed so far are of the “volatile” type, i.e., they
lose their stored information once the electric power of the computer is
interrupted. In nonvolatile memories, such as the read-only memory
(ROM), information is permanently stored in the device. Let us consider,
for example, the MOSFET depicted in Fig. 8.29. Assume that the connec-
tion to the gate has been permanently interrupted during fabrication. Then
the transistor will never transmit current from source to drain. Thus, a “zero”
is permanently stored without the necessity to maintain a driving voltage. If,
on the other hand, the path to the gate is left intact, the MOSFET can be
addressed and current between source and drain may flow, which constitutes
a “one.” The stored information can be read, but it cannot be altered.

In the programmable read-only memory (PROM) the information
may be written by the user, for example, by blowing selected fuse links
to the gate. As above, the alteration is permanent and the information can be
read only.

Figure 8.46. One-transistor dynamic random-access memory (DRAM). The information

flows in and out through the column line.
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The erasable-programmable read-only memory (EPROM) allows
the user to program the device as well as erase the stored information.
An EPROM contains a “floating gate,” i.e., a gate (consisting of heavily
doped polysilicon) which is completely imbedded in SiO2, see Fig. 8.47. For
programming, the drain-substrate junction is strongly reverse biased until
avalanche-breakdown sets in (see Fig. 8.20), and electrons are injected from
the drain region into the SiO2 layer. Alternatively, a large negative voltage
(	25 V) between a second gate, the control gate, and the substrate allows
some electrons to cross the insulator, thus negatively and permanently charg-
ing the floating gate. The oxide thickness is on the order of 100 nm, which
assures a charge retention time of about 100 years. A permanent charge on the
floating gate constitutes a “1”; no charge represents the zero state (see below).
Exposure of the EPROM to ultraviolet light or X-rays through a window (not
shown in Fig. 8.47) increases the conductivity of the insulator and allows the
charge to leak out of the floating gate, thus erasing any stored information.

For electrical erasure, a large positive voltage can be applied to the control
gate which removes the stored charge from the floating gate. This returns the
“electrically erasable-programmable ROM” (EEPROM) to the zero state.
Alternately, electrical erasure can be performed by applying a “large” positive
voltage to the source, which also pulls charge from the floating gate.

The “flash memory” device applies this erasure and writing method.
It utilizes a thinner (10 nm) and higher-quality oxide below the floating gate
which improves efficiency and reliability. Specifically, the floating gate can
be negatively charged (“filled with electrons”), as mentioned above, by a

Figure 8.47. Electrically erasable-programmable read-only memory device (EEPROM),

also called stacked-gate avalanche-injected MOS (SAMOS), or, with some modifications,

flash memory device.

8. Semiconductors 175



strong, reverse bias pulse between the drain/substrate junctions sufficient to
cause an avalanche-breakdown so that electrons are injected from the drain
region into the SiO2 layer. Now, a negatively charged floating gate attracts
positive charge carriers from the underlying n-substrate (however few they
may be) into the channel between source and drain and repels negative
charge carriers away from the channel. This allows a hole-current flow
between source and drain, see Fig. 8.47. On the other hand, a large and
short positive voltage pulse on the control gate removes the electrons from
the floating gate so that no positive charge carriers are present between
source and drain and no hole-current can flow. These represent the “1” and
the “0” states respectively.

Flash memories can be found among others in smartphones, MP3 players,
video players, digital cameras, USB memory sticks, global positioning
systems, and some computers (particularly laptops). Their main advantages
are that they retain information without requiring constant power, they
provide higher storage capacity than other same-size silicon-based devices
(256 GB as of 2010), their access times are about 20 times faster than for
floppy disks, they are small, withstand high pressures and extreme tempera-
tures, have no moving parts (as in magnetic or optical disks), and operate
quietly. The main drawback of flash memories is that they eventually
degrade as a consequence of a large number (10,000 to 1,00,000 write/
erase cycles), that is, due to voltage bursts across the cells. Furthermore, the
floating gate in flash memories leaks electrons over extended time periods
and may be corrupted by high energy radiation (e.g. X-rays and g-rays)
yielding to about 10 years of data retention time.

Two different logic technologies have been developed: The NOR logic
(see Fig. 8.43) can retrieve as little as one single byte. This is achieved by
writing and reading data on specific memory sites, thus allowing random
access to any memory location. NOR flash memories have relatively “long”
erase and write times (tens of ms). They are commonly used in cell phone
operating systems and in BIOS start-up programs for computers.

In contrast, NAND logic writes sequentially (see Fig. 8.41), handles the
data in small blocks (hundreds to thousands of bits), has ten times the lifetime
of NOR flash devices, and reads faster than it writes. NAND-based devices
are less expensive than NOR memories and have shorter erase and writing
times. Typically, a block of data is written in about 1 ms. NAND devices are
quite suitable for massive data storage, such as memory sticks, and other
applications where large amount of data need frequent updates.

It is estimated that industry presently (2010) sells about 22 billion dollars
worth of flash memories, accounting for about 34% of the semiconductor
memory market, and 8% of the overall semiconductor market. These num-
bers may increase once flash memories become serious competitors for
magnetic hard drives.

Another non-volatile memory device is the phase-change random
access memory (PRAM). It utilizes chalcogenide glass/ceramic (which
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contains chalcogen elements, such as selenium and/or tellurium).Most of the
present PRAMs are composed of Ge2Sb2Te5. They can be switched from
crystalline to amorphous states by application of heat, generated by a short
(ns), high voltage pulse, (called reset pulse) which causes localized melting
above 600�C, followed by quenching at109 K/s). Local reheating above the
recrystallization temperature (but below the glass transition temperature, Tg)
applying a longer and lower voltage pulse (set pulse) transforms these
materials back into the energetically favorable, crystallized state, erasing
the stored information. Switching times of approximately 5 ns have been
reported. The amorphous state has a high resistance and represents a binary
“0”, whereas the low resistant, crystalline state represents a “1”. The crys-
talline state of chalcogenide glasses are distinguished by an octahedral-like
arrangement of atoms, often accompanied by strong lattice distortions and
large vacancy concentrations.

The main advantages of PRAMs is their slower rate of degradation during
use (1 to 100 million write cycles, with lifetimes estimated up to 300 years),
their lack of vulnerability against high-energetic radiation, high chemical
stability, and high water resistance. Disadvantages are their sensitivity to
heat, particularly due to soldering, and relatively higher power consumption
during switching.

Phase-change materials are also in use in rewritable optical data storage
media, such as in DVD-RW (digital versatile disks-rewritable), DVD+RW,
and CD-RW (compact disks-rewritable) where short (ns) laser pulses
change the phase states. We shall revisit this application in Section 13.10.

It should be mentioned in closing that magnetic storage devices are dis-
cussed in Section 17.4. Optical storage devices are explained in Sec-
tion 13.10.

Problems

Intrinsic Semiconductors

1. Calculate the number of electrons in the conduction band for silicon at T ¼ 300 K.

(Assume m�
e=m0 ¼ 1.)

2. Would germanium still be a semiconductor if the band gap was 4 eV wide? Explain!

(Hint: Calculate Ne at various temperatures. Also discuss extrinsic effects.)

3. Calculate the Fermi energy of an intrinsic semiconductor at T 6¼ 0 K. (Hint: Give a

mathematical expression for the fact that the probability of finding an electron at the top

of the valence band plus the probability of finding an electron at the bottom of the

conduction band must be 1.) Let Ne � Np and m�
e � m�

h.

4. At what (hypothetical) temperature would all 1022 (cm�3) valence electrons be excited to

the conduction band in a semiconductor with Eg ¼ 1 eV? Hint: Use a programmable

calculator.
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5. The outer electron configuration of neutral germanium in its ground state is listed in a

textbook as 4 s24p2. Is this information correct? Someone argues against this configura-

tion stating that the p-states hold six electrons. Thus, the p-states in germanium and

therefore the valence band are only partially filled. Who is right?

6. In the figure below, s is plotted as a function of the reciprocal temperature for an intrinsic

semiconductor. Calculate the gap energy. (Hint: Use (8.14) and take the ln from the

resulting equation.)

Extrinsic Semiconductors

7. Calculate the Fermi energy and the conductivity at room temperature for germanium

containing 5 � 1016 arsenic atoms per cubic centimeter. (Hint: Use the mobility of the

electrons in the host material.)

8. Consider a silicon crystal containing 1012 phosphorous atoms per cubic centimeter. Is the

conductivity increasing or decreasing when the temperature is raised from 300�C to

350�C? Explain by giving numerical values for the mechanisms involved.

9. Consider a semiconductor with 1013 donors/cm3 which have a binding energy of 10 meV.

(a) What is the concentration of extrinsic conduction electrons at 300 K?

(b) Assuming a gap energy of 1 eV (andm* � m0), what is the concentration of intrinsic

conduction electrons?

(c) Which contribution is larger?

10. The binding energy of a donor electron can be calculated by assuming that the extra

electron moves in a hydrogen-like orbit. Estimate the donor binding energy of an n-type
impurity in a semiconductor by applying the modified equation (4.18a)

E ¼ m*e4

2 4pe0\ð Þ2e2 ;

where e ¼ 16 is the dielectric constant of the semiconductor. Assume m* ¼ 0.8 m0.

Compare your result with experimental values listed in Appendix 4.
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11. What happens when a semiconductor contains both donor and acceptor impurities? What

happens with the acceptor level in the case of a predominance of donor impurities?

Semiconductor Devices

12. You are given a p-type doped silicon crystal and are asked to make an ohmic contact.

What material would you use?

13. Describe the band diagram and function of a p–n–p transistor.

14. Can you make a solar cell from metals only? Explain!

*15. A cadmium sulfide photodetector is irradiated over a receiving area of 4 � 10�2 cm�2

by light of wavelength 0.4 � 10�6 m and intensity of 20 W m�2.

(a) If the energy gap of cadmium sulfide is 2.4 eV, confirm that electron–hole pairs will

be generated.

(b) Assuming each quantum generates an electron–hole pair, calculate the number of

pairs generated per second.

16. Calculate the room-temperature saturation current and the forward current at 0.3 V for a

silver/n-doped silicon Schottky-type diode. Take for the active area 10�8 m2 and

C ¼ 1019 A/m2 K2.

17. Draw up a circuit diagram and discuss the function of an inverter made with CMOS

technology. (Hint: An enhancement-type p–n–p MOSFET needs a negative gate

voltage to become conducting; an enhancement-type n–p–n MOSFET needs for this

a positive gate voltage.)

18. Draw up a circuit diagram for an inverter which contains a normally-on and a normally-
off MOSFET. Discuss its function.

19. Convince yourself that the unit in (8.26) is indeed the ampere.

20. Calculate the thermal energy provided to the electrons at room temperature. You will

find that this energy is much smaller than the band gap of silicon. Thus, no intrinsic

electrons should be in the conduction band of silicon at room temperature. Still,

according to your calculations in Problem 1, there is a sizable amount of intrinsic

electrons in the conduction band at T ¼ 300 K. Why?

21. Explain the “OR” logic circuit.

22. Calculate the lateral dimensions of a quantum well structure made of GaAs. (Hint:
Keep in mind that the lateral dimension has to equal the wavelength of the electrons in

this material.) Refer to Section 4.2 and Fig. 4.4(a). Use the data contained in the tables

of Appendix 4.

23. Calculate the number of electrons and holes per incident photon, i.e., the quantum

efficiency, in a transverse photodiode. TakeW ¼ 8 mm, L ¼ 8 mm, and a ¼ 40 cm�1.
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CHAPTER 9

Electrical Properties of Polymers,
Ceramics, Dielectrics, and Amorphous
Materials

9.1. Conducting Polymers and Organic Metals

Materials which are electrical (and thermal) insulators are of great technical
importance and are, therefore, used in large quantities in the electronics
industry, e.g., as handles for a variety of tools, as coatings for wires, or
as casings for electrical equipment. Most polymeric materials have the
required insulating properties and have been used for decades for this
purpose. It came, therefore, as a surprise when it was discovered in the
late 1970’s that some polymers and organic substances may have electrical
properties which resemble those of conventional semiconductors, metals, or
even superconductors. We shall focus our attention mainly on these materi-
als. This does not imply that the predominance of applications of polymers
is in the conductor field. Quite the contrary is true. Nevertheless, conducting
polymers (also called synthetic metals) steadily gain ground compared to
insulating polymers.

Initially, conducting polymers were unstable in air or above room tem-
perature. In addition, some dopants, used to impart a greater conductivity,
were toxic, and the doping made the material brittle. However, more
recently, stable conducting polymers were synthesized which have as an
added benefit an optical transparency across the entire visible spectrum.
Among them, poly(3,4-ethylenedioxythiophene) (PEDOT) and its deriva-
tives enjoy now multi-ton productions, in particular for antistatic layers in
photographic films. These conducting layers are beneficial for the preven-
tion of friction-induced static electricity, which causes, on discharge, flashes
of light, thus, pre-exposing the light-sensitive emulsion. Other uses of
PEDOT are transparent electrodes for inorganic electroluminescent devices,
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anti-static treatments of plastics and cathode ray tubes, electrodes for capa-
citors, sensors, rechargeable batteries, photovoltaic devices, and packaging
of electronic components. PEDOT films can be heated in air at 100�C for
over 1000 hours with hardly any change in conductivity.

We now attempt to discuss conducting polymers in the light of solid-state
physics. Conventional solid-state physics deals preferably with the proper-
ties of well-defined regular arrays of atoms. We have learned in Chapter 7
that a periodic array of lattice atoms is imperative for coherent scattering of
electron waves and thus for a high conductivity. Further, the periodic
arrangement of atoms in a crystal and the strong interactions between
these atoms causes, as explained in Section 4.4, a widening of energy levels
into energy bands.

We know that highly conducting materials such as metals are character-
ized by partially filled bands, which allow a free motion of the conduction
electrons in an electric field. Insulators and semiconductors, on the other
hand, possess (at least at 0 K) completely filled valence bands and empty
conduction bands. The difference in band structure between crystalline
insulators and semiconductors is a matter of degree rather than of kind:
insulators have wide gaps between valence and conduction bands whereas
the energy gaps for semiconductors are narrow. Thus, in the case of semi-
conductors, the thermal energy is large enough to excite some electrons
across the gap into the conduction band. The conductivity in pure semicon-
ductors is known to increase (exponentially) with increasing temperature
and decreasing gap energy (8.14), whereas the conductivity in metals
decreases with increasing temperature (Fig. 7.7). Interestingly enough,
most conducting polymers have a temperature dependence of the conduc-
tivity similar to that of semiconductors. This suggests that certain aspects of
semiconductor theory may be applied to conducting polymers. The situation
regarding polymers cannot be described, however, without certain modifi-
cations to the band model brought forward in the previous chapters. This is
due to the fact that polymeric materials may exist in amorphous as well as
in crystalline form or, more commonly, as a mixture of both. This needs to
be discussed in some detail.

Polymers consist of molecules which are long and chainlike. The atoms
that partake in such a chain (or macromolecule) are regularly arranged along
the chain. Several atoms combine and form a specific building block, called a
monomer, and thousands of monomers combine to a polymer. As an exam-
ple, we depict polyethylene, which consists of repeat units of one carbon
atom and two hydrogen atoms, Fig. 9.1(a). If one out of four hydrogen atoms
in polyethylene is replaced by a chlorine atom, polyvinylchloride (PVC) is
formed upon polymerization (Fig. 9.1(b)). In polystyrene, one hydrogen
atom is replaced by a benzene ring. More complicated macromolecules
may contain side chains attached to the main link. They are appropriately
named “branched polymers”. Macromolecules whose backbones consist
largely of carbon atoms, as in Fig. 9.1, are called “organic” polymers.
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The binding forces that hold the individual atoms in polymers together
are usually covalent and sometimes ionic in nature. Covalent forces are
much stronger than the binding forces in metals. They are based on the same
interactions that are responsible for forming a hydrogen molecule from two
hydrogen atoms. Quantum mechanics explains covalent bonds by showing
that a lower energy state is achieved when two equal atomic systems are
closely coupled and in this way exchange their energy (see Section 16.2).
In organic polymers each carbon atom is often bound to four atoms (see
Fig. 9.1) because carbon has four valencies.

In contrast to the strong binding forces between the atoms within a
polymeric chain, the secondary interactions between the individual macro-
molecules are usually weak. The latter are of the Van der Waals type, i.e.,
they are based on forces which induce dipole moments in the molecules.
(Similar weak interactions exist for noble gases such as argon, neon, etc.)

In order to better understand the electronic properties of polymers by
means of the electron theory and the band structure concept, one needs to
know the degree of order or the degree of periodicity of the atoms, because
only ordered and strongly interacting atoms or molecules lead, as we know,
to distinct and wide electron bands. Now, it has been observed that the
degree of order in polymers depends on the length of the molecules and on
the regularity of the molecular structure. Certain heat treatments may
influence some structural parameters. For example, if a simple polymer is
slowly cooled below its melting point, one might observe that some macro-
molecules align parallel to each other. The individual chains are separated
by regions of supercooled liquid, i.e., of amorphous material (Fig. 9.2).
Actually, slow cooling yields, for certain polymers, a highly crystalline
structure.

In other polymers, the cooling procedure might cause the entire material
to go into a supercooled-liquid state. In this state the molecules can be
considered to be randomly arranged. After further cooling, below a glass
transition temperature, the polymer might transform itself into a glassy
amorphous solid which is strong, brittle, and insulating. However, as
stated before, we shall concern ourselves mainly with polymers that have
a high degree of crystallinity. Amorphous materials will be discussed in
Section 9.4.

Figure 9.1. (a) Polyethylene. (b) Polyvinylchloride. (The dashed enclosures mark the repeat

unit. Polyethylene is frequently depicted as two CH2 repeat units for historical reasons).
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A high degree of crystallinity and a relatively high conductivity have
been found in polyacetylene, which is the simplest conjugated organic
polymer. It is considered to be the prototype of a conducting polymer.
A conjugated polymer has alternating single and double bonds between
the carbons (see Fig. 9.3, which should be compared to Fig. 9.1(a)). Two
principal isomers are important: in the trans form, the hydrogen atoms are
alternately bound to opposite sides of the carbons (Fig. 9.3(b)), whereas in
the cis form the hydrogen atoms are situated on the same side of the double-
bond carbons (Fig. 9.3(a)). Trans-polyacetylene is obtained as a silvery,
flexible film that has a conductivity comparable to that of silicon (Fig. 9.4).

Figure 9.5 shows three band structures for trans-(CH)x assuming different
distances between the carbon atoms. In Fig. 9.5(a) all carbon bond lengths
are taken to be equal. The resulting band structure is found to be character-
istic for a metal, i.e., one obtains distinct bands, the highest of which is
partially filled by electrons. Where are the free electrons in the conduction
band coming from? We realize that the electrons in the double bond of a
conjugated polymer (called the p-electrons) can be considered to be only
loosely bound to the neighboring carbon atoms. Thus, one of these electrons
is easily disassociated from its carbon atom by a relatively small energy,
which may be provided by thermal energy. The delocalized electrons may
be accelerated as usual in an electric field.

Figure 9.3. Theoretical isomers of polyacetylene (a) cis-transoidal isomer, (b) trans-
transoidal isomer. Polyacetylene is synthesized as cis-(CH)x and is then isomerized into the

trans-configuration by heating it at 150�C for a few minutes.

Figure 9.2. Simplified representation of a semicrystalline polymer (folded-chain model).
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In reality, however, a uniform bond length between the carbon atoms
does not exist in polyacetylene. Instead, the distances between the carbon
atoms alternate because of the alternating single and double bonds. Band
structure calculations for this case show, interestingly enough, some gaps
between the individual energy bands. The resulting band structure is typical
for a semiconductor (or an insulator)! The width of the band gap near the
Fermi level depends mainly on the extent of alternating bond lengths
(Fig. 9.5(b) and (c)).

It has been shown that the band structure in Fig. 9.5(b) best represents the
experimental observations. Specifically, one finds a band gap of about
1.5 eV and a total width of the conduction band of 10–14 eV. The effective
massm* is 0.6m0 at k ¼ 0 and 0.1m0 at k ¼ p/a. Assuming t ! 10�14 s, the
free carrier mobility, m, along a chain is calculated to be about 200 cm2/V s.
The latter quantity is, however, hard to measure since the actual drift
mobility in the entire solid is reduced by the trapping of the carriers which
occurs during the “hopping” of the electrons between the individual macro-
molecules. In order to improve the conductivity of (CH)x one would attempt

Figure 9.4. Conductivities of polymers in O�1 cm�1. (Compare with Fig. 7.1.)
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to decrease the disparity in the carbon–carbon bond lengths, thus eventually
approaching the uniform bond length as shown in Fig. 9.5(a).

*It should be noted in passing that chemists, particularly when dealing
with organic molecules, utilize a different terminology for presenting the
same information that has been just described. This will be briefly explained
here for completeness. This alternative representation involves so-called
HOMO and LUMO levels which are acronyms for highest occupied
molecular orbitals and lowest unoccupied molecular orbitals, respectively.
An orbital is described as a region in space about the nucleus in which there
is a 95% probability of finding an electron, see Appendix 3. (Each of those
orbitals can be occupied with maximal two electrons having opposite spin.)
In short, the HOMO level is essentially analogous to (or better, a part of) the
valence band, which we have used in previous chapters and in Fig. 9.5(b)
and (c). Likewise, the LUMO level is part of the conduction band. The
energy difference between the HOMO and LUMO levels is considered to be
the band gap. Now, if there is an aggregate of molecules, the interaction
between these individual molecules leads to a splitting of the HOMO and
LUMO levels having slightly different energies. These sublevels have
different vibrational energies. Once a large number of molecules are in
close proximity, these energy levels overlap to form a continuum, that is,
essentially an energy band.

Figure 9.5. Calculated band structure of trans-(CH)x for different carbon–carbon bond

lengths: (a) uniform (1.39 Å); (b) weakly alternating (C¼C, 1.36 Å; C—C, 1.43 Å);

and (c) strongly alternating (C¼C, 1.34 Å; C—C, 1.54 Å). Note the band gaps at Y as

bond alternation occurs. Reprinted with permission from P.M. Grant and I.P. Batra, Solid
State Comm. 29, 225 (1979).

186 II. Electrical Properties of Materials



A further piece of nomenclature may be added. In Appendix 3, we
explain the meaning of s and p orbitals. These binding orbitals are in
their ground state and are therefore occupied by electrons. Once electrons
are instead in an excited state they are termed to be in s* and p* orbitals,
respectively. Electron transitions between occupied orbitals and empty
(excited) orbitals e.g. s ! s* or n ! p* (where n is a not-binding orbital
above p and s levels) can be achieved by providing the appropriate excitation
energy (for example by impinging light). The p orbital is often set identical
with the HOMO level and the p* orbital is equivalent to the LUMO level.
As already mentioned above, the energy difference between the HOMO
and LUMO levels, that is, the separation between p and p* orbitals is
the band gap energy, Eg, which is typically between 1 and 4 eV for organic
semiconductors.

Polyacetylene, as discussed so far, should be compared to conventional
intrinsic semiconductors. Now, we know from Section 8.3 that the conduc-
tivity of semiconductors can be substantially increased by doping. The same
is true for polymer-based semiconductors. Indeed, arsenic–pentafluoride-
doped trans-polyacetylene has a conductivity which is about seven orders of
magnitude larger than undoped trans-(CH)x. Thus, s approaches the con-
ductivity of metals, as can be seen in Figs. 9.4 and 9.6. Many oxidants cause

Figure 9.6. Conductivity change of polyacetylene as a result of doping.
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p-type semiconductors, whereas alkali metals are n-type dopants. The
doping is achieved through the vapor phase or by electrochemical methods.
The dopant molecules diffuse between the (CH)x chains and provide a
charge transfer between the polymer and the dopant. The additional element
ends up as an anion when it is an acceptor and as a cation when it is a
donor. Among other (albeit nontoxic) dopants is n-dodecyl sulfonate (soap).
A word of caution, when using the word “doping”, should be added at this
point. In semiconductor physics, doping means extremely small additions of
impurity elements. In polymers, much larger quantities of additional sub-
stances are used, ranging from one tenth of a percent up to 20–40%.

A refinement in the description of the conduction mechanism in poly-
acetylene can be provided by introducing the concept of solitons. A soliton
is a structural distortion in a conjugated polymer and is generated when a
single bond meets another single bond, as shown in Fig. 9.7. At the distor-
tion point a localized nonbonding electron state is generated, similar to an n-
type impurity state in a silicon semiconductor. In other words, a negative
charge is associated with a soliton, as seen in Fig. 9.7 (involving two carbon
bonds and one hydrogen bond to a carbon ion). The result is a localized level
in the center of the forbidden band. It is believed that when an electron is
excited from the valence band into the conduction band (leaving a hole in
the valence band) this electron–hole pair decays in about 10�12 s into a more
stable soliton–antisoliton pair.

Near the center of a soliton, the bond lengths are equal. We recall that
uniform bond lengths constitute a metal. Thus, when many solitons have
been formed and their spheres of influence overlap, a metal-like conductor
would result.

It is also conceivable that one of the double bonds next to a soliton
switches over to a single bond. If this switching occurs consecutively in
one direction, a soliton wave results. This can be compared to a moving
electron.

Up to now, we discussed mainly the properties of polyacetylene. Over the
last 30 years additional conductive polymers have been discovered. They
include polyanilines, polypyrroles, polythiophenes, polyphenylenes, poly(p-
phenylene vinylene) and their derivatives. Of these, the polyaniline family
can be easily processed at low cost but might yield toxic (carcinogenic)
products upon degradation. Others are more “environmentally friendly” but
are insoluble. On the other hand, the above-mentioned PEDOT (developed

Figure 9.7. A broken symmetry in polyacetylene creates a soliton. (An antisoliton is the

mirror image of a soliton.)

188 II. Electrical Properties of Materials



by Bayer AG in Germany) can be made water-soluble by utilizing poly
(styrenesulfonate) (PSS) as a dopant during polymerization. Its antistatic
and other properties have been mentioned already above. With respect to
carbon-free polymers, the chains in inorganic poly(sulfur nitride) consist
of alternating sulfur and nitrogen atoms. Because of the different valencies
of the S2� and N3� ions, (SN)x is an electron-deficient material with an
alternating bond structure. The bond length alternation is not severe, so that
(SN)x has a room-temperature conductivity of about 103 ohm�1 cm�1

along the chain direction. The conductivity increases with a reduction
in temperature. At temperatures close to 0 K, poly(sulfur nitride) becomes
superconducting. In brominated (SN)x the Br�3 and Br�2 ions are aligned
along the chain axis, giving rise to a one-dimensional superlattice.

In graphite, “molecules” consists of “sheets” of carbon atoms. The
conductivity is found to be nearly metallic, at least parallel to the layers
(Fig. 9.4). AsF5-doped graphite has an even higher conductivity. The con-
duction is increased by producing a mixture of easily ionized electron
donors and electron acceptors. The charge is then shared between the donors
and acceptors. These materials are called charge-transfer complexes.

An isolated atomic plane of graphite, that is, a monolayer of carbon
atoms, is called graphene. It can be identified in the high-resolution electron
microscope as a two-dimensional (2D) honeycomb lattice (six-member
carbon ring), where the distance between next-neighbor atoms is 0.14 nm.
Graphene has extraordinary physical properties and is therefore intensely
studied both, from a theoretical point of view as well as experimentally
because of its potential applications in computer technology and other fields.
Specifically, intrinsic graphene is a semi-metal whereas extrinsic graphene
is a semiconductor whose band gap can be tuned from 0 to 0.25 eV. It has a
zero effective mass for electrons and holes at low energies, a high room
temperature electron mobility (>1.5 m2/V s, compared to 0.15 m2/V s for Si,
see Appendix 4) leading to a mean free path of several microns, a sheet
conductivity of 106 1/(O cm) (which is larger than that for Ag, see Fig. 7.1),
and a thermal conductivity around 5 � 103 W/m K (which is higher than
that for diamond, see Table 19.3). Moreover, graphene seems to be one of
the strongest materials, having a breaking strength 200 times larger than
steel. It absorbs about 2.3% of white light despite its monolayer thickness
(which makes it visible in transmission). Finally, the quantum Hall effect
has been observed in graphene at room temperature (see Section 8.5). No
wonder that it is speculated that graphene would eventually replace silicon
for ultra-large-scale integrated electronic devices. Indeed, n-and p-type
semiconductors, a bipolar transistor, a field-effect transistor, operating at
100 GHz, hundreds of transistors on a single flake, and a frequency multi-
plier, have been already demonstrated. Among further potential applications
are ultra capacitors, sensors, and transparent, conducting electrodes for
organic light emitting diodes, organic photovoltaic cells (Section 13.8.15),
touch-screens, and liquid crystal displays (Section 13.8.16).
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If this sounds like a miracle material, one has to admit that the fabrication
of graphene is not a trivial task. Several techniques have been successfully
(and unsuccessfully) tried, which have so far yielded only small quantities
of pristine graphene (flakes about 1 mm2 in size) or larger sheets of lesser
quality. Among them is the initial Scotch tape technique involving repeated
splitting of graphite crystals into increasingly thinner segments, which, after
dissolving the tape in acetone, are sedimented on a Si wafer. An alternative
is the dry deposition method, also called the drawing technique (because
drawing a line with a graphite pencil also yields flakes of graphene). A
further method involves heating silicon carbide at about 1,400�C to reduce it
to graphene.

Historically, extremely thin graphitic flakes have been described in 1962
and a few layers of graphene were observed in the TEM in 1948. The term
graphene first appeared in 1987 to describe graphite intercalation com-
pounds. Eventually, the “mechanical exfoliation” of graphite to stable,
electronically isolated graphene, in 2004 by Geim and Novoselov, as
described above, led to the rush of experimental and theoretical endeavors
involving scientific labs all over the world. Progress in this field should be
followed with great anticipation.

Another class of conductors is the charge-transfer salts, in which a
donor molecule, such as tetrathiafulvalene (TTF), transfers electrons to an
acceptor molecule, such as tetracyanoquinodimethane (TCNQ). The planar
molecules stack on top of each other in sheets, thus allowing an overlap
of wave functions and a formation of conduction bands that are partially
filled with electrons due to the charge transfer. It is assumed that, because
of the sheetlike structure, the charge-transfer compounds are quasi-one-
dimensional. Along the stacks, conductivities as high as 2 � 103 O�1 cm�1

have been observed at room temperature. Below room temperature, the
metallic conductors often transform into semiconductors or insulators.
Even superconduction has been observed at very low temperatures (about
13 K). In the presence of a magnetic field and at low temperatures, these
materials undergo, occasionally, a transition from a metallic, nonmagnetic
state into a semimetallic, magnetic state. Organic metals are generally
prepared by electrochemical growth in a solution. They are, as a rule,
quite brittle, single crystalline, and relatively small. Other materials of this
type include doped complexes of C60 (so-called Buckyballs) which exhibit
superconductivity at low temperatures.

Replacing metals with lightweight conducting polymers (for wires)
seems to be, in the present state of the art, nearly impossible, mainly because
of their poor stability. However, this very drawback (i.e., the high reactivity
of some conducting polymers) concomitant with a change in conductivity
can be profitably utilized in devices such as remote gas sensors, biosensors,
or other remotely readable indicators that detect changes in humidity,
radiation dosage, mechanical abuse, or chemical release. As an example,
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polypyrrole noticeably changes its conductivity when exposed to only 0.1%
NH3, NO2, or H2S. Further, experiments have been undertaken to utilize
(CH)x for measuring the concentration of glucose in solutions.

9.2. Ionic Conduction

In ionic crystals (such as the alkali halides), the individual lattice atoms
transfer electrons between each other to form positively charged cations and
negatively charged anions. The binding forces between the ions are electro-
static in nature and are thus very strong. The room-temperature conductivity
of ionic crystals is about twenty-two orders of magnitude smaller than the
conductivity of typical metallic conductors (Fig. 7.1). This large difference
in s can be understood by realizing that the wide band gap in insulators
allows only extremely few electrons to become excited from the valence
band into the conduction band.

The main contribution to the electrical conduction in ionic crystals (as
little as it may be) is, however, due to a mechanism that we have not yet
discussed, namely, ionic conduction. Ionic conduction is caused by the
movement of some negatively (or positively) charged ions which hop
from lattice site to lattice site under the influence of an electric field, see
Fig. 9.8 (b). (This type of conduction is similar to that which is known to
occur in aqueous electrolytes.) This ionic conductivity

sion ¼ Nionemion (9.1)

is, as outlined before (8.13), the product of three quantities. In the present
case, Nion is the number of ions per unit volume that can change their
position under the influence of an electric field and mion is the mobility of
these ions.

Figure 9.8. Schematic representation of a potential barrier, which an ion (●) has to over-

come to exchange its site with a vacancy (□). (a) Without an external electric field;

(b) with an external electric field. d ¼ distance between two adjacent, equivalent lattice

sites; Q ¼ activation energy.
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In order for ions to move through a crystalline solid, they must have
sufficient energy to pass over an energy barrier (Fig. 9.8). Further, an
equivalent lattice site next to a given ion must be empty in order for an
ion to be able to change its position. Thus, Nion in (9.1) depends on the
vacancy concentration in the crystal (i.e., on the number of Schottky
defects17). In short, the theory of ionic conduction contains essential ele-
ments of diffusion theory, with which the reader might be familiar.

Diffusion theory links the mobility of the ions, which is contained in
(9.1), with the diffusion coefficient, D, through the Einstein relation,

mion ¼
De

kBT
: (9.2)

(Note that (9.2) implies that one charge unit per atom is transported.)
The diffusion coefficient varies with temperature; this dependence is

commonly expressed by an Arrhenius equation,

D ¼ D0 exp � Q

kBT

� �� �
; (9.3)

where Q is the activation energy for the process under consideration
(Fig. 9.8), and D0 is a pre-exponential factor that depends on the vibrational
frequency of the atoms and some structural parameters. Combining (9.1)
through (9.3) yields

sion ¼ Nione
2D0

kBT
exp � Q

kBT

� �� �
: (9.4)

Equation (9.4) is shortened by combining the pre-exponential constants
into s0:

sion ¼ s0 exp � Q

kBT

� �� �
: (9.5)

Taking the natural logarithm yields

ln sion ¼ ln s0 � Q

kB

� �
1

T
: (9.6)

Equation (9.6) suggests that if ln sion is plotted versus 1/T, a straight line
with a negative slope would result. Figure 9.9 depicts schematically a plot of
ln s versus 1/T as experimentally found for alkali halides. The linear ln s
versus 1/T relationship indicates that Fig. 9.9 is an actual representation

17 A Schottky defect is formed when an anion as well as a cation of the same absolute valency are

missing (to preserve charge neutrality).
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of (9.6). The slopes of the straight lines in Arrhenius plots are utilized
to calculate the activation energy of the processes under consideration.
We notice in Fig. 9.9 two temperature regions representing two different
activation energies: at low temperatures, the activation energy is small, the
thermal energy is just sufficient to allow the hopping of ions into already
existing vacancy sites. This temperature range is commonly called the
extrinsic region. On the other hand, at high temperatures, the thermal
energy is large enough to create additional vacancies. The related activation
energy is thus the sum of the activation energies for vacancy creation and
ion movement. This temperature range is called the intrinsic region.

So far, we have not been very specific in describing the circumstances of
vacancy formation in an ionic crystal. Now, we have to realize that when-
ever vacant lattice sites are created, an overall charge neutrality needs to be
maintained. The latter is the case when both a cation and an anion are
removed from a lattice. Another permissible mechanism is the formation
of a vacancy-interstitial pair (Frenkel defect). More often, however, vacan-
cies are created as a consequence of introducing differently charged impu-
rity atoms into an ionic lattice, i.e., by replacing, say, a monovalent metal
atom with a divalent atom. In order to maintain charge neutrality in this
case, a positively charged vacancy needs to be introduced. For example, if a
divalent Mg2+ ion substitutes for a monovalent Na+ ion, one extra Na+ ion
has to be removed to restore charge neutrality, see Fig. 9.10. Or, if zirconia
(ZrO2) is treated with CaO (to produce the technically important calcia-
stabilized zirconia), the Ca2+ ions substitute for Zr4+ ions and an anion
vacancy needs to be created to maintain charge neutrality. Nonstoichio-
metric compounds contain a high amount of vacancies even at relatively low
temperatures, whereas in stoichiometric compounds vacancies need to be
formed by elevating the temperature.

In principle, both cations and anions are capable of moving simulta-
neously under the influence of an electric field. It turns out, however, that
in most alkali halides the majority carriers are provided by the (smaller)

Figure 9.9. Schematic representation of ln s versus 1/T for Na+ ions in sodium chloride.

(Arrhenius plot).
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metal ions, whereas in other materials, such as the lead halides, the conduc-
tion is predominantly performed by the halide ions.

So far, it was implied that the materials under consideration are single
crystals. For polycrystalline materials, however, it appears reasonable to
assume that the vacant lattice sites provided by the grain boundaries would
be utilized by the ions as preferred paths for migration, thus enhancing the
conductivity. This has indeed been experimentally observed for alkali ions.

One piercing question remains to be answered: If ionic conduction
entails the transport of ions, i.e., of matter from one electrode to the
other, would this not imply some segregation of the constituents? Indeed,
a pile-up of mobile ions at the electrodes has been observed for long-lasting
experiments with a concomitant induced electric field in the opposite
direction to the externally applied field. As a consequence the conductivity
decreases gradually over time. Of course, this does not happen when
nonblocking electrodes are utilized which provide a source and a sink for
the mobile species.

9.3. Conduction in Metal Oxides

Metal oxides do not actually represent a separate class of conducting
materials on their own. Indeed, they can be insulating, such as TiO2, have
metallic conduction properties, such as TiO, or be semiconducting. For
understanding the mechanisms involved in metal oxides, e.g., in the afore-
mentioned titanium oxides, it is helpful to inspect the table in Appendix 3.
Oxygen is seen there to have four 2p-electrons in its outermost shell. Two
more electrons will bring O2� into the closed-shell configuration and four
electrons are obviously needed to accomplish the same for two oxygen ions,

Figure 9.10. Schematic representation of a {100} plane of an ionic crystal having the NaCl

structure. The diffusion of a cation into a cation vacancy is shown. Also depicted is the

creation of a cation vacancy when replacing a Na+ ion with a Mg2+ ion.
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such as in TiO2. These four electrons are provided by the titanium from its
3d- and 4s-shells. Thus, in the case of TiO2, all involved elements are in the
noble gas configuration. Since ionic bonds are involved, any attempted
removal of electrons would require a considerable amount of thermal
energy. TiO2 is, consequently, an insulator having a wide band gap. Not
so for TiO. Since only two titanium valence electrons are needed to fill the
2p-shell of one oxygen ion, two more titanium electrons are free to serve
as conduction electrons. Thus, TiO has metallic properties with a s in the
103 O�1 cm�1 range.

A refinement of our understanding is obtained by considering the
pertinent electron bands. TiO has, according to the aforementioned explana-
tions, a filled oxygen 2p-valence band and an essentially empty titanium
4s-conduction band. Also involved is a narrow titanium 3d-band which is
partially filled by the above-mentioned two electrons. The conduction in
TiO takes place, therefore, in the titanium 3d-band, which can host, as we
know, a total of 10 electrons.

We discuss zinc oxide as a next example. Zn in ZnO has two valence
4s-electrons which transfer to the oxygen 2p-band. ZnO, if strictly stoichio-
metric, has, thus, a filled valence 2p-band and an empty zinc 4s-band
employing a gap energy of 3.3 eV. Stoichiometric ZnO is therefore an
insulator or a wide-band-gap semiconductor. Now, if interstitial zinc
atoms (or oxygen vacancies) are introduced into the lattice (by heating
ZnO in a reducing atmosphere, which causes neutral oxygen to leave the
crystal) then the valence electrons of these zinc interstitials are only loosely
bound to their nuclei. One of these two electrons can easily be ionized
(0.05 eV) and acts therefore as a donor. Nonstoichiometric ZnO is, conse-
quently, an n-type semiconductor. The same is incidentally true for nonstoi-
chiometric Cu2O (see Appendix 3), an established semiconducting material
from which Cu/Cu2O Schottky-type rectifiers were manufactured long before
silicon technology was invented.

Another interesting metal oxide is SnO2 (sometimes doped with In2O3),
which is transparent in the visible region and which is a reasonable con-
ductor in the 1 O�1 cm�1 range. It is used in optoelectronics to provide
electrical contacts without blocking the light from reaching a device. It is
known as indium-tin-oxide or ITO.

Finally, we discuss NiO. Again, a filled oxygen 2p-band and an empty
nickel 4s-band are involved. In order to form the nickel 3d-bands required
for conduction, a substantial overlap of the 3d-wave functions would be
required by quantum mechanics. Band structure calculations show, how-
ever, that these interactions do not take place. Instead, deep-lying localized
electron states in the forbidden band close to the upper edge of the valence
band are observed. Thus, no 3d-band conduction can take place, which
results in stoichiometric NiO being an insulator. Nonstoichiometry
(obtained by removing some nickel atoms, thus creating cation vacancies)
causes NiO to become a p-type semiconductor.
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9.4. Amorphous Materials (Metallic Glasses)

Before we discuss electrical conduction in amorphous materials, we need to
clarify what the term amorphous means in the present context. Strictly
speaking, amorphous implies the random arrangement of atoms, the absence
of any periodic symmetry, or the absence of any crystalline structure. One
could compare the random distribution of atoms with the situation in a gas,
as seen in an instantaneous picture. Now, such a completely random
arrangement of atoms is seldom found even in liquids, much less in solids.
In actuality, the relative positions of nearest neighbors surrounding a given
atom in an amorphous solid are almost identical to the positions in crystal-
line solids because of the ever-present binding forces between the atoms.
In short, the atomic order in amorphous materials is restricted to the nearest
neighbors. Amorphous materials exhibit, therefore, only short-range order.
In contrast to this, the exact positions of the atoms that are farther apart from
a given central atom cannot be predicted. This is particularly the case when
various kinds of stacking orders, i.e., if polymorphic modifications, are
possible. As a consequence one observes atomic disorder at long range.
The term amorphous solid should therefore be used cum grano salis. We
empirically define materials to be amorphous when their diffraction patterns
consist of diffuse rings, rather than sharply defined Bragg rings, as are
characteristic for polycrystalline solids.

So far we have discussed positional disorder only as it might be found
in pure materials. If more than one component is present in a material,
a second type of disorder is possible: The individual species might be
randomly distributed over the lattice sites; i.e., the species may not be
alternately positioned as is the case for, say, sodium and chlorine atoms
in NaCl. This random distribution of species is called compositional
disorder.

The best-known representative of an amorphous solid is window glass,
whose major components are silicon and oxygen. Glass is usually described
as a supercooled liquid.

Interestingly enough, many elements and compounds that are generally
known to be crystalline under equilibrium conditions can also be obtained in
the nonequilibrium amorphous state by applying rapid solidification techni-
ques, i.e., by utilizing cooling rates of about 105 K/s. These cooling rates
can be achieved by fast quenching, melt spinning, vapor deposition, sputter-
ing, radiation damage, filamentary casting in continuous operation, spark-
processing, etc. The degree of amorphousness (or, the degree of short range
order) may be varied by the severity of the quench. The resulting metallic
glasses, or glassy metals, have unusual electrical, mechanical, optical,
magnetic, and corrosion properties and are therefore of considerable inter-
est. Amorphous semiconductors (consisting, e.g., of Ge, Si, GeTe, etc.) have
also received substantial attention because they are relatively inexpensive to
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manufacture, have unusual switching properties, and have found applica-
tions in inexpensive photovoltaic cells.

We now turn to the atomic structure of amorphous metals and alloys.
They have essentially nondirectional bonds. Thus, the short-range order
does not extend beyond the nearest neighbors. The atoms must be packed
together tightly, however, in order to achieve the observed density. There
are only a limited number of ways of close packing. One way of arranging
the atoms in amorphous metals is depicted by the dense random packing
of hard spheres model (Fig. 9.11). This Bernal model is considered as
the ideal amorphous state. No significant regions of crystalline order are
present. In transition metal–metalloid compounds (such as Ni–P) it is
thought that the small metalloid atoms occupy the holes which occur as a
consequence of this packing (Bernal–Polk model).

The atoms in amorphous semiconductors, on the other hand, do not arrange
themselves in a close-packed manner. Atoms of group IV elements are, as we
know, covalently bound. They are often arranged in a continuous random
networkwith correlations in ordering up to the third or fourth nearest neighbors
(Fig. 9.12(b) and (c)). Amorphous pure silicon contains numerous dangling
bonds similar to those found in crystalline silicon in the presence of vacancies
(Fig. 9.12(a)).

Since amorphous solids have no long-range crystal symmetry, we can no
longer apply the Bloch theorem, which led us in Section 4.4 from the distinct
energy levels for isolated atoms to the broad quasi-continuous bands for
crystalline solids. Thus, the calculation of electronic structures for amor-
phous metals and alloys has to use alternate techniques, e.g., the cluster
model approach. This method has been utilized to calculate the electronic
structure of amorphous Zr–Cu (which is a representative of a noble metal–
transition metal metallic glass). A series of clusters were assumed which

Figure 9.11. Two-dimensional schematic representation of a dense random packing of hard

spheres (Bernal model).

9. Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials 197



exhibit the symmetry of the close-packed lattices fcc (as for Cu) and hcp18

(as for Zr). The energy level diagram depicted in Fig. 9.13 shows two
distinct “bands” of levels. The lower band consists primarily of copper
d-levels, while the upper band consists mainly of zirconium d-levels.
A sort of gap separates the two bands of levels. Even though the concept
of quasi-continuous energy bands is no longer meaningful for amorphous
solids, the density of states concept still is, as can be seen in Fig. 9.13. We
notice that the Fermi energy is located in the upper part of the zirconium
levels. Further, we observe partially filled electron states. This has two
interesting consequences. First, we expect metal-like conduction. Second,
Z(E) near EF is small, which suggests relatively small values for the

Figure 9.13. Schematic representation of the molecular orbital energy level diagram and the

density of states curves for Zr–Cu clusters. The calculated density of states curves agree

reasonably well with photoemission experiments.

Figure 9.12. Defects in crystalline and amorphous silicon. (a) Monovacancy in a crystalline

semiconductor; (b) one and (c) two dangling bonds in a continuous random network of an

amorphous semiconductor. (Note the deviations in the interatomic distances and bond

angles).

18 Hexagonal close-packed.
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conductivity (see (7.26)). Indeed, s for Cu–Zr is comparable to that of poor
metallic conductors (i.e., approximately 5 � 103 1/O cm).

The electrical resistivity of many metallic glasses (such as Pd80Si20 or
Fe32Ni36Cr14P12B6

19) stays constant over a fairly wide temperature range,
up to the temperature which marks the irreversible transition from the
amorphous into the crystalline state. This makes these alloys attractive as
resistance standards. The mean free path for electrons in metallic glasses is
estimated to be about 1 nm.

The energy level diagrams and the density of states curves for amor-
phous semiconductors are somewhat different from those for amorphous
metals. Because of the stronger binding forces which exist between the
atoms in covalently bound materials, the valence electrons are tightly
bound, or localized. As a consequence, the density of states for the localized
states extends into the “band gap” (Fig. 9.14). This may be compared to the
localized impurity states in doped crystalline semiconductors, which are
also located in the band gap. Thus, we observe density of states tails. These
tails may extend, for some materials, so far into the gap that they partially
overlap. In general, however, the density of electron and hole states for the
localized levels is very small.

The electrical conductivity for amorphous semiconductors, sA, depends,
as usual (8.13), on the density of carriers, NA, and the mobility of these
carriers, mA:

sA ¼ NAemA: (9.7)

The density of carriers in amorphous semiconductors is extremely small,
because all electrons are, as said before, strongly bound (localized) to their

Figure 9.14. Localized and delocalized states and density of states Z(E) for amorphous

semiconductors. Note the band tails, which are caused by the localized states.

19 METGLAS 2826A, trademark of Allied Chemical.
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respective nuclei. Likewise, the mobility of the carriers is small because the
absence of a periodic lattice causes substantial incoherent scattering. As a
consequence, the room-temperature conductivity in amorphous semicon-
ductors is generally very low (about 10�7 1/O cm).

Some of the localized electrons might occasionally acquire sufficient
thermal energy to overcome barriers which are caused by potential wells
of variable depth and hop to a neighboring site. Thus, the conduction
process in amorphous semiconductors involves a (temperature-dependent)
activation energy,QA, which leads to an equation similar to (9.5), describing
a so-called variable-range hopping

sA ¼ s0 exp � QAðTÞ
kBT

� �� �
: (9.8)

Equation (9.8) states that the conductivity in amorphous semiconductors
increases exponentially with increasing temperature, because any increase
in thermal energy provides additional free carriers.

The application of amorphous silicon for photovoltaic devices (see
Section 8.7.6) will be discussed briefly in closing because of its commercial,
as well as scientific, significance. If silicon is deposited out of the gas phase on
relatively cold (<500�C) substrates (utilizing silane or sputtering), a structure
as shown in Fig. 9.12 (b) and (c) results. Doping is virtually not possible in
this condition since any free charge carriers recombine immediately with
the dangling bonds. However, hydrogen, if added during deposition and
incorporated into the solid, neutralizes the unsaturated valencies (and reduces
internal strain in the lattice network). This results in hydrogenated amor-
phous silicon, which is, in its properties, quite comparable to crystalline
silicon. Doping can be accomplished during deposition. This way, semicon-
ducting materials can be produced which vary in their conductivity between
10�11 and 10�2 O�1 cm�1 depending on doping (see Fig. 7.1). Commercial
flat-plate solar cells of this type have an efficiency of about 8% compared to
14% efficiency for commercial single-crystal silicon technology. The price
(and the consumption of power during manufacturing) is, however, only one-
half of that for crystalline silicon, mainly because of the simpler way of
deposition (see Section 8.7.6).

The understanding of amorphous metals, alloys, and semiconductors is
still in its infancy. Future developments in this field should be followed with
a great deal of anticipation because of the potentially significant applications
which might arise in the years to come.

9.4.1. Xerography

Xerography (from the Greek “dry writing”) or electrophotography is an
important application of amorphous semiconductors such as amorphous
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selenium or amorphous silicon, etc. (They have been recently replaced,
however, by polyvinylcarbazole.) Such a material, when deposited on a
cylindrically shaped metallic substrate, constitutes the photoreceptor
drum, as shown in Fig. 9.15.

Before copying, the photoreceptor is electrostatically charged by means
of a corona wire to which a high voltage is applied (Step 1). Amorphous
semiconductors are essentially insulators (see above) which hold this elec-
tric charge reasonably well, as long as they are kept in the dark. If, however,
light which has been reflected from the document to be copied falls on the
photoreceptor, electron–hole pairs are formed, causing the photoreceptor to
become conducting. This process discharges the affected parts on the drum,
creating a latent image on the photoreceptor, i.e., a pattern consisting of
charged and neutral areas. At the next step, electrostatically charged and
pigmented polymer particles (called toner) are brought into contact with the
drum. The toner clings to the charged areas only. Commonly, a two-com-
ponent toner is utilized; one part consists of magnetically soft particles.
They form brush-type chains under the influence of a magnetic field which
is caused by permanent magnets that are rotated inside a cylinder (see
Fig. 9.15, Step 3). Eventually, the toner on the photoreceptor is electrostati-
cally transferred to a piece of paper by properly corona-charging the back

Figure 9.15. Schematic representation of the electrophotography process. The individual

steps are explained in the text.
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of the paper. Finally, the toner is fused to the paper by heat. A cleaning
and photodischarging process prepares the photoreceptor drum for the
next cycle.

Laser printers use the same principle. To create the latent image, the
laser light is periodically scanned across the rotating photoreceptive drum
by means of a rotating multisurface mirror. The spectral sensitivity of the
amorphous semiconductor has to be matched to the wavelength of the laser
light. Amorphous silicon (maximal photosensitivity near 700 nm) in con-
junction with a helium–neon laser (see Table 13.1) is a usable combination.

9.5. Dielectric Properties

Insulators (also often called dielectric materials) possess a number of addi-
tional important electrical properties that make them useful in the electron-
ics industry. They will be explained in this section.

When a voltage is momentarily applied to two parallel metal plates which
are separated by a distance, L, as shown in Fig. 9.16, then the resulting
electric charge essentially remains on these plates even after the voltage has
been removed (at least as long as the air is dry). This ability to store an
electric charge is called capacitance, C, which is defined to be the charge,
q, per unit applied voltage, V, that is:

C ¼ q

V
; (9.9)

where C is given in coulombs per volt, or farad (see Appendix 4). Under-
standably, the capacitance is higher the larger the area, A, of the plates and
the smaller the distance, L, between them. Further, the capacitance depends

A

L

V

+

+
+

+
+

+–

Figure 9.16. Two metal plates, separated by a distance, L, can store electric energy after

having been charged momentarily by a battery.
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on the material that may have been inserted between the plates. The experi-
mental observations lead to

C ¼ ee0
A

L
; (9.10)

where

e ¼ C

Cvac

(9.11)

determines the magnitude of the added storage capability. It is called the
(unitless) dielectric constant (or occasionally the relative permittivity, er).
e0 is a universal constant having the value of 8.85 � 10�12 farad per meter
(F/m), or As/Vm, and is known by the name permittivity of empty space
(or of vacuum). Some values for the dielectric constant are given in
Table 9.1. The dielectric constant of empty space is set to be 1, whereas e
of air and many other gases is nearly 1. The dielectric constant is frequency
dependent.

We now need to explain why the capacitance increases when a piece of a
dielectric material is inserted between two conductors [see Eq. (9.10)]. For
this, one has to realize that, under the influence of an external electric field,
the negatively charged electron cloud of an atom becomes displaced with

Table 9.1. DC Dielectric Constants of Some Materials

Potassium tantalate niobate 6,000

FerroelectricBarium titanate (BaTiO3) 4,000

Potassium Niobate (KNbO3) 700

Rochelle salt (NaKC4H4O6 · 4H2O) 170

Water 81.1

Dielectric

Acetone 20

Silicon 11.8

GaAs 10.9

Marble 8.5

Soda-lime-glass 6.9

Porcelain 6.0

Epoxy 4.0

Fused silica 4.0

Nylon 6,6 4.0

PVC 3.5

Ice 3.0

Amber 2.8

Polyethylene 2.3

Paraffin 2.0

Air 1.000576
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respect to its positively charged core; compare Fig. 9.17(a) with (b). As a
result, a dipole is created, which has an electric dipole moment

p ¼ q � x; (9.12)

where x is the separation between the positive and the negative charge as
depicted in Fig. 9.17(c). (The dipole moment is generally a vector pointing
from the negative to the positive charge.) The process of dipole formation
(or alignment of already existing dipoles) under the influence of an external
electric field that has an electric field strength, E , is called polarization.
Dipole formation of all involved atoms within a dielectric material causes a
charge redistribution so that the surface nearest to the positive capacitor
plate is negatively charged (and vice versa), see Fig. 9.18(a). As a conse-
quence, electric field lines within a dielectric are created which are opposite
in direction to the external field lines. Effectively, the electric field lines
within a dielectric material are weakened due to polarization, as depicted in
Fig. 9.18(b). In other words, the electric field strength in a material,

E ¼ E vac

e
; (9.13)

is reduced by inserting a dielectric between two capacitor plates.
Within a dielectric material the electric field strength, E , is replaced by

the dielectric displacement, D (also called the surface charge density),
that is,

D ¼ ee0E ¼ q

A
: (9.14)

The dielectric displacement is the superposition of two terms:

D ¼ e0E þ P; (9.15)

Figure 9.17. An atom is represented by a positively charged core and a surrounding,

negatively charged, electron cloud (a) in equilibrium and (b) in an external electric field.

(c) Schematic representation of an electric dipole as, for example, created by separation of

the negative and positive charges by an electric field, as seen in (b).
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where P is called the dielectric polarization, that is, the induced electric
dipole moment per unit volume [Fig. 9.18 (c and d)]. The units for D and P
are C m�2; see Eq. (9.14). (D, E , and P are generally vectors.) In summary,
the polarization is responsible for the increase in charge density (q/A) above
that for vacuum.

The mechanism just described is known by the name electronic polari-
zation. It occurs in all dielectric materials that are subjected to an electric
field. In ionic materials, such as the alkali halides, an additional process may
occur, which is called ionic polarization. In short, cations and anions are
somewhat displaced from their equilibrium positions under the influence
of an external field and thus give rise to a net dipole moment. Finally,
many materials already possess permanent dipoles that can be aligned
in an external electric field. Among them are water, oils, organic liquids,
waxes, amorphous polymers, polyvinylchloride, and certain ceramics, such
as barium titanate (BaTiO3). This mechanism is termed orientation polari-
zation, or molecular polarization. All three polarization processes are
additive if applicable; see below and Fig. 9.19.

Most capacitors are used in alternating electric circuits. This requires
the dipoles to reorient quickly under a rapidly changing electric field. Not
all polarization mechanisms respond equally quick to an alternating electric
field. For example, many molecules are relatively sluggish in reorientation.
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(a)

(c) (d)

(b)

D

P

ε0

Figure 9.18. Schematic representation of two capacitor plates between which a dielectric

material is inserted. (a) Induction of electric dipoles of opposite charge. (b) Weakening of the

electricfieldwithin thedielectricmaterial [Eq. (9.13)]. (c)Thedirectionof thepolarizationvector

is from the negative induced charge to the positive induced charge see Fig. 9.17(b). (d) The

dielectric displacement,D, within the dielectric material is the sum of e0E and P [Eq. (9.15)].
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Thus, molecular polarization breaks down already at relatively low fre-
quencies; see Fig. 9.19. In contrast, electronic polarization responds quite
rapidly to an alternating electric field even at frequencies up to about
1016 Hz.

At certain frequencies a substantial amount of the excitation energy is
absorbed and transferred into heat. This process is called dielectric loss. It is
imperative to know the frequency for dielectric losses for a given material so
that the respective device is not operated in this range.

9.6. Ferroelectricity, Piezoelectricity, Electrostriction,
and Pyroelectricity

Certain materials, such as barium titanate, exhibit spontaneous polarization
without the presence of an external electric field. Because these materials
have electrical dipoles, their dielectric constants may be orders of magni-
tude larger than those of non-polar dielectrics (see Table 9.1). Thus, they
are quite suitable for the manufacturing of small-sized, highly efficient
capacitors. A ferroelectric material is a material in which these dipoles
can be reoriented using an external electrical field. Specifically, if a ferro-
electric material is exposed to a strong electric field, E , its permanent
dipoles become increasingly aligned with the external field direction until

Figure 9.19. Schematic representation of the polarization as a function of excitation fre-

quency for different polarization mechanisms. (A further mechanism, called “space charge

polarization” which occurs at interphases between impurities and the matrix, and at grain

boundaries withstands frequencies up to only 0.1 to 1 Hz. This is not shown here because of

its relative unimportance for capacitors).
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eventually all dipoles are as close to parallel to the field as possible and
saturation of the polarization, Ps, is achieved, as depicted in Fig. 9.20. Once
the external field has been withdrawn, a remanent polarization, Pr, remains
which can only be removed by inverting the electric field until a coercive
field, E c, is reached (Fig. 9.20). By further increasing the reverse electric
field, orientation of the dipoles in the opposite direction is achieved. Finally,
when reversing the field once more, a complete hysteresis loop is obtained,
as depicted in Fig. 9.20. Therefore, ferroelectrics can be utilized for memory
devices in computers, etc. The area within a hysteresis loop is proportional
to the energy per unit volume that is dissipated once a full field cycle has
been completed.

It should be emphasized at this point that ferroelectrics do not neces-
sarily contain iron, as the name might suggest. Instead, the name is derived
from the similarity of some properties of ferroelectric substances to those
of ferromagnetic materials such as iron. In other words, ferroelectricity
is the electric analogue to ferromagnetism, which will be discussed in
Section 15.1.3.

A critical temperature, called the Curie temperature, exists, above
which the ferroelectric effects are destroyed and the material becomes
paraelectric. Typical Curie temperatures range from �200�C for strontium
titanate to at least 640�C for NaNbO3.

The question that remains to be answered is, how do certain materials
such as BaTiO3 possess spontaneous polarization? This can be explained by
recognizing that in the tetragonal crystal structure of BaTiO3, the negatively
charged oxygen ions and the positively charged Ti4+ ion are slightly dis-
placed from their symmetrical positions, as depicted in Fig. 9.21. This
results in a permanent ionic dipole moment along the c-axis within the

Pr
Ps

P

c

Figure 9.20. Schematic representation of a hysteresis loop for a ferroelectric material in an

electric field. Compare to Fig. 15.6.
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unit cell. A large number of such dipoles line up in clusters (also called
domains); see Fig. 9.22. In the virgin state, the polarization directions of the
individual domains are, on average, randomly oriented, so that the material
has no net polarization. An external field eventually orients the dipoles of
the favorably oriented domains parallel to E . Specifically, those domains in
which the dipoles are already nearly parallel to E grow at the expense of
unfavorably oriented domains.

By heating BaTiO3 above its Curie temperature (120�C), the tetragonal
unit cell transforms into a cubic cell whereby the ions now assume symmet-
ric positions. Thus, no spontaneous alignment of dipoles remains, and
BaTiO3 is no longer ferroelectric.

If pressure is applied to a ferroelectric material, such as BaTiO3, a
change in the magnitude of the just-mentioned polarization may occur,
which results in a small voltage across the sample. This effect is called

Figure 9.21. Tetragonal crystal structure of barium titanate at room temperature. Note the

upward displacement of the Ti4+ ion in the center compared to the downward displacement of

all surrounding O2� ions. a ¼ 0.398 nm; c ¼ 0.403 nm.

Figure 9.22. Schematic representation of spontaneous alignments of electric dipoles within

a domain and random alignment of the dipole moments of several domains in a ferroelectric

material such as BaTiO3. Compare to Fig. 15.9.
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piezoelectricity.20 It is found in a number of materials, such as quartz
(though much weaker than in BaTiO3), ZnO, and complex ceramic com-
pounds such as Pb(Zr,Ti)O3 (called PZT) and lead-free Bi0.5Na0.5TiO3 and
K0.5Na0.5NbO3. Piezoelectricity is utilized in devices that are designed to
convert mechanical strain into electricity. Those devices are called trans-
ducers. Applications include strain gages, microphones, sonar detectors,
and phonograph pickups, to mention a few.

The piezoelectric effect in which stress is used to generate voltage is
referred to as the direct piezoelectric effect. The converse mechanism, in
which an applied electric field produces a change in dimensions in a
ferroelectric material, is called the converse piezoelectric effect. The
magnitude of such an effect may be up to 6 � 10�10 m/V for some of
the Pb(Zr,Ti)O3 materials. Examples of devices utilizing this effect include
earphones, ink jet printer heads, and diesel fuel injectors. Probably the most
important application, however, is the quartz crystal resonator, which is
used in electronic devices as a frequency selective element. Specifically, a
periodic strain is applied to a quartz crystal by an alternating electric field,
which excites this crystal to vibrations. These vibrations are monitored, in
turn, by piezoelectricity. If the applied frequency coincides with the natural
resonance frequency of the molecules, then amplification occurs. This way,
very distinct frequencies are produced, which are utilized for clocks or radio
frequency signals.

Another phenomenon through which an electric field generates a change
in dimensions is electrostriction. Electrostriction is a quadratic effect
between electric field and mechanical strain, whereas piezoelectricity
obeys a linear relationship. Electrostriction can be observed in all dielectric
materials.

A related effect is pyroelectricity21 which is observed in certain materi-
als such as GaN, CsNO3, polyvinyl fluorides, LiTaO3, tendons, bones, and
tourmaline (a silicate containing Al, Fe, Mg, Na, Li, or K). It describes a
temporary voltage across the ends of these materials when the entire sub-
stance is heated or cooled. The change in temperature causes a variation of
the polarization. The voltage, however, disappears after some time, due to
current leakage. Pyroelectric materials are also piezoelectric. The reverse is
not always true. Pyroelectricity was first described by Theophrastus in
314 BC who observed that tourmaline attracted small pieces of ash and
straw when heated. In closing it is emphasized that pyroelectricity is not the
same as thermoelectricity which we discussed in Section 7.7 where only one
end is heated.

20 Piezo (latin) ¼ pressure.
21 Pyr (greek) ¼ fire.
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Problems

1. Calculate the mobility of the oxygen ions in UO2 at 700 K. The diffusion coefficient of

O2� at this temperature is 10�13 cm2/s. Compare this mobility with electron or hole

mobilities in semiconductors (see Appendix 4). Discuss the difference! (Hint: O2� has

two charges!).

2. Calculate the number of vacancy sites in an ionic conductor in which the metal ions are

the predominant charge carriers. Assume a room-temperature ionic conductivity of

10�17 1/O cm and an ionic mobility of 10�17 m2/V s. Does the calculated result make

sense? Discuss how the vacancies might have been introduced into the crystal.

3. Calculate the activation energy for ionic conduction for a metal ion in an ionic crystal at

300 K. Take D0 ¼ 10�3 m2/s and D ¼ 10�17 m2/s.

4. Calculate the ionic conductivity at 300 K for an ionic crystal. Assume 6 � 1020 Schottky

defects per cubic meter, an activation energy of 0.8 eV and D0 ¼ 10�3 m2/s.

5. Show that E ¼ E vac=e [Eq. (9.13)] by combining Eqs. (7.3), (9.9), and (9.11) and their

equivalents for vacuum.

6. Show that the dielectric polarization is P ¼ (e � 1)e0E . What values do P and D have for

vacuum?

7. Show that ee0E ¼ q/A [Eq. (9.14)] by combining some pertinent equations.
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PART III

OPTICAL PROPERTIES
OF MATERIALS

Nature and nature’s laws lay hid in night;
God said “Let Newton be” and all was light.

Alexander Pope, English poet.



CHAPTER 10

The Optical Constants

10.1. Introduction

The most apparent properties of metals, their luster and their color, have
been known to mankind since metals were known. Because of these pro-
perties, metals were already used in ancient times for mirrors and jewelry.
The color was utilized 4000 years ago by the ancient Chinese as a guide
to determine the composition of the melt of copper alloys: the hue of a
preliminary cast indicated whether the melt, from which bells or mirrors
were to be made, already had the right tin content.

The German poet Goethe was probably the first one who explicitly
spelled out 200 years ago in his Treatise on Color that color is not an
absolute property of matter (such as the resistivity), but requires a living
being for its perception and description. Applying Goethe’s findings, it was
possible to explain qualitatively the color of, say, gold in simple terms.
Goethe wrote: “If the color blue is removed from the spectrum, then blue,
violet, and green are missing and red and yellow remain.” Thin gold films
are bluish–green when viewed in transmission. These colors are missing in
reflection. Consequently, gold appears reddish–yellow.

This chapter treats the optical properties from a completely different
point of view. Measurable quantities such as the index of refraction or the
reflectivity and their spectral variations are used to characterize materials.
In doing so, the term “color” will almost completely disappear from our
vocabulary. Instead, it will be postulated that the interactions of light with
the valence electrons of a material are responsible for the optical properties.
As in previous chapters, where an understanding of the electrical properties

R.E. Hummel, Electronic Properties of Materials 4th edition,
DOI 10.1007/978-1-4419-8164-6_10, # Springer ScienceþBusiness Media, LLC 2011
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was attempted, an atomistic model and later a quantum mechanical treat-
ment will be employed. Thus, the electron theory of metals, as introduced in
the first six chapters, will serve as a foundation.

Light comprises only an extremely small segment of the entire electro-
magnetic spectrum, which ranges from radio waves, via microwaves, infra-
red, visible, ultraviolet, and X-rays, to g rays, as depicted in Fig. 10.1. Many
of the considerations that will be advanced in this chapter are therefore also
valid for other wavelength ranges, e.g., for radio waves or X-rays.

At the beginning of this century the study of the interactions of light with
matter (black body radiation, etc.) laid the foundations for quantum theory.
Today, optical methods are among the most important tools for elucidating
the electron structure of matter. Most recently, a number of optical devices,
such as lasers, photodetectors, waveguides, light-emitting diodes, flat-panel
displays, etc., have gained considerable technological importance. They are
used in communication, fiber optics, medical diagnostics, night viewing,
solar applications, optical computing, or for other optoelectronic purposes.
Traditional utilizations of optical materials for windows, antireflection coat-
ings, lenses, mirrors, etc., should be likewise mentioned. All taken, it is well
justified to spend a major part of this book on the optical properties of
materials.

Before we start our discourse, we need to define the optical constants.
We make use of some elements of physics.

Figure 10.1. The spectrum of electromagnetic radiation. Note the small segment of this

spectrum that is visible to human eyes.
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10.2. Index of Refraction, n

When light passes from an optically “thin” into an optically dense medium,
one observes that in the dense medium, the angle of refraction, b, (i.e., the
angle between the refracted light beam and a line perpendicular to the
surface) is generally smaller than the angle of incidence, a see Fig. 10.2.
This well-known phenomenon is used for the definition of the refractive
power of a material and is called Snell’s law,

sin a
sinb

¼ nmed

nvac
¼ n: (10.1)

Commonly, the index of refraction for vacuum, nvac, is arbitrarily set to be
unity. The refraction is caused by the different velocities, c, of the light in
the two media,

sin a
sin b

¼ cvac
cmed

: (10.2)

Thus, if light passes from vacuum into a medium, we find

n ¼ cvac
cmed

¼ c

v
: (10.3)

The magnitude of the refractive index depends on the wavelength of the
incident light. This property is called dispersion. In metals, the index of
refraction varies, in addition, with the angle of incidence. This is particularly
true when n is small.

As can be seen in Table 10.1, the index of refraction is not always larger
than 1 as for example, formetals. Likewise, for X-rays, n can be smaller than 1.

In summary, when light passes from vacuum into a medium, its velocity
as well as its wavelength, l, generally decrease in order to keep the
frequency, and thus, the energy, constant.

Figure 10.2. Refraction of a light beam when traversing the boundary from an optically thin

medium into an optically denser medium.
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10.3. Damping Constant, k

Metals damp the intensity of light in a relatively short distance. Thus, to
characterize the optical properties of metals, an additional materials con-
stant is needed.

We make use of the electromagnetic wave equation, which mathemati-
cally describes the propagation of light in a medium. The derivation of this
wave equation from the well-knownMaxwell equations does not further our
understanding of the optical properties. (The interested reader can find the
derivation in specialized texts.1)

For simplification, we consider a plane-polarized wave that propagates
along the positive z-axis and which vibrates in the x-direction (Fig. 10.3).
We neglect possible magnetic effects. For this special case, the electromag-
netic wave equation reads2

c2
@2E x

@z2
¼ e

@2E x

@t2
þ s
e0

@E x

@t
; (10.4)

Table 10.1. Optical Constants for Some Materials (l ¼ 600 nm).

n k W (nm) R%b

Metals

Copper 0.14 3.35 14.2 95.6

Silver 0.05 4.09 11.7 98.9

Gold 0.21 3.24 14.7 92.9

Aluminum 0.97 6.0 7.9 90.3

Ceramics

Silica glass (Vycor) 1.46 a 3.50

Soda-lime glass 1.51 a 4.13

Dense flint glass 1.75 a 7.44

Quartz 1.55 a 3 � 108 4.65

Al2O3 1.76 a 7.58

Polymers

Polyethylene 1.51 a 4.13

Polystyrene 1.60 a 5.32

Polytetrafluoroethylene 1.35 a 2.22

Semiconductors

Silicon 3.94 0.025 1,910 35.42

GaAs 3.91 0.228 209 35.26

aThe damping constant for dielectrics is about 10�7.
bThe reflection is considered to have occurred on one reflecting surface only.

1For instance: R.E. Hummel, Optische Eigenschaften von Metallen und Legierungen, Springer-
Verlag, Berlin (1971).
2See also Appendix 1.
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where E x is the x-component of the electric field strength,3 e is the dielectric
constant,4 s is the (a.c.) conductivity and e0 is a constant, called the per-
mittivity of empty space (see Appendix 4). The solution to (10.4) is com-
monly achieved by using the following trial solution:

E x ¼ E 0 exp io t� zn

c

� �h i
; (10.5)

where E 0 is the maximal value of the electric field strength and o ¼ 2pn is
the angular frequency. Differentiating (10.5) once with respect to time, and
twice with respect to time and z, and inserting these values into (10.4) yields

n̂2 ¼ e� s
e0o

i ¼ e� s
2pe0n

i: (10.6)

Equation (10.6) leads to an important result: The index of refraction is
generally a complex number, as inspection of the right-hand side of (10.6)
indicates. We denote for clarity the complex index of refraction by n̂. As is
true for all complex quantities, the complex index of refraction consists of a
real and an imaginary part,

n̂ ¼ n1 � in2: (10.7)

In the literature, the imaginary part of the index of refraction, n2, is often
denoted by “k” and (10.7) is then written as

n̂ ¼ n� ik: (10.8)

Figure 10.3. Plane-polarized wave which propagates in the positive z-direction and vibrates
in the x-direction.

3We use for the electric field strength the symbol E to distinguish it from the energy.
4See Section 9.5.
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We will call n2 or k the damping constant. (In some books n2 or k is
named the absorption constant. We will not follow this practice because
the latter term is extremely misleading. Other authors call k the attenuation
index or the extinction coefficient, which we will not use either in this
context.) Values for k for some materials are given in Table 10.1.

Squaring (10.8) yields, together with (10.6),

n̂2 ¼ n2 � k2 � 2nki ¼ e� s
2pe0n

i: (10.9)

Equating individually the real and imaginary parts of (10.9) yields two
important relations between electrical and optical constants,

e ¼ n2 � k2; (10.10)

s ¼ 4pe0nkn: (10.11)

Let us return to (10.9). The right-hand side is the difference between two
dielectric constants (a real one and an imaginary one). Thus, the left side
must be a dielectric constant too, and (10.9) may be rewritten as

n̂2 ¼ n2 � k2 � 2nik � ê ¼ e1 � ie2: (10.12)

Equating individually the real and imaginary parts in (10.12) yields

e1 ¼ n2 � k2 (10.13)

and (with (10.11))

e2 ¼ 2nk ¼ s
2pe0n

: (10.14)

Similarly as above, e1 and e2 are called the real and the imaginary parts
of the complex dielectric constant, ê, respectively. (e1 in (10.13) is identical
to e in (10.10).) e2 is often called the absorption product or, briefly, the
absorption.

We consider a special case: For insulators (s � 0) it follows from (10.11)
that k � 0 (see also Table 10.1). Then (10.10) reduces to e ¼ n2 (Maxwell
relation).

From (10.10), (10.11), (10.13), and (10.14) one obtains

n2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ s

2pe0n

� �2s
þ e

0
@

1
A ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

q
þ e1

� �
; (10.15)

k2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ s

2pe0n

� �2s
� e

0
@

1
A ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

q
� e1

� �
: (10.16)
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It should be emphasized that (10.10)–(10.16) are only valid if e, s, n, and k
are measured at the same wavelength, because these “constants” are wave-
length dependent. For small frequencies, however, the d.c. values for e and
s can be used with good approximation, as will be shown later. Finally, it
should be noted that the above equations are only valid for optically
isotropic media; otherwise e becomes a tensor.

We return now to (10.5) in which we replace the index of refraction by
the complex index of refraction (10.8). This yields

E x ¼ E 0 exp io t� z n� ikð Þ
c

� �� �
; (10.17)

which may be rewritten to read

E x ¼ E 0 exp �ok
c
z

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Damped amplitude

� exp io t� zn

c

� �h i
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Undamped wave

: (10.18)

Equation (10.18) is now the complete solution of the wave equation (10.4).
It represents a damped wave and expresses that in matter the amplitude
decreases exponentially with increasing z (Fig. 10.4). The constant k deter-
mines how much the amplitude decreases, i.e., k expresses the degree of
damping of the light wave. We understand now why k is termed the damping
constant.

The result which we just obtained is well known to electrical engineers.
They observe that at high frequencies the electromagnetic waves are con-
ducted only on the outer surface of a wire. They call this phenomenon the
(normal) skin effect.

Figure 10.4. Modulated light wave. The amplitude decreases exponentially in an optically

dense material. The decrease is particularly strong in metals, but less intense in dielectric

materials, such as glass.
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10.4. Characteristic Penetration Depth, W,
and Absorbance, a

The field strength, E , is hard to measure. Thus, the intensity, I, which can be
measured effortlessly with light sensitive devices (such as a photodetector,
see Section 8.7.6) is commonly used. The intensity equals the square of the
field strength. Thus, the damping term in (10.18) may be written as

I ¼ E 2 ¼ I0 exp � 2ok
c

z

� �
: (10.19)

We define a characteristic penetration depth,W, as that distance at which
the intensity of the light wave, which travels through a material, has
decreased to 1/e or 37% of its original value, i.e., when

I

I0
¼ 1

e
¼ e�1: (10.20)

This definition yields, in conjunction with (10.19),

z ¼ W ¼ c

2ok
¼ c

4pnk
¼ l

4pk
: (10.21)

Table 10.1 presents values for k andW for some materials obtained by using
light having l ¼ 600 nm.

The inverse of W is called the absorbance or sometimes the (exponen-
tial) attenuation, which is, by making use of (10.21), (10.14), and (10.11),
given by,

a ¼ 4pk
l

¼ 2pe2
ln

¼ s
nce0

¼ 2ok
c

: (10.22)

Its unit is a reciprocal length, for example, cm�1. It should be emphasized
that, as already defined in equation (10.14)

e2 ¼ 2nk

is called the absorption which is unitless. In other words, absorbance and
absorption are not the same quantities. In Section 12.2 we will deepen our
understanding concerning the absorption of light (that is, light quanta or
photons) by explaining that if photons are interacting with matter they may
be absorbed by electrons, then transfer their energy to them and, as a
consequence, are excited into a higher, allowed energy state.

The energy loss per unit length (given for example in decibels, dB, per
centimeter) is obtained by multiplying the absorbance, a, with 4.34, see
Problem 13.6. (1 dB ¼ 10 log I/I0.)

*In analytical (spectroscopic) chemistry which mostly deals with dilute
liquids, a is called the absorption coefficient. Combining equation (10.19)
with (10.22) yields
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I=Io ¼ exp ð�2okz=cÞ ¼ exp ð�azÞ; (10.23)

where I and Io are, as above, the transmitted and the incident light inten-
sities, respectively. Equation (10.23) is known by the name Beer–Lambert
(or Lambert– Beer–Bouguer) law. (It should be noted, however, that not all
incident light is transferred into other energy forms e.g. heat, but instead,
may be reflected, scattered, or as just mentioned, transmitted). Taking the
natural logarithm of (10.23) yields

� ln I=Io ¼ az ¼ Al; (10.24)

where Al is called the (wavelength-dependent) optical density or, unfortu-
nately also absorbance. The variable z is, as above, the path length which
the light travels through the material. To confuse the matter even further,
analytical chemists often replace the natural logarithm, ln, by the common
(base 10) logarithm which introduces a multiplication factor. Further, che-
mists relate a to the product of themolar absorptivity of the substance and
to its concentration in the solvent. This means that Al is, within certain
limits, linearly related to the concentration. However, the Beer–Lambert law
breaks down for high concentrations, particularly when the substance is
highly scattering.

10.5. Reflectivity, R, and Transmittance, T

Metals are characterized by a large reflectivity. This stems from the fact that
light penetrates a metal only a short distance, as shown in Fig. 10.4 and
Table 10.1. Thus, only a small part of the impinging energy is converted into
heat. The major part of the energy is reflected (in some cases close to 99%,
see Table 10.1). In contrast to this, visible light penetrates into glass much
farther than into metals, i.e., approximately seven orders of magnitude more,
see Table 10.1. As a consequence, very little light is reflected by glass.
Nevertheless, a piece of glass about one or two meters thick eventually
dissipates a substantial part of the impinging light into heat. (In practical
applications, one does not observe this large reduction in light intensity
because windows are as a rule only a few millimeters thick.) It should be
noted that typical window panes reflect the light on the front as well as on
the back surface.

The ratio between the reflected intensity, IR, and the incoming intensity,
I0, of the light serves as a definition for the reflectivity:

R ¼ IR
I0
: (10.25)

Quite similarly, one defines the ratio between the transmitted intensity, IT,
and the impinging light intensity as the transmissivity, or transmittance:
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T ¼ IT
I0
: (10.26)

Experiments have shown that for insulators, R depends solely on the index
of refraction. For perpendicular incidence one finds

R ¼ n� 1ð Þ2
nþ 1ð Þ2 : (10.27)

This equation can also be derived from the Maxwell equations.
We know already that n is generally a complex quantity. By definition,

however, R has to remain real. Thus, the modulus of R becomes

R ¼ n̂� 1

n̂þ 1











2

; (10.28)

which yields

R ¼ n� ik � 1ð Þ
n� ik þ 1ð Þ �

nþ ik � 1ð Þ
nþ ik þ 1ð Þ ¼

n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2
(10.29)

(Beer equation). The reflectivity is a unitless materials constant and is often
given in percent of the incoming light (see Table 10.1). R is, like the index of
refraction, a function of the wavelength of the light.

The reflectivity is also a function of e1 and e2. We shall derive this
relationship by performing a few transformations. Equation (10.29) is
rewritten as

R ¼ n2 þ k2 þ 1� 2n

n2 þ k2 þ 1þ 2n
; (10.30)

ð1Þ n2þ k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ k2ð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4þ 2n2k2þ k4

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4� 2n2k2þ k4þ 4n2k2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2� k2ð Þ2þ 4n2k2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21þ e22

q
;

(10.31)

ð2Þ 2n¼
ffiffiffiffiffiffiffi
4n2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n2þ k2þ n2� k2ð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21þ e22

q
þ e1

� �s
: (10.32)

Inserting (10.31) and (10.32) into (10.30) provides

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

p
þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

p
þ e1

� �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

p þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

p þ e1
� �r : (10.33)
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10.6. Hagen–Rubens Relation

Our next task is to find a relationship between reflectivity and conductivity.
For small frequencies (i.e., n < 1013 s�1) the ratio s/2pe0n for metals is very
large, that is, s/2pe0 � 1017 s�1. With e � 10 we obtain

s
2pe0n

� 1017

1013
� e: (10.34)

Then (10.15) and (10.16) reduce to

n2 � s
2pe0n

� k2: (10.35)

The reflectivity may now be rewritten by combining the slightly modified
equation (10.30) with (10.35) to read

R ¼ n2 þ 2nþ 1þ k2 � 4n

n2 þ 2nþ 1þ k2
¼ 1� 4n

2n2 þ 2nþ 1
: (10.36)

If 2n + 1 is neglected as small compared to 2n2 (which can be done only for
small frequencies for which n is much larger than 1), then (10.36) reduces by
using (10.35) to

R ¼ 1� 2

n
¼ 1� 4

ffiffiffiffiffiffiffiffiffiffi
n
s
pe0

r
: (10.37)

Finally, we set s ¼ s0 (d.c. conductivity) which is again only permissible
for small frequencies, i.e., in the infrared region of the spectrum. This yields
the Hagen–Rubens relation,

R ¼ 1� 4

ffiffiffiffiffiffiffiffiffiffiffiffi
n
s0

pe0

r
; (10.38)

which states that in the infrared (IR) region metals with large electrical
conductivity are good reflectors. This equation was found empirically by
Hagen and Rubens from reflectivity measurements in the IR and was
derived theoretically by Drude. As stated above, the Hagen–Rubens relation
is only valid at frequencies below 1013 s�1 or, equivalently, at wavelengths
larger than about 30 mm.

Problems

1. Complete the intermediate steps between (10.5) and (10.6).

2. Calculate the conductivity from the index of refraction and the damping constant for

copper (0.14 and 3.35, respectively; measurement at room temperature and l ¼ 0.6 mm).
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Compare your result with the conductivity of copper (see Appendix 4). You will notice a

difference between these conductivities by several orders of magnitude. Why? (Compare

only the same units!)

3. Express n and k in terms of e and s (or e1 and e2) by using e ¼ n2 � k2 and s ¼ 4pe0nkn.
(Compare with (10.15) and (10.16).)

4. The intensity of Na light passing through a gold film was measured to be about 15% of

the incoming light. What is the thickness of the gold film? (l ¼ 589 nm; k ¼ 3.2.

Note: I ¼ E 2.)

5. Calculate the reflectivity of silver and compare it with the reflectivity of flint glass

(n ¼ 1.59). Use l ¼ 0.6 mm.

6. Calculate the characteristic penetration depth in aluminum for Na light (l ¼ 589 nm;

k ¼ 6).

7. Derive the Hagen–Rubens relation from (10.33). (Hint: In the IR region e22 � e21 can be

used. Justify this approximation.)

8. The transmissivity of a piece of glass of thickness d ¼ 1 cm was measured at l ¼ 589 nm

to be 89%. What would the transmissivity of this glass be if the thickness were reduced to

0.5 cm? (Note: Neglect the reflectance of the glass.)
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CHAPTER 11

Atomistic Theory of the Optical Properties

11.1. Survey

In the preceding chapter, the optical constants and their relationship to
electrical constants were introduced by employing the “continuum theory.”
The continuum theory considers only macroscopic quantities and interre-
lates experimental data. No assumptions are made about the structure of
matter when formulating equations. Thus, the conclusions which have been
drawn from the empirical laws in Chapter 10 should have general validity as
long as nothing is neglected in a given calculation. The derivation of the
Hagen–Rubens equation has served as an illustrative example for this.

The validity of equations derived from the continuum theory is, however,
often limited to frequencies for which the atomistic structure of solids does
not play a major role. Experience shows that the atomistic structure does not
need to be considered in the far infrared (IR) region. Thus, the Hagen–Rubens
equation reproduces the experimental results of metals in the far IR quite well.
It has been found, however, that proceeding to higher frequencies (i.e., in the
near IR and visible spectrum), the experimentally observed reflectivity of
metals decreases faster than predicted by the Hagen–Rubens equation
(Fig. 11.1(a)). For the visible and near IR region an atomistic model needs
to be considered to explain the optical behavior of metals. Drude did this
important step at the turn of the 20th century. He postulated that some
electrons in a metal can be considered to be free, i.e., they can be separated
from their respective nuclei. He further assumed that the free electrons can be
accelerated by an external electric field. This preliminary Drude model was
refined by considering that the moving electrons collide with certain metal
atoms in a nonideal lattice.

R.E. Hummel, Electronic Properties of Materials 4th edition,
DOI 10.1007/978-1-4419-8164-6_11, # Springer ScienceþBusiness Media, LLC 2011
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The free electrons are thought to perform periodic motions in the alter-
nating electric field of the light. These vibrations are restrained by the
abovementioned interactions of the electrons with the atoms of a nonideal
lattice. Thus, a friction force is introduced, which takes this interaction into
consideration. The calculation of the frequency dependence of the optical
constants is accomplished by using the well-known equations for vibrations,
whereby the interactions of electrons with atoms are taken into account by a
damping term which is assumed to be proportional to the velocity of the
electrons. The free electron theory describes, to a certain degree, the disper-
sion of the optical constants of metals quite well. This is schematically
shown in Fig. 11.1(a), in which the spectral dependence of the reflectivity
is plotted for a specific case. The Hagen–Rubens relation reproduces the

Figure 11.1. Schematic frequency dependence of the reflectivity of (a) metals, (b) dielec-

trics, experimentally (solid line) and according to three models.
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experimental findings only up to 1013 s�1. In contrast to this, the Drude
theory correctly reproduces the spectral dependence of R even in the visible
spectrum. Proceeding to yet higher frequencies, however, the experimen-
tally found reflectivity eventually rises and then decreases again. Such
an absorption band cannot be explained by the Drude theory. For its
interpretation, a new concept needs to be applied.

Lorentz postulated that the electrons should be considered to be bound to
their nuclei and that an external electric field displaces the positive charge of
an atomic nucleus against the negative charge of its electron cloud. In other
words, he represented each atom as an electric dipole. Retracting forces were
thought to occur which try to eliminate the displacement of charges. Lorentz
postulated further that the centers of gravity of the electric charges are
identical if no external forces are present. However, if one shines light onto
a solid, i.e., if one applies an alternating electric field to the atoms, then the
dipoles are thought to perform forced vibrations. Thus, a dipole is considered
to behave similarly as a mass which is suspended on a spring, i.e., the
equations for a harmonic oscillator may be applied. An oscillator is known
to absorb a maximal amount of energy when excited near its resonance
frequency (Fig. 11.2). The absorbed energy is thought to be dissipatedmainly
by diffuse radiation. Figure 11.2 resembles an absorption band as shown in
Fig. 11.1.

Forty or fifty years ago, many scientists considered the electrons in
metals to behave at low frequencies as if they were free and at higher
frequencies as if they were bound. In other words, electrons in a metal
under the influence of light were described to behave as a series of classical
free electrons and a series of classical harmonic oscillators. Insulators and
semiconductors, on the other hand, were described by harmonic oscillators
only, see Fig. 11.1(b).

We shall now treat the optical constants of materials by applying the
above-mentioned theories.

Figure 11.2. Frequency dependence of the amplitude of a harmonic oscillator that is excited

to perform forced vibrations, assuming weak damping. n0 is the resonance frequency.
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11.2. Free Electrons Without Damping

We consider the simplest case at first and assume that the free electrons are
excited to perform forced but undamped vibrations under the influence of an
external alternating field, i.e., under the influence of light. As explained
in Section 11.1, the damping of the electrons is thought to be caused
by collisions between electrons and atoms of a nonideal lattice. Thus, we
neglect in this section the influence of lattice defects. For simplicity, we treat
the one-dimensional case because the result obtained this way does not
differ from the general case. Thus, we consider the interaction of plane-
polarized light with the electrons. The momentary value of the field strength
of a plane-polarized light wave is given by

E ¼ E 0 exp iotð Þ; (11.1)

whereo ¼ 2pn is the angular frequency, t is the time, and E 0 is the maximal
value of the field strength. The equation describing the motion of an electron
that is excited to perform forced, harmonic vibrations under the influence of
light is (see Appendix 1 and (7.6))

m
d2x

dt2
¼ eE ¼ eE 0 exp iotð Þ; (11.2)

where e is the electron charge, m is the electron mass, and e · E is the
modulus of the excitation force. The stationary solution of this vibrational
equation is obtained by forming the second derivative of the trial solution
x ¼ x0 exp(iot) and inserting it into (11.2). This yields

x ¼ � eE

m4p2n2
: (11.3)

The vibrating electrons carry an electric dipole moment, which is the
product of the electron charge, e, and displacement, x, see (9.12). The
polarization, P, is defined to be the sum of the dipole moments of all Nf

free electrons per cubic centimeter:

P ¼ exNf : (11.4)

The dielectric constant can be calculated from polarization and electric field
strength by combining (9.14) and (9.15):

e ¼ 1þ P

e0E
: (11.5)

Inserting (11.3) and (11.4) into (11.5) yields

ê ¼ 1� e2Nf

4p2e0mn2
: (11.6)
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(It is appropriate to use in the present case the complex dielectric constant,
see below.) The dielectric constant equals the square of the index of
refraction, n, (see (10.12)). Equation (11.6) thus becomes

n̂2 ¼ 1� e2Nf

4p2e0mn2
: (11.7)

We consider two special cases:

(a) For small frequencies, the term e2Nf/4p
2e0mn

2 is larger than one. Then
n̂2 is negative and n̂ imaginary. An imaginary n̂ means that the real part
of n̂ disappears. Equation (10.25) becomes, for n ¼ 0,

R ¼ n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2
¼ 1þ k2

1þ k2
¼ 1;

i.e., the reflectivity is 100% (see Fig. 11.3).
(b) For large frequencies (UV light), the term e2Nf/4p

2e0mn
2 becomes

smaller than one. Thus, n̂2 is positive and n̂ � n real (but smaller than
one). The reflectivity for real values of n̂, i.e., for k ¼ 0, becomes

R ¼ n� 1ð Þ2
nþ 1ð Þ2 ;

i.e., the material is essentially transparent for these wavelengths (and
perpendicular incidence) and therefore behaves optically like an insula-
tor, see Fig. 11.3.

We define a characteristic frequency, n1, often called the plasma fre-
quency, which separates the reflective region from the transparent region
(Fig. 11.3). The plasma frequency can also be deduced from (11.6) or (11.7).
We observe in these equations that e2Nf/4p

2e0m must have the unit of the
square of a frequency, which we define to be n1. This yields

n21 ¼
e2Nf

4p2e0m
: (11.8)

Figure 11.3. Schematic frequency dependence of an alkali metal according to the free

electron theory without damping. n1 is the plasma frequency.
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Because of (11.8) we conclude from (11.6) that the dielectric constant
becomes zero at the plasma frequency. ê ¼ 0 is the condition for a plasma
oscillation, i.e., a fluid-like oscillation of the entire electron gas. We will
discuss this phenomenon in detail in Section 13.2.2.

The alkali metals behave essentially as shown in Fig. 11.3. They are
transparent in the near UV and reflect the light in the visible region. This
result indicates that the s-electrons5 of the outer shell of the alkali metals can
be considered to be free.

Table 11.1 contains some measured, as well as some calculated, plasma
frequencies. For the calculations, applying (11.8), one free electron per atom
was assumed. This means that Nf was set equal to the number of atoms per
volume, Na. (The latter quantity is obtained by using

Na ¼ N0 � d
M

; (11.9)

where N0 is the Avogadro constant, d ¼ density, and M ¼ atomic mass.)
We note in Table 11.1 that the calculated and the observed values for n1

are only identical for sodium. This may be interpreted to mean that only in
sodium does exactly one free electron per atom contribute to the electron
gas. For other metals an “effective number of free electrons” is commonly
introduced, which is defined to be the ratio between the observed and
calculated n21 values:

n21 observedð Þ
n21 calculatedð Þ ¼ Neff : (11.10)

The effective number of free electrons is a parameter of great interest,
because it is contained in a number of nonoptical equations (such as the Hall
constant, electromigration, superconductivity, etc.). Since for most metals
the plasma frequency, n1, cannot be measured as readily as for the alkalis,
another avenue for determining Neff has to be found. For reasons which will
become clear later, Neff can be obtained by measuring n and k in the red or

Table 11.1. Plasma Frequencies and Effective Numbers of Free Electrons for

Some Alkali Metals.

Metal Li Na K Rb Cs

n1 (10
14 s�1), observed 14.6 14.3 9.52 8.33 6.81

n1 (10
14 s�1), calculated 19.4 14.3 10.34 9.37 8.33

l1 nm (¼ c/n1), observed 150 210 290 320 360

Neff [free electrons/atom] 0.57 1.0 0.8 0.79 0.67

5See Appendix 3.
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IR spectrum (i.e., in a frequency range without absorption bands, Fig. 11.1)
and by applying

Neff ¼ 1� n2 þ k2ð Þ n24p2e0m
e2

: (11.10a)

Equation (11.10a) follows by combining (11.6) with (10.10) and replacing
Nf by Neff.

11.3. Free Electrons With Damping (Classical Free
Electron Theory of Metals)

The simple reflectivity spectrum as depicted in Fig. 11.3 is seldom found
for metals. We need to refine our model. We postulate that the motion of
electrons in metals is damped. More specifically, we postulate that the
velocity is reduced by collisions of the electrons with atoms of a nonideal
lattice. Lattice defects may be introduced into a solid by interstitial atoms,
vacancies, impurity atoms, dislocations, grain boundaries, or thermal
motion of the atoms.

To take account of the damping, we add to the vibration equation (11.2) a
damping term, g(dx/dt), which is proportional to the velocity (See Appendix 1
and (7.7)):

m
d2x

dt2
þ g

dx

dt
¼ eE ¼ eE 0 exp iotð Þ: (11.11)

We determine first the damping factor, g. For this we write a particular
solution of (11.11) which is obtained by assuming that the electrons
drift under the influence of a steady or slowly varying electric field (see
Section 7.3) with a velocity v0 ¼ const. through the crystal. (The drift
velocity of the electrons, which is caused by an external field, is super-
imposed on the random motion of the electrons.) The damping is depicted to
be a friction force which counteracts the electron motion. v0 ¼ const. yields

d2x

dt2
¼ 0: (11.12)

By using (11.12), Equation (11.11) becomes

eE

g
¼ dx

dt
¼ v0: (11.13)

The drift velocity is

v0 ¼ j

eNf

(11.14)
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(see (7.4)), where j is the current density (i.e., that current which passes
through an area of one square centimeter). Nf is the number of free electrons
per cubic centimeter. The current density is connected with the d.c. conduc-
tivity, s0, and the field strength, E , by Ohm’s law (7.2),

j ¼ s0E : (11.15)

Inserting (11.14) and (11.15) into (11.13) yields

g ¼ Nfe
2

s0
: (11.16)

Thus, (11.11) becomes

m
d2x

dt2
þ Nfe

2

s0

dx

dt
¼ eE ¼ eE 0 exp iotð Þ: (11.17)

We note that the damping term in (11.17) is inversely proportional to the
conductivity, i.e., proportional to the resistivity. This result makes sense.

The stationary solution of (11.17) is obtained, similarly as in Section 11.2,
by differentiating the trial solution x ¼ x0 exp (iot) by the time, and
inserting first and second derivatives into (11.17), which yields

�mo2xþ Nfe
2

s0
xoi ¼ E e: (11.18)

Rearranging (11.18) provides

x ¼ E

Nfeo
s0

i� mo2

e

: (11.19)

Inserting (11.19) into (11.4) yields the polarization,

P ¼ eNfE

Nfeo
s0

i� mo2

e

: (11.20)

With (11.20) and (11.5) the complex dielectric constant becomes

ê ¼ 1þ P

e0E
¼ 1þ 1

2pe0n
s0

i� m4p2e0
Nfe2

n2
: (11.21)

The termNf e
2/m4p2e0 is set, as in (11.8), equal to n21, which reduces (11.21) to

ê ¼ 1þ 1

2pe0n
s0

i� n2

n21

¼ 1þ n21

in
2pe0n21
s0

� n2
: (11.22)
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The term 2pe0n21=s0 in (11.22) has the unit of a frequency. Thus, for
abbreviation, we define a damping frequency

n2 ¼ 2pe0n21
s0

¼ 2pe0n21r0: (11.23)

(Table 11.2 lists values for n2 which were calculated using experimental
r0 and n1 values.) Now (11.22) becomes

ê ¼ 1þ n21
inn2 � n2

; (11.24)

where ê is, as usual, identical to n̂2,

n̂ð Þ2 ¼ n2 � 2nki� k2 ¼ 1� n21
n2 � nn2i

: (11.25)

Multiplying the numerator and denominator of the fraction in (11.25) by the
complex conjugate of the denominator (n2 þ nn2i) allows us to equate
individually real and imaginary parts. This provides the Drude equations
for the optical constants,

n2 � k2 ¼ e1 ¼ 1� n21
n2 þ n22

(11.26)

and

2nk ¼ e2 ¼ n2
n

n21
n2 þ n22

; (11.27)

with the characteristic frequencies

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Nf

4p2e0m

s
(11.8)

and

n2 ¼ 2pe0n21
s0

: (11.23)

Table 11.2. Resistivities and Damping Frequencies for Some Metals.

Metal Li Na K Rb Cs Cu Ag Au

r0 (mO cm)a 8.55 4.2 6.15 12.5 20 1.67 1.59 2.35

n2 (10
12 s�1) 10.1 4.8 3.1 4.82 5.15 4.7 4.35 5.9

a Handbook of Chemistry and Physics, 1977; room-temperature values.
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The functions e2 (absorption) and e1 (which is proportional to the dielectric
polarization, see Fig. 9.19), are plotted in Figs. 11.4 and 11.5 as a function of
frequency, making use of (11.27) and (11.26).

11.4. Special Cases

For the UV, visible, and near IR regions, the frequency varies between 1014

and 1015 s�1. The average damping frequency, n2, is 5 � 1012 s�1

(Table 11.2). Thus, n2 � n22. Equation (11.27) then reduces to

e2 ¼ n2
n
n21
n2
: (11.28)

With n � n1 (Table 11.1) we obtain

e2 � n2
n
: (11.29)

Figure 11.5. The dielectric polarization, e1 ¼ n2 � k2, as a function of frequency according
to the Drude theory for metals (schematic).

Figure 11.4. The absorption, e2 ¼ 2nk, versus frequency, n, according to the free electron

theory (schematic).
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Equation (11.29) confirms that e2 plotted versus the frequency yields a
hyperbola with n2 as parameter (Fig. 11.4).

For very small frequencies n2 � n22
� �

, we may neglect n2 in the denomi-
nator of (11.27). This yields, with (11.23),

nkn ¼ s
4pe0

¼ 1

2

n21
n2

¼ s0
4pe0

: (11.30)

Thus, in the far IR the a.c. conductivity, s, and the d.c. conductivity, s0, may
be considered to be identical. We have already made use of this condition in
Section 10.6. In general, however, s is not identical to the d.c. conductivity,
s0. (The same is true for the dielectric constant, e.)

11.5. Reflectivity

The reflectivity of metals is calculated using (10.29) in conjunction with
(11.26) and (11.27), see Fig. 11.6. We notice that the experimental behavior
for not-too-high frequencies (Fig. 11.1) is essentially reproduced. See also
in this context the experimentally obtained reflectivities in Figs. 13.7,
13.10, and 13.12. For higher frequencies, however, we need to resort to
a model different from the one discussed so far. This will be done in the
next chapter.

Figure 11.6. Calculated spectral reflectivity for a metal using the exact Drude equation

(solid line), and the Hagen–Rubens equation (10.34) using n1 ¼ 2 � 1015 s�1 and n2 ¼
3.5 � 1012 s�1.
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11.6. Bound Electrons (Classical Electron Theory
of Dielectric Materials)

The preceding sections have shown that the optical properties of metals
can be described and calculated quite well in the low-frequency range by
applying the free electron theory. We mentioned already that this theory
has its limits at higher frequencies, at which we observe that light is
absorbed and reflected by metals as well as by nonmetals in a narrow
frequency band. To interpret these absorption bands, Lorentz postulated
that the electrons are bound to their respective nuclei. He assumed that
under the influence of an external electric field, the positively charged
nucleus and the negatively charged electron cloud are displaced with
respect to each other (Fig. 11.7). An electrostatic force tries to counteract
this displacement. For simplicity, we describe the negative charge of the
electrons to be united in one point. Thus, we describe the atom in an
electric field as consisting of a positively charged core which is bound
quasielastically to one electron (electric dipole, Fig. 11.8). A bound
electron, thus, may be compared to a mass which is suspended from a

Figure 11.7. An atom is represented as a positively charged core and a surrounding,

negatively charged electron cloud (a) in equilibrium and (b) in an external electric field.

Figure 11.8. Quasi-elastic bound electron in an external electric field (harmonic oscillator).
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spring. Under the influence of an alternating electric field (i.e., by light),
the electron is thought to perform forced vibrations. For the description of
these vibrations, the well-known equations of mechanics dealing with a
harmonic oscillator may be applied. This will be done now.

We first consider an isolated atom, i.e., we neglect the influence of the
surrounding atoms upon the electron. An external electric field with force

eE ¼ eE 0 exp iotð Þ (11.31)

periodically displaces an electron from its rest position by a distance x. This
displacement is counteracted by a restoring force, k � x, which is propor-
tional to the displacement, x. Then, the vibration equation becomes (see
Appendix 1)

m
d2x

dt2
þ g0

dx

dt
þ kx ¼ eE 0 exp iotð Þ: (11.32)

The factor k is the spring constant, which determines the binding strength
between the atom and electron. Each vibrating dipole (e.g., an antenna)
loses energy by radiation. Thus, g0(dx/dt) represents the damping of the
oscillator by radiation (g0 ¼ damping parameter). The stationary solution of
(11.32) for weak damping is (see Appendix 1)

x ¼ eE 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q exp i ot� fð Þ½ 	; (11.33)

where

o0 ¼ 2pn0 ¼
ffiffiffiffi
k
m

r
(11.34)

is called the resonance frequency of the oscillator, i.e., that frequency at
which the electron vibrates freely without an external force. f is the phase
difference between forced vibration and the excitation force of the light
wave. It is defined to be (see Appendix 1)

tanf ¼ g0o
m o2

0 � o2
� � ¼ g0n

2pm n20 � n2
� � : (11.35)

As in the previous sections, we calculate the optical constants starting with
the polarization, P, which is the product of the dipole moment, e � x, of one
dipole times the number of all dipoles (oscillators), Na. As before, we
assumed one oscillator per atom. Thus, Na is identical to the number of
atoms per unit volume. We obtain

P ¼ exNa: (11.36)
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Inserting (11.33) yields

P ¼ e2NaE 0 exp i ot� fð Þ½ 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q : (11.37)

With

exp i ot� fð Þ½ 	 ¼ exp iotð Þ � exp �ifð Þ (11.38)

we obtain

P ¼ e2NaEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q exp �ifð Þ; (11.39)

which yields with (11.5) and (10.12)

ê ¼ n2 � k2 � 2nki ¼ 1þ e2Na

e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q exp �ifð Þ: (11.40)

Equation (11.40) becomes with6

exp �ifð Þ ¼ cosf� i sinf; (11.41)

n2 � k2 � 2nki ¼ 1þ e2Na

e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q cosf

� i
e2Na

e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q sinf:
(11.42)

The trigonometric terms in (11.42) are replaced, using (11.35), as follows:

cosf ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2f

p ¼ m o2
0 � o2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q ; (11.43)

sinf ¼ tanfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2f

p ¼ g0offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g02o2

q : (11.44)

6See Appendix 2.
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Separating the real and imaginary parts in (11.42) finally provides the
optical constants

e1 ¼ n2 � k2 ¼ 1þ e2mNa o2
0 � o2

� �
e0 m2 o2

0 � o2
� �2 þ g02o2

h i ;

that is,

e1 ¼ 1þ e2mNa n20 � n2
� �

e0 4p2m2 n20 � n2
� �2 þ g02n2

h i ; (11.45)

and

e2 ¼ 2nk ¼ e2Nag0o

e0 m2 o2
0 � o2

� �2 þ g02o2
h i ;

or

e2 ¼ e2Nag0n

2pe0 4p2m2 n20 � n2
� �2 þ g02n2

h i : (11.46)

The frequency dependencies of e1 and e2 are plotted in Figs. 11.9 and 11.10.
Figure 11.9 resembles the dispersion curve for the index of refraction as it is
experimentally obtained for dielectrics. Figure 11.10 depicts the absorption
product, e2, in the vicinity of the resonance frequency, n0, (absorption band)
as experimentally observed for dielectrics. Equations (11.45) and (11.46)
reduce to the Drude equations for n0 ! 0 (no oscillators).

Figures 11.9 and 11.10. Frequency dependence of the dielectric polarization, e1 ¼ n2 � k2,
and absorption, e2 ¼ 2nk, as calculated with (11.45) and (11.46), respectively, using charac-

teristic values for Na and g0.
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*11.7. Discussion of the Lorentz Equations
for Special Cases

11.7.1. High Frequencies

We observe in Fig. 11.10 that e2 approaches zero at high frequencies and
far away from any resonances (absorption bands). In the same frequency
region, e1 ¼ n2 � k2 and, thus, essentially n, assumes the constant value 1
(Fig. 11.9). This is consistent with experimental observations that X-rays are
not refracted and are not absorbed by many materials. (Note, however, that
highly energetic X-rays interact with the inner electrons, i.e., they may be
absorbed by the K, L, . . ., etc. electrons. Metals are, therefore, opaque for
high-energetic X-rays).

11.7.2. Small Damping

We consider the case for which the radiation-induced energy loss of the

oscillator is very small. Then, g0 is small. With g0n2 � 4p2m2 n20 � n2
� �2

(which is only valid for n 6¼ n0), equation (11.45) reduces to

e1 ¼ n2 � k2 ¼ 1þ e2Na

4p2e0m n20 � n2
� � : (11.47)

Figure 11.11 depicts a sketch of (11.47). We observe that for small damping,
e1 (and thus essentially n

2) approaches infinity near the resonance frequency.
A dispersion curve such as Fig. 11.11 is indeed observed for many dielectrics
(glass, etc.).

Figures 11.11 and 11.12. The functions e1 (n2) and e2, respectively, versus frequency

according to the bound electron theory for the special case of small damping.
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11.7.3. Absorption Near n0

Electrons absorb most energy from light at the resonance frequency, i.e.,
e2 has a maximum near n0. For small damping, the absorption band becomes
an absorption line (see Fig. 11.12). Inserting n ¼ n0 into (11.46) yields

e2 ¼ e2Na

2pe0g0n0
; (11.48)

which shows that the absorption becomes large for small damping (g0).

11.7.4. More Than One Oscillator

At the beginning of Section 11.6 we assumed that one electron is quasie-
lastically bound to a given nucleus; in other words, we assumed one
oscillator per atom. This assumption is certainly a gross simplification, as
one can deduce from the occurrence of multiple absorption bands in experi-
mental optical spectra. Thus, each atom has to be associated with a number
of i oscillators, each having an oscillator strength, fi. The ith oscillator
vibrates with its resonance frequency, n0i. The related damping constant is
gi0. (This description has its equivalent in the mechanics of a system of mass
points having one basic frequency and higher harmonics.) If all oscillators
are taken into account, (11.45) and (11.46) become

e1 ¼ n2 � k2 ¼ 1þ e2mNa

e0

X
i

fi n20i � n2
� �

4p2m2 n20i � n2
� �2 þ g0i2n2

;

e2 ¼ 2nk ¼ e2Na

2pe0

X
i

fing0i
4p2m2 n20i � n2

� �2 þ g0i2n2
:

(11.49)

(11.50)

Equations (11.49) and (11.50) reduce for weak damping (see above) to

e1 ¼ n2 � k2 � n2 ¼ 1þ e2Na

4p2e0m

X
i

fi
n20i � n2

; (11.51)

e2 ¼ 2nk ¼ e2Na

8p3e0m2

X
i

fing 0
i

n20i � n2
� �2 : (11.52)
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11.8. Contributions of Free Electrons and Harmonic
Oscillators to the Optical Constants

In the previous section, we ascribed two different properties to the electrons
of a solid. In Section 11.4 we postulated that Nf electrons move freely in
metals under the influence of an electric field and that this motion is damped
by collisions of the electrons with vibrating lattice atoms and lattice defects.
In Section 11.6 we postulated that a certain number of electrons are quasie-
lastically bound to Na atoms which are excited by light to perform forced
vibrations. The energy loss was thought to be by radiation.

The optical properties of metals may be described by postulating a certain
number of free electrons and a certain number of harmonic oscillators. Both
the free electrons and the oscillators contribute to the polarization. Thus, the
equations for the optical constants may be rewritten, by combining (11.26),
(11.27), (11.49), and (11.50),

e1 ¼ 1� n21
n2 þ n22

þ e2mNa

e0

X
i

fi n20i � n2
� �

4p2m2 n20i � n2
� �2 þ g02i n2

; (11.53)

e2 ¼ 2nk ¼ n2
n

n21
n2 þ n22

þ e2Na

2pe0

X
i

fing0i
4p2m2 n20i � n2

� �2 þ g02i n2
: (11.54)

Figures 11.13 and 11.14 depict schematically the frequency dependence
of e1 and e2 as obtained by using (11.53) and (11.54). These figures also

Figures 11.13 and 11.14. Frequency dependence of e1 and e2 according to (11.53) and

(11.54). (i ¼ 1). f ¼ free electron theory; b ¼ bound electron theory; S ¼ summary curve

(schematic).
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show the contributions of free and bound electrons on the optical constants.
The experimentally found frequency dependence of e1 and e2 resembles
these calculated spectra quite well. We will elaborate on this in Chapter 13,
in which experimental results are presented.

Problems

1. Calculate the reflectivity of sodium in the frequency ranges n > n1 and n < n1 using the
theory for free electrons without damping. Sketch R versus frequency.

2. The plasma frequency, n1, can be calculated for the alkali metals by assuming one free
electron per atom, i.e., by substituting for Nf the number of atoms per unit volume

(atomic density, Na). Calculate n1 for potassium and lithium.

3. Calculate Neff for sodium and potassium. For which of these two metals is the assump-

tion of one free electron per atom justified?

4. What is the meaning of the frequencies n1 and n2? In which frequency ranges are they

situated compared to visible light?

5. Calculate the reflectivity of gold at n ¼ 9 � 1012 s�1 from its conductivity. Is the

reflectivity increasing or decreasing at this frequency when the temperature is increased?

Explain.

6. Calculate n1 and n2 for silver (0.5 � 1023 free electrons per cubic centimeter).

7. The experimentally found dispersion of NaCl is as follows:

l [mm] 0.3 0.4 0.5 0.7 1 2 5

N 1.607 1.568 1.552 1.539 1.532 1.527 1.519

Plot these results along with calculated values obtained by using the equations of the

“bound electron theory” assuming small damping. Let

e2Na

4p2e0m
¼ 1:81� 1030 s�2 and n0 ¼ 1:47� 1015s�1:

8. The optical properties of an absorbing medium can be characterized by various sets of

parameters. One such set is the index of refraction and the damping constant. Explain

the physical significance of those parameters, and indicate how they are related to the

complex dielectric constant of the medium. What other sets of parameters are commonly

used to characterize the optical properties? Why are there always “sets” of parameters?

9. Describe the damping mechanisms for free electrons and bound electrons.

10. Why does it make sense that we assume one free electron per atom for the alkali metals?

11. Derive the Drude equations from (11.45) and (11.46) by setting n0 ! 0.

12. Calculate the effective number of free electrons per cubic centimeter and per atom for

silver from its optical constants (n ¼ 0.05 and k ¼ 4.09 at 600 nm). (Hint: Use the free
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electron mass.) How many free electrons per atom would you expect? Does the result

make sense? Why may we use the free electron theory for this wavelength?

13. Computer problem. Plot (11.26), (11.27), and (10.29) for various values of n1 and n2.
Start with n1 ¼ 2 � 1015 s�1 and n2 ¼ 3.5 � 1012 s�1.

14. Computer problem. Plot (11.45), (11.46), and (10.29) for various values of Na, g0, and
n0. Start with n0 ¼ 1.5 � 1015 s�1 and Na ¼ 2.2 � 1022 cm�3 and vary g0 between 100

and 0.1.

15. Computer problem. Plot (11.51), (11.52), and (10.29) by varying the parameters as in the

previous problems. Use one, two or three oscillators. Try to “fit” an experimental curve

such as the ones in Figs. 13.10 or 13.11.
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CHAPTER 12

Quantum Mechanical Treatment
of the Optical Properties

12.1. Introduction

We assumed in the preceding chapter that the electrons behave like parti-
cles. This working hypothesis provided us (at least for small frequencies)
with equations which reproduce the optical spectra of solids reasonably
well. Unfortunately, the treatment had one flaw: For calculation and inter-
pretation of the infrared (IR) absorption we used the concept that electrons
in metals are free; whereas the absorption bands in the visible and ultraviolet
(UV) spectrum could only be explained by postulating harmonic oscillators.
From the classical point of view, however, it is not immediately evident why
the electrons should behave freely at low frequencies and respond as if they
would be bound at higher frequencies. An unconstrained interpretation for
this is only possible by applying wave mechanics. This will be done in the
present chapter. We make use of the material presented in Chapters 5 and 6.

12.2. Absorption of Light by Interband and Intraband
Transitions

When light (photons) having sufficiently large energy impinges on a solid,
the electrons in this crystal are thought to be excited into a higher energy
level, provided that unoccupied higher energy levels are available. For these
transitions the total momentum of electrons and photons must remain
constant (conservation of momentum). For optical frequencies, the momen-
tum of a photon, and thus its wave vector kphot ¼ p/h (see (4.7)), is much
smaller than that of an electron. Thus, kphot is much smaller than the

R.E. Hummel, Electronic Properties of Materials 4th edition,
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diameter of the Brillouin zone (Fig. 12.1). Electron transitions at which
k remains constant (vertical transitions) are called “direct interband
transitions”. Optical spectra for metals are dominated by direct interband
transitions.

Another type of interband transition is possible however. It involves the
absorption of a light quantum under participation of a phonon (lattice
vibration quantum, see Chapter 20). To better understand these “indirect
interband transitions” (Fig. 12.2) we have to know that a phonon can only
absorb very small energies, but is able to absorb a large momentum compa-
rable to that of an electron. During an indirect interband transition, the
excess momentum (i.e., the wave number vector) is transferred to the lattice
(or is absorbed from the lattice). In other words, a phonon is exchanged with

Figure 12.1. Electron bands and direct interband transitions in a reduced zone. (Compare

with Fig. 5.4).

Figure 12.2. Indirect interband transition. (The properties of phonons are explained in

Chapter 20).
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the solid. Indirect interband transitions may be disregarded for the interpre-
tation of metal spectra, because they are generally weaker than direct
transitions by two or three orders of magnitude. They are only observed in
the absence of direct transitions. In the case of semiconductors, however,
and for the interpretation of photoemission, indirect interband transitions
play an important role.

We now make use of the simplified model depicted in Fig. 12.1 and
consider direct interband transitions from the n to the m band. The smallest
photon energy in this model is absorbed by those electrons whose energy
equals the Fermi energy, EF, i.e., by electrons which already possess the
highest possible energy at T ¼ 0 K. This energy is marked in Fig. 12.1 by
hna. Similarly, hnb is the largest energy, which leads to an interband transition
from the n to them band. In the present case, a variety of interband transitions
may take place between the energy interval hna and hnb.

Interband transitions are also possible by skipping one or more bands,
which occur by involving photons with even larger energies. Thus, a
multitude of absorption bands are possible. These bands may partially
overlap.

As an example for interband transitions in an actual case, we consider the
band diagram for copper. In Fig. 12.3, a portion of Fig. 5.22 is shown, i.e.,
the pertinent bands around the L-symmetry point are depicted. The inter-
band transition having the smallest possible energy difference is shown to
occur between the upper d-band and the Fermi energy. This smallest energy
is called the “threshold energy for interband transitions” (or the “funda-
mental edge”) and is marked in Fig. 12.3 by a solid arrow. We mention in
passing that this transition, which can be stimulated by a photon energy of

Figure 12.3. Section of the band diagram for copper (schematic). Two pertinent interband

transitions are shown with arrows. The smallest possible interband transition occurs from a

filled d-state to an unfilled state just above the Fermi energy.
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2.2 eV, is responsible for the red color of copper. At slightly higher photon
energies, a second transition takes place, which originates from the Fermi
energy. It is marked in Fig. 12.3 by a dashed arrow. Needless to say, many
more transitions are possible. They can take place over a wide range in the
Brillouin zone. This will become clearer in Chapter 13 when we return to the
optical spectra of materials and their interpretation.

We now turn to another photon-induced absorption mechanism. Under
certain conditions photons may excite electrons into a higher energy level
within the same band. This occurs with participation of a phonon, i.e., a
lattice vibration quantum. We call such a transition, appropriately, an intra-
band transition (Fig. 12.4). It should be kept in mind, however, that
because of the Pauli principle, electrons can only be excited into empty
states. Thus, intraband transitions are mainly observed in metals because
metals have unfilled electron bands. We recognize, however, that semicon-
ductors with high doping levels or which are kept at high temperatures may
likewise have partially filled conduction bands.

Intraband transitions are equivalent to the behavior of free electrons in
classical physics, i.e., to the “classical infrared absorption.” Insulators and
semiconductors have no classical infrared absorption because their bands
are either completely filled or completely empty (except at high tempera-
tures and due to doping). This explains why some insulators (such as glass)
are transparent in the visible spectrum. The largest photon energy, Emax, that
can be absorbed by means of an intraband transition corresponds to an
excitation from the lower to the upper band edge, see Fig. 12.4. All energies
smaller than Emax are absorbed continuously.

Figure 12.4. Intraband transitions. The largest energy that can be absorbed by intraband

transitions is obtained by projecting the arrow marked “Emax” onto the energy axis.
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In summary, at low photon energies, intraband transitions (if possible)
are the prevailing absorption mechanism. Intraband transitions are not
quantized and occur essentially in metals only. Above a critical light energy
interband transitions set in. Only certain energies or energy intervals are
absorbed in this case. The onset of this absorption mechanism depends on
the energy difference between the bands in question. Interband transitions
occur in metals as well as in insulators or semiconductors. They are analo-
gous to optical excitations in solids with bound electrons. In an intermediate
frequency range, interband as well as intraband transitions may take place
(see Fig. 11.1).

12.3. Optical Spectra of Materials

Optical spectra are the principal means to obtain experimentally the band
gaps and energies for interband transitions. For isolated atoms and ions, the
absorption and emission spectra are known to be extremely sharp. Thus,
absorption and emission energies for atoms can be determined with great
accuracy. The same is basically true for molecular spectra. In contrast to
this, the optical spectra of solids are rather broad. This stems from the high
particle density in solids and from the interatomic interactions, which split
the atomic levels into quasi-continuous bands. The latter extend through the
three-dimensional momentum space of a Brillouin zone.

A further factor has to be considered, too. Plain reflection spectra of
solids are, in general, not too useful for the deduction of transition energies,
mainly because R is a rather involved function of e1 and e2 (see (10.29)).
Thus, e2 (i.e., absorption) spectra are often utilized instead. The charac-
teristic features in the e2-spectra of solids stem from discontinuities in the
energy profile of the density of states. However, relatively sharp features
in e2-spectra are superimposed on noncharacteristic transitions from other
parts of the Brillouin zone. In other words, the e2-spectra derive their shape
from a summation over extended, rather than localized, regions in the
Brillouin zone. Modulated optical spectra (see Section 13.1.3) separate
the small contributions stemming from points of high symmetry (such as
the centers and edges of a Brillouin zone) from the general, much larger
background. This will become clearer in the next chapter.

�12.4. Dispersion
To calculate the behavior of electrons in a periodic lattice we used, in
Section 4.4, the periodic potential shown in Fig. 4.9. We implied at that
time that the potential does not vary with time. This proposition needs to be
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dropped when the interaction of light with a solid is considered. The alter-
nating electric field of the light which impinges on the solid perturbs the
potential field of the lattice periodically. Thus, we need to add to the potential
energy a correction term, the so-called perturbation potential, V0,

V ¼ V0 þ V0 (12.1)

(V0 ¼ unperturbed potential energy). It goes without saying that this pertur-
bational potential oscillates with the frequency, n, of the light.

We consider, as always, plane-polarized light. The momentary value of
the field strength, E , is

E ¼ A cosot; (12.2)

where A is the maximal value of the field strength. Then, the perturbation
potential (potential energy of the perturbation, or force times displacement
x) is

V0 ¼ eE x ¼ eA cos otð Þ � x: (12.3)

Since the potential now varies with time, we need to make use of the time-
dependent Schr€odinger equation (3.8),

r2C� 2m

\2
VC� 2im

\

@C
@t

¼ 0; (12.4)

which reads, with (12.1) and (12.3),

r2C� 2m

\2
V0 þ eAx cosotð ÞC� 2im

\

@C
@t

¼ 0: (12.5)

Our goal is to calculate the optical constants from the polarization, in a
similar way as it was done in Sections 11.2, 11.3, and 11.6. We have to note,
however, the following: In wave mechanics, the electron is not considered
to be a point, but instead is thought to be “smeared” about the space dt.
The locus of the electron in classical mechanics is thus replaced by the
probability, CC�, of finding an electron in space (see (2.12)). The classical
polarization

P ¼ Nex

(11.4) is replaced in wave mechanics by

P ¼ Ne

ð
xCC�dt: (12.6)

We seek to find a solution C of the perturbed Schr€odinger equation (12.5)
and calculate from that the norm CC�; then, by using (12.6) we can
calculate the polarization P. The equation for the optical constants thus
obtained is given in (12.31).
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The detailed calculation of this approach will be given below. The first
step is to transform the space- and time-dependent Schr€odinger equation
into a Schr€odinger equation that is only space-dependent. The perturbed
Schr€odinger equation (12.5) is rewritten, using the Euler equation7

cos r ¼ 1
2
eir þ e�irð Þ, as

r2C� 2m

\2
V0C� 2im

\

@C
@t

¼ 2m

\2
eAx

1

2
eiot þ e�iot� �

C: (12.7)

Now, the left side of (12.7) has the form of the unperturbed Schr€odinger
equation (12.4). We assume that the perturbation is very small. Then, we
can insert in the perturbation term (right side of (12.7)) the expression (3.4),
and get

C0
i x; y; z; tð Þ ¼ c0

i x; y; zð Þeioit (12.8)

for the unperturbed ith eigenfunction. This yields

r2C� 2m

\2
V0C� 2im

\

@C
@t

¼ m

\2
eAxc0

i ei oiþoð Þt þ ei oi�oð Þt
h i

: (12.9)

The right-hand side will be contracted to simplify the calculation:

r2C� 2m

\2
V0C� 2im

\

@C
@t

¼ m

\2
eAxc0

i e
i oi�oð Þt: (12.10)

To solve (12.10), we seek a trial solution which consists of an unperturbed
solution and two terms with the angular frequencies (oi + o) and (oi � o):

C ¼ C0
i þ cþe

i oiþoð Þt þ c ei oi�oð Þt: (12.11)

This trial solution is condensed as before

C ¼ C0
i þ c�e

i oi�oð Þt: (12.12)

Equation (12.12) is differentiated twice with respect to space and once with
respect to time, and the results are inserted into (12.10). This yields

r2C0
i þr2c�e

i oi�oð Þt� 2m

\2
V0C0

i �
2m

\
V0c�e

i oi�oð Þt

� 2im

\

@C0
i

@t
þ 2m

\
oi � oð Þc�e

i oi�oð Þt ¼ m

\2
eAxc0

i e
i oi�oð Þt:

(12.13)

The underlined terms in (12.13) vanish according to (12.4) if C0
i is the

solution to the unperturbed Schr€odinger equation. In the remaining terms,
the exponential factors can be cancelled, which yields, with \o ¼ hn ¼ E,

7See Appendix 2.
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r2c� þ 2m

\2
c� Ei � hn� V0ð Þ ¼ m

\2
eAxc0

i : (12.14)

In writing (12.14) we have reached our first goal, i.e., to obtain a time-
independent, perturbed Schr€odinger equation. We solve this equation with a
procedure that is common in perturbation theory. We develop the function

xc0
i (the right side of (12.14)) in a series of eigenfunctions

xc0
i ¼ a1ic

0
1 þ a2ic

0
2 þ � � � þ anic

0
n þ � � � ¼

X
anic

0
n: (12.15)

multiply (12.15) by c0�
n , and integrate over the entire space dt. Then, due toÐ

cc� dt ¼ 1 (3.15) and
Ð
cmcn

� dt ¼ 0 (for m 6¼ n), we obtainð
xc0

ic
0�
n dt ¼ a1i

ð
c0
1c

0�
n dt

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

þ � � � þ ani

0

l

ð
c0
nc

0�
n dt

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1

þ � � � ¼ ani: (12.16)

Similarly, we develop the function c� in a series of eigenfunctions

c� ¼
X

b�nc
0
n: (12.17)

Inserting (12.15) and (12.17) into (12.14) yields

X
b�n r2c0

n þ
2m

\2
Eic

0
n �

2m

\2
hnc0

n �
2m

\2
V0c

0
n

� �
¼ m

\2
eA

X
anic

0
n:

(12.18)

Rewriting the unperturbed time-independent Schr€odinger equation (3.1)
yields

r2c0
n �

2m

\2
V0c

0
n ¼ � 2m

\2
Enc

0
n: (12.19)

Equation (12.19) shows that the underlined terms in (12.18) may be equated
to the right side of (12.19). Thus, (12.18) may be rewritten as

2m

\2

X
c0
nb�n Ei � En � hnð Þ ¼ 2m

\2
eA

2

X
c0
nani: (12.20)

Comparing the coefficients in (12.20) yields, with

Ei � En ¼ Eni ¼ hnni; (12.21)

the following expression:

b�n ¼ eAani
2 Ei � En � hnð Þ ¼

eAani
2h nni � nð Þ : (12.22)

Now we are able to determine the functions c+ and c� by using (12.22) and
(12.17). We insert these functions together with (3.4) into the trial solution
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(12.11) and obtain a solution for the time-dependent, perturbed Schr€odinger
equation (12.5)

C ¼ c0
i e

ioit þ 1

2h

X
eAanic

0
n

ei oiþoð Þt

nni þ n
þ ei oi�oð Þt

nni � n

� �
; (12.23)

and thus

C� ¼ c0�
i e�ioit þ 1

2h

X
eAa�nic

0�
n

e�i oiþoð Þt

nni þ n
þ e�i oi�oð Þt

nni � n

� �
: (12.24)

In order to write the polarization (12.6) we have to form the product CC�.
As can be seen from (12.23) and (12.24), this calculation yields time-
dependent as well as time-independent terms. The latter ones need not be
considered here, since they provided only an additive constant to the
polarization (light scattering). The time-dependent part of the norm CC� is

CC� ¼ eA

2h

X
a�nic

0�
n c0

i

e�iot

nni þ n
þ eiot

nni � n|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Q

0
BBB@

1
CCCA

2
6664

þ
X

anic
0
nc

0�
i

eiot

nni þ n
þ e�iot

nni � n|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
R

0
BB@

1
CCA
3
775:

(12.25)

To simplify, we abbreviate the terms in parentheses by Q and R, respec-
tively. The polarization (12.6) is then

P ¼ Ne2A

2h

X
a�niQ

ð
xc0�

n c0
i dt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ani

þ
X

aniR

ð
xc0

nc
0�
i dt

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
a�ni

2
6664

3
7775; (12.26)

which reduces, with (12.16),ð
xc0

i c
0�
n dt ¼ ani

and

ani � a�ni ¼ janij2 � a2ni (12.27)

to

P ¼ Ne2A

2h

X
a2ni Qþ Rð Þ : (12.28)
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A numerical calculation applying the above-quoted Euler equation yields

Qþ R ¼ 2nnie�iot

n2ni � n2
þ 2nnieiot

n2ni � n2
¼ 4nni cosot

n2ni � n2
; (12.29)

which gives, with (12.2),

P ¼ Ne2E

p\

X
a2ni

nni
n2ni � n2

: (12.30)

Finally, we make use of (10.13) and (11.5) and obtain with, (12.30),

e1 ¼ n2 � k2 ¼ 1þ Ne2

e0p\

X
a2ni

nni
n2ni � n2

: (12.31)

Equation (12.31) is the sought-after relation for the optical properties of
solids, obtained by wave mechanics. It is similar in form to the classical
dispersion equation (11.51). A comparison of classical and quantum
mechanical results might be helpful to better understand the meaning of
the empirically introduced oscillator strength, fi. We obtain

fi ¼ 4pm
\

a2ninni: (12.32)

We know that hnni is that energy which an electron absorbs when it is excited
from the n-band into the i-band (e.g., the m-band). Thus, the resonance
frequency, noi, of the ith oscillator introduced in Section 11.7.4 is replaced
in wave mechanics by a frequency, nni, that corresponds to an allowed
electron transition from the nth into the ith band. Furthermore, we see from
(12.16) that ani is proportional to the probability of an electron transition from
the nth into the ith band. The oscillator strength, fi, is, therefore, essentially the
probability for a certain interband transition.

Problems

1. What information can be gained from the quantum mechanical treatment of the optical

properties of metals which cannot be obtained by the classical treatment?

2. What can we conclude from the fact that the spectral reflectivity of a metal (e.g., copper)

has “structure”?

3. Below the reflection spectra for two materials A and B are given.

a. What type of material belongs to reflection spectrum A, what type to B? (Justify). Note

the scale difference! Some reflection takes place below 1.5 eV in material B!

b. For which colors are these (bulk) materials transparent?

c. What is the approximate threshold energy for interband transitions for these materials?
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d. For which of the materials would you expect intraband transitions in the infrared

region? (Justify.)

e. Why do these intraband transitions occur in this region?

4. What is the smallest possible energy for interband transitions for aluminum?

(Hint: Consult the band diagram in Fig. 5.21.)

5. Are intraband transitions possible in semiconductors at high temperatures?
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CHAPTER 13

Applications

13.1. Measurement of the Optical Properties

The measurement of the optical properties of solids is simple in principle,
but can be involved in practice. This is so because many bulk solids (parti-
cularly metals) are opaque, so that the measurements have to be taken in
reflection. Light penetrates about 10 nm into a metal (see Table 10.1). As a
consequence, the optical properties are basically measured near the surface,
which is susceptible to oxidation, deformation (polishing), or contamination
by adsorbed layers. One tries to alleviate the associated problems by utiliz-
ing ultrahigh vacuum, vapor deposition, sputtering, etc. Needless to say, the
method by which a given sample was prepared may have an effect on the
numerical value of its optical properties.

Let us assume that the surface problems have been resolved. Then, still
another problem remains. The most relevant optical properties, namely, n, k,
e1, e2, and the energies for interband transitions cannot be easily deduced by
simplymeasuring the reflectivity, i.e., the ratio between reflected and incident
intensity. Thus, a wide range of techniques have been developed in the past
century to obtain the above-mentioned parameters. Only three methods will
be briefly discussed here. It should be mentioned, however, that thirty or forty
other techniques could be easily presented. They all have certain advantages
for some specific applications and disadvantages for others. The reader who is
not interested in themeasurement of optical propertiesmay skip the next three
sections for the time being and return to them at a later time.

R.E. Hummel, Electronic Properties of Materials 4th edition,
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*13.1.1. Kramers–Kronig Analysis (Dispersion Relations)

This method was very popular in the 1960s and involves the measurement of
the reflectivity over a wide spectral range. A relationship exists between real
and imaginary terms of any complex function, which enables one to calcu-
late one component of a complex quantity if the other one is known. In the
present case, one calculates the phase jump, d0, (between the reflected and
incident ray) from the reflectivity, R, which was measured at a given
frequency, n. This is accomplished by the Kramers–Kronig relation,

d0 nxð Þ ¼ 1

p

ð1

0

d ln r
dn

ln
nþ nx
n� nx

����
����dn; (13.1)

where

r ¼
ffiffiffi
R

p
¼

ffiffiffiffi
IR
I0

r
(13.2)

is obtained from the reflected intensity, IR, and the incident intensity, I0, of
the light. The optical constants are calculated by applying

n ¼ 1� r2

1þ r2 þ 2r cos d0
(13.3)

and

k ¼ 2r sin d0

1þ r2 þ 2r cos d0
: (13.4)

Equation (13.1) shows that the reflectivity should be known in the entire
frequency range (i.e., between n ¼ 0 and n ¼ 1). Since measured values can
hardly be obtained for such a large frequency range, one usually extrapolates
the reflectivity beyond the experimental region using theoretical or phenome-
nological considerations. Such an extrapolation would not cause a substantial
error if one could assume that no interband transitions exist beyond the
measured spectral range. This assumption is probably valid only on rare
occasions. (For details, see specialized books listed at the end of Part III.)

*13.1.2. Spectroscopic Ellipsometry

This technique was developed in its original form at the turn of the 20th

century. The underlying idea is as follows: If plane-polarized light impinges
under an angle a on a metal, the reflected light is generally elliptically
polarized. The analysis of this elliptically polarized light yields two para-
meters, the azimuth and the phase difference, from which the optical
properties are calculated.
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We consider plane-polarized light whose vibrational plane is inclined by
45� towards the plane of incidence (Fig. 13.1). This angle is called azimuth,
ce, in contrast to the azimuth of the reflected light, cr, which is defined as

tancr ¼
E Rp

E Rs
(13.5)

(see Fig. 13.1), where ERp and ERs are parallel and perpendicular compo-
nents of the reflected electric field strength |E |, i.e., the amplitudes of the
reflected light wave.

In elliptically polarized light, the length and direction of the light vector
is altered periodically. The tip of the light vector moves along a continuous
screw, having the direction of propagation as an axis (Fig. 13.2(a)). The
projection of this screw onto the x � y plane is an ellipse (Fig. 13.1).
Elliptically polarized light can be thought of as composed of two mutually
perpendicular, plane-polarized waves, having a phase difference d between
them (expressed in fractions of 2p) (see Fig. 13.2(b)).

For the actual measurement of cr and d, one needs two polarizers (con-
sisting of a birefringent material, which allows only plane-polarized light to
pass), and a compensator (also consisting of birefringent material, which
allows one to measure the phase difference d; see Fig. 13.3). In Fig 13.4, the
light reflected from a metal is represented by two light vectors pointing in
the x- and y-directions, respectively. They have a phase difference d
between them. By varying the thickness of the birefringent materials in
the compensator, one eventually accomplishes that the light which leaves
the compensator is plane-polarized (i.e., d ¼ 0�). The resultant vector, Rres,
is then tilted by an angle, cr, against the normal to the plane of incidence.

Figure 13.1. Reflection of plane-polarized light on a metal surface. (Note: In the figure

E Rp � Rp and E Rs � Rs).
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One determines cr by turning the analyzer to a position at which its axis is
perpendicular to Rres. In short, d and cr are measured by simultaneously
altering the thickness of the compensator and turning the analyzer until no
light leaves the analyzer. It is evident that this method is cumbersome and
time-consuming, particularly in cases in which an entire spectrum needs to
be measured point by point. Thus, in recent years automated and computer-
ized ellipsometers have been developed.

The optical constants are calculated using

n2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2 þ sin2a
� �2 þ 4a2b2

q
þ a2 � b2 þ sin2a

� �
; (13.6)

Figure 13.2. (a) Elliptically polarized light and (b) decomposition of elliptically polarized

light into two mutually perpendicular plane-polarized waves with phase difference d.
Adapted from R.W. Pohl, Optik und Atomphysik. Springer-Verlag, Berlin (1958).

Figure 13.3. Schematic of an ellipsometer (polarizer and analyzer are identical devices).
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k2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2 þ sin2a
� �2 þ 4a2b2

q
� a2 � b2 þ sin2a
� �� �

; (13.7)

with

a ¼ sin a tan a cos 2cr

1� cos d sin 2cr

(13.8)

and

b ¼ �a sin d tan 2cr: (13.9)

Alternatively, one obtains, for the polarization e1 and absorption e2,

e1 ¼ n2 � k2 ¼ sin2a 1þ tan2 a cos2 2cr � sin2 2cr sin
2 d

� �
1� sin 2cr cos dð Þ2

" #
; (13.10)

e2 ¼ 2nk ¼ � sin 4cr sin d tan
2 a sin2 a

1� sin 2cr cos dð Þ2 : (13.11)

*13.1.3. Differential Reflectometry

The information gained by differential reflectometry is somewhat different
from that obtained by the aforementioned techniques. A “differential

Figure 13.4. Vector diagram of light reflected from a metal surface. The vectors having solid

arrowheads give the vibrational direction and magnitude of the light.
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reflectogram” allows the direct measurement of the energies that elec-
trons absorb from photons as they are raised into higher allowed energy
states. The differential reflectometer measures the normalized difference
between the reflectivities of two similar specimens which are mounted side
by side (Fig. 13.5). For example, one specimen might be pure copper and the
other copper with, say, 1% zinc. Unpolarized light coming from a mono-
chromator is alternately deflected under near-normal incidence to one or the
other sample by means of a vibrating mirror. The reflected light is electroni-
cally processed to yield DR/ �R ¼ 2(R1 � R2)/(R1 þ R2). A complete differ-
ential reflectogram, i.e., a scan from the near IR through the visible into the
near UV, is generated automatically and takes about two minutes. The main
advantage of differential reflectometry over conventional optical techniques
lies in its ability to eliminate any undesirable influences of oxides, deforma-
tions, windows, electrolytes (for corrosion studies), or instrumental para-
meters upon a differential reflectogram, owing to the differential nature of
the technique. No vacuum is needed. Thus, the formation of a surface layer
due to environmental interactions can be studied in situ. Finally, the data can
be taken under near-normal incidence.

Differential reflectometry belongs to a family of techniques, calledmod-
ulation spectroscopy, in which the derivative of the unperturbed reflectivity
(or e2) with respect to an external parameter is measured. Modulation
techniques restrict the action to so-called critical points in the band

Figure 13.5. Schematic diagram of the differential reflectometer. (For clarity, the angle of

incidence of the light beam impinging on the samples is drawn larger than it is in reality.)

From R.E. Hummel, Phys. Stat. Sol. (a) 76, 11 (1983).
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structure, i.e., they emphasize special electron transitions from an essen-
tially featureless background. This background is caused by the allowed
transitions at practically all points in the Brillouin zone. Most modulation
techniques, such as differential reflectometry, wavelength modulation,
thermoreflectance, or piezoreflectance, are first-derivative techniques
(Fig. 13.6(a)). In semiconductor research (Section 13.6) another modula-
tion technique, called electro-reflectance, is often used, which provides the
third derivative of R or e2. (It utilizes an alternating electric field which is
applied to the semiconducting material during the reflection measurement.)
The third derivative provides sharper and more richly structured spectra
than the first-derivative techniques (Fig. 13.6(b)). In a first-derivative
modulation spectrum, the lattice periodicity is retained, the optical transi-
tions remain vertical and the inter-band transition energy changes with the
perturbation (see inset of Fig. 13.6(a)). In electromodulation, the formerly
sharp vertical transitions are spread over a finite range of initial and final
momenta (see inset of Fig. 13.6(b)). A relatively involved line-shape
analysis of electroreflectance spectra eventually yields the interband tran-
sition energies.

We shall make use of reflection, absorption, and first-derivative spectra in
the sections to come.

Figure 13.6. Schematic representation of (a) the first derivative and (b) the third derivative

of an e2-spectrum. The equivalent interband transitions at a so-calledM0 symmetry point are

shown in the inserts. Adapted from D.E. Aspnes, Surface Science 37, 418 (1973).
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13.2. Optical Spectra of Pure Metals

13.2.1. Reflection Spectra

The spectral dependence of the optical properties of metals was described and
calculated in Chapter 11 by postulating that light interacts with a certain
number of free electrons and a certain number of classical harmonic oscilla-
tors, or equivalently, by intraband and interband transitions. In the present
section we shall inspect experimental reflection data and see what conclusions
can be drawn from these results with respect to the electron band structure.

Figure 13.7 depicts the spectral reflectivity for silver. From this diagram,
the optical constants (i.e., the real and imaginary parts of the complex
dielectric constant, e1 ¼ n2 � k2 and e2 ¼ 2nk) have been calculated by
means of a Kramers–Kronig analysis (Section 13.1.1). Comparing Fig. 13.8
with Fig. 11.5 shows that for small photon energies, i.e., for E < 3.8 eV, the
spectral dependences of e1 and e2 have the characteristic curve shapes for
free electrons. In other words, the optical properties of silver can be
described in this region by the concept of free electrons. Beyond 3.8 eV,
however, the spectral dependences of e1 and e2 deviates considerably from
the free electron behavior. In this range, classical oscillators, or equiva-
lently, interband transitions, need to be considered.

Now it is possible to separate the contributions of free and bound electrons
in e1- and e2-spectra. For this, one fits the theoretical e2 to the experimental
e2 curves in the low-energy region. The theoretical spectral dependence of
e2 is obtained by the Drude equation (11.27). An “effective mass” and the
damping frequency, n2, are used as adjustable parameters. With these

Figure 13.7. Reflectivity spectrum for silver. Adapted from H. Ehrenreich et al., IEEE
Spectrum 2, 162 (1965). # 1965 IEEE.
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parameters, the free electron part of e1 (denoted by ef1) is calculated in the
entire spectral range by using (11.26). Next, ef1 is subtracted from the experi-
mental e1, which yields the bound electron contribution, eb1. Figure 13.9

Figure 13.8. Spectral dependence of e1 and e2 for silver. e1 and e2 were obtained from

Fig. 13.7 by a Kramers–Kronig analysis. Adapted from H. Ehrenreich et al., IEEE Spectrum 2,

162 (1965). # 1965 IEEE.

Figure 13.9. Separation of e1 for silver into ef1 (free electrons) and eb1 (bound electrons).

Adapted from H. Ehrenreich et al., IEEE Spectrum 2, 162 (1965). # 1965 IEEE.
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depicts an absorption band thus obtained, which resembles a calculated
absorption band quite well (Fig. 11.9).

We now turn to the optical spectra for copper (Figs. 13.10 and 13.11). We
notice immediately one important feature: Copper possesses an absorption
band in the visible spectrum, which is, as already mentioned, responsible for
the characteristic color of copper. We defined above a threshold energy at
which interband transitions set in. In copper, the threshold energy is about
2.2 eV (Fig. 13.11), which is assigned to the d-band ! EF transition near
the L-symmetry point. (This is marked by an arrow in Fig. 5.22.) Another

Figure 13.10. Reflectivity spectrum for copper. Adapted from H. Ehrenreich et al., IEEE
Spectrum 2, 162 (1965). # 1965 IEEE.

Figure 13.11. Spectral dependence of e1 and e2 for copper. e1 and e2 were obtained from

Fig. 13.10 by a Kramers–Kronig analysis. Adapted from H. Ehrenreich et al., IEEE Spectrum
2, 162 (1965). # 1965 IEEE.
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peak is observed at slightly above 4 eV, which is ascribed to interband
transitions from the Fermi energy near the L-symmetry point, as depicted in
Figs. 12.3 and 5.22.

As a final example, we inspect the reflection spectrum of aluminum.
Figures 13.12 and 13.13 show that the spectral dependences of e1 and
e2 resemble those shown in Fig. 11.5, except in the small energy region
around 1.5 eV. Thus, the behavior of aluminum may be described essen-
tially by the free electron theory. This free electron-like behavior of alumi-
num can also be deduced from its band structure (Fig. 5.21), which has
essential characteristics of free electron bands for fcc metals (Fig. 5.20).
Interband transitions which contribute to the e2-peak near 1.5 eV occur

Figure 13.12. Reflection spectrum for aluminum. Adapted from H. Ehrenreich et al., IEEE
Spectrum 2, 162 (1965). # 1965 IEEE.

Figure 13.13. Spectral dependence of e1 and e2 for aluminum. Adapted from H. Ehrenreich

et al., IEEE Spectrum 2, 162 (1965). # 1965 IEEE.
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between theW2
0 andW1 symmetry points and the closely spaced and almost

parallel S3 and S1 bands. A small contribution stems from the W3 ! W1

transition near 2 eV.

*13.2.2. Plasma Oscillations

We postulate now that the free electrons of a metal interact electrostatically,
thus forming an electron “plasma” that can be excited by light of proper
photon energy to collectively perform fluid-like oscillations. These plasma
oscillations are quantized. One quantum of plasma oscillations is called
a “plasmon”. This plasma possesses, just as an oscillator, a resonance
frequency, often called the plasma frequency. We already introduced in
Section 11.2 the plasma frequency, n1, and noted that the dielectric constant,
ê, becomes zero at n1. Thus, (10.12) reduces to

ê ¼ e1 � ie2 ¼ 0; (13.12)

from which we conclude that at the plasma frequency e1 as well as e2 must
be zero. Experience shows that oscillations of the electron plasma already
occur when e1 and e2 are close to zero.

The frequency dependence of the imaginary part of the reciprocal dielectric
constant peaks at the plasma frequency, as we will see shortly. We write

1

ê
¼ 1

e1 � ie2
¼ e1 þ ie2

e21 þ e22
¼ e1

e21 þ e22
þ i

e2
e21 þ e22

: (13.13)

The imaginary part of the reciprocal dielectric constant, i.e.,

Im
1

ê
¼ e2

e21 þ e22
; (13.14)

is called the “energy loss function” which is large for e1 ! 0 and e2 < 1,
i.e., at the plasma frequency. We will now inspect the energy loss functions
for some metals. We begin with aluminum because its behavior may well be
interpreted by the free electron theory. We observe in Fig. 13.14 a pro-
nounced maximum of Im 1 ê=ð Þ near 15.2 eV. The real part of the dielectric
constant (e1) is zero at this frequency and e2 is small (see Fig. 13.13). Thus,
we conclude that aluminum has a plasma resonance at 15.2 eV.

Things are slightly more complicated for silver. Here, the energy loss
function has a steep maximum near 4 eV (Fig. 13.15), which cannot be
solely attributed to free electrons, since ef1 is only zero at 9.2 eV (see
Fig. 13.9). The plasma resonance near 4 eV originates by cooperation of
the d- as well as the conduction electrons. The loss function for silver
has another, but much weaker, resonance near 7.5 eV. This maximum is
essentially caused by the conduction electrons, but is perturbed by interband
transitions which occur at higher energies.
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The reflection spectrum for silver (Fig. 13.7) can now be completely
interpreted. The sharp decrease in R near 4 eV by almost 99% within a
fraction of an electron volt is caused by a weakly damped plasma resonance.
The sudden increase, only 0.1 eV above the plasma resonance, takes place
because of interband transitions that commence at this energy. Such a
dramatic change in optical constants is unparalleled.

13.3. Optical Spectra of Alloys

It was demonstrated in the previous sections that knowledge of the spectral
dependence of the optical properties contributes to the understanding of the
electronic structure of metals. We will now extend our discussion to alloys.

Figure 13.14. Energy loss function for aluminum. Adapted from H. Ehrenreich et al., IEEE
Spectrum 2, 162 (1965). # 1965 IEEE.

Figure 13.15. Energy loss function for silver. Adapted from H. Ehrenreich et al., IEEE
Spectrum 2, 162 (1965). # 1965 IEEE.
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Several decades ago, N.F. Mott suggested that when a small amount of
metal A is added to a metal B, the Fermi energy would simply assume an
average value, while leaving the electron bands of the solvent intact. It was
eventually recognized, however, that this “rigid-band model” needed some
modification and that the electron bands are somewhat changed for an alloy.
We use copper–zinc as an example. Figure 13.16 shows a series of differen-
tial reflectograms (see Section 13.1.3) from which the energies for interband
transitions, ET, can be taken. Peak A represents the threshold energy for
interband transitions, which can be seen to shift to higher energies with
increasing zinc content. ET is plotted in Fig. 13.17 as a function of solute
(X). Essentially, a linear increase in ET with increasing X is observed. The
threshold energy for copper has been identified in Section 12.2 to be
associated with electron transitions from the upper d-band to the conduction
band, just above the Fermi surface (see Fig. 12.3). The rise in energy
difference between the upper d-band and Fermi level, caused by solute

Figure 13.16. Experimental differential reflectograms for various copper–zinc alloys. The

parameter on the curves is the average zinc concentration of the two alloys in at.%. The curve

marked 0.5%, e.g., resulted by scanning the light beam between pure copper and a Cu–1% Zn

alloy. Peaks A and D are designated as e2-type structures (Fig. 11.10) whereas features B and

C belong to an e1-type structure (Fig. 11.9). From R.J. Nastasi-Andrews and R.E. Hummel,

Phys. Rev. B 16, 4314 (1977).
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additions, can be explained in a first approximation by suggesting a rise
in the Fermi energy which results when extra electrons are introduced into
the copper matrix from the higher-valent solute. Gallium, which has three
valence electrons, would thus raise the Fermi energy more than zinc, which
is indeed observed in Fig. 13.17. The slope of the ET ¼ f(X) curve in
Fig. 13.17 for zinc (as well as for other solutes) is considerably smaller
than that predicted by the rigid band model. This suggests that the d-bands
are likewise raised with increasing solute content and/or that the Fermi level
is shifted up much less than anticipated. Band calculations substantiate this
suggestion. They reveal that upon solute additions to copper, the d-bands
become narrower (which results from a reduction in Cu–Cu interactions)
and that the d-bands are lifted up as a whole. Furthermore, the calculations
show that solute additions to copper cause a rise in EF and a downward shift
of the bottom of the s-band. Figure 13.18 reflects these results. Because of
the lowering of the bottom of the s-band (G1 in Fig. 5.22), the Fermi energy
rises much less than predicted had EG1 remained constant.

An unexpected characteristic of all ET ¼ f (X) curves is that the threshold
energy for interband transitions, ET, does not vary appreciably for solute
concentrations up to slightly above 1 at.% (Fig. 13.17). Friedel predicted
just this type of behavior and related it to “screening” effects. He argued that
for the first few atomic percent solute additions to copper, the additional
charge from the higher-valent solute is effectively screened and the copper
matrix behaves as if the impurities were not present. The matrix remains
essentially unperturbed as long as the impurities do not mutually interact.

The differential reflectograms shown in Fig. 13.16 suggest two additional
pieces of structure, one of which corresponds to feature ‘D’ near 5 eV and is

Figure 13.17. Threshold energies, ET, for interband transitions for various copper-based

alloys as a function of solute content. The ET values are taken from differential reflectograms

similar to those shown in Fig. 13.16. The rigid band line (R.B.) for Cu–Zn is added for

comparison. From R.J. Nastasi-Andrews and R.E. Hummel, Phys. Rev. B 16, 4314 (1977).
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assigned to electron transitions from the lower d-bands to the Fermi surface.
This interband transition is not shown in Fig. 13.18 because of its large
energy, which is beyond the scale of this figure. An ET versus X plot for peak
‘D’ resembles Fig. 13.17.

The third transition in the chosen energy region occurs at about 4 eV and
involves the structural features ‘B’ and ‘C’. The associated transition energy
is seen to decrease with increasing solute content (Fig. 13.19). Features ‘B’

Figure 13.18. Schematic band structure near L for copper (solid lines) and an assumed dilute

copper-based alloy (dashed lines). Compare with Figs. 12.3 and 5.22.

Figure 13.19. Energy of peak B for various dilute copper-based alloys. From R.J. Nastasi-

Andrews, and R.E. Hummel, Phys. Rev. B 16, 4314 (1977).
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and ‘C’ are ascribed to transitions near the L-symmetry point, originating
near the Fermi energy and terminating at the conduction band. It can be seen
in Fig. 13.18 that the transition energy just mentioned is smaller for copper-
based alloys than for pure copper, quite in agreement with the experimental
findings. The reader is asked at this point to compare Figs. 13.10 and 13.11
with Fig. 13.16 and see how different optical techniques complement each
other in revealing the electronic structure of solids.

*13.4. Ordering

It was shown in Section 7.5.3 that the resistivity decreases when solute
atoms of an alloy are periodically arranged on the regular lattice sites. Thus,
we conclude that ordering has an effect on the electronic structure and hence
on the optical properties of alloys. The best way to study ordering is to
compare two specimens of the same alloy when one of them is ordered and
the other is in the disordered state. This way, peaks occur in a differential
optical spectrum whenever the ordered state causes extra interband transi-
tions comparable to superlattice lines in X-ray spectroscopy. As an example,
Fig. 13.20 depicts an optical spectrum for the intermetallic phase Cu3Au.
We note several transitions, among them an e2-type structure with a peak
energy at 2.17 eV and an e1-type structure with a transition energy around
3.6 eV (median between 3.29 eV and 3.85 eV, see Fig. 11.9). We shall
explain them by referring to Fig. 13.21, which depicts the first Brillouin
zone of the disordered fcc lattice in which a simple cubic Brillouin zone,
representing the superlattice, is inscribed. The G � X direction of the
fcc Brillouin zone is bisected by the face of the cubic Brillouin zone at
the point X. The point X is then thought to be folded back to the point G.

Figure 13.20. Differential reflectogram of (long-range) ordered versus disordered Cu3Au.

From R.E. Hummel, Phys. Stat. Sol. (a) 76, 11 (1983).
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A new transition from the d-bands (e.g., at G12) to the point X4
0 (unfolded)

can now take place (see Fig. 5.22). Folding along G � M � K, and possibly
along other directions, explains the other transitions.

Short-range ordering shows comparatively smaller effects than long-
range ordering (Fig. 13.22). The reflectivity difference between ordered
and disordered alloys is about 3% for long-range ordering compared
to 0.5% in the case of short-range ordering. Still, even in the latter case,
a superlattice transition is observed, which is attributed to the periodic
arrangement of solute atoms in small domains (about 1–2 nm in diameter).

Figure 13.21. First Brillouin zone of an fcc lattice with inscribed Brillouin zone representing

a cubic primitive superlattice.

Figure 13.22. Differential reflectogram of (short-range) ordered versus disordered Cu–17 at.

% Al. From J.B. Andrews, R.J. Andrews, and R.E. Hummel, Phys. Rev. B 22, 1837 (1980).
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Interestingly enough, optical investigations provide a further piece of
information, which enables us to look upon the short-range ordered state
from a different perspective. It has been observed that certain peaks in a
differential reflectogram shift due to ordering, exactly as they would do
when a solute is added to a solvent (see Section 13.3). From this we
conclude that in the short-range ordered state, the interaction between
dissimilar atoms is slightly larger than that for similar atoms.

*13.5. Corrosion

Studies of the optical properties have been used for many decades for the
investigation of environmentally induced changes of surfaces. Optical stud-
ies are nondestructive, simple, and allow the investigation of oxides during
their formation. No vacuum is required, in contrast to many other surface
techniques. We use as an example the electrochemical corrosion of copper
in an aqueous solution. A copper disc is divided into two parts that are
electrically insulated from each other by a thin polymer film. One half is
held electrically at the protective potential (as reference) and the other at the
corrosion potential. No artifacts from the electrolyte, the corrosion cell
window, or the metal substrate are experienced since the only difference
in the light path of a differential reflectometer is the corrosion film itself.
Figure 13.23 depicts a series of differential reflectograms demonstrating

Figure 13.23. Differential reflectograms depicting the in situ evolution of Cu2O on a copper

substrate in a buffered electrolyte of pH 9. One sample half was held potentiostatically

at�200 mV (SCE) for various times, the other at the protective potential (�500 mV (SCE)).

From R.E. Hummel, Phys. Stat. Sol. (a) 76, 11 (1983).
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the evolution of Cu2O on a copper substrate. We observe that the peak
height near 3.25 eV, and thus the corrosion film thickness, initially grows
rapidly. The growth rate slows down as the film becomes thicker. The
growth kinetics has been observed to obey a logarithmic relationship.

13.6. Semiconductors

Intrinsic semiconductors have, at low temperatures, a completely filled
valence band and an empty conduction band (see Chapter 8). Consequently,
no intraband transition, or classical infrared (IR) absorption, is possible at
low temperatures. Thus, the optical behavior of an intrinsic semiconductor
is similar to that of an insulator, i.e., it is transparent in the low energy (far
IR) region. Once the energy of the photons is increased and eventually
reaches the gap energy, then the electrons are excited from the top of the
valence band to the bottom of the conduction band. The semiconductor
becomes opaque like a metal (see Fig. 13.24). The onset for interband
transitions is thus determined by the gap energy, which characteristically
has values between 0.2 eV and 3.5 eV (see Table 8.1 and Appendix 4). The
corresponding wavelength lies in the near IR or visible region.

The reader certainly knows from Chapter 8 that silicon is the most
important semiconductor material. It is therefore quite appropriate at this
point to look at the absorption spectrum of Si, Fig. 13.25. The situation is,
however, not as simple as just explained, because Si is a so-called “indir-
ect–band gap material”. By inspecting its band diagram (see Fig. 5.23 or
Fig. 13.26) we notice that the maximum of the valence band and the
minimum of the conduction band are not at the same point in k-space.

Figure 13.24. Schematic representation of the absorption spectrum of an intrinsic, direct–band

gap semiconductor. The material is transparent below the gap energy and opaque above Eg.
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Vertical transitions are thus not permissible (or have only a very small
probability) at energies below about 3.4 eV. Accordingly, we observe in
the optical spectrum depicted in Fig 13.25 three distinct absorption peaks,
which are known by the designations L3

0 ! L1 (3.4 eV), S (4.2 eV), and
L3

0 ! L3 (5.6 eV) (see Fig. 5.23). These peaks are all caused by direct
interband transitions in specific areas of k-space.

Figure 13.25. Differential reflectogram of silicon (after R.E. Hummel and W. Xi). DR/ �R is

essentially the absorption, e2, as explained in Section 13.1.3. Compare to Fig. 5.23.

Figure 13.26. Schematic representation of direct versus indirect interband absorptions in Si.

In the case of an indirect transition, a phonon needs to be additionally absorbed. Compare to

Fig. 5.23 and 12.2.
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Nevertheless, indirect transitions between the top of the valence band
and the bottom of the conduction band may be possible to a limited degree
provided the necessary momentum (wave vector k) is furnished by a
phonon (see Fig. 13.26). We have already discussed phonon-assisted
transitions in Section 12.2 and explained there that indirect interband
transitions are particularly observed in the absence of direct transitions.
Indirect interband transitions are generally quite weak.

Our discussion of the optical spectra of semiconductors is not complete
by considering only direct or indirect interband transitions. Several other
absorption mechanisms may occur. It has been observed, for example, that
the absorption spectra for semiconductors show a structure for photon
energies slightly below the gap energy (Fig. 13.27(a)). Frenkel explained
this behavior by postulating that a photon may excite an electron so that it
remains in the vicinity of its nucleus, thus forming an electron–hole pair,
called an exciton. Electrons and holes are thought to be bound together
by electrostatic forces and revolve around their mutual center of mass.
The electrons may hop through the crystal and change their respective
partners. This motion can also be described as an exciton wave. One depicts
the excitons by introducing “exciton levels” into the forbidden band
(Fig. 13.27(b)). They are separated from the conduction band by the “bind-
ing energy”, Ex, whose position can be calculated by an equation similar to
(4.18a) (see also Problem 8/10):

Ex ¼ � m�e4

4pe0ð Þ22n2\2e2 ; (13.15)
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Figure 13.27. (a) Spectral dependence of the absorbance, a, (10.21a) for gallium arsenide at

21 K. Adapted from M.D. Sturge, Phys. Rev. 127, 768 (1962). (b) Schematic representation

of exciton energy levels and an exciton in a semiconductor (or insulator).
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where n is an integer, m* is the effective mass of the exciton (which is the
average of me and mh), and e is the a.c. dielectric constant. Ex is characteris-
tically about 0.01 eV. The exciton levels are broadened by interactions with
impurities or phonons.

Finally, extrinsic semiconductors have, as we know, donor or acceptor
states near the conduction or the valence band, respectively (Section 8.3).
At sufficiently high temperatures, optical transitions from and to these states
can take place, which also cause weak absorption peaks below the gap energy.

It should be noted that the temperature slightly influences the absorption
characteristics of a semiconductor. The change in gap energy is about
�2 � 10�4 eV/K (see Appendix, and Equation (8.1)), which stems from
an apparent broadening of valence and conduction levels with increasing
temperature due to transitions with simultaneous emission and absorption of
photons. Another temperature-enhanced effect should be considered, too.
Once electrons have been excited from the valence into the conduction band
(either by photons or thermal excitation), holes are present in the upper part
of the valence bands. Then, photons having energies well below Eg can be
absorbed by intraband transitions. These transitions are, however, relatively
weak.

High resistant semiconductors are extensively used for photoresistors
or photoconductors. In short, certain materials such as cadmium sulfide
(CdS), Lead sulfide (PbS), indium antimonide (InSb), or Ge:Cu become
more conductive when light (or g-rays) impinge on them. As we learned
above, high energy radiation raises some electrons across the band gap into
the conduction band leaving holes in the valence band, thus increasing
conductivity. For extrinsic semiconductors smaller energies are needed to
raise electrons from the impurity levels, making these materials useful
already in the IR region. Photoconductors are used for street light switches,
motion detectors, camera light meters, certain clock radios, alarms, and for
photocopying, see Section 9.4.1.

Optical absorption measurements are widely used in semiconductor
research since they provide the most accurate way to determine the gap
energies and the energies of the localized states. Measurements are normally
performed at low temperatures so that the thermal excitations of the electrons
do not mask the transitions to be studied. Optical measurements are capable
of discriminating between direct and indirect transitions, based on the mag-
nitude of the absorption peaks.

13.7. Insulators (Dielectric Materials and Glass Fibers)

As we know, insulators are characterized by completely filled valence bands
and empty “conduction” bands. Thus, no intraband transitions, i.e., no
classical IR absorption, takes place. Furthermore, the gap energy for
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insulators is fairly large (typically 5 eV or larger) so that interband transi-
tions do not occur in the IR and visible spectrum either. They take place,
however, in the ultraviolet (UV) region. Third, excitons may be created,
which cause absorption peaks somewhat below the gap energy. For exam-
ple, the lowest energy for an exciton level (and thus for the first exciton
absorption peak) for NaCl has been found to be at about 7 eV, i.e., in the
vacuum UV region. (Other alkali halides have very similar exciton ener-
gies.) We suspect, therefore, that insulators are transparent from the far IR
throughout the visible up to the UV region. This is indeed essentially
observed. However, in the IR region a new absorption mechanism may
take place which we have not yet discussed. It is caused by the light-induced
vibrations of the lattice atoms, i.e., by the excitation of phonons by
photons. We need to explain this in some more detail.

Let us first consider a monatomic crystal (one kind of atom). The
individual atoms are thought to be excited by light of appropriate frequency
to perform oscillations about their points of rest. Now, the individual atoms
are surely not vibrating independently. They interact with their neighbors,
which causes them to move simultaneously. For simplicity, we model the
atoms to be interconnected by elastic springs, see Fig. 13.28. Thus, the
interaction of light with the lattice can be mathematically represented in
quite a similar manner to the one used when we discussed and calculated the
classical electron theory of dielectric materials. (In Section 11.6 we repre-
sented one atom in an electric field as consisting of a positively charged core
which is bound quasi-elastically to an electron.) A differential equation
similar to (11.32) may be written for the present case as

m
d2x

dt2
þ g0

dx

dt
þ kx ¼ eE 0 exp iotð Þ; (13.16)

which represents the oscillations of atoms under the influence of light whose
excitation force is e E 0 exp(iot). As before, the factor k · x is the restoring
force that contains the displacement x and an interatomic force constant k
(i.e., a “spring constant,” or a “binding strength” between the atoms).

Figure 13.28. One-dimensional representations of possible vibration modes of atoms that

have been excited by IR electromagnetic radiation (heat). Left: stretching mode, right:

bending mode.
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The damping of the oscillations is represented by the second term in (13.16).
Damping is thought to be caused by interactions of the phonons with lattice
imperfections, or with external surfaces of the crystal, or with other pho-
nons. The oscillators possess one or several resonance frequencies o0,
which depend on the mass of the atoms on the vibrational modes (see
Fig. 13.28), and on the restoring force (see (11.34)). The solution of the
differential equation (13.16) yields a spectral dependence of e1 and e2 that
is very similar to that shown in Figs. 11.9–11.12.

The situation becomes slightly more complicated when diatomic solids,
such as ionic crystals, are considered. In this case, two differential equations
of the type of (13.16) need to be written. They have to be solved simulta-
neously. Actually, one needs to solve 2N coupled differential equations,
where N is the number of unit cells in the lattice. The result is, however,
qualitatively still the same. The resonance frequency for diatomic crystals is

o0 ¼ 2k
1

m1

þ 1

m2

� 	
; (13.17)

where m1 and m2 are the masses of the two ion species. Figure 13.29 depicts
the spectral reflectivity of NaCl in the IR. Sodium chloride is transmissive
between 0.04 eV and 7 eV. At the upper boundary energy, exciton absorp-
tion sets in.

Fused quartz (depending on the method of manufacturing) is essentially
transparent between 0.29 eV and 6.9 eV (4.28 mm and 0.18 mm), having,
however, two pronounced absorption peaks near 1.38 mm and 2.8 mm, and a
minor peak near 1.24 mm.Window glass has a similar transmission spectrum
as fused quartz, with the exception that its UV cut-off wavelength is already
near 0.38 mm (3.3 eV). In recently developed sol–gel silica “glasses” the
absorption peaks near 1.38 mm and 2.8 mm are virtually suppressed, which
causes this material to be transparent from 0.16 mm to 4 mm. The energy loss
spectrum for the commercially important borosilicate/phosphosilicate

Figure 13.29. Spectral reflectivity of NaCl at room temperature in the far IR region.
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glass, used for optical fibers, is shown in Fig. 13.30. We notice the
aforementioned peaks near 1.38 mm and 1.24 mm, which are caused by
oscillations of OH� ions, specifically, by stretching vibrations of the OH�

bonds within the silica structure. The origin of these hydroxyl ions stems
from the fact that it is nearly impossible to exclude traces of water during
silica fiber production. The increase in energy loss above 1.6 mm is caused
by the stretching vibrations of the Si–O bonds. We shall refer to this
spectrum in Section 13.9.7.

A word should be added about the opacity of some dielectric materials,
such as enamels, opal glasses, glazes, or porcelains, which should be trans-
parent in the visible region according to our discussion above. This opacity is
caused by the scattering of light on small particles which are contained in the
matrix. Part of the light is diffusely transmitted and part of it is diffusely
reflected. The larger the specular part of the reflected light, the higher the
gloss. Very often, opacifiers are purposely added to a dielectric material to
cause wanted effects. The particle size should be nearly the same as the
wavelength of the light, and the index of refraction should be largely different
from that of the material, to obtain maximal scattering.

13.8. Emission of Light

13.8.1. Spontaneous Emission

So far we have discussed only the absorption of light by matter. We learned
that due to the interaction of photons with electrons, the electrons are

Figure 13.30. Energy loss spectrum of highly purified glass for fiber-optic applications

which features a phosphosilicate core surrounded by a borosilicate cladding. The communi-

cation channels near 1.3 mm and 1.5 mm are marked.
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excited into higher energy states. The present section deals with the emis-
sion of photons.

An electron, once excited, must eventually revert back into a lower,
empty energy state. This occurs, as a rule, spontaneously within a fraction
of a second and is accompanied by the emission of a photon and/or the
dissipation of heat, that is, phonons. The emission of light due to reversion
of electrons from a higher energy state is called luminescence. If the
electron transition occurs within nanoseconds or faster, the process is called
fluorescence. In some materials, the emission takes place after microse-
conds or milliseconds. This slower process is referred to as phosphores-
cence. A third process, called afterglow, which is even slower (seconds),
occurs when excited electrons have been temporarily trapped, for example,
in impurity states from which they eventually return after some time into the
valence band.

Photoluminescence is observed when photons impinge on a material
which in turn re-emits light of a lower energy. Electroluminescing mate-
rials emit light as a consequence of an applied voltage or electric field.
Cathodoluminescence, finally, is the term which is used to describe light
emission from a substance that has been showered by electrons of higher
energy. All of these effects have commercial applications. For example,
the inside walls of cathode ray picture tubes (CRT) for older television sets
and computers are coated with a cathodoluminescing material, basically
ZnS, which emits light when hit by electrons generated by a hot filament.
Silver-doped ZnS yields blue, and Cu-doping yields green colors. The
image generated in electron microscopes is made visible by a screen that
consists of such a “phosphor”. The same is true when X-rays or g-rays
need to be made visible. For completeness, it should be mentioned
that there is also bioluminescence which exists, however, only in living
(organic) materials.

Spontaneous light emission occurs also in common devices such as
candles or incandescent light bulbs. In both of these cases, the electrons
have been excited into higher energy states by heat energy (thermolumi-
nescence). The larger the temperature, the higher the energy of the photons
and the shorter their wavelength. For example, heating to about 700�C
yields a dark red color whereas heating near 1600�C results in orange
hues. At still higher temperatures, the emitted light appears to be white,
since large portions of the visible spectrum are emitted. Spontaneous emis-
sion possesses none of the characteristic properties of laser light: the radia-
tion is emitted through a wide-angle region in space; the light is phase
incoherent (see Section 13.8.2) and is often polychromatic (more than one
wavelength).

Because of the increased commercial importance of fluorescence light
fixtures and their considerably smaller energy consumption compared to
incandescence light bulbs (75% less power use, i.e. saving of about $30. –
over their lifetime) and their 10 times longer lifespan, a few words will be
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promulgated to elucidate some relevant details. The design is in principal
straight-forward: A tubular fluorescence light fixture (often and wrongly
referred to as “neon light”) consists of a glass cylinder and two electrodes
(“pins”) on both ends, which are connected each to a tungsten filament
within the tube, see Fig. 13.31. The interior of the tube is filled with
low pressure mercury vapor. When the filament is lit, electrons are ejected
just as in an incandescent bulb which, when accelerated in an electric field
between the two opposite electrodes, create a mercury glow discharge
(plasma), that in turn emits ultraviolet light. These UV photons are absorbed
by a phosphor deposited on the inside of the tube which, as a consequence,
emits visible light, as already mentioned above (photoluminescence). The
phosphors may consist of tungstates, silicates, halophosphates, metal sul-
fides (such as ZnS), oxides (such as ZnO having a surplus of Zn), and many
organic substances. More expensive phosphors are rare earth elements, such
as Eu3+ (red), Eu2+ (blue), or Tb. Since each phosphor emits only one color,
a mix of three or four phosphors are deposited to render the appearance of
“white light” or “warm light”. However, each added phosphor causes a loss
of efficiency and an increase in cost. The colors are labeled in Kelvins
ranging in color temperature between <3,000 K (warm white, or soft
white), via “bright white” (3,500 K), and “cool white” (4,000 K) to “day-
light” (> 5,000 K). In short, the higher the color temperature, the cooler
(bluer) the hue. The color rendering index (CRI) determines how accurate
the colors are perceived by the human eye. Sunlight is defined to have a CRI
of 100.

The amount of light intensity (luminous flux) a bulb is emitting is given in
lumens (and not in Watts). Replacing an incandescence bulb with a fluores-
cent fixture of same light output should be done in a 3:1 Watt ratio, in
particular since the latter ones dim during the time used. The light output of
fluorescence lamps is essentially proportional to the surface area of the
phosphor which makes replacements of straight and long tubular light
fixtures in standard incandescent sockets difficult. This problem has been
overcome in compact fluorescent lamps (CFL) for example by twisting the
tubes into a spiral array. This type is popular in North America. A folded T4

Figure 13.31. Schematic representation of a tubular fluorescence light fixture.
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tubular CFL in which several straight but connected tubes are arranged in
parallel, as used in European countries, is slightly more efficient.

All currently available fluorescent lights suffer from some inherent dis-
advantages. First, they are more expensive than incandescence light bulbs.
This is, however, compensated by the longer lifetime and the energy sav-
ings. Secondly, the lifespan is shortened if turned on and off frequently.
Third, they require some warm-up times (30 to 180 s) until the light has
reached its maximal output. Fourth, they need a “ballast”, that is, a control
device which limits the amount of current in the electrical circuit. The
commonly utilized electronic ballast (consisting of a small circuit board, a
rectifier, a filter capacitor, and switching transistors) changes the frequency
from the standard 50 or 60 Hz to about 20,000 Hz and thus eliminates the
stroboscopic effect (flicker) and the humming otherwise associated with
fluorescing lighting in combination with old (magnetic) ballasts. The rapid
start ballast heats the filaments and simultaneously applies a high voltage
(about 600 V) between the electrodes. The electronic ballast is built into the
socket of CFLs whereas it is a separate device in tubular fluorescence
fixtures. Fifth, and most importantly, they contain mercury (average 4 mg,
but ranging from 1.4 to 30 mg depending in which country and on which
technology standard the device has been manufactured). This mercury is
released into the environment once the glass is broken (landfill) and is then
absorbed by the water and possibly by animals such as fish, destined for
human consumption. It is said, however, that during the use of a CFL, up to
86% of the mercury is absorbed and bound inside the light bulb. Moreover,
it has been calculated, that the mercury contained in coal and released by
coal-fired electricity generating plants is reduced due to the diminished
power consumption saved by CFLs, so that a net reduction of released
mercury is in essence achieved. Research efforts to reduce the amount of
mercury, and increase the acceptance of fluorescence light fixtures even
further (see below) are in progress and have yielded to certain alloys, such as
Bi-Sn-Pb-Hg amalgams which operate, at higher temperatures to achieve
the necessary partial vapor pressure of Hg within the tube. As an example,
plain mercury lamps operate at about 50�C whereas the above-mentioned
amalgam needs 100�C, and newer proprietary “high temperature amalgams”
operate near 150�C. Specifically, the optimal partial Hg pressure which
provides the highest light intensity ranges between 1–3 Pa. For Hg vapor
pressures which are too low, not enough Hg molecules are available which
can emit light. On the other hand, for an Hg vapor pressure that is too high,
some of the light quanta are immediately absorbed by some Hg molecules
and are therefore not available for lighting. A further piece of information
has to be considered too: The temperature of a fluorescence light bulb
decisively depends on the distance between the two electrodes. In particular,
the closer the electrodes, the higher the temperature of the device. In order to
achieve small light fixtures (as known from incandescence lights which may
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be more acceptable to consumers) the operating temperature necessarily
increases which requires specific amalgams to be developed which allow an
Hg partial pressure in the above-mentioned 1–3 Pa range.

A final word: It is often argued that if each household in the USA would
replace only one incandescent light bulb by a CFL, the energy saved would
be enough to light three million homes. For this reason, European countries
are gradually phasing out the sale of standard incandescent light bulbs
whose efficiency is only about 2–4%. It is estimated that presently about
9–20% of the electric energy consumed in a home is used for lighting.

Light-emitting diodes (LEDs) have recently gained substantial impor-
tance as electroluminescing devices whose efficiencies have also surpassed
those of incandescent lamps. They can be manufactured to emit light
throughout the entire visible spectrum. They are rugged, small and relatively
inexpensive, and will probably dominate the lighting market soon. We shall
devote Section 13.8.13 to this topic. Light-emitting devices for display
purposes will also be discussed in subsequent sections.

13.8.2. Stimulated Emission (Lasers)

A quite different type of light source is the laser, which is, among others,
used for telecommunications (optical fiber networks), data storage (compact
discs), laser printers, and grocery scanners. This section will explain how
lasers work.

Let us consider two energy levels, E1 and E2, and let us assume for a
moment that the higher energy level, E2, contains more electrons than the
lower level, E1, i.e., let us assume a population inversion of electrons
(Fig. 13.32(a)). We further assume that by some means (which we shall
discuss in a moment) the electrons in E2 are made to stay there for an
appreciable amount of time. Nevertheless, one electron will eventually
revert to the lower state. As a consequence, a photon with energy
E21 ¼ hn21 is emitted (Fig. 13.32(b)). This photon might stimulate a second
electron to descend in step to E1, thus causing the emission of another
photon which vibrates in phase with the first one. The two photons are
consequently phase coherent (Fig. 13.32(c)). They might stimulate two

Figure 13.32. Schematic representation of stimulated emission between two energy levels,

E2 and E1. The dots symbolize electrons.
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more electrons to descend in step (Fig. 13.32(d)) and so on until an ava-
lanche of photons is created. In short, stimulated emission of light occurs
when electrons are forced by incident radiation to add more photons to an
incident beam. The acronym LASER can now be understood; it stands for
light amplification by stimulated emission of radiation.

Laser light is highly monochromatic because it is generated by electron
transitions between two narrow energy levels. (As a consequence, laser light
can be focused to a spot less than 1 mm in diameter.) Another outstanding
feature of laser light is its strong collimation, i.e., the parallel emergence of
light from a laser window. (The cross-section of a laser beam transmitted to
the moon is only 3 km in diameter!) We understand the reason for the
collimation best by knowing the physical setup of a laser.

The lasing material is embodied in a long narrow container called the
cavity; the two faces at opposite ends of this cavity must be absolutely
parallel to each other. One of the faces is silvered and acts as a perfect
mirror, whereas the other face is partially silvered and thus transmits some
of the light (Fig. 13.33). The laser light is reflected back and forth by these
mirrors, thus increasing the number of photons during each pass. After the
laser has been started, the light is initially emitted in all possible directions
(left part of Fig. 13.33). However, only photons that travel strictly parallel
to the cavity axis will remain in action, whereas the photons traveling at
an angle will eventually be absorbed by the cavity walls (center part in
Fig. 13.33). A fraction of the photons escape through the partially transpar-
ent mirror. They constitute the emitted beam.

We now need to explain how the electrons arrive at the higher energy
level, i.e., we need to discuss how they are pumped from E1 into E2. One
of the methods is, of course, optical pumping, i.e., the absorption of light
stemming from a polychromatic light source. (Xenon flashlamps for pulsed
lasers, or tungsten–iodine lamps for continuously operating lasers, are often
used for pumping. The lamp is either wrapped in helical form around the
cavity, or the lamp is placed in one of the focal axes of a specularly
reflecting elliptical cylinder, whereas the laser rod is placed along the
second focal axis.) Other pumping methods involve collisions in an electric

Figure 13.33. Schematic representation of a laser cavity and the buildup of laser oscillations.

The stimulated emission eventually dominates over the spontaneous emission. The light

leaves the cavity at the left side.
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discharge, chemical reactions, nuclear reactions, or external electron beam
injection.

The pumping efficiency is large if the bandwidth, dE, of the upper (and
the lower) electron state is broad. This way, an entire frequency range
(rather than a single wavelength) leads to excited electrons (Fig. 13.34(a)).

Next, we discuss how population inversion can be achieved. For this we
need to quote Heisenberg’s uncertainty principle,

dE � d t / h; (13.18)

which states that the time span, dt, for which an electron remains at the
higher energy level, E2, is large when the bandwidth, dE, of E2 is narrow. In
other words, a sharp energy level (dE small, dt large) supports the popula-
tion inversion, Fig. 13.34(b)). On the other hand, a large pumping efficiency
requires a large dE (Fig. 13.34(a)), which results in a small dt and a small
population inversion. Thus, high pumping efficiency and large population
inversion mutually exclude each other in a two-level configuration. In
essence, a two-level configuration as depicted in Fig. 13.34 does not yield
laser action.

The three-level laser (Fig. 13.35(a)) provides improvement. There, the
“pump band”, E3, is broad, which enables a good pumping efficiency.
The electrons revert after about 10�14 s into an intermediate level, E2, via
a nonradiative, phonon-assisted process. Since E2 is sharp and not strongly
coupled to the ground state, the electrons remain much longer, i.e., for some
microseconds or even milliseconds on this level. This provides the required
population inversion.

An even larger population inversion is obtained using a four-level laser.
In this configuration the energy level E2 is emptied rapidly by electron
transitions into a lower level, E1 (Fig. 13.35(b)). It should be added that
some three- and four-level lasers have several closely spaced pumping
bands, which, of course, increases the pumping efficiency.

Figure 13.34. Examples of possible energy states in a two-level configuration. (a) dE large,

i.e., large pumping efficiency but little or no population inversion. (b) Potentially large

population inversion (dt large) but small pumping efficiency. (Note: Two-level lasers do not

produce a population inversion, because absorption and emission compensate each other).
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The highest population inversion is achieved by addingQ-switching. For
this method, the mirror in Fig. 13.33 is turned sideways during pumping to
reduce stimulated emission, i.e., to build up a substantial population inver-
sion. After some time, the mirror is turned back into its original vertical
position, which results in a burst of light lasting 10–20 ns.

Laser materials cannot be created at will in, say, three- or four-level
configurations. They can, however, be selected from hundreds of substances
to suit a specific purpose. Laser materials include crystals (such as ruby),
glasses (such as neodymium-doped glass), gases (such as helium, argon,
xenon), metal vapors (such as cadmium, zinc, or mercury), molecules (such
as carbon dioxide), or liquids (solvents which contain organic dye mole-
cules). Table 13.1 lists the properties of some widely used lasers. We
observe that many lasers emit their light in the red or IR spectrum. Excep-
tions are the He–Cd laser (l ¼ 325 nm), the argon laser (l ¼ 520 nm), the
tunable dye lasers, and certain semiconductor lasers. Lasers can be operated
in a continuous mode (CW), or, with a higher power output, in the pulsed
mode. The power output varies over many orders of magnitude and it can
even be increased if Q-switching is applied (specifically, from 10�9 to 1020

Watt). A few important laser types need special mention.

13.8.3. Helium–Neon Laser

A cavity about 2 mm in diameter is filled with 0.1 Torr Ne and 1 Torr He
(Fig. 13.36(a)). A current that passes through the gas produces free elec-
trons (and ions). The electrons are accelerated by the electric field and
excite the helium gas by electron–atom collisions. Some of the helium
levels are resonant with neon levels so that the neon gas also becomes
excited by resonant energy transfer (Fig. 13.36(b)). This constitutes a very
efficient pumping into the neon 2s- and 3s-levels. (Direct electron–neon

Figure 13.35. (a). Three-level laser. The nonradiative, phonon-assisted decay is marked by a

dashed line. Lasing occurs between levels E2 and E1. High pumping efficiency to E3. High

population inversion at E2. (b). Four-level laser.
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collisions also contribute to the pumping). Lasing occurs between the neon
s- and p-levels and produces three characteristic wavelengths. Suppression
of two of the wavelengths is accomplished by multilayer dielectric mir-
rors, which provide a maximum reflectivity at the desired wavelength, or
by a Littrow prism, as shown in Fig. 13.36(a).

13.8.4. Carbon Dioxide Laser

The carbon dioxide laser is one of the most efficient and powerful lasers
which is used in industry for cutting and welding. The active ingredients
contained in a CO2 laser tube consist of 10–20% carbon dioxide, 10–20%
nitrogen, and a few percent hydrogen. The remainder is helium. Pumping is
accomplished by electron–atom collisions (see above) setting the nitrogen
molecules into vibrational motions. This vibrational energy is then trans-
ferred to the carbon dioxidemolecules by resonant energy transfer. The CO2

molecule possesses three fundamental modes of vibration, as shown in
Fig. 13.37(a). The lasing occurs between these levels as shown in
Fig. 13.37(b). The energy output, that is, the population inversion is greatly
improved by reversion of the vibrational modes to the ground state of cold
helium atoms (similar to Fig.13.35(b), see also Fig. 13.37(b)). This is
accomplished by water cooling the walls of the laser tube.

21s

23s

3s

2s
2p

3p

633nm

1150nm

3390nm

He

(a) (b)

Ne

Figure 13.36. Helium–neon laser. (a) Schematic diagram of the laser cavity with Littrow

prism to obtain preferred oscillation at one wavelength. (The end windows are inclined at the

Brewster angle for which plane-polarized light suffers no reflection losses.) (b) Energy level

diagram for helium and neon. The decay time for the p-states is �10 ns; that of the s-states
100 ns. The letters on the energy levels represent the angular momentum quantum number;

the number in front of the letters gives the value for the principal quantum number; and the

superscripts represent the multiplicity (singlet, doublet, etc.), see Appendix 3.
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13.8.5. Semiconductor Laser

The “cavity” for this laser consists of heavily doped (1018 cm�3) n- and
p-type semiconductor materials such as GaAs. The energy band diagram for
a p–n junction has been shown in Fig. 8.19 and is redrawn in Fig. 13.38(a)
for the case of forward bias. We notice a population inversion of electrons in
the depletion layer. Two opposite end faces of this p–n junction are made
parallel and are polished or cleaved along crystal planes. The other faces are
left untreated to suppress lasing in unwanted directions (Fig. 13.38(b)).
A reflective coating of the window is usually not necessary since the
reflectivity of the semiconductor is already 35%. The pumping occurs by
direct injection of electrons and holes into the depletion region. Semicon-
ductor lasers are small and can be quite efficient.

Figure 13.37. CO2 laser. (a) Fundamental modes of vibration for a CO2 molecule; n1:
symmetric stretching mode; n2: bending mode; n3: asymmetric stretching mode. (b) Energy

level diagram for various vibrational modes.

Figure 13.38. (a) Energy band diagram of a heavily doped, forward-biased semiconductor.

(b) Schematic setup of a semiconductor laser.
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13.8.6. Direct–Versus Indirect–Band Gap Semiconductor Lasers

We need to discuss now whether or not all semiconducting materials are
equally well suited for a laser. Indeed, they are not. Direct–band gap materi-
als, such as GaAs, have a much higher quantum efficiency for the emission of
light than indirect–band gap materials, such as silicon. This needs some
explanation. Let us assume that an electron at the top of the valence band
in silicon has absorbed energy, and has thus been excited (pumped) by means
of a direct interband transition into the conduction band, as shown in
Fig. 13.39. This “hot” electron quickly thermalizes, i.e., it reverts down
within 10�14 s to the bottom of the conduction band in a nonradiative
process, involving a phonon (to conserve momentum, see Section 12.2). In
order to recombine finally with the left-behind hole in the valence band (by
means of an indirect transition) a second phonon-assisted process has to take
place. This requirement substantially reduces the probability for emission.
The time interval which elapses before such a recombination takes place may
be as much as 0.25 s, which is substantially longer than it would take for a
direct recombination in a pumped semiconductor. Before this quarter of a
second has passed, the electron and also the hole have already recombined
through some other nonradiative means involving impurity states, lattice
defects, etc. Thus, the electron in question is lost before a radiative emission
occurs. This does not mean that indirect emissive transitions would never
take place. In fact, they do occur occasionally and have been observed, for
example, in GaP, but with a very small quantum efficiency. Indirect–band
gap semiconductors therefore seem to be not suited for lasers. It should be
added, however, that silicon, when made porous by anodically HF etching,
has been observed to emit visible light. It is speculated that the etching
creates an array of columns which act as fine quantum lines, and thus alter
the electronic band structure of silicon to render it direct. Moreover, spark-
processed Si emits quite efficiently in the blue and green spectral range and is

Figure 13.39. Direct interband transition pumping (Ep) and phonon-involved reversion of a

hot electron by indirect transitions for an indirect–band gap semiconductor such as silicon.

(Compare with Figs. 5.23 and 12.2).
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extremely stable against high temperatures, laser light, and HF etchings.
However, none of these Si-based materials have yielded a laser so far.

13.8.7. Wavelength of Emitted Light

The wavelength of a binary GaAs laser is about 0.87 mm. This is, however,
not the most advantageous wavelength for telecommunication purposes
because glass attenuates light of this wavelength appreciably. By inspecting
Fig. 13.30 we note that the optical absorption in glass is quite wavelength
dependent, having minima in absorption at 1.3 mm and 1.55 mm. Fortu-
nately, the band gap energy, i.e., the wavelength at which a laser emits light,
can be adjusted to a certain degree by utilizing ternary or quaternary
compound semiconductors (Fig. 13.40). Among them, In1 � xGaxAsyP1 � y

plays a considerable role for telecommunication purposes, because the
useful emission wavelengths of these compounds can be varied between
0.886 mm and 1.55 mm (which corresponds to gap energies from 1.4 eV to
0.8 eV). In other words, the above-mentioned desirable wavelengths of
1.3 mm and 1.55 mm can be conveniently obtained by utilizing a properly
designed indium– gallium–arsenide–phosphide laser.

Red lasers are quite common. They are widely used, for example in laser
printers, grocery scanners, and compact disc players. On the other hand,
blue semiconductor lasers have been more of a problem to fabricate. This
hurdle seems to have been partially overcome now by an InGaN laser that
emits at 399 nm. It involves a two-dimensional matrix of surface-emitting
lasers that are optically pumped at 367 nm by a nitrogen laser–pumped dye
laser. In other words, this laser does not yet emit blue light by merely
applying a voltage, as in the case of the red lasers.

Figure 13.40. Lattice constants, energy gaps, and emission wavelengths of some ternary and

quaternary compound semiconductors at 300 K. The lines between the binary compounds

denote ternaries. The cross-hatched lines indicate indirect interband transitions. Pure silicon

is also added for comparison.
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A note on compound semiconductor fabrication needs to be inserted
at this point. Semiconductor compounds are usually deposited out of the
gaseous or liquid phase onto an existing semiconductor substrate, whereby a
relatively close match of the lattice structure of substrate and layer has to be
maintained. This process, in which the lattice structure of the substrate
is continued into the deposited layer, is called “epitaxial growth.” The
important point is that, in order to obtain a strain-free epitaxial layer, the
lattice constants of the involved components have to be nearly identical.
Figure 13.40 shows, for example, that this condition is fulfilled for GaAs
and AlAs. These compounds have virtually identical lattice constants. A
near-perfect lattice match can also be obtained for ternary In0.53Ga0.47 As on
an InP substrate. In short, the critical parameters for designing lasers from
compound semiconductors include the band gap energy, the similarities of
the lattice constants of the substrate and active layer, the fact whether or not
a direct– band gap material is involved, and the refractive indices of the core
and cladding materials (see Section 13.8.9).

Finally, the emission wavelength depends on the temperature of opera-
tion, because the band gap decreases with increasing temperature (see
Equation (8.1) and Appendix 4) according to the empirical equation

EgT ¼ Eg0 � xT2

T þ yD
; (13.19)

where Eg0 is the band gap energy at T ¼ 0 K, x 	 5 � 10�4 eV/K, and
yD is the Debye temperature (see Table 19.2 and Section 19.4), which
is 204 K for GaAs.

13.8.8. Threshold Current Density

A few more peculiarities of semiconductor lasers will be added to deepen
our understanding. Each diode laser has a certain power output characteris-
tic which depends on the input current density, as depicted in Fig. 13.41.
Applying low pumping currents results in predominantly spontaneous emis-
sion of light. The light is in this case incoherent and is not strongly
monochromatic, i.e., the spectral line width is spread over several hundred
Ångstr€oms. However, when the current density increases above a certain
threshold, population inversion eventually occurs. At this point, the stimu-
lated emission (lasing) dominates over spontaneous emission and the laser
emits a single wavelength having a line width of about 1 Å. Above the
threshold the laser operates about one hundred times more efficiently than
below the threshold. The electric vector vibrates perpendicular to the length
axis of the cavity, i.e., the emitted light is plane-polarized. Additionally,
standing waves are formed within the laser, which avoids destructive
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interference of the radiation. The distance between the two cavity faces must
therefore be an integer multiple of half a wavelength.

13.8.9. Homojunction Versus Heterojunction Lasers

Lasers for which the p-type and n-type base materials are alike (e.g., GaAs)
are called homojunction lasers. In these devices the photon distribution
extends considerably beyond the electrically active region (in which the
lasing occurs) into the adjacent inactive regions, as shown in Fig. 13.42.

Figure 13.41. Schematic representation of the power output of a diode laser versus the pump

current density. The threshold current density for a homojunction GaAs laser is on the order

of 104 A/cm2.

Figure 13.42. Schematic representation of the photon distribution in the vicinity of the

depletion layer of a homojunction diode laser.
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The total light-emitting layer, D, for GaAs is about 10 mmwide, whereas the
depletion layer, d, i.e., the active region, might be as narrow as 1 mm. The
photons that penetrate into the non-active region do not stimulate further
emission and thus reduce the quantum efficiency (which in the present case
is about 10%). In essence, some of these photons are eventually absorbed
(extinct) and thus increase the temperature of the laser. The homojunction
laser has therefore to be cooled or operated in a pulsed mode employing
bursts of 100 ns duration, allowing for intermittent cooling times as long as
10�2 s. This yields peak powers of about 10–30 W.

Cooling or pulsing is not necessary for heterojunction lasers in which,
for example, two junctions are utilized as depicted in Fig. 13.43. If the
refractive index of the active region is larger than that of the neighboring
areas, an “optical waveguide structure” is effectively achieved which con-
fines the photon within the GaAs layer (total reflection!). This way, virtually
no energy is extinct in the nonactive regions. The threshold current density
can be reduced to 400 A/cm2. The quantum efficiency can reach 55% and the
output power in continuous mode may be as high as 390 mW. The disadvan-
tage of a double heterojunction laser is, however, its larger angular diver-
gence of the emerging beam, which is between 20� and 40�.

13.8.10. Laser Modulation

For telecommunication purposes it is necessary to impress an a.c. signal on
the output of a laser, i.e., to modulate directly the emerging light by, say,
the speech. This can be accomplished, for example, by amplitude modula-
tion, i.e., by biasing the laser initially above the threshold and then super-
imposing on this d.c. voltage an a.c. signal (Fig. 13.44). The amplitude of
the emerging laser light depends on the slope of the power–current charac-
teristic. Another possibility is pulse modulation, i.e., the generation of

Figure 13.43. Schematic representation of a double heterojunction laser in which the active

region consists of an n-doped GaAs layer.
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subnanosecond pulses having nanosecond spacings between them. (For
digitalization, see Section 13.10.) This high-speed pulsing is possible
because of the inherently short turn-on and turn-off times (10�10 s) of
semiconductor lasers when initially biased just below the threshold current
density. Finally, frequency modulation can be achieved by applying,
perpendicularly to the diode junction, a periodic varying mechanical pres-
sure (by means of a transducer), thus periodically altering the dielectric
constant of the cavity. This way, modulation rates of several hundred
megahertz have been achieved.

13.8.11. Laser Amplifier

The laser can also function as an optical amplifier, which is again used for
telecommunication purposes. A weak optical signal enters a laser through
one of its windows and there stimulates the emission of photons.

Figure 13.44. Amplitude modulation of a semiconductor laser: (a) input current–output

power characteristic; (b) circuit diagram. (The d.c. power supply has to be electrically

insulated from the a.c. source).
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The amplified signal leaves the other window after having passed the cavity
only once. This traveling-wave laser is biased slightly below the threshold
current in order to exclude spurious lasing not triggered by an incoming
signal. Nevertheless, some photons are always spontaneously generated,
which causes some background noise.

A new development is the erbium-doped fiber amplifier, which works
quite similar to the above-mentioned traveling-wave laser. Erbium atoms,
contained in lengths of a coiled glass fiber, are pumped to higher energies by
an indium–gallium– arsenide–phosphide laser at a wavelength of 0.98 mm or
1.48 mm. When a weakened signal enters one end of this erbium-doped fiber,
the erbium atoms gradually transfer their energy to the incoming signal by
stimulated emission, thus causing amplification. A mere 10 mW of laser
power can thus achieve a gain of 30–40 dB. Networks which include fiber
amplifiers, linked at certain distance intervals to cladded optical glass fibers
(Fig. 13.30), have the potential of transmitting data at very high rates, e.g.,
2.5 gigabits of information per second over more than 20,000 km. This is
possible because fibers are able to support a large (but finite) number of
channels. The advantage of erbium-doped optical fibers is that they do not
interrupt the path of a light signal as conventional “repeaters” do (which
convert light into an electric current, amplify the current, and then trans-
form the electrical signal back into light).

13.8.12. Quantum Well Lasers

Quantum well lasers are the ultimate in miniaturization, as already dis-
cussed in Section 8.7.10. We have explained there that some unique proper-
ties are observed when device dimensions become comparable to the
wavelength of electrons. In essence, when a thin (20 nm wide) layer of a
small–band gapmaterial (such as GaAs) is sandwiched between two large–
band gap materials (such as AlGaAs), a similar energy configuration is
encountered as known for an electron in a box (Fig. 8.33). Specifically, the
carriers are confined in this case to a potential well having “infinitely” high
walls. Then, as we know from Section 4.2, the formerly continuous conduc-
tion or valence bands reduce to discrete energy levels, see Fig. 13.45.

The light emission in a quantum well laser occurs as a result of electron
transitions from these conduction band levels into valence levels. It goes
almost without saying that the line width of the emitted light is small in this
case, because the transitions occur between narrow energy levels. Further,
the threshold current density for lasing (Fig. 13.41) is reduced by one order
of magnitude, and the number of carriers needed for population inversion is
likewise smaller.

If a series of large–and small–band gap materials are joined, thus forming
a multiple quantum well laser, the gain is even further increased and
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the stability of the threshold current toward temperature fluctuations is
improved. The GaAs/GaAlAs combination yields an emission wavelength
somewhat below 0.87 mm, whereas InGaAsP quantum well lasers emit light
near 1.3 mm or 1.5 mm (depending on their composition). It appears to be
challenging to eventually fabricate quantum wire or quantum dot lasers (see
Section 8.7.10) which are predicted to have even lower threshold current
densities and higher modulation speeds.

13.8.13. Light-Emitting Diodes (LED)

Light-emitting diodes are of great technical importance as inexpensive,
rugged, small, and efficient light sources. The LED consists, like the semi-
conductor laser, of a forward biased p–n junction. The above mentioned
special facing procedures are, however, omitted during the manufacturing
process. Thus, the LED does not operate in the lasing mode. The emitted
light is therefore neither phase coherent nor collimated. It is, of course,
desirable that the light emission occurs in the visible spectrum. Certain
III–V compound semiconductors, such as GaxAs1�xP, GaP, GaxAl1�xAs

Figure 13.45. Band structure of a single quantum dot structure. See in this context Sec-

tion 8.7.10 and Fig. 8.33(b).
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(for red and yellow-green) and the newly discovered nitride-based com-
pound semiconductors (for green and blue colors) fulfill this requirement.
Their emission efficiencies (measured in lumens per watt) are at par or
even better than those of unfiltered incandescent light bulbs and are almost
one order of magnitude larger than certain color-filtered tungsten-filament
lamps. All three basic colors necessary for covering the visible spectrum and
also the infrared (450–1,500 nm) are now available with adequate intensi-
ties. Because of these properties, the lighting industry is currently under-
going a revolution that will lead to LED-based large flat-panel color
displays, bright outdoor color signs, better projection television, full-color
photographic printers, more efficient and particularly durable traffic lights,
and even changes in home and office illumination.

In order to vividly demonstrate the spectral emission properties of LEDs
a chromaticity diagram as shown in Fig. 13.46 is helpful. It is based on
the peculiarities of the three types of cones in the human eye, which are
sensitive for either blue, green, or red radiation. (The corresponding wave-
lengths mark the corners of the chromaticity diagram). A given “color” is
represented by two parameters or percentages (x and y) in this graph, while
the percentage of the third color is the difference between x þ y and 100%.
Monochromatic light (such as from a laser) is depicted by a specific point on
the perimeter of the graph. Any other hue is created by mixing the basic
colors. When the spectral width of the light increases and the emission is
therefore less pure, the color coordinates move towards the center. As an

Figure 13.46. Chromaticity diagram in which the positions of some commercially available

LEDs are shown.
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example, “white light”, that is, the broad emission spectrum of a black-body
radiator heated to very high temperatures (e.g., the sun), is described by a
point in this diagram at which x as well as y are about 33%.

Figure 13.46 displays the color coordinates of some of the presently
available electroluminescing compound semiconductors. Ga–N containing
about 8% In is depicted to provide blue (470 nm) light. This color changes
into green (520 nm) by adding successively larger amounts of indium to
GaN. Al–Ga–As yields red hues (700 nm) and yellow-green light is emitted
by Al–In–Ga–P (590 nm). Moreover, green- or blue-emitting LEDs, when
covered by one or more appropriate phosphors, (see Section 13.8.1) can be
made to vary their color according to the spectral emission of the phosphor.
White-radiating LEDs are obtained by exciting suitable phosphors by the
ultraviolet radiation from GaN. Alternatively, white-emitting LEDs are
obtained by adding blue and yellow LED light.

A few technical details on nitride-based semiconductors shall be added.
As mentioned above, LEDs require n-and p-type components to manufac-
ture a diode. Si in the form of silane (SiH4) is used for n-doping. On the other
hand, incorporating Mg, followed by low-energy electron radiation, or
thermal annealing (to activate the Mg-doped GaN) leads to p-type segments.

As already mentioned in Section 13.8.9 (Fig. 13.43), double hetero-
structures increase the output power of LEDs. Specifically, incorporating
Zn and Si dopants into an In–Ga–N active layer that is surrounded by
Al–Ga–N layers leads to output powers near 3 mW when the chip size is
3 � 3 mm2. Further, a peak wavelength of 450 nm, and an external quantum
efficiency of 5.4% (that is, the ratio of the number of photons produced to
the number of injected electrons) are obtained. Forward currents of typically
20 mA are generally applied.

The devices consisting of indium-gallium nitrides are commonly depos-
ited on sapphire (a-Al2O3) or silicon carbide (6H-SiC) substrates. Metal-
organic chemical vapor deposition at 700 to 1,100�C, involving trimethyl
gallium (Ga(CH3)3) and ammonia (NH3) as gas sources, is generally used for
growing epitaxial GaN films. InGaN is laid down by additions of trimethyl
indium. The devices are contacted and eventually encapsulated in epoxy
resins. The radiation leaves the device through a semitransparent metal
contact on the top or through a transparent n-GaN contact on the substrate.
In the case of GaAs, the light may leave the device through a window which
has been etched through the metallic contact (surface emitter).

The “lifetimes” of LEDs are extrapolated to be in excess of 50,000 hours,
or more precisely, the time after which the light intensity has decreased to
70% of its original value is approximately 30,000 hours. (This compares to
an average lifetime of 1,000 to 2,000 hours for a typical incandescent light
bulb.) The failures are generally caused by a break-down of the contacts or
the encapsulate, rather than of the semiconductor itself. The cost at present
is about one US dollar for a blue- or green-emitting diode and less than
10 cents for red and orange LEDs.
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A short note on other recently developed LED materials shall be added.
Blue-emitting SiC has been investigated for some time, but its efficiency
is orders of magnitude smaller than the above-described nitrides. This is
mainly due to its indirect–band gap characteristics. ZnSe (a II–VI com-
pound) has also blue and green emissions, but its lifetime is substantially
reduced by the formation of structural defects. LEDs based on polymers
with ionic materials as electron-injecting and hole-blocking layers have
been demonstrated. Finally, as a matter of curiosity, a “light-emitting
vegetable diode”, utilizing a pickle, has been reported in the literature to
emit yellow light (and an unpleasant smell).

13.8.14. Organic Light Emitting Diodes (OLEDs)

Organic light emitting diodes work in principal quite similar to inorganic
LEDs like gallium-arsenide-phosphide (or GaN) diodes as described in the
previous section. Specifically, electrons and holes are injected from opposite
sides (called cathode and anode, respectively) into a suitable organic mate-
rial where they combine to form electron/hole pairs (called excitons, see
Section 13.6) and then relax to the ground state by emitting photons. This is
shown schematically in Fig. 13.47(b). In order to obtain a high rate of hole
injection, and thus, a good light emitting efficiency, it is important to match

Metal

HOMO

LUMO

HOMO

LUMO
EgEg

Metal
or ITO

EF

EF

Organic
Semiconductor

Organic
Semiconductor

Light

Light

Hole injection

Electron injection

(a) (c)(b)

Ionization Energy

AM
CM

Figure 13.47. Schematic representation of a single-layer organic light emitting diode. (a)

A metal “band diagram” adjacent to HOMO/LUMO levels of an organic semiconductor is

depicted. Hole injection is indicated. (b) Schematic functioning of a single layer OLED. (c)

HOMO/LUMO levels and metal “band diagram” for electron injection. HOMO ¼ highest

occupied molecular orbital; LUMO ¼ lowest unoccupied molecular orbital, see page 186.

ØAM ¼ Work function for an anode metal. ØCM ¼ Work function of a cathode metal;

Eg ¼ band gap energy, EF ¼ Fermi energy.
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the work function of the anode (e.g. metal) electrode, ØAM, that is, the Fermi
energy, EF, (Fig. 8.13) with the HOMO level (Section 9.1) of the organic
semiconductor. This is schematically depicted in Fig. 13.47(a). Likewise,
a high efficiency of electron injection is achieved by matching the
LUMO level of the organic semiconductor with the work function of the
metal cathode, ØCM; see Fig. 13.47(c). The match between HOMO levels
and metals is generally easily achieved because of the high work function
of many metals; see the tables in Appendix 4. Likewise, many metal
oxides, such as transparent Indium-Tin-Oxide (ITO) or GaInO3 or ZnInSnO,
(see Section 9.3), have large work functions which are close to the HOMO
level of some organic semiconductors, such as diamine (Fig. 13.48(a)),
and are therefore used for anodes. On the other hand, metals which have
the required low work function, ØCM, to match with the LUMO level
(Fig. 13.47(c)) are often highly reactive and susceptible to corrosion under
the influence of moisture and oxygen.

A further point needs to be considered: Even if the number of injected
electrons and holes are the same, the mobilities of these carriers may still be
different (Appendix 4). This may lead to non-radiative recombination of
holes and electrons (near the interface between metals and organic semi-
conductors) and as a consequence, to a low light emitting efficiency and a
high driving voltage. Other device structures are therefore necessary, as
described momentarily.

An improvement is obtained by a double-layer OLED which consists,
for example, of a transparent ITO coating on a glass substrate as an anode, a
diamine film for hole transport, tris(8-hydroxyquinoline) aluminum (Alq3)
as an electron transporting and light emitting layer, and finally a magne-
sium-silver alloy as a cathode, see Figures 13.48 and 13.49. As mentioned
above, the work function of ITO matches the HOMO level of the diamine

NN

CH3 H3C

(b)(a)

Figure 13.48. Chemical compounds for OLEDs. (a) N,N’,-diphenyl-N,N’-bis(3-methylphe-

nyl)-(1,1’-biphenyl)-4,4’-diamine (TPD) (b) Alq3 also known as tris(8-hydroxyquinoline)

aluminum having the formula Al(C9H6NO)3.
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which leads to an efficient hole injection. On the other hand, the work
function of the (non-corrosive) magnesium-silver alloy is close to the
LUMO level of Alq3. This array increases the rate of carrier injections,
the carrier mobilities, and the device efficiency. Moreover, the operating
voltage may be reduced to below 10 V due to the total layer thickness of
about 200 nm. Since diamine provides a higher hole mobility compared to
the electron mobility in Alq3, while Alq3 provides a reasonably high elec-
tron mobility, the exciton formation takes place close to the diamine/Alq3
interface to yield green light. Other colors can be achieved by varying the
band gap of the emitter material.

The efficiency of an OLED can be further improved by utilizing multi-
layer devices. The principle of their built-up is quite similar to that shown in
Figure 13.47, consisting of anode (hole injection layer), hole transport layer,
light emitting zone, electron transport /electron injection layer, and cathode.
By proper materials selection, it is possible to design a device so that
the electron transport layer provides a high electron mobility (and the hole
transport layer provides a high hole mobility). Moreover, it is desirable that
one type of carrier is blocked in the transport layer of the opposite polarity.
For example, electrons should be allowed to freely diffuse in the electron
transport layer while the holes should be blocked there. This can be accom-
plished by proper band-gap engineering and materials selection.

Finally, OLEDs may be arranged in stacks which are electrically
connected in series. Each of the individual OLEDs can be made to emit a
different color which allows white emission. The individual units of these
tandem devices operate at lower current densities and reduced voltages.
(High current densities and operating voltages cause premature degradation
and lead to lower quantum efficiencies).

A few words should be added about the advantages (and disadvantages)
of OLEDs. Most of all, the technology for processing organics (for example
synthesizing and depositing on a substrate) is much less demanding com-
pared to inorganic LEDs. Specifically, polymers are frequently deposited
from a solution, such as by spin-coating from a solution, direct printing by

Glass substrate
ITO

Diamine

Alq3

Mg-Ag

Anode

Cathode

Light

(Hole transport layer)

(Electron transport layer)

Figure 13.49. Double-layer organic light emitting diode.
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contact with stamps, or by ink-jet printing. Small molecules are vapor
deposited in vacuum, as is common for metals. This allows an easy tailoring
of properties of OLEDs to specific demands (color, driving voltage, lifetime,
etc.) as described above. Moreover, organic materials can be produced in the
form of films which make them flexible. On the other hand, the primary
problems of OLEDs are stability issues, specifically, degradation due to high
current densities, and corrosion of some electrode metals under the influence
of moisture and oxygen. Still, lifetimes (50% reduction of original intensity)
of up to 100,000 hours for red emitters (and even extrapolated lifetimes of
300,000 to 500,000 hours for red and green emitters) have been reported.
Considerable research in this field with the goal of producing inexpensive
displays and lighting is presently being conducted. Indeed, OLED displays
are already available in various consumer products such as mobile phones,
MP3 players, digital cameras, auto radios, etc. Thus, the improvements
and further developments of OLEDs should be followed with considerable
anticipation.

13.8.15. Organic Photovoltaic Cells (OPVCs)

We interrupt now the description of light emitting devices and explain in
this section how organic solar cells are working. Elucidating OPVCs at this
point makes sense since we have already laid the ground for their under-
standing in the previous section. In short, the principal design of an organic
solar cell is quite similar to the OLED depicted in Figure 13.47. The
differences are, however, that the battery is replaced by a voltmeter or the
load and that the direction of the light is reversed. Additionally, the organic
materials are different in both devices, see below. Now, due to absorption of
photons by the organic semiconductor, electrons are excited across the band
gap from the HOMO levels (i.e. the delocalized p orbitals) into LUMO
levels (i.e. empty p* orbitals), thus creating bound electron/hole pairs, that
is, excitons, see page 186. Further, we recall by inspecting Fig. 13.47 that
the work functions, and thus, the Fermi energies in the two electrodes are
different. This creates an electric field in the organic layer which breaks up
some of the electrostatic bonds (or, as chemist say, the excitonic binding
energy) between electrons and holes of the excitons and pulls the individual
carriers to the respective electrodes. Specifically, electrons run “downhill”
to the “anode” that is, in the present case, to the ITO, whereas holes “roll
upwards” to the metal electrode which may consist of Al, or Mg, or Ca.

As in the OLED case, a single layer organic photovoltaic device (made
of conjugated molecules or polymers, see Section 9.1 and Fig. 13.50), is
not very efficient. This stems, among others, from the fact that the above
mentioned electric field, generated by the two different types of electrodes,
is seldom high enough to completely break up the relatively strong
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electrostatic bonds of about 100 to 500 meV between electrons and holes of
the photon- generated excitons. Further, due to the relatively weak field,
electrons and holes do not separate fast enough from each other and recom-
bine before they reach the electrodes. A double layer (heterojunction)
organic photovoltaic cell provides some improvement; see Figure 13.51(a).
The two layers in question consist of conjugated organics having dif-
ferent electron affinity8 and ionization energies. In short, the electrostatic
forces generated at the interface between two properly selected organics of

Figure 13.50. Example of a conjugated organic molecule (phthalocyanine) used for organic

photovoltaic devices.
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Figure 13.51. Schematic representations of (a) a multilayer organic photovoltaic cell; (b) a

dispersed heterojunction OPVC.

8The electron affinity of an atom (or molecule) is defined to be the energy change which results

when a negative ion is formed by adding an electron to a neutral species. For example, chlorine

strongly attracts an extra electron to become a Cl� ion.
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different electron affinity are significantly stronger compared to a single
layer OPVC so that a more efficient dissociation (breakup) of the excitons
is achieved. The layer which has the lower electron affinity is called the
electron donor whereas the area with the higher electron affinity is termed to
be the electron acceptor. (It should be noted that the terms donors and
acceptors are not identical with the dopants in Si technology).

The performance of OPVCs can be further improved by dispersed (bulk)
heterojunction solar cells. This enhancement is necessitated by knowing
that polymer layers need to be at least 100 nm thick in order to obtain
efficient absorption of light. However, the maximal diffusion length of exci-
tons to the interface between organic layers may be only about 3–10 nm
before the individual carriers recombine and thus cease to contribute to
the solar energy collection. Thus, small electron donor domains and small
acceptor domains (several nm in size) are mixed together to ensure short
diffusion distances so that the excitons dissociate efficiently at the interfaces
of these domains before they recombine; see Fig. 13.51(b).

Finally, similar to OLEDs, the efficiency of organic solar cells can be
increased by stacking several OPVCs and connecting them in series to
optimize the absorption of the incident light.

As in OLEDs, advantages of organic solar cells are their low production
cost (utilizing spin coating or vapor deposition), mechanical flexibility, light
weight, and high optical absorption coefficients. Interestingly enough, near
infrared organic solar cells have been reported. However, disadvantages as
of this writing are low efficiencies (up to 8% power conversion, that is, about
1/3 of the efficiency of silicon-based solar cells), low stability, and low
strength. (The efficiency, that is, the light absorption can be improved by
stamping optical fibers onto a polymer substrate that forms the foundation of
the cell which acts as light pipes.) Moreover, during spin coating some
solvents can degrade already existing layers. A further matter of concern
is the mobility of the charge carriers. Specifically, some of the carriers may
not reach the electrodes when their mobility is too low. Instead, they will
recombine at trap sites or stay in the device and oppose the drift of new
carriers, particularly if electron and hole mobilities are grossly different.

13.8.16. Liquid Crystal Displays (LCDs)

Many consumer products need to communicate the processed information to
their owners, such as in wrist watches, calculator read-outs, video cameras,
video recorders (VCRs), automobile dashboards, etc. Traditional cathode
ray tubes (CRTs) as known for TVs and many computer monitors are still
widely used. However, flat-panel displays are rapidly gaining ground.
Among them, the liquid crystal display dominates with 85% this market,
having annual sales near 15 billion dollars world-wide. LCDs had a 75%
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market share of the 200 million TVs produced in 2010. LCDs are “non-
emissive devices”, that is, they do not emit light by themselves, but rather
depend on external illumination, as we will see momentarily.

LCDs contain peculiar viscous liquids whose rod-shaped molecules are
arranged in a specifically ordered pattern. Each of these rod-shaped mole-
cules has a strong electric dipole moment and can thus be oriented in an
electric field, see Section 9.5. The viscous liquid is encapsulated in a glass
container and is initially treated so that the molecules on one end are aligned
at right angles to the ones on the other end; see Fig. 13.52(a). Moreover, the
orientations of the molecules vary gradually from, say, a vertical to a
horizontal array, as also depicted in Fig. 13.52(a). It is therefore called a
“twisted nematic” type LCD.

If light which is polarized parallel to the aligned molecules of one end
impinges on such a crystal, its electric vector will follow the twist of the
molecules through the liquid crystal to the other end and emerges therefore
on the opposite side with its polarization direction perpendicular to its
original orientation. Since the analyzer that is placed behind the liquid
crystal is oriented perpendicular to the polarizer, the emerging light beam
is transmitted.

Light source
or mirror Light source

or mirror

(a) (b)

Polarizer

Polarizer

Light

Analyzer

Analyzer

Liquid
crystal

ITO

+

–

ITO

Dark

1V

Figure 13.52. Schematic representation of a liquid crystal display unit (a) in the light-

transmitting mode, (b) in the non-light-transmitting mode, caused by a potential that is

applied to the end faces of the (twisted nematic) liquid crystal. Polarizer and analyzer are

identical devices that allow the light (i.e., the electric field vector) to oscillate in only one

direction as indicated by arrows (see also Section 13.1.2). The end faces of the liquid

crystal–containing glass vessel are coated by transparent electrodes such as indium-tin-

oxide (ITO), see Section 9.3.
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On the other hand, if a small voltage (about 1 volt) is applied to the con-
ducting end faces of the liquid crystal, the molecules (dipoles) align parallel
to the field direction and the light is therefore not caused to change its
polarization direction, see Fig. 13.52 (b). Thus, since polarizer and analyzer
are mutually perpendicular to each other, the light is blocked from trans-
mission. (If the polarity of the voltage on the crystal is reversed, the response
of the LCD is not changed!)

In practice, a mirror is placed behind the liquid crystal arrangement
which reflects the ambient light back to the viewer if the LCD is in the
transmission mode. Alternatively, the display can be illuminated from the
back to allow dark readability.

The advantage of LCDs is that they are inexpensive and that they
consume very little energy (at least as long as no back-lighting is utilized).
Moreover, they are compact, lightweight, portable, energy efficient, and
pose lesser problems when recycling, compared to CRTs. On the negative
side, LCDs cannot be read in the dark or in dim light without back-lighting.
Furthermore, they have a limited usable temperature range (20�C to 47�C),
slow time response, and most of all, they have a very narrow viewing angle.
LCDs are matrix addressed by applying voltages to rows and columns,
similarly as depicted in Fig. 8.45.

13.8.17. Emissive Flat-Panel Displays

Electroluminescent devices utilize a thin phosphor film, such as manga-
nese-doped zinc sulfide (ZnS:Mn), which is sandwiched between two insu-
lating films, e.g., Al2O3 or Al–Ti–O (ATO). These films are surrounded by
two conducting films (one of them being transparent indium-tin-oxide (ITO)
on glass and the other a good reflector), see Fig. 13.53. The light emission is
generally induced by an alternating (pulsed) electrical potential9 (about
120–200 V) applied between the two conducting electrodes. This generates
an electric field amounting to about 106 V/cm across the phosphor layer,
which causes an injection of electrons into the phosphor. Once the threshold
voltage has been exceeded, the electrons become ballistic and excite the
electrons of the activator atom in the phosphor (e.g., Mn) into a higher
energy state. Upon reverting back into the ground state, photons of the
respective wavelength are generated. As an example, a broad orange-yellow
spectrum is emitted from the above-mentioned ZnS:Mn. Green color is
observed for ZnS:Tb and blue-green for SrS:Ce. Blue light is seen when
utilizing (Sr0.45Ca0.55)1�x or Ga2S4:Cex, and red light is emitted from

9A dc voltage is possible but electromigration of impurity ions (e.g. halides) which causes

eventually a counter field shortens the lifetime of the device.
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ZnS:Sm, Cl, or CaS:Eu. To produce white light, a combination of ZnS:Mn
and SrS:Ce has been used as phosphors. Green and red can also be obtained
by filtering light from ZnS:Mn.

The cost of electroluminescent devices is higher than for LCDs, but the
viewing angle is wider and the usable temperature range is larger. They are
rugged and have long lifetimes. Even though the luminescence efficiency is
relatively good, readability in sunlight is still a problem. The response time
is fast enough for video displays, but the power and voltage requirements
(about 120–200 V) are difficult to obtain for small portable device applica-
tions. Electroluminescent devices comprise at present about 4% of the flat-
panel market. They find applications in medical instruments, transportation,
defense, and industrial equipment.

Plasma display panels (PDPs) operate quite similar to fluorescence light
bulbs (Fig. 13.31). A relatively high AC voltage (100 V) is applied across a
discharge gas (such as a helium/neon/xenon mixture) to create a plasma, see
Figure 13.54. Recombination of electron-ion pairs in the plasma causes
photons of high energy (that is, in the UV range). They are absorbed by
phosphors which in turn emit visible light. Individually addressable com-
partments, which may contain different phosphors, yield the pixels needed
for the three fundamental colors.

Flat-panel displays of this type are rugged, about 6 cm thick, provide deep
blacks for better contrast ratios, the viewing angles are wide (up to 178�),
and the lifetimes (at which there is a 50% reduction in light output) are
estimated to be 100,000 hours. However, the pixel sizes are too large for
small displays, that is, screens sizes below 32 inches diagonally are not on
the market. On the other hand, large screen sizes up to 150 inches are quite
popular. Because of high refresh rates and fast response times, there is

Light
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Insulator
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Figure 13.53. Schematic diagram of an electroluminescent device operated by alternating

current pulses of about 200 V. The thin-film layers are about 300 nm thick except in the case

of the phosphor, whose thickness is between 600 and 1,000 nm. The phosphor consists of the

host matrix, such as a wide-band gap metal sulfide (ZnS, CuS, SrS), and an “activator”, also

called “luminescence center”, such as Mn, Tb, Eu, Ce, Sm, Cu, Ag, etc.
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essentially no blur for rapid motion which helps for displaying sports events
etc. PDPs are quite heavy because of two glass plates which hold the gases.
The power consumption is high, for example, 400 watts for a 50 inch screen
which is equivalent to cathode ray tubes. The colors tend to “wash out” in
strong ambient light and the front glass causes a glare if no anti-glare layer is
applied. Radio frequency interference by plasma displays may be disturbing
to short wave and AM radio listeners. Plasma displays currently (2010)
share about 8% of the TV flat-panel display market.

Field-emission displays (FEDs) are still in the experimental stage. They
have much in common with cathode ray tubes (CRT), that is, with the bulky
displays previously used for TVs and desk computers. Essentially, they
consist of a matrix of tiny CRTs whereby each sub-CRT represents a single
pixel. Electrons are “boiled-off” by thermionic emission (heat) from a large
number of tip-shaped field-emitters (made of Mo, Si, Pt, or carbon nanotube
cones), that can be matrix-addressed. They are encapsulated and hermeti-
cally sealed off in a thin cavity. A voltage between a grid, situated above the
emitters accelerates the electrons to the front plate and there, causes to light a
phosphor, covering the inside face of this plate by cathodoluminescence (see
Section 13.8.1). FEDs require a vacuum which is at present, difficult to
sustain for a long time. The aim is to build flat (about 1 cm thick) FEDs,
having wide viewing angles and fast response times. It is anticipated that
FEDs combine the high contrast level, and fast response time of CRTs with
small power consumption in the range of 10–15 W.

The SED (surface-conduction electron-emitter display) is a variation of
the FED and uses one emitter for each column instead of individual emitters.

Most of the flat panel displays are of the volatile type, that is, the
pixels are periodically refreshed to retain their image. The refresh rate is
typically several times per second which may cause eye irritation. For the
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Figure 13.54. Schematic representation of a plasma display (not drawn to scale).
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non-volatile or static displays, the image requires energy to change. This
mode is more energy efficient.

It is estimated that TVs account for 10% of a home’s energy use. For
example, a 42-inch Hitachi plasma display draws 313 W of power (2007
value), whereas a same sized Sharp liquid crystal display is rated as 232 W
(2009). It is feared that the energy use will rise as consumers will buy
bigger, more elaborate TVs and watch them longer. The California Energy
Commission recently mandated therefore a reduction of TV power con-
sumption to <116 W by 2013.

13.9. Integrated Optoelectronics

Integrated optoelectronics deals with a family of optical components, such
as lasers, photodiodes, optical waveguides, optical modulators, optical stor-
age devices, etc., which are integrated on a common substrate (if feasible)
with the aim of fulfilling similar functions as electrical integrated circuits
do. The main difference to electrical devices is that in optical integrated
circuits (OICs) the signal is transmitted by light. Still, they need in most
cases electrical energy to become functional, which explains the name opto-
electronic. Among the advantages of optical devices are reduced weight, the
capability of light of different wavelengths to travel independently and
simultaneously in the same waveguide (multiplexing), the immunity against
receiving extraneous signals from surrounding devices by stray electromag-
netic coupling (crosstalk), the difficulty in performing wire taps (because of
the lack of electromagnetic fields, which would extend beyond the optical
fiber), high reliability, speeds greater than electrons in a metallic wire, larger
bandwidth (1012 Hz compared to 105 Hz for telephones) and notably, the
low-loss transmission (<2 dB/km) of signals in optical fibers. Most of all,
however, telecommunication utilizing laser optics, allows the simultaneous
transmission of billions of telephone calls in one glass fiber, that is, as many
simultaneous telephone calls as there are humans on earth! The sales of
optoelectronic devices are presently in the neighborhood of 20–30 billion
dollars worldwide!

We have discussed in previous chapters two major optoelectronic compo-
nents, the laser (Section 13.8) and the photo detector (Sections 8.7.6 and
8.7.7). A few more building blocks need to be added to complete the picture.
This will be done now.

13.9.1. Passive Waveguides

The interconnecting medium between various optical devices is called a
waveguide. It generally consists of a thin, transparent layer whose index of
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refraction, n2, is larger than the refractive indices of the two surrounding
media, n1 and n3. If this condition is fulfilled and if the light impinges on the
boundary between n2 and n1 (or n3) at an angle which is larger than the angle
of total reflection.10 then the optical beam travels in zigzag paths between the
internal boundaries of Region 2. In other words, by undergoing total reflec-
tion, the light wave is considered to remain in the center region. This statement
needs, however, some refinement. As a rule, the light which travels in the
center medium extends, to a certain degree, into the neighboring media. The
spatial distribution of the optical energywithin all threemedia is called amode.
This spatial distribution can be calculated by solving the wave equation (10.4)
while taking the appropriate boundary conditions into consideration. We have
done this twice in earlier parts of this book (Section 10.3 and Section 4.3). We
learned there that the electric field strength or, equivalently, the intensity of
a wave, decreases in the adjacent medium obeying an exponential function.
If two boundaries need to be considered, as in the present case, and if the
thickness, t, of the center region is comparable to the wavelength of light,
then the solution of the wave equation yields an electric field strength distribu-
tion (as depicted in Fig. 13.55, lower curve). Now, we know from previous
calculations (Section 4) that under certain conditions additional solutions, i.e.,
distribution functions, do exist (similarly, as a vibrating string can oscillate at

Figure 13.55. Electric field strength distribution (modes) in a waveguide assuming n1 ¼ n3
(symmetric behavior). The zeroth order and higher-order modes are shown. (Compare with

Fig. 4.8).

10If light passes from an optically dense material (e.g., glass with n1 	 1.5) into air (n2 	 1), then

the angle of the refracted beam, b, is larger than the angle of incidence, a. At a critical angle, aT, b
becomes 90� (grazing exit). Total reflection occurs when sin aT > n2/n1; see also Section 10.2.
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higher harmonics). In the present case they are called first-order, second-order,
etc., modes. They are likewise depicted in Fig. 13.55. The reader probably
recognizes that this “optical tunnel effect” is equivalent to the quantum
mechanical tunnel effect shown in Fig. 4.8.

We now consider the most common case, in which n1 is considerably
smaller than n3, e.g., n1 ¼ 1 for air and n3 ¼ 3.6 for GaAs (whereas n2 is
still made larger than n3!). For this asymmetric case the condition for
containing the light in the waveguide is

n2 � n3 
 2kþ 1ð Þ2l20
32n2t2

; (13.20)

where l0 is the wavelength of the light in vacuum, k ¼ 0, 1, 2 . . . is the
mode number, and t is the thickness of the center layer. A calculation (see
Problem 1) shows that the difference between n2 and n3 needs to be only
about 1% in order to contain the light in the center medium.

13.9.2. Electro-Optical Waveguides (EOW)

So far we tacitly implied that the various layers of a waveguide structure
have been permanently manufactured by some type of deposition process
out of the gaseous or liquid phase on a semiconducting substrate. This is
indeed quite often done by employing, for example, molecular beam epitaxy
or liquid phase epitaxy processes. However, a rather ingenious alternative
method can be utilized instead. This technique involves a Schottky-barrier
contact which, when reverse biased, forms (as we know from Section 8.7.2)
a wide depletion layer (Fig. 13.56). We shall show in a short calculation that
a depletion of charge carriers increases the index of refraction of a solid.

Figure 13.56. Electro-optical waveguide making use of a reverse-biased Schottky-barrier

contact. (See also Fig. 8.15.) The light travels in Medium 2 (the depletion layer) when a high-

enough voltage is applied to the device.
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Recall that n2 > n3 (and n1) is the prerequisite for a waveguide structure.
We derived in Chapter 11 a relationship between the free carrier density (Nf)
and the index of refraction,

n̂2 ¼ 1� e2Nf

4p2e0m*n2
; (11.7)

where m* is the effective mass of the electrons in the medium, v is the
frequency of light, e is the charge of the electrons, and n̂ ¼ n � ik is the
complex index of refraction. We rewrite (11.7) twice for the substrate
(Medium 3) and for the depletion layer from which some free carriers
have been removed by the applied electric field (Medium 2).

n̂22 ¼ 1� e2Nf2

4p2e0m�n2
; (13.21)

n̂23 ¼ 1� e2Nf3

4p2e0m�n2
: (13.22)

The difference in the indices of refraction is then

n̂22 � n̂23 ¼
e2

4p2e0m�n2
Nf3 � Nf2ð Þ; (13.23)

which reduces with11

n̂22 � n̂23 ¼ n̂2 þ n̂3ð Þ n̂2 � n̂3ð Þ 	 2n̂3 n̂2 � n̂3ð Þ
and c ¼ n · l to

n̂2 � n̂3 ¼ e2l2

2n34p2e0m�c2
Nf3 � Nf2ð Þ: (13.24)

In the present case (transparent media) we can assume that the damping
constant, k, in n̂ ¼ n � ik is negligibly small, so that n̂ in (13.24) becomes a
real quantity:

n2 � n3 ¼ e2l2

2n34p2e0m�c2
Nf3 � Nf2ð Þ: (13.25)

Equation (13.25) demonstrates, as suggested above, that a reduction in the
number of free carriers from Nf3 to Nf2 causes an increase in the index of
refraction in Medium 2. Then, the device becomes an optical waveguide.
For this to happen, the doping of the substrate needs to be reasonably high in
order that an appreciable change in the index of refraction is achieved (see
Problem 4).

11n̂2 can be assumed to be approximately equal to n̂3 (see above and Problem 1) which yields

n̂2 + n̂3 	 2n̂3.
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13.9.3. Optical Modulators and Switches

When discussing electronic devices in Section 8.7.12, we encountered a
digital switch that is capable of turning the electric current on or off by
applying a voltage to the gate of a MOSFET. An equivalent optical device is
obtained by making use of the electro-optical waveguide (Fig. 13.56). In the
present case, this device is biased initially just below the threshold, i.e., at a
voltage which barely prevents the lowest-mode optical wave from passing.
Then, by an additional voltage between metal and substrate, the EOW
becomes transparent. In analogy to its electrical equivalent (Fig. 8.30),
this device may be called an enhancement-type or normally-off electro-
optical wave-guide. By varying the bias voltage periodically above the
threshold, the EOW can serve as an effective modulator of light.

A depletion-type or normally-on EOW can also be built. This device
exploits the Franz–Keldysh effect, i.e., the shift of the absorption edge to
lower energies when an electric field is applied to a semiconductor
(Fig. 13.57). The photon energy of the light is chosen to be slightly smaller
than the band gap energy (dotted line in Fig. 13.57). Thus, the semiconduc-
tor is normally in the transparent mode. If, however, a large electric field
(on the order of 105 V/cm) is applied to the device, then the band gap
shifts to lower energies and the absorbance at that particular wavelength
(photon energy) becomes several orders of magnitude larger, thus essen-
tially blocking the light. (The Franz–Keldysh shift can be understood
when inspecting Fig. 8.15, which shows a lowering of the conduction
band and thus a reduction in the band gap energy when a reverse bias is
applied to a semiconductor.)

Figure 13.57. Schematic representation of the Franz–Keldysh effect.
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Finally, if a piezoelectric transducer imparts some pressure on a wave-
guide, the index of refraction changes. This photoelastic effect can also be
utilized for modulation and switching.

Electro-optical modulators can be switched rapidly. The range of fre-
quencies over which the devices can operate is quite wide.

13.9.4. Coupling and Device Integration

We now need to discuss some procedures for transferring optical waves (i.e.,
information) from one optical (or optoelectronic) device to the next. Of
course, butting, i.e., the end-on attachment of two devices, is always an
option, particularly if their cross-sectional areas are comparable in size. This
technique is indeed frequently utilized for connecting optical fibers (used in
long-distance transmission) to other components. A special fluid or layer
which matches the indices of refraction is inserted between the two faces in
order to reduce reflection losses. Optical alignment and permanent mechan-
ical attachment are nontrivial tasks. They can be mastered, however. In those
cases where no end faces are exposed for butting, a prism coupler may be
used. This device transfers the light through a longitudinal surface. In order
to achieve low-loss coupling, the index of refraction of the prism must be
larger than that of the underlying materials. This is quite possible for glass
fibers (n 	 1.5) in conjunction with prisms made out of strontium titanate
(n ¼ 2.3) or rutile (n ¼ 2.5), but is difficult for semiconductors (n 	 3.6).

Phase coherent energy transfer between two parallel waveguides (or
an optical fiber and a waveguide) can be achieved by optical tunneling
(Fig. 13.58). For this to occur, the indices of refraction of the two wave-
guides must be larger than those of the adjacent substrates. Further, the
width of the layer between the two waveguides must be small enough to
allow the tails of the energy profiles to overlap.

Figure 13.58. Schematic representation of energy transfer between two waveguides (or a

waveguide and an optical fiber) by optical tunneling. Compare with Fig. 13.55. (n2 > n1, n3).
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The most elegant solution for efficient energy transfer is the monolithic
integration of optical components on one chip. For example, a laser and a
waveguide may be arranged in one building block, as schematically
depicted in Fig. 13.59. Several points need to be observed however. First,
the wavelength of the light emitted by the laser needs to be matched to a
wavelength at which the absorption in the waveguide is minimal. Second,
the end faces of the laser need to be properly coated (e.g., with SiO2) to
provide adequate feedback for stimulated emission.

Another useful integrated structure involves a transverse photodiode that
is coupled to a waveguide, see Fig. 13.60. As explained in Section 8.7.6, this

Figure 13.59. Schematic representation of a monolithic laser/waveguide structure. Compare

with Fig. 13.43.

Figure 13.60. Schematic representation of a monolithic transverse photodiode/waveguide

structure. A wide depletion layer (active region) is formed in the n-region by the reverse bias.
For details, see Section 8.7.6.
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photodiode is reverse biased. The electron–hole pairs are created in or near a
long and wide depletion layer by photon absorption. The losses are mini-
mized owing to the fact that the light does not have to penetrate the
(inactive) p-region as in flat-plate photovoltaics. The quantum efficiency
of the transverse photodiode can be considerably enhanced by increasing the
length of the depletion layer.

All taken, the apparently difficult task of connecting optical fibers, wave-
guides, lasers, or photodetectors and their integration on one chip have
progressed considerably in the last decade and have found wide application
in a multitude of commercial devices.

13.9.5. Energy Losses

Optical devices lose energy through absorption, radiation, or light scatter-
ing, similarly as the electrical resistance causes energy losses in wires, etc.
The optical loss is expressed by the attenuation (or absorbance), a, which
was defined in Section 10.4. It is measured in cm�1 or, when multiplied by
4.3, in decibels per centimeter.

Scattering losses take place when the direction of the light is changed by
multiple reflections on the “rough” surfaces in waveguides or glass fibers, or
to a lesser extent by impurity elements and lattice defects.

Absorption losses occur when photons excite electrons from the valence
band into the conduction band (interband transitions), as discussed in
Chapter 12. They can be avoided by using light whose photon energy is
smaller than the band gap energy. Free carrier absorption losses take place
when electrons in the conduction band (or in shallow donor states) are raised
to higher energies by intraband transitions. These losses are therefore
restricted to semiconductor waveguides, etc., and essentially do not occur
in dielectric materials. We know from (10.22) that the absorbance, a, is
related to the imaginary part of the dielectric constant, e2, through

a ¼ 2p
ln

e2: (13.26)

On the other hand, the free electron theory provides us with an expression
for e2 (11.27), which is, for n2 � n22,

e2 ¼ n2n21
n3

; (13.27)

where

n21 ¼
e2Nf

4p2e0m� (13.28)
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(see (11.8)) and

n2 ¼ 2pe0n21
s0

(13.29)

(see (11.23)) and

s0 ¼ Nfem (13.30)

(see (8.13)). Combining equations (13.26) through (13.30) yields

a ¼ e3Nfl
2

4p2e0n m�ð Þ2c3m : (13.31)

We note in (13.31) that the free carrier absorbance is a linear function of Nf

and is inversely proportional to the mobility of the carriers. The absorbance
is also a function of the square of the wavelength.

Radiation losses are, in essence, only significant for curved-channel
waveguides, in which case photons are emitted into the surrounding
media. A detailed calculation reveals that the radiation loss depends expo-
nentially on the radius of the curvature. The minimal tolerable radius differs
considerably in different materials and ranges between a few micrometers to
a few centimeters. The energy loss is particularly large when the difference
in the indices of refraction between the waveguide and the surrounding
medium is small.

13.9.6. Photonics

A short note on the recently coined term “photonics” shall be added.
Electronics deals with electrons and materials in which electrons propagate.
Similarly photonics relates to photons and their interaction with photonic
crystals. These crystals are materials that possess a periodicity of the
dielectric constant so that they can affect the properties of photons in
much the same way as electrons are affected by periodically arranged
atoms, that is, by the lattice structure. However, photonic crystals need to
be created artificially. The “lattice constant” of photonic crystals must be
comparable to the wavelength of light, that is, the periodicity needs to be on
the order of 500 nm. This requires high-resolution microlithography tech-
niques, as known from semiconductor processing, involving X-rays or
electron beams.

The solution of the Maxwell equations for this particular case (rather than
the Schr€odinger equation) leads to photonic band structures, Brillouin
zones, and occasionally to band gaps quite similarly as known from elec-
tronics. Rather than displaying s- or p-bands, photonic band structures
contain transverse magnetic (TM) or transverse electric (TE) modes. Doping
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can be accomplished by introducing point defects that affect the periodicity
of the photonic crystal. This leads to localized photonic states within the gap
similar to donor or acceptor states. Furthermore, a line defect acts like a
waveguide and a planar defect behaves like a mirror. Photonic band struc-
tures are quite similar to phononic band structures (see Chapter 20.2) and,
naturally, to electronic bands.

The research results of this field should be followed with considerable
anticipation.

13.9.7. Optical Fibers

We have discussed in Sections 13.7, 13.8.10, 13.8.11, and 13.9 some
fundamentals for the understanding of optical fibers. In the present section
we summarize the information given before and supplement it with further
details, in particular pertaining to materials for telecommunication. The
crucial goal in telecommunications is to achieve a low attenuation of the
transmitted signal. One of the methods to obtain this is by doping a silica
fiber with germanium dioxide. This yields an energy loss of the light by
only about 2 dB/km, which is considerable less than for copper cables. As a
consequence, repeaters (amplifiers) can be distanced as far as 70–150 km
(43–93 miles) from each other. Moreover, the erbium-doped fiber amplifier
(Section 13.8.11) which utilizes a travelling-wave laser, involving stimu-
lated emission, improves this distance by eliminating the transfers between a
weak optical signal, to an electrical signal, and again to an enhanced optical
signal. Optical fibers are not susceptible to electrical interference, wire
tapping, cross talk between signals, laser-induced optical damage, and
pick-up of environmental noise. Glass fibers are light in weight, and do
not require much space. Fibers made of silica (doped or undoped) are
therefore mainly used for long-distance, terrestrial transmissions of signals.
On the other hand, fibers made of photonic-crystals (see Section 13.9.6) in
which the light is guided by means of diffraction through a “lattice”,
entailing a periodic dielectric constant, have also been developed. They
can carry a higher power than the fibers just discussed.

As shown in Fig. 13.30 commercial optical fibers have a minimum in
energy loss around 1.31 and 1.55 mm. These IR “windows” are mainly used
for communication purposes.

As already mentioned previously, each individual optical fiber is able to
carry a large number of “channels” using different wavelengths, each of
which can be modulated typically with about 40 Gb/s of information (multi-
plexing). This allows billions of simultaneous telephone calls.

An optical fiber consists of highly purified silica (doped or undoped), or
a phosphosilicate core (about 8 to10 mm in diameter) which is surrounded by
a borosilicate cladding of 125 mm in diameter, whereby the index of
refraction of the core (nco ¼ 1.48) is slightly larger than that of the cladding
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(ncl ¼ 1.46). Because of this difference, the propagation of light within the
core occurs under certain circumstances by internal (total) reflection. There
exists a critical angle, aT, above which total reflection takes place, (see
Footnote 10 in Section 13.9.1). Thus, the light has to impinge under a
minimum angle, aT, onto the face of the core, called acceptance cone.
The critical angle is determined by the ratio of the refractive indices
between core and cladding (Footnote 10).

Irregular (rough) surfaces cause scattering of light and thus, some loss of
light energy. The cladding is coated on the outside with a ~250 mm, tough,
resin buffer which adds strength to the fiber. Finally a ~400 mm thick jacket
serves as protection against mechanical abuse. Fibers are connected
(spliced) to each other by arc-melting to fuse the ends together, or by special
connectors. Both techniques yield some loss in energy (about 0.1 dB) and
are by no means trivial tasks, compared to connecting two wires.

It should be added in closing that optical fibers are also used for medical
applications (gastroscopes, endoscopes, minimally invasive surgery), for
remote sensors, and for illumination purposes.

13.10. Optical Storage Devices

Optical techniques have been used for thousands of years to retrieve stored
information. Examples are ancient papyrus scrolls or stone carvings. The
book you are presently reading likewise belongs in this category. It is of
the random-access type, because a particular page can be viewed immedi-
ately without first exposing all previous pages. Other examples of optical
storage devices are the conventional photographic movie film (with or
without optical sound track) or the microfilm used in libraries. The latter
are sequential storage media because all previous material has to be
scanned before the information of interest can be accessed. They are also
called read-only memories (ROM) because the information content cannot
be changed by the user. All examples given so far are analog storage
devices.

Another form of storage utilizes the optical disk, which has gained wide-
spread popularity. (Specifically, 200 billionCDs (compact disks) have been
sold worldwide in 2007, even though MP3 and other flash memories have
cut into the CD market.) Here, the information is stored in digital form. The
most common application, the just mentioned compact disk is a random-
access, read-only memory (ROM) device. However, “write-once, read-
many” (WORM) and erasable magneto-optical disks (Section 17.5) are
also available. Further, rewritable CD-RW disks are on the market, see
below. The main advantage of optical techniques is that the readout involves
a noncontact process (in contrast to magnetic tape or mechanical systems).
Thus, no wear is encountered. Moreover, all optical storage devices are of
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the non-volatile type, that is, the information is retained without maintaining
a voltage.

Let us now discuss the optical compact disk. Here, the information is
stored below a transparent, polymeric medium in the form of bumps, as
shown in Fig. 13.61. The height of these bumps is one-quarter of a wave-
length (l/4) of the probing light. Thus, the light which is reflected from the
base of these bumps (called the “land”) travels half a wavelength farther
than the light reflected from the bumps. If a bump is encountered, the
combined light reflected from bump and land is extinguished by destructive
interference. No light may be interpreted as a zero in binary code, whereas
full intensity of the reflected beam would then constitute a one. (Actually,
the bumps and lands themselves do not immediately represent the zeros and
ones. Instead, a change from bump to land or land to bump indicates a one,
whereas no change constitutes a zero.) Eight ones and zeros represent one
byte of data, see Section 8.7.12. For audio purposes, the initial analog signal
is sampled at a frequency of 44.1 kHz (about twice the audible frequency) to
digitize the information into a series of ones and zeros (similarly as known
for computers). Quantization of the signal into 16-digit binary numbers
gives a scale of 216 or 65,536 different values. This information is trans-
ferred to a disk (see below) in the form of bumps and absences of bumps. For
readout from the disk, the probing light is pulsed with the same frequency so
that it is synchronized with the digitized storage content.

The spiral path on the useful area of a 120 mm diameter CD is 5.7 km
long and contains 22,188 tracks spaced 1.6 mm apart. (As a comparison,
30 tracks can be accommodated on a human hair.) The spot diameter of the
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Figure 13.61. Schematic of a compact disk optical storage device. Readout mode. (Not

drawn to scale.) The reflected beams in Fig. 13.61(b) are drawn under an angle for clarity.

The land and bump areas covered by the probing light have to be of equal size in order that

destructive interference can occur (see the hatched areas covered by the incident beam in

Fig. 13.61(b)).
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readout beam near the bumps is about 1.2 mm. The information density on a
CD is 800 kbits/mm2, i.e., a standard CD can hold about 7 � 109 bits. This
number increases by a factor of ten when blue emitting lasers (l ¼ 405 nm,
blue-ray format, see below) are used. The current playback time is about 80
minutes.12 A disk of the same diameter can also be digitally encoded with
700 megabyte of computer data, which is equivalent to three times the text
of a standard 24-volume encyclopedia.

The manufacturing process of CDs requires an optically flat glass plate
which has been covered with a light-sensitive layer (photoresist) about l/4
in thickness. Then, a helium–neon laser whose intensity is modulated
(pulsed) by the digitized information is directed onto this surface while
the disk is rotated. Developing of the photoresist causes a hardening of the
unexposed areas. Subsequent etching removes the exposed areas and thus
creates pits in the photoresist. The pitted surface is then coated with silver
(to facilitate electrical conduction) and then electroplated with nickel. The
nickel mold thus created (or a copy of it) is used to transfer the pit structure
to a transparent polymeric material by injection molding. The disk is
subsequently coated with a reflective aluminum film and finally covered
by a protective lacquer and a label.

The CD is read from the back side, i.e., the information is now contained
in the form of bumps (see Fig. 13.61). In order to facilitate focusing onto a
narrow spot, monochromatic light, as provided by a laser, is essential. At
present, a GaAlAs heterojunction laser having a wavelength in air of 780 nm
is utilized. The beam size at the surface of the disk is relatively large (0.7
mm in diameter) to minimize possible light obstruction by small dust
particles. However, the beam converges as it traverses through the polymer
disk to reach the reflecting surface that contains the information. Small
scratches or fingerprints on the polymer surface are also tolerated quite
well, but large scratches and blemishes make the CD useless. The aligning
of the laser beam on the extremely narrow tracks is a nontrivial task, but it
can be managed. It involves, actually, three light beams, obtained by
dividing the impinging laser beam shown in Fig. 13.55(b) into three parts,
utilizing a grating or a holographic element. One of these parts (the center
one) is the above-described read beam. The other two are tracking beams
which strike the inner and outer edges of the groove. The reflected signals
from the tracking beams are subtracted from each other. A null signal
indicates correct tracking while positive or negative signals cause the
servo to move the read head to one or the other side. The tracking is accurate
to about 0.1 mm.

12The playback time of 80 minutes and the resulting disk diameter of 120 mm is said to have been

contrived so that Beethoven’s 9th symphony, played by Furtw€angler at the Bayreuth festival could
be accommodated on one disk. In reality, a competitive battle between Phillips and Sony played a

major role in this decision and the Beethoven 9th symphony was just used as a pretext.
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The recordable compact disk (CD-R) contains a blank data spiral.
During manufacturing, a photosensitive dye is applied before the metalliza-
tion is laid down. The write laser of the CD recorder changes the color of the
dye and thus, encodes the track with the digital data. This type of storage
may undergo some degradation. Indeed, after a lifetime of 20 to 100 years
(in some cases only 18 months, depending on the quality of the CD) the dye
degrades, which is called “CD rot”. A CD-R can be encoded only once.

The rewritable compact disk (CD-RW) utilizes the amorphous to
crystalline transformation technique which we have discussed in detail at
the end of Section 8.7.12. In short, a transformation between the two phases
of chalcogenide glasses is caused by a writing laser beam which emits short
(ns) pulses to the track. Some crystalline and amorphous chalcogenides
have pronounced different indices of refraction and thus, differ in their
reflectivity which can be utilized to distinguish between the ones and
zeros. The estimated lifetime is considerably higher than for CD-Rs, (i.e.
nominal 300 years).

The DVD-ROM (digital versatile disk or digital video disk-read only
memory) and the DVD-RW (rewritable) work on the same phase transfor-
mation principal as just discussed. DVDs utilize a laser diode whose emis-
sion wavelength is shorter than for a CD, namely 650 nm. This allows a
smaller width between bumps of 0.74 mm (compared to 1.6 mm for CDs,
see Fig. 13.61) and thus, adds more storage capacity. A writing speed of 1x
stores 1.35 MB/s. Recent models use writing speeds 18 or 20 times as
fast. However, dual layer disks run at lower recording speeds. DVD-R and
DVD + R have slightly different storage abilities, specifically 4.707 and
4.700 GB respectively in their single layer versions (and almost twice as
much in their double layer rendition). Rewritable DVDs have a storage
capacity of about 4.7 GB (single-sided, single layer), 8.5 GB (for single-
sided double layer), and 9.4 GB (double sided, single layer) in contrast to the
CD which stores up to 700 MB. Dual-layer disks employ a second film
underneath the first one which is accessed by transmitting the laser light
through the first, transparent layer.

The blu-ray Disc (BD; official spelling and abbreviation for trade-
mark reasons) utilizes 405 nm light beam from a GaN laser and thus, allows
focusing the beam to even smaller spots. As a consequence, almost 10 times
more data can be encrypted than for a DVD. Specifically, a BD can store 25
GB on a single layer, 12 cm disk and 50 GB using double layer technology.
Moreover, four-layer (100GB) and even 16 data layers yielding 400GBhave
been demonstrated with the goal to reach eventually a 1 TB BD! Its main
application is for high-definition videos and for video games. Since the data
layer in BDs is much closer to the surface than for DVDs, which makes the
disks more vulnerable to scratches, several hard coating polymers have been
developed and applied by different companies. The driving speed at 36Mbit/
s requires a writing time of 90 minutes on a single layer disk. This writing
time can be reduced to only 9 minutes when the driving speed is increased by
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a factor of 10. BD technology is, as of this writing, still in its development
phase and there is no indication that it will substantially replace standard
DVDs anytime soon mostly because of price and the fact that most users
are satisfied with the present DVD technology. Still, sales of software on
BD amounted to 177 million pieces in 2009. A nuisance is industry’s
implementation of regional codes for BD (as well as for DVD) players in
order to allow playing disks only in certain geographical areas of the world.
(Third-party shops make alterations to players to overcome this problem.)
Blu-ray Disc recordable (BD-R) can be written once, whereas BD-RE can
be erased and re-recorded several times.

A future technology is called holographic versatile disk which is pre-
dicted to hold eventually 3.9 TB of information.

The durability of the stored information on DVDs and similar disks is
determined, among others, by the sealing method, the storage practice, and
where it was manufactured. The predictions vary, as already outlined above.
Some manufacturers forecast lifetimes between 2 and 15 years, whereas
others claim lifetimes from 30 to 100 years and even longer. This compares
to the lifetimes of ancient papyrus scrolls which still can be read after more
than 2000 years.

An alternative to the above-described devices is the magneto-optical
device, which employs a laser to read the data on the disk while the
information is written by simultaneously exposing a small area on the disk
to a strong laser pulse in addition to a magnetic field. This device will be
further described in Section 17.5. As of this writing, 4.6 GB can be stored on
a 51

4
inch (130 mm) magneto-optical disk. The data can be erased and

rewritten many times.

13.11. The Optical Computer

We have learned in Section 8.7 that transistors are used as switching
devices. We know that a small voltage applied to the base terminal of a
transistor triggers a large electron flow from emitter to collector. The
question arises whether or not a purely optical switching device can be
built for which a light beam, having a small intensity, is capable of trigger-
ing the emission of a light beam that has a large intensity. Such an optical
transistor (called transphasor) has indeed been constructed which may
switch as much as 1000 times faster (picoseconds) than an electronic switch
(based on a transistor).

The main element of a transphasor is a small (a few millimeters long)
piece of nonlinear optical material (see below) which has, similar to a laser
(or a Fabry– Perot interferometer), two exactly parallel surfaces at its
longitudinal ends. These surfaces are coated with a suitable thin film in
order to render them semitransparent. Once monochromatic light, stemming
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from a laser, has entered this “cavity” through one of its semitransparent
windows, some of the light is reflected back and forth between the interior
windows, whereas another part of the light eventually escapes through the
windows (Fig. 13.62). If the length between the two windows just happens
to be an integer multiple of half a wavelength of the light, then constructive
interference occurs and the amplitude (or the intensity) of the light in the
“cavity” increases rapidly (Fig. 13.62(a)). As a consequence, the intensity of
the transmitted light is also strong. In contrast to this, if the distance between

Figure 13.62. Schematic representation of some light waves in a transphasor. The reflec-

tivity of the windows is about 90%. (a) Constructive interference. The length of the “cavity”

equals an integer multiple of l/2. (b) Condition (a) above is not fulfilled. The sum of many

forward and reflected beams decreases the total intensity of the light. (Note: No phase shift

occurs on the boundaries inside the “cavity”, because ncavity > nair).
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the two windows is not an integer multiple of half a wavelength of the light,
the many forward and reflected beams in the “cavity” weaken each other
mutually, with the result that the intensity of the transmitted light is rather
small (Fig. 13.62(b)). In other words, all conditions which do not lead to
constructive (or near constructive) interference produce rather small trans-
mitted intensities (particularly if the reflectivity of the windows is made
large).

The key ingredient of a transphasor is a specific substance, namely,
the above-mentioned nonlinear optical material which changes its index
of refraction as a function of the intensity of light. As we know from
Section 10.2 the index of refraction is

nmed ¼ cvac
cmed

¼ lvac
lmed

: (13.32)

Thus, we have at our disposal a material which, as a result of high light
intensity, changes its index of refraction, which, in turn, changes lmed until
an integer multiple of lmed/2 equals the cavity length and constructive
interference may take place. Moreover, just shortly before this condition
has been reached, a positive feedback mechanism mutually reinforces the
parameters involved and brings the beams rapidly closer to the constructive
interference state.

An optical switch involves a “constant laser beam” whose intensity is not
yet strong enough to trigger constructive interference (Fig. 13.62(a)). This
light intensity is supplemented by a second laser beam, the “probe beam,”
which is directed onto the same spot of the window of the transphasor and
which provides the extra light energy to trigger a large change in n and thus
constructive interference (Fig. 13.63). All taken, a small intensity change
caused by the probe beam invokes a large intensity of the transmitted beam.
This combination of two signals that interact with a switching device can be

Figure 13.63. Schematic representation of an optical AND gate as obtained from an optical

transistor (transphasor) constructed from a material with nonlinear refractive index. The low

transmission state may represent a “zero” in binary logic, whereas the high transmission of

light may stand for a “one.”
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utilized as an “AND” logic circuit, as described in Section 8.7.12. Likewise,
“OR” gates (either of the two beams is already strong enough to trigger
critically a change in n) or “NOT” gates (which involve the reflected light)
can be constructed.

One important question still remains to be answered. It pertains to the
mechanisms involved in a nonlinear optical material. Such a material
consists, for example, of indium antimonide, a narrow–band gap semicon-
ductor having a gap energy of only 0.2 eV. (It therefore needs to be cooled to
77 K in order to suppress thermally-induced conduction band electrons.)
Now, we know from Chapter 12 that when photons of sufficiently high
energy interact with the valence electrons of semiconductors, some of these
electrons are excited across the gap into the conduction band. The number
of excited electrons is, of course, larger the smaller the gap energy (see
Chapter 12) and the larger the number of impinging photons. On the other
hand, the index of refraction, n, depends on the number of free electrons, Nf

(in the conduction band, for example), as we know from (11.7),

n̂2 ¼ 1� e2Nf

4p2e0mn2
: (13.33)

Thus, a high light intensity substantially changes Nf and therefore n as stated
above.

A crude photonic computer was introduced in 1990 by Bell Laboratories.
However, new nonlinear materials need to be found before optical compu-
ters become competitive with their electronic counterparts.

13.12. X-Ray Emission

Electromagnetic radiation of energy higher than that characteristic for UV
light is calledX-rays. (Still higher-energy radiation are g-rays). X-rays were
discovered in 1895 by Wilhelm Conrad R€ontgen, a German scientist. In
1901, he received the first Nobel Prize in physics for this discovery. The
wavelength of X-rays is in the order of 10�10 m; see Figure 10.1. For its
production, a beam of electrons emitted from a hot filament is accelerated in
a high electric field towards a metallic (or other) electrode. On impact, the
energy of the electrons is lost either bywhite X-radiation, that is, in the form
of a continuous spectrum (within limits), or by essentially monochromatic
X-rays (called characteristic X-rays) that are specific for the target material.
The white X-rays are emitted as a consequence of the deceleration of the
electrons in the electric field of a series of atoms, where each interaction with
an atom may lead to photons of different energies. The maximal energy that
can be emitted this way (assuming only one interaction with an atom) is
proportional to the acceleration voltage, V, and the charge of the electron,
e, that is
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Emax ¼ eV ¼ hn ¼ hc

l
(13.34)

[see Eqs. (2.1) and (1.5)]. From this equation the minimum wavelength, l
(in nm), can be calculated using the values of the constants as listed in
Appendix 4 and inserting V in volts, that is

l ¼ 1240

V
: (13.35)

Figure 13.64 depicts the voltage dependence of several white X-ray spectra.
The cutoff wavelengths, as calculated by Eq. (13.35), are clearly detected.
White X-radiation is mostly used for medical and industrial applications
such as dentistry, bone fracture detection, chest X-rays, and so on. Different
densities of the materials under investigation yield variations in the black-
ening of the exposed photographic film which has been placed behind the
specimen.

The wavelength of characteristic X-rays depends on the material on
which the accelerated electrons impinge. Let us assume that the impinging
electrons possess a high enough energy to excite inner electrons, for exam-
ple, electrons from the K-shell, to leave the atom. As a consequence, an L
electron may immediately revert into the thus created vacancy while emit-
ting a photon having a narrow and characteristic wavelength. This mecha-
nism is said to produce Ka X-rays; see Figure 13.65. Alternately and/or
simultaneously, an electron from theM shell may revert to the K shell. This
is termed Kb-radiation.

For the case of copper, the respective wavelengths are 0.1542 nm and
0.1392 nm. (As a second example, aluminum yields Ka and Kb radiations
having characteristic wavelengths of 0.8337 nm and 0.7981 nm.) Character-
istic (monochromatic) X-radiation is frequently used in materials science, for
example, for investigating the crystal structure of materials. For this, only

Figure 13.64. Schematic representation of the wavelength dependence of the intensity of

white X-ray emission for selected acceleration voltages.
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one of the possible wavelengths is used by eliminating the others utilizing
appropriate filters, made, for example, of nickel foils, which strongly absorb
the Kb-radiation of copper while the stronger Ka-radiation is only weakly
absorbed. The characteristic X-radiation is superimposed on the often
weaker, white X-ray spectrum.

Problems

1. Calculate the difference in the refractive indices which is necessary in order that an

asymmetric waveguide operates in the zeroth mode. Take l0 ¼ 840 nm, t ¼ 800 nm, and

n2 ¼ 3.61.

2. How thick is the depletion layer for an electro-optical waveguide when the index of

refraction (n3 ¼ 3.6) increases in Medium 2 by 0.1%? Take n1 ¼ 1, l0 ¼ 1.3 mm, and

zeroth-order mode.

3. Calculate the angle of total reflection in (a) a GaAs waveguide (n ¼ 3.6), and (b) a glass

waveguide (n ¼ 1.5) against air.

4. Of which order of magnitude does the doping of an electro-optical waveguide need to be

in order that the index of refraction changes by one-tenth of one percent? Take n3 ¼ 3.6,

m* ¼ 0.067 m0, and l ¼ 1.3 mm.

5. Calculate the free carrier absorption loss in a semiconductor assuming n ¼ 3.4,

m* ¼ 0.08 m0, l ¼ 1.15 mm, Nf ¼ 1018 cm�3, and m ¼ 2 � 103 cm2/Vs.

6. Show that the energy loss in an optical device, expressed in decibels per centimeter,

indeed equals 4.3a.

Figure 13.65. Schematic representation of the emission of characteristic X-radiation by

exciting a K-electron and refilling the vacancy thus created with an L-electron.

334 III. Optical Properties of Materials



7. Calculate the necessary step height of a “bump” on a compact disk in order that

destructive interference can occur. (Laser wavelength in air, 780 nm; index of refraction

of transparent polymeric materials, 1.55.)

8. Calculate the gap energy and the emitting wavelength of a GaAs laser that is operated at

100�C. Take the necessary data from the tables in Appendix 4 and Table 19.2.

9. Why are LEDs in northern regions not useful for traffic lights compared to incandescent

light bulbs?
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J.M.J. Fréchet, and B.C. Thompson, Polymer-Fullerene Composite Solar Cells, in:

“Angewandte Chemie, Int. Ed.” 47, 58-77, (2008), Wiley-VCH Verlag GmbH & Co.,
KGaA, Weinheim.

M.P. Givens, Optical properties of metals, in Solid State Physics, Vol. 6, Academic Press,
New York (1958).

O.S. Heavens, Optical Properties of Thin Solid Films, Academic Press, New York (1955).
L.L. Hench and J.K. West, Principles of Electronic Ceramics, Wiley, New York (1990).
P.H. Holloway, S. Jones, P. Rack, J. Sebastian, T. Trottier, Flat Panel Displays: How Bright

and Colorful is the Future? Proceedings ISAF’96 Vol I IEEE page 127 (1996).
R.E. Hummel, Optische Eigenschaften von Metallen und Legierungen. Springer-Verlag,

Berlin (1971).
R.G. Hunsperger, Integrated Optics, Theory and Technology, 3rd ed., Springer-Verlag,

New York (1991).
T.S. Moss, Optical Properties of Semiconductors, Butterworth, London (1959).
P.O. Nilsson, Optical properties of metals and alloys, Solid State Physics, Vol. 29, Academic

Press, New York (1974).
F.A. Ponce and D.P. Bour, Nitrogen-Based Semiconductors for Blue and Green light-

emitting devices, Nature, 386, 351 (1997).
B.O. Seraphin, ed., Optical Properties of Solids—New Developments, North-Holland/

American Elsevier, Amsterdam, New York (1976).
J.H. Simmons and K.S. Potter, Optical Materials, Academic Press, San Diego (2000).
F. So, and J. Shi, Organic Molecular Light Emitting Materials and Devices, in: “Introduction

to Organic and Optoelectronic Materials and Devices”, CRC Textbook (2007).
A.V. Sokolov, Optical Properties of Metals, American Elsevier, New York (1967).
O. Svelto, Principles of Lasers, 2nd ed., Plenum Press, New York (1982).
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PART IV

MAGNETIC PROPERTIES
OF MATERIALS



CHAPTER 14

Foundations of Magnetism

14.1. Introduction

The phenomenon of magnetism, i.e., the mutual attraction of two pieces of
iron or iron ore, was surely known to the antique world. The ancient Greeks
have been reported to experiment with this “mysterious” force. The desig-
nation magnetism is said to be derived from a region in Turkey which was
known by the name of Magnesia and which had plenty of iron ore.

Interestingly enough, a piece of magnetic material such as iron ore does
not immediately attract other pieces of the same material. For this, at least
one of the pieces has to be magnetized. Simply said, its internal “elemen-
tary magnets” need alignment in order for it to become a permanent
magnet. Magnetizing causes no problem in modern days. One merely
places iron into an electric coil through which a direct current passes for
a short time. (This was discovered by Oersted at the beginning of the 19th

century.) But how did the ancients do it? There may have been at least
three possibilities. First, a bolt of lightning could have caused a magnetic
field large enough to magnetize a piece of iron ore. Once one permanent
magnet had been produced and identified, more magnets could have been
obtained by rubbing virgin pieces of iron ore with the first magnet. There is
another possibility. It is known that if a piece of iron is repeatedly hit very
hard, the “elementary magnets” will be “shaken loose” and align in the
direction of the earth’s magnetic field. An iron hammer, for example, is
north-magnetic on its face of impact in the northern hemisphere. Could
it have been that a piece of iron ore was used as a hammer and thus it
became a permanent magnet? A third possibility is that iron or nickel-
containing meteorites responded with an alignment of their “elementary
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magnets” in an electromagnetic field during their immersion into the
earth’s atmosphere.

Magnetic materials made an important contribution to the development
of the consciousness of mankind, because they paved the way to discoveries
of new continents once the compass had been invented. (A compass needle
is a pivoted bar magnet which positions itself approximately in the north–
south direction. We call the tip that points to geographic north, the north-
seeking pole, or simply the north pole, and the opposite end the south pole.)
Around 1500, the British coined the word lodestone for the iron ore Fe3O4,
which is derived from the old English word lode and which means to lead or
to guide. Our modern technology would be unthinkable without magnetic
materials and magnetic properties. Magnetic tapes or disks (computers),
television, motors, generators, telephones, and transformers are only a few
examples of their applications.

Thus far, we have used the word magnetism very loosely when implying
the mutual magnetic attraction of pieces of iron. There are, however,
several classes of magnetic materials that differ in kind and degree in
their mutual interaction. We shall distinguish in the following between
ferromagnetism (which term we restrict to the classical magnetism in iron
and a few other metals and alloys) and para-, dia-, antiferro-, and ferri-
magnetism. The oldest known magnetic ore, the magnetite, or lodestone,
Fe3O4, is actually a ferri-magnet (FeO) · Fe2O3 called iron ferrite.

In the sections to come, we will first define the magnetic constants and
then remind the reader of some fundamental equations in magnetism before
discussing magnetism by classical and quantum theory. Practical applica-
tions of magnetic materials are presented in the final chapter.

14.2. Basic Concepts in Magnetism

The goal of this chapter is to characterize the magnetic properties of
materials. At least five different types of magnetic materials exist, as
mentioned in the Introduction. A qualitative, as well as a quantitative,
distinction between these different types can be achieved in a relatively
simple way by utilizing a method proposed by Faraday. The magnetic
material to be investigated is suspended from one of the arms of a sensitive
balance and is allowed to reach into an inhomogeneous magnetic field
(Fig. 14.1). Diamagnetic materials are expelled from this field, whereas
para-, ferro-, antiferro-, and ferrimagnetic materials are attracted in different
degrees. It has been found empirically that the apparent loss or gain in mass,
i.e., the force, F, on the sample exerted by the magnetic field, H, is

F ¼ Vwm0H
dH

dx
; (14.1)
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where V is the volume of the sample, m0 is a universal constant called
the permeability of free space (1.257 � 10�6 H/m or Vs/Am), and w is
the susceptibility, which expresses how responsive a material is to an
applied magnetic field. Characteristic values for w are given in Table 14.1.
The term dH/dx in Eq. (14.1) is the change of the magnetic field strength,
H, in the x-direction. The field strength, H, of an electromagnet (consisting
of helical windings of a long, insulated wire as seen in the lower portion of
Fig. 14.1) is proportional to the current, I, which flows through this coil,
and on the number, n, of the windings (called turns) that have been used
to make the coil. Further, the magnetic field strength is inversely propor-
tional to the length, L, of the solenoid. Thus, the magnetic field strength is
expressed by

H ¼ In

L
: (14.2)

The field strength is measured (in SI units) in “Amp-turns per meter”, or
shortly, in A/m.

The magnetic field can be enhanced by inserting, say, iron, into a
solenoid, as shown in Fig. 14.1. The parameter that expresses the amount
of enhancement of the magnetic field is called the permeability, m. The
magnetic field strength within a material is known by the names magnetic

I

L

FX

N S

X

Figure 14.1. Measurement of the magnetic susceptibility in an inhomogeneous magnetic

field. The electromagnet is driven by an electric current, which flows through the helical

windings of a long insulated wire called a solenoid. The magnetic flux lines (dashed) follow

the iron core.
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induction1 (or magnetic flux density) and is denoted by B. Magnetic field
strength and magnetic induction are related by the equation

B ¼ mm0H: (14.3)

The SI unit for B is the tesla (T); see Appendix 4. The permeability
(sometimes called relative permeability, mr) in Eq. (14.3) is unitless and
is listed in Table 14.1 for some materials. The relationship between the
susceptibility and the permeability is

m ¼ 1þ w: (14.4)

For empty space and, for all practical purposes, also for air, one defines
w ¼ 0 and thus m ¼ 1 [See Eq. (14.4)]. The susceptibility is small and
negative for diamagnetic materials. As a consequence, m is slightly less
than 1 (see Table 14.1). For para- and antiferromagnetic materials, w is

Table 14.1. Magnetic Constants of Some Materials at Room Temperature.

Material w (SI) unitless w (cgs) unitless m unitless

Type of

magnetism

Bi �165 � 10�6 �13.13 � 10�6 0.99983

Diamagnetic

Ge �71.1 � 10�6 �5.66 � 10�6 0.99992

Au �34.4 � 10�6 �2.74 � 10�6 0.99996

Ag �23.8 � 10�6 �1.90 � 10�6 0.99997

Be �23.2 � 10�6 �1.85 � 10�6 0.99998

Cu �9.7 � 10�6 �0.77 � 10�6 0.99999

Water �9.14 � 10�6 �0.73 � 10�6 0.99999

Si �4.1 � 10�6 �0.32 � 10�6 0.99999

Superconductorsa �1.0 ��8 � 10�2 0

b-Sn þ2.4 � 10�6 þ0.19 � 10�6 1

Paramagnetic

Al þ20.7 � 10�6 þ1.65 � 10�6 1.00002

W þ77.7 � 10�6 þ6.18 � 10�6 1.00008

Pt þ264.4 � 10�6 þ21.04 � 10�6 1.00026

Low carbon steel �5 � 103 3.98 � 102 5 � 103

FerromagneticFe–3%Si (grain-oriented) 4 � 104 3.18 � 103 4 � 104

Ni–Fe–Mo (supermalloy) 106 7.96 � 104 106

aSee Section 7.6.
Note: The table lists the unitless susceptibility, w, in SI and cgs units. (The difference is a factor of 4p, see
Appendix 4.) Other sources may provide mass, atomic, molar, volume, or gram equivalent susceptibi-
lities in cgs or SI units, m has the same value in both unit systems, see Section 14.3.
Source: Landolt-B€ornstein, Zahlenwerte der Physik, Vol. 11/9. 6th Edition, Springer-Verlag, Berlin (1962).

1Calling B “magnetic induction” is common practice but should be discouraged because it may be

confused with electromagnetic induction. Thus, some authors call B “magnetic field” and H
“applied field”.
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again small, but positive. Thus, m is slightly larger than 1. Finally, w and m
are large and positive for ferro- and ferrimagnetic materials.

The magnetic constants are temperature-dependent, except for diamag-
netic materials, as we will see later. Further, the susceptibility for ferromag-
netic materials depends on the field strength, H.

The magnetic field parameters at a given point in space are, as explained
above, the magnetic field strength, H, and the magnetic induction, B. In
free (empty) space, B and m0H are identical, as seen in Eq. (14.3). Inside a
magnetic material the induction, B, consists of the free-space component
(m0H) plus a contribution to the magnetic field (m0M) which is due to the
presence of matter [Fig. 14.2(a)], that is,

B ¼ m0H þ m0M; (14.5)

whereM is called themagnetization of the material. Combining Eqs. (14.3)
through (14.5) yields

M ¼ wH: (14.6)

H, B, and M are actually vectors. Specifically, outside a material, H (and B)
point from the north to the south pole. Inside of a ferro- or paramagnetic
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m0M

(a) (b) (c) (d)

Figure 14.2. Schematic representation of magnetic field lines in and around different types

of materials. (a) Para- or ferromagnetics. The magnetic induction (B) inside the material

consists of the free-space component (m0H) plus a contribution by the material (m0M); see

Eq. (14.5). (b) The magnetic field lines outside a material point from the north to the south

poles, whereas inside of para- or ferromagnetics, B and m0M point from south to north in

order to maintain continuity. (c) In diamagnetics, the response of the material counteracts

(weakens) the external magnetic field. (d) In a thin surface layer of a superconductor, a
supercurrent is created (below its transition temperature) which causes a magnetic field that

opposes the external field. As a consequence, the magnetic flux lines are expelled from the

interior of the material. Compare to Figure 9.18.
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material, B and M point from the south to the north; see Figures 14.2(a)
and (b). However, wewill mostly utilize their moduli in the following sections
and thus use lightface italic letters.

B was said above to be the magnetic flux density in a material, that is, the
magnetic flux per unit area. The magnetic flux, f, is then defined as the
product of B and area, A, that is, by

f ¼ BA: (14.7)

In free space, for which M ¼ 0, we obtain instead, by using (14.5),

f ¼ m0HA: (14.7a)

Finally, we need to define the magnetic moment, mm, (also a vector)
through the following equation:

M ¼ mm
V

; (14.8)

which means that the magnetization is the magnetic moment per unit
volume.

*14.3. Units

It needs to be noted that in magnetic theory several unit systems are com-
monly in use. The scientific and technical literature on magnetism, particu-
larly in the USA, is still widely written in electromagnetic cgs (emu) units. In
some European countries, and in many international scientific journals, the SI
units are mandatory. Conversion factors from emu into SI units are given in
Appendix 4. The magnetic field strength in cgs units is measured in oersted
and the magnetic induction in gauss. In SI unitsH is measured in A/m and B is
given in tesla (T). Equation (14.5) reads in cgs units

B ¼ H þ 4pM: (14.9)

Writing (14.3) in cgs (emu) units yields

B ¼ mH; (14.10)

The permeability in cgs units is

m ¼ 1þ 4pw: (14.11)

Comparison of (14.4) with (14.11) indicates a difference by a factor 4p
between the susceptibilities in the two unit systems. As a result, m has
the same value in both unit systems, see Appendix 4 and Table 14.1. It
needs to be further stressed that the electric charge (e.g., of an electron) in
electromagnetic cgs units is written in “abcoulombs” or (g1/2 cm1/2), see
Appendix 4.
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Problems

1. Show that the unit for 1 Oe is equivalent to [g1/2/cm1/2 · s] by making use of (14.1).

2. An electromagnet is a helical winding of wire through which an electric current flows.

Such a “solenoid” of 1000 turns is 10 cm long and is passed through by a current of 2A.

What is the field strength in Oe and A/m?

3. Familiarize yourself with the units of H, B, and M in the different unit systems. Convert

(14.9) into (14.5) by making use of the conversion table in Appendix 4.

4. Calculate the (relative) permeability of Bi and Al from their susceptibilities (wBi ¼
�165� 10�6 and wAl ¼ 20.7 � 10�6) and compare your values with those in Table 14.1.

Perform the same calculation for Ni–Fe–Mo (w ¼ 106). What do you observe?
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CHAPTER 15

Magnetic Phenomena and Their
Interpretation—Classical Approach

15.1. Overview

We stated in the last chapter that different types of magnetism exist, and that
they are characterized by the magnitude and the sign of the susceptibility
(see Table 14.1).

Since various materials respond so differently in a magnetic field, we
suspect that several fundamentally different mechanisms must be responsi-
ble for the magnetic properties. In the first part of this chapter we shall
attempt to unfold the multiplicity of the magnetic behavior of materials by
describing some pertinent experimental findings and giving some brief
interpretations. In the sections to follow, we shall treat the atomistic theory
of magnetism in more detail.

15.1.1. Diamagnetism

Ampère postulated more than one hundred years ago that molecular cur-
rents are responsible for the magnetism in a solid. He compared the molec-
ular currents to an electric current in a loop-shaped piece of wire, which is
known to cause a magnetic moment. Today, we replace Ampère’s molecular
currents by orbiting valence electrons.

For the understanding of diamagnetism, a second aspect needs to be
considered. It was found by Lenz that a current is induced in a wire loop
whenever a bar magnet is moved toward (or from) this loop. The current
thus induced causes, in turn, a magnetic moment which is opposite to the
one of the bar magnet (Fig. 15.1(a)). (This has to be so in order for
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mechanical work to be expended in producing the current; otherwise, a
perpetual motion would be created!) Diamagnetism may then be explained
by postulating that the external magnetic field induces a change in the
magnitude of inner-atomic currents, i.e., the external field accelerates or
decelerates the orbiting electrons, in order that their magnetic moment is in
the opposite direction from the external magnetic field. In other words, the
responses of the orbiting electrons counteract the external field (Fig. 14.2
(c)) whereas the outermost electrons provide the largest contribution.
A more accurate and quantitative explanation of diamagnetism replaces
the induced currents by precessions of the electron orbits about the magnetic
field direction (Larmor precession, see Fig. 15.1(b)).

(a)

(b)

N

H

S

i

mm

mm

w

dw

a

Figure 15.1. Explanation of diamagnetism. (a) Induction of a current in a loop-shaped piece

of wire by moving a bar magnet toward the wire loop. The current in the loop causes a

magnetic field that is directed opposite to the magnetic field of the bar magnet (Lenz’s law).

(b) Precession of an orbiting electron in an external magnetic field. Precession is the motion

which arises as a result of external torque acting on a spinning body (such as a spinning top)

or, as here, on an orbiting electron.
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So far, we implicitly considered only electrons that are bound to their
respective nuclei. Now, metals are known also to have free electrons. They
are forced to move in a magnetic field in a circular path. This leads to a
second contribution to the diamagnetic moment; specifically, the circulating
free electrons cause a magnetic moment, similarly as described above.

It has been observed that superconducting materials (Section 7.6) expel
the magnetic flux lines when in the superconducting state (Meissner effect).
In other words, a superconductor behaves in an external magnetic field as if
B is zero inside the superconductor (Fig. 14.2(d)). Thus, with (14.5), we
obtain

H ¼ �M;

which means that the magnetization is equal and opposite to the external
magnetic field strength. The result is a perfect diamagnet. The suscept-
ibility (14.6)

w ¼ M

H

in superconductors is �1 compared to �10�6 in the normal state (see
Table 14.1). This strong diamagnetism can be used for frictionless bearings,
i.e., for support of loads by a repelling magnetic field. The levitation effect
in which a magnet hovers above a superconducting material, and the
suspension effect where a chip of superconducting material hangs some
distance beneath a magnet can be explained with the strong diamagnetic
properties of superconductors. (See also Problem 12.)

15.1.2. Paramagnetism

Paramagnetism in solids is attributed, to a large extent, to a magnetic
moment that results from electrons which spin around their own axes,
Fig. 15.2(a). We have already introduced the electron spin in Section 6.4
and mentioned there that, because of the Pauli principle, no two electrons
having the same energy can have the same value and sign for the spin
moment. In other words, each electron state can be occupied by two
electrons only; one with positive spin and one with negative spin, or, as is
often said, one with spin up and one with spin down. An external magnetic
field tries to turn the unfavorably oriented spin moments in the direction of
the external field. We will talk about the quantum mechanical aspect of spin
paramagnetism in more detail in Chapter 16. Spin paramagnetism is slightly
temperature-dependent. It is in general very weak and is observed in some
metals and in salts of the transition elements.

Free atoms (dilute gases) as well as rare earth elements and their salts and
oxides possess an additional source of paramagnetism. It stems from the
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magnetic moment of the orbiting electrons Fig. 15.2(b). Without an external
magnetic field, these magnetic moments are randomly oriented and thus
they mutually cancel one another. As a result, the net magnetization is zero.
However, when an external field is applied, the individual magnetic vectors
tend to turn into the field direction. Thermal agitation counteracts the
alignment. Thus, electron-orbit paramagnetism is temperature-dependent.

The temperature dependence of many paramagnetic materials is gov-
erned by the experimentally found Curie law, which states that the suscepti-
bility, w, is inversely proportional to the absolute temperature T,

w ¼ C

T
; (15.1)

where C is called the Curie constant. For many other substances, a more
general relationship is observed, which is known as the Curie–Weiss law,

w ¼ C

T � y
; (15.2)

where y is another constant that has the same unit as the temperature and
may have positive as well as negative values (see Fig. 15.3). We will explain
the meaning of the constants C and y in Section 15.3.

Metals, with a few exceptions, do not obey the Curie–Weiss law, as we
shall see in Chapter 16. However, Ni (above the Curie temperature, see
Section 15.1.3) and, in a limited temperature interval, also Fe and b-Co,
the rare earth elements, and salts of the transition elements (e.g., the
carbonates, chlorides, and sulfates of Fe, Co, Cr, Mn) obey the Curie–Weiss
law quite well.

We have just mentioned that in most solids only spin paramagnetism is
observed. This is believed to be due to the fact that in crystals the electron

(b)(a)
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μm

mm
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Figure 15.2. (a) Schematic representation of electrons which spin around their own axes. A

(para)magnetic moment mm results; its direction depends on the mode of rotation. Only two

spin directions are shown (called “spin up” and “spin down”). (b) An orbiting electron is the

source of electron-orbit paramagnetism.
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orbits are essentially coupled to the lattice, which prevents the orbital mag-
netic moments from turning into the field direction. One says in this case that
the orbital moments are “quenched”. Exceptions are the rare earth elements
and their derivatives, which have “deep-lying” 4f-electrons.2 The latter ones
are shielded by the outer electrons from the crystalline field of the neighboring
ions. Thus, the orbital magnetic moments of the f-electrons may turn into the
external field direction and contribute to electron-orbit paramagnetism. The
fraction of the total magnetic moment contributed by orbital motion versus by
spin is defined as the “g-factor”.

It is now possible to make some general statements about whether para- or
diamagnetism might be expected in certain materials. For paramagnetic
materials, the magnetic moment of the electrons is thought to point in the
direction of the external field, i.e., the magnetic moment enhances the
external field. Diamagnetism counteracts an external field, as we have seen
in Section 15.1.1. Thus, para- and diamagnetism oppose each other. Solids
that have both orbital as well as spin paramagnetism are clearly paramag-
netic since the sum of both paramagnetic components is commonly larger
than the diamagnetism. Rare earth metals with unfilled 4f-electron bands are
an example of this. In most other solids, however, the orbital paramagnetism
is “quenched,” as we said above. Yet, they still might have spin paramagne-
tism. The possible presence of a net spin-paramagnetic moment depends
upon whether or not the magnetic moments of the individual spins cancel
each other. More specifically, if a solid has completely filled electron bands,
we anticipate (because of the Pauli principle) the same number of electrons
with spins up as well as with spins down. For example, a completely filled
d-band contains 5N electrons with spins up and 5N electrons with spins
down. This results in a cancellation of the spin moments and no net spin

Figure 15.3. Schematic representation of (a) the Curie law; (b) and (c) the Curie–Weiss law.

(d) The diamagnetic behavior is also shown for comparison.

2See Appendix 3.
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paramagnetism is expected. These materials are thus diamagnetic (no orbital
and no spin paramagnetic moment).Wemention as examples for filled bands
intrinsic semiconductors, insulators, and ionic crystals such as NaCl. (In the
latter case, an electron transfer occurs between cations and anions, which
causes closed electron shells, i.e., filled bands.)

In materials with partially filled bands, the electron spins are arranged,
according to “Hund’s rule,” in such a manner that the total spin moment is
maximized. This condition is energetically more favorable, as quantum
mechanics shows. For example, in an atom with eight valence d-electrons,
five of the spins align, say, up, and three spins point down, which results in a
net total of two spins up (Fig. 15.4). The atom is then expected to have two
units of (para-)magnetism.

The smallest unit (or quantum) of the magnetic moment is called one
Bohr magneton

mB ¼ eh

4pm
¼ 9:274� 10�24 J

T

� �
� A �m2

� �
(15.3)

(The symbols have the usual meaning.) We shall derive equation (15.3) in
Chapter 16. In the above example, the metal is said to have two Bohr
magnetons per atom.

One word of caution should be added about applying the above general
principles too rigidly. Some important exceptions do exist. They must be
explained by considering additional information (see Chapter 16). For
example, copper, which has one s-electron in its valence band, should be
paramagnetic according to our considerations brought forward so far. In
reality, copper is diamagnetic. Other examples are superconductors, which
are perfect diamagnetics below a transition temperature; they repel the
magnetic flux lines from their interior, as we explained in Section 15.1.1.

15.1.3. Ferromagnetism

We turn now to ferromagnetics and commence with the experimentally
found magnetization curve for these materials. A newly cast piece of iron
(often called virgin iron) is inserted into a ring-shaped solenoid (Fig. 15.5).
(The ring shape is used to contain the magnetic field within the coil.) If the
external field strength is increased (by increasing the current in the primary
winding), then the magnetization (measured in a secondary winding with a

Figure 15.4. Schematic representation of the spin alignment in a d-band which is partially

filled with eight electrons (Hund’s rule).
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flux meter) rises at first slowly and then more rapidly (Fig. 15.6). Finally,
M levels off and reaches a constant value, called the saturation magneti-
zation, Ms. When H is reduced to zero, the magnetization retains a positive
value, called the remanent magnetization, or remanence, Mr. It is this
retained magnetization that is utilized in permanent magnets. The remanent

Figure 15.5. A ring-shaped solenoid with primary and secondary windings. The magnetic

flux lines are indicated by a dashed circle. Note, that a current can flow in the secondary

circuit only if the current (and therefore the magnetic flux) in the primary winding changes

with time. An on–off switch in the primary circuit may serve for this purpose.

Figure 15.6. Schematic representation of a hysteresis loop of a ferromagnetic material. The

dashed curve is for virgin material.
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magnetization can be removed by reversing the magnetic field strength to a
value Hc, called the coercive field. Solids having a large combination ofMr

and Hc are called hard magnetic materials (in contrast to soft magnetic
materials for which the area inside the loop of Fig. 15.6 is very small and the
slope dM/dH about the origin is quite steep). A complete cycle through
positive and negative H-values, as shown in Fig. 15.6, is called a hysteresis
loop. It should be noted that a second type of hysteresis curve is often used,
in which B (instead of M) is plotted versus H. No saturation value for B is
observed. (The residual induction Br at H ¼ 0 is called the retentivity.
Removal of Br requires a field which is called coercivity. However, rema-
nence and retentivity, as well as coercive field, coercive force, and coerciv-
ity are often used interchangeably.)

The saturation magnetization is temperature-dependent (Fig. 15.7(a)).
Above the Curie temperature, TC, ferromagnetics become paramagnetic.
Table 15.1 lists saturation magnetizations and Curie temperatures of some
elements. For ferromagnetics the Curie temperature, TC, and the constant y
in the Curie–Weiss law are nearly identical. A small difference exists,
however, because the transition from ferromagnetism to paramagnetism is
gradual, as can be seen in Fig. 15.7(b).

Figure 15.7. (a) Temperature dependence of the saturation magnetization of ferromagnetic

materials. (b) Enlarged area near the Curie temperature showing the paramagnetic Curie

point y (see Fig. 15.3) and the ferromagnetic Curie temperature TC.
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Piezomagnetism. The magnetization of ferromagnetics is also stress-
dependent (Fig. 15.8). As an example, a compressive stress increases the
magnetization for nickel, while a tensile stress reduces M and therefore m.
This effect is just the opposite in certain nickel–iron alloys (permalloy, see
Table 17.1) where a tensile stress increases M or m. In polycrystalline iron the
situation is more complex. At low fields, iron behaves like permalloy,
whereas at high fields it behaves similar to nickel.

The inverse of piezomagnetism is called magnetostriction, an effect
which describes a change in dimensions when a ferromagnetic substance is
exposed to a magnetic field. (Incidentally, the periodic dimensional change
caused by an alternating magnetic field produces the humming noise in
transformers and “ballasts” for fluorescence lights; see Section 17.2.) Mag-
netostriction is also observed in ferrimagnetic and antiferromagnetic materi-
als. Moreover, terbium-disprosium-iron displays magnetostriction which is
about 3 orders of magnitude larger than in iron and iron–nickel alloys.

Figure 15.8. Schematic representation of the effect of tensile and compressive stresses on

the magnetization behavior of (a) nickel and (b) iron. (Piezomagnetism).

Table 15.1. Saturation Magnetization at 0 K and Curie Temperature

(TC) for Some Ferromagnetic Materials.

MS0

Metal (A/m) (Maxwells/cm2) TC (K)

Fe 1.75 � 106 2.20 � 104 1043

Co 1.45 � 106 1.82 � 104 1404

Ni 0.51 � 106 0.64 � 104 631

Gd 5.66 � 106 7.11 � 104 289
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A few preliminary words should be said to explain the above-mentioned
observations. In ferromagnetic materials, the spins of unfilled d-bands
spontaneously align parallel to each other below TC, i.e., they align within
small domains without the presence of an external magnetic field
(Fig. 15.9). The individual domains are magnetized to saturation. The spin
direction in each domain is, however, different, so that the individual
magnetic moments for the material as a whole cancel each other and the
net magnetization is zero. An external magnetic field causes those domains
whose spins are parallel or nearly parallel to the external field to grow at the
expense of the unfavorably aligned domains. (See the transition from
Fig. 15.9(c) to Fig. 15.9(d).) When the entire crystal finally contains one
single domain, having all spins aligned parallel to the external field direc-
tion, the material is said to have reached technical saturation magnetization,
Ms. Nevertheless, if the external magnetic field is further increased a small,
additional rise in M is observed. This is caused by the forced alignment of
those spins which precess about the field direction due to thermal activation.
The largest magnetization (MS0) is obtained at 0 K. An increase in tempera-
ture progressively destroys the spontaneous alignment. The gradual transi-
tion from ferromagnetism to paramagnetism (Fig. 15.7(b)) is believed to be
due to the fact that, slightly above TC, small clusters of spins are still aligned
parallel to each other, a phenomenon which is calledmagnetic short-range
order.

There are a number of fundamental questions which come immediately to
mind; e.g., in the virgin state, why is the spontaneous division into many
individual domains apparently preferred to one single domain? To answer
this, let us assume for a moment that all electron spins in a crystal are indeed
aligned in parallel, Fig. 15.9(a). As a consequence, north and south poles
would be created on opposite ends of the solid. This would be energetically
unfavorable because it would be the source of a large external magnetic field.
The magnetostatic energy of this field can be approximately halved if the

Figure 15.9. (a) Spontaneous alignment of all spins in a single direction. (b) Division into

two magnetic domains having opposite spin directions. (c) Closure domains in a cubic

crystal. (d) Growth of a domain whose spins are parallel to an external magnetic field.

(The domain walls are not identical with the grain boundaries).
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crystal contains two domains that are magnetized in opposite directions. This
way, north and south poles are closer together and the external magnetic field
is confined to a smaller area (Fig. 15.9(b)). Further divisions into still smaller
and smaller domains with concomitant reductions in magnetostatic energies
lead, however, eventually to an optimal domain size. Apparently, an opposing
mechanism must be active. The energy involved for the latter has been
found to be the quantum mechanical exchange energy. As we will learn
in Section 16.2, this exchange energy causes adjacent spins to align parallel to
each other. It is this interplay between exchange energy, which demands
parallel spin alignment, and magnetostatic energy, which supports antiparallel
spins, that leads eventually to an energetically most favorable domain size
(which is about 1–100 mm).

A further reduction in magnetostatic energy can be obtained if the
magnetic flux follows a completely closed path within a crystal so that no
exterior poles are formed. Indeed, “closure” domain structures, as shown
in Fig. 15.9(c), are observed in cubic crystals.

Another question which needs to be answered pertains to whether the
flip from one spin direction into the other occurs in one step, i.e., between
two adjacent atoms, or instead over an extended range of atoms. Again, the
above-mentioned exchange energy, which supports a parallel spin alignment,
hinders a spontaneous flip-over. Instead, a gradual rotation over several
hundred atomic distances is energetically more favorable. The region between
individual domains in which the spins rotate from one direction into the next
is called a domain wall or a Bloch wall.

Finally, we may ask the question whether and how those domain walls
can be made visible. The most common method, devised by Bitter in 1931,
utilizes an aqueous suspension of very finely dispersed Fe3O4 particles
which is applied to the polished surface of a test material. These particles
are attracted to the domain wall endings and can then be observed as fine
lines under an optical microscope. Another method exploits the rotation of
the plane of polarization of reflected light from differently magnetized areas
(Kerr effect).

We mentioned above that an external magnetic field causes a movement
of the domain walls. The movement is, as a rule, not continuous, but occurs
most of the time in distinct jumps. This is known as the Barkhausen
effect, which utilizes an induction coil wound around a ferromagnetic rod.
The former is connected to an amplifier and a loudspeaker. Audible clicks
are heard when a permanent magnet approaches the iron rod. The wall
motions may be impeded by imperfections in the crystal, such as by
particles of a second phase, oxides, holes, or cracks. A second type of
impediment to free domain wall motion stems from dislocations, i.e., from
residual stresses in the crystal caused by grinding, polishing, or plastic
deformation.

Cold work enlarges the coercivity and the area within the hysteresis
loop. Further, cold work decreases the permeability and causes a clockwise
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rotation of the hysteresis curve. In short, mechanical hardness and magnetic
hardness parallel each other in many cases. (There exist exceptions, how-
ever, such as in the case of silicon additions to iron, which makes the
material magnetically softer and mechanically harder, see Section 17.2.3.)
Recrystallization and grain growth by annealing at suitable temperatures
relieve the stresses and restore the soft-magnetic properties.

We shall return to ferromagnetism in Section 15.4 and Chapter 16.

15.1.4. Antiferromagnetism

Antiferromagnetic materials exhibit, just as ferromagnetics, a spontaneous
alignment of moments below a critical temperature. However, the responsi-
ble neighboring atoms in antiferromagnetics are aligned in an antiparallel
fashion (Fig. 15.10). Actually, one may consider an antiferromagnetic
crystal to be divided into two interpenetrating sublattices, A and B, each
of which has a spontaneous parallel alignment of spins. Figure 15.10 depicts
the spin alignments for two manganese compounds. (Only the spins of the
manganese ions contribute to the antiferromagnetic behavior.) Figure 15.10
(a) implies that the ions in a given {110} plane possess parallel spin
alignment, whereas ions in the adjacent plane have antiparallel spins with
respect to the first plane. Thus, the magnetic moments of the solid cancel
each other and the material as a whole has no net magnetic moment.

Antiferromagnetic materials are paramagnetic above the Néel tempera-
ture TN, i.e., they obey there a linear T ¼ f (1/w) law (see Fig. 15.11). Below

Figure 15.10. Schematic representation of spin alignments for antiferromagnetics at 0 K.

(a) Display of a (100) plane of MnO. The gray (spin down) and black (spin up) circles

represent the Mn ions. The oxygen ions, (open circles) do not contribute to the antiferromag-

netic behavior. MnO has a NaCl structure. (b) Three-dimensional representation of the spin

alignment of manganese ions in MnF2. (The fluorine ions are not shown.) This figure

demonstrates the interpenetration of two manganese sub-lattices, A and B, having antiparal-

lel aligned moments.
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TN, however, the inverse susceptibility may rise with decreasing tempera-
ture. The extrapolation of the paramagnetic line to 1/w ¼ 0 yields a negative
y. Thus, the Curie–Weiss law (15.2) needs to be modified for antiferromag-
netics to read

w ¼ C

T � �yð Þ ¼
C

T þ y
: (15.4)

The Néel temperature is often below room temperature (Table 15.2). Most
antiferromagnetics are found among ionic compounds. They are insulators or
semiconductors. Essentially no practical application for antiferromagnetism
is known at this time. (See, however, the use of “canted” antiferromagnetics,
described in Section 17.5, which arematerials in which the magnetic moments
of the two sublattices are not completely antiparallel. This results in a small net
magnetization.)

15.1.5. Ferrimagnetism

Ferrimagnetic materials are of great technical importance. They exhibit a
spontaneous magnetic moment (Fig. 15.9) and hysteresis (Fig. 15.6) below a

Figure 15.11. Schematic representation of the temperature dependence of a polycrystalline

antiferromagnetic (a.f.) material.

Table 15.2. Characteristic Data for Some

Antiferromagnetic Materials.

Substance TN (K) �y (K)

MnO 116 610

MnF2 67 82

a-Mn 100 ?

FeO 198 570

NiO 523 �2000

CoO 293 330

Cr 310 ?
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Curie temperature, just as iron, cobalt, or nickel. In other words, ferrimag-
netic materials possess, similarly as ferromagnetics, small domains in which
the electron spins are spontaneously aligned in parallel. The main difference
from ferromagnetics is, however, that ferrimagnetics are ceramic materials
(oxides) and that they are poor electrical conductors. A large resistivity is
often desired for high-frequency applications (e.g., to prevent eddy currents
in cores of coils, see Chapter 17).

To explain the spontaneous magnetization in ferrimagnetics, Néel pro-
posed that two sublattices should exist in these materials (just as in anti-
ferromagnetics) each of which contains ions whose spins are aligned
parallel to each other. The crucial point is that each of the sublattices contain
different numbers of magnetic ions. This causes some of the magnetic
moments to remain uncancelled. As a consequence, a net magnetic moment
results. Ferrimagnetic materials can thus be described as imperfect antifer-
romagnetics. The crystallography of ferrites is rather complex. We defer its
discussion until later. For the time being, it suffices to know that there are
two types of lattice sites which are available to be occupied by the metal
ions. They are called A sites and B sites. (As before, oxygen ions do not
contribute to the magnetic moments).

We will now discuss as an example nickel ferrite, NiO · Fe2O3. The Fe
3+

ions are equally distributed between A and B sites (Fig. 15.12), and since
ions on A and B sites exhibit spontaneous magnetization in opposite direc-
tions, we expect overall cancellation of spins for these ions. Specifically,
atomic iron possesses six 3d-electrons and two 4s-electrons (3d64s2, see
Appendix 3). The Fe3+ ions are deprived of three electrons, so that five d-
electrons, or five spin moments per atom, remain in its outermost shell. This
is indicated in Fig. 15.12.

The electron configuration of nickel in its atomic state is 3d84s2. Two
electrons are stripped in the Ni2+ ion so that eight d-electrons per atom
remain. They are arranged, according to Hund’s rule (Fig. 15.4), to yield two
net magnetic moments (Fig. 15.12). All nickel ions are accommodated on
the B sites. Nickel ferrite is thus expected to have two uncancelled spins,
i.e., two Bohr magnetons (per formula unit), which is essentially observed
(see Table 15.3).

Figure 15.12. Distribution of spins upon A and B sites for the inverse spinel NiO · Fe2O3.

The spins within one site are arranged considering Hund’s rule (Fig. 15.4). The iron ions are

equally distributed among the A and B sites. The nickel ions are only situated on B sites. The

relevance of the number of ions per unit cell is explained later on in the text.
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The small discrepancy between experiment and calculation is believed to
be caused by some contributions of orbital effects to the overall magnetic
moment, and by a slight deviation of the distribution of metal ions on the A
and B sites from that shown in Fig. 15.12.

The unit cell of cubic ferrites contains a total of 56 ions. Some of the
metal ions are situated inside a tetrahedron formed by the oxygen ions.
These are the above-mentioned A sites (Fig. 15.13(a)). Other metal ions are
arranged in the center of an octahedron and are said to be on the B sites
(Fig. 15.13(b)). The A and B sites are nestled inside a unit cell (Fig. 15.13(c)).
Now, only 8 tetrahedral sites and 16 octahedral sites are occupied by metal
ions. In NiO · Fe2O3 twice as many iron ions as nickel ions are present. Eight
of the Fe3+ ions per unit cell occupy the A sites, eight of them occupy some of
the B sites and the eight Ni2+ ions fill the remaining B sites (Fig. 15.12). This
distribution is called an inverse spinel structure (in contrast to a normal
spinel, such as for ZnO · Fe2O3, in which all Fe3+ ions occupy the B sites).

The temperature dependence of most ferrimagnetics is very similar to
ferromagnetics (Fig. 15.14): The saturation magnetization decreases with

Table 15.3. Calculated and Measured Number of Bohr Magnetons

for Some Ferrites.

Ferrite Mn Fe Co Ni Cu

Calculated mB 5 4 3 2 1

Measured mB 4.6 4.1 3.7 2.3 1.3

Figure 15.13. Crystal structure of cubic ferrites. The small filled circles represent metal ions,

the large open or shaded circles represent oxygen ions: (a) tetrahedral or A sites; (b) octahedral

or B sites; and (c) one-fourth of the unit cell of a cubic ferrite. A tetrahedron and an octahedron

are marked. Adapted from J. Smit, and H.P.J. Wijn, Ferrites, Wiley, New York (1959).
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increasing temperature until it vanishes at a Curie temperature, TC. Above
TC, ferrimagnetics behave paramagnetically, having a nonlinear 1/w versus
T relationship.

In conclusion, this section described, in a mostly qualitative way, the
difference between dia-, para-, ferro-, antiferro-, and ferrimagnetism. In the
sections to come, we shall again pick up the different forms of magnetism
and deepen our understanding of these phenomena by following essentially
the train of thought brought forward by Langevin, Weiss, and Néel.

15.2. Langevin Theory of Diamagnetism

We shall now develop the classical theory of diamagnetism in a quantitative
way as put forward by Langevin at the turn of the 20th century.

We stated before that the orbital motion of an electron about its nucleus
induces a magnetic moment, mm. We compared the latter with a magnetic
moment which is created by a current passing through a loop-shaped wire.
This magnetic moment is, naturally, larger, the larger the current, I, and the
larger the area, A, of the orbit or loop:

mm ¼ I � A ¼ e

t
A ¼ e

s v=
A ¼ evpr2

2pr
¼ evr

2
(15.5)

(e is the electron charge, r is the radius of the orbit, s ¼ 2pr ¼ length of the
orbit, v ¼ velocity of the orbiting electrons, and t ¼ orbiting time).

We know that an external magnetic field accelerates (or decelerates) the
orbiting electrons, which results in a change in magnetic moment. We shall
now calculate this change in mm.

The external magnetic field induces an electric field (Section 15.1.1),
which, in turn, exerts an electrostatic force |F| on the orbiting electron,
which is

Figure 15.14. Schematic representation of the temperature dependence of the saturation

magnetization, Ms, and the reciprocal susceptibility for ferrites.
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F ¼ ma ¼ E e; (15.6)

where |E | is the electric field strength andm is the mass of the electron. From
this equation we obtain the acceleration of the electron,

a ¼ dv

dt
¼ E e

m
: (15.7)

To calculate the acceleration we need to know the electric field strength, E .
It is defined as the ratio of the induced voltage (or emf), Ve, per orbit length,
L, (see Section 7.1), i.e.,

E ¼ Ve

L
: (15.8)

As we said earlier, a change in an external magnetic flux, f, induces in a
loop-shaped wire an emf which opposes, according to Lenz’s law, the
change in flux:

Ve ¼ � df
dt

¼ � d m0HAð Þ
dt

(15.9)

(see (14.7a)). Thus, the acceleration of the electron becomes, by combining
(15.7)–(15.9),

dv

dt
¼ E e

m
¼ Vee

Lm
¼ � eAm0

Lm

dH

dt
¼ � epr2m0

2prm
dH

dt
¼ � erm0

2m

dH

dt
: (15.10)

A change in the magnetic field strength from 0 to H yields a change in the
velocity of the electrons: ðv2

v1

dv ¼ � erm0
2m

ðH
0

dH (15.11)

or

Dv ¼ � erm0H
2m

: (15.12)

This change in electron velocity yields in turn a change in magnetic
moment, as we see by combining (15.5) with (15.12):

Dmm ¼ eDvr
2

¼ � e2r2m0H
4m

: (15.13)

So far we tacitly assumed that the magnetic field is perpendicular to the
plane of the orbiting electron. In reality, however, the orbit plane varies
constantly in direction with respect to the external field. Thus, we have to
find an average value for Dmm which we expect to be slightly smaller than
that given in (15.13) since Dmm approaches zero when the field direction
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and the orbit plane become parallel. A simple calculation (see Problem 2)
yields

Dmm ¼ � e2r2m0H
6m

: (15.14)

One further consideration needs to be made. Up to now, we treated only one
electron. If we take all Z electrons into account (Z ¼ atomic number), then
the average change in magnetic moment per atom is

Dmm ¼ � e2Z�r2m0H
6m

; (15.15)

where �r is the average radius of all electronic orbits (�r � 1 Å). The
magnetization caused by this change of magnetic moment is, according to
(14.8),

M ¼ mm
V

� � e2Z�r2m0H
6mV

: (15.16)

This finally yields, together with (14.6), the diamagnetic susceptibility,

wdia ¼
M

H
¼ � e2Z�r2m0

6mV
¼ � e2Z�r2m0

6m

N0d
W

; (15.17)

where N0d/W is the number of atoms per unit volume (with N0 ¼ Avogadro
constant, d ¼ density, andW ¼ atomic mass. Inserting specific numbers into
(15.17) yields susceptibilities between�10�5 and�10�7, quite in agreement
with the experimental values listed in Table 14.1 (see Problem 1).

The quantities in (15.17) are essentially temperature-independent, which
is in agreement with the experimental observation that w does not vary much
with temperature for diamagnetic materials.

*15.3. Langevin Theory of (Electron Orbit)

Paramagnetism

We turn now to the atomistic theory of paramagnetism as brought forward
by Langevin. This theory should explain the observations made by Curie
and Weiss, i.e., it should explain the temperature dependence of the suscep-
tibility, as shown in Fig. 15.3. The Langevin theory does not treat spin
paramagnetism, which is, as we said before, responsible for the paramag-
netic behavior of many metals and which is only slightly temperature-
dependent.

Langevin postulated that the magnetic moments of the orbiting electrons
are responsible for paramagnetism. The magnetic moments of these
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electrons are thought to point in random directions. An external magnetic
field tries to align the individual magnetic moments, mm, parallel to the field
direction. Once aligned, the magnetic moments have a potential energy, Ep,
that is naturally greater the larger the field strength,H, and the largermm. As
a matter of fact, the maximum potential energy is reached when the mag-
netic moments are completely aligned, i.e., when mm is parallel to H. In
general, the potential energy is

Ep ¼ �mmm0H cos a; (15.18)

where a is the angle between field direction and mm (see Fig. 15.15). The
sign in (15.18) defines the direction in which mm points with respect to H.

As we explained earlier, thermal agitation tends to counteract the align-
ment caused by the external magnetic field. The randomizing effect obeys,
as usual, the laws of Boltzmann statistics. The probability of an electron to
have the energy Ep is thus proportional to exp(�Ep/kBT), where kB is the
Boltzmann constant and T is the absolute temperature.

Let us assume the electrons to be situated at the center of a sphere. The
vectors, representing their magnetic moments, may point in all possible
directions. Let us consider at present a small number, dn, of these vectors
per unit volume only. They are thought to point in the direction interval da
and thus penetrate an area, dA, situated at the surface of the unit sphere; see
Fig. 15.16. This infinitesimal number dn of magnetic moments per unit
volume which have the energy Ep is

dn ¼ const: dA exp �Ep kB T=
� �

: (15.19)

We relate the area dA to the angle interval da, which yields, because of
trigonometric considerations (see Problem 2),

dA ¼ 2pR2 sin a da; (15.20)

where R ¼ 1 is the radius of the unit sphere. Combining (15.18)–(15.20)
gives

Figure 15.15. Schematic representation of the magnetic moment of an electron that has been

partially aligned by an external magnetic field.
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dn ¼ const: 2p sin a da exp
mmm0H
kBT

cos a
� �

: (15.21)

We use for abbreviation

x ¼ mmm0H
kBT

: (15.22)

Integrating (15.21) provides

n ¼ 2p const:
ðp
0

sin a exp x cos að Þ da; (15.23)

which yields

const: ¼ n

2p
Ð p
0
sin a exp x cos að Þ da : (15.24)

Now, the magnetizationM is, according to (14.8), the magnetic moment mm
per unit volume. In our case, the total magnetization must be the sum of all
individual magnetic moments. And, if we consider the magnetic moments in
the field direction, then the magnetization is

M ¼
ðn
0

mm cos a dn; (15.25)

H

dA R

a

dα

Figure 15.16. Schematic representation of a unit sphere in whose center the electrons are

thought to be located.
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which yields, with (15.21),

M ¼ const: 2pmm

ðp
0

cos a sin a exp x cos að Þ da; (15.26)

and, with (15.24),

M ¼
nmm

ðp
0

cos a sin a exp x cos að Þ da
ðp
0

sin a exp x cos að Þ da
: (15.27)

This function can be brought into a standard form by setting x ¼ cos a and
dx ¼ �sin a da (see Problem 5), which yields

M ¼ nmm coth z� 1

z

� �
¼ nmm

z
3
� z3

45
þ 2z5

945
� � � �

� �
(15.28)

where the expression in parenthesis is called the Langevin function L(z).
The term z ¼ mmm0H/kBT is usually much smaller than one (Problem 6), so
that (15.28) reduces to

M ¼ nmm
z
3
¼ nm2mm0H

3kBT
; (15.29)

which yields, for the susceptibility (14.6) at not-too-high field strengths,

worbitpara ¼ M

H
¼ nm2mm0

3kB

1

T
� C � 1

T
: (15.30)

This is Curie’s law (15.1), which expresses that the susceptibility is
inversely proportional to the temperature. The Curie constant is thus

C ¼ nm2mm0
3kB

: (15.31)

Let us now discuss the results of the Langevin theory for electron-orbit
paramagnetism. If we insert actual values in (15.30), we obtain susceptibil-
ities that are small and positive, which is quite in agreement with experi-
mental findings (see Table 14.1 and Problem 7).

The Langevin theory for paramagnetism yields that for a given tempera-
ture and for small values of the field strength the magnetization is a linear
function of H (Fig. 15.17 and Equation (15.29)). For large field strengths
the magnetization eventually reaches a saturation value, Ms. (This behavior
is quite similar to the one observed for virgin iron or other ferromagnetics.)
It indicates that eventually a limit is reached at which all magnetic
moments are aligned to their maximum value. The Langevin model yields
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a temperature dependence of the susceptibility as found experimentally by
Curie for many substances. The 1 w= dependence of T is characteristic for
electron-orbital paramagnetism.

One can refine the Langevin result by applying quantum theory. This was
done by Brillouin, who took into account that not all values for the magnetic
moment (or the angular moment) are allowed, i.e., that the angular moments
are quantized in an external magnetic field (Appendix 3). This restriction is
termed space quantization. The calculation leads to the Brillouin function,
which improves the quantitative agreement between theory and experiment.

Finally, we know from Section 15.1.2 that the temperature dependence of
the susceptibility for many solids does not always obey the Curie (or the
Curie–Weiss) law. Actually, the susceptibility for most metals and alloys
varies only very little with temperature. We have learned that in these solids
the spin paramagnetism is predominant, which is not considered in the
atomistic Langevin model. Quantum theory can explain the relative temper-
ature insensitivity of spin paramagnetism, as we shall see in Section 16.1.

*15.4. Molecular Field Theory

So far, we implied that the magnetic field, which tries to align the magnetic
moments, stems from an external source only. This assumption seems to
be not always correct. Weiss observed that some materials obey a somewhat
modified Curie law, as shown in Fig. 15.3(b) and (c). He postulated,
therefore, that the magnetic moments of the individual electrons (or
atoms) interact with each other. In this case, the total magnetic field, Ht,
acting on a magnetic moment, is thought to be composed of two parts,
namely, the external field, He, and the molecular field, Hm,

Ht ¼ He þ Hm; (15.32)

Figure 15.17. Schematic representation of the Langevin function L(z) ¼ coth z � 1/z,
where x ¼ mmm0H/kBT.
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where

Hm ¼ gM (15.33)

contains the molecular field constant, g. The susceptibility is calculated by
using (15.30), (15.32), and (15.33)

w ¼ M

Ht

¼ M

He þ gM
¼ C

T
: (15.34)

Solving (15.34) for M yields

M ¼ HeC

T � gC
: (15.35)

Finally, we obtain

w ¼ M

He

¼ C

T � gC
¼ C

T � y
; (15.36)

which is the experimentally observed Curie–Weiss law (15.2). If y is found
to be positive, then the interactions of the individual magnetic moments
reinforce each other, i.e., the magnetic moments align parallel. In this case
the susceptibility becomes larger, as can be deduced from (15.36).

We now attempt to interpret ferromagnetism by making use of the
molecular field theory. We already know from Section 15.1.3 that, in ferro-
magnetic materials, the neighboring magnetic moments interact with each
other, which leads to a spontaneous magnetization in small domains below
TC. Weiss postulated that the above-introduced internal or molecular field is
responsible for this parallel alignment of spins, and considered ferromag-
netics to be essentially paramagnetics having a very large molecular field.
In essence, he applied the Langevin theory to ferromagnetics. In the light of
quantum theory, the molecular field is essentially the exchange force, as we
shall see in Section 16.2.

We follow the train of thought put forward by Weiss. Let us consider the
case for no external magnetic field. Then the spins are only subjected to the
molecular field Hm. This yields for the Langevin variable z (see (15.22)),
with (15.33),

z ¼ mmm0Hm

kBT
¼ mmm0gM

kBT
; (15.37)

and provides for the magnetization by rearranging (15.37):

M ¼ kBT

mmm0g
z: (15.38)

We note from (15.38) that for the present case the magnetization is a
linear function of z with the temperature as a proportionality factor (see
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Fig. 15.18). The intersection I of a given temperature line with the Langevin
function L zð Þ represents the finite spontaneous magnetization, MI, at this
temperature.3 With increasing temperature, the straight lines in Fig. 15.18
increase in slope, thus decreasing the point of intercept, I, and therefore the
value for the spontaneous magnetization. Finally, at the Curie temperature,
TC, no intercept, i.e., no spontaneous magnetization, is present anymore.
The slope kBT/mmm0g in (15.38) is then identical to the slope of the Langevin
function near the origin, which is nmm/3 ¼ M/3 according to (15.29) and
(14.8). This yields, for TC,

kBTC
mmm0g

¼ M

3
: (15.39)

A value for the molecular field constant, g, can then be calculated by
measuring the Curie temperature and inserting TC into the rearranged
equation (15.39):

g ¼ 3kBTC
mmm0M

: (15.40)

This yields, for the molecular magnetic field strength (15.33),

Hm ¼ gM ¼ 3kBTC
mmm0

: (15.41)

Numerical values for the molecular field are around 109 A/m (107 Oe) (see
Problem 10). This hypothetical field is several orders of magnitude larger

Figure 15.18. Langevin function L zð Þ, i.e., (15.28) and plot of (15.38) for three temperatures.

3The intersection at the origin is an unstable state, as can easily be seen: If the ferromagnetic

material is exposed to, say, the magnetic field of the earth, its magnetization will be, say,M1. This

causes a molecular field of the same value (M1
0) which in turn magnetizes the material to the value

M2, and so on until the point I is reached.

370 IV. Magnetic Properties of Materials



than any steady magnetic field that can be produced in a laboratory. We
should note that even though the molecular field theory gives some expla-
nation of ferromagnetism, it cannot predict which solids are ferromagnetic.
Quantum theory extends considerably our understanding of this matter.

We mention in closing that the molecular field theory can also be applied
to antiferromagnetics and to ferrimagnetic materials. As we know from
Section 15.1.4, we need to consider in this case two interpenetrating sub-
lattices, A and B, each having mutually antiparallel aligned spins. This
means that we now have to consider a molecular field, HmA, acting on the
A ions which stems from the magnetization. MB, of the B ions. Since the
magnetization of A and B ions point in opposite directions, the molecular
field from an adjacent ion is now negative. The calculations, which follow
similar lines as shown above, yield equation (15.4), i.e., the Curie–Weiss
law for antiferromagnetics.

Problems

1. Calculate the diamagnetic susceptibility of germanium. Take �r ¼ 0.92 Å. (Note: Check
your units! Does w come out unitless? Compare your result with that listed in Table 14.1.)

2. In the text, we introduced an average value for the magnetic moment, which we said is

somewhat smaller than the maximal value for mm||H. Calculate this Dmm. (Hint: Con-
sider all orbits projected on a plane perpendicular to the field direction and calculate thus

an average value for the square of the orbit radius. Refer to the figure below. Show at first

that dA ¼ 2pR2 sin a da.)

dA

R

moH

r

df

da

rdf

dA′

Rda

a

3. Convince yourself that the units in (15.15), (15.16), (15.17), and (15.5) are consistent

with the SI system.
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4. Confirm the numerical value of the Bohr magneton listed in (15.3) and confirm the unit

given there.

5. Evaluate the function Ð p
0
cos a sin a exp x cos að Þ daÐ p
0
sin a exp x cos að Þ da

by substituting x ¼ cos a and dx ¼ �sin a da. Compare your result with (15.28).

6. Calculate a value for x in the Langevin function assuming mm ¼ 3mB,H ¼ 8� 105 A/m,

and room temperature.

7. Calculate the susceptibility for a paramagnetic substance at room temperature, assuming

mm ¼ mB and 1023 magnetic moments per cubic centimeter. Compare your result with

Table 14.1.What is the implication of n ¼ 1023 magnetic moments per cubic centimeter?

8. Estimate the number of Bohr magnetons for iron and cobalt ferrite from their electron

configuration, as done in the text. Compare your results with those listed in Table 15.3.

Explain the discrepancy between experiment and calculation. Give the chemical formula

for these ferrites.

9. Explain the term ‘mixed ferrites”. Explain also why the lodestone, Fe3O4, is a ferrimag-

netic material. Give its chemical formula.

10. Calculate the molecular field for iron (mm ¼ 2.22 mB, TC ¼ 1043 K).

11. You are given two identical rectangular iron rods. One of the rods is a permanent

magnet, the other is a plain piece of iron. The rods are now placed on a wooden table.

Using only the two rods and nothing else, you are asked to determine which is which.

Can this be done?

12. Explain the “suspension effect” of superconductors mentioned in Section 15.1.1.

(Hint: Refer to Fig. 15.1 and keep in mind that if the bar magnet is moved in the opposite

direction from that shown, the current direction in the loop is reversed.)

13. Computer problem. Plot the Langevin function using various parameters. For which

values of H does one obtain saturation magnetization?
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CHAPTER 16

Quantum Mechanical Considerations

We have seen in the previous chapter that the classical electromagnetic
theory is quite capable of explaining the essentials of the magnetic proper-
ties of materials. Some discrepancies between theory and experiment have
come to light, however, which need to be explained. Therefore, we now
refine and deepen our understanding by considering the contributions which
quantum mechanics provides to magnetism. We will see in the following
that quantum mechanics yields answers to some basic questions. We will
discuss why certain metals that we expect to be paramagnetic are in reality
diamagnetic; why the paramagnetic susceptibility is relatively small for
most metals; and why most metals do not obey the Curie–Weiss law. We
will also see that ferromagnetism can be better understood by applying
elements of quantum mechanics.

16.1. Paramagnetism and Diamagnetism

We mentioned at the beginning of the previous chapter that, for most solids,
the dominant contribution to paramagnetism stems from the magnetic
moment of the spinning electrons. We recall from Chapter 6 that each
electron state may be occupied by a maximum of two electrons, one having
positive spin and the other having negative spin (called spin up and spin
down). To visualize the distribution of spins, we consider an electron band
to be divided into two halves, each of which is thought to be occupied under
normal conditions by an identical amount of electrons of opposite spin, as
shown in Fig. 16.1(a). Now, if we apply an external magnetic field to a free
electron solid, some of the electrons having unfavorably oriented spins tend
to change their field direction. This can only be achieved, however, when the
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affected electrons assume an energy which is higher than the Fermi energy,
EF, since all lower electron states of opposite spin direction are already
occupied (Fig. 16.1(b)). Thus, theoretically, the transfer of electrons from
one half-band into the other would cause two individual Fermi energies (EF

0
and EF

00) to occur. Of course, this is not possible. In reality the two band
halves shift relative to each other until equilibrium, i.e., a common Fermi
energy, is reached (Fig. 16.1(c)).

Now, we recall from Chapter 6 that the electron distribution within a band
is not uniform. We rather observe a parabolic distribution of energy states, as
shown in Fig. 6.4. Thus, we refine our treatment by replacing Fig. 16.1(c) with
Fig. 16.2, which depicts the density of states of the two half-bands. We
observe a relatively large Z(E) near EF. Thus, a small change in energy
(provided by the external magnetic field) may cause a large number of
electrons to switch to the opposite spin direction.

We calculate now the susceptibility from this change in energy, DE. It is
evident that DE is larger, the larger the external magnetic field strength |H|,
and the larger the magnetic moment of the spinning electrons |mms|, i.e.,

DE ¼ m0H mms: (16.1)

Figure 16.2. Schematic representation of the density of states ZðEÞ in two half-bands. The

shift of the two half-bands occurs as a result of an external magnetic field. Free electron case.

(See also Fig. 16.1(c).) The area DN equals DE · Z(E).

Figure 16.1. Schematic representation of the effect of an external magnetic field on the

electron distribution in a partially filled electron band, (a) without magnetic field, (b) and

(c) with magnetic field.

374 IV. Magnetic Properties of Materials



as mentioned already, the number of electrons. DN, transferred from the spin
down into the spin up direction depends on the density of states at the Fermi
energy, Z(EF), and the energy difference, DE (Fig. 16.2), i.e.,

DN ¼ DEZ EFð Þ ¼ m0H mmsZ EFð Þ: (16.2)

The magnetization |M| of a solid, caused by an external magnetic field is,
according to (14.8),

M ¼ mm
V

: (16.3)

The magnetization is, of course, larger, the more electrons are transferred
from spin down into spin up states. We thus obtain, for the present case,

M ¼ mms

V
DN ¼ m2msm0HZ EFð Þ

V
; (16.4)

which yields for the susceptibility

w ¼ M

H
¼ m2msm0Z EFð Þ

V
: (16.5)

The spin magnetic moment of one electron equals one Bohr magneton, mB
(see below). Thus, (16.5) finally becomes

wspinpara ¼
m2Bm0Z EFð Þ

V
: (16.6)

The susceptibilities for paramagnetic metals calculated with this equation
agree fairly well with those listed in Table 14.1 (see Problem 1). Thus,
(16.6) substantiates, in essence, that only the electrons close to the Fermi
energy are capable of realigning in the magnetic field direction. If we
postulate instead that all valence electrons contribute to wpara we would
wrongfully calculate a susceptibility which is two or even three orders of
magnitude larger than that obtained by (16.6).

It is important to realize that the ever-present diamagnetism makes a
sizable contribution to the overall susceptibility, so that w for metals might
be positive or negative depending on which of the two components pre-
dominates. This will be elucidated now in a few examples.

To begin with, we discuss beryllium, which is a bivalent metal having a
filled 2s-shell in its atomic state (see Appendix 3). However, in the crystal-
line state, we observe band overlapping (see Chapter 6), which causes some
of the 2s-electrons to spill over into the 2p-band. They populate the very
bottom of this band (see Fig. 16.3). Thus, the density of states at the Fermi
level, and consequently, wpara, is very small. In effect, the diamagnetic
susceptibility predominates, which makes Be diamagnetic.

In order to understand why copper is diamagnetic, we need to remember
that for this metal the Fermi energy is close to the band edge (Fig. 5.22).
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Thus, the density of states near EF and the paramagnetic susceptibility (16.6)
are relatively small. Furthermore, we have to recall that the diamagnetic
susceptibility (15.17),

wdia ¼ � e2Zr2m0
6mV

; (16.7)

is proportional to the square of an electron orbit radius, r, and proportional
to the total number of electrons, Z, in that orbit. Copper has about ten
3d-electrons, which makes Z � 10. Further, the radius of d-shells is fairly
large. Thus, for copper, wdia is large because of two contributions. The
diamagnetic contribution predominates over the paramagnetic one. As a
result, copper is diamagnetic. The same is true for silver and gold and
the elements which follow copper in the Periodic Table, such as zinc and
gallium.

Intrinsic semiconductors, which have filled valence bands and whose
density of states at the top of the valence band is zero (Fig. 6.6) have,
according to (16.6), no paramagnetic susceptibility and are therefore dia-
magnetic. However, a small paramagnetic contribution might be expected
for highly doped extrinsic semiconductors, which have, at high enough
temperatures, a considerable number of electrons in the conduction band
(see Chapter 8).

We turn now to the temperature dependence of the susceptibility of
metals. The relevant terms in both (16.6) as well as (16.7) do not vary
much with temperature. Thus, it is conceivable that the susceptibility of
diamagnetic metals is not temperature-dependent, and that the susceptibility
of paramagnetic metals often does not obey the Curie–Weiss law. In fact,
the temperature dependence of the susceptibility for different paramagnetic
metals has been observed to decrease, to increase, or to remain essentially
constant (Fig. 16.4). However, nickel (above TC) and rare earth metals obey
the Curie–Weiss law reasonably well.

At the end of this section we remind the reader that in dilute gases (and
also in rare earth metals and their salts) a second component contributes to

Figure 16.3. Overlapping of 2s- and 2p-bands in Be and the density of states curve for the

2p-band.
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paramagnetism. It stems from a magnetic moment which is caused by the
angular momentum of the orbiting electrons (Section 15.3). We mentioned
already in Section 15.1 that this contribution is said to be “quenched”
(nonexistent) in most solids.

Finally, we want to find a numerical value for the magnetic moment of
an orbiting electron from a quantum-mechanical point of view. We recall
from (15.5):

mm ¼ evr

2
: (16.8)

Now, quantum theory postulates that the angular momentum, mvr, of an
electron is not continuously variable but that it rather changes in discrete
amounts of integer multiples of \ only, i.e.,

mvr ¼ n\ ¼ nh

2p
: (16.9)

If one combines (16.8) with (16.9) one obtains

mm ¼ enh

4pm
: (16.10)

Using n ¼ 1 for the first electron orbit (ground state) yields, for the mag-
netic moment of an orbiting electron,

mm ¼ eh

4pm
: (16.11)

It was found experimentally and theoretically that the magnetic moment of
an electron due to orbital motion as well as the magnetic moment of the

Figure 16.4. Temperature dependence of the paramagnetic susceptibility for vanadium,

chromium, and aluminum in arbitrary units. From Landolt–B€ornstein, Zahlenwerte der
Physik, 6th ed., Vol. II/9, Springer-Verlag, Berlin (1962).
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spinning electron are identical. This smallest unit of the magnetic moment is
given by (16.11) and is called the Bohr magneton,

mB ¼ eh

4pm
¼ 9:274� 10�24 J

T

� �
; (16.12)

which we already introduced without further explanation in (15.3).

16.2. Ferromagnetism and Antiferromagnetism

The ferromagnetic metals iron, cobalt, and nickel are characterized by
unfilled d-bands (see Appendix 3). These d-bands overlap the next higher
s-band in a similar manner as shown in the band structure of Fig. 5.22. The
density of states for a d-band is relatively large because of its potential to
accommodate up to ten electrons. This is schematically shown in Fig. 16.5,
along with the Fermi energies for iron, cobalt, nickel, and copper. Since the
density of states for, say, nickel is comparatively large at the Fermi energy,
one needs only a relatively small amount of energy to transfer a considerable
number of electrons from spin down into spin up configurations, i.e.,
from one half-band into the other. We have already discussed in the
previous section this transfer of electrons under the influence of an external
magnetic field (Fig. 16.1). Now, there is an important difference between
paramagnetics and ferromagnetics. In the former case, an external energy
(i.e., the magnetic field) is needed to accomplish the flip in spin alignment,
whereas for ferromagnetic materials the parallel alignment of spins occurs

Figure 16.5. Schematic representation of the density of states for 4s- and 3d-bands and the

Fermi energies for iron, cobalt, nickel, and copper. The population of the bands by the ten

nickel (3d þ 4s)-electrons is indicated by the shaded area.
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spontaneously in small domains of about 1–100 mm diameter. Any theory of
ferromagnetism must be capable of satisfactorily explaining the origin of
this energy which transfers electrons into a higher energy state.

The energy in question was found to be the exchange energy. It is “set
free” when equal atomic systems are closely coupled, and in this way
exchange their energy. This needs some further explanation.

We digress for a moment and compare two ferromagnetic atoms with
two identical pendula that are interconnected by a spring. (The spring
represents the interactions of the electrical and magnetic fields.) If one of
the pendula is deflected, its amplitude slowly decreases until all energy has
been transferred to the second pendulum, which then in turn transfers its
energy back to the first one and so on. Thus, the amplitudes decrease and
increase periodically with time, as shown in Fig. 16.6. The resulting
vibrational pattern is similar to that of two violin strings tuned at almost
equal pitch. A mathematical expression for this pattern is obtained by
adding the equations for two oscillators having similar frequencies, o1

and o2,

X1 ¼ b sino1t; (16.13)

X2 ¼ b sino2t; (16.14)

which yields

X1 þ X2 ¼ X ¼ 2b cos
o1 � o2

2
t � sino1 þ o2

2
t: (16.15)

Equation (16.15) provides two frequencies, (o1 � o2)/2 and (o1 + o2)/2,
which can be identified in Fig. 16.6. The difference between the resulting
frequencies is larger, the stronger the coupling. If the two pendula vibrate in
a parallel fashion, the “pull” on the spring, i.e., the restoring force, kx, is
small. As a consequence, the frequency

n0 ¼ 1

2p

ffiffiffiffi
k
m

r
(16.16)

(see Appendix 1) is likewise small and is smaller than for independent
vibrations. (On the other hand, antisymmetric vibrations cause large values
of k and n0.) This classical example demonstrates that two coupled and

Figure 16.6. Amplitude modulation resulting from the coupling of two pendula. The vibra-

tional pattern shows beats, similarly as known for two oscillators that have almost identical

pitch. Compare with Fig. 2.1.

16. Quantum Mechanical Considerations 379



symmetrically vibrating systems may have a lower energy than two individu-
ally vibrating systems would have.

Quantum mechanics treats ferromagnetism in a similar way. The exact
calculation involving many atoms is, however, not a trivial task. Thus, one
simplifies the problem by solving the appropriate Schr€odinger equation for
two atoms only. The potential energy in the Schr€odinger equation then
contains the exchange forces between the nuclei a and b, the forces between
two electrons 1 and 2, and the interactions between the nuclei and their
neighboring electrons. This simplification seems to be justified, because the
exchange forces decrease rapidly with distance.

The calculation, first performed by Slater and Bethe, leads to an exchange
integral,

Iex ¼
ð
cað1Þ cbð2Þ cað2Þcbð1Þ

1

rab
� 1

ra2
� 1

rb1
þ 1

r12

� �
dt: (16.17)

A positive value for Iex means that parallel spins are energetically more
favorable than antiparallel spins (and vice versa). We see immediately from
(16.17) that Iex becomes positive for a small distance r12 between the
electrons, i.e., a small radius of the d-orbit, rd. Similarly, Iex becomes
positive for a large distance between the nuclei and neighboring electrons
ra2 and rb1.

Iex is plotted in Fig. 16.7 versus the ratio rab/rd. The curve correctly
separates the ferromagnetics from manganese, which is not ferromagnetic.
Figure 16.7 suggests that if the interatomic distance rab in manganese is
increased (e.g., by inserting nitrogen atoms into the manganese lattice), the
crystal thus obtained should become ferromagnetic. This is indeed observed.
The ferromagnetic alloys named after Heusler, such as Cu2MnAl or
Cu2MnSn, are particularly interesting in this context because they contain
constituents which are not ferromagnetic, but all contain manganese.

The Bethe–Slater curve (Fig. 16.7) suggests that cobalt should have
the highest, and nickel (and the rare earth elements) the lowest Curie

Figure 16.7. Exchange integral, Iex, versus the ratio of interatomic distance, rab, and the

radius of an unfilled d-shell. The position of the rare earth elements (which have unfilled

f-shells) are also shown for completeness.
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temperature among the ferromagnetics because of the magnitude of their Iex
values. This is indeed observed (Table 15.1). Overall, quantum theory is
capable of explaining some ferromagnetic properties that cannot be under-
stood with classical electromagnetic theory.

We turn now to a discussion on the number of Bohr magnetons in
ferromagnetic metals as listed in Table 16.1. Let us consider nickel as an
example and reinspect, in this context, Fig. 16.5. We notice that because of
band overlapping the combined ten (3d þ 4s)-electrons occupy the lower
s-band and fill, almost completely, the 3d-band. It thus comes as no surprise
that nickel behaves experimentally as if the 3d-band is filled by 9.4 electrons.
To estimate mB we need to apply Hund’s rule (Fig. 15.4), which states that the
electrons in a solid occupy the available electron states in a manner which
maximizes the imbalance of spin moments. For the present case, this rule
would suggest five electrons with, say, spin up, and an average of 4.4 elec-
trons with spin down, i.e., we obtain a spin imbalance of 0.6 spin moments or
0.6 Bohr magnetons per atom (see Table 16.1). The average number of Bohr
magnetonsmay also be calculated from experimental values of the saturation
magnetization,Ms0 (see Table 15.1). Similar considerations can be made for
the remaining ferromagnetics as listed in Table 16.1.

We now proceed one step further and discuss the magnetic behavior of
certain nickel-based alloys. We use nickel–copper alloys as an example.
Copper has one valence electron more than nickel. If copper is alloyed to
nickel, the extra copper electrons progressively fill the d-band and therefore
compensate some of the unsaturated spins of nickel. Thus, the magnetic
moment per atom of this alloy (and also its Curie temperature) is reduced.
Nickel lacks about 0.6 electrons per atom for complete spin saturation,
because the 3d-band of nickel is filled by only 9.4 electrons (see above).
Thus, about 60% copper atoms are needed until the magnetic moment (and
mB) of nickel has reached a zero value (Fig. 16.8). Nickel–copper alloys,
having a copper concentration of more than about 60% are consequently no
longer ferromagnetic; one would expect them to be diamagnetic. (In reality,
however, they are strongly paramagnetic, probably owing to small traces of
undissolved nickel.)

Zinc contributes about two extra valence electrons to the electron gas
when alloyed to nickel. Thus, we expect a zero magnetic moment at about

Table 16.1. Magnetic Moment, mm, at 0 K for

Ferromagnetic Metals.

Metal mm

Fe 2.22 mB
Co 1.72 mB
Ni 0.60 mB
Gd 7.12 mB
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30 at.% Zn, etc. Palladium, on the other hand, has the same number of
valence electrons as nickel and thus does not change the magnetic moment
of the nickel atoms when alloyed to nickel. The total magnetization (14.8) of
the alloy is, of course, diluted by the nonferromagnetic palladium. The same
is also true for the other alloys.

We conclude our discussion by adding a few interesting details. The rare
earth elements are weakly ferromagnetic. They are characterized by unfilled
f-shells. Thus, their electronic structure and their density of states have
several features in common with iron, cobalt, and nickel. They have a
positive Iex (see Fig. 16.7).

Copper has one more valence electron than nickel, which locates its
Fermi energy slightly above the d-band (Fig. 16.5). Thus, the condition
for ferromagnetism, i.e., an unfilled d- or f-band is not fulfilled for copper.
The same is true for the following elements such as zinc or gallium.

We noted already that manganese is characterized by a negative value of
the exchange integral. The distance between the manganese atoms is so
small that their electron spins assume an antiparallel alignment. Thus,
manganese and many manganese compounds are antiferromagnetic (see
Fig. 15.10). Chromium has also a negative Iex and thus is likewise antifer-
romagnetic (see Table 15.2).

Problems

1. The density of states near the Fermi surface of 1 cm3 of a paramagnetic metal at T ¼ 0 K

is approximately 5 � 1041 energy states per Joule. Calculate the volume susceptibility.

Compare your value with those of Table 14.1. What metal could this value represent?

Explain possible discrepancies between experiment and calculation.

Figure 16.8. Magnetic moment per nickel atom as a function of solute concentration.
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2. Derive (16.15) by adding (16.13) and (16.14).

3. Compare the experimental saturation magnetization. Ms0 (Table 15.1 third column), with

the magnetic moment, mm, at 0 K for ferromagnetic metals (Table 16.1). What do you

notice? Estimate the degree of d-band filling for iron and cobalt.

4. From the results obtained in Problem 3 above, calculate the number of Bohr magnetons

for crystalline (solid) iron and cobalt and compare your results with those listed in

Table 16.1. What is the number of Bohr magnetons for an iron atom and a cobalt atom?

What is the number of Bohr magnetons for iron and cobalt ferrite?

5. Refer to Figure 16.1(b). Why are two different Fermi energies not possible within the

same metal?
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CHAPTER 17

Applications

17.1. Introduction

The production of ferro- and ferrimagnetic materials is a large-scale opera-
tion, measured in quantity as well as in currency. (This is in contrast to the
products of the computer industry, where the price of the material that goes
into a chip is a minute fraction of the device fabrication cost.) As an
example, the annual sales of so-called electrical steel, used for electromotors
and similar devices, reach the millions of tons and their market values are
in the hundreds of millions of dollars. Other large-scale production items
are permanent magnets for loudspeakers, etc., and magnetic recording
materials. The following sections will give some impression about the
technology (i.e., mostly materials science) which has been developed to
improve the properties of magnetic materials.

17.2. Electrical Steels (Soft Magnetic Materials)

Electrical steel is used to multiply the magnetic flux in the cores of electro-
magnetic coils. These materials are therefore widely incorporated in many
electrical machines in daily use. Among their applications are cores of
transformers, electromotors, generators, or electromagnets.

In order to make these devices most energy efficient and economical, one
needs to find magnetic materials which have the highest possible permeabil-
ity (at the lowest possible price). Furthermore, magnetic core materials
should be capable of being easily magnetized or demagnetized. In other
words, the area within the hysteresis loop (or the coercive force, Hc) should

R.E. Hummel, Electronic Properties of Materials 4th edition,
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be as small as possible (Fig. 15.6). We remember that materials whose
hysteresis loops are narrow are called soft magnetic materials.

Electrical steels are classified by some of their properties, for example, by
the amount of their core losses, by their composition, by their permeability,
and whether or not they are grain-oriented. We shall discuss these different
properties in detail.

The energy losses which are encountered in electromotors (efficiency
between 50% and 90%) or transformers (efficiency 95–99.5%) are estimated
to be, in the United States, as high as 3 � 1010 kWh per year, which is
equivalent to the energy consumption by about 3 million households, and
which wastes about $2 � 109 per year. If by means of improved design of
the magnetic cores, the energy losses would be reduced by only 5%, one
could save about $108 per year and several electric power stations. Thus,
there is a clear incentive for improving the properties of magnetic materials.

17.2.1. Core Losses

The core loss is the energy that is dissipated in the form of heat within the
core of electromagnetic devices when the core is subjected to an alternating
magnetic field. Several types of losses are known, among which the eddy
current loss and the hysteresis loss contribute the most. Typical core losses
are between 0.3 and 3 watts per kilogram of core material (Table 17.1).

Let us first discuss the eddy current. Consider a transformer whose
primary and secondary coils are wound around the legs of a rectangular
iron yoke (Fig. 17.1(a)). An alternating electric current in the primary coil
causes an alternating magnetic flux in the core, which, in turn, induces in the
secondary coil an alternating electromotive force, Ve, proportional to df/dt,
see (14.7) and (15.9),

Ve / � df
dt

¼ �A
dB

dt
: (17.1)

Concurrently, an alternating emf is induced within the core itself, as shown
in Fig. 17.1(a). This emf gives rise to the eddy current, Ie. The eddy current
is larger, the larger the permeability, m (because B ¼ m0m · H), the larger the
conductivity, s, of the core material, the higher the applied frequency, and
the larger the cross-sectional area, A, of the core. (A is perpendicular to the
magnetic flux, f, see Fig. 17.1(a).) We note in passing that, particularly at
high frequencies, the eddy current shields the interior of the core from the
magnetic field, so that only a thin exterior layer of the core contributes to the
flux multiplication (skin effect).

In order to decrease the eddy current, several remedies are possible.
First, the core can be made of an insulator in order to decrease s. Ferrites
are thus effective but also expensive materials to build magnetic cores
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(see Section 15.1.5). They are indeed used for high-frequency applications.
Second, the core can be manufactured from pressed iron powder whereby
each particle (which is about 50–100 mm in diameter) is covered by an
insulating coating. However, the decrease in s, in this case, is at the expense
of a large decrease in m. Third, the most widely applied method to reduce
eddy currents is the utilization of cores made out of thin sheets which are
electrically insulated from each other (Fig. 17.1(b)). This way, the cross-
sectional area, A, is reduced, which in turn decreases Ve (17.1), and addi-
tionally reduces losses due to the skin effect. Despite the lamination, a
residual eddy current loss still exists, which is caused by current losses
within the individual laminations and interlaminar losses that may arise if
laminations are not sufficiently insulated from each other. These losses are,
however, less than 1% of the total energy transferred.

Hysteresis losses are encountered when the magnetic core is subjected to
a complete hysteresis cycle (Fig. 15.6). The work thus dissipated into heat is
proportional to the area enclosed by a B/H loop. Proper materials selection
and rolling of the materials with subsequent heat treatment greatly reduces
the area of a hysteresis loop (see below).

17.2.2. Grain Orientation

The permeability of electrical steel can be substantially increased and the
hysteresis losses can be decreased by making use of favorable grain orienta-
tions in the material. This needs some explanation. The magnetic properties
of crystalline ferromagnetic materials depend on the crystallographic direc-
tion in which an external field is applied, an effect which is calledmagnetic
anisotropy. Let us use iron as an example. Figure 17.2(a) shows magneti-
zation curves of single crystals for three crystallographic directions.

Figure 17.1. (a) Solid transformer core with eddy current, Ie, in a cross-sectional area A.
Note the magnetic flux lines f. (b) Cross section of a laminated transformer core. The area A0

is smaller than area A in (a).
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We observe that if the external field is applied in the 100h i direction,
saturation is achieved with the smallest possible field strength. The 100h i
direction is thus called the “easy direction.” (In nickel, on the other hand,
the 111h i direction is the easy direction and 100h i is the hard direction.)

This experimental finding gives us, incidentally, some clues about the
spontaneous orientation of the spin magnetic moments in the demagnetized
state. They are aligned in the easy direction. As an example, in virgin
iron the spins are aligned along the 100h i directions. Now, suppose that an
external field is applied parallel to an easy direction. Then, the domains
already having favorable alignment grow without effort at the expense of
other domains until eventually the crystal contains one single domain
(Fig. 15.9). The energy consumed during this process (which is proportional
to the area between the magnetization curve and the horizontal line through
Ms) is used to move the domain walls through the crystal.

A second piece of information needs to be considered, too. Metal sheets,
which have been manufactured by rolling and heating, often possess a
“texture”, i.e., they have a preferred orientation of the grains. It just happens
that in a-iron and a-iron alloys the 100h i direction is parallel to the rolling
direction. This property is exploited when utilizing electrical steel.

Grain-oriented electrical steel is produced by initially hot-rolling the
alloy followed by two stages of cold reduction with intervening anneals.
During the rolling, the grains are elongated and their orientation is altered.
Finally, the sheets are recrystallized, whereby some crystals grow in size at
the expense of others (occupying the entire sheet thickness).

In summary, the magnetic properties of grain-oriented steels are best in
the direction parallel to the direction of rolling. Electrical machines having
core material of grain-oriented steel need less iron and are therefore smaller;

Figure 17.2. (a) Schematic magnetization curves for rod-shaped iron single crystals having
different orientations (virgin curves). The magnetic field was applied in three different

crystallographic directions. (Compare with Fig. 15.6, which refers to polycrystalline mate-

rial). (b) Reminder of the indices which identify directions in space. (See also Footnote 14 in

Section 5.6).
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the price increase due to the more elaborate fabrication procedure is often
compensated by the savings in material. For details, see Table 17.1.

17.2.3. Composition of Core Materials

The least expensive core material is commercial low carbon steel (0.05%
C). It possesses a relatively small permeability and has about ten times
higher core losses than grain-oriented silicon iron (Table 17.1). Low carbon
steel is used where low cost is more important than the efficient operation of
a device. Purification of iron increases the permeability but also increases
conductivity (eddy current!) and price.

Iron-silicon alloys containing between 1.4 and 3.5% Si and very little
carbon have a higher permeability and a lower conductivity than low carbon
steel (see Table 17.1). Furthermore, because of special features in the phase
diagram (“g-loop”), heat treatments of these alloys can be performed at much
higher temperatures without interference from phase changes during cool-
ing. The core losses decrease with increasing silicon content. However, for
silicon concentrations above 4 or 5 weight %, the material becomes too
brittle to allow rolling. Grain orientation in iron–silicon alloys (see above)
further increases the permeability and decreases the hysteresis losses. Other
constituents in iron–silicon alloys are aluminum and manganese in amounts
less than 1%. They are added mainly for metallurgical reasons, because of
their favorable influence on the grain structure and their tendency to reduce
hysteresis losses. Grain-oriented silicon “steel” is the favored commercial
product for highly efficient–high flux multiplying core applications.

The highest permeability is achieved for certain multicomponent nickel-
based alloys such as Permalloy, Supermalloy, or Mumetal (Table 17.1).
The latter can be rolled into thin sheets and is used to shield electronic
equipment from stray magnetic fields.

17.2.4. Amorphous Ferromagnets

The electrical properties of amorphous metals (metallic glasses) and their
methods of production have already been discussed in Section 9.4. In the
present context, we are interested only in their magnetic properties, in
particular, as flux multipliers in transformers, motors, etc. Some amorphous
metals (consisting of iron, nickel, or cobalt with boron, silicon, or phospho-
rus) have, when properly annealed below the crystallization temperature (for
strain relaxation), a considerably higher permeability and a lower coercivity
than the commonly used grain-oriented silicon–iron, see Table 17.1. Further,
the electrical resistivity of amorphous alloys is generally larger than their
crystalline counterparts, which results in smaller eddy current losses.
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However, amorphous ferromagnets possess a somewhat lower saturation
induction (Table 17.1) (which sharply decreases even further at elevated
temperatures) and their core losses increase rapidly at higher flux densities
(e.g., above 1.4 T). Thus, the application of metallic glasses for flux multi-
plication purposes is, at the present, limited to devices with small flux
densities, i.e., low currents, such as for transformers (e.g., for communica-
tion equipment), magnetic sensors, or magnetostrictive transducers.

17.3. Permanent Magnets (Hard Magnetic Materials)

Permanent magnets are devices that retain their magnetic field indefinitely.
They are characterized by a large remanence Br (or Mr), a relatively large
coercivity Hc, and a large area within the hysteresis loop. They are called
hard magnetic materials (see Section 15.1.3).

The best means to visualize the properties of permanent magnets is
to inspect their demagnetization curve (Fig. 17.3), which is a part of a
hysteresis loop, as shown in Fig. 15.6. Another parameter which is used to
characterize hard magnetic materials is the maximum energy product,
(BH)max, which is related to the area within the hysteresis loop. We see
immediately from Fig. 17.3 that B times H is zero at the intercepts of the
demagnetization curve with the coordinate axes, and that the energy product
peaks somewhere between these extreme values, depending on the shape
and size of the hysteresis curve. The values of Br, Hc, and (BH)max for some
materials which are used as permanent magnets are listed in Table 17.2.

The remanence, Br, shown in Fig. 17.3 or listed in Table 17.2 is the
maximal residual induction which can be obtained in a circular, close-loop
magnet inserted in a coil. However, all permanent magnets need to have

Figure 17.3. (a) Demagnetization curve for a ferromagnetic material. (Second quadrant in a

B–H diagram.) (b) Energy product, BH, as a function of induction, B.
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exposed poles in order to be useful. The necessary air gap between the north
and south poles reduces the remanence, because the exposed poles create a
demagnetizing field, Hd, which acts in the opposite direction to the B lines.
We understand intuitively that the demagnetizing field depends on the shape,
size, and gap length of a magnet. Thus, a reduced value for the residual
induction, termed Bd, is obtained as shown in Fig. 17.3. Another effect which
reduces the useful magnetic field is fringing near the air gap and leakage
from the sides of a magnet (Fig. 17.4).

We now turn to the properties of some common hard magnetic materials.
Today, many permanent magnets are made of Alnico alloys, which contain
various amounts of aluminum, nickel, cobalt, and iron, along with some
minor constituents such as copper and titanium (Table 17.2). Their pro-
perties are improved by heat treatments (homogenization at 1250�C, fast
cooling, and tempering at 600�C, Alnico 2). Further improvement is accom-
plished by cooling the alloys in a magnetic field (Alnico 5). The best proper-
ties are achieved when the grains are made to have a preferred orientation.
This is obtained by cooling the bottom of the crucible after melting, thus
forming long columnar grains with a preferred 100h i axis in the direction of
heat flow. A magnetic field parallel to the 100h i axis yields Alnico 5-DG
(directional grain).

The superior properties of heat-treated Alnico stem from the fact
that during cooling and tempering of these alloys, rod-shaped iron and
cobalt-rich a-precipitates are formed which are parallel to the 100h i
directions (shape anisotropy). These strongly magnetic precipitates are
single-domain particles and are imbedded in a weakly magnetic nickel
and aluminum matrix (a). Alnico alloys possess, just as iron, a 100h i easy
direction (see Fig. 17.2) and have also a cubic crystal structure. Alnico
alloys are mechanically hard and brittle and can, therefore, only be shaped
by casting or by pressing and sintering of metal powders.

Figure 17.4. Fringing and leakage of a permanent magnet.
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The newest hard magnetic materials are made of neodymium–boron–iron,
see Table 17.2. They possess a superior coercivity and thus a larger (BH)max.
The disadvantage is a relatively low Curie temperature of about 300�C.

Ceramic ferrite magnets, such as barium or strontium ferrite (BaO ·
6Fe2O3 or SrO · 6Fe2O3), are brittle and relatively inexpensive. They
crystallize in the form of plates with the hexagonal c-axis (which is the
easy axis) perpendicular to the plates. Some preferred orientation is
observed, because the flat plates arrange parallel to each other during
pressing and sintering. Ferrite powder is often imbedded in plastic materials,
which yields flexible magnets. They are used, for example, in the gaskets of
refrigerator doors.

High carbon steel magnets with or without cobalt, tungsten, or chro-
mium are only of historic interest. Their properties are inferior to other
magnets. It is believed that the permanent magnetization of quenched steel
stems from the martensite-induced internal stress, which impedes the
domain walls from moving through the crystal.

Research on permanent magnetic materials still proceeds with unbroken
intensity. The goal is to improve corrosion resistance, price, remanence,
coercivity, magnetic ordering temperature, and processing procedures.
A few examples are given here. Carbon and nitrogen are increasingly used
as the metalloid in iron/rare earth magnets such as in Fe–Nd–C or in
Fe17Sm2Nx. Nitrogen treatment of sintered Fe14Nd2B raises the Curie tem-
perature by more than 100 K. Nitriding of F17Sm2 (at 400�C to 500�C)
yields a room temperature coercivity as high as 2.4 � 106 A/m (30 kOe), a
remanence of 1.5 T (15.4 kG) and a Tc of 470

�C. Corrosion of the Fe–Nd–B
sintered magnets is a serious problem. The principal corrosion product is Nd
(OH)3. The corrosion resistance can be improved by utilizing intermetallic
compounds such as Fe–Nd–Al or Fe–Nd–Ga, or by applying a moisture-
impervious coating. Other approaches are the rare-earth-free Co–Zr–B
alloys (with or without silicon) which have a Curie temperature around
500�C and a coercivity of 5.3 � 105 A/m (6.7 kOe).

17.4. Magnetic Recording and Magnetic Memories

Magnetic recording tapes, disks, drums, or magnetic strips on credit cards
consist of small, needlelike oxide particles about 0.1 � 0.5 mm in size
which are imbedded in a nonmagnetic binder. The particles are too small
to sustain a domain wall. They consist therefore of a single magnetic domain
which is magnetized to saturation along the major axis (shape anisotropy).
The elongated particles are aligned by a field during manufacturing so that
their long axes are parallel with the length of the tape or the track. The most
popular magnetic material has been ferrimagnetic g-Fe2O3. Its coercivity
is 20–28 kA/m (250–350 Oe). More recently, ferromagnetic chromium
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dioxide has been used having a coercivity between 40–80 kA/m (500 and
1000 Oe) and a particle size of 0.05 mm by 0.4 mm. High coercivity and high
remanence prevent self-demagnetization and accidental erasure, they pro-
vide strong signals, and permit thinner coatings. A high Hc also allows tape
duplication by “contact printing.” However, CrO2 has a relatively low Curie
temperature (128�C compared to 600�C for g-Fe2O3). Thus, chromium diox-
ide tapes which are exposed to excessive heat (glove compartment!) may lose
their stored information. Lately, most video tapes use cobalt-doped g-Fe2O3,
which has a somewhat higher Curie temperature than chromium dioxide and a
coercivity of 48 kA/m (600 Oe). Most recently, iron particles have been
utilized (Hc ¼ 120 kA/m, i.e., 1500 Oe). This technology requires, however,
a surface coating of tin to prevent coalescence of the individual particles and
corrosion.

The recording head of a tape machine consists of a laminated electro-
magnet made of permalloy or soft ferrite (Table 17.1) which has an air gap
about 0.3 mm wide (Fig. 17.5). The tape is passed along this electromagnet,
whose fringing field redirects the spin moments of the particles in a certain
pattern proportional to the current which is applied to the recording head
coil. This leaves a permanent record of the signal. In the playback mode, the
moving tape induces an alternating emf in the coil of the same head. The
emf is amplified, filtered, and fed to a loudspeaker.

Some modern recording heads utilize conventional ferrites whose gap
surfaces are coated with a micrometer-thick metal layer composed of alumi-
num, iron, and silicon (Sendust). This metal-in-gap (M-I-G) technology
combines the superior high-frequency behavior and good wear properties
of ferrites with the higher coercivity of ferromagnetic metals. Thus, fields
two or three times as intense as for pure ferrites can be supported. Such high
fields are necessary to record efficiently on high density (i.e., on high
coercivity) media, in which tiny regions of alternating magnetization are
closely spaced and should not mutually demagnetize each other.

For ultrahigh recording densities (extremely small bit sizes) the signal
strength produced in the reading heads diminishes considerably. Thus, the

Magnetic layer

Substrate

Tape motion

~

Figure 17.5. Schematic arrangement of a recording (playback) head and a magnetic tape.

(Recording mode.) The gap width is exaggerated. The plastic substrate is about 25 mm thick.
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latest head technology utilizes a thinmagnetoresistive element, made out of
permalloy, which senses the slight variation in resistance (about 2%) that
occurs as the angle of magnetization is changed when the magnetized data
bits pass beneath the head (see below). 1.8 Mbits/mm2 have been achieved
in this way. In contrast to an inductive head (see above), whose output
voltage is directly proportional to the tape speed, magnetoresistivity is
governed by the flux density. This is an advantage for low-speed applica-
tions (credit cards).

A note of explanation about magnetoresistance should be added: If a
conductor is exposed to a magnetic field that is perpendicular to an electric
field, the Lorentz force causes the paths of the drifting electrons to bend in
near circular form, as explained in Section 8.5 (Hall effect). This bending
leads to a decrease of the electron mobility, me. Thus, because of (8.13),

s0 ¼ Ne � me � e ¼
1

r0
; (17.2)

the conductivity, s0, decreases and the resistivity, r0, increases. (Ne is the
free electron concentration and e is the charge of an electron). The relative
change in resistivity,

Dr
r0

¼ ðmeDBÞ2; (17.3)

is proportional to the square of the variation in magnetic field strength, DB.
The magnetoresistive head senses this change in magnetic field strength and,
thus, yields a resistance change.

The materials for magnetoresistive read-heads have undergone a stormy
development. First, “giant magnetoresistive materials” (MnFe, MnNi, NiO)
having a resistance response of about 20% were discovered. Later, “colossal
magnetoresistive materials” (lanthanum manganate, etc.) showed 50%
resistance changes, allowing a further increase in areal densities.

Historically, ferrite-core memories used to be the dominant devices for
random-access storage in computers. The principle is simple: a donut-
shaped piece of ferrimagnetic material, having a nearly square-shaped
hysteresis loop and a low coercivity, is threaded with a wire (Fig. 17.6(a)).
If a sufficiently high current pulse is sent through this wire, then the core
becomes magnetically saturated. Now, suppose the flux lines point clock-
wise. An opposite-directed current pulse of sufficient strength magnetizes
the ferrite core counterclockwise. These two magnetization directions
constitute the two possible values (0 and 1) in a binary system (see
Section 8.7.12). A toroid-shaped memory core is used because a close-flux
structure reacts efficiently to currents from a center wire but is not disturbed
by external stray fields.

The actual configuration of a complete memory system consists of a stack
of identical memory planes, each of which contains a set of wires in the x- as

396 IV. Magnetic Properties of Materials



well as in the y-directions. The toroids are placed at the intersections
(Fig. 17.6(c)). In order to switch the, say, X3/Y2 core from zero to one, a
current proportional to half the saturation field (Hs/2) is sent through each of
the X3 and the Y2 wires (Fig. 17.6(b)). This provides only the X3/Y2 core with
the necessary field for switching—the other cores stay at their present state.
The information thus permanently stored can be read by again sending a
current pulse proportional to Hs/2 through the X3/Y2 wires. A third wire, the
sensing wire, which passes through all the cores of a given plane, senses
whether or not the core was switched during the reading process. Since the
reading process destroys the stored information, a special circuit is needed
to rewrite the information back into the core. Ferrite-core memories (like
other magnetic storage devices) do not need an electrical current to maintain
their stored information. The weight/bit ratio for ferrite-core memories is,
however, considerably larger than for electrical or optical storage devices.
Thus, their usage is now limited to a few specialized applications.

Another magnetic storage device that has been heavily researched in the
past, but is presently not much in use, is the bubble domain memory. Here,
tiny cylindrical regions (as small as 1 mm in diameter), having a reversed
magnetization compared to thematrix, are formed in thin crystals of “canted”
anti-ferromagnetic oxides4 (BaFe12O19, YFeO3), or in amorphous alloyed
films (Gd–Co, Gd–Fe), or in ferrimagnetic materials such as yttrium–iron–
garnet (Y3Fe5O12). These bubbles, whose easy axis is perpendicular to the

Figure 17.6. (a) Single ferrite core which is magnetized by a current-induced magnetic field;

(b) square-shaped hysteresis loop of a soft ferrite memory core; and (c) one plane of a

“coincident-current core memory device”.

4See Section 15.1.4.
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plane of the film, can be generated, moved, replicated, or erased by electric
currents. The crystals are transparent to red light. Thus, the domains can
be visibly observed and optically read by the way in which they rotate the
plane of polarization of polarized light (Faraday effect in transmission, or
Kerr effect in reflection). Each such domain constitutes one bit of stored
information.

Thin magnetic films consisting of Co–Ni–Pt or Co–Cr–Ta or
Co75–Cr13–Pt12 are frequently used in hard-disk devices. They are laid
down on an aluminum substrate and are covered by a 40 nm thick carbon
layer for lubrication and corrosion resistance. The coercivities range
between 60–120 kA/m (750 and 1500 Oe). Thin-film magnetic memories
can be easily fabricated (vapor deposition, sputtering, or electroplating),
they can be switched rapidly, and they have a small unit size. Thin-film
recording media are not used for tapes, however, because of their rapid
wear. They have a density of 1.8 Mbits/mm2 with a track separation of 3 mm
and a bit length of 150 nm.

Magneto-optical memories possess the advantage of having no mechan-
ical contact between medium and beam. Thus, no wear is encountered. A
polycarbonate disk is covered by a certain magnetic material, such as MnBi,
EuO, amorphous Gd–Co, or GdFe-garnet, that can sustain small (1 mm
wide) magnetic domains which are stable against stray fields. Their spins
are initially vertically aligned, see Fig 17.7(a). A strong focused laser beam
heats a given domain for about a microsecond above the Curie temperature
(typically 150�C to 200�C). Once the heat is turned off, the domain is made
to cool in a magnetic field that is created by an electromagnet placed on
the opposite side of the laser and which delivers the information to be
stored. This causes the spins in the magnetic domain to re-orient according
to the strength and direction of the magnetic field. For read-out, the probing
laser beam, which is plane polarized, (Section 13.1.2) senses that the plane
of polarization of the newly oriented magnetic domain has been rotated
(Kerr effect). The degree of rotation is converted into an intensity change
of the light by passing the reflected beam through a second polarizer (called
an analyzer), which is rotated 90� with respect to the first polarizer,
Fig. 17.7(b). In other words, the content of the stored magnetic data is
equivalent to a change in the polarization direction of the reflected light
and thus equivalent to a change in light intensity. Each magnetic domain
represents one bit of information, for example, spin up is a “one” and spin
down is a “zero”. (See, in this context, Section 13.10.) Magneto-optical
disks have a one thousand times larger storage density than common floppy
disks and a ten times faster access time.

Magneto-optical storage devices were introduced in 1985 and are used in
Japan and some other countries, but have never really been accepted by
consumers in the USA. Their storage capacities and writing speed have
improved over the years (by “light intensity modulated direct over-write”).
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Two formats are in use, such as the 130 mm (5.25 inch) and the 90 mm
(3.5 inch) disks. Storage capacities range from 128MB to 9.2 GB depending
on the disk format and whether one or both sides are used.

Electro-
magnet

Protective
resin

Magneto-
optic film

Polycarbonate
resin

(Substrate)

Lens

Rotation

Write laser
beam

Magneto-
optic film

From read
laser

Polarizer

Vibration
direction
of light
vector

Analyzer

Photo
detector

(a)

(b)

Figure 17.7. (a) Schematic representation of a magneto-optical disk in the writing mode

(simplified). (b) Read-out mode of a magneto-optical device. (Polarizer and analyzer are

identical devices).
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17.4.1. Closing Remarks

Despite this relatively large number of possible magnetic storage devices,
semiconductor technology (Section 8.7.12) is presently preferred for short-
term information storage, mainly because of price, easy handling capability,
fast access time, and size. On the other hand, magnetic disks (for random
access, particularly for computer hard disks memories) or tapes (mainly for
music recordings, etc.) are the choices for long-term, large-scale information
storage, particularly since no electric energy is needed to retain the informa-
tion (non-volatile memory). It should be noted in closing that tapes and floppy
disks make direct contact with the recording (and playback) head, and are
therefore subject to wear, whereas hard drive systems utilize a “flying head”
that hovers a few micrometers or less above the recording medium on an air
cushion, caused by the high speed of the disk. On the other hand, the signal to
noise ratio for contact recording is 90 dB, whereas for noncontact devices the
signal to noise ratio is only 40 dB or lower. Magnetic recording is a $140
billion annual business worldwide with a 12–14% growth rate and is said to
be the biggest consumer of high-purity materials. One final word: magnetic
audio recording was already invented in 1888 by Oberlin Smith.

Problems

1. Calculate the energy expended during one full hysteresis cycle of a magnetic material

having a rectangular hysteresis loop. Assume Hc ¼ 500 A/m, Bs ¼ 2 T and V ¼ 0.25 cm3.

What units can be used?

2. Which core material should be utilized to supply a large-scale and constant magnetic field

in a synchrotron? Justify your choice.

3. Pick an actual motor of your choice and find out (by analysis, by means of a data sheet, or

by writing to the manufacturer) which type of electrical steel was used as the core

material. Also, find out the core loss (often given in watts/1b).

4. Find from a manufacturer’s data sheet the price of several qualities of electrical steel.

5. Inspect the magnets contained in a gasket of a modern refrigerator. How does the magnet

work? Where are the south and north poles?

6. It was said in the text that transformers suffer eddy current as well as hysteresis losses. What

other types of losses can be expected in a transformer? How can those losses be reduced?
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CHAPTER 18

Introduction

Heat was considered to be an invisible fluid, called caloric, until late into the
eighteenth century. It was believed that a hot piece of material contained
more caloric than a cold one and that an object would become warmer by
transferring caloric into it. In the mid-1800s, Mayer, Helmholtz, and Joule
discovered independently that heat is simply a form of energy. They realized
that when two bodies have different temperatures, thermal energy is trans-
ferred from the hotter to the colder one when brought into contact. Count
Rumford discovered, by observing the boring of cannons, that mechanical
work expended in the boring process was responsible for the increase in
temperature. He concluded that mechanical energy could be transformed into
thermal energy. This observation lead eventually to the concept of a
mechanical heat equivalent. Today, these results are treated in a different,
more rigorous, scientific language (see next chapter).

The thermal properties of materials are important whenever heating and
cooling devices are designed. Thermally induced expansion of materials has
to be taken into account in the construction industry as well as in the design of
precision instruments. Heat conduction plays a large role in thermal insula-
tion, e.g., in homes, industry, and spacecraft. Some materials such as copper
or silver conduct heat very well; other materials, like wood or rubber, are poor
heat conductors. Good electrical conductors are generally also good heat
conductors. This was discovered in 1853 by Wiedemann and Franz, who
found that the ratio between heat conductivity and electrical conductivity
(divided by the temperature) is essentially constant for all metals.

The thermal conductivity of materials only varies over five orders of
magnitude (Fig. 18.1). This is in sharp contrast to the variation in electrical
conductivity, which spans about twenty-five orders of magnitude (Fig. 7.1).
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The thermal conductivity of metals and alloys can be readily interpreted
bymaking use of the electron theory that was developed in Part I of this book.
The electron theory postulates that free electrons in the hot part of a metal bar
pick up energy by interactions with the vibrating lattice atoms. This thermal
energy is eventually transmitted to the cold end of the bar by a mechanism
which we will treat in Chapter 21.

In electrical insulators, in which no free electrons exist, the conduction of
thermal energy must occur by a different mechanism. This new mechanism
was found by Einstein at the beginning of the century. He postulated the
existence of phonons, or lattice vibration quanta, which are thought to be
created in large numbers in the hot part of a solid and partially eliminated in
the cold part. Transferral of heat in dielectric solids is thus linked to a flow of
phonons from hot to cold.

Figure 18.1 indicates that in a transition region both electrons as well as
phonons may contribute to thermal conduction. Actually, phonon-induced
thermal conduction occurs even in metals, but its contribution is negligible
to that of the electrons.

Figure 18.1. Room-temperature thermal conductivities for some materials.

Figure 18.2. Schematic representation of the temperature dependence of the molar heat

capacity—experimental, and according to four models.
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Another thermal property that will receive considerable attention in
the following chapters is the specific heat capacity, as well as a related
property, the molar heat capacity. Their importance can best be appreciated
by the following experimental observations: Two substances with the same
mass but different values for the specific heat capacity require different
amounts of thermal energy to reach the same temperature. Water, for
example, which has a relatively high specific heat capacity, needs more
thermal energy to reach a given temperature than, say, copper or lead of the
same mass.

The molar heat capacity is the product of the specific heat capacity and
the molar mass. Its experimentally observed temperature dependence, as
shown in Fig. 18.2, has stimulated various theories, among them the phonon
model. Figure 18.2 shows schematically how the various theories for the
interpretation of the heat capacity compare with the experimental findings.
We will discuss these models in the chapters to come.
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CHAPTER 19

Fundamentals of Thermal Properties

Before we discuss the atomistic and quantum mechanical theories of the
thermal properties of materials, we need to remind the reader on some
relevant fundamental concepts and definitions which you might have been
exposed to before in courses of physics and thermodynamics.

19.1. Heat, Work, and Energy

When two bodies of different temperatures are brought in contact with
each other, heat, Q, flows from the hotter to the colder substance. Actually,
an increase in temperature can be achieved in a number of ways, such
as by mechanical work (friction), electrical work (resistive heating), radia-
tion, or by the just-mentioned direct contact with a hotter medium. The
change in energy, DE, of a “system” can be expressed by the first law of
thermodynamics,

DE ¼ W þ Q; (19.1)

where W is the work done on the system and Q is the heat received by the
system from the environment. The focus of this and subsequent chapters is
on the thermal properties of materials. Thus, we limit our considerations to
processes for which W can be considered to be zero, so that

DE ¼ Q: (19.1a)
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Energy, work, and heat have the same unit. The SI unit is the joule (J),
which is related to the now obsolete thermomechanical calorie (cal) by

1 cal ¼ 4:184 J; (19.2)

i.e.,

1 J ¼ 0:239 cal: (19.2a)

A technique which links thermal energy and mechanical energy was pro-
posed by Joule in 1850. The experiment involves rotating paddles which
raise the temperature of a given amount of water by means of friction. The
paddles are driven by the mechanical work provided by descending weights.

19.2. Heat Capacity, C0

Different substances need different amounts of heat to raise their tempera-
tures by a given temperature interval. For example, it takes 4.18 J to raise 1 g
of water by 1 K. But the same heat raises the temperature of 1 g of copper by
about 11 K. In other words, water has a large heat capacity compared to
copper. (The large heat capacity of water is, incidentally, the reason for the
balanced climate in coastal regions and the heating of north European
countries by the Gulf Stream.)

The heat capacity, C0, is the amount of heat, dQ, which needs to be
transferred to a substance in order to raise its temperature by a certain
temperature interval. Units for the heat capacity are J/K.

The heat capacity is not defined uniquely, i.e., one needs to specify the
conditions under which the heat is added to the system. Even though several
choices for the heat capacities are possible, one is generally interested in
only two: the heat capacity at constant volume, C0

v, and the heat capacity
at constant pressure, C0

p. The former is the most useful quantity, because
C0
v is obtained immediately from the energy of the system. The heat capacity

at constant volume is defined as

C0
v ¼

@E

@T

� �
v

: (19.3)

On the other hand, it is much easier to measure the heat capacity of a solid at
constant pressure than at constant volume. Fortunately, the difference
between C0

p and C0
v for solids vanishes at low temperatures and is only

about 5% at room temperature. C0
v can be calculated from C0

p
1 if the volume

1The heat capacity at constant pressure is defined as C0
p (¼ ∂H/∂T)p, where H ¼ U þ P · V is the

enthalpy, and U is the internal energy.
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expansion coefficient, a, and the compressibility, k, of a material are known,
by applying

C0
v ¼ C0

p �
a2TV
k

; (19.4)

where V is the volume of the solid. Equation (19.4) is derived in textbooks
on thermodynamics.

19.3. Specific Heat Capacity, c

The specific heat capacity is the heat capacity per unit mass

c ¼ C0

m
(19.5)

where m is the mass of the system. It is a materials constant and it is
temperature-dependent. Characteristic values for the specific heat capacity
(cv and cp) are given in Table 19.1. The unit of the specific heat capacity is
J/g · K. We note from Table 19.1 that values for the specific heat capacities
of solids are considerably smaller than the specific heat capacity of water.

Combining (19.1a), (19.3), and (19.5) yields

DE ¼ Q ¼ mDTcv; (19.6)

which expresses that the thermal energy (or heat) which is transferred to a
system equals the product of mass, increase in temperature, and specific heat
capacity.

Table 19.1. Experimental Thermal Parameters of Various Substances at Room

Temperature and Ambient Pressure.

Substance

Specific heat

capacity (cp)
Molar

(atomic) mass

Molar heat

capacity (Cp)

Molar heat

capacity (Cv)

J

g � K
� �

g

mol

� � J

mol � K
� �

J

mol � K
� �

Al 0.897 27.0 24.25 23.01

Fe 0.449 55.8 25.15 24.68

Ni 0.456 58.7 26.8 24.68

Cu 0.385 63.5 24.48 23.43

Pb 0.129 207.2 26.85 24.68

Ag 0.235 107.9 25.36 24.27

C (graphite) 0.904 12.0 10.9 9.20

Water 4.184 18.0 75.3
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19.4. Molar Heat Capacity, Cv

A further useful materials constant is the heat capacity per mole (i.e., per
amount of substance of a phase, n). It compares materials that contain the
same number of molecules or atoms. The molar heat capacity is obtained by
multiplying the specific heat capacity, cv (or cp), by the molar mass,M, (see
Table 19.1):

Cv ¼ C0
v

n
¼ cv �M: (19.7)

The units are J/mol · K. The amount of substance (in mol) is

n ¼ N=N0; (19.7a)

where N is the number of particles (atoms, molecules, etc.), and N0 is the
Avogadro constant (N0 ¼ 6.022 � 1023 mol�1).

We see from Table 19.1 that the room-temperature molar heat capacity
at constant volume is approximately 25 J mol= � K 6cal mol � K=ð Þ for most
solids. This was experimentally discovered in 1819 by Dulong and Petit.
We shall attempt to interpret this interesting result in a later section.

The experimental molar heat capacities for some materials are depicted in
Fig. 19.1 as a function of temperature. We notice that some materials, such as
carbon, reach the Dulong–Petit value of 25 J/mol · K only at high tempera-
tures. Some other materials, such as lead, reach 25 J/mol · K at relatively low
temperatures.

All heat capacities are zero at T ¼ 0 K. The Cv values near T ¼ 0 K
climb in proportion to T3 and reach 96% of their final value at a temperature
yD, which is defined to be the Debye temperature. We shall see later that

Figure 19.1. Temperature dependence of the molar heat capacity, Cv, for some materials.

412 V. Thermal Properties of Materials



yD is an approximate dividing point between a high-temperature region,
where classical models can be used for the interpretation of Cv, and a low-
temperature region, where quantum theory needs to be applied. Selected
Debye temperatures are listed in Table 19.2.

19.5. Thermal Conductivity, K

Heat conduction (or thermal conduction) is the transfer of thermal energy
from a hot body to a cold body when both bodies are brought into contact.
For best visualization we consider a bar of a material of length x whose
ends are held at different temperatures. The heat that flows through a cross
section of the bar divided by time and area, (i.e., the heat flux, JQ) is
proportional to the temperature gradient, dT/dx. The proportionality con-
stant is called the thermal conductivity, K (or l). We thus write

JQ ¼ �K
dT

dx
: (19.8)

The negative sign indicates that the heat flows from the hot to the cold
end (Fourier Law, 1822). Units for the heat conductivity are (J/m · s · K) or
(W/m · K). The heat flux, JQ, is measured in (J/m2 · s). Table 19.3 gives
some characteristic values for K. The thermal conductivity decreases
slightly with increasing temperature. For example, K for copper decreases
by 20% within a temperature span of 1000�C. In the same temperature
region, K for iron decreases by 10%.

Table 19.2. Debye Temperatures of Some Materials.

Substance yD (K)

Pb 95

Au 170

Ag 230

W 270

Cu 340

Fe 360

Al 375

Si 650

C 1850

GaAs 204

InP 162

InAs 280
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19.6. The Ideal Gas Equation

Free electrons in metals and alloys can often be considered to behave like an
ideal gas. An ideal gas is an abstraction which is frequently used in thermo-
dynamics. It is usually defined to be a gas whose density is low enough in
order for it to obey the equation

PV ¼ nRT; (19.9)

where P is the pressure of the gas, V is its volume, n is the amount of
substance, T is the thermodynamic (absolute) temperature, and R is the
universal gas constant. The gas constant is

Table 19.3. Thermal Conductivities at Room

Temperature.a

Substance
K

W

m � K
� �

� J

s � m � K
� �

Graphene 5 � 103

Diamond, type IIa 2.3 � 103

SiC 4.9 � 102

Silver 4.29 � 102

Copper 4.01 � 102

Aluminum 2.37 � 102

Silicon 1.48 � 102

Brass (leaded) 1.2 � 102

Iron 8.02 � 101

GaAs 5 � 101

Ni-Silverb 2.3 � 101

Al2O3 (sintered) 3.5 � 101

SiO2 (fused silica) 1.4

Concrete 9.3 � 10�1

Soda-lime glass 9.5 � 10�1

Water 6.3 � 10�1

Polyethylene 3.8 � 10�1

Teflon 2.25 � 10�1

Snow (0�C) 1.6 � 10�1

Wood (oak) 1.6 � 10�1

Engine Oil 1.45 � 10�1

Sulfur 2.0 � 10�2

Cork 3 � 10�2

Glass wool 5 � 10�3

Air 2.3 � 10�4

aSee also Figure 18.1. Source: Handbook of Chemistry and
Physics, CRC Press. Boca Raton, FL (1994).
b62% Cu, 15% Ni, 22% Zn.
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R ¼ kBN0 ¼ 8:314 ðJ/mol � KÞ
¼ 1:986 (cal/mol � K); (19.10)

and kB is the Boltzmann constant.
Equation (19.9) is a combination of two experimentally obtained thermo-

dynamic laws: One, discovered by Boyle and Mariotte (PV ¼ const. at
constant T), and the other, discovered by Gay-Lussac (V � T, at constant
P). The reader who has taken classes in physics or thermodynamics is
undoubtedly familiar with these equations.

19.7. Kinetic Energy of Gases

In the chapters to come, we need to know the kinetic energy of atoms,
molecules, or electrons at a given temperature from a classical point of view.
The calculation that is summarized below is usually contained in textbooks
on thermodynamics.

We commence by quoting the number of molecules in a gas that interact
in the unit time, t, with the end face of unit area of a bar which has the length
dx. We assume that, because of thermal agitation, one-third of the particles
move in the x-directions, i.e., one-sixth in the positive x-direction. The
volume element, shown in Fig. 19.2, is

dV ¼ Adx ¼ Av dt; (19.11)

where A is the unit area and v is the velocity of the particles that fly in the
x-direction. The number of particles reaching the end face is naturally
proportional to the number of particles, nv, in the given volume, i.e.,

Figure 19.2. Diagram for the derivation of the kinetic energy of gases.
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z0 ¼ 1
6
nv � dV ¼ 1

6
nvAv dt:

The number of particles per unit time and unit area that hit the end face is,
consequently.

z ¼ 1
6
nvv; (19.12)

where

nv ¼ N

V
(19.13)

is the number of particles per unit volume. Each particle transfers the
momentum 2mv during its collision with the wall and subsequent reflection.
The momentum per unit time and unit area is then

p� ¼ z2mv ¼ 1
6
nvv2mv ¼ 1

3

N

V
mv2: (19.14)

This yields, for the pressure,

P ¼ F

A
¼ ma

A
¼ dðmvÞ=dt

A
¼ dp=dt

A
¼ p� ¼ 1

3

N

V
mv2: (19.15)

With

PV ¼ nRT ¼ nkBN0T ¼ NkBT (19.16)

(see (19.9), (19.7a), and (19.10)), we obtain from (19.15)

PV ¼ 1
3
Nmv2 ¼ kBNT: (19.17)

Inserting

Ekin ¼ 1
2
mv2 (19.18)

into (19.17) yields

kBNT ¼ 1
3
N21

2
mv2 ¼ 2

3
NEkin; (19.19)

which finally yields the kinetic energy of a particle,

Ekin ¼ 3
2
kBT: (19.20)

A more precise calculation, which considers the mutual collisions of the
particles, and thus a velocity distribution, replaces the kinetic energy in
(19.20) with an average kinetic energy.
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Problems

Note: The problems in this chapter contain engineering applications in order to make the

student aware of the importance of thermal properties in daily life.

1. Calculate the number of gas molecules that are left in an ultrahigh vacuum of 10�9 Pa

(�7.5 � 10�12 Torr) at room temperature.

2. Calculate the rate of heat loss per unit area in a 5 mm thick window glass when the

exterior temperature is 0�C and the room temperature is 20�C. Compare your result with

the heat loss in an aluminum and a wood frame of 10 mm thickness. How can you

decrease the heat loss through the window?

3. A block of copper, whose mass is 100 g, is quenched directly from an annealing furnace

into a 200 g glass container that holds 500 g of water. What is the temperature of the

furnace when the water temperature rises from 0� to 15�C? (cglass ¼ 0.5 J/g · K.)

4. Explain in simple terms why wood has a smaller heat conductivity than copper.

5. What are the implications for the semiconductor industry that silicon has a relatively good

heat conductivity?

6. Why is the fiberglass insulation used for buildings, etc., loose rather than compact?

(Hint: Compare K for glass and air. Discuss also heat convection.)

7. Find in a handbook the relationship between J and BTU.
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CHAPTER 20

Heat Capacity

20.1. Classical (Atomistic) Theory of Heat Capacity

This section attempts to interpret the thermal properties of materials using
atomistic concepts. In particular, an interpretation of the experimentally
observed molar heat capacity at high temperatures, Cv ¼ 25 (J/mol · K)
that is, 6 (cal/mol · K), is of interest.

We postulate that each atom in a crystal is bound to its site by a
harmonic force. A given atom is thought to be capable of absorbing
thermal energy, and in doing so it starts to vibrate about its point of rest.
The amplitude of the oscillation is restricted by electrostatic repulsion
forces of the nearest neighbors. The extent of this thermal vibration is
therefore not more than 5 or 10% of the interatomic spacing, depending on
the temperature. In short, we compare an atom with a sphere which is held
at its site by two springs (Fig. 20.1(a)). The thermal energy that a harmonic
oscillator of this kind can absorb is proportional to the absolute tempera-
ture of the environment. The proportionality factor has been found to be
the Boltzmann constant, kB (see below). The average energy of the
oscillator is then

E ¼ kBT: (20.1)

Now, solids are three-dimensional. Thus, a given atom in a cubic crystal
also responds to the harmonic forces of lattice atoms in the other two
directions. In other words, it is postulated that each atom in a cubic crystal
represents three oscillators (Fig. 20.1(b)), each of which absorbs the thermal
energy kBT. Therefore, the average energy per atom is

E ¼ 3kBT: (20.2)
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We note in passing that the same result is obtained by using the kinetic
theory of gases. It was shown in (19.20) that the average kinetic energy of a
particle (or in the present case, an atom) is

Ekin ¼ 3
2
kBT: (20.3)

Now, each elastic vibration in a solid involves not only kinetic energy but
also potential energy, which has the same average magnitude as the kinetic
energy. The total energy of a vibrating lattice atom is thus

E ¼ 2 � 3
2
kBT; (20.4)

which is the result of (20.2).
We consider now all N0 atoms per mole. Then, the total internal energy

per mole is

E ¼ 3N0kBT: (20.5)

Finally, the molar heat capacity is given by combining (19.3), (19.7), and
(20.5), which yields

Cv ¼ @E

@T

� �
v

¼ 3N0kB: (20.6)

Inserting the numerical values for N0 and kB into (20.6) yields

Cv ¼ 25 J/mol � K or 5:98 cal/mol � K;
quite in agreement with the experimental findings at high temperatures
(Figs. 18.2 and 19.1).

Figure 20.1. (a) A one-dimensional harmonic oscillator and (b) a three-dimensional har-

monic oscillator.
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It is satisfying to see that a simple model involving three harmonic
oscillators per atom can readily explain the experimentally observed heat
capacity. However, one shortcoming is immediately evident: the calculated
molar heat capacity turned out to be temperature-independent, according
to (20.6), and also independent of the material. This discrepancy with
the observed behavior (see Fig. 18.2) was puzzling to scientists in the
19th century and had to await quantum theory to be properly explained.

20.2. Quantum Mechanical Considerations—The Phonon

20.2.1. Einstein Model

Einstein postulated, in 1907, that the energies of the above-mentioned
classical oscillators should be quantized, i.e., he postulated that only certain
vibrational modes should be allowed, quite in analogy to the allowed energy
states of electrons. These lattice vibration quanta were called phonons.

The term phonon stresses an analogy with electrons or photons. As we
know from Chapter 2, photons are quanta of electromagnetic radiation, i.e.,
photons describe (in the appropriate frequency range) classical light. Pho-
nons, on the other hand, are quanta of the ionic displacement field, which (in
the appropriate frequency range) describe classical sound.

The phonon describes the particle nature of an oscillator. A phonon has,
in analogy to the de Broglie relation (2.3), the momentum p ¼ h/l.

Furthermore, Einstein postulated a particle–wave duality. This suggests
phonon waveswhich propagate through the crystal with the speed of sound.
Phonon waves are not electromagnetic waves: they are elastic waves,
vibrating in a longitudinal and/or in a transversal mode.

In analogy to the electron case shown in Part I of this book, one can
describe the properties of phonons in terms of band diagrams, Brillouin
zones, or density of states curves. Small differences exist, however. For
example, the energy in the band diagram of an electron is replaced in a
phonon band diagram by the vibrational frequency, o, of the phonon. The
branches in the phonon band diagram are sinusoidal in nature (compared to
parabolic in the free electron case). The individual phonon bands are no longer
called valence or conduction bands, but more appropriately acoustic bands
and optical bands, mainly because the frequencies in which the branches are
situated are in the acoustical and optical ranges, respectively. The density of
states or, better, the density of vibrational modes, D(o), for the phonon case is
defined so thatD(o) · do is the number of modes whose frequencies lie in the
interval o and o þ do. For a continuous medium the density of modes is

DðoÞ ¼ 3V

2p2
o2

v3s
; (20.7)
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where vs is the sound velocity. This equation can be derived quite similarly
as demonstrated in Section 6.3.

The allowed energies of a single oscillator are

En ¼ n\o; (20.8)

similarly as in Section 4.2, where n is an integer.2 A schematic energy level
diagram for the allowed phonon energies is shown in Fig. 20.2.

One important difference between phonons and electrons needs to be
emphasized. Phonons are created by raising the temperature, and eliminated
by lowering it, i.e., the number of phonons is not conserved, as we shall
show momentarily. (In contrast to this, the number of electrons is constant.)
Einstein postulated that with increasing temperature more and more pho-
nons are created, each of which has the same energy, \o, or the same
frequency of vibration, o. The average number of phonons, Nph, at a
given temperature was found by Bose and Einstein to obey a special type
of statistics:

Nph ¼ 1

exp
\o
kBT

� �
� 1

: (20.10)

This equation is similar in form to the Fermi distribution function (6.1).
We note in passing that for high phonon energies, \o, the exponential term

in (20.10) becomes large when compared to unity so that the number of

Figure 20.2. Allowed energy levels of a phonon: (a) average thermal energy at low tem-

peratures and (b) average thermal energy at high temperatures.

2In contrast to classical mechanics, an oscillator cannot completely relinquish all its energy. It

keeps, even at the ground state (n ¼ 0), a zero-point energy. Since the ground state still has this

zero-point energy of 1
2
\o, we should, more appropriately, write

En ¼ n\oþ 1
2
\o ¼ nþ 1

2

� �
\o: (20.9)

The zero-point energy is, however, of no importance for the present considerations.
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phonons can be approximated by Boltzmann statistics, i.e., by the laws of
classical thermodynamics,

Nph � e�\o=kBT: (20.11)

We already made a similar statement in Section 6.2. We also see from
(20.10) that the number of phonons decreases rapidly when the temperature
approaches 0 K.

The average energy of an isolated oscillator is then the average number of
phonons times the energy of a phonon:

Eosc ¼ \oNph ¼ \o

exp
\o
kBT

� �
� 1

: (20.12)

The thermal energy of a solid can now be calculated by taking into account
(as in Section 20.1) that a mole of a substance contains 3N0 oscillators. This
yields for the thermal energy per mole

E ¼ 3N0

\o

exp
\o
kBT

� �
� 1

: (20.13)

The molar heat capacity is, finally,

Cv ¼ @E

@T

� �
v

¼ 3N0kB
\o
kBT

� �2 exp
\o
kBT

� �

exp
\o
kBT

� �
� 1

� �2
: (20.14)

We discuss Cv for two special temperature regions. For large tempera-
tures the approximation ex ’ 1 + x can be applied, which yields Cv ’ 3
N0kB (see Problem 5) in agreement with (20.6), i.e., we obtain the classical
Dulong–Petit value. For T ! 0, Cv approaches zero, again in agreement
with experimental observations. Thus, the temperature dependence of Cv is
now in qualitative accord with the experimental findings. One minor dis-
crepancy has to be noted however: At very small temperatures the experi-
mental Cv decreases by T3, as stated in Section 19.4. The Einstein theory
predicts, instead, an exponential reduction. The Debye theory, which we
shall discuss below, alleviates this discrepancy by postulating that the
individual oscillators interact with each other.

By inspecting (20.14), we observe that this relation contains only one
adjustable parameter, namely, the angular frequency, which we shall rede-
signate for this particular case by oE. By fitting (20.14) to experimental
curves, the frequency of the phonon waves can be obtained. For copper, the
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angular frequency oE has been found in this way to be 2.5 � 1013 s�1,
which yields nE ¼ 4 � 1012 s�1. It is customary to call frequencies up to
105 s�1 sound waves, frequencies between 105 and 109 s�1 ultrasonics, and
frequencies above 109 s�1 thermal waves. The Einstein frequency is thus
situated very appropriately in the thermal wave region.

Occasionally, the Einstein temperature, yE, is quoted, which is defined
by equating the phonon energy

\oE ¼ kByE; (20.15)

which yields

yE ¼ \oE

kB
: (20.16)

Characteristic values for yE are between 200 K and 300 K. From the above-
quoted oE value for copper, yCuE can be calculated to be 240 K.

20.2.2. Debye Model

We now refine the Einstein model by taking into account that the atoms in a
crystal interact with each other. Consequently, the oscillators are thought to
vibrate interdependently. We recall that the Einstein model considered only
one frequency of vibration,oE. When interactions between the atoms occur,
many more frequencies are thought to exist, which range from about the
Einstein frequency down to frequencies of the acoustical modes of oscilla-
tion. We postulate that these vibrational modes are quantized (Fig. 20.2).
The total displacement of a given atom in a crystal during the oscillation is
found by summing up all vibrational modes. This has been done by Debye,
who modified the Einstein equation (20.13) by replacing the 3N0 oscillators
of a single frequency with the number of modes in a frequency interval, do,
and by summing up over all allowed frequencies. The total energy of
vibration for the solid is then

E ¼
ð
EoscDðoÞdo; (20.17)

where Eosc is the energy of one oscillator given in (20.12), and D(o) is the
density of modes given in (20.7). Inserting (20.7) and (20.12) into (20.17)
yields

E ¼ 3V

2p2v3s

ðoD

0

\o3

exp
\o
kBT

� �
� 1

do: (20.18)

The integration is performed between o ¼ 0 and a cutoff frequency, called
the Debye frequency,oD, (Section 19.4) which is determined by postulating
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that the total number of modes must be equal to the number of degrees of
freedom.

The molar heat capacity, Cv, is obtained, as usual, by performing the
derivative of (20.18) with respect to temperature. This yields

Cv ¼ 3V\2

2p2v3skBT2

ðoD

0

o4 exp
\o
kBT

� �

exp
\o
kBT

� �
� 1

� �2
do (20.19)

or

Cph
v ¼ 9kBN0

T

yD

� �3 ðyD=T
0

x4ex

ðex � 1Þ2 dx; (20.20)

where

x ¼ \o
kBT

(20.21)

varies with the angular frequency, o, and

yD ¼ \oD

kB
(20.22)

is called the Debye temperature. Values for yD can be obtained again by
curve-fitting, particularly at low temperatures. They have been listed in
Table 19.2. For low temperatures, i.e., for T � yD, the upper limit of the
integral in (20.20) can be approximated by infinity. Then (20.20) can be
evaluated and it becomes

Cv ¼ 12p4

5
N0kB

T

yD

� �3

: (20.23)

From both equations, (20.20) as well as (20.23), it can be seen that Cv

decreases proportionally to T3 at low temperatures, which is quite in agree-
ment with the experimental observations.

In summary, the main difference between the two theories is that the
Debye model takes the low frequency modes into account, whereas the
Einstein model does not. We have to realize, however, that the excitation
of oscillators at low temperatures occurs only with a small probability,
because at low temperatures only a few oscillators can be raised to the
next higher level. This is a consequence of the fact that the energy difference
between levels is comparatively large for the available small thermal ener-
gies, as schematically illustrated in Fig. 20.2.
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It should be noted that even (20.20) is only an approximation, because the
underlying model does not take into consideration the periodicity of the
atoms in a crystal lattice. Thus, a refinement of the Debye model needs to
utilize the actual density of modes function D(o) for a given material. This
has been done by scientists with good success. Equation (20.20) is, however,
a fairly good approximation (see Fig. 18.2).

20.3. Electronic Contribution to the Heat Capacity

In the previous sections we have digressed considerably from the principal
theme of this book, namely, the description of the electronic properties of
materials. We now return to our main topic by discussing the contributions
that the electrons provide to the specific heat. We will quickly see that this
contribution is relatively small compared to that of the phonons.

First, we need to remember that only the kinetic energy of the free
electrons can be raised with increasing temperature. Consequently, our
present discussion is restricted to metals and alloys which have, as we
know, partially filled bands and thus free electrons. Second, we need to
remember that only those electrons which lie within an energy interval kBT
of the Fermi energy can be excited in sufficient numbers into higher states,
because only these electrons find empty energy states after their excitation.
We know that the number, dN, of these excitable electrons depends on the
population density of the metal under consideration (Section 6.4). In other
words, dN is the product of the population density at the Fermi level, N(EF),
and the energy interval kBT, as indicated by the shaded area in Fig. 20.3.

Figure 20.3. Population density as a function of energy for a metal. The electrons within the

shaded area below EF can be excited by a thermal energy kBT.
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We postulate that the electrons which are excited by thermal energy
behave like a monatomic gas. We have already shown in (19.20) that the
mean kinetic energy of gas molecules, or in the present case, the mean
kinetic energy of the electrons above the Fermi energy is 3

2
kBT. Thus, the

thermal energy at a given temperature is

Ekin ¼ 3
2
kBT dN ¼ 3

2
kBTNðEFÞkBT: (20.24)

The heat capacity of the electrons is then, as usual,

Cel
v ¼ @E

@T

� �
v

¼ 3k2BTNðEFÞ: (20.25)

We need now an expression for N(EF). We obtain this by combining (6.8)
and (6.11) for E < EF (see Fig. 20.3 and Problem 9), which yields

NðEFÞ ¼ 3N�

2EF

electrons

J

� �
; (20.26)

where N� is the number of electrons which have an energy equal to or
smaller than EF (Section 6.4). Inserting (20.26) into (20.25) yields

Cel
v ¼ 9

2

N�k2BT
EF

J

K

� �
: (20.27)

So far, we assumed that the thermally excited electrons behave like a
classical gas. In reality, the excited electrons must obey the Pauli principle.
If this is taken into consideration properly, (20.27) changes slightly and
reads

Cel
v ¼ p2

2

N�k2BT
EF

¼ p2

2
N�kB

T

TF
: (20.28)

Let us assume now a monovalent metal in which we can reasonably
assume one free electron per atom (see Part I). Then, N� can be equated to
the number of atoms per mole, N0, and (20.28) becomes the heat capacity
per mole

Cel
v ¼ p2

2

N0k
2
BT

EF

¼ p2

2
N0kB

T

TF

J

K �mol

� �
: (20.29)

We see from (20.29) that Cel
v is a linear function of the temperature and is

zero at T ¼ 0 K, quite in agreement with the experimental observations, see
Fig. 18.2. The room-temperature contribution of the electronic specific heat
to the total specific heat is less than 1% (see Problem 3). There are, however,
two temperature regions where the electronic specific heat plays an appre-
ciable role. This is at very low temperatures, i.e., at T < 5 K (see Fig. 18.2).
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Second, we have learned in the previous sections that the lattice heat
capacity levels off above the Debye temperature. Thus, the electron heat
capacity can give at high temperatures a small contribution to the Dulong–
Petit value.

An interesting aspect is added: Equation (20.25) may be rewritten in the
following form:

Cel
v ¼ gT; (20.30)

where

g ¼ 3k2BNðEFÞ: (20.31)

Furthermore, (20.20) can be rewritten as

Cph
v ¼ b T3 : (20.32)

Below the Debye temperature, the heat capacity of metals is the sum of
electron and phonon contributions, i.e.,

Ctot
v ¼ Cel

v þ Cph
v ¼ gT þ b T3; (20.33)

which yields

Ctot
v

T
¼ gþ bT2: (20.34)

A plot of experimental values for Ctot
v =T versus T 2 provides the materials

constants g (intercept) and b (slope), see Fig. 20.4. Heat capacity measure-
ments thus serve as a means to obtain the electron population density at the
Fermi surface by using (20.31).

Some calculated and observed values for g are given in Table 20.1.
From the slight discrepancy between observed and free-electron g-values,
a thermal effective mass can be calculated, which is defined as

Figure 20.4. Schematic representation of an experimental plot of Cv/T versus T2.
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m�
th

m0

¼ gðobs:Þ
g(calc:Þ : (20.35)

The deviation between the two g-values is interpreted to stem from neglect-
ing electron–phonon and electron–electron interactions.

Problems

1. How many electrons (in percent of the total number of electrons per mole) lie kBT (eV)

below the Fermi energy? Take EF ¼ 5 eV and T ¼ 300 K.

2. Calculate Cv at high temperatures (500 K) by using the quantum mechanical equation

derived by Einstein. Assume an Einstein temperature of 250 K, and convince yourself that

Cv approaches the classical value at high temperatures.

3. Calculate the electronic specific heat for EF ¼ 5 eV and T ¼ 300 K. How does your result

compare with the experimental value of 25 (J/mol K)?

4. Calculate the population density at the Fermi level for a metal whose electronic specific

heat at 4 K was measured to be 8.37 � 10�3 (J/mol K).

5. Confirm that (20.14) reduces for large temperatures to the Dulong–Petit value.

6. At what temperature would the electronic contribution to Cv of silver eventually become

identical to the Dulong–Petit value? (Hint: Use proper units for the heat capacity! Take

EF ¼ 5 eV, Nf ¼ 1028 el/m3.)

7. Show that for small temperatures (20.20) reduces to (20.23) and that for large tempera-

tures (20.20) reduces to the Dulong–Petit value.

8. Derive (20.26) for E < EF as shown in Fig. 20.3 by combining (6.8) and (6.11) and

eliminating the Planck constant.

9. Computer problem. Plot the Einstein equation (20.14) and the Debye equation (20.20) as a
function of temperature by utilizing different values for oE, oD, and yD. Why can (20.23)

not be used in the entire temperature range?

Table 20.1. Calculated and Observed Values for the Constant g, see (20.31).

g, observed g, calculated

Substance
J

mol � K2

� �
J

mol � K2

� �
m�

th

m0

Ag 0.646 � 10�3 0.645 � 10�3 1.0

Al 1.35 � 10�3 0.912 � 10�3 1.48

Au 0.729 � 10�3 0.642 � 10�3 1.14

Na 1.3 � 10�3 0.992 � 10�3 1.31

Fe 4.98 � 10�3 — —

Ni 7.02 � 10�3 — —
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CHAPTER 21

Thermal Conduction

We stated in Chapter 19 that heat conduction can be described as the transfer
of thermal energy from the hot to the cold part of a piece of material. We
shall discuss now the mechanisms which are involved in this transfer of
thermal energy.

We postulate that the heat transfer in solids may be provided by free
electrons as well as by phonons. We understand immediately that in insu-
lators, which do not contain any free electrons, the heat must be conducted
exclusively by phonons. In metals and alloys, on the other hand, the heat
conduction is dominated by electrons because of the large number of free
electrons in metals. Thus, the phonon contribution is usually neglected in
this case.

One particular point should be clarified right at the beginning. Electrons
in metals travel in equal numbers from hot to cold and from cold to hot in
order that the charge neutrality be maintained. Now, the electrons in the hot
part of a metal possess and transfer a high energy. In contrast to this, the
electrons in the cold end possess and transfer a lower energy. The heat
transferred from hot to cold is thus proportional to the difference in the
energies of the electrons.

The situation is quite different in phonon conductors. We know from
Section 20.2.1 that the number of phonons is larger at the hot end than at the
cold end. Thermal equilibrium thus involves in this case a net transfer of
phonons from the hot into the cold part of a material.

R.E. Hummel, Electronic Properties of Materials 4th edition,
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21.1. Thermal Conduction in Metals
and Alloys—Classical Approach

We now attempt to calculate the heat conductivity K (see (19.8)). The train
of thought is borrowed from the kinetic theory of gases, because the same
arguments hold true for electrons as for gas molecules.

Consider a bar of metal whose left side is hot and whose right side is cold
(Fig. 21.1). Thus, a temperature gradient, dT/dx, exists in the x-direction of
the bar. Consider also a volume at the center of the bar whose faces have the
size of a unit area and whose length is 2l, where l is the mean free path
between two consecutive collisions between an electron and lattice atoms.
We assume that at the distance l from the center, x0, the average electron has
had its last collision and has picked up the energy of this place. We calculate
first the energy, E1, per unit time and unit area, of the electrons that drift
from the left into the above-mentioned sample volume. This energy E1

equals the number of electrons, z, times the energy of one of the electrons.
The latter is, according to (19.20), 3

2
kBT1, where T1 can be taken from

Fig. 21.1. and z is given in (19.12)

E1 ¼ z � 3
2
kB T0 þ l � dT

dx

� �� �
¼ nvv

6

3

2
kB T0 � l

dT

dx

� �
: (21.1)

Figure 21.1. For the derivation of the heat conductivity in metals. Note that (dT/dx) is

negative for the case shown in the graph.
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The same number of electrons drift from right to left through the volume
under consideration. These electrons, however, carry a lower energy, E2,
because of the lower temperature of the particles at the site of interaction.
Thus,

E2 ¼ nvv

6
� 3
2
kB T0 þ l

dT

dx

� �
: (21.2)

The excess thermal energy transferred per unit time through a unit area into
the unit volume is therefore the heat flux

JQ ¼ E1 � E2 ¼ � nvv

6

3

2
kB 2l

dT

dx

� �
¼ � nvv

2
kBl

dT

dx
: (21.3)

We compare (21.3) with (19.8):

JQ ¼ �K
dT

dx
: (21.4)

Then, we obtain for the heat conductivity of the electrons

K ¼ nvvkBl

2
: (21.5)

The heat conductivity is thus larger the more electrons, nv, are involved, the
larger their velocity, v, and the larger the mean free path between two
consecutive electron–atom collisions, l. This result intuitively makes sense.

We now seek a connection between the heat conductivity and Cel
v . We

know from (19.20) the kinetic energy of all nv electrons per unit volume:

E ¼ nv
3
2
kBT: (21.6)

From this we obtain the heat capacity per volume,

Cel
v ¼ dE

dT

� �
v

¼ nv
3

2
kB: (21.7)

Combining (21.5) with (21.7) yields

K ¼ 1
3
Cel
v vl: (21.8)

All three variables contained in (21.8) are temperature-dependent, but
while Cel

v increases with temperature, l and, to a small degree, also v, are
decreasing. Thus. K should change very little with temperature, which is
indeed experimentally observed. As mentioned in Section 19.5, the thermal
conductivity decreases about 10�5 W/m � K per degree. K also changes at
the melting point and when a change in atomic packing occurs.
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21.2. Thermal Conduction in Metals and
Alloys—Quantum Mechanical Considerations

The question arises as to what velocity the electrons (that participate in the
heat conduction process) have. Further, do all the electrons participate in the
heat conduction? We have raised a similar question in Section 20.3, see
Fig. 20.3. We know from there that only those electrons which have an
energy close to the Fermi energy, EF are able to participate in the conduction
process. Thus, the velocity in (21.5) and (21.8) is essentially the Fermi
velocity, vF, which can be calculated with

EF ¼ 1
2
mv2F (21.9)

if the Fermi energy is known (see Appendix).
Second, the number of participating electrons contained in (21.5) is

proportional to the population density at the Fermi energy, N(EF), i.e., in
first approximation, by the number of free electrons, Nf, per unit volume.
Inserting the quantum mechanical expression for Cel

v (20.28).

Cel
v ¼ p2

2

Nfk
2
BT

EF

J

K �m3

� �
; (21.10)

into (21.8) yields

K ¼ p2Nfk
2
BTvFlF

6EF

; (21.11)

which reduces with (21.9) and lF ¼ tvF (7.15a) (t ¼ relaxation time) to

K ¼ p2Nfk
2
BTt

3m� : (21.12)

This is the result we were seeking. Again, the heat conductivity is larger the
more free electrons are involved and the smaller the (effective) mass of the
electrons.

Next, we return to a statement which we made in Chapter 18. We pointed
out there that Wiedemann and Franz observed that good electrical con-
ductors are also good thermal conductors. We are now in a position to
compare the thermal conductivity (21.12) with the electrical conductivity
(7.15),

s ¼ Nfe
2t

m� : (21.13)

The ratio of K and s (divided by T) is proportional to a constant called
the Lorentz number, L, which is a function of two universal constants,
kB and e,
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K

sT
¼ L ¼ p2k2B

3e2
: (21.14)

The Lorentz number is calculated to be 2:443� 10�8 J � O=K2 � s� �
(see

Problem 2). Experiments for most metals confirm this number quite well.

21.3. Thermal Conduction in Dielectric Materials

Heat conduction in dielectric materials occurs by a flow of phonons. The hot
end possesses more phonons than the cold end, causing a drift of phonons
down a concentration gradient.

The thermal conductivity can be calculated similarly as in the previous
section, which leads to the same equation as (21.8),

K ¼ 1
3
Cph
v vl: (21.15)

In the present case, Cph
v is the (lattice) heat capacity per unit volume of the

phonons, v is the phonon velocity, and l is the phonon mean free path. A
typical value for v is about 5 � 105 cm/s (sound velocity) with v being
relatively temperature-independent. In contrast, the mean free path varies
over several orders of magnitude, i.e., from about 10 nm at room temperature
to 104 nm near 20 K. The drifting phonons interact on their path with lattice
imperfections, external boundaries, and with other phonons. These interac-
tions constitute a thermal resistivity, which is quite analogous to the electri-
cal resistivity. Thus, wemay treat the thermal resistance just as we did in Part
II; i.e., in terms of interactions between particles (here phonons) and matter,
or in terms of the scattering of phonon waves on lattice imperfections.

At low temperatures, where only a few phonons exist, the thermal
conductivity depends mainly on the heat capacity, Cph

v , which increases
with the third power of increasing temperature according to (20.20)
(see Fig. 21.2). At low temperatures, the phonons possess small energies,

Figure 21.2. Schematic representation of the thermal conductivity in dielectric materials as

a function of temperature.
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i.e., long wavelengths which are too long to be scattered by lattice imper-
fections. The mean free path, l, becomes thus a constant and is virtually
identical to the dimensions of the material.

More effective are the phonon–phonon interactions, which are dominant
at higher temperatures since, as we know, the phonon density increases
with increasing T. Thus, the mean free path and, consequently, the thermal
conductivity, decreases for temperatures above about 20 K (Fig. 21.2).

Another mechanism which impedes the flow of phonons at higher tem-
peratures has been discovered. We explain this mechanism in quantum
mechanical terms. When two phonons collide, a third phonon results in a
proper manner to conserve momentum. Now, phonons (just like electrons)
can be represented to travel in k-space. The same arguments, as discussed in
Chapter 5, may then apply here. We need to consider Brillouin zones that
represent the areas in which the phonon interactions occur. In the example of
Fig. 21.3, the resultant vector a1 þ a2 ¼ a3 is shown to be outside the first
Brillouin zone. We project this vector back to a corresponding place inside
the first Brillouin zone by applying a similar vector relationship as in (5.34),

a1 þ a2 ¼ a3 þG; (21.16)

where G is again a translational vector, which has in the present case the
modulus �2p/a (see Fig. 21.3). As a consequence, the resultant phonon of
vector a4 proceeds after the collision in a direction that is almost opposite to
a2, which constitutes, of course, a resistance against the flow of phonons.
This mechanism is called umklapp process (German for “flipping over”
process).

Phonon collisions in which a1 and a2 are small, so that the resultant vector
a3 stays inside the first Brillouin zone (i.e., G ¼ 0), are called normal
processes. A normal process has no effect on the thermal resistance, since
the resultant phonon proceeds essentially in the same direction.

Figure 21.3. First Brillouin zone in a reciprocal square lattice. Two phonons a1 and a2 are

shown to interact. In the example, the resultant vector a3 lies outside the first Brillouin zone.
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Problems

1. Calculate the thermal conductivity for a metal, assuming t ¼ 3 � 10�14 s, T ¼ 300 K

and Nf ¼ 2.5 � 1022 el/cm3.

2. Calculate the Lorentz number from values of e and kB. Show how you arrived at the

correct units!

3. Calculate the mean free path of electrons in a metal, such as silver, at room temperature

form heat capacity and heat conduction measurements. Take EF ¼ 5 eV, K ¼ 4:29 �
102 J/s �m � K, and Cel

v ¼ 1% of the lattice heat capacity. (Hint: Remember that the heat

capacity in (21.8) is given per unit volume!)

4. Why is the thermal conduction in dielectric materials two or three orders of magnitude

smaller than in metals?

5. Why does the thermal conductivity span only 5 orders of magnitude, whereas the

electrical conductivity spans nearly 25 orders of magnitude?

6. Is there a theoretical possibility of a thermal superconductor?

7. Discuss why the thermal conductivity of alloys is lower than that of the pure constituents.
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CHAPTER 22

Thermal Expansion

The length, L, of a rod increases with increasing temperature. Experiments
have shown that in a relatively wide temperature range the linear expansion,
DL, is proportional to the increase in temperature, DT. The proportionality
constant is called the coefficient of linear expansion, aL. The observations
can be summarized in

DL
L

¼ aLDT: (22.1)

Experimentally observed values for aL are given in Table 22.1.
The expansion coefficient has been found to be proportional to the molar

heat capacity, Cv, i.e., the temperature dependence of aL is similar to the
temperature dependence of Cv. As a consequence, the temperature depen-
dence of aL for dielectric materials follows closely the Cv ¼ f (T) relation-
ship predicted by Debye and shown in Fig. 18.2. Specifically, aL approaches
a constant value for T > yD and vanishes as T3 for T ! 0. The thermal
expansion coefficient for metals, on the other hand, decreases at very small
temperatures in proportion to T, and depends on the sum of the heat
capacities of phonons and electrons in other temperature regions.

We turn now to a discussion of possible mechanisms that may explain
thermal expansion from an atomistic point of view. We postulate, as in the
previous chapters, that the lattice atoms absorb thermal energy by vibrating
about their equilibrium position. In doing so, a given atom responds with
increasing temperature and vibrational amplitude to the repulsive forces of
the neighboring atoms. Let us consider for a moment two adjacent atoms
only, and let us inspect their potential energy as a function of internuclear
separation (Fig. 22.1). We understand that as two atoms move closer to each

R.E. Hummel, Electronic Properties of Materials 4th edition,
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other, strong repulsive forces are experienced between them. As a conse-
quence, the potential energy curve rises steeply with decreasing r. On the
other hand, we know that two atoms also attract each other somewhat. This
results in a slight decrease in U(r) with decreasing r.

Now, for small temperatures, a given atom may rest in its equilibrium
position, r0, i.e., at the minimum of potential energy. If, however, the
temperature is raised, the amplitude of the vibrating atom increases, too.
Since the amplitudes of the vibrating atom are symmetric about a median
position and since the potential curve is not symmetric, a given atom moves
farther apart from its neighbor, i.e., the average position of an atommoves to
a larger r, say, rT, as shown in Fig. 22.1. In other words, the thermal
expansion is a direct consequence of the asymmetry of the potential energy
curve. The same arguments hold true if all atoms in a solid are considered.

Figure 22.1. Schematic representation of the potential energy, U(r), for two adjacent atoms

as a function of internuclear separation, r.

Table 22.1. Linear Expansion Coefficients, aL, for Some

Solids Measured at Room Temperature.

Substance aL in 10–5 [K–1]

Hard rubber 8.00

Lead 2.73

Aluminum 2.39

Brass 1.80

Copper 1.67

Iron 1.23

Soda-lime glass 0.90

Borosilicate glass 0.32

NaCl 0.16

Invar (Fe–36% Ni) 0.07

Quartz 0.05
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A few substances are known to behave differently from that described
above. They contract during a temperature increase. This happens, however,
only within a narrow temperature region. For its explanation, we need to
realize that longitudinal as well as transverse vibrational modes may be
excited by thermal energy (see Section 20.2). The lattice is expected to
contract if transverse modes predominate. Interestingly enough, only one
known liquid substance, namely, water, behaves in a limited temperature
range in this manner. Specifically, water has its largest density at 4�C.
(Furthermore, the density of ice is smaller than the density of water at the
freezing point.) As a consequence, water of 4�C sinks to the bottom of a lake
during winter, while ice stays on top. This prevents the freezing of a lake at
the bottom and thus enables aquatic life to survive during the winter. This
exceptional behavior of water suggests that the laws of physics do not just
“happen,” but rather they were created by a superior being. I want to
conclude my book with this thought.

Problems

1. Estimate the force that is exerted by the end of a 1 m long iron rod of 1 cm2 cross section

which is heated to 100�C.

2. Calculate the gap which has to be left between two 10 m long railroad tracks when they

are installed at 0�C and if no compression is allowed at 40�C.

3. Explain some engineering applications of thermal expansion, such as the bimetal thermal

switch, metal thermometer, etc.

4. What happens if a red-hot piece of glass is immersed in cold water? What happens if the

same experiment is done with quartz?

5. Discuss thermal expansion in materials from an atomistic point of view.

Suggestions for Further Reading (Part V)

A.J. Dekker, Solid State Physics, Prentice-Hall, Englewood Cliffs, NJ (1957).
C. Kittel and H. Kroemer, Thermal Physics, 2nd ed., W.H. Freeman, San Francisco,

CA (1980).
F.G. Klemens and T.K. Chu, eds., Thermal Conductivity, Vols. 1–17, Plenum Press,

New York.
T.F. Lee, F.W. Sears, and D.L. Turcotte, Statistical Thermodynamics, Addison-Wesley,

Reading, MA (1963).
J.M. Ziman, Electrons and Phonons, Oxford University Press, Oxford (1960).
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APPENDIX 1

Periodic Disturbances

A vibration is a time-dependent or space-dependent periodic disturbance.
We restrict our discussion to harmonic vibrations. In this case, the space-
dependence of time is represented by a simple sine or cosine function
or, equivalently, because of the Euler equations (see Appendix 2), by an
exponential function. The use of exponential functions provides often a
simpler mathematical treatment than using trigonometric functions. For
this reason, exponential functions are usually preferred. We follow this
practice.

A.1.1. Undamped Vibration

(a) Differential equation for time-dependent periodicity:

m
d2u

dt2
þ ku ¼ 0 (A.1)

(m ¼ mass, k ¼ retracting force parameter). A solution is

u ¼ Aeiot: (A.2)

where

o ¼
ffiffiffiffi
k
m

r
¼ 2pn (A.3)

is the angular frequency and A is a constant called maximum amplitude.

R.E. Hummel, Electronic Properties of Materials 4th edition,
DOI 10.1007/978-1-4419-8164-6, # Springer ScienceþBusiness Media, LLC 2011
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(b) Differential equation for space-dependent periodicity (in one dimension):

a
d2u

dx2
þ bu ¼ 0: (A.4)

Solution:

u ¼ Aeiax þ Be�iax; (A.5)

where A and B are constants, and

a ¼
ffiffiffiffiffi
b

a
:

r
(A.6)

A.1.2. Damped Vibration

(a) Differential equation for time-dependent periodicity:

m
d2u

dt2
þ g

du

dt
þ ku ¼ 0 (A.7)

(g is the damping constant). The solution is

u ¼ Ae�bt � eiðo0t�fÞ; (A.8)

where

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
m
� b2

r
(A.9)

is the resonance frequency,

b ¼ g
2m

(A.10)

is the damping factor, and f is the phase (angle) difference. In a damped

vibration, the amplitude Ae�bt decreases exponentially.

(b) Differential equation for space-dependent periodicity:

d2u

dx2
þ D

du

dx
þ Cu ¼ 0: (A.11)

Solution:

u ¼ e�Dx=2ðAeirx þ Be�irxÞ; (A.12)
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where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C� D2

4

r
(A.13)

and A, B, C, and D are constants.

A.1.3. Forced Vibration (Damped)

Differential equation for time-dependent periodicity:

m
d2u

dt2
þ g

du

dt
þ ku ¼ K0e

iot: (A.14)

The right-hand side is the time-periodic excitation force. The solution
consists of the start-up vibration and a steady-state part. The steady-state
solution is

u ¼ K0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 o2

0 � o2
� �2 þ g2o2

q eiðot�fÞ; (A.15)

where

o0 ¼
ffiffiffiffi
k
m

r
(A.16)

is the resonance frequency of the undamped, free oscillation.
The tangent of the phase difference, f, between the excitation force and

the forced vibration is

tanf ¼ go
m o2

0 � o2
� � : (A.17)

A.1.4. Wave

A wave is a space- and time-dependent periodic disturbance. One distin-
guishes between traveling waves, which occur when the wave is not confined
by boundary conditions, and standing waves, which are observed when a
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wave is reflected at a boundary and thus interacts with the oncoming wave.
The wave motion in a vibrating string may serve as an example for the latter
case. The simplest form of a traveling wave is a harmonic wave, which is
expressed by a sine or cosine function, such as

uðt; xÞ ¼ A sinðkx� otÞ (A.18)

(when the wave is propagating in the positive x-direction), where

jkj ¼ 2p
l

(A.19)

is called the wave number vector. It has the unit of a reciprocal length. For
convenience and because of the Euler equations (Appendix 2) one frequently
uses instead

uðt; xÞ ¼ A expðiðkx� otÞÞ: (A.20)

If the wave travels in the negative x-direction, (A.20) is

u(t,x) = A exp(�i (kx + ot))

(a) The differential equation for the undamped wave is

v2r2u ¼ @2u

@t2
; (A.21)

where

r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
: (A.22)

The differential equation for a plane wave is

v2
@2u

@x2
¼ @2u

@t2
; (A.23)

whose solution is

uðt; xÞ ¼ eiotðAeiax þ Be�iaxÞ; (A.24)

or

uðt; xÞ ¼ AeiðotþaxÞ þ Beiðot�axÞ; (A.25)

or

uðt; xÞ ¼ Aeioðtþðx=vÞÞ þ Beioðt�ðx=vÞÞ; (A.25a)
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(b) The damped wave

v2r2u ¼ a
@u

@t
þ b

@2u

@t2
(A.26)

can be solved with

uðt; x; y; zÞ ¼ Aeiðot�k�xÞ � e�gx: (A.27)

Appendix 1. Periodic Disturbances 449



APPENDIX 2

Euler Equations

cosf ¼ 1
2
ðeif þ e�ifÞ; (A.28)

sinf ¼ 1
2iðeif � e�ifÞ; (A.29)

sinhf ¼ 1
2
ðef � e�fÞ ¼ 1

i � sin if; (A.30)

coshf ¼ 1
2
ðef þ e�fÞ ¼ cos if; (A.31)

eif ¼ cosfþ i sinf; (A.32)

e�if ¼ cosf� i sinf: (A.33)
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APPENDIX 3

Summary of Quantum Number
Characteristics

The energy states of electrons are characterized by four quantum numbers.
The main quantum number, n, determines the overall energy of the elec-
trons, i.e., essentially the radius of the electron distribution. It can have any
integral value. For example, the electron of a hydrogen atom in its ground
state has n ¼ 1.

The quantum number, l, is a measure of the angular momentum, L, of the
electrons and is determined by jLj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ\p
, where l can assume any

integral value between 0 and n � 1.
It is common to specify a given energy state by a symbol that utilizes the

n- and l-values. States with l ¼ 0 are called s-states; with l ¼ 1, p-states;
and with l ¼ 2, d-states, etc. A 4d-state, for example, is one with n ¼ 4 and
l ¼ 2.

The possible orientations of the angular momentum vector with respect to
an external magnetic field are again quantized and are given by the magnetic
quantum number, m. Only m values between +l and �l are permitted.

The electrons of an atom fill the available states starting with the lowest
state and obeying the Pauli principle, which requires that each state can be
filled with only two electrons having opposite spin sj j ¼ �1

2

� �
. Because

of the just-mentioned multiplicity, the maximal number of electrons in the
s-states is 2, in the p-states 6, in the d-states 10, and in the f-states 14.

The electron bands in solids are named by using the same nomenclature
as above, i.e., a 3d-level in the atomic state widens to a 3d-band in a solid.
The electron configurations of some isolated atoms are listed on the next
page.

The designations s, p, d, and f are of an historical nature and are derived
from certain early spectrographic observations. They stand for sharp, prin-
cipal, diffuse, and fundamental.
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K L M N O
Z Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

1 H 1

2 He 2

3 Li 2 1

4 Be 2 2

5 B 2 2 1

6 C 2 2 2

7 N 2 2 3

8 O 2 2 4

9 F 2 2 5

10 Ne 2 2 6

11 Na 2 2 6 1

12 Mg 2 2 6 2

13 Al 2 2 6 2 1

14 Si 2 2 6 2 2

15 P 2 2 6 2 3

16 S 2 2 6 2 4

17 Cl 2 2 6 2 5

18 Ar 2 2 6 2 6

19 K 2 2 6 2 6 1

20 Ca 2 2 6 2 6 2

21 Sc 2 2 6 2 6 1 2

22 Ti 2 2 6 2 6 2 2

23 V 2 2 6 2 6 3 2

24 Cr 2 2 6 2 6 5 1

25 Mn 2 2 6 2 6 5 2

26 Fe 2 2 6 2 6 6 2

27 Co 2 2 6 2 6 7 2

28 Ni 2 2 6 2 6 8 2

29 Cu 2 2 6 2 6 10 1

30 Zn 2 2 6 2 6 10 2

31 Ga 2 2 6 2 6 10 2 1

32 Ge 2 2 6 2 6 10 2 2

33 As 2 2 6 2 6 10 2 3

34 Se 2 2 6 2 6 10 2 4

35 Br 2 2 6 2 6 10 2 5

36 Kr 2 2 6 2 6 10 2 6

37 Rb 2 2 6 2 6 10 2 6 1

38 Sr 2 2 6 2 6 10 2 6 2

39 Y 2 2 6 2 6 10 2 6 1 2

40 Zr 2 2 6 2 6 10 2 6 2 2

41 Nb 2 2 6 2 6 10 2 6 4 1

42 Mo 2 2 6 2 6 10 2 6 5 1

43 Tc 2 2 6 2 6 10 2 6 5 2
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As implied above, we are discussing here isolated atoms. They are
generally represented as consisting of positively charged nuclei and elec-
trons which orbit around them. The path on which the electrons travel, or
better, the region in space about the nucleus in which there is a 95%
probability for finding an electron, is called an orbital. Orbitals are
described by a series of quantum numbers, as outlined above. The closest
orbital to a nucleus (n ¼ 1; l ¼ 0), as in a hydrogen atom in its ground state,
is spherical and is termed an s-orbital (Fig. A.3.1(a)). The next higher
orbitals (l ¼ 1) are shaped similarly to a three-dimensional figure-eight
and are called p-orbitals (see Fig. A.3.1(b).

When electrons interact with each other and the bonds are parallel to the
orbital axis, the result is called a s-bond. On the other hand, bonds
perpendicular to the orbital axes are p-bonds, see Fig. A.3.1(b). (s-orbitals
which have no specific axis always form s bonds.)

Z

Y

X

(a) (b)

X

Z

Y
π

π

σ

Figure A.3.1. (a) Shape of s-orbital, (b) Shape of px-orbital and s and p bond directions.
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APPENDIX 4

Tables

The International System of Units (SI or mksA System)

In the SI unit system, essentially four base units—the meter, the kilogram
(for the mass), the second, and the ampere—are defined. Further base units
are the Kelvin, the mole (for the amount of substance), and the candela (for
the luminous intensity). All other units are derived units as shown in the
table below. Even though the use of the SI unit system is highly recom-
mended, other unit systems are still widely used.

Expression in terms of

Quantity Name Symbol Other SI units SI base units

Force Newton N — kg · m/s2

Energy, work Joule J N · m ¼ V · A · s kg · m2/s2

Pressure Pascal Pa N/m2 kg/m · s2

El. charge Coulomb C J/V A · s

Power Watt W J/s kg · m2/s3

El. potential Volt V W/A kg · m2/A · s3

El. resistance Ohm O V/A kg · m2/A2 · s3

El. conductance Siemens S A/V A2 · s3/kg · m2

Magn. flux Weber Wb V · s kg · m2/A · s2

Magn. induction Tesla T Wb/m2 ¼ V · s/m2 kg/A · s2

Inductance Henry H Wb/A kg · m2/A2 · s2

Capacitance Farad F C/V A2 · s4/kg · m2
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Physical Constants (SI and cgs units)

Mass of electron (free electron

mass; rest mass)

m0 � m ¼ 9.11 � 10�31 (kg) ¼ 9.11 � 10�28 (g)

Charge of electron e ¼ 1.602 � 10�19 (C) (SI-unit)

¼ 4.803 � 10�10 (statcoul) � (cm3/2 · g1/2/s) (el. static

cgs units)

¼ 1.602 � 10�20 (abcoul) � (g1/2 · cm1/2) (el. magnetic

cgs units)

Velocity of light in vacuum c ¼ 2.998 � 108 (m/s) ¼ 2.998 � 1010 (cm/s)

Planck constant h ¼ 6.626 � 10�34 (J · s) ¼ 6.626 � 10�27 (g · cm2/s)

¼ 4.136 � 10�15 (eV · s)

\ ¼ 1.054 � 10�34 (J · s) ¼ 1.054 � 10�27 (g · cm2/s)

¼ 6.582 � 10�16 (eV · s)

Avogadro constant N0 ¼ 6.022 � 1023 (atoms/mol)

Boltzmann constant kB ¼ 1.381 � 10�23 (J/K) ¼ 1.381 � 10�16 (erg/K)

¼ 8.616 � 10�5 (eV/K)

Bohr magneton mB ¼ 9.274 � 10�24 (J/T) � (A · m2)

¼ 9:274� 10�21 erg

G

� �
� ðg1=2 cm5=2=s)

Gas constant R ¼ 8.314 (J/mol · K) ¼ 1.986 (cal/mol · K)

Permittivity of empty space

(vacuum)

e0 ¼ 1/m0c
2 ¼ 8.854 � 10�12 (F/m) � (A · s/V · m)

� A2s4

kgm3

� �

Permeability of empty space

(vacuum)

m0 ¼ 4p � 10�7 ¼ 1.257 � 10�6 (H/m) � (V · s/A · m)

� (kg · m/A2 · s2)

Useful Conversions

1 (eV) ¼ 1.602 � 10�12 (g · cm2/s2) ¼ 1.602 � 10�19 (kg · m2/s2)

¼ 1.602 � 10�19 (J) ¼ 3.829 � 10�20 (cal)

1 ðJÞ ¼ 1
kg �m2

s2

� �
¼ 107ðergÞ ¼ 107

g � cm2

s2

� �
¼ 2:39� 10�1 ðcalÞ

1 (Rydberg) ¼ 13.6 (eV)

1 (1/Ocm) ¼ 9 � 1011 (1/s)

1 (1/Om) ¼ 9 � 109 (1/s)

1 (C) ¼ 1 (A · s) ¼ 1 (J/V)

1 (Å) ¼ 10�10 (m)

1 (torr) � 1 (mm Hg) ¼ 133.3 (N/m2) � 133.3 (Pa)

1 (bar) ¼ 105 (N/m2) � 105 (Pa)

1 (Pa) ¼ 10 (dyn/cm2)

1 cal ¼ 2.6118 � 1019 (eV)

1 (horsepower) ¼ 746 (W)

1 (KWH) ¼ 3.6 (MJ)

1 (mm) (milli) ¼ 10�3 (m) 1 km (Kilo) ¼ 103 m

1 (mm) (micro) ¼ 10�6 (m) 1 Mm (Mega) ¼ 106 m

1 (nm) (nano) ¼ 10�9 (m) 1 Gm (Giga) ¼ 109 m

1 (pm) (pico) ¼ 10�12 (m) 1 Tm (Tera) ¼ 1012 m

1 (fm) (femto) ¼ 10�15 (m) 1 Pm (Peta) ¼ 1015 m

1 (am) (atto) ¼ 10�18 (m) 1 Em (Exa) ¼ 1018 m
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Resistivity of extrinsic silicon at room temperature as a function of the
carrier concentration for Boron (p-type doping) and Phosphorus (n-type
doping). Reprinted with permission from Solecon Laboratories, Inc. (http://
www.solecon.com/sra/rho2cc.htm)
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Ionization Energies for Various Dopants in Semiconductors (Experimental)

Donor ionization energies are given from the donor levels to the bottom of
the conduction band. Acceptor ionization energies are given from the top of
the valence band to the acceptor levels.

Dopant

Semiconductor Type Element Ionization energy (eV)

Sb 0.0096

Donors P 0.012

As 0.013
Ge

B 0.01

Acceptors Al 0.01

Ga 0.011

In 0.011

Sb 0.039

Donors P 0.045

As 0.054
Si

B 0.045

Acceptors Al 0.067

Ga 0.072

In 0.16

Si 0.0058

Donors Ge 0.006

Sn 0.006
GaAs

Be 0.028

Acceptors Mg 0.028

Zn 0.031
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Physical Properties of Si and GaAs

Si GaAs

Lattice constant (Å) 5.431 5.654

Atoms (cm�3) 5.00 � 1022 4.43 � 1022

Band gap (eV) at 25�C 1.11 1.43

Temperature dependence of

band gap (eV�C�1)

�2.4 � 10�4 �4.3 � 10�4

Specific gravity (g cm�3) 2.33 5.32

Dielectric constant 11.8 10.9

Electron lattice mobility

(cm2 V�1 s�1)

1.5 � 103 8.5 � 103

Hole lattice mobility

(cm2 V�1 s�1)

4.8 � 102 4 � 102

Number of intrinsic electrons

(cm�3) at 25�C
1.5 � 1010 1.1 � 106

Coefficient of linear thermal

expansion (�C�1) at 25�C
2.33 � 10�6 6.86 � 10�6

Thermal conductivity (W
�C�1 m�1)

147 46

Optical Constants of Si and GaAs (fromHandbook of Optical Constants of Solids,
Academic Press, 1985)

Si GaAs

E(eV) l(nm) n k n k

4.96 250 1.580 3.632 2.654 4.106

3.54 350 5.442 2.989 3.513 1.992

3.10 400 5.570 0.387 4.373 2.146

2.48 500 4.298 0.073 4.305 0.426

2.07 600 3.943 0.025 3.914 0.228

1.55 800 3.688 0.006 3.679 0.085

0.91 1370 3.5007 !0 3.3965 !0
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Conversions from the Gaussian Unit System into the SI Unit System

The equations given in this book can be converted from the cgs (Gaussian)
unit system into the SI (mks) system and vice versa by replacing the symbols
in the respective equations with the symbols listed in the following table.
Symbols which are not listed here remain unchanged. It is imperative that
consistent sets of units are utilized.

Quantity mks (SI) cgs (Gaussian)

Magnetic induction B B/c

Magnetic flux fB fB/c

Magnetic field strength H cH/4p
Magnetization M cM

Magnetic dipole moment mm cmm
Permittivity constant e0 1/4p
Permeability constant m0 4p/c2

Electric displacement D D/4p

m0 ¼ 4p � 10�7 ¼ 1.257 � 10�6 (V · s/A · m) � (kg · m/C2) � (H/m).
e0 ¼ 8.854 � 10�12 (A · s/V · m) � (F/m).

Color Codes of Bands (Rings) on Commercial Resistors

First and second

color band Third color band

Fourth color band

(Tolerances)

Black —0 Black — � 1

Brown —1 Brown — � 10 Brown —1%

Red —2 Red — � 100 Red —2%

Orange —3 Orange — � 1,000 (1K) Orange —3%

Yellow —4 Yellow — � 10 K Yellow —4%

Green —5 Green — � 100 K

Blue —6 Blue — � 1,000 K (1 M)

Violet —7 Violet — � 10 M

Gray —8 Gray — � 100 M

White —9 Gold — � .1 Gold —5%

Silver — � .01 Silver —10%

None —20%
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List of Frequently Used Symbols,

as far as they are not already defined in the previous tables. For example, the
symbols for the chemical elements are shown in the previous table. In those
cases where a symbol is used more than once, the field of application
is indicated, such as: el. ¼ electrical; opt. ¼ optical; mag. ¼ magnetic;
th. ¼ thermal.

B Magnetic induction (magnetic

field)

Br Remanence

C el. Capacitance; mag. Curie

constant

C0 Heat capacity (general)

c opt. Speed of light; th. Specific

heat capacity

C0
p Heat capacity at constant

pressure

Cp Molar heat capacity at constant

pressure

C0
v Heat capacity at constant

volume

Cv Molar heat capacity at constant

volume

D Dielectric displacement

D(o) Density of modes

E Energy

E Electric field strength

EF Fermi energy

Eg Gap energy

Ekin Kinetic energy

EMF Electromotoric force

or Electromotive force

exp Exponent, base e

F Force

F(E) Fermi function

fi Oscillator strength

H mag. Magnetic field strength;

th. Enthalpy

Hc Coercive field or coercivity

i
ffiffiffiffiffiffiffi�1

p
I Current

j Current density

JQ Heat flux

K Thermal conductivity

k Wave number or wave vector;

opt: Damping constant

L Length

l Mean free path of electrons

M Atomic mass; mag.

Magnetization

m Mass

Mr Remanence

n opt. Index of refraction;

th. Amount of substance in mol

N(E) Population density of electrons

Ne Number of electrons

p momentum

P Power; el. Dielectric

polarization;

th. Pressure

Q Activation energy

q Electric charge (general)

R opt. Reflectivity; th. Gas

constant

T Absolute temperature; opt.

Transmissivity

t Time

V Potential energy; el. electric

potential

v Velocity

vg Group velocity

W Work; opt. Characteristic

penetration depth of light

Z(E) Density of states
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Greek Letters

a Angle; also

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=\2

q
opt. Absorbance

th. Expansion coefficient

d Density

r2 See Equation 3.2

e Dielectric constant

Z Number of energy states; also: efficiency

yD Debye temperature

yE Einstein temperature

k opt. Spring constant; th. Compressibility

l Wavelength

m el. Mobility of electrons and holes;

mag. Permeability

mB Bohr magneton

mm Magnetic moment

n Frequency

p 3.141. . ..
r Resistivity

s Conductivity

t Relaxation time

dt Space element

f el. Work function; opt. Phase difference

mag. Magnetic flux

w el. Electron affinity; mag. Susceptibility

c Wave function (only space dependent)

C Wave function (time and space dependent)

o Angular frequency
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APPENDIX 5

About Solving Problems and Solutions
to Problems

There are two types of exercises contained at the end of each chapter of this
book; both of them are provided for the students to deepen their understand-
ing of the material covered in the text. About 25% of the problems are
concerned with conceptual reviews. These usually do not seem to be any
major stumbling block to the reader. In contrast to this, however, the
numerical problems are the ones which seem to provide some challenges.
The goal of this section is to sketch a systematic approach for the solution of
numerical problems and to give an actual example.

The first task is, of course, to find one or several equations which can be
applied to the problem at hand. As a rule, however, the equations to be used
are not yet provided in a form which lists the unknown variable on the left
side of the equation and all the known variables plus a handful of constants
on the right side. Thus, algebraic manipulations need to be applied until this
goal has been achieved. (Under no circumstances should one insert numeri-
cal values immediately into the starting equations, in particular, if these
variables are given in different unit systems.)

Once a final equation (containing the unknown quantity on the left side)
has eventually been obtained, a unit check should be attempted by listing all
known quantities in one unit system and inserting these units into the final
equation. This provides a simple check on whether the algebraic manipula-
tion was done correctly and in what unit the numerical result will turn out.
Only then is a numerical calculation in place. At the end of each calculation
the student should ask, “Does the result make sense?”. A comparison with
tabulated values in one of the appendices or with information given in the
text can, most of the time, quickly answer this question. If the result seems
to be off by several orders of magnitude, a recalculation should definitely be
performed.
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Example (Problem 2/1)

l ¼ h

p
;

E ¼ p2

2m
;

9>>=
>>;

l ¼ hffiffiffiffiffiffiffiffiffi
2Em

p kgm2 s s

s2 kg1=2 m kg1=2

� �
� ðmÞ;

E ¼ 4 ðeVÞ ¼ 4� 1:602� 10�19 ðJÞ � kgm2

s2

� �
;

h ¼ 6:626� 10�34 J sð Þ;
m ¼ 9:11� 10�31 kgð Þ;

l ¼ 0:613� 10�9 mð Þ ¼ 6:13 ðA� Þ:

Solutions to Numerical Problems

Chapter 2

1. l ¼ 6.13 (Å).

2. E ¼ 4.18 � 10�6 (eV).

4. E ¼ 2.07 (eV).

5. l ¼ 2.38 � 10�24 (Å).

Chapter 4

6. E ¼ 13.6 (eV).

10. E1 ¼ 1.50 � 10�18 (J) ¼ 9.39 (eV) (zero-point energy)

E2 ¼ 4 � E1; E3 ¼ 9 � E1 etc.

Chapter 5

1. L1 
 14 (eV); L2
0 
 8 (eV); L2

0 � L1 
 6 (eV).
2. E ¼ 1.1 (eV).
3. DE ¼ \2p2/ma2; or E111/E100 ¼ 3.
5. (a) X ¼ 0 ? E ¼ 4C; X ¼ p/a ? E ¼ 9C (C ¼ p2\2/2ma2);
(b) X ¼ 0 ? E ¼ 16C; X ¼ p/a ? E ¼ 9C.

6. (a) X ¼ 0 ? E ¼ 4C; X ¼ 1 ? E ¼ 1C (C ¼ 2\2p2/ma2);
(b) X ¼ 0 ? E ¼ 2C; X ¼ 1 ? E ¼ 5C;
(c) X ¼ 0 ? E ¼ 2C; X ¼ 1 ? E ¼ 5C.

7. b1 ¼ (1/a)ð�111Þ; b2 ¼ (1/a)ð1�11Þ; b3 ¼ (1/a)ð11�1Þ.
8. (a) X ¼ 0 ? E ¼ 0; X ¼ 1 ? E ¼ 1

2
C (C ¼ 2\2p2/ma2);

(b) X ¼ 0 ? E ¼ 2C; X ¼ 1 ? E ¼ 1 1
2
C;

(c) X ¼ 0 ? E ¼ 4C; X ¼ 1 ? E ¼ 2 1
2
C.
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Chapter 6

1. vF ¼ 1.38 � 106 (m/s).

3. T ¼ 290.5 (K).

4. EF ¼ 5.64 (eV).

5. Z(E) ¼ 5.63 � 1046 (electron states/J).

¼ 9.03 � 1027 (electron states/eV).

6. For entire band: N	/V ¼ 8.42 � 1022 (1/cm3).

7. � ¼ 2.5 � 1023 (energy states).

8. (a) N	 ¼ 8.42 � 1022 (electrons/cm3);

(b) Na ¼ 8.49 � 1022 (atoms/cm3);

(c) Not exactly one free electron per atom.

9. 0.88%.

10. FðEÞ ¼ 1
2
:

12. (a) n 1 2 3 4 5 6

error (%) 27 12 5 2 0.7 0.2

(b) E ¼ 5.103 (eV).

Chapter 7

1. Nf ¼ 5.9 � 1022 (electrons/cm3).

2. See Fig. 7.9.

3. t ¼ 2.5 � 10�14 (s); l ¼ 393 (Å).

5. Nf ¼ 2.73 � 1022 (electrons/cm3) or 1.07 (electrons/atom).

7. N(E) ¼ 1.95 � 1047 (electrons/J m3) � 3.12 � 1022 (electrons/eV cm3). The

joule is a relatively large energy unit for the present purpose.

Chapter 8

1. N0 ¼ 9.77 � 109 (electrons/cm3).

2.
T(K) 300 400 500 600 700

Ne

(electrons/cm3)

6.2 � 10�15 2.4 � 10�6 3.7 � 10�1 1.1 � 103 3.5 � 105

3. EF ¼ �Eg/2 (using the bottom of the conduction band as the origin of the

energy scale).

4. T ¼ 19,781 (K) (!).

6. Eg ¼ 0.396 (eV).

7. EF ¼ �0.16 eV; s ¼ 31.2 (1/O cm).

8. (Ne)300�C ¼ 7.88 � 1014 (electrons/cm3);

(Ne)350�C ¼ 2.22 � 1015 (electrons/cm3).

See also Fig. 8.9 (watch scale!).

9. (a) extrinsic Ne ¼ 1 � 1013 (electrons/cm3);

(b) intrinsic Ne ¼ 9.95 � 1010 (electrons/cm3).

10. E ¼ 0.043 (eV).
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12.
Metal Ag Al Au Cu fM > fS,

fM (eV) 4.7 4.1 4.8 4.5 fSi ¼ 3.6 (eV).

15. (a) Elight > Egap;

(b) N ¼ 1.6 � 1014 (pairs/s).

16. IS ¼ 2.97 � 10�3 (A);

Inet ¼ 3.2 � 102 (A).

20. E ¼ 2.58 � 10�2 (eV).

22. 24 (nm).

23. � ¼ 0.97.

Chapter 9

1. mion ¼ 3.32 � 10�16 (m2/Vs) (2 unit charges);

mS.C. ¼ 0.1 (m2/Vs).

2. Nion ¼ 6.2 � 1014 (sites/cm3).

3. Q ¼ 0.83 (eV).

4. sion ¼ 1.35 � 10�15 (1/O cm).

Chapter 10

2. el. (DC) opt. (AC)

r 1.67 � 10�6 (O cm) 3.85 � 10�3 (O cm)

s 5.99 � 105 (O�1 cm�1) 2.6 � 102 (O�1 cm�1)

4. Z ¼ 27.8 (nm).

5. RAg ¼ 98.88%; Rglass ¼ 5.19%.

6. Z ¼ 7.81 (nm).

8. T2 ¼ 94.3%.

Chapter 11

1. n (s�1) n R (%)

1.43 � 1015 0 100

1.44 � 1015 0.1176 62

1.53 � 1015 0.3556 23

2.0 � 1015 0.6991 3.1

3.0 � 1015 0.8791 0.4

The results in this table show that the reflectivity for the case of free electrons

without damping indeed decreases very rapidly with increasing frequency near

n1. However, the decrease is not in a step as Fig. 11.3 may suggest, but instead

is more gradual.

2. (n1)K ¼ 1.03 � 1015 (s�1);

(n1)Li ¼ 1.92 � 1015 (s�1).

3. (Neff)Na ¼ 1; (Neff)K ¼ 0.85.

5. R ¼ 99.03%.

6. n1 ¼ 2 � 1015 (s�1); n2 ¼ 3.56 � 1012 (s�1).
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7.
l (mm) 0.3 0.4 0.5 0.7 1 2 5

ncalc 1.599 1.460 1.416 1.384 1.369 1.359 1.356

n (in 1014 s�1) 9.99 7.49 5.99 4.28 2.99 1.5 0.51

12. Neff ¼ 5.49 � 1022 (electrons/cm3);

Na ¼ 5.86 � 1022 (atoms/cm3);

Neff/Na ¼ 0.94 (electrons/atom).

600 nm is in the red part of the spectrum where the free-electron theory may be

valid, see Fig. 11.1(a).

Chapter 12

3. (a) (b) (c) (d) (e)

A Metal (Ni) High R in

IR (intraband tr.)

None 1.5 eV (weak)

3 eV (strong)

yes partially

filled bands

B Semiconductor (GaAs)

Low R in IR (no

intraband transitions)

IR 1.5 eV (Band gap) no filled bands

4. 1.5 (S3 ! S1 and W2
0 ! W1).

Chapter 13

1. n2 � n3 
 10�2.

2. t ¼ 2 (mm).

3. (a) bT ¼ 16.1�;
(b) bT ¼ 41.8�.

4. Nf3
� Nf2

¼ 1.15 � 1018 (cm�3).

5. a ¼ 1.6 (cm�1) ¼ 6.9 (dB/cm).

7. ldisk ¼ 503.2 (nm); l/4 ¼ 126 nm.

8. E ¼ 1.4 (eV); l ¼ 886 (nm)

9. Hint: Consider Snow!

Chapter 14

2. H ¼ 2.51 � 102 (Oe);

H ¼ 2 � 104 (A/m).

4. Answers are in Table 14.1.

Chapter 15

1. w ¼ �70.9 � 10�6. Note: wSI ¼ 4pwcgs
6. z ¼ 6.71 � 10�3.

7. w ¼ 6.91 � 10�5 (about one magnetic moment per atom).

8. FeO · Fe2O3, mm ¼ 4 mB;
CoO · Fe2O3, mm ¼ 3 mB.

10. HM ¼ 1:67� 109
A

m

� �
:

11. Sure! (No tricks please.)
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Chapter 16

1. wpara ¼ 5.41 � 10�5 (Al?).

(Diamagnetism not taken into consideration).

3. Fe: 7.8 out of 10; Co: 8.2 out of 10.

4. Ferro Fe: mm ¼ 2.2 mB; Co: mm ¼ 1.8 mB;
Ferri Fe: mm ¼ 4 mB; Co: mm ¼ 3 mB;
The number of Bohr magnetons for a single iron atom is zero. Ferromagnetism

needs interaction with other atoms.

Chapter 17

1. E ¼ 10�3 (J).

2. For a synchrotron a steady magnetic field is used. No eddy current! High flux

multiplication needed. Consult Table 17.1.

6. Joule heating in wires.

Chapter 19

1. Na ¼ 2.4 � 1011 (atoms/m3).

2. �JQ: Glass 3.8 � 103 (J/s m2);

Al 4.74 � 105 (J/s m2);

Wood 3.2 � 102 (J/s m2).

3. T ¼ 1,142 (K) ¼ 869 (�C).
5. Proper heat dissipation is essential in semiconductor devices.

7. 1 BTU is the heat required to raise the temperature of one pound of water by

one degree fahrenheit (!) (1 BTU ¼ 1055 J)

Chapter 20

1. DN/Ntot ¼ 0.566%.

2. Cv ¼ 24.4 (J/K mol) ¼ 5.84 (cal/K mol).

3. Cel
v ¼ 0:212 ðJ/KmolÞ:

4. N(EF) ¼ 3.66 � 1042 (energy states/mol J) ¼ 5.86 � 1023 (energy states/

mol eV);

N(EF) per cubic centimeter is about one order of magnitude smaller.

6. T ¼ 2.1 � 105 (K).

Chapter 21

1. K ¼ 1.55 � 102 (J/s m K).

2. L ¼ 2.44 � 10�8 (J O/K2 s).

3. l ¼ 411 (Å).

Chapter 22

1. F ¼ 2,600 (N) (!).

2. DL ¼ 4.9 (mm).

4. Compare expansion coefficients (Table 22.1).
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Index

A

Abcoulomb (unit), 344

Absorbance, 222, 223, 323

Absorption, 220, 222, 236, 238, 241, 243,

247–251, 263

Absorption band, 229, 242

Absorption coefficient, 222

Absorption loss, 322

Absorption product, 220, 241

Absorption spectra, 251

Acceptor atoms, 131

Acceptor impurities, 123

Acceptor levels, 124, 126

Acoustic bands, 421

Activation energy, 192

Activator, 312, 313

Afterglow, 285

Alkali metals, 70

Alkaline battery, 107

Alnico 2, 392, 393

Alnico 5 DG, 392, 393

Alnico alloys, 393

Alumel, 104

Aluminum (Alq3), 306, 307

Amber, 79

Amber electricity, 79

Amorphous ferromagnets, 390–391

Amorphous materials, 181–210

Amorphous semiconductors, 197

Ampère, A., 347

Amplification, 148

Amplitude, 445

Amplitude modulation of lasers, 299

Analyzer, 262

AND device, 168

AND gate, 169, 171, 172, 331

Angle of incidence, 217

Angular frequency, 4, 8, 219, 445

Angular momentum quantum number, 450

Anomalous Hall effect, 129

Antiferromagnetism, 358–359

Antiferromagnetism (quantum mechanical),

378–382

Argon laser, 291

Arrhenius equation, 192

ATO, 312

Atomistic theory of the optical properties,

227–245

Attenuation, 222, 322

Avalanche photodiode, 145

Avalanching, 141

Average effective mass, 127

Avogadro constant, 82, 232, 412, 454

Azimuth, 260, 261

B

Ba-ferrite, 392

Band diagram, 421

for aluminum, 56

Band gap, 41

Band, overlapping, 44

Band structure

for copper, 57

for extrinsic semiconductors, 123

for gallium arsenide, 57, 58

for intrinsic semiconductors, 123

for silicon, 57, 58

Band tail, 199

Bardeen, John, 159

Barium titanate, 205, 206

Barium titanate crystal structure, 208

Barkhausen effect, 357

Base, 147

Batteries, 105–112

BCS theory, 100

Beats, 10

Beer equation, 224

Beer-Lambert law, 223
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Benedicks, M., 159

Bernal model, 197

Bernal-Polk model, 197

Bethe, Hans, 380

Bethe-Slater curve, 380

Biasing, 134

BIFET, 153

Binding strength, 282

Bioluminescence, 285

Bipolar junction transistor, 147–149

Bipolar transistor, 147–149

Birefringent, 261

Bit, 168

Bitter lines, 357

Bivalent metals, 70

Bloch function, 30

Bloch wall, 357

Blue-ray disk (BR/BRD), 328

Bohr magneton, 352, 378, 454

Bohr, Niels, 24

Boltzmann constant, 414, 419, 454

Boltzmann distribution function, 65

Boltzmann factor, 65

Boltzmann statistics, 423

Boltzmann tail, 65

Bonding, 166

Born’s postulate, 13

Borosilicate/phosphosilicate glass, 283–284

Bose-Einstein statistics, 422

Bound electron, 20–25, 238–241, 251

Boundary condition, 17, 21

Boundary problems, 17

Boyle-Mariotte equation, 415

Bragg plane, 43

Bragg relation, 45

Bragg ring, 196

Bragg, William, 44

Branched polymer, 182

Brattain, Walter, 159

Bravais lattice, 46

Breakdown, 141

Breakdown voltage, 141

Bridgman technique, 162

Brillouin function, 368

Brillouin zone (BZ), 40, 42–45, 51, 421

of the bcc structure, 51

for copper, 60

of the fcc structure, 55

three-dimensional, 45

Bubble domain memory, 397

Buckyball, 190

Butting, 320

Byte, 168

C

Calcia-stabilized zirconia, 193

Calorie, 405, 410

Capacitance, 202

Carbon dioxide laser, 292, 294

Carbon-zinc battery, 107

Cathode rays, 8

Cathodoluminescence, 285

CD player, 325

Ceramic ferrite magnets, 394

Ceramic superconductors, 99

Channel, 149

Characteristic penetration depth, 222–223

Characteristic X-rays, 332–333

Charge of electron, 81, 454

Charge-transfer salt, 190

Chip, 166

Chromaticity diagram, 303

Chromel, 104

Classical electron theory, 4, 82–84

of dielectric materials, 238–241

Classical (free electron) theory of metals,

233–236

Classical infrared (IR) absorption, 250, 278

Closure domains, 357

Cluster, 197

CMOSFET, 152

Co steel, 392

Cobalt-samarium, 392

Coercive field, 207, 354

Coercivity, 354, 387

Coherent scattering, 82

Collector, 147

Collimation, 289

Color, 215

Color codes of resistors, 462

Color coordinates, 303

Color rendering index (CRI), 286

Colossal magnetoresistive materials, 396

Compact disc (CD), 325

Compact fluorescence light (CFL), 286

Compass, 340

Compensator, 261, 262

Complementary MOSFET (CMOS), 152

Complex dielectric constant, 220

Complex index of refraction, 219

Composition of core materials, 390

Compositional disorder, 196

Compound semiconductor fabrication, 297

Compound semiconductors, 129–131

Compressibility, 411

Conducting polymers, 181–191

Conduction band, 41, 115
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Conduction, in metal oxides, 194–195

Conductivity, 80, 456

in amorphous semiconductors, 199

classical electron theory, 82–84

of extrinsic semiconductors, 125

quantum mechanical considerations, 85–89

of semiconductors, 122

Conductors, 80

Conjugated organic polymer, 184

Constantan, 104

Contact potential, 105, 133

Continuous random network, 198

Continuum theory, 3, 227

Conventional unit cell, 47

Conversions between unit systems, 461

Cooper pair, 100

Copper oxide rectifier, 159

Core loss, 386–388

Corona wire, 201

Corrosion, optics, 277–278

Coulomb (unit), 202

Coulombic attraction force, 36

Credit card, 396

Critical current, 97

Critical magnetic field strength, 96

Critical point in a band structure, 264–265

Crosstalk, 315

Cryotron, 95

Cu/Cu2O rectifier, 195

Cubic primitive lattice, 48

Cuprates, 94

Curie, Pierre, 350, 364

Curie constant, 350, 367

Curie law, 350, 368

Curie temperature, 207, 354, 381

Curie-Weiss law, 350, 351, 369, 376

Current, 80

Current density, 80

Curves of equal energy, 59–60

CW laser, 391

Czochralski method, 161–162

D

d-states, 450
Damascene process, 165

Damped vibration, 446

Damped wave, 448

Damping constant, 218–221

Damping frequency, 235

Damping parameter, 239

Damping term, 233

Dangling bond, 197

Daniell, 106

Dash, W., 160

Davisson, Clinton, 9

de Broglie, Louis, 9

de Broglie equation, 9

de Broglie relation, 421

Debye model, 324–326

Debye temperature, 412, 413, 424

Debye temperatures of materials, 413

Decibel, 222

Defect electron, 73

deForest, Lee, 159

Degenerate states, 25

Delocalized state, 199

Demagnetization curve, 391

Demagnetizing field, 393

Dense random packing of hard spheres

model, 197

Density of states, 65–67, 421

function within a band, 67–68

for iron, cobalt and nickel, 378

of vibrational modes, 421

Depletion layer, 132

Depletion type MOSFET, 150

Diamagnetic susceptibility (classical

equation), 364

Diamagnetics, 342, 343

Diamagnetism, 347–349, 362–364

Diameter of the universe, 80

Diamine, 306, 307

Dielectric constant, 203, 206

Dielectric displacement, 204

Dielectric loss, 206

Dielectric material, 202

Dielectric polarization, 205

Dielectric properties, 202–206

Dielectrics, 80

Differential reflectograms for copper zinc

alloys, 271–272

Differential reflectometer, 264

Differential reflectometry, 263–265

Diffusion, 192

Diffusion current, 133

Digital circuits, 168–177

Digital versatile disk (DVD), 328, 329

Diode, 137–140

Dipole, 204

Dipole moment, 230

Direct and indirect interband absorptions, 281

Direct interband transitions, 282

Dispersion, 11, 217, 241, 242, 251–256

Domain wall, 357

Domains, 208, 356

Donor atoms, 122–123
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Donor electrons, 123

Donor levels, 123

Doping, 122

by ion implantation, 165

by neutron irradiation, 165

out of the vapor phase, 165

Double heterojunction laser, 299

Drain, 19

DRAM, 174

Drift current, 133

Drude, Paul, 4

Drude equations for the optical constants, 235

Drude theory, 229, 236

Dry etching, 164

Dry-cell battery, 107

Dual-in-line package (DIP), 166

DuFay, Charles-François, 79

Dulong-Petit value, 412, 423

Dye laser, 291

Dynamic random-access memory

(DRAM), 174

E

Earphone, 209

Easy direction, 389

Economics of chip production, 167

Eddy current, 386

Eddy current loss, 386

EEPROM, 175

Effective mass, 71–74, 154, 455

polymers, 185

of semiconductors, 127

thermal, 428

Effective number of free electrons, 232

Efficiency

of amorphous silicon, 200

of photodiode, 144

Eigenfunction, 18, 254

Eigenvalue problems, 17

Einstein, Albert, 7, 421

Einstein frequency, 424

Einstein relation, 138–139, 192

Einstein temperature, 424

Electric dipole moment, 204, 230

Electric field strength, 81, 203, 219

Electric power storage devices, 95

Electrical conduction, 79–113

Electrical conductivity for amorphous

semiconductors, 199

Electrical properties of

amorphous materials, 196–200

ceramics, 181

dielectrics, 202–206

organic metals, 181–191

polymers, 181–191

Electrical steel, 385–391

Electrical work, 409

Electricity, 79

Electro-optical waveguide (EOW), 317–319

Electroluminescence, 312

Electroluminescent device, 312–313

Electromagnet, 341

Electromagnetic spectrum, 216

Electromagnetic wave equation, 218

Electromagnetic waves, 13

Electromet reduction, 160

Electromigration, 165

P-Electron, 184

Electron(s), 7

in a box, 25

in a crystal, 63–75

free, see Free electrons
in a periodic field, 29–35

in a potential well, 21–25

Electron affinity, 133, 309

Electron diffraction, 9

Electron gas, 64, 82

Electron hole, 73

Electron-orbit paramagnetism, 350, 351

Electron plasma, 270

Electron population density, 428

Electron scattering, 90

Electron spin, 349

Electron-spin paramagnetism, 349

Electron velocity, 86

Electron wave, 7, 13

Electronic charge, 135

Electronic polarization, 206

Electronic properties

metals, 455

semiconductors, 456

Electronic structure of metals, 271

Electronic switch, 148

Electrophotography, 200

Electroreflectance, 265

Electrostriction, 206–209

Ellipsometry, 260–263

Elliptically polarized light, 260, 261

Emission of light

spontaneous, 284–288

stimulated, 288–291

Emissive flat-panel display, 312–315

Emitter, 147

Energy, 409

of an oscillator, 419

per atom, 419
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Energy bands, 37–60

Energy barrier, 192

Energy continuum, 20

Energy levels, 22

Energy loss (optical), 322–323

Energy loss function, 270, 271

Energy loss in magnetic materials, 386

Energy quantization, 22

Energy state, 66

Enhancement-type MOSFET, 150

Enthalpy, 410

EOW, 317

Epi-layer, 167

Epitaxial growth, 167, 297

Erasable-programmable read-only memory

(EPROM), 175

Erbium-doped fiber amplifier, 301

Erbium-doped optical fiber, 301

Etching, 164

Euler equations, 22, 449

Exchange energy, 379

Exchange force, 380

Exchange integral, 380

Excitation force, 447

Exciton, 73, 103, 280, 282

Exciton level, 280

Exciton wave, 280

Expansion coefficient, 411, 439

Expansion of materials, 405

Extended zone scheme, 39

Extinction coefficient, 220

Extrinsic semiconductors, 122–126

F

Fabry-Perot interferometer, 329

Farad (unit), 203

Faraday, Michael, 340

Faraday effect, 398

Fermi-Dirac statistics, 64

Fermi distribution function, 64–65

Fermi energy, 63, 65, 69

in extrinsic semiconductors, 126

in semiconductors, 126

Fermi function, 64

Fermi surface, 63–64, 85

Fermi velocity, 85

Ferrimagnetism, 359–362

Ferrite-core memories, 396

Ferroelectric materials, 206

Ferroelectricity, 206–209

Ferroelectrics, 207

Ferromagnetics, 343, 369

Ferromagnetism, 352–358, 369

of rare earth elements, 380

Ferromagnetism (quantum mechanical),

378–382

Fiber-optic, 284

Field-emission display, 314

Field ion microscope, 27

Filamentary casting, 196

Finite potential barrier, 25–28

First-derivative technique, 265

First law of thermodynamics, 409

Flash memory card, 176

Flash memory device, 176

Flip-flop, 172

Float-zone technique, 161

Floating gate, 175

Flow battery, 112

Fluorescence, 285

Fluorescence light bulb, 313

Fluorescence light fixture, 285, 286

Fluorescent lamp, 286

Flux meter, 353

Flux multiplier, 390

Flux quantum, 98

Fluxoid pinning, 98

Fluxoids, 98

Flying head, 400

Folded-chain model, 184

Forced vibration, 447

Forward bias, 134, 136

Fourier Law, 413

Fourier transformation, 9

Four-level laser, 290

Franz-Keldysh effect, 319

Free electron(s), 19–20, 230, 250

with damping, 233–236

without damping, 230–233

Free electron bands, 39, 40, 52–55

of the fcc structure, 55

Free electron mass, 454

Free electron model, 83

Free electron theory, 269

Frenkel defect, 193

Frequency, 7

of light, 217

Frequency modulation of lasers, 300

Frequency response of transistors, 152

Friction force, 83, 228

Fringing, 393

Fundamental edge, 249

Fundamental lattice vector, 48
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G

GaAs (physical properties), 459

Gallium arsenide metal-semiconductor

field-effect transistor (MESFET),

153–155

Gallium nitride, 131

Gallium phosphide, 131

Galvani, L., 105

Galvanoelectric phenomena, 105–112

g-rays, 216
Gap energy, 117, 278, 456

temperature dependence, 117

Gas constant, 414

Gate, 149

Gauss (unit), 344

Gay-Lussac equation, 415

Generation current, 135

Germanium point contact transistor, 159

Germer, Lester, 9

Gettering, 160

g-factor, 351
Giant magnetoresistive materials, 396

Gigascale integration (GSI), 159

Glass, 196

Glass electricity, 79

Glassy metal, 196

Glob top process, 166

Goethe, Johann Wolfgang von, 215

Grain orientation, 388–390

Grain-oriented electrical steel, 389

Grain-oriented silicon iron, 387

Graphene, 189, 190

Graphite, 189, 190

Gray, Stephen, 79

Group velocity, 12

Gulf Stream, 410

H

Hagen-Rubens equation, 225

Hall constant, 129

Hall effect, 127–129

Hall field, 128

Hall voltage, 128

Hamiltonian operators, 17

Hard magnetic materials, 354, 391–394

Harmonic oscillator, 229

Harmonic vibration, 445

Harmonic wave, 9, 447

He–Cd laser, 291

Header, 166

Heat, 405, 409

Heat capacity, 410

classical theory, 419

at constant pressure, 410

at constant volume, 410

electron contribution, 426

per mole, 412

quantum mechanical considerations,

421–426

Heat conduction, 405, 413

Heat conductivity, 434

of electrons, 431

Heat flux, 413, 433

Heavy holes, 127

Heisenberg’s uncertainty principle, 13, 290

Helium-neon laser, 291–292

Helmholtz, Hermann von, 405

Hertz, Heinrich, 7

Heterojunction laser, 298–299

Heusler alloys, 380

High carbon steel magnets, 394

High-Tc superconductors, 103

Hillocks, 165

Holographic versatile disk, 329

Homojunction laser, 298

HOMO/LUMO transition, 186, 308

Hopping, 193, 200

Hot electron, 295

Hund’s rule, 352

Hybrid automobiles, 113

Hydrogen atom, 24

Hydrogenated amorphous silicon, 200

Hysteresis loop, 207, 354

Hysteresis loss, 386, 388

I

Ideal diode law, 138

Ideal gas equation, 414–415

Ideal resistivity, 90

Impact ionization, 140

Impedance, 151

Impurity states, 124

Incandescent light bulb, 285, 303

Incoherent scattering, 89

Index of refraction, 219, 241

complex, 219

Indirect-band gap material, 278

Indirect-band gap semiconductor, 295–296

Indirect interband transition, 248, 278

Indium-gallium-arsenide-phosphide laser, 296

Indium-gallium nitride LED, 304

Indium phosphide, 131

Indium-tin-oxide (ITO), 195

Infrared, 216

InGaN laser, 296

Insulators, 70, 80, 181, 202
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Integrated circuit, 159

Integrated optoelectronics, 315–325

Intensity of light, 222

Interband transition, 117, 247, 250

Interband transition energy, 273

Internal energy, 410

Intraband transition, 247, 250, 278

Intrinsic semiconductor, 117–122

Inverse spinel structure, 361

Inversion layer, 151

Inverter circuit, 169

Ion etching, 164

Ion implantation, 165

Ion mobility, 191

Ionic conduction, 191–194

Ionic polarization, 205

Ionization energies for dopants, 458

Iron ferrite, 340

Iron-neodymium-boron, 392

Iron-silicon alloy, 390

ITO, 195, 308

J

Josephson effect, 102

Joule (unit), 410

Joule, James Prescott, 405, 410

Joule heating, 92

Junction field-effect transistor (JFET),

153–154

K

Ka X-rays, 333

Kerr effect, 357, 398

Kilobit, 173

Kinetic energy, 4

of gases, 415–416

of a particle, 416

Kondo effect, 92

Kramers-Kronig analysis, 260, 267

Kronecker-Delta symbol, 49

Kronig-Penney model, 29

L

L-symmetry point, 275

Lambert-Beer-Bouguer law, 223

Lamination of transformer cores, 388

Langevin, Paul, 362, 364

Langevin function, 368, 370

Langevin theory

of diamagnetism, 362–364

of paramagnetism, 364–368

Larmor precession, 348

Laser, 288–291

amplifier, 300–301

materials, 293

modulation, 299–300

wavelength, 296–297

Latchup, 167

Lattice, 45

Lead storage battery, 109

Lead sulfide, 281

Leakage, 393

Leclanchébattery, 107

Lenz, H.F.E., 347

Lenz’s law, 348

Lifetime of LED, 304

Light, 7

Light-emitting diode (LED), 288, 302–305

Light holes, 127

Light quantum, 8

Linde’s rule, 91

Linear expansion coefficients for solids, 440

Liquid-crystal display (LCD), 310–312

Lithium-ion rechargeable battery, 110, 113

Littrow prism, 292

Load transistor, 169, 170

Localized state, 199

Lodestone, 340

London theory, 100

Long-range ordering, 93

Longitudinal hole mass, 127

Lorentz, Hendrik Antoon, 229, 238

Lorentz equations, 242–243

Lorentz force, 127

and the magnetic field, 98

Lorentz number, 434

Low carbon steel, 390

Low-loss transmission, 315

Luminescence, 285

Luminescence center, 313

M

Magnesia (Turkey), 339

Magnetic anisotropy, 388

Magnetic constants, 342

Magnetic core materials, 385

Magnetic field, 340

Magnetic field lines, 343

Magnetic field strength, 342

Magnetic films, 398

Magnetic flux, 344

Magnetic flux density, 341–342

Magnetic induction, 341–342

Magnetic memories, 394–400

Magnetic moment, 344, 350, 362

of an orbiting electron, 377
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Magnetic moment (cont.)
for ferromagnetic metals, 381

Magnetic printing, 395

Magnetic properties of alloys, 381

Magnetic quantum number, 450

Magnetic recording, 394–400

Magnetic recording head, 395

Magnetic resonance imaging, 94–95

Magnetic short-range order, 356

Magnetic theory, classical, 347–371

Magnetic units, 460

Magnetism

foundations, 339–344

quantum mechanical theory, 373–382

Magnetite, 340

Magnetization, 343

Magnetization curve, 352

Magneto-optical disk, 398

Magneto-optical memories, 398–399

Magneto-optical storage, 398–399

Magnetoresistance, 396

Magnetoresistive element, 396

Magnetostatic energy, 356

Magnetostriction, 355

Main quantum number, 450

Majority carrier, 123

Materials barrier, 159

Matter wave, 11

Matthiessen’s rule, 90

Maximum energy product, 391

Maxwell equations, 218

Maxwell relation, 220

Mayer, Julius, 405

Mean free path, 84, 432

Mechanical heat equivalent, 405

Mechanical work, 409

Meissner effect, 349

Memory devices, 168–177

Mercury battery, 107

MESFET, 153–155

Metal oxides, conduction, 194–195

Metal-in-gap (M-I-G), 395

Metal-organic chemical vapor deposition, 304

Metal-oxide-semiconductor field-effect

transistor (MOSFET), 149–152

Metal-semiconductor contacts, 131–132

Metal/semiconductor rectifier, 131

Metallic glass, 196–202

Metallization, 136–137, 165–166

METGLAS, 199, 387

Microelectronic technology, 159

Microphone, 209

Microwaves, 216

Minority carrier diffusion length, 139

Minority carriers, 139

Mirror, 215

MISFET, 152

Mobility, 455

of electrons, 120–122

of ions, 192

Mode, 316

MODFET, 153

Modulation spectroscopy, 264

Molar absorptivity, 223

Molar heat capacity, 407, 412–413, 420,

423, 425

Molecular beam epitaxy (MBE), 131

Molecular field constant, 369

Molecular field theory, 368–371

Molecular polarization, 205

Momentum, 4

Monochromatic light, 289

Monochromatic wave, 10

Monochromator, 264

Monolithic integration of optical

components, 321

Monomer, 182

Moore’s rule, 167

MOST, 152

Mott, N.F., 272

Muffin tin potential, 30

Multichip module (MCM), 167

Multiplexing, 315

Mumetal, 387, 390

N

n-type semiconductor, 123

NAND gate, 170

Néel temperature, 358

Negative current-voltage characteristics, 147

Neodymium-boron-iron, 394

Newton, Isaac, 7

Newton’s law, 4

Nichrome, 92

Nickel-cadmium (Ni-Cd) storage battery, 109–110

Nickel-metal-hydride (Ni-MH) storage

battery, 110

NiO, 195

NMOSFET, 152

Nonconductors, 80

Nonlinear optical material, 329, 332

Nonvolatile memory, 174

NOR gate, 172

Nordheim’s rule, 91

Norm, 18

Normalized eigenfunction, 18
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Normally-off MOSFET, 151

Normally on MOSFET, 150

NOT gate, 170

Number

of atoms, 82

of carriers in semiconductors

temperature dependence, 124–125

of conduction-band electrons, 120

of conduction electrons, 128

of electrons

in the conduction band, 119

per unit volume, 69

of energy states, 66

of free electrons, 84, 232

of phonons, 422

Nylon, 203

O

Oersted (unit), 344

Oersted, H.C, 339

Ohmic contact, 131, 136–137

Ohm’s law, 80

1–2–3 superconductors, 94

Onnes, Heike Kamerlingh, 93

Opacifiers, 284

Opacity, 284

Optical AND gate, 331

Optical bands, 421

Optical computer, 329–332

Optical constants, 215–226

Optical coupling, 320–322

Optical density, 223

Optical device integration, 320–322

Optical disk, 325

Optical fibers, 284, 324–325

Optical integrated circuit (OIC), 315

Optical loss, 322

Optical modulator, 319–320

Optical photolithography, 167

Optical properties

atomistic theory, 227–246

of corrosion layers, 277–278

of dielectric materials, 281–284

of glass fibers, 281–284

of insulators, 281–284

of long-range ordered alloys, 276

measurement, 259–265

quantum mechanical treatment, 247–257

of semiconductors, 278–281

of short-range ordered alloys, 276

Optical pumping, 289

Optical spectra

of alloys, 271–275

of materials, 251

of pure metals, 266–271

Optical spectrum of silicon, 279

Optical storage, 325–329

Optical switch, 319–320, 331

Optical transistor, 329

Optical tunnel effect, 317, 320

Optical waveguide, 299

Optoelectronics, 315

OR gate, 171

Orbital paramagnetism, 351

Orbitals (s,p,. . .), 187, 452
Ordering, 275–277

Organic light emitting diode (OLED), 305–308

Organic metals, 181–191

Organic photovoltaic cell (OPVC), 308–310

Organic polymer, 182

Orientation polarization, 205

Oscillator, 243

Oscillator strength, 243, 256

Overlapping of energy bands, 44

Oxidation, 164

Oxide etch, 164–165

P

p-n rectifier, 137–140

p-states, 450
p-type semiconductor, 123

Packaging, 166–167

Paramagnetic susceptibility, temperature

dependence, 377

Paramagnetics, 342, 343

Paramagnetism, 349–352

Paramagnetism (quantum mechanical),

373–378

Particle accelerator, 95

Particle concept of light, 7

Particle property of electrons, 8

Passivation, 166

Passive waveguide, 315–317

Pauli principle, 68, 70, 349, 427

PEDOT, 181, 188–189

Peltier effect, 105

Penetration depth, 222–223

Periodic Table, 463

Periodic zone scheme, 39

Permalloy, 387, 390

Permanent magnets, 339, 391–394

Permeability, 341, 387

of empty space, 454

of free space, 341

Permittivity of empty space, 203, 219, 454

Perovskite, 99
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Perturbation potential, 252

Perturbation theory, 254

Phase coherent, 288

Phase difference, 239, 260, 261, 446, 447

Phase velocity, 11

Phase-change random access memory

(PRAM), 176

Phonon, 101, 248, 279, 280, 282, 406, 421

Phonon wave, 421

Phosphorescence, 13, 285

Phosphors, 13, 286, 313

Photoconductors, 281

Photodiode, 141–145

cost, 143

efficiency, 143

Photoelastic effect, 320

Photoelectric effect, 7

Photolithography, 164

Photoluminescence, 285

Photon, 8

Photonic band structure, 323

Photonic computer, 332

Photonics, 323–324

Photoreceptor, 201

Photoresist, 163, 164

Photoresistors, 281

Photosynthesis, 144

Photovoltaic cell, 197

Photovoltaic device, 200

Pi (p) electron, 184
Pi (p) bonds, 452
Pi (p) orbital, 187
Piezoelectric effect

converse, 209

direct, 209

Piezoelectricity, 206, 208–209

Piezomagnetism, 355

Piezoreflectance, 265

Pinch-off voltage, 150

Pins, 166

Planar transistor, 159

Planck, Max, 7

Planck constant, 8, 454

Plane-polarized light, 261

Plane-polarized wave, 218

Plane wave, 448

Plasma, 82

Plasma display device, 313–314

Plasma etching, 165

Plasma frequency, 231, 270

Plasma oscillation, 221, 270–271

Plasmon, 270

PMOSFET, 152

Pnictides, 94

Polarization, 205, 230, 236, 241, 263

dielectric, 205

electronic, 205

ionic, 205

molecular, 205

orientation, 207

remanent, 207

Polarizer, 261

Poly(3,4-ethylenedioxythiophene) (PEDOT),

181, 188

Poly(sulfur nitride), 189

Polyacetylene, 176

Polyaniline, 188

Polyester, 185

Polyethylene, 182, 183

Polyimide, 166

Polymer, 182

Polymerization, 182

Polymorphic, 196

Polysilicon, 161

Polyvinylchloride (PVC), 182, 183

Population density, 68–70

Population inversion, 288, 290, 291

Porous silicon, 295

Positron, 74

Positional disorder, 196

Potential barrier, 21, 124, 132, 134,

137, 138

Potential barrier strength, 32, 34

Potential difference, 80

Potential well, 21–25

Precession, 348

Primitive unit cell, 46

Primitive vector, 48

Principal quantum number, 66

Prism coupler, 320

Probability, 23

Programmable read-only memory

(PROM), 174

Properties

of permanent magnets, 391

of soft magnetic materials, 387

Pulse modulation of lasers, 299

Pulse wave, 12

Pulsed laser, 291

Pumping

chemical, 290

by collisions, 289

nuclear, 290

optical, 289

Pumping efficiency, 290

Pyroelectricity, 206–209
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Q

Q-switching, 291

Quadpack, 166

Quantum dot, 156, 157

Quantum efficiency, 295, 299, 304

of a photodiode, 144

Quantum Hall effect (QHE), 129

Quantum mechanical exchange energy, 357

Quantum mechanical treatment of the optical

properties, 247–257

Quantum number, 450–452

Quantum number space, 66

Quantum semiconductor devices, 156–159

Quantum theory, 4

Quantum well, 156

Quantum well lasers, 301–302

Quantum wire, 156

Quartz crystal resonator, 209

Quasi-Fermi levels, 138

R

Radial spread molding, 167

Radiation loss, 323

Radius of electron, 80

Random-access memory, 325

Rapid solidification, 196

Reaction-injection, 167

Reactive plasma etching, 165

Read-only memory (ROM), 173, 323

Rechargeable alkaline manganese (RAM)

battery, 109

Reciprocal lattice, 41, 45, 51

Reciprocal space, 41

Rectifier, voltage-current characteristic, 131

Rectifying contact, 131–136

Reduced zone scheme, 39, 40

Reflection spectra, 266–271

Reflection spectrum

for aluminum, 266

for copper, 265

for silver, 263

Reflectivity, 214, 223–224, 228, 260

of NaCl, 282

Refraction, 217–218

Relative permeability, 342

Relative permittivity, 203

Relaxation time, 84

Remalloy, 392

Remanence, 353

Remanent magnetization, 353

Remanent polarization, 207

Residual resistivity, 89

Resistance, 80

of alloys, 89–90

of ordered alloys, 91–92

of pure metals, 88–89

Resistivity, 81

Resistor, 91

Resonance frequency, 229, 239, 241–243,

283, 446

Resonance in quantum dot, 156

Resonant energy transfer, 291

Resonating voltage, 158

Retentivity, 350

Reverse bias, 134, 135

Rigid band model, 272

ROM, 204

R€ontgen, Wilhelm Conrad, 332

Ruby laser, 284

Rumford, Benjamin, 393

Rutherford, E., 8

Rutherford model, 23

S

SAMOS, 175

Sapphire (a-Al2O3), 304

Saturation current, 141, 142

Saturation induction, 373, 377

Saturation magnetization, 346, 352

Scalar product, 49

Scattering loss, 322

Scattering of light, 317

Schottky barrier contact, 137–142

Schottky defect, 194

Schr€odinger, Erwin, 9
Schr€odinger equation, 15–17

time-dependent, 16–17, 252

time-independent, 15–16

Screening, 267

Seebeck, T.J., 104

Seebeck coefficient, 105

Seebeck effect, 105

Semiconductor device fabrication, 159–177

Semiconductor devices, 131–177

Semiconductor laser, 294–300

Semiconductors, 71, 73

optical properties of, 275–289

Sendust, 392

Sensor, 183

Sequential storage media, 325

Shape anisotropy, 393

Shockley equation, 138

Shockley, William, 159

Short-range order, 93, 196, 276, 277

SI unit system, 453, 461

Siemens (unit), 81, 453

Index 485



Sigma (s) bonds, 436
Sigma (s) orbital, 189
Silicon, 163

Silicon (physical properties), 444

Silicon carbide, 131

Silicon dioxide, 164

Silicon nitride, 169

Silver-oxide battery, 108

Silver-zinc battery, 108

Single-crystal growth, 166

Size quantization, 161, 162

Skin effect, 221, 386, 388

Slater, John, 381

Slater-Bethe curve, 381, 382

Small damping, 242

Snell’s law, 217

Sodium-based rechargeable battery, 112

Soft magnetic materials, 385–387

Solar cell, 141–145

Solenoid, 341,352, 353

Sol-gel silica glass, 283

Solid state, 28–35

Soliton, 188

Source, 153

Space-charge region, 132

Space-dependent periodicity, 446

Space quantization, 358

Spark-processing, 199

Specific heat capacity, 393–395

Specific resistance, 81

Spin, 364, 434

Spin paramagnetism, 341, 342

Spinel, 353

Spontaneous emission, 281–285

Spring constant, 239, 282

S-RAM, 173

SRAM memory device, 172

s-states, 450
Stacking, 169

Standing wave, 436

Static random-access memory, 175

Steady-state solution, 447

Steady-state vibration, 447

Stimulated emission (lasers), 288–291

Strain gage, 208

Superconducting materials, 342

Superconductivity, 93–102, 193, 233

Superconductor transition temperature, 92

Supercooled liquid, 183

Superelectrons, 100

Superlattice, 193

Supermalloy, 390, 391

Supermendur, 390

Surface charge density, 204

Surface emitter, 304

Surface mount technology, 171

Surface of equal energy, 60

Surface-conduction electron-emitter display

(SED), 304

Susceptibility, 344–346

Susceptibility (paramagnetic), 376

Susceptibility (quantum mechanical), 384

Synthetic metals, 184

T

T-H-I-diagram, 96

Technical saturation magnetization, 384

Teflon, 189

Telecommunication, 288, 296

Temperature coefficient of resistivity, 89

Tesla (unit), 344

Texture, 374

Thales of Miletus, 79

Thermal conduction, 406

classical theory, 415

dielectric materials, 435–436

metals, 415

quantum mechanical considerations,

434–435

Thermal conductivity, 393, 399

for materials, 400

Thermal effective mass, 428

Thermal energy, 405

Thermal expansion, 438–439

Thermal properties, 390–415

fundamentals of, 396–412

Thermal-sonic bonding, 169

Thermocouple, 103

Thermoelectric phenomena, 103–104

Thermoelectric power, 103

Thermoelectric power generator, 104

Thermoelectric refrigeration, 105

Thermoluminescence, 273

Thermoreflectance, 265

Thompson, Count, 405

Thomson, G.P., 9

Thomson, J.J., 8

Three-layer laser, 141

Threshold current density for lasing, 296

Threshold energies for interband transitions

(copper alloys), 271

Threshold energy, 265

for interband transition, 249, 269

Time-dependent periodicity, 429, 430

486 Index



Time-dependent Schr€odinger equation,
16–17, 252

Time-independent Schr€odinger equation,
15–16

Titanium oxide, 196

Tolman, Richard, 8

Toner, 202

Total reflection, 311

Trans-polyacetylene, 197

Transducer, 300

Transformation equations from real lattice to

reciprocal lattice, 50

Transformer, 390

Transistors, 152–163

Translation vector, 46

Transmissivity, 224

Transmissivity of

borosilicate glass, 283

fused quartz, 283

optical fibers, 283

sodium chloride, 283

sol-gel silica glass, 283

window glass, 283

Transmittance, 223–224

Transphasor, 330, 331

Transversal electric (TE) mode, 323

Transversal magnetic (TM) mode, 323

Transverse hole mass, 131

Traveling wave, 447–448

Traveling-wave laser, 301

Trichlorosilane gas, 161

Tunnel diode, 27, 151–152

Tunnel effect, 25–28

Tunnel electron microscope, 27

Tunneling, 27, 141, 157

Twisted nematic LCD, 311

Type I superconductors, 97

Type II superconductors, 97, 98

U

Ultra-large-scale integration (ULSI), 159, 174

Ultraviolet, 216

Umklapp process, 436

Undamped vibration, 445–446

Undamped wave, 447

Undercutting, 164

Unipolar transistor, 149

Unit cell, 46

Universal gas constant, 454–455

V

Vacuum tube, 153

Valence band, 41, 123

Van der Waals binding forces, 183

Variable-range hopping, 200

Vector product, 49

Vegetable diode, 305

Velocities of light, 233

Velocity

of light, 435

of a wave, 4

Velocity space, 85

Vibration, 9, 447

damped, 448

forced, 449

undamped, 447–448

Vibration modes of atoms, 282

Vibrations of lattice atoms, 281

Vicalloy, 392

Viewing angle, 312, 313

Virgin iron, 352

Voids, 165

Volatile memory, 178

Volta, C.A., 105

Voltage-current characteristic of a

rectifier, 135

Von Klitzing constant, 129

Vortex state, 98

Vortices, 98

W

Wave, 9

damped, 448

harmonic, 447

plane, 448

standing, 447

traveling, 447

undamped, 447–448

Wave equation, electromagnetic, 218

Wave function, 9

Wave length of light, 218

Wave number, 9

Wave number vector, 447

Wave packet, 10

Wave-particle duality, 7–13

Wave vector, 20

Wave velocity, 11

Waveguide, 315

Wavelength, 7

Wavelength modulation, 265

Wear, 395

Weiss, Pierre-Ernest, 350, 368

Wet chemical etching, 164

White X-radiation, 332

Wiedemann-Franz law, 405, 434

Wigner-Seitz cell, 46–47, 51

Index 487



Wigner-Seitz cell (cont.)
for the body-centered cubic (bcc)

structure, 46

for the face-centered cubic (fcc) structure, 47

Work, 409–410

Work function, 132, 455

WORM, 325

X

X-ray emission, 332–336

X-ray lithography, 167

X-rays, 216, 242

Xerography, 200–202

Z

Zener breakdown, 140

Zener diode, 140–141

Zero-point energy, 22

Zinc oxide, 130, 195

Zinc-air battery, 107

Zinc sulfide, 130

Zone refining, 162

Zone schemes, one-dimensional, 37–41

488 Index


	Electronic Properties of Materials
	Preface to the Fourth Edition
	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	Contents
	PART I: FUNDAMENTALS OF ELECTRON THEORY
	PART II: ELECTRICAL PROPERTIES OF MATERIALS
	PART III: OPTICAL PROPERTIES OF MATERIALS
	PART IV: MAGNETIC PROPERTIES OF MATERIALS
	PART V: THERMAL PROPERTIES OF MATERIALS
	APPENDICES
	About the Author
	Index



