
Chapter 8
Instance-Based Classification and Regression
on Data Streams

Ammar Shaker and Eyke Hüllermeier

Abstract In order to be useful and effectively applicable in dynamically evolving
environments, machine learning methods have to meet several requirements, includ-
ing the ability to analyze incoming data in an online, incremental manner, to observe
tight time and memory constraints, and to appropriately respond to changes of the
data characteristics and underlying distributions. This paper advocates an instance-
based learning algorithm for that purpose, both for classification and regression
problems. This algorithm has a number of desirable properties that are not, at least
not as a whole, shared by currently existing alternatives. Notably, our method is very
flexible and thus able to adapt to an evolving environment quickly, a point of utmost
importance in the data stream context. At the same time, the algorithm is relatively
robust and thus applicable to streams with different characteristics.

8.1 Introduction

The idea of adaptive learning in dynamical environments has recently received
increasing attention in different research communities, for example, in the database
and data mining community under the slogan of “learning from data streams”
[17, 18], and in the computational intelligence community under the notion of
“evolving fuzzy systems” [4, 5, 24, 25]. Despite small differences regarding the
basic assumptions and the technical setting, the emphasis of goals and performance
criteria, and the focus on specific types of applications, the key motivation of these
and related fields is the idea of a system that learns incrementally, and maybe even in
real-time, on a continuous stream of data, and which is able to properly adapt itself
to changes of environmental conditions or properties of the data-generating process.

A. Shaker • E. Hüllermeier (�)
Department of Mathematics and Computer Science, Philipps-Universität
Marburg, D-35032 Marburg, Germany
e-mail: shaker@Mathematik.Uni-Marburg.de; eyke@mathematik.uni-marburg.de

M. Sayed-Mouchaweh and E. Lughofer (eds.), Learning in Non-Stationary Environments:
Methods and Applications, DOI 10.1007/978-1-4419-8020-5 8,
© Springer Science+Business Media New York 2012

185

186 A. Shaker and E. Hüllermeier

Systems with these properties have been developed for different machine learning
and data mining problems, such as clustering [1], classification [22], and frequent
pattern mining [10].

Domingos and Hulten [15] list a number of properties that an ideal stream mining
system should possess, and suggest corresponding design decisions: the system uses
only a limited amount of memory; the time to process a single record is short and
ideally constant; the data is volatile and a single data record accessed only once;
the model produced in an incremental way is equivalent to the model that would
have been obtained through common batch learning (on all data records so far);
the learning algorithm should react to concept drift [32] (i.e., any change of the
underlying data-generating process) in a proper way and maintain a model that
always reflects the current concept.

Given the existence of a number of sophisticated and partly quite complicated
methods for learning on data streams, it is surprising that one of the simplest
approaches to machine learning, namely the instance-based (case-based) learning
paradigm, has only received very little attention so far—all the more since the
nearest neighbor estimation principle, the core of this paradigm, is a standard
method in machine learning, pattern recognition, and related fields. In this chapter,
we elaborate on the potential of the instance-based approach to supervised learning
within the context of data streams and propose an efficient instance-based learning
algorithm for classification and regression. To this end, we build on [6], in which
our approach to classification was introduced.

The remainder of the paper is organized as follows: The next section recalls the
basic ideas of instance-based learning, along with a short discussion of its possible
advantages and disadvantages in a streaming context. Our approach to instance-
based learning on data streams, IBL-DS, is introduced in Sect. 8.3. In Sect. 8.4, we
provide some information about the MOA (Massive Online Analysis) framework
for mining data streams, in which IBL-DS is implemented. Experimental results are
presented in Sect. 8.5.

8.2 Instance-Based Learning

The term instance-based learning (IBL) stands for a family of machine learn-
ing algorithms, including well-known variants such as memory-based learning,
exemplar-based learning and case-based learning [23,27,28]. As the term suggests,
in instance-based algorithms special importance is attached to the concept of an
instance [3]. An instance or exemplar can be thought of as a single experience, such
as a pattern (along with its classification) in pattern recognition or a problem (along
with a solution) in case-based reasoning.

As opposed to model-based machine learning methods which induce a general
model (theory) from the data and use that model for further reasoning, IBL
algorithms simply store the data itself. They defer the processing of the data

8 Instance-Based Classification and Regression on Data Streams 187

until a prediction (or some other type of query) is actually requested, a property
which qualifies them as a lazy learning method [2]. Predictions are then derived by
combining the information provided by the stored examples.

Such a combination is typically accomplished by means of the nearest neighbor
(NN) estimation principle [11]. Consider the following setting: Let X denote the
instance space, where an instance corresponds to the description x of an object
(usually although not necessarily in attribute-value form). X is endowed with a
distance measure Δ(·), i.e., Δ(x,x′) is the distance between instances x,x′ ∈ X . Y
is the output space and 〈x,y〉 ∈ X ×Y is called a labeled instance, a case, or an
example. In classification, Y is a finite (usually small) set comprised of m classes
{λ1, . . . ,λm}, whereas Y = R in regression.

The current experience of the learning system is represented in terms of a set D of
examples 〈xi,yi〉, 1 ≤ i ≤ n = |D |. From a machine learning point of view, D plays
the role of the training set of the learner. More precisely, since not all examples will
necessarily be stored by an instance-based learner, D is only a subset of the training
set. In case-based reasoning, it is also referred to as the case base.

Finally, suppose a novel instance x0 ∈X (a query) to be given. The NN principle
prescribes to estimate the corresponding output y0 by the output of the nearest
(most similar) sample instance. The k-nearest neighbor (k-NN) approach is a slight
generalization, which takes the k ≥ 1 nearest neighbors of x0 into account. That is,
an estimation yest

0 of y0 is derived from the set Nk(x0) of the k nearest neighbors
of x0. In classification, this is usually done by means of a majority vote, i.e.,

yest
0 = arg max

λ∈L
#{xi ∈ Nk(x0) |yi = λ}, (8.1)

with L the set of class labels, whereas in regression, a weighted average of the
outputs of the neighbors is predicted:

yest
0 = ∑

xi∈Nk(x0)

w(xi) · yi, (8.2)

with

w(xi) =
f (Δ(xi,x0))

∑x j∈Nk(x0) f (Δ(x f ,x0))
.

Here, f (·) is a decreasing function R+ → R+, which means that the smaller
Δ(xi,x0), the stronger the weight of yi.

Recall the aforementioned key requirements for learning and data mining
algorithms on data streams: Above all, such algorithms must be incremental, highly
adaptive, and they must be able to deal with concepts that may change over time. Is
lazy, instance-based learning preferable to eager, model-based learning under these
conditions? Unfortunately, this question cannot be answered unequivocally.

Obviously, IBL algorithms are inherently incremental, since adaptation basically
comes down to adding or removing observed cases. Thus, incremental learning
and model adaptation is simple and cheap in the case of IBL. As opposed to

188 A. Shaker and E. Hüllermeier

this, incremental learning is much more difficult to realize for most model-based
approaches. Even though incremental versions do exist for a number of well-known
learning methods, such as decision tree induction [30], the incremental update
of a model is often quite complex and in many cases assumes the storage of a
considerable amount of additional information.

The training efficiency of lazy learners does not come for free, however.
Compared with model-based approaches, IBL has higher computational costs when
it comes to answering new queries. In fact, the latter requires finding the k nearest
neighbors of the query, and even though this retrieval step can be supported by
efficient data and indexing structures, it remains costly in comparison with deriving
a model-based prediction.

Consequently, IBL might be preferable in a data stream application if the number
of incoming data is large compared with the number of queries to be answered, i.e.,
if model updating is the dominant factor. On the other hand, if queries must be
answered frequently and under tight time constraints, whereas a need for updating
the model due to newly observed examples rarely occurs, a model-based method
might be the better choice.

Regarding the handling of concept drift, a definite answer cannot be given either.
Appropriately reacting to concept drift requires, apart from its discovery, flexible
updating, and adaptation strategies. In instance-based learning, model adaptation
basically comes down to editing the case base, that is, adding new and/or deleting
old examples. Whether or not this can be done more efficiently than adapting an
other type of model, such as a classification tree or a neural network, does of course
strongly depend on the particular model at hand. In any case, maintaining an implicit
concept description by storing observations, as done by IBL, facilitates “forgetting”
examples that seem to be outdated. In fact, such examples can simply be removed,
while retracting the influence of outdated examples is usually more difficult in
model-based approaches. In a neural network, for example, a new observation
causes an update of the network weights, and this influence on the network cannot
simply be cancelled later on.

8.3 Instance-Based Learning on Data Streams

This section introduces our approach to instance-based learning on data streams,
referred to as IBL-DS. Our learning scenario consists of a data stream that
permanently produces examples, potentially with a very high arrival rate, and a
second stream producing query instances to be classified. The key problem for
our learning system is to maintain an implicit concept description in the form of a
case base (memory). Before presenting details of IBL-DS, some general aspects and
requirements of concept adaptation (case-base maintenance) in a streaming context
will be discussed.

8 Instance-Based Classification and Regression on Data Streams 189

8.3.1 Concept Adaptation

The simplest adaptive learners are those using sliding windows of fixed size. Since
the update is very simple, these learners are also very fast. On the other hand, the
assumption that the data which is currently relevant forms a fixed-sized window, i.e.,
that it consists of a fixed number of consecutive observations, is quite restrictive. In
fact, by fixing the number of examples in advance, it is impossible to optimally adapt
the size of the case base to the complexity of the concept to be learned, and to react
to changes of this concept appropriately. Moreover, being restricted to selecting
a subset of successive observations in the form of a window, it is impossible to
disregard a portion of observations in the middle (e.g., outliers) while retaining
preceding and succeeding blocks of data.

To avoid both of the aforementioned drawbacks, nonwindow-based approaches
are needed that do not only adapt the size of the training data but also have the
liberty to select an arbitrary subset of examples from the data seen so far. Needless
to say, such flexibility does not come for free. Apart from higher computational
costs, additional problems such as avoiding an unlimited growth of the training set
and, more generally, trading off accuracy against efficiency, have to be solved.

Instance-based learning seems to be attractive in light of the above requirements,
mainly because of its inherently incremental nature and the simplicity of model
adaptation. In particular, since in IBL an example has only local influence, the
update triggered by a new example can be restricted to a local region around that
observation.

Regarding the updating (editing) of the case base in IBL, an example should
in principle be retained if it improves the predictive performance (classification
accuracy) of the classifier; otherwise, it should better be removed.1 Unfortunately,
this criterion cannot be used directly, since the (future) usefulness of an example in
this sense is simply not known. Instead, existing approaches fall back on suitable
indicators of usefulness:

• Temporal relevance: According to this indicator, recent observations are consid-
ered as potentially more useful and, hence, are preferred to older examples.

• Spatial relevance: The relevance of an example can also depend on its position
in the instance space. This is the case, for example, if a concept drift only affects
a part of the instance space. Besides, a more or less uniform coverage of the
instance space is usually desirable, especially for local learning methods. In IBL,
examples can be redundant in the sense that they do not change the nearest
neighbor classification of any query. More generally (and less stringently), one
might consider a set of examples redundant if they are closely neighbored in the
instance space and, hence, have a similar region of influence. In other words, a
new example in a region of the instance space already occupied by many other
examples is considered less relevant than a new example in a sparsely covered
region.

1Of course, this maxim disregards other criteria, such as the complexity of the method.

190 A. Shaker and E. Hüllermeier

• Consistency: An example should be removed if it seems to be inconsistent with
the current concept, e.g., if its own output (strongly) differs from those in its
neighborhood.

Many algorithms use only one indicator, either temporal relevance (e.g., window-
based approaches), spatial relevance (e.g., Lightweight Frequency Counting, LWF),
or consistency (e.g., Instance-Based learning algorithm 3, IB3). A few methods
also use a second indicator, e.g., the approach of Klinkenberg (temporal relevance
and consistency), but only the window-based system FLORA4 (Floating Rough
Approximation) uses all three aspects.

8.3.2 IBL-DS

In this section, we describe the main ideas of IBL-DS, our approach to IBL on data
streams that not only takes all of the aforementioned three indicators into account
but also meets the efficiency requirements of the data stream setting.

IBL-DS optimizes the composition and size of the case base autonomously. On
arrival of a new example 〈x0,y0〉, this example is first added to the case base.
Moreover, it is checked whether other examples might be removed, either since
they have become redundant or since they are outliers (noisy data). To this end, a
set C of examples within a neighborhood of x0 are considered as candidates. This
neighborhood is given by the kcand nearest neighbors of x0, determined according a
distance measure Δ (see Sect. 8.7), and the candidate set C consists of the examples
within that neighborhood. The most recent examples are excluded from removal due
to the difficulty to distinguish potentially noisy data from the beginning of a concept
change. Even though unexpected observations will be made in both cases, noise and
concept change, these observations should be removed only in the former but not in
the latter case.

In the classification scenario, the most frequent class among the kcand youngest
examples in a larger test environment of size2 ktest = (kcand)

2 + kcand is determined.
If this class corresponds to the current class y0, those candidates in C are removed
that have a different class label and do not belong to the kcand youngest examples
in the larger test environment. Furthermore, to guarantee an upper bound on the
size of the case base, the oldest element of the similarity environment is deleted,
regardless of its class, whenever the upper bound would be exceeded by adding
the new example. The similarity environment constitutes the set of instances in the
vicinity of the query instance, while the test environment can be seen as the union
of the similarity environments of the neighbored instances.

2This choice of ktest aims at including in the test environment the similarity environments of all
examples in the similarity environment of x0; of course, it does not guarantee to do so.

8 Instance-Based Classification and Regression on Data Streams 191

In the regression scenario, the kcand youngest examples in the neighborhood

set C determines a confidence interval
[
ȳ−Z α

2

σ√
kcand

, ȳ+Z α
2

σ√
kcand

]
, where ȳ is

the average target value for the considered examples and σ is the standard
deviation. A class values y0 outside this interval indicates an unexpected change
in the neighborhood when this instance was generated. In this case, instances not
belonging to the confidence interval are removed from the larger test environment.

Using this strategy, the algorithm is able to adapt to concept drift but will also
have a high accuracy for nondrifting data streams. Still, these two situations—
drifting and stable concept—are to some extent conflicting with regard to the size
of the case base: If the concept to be learned is stable, classification accuracy will
increase with the size of the case base. On the other hand, a large case base turns
out to be disadvantageous in situations where concept drift occurs, and even more
in the case of concept shift. In fact, the larger the case base is, the more outdated
examples will have to be removed and, hence, the more sluggish the adaptation
process will be.

For this reason, we try to detect an abrupt change of the concept using a statistical
test as in [19, 20]. If a corresponding change has been detected, a large number of
examples will be removed instantaneously from the case base. In the classification
scenario, the test is performed as follows: We maintain the prediction error p and

standard deviation s =
√

p(1−p)
100 for the last 100 training instances. Let pmin denote

the smallest among these errors and smin the associated standard deviation. A change
is detected if the current value of p is significantly higher than pmin. Here, statistical
significance is determined by testing the null hypothesis H0 : p ≤ pmin against the
alternative hypothesis H1 : p > pmin. This is accomplished by using a standard (one-
sided) z-test, i.e., the condition to be tested is p+ s > pmin + zαsmin, where α is the
level of confidence (we use α = 0.999).

Finally, in case a change has been detected, we try to estimate its extent in order
to determine the number of examples that need to be removed. More specifically, we
delete pdif percent of the current examples, where pdif is the difference between pmin

and the classification error for the last 20 instances; the latter serves as an estimation
of the current classification error.3 Examples to be removed are chosen at random
according to a distribution which is spatially uniform but temporally skewed; see
[6] for details.

In the regression scenario, the above test is conducted with the mean absolute
error instead of the classification rate, and the percentage of examples to be removed
is determined by the relative increase of this error.

3Note that, if this error, p, is estimated from the last k instances, the variance of this estimation is
≈ p(1− p)/k. Moreover, the estimate is unbiased, provided that the error remained constant during
the last k time steps. The value k = 20 provides a good trade-off between bias and precision.

192 A. Shaker and E. Hüllermeier

8.4 MOA

IBL-DS is implemented under the MOA (Massive Online Analysis) framework,
an open source software for mining and analyzing large data sets in a stream-like
manner. MOA is written in Java and is closely related to WEKA [31], the Waikato
Environment for Knowledge Analysis, which is presently the most commonly used
machine learning software.

MOA supports the development of classifiers that can learn either in a purely
incremental mode, or in batch mode first (on an initial part of a data stream) and
incrementally afterward. The implementation of an evolving classifier is supported
by a Java interface called UpdateableClassifier. This operation simulates the case
of online learning, which means that each instance is accessed only once. A few
incremental classifiers are already included in MOA, notably the Hoeffding tree
[22], a state-of-the-art classifier often used as a baseline in experimental studies.
Some meta learning techniques are implemented, too, such as online bagging and
boosting both for static [26] and evolving streams [8].

8.4.1 Stream Generators

MOA supports the simulation of data streams by means of synthetic stream
generators. An example is the Hyperplane generator that was originally used in [22].
It generates data for a binary classification problem, taking a random hyperplane
in d-dimensional Euclidean space as a decision boundary; a certain percentage of
instances is corrupted with noise.

Another important stream generator is the RandomTree generator. Its underlying
model is a decision tree for a desired number of attributes and classes. The tree is
built by splitting on randomly chosen attributes and then giving random class labels
to the leaf nodes. Instances are generated with uniformly distributed values in the
attributes while the class label is determined by the tree.

MOA offers the ConceptDriftStream procedure for simulating concept drift. The
idea underlying this procedure is to mix two pure distributions in a probabilistic
way, smoothly varying the corresponding probability degrees. In the beginning,
examples are taken from the first pure stream with probability 1, and this probability
is decreased in favor of the second stream in the course of time. More specifically,
the probability is controlled by means of the sigmoid function

f (t) =
(

1+ e−4(t−t0)/w
)−1

.

This function has two parameters: t0 is the mid point of the change process, while w
is the length of this process.

8 Instance-Based Classification and Regression on Data Streams 193

8.4.2 Model Evaluation

The evaluation of an evolving classifier is clearly a nontrivial issue. In fact,
compared to standard batch learning, simple one-dimensional performance mea-
sures such as classification accuracy are not immediately applicable, or at least not
able to capture the time-varying behavior of a classifier in a proper way. MOA offers
different solutions for this problem.

The holdout procedure is a generalization of the cross-validation procedure
commonly used in batch learning. Here, the training and the testing phase of a
classifier are interleaved as follows: the classifier is trained incrementally on a block
of M instances and then evaluated (but no longer adapted) on the next N instances,
then again trained on the next M and tested on the subsequent N instances, and so
forth. Thus, it becomes possible to monitor the performance of the model as time
progresses; this information can also be used as an indicator of possible changes of
the underlying concept [7, 9].

While the holdout procedure uses an instance either for training or for testing,
each instance is used for both in the prequential approach [12]: First, the model is
evaluated on the instance, and then a single incremental learning step is carried out.
The prequential error is advocated in [21], where it is also shown to converge to
the holdout measure when using a sliding window or a fading factor (exponential
weighting).

8.5 Experiments

In this section, we compare IBL-DS with state-of-the-art learners in terms of perfor-
mance and handling of concept drift, namely Hoeffding trees for classification [22]
and the FLEXFIS approach for regression [24]. Hoeffding trees is a decision tree
approach suitable for learning on data streams, whereas FLEXFIS constructs and
maintains a specific kind of fuzzy rule-based model, namely a model of the Takagi–
Sugeno type [29]. Our study is not meant as an extensive empirical evaluation
that supports statistically valid conclusions. Instead, it is only supposed to serve
an illustration purpose. We refer to [6] for more experiments with classification
problems.

We use IBL-DS in its default setting unless otherwise stated (in some binary
classification problems, we try different values for the maximum size of the instance
base). Experiments are not only conducted with real data sets, but also with
synthetic data. As an important advantage of synthetic data, let us note that it allows
for conducting experiments in a controlled way and, therefore, to investigate the
performance of a method under specific conditions. In particular, synthetic data is
useful for simulating a concept drift.

The experiments are performed in the MOA framework, using the holdout
procedure for measuring predictive accuracy. The parameters M and N vary

194 A. Shaker and E. Hüllermeier

Table 8.1 Summary of the data sets used in the experiments

Data Set Instances Attributes Holdout evaluation

Statlog (shuttle) 58,000 9 M = 5,000 and N = 1,000
Red wine 1,599 11 M = 100 and N = 25
White wine 4,889 11 M = 200 and N = 50
YearPredictionMSD 515,345 90 M = 200 and N = 50

depending on the size of the data set (we take M = 5,000 and N = 1,000 in the
first two experiments with synthetic data). For the experiments with real data, these
parameters are adapted to the size of the respective data set; see Table 8.1 for an
overview of the main characteristics of these data sets. The real data sets are standard
benchmarks taken from the Statlib archive4 and the UCI repository [16]. Since they
do not have an inherent temporal order, we average the performance curves over
100 randomly shuffled versions of these data sets.

8.5.1 Classification

8.5.1.1 Synthetic Data

The first two experiments are based on synthetic data with different characteristics
(i.e., different types of decision boundaries). The first experiment uses data taken
from the hyperplane generator. The ConceptDriftStream procedure mixing streams
produced by two different hyperplanes simulates a rotating hyperplane. Using this
procedure, we generated 12,000,000 examples connecting two hyperplanes in four-
dimensional space, with t0 = 500,000 and w = 100,000.

We compare the performance of two different settings of IBL-DS, one with a
value of 400 for the maximum size of the instance base and the other one with 5,000.
Figure 8.1 shows that both versions of IBL-DS initially outperform the Hoeffding
tree. The Hoeffding tree is also more affected by the concept drift, showing a more
pronounced “valley” in the performance curve, and also taking more time to recover.
IBL-DS recognizes and adapts to the concept drift quite early, recovering its original
performance as soon as the drift is over.

In a second experiment, we use the random tree generator to produce examples.
Obviously, this generator is favorable for the Hoeffding tree. Again, the same
ConceptDriftStream is used, but this time mixing two random tree generators. As
can be seen in Fig. 8.2, the Hoeffding tree is now able to outperform IBL-DS in the
first phase of the learning process; in fact, reaching an accuracy of close to 100%,
which is not unexpected given that the Hoeffding tree is ideally tailored for this
kind of data. Once again, however, the Hoeffding tree is much more affected by the

4http://lib.stat.cmu.edu/.

http://lib.stat.cmu.edu/

8 Instance-Based Classification and Regression on Data Streams 195

Fig. 8.1 Classification rate on the hyperplane data (binary)

Fig. 8.2 Classification rate on the RandomTree data (binary)

concept drift than the IBL-DS. Both variants of IBL-DS suffer from a drop of about
15% in terms of classification rate, and recover quickly during the phase of the drift,
whereas the Hoeffding tree loses about 40% of its accuracy.

8.5.1.2 Real Data

In this experiment, we used the Shuttle data from the Statlog repository, for which
the task is to predict the class of a shuttle. The data set is highly imbalanced, with
80% of the instances belonging to one class and the remaining 20% distributed
among six other classes; in order to obtain a binary problem, we grouped these six
classes into a single one. The new problem thus consists of predicting whether a
shuttle belongs to the majority class or not. Both algorithms were initially trained
on 300 instances in batch mode; for the holdout evaluation, we used M = 200 and
N = 50. Figure 8.3 shows the results averaged over 100 randomly shuffled versions
of the data set. As can be seen, IBL-DS starts with a very strong performance,
close to 99% accuracy; the Hoeffding tree reaches this accuracy, too, but not before
observing three quarters of the whole stream.

The wine quality data is an ordinal classification problem, in which a wine
(characterized by several chemical properties) is put into a discrete category ranging

196 A. Shaker and E. Hüllermeier

Fig. 8.3 Classification rate on the Shuttle data (binary)

red wine

ba

white wine

Fig. 8.4 Classification rate on the wine quality data set (binary)

red wine

ba

white wine

Fig. 8.5 Classification rate on the wine quality data set (multiclass)

from 10 (best) to 0 (worst). We turned this problem into a binary classification task
by grouping the top-5 and bottom-6 classes. Actually, the data set consists of two
subsets, one for white wine and one for red wine. For both data sets, the initial
learning is done on 300 instances. In all our experiments on the wine quality data, we
average the results over 100 randomly shuffled versions. For the evaluation on the
red wine data, we used M = 100 and N = 25, because this data set is relatively small
(about 1,600 examples); for white wine, we used M = 200 and N = 50. Figure 8.4
shows the results of both experiments. As can be seen, IBL-DS is clearly superior
to Hoeffding trees on these data sets.

For evaluating the muticlass case, we used the same real data sets as above,
but without grouping the output categories. As can be seen from Fig. 8.5, the
performance of both IBL-DS and Hoeffding trees on the wine data is lower than

8 Instance-Based Classification and Regression on Data Streams 197

Fig. 8.6 Classification rate on the Shuttle data (multiclass)

Fig. 8.7 RMSE for the hyperplane data (regression, linear case)

that for the binary case, an observation that is clearly expected. Still, IBD-DS
remains superior on the whole stream. For the Shuttle data, Fig. 8.6 shows that
the performance of IBL-DS remains almost the same, compared to the binary
case, whereas the Hoeffding tree again starts with low classification rate and never
exceeds the 85% limit.

8.5.2 Regression

For the case of regression, we modified the hyperplane generator in MOA as follows:
The output for an instance x is not determined by the sign of wTx, where w is the
normal vector of the hyperplane, but by the absolute value

∣∣wTx
∣∣. In other words,

the problem is to predict the distance to the hyperplane. As an alternative, we also
tried

(
wTx

)2
, i.e., the squared distance. Again, ConceptDriftStream was used for

simulating a concept drift by mixing two streams.
Figures 8.7 and 8.8 show the performance of IBL-DS and FLEXFIS, in terms of

the root mean squared error (RMSE), for the (piecewise) linear and the quadratic
case (and dimension d = 4), respectively. As can be seen, FLEXFIS performs quite

198 A. Shaker and E. Hüllermeier

Fig. 8.8 RMSE for the hyperplane data (regression, quadratic case)

red wine

ba

white wine

Fig. 8.9 RMSE for wine quality data set (regression)

well in the linear case. This behavior is expected and can easily be explained by
its model structure (FLEXFIS uses fuzzy rules with linear functions as consequent
parts). What is more interesting, however, is the observation that IBL-DS is much
less affected by the concept drift, both in the linear and the quadratic case. In fact,
while FLEXFIS deteriorates significantly and needs quite some time to recover, the
performance of IBL-DS remains almost unchanged.

As a real data set, we again used the wine data, this time treating the quality level
as a numerical value. Figure 8.9 shows that IBL-DS is slightly worse than FLEXFIS
[24] on these two data sets.

8.6 Summary

We have presented an instance-based algorithm for classification and regression on
data streams. This algorithm, called IBL-DS, has a number of desirable properties
that are not, at least not as a whole, shared by existing alternative methods. The
experiments presented in [6], complemented by those in this paper, suggest that
IBL-DS is very flexible and thus able to adapt to an evolving environment quickly,
a point of utmost importance in the data stream context. In particular, two specially
designed editing strategies are used in combination in order to successfully deal with
both gradual concept drift and abrupt concept shift. Besides, IBL-DS is relatively

8 Instance-Based Classification and Regression on Data Streams 199

robust and produces good results when being used in a default setting for its
parameters. An implementation of IBL-DS under the MOA framework, along with
a documentation, can be downloaded under the following address: http://www.uni-
marburg.de/fb12/kebi/research/software/iblstreams/.

8.7 Distance Function

The distance function used in IBL-DS is an incremental variant of SVDM (Simple
Value Difference Metric) which is a simplified version of the VDM (Value Differ-
ence Metric) distance measure [28] and was successfully used in the classification
algorithm RISE [13, 14]. Let an instance x be specified in terms of � features
F1, . . . ,F�, i.e., as a vector x = (f1, . . . , f�) ∈ D1 ×·· ·×D�.

Numerical features Fi with domain Di = R are first normalized by the mapping
fi �→ fi/(max−min), where max and min denote, respectively, the largest and
smallest value for Fi observed so far; these values are permanently updated.5 Then,
δi (fi, f ′i) is defined by the Euclidean distance between the normalized values of fi

and f ′i .
For a discrete attribute Fj, the distance between two values f j and f ′j is defined

by the following measure:

δi
(

f j , f ′j
)
=

m

∑
k=1

∥∥P(λk |Fj = f j)−P
(
λk |Fj = f ′j

)∥∥ ,

where m is the number of classes and P(λ |F = f) is the probability of the class λ
given the value f for attribute F . Finally, the distance between two instances x and
x′ is given by the mean squared distance

Δ(x,x′) =
1
�

�

∑
i=1

δi
(

fi, f ′i
)2
.

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams.
In: Proceedings of VLDB 2003, the 29th International Conference on Very Large Data Bases.
Berlin, Germany (2003)

2. Aha, D.W. (ed.): Lazy Learning. Kluwer Academic Publ., Dordrecht, Netherlands (1997)
3. Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Machine Learning

6(1), 37–66 (1991)

5To make the transformation more robust toward outliers, it makes sense to replace max and min
by appropriate percentiles of the empirical distribution.

http://www.uni-marburg.de/fb12/kebi/research/software/iblstreams/
http://www.uni-marburg.de/fb12/kebi/research/software/iblstreams/

200 A. Shaker and E. Hüllermeier

4. Angelov, P.P., Filev, D.P., Kasabov, N.: Evolving Intelligent Systems. John Wiley and Sons,
New York (2010)

5. Angelov, P.P., Lughofer, E., Zhou, X.: Evolving fuzzy classifiers using different model
architectures. Fuzzy Sets and Systems 159(23), 3160–3182 (2008)

6. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams. Intelligent Data
Analysis 11(6), 627–650 (2007)

7. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. Journal of
Machine Learning Research 11, 1601–1604 (2010)

8. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for
evolving data streams. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 139–148. Paris, France (2009)

9. Bifet, A., Kirkby, R.: Massive Online Analysis Manual (2009)
10. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: Tracking most frequent items

dynamically. In: ACM Symposium on Principles of Database Systems (PODS). San Diego,
California (2003)

11. Dasarathy, B.V. (ed.): Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press, Los Alamitos, California (1991)

12. Dawid, A.P.: Statistical theory: The prequential approach. In: Journal of the Royal Statistical
Society-A, pp. 147:278–292 (1984)

13. Domingos, P.: Rule induction and instance-based learning: A unified approach. In: C. Mellish
(ed.) Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI
95, vol. 2, pp. 1226–1232. Morgan Kaufmann, Montral, Qubec, Canada (1995)

14. Domingos, P.: Unifying instance-based and rule-based induction. Machine Learning 24,
141–168 (1996)

15. Domingos, P., Hulten, G.: A general framework for mining massive data streams. Journal of
Computational and Graphical Statistics 12 (2003)

16. Frank, A., Asuncion, A.: UCI machine learning repository (2010). URL http://archive.ics.uci.
edu/ml

17. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: A review. ACM
SIGMOD Record, ACM Special Interest Group on Management of Data 34(1) (2005)

18. Gama, J., Gaber, M.M.: Learning from Data Streams. Springer-Verlag, Berlin, New York
(2007)

19. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Proceedings
SBIA 2004, the 17th Brazilian Symposium on Artificial Intelligence, pp. 286–295. São Luis,
Maranhão, Brazil (2004)

20. Gama, J., Medas, P., Rodrigues, P.: Learning decision trees from dynamic data streams. In:
SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing, pp. 573–577.
ACM Press, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1066677.1066809

21. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms. In:
Proceedings of 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. Paris, France (2009)

22. Hulten, G., Spencer, L., Domingos, P.: Mining timechanging data streams. In: Proceedings
7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 97–106. San Francisco, CA, USA (2001)

23. Kolodner, J.L.: Case-based Reasoning. Morgan Kaufmann, San Mateo (1993)
24. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving takagi-sugeno

fuzzy models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)
25. Lughofer, E.: Evolving Fuzzy Systems: Methodologies, Advanced Concepts and Applications.

Springer-Verlag, Berlin, Heidelberg (2011)
26. Oza, N.C., Russell, S.: Online bagging and boosting. Artificial Intelligence and Statistics

pp. 105–112 (2001)
27. Salzberg, S.: A nearest hyperrectangle learning method. Machine Learning 6, 251–276 (1991)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

8 Instance-Based Classification and Regression on Data Streams 201

28. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29,
1213–1228 (1986)

29. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and
control. IEEE Transactions on Systems, Man, and Cybernetics 15(1), 116–132 (1985)

30. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4, 161–186 (1989)
31. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2 edn.

Morgan Kaufmann, San Francisco (2005)
32. Widmer, G. and Kubat, M.: Learning in the Presence of Concept Drift and Hidden Contexts.

Machine Learning 23, 69–101 (1996)

	Chapter8 Instance-Based Classification and Regression on Data Streams
	8.1 Introduction
	8.2 Instance-Based Learning
	8.3 Instance-Based Learning on Data Streams
	8.3.1 Concept Adaptation
	8.3.2 IBL-DS

	8.4 MOA
	8.4.1 Stream Generators
	8.4.2 Model Evaluation

	8.5 Experiments
	8.5.1 Classification
	8.5.1.1 Synthetic Data
	8.5.1.2 Real Data

	8.5.2 Regression

	8.6 Summary
	8.7 Distance Function
	References

