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Abstract The accuracy of machine learning systems is a widely studied research
topic. Established techniques such as cross validation predict the accuracy on
unseen data of the classifier produced by applying a given learning method to a
given training data set. However, they do not predict whether incurring the cost of
obtaining more data and undergoing further training will lead to higher accuracy.
In this chapter, we investigate techniques for making such early predictions. We
note that when a machine learning algorithm is presented with a training set the
classifier produced, and hence its error, will depend on the characteristics of the
algorithm, on training set’s size, and also on its specific composition. In particular
we hypothesize that if a number of classifiers are produced, and their observed error
is decomposed into bias and variance terms, then although these components may
behave differently, their behavior may be predictable. Experimental results confirm
this hypothesis, and show that our predictions are very highly correlated with the
values observed after undertaking the extra training. This has particular relevance
to learning in nonstationary environments, since we can use our characterization
of bias and variance to detect whether perceived changes in the data stream arise
from sampling variability or because the underlying data distributions have changed,
which can be perceived as changes in bias.
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6.1 Introduction

Predicting the accuracy of a trained machine learning system when presented
with previously unseen test data is a widely studied research topic. Techniques
such as cross validation are well established and understood both theoretically and
empirically, e.g., [18,34]. However, these techniques predict the accuracy on unseen
data given the existing training set. For example, N-fold Cross Validation (NCV)
averages the fitness estimated from N runs, each using a proportion 1− 1/N of the
available data to train a classifier and 1/N to evaluate it. Therefore, repeating with
different values of N can give the user some indication of how the error rate changed
as the training set increased to the current size, since lower values of N effectively
equate to smaller training sets. However, NCV does not predict what accuracy might
be achievable after further training. Thus if the current accuracy is not acceptable,
and obtaining data comes at cost, NCV and similar techniques do not offer any
insights into whether it is worth incurring the cost of further training.

This is of more than theoretical interest, because the successful application of
machine learning techniques to “real-world” problems places various demands on
the collaborators. Not only must the management of the industrial or commercial
partner be sufficiently convinced of the potential benefits that they are prepared to
invest money in equipment and time but, vitally, there must also be a significant
investment in time and commitment from the end-users in order to provide training
data from which the system can learn. This poses a problem if the system developed
is not sufficiently accurate, as the users and management may view their input as
wasted effort, and lose faith with the process.

In some cases this effort may be re-usable if, for example, the user has been
labeling training examples that can be stored in their original form, and which come
from a fairly stationary distribution. However, this is frequently not the case. For
example, in many applications it may not be practical to store the physical training
examples rather, it is necessary to characterize them by a number of variables. If the
failure of the Machine Learning system in such cases stems from an inappropriate
or inadequate choice of descriptors, then the whole process must be repeated. Not
only has the user’s input been a costly waste of time and effort but there also
may be a loss of faith in the process which can manifest in reduced attention and
consistency when classifying further samples. To give a concrete example from the
field of diagnostic visual inspection (e.g., manufacturing process control or medical
images), it frequently turns out that it is not sufficient to store each relevant image—
other information is necessary such as process variables, or patients’ history. If this
data is not captured at the same time, and is not recoverable post-hoc, then the effort
of collecting and labeling the database of examples has been wasted.

A significant factor that would help in gaining confidence and trust from end-
users would be the ability to quickly and accurately predict whether the learning
process was going to be successful. Perhaps more importantly from a commercial
viewpoint, it would be extremely valuable to have an early warning that the users can
save their effort while the system designer refines the choice of data, algorithms etc.
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From the perspective of learning in nonstationary environments, such a tool could
provide a number of advantages. Firstly, a deviation from the expected progress can
be used as an indicator that there has been a fundamental shift in the nature of the
training input provided to the algorithm. This could arise either because the user
providing the labels has changed, or the underlying data set is dynamic and requires
a classifier that is able to take account of this. In either case, early warning is needed
to enable corrective action to be taken.

In this chapter, we investigate a technique for making such early predictions of
future error rates. We will consider that we are given n samples, and that the system
is still learning and refining its model at this stage. We are interested in predicting
what final accuracy might be achievable if the users were to invest the time to create
n′ more samples. This leads us to focus on two questions. First, what are the most
appropriate descriptors of the system’s behavior after some limited number n of
samples, and then later after an additional n′ samples? Second, is it possible to find
useful relationships for predicting the second of these quantities from the first?

Theoretical studies, backed up by empirical results, have suggested that the total
error rate follows a power–law relationship, diminishing as extra training samples
are provided. While these theoretic bounds on error are rather loose, they provide
motivation for investigating practical approaches for quickly and reliably estimating
the error rate that may be observed after future training. In general the error will be
a complicated function, but the hypothesis of this chapter is that we can deal with it
more easily if we decompose it into a number of more stable functions. Therefore
this chapter concentrates on the use of the well-known bias–variance decomposition
[8, 21] as a source of predictors when an algorithm is used to build a classification
model from a data set. Specifically, our hypothesis is that if the observed error is
decomposed into bias and variance terms, then although these components may
behave differently, their behavior may be individually predictable.

To test our hypothesis we first apply a range of algorithms to a variety of data
sets, for each combination periodically estimating the error components as more
training samples are introduced, until the full data set has been used. All of the
data arising from this (rather lengthy) process is merged and regression analysis
techniques are applied to produce three sets of predictive models—one each for
bias, variance and total error. Each of these models takes as input a measurement
obtained from the classifier produced when only a few samples (n) from a data
set have been presented to the learning algorithm, and predicts the value after all
samples have been applied (n+ n′). As the data have been merged, the intention is
that these models are algorithm-data set independent. We examine the stability and
valid range of these models using simple linear regressors. Moving on to consider
trainable ensembles of different classifiers, we show how a similar approach can be
applied to obtain estimates on the upper bound of the achievable accuracy, which
can predict the progression of the ensemble’s performance.

The rest of this chapter proceeds as follows. In Sect. 6.2, we review related
work in the field, including the bias–variance decomposition of error that we will
use. Following that, Sect. 14.2.1 describes the experimental methodology used to
collect the initial statistics, and test the resulting models. Section 6.4 describes
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and discusses the results obtained. In Sect. 6.5, we show how this approach may
be extended to predict the future accuracy of trainable ensembles of classifiers.
In Sect. 6.6, we discuss how these methods could be applied to detect changes
in underlying data distributions that would trigger re-learning in no stationary
environments. Finally in Sect. 6.7, we draw some conclusions and suggestions for
further work.

6.2 Background

6.2.1 Notation

For the sake of clarity we will use a standard notation throughout this chapter,
reinterpreting results from other authors as necessary.

We assume classification tasks, where we are given an instance space X and a
predicted categorical variable Y . The “true” underlying function F is a mapping
F : X → Y .

Let D be the set of all possible training sets of size n sampled from the instance
space X , and d ∈ D = {(x1,y1),(x2,y2), . . . ,(xn,yn)}.

When a machine learning algorithm C is presented with d it creates a classifier,
which we may view as a hypothesis about the underlying mapping: HCd : X → Y .
The subscripts C and d make it explicit that the specific classifier H induced depends
on the learning algorithm and the training set. For a specific learning algorithm C,
the set of classifiers that it can induce is denoted H .

We consider a 0/1 misclassification error—in other words the error is zero if H
correctly predicts the true class of an item x ∈ X , and 1 otherwise. More formally,
the misclassification cost of a single data item x with a specific classifier H is:

Cost(HCd ,x) =

{
0 HCd(x) = F(x)
1 HCd(x) �= F(x)

. (6.1)

The expected error of the classifier created from n data points is then given by
integrating over X and d, taking into account their conditional likelihood, i.e.:

Error(HCn,X) =

∫
x∈X ,d∈D

P(x)P(d|n)Cost(HCd ,x), (6.2)

where P(d|n) is the probability of generating a specific training set d ∈ D given
the training set size n, and P(x) is the probability of selecting an item x ∈ X to
be classified. In practice of course it is not possible to exactly measure the true
error, so approaches such as bootstrapping, hold-out, and cross validation are used
to estimate the error, given a finite sized set of examples. In bootstrapping, new
data sets are repeatedly generated from the original data set using random sampling
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with replacement. The new data sets, which most likely contain duplicate examples,
are then used to train a classifier and the examples that are not part of the data
sets are used for testing. Hold-out approaches divide the available data into two
sets (typically using a 70/30 split), train a classifier using the larger set and then
estimate its accuracy using the “unseen” smaller set. As described above, N-fold
cross validation (NCV) is an improvement on the hold-out approach which aims
to avoid the possibility of accidentally selecting an “easy” test set. The available
data is split into N (usually equally sized) blocks. Each of the blocks in turn is then
used as a test set to estimate the accuracy of a classifier built from the remaining
N−1 blocks. The average of these is then used as an estimate of the accuracy of the
classifier that would be built from all of the available data. We will use the lower
case “error” to denote an estimation is being used for the true error.

6.2.2 Relationship to Other Work

Cortes et al. [10] presented an empirical study where they characterized the behavior
of classification algorithms using “learning curves”. These suggest that the predicted
error of the classifier after n samples have been presented will follow a power–law
distribution in n:

error(n) = an−α + b, (6.3)

where the constants a (the learning rate), α (the decay rate), and b (the asymptotic
Bayes error rate) depend on the particular combination of classification algorithm
and data set, but α is usually close to, or less than one. This suggests that given
a particular classifier–data set combination, it should be possible to commence
training, take periodic estimates of the error as n increased, and then use regression
to find values for a,b,α that fit the data, and can be used for predicted future
error rates. “Progressive sampling” uses training sets (“samples”) with progressively
larger sizes (i.e., increasing n) until some desired accuracy has been reached.
This can be inefficient if a larger number of “samples” is used as each must be
evaluated. Using a similar approach to Cortes et al. recent papers have attempted
to fit a learning curve to a few samples in order to predict the size needed
[23, 29]. Mukerhjee et al. [26] have pointed out a problem with this curve-fitting
approach, namely that for low values of n the estimated error rates are subject to
high variability, which leads to significant deviations when fitting the power–law
curve. They have presented an extension of the method which uses a “significance
permutation test” to establish the significance of the observed classifier error prior
to curve fitting.

These results fit in with theoretical bounds from “Probably Approximately
Correct” (PAC) theory such as those presented by Vapnik in [35]. These begin
with the assumption that a training set d = {xk,yk},1 ≤ k ≤ n,yk ∈ {−1,1} is
drawn independently and identically distributed (iid) from a data set, and that
future training and test data will be drawn from the data set in the same way.
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Given the restriction Y = {−1,1}, the test error Error(HCn), (the probability of
misclassification) is defined to be:

Error(HCn) = E

[
1
2
| F(x)−HCn(x) |

]
, (6.4)

where in comparison to (6.1), the division by two maps absolute values of
differences in Y onto costs (rather than having a fixed cost of 1 for misclassification),
and the HCn denotes that we are taking the expectation for the general case. The
current empirically measured training error error(HCd) is:

error(HCd) =
1
n

n

∑
k=1

1
2
|yk −HCd(xk)| . (6.5)

Note that since this estimates the error by classifying the n elements of the
training set with a classifier trained on that data, it is calculated as a summation and
will underestimate the true error. Vapnik showed that the amount of underestimation
can be bounded [35]. If ψ represents the Vapnik–Chervonenkis (VC) dimension, and
0 ≤ η ≤ 1, then with probability 1−η :

Error(HCn)≤ error(HCd)+

√
ψ log(2n)+ψ(1− logψ)− log(η/4)

n
. (6.6)

Effectively this equation makes explicit an assumption that machine learning
algorithms inherently produce classifiers which overfit the available training data.
The VC-dimension ψ is a measure of the capacity of a hypothesis space of
classification algorithm C, so may be thought of as the “power” of C. It is the
maximum number of points that can be arranged so that C can always “shatter”
them—for example, the VC-dimension of a linear classifier such as a perceptron
is three, since no straight line can separate the four points of an XOR problem.
Equation (6.6) makes it clear that more powerful algorithms (higher ψ) are more
likely to over-fit the data, and so it may be used as grounds to select between two
algorithms which produce the same training error but have different complexity
(related to ψ). It also makes explicit the dependency on n: for a given training
set error, the maximum amount by which this will underestimate the true error
decreases by approximately

√
ψ logn/n.

However, in practice these bounds tend to be rather “loose.” There have been
other more recent developments in Statistical Learning Theory which use a similar
approach but exploit Rademacher complexity to provide tighter bounds, such as
those in [1–3, 27]. Common to all of these approaches, as with the use of VC-
dimension results, is the idea that on the basis of the available training data, an
algorithm selects a classifier HCd from some class H available to it. To analyze
the learning outcomes, the “error” observed when the training data is classified by
HCd is broken down into the Bayes optimal error (which cannot be avoided) plus an
amount by which best (H∗ ∈ H ) in the current class of classifiers would be more
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than Bayes optimal, plus an amount by which the classifier HCd currently estimated
by the algorithm to be “best” is different to the actual best H∗. Thus for example,
approaches such as Structural Risk Minimisation can be thought of as principled
methods for increasing the size/complexity of the current class of classifiers H
until it includes the Bayes optimal classifier.

The underlying assumption is that the error is estimated using the current training
set, and that this almost certainly overfits the true underlying distribution (i.e. HCd �=
H∗) so the current estimates of error for the chosen classifier HCd will be less than
the “true” error that would be seen if it was applied to the whole data distribution.
Therefore, bounds are derived which describe the extent to which the error on the
training set underestimates the true error. Since this can be described in terms of
the search problem of identifying H∗ ∈ H , it is understandable that they take into
account the amount of information available to the search algorithm—i.e., the size
n of the training set.

While this is a valid and worthwhile line of theoretical research, we would argue
that it is not currently as useful for the practitioner. Consider the example of a user
who is highly skilled in his/her domain, but knows nothing about Machine Learning,
and is providing the training examples from which a classifier is constructed.
The theory above effectively says: “Based on what you have told me, I’ve built
a classifier which seems to have an error rate of x%. I can tell you with what
probability the “true” error rate is worse than x+ y%, for any positive y.” If they
have provided enough labeled data items to create what appears to be an accurate
classifier, then this is valuable. However, if they are still early on in the process, and
the current error rates are high, it gives no clues as to whether they will drop. Instead
we attempt to provide heuristics that answer a different question: “Based on what
you have told me, I’ve built some classifiers and although the current error rate is
x% it will probably drop to y%, where y ≤ x”.

To do this, we note that the analysis above relates the true test error to a specific
estimated error from a given training set size, and that the variance in the predicted
error depends strongly on n. This has prompted us to examine different formulations
that explicitly decompose the error into terms arising from the inherent bias of the
algorithm (related to its VC dimension, or to the difference between H∗ and the
Bayes optimal classifier) and the variability arising from the choice of d ∈ D.

6.2.3 Bias–Variance Decomposition

A number of recent studies have shown that the decomposition of a classifier’s
error into bias and variance terms can provide considerable insight into the
prediction of the performance of the classifier [8, 21]. Originally, it was proposed
for regression [17] but later, this decomposition has been successfully adapted for
classification [8, 21, 31]. While a single definition of bias and variance is adopted for
regression, there is considerable debate about how the definition can be extended to
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classification [5,12,16,19,21,22]. In this chapter, we use Kohavi and Wolpert’s [21]
definition of bias and variance on the basis that it is the most widely used definition
[37, 38], and has strictly nonnegative variance terms.

Kohavi and Wolpert define bias, variance and noise as follows [21]:

Squared Bias “This quantity measures how closely the learning algorithm’s aver-
age guess (over all possible training sets of the given training set size) matches
the target.”

Variance “This quantity measures how much the learning algorithm’s guess
bounces around for the different training sets of the given size.”

Intrinsic noise “This quantity is a lower bound on the expected cost of any learning
algorithm. It is the expected cost of the Bayes-optimal classifier.”

Given these definitions, we can restate (6.2) as:

Error(HC,n) =
∫

x∈X
P(x)

(
σ2

x +Bias2
x +Variancex

)
. (6.7)

Assuming a fixed cardinality for Y (finite set of classes), and noting D has finite
cardinality, the summation terms in the integral are:

Bias2
x =

1
2 ∑

d∈D

P(d|F,n) ∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2 ,

Variancex =
1
2
− 1

2 ∑
y∈Y

∑
d∈D

P(d|F,n)P(HCd(x) = y)2,

σ2
x =

1
2
− 1

2 ∑
y∈Y

P(F(x) = y)2,

where the terms P(F(x) = y),P(HCd(x) = y),P(d|F,n) make explicit that some
terms are conditional probability distributions since the Bayes error may be non-
zero, the classification output may not be crisp, and the specific choice of training
set depends on the underlying function and the number of samples.

In practice, these values are estimated from repeated sampling of training sets
to acquire the necessary statistics, which are then manipulated to give the different
terms. Thus, the Bias term considers the squared difference between the actual and
predicted probabilities that the label is y for a given input x for a given training set d.
To calculate its value, the inner term sums over all possible values of y, and then the
outer summation averages over all training sets of a given size. By comparison, the
Variance term just considers the distribution of predicted values, P(F(x) = y), but
reverses the order of the summation to emphasize the effect of different training
sets. The intrinsic noise term sums over all possible output values y the squared
probabilities that the actual target F(x) = y for a given input x. If the underlying
class boundaries are crisp, then P(F(x) = y) will be zero except for one value of y,
the summation will be 1 and σ2

x will consequently be zero.
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6.2.4 Bias as an Upper Limit on Accuracy

An alternative perspective on the analysis in Sect. 6.2.3 is that the bias term reflects
an inherent limit on a classifier’s accuracy resulting from the way in which it forms
decision boundaries. For example, an elliptical class boundary can never be exactly
replicated by a classifier which divides the space using axis-parallel decisions.
A number of studies have been made confirming the intuitive idea that the size
of variance term drops as the number of training samples increases, whereas the
estimated bias remains more stable, e.g., [8]. Therefore, we can treat the sum of
the inherent noise and bias terms as an upper limit on the achievable accuracy for
a given classifier. Noting that in many prior works it is assumed that the inherent
noise term is zero, and that for a single classifier it is not possible to distinguish
between inherent noise and bias, we hereafter adopt the convention of referring to
these collectively as bias.

6.3 Experimental Methodology

The hypothesis of the main part of this chapter is that values of the bias and variance
components estimated after n training samples can be used to provide accurate
predictions for their values after n+ n′ samples, and hence for the final error rate
observed. To do this prediction, we use statistical models built from a range of
data set-algorithm combinations. The following sections describe our choice of
experimental methodology, algorithms, and data sets.

6.3.1 Procedure for Building the Models

Our experimental procedure is as follows:

• For each data set x and classifier i, we estimated the values of error (eixn), bias
(bixn) and variance (vixn) components using the first n ∈ {100,200, . . . ,1,000}
samples.

• For each data set, we then estimated the values of error, bias, and variance using
all of the samples in the data set. Note that this results in different values of n′ for
different data sets. Note also that we do not use a separate “test set.” We consider
that since one is always making estimates of the error on unseen data it is more
consistent to relate estimates of the error at different points in training using the
same estimation methodology.

• After all of the collected data was pooled, we applied linear regression to create
models of the form Q(n+n′) = aQn ·Qn +bQn, where Q is one of bias, variance, or
total error. In these models Qn is the independent variable, Q(n+n′) the dependent
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Fig. 6.1 Methodology for creating predictive models. This is repeated for n ∈ {100,200, . . . ,
1,000}

variable and the constants aQn and bQn are estimated by the linear regression
procedure for each variable Q ∈ {total error, bias, variance} and for each value
of n. We compute the coefficient of determination R2 to measure how well the
simple linear model explains the variability of the independent variable, and
hence the quality of the predictions—the closer R2 is to 1, the better is the
prediction.

• Note that when used with a new classifier i or data set x, this gives us two ways
of predicting the final error eix(n+n′) based on the first n samples: either directly
from the observed error or by summing the predictions for bias and variance.

– In the first case there is one independent variable, so eix(n+n′) = aEn ·eixn+bEn,
where aEn and bEn are taken from our models.

– In the second case, the two decomposed components (bias bixn and variance
vixn) are treated as independent variables, i.e. eix(n+n′) = aBn ·bixn +aVn ·vixn +
b, where b (= bBn + bVn), aBn, and aVn are given by our models.

Figure 6.1 shows this process for a single value of n.
We would like to re-iterate for the sake of clarity that we are not building

models which relate error, bias, and variance as a function of the number of training
samples n. In that case, it would certainly be true that by the two models (bias as
a function of n) and (variance as a function of n) could be combined into a single
linear model (error as a function of n). As the wealth of theoretical work described
above shows, there is ample evidence to suggest that no simple predictive linear
model exists. Instead we are building and combining linear models of the form
future bias/variance/error as a function of current bias/variance/error and seeing
how the predictive power of these models changes as a result of the value of n.

These linear models are of course an extremely simple way of modeling the
relationship between our various predictors; more sophisticated techniques exist
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in the fields of statistics and also Machine Learning, and will be examined in a
later section. However, as the results will show, linear models are sufficient for
our purposes.

6.3.2 Choice of Classifiers

In order to obtain the data for modeling ten different classification algorithms were
selected, each with different bias and variance characteristics. These were: Naive
Bayes [13], C4.5 [30], Nearest Neighbor [11], Bagging [4], AdaBoost [15], Random
Forest [6], Decision Table [20], Bayes Network [13], Support Vector Machine [28],
and Ripple-Down Rule learner [39]. Note that this set includes two methods for
creating ensembles: AdaBoost (using Decision Stumps as the base classifier) and
Bagging (using a decision tree with reduced error pruning). In these cases, since
we are solely interested in the outputs, we treat the ensemble as a single entity,
rather than attempt a bias–variance–noise–covariance decomposition [9]. For all
these classifiers, the implementation in the WEKA library [39] is used, and the
default parameters in WEKA are used for each classifier. We also used WEKA’s
Java implementation of Kohavi and Wolpert’s definition of Bias and Variance
(weka.classifiers.BVDecompose).

6.3.3 Data Sets

The data collection required to build the statistical models is carried out on data sets
derived from four Artificial and five real-world visual surface inspection problems
from the European DynaVis project1 [14, 25]. Each artificial problem consists of
13,000 contrast images created by a tuneable randomized image generator. Class
labels (good/bad) were assigned to the images by using different sets of rules of
increasing complexity acting on the generator. The real-world data sets came from
CD-imprint and egg inspection problems. There are 1,534 CD images, each labeled
by four different operators, and 4,238 labeled images from the egg inspection
problem. The same set of image processing routines are applied to segment and
measure regions of interest (ROI) in each image. From each set of images are
derived two data sets. The first has 17 features describing global characteristics
of the image and the ROI it contains. In the second, these are augmented by the
maximum value (over all the ROI) for each of 57 ROI descriptors. Adding the labels
available provides a total of 18 different data sets with a range of dimensionality and
cardinality.

1www.dynavis.org

www.dynavis.org
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To build the models, we used 14 of the data sets: the six derived from the first
three artificial image sets, the six from the CD images labeled by the first three
operators and the two from the egg data. The remaining four data sets, derived from
the fourth artificial image set, and the CD labeled by Operator 4 are reserved for
evaluation purposes. In each case we took n′ = total set size− 1,000, so n′ differs
between data sets.

6.3.4 Prediction Methodology and Sampling Considerations

To create the model data, we repeatedly draw training and test sets from the n
samples from which we can estimate the total error, together with its bias and
variance components. This raises the issue of how we should do this repeated
process.

If the variables in X are continuous, or unbounded integers, then the underlying
distribution over which the classifier may have to generalize is of course infinite. For
bounded integer or categorical variables, the number of potential training sets of size
n drawn iid from an underlying distribution of X is of size |D|= |X |!/n!(|X |− n)!,
so in practice even for nontrivial data sets it is not possible to evaluate all possible
training sets d of size n. However the success (or otherwise) of the approach
proposed in this chapter depends on the accuracy with which we can predict error
components, particularly for when the training set sizes are low. This immediately
raises the question of finding the most appropriate methodology for estimating the
values of those quantities. To give a simple example of why this is important, a
later result in this chapter partially relies on being able to distinguish between those
data items that are always going to be misclassified by a given classifier, and those
which will sometimes be misclassified, depending on the choice of training set.
Since the well known N-fold cross validation approach only classifies each data
item once, it does not permit this type of decomposition and cannot be used. In
a preliminary paper [33], we have examined two possible approaches: the “hold-
out” method proposed by Kohavi and Wolpert [21] and the “Sub-Samples Cross
Validation” (SSCV) method proposed by Webb and Conilione [38]. The latter have
argued that the hold-out approach proposed in [21] is fundamentally flawed, partly
because it results in small training sets, leading to instability in the estimates it
derives. This was confirmed by our results [33] which showed that the stability of
the estimates, and hence the accuracy of the resulting prediction was far higher for
the SubSampling method. Therefore, we restrict ourselves to this approach.

The SSCV procedure is designed to address weaknesses in to both the hold-
out and bootstrap procedures by providing a greater degree of variability between
training sets. In essence, this procedure repeats N-fold CV l times, thus ensuring that
each sample x from the training set of size n is classified l times by the classifier i.
The true bix and vix can be estimated as bixn and vixn from the resulting set of
classifications. The final bias and variance is estimated from the average of all x ∈ D
[37, 38], thus using all n′ samples.
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6.4 Explanatory Power of the Models

Figures 6.2 and 6.3 show scatter plots of the values for error, bias, and variance as
measured after n ∈ {100,1,000} samples and after all samples. Different markers
indicate different total numbers of samples. Note that in each case the same range is
used for x- and y-axes, so a 1:1 correspondence would from a diagonal from bottom-
left to top-right of the plot. In each case we show the results of a linear regression,
with 95% confidence intervals. Thus, the values for each classifier–data set pair as
estimated after a few, then all, samples constitutes a single point marked on the plot.
For each combination, the vertical distance between the actual point and the mean
regression line shows the difference between the value as measured from all samples
available, and the value predicted on the basis of just n samples .

From Fig. 6.2, we make the following observations:

• The models built from only 100 samples do not fit the data well: the plots are very
scattered and the coefficient of determination is low—in other words the linear
regression shown would only account for 31–32% of the observed variation in
values for the final variables (bias, error, variance).

• The models predict that although the error, bias, and variance will all fall from
the values observed after 100 samples: the total error by 65%, the variance by
70%, but the bias only by 50%.

• The models also predict a nonnegative residual component for each—4%, 1%
and 3%, respectively, which clearly is incorrect since it suggests that no classifier-
data set combination would have zero error.

• From the magnitude of the effects, we can see that the bias terms account for the
majority of the observed error.

• Comparing the estimates of variance after n = 100 with the final values, the
former are much higher. This makes it apparent that the small size of the data
sets is leading to considerable noise, which introduces error into the modeling
process.

• If we visualize a diagonal line through the plots for variance and total error, in
each case the regression line lies below this—so the models show the observed
values with n = 100 overestimate the final values.

• For the bias plot, the markers for all sized data sets would fall fairly evenly on
either side of the diagonal. Thus, the “noise” in the bias plot does not seem to be
particularly a function of the data set size.

• By contrast, for the error and variance the markers for n = n′ = 1,534, which
fall at the lower end of the scales, would fall around, or often above the 1:1 line,
whereas those for the larger data sets would predominantly fall below the line.

This last observation is worthy of further consideration. It shows that the linear
regression is a compromise. For the smaller data sets (n+n′ = 1,534) whatever form
the variance takes as a function of n, a Taylor expansion would give similar values to
those observed after (n = 100), whereas for the larger data sets the variance clearly
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Fig. 6.2 Scatter plots of the Error (top), Bias (middle) and Variance (bottom) estimated after 100
samples (x-axis) and the same descriptors estimated using all samples (y-axis), together with results
from linear regression (middle lines) and the 95% confidence intervals (upper and lower lines).
Absolute values on individual plots vary, but in each case the x- and y-axes scale over the same
range (so a 1:1 correspondence would form a diagonal of the plot)
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Fig. 6.3 Scatter plots of the Error (top), Bias (middle) and Variance (bottom) estimated after 1,000
(right) samples (x-axis) and the same descriptors estimated using all samples (y-axis), together with
results from linear regression (middle lines) and the 95% confidence intervals (upper and lower
lines). Absolute values on individual plots vary, but in each case the x- and y-axes scale over the
same range (so a 1:1 correspondence would form a diagonal of the plot)
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falls away. However, as the distribution of actual values for different data sets of the
same size n′ is wide, and overlaps those for different n′, it is not possible for a single
regression line to capture the differences.

Turning our attention to Fig. 6.3, we see a very different picture:

• The close fit of the models built from 1,000 samples to the observed data can be
confirmed both visual inspection (all points fall very close to the regression line),
and statistical analysis (coefficient of determination shows that for bias and total
error, the model accounts for 94% of the observed differences).

• The regression models predicts that the final error will drop to 98% from its
current value (direct error–error regression), and the variance component will
fall to 82% of its value after 1,000 samples. However, the models predict that the
bias component will rise to 104% of its current value. This is interesting since it
suggests a comparison with the PAC results in (6.6). This will merit further study.

• The models now (correctly) predict zero residual components of error (i.e., bBn =
bVn = bEn = 0).

• The variance accounts for a smaller proportion of the total error.
• There is no clear difference between the results for different values of n′.

This last observation is perhaps the least expected: if our arguments about the
Taylor expansion of variance for n = 100 hold true, they should do even more so
for n = 1,000 so we might see the difference in the distribution of variance markers
for different sized data sets to be even more extreme. The fact that it is not can be
explained by the hypothesis that the variance follows some inverse power–law in
n—as suggested by (6.3). Intuitively, if elements of this variability are caused by
the presence or absence in the training set of samples from particular regions of the
data space, then both the probability of such elements not being present, and the
averaged effect of their influence, fall nonlinearly as n increases.

However, the major point to be emphasized here is that even using a very simple
model that is a linear regression from observed quantities, and does not take into
account how far into the future (n′) one is trying to predict, the models capture the
characteristics of the observed data very closely. The results in Fig. 6.3 thus form
strong evidence to confirm our original hypothesis—that the behaviors of the bias
and variance, although different are predictable.

To show how the predictive quality of the models changes as they are built from
increasing numbers of samples, Fig. 6.4 shows the coefficients of determination
computed during the regression process as a function of n. To recapitulate, for
each value of n, the bias, variance, and total error are estimated using SSCV, and
regression models are built relating these to the final observed values. It is clear that
the use of separate models for bias and variance provides better estimates of the
predicted error. The plot also shows how rapidly the estimates (and correspondingly
the predictive quality of the regression) stabilize in these two cases. What is apparent
is that the method will hold well after only a few hundred data samples have been
presented. Although the variance does not correlate highly (over 0.9) until closer



6 Making Early Predictions of the Accuracy of Machine Learning Classifiers 141

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

100 200 300 400 500 600 700 800 900 1000
Number of Samples

R
^2

Correlation between Actual Error and Predicted Error without Bias/Variance Decompostion
Correlation between Actual Error and Predicted Error using Bias/Variance Decompostion
Correlation between Actual bias and Predicted bias
Correlation between Actual variance and Predicted variance
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function of the number of samples used to build the statistical models

to 1,000 samples have been presented, the total error estimated via decomposition
is well correlated because of the relatively greater size, and stability of the bias
component.

6.5 Extension to Ensemble Classifiers

The concept of decomposing error into different terms has also been used to help
explain the behavior of ensembles of algorithms. When the algorithms concerned
are performing regression tasks, decomposing the error of an ensemble into terms
representing the mean bias and variance of the individual algorithms, and the
covariance between them is fairly straightforward. A good recent survey of both the
bias–variance–covariance and ambiguity decompositions may be found in the first
few pages of [9]. However, just as defining bias and variance for 0/1 loss functions
was nontrivial, and there were several versions before Kohavi and Wolpert [21]
created their formulation in which variance is always nonnegative, the extension to
handle covariance in a natural way is also problematic. To the best of our knowledge
there has not been a successful model decomposing 0/1 loss functions for ensembles
of classifiers, so it is not immediately possible to simply extend the approach we
took for single classifiers. However, in this section we present some initial findings
from an approach in which we treat the entire ensemble as a single classifier.
Revisiting the definitions of bias in Sect. 6.2.3, we next develop predictors for upper
limits on its attainable accuracy based on simple observations of the behavior of the
individual classifiers in the ensemble.
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6.5.1 Estimating Lower Bounds on the Bias
for Finite Data Sets

The analysis in Sect. 6.2.3 used a very general model predicated on the fact that the
data items x could be drawn from a large, potentially infinite universe of samples,
corresponding to unlimited future use of the classifiers. Here we are concerned with
the more limited case where our future estimates are still drawn from a finite set of
size n+ n′. In particular, we consider whether we can predict the values of those
estimates, before completing the training process. In order to achieve this, we can
reformulate the models above slightly as follows.

To start with, let us assume that we have a finite set X of sample data points. For
consistency with above note that |X |= n+n′. Because we are treating the ensemble
as a single high-level entity, we need not worry about the effects of Boosting or
Bagging approaches to creating ensembles by repeatedly sampling from training
sets. Therefore, we assume that at our higher level training sets of size n are created
by sampling from X uniformly without replacement. Let D denote the set of training
sets created in this way, and d be any member of D, then we note that under these

conditions P(d|X ,n) = 1
|D| =

(n)!(n′)!
(n+n′)! .

Now let A+,A−,B partition X such that A+∪A− ∪B = X , and A+∩A− = A+∩
B = A−∩B = /0, where:

• A+ is the (possibly empty) subset of data items where for all training sets a
classifier trained on that set correctly predicts the class of item x.

∀x ∈ A+,d,d′ ∈ D,y ∈ Y YH(y|x,d) = YH(y|x,d′) = YF(y|x).

• A− is the (possibly empty) subset of data items where for all training sets a
classifier trained from that set incorrectly predicts the class of item x.

∀x ∈ A−,d,d′ ∈ D,y ∈ Y YH(y|x,d) = YH(y|x,d′) �= YF(y|x).

• B is the (possibly empty) set of data items where YH(y|x,d), the hypothesis
describing the predicted class of item x depends on the choice of training sets d.

∀x ∈ B ∃d,d′ ∈ D•YH(y|x,d) �= YH(y|x,d′).

So now lets look at what this means in terms of our estimates of the bias of
the classifier. This will of course depend on the methods used for the estimates.
Following well-established previous research, we will assume that each item in
the data set is predicted exactly k times. This is true with k = 1 for N-fold cross
validation, and for k > 1 for the Webb and Conilione approach, in general although
interestingly not for the Kohavi approach [21]. This means that when we sum over
the data items x in the counterpart of (6.7) each term occurs with equal probability.

Note that biasx as stated above is composed of terms which themselves depend
on the choice of training sets, and that we are assuming a fixed set of data points
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and a fixed size training sets. We therefore refine the definition of bias to take these
into account, and average over all possible training sets.

bias2 =
1
2 ∑

x∈X
P(x) ∑

d∈D

P(d|X ,n) ∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2. (6.8)

If we assume we are sampling iid then P(x) = 1/|X | and P(d|X ,n) = 1/|D|. We
now turn our attention to the case where each data item x ∈ X is unambiguously
associated with one of two possible class labels y ∈Y , and we will further constrain
our ensemble to output crisp decisions so that P(HCd(x) = y) ∈ {0,1}. Partitioning
the data set X as above, we note that we make use of the following conditions when
performing the summation. First, the set A+ does not contribute to the bias since
the predicted class for this subset of items is always correct. Second, ∀x ∈ X ,C,d ∈
D,∃y1,y2 ∈Y,y1 �= y2 : F(x)= y1∧HCD(x) = y2. This means that within the partition
A− for each combination of x and d, there are exactly two values of y which both
contribute +1 to the summation. This yields:

bias2 =
1
2 ∑

x∈A−
P(x) ∑

d∈D

p(d|X ,n) ·2

+
1
2 ∑

x∈B
P(x) ∑

d∈D

P(d|X ,n) ∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2, (6.9)

=
|A−|
|X | +

1
2
|B|
|X | ·

n!(|X |− n)!
|X |! ∑

x,d
∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2.

(6.10)

The last term will take a value between 0 and |B|/|X | since for each value of y the
difference will be 0 for some training sets and 1 for others which the gives bounds:

|A−|/|X |< bias2 < (|A−|+ |B|)/|X |. (6.11)

This reformulation makes it explicit that considering the proportion of samples
which the ensemble always misclassifies will yield a strict underestimate of the bias
provided that there exist any items for which the prediction made is dependent on
the training set. Furthermore, since according to (6.7) the variance term is always
nonnegative, we can say that the quantity |A−|/|X | constitutes a strict lower bound
on the error rate of a classifier—or an ensemble treated as a single entity.

6.5.2 Experimental Approach

Previous sections illustrated the successful use of regression models built from
a variety of data set–classifier combinations to predict the error rates that could
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be attained after future training. However, decomposing the error into different
components is not straightforward for ensembles of classifiers [9]. Moreover, this
would require running N-fold cross validation a number of times to get accurate
estimates of bias and variance components for each combination of data set,
algorithm, and n. This becomes computationally expensive when extended to a
heterogeneous ensemble, particularly if the ensemble is itself trainable.

For this section, we use a slightly different approach. Previously we pooled the
results from many experiments to build regression models relating observations of
bias and variance after different values of n training data to the same variables of
n+n′ items. Here we treat each data set independently, and build regression models
to characterize the ensemble’s learning curve as a function of n. As noted above,
there is theoretical [36] as well as empirical [10,13,26] evidence that these learning
curves have a power–law dependency on the number of training samples, i.e., they
are of the form

errorensemble = a ·nb + c, (6.12)

where a is the learning rate, b the decay rate, and c the Bayes error (the minimum
achievable error or, in the error-decomposition framework, the “noise”).

In our experiments, the bound on the ensemble’s error derived in Sect. 6.5.1,
|A−|/|X |, was used as an estimate of the minimum achievable error. When faced
with a new data set–ensemble combination, we make observations of |A−| and
the ensemble error at regular intervals, and then feed these into the power–law
regression model in order to fine-tune the parameters of the model so that it fits
the new data and predicts the future development of the ensemble error, as will be
detailed in Sect. 6.5.4. Before elaborating on these results, in Sect. 6.5.3 we analyze
the stability of the estimation of the lower bound on the error by using |A−|/|X |.

6.5.3 Analysis of the Stability of Estimators of Lower Bounds
on Error

For the experiments performed here, 22 Machine Vision data sets from the DynaVis
project were used (2 different feature spaces—17 and 74 features—for each of
5 CD-Print, 5 Artificial, and the Egg image sets). The CART [7] and C4.5
[30] decision trees, the Naive Bayes [13], Nearest Neighbor [11], and eVQ [24]
classifiers were used as base classifiers, the decisions of which were combined using
the Discounted Dempster–Shafer ensemble training method [32]. For each data set,
each classifier, and each value of n ∈ {100,120, . . .,1,000} samples, N-fold cross-
validation was repeated l times to make l predictions of the class of each item in
the training set. From this data, we calculated the values of |A−|/|X | as a function
of n for each data set (i.e., 22 values for each value of n). For clarity, we denote the
values |A−|/|X | hereafter as Orn.

In order to examine the stability of the predicted bounds as n increased, we
plotted Orn against Orfinal and used linear regression as before to fit a model of
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the form Orfinal = a1 ·Orn + a0, and to estimate the quality of the model via R2.
Figure 6.5 shows the progression of the coefficients a0 and a1 and the corresponding
values of R2 as a function of n.

As can be seen in Fig. 6.5, the models generated as n increases do produce
predictions which correlate well to the observed values after further training.
However, as can be seen by the progression of the coefficients, the nature of the
regression models changes. For low values of n the models predict a high constant
value for Orfinal with a low component related to the observed value of Orn—
essentially the system has not seen enough “difficult” samples. Since the major
component of the predicted value of Orfinal is fixed for n = 100, the correlation
is fairly low. As n increases and a more representative sample of the data is seen,
the situation changes. Thus for training set sizes n ≥ 700, the predicted value is
dominated by the observed value (a1 ≈ 0.85) with only a low constant component
(a0 ≈ 0.15). For these training set sizes, R2 increases to approximately 0.9.

6.5.4 Empirical Results for Predicting Lower
Bounds and Total Errors

The values Orn for different n can be used for predicting not just a lower bound on,
but also an estimate of the error of a trained ensemble. The following procedure can
be used:

1. Orn is measured for different n and a constant regression is performed for these
values, i.e., we obtain the constant OR which minimizes the Mean Square Error
with the values of Orn across different values of n. This value forms our estimate
of the lower bound on the achievable error.
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2. The errors the ensemble makes are also recorded for different n.
3. A power–law regression is performed for the ensemble errors, asymptotically

approaching the estimated constant OR as calculated in step 1:

errorensemble = a ·nb +OR, (6.13)

where a and b are the regression parameters which are optimized in the regression
procedure.

4. An analogous procedure is used to model the standard deviation of the observed
values.

5. From the power–law regression model, we can estimate the error of the ensemble
after n+ n′ samples are presented and also some estimates of how the variation
changes.

The results of this procedure are illustrated in Fig. 6.6. The five base classifiers
listed above are combined using the Discounted Dempster–Shafer combination
ensemble [32]. Orn was measured for n= {100,120, . . . ,1,000} samples. A constant
regression was performed to model Orn with a constant value and the obtained value
is then used as an asymptote when modeling the ensemble errors. The errors the
ensemble makes are again recorded for n = {100,120, . . . ,1,000} samples and a
(robust) regression model is built according to (6.12). The results of this procedure
are illustrated in Fig. 6.6a for CD-Operator 4 and in Fig. 6.6b for Artificial 04.
The values Orn and the errors of the ensemble are shown for different n, as well as
the regression models that are built for them, together with the estimated standard
errors. Also the final error after evaluating the performance of the ensemble when
it is trained on the entire data set is indicated, to show how accurately the errors
are predicted for the ensemble when it would be trained using a larger number of
training samples (n+ n′).

First, in both cases the results show that the model of OR does as expected form
a lower bound on the error. As can be seen from Fig. 6.6b, the use of the secondary
robust regression method to predict the mean and standard deviation of the observed
ensemble error (top set of curves) for the artificial data set, extrapolates well and the
final observed error (large asterisk at n+ n′ ≈ 20,000) falls inside these values. For
the much smaller CD print data set the figure is less clear, and the estimated standard
errors on the predicted asymptote Orn (bottom set of curves) overlap those of the
robust regression prediction. Nevertheless, again the observed final ensemble error
lies within one standard deviation of the value predicted by the robust regression
procedure.

6.6 Application to Nonstationary Environments

In this chapter, we have outlined two ways in which a decomposition of the
observed error into bias and variance terms can lead to useful predictions of future
behavior. In the last section, we also introduced a means of rapidly estimating a
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lower bound on the bias when an ensemble of classifiers is used. Whereas the
discussion has been partly couched in terms of making early predictions of accuracy
in static environments, we now turn our attention to dynamic environments. We
will characterize such environments by observing that the target function is now a
function of time, i.e., F : X ,T → Y and ∃x ∈ X , t1, t2, t1 < t2 •F(x, t1) �= F(x, t2).

In this case the approaches outlined above can also act as a valuable “early
warning system”, because since for example F(x, t2) is not available to be sample at
t1 and vice versa, dynamic environments explicitly violate one of the assumptions
of the analysis, namely that the training data sets are drawn iid from the underlying
sample space. Thus the use of on-the-fly estimates of the current values of error,
bias and variance can be used to detect changes in dynamic environments—for
example:

• Both the “learning curve approaches” and the linear regressions models predict
that the variance component will decrease with the number of samples. Any
observed increase can be taken as a sign of a dynamic environment.

• Although the relative size of the bias and variance components will vary between
data set–classifier combinations, our models predict that as the size of the
training set increases then the ratio of bias to variance term should increase. Any
departure from this should be treated as a warning sign.

• If the bias and variance components of error are periodically re-estimated from
the last few samples, then the ratio of bias to variance term should remain
constant. Any departure from this should be treated as a warning sign.

These indicators can be used as “early warning” signs in a number of ways.
They could be used to trigger the classification algorithm—for example, to rebuild
a decision tree. Alternatively they could be used to recognize that the underlying
algorithm itself need changing to one which can explicitly account for dynamic
situations, such as those outlined in other chapters of this book.

6.7 Conclusion

In this chapter, we have investigated techniques for making early predictions of the
error rate achievable after further interactions. We have provided several example
scenarios where the ability to do this would be of great value in practical data mining
applications. Our approach is based on our observations that although the different
components of the error progress in different ways as the number of training samples
is increased, the behavior displayed by each component appeared to be qualitatively
similar across different combinations of data set and classification algorithm. To
investigate this finding, we have created a large set of results for many different
combinations of data set, algorithm, and training set size (n) and applied statistical
techniques to examine the relationship between the values observed after partial
training (with n samples) and those after full training.
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Perhaps surprisingly, the experimental results showed that in fact a simple
linear model provided a highly accurately predictor for the subsequent behavior
of different components. The results confirmed our hypothesis that these could be
combined to produce highly accurate predictions of the total observed error. As there
is no bias–variance(–covariance) decomposition available for 0/1 loss functions for
ensembles of classifiers, it is not straightforward to apply the methodology used to
accurately predict the performance of classifiers after further training to ensembles
of classifiers. We have shown how a reformulation of the bias component can
provide an estimate of the lower bound on the achievable error which may be
more easily computed. This is especially important when the cost of training is
high—for example, with trainable ensembles of classifiers. This bound is used as an
asymptote in a power–law regression model to accurately predict the progression of
the ensemble’s error, independently for each data set.

For future work, we will focus in two directions. First, we will combine previous
theoretical findings and the successful results from the two different approaches
here. Taken together they suggest that for even more accurate predictions, it is
worth combining the linear model for bias with an inverse power law model for
variance using both the current estimates and the period over which to predict (n′)
as factors. This can be expected to prove particularly useful for classifiers where
variance forms a major part of the observed error. Second, the work presented in
this chapter used Kohavi and Wolpert’s definition of bias and variance, and we will
investigate whether using other definitions of bias and variance further improve the
predicted accuracy.
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