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Semisupervised Dynamic Fuzzy K-Nearest
Neighbors

Laurent Hartert and Moamar Sayed-Mouchaweh

Abstract This chapter presents a semi-supervised dynamic classification method
to deal with the problem of diagnosis of industrial evolving systems. Indeed, when
a functioning mode evolves, the system characteristics change and the observations,
i.e. the patterns representing observations in the feature space, obtained on the
system change too. Thus, each class membership function must be adapted to
take into account these temporal changes and to keep representative patterns only.
This requires an adaptive method with a mechanism for adjusting its parameters
over time. The developed approach is named Semi-Supervised Dynamic Fuzzy
K-Nearest Neighbors (SS-DFKNN) and comprises three phases: a detection phase
to detect and confirm classes evolutions, an adaptation phase realized incrementally
to update the evolved classes parameters and to create new classes if necessary and a
validation phase to keep useful classes only. To illustrate this approach, the diagnosis
of a welding system is realized to detect the weldings quality (good or bad), based
on acoustic noises issued of weldings operations.

5.1 Introduction

Evolving systems are functioning in a dynamic environment. With the occurrence of
new events, evolving systems change, and their corresponding classes and patterns
characteristics evolved in the feature space. Indeed, the functioning mode of an
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evolving system can evolve from normal to faulty in response to the occurrence
of a fault, such as a leak, to the wear of a tool or to a bad setting. To realize the
diagnosis of these systems, Pattern Recognition (PR) methods need to adjust their
parameters by doing automatic corrections or by warning an operator that will adjust
himself the classifier parameters. When a self-adaptation of the classifier parameters
is wanted, the method has to monitor the evolution of a system over time. In this
case, dynamic learning is necessary to update the feature space characteristics. Then,
the PR method has to use the informative patterns only to adjust the class structure.
In the literature, several PR methods [9, 10, 17] are used to monitor the functioning
modes evolutions of dynamic systems, to realize the fault diagnosis of complex
systems or to accomplish the fault prognosis. Indeed, these methods are particularly
adapted when the prior knowledge about the system behavior is not sufficient to
construct an analytical model of the process.

5.1.1 Pattern Recognition

PR methods use exclusively a set of measurements, i.e., quantitative observations,
about process operating modes to build a mapping from the observation space
into a decision space, called the feature space. In PR, historical patterns or
observations about system functioning modes are divided into groups of similar
patterns, called classes. Each class is associated to a functioning mode (normal
or faulty). Classes and patterns are represented by a set of d attributes, so they
can be viewed as d-dimensional vectors, or points, in the feature space. The PR
principle consists in classifying the new patterns by using a classifier. According to
the a priori information available on the system, three types of PR methods can be
used: supervised PR methods, unsupervised PR methods and semi-supervised PR
methods. When labeled patterns, i.e., patterns with their class assignment, can be
obtained the PR is supervised [28]. These methods use the known labeled patterns,
i.e., the learning set, to build a classifier that best separates the different known
classes in order to minimize the misclassification error. The model of each class
can be represented by a membership function which determines the membership
value of a pattern to a class. On the contrary when no information is available on
the classes of a system, PR is unsupervised [6, 11, 12, 29]. The unsupervised PR
methods, or clustering methods, are based on similarity functions, so that when
patterns with the same characteristics occur they are classified in the same class,
and when patterns with different characteristics occur a new class is created to
classify them. Once the classifier has learned the classes membership functions,
new incoming patterns are assigned to the class for which they have the maximum
membership value. The third type of PR methods, the semisupervised one [8, 13]
uses the supervised information, the known labeled patterns and classes, to estimate
the classes characteristics and the unsupervised learning is used to detect new
classes and to learn their membership functions.
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5.1.2 Evolving Systems

In the case of evolving systems [2, 3, 18, 22, 23], classes are dynamic and their
characteristics change in the course of time. Classes can evolve slowly or abruptly
to a new position in the feature space, according to the system parameters which
evolve over time. Thus, each class membership function must be adapted to take
into account these temporal changes. This requires an adaptive classifier with a
mechanism for adjusting its parameters over time. Hence, some of the new incoming
patterns reinforce and confirm the information contained in the previous ones, but
the other ones can bring new information (creation, drift, fusion, splitting of classes,
etc.). This new information can concern a change in operating conditions, the
development of a fault or simply more significant changes in the system’s dynamic.
Angstenberger [4] and Nakhaeizadeh et al. [25] act on the classifier parameters,
by substituting or adding some recent and representatives patterns to the learning
set according to the state (stable, warning, action) in which the system is. This
adaptation is based only on the most recent batch of patterns selected by a time
window [25] or by an estimation of the patterns usefulness [15]. Other approaches
providing a global model rather than a local model on demand are based on the
use of evolving neural networks [1, 4, 7]. In [2], a potential function based on the
distance between data points is defined for the new points. According to the potential
obtained for new data points, the point can reinforce or confirm the information
contained in the previous ones, or a new rule can be added. In [1], the neural
network is based on a multi-prototype Gaussian modeling of nonconvex classes.
The activation function of each hidden neuron determines the membership degree
of an observation to a prototype of a class. According to the membership degree of
new acquisitions, the prototype, i.e., the hidden neuron can be adapted, deleted or
a new prototype can be created. Data analysis can be realized on data coming from
evolving systems in order to obtain the most informative parameters of a system
that will be necessary to discriminate classes using a PR method. In this chapter,
we use the statistical characteristics to supply spatial information like the number of
peaks present in a signal, the standard deviation value, the root mean square value,
the maximum value, the kurtosis value, etc. Some information can be computed
on different parts of each signal or on entire signals. The set of characteristics,
i.e. parameters, found by these methods represents the attributes which permit to
characterize each signal obtained on a system. Using these informative parameters,
signals are transformed into patterns in the feature space. If the parameters are
well determined, classes are well discriminated and they are represented in different
regions of the feature space.
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5.1.3 Dynamic Learning and Classification

In this chapter, a semi-supervised dynamic method based on Fuzzy K-Nearest
Neighbors (FKNN) [19] is developed. It was interesting to develop this method
for the case of evolving systems since FKNN is a simple but efficient well known
classification method. However, FKNN becomes inefficient when the size of the
learning set is too important or when k is not well chosen. k is generally determined
by experimentation, but it is still a parameter difficult to determine. A criterion
often used is [9], where N is the number of patterns in the learning set. Several
other versions of KNN exist in the literature (KNN with prototype, Adaptive KNN
[26], etc.). In [21], a version of KNN pre-assigns a class to several subregions
of the feature space in order to classify more rapidly the new patterns. In [30],
a hierarchical research algorithm is developed to find the k-nearest neighbors
using a nonmetric measure in a binary feature space. This measure is a similarity
measure computed between the binary values representing the patterns. In [14, 20],
respectively high dimensional and k-dimensional trees are used to find the most
interesting parts of the feature space where to find the k-nearest neighbors. Only
some branches of the trees have to be browsed to find the k neighbors, but the
trees branches can be fast unbalanced. Another version of FKNN, called Instance-
Based Learning on Data Streams (IBL-DS) [5], detects changes in the data streams
by using a prediction error and the standard deviation of the 100 first patterns.
If a change is detected, the 20 latest classified patterns are used to estimate the
evolution realized. Based on the used indicators, a percentage of patterns initially
defined is deleted from the reference base according to their spatial location and
to their temporal behavior. Song et al. [27] uses two informative measures to find
patterns susceptible to be the k most informative neighbors. These measures are
based on probability measures calculated locally and globally. Another version
of KNN [24] uses kernel-based dimensionality reduction methods to improve the
classification results. These methods are used to solve some challenging problems
like the application of [4] which concerns the credit scoring. The authors aims to
decide whether a new customer is a good or a bad risk according to changes in
his consumption. Guedalia et al. [16] deals with the problem of classification of
the quality of fruits according to the damage resulting from bad weather or other
external events. In [1], the authors aim to detect and to follow up the progressive
evolution of the functioning modes of a thermal regulator due to the age of its
components or to other temporal factors in its environment. Cohen et al. [7] treats
dynamic traffic data streams in order to reduce the waiting time of drivers at the road
intersections.

In this chapter, we have chosen to develop the FKNN approach since it is
well known and often used in machine learning (ML) applications. The developed
Semisupervised Dynamic Fuzzy K-Nearest Neighbors method is semi-supervised
in order to consider the known information of a system, even when only a few
observations are available, and in order to detect unknown classes and to estimate
their characteristics. Semisupervised methods are particularly well adapted to
evolving systems for which all classes can not be known in advance. The developed
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method is presented to realize the monitoring of evolving systems. The method
is applied on a real industrial system in order to detect the weldings quality and
to monitor their progressive evolutions. The chapter is organized as follows. In
Sect. 5.2, the functioning of the proposed approach is detailed and illustrated. Then,
in Sect. 5.3, the approach is applied and evaluated using the application. Finally,
conclusions and perspectives end this chapter.

5.2 Semisupervised Dynamic Fuzzy K-Nearest Neighbors
(SS-DFKNN)

The selection of a PR method has to be realized according to the system on which the
method is applied. Indeed, according to the application several parameters change
as the number of patterns available for the learning set, the number of classes, the
system dynamic, the number of dimensions, i.e., attributes, of the feature space, etc.
In this section, we develop the PR method Fuzzy K-Nearest Neighbors (FKNN) in
order to detect classes evolutions and to adapt these latter according to the dynamic
of their evolutions. The proposed version is semisupervised, in order to:

• take into account an initial learning set X representative of the known information
of a system.

• improve the classes characteristics estimation by using the new patterns
• detect new classes or subclasses according to the evolutions of the system

characteristics

In this chapter, the SemiSupervised Dynamic Fuzzy KNN (SS-DFKNN) developed
method permits to consider patterns evolutions even in the area of the feature space
where no pattern was learned. The objectives of this approach are to follow classes
evolutions by taking into account the patterns usefulness, and well estimate the
new functioning modes of a system according to the estimated adapted classes
characteristics. SS-DFKNN is composed of several phases which are presented in
the following parts, and the method is illustrated with an example.

5.2.1 Learning and Classification Phases

In the learning phase of SS-DFKNN, all labeled patterns and classes are learned.
The learning set X must contain a minimum of two patterns in order to calculate
the initial center of gravity and standard deviation of each class, which are used in
the indicators of evolution computed by SS-DFKNN. These values are calculated as
follows:

• the current center of gravity CGAcurr of each class C according to each attribute A.
• the initial standard deviation σAinit of each class C according to each attribute A.
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These values permit to consider the dispersion of a class and its drift in the feature
space. The center of gravity and the standard deviation values can be calculated
for all types of classes. However, in the case of complex classes, we consider that
these latter can be estimated using Gaussian subclasses. In the classification phase
of SS-DFKNN, each new pattern is classified sequentially according to the class of
its k-nearest neighbors. So, as for FKNN, the parameter k has to be defined initially.
Once a new pattern is classified in one of the known classes, the detection of classes
evolutions can be realized based on two indicators.

5.2.2 Detection of a Class Evolution

The classification of a new pattern x in one of the known classes determines the
class, which can be evolving. Indeed, after the classification of x in the class C, only
the class C has to be updated. In this phase of SS-DFKNN, the detection phase,
the new characteristics of the class C are calculated to detect a class evolution. The
current value of the standard deviation σAcurr and of the current center of gravity
CGAcurr of C are incrementally updated by:

σAcurr =

√
NC − 1

NC
×σ2

Acurr−1
+

(
x−CGAcurr−1

)2

NC + 1
, (5.1)

CGAcurr =
CGAcurr−1 ×NC

NC + 1
+

x
NC + 1

, (5.2)

where NC is the number of patterns in C before the classification of x. σAcurr−1

and CGAcurr−1 are respectively the variance and the center of gravity of the class,
according to the attribute A, before the classification of x. Based on the computed
values of CGAcurr , σAcurr , and σAinit two drift indicators are used to monitor the
temporal changes of a system.

• the first indicator i1A represents the change of compactness of the class for each
attribute A of the feature space:

i1A =
σAcurr × 100

σAinit

− 100. (5.3)

i1A is given in percentage. If at least one attribute A has a value of i1A greater than
a threshold th1 then the class C has begun to change its characteristics according
to this attribute. th1 can be fixed to a small value when it is interesting to follow
small evolutions of the class. For example, fixed to 5, it represents an evolution of
5% of the class characteristics. On the contrary when only important evolutions
have to be detected, a greater value of th1 can be necessary.
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• the second indicator i2A represents the distance between xA and CGAcurr according
to the current standard deviation σAcurr for each attribute A of the feature space:

i2A =
|(xA −CGAcurr) |× 100

σAcurr

− 100. (5.4)

i2A is given in percentage. If at least one attribute A has a value of i2A greater than
th1, then the point is not situated in the same area of the feature space than the
other patterns of the class C.

However, one single pattern can involve changes for the center of gravity and
for the standard deviation of a class. In some cases, this pattern can be a noise
instead of a class evolution so a minimum number of successive evolved patterns
NbMin has to be detected in order to confirm the evolution. If NbMin is fixed to
a high number, then the delay detection of the class evolution can be important.
This number has to be defined according to a ratio between the noise present in
the patterns and the delay detection of a class evolution. The class evolution is
confirmed when NbMin successive values of the two indicators i1A and i2A are
greater than th1. The adaptation phase which permits to adapt classes based on their
evolution, is explained in the next section.

5.2.3 Adaptation of an Evolving Class after Validation
of its Evolution

SS-DFKNN integrates a mechanism to adjust the evolved class parameters in the
adaptation phase, when serious changes in a class’ characteristics are detected
during the detection phase. When a class evolution is confirmed, a new class or
subclass is created based on useful patterns only. This adaptation is realized in
several parts:

• a new class or subclass C′ is created and the most representative patterns of the
evolution are selected. Since the last classified pattern x of the class represents
one of the evolved patterns of the class, x is selected. x also represents the most
recent change in the class evolution. The other informative selected patterns are
the k− 1 nearest neighbors of x. No distance has to be calculated to find these
patterns since they were already determined during the classification of x. Indeed,
to classify x, the classifier has computed several distances between the known
patterns to find its nearest neighbors. These k selected patterns represent the only
new patterns of a new class C′. Indeed, only k patterns are selected to represent an
evolved class since the parameter k corresponds to the number of patterns judged
as sufficiently representative to classify a new pattern.

• the k selected patterns are deleted from the class C.
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• the new center of gravity CGAcurr of the class C is calculated and the current
standard deviation StdAcurr of the class is computed.

• CGAcurr and σAinit are computed for the class C′. These values are computed
rapidly since the number of patterns in the evolved class is equal to k.

• the number of classes is updated.

This adaptation permits to online follow the evolution of classes with a constant and
low adaptation time. Then, new patterns are classified in their corresponding class.
Using this approach, all patterns and classes are kept in the feature space and an
evolving class C generates at least one new class or subclass C′. If C is considered as
useless, i.e., not anymore representative of a class, it can be interesting to delete this
class C in order to avoid the problem of growing size of the data set. This approach
permits to update and reinforce the known classes using new patterns. This is for
classes for which no evolution has occurred but they are still informative and useful
classes. The approach also permits to create new classes when an evolution of the
system characteristics occurs. The solution presented in this chapter to deal with
useless classes is presented in the next section.

5.2.4 Validation of the Existing Classes

The noise is taken into account by SS-DFKNN since a sufficient number NbMin of
evolving patterns is needed to consider a class evolution. However, in some cases,
the noise or other events can lead to delete useless classes:

• when a short time living class is created based on few patterns, it represents only a
transitory functioning mode. This temporary functioning mode can appear during
the evolution of a system characteristics, changing this latter from a normal
functioning mode to an abnormal functioning mode. Transitory classes are not
representatives of any system functioning mode, so they can be deleted.

• when a class considered as noisy is created.
• when a class containing very few information is kept.

SS-DFKNN deletes classes corresponding to these cases, when:

• an insufficient number n1 of patterns is contained in the class (n1 > k),
• and when no pattern has been classified in the class while a sufficient number n2

of patterns has been classified in the others classes.

However, it is not an obligation to define these two parameters if the suppression
of classes is not necessary. For example, for the application considering critical data,
it can be better to keep all characteristics patterns of all classes. Sometimes, classes
do not need to be deleted but to be merged. Indeed, according to classes which can
be created and to the evolutions of classes, it is necessary to measure over time
the overlapping of classes. If several classes are created and if they drift or grow
toward a common direction, then these classes have to be merged. To decide if two
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classes have become sufficiently close to be merged, a similarity measure has been
used [11]. This measure considers the overlapping or the closeness between classes
based on the membership values of the classified patterns.

δiz = 1− ∑x∈Ci∨x∈Cz |πi(x)−πz(x)|
∑x∈Ci

πi(x)+∑x∈Cz πz(x)
, (5.5)

where πi(x) and πz(x) are respectively the membership values of x according to Ci

and Cz. δiz is the similarity measure between two classes. More the similarity value
is close to 1, more the two classes are similar and have to be merged. The maximal
value represents two classes completely overlapped so it is not needed to wait until
the similarity value is equal to 1 to merge two classes. After each new classifier
pattern, this measure is calculated, if it is greater than a threshold rmthFusion between
two classes then they must be merged.

5.2.5 SS-DFKNN Algorithm

In Fig. 5.1, the algorithm describing all parts of SS-DFKNN is presented.

5.2.6 Hints for the Definition of SS-DFKNN Parameters

SS-DFKNN needs several parameters which can be defined according to each
application characteristics. The defined parameters influence the classifier perfor-
mances, however we can propose some default values which are generally adapted
to dynamic systems:

• k corresponds to the number of neighbors considered by the k-NN methods to
realize the classification of a pattern. It is the most common parameter of the
k-NN methods. It should be defined according to the size of the data set, to the
noise of a system and to the closeness between classes.

• th1 is one of the most important parameter of the method. It permits to detect
the evolution of a class. A class which does not evolve will have almost always
the same characteristics, even if noise occurs. So, if an evolution is realized,
abruptly or gradually, its characteristics will change. To allow small changes of
class without waiting for an important evolution, a value equal of th1 equal to 5
is a good compromise.

• NbMin permits to validate an evolution. It should be defined at least equal to
k,(k ≥ 1) in order to wait for a sufficient number of representative patterns
permitting to well estimate the characteristics of a new class. Moreover it must
not be too high to delay the evolution detection. NbMin should be defined
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Fig. 5.1 Description of the semisupervised dynamic fuzzy k-NN method

between k and k+5, respectively if k is high or small. If k and NbMin are small,
the risk to obtain false alarms becomes bigger.

• thFusion is an optimization parameter. Indeed, even if no fusion occurs, the simple
occurrence of a class means an evolution of the system has been realized. In that
case, an alarm should be raised on the system to call a human operator which will
verify the system state. A thFusion value between 0.05 and 0.2 permits to merge
classes which begin to have the same characteristics.
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Fig. 5.2 (a) Learning set; (b) class evolution

• n1 should be defined greater than k,(n1 > k) since a class will contain at least k
patterns (at its creation). A default value of n1 should be k ∗ 2.

• n2 should not be defined too small since after the creation of a class, it can be
necessary to wait in order to classify more patterns in the created class. On the
contrary, if no new pattern is classified in a new class after a large number of
classified patterns, then the class is not useful. It is probably a noisy class or an
ephemeral problem has occurred on the system. Then, the value of n2 should be
defined around 20. It means than 1 pattern on 20 should be classified in a new
class, in order to confirm progressively its usefulness. For the others classes, even
if they received no more patterns for a long time they will not be deleted since
they have already confirmed their usefulness by having a sufficient number of
patterns.

5.2.7 Illustrative Example

This example presents the dynamic evolution of a class. A progressive drift is
generated according to the following equations:

• t = 0: One hundred and fifty patterns are used as a learning set. Only the initial
class is known. The values of mean and standard deviation of the class are for
the attribute 1, μ1 = 3 and σ1 = 1, and for the attribute 2, μ2 = 3 and σ2 = 1
(Fig. 5.2a).

• t = 1–50: Fifty new patterns appear with the same characteristics than the initial
ones; so, there is still no evolution or drift.

• t = 51–200: A sudden change appears in the mean values of the class according
to each attribute j, j ∈ {1,2}. This change is followed by a progressive drift of
the class mean according to each attribute (Fig. 5.2b):
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Fig. 5.3 Classification result
obtained by SS-DFKNN after
classification of all patterns

μ1′(t) = μ1 + 2+
4× (t− 50)

150
, (5.6)

μ2′(t) = μ2 + 2+
2× (t− 50)

150
, (5.7)

whenever 51 ≤ t ≤ 200.
• t = 201–300: One hundred new patterns appear. They have the same characteris-

tics than the ones of the final class.

During the classification of the evolving patterns, several classes have been
created. Then, some of them have been merged and others have been deleted.
The final classification result obtained by SS-DFKNN is presented in Fig. 5.3. The
method has finally obtained 3 classes: one corresponds to the initial class, one
corresponds to the final location of the class, and one corresponds to a transition
class which could have been deleted. Then, the method has succeeded in detecting
the class evolution. The initial class C1 has kept its characteristics and the class
C2 well corresponds to the expected class. The classification results of SS-DFKNN
were obtained using the following parameters (k = 5; th1 = 5; NbMin = 5; thFusion =
0.2; n1 = 10; n2 = 20) and a delay detection of 4 patterns has occurred in order to
detect the class evolution. The maximum classification time obtained was equal to
5×10−2 s and the mean classification time was equal to 5×10−3 s. In the next part,
SS-DFKNN is applied to a welding system in order to realize the diagnosis of the
system and to follow the classes evolutions.

5.3 Application Results

In this section, we use SS-DFKNN to deal with the problem of weldings quality
monitoring on an industrial welding system (Fig. 5.4) used by the company Turquais
(Raucourt-et-Flaba, France).
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Fig. 5.4 The monitored welding system with its control system (a), and the two weldings realized
between two metal pieces (b)

5.3.1 Application and Acquisition of Acoustic Noises

The welding system is able to realize the weldings of different types of metals in
few seconds in order to obtain several welded pieces in a row. In this chapter, we
monitor the weldings quality obtained between two metal pieces (Fig. 5.4b). The
interest to monitor this system is to online detect all bad welded pieces in order to
correct as soon as possible the system parameters or to change one of its welding
tools. The proposed SS-DFKNN method has to detect every change of welding
quality and it has to warn the human operator if a welded piece is considered as
bad quality. The approach is based on the analysis, on the interpretation and on
the classification of the acoustic signals issued of the weldings between two metal
pieces. Currently, the human expert operator in charge of the welding machine
detects weldings qualities according to the welding noise he hears. Based on this
observation, we have installed an acquisition system using a microphone which
is sensitive for the audible sound range that a human ear can hear. This sound
represents the noises issued of the welding operation. The microphone is placed near
the welding system, there is approximately 50 cm between the microphone and the
metal pieces being welded. This permit to obtain more accurate sounds and to reduce
significantly the welding system environment noises. The sampling frequency was
fixed initially to 15 KHz for the set of measures. This frequency has been fixed in
order to contain all sounds that a human can hear and to respect the Shannon’s law
which imposes a sampling frequency at least twice higher than the frequency of
the event to study. A signal is obtained for each welding realized by the system.
Two examples of noisy weldings obtained on the system are presented in Fig. 5.5.
In Fig. 5.5a, a good quality welding is presented, its shape is almost constant and
even if a lot of noises is present, no discontinuity is observed. On the contrary, in
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Fig. 5.5 Examples of noisy signals obtained for a good quality welding (a) and for a bad quality
one (b)

Fig. 5.5b a bad quality welding is presented. The quality of this welding is initially
bad, and then the welding becomes good. So, the evolution of welding quality can be
distinguished by observing changes in some characteristics of the emitted acoustic
signals. The quality of a welding can evolve so quickly that even when only a part of
a welding is a bad quality, the global welding quality is considered as a bad quality.
The acquisition of multiple acoustic signals was realized during the functioning of
the welding system in order to construct a learning data set and a test set of the
good and bad welded pieces. In the next part, the data analysis of these signals
is realized to find informative parameters which can be used to discriminate the
weldings qualities.

5.3.2 Signal Analysis and Feature Space

The ratio signal to noise is poor on signals issue of this industrial system in the
Turquais company. To be able to select the interesting frequencies of signals, we
have begun to search the main informative frequencies used during the realization
of a welding. To do this, we have calculated the Energy Spectral Density (ESD) of
each signal Fig. 5.6.

In Fig. 5.6, we can see some frequencies which are particularly present, for
example the ones from 2,000 Hz to 4,000 Hz and from 6,000 Hz to 7,000 Hz. From
a global point of view, the set of informative frequencies seems to be situated below
7,000 Hz. In order to follow the evolution of each welding over time, we have used
a sliding window. It is important that this window contains enough observations
in order to obtain representative patterns. We have studied experimentally different
sizes, containing between 20 and 500 patterns. A window too small did not permit
to characterize the functioning modes since it did not contain enough observations,
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Fig. 5.6 Energy spectral density of an acoustic welding signal

while a too large window creates a delay to detect evolutions and the classification
result was lower. This is a time window including 200 observations which has been
selected. A window with this size was sufficiently informative and did not generate
a delay in the computing of the parameters of the feature space. The window
shifts with 200 new patterns. For each one of these windows, we have calculated
the energy spectral density and several statistical parameters (mean, maximum,
RMS, Kurtosis, dissymmetry coefficient, standard deviation, etc.). We have selected
the statistical parameters which permitted to discriminate classes of good quality
weldings from the ones of bad quality weldings. Two parameters were kept to
establish the feature space:

• the value of dissymmetry coefficient (skewness), noted p1, calculated for the first
derivative of each time window.

• the RMS value of the spectral density for the frequencies between 6,000 Hz
and 7,000 Hz, noted p2, calculated for each time window. Parameters were only
selected for these frequencies they were the most discriminative frequencies to
characterize the welding quality.

Each observation window corresponds to a pattern in the feature space. In Fig. 5.7,
a good quality welding is represented with its corresponding patterns in the feature
space.

In Fig. 5.8a, welding signal of bad quality is represented. On that figure, the
beginning of the window of each pattern corresponding to a bad quality welding is
represented by “∗.” Patterns corresponding to this signal are presented in Fig. 5.8b.
In Fig. 5.8, we can see two classes which should be estimated by the classifier.
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Fig. 5.7 Good quality welding (a) and its corresponding patterns in the feature space (b). Each
pattern is represented by its number of window

We can also see that some patterns realize a transition between the windows
corresponding to good and bad weldings qualities. For example, the pattern of
window 18 leads the system toward the faulty class, while pattern 26 brings back
the system toward the normal functioning mode. Then, when a bad quality appears,
several round trips occur between the two classes. The functioning mode evolves
according to the temporal and frequential characteristics of the system. In order to
show with more precision the round trip of patterns, a zoom is realized on a part of
the signal and its corresponding patterns are presented in Fig. 5.9.

5.3.3 Classification Results

In order to be in the same position that a human operator that will use our method,
we only consider a single class as known; the class C1 that contains patterns which
correspond to the windows of good quality welding. For the classification of all ac-
quired weldings, we have used a learning set such as the one of Fig. 5.10. From this
learning set, we have realized the classification of each welding, i.e., the classifica-
tion of each signal acquired on the system, one after the other. After the classification
of a first welding of bad quality, SS-DFKNN (k = 5; th1 = 5; NbMin = 5;
thFusion = 0.1; n1 = 10; n2 = 400) permits to obtain classes of the Fig. 5.11. After the
classification of this first welding, two classes have been estimated by the method.
The evolution of the class has been validated at t = 299 while the evolution has
really started at t = 295. A delay detection of NbMin = 5 windows has occurred.
This delay corresponds to the patterns which can be classified in a transition class.
It permits to confirm the evolution of the class C1 with a small delay while avoiding
some false alarms which can occur with the noise present in this system. Then
the others weldings of bad quality, coming from the others acquired signals, have
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Fig. 5.8 Bad quality welding (a) and its corresponding patterns in the feature space (b)

also been classified. The classification result of all these weldings is presented in
Fig. 5.12. A new class C3 has been created, it corresponds to a transitive area of
average welding quality present between the good welding quality class and the bad
quality class. Only patterns which had a sufficient change in their characteristics
are classified in class C2. Then, no false alarm was raised during classification of
these patterns. The set of others weldings of good quality has then be classified. All
weldings of good quality are classified in C1 (Fig. 5.13).

After the classification of all acquired patterns, some conclusions can be
presented:

• 100% of the good quality weldings are classified in C1.
• 100% of the bad quality weldings are detected.



120 L. Hartert and M. Sayed-Mouchaweh

Fig. 5.9 Zoom on the patterns corresponding to a part of the welding problem and its corre-
sponding patterns are presented in the feature space. Patterns of the class of good quality are also
presented to have a global view of the two classes and to understand the evolution realized

Fig. 5.10 Example of
learning set used for the
classification of the new
weldings. One hundred and
seventy five patterns are part
of C1

• misclassified patterns (0.2% of all patterns) correspond to transitive patterns.
They only influence the delay detection of some weldings which have a bad
welding quality,

• very few information (2 patterns of C1 at a minimum) are necessary to use SS-
DFKNN.

• the delay detection of a bad welding is small (8 ms).

All classification results obtained by SS-DFKNN for this application are presented
in Table 5.1.

The set of bad quality weldings has had several patterns classified in C2 and C3.
Only some bad quality weldings patterns were misclassified in C1. It concerns only
the patterns which have generated delay evolution detection. These patterns were
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Fig. 5.11 Classification of
the first welding of bad
quality

Fig. 5.12 Classification of
all weldings of bad quality

then not misclassified consecutively but they correspond to few first patterns of bad
quality weldings. No welding pattern of good quality was misclassified. Then, the
classification result obtained by SS-DFKNN permits to perfectly distinguish good
quality weldings from those of bad quality. Moreover, only small delay detection
occurs so that the dynamic PR proposed can be online applied to this system. An
acoustic or visible alarm system will be set up in order to warn human operators if
a welding problem occurs.
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Fig. 5.13 Classification
result of all weldings of the
database

Table 5.1 Classification results obtained by SS-DFKNN

Semi-supervised
dynamic FKNN

Detection of weldings with a bad quality 100%
Detection of weldings with a good quality 100%
Mean tdelay to detect a bad quality welding 5 patterns
Mean tdelay to detect a good quality welding No delay

5.4 Conclusion

The dynamic PR method named SemiSupervised Dynamic Fuzzy K-Nearest
Neighbors (SS-DFKNN) has been developed in this chapter in order to demonstrate
its capacities to realize the diagnosis and monitoring of industrial evolving systems.
SS-DFKNN integrates two indicators of patterns usefulness which permit to follow
classes evolutions by adapting these latter if an evolution is confirmed. When an
evolution is realized, classes or subclasses are created to represent the current
functioning mode of a system. These evolved classes can permit to better estimate
the current functioning mode of an evolving system according to the time, to well
monitor the evolutions of complex classes (defined by several subclasses) and to
progressively find which functioning mode a class may reach after its evolution.
Indeed without adapting classes, an evolution of the classes characteristics will be
detected much later than when classes are adapted. SS-DFKNN can use only a few
patterns to initiate the method. However, more the learning set is representative
of the classes characteristics, better the detection of evolutions is. The classes
characteristics of all classes are refined sequentially with the classification of the
new patterns. The update of the evolved classes parameters is realized in a low
time so that this method can be applied online. In this chapter, SS-DFKNN has
been illustrated by a drift example and applied on an industrial welding system. For
each welding operation, an acoustic signal was acquired and used by SS-DFKNN.



5 Semisupervised Dynamic Fuzzy K-Nearest Neighbors 123

SS-DFKNN has well classified these signals which permitted to detect all bad
quality weldings and it also detected each one of the welding quality evolution
realized by the welding system.

SS-DFKNN uses several parameters to monitor evolving systems. Among these
parameters we can particularly estimate that k, th1, and NbMin have a major
importance in the results the method can obtain. According to their values, a delay
detection can occur, noisy patterns can be considered as a class evolution and
patterns can be misclassified. A new version of this method is being developed in
order to progressively adapt the classes parameters and the classifier parameters, in
order to obtain better results and to simplify the initial definition of these latter.
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5. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams. Intelligent Data
Analysis 11(6), 627–650 (2007)

6. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer
Academic/Plenum Publishers, USA (1981)

7. Cohen, L., Avrahami, G., Last, M.: Incremental info-fuzzy algorithm for real time data mining
of non-stationary data streams. In: Proceedings of the TDM Workshop. Brighton, UK (2004)

8. Cozman, F., Cohen, I., Cirelo, M.: Semi-supervised learning of mixture models. In: Proceed-
ings of the 20th International Conference on Machine Learning (ICML). Washington DC, USA
(2003)

9. Dubuisson, B.: Diagnostic et reconnaissance des formes. Tech. rep., Trait des Nouvelles
Technolo-gies, srie Diagnostic et Maintenance, HERMES (1990)

10. Duda, R., Hart, P., Stork, D.: Pattern Classification—Second Edition. Wiley-Interscience (John
Wiley & Sons), Southern Gate, Chichester, West Sussex, England (2000)

11. Frigui, H., Krishnapuram, R.: A robust algorithm for automatic extraction of an unknown
number of clusters from noisy data. Pattern Recognition Letters 17, 1223–1232 (1996)

12. Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern Recognition
307, 1109–1119 (1997)

13. Gabrys, B., Bargiela, A.: General fuzzy min–max neural network for clustering and classifica-
tion. IEEE Transactions on Neural Networks 11(3), 769–783 (2000)

14. Garcia, V.: Suivi d’objets d’intrt dans une sequence d’images: des points saillants aux mesures
statistiques. Tech. rep., University of Nice (2009)

15. Gibb, W., Auslander, D., Griffin, J.: Adaptive classification of myocardial electrogram
waveforms. IEEE Transactions on Biomedical Engineering 41, 804–808 (1994)

16. Guedalia, I., London, M., Werman, M.: An on-line agglomerative clustering method for non-
stationary data. Neural Computation 11(2), 521–540 (1999)

17. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)



124 L. Hartert and M. Sayed-Mouchaweh

18. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering
Approach—Second Edition. Springer Verlag, London (2007)

19. Keller, J., Gray, M., Givens, J.: A fuzzy k-nn neighbor algorithm. IEEE Transactions on
Systems, Man and Cybernetics 15(4), 580–585 (1985)

20. Kybic, J.: Incremental updating of nearest neighbor-based high-dimensional entropy estima-
tion. In: Proceedings of the ICASSP 2006, pp. 804–807 (2006)

21. Law, Y., Zaniolo, C.: An adaptive nearest neighbor classification algorithm for data streams.
In: Proceedings of the 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 2005), pp. 108–120. Porto, Portugal (2005)

22. Lughofer, E.: Evolving Fuzzy Systems—Methodologies, Advanced Concepts and Applica-
tions. Springer, Berlin Heidelberg (2011)

23. Lughofer, E., Angelov, P.: Handling drifts and shifts in on-line data streams with evolving fuzzy
systems. Applied Soft Computing 11(2), 2057–2068 (2011)

24. Min, R.: A non-linear dimensionality reduction method for improving nearest neighbour
classification. Ph.D. thesis, University of Toronto (2005). Toronto, Canada

25. Nakhaeizadeh, G., Taylor, C., Kunisch, G.: Dynamic supervised learning. Some basic issues
and application aspects. classification and knowledge organization, pp. 123–135. Springer
Verlag, Berlin Heidelberg (1997)

26. Roncaglia, A., Elmi, I., Dori, L.: Adaptive K-NN for the detection of air pollutants with a
sensor array. IEEE Sensor Journal 4(2), 248–256 (2004)

27. Song, Y., Huang, J., Zhou, D.: Ik-NN: Informative k-nearest neighbor pattern classification. In:
Proceedings of the PKKD 2007 conference, pp. 248–264 (2007)

28. Therrien, C.: Decision Estimation and Classification: An Introduction to Pattern Recognition
and Related Topics. John Wiley & Sons, New York (1989)

29. Vachkov, G.: Online classification of machine operation modes based on information compres-
sion and fuzzy similarity analysis. In: Proceedings of the IFSA-EUSFLAT 2009 conference,
pp. 1456–1461. Lisbon, Portugal (2009)

30. Zhang, B., Srihari, S.: A fast algorithm for finding k-nearest neighbors with non-metric
dissimilarity. In: Proceedings of the 8th International Workshop on Frontiers in Handwriting
Recognition (IWFHR’02), pp. 13–19 (2002)


	Chapter5 Semisupervised Dynamic Fuzzy K-Nearest Neighbors
	5.1 Introduction
	5.1.1 Pattern Recognition
	5.1.2 Evolving Systems
	5.1.3 Dynamic Learning and Classification

	5.2 Semisupervised Dynamic Fuzzy K-Nearest Neighbors (SS-DFKNN)
	5.2.1 Learning and Classification Phases
	5.2.2 Detection of a Class Evolution
	5.2.3 Adaptation of an Evolving Class after Validation of its Evolution
	5.2.4 Validation of the Existing Classes
	5.2.5 SS-DFKNN Algorithm
	5.2.6 Hints for the Definition of SS-DFKNN Parameters
	5.2.7 Illustrative Example

	5.3 Application Results
	5.3.1 Application and Acquisition of Acoustic Noises
	5.3.2 Signal Analysis and Feature Space
	5.3.3 Classification Results

	5.4 Conclusion
	References


