
Chapter 13
Optimizing Feature Calculation in Adaptive
Machine Vision Systems

Christian Eitzinger and Stefan Thumfart

Abstract A classifier’s accuracy substantially depends on the features that are
utilized to characterize an input sample. The selection of a representative and—
ideally—small set of features that yields high discriminative power is an important
step in setting up a classification system. The features are a set of functions that
transform the raw input data (an image in the case of machine vision systems) into a
vector of real numbers. This transformation may be a quite complex algorithm, with
lots of parameters to tune and consequently with much room for optimization. In
order to efficiently use this additional room for optimizing the features, we propose
an integrated optimization step that adapts the feature parameters in such a way that
the separation of the classes in feature space is improved, thus reducing the number
of misclassifications. Furthermore, these optimization techniques may be used to
“shape” the decision boundary in such a way that it can be easily modeled by a
classifier. After covering the relevant elements of the theory behind this automatic
feature optimization process, we will demonstrate and assess the performance on
two typical machine vision applications. The first one is a quality control task,
where different types of defects need to be distinguished, and the second example is
a texture classification problem as it appears in image segmentation tasks. We will
show how the optimization process can be successfully applied in morphological
and textural features that both offer a number of parameters to tune and select.

13.1 Introduction

In many classification tasks, the investigations start with a set of features that are
the input to various machine learning structures, such as classifiers. In nonstationary
learning environments,the classifier is adjusted to adapt to changes in the concepts
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or rules that apply. However, quite often we find situations where the rules should
remain the same, but the underlying processes that generate the input data (the
features) have changed. This may quickly turn an initially well-posed classification
task into an overly complex problem with weird decision boundaries. This may
happen, for example, in a machine vision system, when the surface properties of
the objects change. The statistical properties of the features will change, which
may increase the complexity of the following classification tasks and may make
it hard for the classifier to find reasonable decision boundaries. On-line adaptation
and evolution of the classifiers (as applied in Chap. 7 for on-line surface inspection
problems) may help to overcome these problems by permanent adjustments of the
decision boundaries; however, the real class labels are not always available or may
require high costs due to significant operators’ efforts.

Another promising approach to counter such a change is to adapt the procedures
that generate the features in such a way that they compensate for the change in
surface properties. This chapter thus focuses on what can be achieved by adapting
feature calculation. Features are always application specific and are often assumed
to be carefully chosen by an expert, who makes sure that these features are relevant
for the task. However, it has to be understood that the resulting feature vector is
just a very low-dimensional representation of the object and that much—possibly
relevant—information is already lost by converting the raw data of the object into
a set of features. In fact, the feature calculation is the step that performs the largest
reduction in the dimension of the problem. A typical image used in machine vision
applications is several thousand pixels wide and thus may be considered a data
vector coming from a 106- to 107-dimensional space. Clearly, the gray values
of neighboring pixels are highly correlated, and images used in typical machine
vision applications are usually very far from filling up this huge space. Instead,
they are restricted to a comparably small subspace, which allows a compression of
the information by means of features. Feature calculation thus reduces this high-
dimensional space to a representation with dimensions in a typical range of 20–200.
Depending on the number of samples that are available as training data and also
on the properties of the features, the dimension needs to be reduced further before
applying machine learning methods and classifiers. Therefore, a feature selection
step is used that typically reduces the number of features down to 5–15 features.

Essentially, feature selection tries to select a subset of features that is optimal
for the task at hand. Optimal here means that the subset contains low redundancy
and that correlated features are removed while preserving most of the relevant
information. This approach depends on various hypotheses about the distribution
of the features and is called “filter approach”. Alternatively, one may directly select
a subset in such a way that the classification accuracy is optimized. This “wrapper
approach” does not require any additional hypotheses, but depends on the classifier
that is used. Some classifiers have a built-in feature selection process, for example,
decision trees that select a single feature for the decision that is to be made at each
node.
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Table 13.1 Reduction of dimension when processing an image

Processing step Data representation Dimension

Raw (image) data Image 106–107

Initial feature space Feature vector 20–200
Feature space after selection Feature vector 5–15
Classification result Discrete value 1

The classifier then performs the final data reduction step and reduces the feature
space to a one-dimensional space of a small, discrete set of classes. Table 13.1
illustrates this data reduction.

Within this chapter, we want to focus on the first processing step that converts the
raw input data to an initial set of features. This processing step builds the basis for
the downstream processing, and it also performs the most significant reduction and
compression of data. The algorithms used for this reduction may be highly complex
and are domain specific. For example, in the analysis of time signals, one may apply
spectral methods to characterize the signals, whereas in image processing, texture
analysis might be appropriate to calculate a set of relevant features. In any case,
these algorithms include a large number of parameters that have to be chosen and
that can be tuned to a particular application. This tuning process is often left to the
expert in the field and is sometimes done on an intuitive basis coming from past
experience and from the particular requirements of the task. We claim that these
parameters can be used with great effect to improve the accuracy of downstream
classification by directly optimizing feature calculation during the off-line and on-
line adaptation of classification systems.

At this point, we would also like to make a clear distinction between feature
selection and feature optimization. Feature selection converts a high-dimensional set
of features into a smaller set [8] while maintaining most of the relevant information.
In the case of a filter approach, various hypotheses are used that lead to optimization
criteria based on distance, information, consistency, or dependency [7, 15, 27]. In
the case of wrapper approaches [18], the goal is to directly improve classification
accuracy. At the heart of the problem is a subset selection task that has a runtime
of O(2N), but good approximations can be obtained using heuristic methods with
a runtime of O(N2). A wide range of algorithms have been developed for this
task, such as RELIEF [19, 28], the decision tree method [4], or branch and bound
[25]. A recent survey lists 42 different algorithms [14, 24]. Feature selection may
thus be considered a projection of the features to a low-dimensional space. This
transformation is continuous, and its main property is that objects that were close
together in the initial feature space will also be close together in the reduced feature
space. If these two objects belong to different classes, then the margin between the
two classes will be narrow no matter how the features are selected.

Feature optimization, on the other hand, has access to the original raw data for
adapting the features. Even if two objects are identical in the initial feature space,
they will not necessarily be so in the space of raw data. If these objects belong to
different classes, then feature optimization may be used to create or tune features to
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put particular emphasis on this difference in the raw data and thus optimize feature
calculation. It thus has the potential of increasing the margin between the two classes
beyond what is possible with projections or other continuous transformations of
feature space.

13.2 Parameterized Image Features

In the following, we will focus on two different types of features, both of which are
widely used in image processing. The first set of features includes shape descriptors
that are used to characterize the properties of image regions (so-called “blobs”).
“Blobs” usually refer to small-image regions that are darker or brighter than the
background and that can be more or less easily detected using (locally adaptive)
thresholding methods or edge detectors. In the area of surface inspection, these blobs
often correspond to the defects that have to be found and analyzed. For this purpose,
the defects are characterized by a set of descriptors such as the total area of the blob,
the position of the blob in the image, the ratio of area and circumference of the blob,
or the inner structure of the blob.

The second set contains texture features that are used for image segmentation.
Texture is a small-scale, visible surface structure that is characterized by local
similarity. Small patches of a single texture, so-called texels, thus share a set
of properties or features that are similar for all texels coming from this texture.
These features may thus be used to characterize the texture and to enable texture
segmentation. By using a classifier, one may determine which texels belong to
the texture and which do not to establish a boundary between regions of different
texture. There is a huge variety of texture features among which Gabor features are
a popular choice for segmentation, classification, and image retrieval.

13.2.1 Blob Features

The notion “blob” is a commonly used abbreviation for “binary linked objects”.
“Linked objects” mean that the objects are usually connected in the sense that there
is a path from one pixel of the object to any other pixel of the object that is fully
inside the object. Such linked objects can be easily extracted from the image using
various (sometimes recursive) algorithms, for example, by following the edge of the
object. “Binary” refers to the fact that the algorithms are often applied to bi-valued
images, where pixel values of 0 corresponds to background and 1 corresponds to
pixels inside the blob. Such binarization is obtained using thresholding algorithms
that search for dark or bright areas in the image. This threshold value is also a very
important parameter for optimizing feature calculations. This is demonstrated in
Fig. 13.1.

If we consider a simple “area” feature that describes the number of pixels covered
by the blob, then this feature will substantially depend on the threshold value that
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Fig. 13.1 “Area” feature for different threshold values in an 8-bit gray-level image. From left
to right: original image; segmented area using a threshold of 55, 115, and 200. With increasing
threshold value, the area is becoming smaller, and may even split into two disconnected regions

Table 13.2 Typical shape features used in blob analysis

Feature Description Parameter(s)

Area Number of pixels inside the blob Threshold value
Bounding rectangle Width and height of the bounding

rectangle
Threshold value, parameters

dealing with outliers, for
example, percentage of
outlying pixels not
considered

Roundness Ratio of the principal axis to the
secondary axis of the
circumscribing ellipse

Threshold value, parameters
dealing with outliers

Second-order moments Second-order moments calculated
along an axis (column-wise,
row-wise, or arbitrary angle)

Threshold value, angle of the
axis relative to the
principal axis

Circumference Number of pixels along the edge of
the blob

Threshold value

Perimeter Perimeter of a circle covering the
same area as the blob

Threshold value, parameters
dealing with outliers

Compactness Ratio of the total area of the blob
and the area of the circular disc
that fully covers the blob

Threshold value, parameters
dealing with outliers

p-Percentile 1 Gray value for which p percent of
the total number of pixels
inside the blob are above that
value

p

p-Percentile 2 Percentage of pixels inside the
blob below/above a certain
threshold value

Gray value threshold

is chosen for binarization of the image during feature calculation. The region may
even split into two separate blobs for higher threshold values. The correct choice
of the threshold value is not immediately clear, and obviously, there is room for
optimization.

There is a huge variety of features used in blob analysis, most of which describe
the shape of the blob, but there are also features that provide information about the
contrast or the inner structure (texture) of the blob. Table 13.2 below lists 9 examples
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of such features, including a description of the feature and parameters that can
possibly be used for optimization. We have not included formulas or algorithms for
the calculation of each feature and refer the reader to the vast amount of literature
on basic image processing algorithms, for example, Chap. 10 of [9].

13.2.2 Gabor Features

A wide variety of features has been developed for the characterization of textures.
The goal of these features is to capture the local properties of textures and to enable
higher-level processing of textures for applications such as image segmentation,
content-based image retrieval, or texture defect detection. The main approach in
these tasks is to use the features as input to a machine learning structure such as
classifiers or regression models. In the following, we describe Gabor features as an
example of parameterized texture features and later show how these parameters can
be tuned to a specific task.

Gabor features are often used in the above mentioned applications, and their
importance also comes from the fact that in some way they resemble processing
steps going on in the human visual cortex. However, Gabor features are just one
example of a huge set of texture features, and we use them purely for demonstrating
the general concept of feature adaptation. For the purpose of texture segmentation,
which will be the example that we investigate here, the Gabor features are calculated
for every image pixel to obtain a feature map. Thus, each image location ωi ∈ Ω is
characterized by a d-dimensional vector of Gabor features. The actual value of d
depends on the number of Gabor filters that form the applied Gabor filter bank and
the type of Gabor features.

The calculation of a Gabor feature map for the image requires an intermediate
step, in which a set of Gabor filters (a Gabor filter bank) is applied to the image. The
feature map is calculated from the individual filter responses. A two-dimensional
Gabor filter g(x,y),(x,y) ∈ Ω is a sinusoidal plane wave, modulated by a Gaussian
envelope given by

gλ ,θ ,γ,ϕ(x,y) = e−
x′2+γ2y′2

σ2 cos
(

2π j x′
λ +ϕ

)
,

where

x′ = xcosθ + ysinθ , y′ = −xsinθ + ycosθ and
σ = cσ λ .

This filter acts as an oriented local-band-pass filter that is optimal in terms of joint
localization and resolution in image and frequency domain [16]. The parameters
that can be tuned to obtain a selective Gabor filter are:

λ : Wavelength of the sinusoidal plane wave
θ : Orientation of the Gabor filter
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Fig. 13.2 Gabor filters in image and Fourier domain for various filter parameters. Compared to
the mother wavelet filter (λ = 1/23,θ = 0,γ = 0.5,ϕ = 0,cσ = 0.56) in (a), the filters (b) to (f)
are different in one parameter setting: (b) λ = 1/49, (c) θ = π/2, (d) γ = 0.25, (e) ϕ = −π/2,
(f) cσ = 1.0. All filters in image domain are cropped and zoomed by factor 2 to increase visibility

γ : Elongation of the Gaussian envelope
ϕ : Shift of the sinusoidal plane wave that determines whether the filter is

symmetric (ϕ = 0) or antisymmetric
(
ϕ = π

2

)
cσ : Factor that determines the size of the Gaussian envelope

A plot of typical Gabor filters for different parameters is shown in Fig. 13.2. In
Sect. 13.5.3.2, we will demonstrate the importance of tuning these parameters to
obtain highly accurate segmentation results.

By calculating the convolution of a Gabor filter g with an image I as in

r(x,y) =
∫∫

Ω

I(x,y)g(x− ξ ,y−η)dξ dη ,

a new image (the filter response r) is obtained as shown in Fig. 13.3.
Usually, one does not only apply a single Gabor filter, but a family of filters—

often called a filter bank—generated by varying the wavelength and orientation of
a mother wavelet filter. A typical value is to use six orientations and four different
scales, resulting in 24 different Gabor filters and thus in 24 filtered images. Spatial
frequencies (scale) are chosen to cover the relevant frequencies in the image.

In many applications, these images are then converted into so-called Gabor
energy maps. The energy map e(x,y) of a Gabor filter [13] is calculated by
considering filter responses to symmetric and antisymmetric Gabor filters:

eλ ,θ ,γ(x,y) =
√

r2
λ ,θ ,γ,0(x,y)+ r2

λ ,θ ,γ,−π/2(x,y).

The Gabor energy e is related to the local power spectrum p as follows:

pλ ,θ ,γ(x,y) = e2
λ ,θ ,γ(x,y),
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Fig. 13.3 The Gabor filter responses r for an image I from the Brodatz texture album [3]. The
operator | ∗ | represents a convolution, which is typically done in Fourier domain to reduce the
computational load for larger images

as the Gabor filters are essentially a Fourier transformation with a Gaussian
windowing function. The resulting image contains an energy value per pixel
and describes the local energy contained in the different spatial frequencies and
directions. In order to finally obtain a single feature value, some kind of aggregated
information is calculated for the image. This can be done in several different ways,
some of which are described in the following:

The sum of Gabor orientation energy difference (SGOED) [17] is obtained by
summing over all pixels of the energy map:

Eλ ,θ ,γ =

∫∫

Ω

pλ ,θ ,γ(x,y)dxdy.

Assuming that we operate with a filter bank with Θ different orientations and Λ
different scales, we can further sum up the entries of all energy maps E∗,∗,γ along
scales or orientations such that we obtain two vectors

EΘ =
Λ
∑

i=1
Ei,θ ,γ

and

EΛ =
Θ
∑

i=1
Eλ ,i,γ ,

with Θ and Λ elements, respectively. The SGOED [17] is then found by

fSGOED =
Θ
∑

i=1
|EΛ (θi)−EΛ (θi+1)| ,
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where the index θi is to be understood as being calculated θi = mod (i,Θ). SGOED
generates large values for abrupt orientation changes between energy values. The
features thus measure in some sense whether the texture is isotropic (low value for
SGOED) or whether it has a strong directional structure (high values for SGOED)
in a certain spatial frequency range. In a similar fashion, one can derive the sum of
Gabor scale energy differences (SGSED) by

fSGSED =
Λ
∑

i=1
|EΘ (λi)−EΘ(λi+1)| ,

where the index λi is to be understood as being calculated λi = mod (i,Λ). The
SGSED is high if the image under investigation shows a dominant texture scale,
while it is low if multiple texture scales are present.

While the aggregation of Gabor energy map entries as described so far has been
applied successfully, for example, to distinguish natural from man-made objects in
[17] or to texture classification and content-based retrieval [31], their basic idea
can hardly be transferred to texture segmentation as these features aim to capture
properties of larger image areas.

For pixel-wise segmentation, the energy map entries eλ ,θ ,γ(x,y) for a fixed
image location ωi but different filter parameters (i.e., the energy maps obtained
from a Gabor filter bank) are directly used to build a Gabor energy feature vector
fωi . Grigorescu et al. [13] evaluated the segmentation accuracy for more complex
Gabor filter-based features, inspired by the early processing in human vision system
and could show that Gabor energy features outperform complex moment features
[13]. Superior performance was reported for grating cell operator features that are
computed in a two-stage process. The first stage, based on a Gabor filter bank as
described above, detects the presence of three parallel bars at any image location.
The second stage integrates the output of the first within a certain surrounding and
therefore detects the presence of multiple combinations of parallel bars.

13.3 Feature Adaptation Concepts (Off-line)

In the following, we first outline existing approaches to feature adaptation for blob
and Gabor features. Next, we describe the general concept of feature optimization
for off-line processing which will also be the basis for the on-line adaptation. To
motivate the necessity for feature adaptation, let us consider a simplified inspection
task, where we have to detect elongated scratches of predefined orientation and
size. These scratches are present on a milled surface that shows an oriented surface
texture itself. Given an image of a part with a scratch orientation of 10◦ and a surface
texture orientation of 35◦, the energy response for two Gabor filters with θ = 10◦
and θ = 35◦ with an appropriate scale λ would be highest. For an image without
scratch, only the Gabor filter with θ = 35◦ would yield a high energy response.
Obviously, the energy for the Gabor filter with θ = 10◦ can be used to distinguish
defective and defect-free surface patches. However, if we would rely on a fixed
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Gabor filter set with θ = {0◦,45◦,90◦,135◦}, the distinction between defective and
defect-free areas cannot be based on a single filters’ energy response any more. In
real-world inspection tasks, we can never be sure that the properties of a (defect free)
surface or the scratches remain constant over time (e.g., wear of the machine tools,
material differences, temperature difference, etc.). Thus, it is crucial to adapt the
feature parameters to discriminate between defective and defect-free surface areas.

13.3.1 Blob Feature Adaptation

For blob features, the main approach to feature adaptation is a manual selection of
the relevant parameters by an expert. Automatic adaptation is rarely implemented,
because of the perceived simplicity of the features. In some applications, however,
such as tracking of objects, the features will change, for example, because the
object that needs to be tracked is seen from a different viewpoint. Consequently, the
relevance of features may change depending on the angle of view, because certain
parts of the object will not be visible any more. Some recent results that cover this
topic can be found in [5] and [6]. An adaptive feature transformation is described in
[1], where the feature vector is postprocessed by an adaptive transformation matrix
that is used to make the features invariant to environmental changes. The joint
optimization of classifiers and features is investigated in [20], but also in this case,
the optimization of features is done by a selection process rather than by adapting
parameters inside the feature calculation.

13.3.2 Gabor Feature Adaptation

The filter bank which is required to derive Gabor energy map features obviously
offers a set of parameters that can be used for optimizing the subsequent processing
steps. These parameters include the scale λ , the orientation θ , as well as the number
of scales Λ and directions Θ used. Gabor filter banks are usually designed to
optimally represent the texture signal of the image. Optimality is measured by the
mean squared error between the reconstructed and the original signal [21]. The goal
of texture segmentation, however, is not to optimally represent the single textures
but to divide the image into regions that contain the different textures. The focus of
the optimization should thus be on identifying those parameters for the Gabor filters
that allow an optimal discrimination between the different textures.

The second aspect that needs to be considered is computing time. Calculating the
convolution of a Gabor filter with a whole image is computationally costly, and one
is thus interested in minimizing the number of filters used and on choosing those
with the highest discriminative power.

For the optimization, we may either focus on a single filter or the whole filter
bank. Both approaches are slightly different.
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In the filter bank design, one generally uses a set of directions that cover 180◦
(360◦ is not required, because the filter is symmetric), and the only question that
needs to be answered is how many directions we want to consider. This decision is
made purely on computational cost, and typical values are in the range of four (0◦,
45◦, 90◦, 135◦) to eight directions. The scale parameter of the Gaussian function
is generally selected intuitively and assumed to be a constant. In [11], guidelines
for selecting values for the scale parameter are proposed, but quite often, human
intervention is still required to assist in selecting the appropriate filter parameters
for texture segmentation. The selection of filters is then done by visually inspecting
the filtered images, to identify those filters that best characterize different textures
in the image.

For filter design, the focus is on selecting one or very few filters with parameters
that are optimal for the task. This avoids some of the problems of filter banks, espe-
cially the high computational effort that is required for calculating the convolution
with a larger number of filters. In many cases, the choice of parameters for the
single filters is made based on a priori knowledge about the texture. Such knowledge
may include typical dominating directions in the textures or the visual coarseness of
the textures. This may be put on a more objective basis by performing a Fourier
analysis on the whole image to identify the most significant (or discriminative)
spectral components to deduce the scale and orientation for the Gabor filter. An
explicit method for the selection of scale and direction parameters is proposed in
[32]. The main idea is to solve a max-min optimization problem that maximizes
the minimal ratio of Gabor energies contained in the different textures. The idea
has a strong similarity to Fisher discriminant analysis [10] (Sect. 3.8.2) and to
the optimization criteria used in support vector machines. It basically tries to
maximize the margin between the two Gabor energy representations of the textures.
A more recent approach presented in [29] aims at maximizing the fraction of
separable harmonic signal pairs in a given frequency range. Separable here means
that the filter responses are disjoint in at least one component of the response vector.
This method proved to be more efficient than previous methods while achieving the
same accuracy on texture segmentation tasks. For solving the resulting optimization
problem, a range of methods has been applied such as genetic algorithms [22],
simulated annealing [10] and any other kind of optimization method that can deal
with the discrete nature of the optimization problem.

13.3.3 General Feature Adaptation Concept

Optimization of features as proposed in this context is an optimization step that
is done once the classification system is already in place. The assumption is that
a set of features has been selected and that a classifier has been trained off-line to
achieve reasonable accuracy. At this stage, it makes sense to reconsider and optimize
the feature calculation in order to make the classification system more robust and
to further increase its accuracy. Optimizing features “from scratch” is not likely
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Table 13.3 Different target functions J for commonly used classifiers

Classifier Within-class scatter sW

Between-class
scatter sB J

Nearest neighbor 1
n0

∑ j=1...n0

∥∥F(x0, j,p)−μ0
∥∥2 ‖μ0 −μ1‖2 sW(p)

sB(p)

+ 1
n1

∑ j=1...n1

∥∥F(x1, j,p)−μ1
∥∥2

Linear classifier 1
n0

∑ j=1...n0

(
cT (F(x0, j ,p)−μ0)

)2 (
cT (μ0 −μ1)

)2 sW(c,p)
sB(c,p)

+ 1
n1

∑ j=1...n1

(
cT (F(x1, j,p)−μ1)

)2

Decision tree 1
n0

∑ j=1...n0

(
eT

i (F(x0, j ,p)−μ0)
)2 (

eT
i (μ0 −μ1)

)2 ∑i=1...m
sW(ei,p)
sB(ei,p)

+ 1
n1

∑ j=1...n1

(
eT

i (F(x1, j,p)−μ1)
)2

to succeed, because the search space is huge and features are in the danger of
degenerating into measurements for properties that are totally different from the
originally intended meaning of the feature. This would impair the interpretability of
the classification system and should thus be avoided.

For the adaptation of a set of features Fi, i= 1, . . . ,m, which we collect in a feature
vector F ∈ R

m and which depend on a parameter vector p, we try to minimize
the within-class scatter sW in relation to the between-class scatter sB. Feature
adaptation should lead to a decision boundary that can be easily reproduced by the
classifier at hand and that maximizes the distance between the classes perpendicular
to the decision boundary. The way how we quantify the scatter thus depends on
the classifier that is used. We will discuss this for three commonly used types of
classifiers: nearest neighbor classifiers, linear classifiers, and decision trees.

Nearest neighbor classifiers use a distance measure ‖.‖ to determine the distance
of a feature vector to the class center. Classification performance will improve if the
feature parameters are adapted to maximize the distance between the classes with
respect to this distance measure. Linear classifiers create a separating hyperplane
in feature space. This hyperplane is usually characterized by its normal vector cT .
Feature parameters should thus be chosen to optimize the distance perpendicular to
this hyperplane. Adaptation requires a joint optimization of feature parameters and
classifier. Finally, for decision trees, the decision boundaries are in general parallel
to the feature space axes eT

i . Thus, the scatter perpendicular to the feature space
axes needs to be considered. The different methods of calculating the within- and
between-class scatter and the target function J are shown in Table 13.3, where μ0

and μ1 define the average feature vectors over the class 0 (with n0 representatives)
and class 1 (with n1 representatives), respectively. The target function aims at
maximizing the distance between the classes, while minimizing the scatter within
each class. The distance measure is selected in such a way that it favors the
separation perpendicular to boundaries that can be easily modeled by the different
classifiers.

Clearly, it will be beneficial for the simplicity of the optimization if the features
can be optimized independent of the current parametrization of the classifier, but
this will not always be the case. We can thus think of three different strategies:
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• For decision-tree classifiers and also for the nearest neighbor classifiers using the
L2-norm (‖x‖2 =

√
xT x) as a distance measure, one can optimize the features

independent of the current classifier. The optimization process thus consists of
calculating the target function and applying a numerical optimization method.

• For linear classifiers, the target function depends on the particular parametriza-
tion of the classifiers, as the direction of the decision boundary may change.
A similar situation is found if the Mahalanobis distance is used instead of the L2
norm for the nearest neighbor classifiers. The Mahalanobis distance accounts
for the variance differences of the individual features and scales the features
accordingly:

‖x‖Mahalanobis =
√
(x− μ)T Σ−1(x− μ),

where Σ is the covariance matrix of x.
In this case, the distance measure (and thus the target function) will change

depending on the distribution of the features. Clearly, this distribution will change
whenever the feature calculation is adapted. These changes have to be included
in the target function during the optimization. Alternatively, one may think of
optimizing the features for a fixed classifier (i.e., fixed direction of the decision
boundary or fixed distance measure) coming from the initial off-line training step.
This clearly simplifies the optimization process, but probably gives away some
potential for improvement.

• For some types of classifiers, such as neural networks, the decision boundary
is so complex that the basic concept of optimizing the scatter perpendicular to
the decision boundary cannot be directly applied. In this case, we propose to
implement a strategy similar to the “wrapper” approach that directly optimizes
classification accuracy. This joint feature and classifier optimization will lead to
a quite complex optimization problem, which is limiting its applicability.

Independent of the particular choice of strategy the resulting optimization prob-
lems are usually nonsmooth and—considering the discrete nature of the threshold—
even discontinuous. If there are only few parameters to tune, an exhaustive search is
possible. For more complicated data sets, we found that gradient descent methods
with a simple numerical estimation of the gradient work well. As usual, only a
local minimum can be guaranteed in this case. More details of the algorithms are
presented in [12].

13.4 Feature Adaptation Concept (On-line)

The basic assumption for the on-line adaptation of features is that a reasonable
initial set of parameters has been found and that also an initial set of training
data is available from which we can estimate certain feature statistics. The general
approach will then be a gradient-based optimization that uses a numeric estimate of
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the gradient. This is due to the discrete nature of many parameters, especially of the
threshold values that are usually chosen from a discrete set of 0,1, . . . ,255 for 8-bit
gray-level images.

Referring to Table 13.3, we find for the linear classifier that the gradient of
the target function J with respect to the classifier’s parameter c and the feature
parameters p can be calculated analytically. For the derivation, we reformulate sW

and sB of J(c,p) = sW(c,p)
sB(c,p)

, compute the partial derivatives ∂ sW(c,p)
∂c , ∂ sW(c,p)

∂p , ∂ sB(c,p)
∂c ,

∂ sB(c,p)
∂p , and combine them using the quotient rule

∂J(c,p)
∂ · =

∂ sW(c,p)
∂ · sB(c,p)− sW(c,p) ∂ sB(c,p)

∂ ·
sB(c,p)2 . (13.1)

By introducing the per class feature covariance matrices

Σk(p) =
1
nk

(
F(xk,p)− μk

)(
F(xk,p)− μk

)T
, (13.2)

we can rewrite the scatter terms into the quadratic forms

sW(c,p) = cT
(

Σ0(p)+Σ1(p)
)

c (13.3)

and

sB(c,p) = cT (μ0 − μ1)(μ0 − μ1)
T c . (13.4)

The vector-valued derivatives are then

∂ sW(c,p)
∂c

= 2
(

Σ0(p)+Σ1(p)
)

c (13.5)

∂ sB(c,p)
∂c

= 2(μ0 − μ1)(μ0 − μ1)
T c (13.6)

∂ sW(c,p)
∂p

= c
(

∂Σ0(p)
∂p

− ∂Σ0(p)
∂p

)
cT (13.7)

∂ sB(c,p)
∂p

= 2c(μ0 − μ1)

(
∂ μ0

∂p
− ∂ μ1

∂p

)
cT . (13.8)

Regarding the on-line adaptation, the key issue is to avoid the repeated processing
of a large number of test images. We thus have to make some compromises with
respect to the quality of the estimates of the second-order statistics and the gradients.

For the second-order statistics, we create two buffers in which we store samples.
These buffers are of fixed length with a typical size of 25–100 samples. Each
buffer corresponds to one of the two classes (accept/reject). Depending on the label
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Fig. 13.4 Overview of the concept for on-line feature optimization

obtained from the classifier or from an expert, the feature vectors F from the images
as well as their gradients with respect to the feature parameters p are routed to one
of the two buffers. The buffers can also be thought of as a sliding window over the
sequence of sample images. Based on the buffered samples, second-order statistics
(the average μ and the variances Σ ) of the features and the feature gradients are
computed along with their derivatives with respect to their parameters. From the
statistics and the classifier’s parameters c, the target function J and its gradients
with respect to c and p can be computed. Incremental optimization of the quality
criterion is then performed by updating the p and c in the direction of the negative
gradient of J. The step length is controlled by a fixed learning rate η :

pn+1 = pn −η∇pJn

cn+1 = cn −η∇cJn.

An overview of the whole concept is shown in Fig. 13.4.
A basic evaluation of this method on a simple test case showed that learning rates

of 0.001–0.01 lead to good results and that a buffer size of 25–100 is required. After
about 500 to 1,000 iterations (samples), the parameters were reasonably close to
their optimal values. It should be noted, however, that depending on the length of
the queue, there will also be fluctuations in the parameters.
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13.5 Experimental Evaluation

In order to assess the influence of feature optimization on the final classification
accuracy, we perform experiments with artificial and real-world test data. Starting
from a standard off-line classification approach, we investigate how much can be
gained by including a separate optimization step for the features.

13.5.1 Test Data

13.5.1.1 Test Data for Blob Analysis

For optimizing the blob-analysis features, an artificial data set of images was
created. The images are preprocessed so that they only show the potential defects
(objects). These images are called “contrast images,” whose (gray scale) pixel values
depend on the degree of deviation from the “normal” appearance of the part (white
denoting complete similarity, black denoting complete dissimilarity). This may be
considered an abstraction of a surface inspection task in machine vision. By using
contrast images, we remove the application-specific low-level image processing
from our consideration and focus purely on the classification problem. Figure 13.5
shows an example that represents a deviation image from a printing process: blobs
that correspond to potential defects are highlighted in different gray levels.

We used five sets of artificial test data, each with 20,000 images, which were
labeled automatically either as good (accept) or as bad (reject) with about 10,000
images in each class. In order to generate the labels, a set of rules was used for

Fig. 13.5 For testing, we use
contrast images. Only
deviations from the normal
appearance are shown in the
image, the background is
removed
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Fig. 13.6 Texture mosaic m1 (right) built from five source textures (top row) according to the
ground truth map (left)

each set of test images. The rules were based on descriptions that are regularly
found in quality control instructions, such as “part is bad, if there is a fault with size
>1.5 mm.” The rules also included more complicated combinations, such as “part
is bad, if there is a cluster of 4 faults, each with a size >0.75 mm.” Three to five
such rules were logically combined for each set of images. The images and the rules
were chosen to have some resemblance to inspection of machined parts.

13.5.1.2 Test Data for Texture Segmentation

In order to assess the discriminative power of texture features, we perform a texture
segmentation experiment on so-called texture mosaics. A texture mosaic m(x,y) is
built from n source textures si(x,y), i = 1, . . . ,n. For each pixel of m(x,y), the ground
truth map t(x,y) defines its source texture index si. Figure 13.6 shows the source
textures, ground truth map, and the resulting mosaic for n = 5.

In order to investigate the adaptation properties of Gabor-feature-based segmen-
tation, we utilize mosaics combined from Brodatz [3], VisTex [23], and MeasTex
[30] source textures to ensure diverse texture properties. Diversity of the source
textures is crucial for our experiments as it calls for Gabor filter (banks) that
adapt to the specific properties of each source texture. Table 13.4 contains detailed
information about the selected mosaics. Figure 13.7 shows all texture mosaics and
their ground truth information, respectively.
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Table 13.4 All evaluated texture mosaics. The mosaics m1 to m5 are
composed from five source textures each and are available on-line [26].
Mosaics m6 and m7 are composed from two source textures in order to
obtain reasonable test data for single Gabor filter adaptation. All texture
mosaics are shown in Fig. 13.7

ID Size n Source of textures

m1 256 × 256 5 Brodatz
m2 256 × 256 5 VisTex
m3 256 × 256 5 VisTex
m4 256 × 256 5 VisTex
m5 256 × 256 5 MeasTex
m6 256 × 256 2 Brodatz, Vistex
m7 256 × 256 2 Brodatz, Vistex

Fig. 13.7 Texture mosaics m1 to m7 and the corresponding ground truth maps
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13.5.2 Classification with Adaptive Features

This section describes how the classification experiment based on adaptive features
was conducted. The quantitative results of these experiments are discussed in
Sect. 13.5.3.

13.5.2.1 Blob Analysis Features

For those features that allow an optimization, one parameter was chosen, which in
most cases was a gray-level threshold value. If the pixel was above the threshold,
it was considered as belonging to the fault and otherwise as belonging to the
background. A reasonable range for the threshold was between 0 and 255 (as we
deal with 8-bit gray-level images, these are the minimum and maximum values of
the pixels). For the sake of optimization, this range was scaled to an interval of [0,1].
The goal was to adapt these thresholds in such a way that the classification accuracy
is improved and that the decision boundary can be more easily reproduced by the
classifier.

Regarding the computational complexity, it should be noted that the computa-
tional effort of optimizing the feature parameters can be significant. This is caused
by the fact that for each iteration, the features of all objects in all images need to be
calculated with the current parameter settings. Depending on the size and number
of the images, this optimization may take several hours. On the other hand, once
the optimal parameters are found, the feature calculation and classification takes the
same amount of time as for any other method. With respect to the application of
surface inspection, this is important because the “on-line” processing of the images,
which usually has tight constraints on computing time, is not affected. It is just the
“off-line” training process that becomes quite time-consuming.

13.5.2.2 Gabor Features

We choose a fixed feature extraction method, classification, and postprocessing
setup in order to investigate the influence of feature adaptation on the segmentation
accuracy. These subsequent processing steps are briefly outlined below as it is not
the aim of our evaluation to optimize classification or postprocessing. A detailed
discussion of Gabor filter (bank) optimization can be found in Sect. 13.5.3.2.

For feature extraction, we choose Gabor energy features to compute a feature
map as described in Sect. 13.2.2 as their computational costs are reasonably low
to perform multiple segmentation runs. Thus, we obtain a feature vector F of
dimensionality d for each texture mosaic location ωi = (x,y), where d is the number
of Gabor filters in the filter bank. The training feature matrix is created by randomly
selecting 200 feature vectors per source texture.
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Table 13.5 Change of
classification accuracy
achieved by optimizing the
feature calculation for
different classifiers

Classifier Initial (%) Optimized (%)

C4.5 74.2 88.08
CART 73.8 87.77
Cluster-based 74.0 77.9
kNN 68.7 87.8

For the pixel classification, we choose two methods. We compute the mean Fisher
criterion as described above to obtain a score that is independent from the classifier
and describes the separation between the different texture classes for the current
feature parameters. In order to obtain mosaic class-label results, we train a Random
forest (RF) [2] with 300 trees on the source textures in order to classify each pixel
of the texture mosaic. We rely on the R-package of the Random forrest available at
http://cran.r-project.org/web/packages/randomForest/.

It is well known [13] that filtering of the class label improves the segmentation
accuracy which is measured as ratio of misclassified pixels divided by the total
number of mosaic pixels.

To remove isolated pixels and to smooth the boundaries between the segmented
regions, we apply a filtering approach [13] of the classification result. Therefore,
we assign that class label to a pixel that occurs most frequently in its 24 × 24
neighborhood.

For all experiments, we postprocess our class labels by applying a filter that
replaces each label with the mode of its surrounding (size 24× 24).

13.5.3 Results

The results are discussed separately for blob and Gabor features as these tasks differ
in terms of classification and postprocessing of the results. Despite these differences,
we show that both machine vision tasks benefit from feature adaptation.

13.5.3.1 Blob Analysis Features

We have chosen four different classifiers that performed well on surface inspection
tasks and used target functions of Table 13.3 for optimization. Even though this
required the repeated processing of 10,000 images an exhaustive search was
performed in order to be sure that the global optimum is found. The improvement
in classification accuracy that could be achieved is shown in Table 13.5.

For some classifiers, the change is quite substantial, and we find improvements
of more than 10%. It should be noted however that the gain that can be achieved
highly depends on the initial parameter settings. If these parameters are preset by
a machine vision expert, then the improvement may be minimal, if any. Feature

http://cran.r-project.org/web/packages/randomForest/
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Table 13.6 Parameter ranges that consti-
tute the parameter grid for single Gabor filter
optimization. The reciprocal of the filter
wavelength (1/λ ) denotes the number of
cycles of the plane wave for the whole image

Parameter Range

Wavelength: λ [1/11,1/47]
Orientation: θ [0,π ]
Elongation: γ [0.3,0.7]
Size of Gaussian: cσ [0.3,0.7]

Table 13.7 This table shows the filter parameters that resulted in the highest classification
accuracy per mosaic. It lists the average Fisher criterion, the accuracy for classification with
density estimation, and the corresponding filter parameters for single Gabor filter optimization

Mosaic ID Fisher criterion Accuracy (%) Parameters

m1 0.946 61.5 λ = 0.026,θ = 0.000,γ = 0.5,cσ = 0.7
m2 0.858 53.7 λ = 0.029,θ = 1.396,γ = 0.3,cσ = 0.7
m3 0.959 49.9 λ = 0.091,θ = 0.000,γ = 0.7,cσ = 0.5
m4 0.788 46.2 λ = 0.091,θ = 0.000,γ = 0.7,cσ = 0.5
m5 0.691 40.2 λ = 0.091,θ = 1.047,γ = 0.7,cσ = 0.5
m6 0.950 92.5 λ = 0.032,θ = 1.396,γ = 0.7,cσ = 0.7
m7 1.968 98.2 λ = 0.091,θ = 0.000,γ = 0.7,cσ = 0.7

adaptation, however, may help for those features that have multiple parameters. The
results given as “initial” in Table 13.5 were obtained for parameter values chosen as
a first guess by an expert without further manual optimization.

13.5.3.2 Gabor Features

Gabor filters offer many tuning knobs that are likely to influence the discriminative
power of any Gabor feature. These parameters (λ , θ , γ , cσ ) were already discussed
in Sect. 13.2.2. The parameter ϕ , which determines the shift of the sinusoidal plane
wave will not be tuned as we require both the symmetric and the antisymmetric filter
response to compute Gabor energy features. Table 13.6 contains the parameters’
ranges that form our search grid for single Gabor filter optimization.

As we are dealing with a one-dimensional feature space in single filter op-
timization, we do not apply a complex RF but a classifier that fits a Gaussian
density to each texture class and assigns a mosaic pixel to the class with highest
probability for the pixels’ feature value. The results for single filter optimization
are listed in Table 13.7 and visualized in Fig. 13.8. The classification accuracy is
substantially above the baseline accuracy (i.e., 20% for m1 to m5 and 50% for m6,
m7) for all mosaics. We can also observe that the Fisher criterion scores do not
necessarily correlate with the classification accuracy because of the postprocessing
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Fig. 13.8 Results for single Gabor filter optimization. The top row shows the ground truth map,
and the middle row contains the best segmentation result obtained for the Gabor filter show in the
bottom row (Fourier domain)

Table 13.8 Parameter ranges that constitute the parameter grid for filter bank optimization

Parameter Range Comments

Wavelength: λl [1/11,1/47] Wavelength of the filter with lowest frequency
Orientation offset: oθ [0,π/Θ ] oθ is added to the equidistant orientation values
Elongation: γ 0.5 Not tuned to reduce the computational costs
Size of Gaussian: cσ [0.3,0.7]
No. scales: Λ [1,4] For example Λ = 3, λl = 11 then λ ∈ {1/11,1/19,1/35}
No. orientations: Θ [2,8] Orientation of filter j: θ j = ( j−1)∗ (π/Θ)

of the segmentation result. In general, we can observe that a single filter is not
sufficient to distinguish between five texture classes while a two-class segmentation
problem can be solved with reasonable accuracy.

However, a single Gabor filter is likely to be insufficient for real-world segmenta-
tion tasks as the classification decision is obtained on the basis of a one-dimensional
feature space. Thus, Gabor filter banks that contain a family of self-similar Gabor
filters are typically applied for classification, segmentation, and retrieval systems.
The optimization of a whole Gabor filter bank introduces several additional param-
eters such as the number of filter orientations Θ and scales Λ . In order to reduce the
computation cost for optimization, it is worthwhile to consider interdependencies
between different parameters. For instance, the filter orientation which can be
chosen in the range [0,π ] for a single feature can be treated as orientation offset
oθ in case of a filter bank that alters the filters orientation that is typically chosen
equidistant to cover the range of [0,π ]. The tuned parameters are listed in Table 13.8.

The results for the Gabor filter bank optimization are listed in Table 13.9 and
visualized in Fig. 13.9. We compare our results to the baseline, obtained for the
Gabor filter bank proposed in [13] that is based on experimental findings on early



13 Optimizing Feature Calculation in Adaptive Machine Vision Systems 371

Table 13.9 This table shows the filter bank parameters that resulted in the highest RF classifica-
tion accuracy per mosaic. It lists the average Fisher criterion, the baseline accuracy obtained for the
filter bank proposed in [13], the RF accuracy, and the corresponding Gabor filter bank parameters

Mosaic
ID

Fisher
criterion

Baseline
accuracy (%)

RF
accuracy (%) Parameters

m1 2.520 95.3 97.0 λl = 0.029,oθ = 0.196,cσ = 0.5,Λ = 3,Θ = 8
m2 0.524 70.8 77.0 λl = 0.037,oθ = 0.000,cσ = 0.3,Λ = 3,Θ = 2
m3 1.178 69.4 75.6 λl = 0.053,oθ = 0.000,cσ = 0.5,Λ = 3,Θ = 6
m4 1.129 65.8 72.8 λl = 0.053,oθ = 0.000,cσ = 0.3,Λ = 3,Θ = 6
m5 1.979 77.1 82.0 λl = 0.029,oθ = 0.000,cσ = 0.7,Λ = 3,Θ = 8
m6 1.390 98.9 99.1 λl = 0.029,oθ = 0.000,cσ = 0.5,Λ = 3,Θ = 4
m7 2.251 98.9 99.5 λl = 0.037,oθ = 0.000,cσ = 0.5,Λ = 3,Θ = 8

Fig. 13.9 Segmentation results for an optimized Gabor filter bank. The top row shows the ground
truth map, and the middle row contains the best segmentation result obtained for the Gabor filter
bank shown in the bottom row (Fourier domain)

human vision processes. Therefore, this baseline is no arbitrary choice of filter bank
parameters but a setting that is hard to improve without excessive knowledge about
Gabor filter design and the application domain.

Compared to the baseline, a substantial gain in segmentation accuracy could be
achieved with Gabor filter bank optimization. Interestingly, the best filter banks
differ with respect to many parameters. For instance, the best segmentation for
m2 was obtained for a filter bank with Θ = 2, whereas for m5, eight different
orientations gave the best result. In general, a substantial reduction of the segmen-
tation error rate (between 54.6% and 18.2%, average 27.5%) could be achieved.
This clearly demonstrates that Gabor filter optimization should be conducted
on a common basis, as feature selection and classifier hyperparameter selection,
whenever a segmentation system is designed.
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13.6 Conclusion

Features are a way of compressing raw data into a set of real numbers that represent
the relevant information contained in the original data.

The properties of the raw data that are relevant cannot be determined a priori, but
are application dependent. To tune features to the particular application, one may
use the parameters available in feature calculation to optimize the features in such
a way that the margin between the classes in a classification problem is increased.
Furthermore, it may also shape the decision boundary so that it can be more easily
reproduced by the classifier. This optimization may take place in an off-line mode
or in an on-line mode.

In most cases, the assumption is that an initial set of features and possibly also an
initial classifier are already in place. The purpose of feature optimization is then to
provide an additional increase in robustness and classification performance. Tests on
two quite different applications (decision making based on blob features and texture
segmentation) have shown that parameter tuning has a positive influence on the ac-
curacy of a classifier. This increase may be substantial in some situations and feature
adaptation may be particularly helpful if the underlying processes that generate the
raw data are instationary. The improvement that can be achieved, however, depends
on the ability of the machine vision expert to preset the parameters. The main area
in which feature optimization can be used with great effect are thus features with
a larger number of tunable parameters and complex machine learning problems,
where the effects of parameter changes cannot be easily assessed.

In this chapter, we demonstrated the effect of feature adaptation for two kinds of
applications using blob features that are common in real-world inspection systems,
as well as Gabor features that are a common choice for tasks related to segmentation,
classification and retrieval of (textured) images. For both scenarios, we demon-
strated a substantial reduction of the classification error rate that underpins the need
for feature adaptation whenever a feature-based machine vision system is designed.
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