
Chapter 10
Sequential Adaptive Fuzzy Inference System
for Function Approximation Problems

Hai-Jun Rong

Abstract In the classic approaches to design a fuzzy inference system, the fuzzy
rules are determined by a domain expert a priori and then they are maintained
unchanged during the learning. These fixed fuzzy rules may not be appropriate
in real-time applications where the environment or model often meets unpredicted
disturbances or damages. Hence, poor performance may be observed. In comparison
to the conventional methods, fuzzy inference systems based on neural networks,
called fuzzy-neural systems, have begun to exhibit great potential for adapting
to the changes by utilizing the learning ability and adaptive capability of neural
networks. Thus, a fuzzy inference system can be built using the standard structure
of neural networks. Nevertheless, the determination of the number of fuzzy rules
and the adjustment of the parameters in the if-then fuzzy rules are still open
issues. A sequential adaptive fuzzy inference system (SAFIS) is developed to
determine the number of fuzzy rules during learning and modify the parameters
in fuzzy rules simultaneously. SAFIS uses the concept of influence of a fuzzy rule
for adding and removing rules during learning. The influence of a fuzzy rule is
defined as its contribution to the system output in a statistical sense when the input
data is uniformly distributed. When there is no addition of fuzzy rules, only the
parameters of the “closest” (in a Euclidean sense) rule are updated using an extended
Kalman filter (EKF) scheme. The performance of SAFIS is evaluated based
on some function approximation problems, via, nonlinear system identification
problems and a chaotic time-series prediction problem. Results indicate that SAFIS
produces similar or better accuracies with lesser number of rules compared to other
algorithms.
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10.1 Introduction

A fuzzy inference system can model the qualitative aspects of human knowledge and
reasoning processes using fuzzy if-then rules. Based on this, many ill-defined and
uncertain systems in some disciplines such as engineering, economics, and other
areas [6, 10, 16, 18, 20, 23, 24, 29, 31] can be handled without employing precise
quantitative analysis. The experiment results have demonstrated that the fuzzy
inference systems are very useful to solve some practical problems involving a high
level of uncertainty, complexity, or nonlinearity compared with the conventional
modeling methods. However, the superior performance of fuzzy inference systems
mainly depends on the fuzzy rules. If the fuzzy rules are not appropriate and deviate
from the requirement of the system itself, this may result in poor performance. On
the other hand, although the rules are correct, it is hard to determine the appropriate
parameters for the fuzzy rules. Inappropriate parameters also may result in poor
performance.

To solve these problems, many researchers have built fuzzy-neural systems by
incorporating the fuzzy inference process in the structure of neural networks and
then the learning ability of neural networks are used to adjust the fuzzy rules. Except
for some special fuzzy-neural systems which made use of fuzzy neurons and fuzzy
weights [7, 25], most of the recent fuzzy-neural systems [1, 3, 5, 11, 13, 17, 19, 32]
have been built based on the standard feed-forward network with local fields to
approximate the fuzzy inference systems with local properties. In these fuzzy-neural
systems, the neurons with local fields correspond to the fuzzy rules and the proposed
algorithms for designing the fuzzy-neural systems have considered two issues, that
is, the structure identification and the parameter adjustment. Structure identification
determines the input–output space partition, antecedent and consequent variables of
if-then rules, number of such rules, and initial positions of membership functions.
The task of parameter adjustment involves realizing the parameters for the fuzzy
system structure determined in the previous step [21].

The researchers [5, 13, 15, 19, 27, 28, 30, 32] have tried to develop many efficient
approaches for solving the two issues. These methods can be broadly divided into
two classes, namely, batch learning schemes and sequential learning schemes. In
batch learning, it is assumed that the complete training data is available before the
training commences. The training usually involves cycling the data over a number
of epochs. In sequential learning, the data arrives one by one, and after the learning
of each data, it is discarded and the notion of epoch does not exist. In practical
applications, new training data arrives sequentially, and to handle this using batch
learning, one has to retrain the network all over again, resulting in large training
time. Hence, in these cases, sequential learning algorithms are generally preferred
over batch learning algorithms as they do not require retraining whenever a new data
is received. The sequential fuzzy-neural scheme, which is discussed in this chapter,
has the following distinguishing features:

1. All the training observations are sequentially (one by one) presented to the
system.

2. At any time, only one training observation is seen and learned.
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3. A training observation is discarded as soon as the learning procedure for that
particular observation is completed.

4. The learning system has no prior knowledge as to how many total training
observations will be presented.

Thus, if one strictly applies the above features of the sequential algorithms, many
of the existing algorithms are not sequential. One major bottleneck seems to be that
they need the entire training data ready for training before the training procedure
starts and thus they are not really sequential. This point is highlighted in a brief
review of the existing algorithms given below.

Jang [11] has developed an adaptive-network-based fuzzy inference system
(ANFIS) where a hybrid learning method was utilized to identify the system
parameters. The parameters in the membership functions were updated by a gradient
descent method, and the parameters in the consequent parts were adjusted by means
of a least-square error method. The number of fuzzy rules was determined according
to a grid-type partition which resulted in the exponential increase of the number
of fuzzy rules as the input variables increased. Chiu [4] solved this problem by
selecting some significant input variables from all the input variables as the input of
the fuzzy systems. However, these algorithms require cycling the whole training
data over a number of learning cycles (epochs). Thus, they are batch learning
algorithms. Besides, in these algorithms, the number of fuzzy rules are determined
beforehand and cannot be varied according to learning process.

Many approaches [5, 13, 19, 32] have been proposed based on the functional
equivalence between a radial basis function (RBF) neural network and a fuzzy
inference system to achieve the determination of the number of fuzzy rules and
parameter adjustment simultaneously during learning. These schemes utilize the
learning capabilities of the RBF for changing the rules as well as adjusting the
parameters since the hidden neurons of the RBF networks are related to the fuzzy
rules [12]. A significant contribution to sequential learning in RBF network was
made by Platt [26] through the development of resource allocation network (RAN).
In RAN, the network starts with no hidden neurons but adds hidden neurons based
on the novelty of the input data. Most of the recent algorithms for adaptively creating
fuzzy systems are based on the ideas of RAN. These algorithms claim to be “on-
line” algorithms, and if one looks closely at them, they are not sequential as per the
above distinguishing features.

A hierarchically self-organizing approach proposed by Cho and Wang [5]
automatically generated fuzzy rules without predefining the number of fuzzy rules
based on the error and distance criterion of fuzzy basis functions. The parameters
in the fuzzy rules were modified by the gradient descent algorithm. However, the
algorithm requires cycling the whole training data over a number of learning cycles
(epochs), and hence, it is not a truly sequential learning scheme.

Juang and Lin [13] have proposed a self-constructing neural fuzzy inference
network (SONFIN) in which the fuzzy rules were extracted online from the training
data together with the parameter update for all existing fuzzy rules using the gradient
descent method. For adding a new fuzzy rule, SONFIN utilized the distance criterion
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between the new input data and the center of the Gaussian membership function in
the existing fuzzy rules. Although this algorithm is sequential in nature, it does not
remove the fuzzy rules once created even though that rule is not effective. This may
result in a structure where the number of rules may be large.

In most of the real applications, not all fuzzy rules contribute significantly to
the system performance during the entire time period. A fuzzy rule may be active
initially, but may later contribute little to the system output. For this reason, the
insignificant fuzzy rules have to be removed during learning to realize a compact
fuzzy system structure. Using the ideas of adding and pruning hidden neurons to
form a minimal RBF network in [33], a hierarchical on-line self-organizing learning
algorithm for dynamic fuzzy neural networks (DFNN) has been proposed in [32].
Another on-line self-organizing fuzzy neural network (SOFNN) proposed by Leng
et al. [19] also included a pruning method. The pruning method utilized the optimal
brain surgeon (OBS) approach to determine the importance of each rule. In the two
algorithms, the least-square error method was utilized to update the parameters for
all the existing fuzzy rules. However, in these two algorithms the pruning criteria
need all the past data received so far. Hence, they are not strictly sequential and
further requires increased memory for storing all the past data.

A dynamic evolving neural-fuzzy inference system (DENFIS) was proposed
by Kasabov and Song [17] where the fuzzy rules were created depending on the
position of the input vector in the input space and the output was dynamically
calculated based on m-most active fuzzy rules which have been created during the
past learning process. Angelov and Filev [3] proposed an evolving Takagi–Sugeno
model (eTS) that recursively updated TS model structure based on the potential of
the input data (defined based on its distances to all other data points received so
far). In this algorithm, a new rule was added when the potential of the new data
was higher than the potential of the existing rules, or a new rule was modified
when the potential of the new data was higher than the potential of the existing
rules and the new data was close to an old rule. These two algorithms are truly
sequential learning algorithms. However, the algorithms cannot simplify the rule
base during learning by ignoring the rules which may become irrelevant with the
future data samples when the data sample sequentially arrives. A simplified version
of the eTS learning algorithm that simplified the rule base, called the simpl eTS, was
proposed by Angelov and Filev [1]. The algorithm utilized the concept of the scatter
which was similar to the notion of potential but computationally more efficient.
The algorithm could simplify the rule base to make the rules representative based
on the population of each rule determined by the number of the data samples that
belonged to a particular cluster. If the population of a rule was less than 1% of the
total data at the moment of appearance of a rule, the rule was ignored from the rule
base by setting its firing strength to zero. Besides, these algorithms employed the
least-square error method to modify the parameters of the existing fuzzy rules.

In this chapter, a sequential adaptive fuzzy inference system (SAFIS) is devel-
oped to realize a compact fuzzy system with lesser number of rules. SAFIS uses
the idea of functional equivalence between a RBF neural network and a fuzzy
inference system. Here, SAFIS uses the growing and pruning RBF (GAP-RBF)
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neural network proposed by Huang et al. [8]. The SAFIS algorithm consists of
two aspects: determination of the fuzzy rules and adjustment of the premise and
consequent parameters in fuzzy rules.

SAFIS uses the concept of influence of a fuzzy rule to add and remove rules
during learning. SAFIS starts with no fuzzy rules, and based on the data, builds up
a compact rule base. During the learning, only the current data is made use of, and
there is no need to store all the past data. The influence of a fuzzy rule is defined as
its contribution to the system output in a statistical sense. Here, we have derived an
expression for this for the case where the input data is uniformly distributed. The
parameter adjustment is done using a winner rule strategy where the winner rule is
defined as the one closest to the latest input data, and the parameter update is done
using an extended Kalman filter (EKF) mechanism.

10.2 Architecture of SAFIS

A function approximation problem can be described as follows. Suppose the sample
data, {(xn,yn) : n = 1,2, . . .}, are observed, where xn is a Nx-dimensional features
of observation n and yn is its target output of dimension Ny. It is assumed that the
observation data are free of noise, and an underlying function f exists between the
target output yn and feature space xn from the known set of data:,

yn = f (xn). (10.1)

The aim of the SAFIS algorithm is to approximate f such that:

ŷn = f̂ (xn), (10.2)

where ŷn is the output of SAFIS. This means that the objective is to minimize
the error between the system output and the output of SAFIS, ‖yn − ŷn‖. Before
describing the details of the algorithm, the structure of SAFIS network is first
described below.

The structure of SAFIS illustrated by Fig. 10.1 consists of five layers to realize
the following fuzzy rule model:

Rule k : if (x1 is A1k) . . . (xNx is ANxk), then (ŷ1 is a1k) . . . (ŷNy is aNyk), where
a jk( j = 1,2, . . . ,Ny;k = 1,2, . . . ,Nh) is a constant consequent parameter in rule k,
Aik(i = 1,2, . . . ,Nx) is the membership value of the ith input variable xi in rule k, Nx

is the dimension of the input vector x(x = [x1, . . . ,xNx ]
T ), Nh is the number of fuzzy

rules, and Ny is the dimension of the output vector ŷ(ŷ = [ŷ1, . . . , ŷNy ]
T ). In SAFIS,

the number of fuzzy rules Nh varies. Initially, there is no fuzzy rule and then during
learning, fuzzy rules are added and removed.

Layer 1: In layer 1, each node represents an input variable and directly transmits
the input signal to layer 2.
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Fig. 10.1 Structure of SAFIS

Layer 2: In this layer, each node represents the membership value of each input
variable. SAFIS utilizes the function equivalence between a RBF network and a FIS,
and thus, its antecedent part (if part) in fuzzy rules is achieved by Gaussian functions
of the RBF network. The membership value Aik(xi) of the ith input variable xi in the
kth Gaussian function is given by:

Aik(xi) = exp

(
− (xi − μik)

2

σ2
k

)
,k = 1,2, . . . ,Nh, (10.3)

where Nh is the number of the Gaussian functions, μik is the center of the kth
Gaussian function for the ith input variable, and σk is the width of the kth Gaussian
function. In SAFIS, the width of all the input variables in the kth Gaussian function
is the same.

Layer 3: Each node in the layer represents the if part of if-then rules obtained by
the sum-product composition, and the total number of such rules is Nh. The firing
strength (if part) of the kth rule is given by:

Rk(x) =
Nx

∏
i=1

Aik(xi) = exp

(
−

Nx

∑
i=1

(xi − μik)
2

σ2
k

)
= exp

(
−‖x− μk‖2

σ2
k

)
. (10.4)
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Layer 4: The nodes in the layer are named as normalized nodes whose number is
equal to the number of the nodes in third layer. The kth-normalized node is given by:

R̄k =
Rk(x)

Nh

∑
k=1

Rk(x)
. (10.5)

Layer 5: Each node in this layer corresponds to an output variable, which is given
by the weighted sum of the output of each normalized rule. The system output is
calculated by:

ŷ =

Nh

∑
k=1

Rk(x)ak

Nh

∑
k=1

Rk(x)
, (10.6)

where ŷ = [ŷ1, ŷ2, . . . , ŷNy ]
T ,ak = [ak1,ak2, . . . ,akNy ]

T .
Similar to the significance concept of a neuron in GAP-RBF [8], the SAFIS

algorithm uses the concept of “influence” of a rule to realize the growing and
pruning of fuzzy rules. It is described below.

10.2.1 “Influence” of a Fuzzy Rule

As per (10.6), the contribution of the kth rule to the overall output for an input
observation xl is given by:

E(k, l) = ‖ak‖ Rk(xl)
Nh

∑
k=1

Rk(xl)

. (10.7)

Then the contribution of the kth rule to the overall output based on all input data N
received so far is obtained by:

E(k) = ‖ak‖

N
∑

l=1
Rk(xl)

Nh

∑
k=1

N
∑

l=1
Rk(xl)

. (10.8)

Dividing both the numerator and denominator by N in (10.8), the equation becomes:

E(k) = ‖ak‖

N
∑

l=1
Rk(xl)/N

Nh

∑
k=1

N
∑

l=1
Rk(xl)/N

. (10.9)



254 H.-J. Rong

Using the significance concept of GAP-RBF [8], the influence of the kth fuzzy
rule is defined as its statistical contribution to the overall output of SAFIS. When
N → ∞, the influence of the kth rule is given by:

Einf(k) = lim
N→∞

E(k) = lim
N→∞

‖ak‖

N
∑

l=1
Rk(xl)/N

Nh

∑
k=1

N
∑

l=1
Rk(xl)/N

. (10.10)

Calculation of Einf(k) using the above equation requires the knowledge of (xl ,yl),
l = 1, . . . ,N. In the truly sequential learning scheme, this is not possible. An alternate
way of calculating Einf(k) is by using the distribution of the inputs and follows the
same approach as introduced in [9]. In order to compute Einf(k), one has to compute
first Ek defined by:

Ek = lim
N→∞

N
∑

l=1
Rk(xl)

N
. (10.11)

Assume that the observations, (xl ,yl), l = 1, . . ., are drawn from a sampling range
X with a sampling density function p(x). Consider a situation where N observations
have been learned by the sequential learning scheme. Let the sampling range X
be divided into M small spaces Δ j, j = 1, . . . ,M. The size of Δ j is represented by
S(Δ j). Since the sampling density function is p(x), there are around N · p(xj) ·S(Δ j)
samples in each Δ j, where x j is any point chosen in Δ j. When the number of input
observations N is large and Δ j is small from (10.11), we have:

Ek ≈ lim
M→∞

M
∑
j=1

Rk(x j) ·N p(x j) ·S(Δ j)

N

= lim
M→∞

M

∑
j=1

Rk(x j) · p(x j) ·S(Δ j)

=

∫
X

Rk(x)p(x)dx

=

∫
X

exp

(
−‖x− μk‖2

σ2
k

)
p(x)dx. (10.12)

If the distribution of the Nx attributes (x1, . . . ,xi, . . . ,xNx)
T of observations x’s

are independent from each other, the density function p(x) of x can be written as
follows: p(x) = ∏Nx

i=1 pi(xi), where pi(x) is the density function of the i-th attribute
xi of observations. In this case, (10.12) can be re-written as:

Ek =

∫
· · ·
∫

X
exp

(
−‖x− μk‖2

σ2
k

)
p(x)dx

=
Nx

∏
i=1

(∫ bi

ai

exp

(
−‖x− μk,i‖2

σ2
k

)
pi(x)dx

)
, (10.13)
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where Nx is the dimension of the input space X and (ai,bi) is the interval of the i-th
attribute xi of observations, i = 1, . . . ,Nx.

Equation (10.13) involves the integration of the probability density function p(x)
in the sampling range X . When the input samples are uniformly drawn from a range
X , the sampling density function p(x) is given by p(x) = 1

S(X) , where S(X) is the

size of the range X given by S(X) =
∫

x 1dx. Substituting for p(x) in (10.12), we get:

Ek =

∫
X

exp

(
−‖x− μk‖2

σ2
k

)
1

S(X)
dx. (10.14)

Note that, in general, the width σk of a rule k is much less than the size of range X ,
the above equation can be approximated as:

Ek ≈ 1
S(X)

(
2
∫ +∞

0
exp

(
− x2

σ2
k

)
dx

)Nx

=
πNx/2σNx

k

S(X)

=
(1.8σk)

Nx

S(X)
. (10.15)

Thus, based on (10.15), the influence of the kth rule is given by:

Einf(k) = ‖ak‖ (1.8σk)
Nx

Nh

∑
k=1

(1.8σk)Nx

. (10.16)

It is noteworthy that the significance of a neuron proposed in GAP-RBF [8] is
defined based on the average contribution of an individual neuron to the output
of the RBF network. Under this definition, one may need to estimate the input
distribution range S(X). However, the influence of a rule introduced here is different
from the significance of a neuron proposed in GAP-RBF [8]. In fact, the influence
of a neuron is defined as the relevant significance of the neuron compared to
summation of significance of all the existing RBF neurons. Seen from (10.16), with
the introduction of influence, one need not estimate the input distribution range S(X)
and the implementation has been simplified.

Influence of a rule is utilized for the addition and deletion of a fuzzy rule in
SAFIS algorithm as indicated below.

10.2.2 SAFIS Algorithm

The learning algorithm of SAFIS consists of two aspects: determination of fuzzy
rules and adjustment of the premise and consequent parameters in fuzzy rules.
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SAFIS can automatically add and remove fuzzy rules using ideas similar to GAP-
RBF [8] for hidden neurons. A description of dynamically adding and removing
the fuzzy rules along with the details of parameter adjustment when there are no
addition of rules is given below.

10.2.2.1 Adding of Fuzzy Rules

SAFIS begins with no fuzzy rules. When the first input x1,y1 is received, it is
translated into the first rule whose parameters are given as, μ1 = x1,a1 = y1,σ1 =
κ‖x1‖. Then, as inputs xn,yn (n > 1 is the time index) are received sequentially
during learning, growing of fuzzy rules is based on the following two criteria which
are distance criterion and the influence of the new added fuzzy rule Nh + 1:

‖xn − μnr‖ > εn

Einf(Nh + 1) = ‖en‖ (1.8κ‖xn− μnr‖)Nx

Nh+1
∑

k=1
(1.8σk)Nx

> eg, (10.17)

where εn, eg are thresholds to be selected appropriately, xn is the latest input data,
μnr is the center of the fuzzy rule nearest to xn, and eg is the growing threshold
and is chosen according to the desired accuracy of SAFIS. en = yn − ŷn, yn is the
true value, ŷn is the approximated value, κ is an overlap factor that determines the
overlap of fuzzy rules in the input space, and εn is the distance threshold which
decays exponentially and is given by:

εn = max{εmax × γn,εmin} , (10.18)

where εmax,εmin are the largest and smallest length of interest and γ is the decay
constant. The equation shows that initially it is the largest length of interest in the
input space which allows fewer fuzzy rules to coarsely learn the system and then it
decreases exponentially to the smallest length of interest in the input space which
allows more fuzzy rules to finely learn the system.

10.2.2.2 Allocation of Antecedent and Consequent Parameters

When the new fuzzy rule Nh + 1 is added, its corresponding antecedent and
consequent parameters are allocated as follows:

⎧⎨
⎩

aNh+1 = en

μNh+1 = xn

σNh+1 = κ‖xn − μnr‖
(10.19)
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10.2.2.3 Parameter Adjustment

In parameter modification, SAFIS utilizes a winner rule strategy similar to the work
done by Huang et al. [8]. The key idea of the winner rule strategy is that only the
parameters related to the selected winner rule are updated by the EKF algorithm in
every step. The “winner rule” is defined as the rule that is closest (in the Euclidean
distance sense) to the current input data as in [8]. As a result, a fast computation is
achieved in SAFIS.

The parameter vector existing in all the fuzzy rules is given by:

θ n =
[

θ1 . . . θnr . . . θNh

]T
=
[

a1,μ1,σ1, . . . , anr,μnr,σnr, . . . , aNh ,μNh ,σNh

]T
, (10.20)

where θ nr = [anr,μnr,σnr] is the parameter vector of the nearest fuzzy rule and its
gradient is derived as follows:

ȧnr =
∂ ŷn

∂anr
=

∂ ŷn

∂Rnr

∂Rnr

∂anr
=

Rnr
Nh

∑
k=1

Rk

μ̇nr =
∂ ŷn

∂ μnr
=

∂ ŷn

∂Rnr

∂Rnr

∂ μnr
=

anr − ŷn
Nh

∑
k=1

Rk

∂Rnr

∂ μnr

σ̇nr =
∂ ŷn

∂σnr
=

∂ ŷn

∂Rnr

∂Rnr

∂σnr
=

anr − ŷn
Nh

∑
k=1

Rk

∂Rnr

∂σnr

∂Rnr

∂ μnr
= 2Rnr

xn − μnr

σ2
nr

∂Rnr

∂σnr
= 2Rnr

‖xn − μnr‖2

σ3
nr

. (10.21)

After obtaining the gradient vector of the nearest fuzzy rule, that is, Bnr =
[ȧnr, μ̇nr, σ̇nr]

T , EKF is used to update its parameters as follows:

Kn = Pn−1Bn[Rn +BT
n Pn−1Bn]

−1

θn = θn−1 +Knen

Pn = [IZ×Z −KnBT
n ]Pn−1 + qIZ×Z , (10.22)
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where q is a scalar that determines the allowed step in the direction of the gradient
vector and Z is the dimension of parameters to be adjusted. When a new rule is
added, the dimension of Pn increases to:

(
Pn−1 0

0 p0IZ1×Z1

)
, (10.23)

where Z1 is the dimension of the parameters introduced by the newly added rule and
p0 is an initial value of the uncertainty assigned to the newly allocated rule.

10.2.2.4 Removing of a Fuzzy Rule

If the influence of rule k is less than a certain pruning threshold ep, the rule k
is insignificant to the output and should be removed. The pruning threshold ep is
chosen a priori. Given the pruning threshold ep, rule k will be removed if:

Einf(k) = ‖ak‖ (1.8σk)
Nx

Nh

∑
k=1

(1.8σk)Nx

< ep. (10.24)

In SAFIS, only the nearest rule instead of all the existing rules will be considered
for removing. This is explained as follows. Considering the Gaussian function
R(x) = exp(− x2

σ 2 ), its first and second derivatives will approach zero much faster
when x moves away from zero. Thus, in EKF, the gradient vector of the parameters
for all the rules except the nearest rule will approach zero more quickly than those
of the nearest rule that are given by:

⎛
⎜⎜⎝ Rnr

Nh

∑
k=1

Rk

,
2(anr − ŷn)Rnr

Nh

∑
k=1

Rk

xn − μnr

σ2
nr

,
2(anr − ŷn)Rnr

Nh

∑
k=1

Rk

‖xn − μnr‖2

σ3
nr

⎞
⎟⎟⎠ .

In this case, one may only need to adjust parameters of the nearest rule without
adjusting the parameters of all rules when a new observation enters and a new rule
needs not be added. At the same time, all rules need not be checked for possible
pruning. If a new observation arrives and the growing criteria (10.17) is satisfied, a
new rule will be added. The existing rules will maintain their influence because their
parameters remain unchanged after learning the new observation. Simultaneously,
the newly added rule is also influencing, and therefore it is not necessary to check for
pruning after a new rule is added. If the growing criteria (10.17) is not satisfied after
a new observation arrives, a new rule will not be added and only the parameters of
the nearest rule will be modified. As such, only the nearest rule needs to be checked
for pruning.
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The SAFIS algorithm is summarized below:
Given the growing and pruning thresholds eg,ep, for each observation (xn,yn), where xn ∈ RNx ,

yn ∈ RNy and n = 1,2, . . ., do

1. compute the overall system output:

ŷn =

Nh

∑
k=1

akRk(xn)

Nh

∑
k=1

Rk(xn)

Rk(xn) = exp

(
− 1

σ 2
k

‖xn −μk‖2
)

(10.25)

where Nh is the number of fuzzy rules.
2. calculate the parameters required in the growth criterion:

εn = max{εmaxγn,εmin}, (0 < γ < 1)

en = yn − ŷn (10.26)

3. apply the criterion for adding rules:

If ‖xn −μnr‖> εn and Einf(Nh +1) = ‖en‖ (1.8κ‖xn−μnr‖)Nx

Nh+1

∑
k=1

(1.8σk)Nx

> eg

allocate a new rule Nh +1 with

aNh+1 = en

μNh+1 = xn

σNh+1 = κ‖xn −μnr‖ (10.27)

Else
adjust the system parameters anr , μnr , σnr for the nearest rule only by using the EKF

method.
check the criterion for pruning the rule:

If Einf(nr) = ‖anr‖ (1.8σnr)
Nx

Nh
∑

k=1
(1.8σk)Nx

< ep

remove the nr-th rule
reduce the dimensionality of EKF

Endif
Endif

10.2.3 Selecting of Predefined Parameters

In SAFIS, some parameters need to be decided in advance according to the problems
considered. They include the distance thresholds (εmax, εmin, γ), the overlap factor
(κ) for determining the width of the newly added rule, the growing threshold (eg)
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Table 10.1 Effects of parameter eg on system performance (number
of rules and the testing RMS error) under different εmax values and
κ = 1.0

εmax\eg 0.001 0.005 0.01 0.05

1.0 (61, 0.0198) (17, 0.0385) (11, 0.0535) (2, 0.0912)
5.0 (45, 0.0233) (17, 0.0385) (11, 0.0535) (2, 0.0912)
10.0 (41, 0.0249) (14, 0.0386) ( 9, 0.0461) (2, 0.0912)

Table 10.2 Effects of parameter eg on system performance (number
of rules and the testing RMS error) under different κ values and
εmax = 10.0

κ\eg 0.001 0.005 0.01 0.05

1.0 (41, 0.0249) (14, 0.0386) ( 9, 0.0461) (2, 0.0912)
1.5 (50, 0.0350) (18, 0.0586) (15, 0.0598) (3, 0.1382)
2.0 (52, 0.0557) (25, 0.0902) (15, 0.1384) (3, 0.1391)

for a new rule, and the pruning threshold (ep) for removing an insignificant rule.
Based on the observation from many experiments, a general selection procedure for
the predefined parameters is given as follows: εmax is set to around the upper bound
of input variables; εmin is set to around 10% of εmax; γ is set to around 0.99; and ep

is set to around 10% of eg. The overlap factor (κ) is utilized to initialize the width
of the newly added rule and chosen according to different problems. κ is suggested
to be chosen in the range [1.0,2.0]. The growing threshold eg is chosen according to
the system performance. The smaller eg, the better the system performance, but the
resulting system structure is more complex.

An example is given to illustrate the effects of the parameters (eg, κ , εmax) on
the system structure and performance. Consider the following two-dimension sinc
function:

z = sinc(x,y) =
sin(x)sin(y)

xy
. (10.28)

In the simulation, 2,500 training data pairs (x,y) are drawn from the input range
[−10,10]× [−10,10]. At the same time, 100 testing data pairs (x,y) are drawn from
the same input range.

The general rule for choosing the parameters (εmin,γ,ep) are obeyed. εmin is set to
10% of εmax; γ is set to 0.997; and ep is set to the 10% of eg. The parameters eg, εmax,
and κ are observed in the range [0.001,0.05], [1.0,10.0], and [1.0,2.0], respectively,
to illustrate their effect on the resulting system structure and testing accuracy.
Tables 10.1 and 10.2 give the effects of parameter eg on system performance in
terms of number of rules and the testing RMS error under different κ or εmax values.
From the two tables, it is easy to find that with the increase of eg the number of
rules is decreased and also system performance (testing RMS error) becomes worse
with the same κ or εmax value. Furthermore, it can be found from the two tables that
the resulting system structure and testing accuracy have no very big change when
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the parameter κ or εmax appears different values. However, these parameters are
problem dependent and need to be determined according to the problem considered.
Besides the above guidelines for setting the parameters, the optimal parameters can
be determined using search techniques like GA for some complex problems in the
future work.

10.3 Performance Evaluation of SAFIS

In this section, the performance of SAFIS is evaluated based on two nonlinear
system identification problems and one chaotic time-series (Mackey-Glass) predic-
tion problem. For the first system identification problem, performance of SAFIS
is compared with other well-known sequential algorithms such as MRAN [33],
RANEKF [14], eTS [3], Simpl eTS [1], and hybrid algorithm (HA) [30]. For the
second system identification problem performance of SAFIS is compared with
MRAN [33], RANEKF [14], eTS [3], Simpl eTS [1], and SONFIN [13]. For the
chaotic time-series prediction problem, the comparison is done with MRAN [33],
RANEKF [14], eTS [3], and Simpl eTS [1]. In all the studies, the parameters (r,Ω )
for eTS and Simpl eTS where r is the distance and Ω is the least-square error
parameter [1, 3] are tuned to obtain the best performance.

Performance comparison is done in terms of accuracy and the complexity (the
number of rules) of the fuzzy system. For these problems, the SAFIS algorithm
goes through the training data sequentially in a single pass and builds up the fuzzy
inference system by adding and removing the rules along with their parameters.
Then, its performance is evaluated on the unseen test data.

10.3.1 Nonlinear Dynamic System Identification

Generally, a wide class of MIMO nonlinear dynamic systems can be represented by
the nonlinear discrete model with an input–output description form:

y(n) = f[y(n− 1),y(n− 2), . . .,y(n− k+ 1);u(n),u(n− 1), . . .,u(n− p+ 1)],

(10.29)

where y is a vector containing Ny system outputs, u is a vector for Nu system inputs,
f is a nonlinear vector function, representing Ny hypersurfaces of the system, and k
and p are the maximum lags of the output and input, respectively.

Selecting [y(n−1), . . . ,y(n−k+1);u(n),u(n−1), . . . ,u(n− p+1)],y(n) as the
fuzzy system’s input–output xn,yn at time n, the above equation can be put as:

yn = f(xn). (10.30)
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The SAFIS algorithm is used to approximate f such that:

ŷn = f̂(xn), (10.31)

and the error between the system output yn and the output of SAFIS ŷn, ‖yn − ŷn‖
is minimized.

Narendra and Parthasarathy [22] have suggested two special forms of the
nonlinear system model given in (10.32) and (10.33).

Model I:

y(n+ 1) = f [y(n),y(n− 1), . . . ,y(n− k+ 1)]+
p−1

∑
i=0

βiu(n− i), (10.32)

where βi is the constant unknown parameter.
Model II:

y(n+ 1) = f [y(n),y(n− 1), . . . ,y(n− k+ 1)]+ g[u(n),u(n−1), . . .,u(n− p+ 1)].

(10.33)

These two models of nonlinear systems have been used here for performance
comparison.

Selecting [y(n),y(n− 1), . . . ,y(n− k + 1),u(n),u(n− 1), . . . ,u(n− p+ 1)], and
y(n+1) as the input–output of SAFIS, the identified model is given by this equation:

ŷ(n+ 1) = f̂ (y(n),y(n− 1), . . . ,y(n− k+ 1),u(n),u(n− 1), . . .,u(n− p+ 1)),

(10.34)

where f̂ is the SAFIS approximation and ŷ(n+ 1) is the output of the SAFIS.

10.3.1.1 Identification Problem 1

The first nonlinear dynamic system to be identified represents model I and is
described by Wang and Yen [30]:

y(n) =
y(n− 1)y(n− 2)(y(n− 1)−0.5)

1+ y2(n− 1)+ y2(n− 2)
+ u(n− 1). (10.35)

The equilibrium state of the unforced system given by (10.35) is (0,0). As in [30],
the input u(n) is uniformly selected in the range [−1.5,1.5] and the test input u(n) is
given by u(n) = sin(2πn/25); 5,000 and 200 observation data are produced for the
purpose of training and testing. The different parameter values for SAFIS are chosen
as follows: γ = 0.997,εmax = 1.0,εmin = 0.1,κ = 1.0,eg = 0.05, and ep = 0.005.

The average performance comparison of SAFIS with MRAN, RANEKF, eTS,
Simpl eTS, and HA is shown in Table 10.3 based on 50 experimental trials. From
the table, it can be seen that SAFIS obtains similar testing accuracy compared
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Table 10.3 Results of nonlinear identification problem 1

Methods No. of rules Training RMSE Testing RMSE

SAFIS 17 0.0539 0.0221
MRAN 22 0.0371 0.0271
RANEKF 35 0.0273 0.0297
Simpl eTS (r = 2.0, Ω = 106) 22 0.0528 0.0225
eTS (r = 1.8, Ω = 106) 49 0.0292 0.0212
HA [30] 28 0.0182 0.0244

Fig. 10.2 Rule update process between different algorithms for nonlinear identification problem
1 during the whole observation

to MRAN, RANEKF, eTS, Simpl eTS, and HA. However, SAFIS achieves this
accuracy with smallest number of rules. It is worth noting that HA is based on GA
iterative learning and is not sequential. The evolution of the fuzzy rules for SAFIS,
MRAN, RANEKF, eTS, and Simpl eTS for a typical run is shown by Fig. 10.2. It
can be seen from the figure that SAFIS produces least number of rules. Besides,
Fig. 10.3 gives a clear illustration for the rule evolution tendency between 0 and
1,000 observation and shows that SAFIS can automatically add and delete a rule
during learning, which is manifested by increasing and reducing the number of
rules by one. The fuzzy rules for the typical run are listed in Table 10.4, where
G(.) represents the Gaussian membership function. The first and second values in
G(.) indicate the center and the width of the Gaussian function, respectively.
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Fig. 10.3 Rule update process between different algorithms for nonlinear identification problem
1 between 0 and 1,000 observations

Table 10.4 Fuzzy rules of SAFIS for nonlinear identification problem 1

Antecedent parameters
No. of Consequent
rules y(n-1) y(n-2) u(n-1) parameters

1 G(0.6883,0.8504) G(0.3062,0.8504) G(−2.0115,0.8504) a =−1.6137
2 G(−1.6117,0.9709) G(1.0091,0.9709) G(1.7480,0.9709) a = 2.5292
3 G(−0.2325,1.1461) G(−1.5054,1.1461) G(0.2722,1.1461) a = 0.5625
4 G(−0.1653,1.1633) G(−1.0712,1.1633) G(1.9589,1.1633) a = 1.5430
5 G(1.8338,1.2341) G(0.3378,1.2341) G(1.2441,1.2341) a = 2.0280
6 G(1.5042,1.3481) G(−0.5239,1.3481) G(0.0087,1.3481) a =−0.4277
7 G(0.3110,0.9829) G(−1.0793,0.9829) G(1.7363,0.9829) a = 1.9069
8 G(−0.8126,0.6423) G(−1.2611,0.6423) G(−0.5928,0.6423) a =−1.1355
9 G(−0.6152,0.9283) G(−2.0362,0.9283) G(−1.4239,0.9283) a =−1.4374
10 G(−1.3413,0.7751) G(−1.0834,0.7751) G(−1.8843,0.7751) a =−2.4472
11 G(1.8475,1.1035) G(−1.0128,1.1035) G(−1.4383,1.1035) a =−2.1617
12 G(0.7468,0.7356) G(2.2865,0.7356) G(1.4947,0.7356) a = 1.8152
13 G(−2.3833,1.9263) G(−1.8191,1.9263) G(−1.0221,1.9263) a =−2.9007
14 G(−0.4007,1.7921) G(1.9986,1.7921) G(−1.6721,1.7921) a =−2.0982
15 G(−1.6354,1.8484) G(1.8161,1.8484) G(0.1940,1.8484) a = 1.6630
16 G(−2.8360,1.9440) G(−2.0148,1.9440) G(1.0852,1.9440) a = 0.9242
17 G(1.7938,0.9549) G(1.4088,0.9549) G(−0.3515,0.9549) a = 0.2905
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Table 10.5 Results of nonlinear identification problem 2

Methods No. of rules Testing RMSE

SAFIS 8 0.0116
MRAN 10 0.0129
RANEKF 11 0.0184
Simpl eTS (r = 0.075, Ω = 106) 18 0.0122
eTS (r = 1.0, Ω = 106) 19 0.0082
SONFIN [13] 10 0.0130
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Fig. 10.4 Membership functions of input variable y(n) for nonlinear identification problem 2

10.3.1.2 Identification Problem 2

The second nonlinear dynamic system to be identified represents model II and is
described by Juang and Lin [13]:

y(n+ 1) =
y(n)

1+ y2(n)
+ u3(n). (10.36)

In accordance with [13], the input signal u(n) is given by sin(2πn/100); 50,000
and 200 observation data are produced for the purpose of training and testing.
The SAFIS parameter values chosen are as follows: γ = 0.997,εmax = 2.0,εmin =
0.2,κ = 2.0,eg = 0.03, and ep = 0.003. The input variables y(n),u(n), respectively,
follow the uniform sample distribution in the range [−1.5,1.5] and [−1.0,1.0].

Table 10.5 shows the performance comparison of SAFIS with MRAN, RANEKF,
eTS, Simpl eTS, and SONFIN [13]. It can be seen from the table that SAFIS
achieves similar accuracy with a lesser number of rules. Figures 10.4 and 10.5
show the final membership functions of input variables y(n),u(n) achieved by
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Fig. 10.5 Membership functions of input variable u(n) for nonlinear identification problem 2

SAFIS. From the two figures, one can clearly see that the input variable membership
functions are distributed in their own entire range. Besides, the testing accuracy of
SAFIS is slightly better than those of MRAN, RANEKF, Simpl eTS, and SONFIN,
which verifies that the learning performance of SAFIS is not lost by only modifying
the nearest fuzzy rule instead of all fuzzy rules during the learning. The evolution
of the fuzzy rules for SAFIS, MRAN, RANEKF, eTS, and Simpl eTS is shown by
Fig. 10.6. It can be seen from the figure that SAFIS is able to add and delete rules
during learning and produces least number of rules. The details of the fuzzy rules
are depicted in Table 10.6.

10.3.2 Mackey-Glass Time-Series Prediction

In this example, the SAFIS is applied to predict complex time series, a special
function approximation problem. The time-series prediction is very important in
solving real-world problems such as the detection of arrhythmia in heartbeats. The
chaotic Mackey-Glass time series is recognized as one of the time series benchmark
problems, which is generated from the following differential equation [2]:

dx(t)
dt

=
0.2x(t − τ)

1+ x10(t − τ)
− 0.1x(t), (10.37)

where τ = 17 and x(0) = 1.2. For the purpose of training and testing, 6,000
samples are produced by means of the fourth-order Runge-Kutta method with the
step size 0.1. The prediction task is to predict the value x(t + 85) from the input
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Fig. 10.6 Rule update process between different algorithms for nonlinear identification problem 2

Table 10.6 Fuzzy rules of SAFIS for nonlinear identification problem 2

Antecedent parameters
No. of Consequent
rules y(n) u(n) parameters

1 G(−0.9729,1.0670) G(−1.2625,1.0670) a =−6.3086
2 G(0.2731,1.4623) G(1.9572,1.4623) a = 4.5472
3 G(0.3706,0.8085) G(−0.0884,0.8085) a = 3.1725
4 G(−0.1623,1.1271) G(0.1100,1.1271) a =−6.4255
5 G(−0.8399,1.1393) G(−0.5162,1.1393) a = 4.6764
6 G(1.9988,2.1081) G(1.8151,2.1081) a = 1.8266
7 G(1.4377,2.3607) G(1.2834,2.3607) a = 2.2549
8 G(1.2992,0.8117) G(0.3417,0.8117) a =−1.8183

vector [x(t − 18) x(t − 12) x(t − 6) x(t)] for any value of the time t. As in [2],
the observations between t = 201 and t = 3,200 and the observations between
t = 5,001 and t = 5,500 are extracted from the series and used as training and
testing data. For this problem, the parameters for SAFIS are selected as follows:
γ = 0.98,εmax = 1.6,εmin = 0.16,κ = 1.68,eg = 0.0005, and ep = 0.00005. The
data follow a uniform sample distribution in the range [0.4,1.4].

Table 10.7 shows the prediction accuracies and the number of rules obtained
by SAFIS, MRAN, RANEKF, eTS, and Simpl eTS. For comparison purposes, the
prediction accuracy is based on the non-dimensional error index (NDEI) defined as
the RMSE divided by the standard deviation of the true output values. As observed
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Table 10.7 Results of Mackey-Glass time-series prediction

Methods No. of rules Testing NDEI

SAFIS 6 0.376
MRAN 14 0.375
RANEKF 18 0.378
Simpl eTS(r = 0.25, Ω = 750) [1] 11 0.394
eTS(r = 0.25, Ω = 750) [2] 9 0.380

Fig. 10.7 Rule update process between different algorithms for Mackey-Glass time-series
prediction

from Table 10.7, all the algorithms produce similar accuracies; however, SAFIS
obtains the smallest number of fuzzy rules. The evolution of the fuzzy rules for
SAFIS, MRAN, RANEKF, eTS, and Simpl eTS is shown in Fig. 10.7.

10.4 Summary

In this chapter, a sequential fuzzy inference system called SAFIS is presented to
automatically construct a fuzzy inference system using the training data during
the learning process. Specifically, SAFIS algorithm implements the structure iden-
tification and parameter adjustment for a fuzzy inference system using the ideas
from GAP-RBF algorithm. SAFIS algorithm utilizes the influence of a fuzzy rule
to add and remove the fuzzy rules during learning. At the same time, the SAFIS
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algorithm utilizes the EKF to update the parameters of the nearest rule instead of
all the rules without losing the approximation performance. Its performance has
been evaluated by some function approximation benchmark problems including
two nonlinear system identification problems and the Mackey-Glass time-series
prediction problem. The simulation results from these benchmark problems show
that, compared with other algorithms, SAFIS produces similar or better testing
accuracies with lesser number of rules.

However, for large systems, EKF algorithm used in the parameter update
equation increases the computation burden. Also, the calculation of rule influence
requires uniform distribution of the input data, and this may degrade the perfor-
mance. Further studies in these directions are required in the future.
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