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Preface

During the last two decades, rapid technological developments and breakthroughs
in automatization processes with the support of modern machines and computers
lead to a significant increase in system complexity and state changes, in information
sources, in requirements regarding the speed of data handling as well as in
the integration of environmental influences. Intelligent systems, equipped with a
taxonomy of data-driven system identification and machine learning algorithms,
are able to handle these problems partially. Typically, different sorts of models are
identified based on historic data samples and employed to handle control problems,
to support human beings in decision making processes (e.g., medicine, patient
supervision or forecasts in metrology and financial domains), to monitor the quality
of manufactured parts in on-line production lines or to perform predictions on
important objectives and process variables, saving expenses of high-cost sensors.

Conventional learning algorithms in a batch off-line setting fail whenever
dynamic changes of the process appear due to non-stationary environments and
external influences, usually leading to extensions of system states and its definition
space, to drifts and shifts in underlying data generating processes, or to arising
new operating conditions and modes. Re-designing cycles are impracticable as they
are usually to slow to cope with online requirements or are demanding significant
development costs for re-calibration of the models in additional off-line stages
decoupled from the online process. Thus, in such circumstances, techniques which
are equipped with the concepts of incremental and evolving learning engines are the
only reasonable choice to update the models within a reasonable time frame and to
react on dynamic changes quickly, thus to guarantee high process safety. Usually,
they contain algorithms for permanent adaptation of model parameters as well as of
structural parts of the model, including components responsible for dynamic model
expansion and contraction on demand and on-the-fly.

The necessity of such methodologies in theory and practice is on the one hand
reflected in several developments during the last 10 to 15 years, where many designs
for incremental learning engines containing evolving methodologies emerged in
parallel within the fields of soft computing (termed as evolving intelligent systems,
evolving connectionist systems, and evolving fuzzy systems), machine learning

vii



viii Preface

(termed as knowledge discovery or incremental learning from data streams) and
pattern recognition (termed as dynamic data mining or incremental, evolving
clustering); and, on the other hand in a densification of organizational events, such
as special sessions at the international conferences IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE) 2007, IEEE International Conference on Systems,
Man and Cybernetics (IEEE-SMC) 2007, European Society for Fuzzy Logic and
Technology (EUSFLAT) 2009 and 2011, International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU)
2010, IEEE World Congress on Computational Intelligence (WCCI) 2010, IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA) 2010 and
2011, IPMU 2012 (planned), special issues in international journals (IEEE Transac-
tions on Fuzzy Systems, Information Sciences, Neurocomputing, etc.) as well as the
workshops and symposia Evolving Fuzzy Systems (EFS) 2006, Genetic and Evolv-
ing Fuzzy Systems (GEFS) 2008, Evolving and Self-Developing Intelligent Systems
(ESDIS) 2009, International Conference on Adaptive and Intelligent Systems
(ICAIS) 2009 and 2011, Evolving Intelligent Systems (EIS) 2010 and 2011, IEEE
conference on Evolving and Adaptive Intelligent Systems (EAIS) 2012 (planned);
and finally establishing an own journal at Springer termed ‘Evolving Systems’.

The aim of this book is to provide a broad picture of recent developments and
important methodologies within the field of learning in nonstationary environments,
covering aspects from the three major lines of research and therefore intending to
address the attention of audiences in the field of machine learning, soft computing,
pattern recognition, and data mining. The subdivision of the book follows the
spirit of the natural main problems in the context of any form of data-driven
methodologies: dynamic learning in unsupervised problems, dynamic learning in
supervised classification, and dynamic learning in supervised regression problems.
This is completed by a fourth part dedicated to applications where dynamic learning
methods serve as key stones for achieving models with high accuracy and assuring
process safe and high qualitative industrial systems. The book does not have been
particularly written in a mathematical theorem/proof style, but more in a way
where ideas, concepts, and algorithms are highlighted by numerous figures, tables,
examples, and applications together with their explanations. The intended audience
ranges from mathematicians via machine learning and soft computing gurus to
technicians from engineering and industrial practice, and finally to students.

Finally, the editors are very grateful to all authors and reviewers for contributing
with substantial and very valuable material to make this volume become alive and
to set another corner stone in the research and publications history of dynamic
and evolving learning concepts. We also acknowledge Ms. Brett Kurzman for
establishing the contract with Springer and supporting us in any organizational
aspects. We hope that the volume will be a useful basis for further fruitful
investigations and fresh ideas as well as a motivation and inspiration for newcomers
to join this promising and still emerging field of research.

Douai, France Moamar Sayed-Mouchaweh
Linz, Austria Edwin Lughofer
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Chapter 1
Prologue

Moamar Sayed-Mouchaweh and Edwin Lughofer

Abstract This introductory chapter intends to provide a general overview about
the most essential requirements, demands and challenges with respect to dynamic
learning of data-driven models in non-stationary environments and applications.
It outlines the main lines of research investigated during the last decade in order
to cope with the requirements, inter alia to handle high system dynamics, online
data streams recorded with a high frequency, drifting system states and very large
data bases within fast sample-wise and single-pass model updates conducted on-
the-fly and in incremental manner. The last part of this chapter outlines a compact
summary of the contents of the book by providing a paragraph about each of the
single contributions.

1.1 Modeling in Dynamic Environments: Requirements,
Demands, and Challenges

The computerization of many life activities and the advances in data collection and
storage technology lead to obtain mountains of data. They are collected to capture
information about a phenomena or a process behavior. These data are rarely of direct
benefit. Thus, a set of techniques and tools are used to extract useful information
for decision support, prediction, exploration, and understanding of phenomena
governing the data sources.
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Ecole des Mines de Douai, Computer Science and Automatic Control Lab EMDouai-IA,
Douai, France
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2 M. Sayed-Mouchaweh and E. Lughofer

Learning methods use historical data points about a process past behavior to build
a model, which can be in form of a classifier, an approximation surface, a cluster
partition, etc. The model is used as an old experience to classify new samples, to
provide decisions on new query points or to predict the process future behavior. For
instance, consider a stock market exchange: based on repeated patterns observed in
the time series data of a specific stock index during a past time period, some future
trends may be predicted; thereby, the interpretation of the patterns is conducted
implicitly in the model. Learning methods and techniques become efficient solutions
when the relationship between system inputs and output(s) is difficult to understand
and cannot be easily described using mathematical models in closed analytical
form. In very complex systems, it is either impossible to deduce models from
physical knowledge (for instance, consider a water power plant which is affected by
many environmental influences) or the development time of the models is that huge
such that the costs regarding manpower, etc. would exceed the company’s budget.
Expert knowledge based on long-term working experience may help to reduce the
development effort; however, it usually lacks of sufficient accuracy due to vague and
contradictory statements/opinions among the experts and/or operators working with
the system.

Therefore, in such cases, the models are constructed by using a set of real
data (pairs of input–output vectors), which can be fully automatized in large parts.
Figure 1.1 demonstrates a convenient data-driven modeling framework, including
various data-driven learning concepts and algorithms based on which the models
are finally obtained. Depending on the chosen model architecture, the models may
be considered as black-box, dark-grey, up to light gray models [27]. The latter
may be achieved by linguistically interpretable fuzzy systems [17, 29] or by hybrid
modeling approaches [1], using data-driven mechanisms for estimating parameters
in analytical models.

However, it is usually very hard to obtain an exhaustive or completed learning
data set that can cover all the characteristics of the real system in all the pos-
sible contexts, in particular in dynamic and continuously evolving environments.
Indeed, everything that exists changes over time. A typical example of changing
environments is the spam detection and filtering. The descriptions of the two classes
“spam” and “nonspam” evolve over time due to the changes of user preferences
and “spammers” techniques to trick spam classifiers. Thus, classifiers establishing
a decision boundary for discriminating between spam and nonspam emails need
to adjust their parameters and structure to take into account the changes in their
operating environments. This self-adaptation is necessary to preserve the classifica-
tion accuracy. Another application example which requires dynamic process models
is the control of a water power plant. A significant influence of its behavior is
due to changing environmental influences such as different weather situations or
changing water levels at feeder rivers. Models (e.g., used for control purposes) have
to be capable of self-adaptation in order to incorporate such different environmental
conditions. Environments’ changes can be represented by two concepts. The first
concept is “concept-drift.” In this concept, the underlying data distribution changes
gradually over time. The second concept is “concept-evolution.” In this concept, a
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Fig. 1.1 Data-driven
modeling framework
including dimensionality
reduction, model training and
evaluation, model selection
and a final model training
steps based on optimal
parameter setting

sudden change in the underlying data distribution can manifest. Thus, the model
needs to adjust itself (self-correction or adaptation) as new events happen or new
conditions occur. The goal is to ensure an accurate prediction of process behavior
according to the changes in new incoming data characteristics.

Models in dynamic and evolving environments are called dynamic models. They
may change their parameters and adapt them to obtain better performance or change
their structure as well in order to add new outputs (classes). Therefore, one can
distinguish two main types of dynamic models: adaptive and evolving models.
Adaptive models conserve their structure and adapt their parameters continuously
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according to newly available data. Evolving models adapt their parameters and
structure over time according to the changes in their environments. In this sense,
evolving models permanently expand their structure on-the-fly and enrich their
memory. Thus, they can be even seen as a valuable contribution within the field
of artificial and computational intelligence [4]. Combined with modeling aspects
in the field of neural networks, where the human brain is roughly modeled by
means of neurons and synaptic connectors between these [14], they are in fact
mimicking somehow the learning capabilities of human beings (in fact, within
the scope of small ideal circumstances, basically reduced to information in form
of objectively measured data). Furthermore, dynamic models require a continuous
learning over a long period of time with the ability to forget data becoming obsolete
and useless. However, it is important that the model updates its parameters and
structural components without a “catastrophic forgetting” (undesired forgetting
of older learned relations, patterns). Therefore, a balance between plasticity and
stability is necessary to deal with dynamic environments, referred as plasticity–
stability dilemma. Such balance is important in order to guarantee convergence to
some optimality criterion on the one hand and still to achieve sufficient flexibility
for the inclusion of new information on the other hand. Learning in dynamic
environments does not only play an important role for changing data characteristic
in the time domain, but also in the spatial domain. In fact, learning in dynamic
environments may be a necessary methodology for handling large databases as
well as spatially distributed data sites, where the joint data is that huge that
loading of all samples at once into the virtual memory is simply not possible.
A framework how dynamic models can be integrated into an online modeling
process is shown in Fig. 1.2. Components surrounded by dotted lines are optional,
the operators feedback may improve the quality of the dynamic models, but is
usually really necessary only in case classification problems (real class labels to be
provided), thus highlighted by the dotted box. For unsupervised learning problems,
the models evolved automatically without demanding any manual supervised input,
for supervised regression problems mostly the target concepts are by-measured with
the input channels, either synchronously (in system identification problems) or at a
latter point of time (e.g. in time series forecasting), which, when de facto available,
can be again used in the incremental learning engine.

This book treats the problem of learning from data issued of time/spatial-based
complex nonstationary (dynamic and evolving) processes, following the framework
shown in Fig. 1.2. It draws a round picture of efficient techniques, methods, and
tools able to manage, to exploit, and to interpret correctly the increasing amount
of data in environments that are continuously changing. In each of these, the goal
is to build a model for quantifying, predicting, and classifying the future system
behavior, able to tackle and to govern the high variability of complex non-stationary
and large-scale systems.
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Fig. 1.2 Modeling framework including incremental training procedure for adapting and evolving
dynamic models

1.2 General Principles of Learning in Dynamic
Environments

In order to cope with all the requirements and demands as mentioned above, three
major lines of research emerged during the last 10 to 15 years:

• Evolving intelligent systems (EIS) [3]: these types of systems enjoy a great
attraction in the soft computing community since several years and are mostly
based on evolving neural networks (ENN) [15] and evolving fuzzy systems (EFS)
[21] techniques as well as a hybridation of both, providing the basic aspects for
the concept of evolving connectionist systems [16]. They allow the update of
neuron weights, antecedent, and consequent parameters as well as a dynamic
expansion and shrinkage of the structural components (neurons in case of ENN,
fuzzy rules in case of EFS), usually in single-pass and incremental manner. While
ENN are exclusively focussing on precise modeling, i.e., aiming for models with
highest possible accuracies on new unseen data, latest developments of EFS are
also concentrated on guiding the evolved models to more interpretable power
[22]. This should make EFS very attractive in the near future, as opening the
possibility of an enriched human–machine interaction [23]. A comprehensive
survey of EIS approaches can be found in [3].

• Incremental Machine learning (IML): a line of research which emerged during
the 1990s within the machine learning (ML) community in order to cope
with huge or infinite data streams (see below) for building up data-driven
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models, basically in form of classifiers and dynamically changing decision
boundaries between two or more classes. The recently published monograph [12]
summarizes the most important concepts, including incremental tree learners
(Hoeffding trees [11]), incremental Naı̈ve Bayesian methods, online Oza bagging
and boosting [28] and incremental SVMs [10] using adiabatic (exact) updates,
meaning that the same solution of support vectors is found as with all the training
samples used at once in batch mode. Most of these methods and more are
implemented in the MOA (massive online analysis) framework [7], which is able
to process huge data streams incrementally and to perform different evaluation
schemes during the online update of the models.

• Dynamic Data Mining (DDM) and Incremental Clustering: the concept of dy-
namic data mining [31,33,35] is based on extracting groups of data (clusters) over
a horizon of spatially distributed data sites. Each data site can be incrementally
added to the pool of already existing data sites and its data samples are integrated
into the actual cluster structure by solving successively a joint optimization
problem, where data sites may be assigned different weights according to their
importance/impact. The concept applies a collaborative optimization scheme
[30], taking explicit advantage of evolving the models blockwise. The native
concept of dynamic clustering conducts grouping of data over time in the
temporal domain, may update centers and ranges of influence, evolving and
split clusters as well as merge clusters in order to increase the flexibility of
the models for dynamically changing environments—see [9] for a survey of
important dynamic, evolving clustering methods.

The general principle in all these lines of research is to observe a change in
some statistical properties of data characteristics to decide in which state (stable,
warning or action) the system is. These states correspond respectively to no change,
gradual change and abrupt change. Thus, the model parameters and structure will
be respectively unchanged, slightly adapted or strongly updated. Re-learning is
usually omitted as requiring very high computation time and often causing update
cycles which are not terminating in real-time within a reasonable online timeframe.
Therefore, incremental and sequential learning from data streams are the essential
used concepts (1) in order to avoid time-intensive re-training phases and account
for the systems dynamics/changing data characteristics with low computational
effort (enhancing online performance); and (2) to allow step-wise model building
phase with low virtual memory usage, widening the applicability of data-driven
modeling techniques to large-scale databases/sites. This is because data is processed
in sample-wise and single-pass manner, in particular, a data stream is characterized
by the following aspects [12]:

• The data samples or data blocks are continuously arriving online over time. The
frequency depends on the frequency of the measurement recording process.

• The data samples are arriving in a specific order, over which the system has no
control.
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• Data streams are usually not bounded in a size; i.e., a data stream is alive as long
as some interfaces, devices, or components at the system are switched on and are
collecting data.

• Once a data sample/block is processed, it is usually discarded immediately,
afterward.

Change detectors may be an important add-on in case of tracking drifts in the data
stream, which are usually changing the underlying distribution of the target concept
significantly. Misclassification and errors rates are one of the most used statistical
properties to observe a change. In this case, data are divided into batches and their
true classes are known in advance; so, the misclassification error is easy to calculate.
If this rate decreases significantly after receiving a batch of patterns, then the system
is in drift state and the model parameters and structure must be adapted more
strongly by gradually outdating older learning relationships. Other change detectors
rely on statistical criteria such as the Page–Hinkley test [25] or ADWIN [6]. Another
important topic is the flexibility of the models not only according to structural
components (by evolving, shrinking, merging operations) but also according to the
input space: incremental feature weighting issues (see e.g. Chap. 9, second part)
may outweigh less important features and overweigh more important ones, finally
achieving a sort of soft (and smooth) dimensionality reduction. This is necessary as
an abrupt change in the input structure (exchange a concrete feature with another
one) would cause a discontinuous learning behavior.

Old school approaches for learning in dynamic environments are based on sliding
time windows or a template containing a fixed number of selected patterns according
to their age and usefulness, thus perform the adaptation and evolution of models
based on blocks, batches of data; see e.g. [5,13,26,32]. New school approaches are
based on samplewise single-pass operations, where the most important information
about relations between time series/variables within a data stream are stored in
global models and/or statistical criteria, thus models are always up-to-date as early
as possible (after each single sample). This increases the robustness and process-
safety of the evolved models as long as the methods converge quickly, ideally within
each incremental learning cycle. The recursive least squares [20] and incremental
support vector update [10] are methods ensuring such convergence, hence often used
as learning engines in various dynamic, evolving learning methods. For instance
in [2, 8, 19], the former two are using a multiprototype Gaussian modeling of
nonconvex classes, where the activation function of each hidden neuron determines
the membership degree of an observation to one prototype of a class, and the
latter employing a potential function for tracking the most dense samples in order
to associate them as potential clusters = rule centers. Other approaches in the
context of classification are based on the use of an ensemble of classifiers to track
changes in the environment [18,24,34]. The classification of a pattern is achieved by
either selecting the best base classifier or by combining all classifiers’ predictions.
The concept drift tracking is achieved by either taking a weighted majority vote
among the classifiers in the ensemble. Each classifier has a weight according to
its classification accuracy. With weighted voting, lower weights are assigned to
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classifiers that fail to track drift. These weights are updated by evaluating the
misclassification error of classifiers to keep track on whose classification accuracy
is currently the most trustworthy. They can be determined either over a block of data
or on the neighborhood of the present instance.

1.3 Contents of the Book

This book addresses the problems of modeling, prediction, classification, data
understanding, and processing in nonstationary and unpredictable environments. It
presents a comprehensive survey of important recent methods and approaches for
the design of systems being able to learn and to fully adapt its structure and to adjust
its parameters according to the changes in their environments. This book includes
various applications of dynamic models such as business, industrial control, fault
detection and diagnosis, quality control, surface inspection, system identification,
decision support systems, and security, etc. Naturally, the book may be divided
according to the main lines of research as outlined in the previous section (EIS, IML,
dynamic data mining (DDM) and clustering). However, the boundaries between
these approaches were washing more and more up during the last years (e.g.,
there exist hybrids of support vector machines (SVM) training and fuzzy model
architectures, neural networks with online bagging and boosting or incremental
decision trees with statistical-oriented naive Bayes leaves), such that we decided
to follow the classical aims and purposes of data-driven models in real-world
problems, so to divide the book into

• Dynamic methods for unsupervised problems,
• Dynamic methods for supervised classification problems,
• Dynamic methods for supervised regression problems,
• Applications of learning in nonstationary environments.

In the following, we provide a short summary of each chapter, Chaps. 2 to 4 denote
contributions to the unsupervised learning problems (Part 1), Chaps. 5 to 8 to the
supervised classification part (Part 2), Chaps. 10 to 12 to the supervised regression
part (Part 3) and Chaps. 13 to 15 to applications of dynamic models (Part 4).

Chapter 2

Chapter 2 presents a set of statistical measures (mean, variance, skewness, kurtosis,
Pearson correlation coefficient, quantile (median and interquartile range)) to be
used as estimators for model parameters generating the underlying data. These
measures describe the characteristics (properties) of data distributions. The data
arrives continuously in time and its volume increases each day (data stream). To deal
with data stream, this chapter proposes an incremental form of statistical measures.
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The goal is to carry out computations online with a reduced and limited memory
size. To take into account the nonstationary aspect of data, the chapter proposes
to use statistical hypothesis tests (χ2-test and t-test) to detect a change, althrough
incremental computation of the tests or window techniques, and to adapt online the
statistical models.

Chapter 3

Chapter 3 handles the analysis of spatiotemporal data at various levels of abstraction
according to the user perspective (needs) to view the data. The goal is to make
the data analysis more humancentric. The spatiotemporal data is represented as a
fuzzy relationship between the spatial coordinates and the temporal data. The fuzzy
relationship is described in terms of vocabularies (codebooks). Each vocabulary is
represented by a fuzzy set. The convolution of the fuzzy sets representing the data
vocabularies (coordinates and temporal data) using the t-max composition provides
the possibility measure. The latter quantifies the degree of “activation” of the
Cartesian product of the codebooks by the fuzzy relationship. The authors propose
to reconstruct the fuzzy relation based on the use of t-norm composition of the fuzzy
sets as well as their degree of activation of the fuzzy relationship. Then, the chapter
proposes the use of the well-known clustering method fuzzy c-means (FCM) to form
the elements of the codebooks (considered as the clusters prototypes). The evolvable
aspect of systems is reflected by the dependencies between the codebooks used
to describe the components of two successive data slices. The level of variability
between codebooks used in two successive data slices reflects the changes in the
system. This level of variability is considered as the level of uncertainty quantified
as the entropy measure.

Chapter 4

Chapter 4 handles the problem of grouping online data samples into clusters using
incremental spectral clustering algorithm. This algorithm is based on the use of
fuzzy c varieties to cluster data with nonconvex shapes. It considers a cluster as
a graph of connected nodes. It assigns a high weight for the nodes forming the
clusters and very low weights for the nodes between these clusters. In addition, the
algorithm adjusts continuously its structure over time. This incremental property
is useful when the available cluster partition at the present time is not enough to
discover the complete structure of the data or when this structure evolves due to a
change in the environment conditions. The performance of the proposed algorithm
is evaluated using a set of simulated data sets.
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Chapter 5

Chapter 5 presents a dynamic version of the well-known classification method
fuzzy K nearest neighbors (FKNN). This variant of FKNN detects a change of the
characteristics of a class by monitoring the change of its gravity center and variance.
After the classification of each new pattern in a class, the class gravity center and
variance are updated in incremental manner. Then, the difference between the old
gravity center and variance and the updated ones is accumulated after each new
pattern classification in this class. When this difference becomes greater than a
predefined threshold, a drift of this class is confirmed. The drift confirmation allows
an adaptation step aiming to update the characteristics of the evolved class using
only the recent patterns representing this drift. In addition, when the drift of a class
leads it to be too close of another class, this variant of FKNN allows the fusion
of these two classes into one class. Then the characteristics of the new merged
class are calculated using only the patterns of the evolved and the other merged
classes. The determination of the closeness of these two classes is achieved using a
similarity measure based on the number of patterns in the ambiguity area between
two classes as well as their membership values to these two classes. When this
similarity becomes greater than a threshold, the two classes are merged. This variant
of FKNN is applied to monitor the quality (“bad”, “good”) of welled pieces based on
the analysis of acoustic signals characterizing the noises of the welding operation.

Chapter 6

Chapter 6 studies the techniques used to predict the model (classifier) estimation
accuracy for unseen databases on the use of the existing training set. Indeed,
the N-fold cross-validation techniques cannot predict what accuracy might be
achievable for unseen data. The goal of this prediction is to show whether further
learning is useful to refine the model estimation (and its accuracy) and more
investments of uses worth to be achieved to create more samples, which costs money
due to annotation efforts (i.e., providing class labels for the additional samples). The
proposed techniques divide the observed error into bias and variance terms. Then,
an algorithm is used to build the classification model (classifier) using only few
samples of a data set and its components (bias and variance) are estimated after
all the samples of the data set are used. The predicted error (using all the samples
of the data set) will be written as a linear function (regression) of the estimated
error using only a few samples. This regression aims to find the parameters that fit
the data (estimated errors using increasing size of samples) in order to construct a
linear model that can be used to predict the future error rates. In the last section of
the chapter it is outlined how these concepts can be applied to detecting drifts in
dynamic environments, so to give indicators whether a model needs to be updated
or even re-trained (in case of significantly increasing bias and variance error rates).
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Chapter 7

Chapter 7 presents a true strictly incremental classifier fusion approach employing
an ensemble of updateable classifiers. The proposed approach produces its decision
based on the decisions of multiple classifiers. The interest is to produce a decision
more robust and more accurate than the ensemble’s member classifiers thanks to
the exploitation of their diversity. The individual classifiers are incremental Naïve
Bayes (NB), k nearest neighbors k-NN (with updating the reference data base) and
evolving vector quantization for classification (eVQ-Class). However, any further
classifiers can be easily integrated into the ensemble due to the cascadability of
the fusion methods. The proposed ensemble is nongenerative trainable ensemble
(the number and kind of individual classifiers remain unchanged). It is trainable
because its final decision is based on a trainable fusion of individual classifiers
decisions. The trainable fusion is a class-indifferent classifier fusion; it decides the
support for a class by considering all classes supports according to all the individual
classifiers. Both the individual classifiers and the ensemble members are updated
in an incremental manner, the latter even with adiabatic (exact) updates, leading
to the same solutions as when using the whole batch of data. The incremental
aspect of the proposed approach makes it efficient and robust for applications with
huge data sets and it can achieve high quality predictions when the systems are
fully operational and even when one of the single classifiers fails. The incremental
classifier fusion methods are applied to two different dynamic application tasks:
inspection of CD Imprints (classifying images into “good” and “bad”) and the
prediction of maintenance actions for copiers (in particular, the Toner Transfer
Fusing TTF belt cleaner) using a large database containing information about the
replacing of different components by technicians.

Chapter 8

Chapter 8 presents an instance-based (case-based) learning approach to induce a
model from data streams (IBL-DS) basically for the classification in dynamically
evolving environments. Some concepts for regression tasks (lazy learning) are also
outlined. It determines or predicts the class (the value) of a sample based on the
class (values) of its k nearest neighbors. It determines these neighbors using a
distance function based on an incremental version of the simplified value difference
metric (SVDM). Using SVDM, two values should be considered similar if they
make similar class predictions and dissimilar if their class predictions diverge.
The proposed approach (IBL-DS) uses three indicators (temporal relevance, spatial
relevance, and consistency) to update the model in response to a concept drift. All
samples, which are not recent, are considered redundant if they do not change
the nearest neighbors regions of any query, i.e., the samples are very close in the
instance space and thus they have a similar region of influence. In this case, they
are removed. While a sample in a sparsely region is considered very relevant and
stored in the case base (instance memory). This approach is efficient in the case
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where the number of queries is smaller than the number of data streams. This is
because this algorithm achieves predictions based on the most nearest neighbors
of a query. This algorithm is implemented using the open source software for
mining and analyzing large data sets in a stream-like manner massive online analysis
(MOA). The proposed algorithm was evaluated using two synthetic data sets
(hyperplane generator and random tree generator). The examples were generated by
using the concept driftstream procedure to mix streams produced by two different
hyperplanes (simulating a rotation) or by two random tree generators. In addition,
two real data sets (shuttle and wine) were used to evaluate the proposed algorithm
with two different settings and to compare its performance in classification and
in regression with respectively Hoeffding and flexible evolving fuzzy inference
systems (FLEXFIS).

Chapter 9

Chapter 9 presents a review of the samplewise streaming data driven family of
approaches called flexible evolving fuzzy inference systems (FLEXFIS) family.
These systems are flexible because they are able to react to changes in system
environment conditions by updating (1) the model parameters (updating the already
existing rules), and (2) the model structure (extending the model to unexplored
regions in the feature space by generating new rules). The native FLEXFIS
algorithm is designed for regression problems using Takagi–Sugeno fuzzy model
architecture, extensions to the classification case are presented using three different
model architectures (first part of the chapter): single model (SM), multimodel (MM)
and all-pairs (AP). In the second part, two extensions of the FLEXFIS family are
detailed. These extensions include:

• Detection of and reaction on drifts in data streams,
• Reducing the model complexity by merging of redundant rules,
• Reducing the dimensionality of feature space by smoothly and softly outweight-

ing the least important features with respect to changes in the target concept,
• Some concepts how to integrate uncertainty in model predictions using conflict

and ignorance models for classification and adaptive local error bars for regres-
sion problems,

• Some consideration toward interpretability of the evolved models.

Chapter 10

Chapter 10 presents a sequential adaptive fuzzy inference system (SAFIS) to learn
a model from one-by-one observations coming from nonstationary environments.
SAFIS is structured in a neural network of five layers to realize a fuzzy rule model.
The number of rules and their premise and consequent parameters are adjusted based
on the concept of fuzzy rules influence. The latter is determined as the contribution
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of the rule to the overall output. SAFIS starts with no fuzzy rule. It translates the
first input into a first rule. The latter starts with the largest influence in the input
space and then this influence decreases exponentially to allow more fuzzy rules to
learn the system dynamics. The rule parameters are adjusted based on the use of
the winner rule strategy, i.e., only the parameters of the nearest rule to the input
data in Euclidean sense are updated using an extended Kalman filter (EKF): this is
applied for linear and nonlinear parameters using extended gradient information for
the latter. A rule is removed if its influence is less than a certain pruning threshold.
The influence of a rule is measured by its statistical contribution to the final model
output over time.

Chapter 11

Chapter 11 presents an interval-based evolving modeling (IBeM) approach to adapt
the structure and parameters of rule-based models in incremental manner. The use
of intervals or granules is efficient in the case of lacking precise information. The
proposed approach starts learning from scratch with no prior knowledge about data
distribution and properties. IBeM learns online from the sequence of input–output
pairs to approximate the target function. It creates granules and rules whenever
stream pairs arrive. Then these granules and rules are adapted in recursive manner
to consider new unseen pairs of input–output when they are located inside the
granule expansion region. If the new pair is outside the expansion region of all
available granules, then a new granule is created to extend the current collection
of granules. IBeM is applied to mining the level of rain precipitation in different
European regions and to build up an evolving predictor for daily fluctuation of the
price of an economic index. The results clearly underline how the method works,
i.e., how are the granules and intervals evolved, and the improved performance
of the method compared over other state-of-the art approaches such as multilayer
perceptron (MLP), evolving Takagi–Sugeno model (eTS) and eXtended evolving
Takagi–Sugeno model (xTS).

Chapter 12

Chapter 12 presents a review of dynamic methods to learn models from single and
multiple time-series data in nonstationary environments. These models are used
to capture the dynamics of individual variables generating the single time-series
data as well as the dynamic interactions and relationships between them. The key
advantage of these methods is that they can adapt (evolve) their structure online
to the environment new conditions as new information becomes available. This
adaptation would keep the performance of the model estimation over time. The
chapter classifies these methods into two categories: inductive (global modeling)
and transductive reasoning methods. Inductive methods create a model from all
available data representing the entire problem space. While transductive methods
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estimate the value of a potential model at a single point of the problem space
using some additional information related to this point. These methods are then
compared in order to show their advantages and drawbacks. The chapter details
a well-known family of inductive methods called dynamic evolving neuro-fuzzy
inference systems (DENFIS). Then, it presents the instance-based learning method
neuro-fuzzy inference (NFI) as an example of transductive methods. Thereafter,
it presents an algorithm for extracting profiles (shapes of trends extracted during
snapshots) of relationship of multiple time series data. This algorithm is based on
variable clustering than sample clustering. Finally a case study of dynamic learning
of 10 stock market indexes in the Asia Pacific region is used to show and to compare
the performances of the presented approaches in the chapter.

Chapter 13

Chapter 13 describes a step for feature parameter optimization to adapt the
parameters inside the feature calculation process when extracting features from
images. Thereby, the optimized calculations of two specific types of parameterized
image features, namely Gabor features and blob features, are studied in detail. The
goal of this optimization is to put emphasis on those parameters which maximize
the separation between the different classes and thus to reduce the number of
misclassifications. This optimization can be achieved offline and online. In the
offline optimization, feature parameters are optimized by looking for the ones that
minimize within-class scatter in relation to the between-class scatter. This feature
adaptation maximizes the distance between the classes perpendicular to the decision
boundary. In the on-line feature optimization, i.e., the target function, within-class
scatter in relation to the between-class scatter, and its gradient according to both,
the feature and classifier parameters are adapted, i.e., updated, in the direction of
the negative gradient of the target function. Two examples of application are used
to show the interest of the feature optimization. The first example is an artificial
database of images related to the quality control task where different types of
defects need to be distinguished. The second example is a texture classification
problem. The classification results show improved performance when optimizing
the feature calculation part over conventional extraction of features with default
fixed parameters.

Chapter 14

Chapter 14 is the application of the FLEXFIS family as demonstrated in Chap. 9 of
this book to the quality inspection of production items. This application is divided
into post-supervision visual inspection and online quality control by processing
directly the process measurement data. The first is based on classifiers built upon
features extracted from images showing the surface of production items. The
classifiers are applied to decide (1) whether an image denotes a faulty or nonfaulty
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item (binary classification problem) and (2) to which types of faults potential regions
of interests (objects) belong (multi-class classification problem). The second one
identifies high-dimensional system models based on implicit dependencies and
relations between system variables (measurement channels) and uses these models
to decide whether new measurements are denoting faults or non-faults by calculating
the degree of deviation to the identified models. Therefore, no annotation effort
for operators for labeling samples is required. In the Experimental section, the
authors have used ten different classification methods for comparison and nine data
sets (five real world visual surface inspection problems from the and European
project). The comparison between static classifiers (trained in offline mode) and
their evolved version (updated online) shows clearly that the prediction accuracy
has been improved in the evolved version of classifiers. The results for online quality
control based on measurement data also underline the necessity of evolving models
to increase the performance (detection rate and the area under the ROC curve),
significantly.

Chapter 15

Chapter 15 presents an online clustering approach for the identification of a
temporally switched hybrid dynamic systems (HDS). HDS are characterized by
the interaction between continuous time dynamics and discrete events or logic
rules. Temporally switched HDS represent a particular class of HDS in which
the transition from one operating or function mode to another one is achieved at
particular time instants. This class of HDS can be modeled using either switched
autoregressive (AR) or AR with eXogenous inputs (ARX) dynamic models. The
identification of HDS aims to estimate the parameters of each operating mode.
This requires the determination of the number of operating modes of HDS. In
Pattern Recognition (PR) approaches, an operating mode can be represented as a
class in the feature space. Thus, the proposed approach in this chapter finds the
number of classes based on the use of past input-output observations. A least square
method with a sliding time window is applied on these observations in order to
estimate the coefficients of the AR and ARX dynamic models. These coefficients
represent the features of the feature space. The patterns belonging to each class
will be then used to estimate the parameters of its associated operating mode. The
chapter evaluates the proposed approach using a simulation and real examples.
The simulation example is a system switching in different time instants among
three different operating modes represented by three different discrete time transfer
functions. The second example aims to characterize the noises generated by the
steam generator of nuclear power generators prototype fast reactor (PFR). These
noises represent the normal operating mode as well as the faulty one in response
to a leakage in the steam generator. Two acoustic sensors are used to record these
noises.
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Chapter 2
Incremental Statistical Measures

Katharina Tschumitschew and Frank Klawonn

Abstract Statistical measures provide essential and valuable information about
data and are needed for any kind of data analysis. Statistical measures can be used in
a purely exploratory context to describe properties of the data, but also as estimators
for model parameters or in the context of hypothesis testing. For example, the mean
value is a measure for location, but also an estimator for the expected value of a
probability distribution from which the data are sampled. Statistical moments of
higher order than the mean provide information about the variance, the skewness,
and the kurtosis of a probability distribution. The Pearson correlation coefficient is a
measure for linear dependency between two variables. In robust statistics, quantiles
play an important role, since they are less sensitive to outliers. The median is an
alternative measure of location, the interquartile range an alternative measure of
dispersion. The application of statistical measures to data streams requires online
calculation. Since data come in step by step, incremental calculations are needed to
avoid to start the computation process each time new data arrive and to save memory
so that not the whole data set needs to be kept in the memory. Statistical measures
like the mean, the variance, moments in general, and the Pearson correlation
coefficient render themselves easily to incremental computations, whereas recursive
or incremental algorithms for quantiles are not as simple or obvious. Nonstationarity
is another important aspect of data streams that needs to be taken into account.
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This means that the parameters of the underlying sampling distribution might
change over time. Change detection and online adaptation of statistical estimators is
required for nonstationary data streams. Hypothesis tests like the χ2- or the t-test can
be a basis for change detection, since they can also be calculated in an incremental
fashion. Based on change detection strategies, one can derive information on the
sampling strategy, for instance the optimal size of a time window for parameter
estimations of nonstationary data streams.

2.1 Introduction

Statistics and statistical methods are used in almost every aspect of modern life, like
medicine, social surveys, economy, and marketing, only to name few of application
areas. A vast number of sophisticated statistical software tools can be used to search
and test for structures and patterns in data. Important information about the data
generating process is provided by the simple summary statistics. Characteristics
of the data distribution can be described by summary statistics like the following
one.

• Measures of location: The mean and quantiles provide information about location
of the distribution. Mean and median are representatives for the center of the
distribution.

• Measures of spread: Common measures for the variation in the data are standard
deviation, variance, and interquartile range.

• Shape: The third and fourth moments provide information about the skewness
and the kurtosis of a probability distribution.

• Dependence: For instance, the Pearson correlation coefficient is a measure for the
linear dependency between two variables. Other common measures for statistical
dependency between two variables rank correlation coefficients like Spearman’s
rho or Kendall’s tau.

Apart from providing information about location and spread of the data distribution,
quantiles also play an important role in robust data analysis, since they are less
sensitive to outliers.

Summary statistics can be used in a purely exploratory context to describe
properties of the data, but also as estimators for model parameters of an assumed
underlying data distribution.

More complex and powerful methods for statistical data analysis are for instance
hypothesis tests. Statistical hypothesis testing allows us to discover the current state
of affairs and therefore help us to make decisions based on the gained knowledge.
Hypothesis test can be applied to a great variety of problems. We may need to test
just a simple parameter or the whole distribution of the data.

However, classical statistics operates with a finite, fixed data set. On the other
hand, nowadays it is very important to continuously collect and analyze data
sets increasing with time, since the (new) data may contain useful information.
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Sensor data as well as the seasonal behavior of markets, weather, or animals are
in the focus of diverse research studies. The amount of recorded data increases
each day. Apart from the huge amount of data to be dealt with, another problem
is that the data arrive continuously in time. Such kind of data is called data stream.
A data stream can be characterized as an unlimited sequence of values arriving step
by step over time. One of the main problems for the analysis of data streams is
limited computing and memory capabilities. It is impossible to hold the whole data
set in the main memory of a computer or computing device like an ECU (electronic
control unit) that might also be responsible for other tasks than just analyzing the
data. Moreover, the results of the analysis should be presented in acceptable time,
sometimes even under very strict time constraints, so that the user or system can
react in real time. Therefore, the analysis of data streams requires efficient online
computations. Algorithms based on incremental or recursive computation schemes
satisfy the above requirements. Such methods do not store all historical data and do
not need to browse through old data to update an estimator or an analysis, in the
ideal case, each data value is touched only once.

Consequently the application of statistical methods to data streams requires
modifications to the standard calculation schemes in order to be able carry out the
computations online. Since data come in step by step, incremental calculations are
needed to avoid to start the computation process from scratch each time new data
arrive and to save memory, so that not the whole data set must be kept in the memory.
Statistical measures like the sample mean, variance and moments in general and the
Pearson correlation coefficient render themselves easily incremental computation
schemes, whereas, for instance, for standard quantiles computations the whole data
is needed. In such cases, new incremental methods must be developed that avoid
sorting the whole data set, since sorting requires in principal to check the whole
data set. Several approaches for the online estimation of quantiles are presented for
instance in [1, 9, 19, 25].

Another important aspect in data stream analysis is that the data generating
process does not remain static, i.e., the underlying probabilistic model cannot be
assumed to be stationary. The changes in the data structure may occur over time.
Dealing with nonstationary data requires change detection and on-line adaptation.
Different kinds of nonstationarity have been classified in [2]:

• Changes in the data distribution: the change occurs in the data distribution. For
instance, mean or variance of the data distribution may change over time.

• Changes in concept: here concept drift refers to changes of a target variable. A
target variable is a variable, whose values we try to predict based on the model
estimated from the data, for instance for linear regression it is the change of the
parameters of the linear relationship between the data.

– Concept drift: concept drift describes gradual changes of the concept. In
statistics, this usually called structural drift.

– Concept shift: concept shift refers to an abrupt change which is also referred
to as structural break.
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Hence change detection and online adaptation of statistical estimators are
required for nonstationary data streams. Various strategies to handle nonstationarity
are proposed, see for instance [11] for a detailed survey of change detection
methods. Statistical hypothesis tests may also be used for change detection. Since
we are working with data streams, it is required that the calculations for the
hypothesis tests can be carried out in an incremental way. For instance, the χ2-
test and the t-test1 render themselves easily to incremental computations. Based on
change detection strategies, one can derive information on the sampling strategy,
for instance the optimal size of a time window for parameter estimations of
nonstationary data streams [3, 26].

This chapter is organized as follows. Incremental computations of the mean,
variance, third and fourth moments and the Pearson correlation coefficient are
explained in Sect. 2.2. Furthermore two algorithms for the on-line estimation of
quantiles are described in Sect. 2.3. In Sect. 2.4 we provide on-line adaptations of
statistical hypothesis test and discuss different change detection strategies.

2.2 Incremental Calculation of Moments and the Pearson
Correlation Coefficient

Statistical measures like sample central moments provide valuable information
about the data distribution. So the sample mean or empirical mean (first sample
central moment) is the measure of the center of location of the data distribution,
the measure of variability is sample variance (second sample central moment). The
third and fourth central moments are used to compute skewness and kurtosis of
the data sample. Skewness provides us the information about the asymmetry of the
data distribution and kurtosis give us an idea about the degree of peakedness of the
distribution.

Another important statistic is the correlation coefficient. The correlation coeffi-
cient is a measure for linear dependency between two variables.

In this section, we introduce incremental calculations for these statistical mea-
sures.

In the following, we consider a real-valued sample x1, . . . ,xt , . . . (xi ∈ R for all
i ∈ {1, . . . , t, . . .}).
Definition 2.1. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X .

The sample or empirical mean of the sample of size t, denoted by x̄t , is given by
the formula

x̄t =
1
t

t

∑
i=1

xi. (2.1)

1For precise definitions, see Sect. 2.4.
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Equation (2.1) cannot be applied directly in the context of data streams, since it
would require to consider all sample values at each time step. Fortunately, (2.1) can
be easily transformed into an incremental scheme.

x̄t =
1
t

t

∑
i=1

xi

=
1
t

(
xt +

t−1

∑
i=1

xi

)

=
1
t
(xt +(t− 1) x̄t−1)

= x̄t−1 +
1
t
(xt − x̄t−1) . (2.2)

The incremental update (2.2) requires only three values to calculate the sample mean
at time point t:

• The mean at time point t− 1.
• The sample value at time point t.
• The number of sample values so far.

The empirical or sample variance can be calculated in an incremental fashion in
a similar way.

Definition 2.2. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X . The empirical or sample variance of a sample of size t is given by

s2
t =

1
t− 1

t

∑
i=1

(xi− x̄t)
2 (2.3)

Furthermore, st =
√

s2
t is called the sample standard deviation.

In order to simplify the calculation, we use following notation:

m̃2,t =
t

∑
i=1

(xi− x̄t)
2 (2.4)

In the following, the formula for incremental calculation is derived from (2.4)
using (2.2).

m̃2,t − m̃2,t−1 =
t

∑
i=1

x2
i − tx̄2

t −
t−1

∑
i=1

x2
i +(t− 1) x̄2

t−1

= x2
t − tx̄2

t +(t− 1) x̄2
t−1

= x2
t − x̄2

t−1 + t
(
x̄2

t−1− x̄2
t

)
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= x2
t − x̄2

t−1 + t (x̄t−1− x̄t)(x̄t−1 + x̄t)

= x2
t − x̄2

t−1 + t

(
x̄t−1− x̄t−1− 1

t
(xt − x̄t−1)

)
(x̄t−1 + x̄t)

= x2
t − x̄2

t−1 +(x̄t−1− xt)(x̄t−1 + x̄t)

= (xt − x̄t−1)(xt + x̄t−1− x̄t−1− x̄t)

= (xt − x̄t−1)(xt − x̄t) .

Consequently, we obtain the following recurrence formula for the second central
moment:

m̃2,t = m̃2,t−1 +(xt − x̄t−1) (xt − x̄t) (2.5)

The unbiased estimator for the variance of the sample according to (2.5) is given by

s2
t =

1
t− 1

M2,t =
(t− 2)s2

t−1 +(xt − x̄t−1)(xt − x̄t)

t− 1
. (2.6)

Definition 2.3. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X . Then the k-th central moment of a sample of size t is defined by

mk,t =
1
t

t

∑
i=1

(xi− x̄t)
k. (2.7)

In order to simplify the computations and to facilitate the readability of the text, we
use the following expression for the derivation.

m̃k,t =
t

∑
i=1

(xi− x̄t)
k, (2.8)

therefore m̃k,t = t ·mk,t .
For the third- and fourth-order moments, which are needed to calculate skewness

and kurtosis of the data distribution, incremental formulae can be derived in a similar
way, in the form of pairwise update equations for m̃3,t and m̃4,t .

m̃3,t =
t−1

∑
i=1

(xi− x̄t)
3 +(xt − x̄t)

3

=
t−1

∑
i=1

(
xi− x̄t−1− 1

t
(xt − x̄t−1)

)3

+

(
xt − x̄t−1− 1

t
(xt − x̄t−1)

)3

=
t−1

∑
i=1

((xi− x̄t−1)− b)3 +(tb− b)3
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=
t−1

∑
i=1

(
(xi− x̄t−1)

3− 3b(xi− x̄t−1)
2 + 3b2 (xi− x̄t−1)− b3

)
+(t− 1)3 b3

= m̃3,t−1− 3bm̃2,t−1− ((t− 1)b3 +(t− 1)3 b3

= m̃3,t−1− 3bm̃2,t−1+ t (t− 1)(t− 2)b3 (2.9)

where b =
xt−x̄t−1

t .
From (2.9), we obtain a one-pass formula for the third-order centered statistical

moment of a sample of size t:

m̃3,t = m̃3,t−1− 3
(xt − x̄t−1)

t
m̃2,t−1 +

(t− 1)(t− 2)
t2 (xt − x̄t−1)

3 . (2.10)

The derivation for the fourth-order moment is very similar to (2.9) and thus is not
detailed here.

m̃4,t = m̃4,t−1− 4
(xt − x̄t−1)

t
m̃3,t−1 + 6

(
xt − x̄t−1

t

)2

m̃2,t−1

+
(t− 1)

(
t2− 3t + 3

)
t3 (xt − x̄t−1)

4 . (2.11)

The results presented above offer the essential formulae for efficient, one-pass
calculations of statistical moments up to the fourth order. Those are important
when the data stream mean, variance, skewness, and kurtosis should be calculated.
Although these measures cover the needs of the vast majority of applications for data
analysis, sometimes higher-order statistics should be used. For the computation of
higher-order statistical moments, see for instance [6].

Now we derive a formula for the incremental calculation of the sample correla-
tion coefficient.

Definition 2.4. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X and y1, . . . ,yt be a random sample from the distribution of the
random variable Y . Then the sample Pearson correlation coefficient of the sample
of size t, denoted by rxy,t , is given by the formula

rxy,t =
∑t

i=1 (xi− x̄t) (yi− ȳt)

(t− 1)sx,t sy,t
(2.12)

where x̄t and ȳt are the sample means of X and Y and sx,t and sy,t are the sample
standard deviations of X and Y , respectively.

The incremental formula for the sample standard deviation can be easily derived
from the incremental formula for sample variance (2.6). Hence, only the numerator
of (2.12) needs to be considered further. Furthermore, the numerator of (2.12)
represents the sample covariance sxy,t .
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Definition 2.5. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X and y1, . . . ,yt be a random sample from the distribution of the
random variable Y . Then the sample covariance sxy,t of the sample of size t is
given by t

sxy,t =
∑t

i=1 (xi− x̄t) (yi− ȳt)

t− 1
(2.13)

where x̄t and ȳt are the sample means of X and Y and sx,t and sy,t are the sample
standard deviations of X and Y , respectively.

The formula for the incremental calculation of the covariance is given by

(t− 1)sxy,t =
t−1

∑
i=1

(xi− x̄t) (yi− ȳt)+ (xt − x̄t) (yt − ȳt)

=
t−1

∑
i=1

((xi− x̄t−1)− bx)((yi− ȳt−1)− by)+ (t− 1)2 bxby

= (t− 2)sxy,t−1 + t (t− 1)bxby (2.14)

where bx =
(xt−x̄t−1)

t and by =
(yt−ȳt−1)

t . Hence, the incremental formula for the
sample covariance is

sxy,t =
(t− 2)
(t− 1)

sxy,t−1 +
1
t
(xt − x̄t−1) (yt − ȳt−1) (2.15)

Therefore, to update the Pearson correlation coefficient, we have to compute the
sample standard deviation and covariance first and subsequently use (2.12).

Above in this section, we presented incremental calculations for the empirical
mean, empirical variance, third and fourth sample central moments and sample cor-
relation coefficient. These statistical measures can also be considered as estimators
of the corresponding parameters of the data distribution. Therefore, we are interested
in the question how many values xi do we need to get a “good” estimation of the
parameters. Of course, as we deal with a data stream, in general we will have a large
amount of data. However, some application are based on time window techniques.
For instance, for change detection methods presented in the section (Sect. 2.4). Here
we need to compare at least two samples of data; on that account, the data have to be
split into smaller parts. To answer the question about the optimal amount of data for
statistical estimators, we have to analyze the variances of the parameter estimators.
The variance of an estimator shows how efficient this estimator is.

Here we restrict our considerations to a random sample from a normal dis-
tribution with expected value 0. Let X1, . . . ,Xt be independent and identically
distributed (i.i.d.) random variables following a normal distribution, Xi ∼ N

(
0, σ2

)
and x1, . . . ,xt are observed values of these random variables.
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Fig. 2.1 Variances from bottom to top of parameter estimators for the expected value, the variance
and the third moment of a standard normal distribution

The variance of the estimator of the expected value2 X̄t =
1
t ∑

t
i=1 Xi is given by

Var (X̄t) =
σ2

t
. (2.16)

The variance of the unbiased estimator of the variance S2 = 1
t−1 ∑

t
i=1 (Xi− X̄t)

2

is given by

Var
(
S2

t

)
=

2
(t− 1)

σ4. (2.17)

The variance of the distribution of the third moment is shown in (2.18) (see [6]
for more detailed information)

Var (M3,t) =
6(t− 1)(t− 2)

t3 σ6. (2.18)

Figure 2.1 shows (2.16), (2.17), and (2.18) as functions in t for σ2 = 1 (standard
normal population). It is obvious that for small amounts of data, the variance of the
estimators is quite large, consequently more values are needed to obtain a reliable
estimation of distribution parameters. Furthermore, the optimal sample size depends
on the statistic to be computed. For instance, for the sample mean and a sample
of size 50, the variance is already small enough, whereas for the third moment
estimator to have the same variance, many more observations are needed.

We apply the same considerations to the sample correlation coefficient. Let X
and Y be two random variables following normal distributions and let X1, . . . ,Xt

and Y1, . . . ,Yt be i.i.d. samples of X and Y , respectively: Xi ∼ N
(
0, σ2

x

)
and

2We use capital letters here to distinguish between random variables and real numbers that are
denoted by small letters.
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Fig. 2.2 Asymptotic variance of the sample correlation coefficient

Yi ∼ N
(
0, σ2

y

)
. Assume the correlation between X and Y is equal to ρXY . Then

the asymptotic variance of the sample correlation coefficient is given by (see [7])

Var (RXY,t)≈
(
1−ρ2

XY

)2

t
. (2.19)

Attention should be paid to the asymptotic nature of (2.19). This formula can be
used only for sufficiently large t (see [7]). Equation (2.19) is illustrated in Fig. 2.2
as a function in t for ρXY = 0.9. Since for different values of ρXY , the plots are very
similar, they are not shown here.

In this section, we have provided equations for incremental calculation of
the sample mean, sample variance, third and fourth moments and the Pearson
correlation coefficient. These statistics allow us to summarize a set of observations
analytically. Since we assume that the observations reflect the population as a
whole, these statistics give us an idea about the underlying data distribution. Other
important summary statistics are sample quantiles. Incremental approaches for
quantiles estimation are described in the next section.

2.3 Incremental Quantile Estimation

Quantiles play an important role in statistics, especially in robust statistics, since
they are not or less sensitive to outliers. For q ∈ (0,1), the q-quantile has the
property that q · 100% of the data are smaller and (1− q) · 100% of the data are
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larger than this value. The median, i.e., the 50% quantile, is a robust measure of
location and the interquartile range3 is a robust measure of spread. Incremental or
recursive techniques for quantile estimation are not as obvious as for statistical
moments, since for the sample quantile computation the entire sorted data are
needed. Nevertheless, there are techniques for incremental quantile estimation. In
this section, we describe two different approaches. First approach is restricted to
continuous symmetric unimodal distributions. Therefore, this method is not very
useful for all real world data. The second approach is not restricted to any kind
of distribution and is not limited to continuous random variables. We also provide
experimental results for both algorithms for different kinds of distributions.

2.3.1 Incremental Quantile Estimation for Continuous
Random Variables

Definition 2.6. For a random variable X with cumulative distribution function FX ,
the q-quantile (q∈ (0,1)) is defined as inf{x∈R | FX(x)≥ q}. If xq is the q-quantile
of a continuous random variable, this implies P(X ≤ xq) = q and P(X ≥ xq) = 1−q.

For continuous random variables, an incremental scheme for quantile estimation
is proposed in [10]. This approach is based on the following theorem.

Theorem 2.1. Let {ξt}t=0,1,... be a sequence of identically distributed independent
(i.i.d.) random variables with cumulative distribution function Fξ . Assume that the
density function fξ (x) exists and is continuous in theα-quantile xα for an arbitrarily
chosen α (0 < α < 1). Further let the inequality

fξ (xα)> 0 (2.20)

be fulfilled. Let {ct}t=0,1,... be a (control) sequence of real numbers satisfying the
conditions

∞

∑
t=0

ct = ∞,
∞

∑
t=0

c2
t < ∞. (2.21)

Then the stochastic process Xt defined by

X0 = ξ0, (2.22)

Xt+1 = Xt + ctYt+1 (Xt , ξt+1) , (2.23)

3The interquartile range is the midrange containing 50% of the data and it is computed as the
difference between the 75%- and the 25%-quantiles: IQR = x0.75− x0.25.
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with

Yt+1 =

{
α− 1 if ξt+1 < Xt ,

α if ξt+1 ≥ Xt ,
(2.24)

almost surely converges to the quantile xα .

The proof of the theorem is based on stochastic approximation and can be found
in [18]. A standard choice of the sequence {ct}t=0,1,... is ct = 1/t. However, con-
vergence might be extremely slow for certain distributions. Therefore, techniques
to choose a suitable sequence {ct}t=0,1,..., for instance, based on an estimation of
the probability density function of the sampled random variable, are proposed in
[10, 17].

Although this technique of incremental quantile estimation has only minimum
memory requirement, it has certain disadvantages.

• It is only suitable for continuous random variables.
• Unless the sequence {ct}t=0,1,... is well chosen, convergence can be extremely

slow.
• When the sampled random variable changes over time, especially when the ct

are already close to zero, the incremental estimation of the quantile will remain
almost constant and the change will be unnoticed.

In the following, we present an algorithm to overcome these problems.

2.3.2 Incremental Quantile Estimation

Here we provide a more general approach which is not limited to continuous random
variables. First we describe an algorithm for incremental median estimation, which
can be generalized to arbitrary quantiles. Since this algorithm is not very suitable
for noncentral quantiles, we modify this approach in such a way that it yields good
results for all quantiles.

2.3.2.1 Incremental Median Estimation

Before we discuss the general problem of incremental quantile estimation, we first
focus on the special case of the median, since we will need the results for the median
to develop suitable methods for arbitrary quantiles.

For the incremental computation of the median we store a fixed number, a buffer
of m sorted data values a1, . . . ,am in the ideal case the m

2 closest values left and the m
2

closest values right of the median, so that the interval [a1,am] contains the median.
We also need two counters L and R to store the number of values outside the interval
[a1,am], counting the values left and right of the interval separately. Initially, L and
R are set to zero.
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Table 2.1 A small example
data set t 1 2 3 4 5 6 7 8 9

Data 3.8 5.2 6.1 4.2 7.5 6.3 5.4 5.9 3.9

The algorithm works as follows. The first m data points x1, . . . ,xm are used to
fill the buffer. They are entered into the buffer in increasing order, i.e., ai = x[i]
where x[1] ≤ . . . ≤ x[m] are the sorted values x1, . . . ,xm. After the buffer is filled, the
algorithm handles the incoming values xt in the following way:

1. If xt < a1, i.e., the new value lies left of the interval supposed to contain the
median, then Lnew := Lold + 1.

2. If xt > am, i.e., the new value lies right of the interval supposed to contain the
median, then Rnew := Rold + 1.

3. If ai ≤ xt ≤ ai+1 (1 ≤ i < m), xt is entered into the buffer at position ai or ai+1.
Of course, the other values have to be shifted accordingly and the old left bound
a1 or the old right bound am will be dropped. Since in the ideal case, the median
is the value in the middle of the buffer, the algorithm tries to achieve this by
balancing the number of values left and right of the interval [a1,am]. Therefore,
the following rule is applied:

a. If L < R, then remove a1, increase L, i.e. Lnew := Lold + 1, shift the values
a2, . . . ,ai one position to the left and enter xt in ai.

b. Otherwise remove am, increase R, i.e. Rnew := Rold + 1, shift the values
ai+1, . . . ,am−1 one position to the right and enter xt in ai+1.

In each step, the median q̂0.5 can be easily calculated from the given values in the
buffer and the counters L and R by

q̂0.5 =

⎧⎨
⎩

a L+m+R
2 −L if t is odd,

a L+m+R−1
2 −L

+a L+m+R+1
2 −L

2 if t is even.
(2.25)

It should be noted that it can happen that at least one of the indices L+m+R
2 −L,

L+m+R−1
2 − L and L+m+R+1

2 − L are not within the bounds 1, . . . ,m of the buffer
indices and the computation of the median fails. The interval length am− a1 can
only decrease and at least for continuous distributions X with probability density
function fX (q0.5) > 0, where q0.5 is the true median of X , it will tend to zero with
increasing sample size. In an ideal situation, the buffer of m stored values contains
exactly the values in the middle of the sample. Here, we assume that at this point in
time the sample consists of m+ t values (Table 2.1).

Table 2.2 illustrates how this algorithm works with an extremely small buffer of
size m = 4 based on the data set given in Table 2.1.

In the following, we generalize and modify the incremental median algorithm
proposed in the previous section and analyze the algorithm in more detail.
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Table 2.2 The development
of the buffer and the two
counters for the small
example data set in Table 2.1

t L a1 a2 a3 a4 R

4 0 3.8 4.2 5.2 6.1 0
5 0 3.8 4.2 5.2 6.1 1
6 0 3.8 4.2 5.2 6.1 2
7 1 4.2 5.2 5.4 6.1 2
8 2 5.2 5.4 5.9 6.1 2
9 3 5.2 5.4 5.9 6.1 2

2.3.2.2 An Ad hoc Algorithm

This algorithm for incremental median estimation can be generalized to arbitrary
quantiles in a straightforward manner. For the incremental q-quantile estimation
(0 < q < 1), only case 3 requires a modification. Instead of trying to get the same
values for the counters L and R, we now try to balance the counters in such a way that
qR≈ (1−q)L holds. This means, step 3a is applied if L < (1−q)t holds, otherwise
step 3b is carried out. t is the number of data sampled after the buffer of length m
has been filled.

Therefore, in the ideal case, when we achieve this balance, a proportion of q of
the data points lies left and a proportion of (1− q) lies right of the interval defined
by the buffer of length m.

Now we are interested in the properties of the incremental quantile estimator
presented above. Since we are simply selecting the k-th order statistic of the
sample, at least for continuous random variables and larger pre-sampling sizes, we
can provide an asymptotic distribution of the order statistic and therefore for the
estimator.

Assume, the sample comes from a continuous random variable X and we are
interested in an estimation of the q-quantile xq. Assume furthermore that the
probability density function fX is continuous and positive at xq. Let ξ t

k (k = �tq�+1)
denote the k-th order statistic from an i.i.d. sample. Then ξ t

k has an asymptotic
normal distribution [7]

N

(
xq;

q(1− q)
t f 2 (xq)

)
(2.26)

From (2.26), we can obtain valuable information about the quantile estimator.
In order to have a more efficient and reliable estimator, we want the variance

of (2.26) to be as small as possible. Under the assumption that we know the data
distribution, we can compute the variance of ξ t

k .
Let X be a random variable following a standard normal distribution and assume

we have a sample x1, . . . ,xt of X , i.e., these values are realizations of the i.i.d. random
variables Xi ∼ N (0, 1). We are interested in the median of X . According to (2.26),
the sample median ξ t

�0.5t�+1 follows asymptotically a normal distribution:

ξ t
�0.5t�+1 ∼ N

(
0;

π
2t

)
. (2.27)
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Fig. 2.3 Variance from bottom to top of X̄ and ξ t
k under the assumption of a standard normal

distribution of X

Figure 2.3 shows the variance of the order statistic ξ t
�0.5t�+1 as a function in t

when the chosen quantile is q = 0.5, i.e., the median, and the original distribution
from which the sample comes is a standard normal distribution N(0;1). The second
curve in the figure corresponds to the variance of the sample mean.

The variance of the sample mean X̄ is only slightly better than that of the order
statistic ξ t

�0.5t�+1, nevertheless we should keep in mind the asymptotic character of
the distribution (2.26).

Furthermore, from (2.26) we obtain the other nice property of the incremental
quantile estimator: It is an asymptotically unbiased estimator of sample quantiles. It
is even a consistent estimator.

Unfortunately, as it was shown in [25], the probability for the algorithm to
fail is much smaller for the estimation of the median than for arbitrary quantiles.
Therefore, despite the nice properties of this estimator this simple generalization of
the incremental median estimation algorithm to arbitrary quantiles is not very useful
in practice. In order to amend this problem, we provide a modified algorithm based
on pre-sampling.

2.3.2.3 Incremental Quantile Estimation With Presampling iQPres

Here we introduce the algorithm iQPres (incremental quantile estimation with
pre-sampling) [25]. As already mentioned above, the failure probability for the
incremental quantile estimation algorithm in Sect. 2.3.2.2 is lower for the median
than for extreme quantiles. Therefore, to minimise the failure probability we
introduce an incremental quantile estimation algorithm with pre-sampling.

Assume we want to estimate the q-quantile. We pre-sample n values and
we simply take the l-th smallest value x(l) from the pre-sample for some fixed
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l ∈ {1, . . . ,n}. At the moment, l does not even have to be related to the q-quantile.
The probability that x(l) is smaller than the q-quantile of interest is

pl =
l

∑
i=0

(
n
i

)
·qi · (1− q)n−i . (2.28)

So when we apply pre-sampling in this way, we obtain the new (presampled)
distribution (order statistic) ξ n

l . From (2.28), we can immediately see that the
(1− pl)-quantile of ξ n

l is the same as the q-quantile of X . Therefore, instead of
estimating the q-quantile of X , we estimate the (1− pl)-quantile of ξ n

l . Of course,
this is only helpful, when l is chosen in such a way that the failure probabilities
for the (1− pl)-quantile are significantly lower than the failure probabilities for the
q-quantile. In order to achieve this, l should be chosen in such a way that (1− pl) is
as close to 0.5 as possible.

We want to estimate the q-quantile (0 < q < 1). Fix the parameters m, l,n. (For
an optimal choice see [25].)

1. Presampling: n succeeding values are stored in increasing order in a buffer bn

of length n. Then we select the l-th element in the buffer. The buffer is emptied
afterwards for the next presample of n values.

2. Estimation of the (1− pl)-quantile based on the l-th element in the buffer for pre-
sampling: this is carried out according to the algorithm described in Sect. 2.3.2.2.

The quantile is then estimated in the usual way, i.e.,

k = 	(m+L+R)∗ (1− pl)− l+ 0.5� ,
r = (m+L+R)∗ (1− pl)− l+ 0.5− k,

q̂ = (1− r) ·ak−R+ r ·ak−R+1 (quantile estimator).

Of course, this does only work when the algorithm has not failed, i.e., the
corresponding index k is within the buffer of m values.

2.3.3 Experimental Results

In this section, we present an experimental evaluation of the presented algorithms
iQPres and the algorithm described in Sect. 2.3.1. The evaluation is based on
artificial data sets.

First, we consider estimations of the lower and upper quartile as well as the
median for different distributions:

• Exponential distribution with parameter λ = 4 (Exp(4))
• Standard normal distribution (N(0;1))
• Uniform distribution on the unit interval (U(0,1))
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Fig. 2.4 An example for an
asymmetric, bimodal
probability density function

Table 2.3 Estimation of the lower quartile q = 0.25

Distr. True quantile iQPres (2.23) MSE (iQPres) MSE (2.23)

Exp(4) 1.150728 1.152182 1.718059 2.130621E-5 2.675568
N(0;1) −0.674490 −0.672235 −0.678989 5.611009E-6 0.008013
U(0,1) 0.250000 0.250885 0.250845 1.541123E-6 4.191695E-5
GM −2.043442 −2.042703 0.185340 1.087618E-5 5.331730

Table 2.4 Estimation of the median q = 0.5

Distr. True quantile iQPres (2.23) MSE (iQPres) MSE (2.23)

Exp(4) 2.772589 2.7462635 5.775925 7.485865E-4 10.906919
N(0;1) 0.000000 6.8324E-4 −0.047590 1.786715E-5 0.009726
U(0,1) 0.500000 0.495781 0.499955 1.779917E-5 2.529276E-6
GM 0.434425 0.434396 0.117499 2.365156E-6 0.451943

• An asymmetric bimodal distribution given by a Gaussian mixture model (GM) of
two normal distributions. The cumulative distribution function of this distribution
is given by

F(x) = 0.3 ·FN(-3;1) + 0.7 ·FN(1;1)

where FN(μ;σ2) denotes the cumulative distribution function of the normal distri-
bution with expected value μ and variance σ2. Its probability density function is
shown in Fig. 2.4.

The quantile estimations were carried out for samples of size of 10,000 that were
generated from these distributions. We have repeated each estimation 1,000 times.
Tables 2.3–2.5 show the average over all estimations for our algorithm (iQPres with
a memory size of M = 150) and for the technique based on Theorem 2.1 where we
used the control sequence ct =

1
t . The mean squared error over the 1,000 repeated

runs is also shown in the tables.
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Table 2.5 Estimation of the upper quartile q = 0.75

Distr. True quantile iQPres (2.23) MSE (iQPres) MSE (2.23)

Exp(4) 5.545177 5.554385 5.062660 1.054132E-4 0.919735
N(0;1) 0.674490 0.674840 0.656452 3.600748E-7 0.003732
U(0,1) 0.750000 0.750883 0.749919 8.443136E-7 2.068730E-5
GM 1.366114 1.366838 0.027163 1.193377E-6 2.207112

For the uniform distribution, incremental quantile estimation based on (2.23)
and iQPres leads to very similar and good results. For the normal distribution, both
algorithms yield quite good results, but iQPres seems to be slightly more efficient
with a smaller mean square error. For the bimodal distribution based on the Gaussian
mixture model and a skewed distribution such as the exponential distribution, the
estimations for the algorithm based on (2.23) are more or less useless, at least when
no specific effort is invested to find an optimal control sequence {ct}t=0,1,.... iQPres
does not have any problems with these distributions. As already mentioned before, it
is also not required for iQPres that the sampling distribution is continuous whereas
it is a necessary assumption for the technique based on (2.23).

2.4 Hypothesis Tests and Change Detection

In this section we demonstrate how hypothesis testing can be adapted to an incre-
mental computation scheme for the cases of the χ2-test and the t-test. Moreover,
we discuss the problem of nonstationary data and explain various change detection
strategies with the main focus on the use of statistical tests.

2.4.1 Incremental Hypothesis Tests

Statistical test are methods to check the validity of hypotheses about distributions
or properties of distributions of random variables. Since statistical tests rely on
samples, they cannot definitely verify or falsify a hypothesis. They can only provide
probabilistic information supporting or rejecting the hypothesis under consideration.

Statistical tests usually consider a null hypothesis H0 and an alternative hypoth-
esis H1. The hypotheses may concern parameters of a given class of distributions,
for instance unknown expected value and variance of a normal distribution. Such
tests are called parameter tests. In such cases, the a priori assumption is that the data
definitely originate from a normal distribution. Only the parameters are unknown.
In contrast to parameter tests, nonparametric tests concern more general hypothesis,
for example, whether it is reasonable at all to assume that the data come from a
normal distribution.

The error probability that the test will erroneously reject the null hypothesis,
given the null hypothesis is true, is used as an indicator of the reliability of the test.
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Sometimes a so-called p-value is used. The p-value is smallest error probability
that can be admitted, so that the test will still reject the null hypothesis for a
given sample. Therefore, a low p-value is a good indicator for rejecting the null
hypothesis. Usually, the acceptable error probability α (α-error) should be specified
in advance, before the test is carried out. The smaller α is chosen, the more reliable
is the test when the outcome is to reject the null hypothesis. However, when α is
chosen too small, then the test will not tend to reject the null hypothesis, although
the sample might not speak in favor of it.

Some of the hypothesis tests can be applied to data streams, since they can be
calculated in an incremental fashion. We discuss in this section the incremental
adaptation of two statistical tests, the χ2-test and the t-test. Note, that the application
of hypothesis tests to data streams, using incremental computation or window
techniques, requires the repeated execution of the test. This can cause the problem
of multiple testing. The multiple testing problem is described later in this section.

2.4.1.1 χ2-test

The χ2-test has various applications. The principal idea of the χ2-test is the
comparison of two distributions. One can check whether two samples come from
the same distribution, a single sample follows a given distribution or also whether
two samples are independent.

Example 2.1. A die is thrown 120 times and the observed frequencies are as
follows: 1 is obtained 30 times, 2–25, 3–18, 4–10, 5–22, and 6–15. We are interested
in the question whether the die is fair or not.

The null hypothesis H0 for the χ2-test claims that the data follow a certain
(cumulative) probability distribution F(x). The distribution of the null hypothesis
is than compared to the distribution of the data. The null hypothesis can for instance
be a given distribution, e.g., a uniform or a normal distribution, and the χ2-test can
give an indication, whether the data strongly deviate from this expected distribution.
For an independence test for two variables, the joint distribution of the sample is
compared to the product of the marginal distributions. If these distributions differ
significantly, this is an indication that the variables might not be independent.

The main idea of the χ2-test is to determine how well the observed frequencies
fit the theoretical/expected frequencies specified by the null hypothesis. Therefore,
the χ2-test is appropriate for data from categorical or nominally scaled random
variables. In order to apply the test to continuous numeric data, the data domain
should be partitioned into r categories first.

First we discus the χ2 goodness of fit test. Here we assume to know from which
distribution the data come. Then the H0 and H1 hypotheses can be stated as follows:

H0: The sample comes from the distribution FX

H1: The sample does not come from the distribution FX
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Therefore the problem from Example 2.1 can be solved with the help of the χ2

goodness of fit test. Consequently, the H0 and H1 hypotheses are chosen as follows:

H0: P(X = 1) = p1 =
1
6 , . . . , P(X = 6) = p6 =

1
6

H1: P(X = i) �= 1
6 for at least one value i ∈ {1, . . . ,6}

Let X1, . . . ,Xn be i.i.d. continuous random variables and x1, . . . ,xn the observa-
tions from these random variables. Then the test statistic is computed as follows

χ2 =
r

∑
i=1

(Oi−Ei)
2

Ei
(2.29)

where Oi are the observed frequencies and Ei are the expected frequencies.
Since we are dealing with continuous random variables, to compute the observed

and expected frequencies we should carry out a discretisation of the data domain.
Let FX(x) be the assumed cumulative distribution function. The x-axis have to be

split into r pairwise disjoint sets or bin Si. Then the expected frequency in bin Si is
given by

Ei = n(FX (ai+1)−FX (ai)) , (2.30)

where [ai,ai+1) is interval corresponding to bin Si.
Furthermore, for the observed frequencies we obtain

Oi = ∑
xki
∈Si

1. (2.31)

Oi is therefore the amount of observations in the i-th interval.
The statistic (2.29) has an approximate χ2-distribution with (r− 1) degrees of

freedom under the following assumptions: First, the observations are independent
from each other. Second, the categories—the bins Si—are mutually exclusive and
exhaustive. This means that no categories may have an expected frequency of zero,
i.e. ∀i ∈ 1, . . . ,r : Ei > 0. Furthermore, no more than 20% of the categories should
have an expected frequency less than five. If this is not the case, categories should be
merged or redefined. Note that this might also lead to a different number of degrees
of freedom.

Therefore, the hypothesis H0 that the sample comes from the particular distribu-
tion FX is rejected if

r

∑
i=1

(Oi−Ei)
2

Ei
> χ2

1−α , (2.32)

where χ2
1−α is the (1−α)-quantile of the χ2-distribution with (r− 1) degrees of

freedom.
Table 2.6 summarizes the observed and expected frequencies and computations

for Example 2.1. All Ei are greater than zero, even greater than 4. Therefore, there
is no need to combine categories. The test statistic is computed as follows:

r

∑
i=1

(Oi−Ei)
2

Ei
= 5+ 1.25+ 0.2+5+0.2+1.25= 12.9 (2.33)
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Table 2.6 Example 2.1 Number i
on the die Ei Oi

(Oi−Ei)
2

Ei

1 20 30 5
2 20 25 1.25
3 20 18 0.2
4 20 10 5
5 20 22 0.2
6 20 15 1.25

The obtained result χ2 = 12.9 should be evaluated with (1−α)-quantile of the χ2-
distribution. For that purposes table of the χ2-distribution ([7]). The corresponding
degrees of freedom are computed as explained above (r− 1) = (6− 1) = 5. For
α = 0.05 the tabled critical value for 5 degrees of freedom is χ2

0.95 = 11.07, which
is smaller than computed test statistic. Therefore, the null hypothesis is rejected at
the 0.05 significance level. For significance level 0.02, the critical value is χ2

0.98 =
13.388 and therefore the null hypothesis cannot be rejected at this level. This result
can be summarized as follows: χ2 = 12.9 with 5 degrees of freedom can be rejected
for all significance levels bigger than 0.024. This indicates that the die is unfair.

In order to adapt the χ2 goodness of fit test to incremental calculation, the
observed frequencies should be computed in an incremental fashion.

O(t)
i =

{
O(t−1)

i + 1 if xt ∈ Si,

O(t−1)
i otherwise.

(2.34)

The expected frequency should also be recalculated corresponding to the increasing
amount of observations.

E(t)
i =

E(t−1)
i

(t− 1)
t. (2.35)

Another very common test is the χ2 independence test. This test evaluates the
general hypothesis that two variables are statistically independent from each other.

Let X and Y be two random variables and (x1,y1) , . . . ,(xn,yn) are the observed
values of these variables. For continuous random variables, the data domains should
be partitioned into r and q categories, respectively. Therefore, the observed values
of X can be assigned to one of the categories SX

1 , . . . ,S
X
r and the observed values of

Y to one of the categories SY
1 , . . . ,S

Y
q . Then Oi j is the frequency of occurrence of the

observation (xki ,ykj ), where xki ∈ SX
i and ykj ∈ SY

j . Furthermore,

Oi• =
q

∑
j=1

Oi j (2.36)

and

O• j =
r

∑
i=1

Oi j (2.37)

denote the marginal observed frequencies.



42 K. Tschumitschew and F. Klawonn

Table 2.7 Contingency table

X \ Y SY
1 . . . SY

j . . . SY
q

Marginal
of X

SX
1 O11 . . . O1 j . . . O1q O1•

...
...

...
...

...
...

...
SX

i Oi1 . . . Oi j . . . Oiq Oi•
...

...
...

...
...

...
...

SX
r Or1 . . . Or j . . . Orq Or•

Marginal of Y O•1 . . . O• j . . . O•q n

Table 2.7 illustrates the observed absolute frequencies. The total number of
observations in the table is n. The notation Oi j represents the number of observations
in the cell with index i j (i-th row and j-th column), Oi• the number of observations
in the i-th row and O• j the number of observations in the j-th column. This table is
called contingency table.

It is assumed that the random variables X and Y are statistically independent.
Let pi j be the probability of being in the i-th category of the domain of X and
the j-th category of the domain of Y . pi• and p• j are the corresponding marginal
probabilities. Then, corresponding to the assumption of independence for each pair

pi j = pi• · p• j (2.38)

holds. Equation (2.38) defines statistical independence. Therefore, the null and the
alternative hypotheses are as follows:

H0: pi j = pi• · p• j

H1: pi j �= pi• · p• j

Thus, if X and Y are independent, then the expected absolute frequencies are
given by

Ei j =
Oi• ·O• j

n
. (2.39)

The test statistic, again checking the observed frequencies against the expected
frequencies under the null hypothesis, is as follows.

χ2 =
r

∑
i=1

q

∑
j=1

(Oi j−Ei j)
2

Ei j
(2.40)

The test statistic has an approximate χ2-distribution with (r− 1)(s− 1) degrees of
freedom. Consequently, the hypothesis H0 that X and Y are independent can be
rejected if

r

∑
i=1

q

∑
j=1

(Oi j−Ei j)
2

Ei j
≥ χ2

1−α (2.41)
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Table 2.8 Contingency table

Values\variables X1 . . . Xj . . . Xm ∑
S1 O11 . . . O1 j . . . O1m O1•
...

...
...

...
...

...
...

Si Oi1 . . . Oi j . . . Oim Oi•
...

...
...

...
...

...
...

Sr Or1 . . . Or j . . . Orm Or•
∑ O•1 . . . O• j . . . O•m n

where χ2
1−α is the (1−α)-quantile of the χ2-distribution with (r− 1)(s− 1)

degrees of freedom.
For the incremental computation of Oi•, O• j, and Oi j corresponding formulae

must be developed. For the time point t and the new observed values (xt ,yt), the
incremental formulae are given by

O(t)
i• =

⎧⎨
⎩

O(t−1)
i• + 1 if xt ∈ SX

i ,

O(t−1)
i• otherwise.

(2.42)

O(t)
• j =

⎧⎨
⎩

O(t−1)
• j + 1 if yt ∈ SY

j ,

O(t−1)
• j otherwise.

(2.43)

O(t)
i j =

⎧⎨
⎩

O(t−1)
i j + 1 if xt ∈ SX

i ∧ yt ∈ SY
j ,

O(t−1)
i j otherwise.

(2.44)

The χ2 goodness of fit test can be extended to a χ2 homogeneity test ([22]).
Whereas the χ2 goodness of fit test can be used only for a single sample, the χ2

homogeneity test is used to compare whether two or more samples come from the
same population.

Let X1, . . . ,Xm (m ≥ 2) be discrete random variables, or continuous random
variables discretised into r categories S1, . . . ,Sr. The data for each of the m samples
from random variables X1, . . . ,Xm (overall n values) are entered in a contingency
table. This table is similar to the one for the χ2 independence test.

The samples are represented by the columns and the categories by the rows of
Table 2.8. We assume that each of the samples is randomly drawn from the same
distribution. The χ2 homogeneity test checks whether m samples are homogeneous
with respect to the observed frequencies. If the hypothesis H0 is true, the expected
frequency in the i-th category will be the same for all of the m random variables.
Therefore, the null and the alternative hypotheses can be stated as follows:

H0: pi j = pi• · p• j

H1: pi j �= pi• · p• j.

From H0 follows that the rows are independent of the column.
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Therefore, the computation of an expected frequency can be summarized by

Ei j =
Oi• ·O• j

n
. (2.45)

Although the χ2 independence test and χ2 homogeneity test evaluate different
hypothesis, they are computed identically. Therefore, the incremental adaptation of
the χ2 independence test can also be applied to the χ2 homogeneity test.

Commonly in case of two samples the Kolmogorov–Smirnov test is used, since it
is an exact test and in contrast to the χ2-test can be applied directly without previous
discretisation of continuous distributions. However, the Kolmogorov–Smirnov test
does not have any obvious incremental calculation scheme. The Kolmogorov–
Smirnov test is described in Sect. 2.4.2.2.

2.4.1.2 The t-Test

The next hypothesis test for which we want to provide incremental computation is
the t-test. Different kinds of the t-test are used. We restrict our considerations to the
one sample t-test and the t-test for two independent samples with equal variance.

The one sample t-test evaluates whether a sample with particular mean could be
drawn from the population with known expected value μ0. Let X1, . . .Xn be i.i.d. and
Xi ∼ N

(
μ ;σ2

)
with unknown variance σ2. The null and the alternative hypotheses

for two-sided test are:

H0: μ = μ0, the sample comes from the normal distribution with expected value
μ0.

H1: μ �= μ0, the sample comes from a normal distribution with an expected value
differing from μ0.

The test statistic is given by

T =
√

n
X̄− μ

S
, (2.46)

where X̄ is the sample mean and S the sample standard deviation. The statistic (2.46)
is t-distributed with (n− 1) degrees of freedom. H0 is rejected if

t <−t1−α/2 or t > t1−α/2 (2.47)

where t1−α/2 is the (1−α/2)-quantile of the t-distribution with (n− 1) degrees of

freedom and t is the computed value of the test statistic (2.46), i.e. t =
√

n x̄−μ0
s .

One-sided tests are given by the following null and alternative hypotheses:

H0: μ ≤ μ0 and H1 : μ > μ0. H0 is rejected if t > t1−α .
H0: μ ≥ μ0 and H1 : μ < μ0. H0 is rejected if t <−t1−α .



2 Incremental Statistical Measures 45

This test can be very easily adapted to incremental computation. For this purpose,
the sample mean and the sample variance have to be updated as in (2.2) and (2.6),
respectively, as described in Sect. 2.2. Note that the degrees of freedom of the
t-distribution should be updated in each step as well.

tn+1 =
√

n+ 1
x̄n+1− μ0

sn+1
(2.48)

Unlike previous notations we use here n+ 1 for the time point, since the letter
t is already used for the computed test statistic. Furthermore, as mentioned above
the (1−α/2)-quantile of the t-distribution with n degrees of freedom should be
used to evaluate the null hypothesis. However for n ≥ 30, the quantiles of the
standard normal distribution could be used as approximation of the quantiles of
the t-distribution.

The t-test for two independent samples is used to evaluate whether two
independent sample come from two normal distributions with the same expected
value. The two sample means x̄ and ȳ are used to estimate the expected values
μX and μY of the underlying distributions. If the result of the test is significant, we
assume that the samples come from two normal distributions with different expected
values. Furthermore, we assume that the variances of the underlying distributions
are unknown.

The t-test is based on the following assumptions:

• The samples are drawn randomly.
• The underlying distribution is a normal distribution.
• The variances of the underlying distributions are equal, i.e. σ2

X = σ2
Y .

Let X1, . . .Xn1 i.i.d. and Xi ∼ N
(
μX ;σ2

X

)
and Y1, . . .Yn2 i.i.d. and Yi ∼ N

(
μY ;σ2

Y

)
with unknown expected values and unknown variances and σ2

X = σ2
Y .

The null and the alternative hypothesis can be defined as follows:

H0: μX = μY , the samples come from the same normal distribution.
H1: μX �= μY , the samples come from normal distributions with different expected

values.

In this case, a two-sided test is carried out; however, similar to the one sample t-test
also a one-sided test can be defined.

The test statistic is computed as follows.

T =
X̄− Ȳ√

(n1−1)S2
X+(n2−1)S2

Y
n1+n2−2

√
n1n2

n1 + n2
(2.49)

where S2
X and S2

Y are the unbiased estimators for the variances of X and Y ,
respectively.

Equation (2.49) is a general equation for the t-test for two independent samples
and can be used in both cases of equal and unequal sample sizes.
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The statistic (2.49) has a t-distribution with (n1 + n2− 2) degrees of freedom.
Let

t =
x̄− ȳ√

(n1−1)s2
X+(n2−1)s2

Y
n1+n2−2

√
n1n2

n1 + n2
(2.50)

be the computed value of the statistic (2.49). Then the hypothesis H0 that the
samples come from the same normal distribution is rejected if

t <−t1−α/2 or t > t1−α/2, (2.51)

where t1−α/2 is the (1−α/2)-quantile of the t-distribution with (n1 + n2− 2)
degrees of freedom.

Similar to the one sample t-test, the t-test for two independent samples can be
easily computed in an incremental fashion, since the sample means and the variance
can be calculated in an incremental way. Here the degrees of freedom should also
be updated with the new observed values.

2.4.1.3 Multiple Testing

Multiple testing refers to the application of number of tests simultaneously. Instead
of a single null hypothesis, a tests for a set of null hypotheses H0, H1, . . . ,Hn are
considered. These null hypotheses do not have to exclude each other.

An example for multiple testing is a test whether m random variables X1, . . .Xm

are pairwise independent. This means, the null hypotheses are H1,2, . . . ,H1,m, . . . ,
Hm−1,m where Hi, j states that Xi and Xj are independent.

Multiple testing leads to the undesired effect of cumulating the α-error. The α-
error α is the probability to reject the null hypothesis erroneously, given it is true.
Choosing α = 0.05 means that in 5% of the cases the null hypothesis would be
rejected, although it is true. When k tests are applied to the same sample, then the
error probability for each test is α . Under the assumption that the null hypotheses
are all true and the tests are independent, the probability that at least one test will
reject its null hypothesis erroneously is

P(�≥ 1) = 1−P(�= 0) (2.52)

= 1− (1−α) · (1−α) . . . · (1−α) (2.53)

= 1− (1−α)k. (2.54)

� is the number of tests rejection the null hypothesis.
A variety of approaches have been proposed to handle the problem of cumulating

the α-error. In the following, two common methods will be introduced shortly.
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The simplest and most conservative method is Bonferroni correction [21]. When
k null hypotheses are tested simultaneously and α is the desired overall α-error for
all tests together, then the corrected α-error for each single test should be chosen as
α̃ = α

k . The justification for this correction is the inequality

P

(⋃
i

Ai

)
≤∑

i
P(Ai) . (2.55)

For Bonferroni correction, Ai is the event that the null hypothesis Hi is rejected,
although it is true. In this way, the probability that one or more of the tests rejects
its corresponding null hypothesis is at most α . In order to guarantee the significance
level α , each single test must be carried out with the corrected level α̃ .

Bonferroni correction is a very rough and conservative approximation for the true
α-error. One of its disadvantages is that the corrected significance level α̃ becomes
very low, so that it becomes almost impossible to reject any of the null hypotheses.

The simple single step Bonferroni correction has been improved by Holm [12].
The Bonferroni–Holm method is a multistep procedure in which the necessary
corrections are carried out stepwise. This method usually yields larger corrected
α-values than the simple Bonferroni correction.

When k hypotheses are tested simultaneously and the overall α-error for all tests
isα , for each of the tests the corresponding p-value is computed based on the sample
x and the p-values are sorted in ascending order.

p[1](x)≤ p[2](x)≤ . . .≤ p[k](x) (2.56)

The null hypotheses Hi are ordered in the same way.

H[1],H[2], . . . ,H[k] (2.57)

In the first step, H[1] is tested by comparing p[1] with α
k . If p[1] >

α
k holds, then H[1]

and the other null hypotheses H[2], . . . ,H[k] are not rejected. The method terminates
in this case. However, if p[1] ≤ α

k holds, H[1] is rejected and the next null hypothesis
H[2] is tested by comparing the p-value p[2] and the corrected α-value α

k−1 . If p[2] >
α

k−1 holds, H[2] and the remaining null hypotheses H[3], . . . ,H[k] are not rejected. If
p[2] ≤ α

k−1 holds, H[2] is rejected and the procedure continues with H[3] in the same
way.

The Bonferroni–Holm method tests the hypotheses in the order of their p-values,
starting with H[1]. The corrected αi-values α

k ,
α

k−1 , . . .α are increasing. Therefore,
the Bonferroni–Holm method rejects at least those hypotheses that are also rejected
by simple Bonferroni correction, but in general more hypotheses can be rejected.

2.4.2 Change Detection Strategies

Detecting changes in data streams has become a very important area of re-
search in many application fields, such as stock market, web activities, or sensors
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Fig. 2.5 An example of change detection for time series data from a waste water treatment plant

measurements, just to name a few. The main problem for change detection in
data streams is limited memory capacity. It is unrealistic to store the full history
of the data stream. Therefore, efficient change detection strategies tailored to the
data stream should be used. The main requirements for such approaches are:
low computational costs, fast change detection, and high accuracy. Moreover it is
important to distinguish between true changes and false alarms. Abrupt changes as
well as slow drift in the data generating process can occur. Therefore, a “good”
algorithm should be able to detect both kinds of changes.

Various strategies are proposed to handle this problem, see for instance [11] for
a detailed survey of change detection methods. Most of these approaches are based
on time window techniques [2, 15]. Furthermore, several approaches are presented
for evolving data streams as they are discussed in [8, 13, 14].

In this section, we introduce two types of change detection strategies: incremental
computation and window technique-based change detection. Furthermore, we put
the main focus on statistical tests. We assume to deal with numeric data streams. As
already mentioned in the introduction, two types of change are identified: concept
change and change of data distribution. We do not differentiate in this work between
both of them, since the distribution of the target variable will be changed in both
cases.

2.4.2.1 iQPres for Change Detection

The incremental quantile estimator iQPres from Sect. 2.3.2.3 can be used for change
detection [25]. In case, the sampling distribution changes, having a drift of the
quantile to be estimated as a consequence, such changes will be noticed, since the
simple version of iQPres without shifted parallel estimations will fail in the sense
that it is not able to balance the counters L and R any more.

In order to illustrate how iQPres can be applied to change detection, we consider
daily measurements for gas production in a waste water treatment plant over a period
of more than eight years. The measurements are shown in Fig. 2.5.
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iQPress has been applied to this data set to estimate the median with a memory
size of M = 30. The optimal choice for the sizes of the buffers for pre-sampling
and median estimation is then n = 3 and m = 27, respectively. At the three time
points 508, 2,604, and 2,964, the buffer cannot be balanced anymore, indicating
that the median has changed. These three time points are indicated by vertical lines
in Fig. 2.5. The arrows indicate whether the median is increased or decreased. An
increase corresponds to an unbalanced buffer with the right counter R becoming
too large, whereas a decrease leads to an unbalanced buffer with the left counter L
becoming too large. The median increases at the first point at 508 from 998 before
and 1,361 after this point. At time point 2,604, the median increases to 1,406 and
drops again to 1,193 at time point 2,964.

Note that algorithms based on Theorem 2.1 mentioned in Sect. 2.3.1 are not
suitable for change detection.

By using iQPres for change detection in the data distribution, we assume that the
median of the distribution changes with the time, however, if this is not the case
and only another parameter like the variance of the underlying distribution changes,
other strategies for change detection should be used.

2.4.2.2 Statistical Tests for Change Detection

The theory of hypothesis testing is the main background for change detection.
Several algorithms for change detection are based on hypothesis tests.

Hypothesis tests could be applied to change detection in two different ways:

• Change detection through incremental computation of the tests: by this approach
the test is computed in an incremental fashion, for instance, as it is explained
in Sect. 2.4.1. Consequently the change can be detected if the test starts to yield
different results as before.

• Window techniques: by this approach the data stream divided into time windows.
A sliding window could be used as well as nonoverlapping windows. In order
to detect potential changes, we need either to compare data from an earlier
window with data from newer one or to test only the new data (for instance,
whether the data follow a known or assumed distribution). When the window
size is not too large, it is not necessary to be able to compute the tests in
an incremental fashion. Therefore, we are not restricted to tests that render
themselves to incremental computations, but many other tests could be used.
Hybrid approaches combining both techniques are also possible. Of course,
window techniques with incremental computations within the window will lead
to less memory consumptions and faster computations.

We will not give a detailed description for change detection based on incremental
computation here, since the principles of these methods are explained in Sect. 2.4.1.
However, the problem of multiple testing as discussed in Sect. 2.4.1 should be taken
into account when a test is applied again and again over time. Even if the underlying
distribution does not change over time, any test will erroneously reject the null
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Fig. 2.6 General scheme of a change detection algorithm based on time windows and statistical
tests

hypothesis of no change in the long run if we only carry out the test often enough.
Different approaches to solve this problem are presented in Sect. 2.4.1.3. Another
problem of this approach is the “burden of old data”. If a large amount of data has
been analyzed already and the change is not very drastic, it may happen that the
change will be detected with large delay or not detected at all when a very large
window is used. On that account it may be useful to re-initialize the test from time
to time.

To detect changes with by window technique, we need to compare two samples
of data and have to decide whether the hypothesis H0 that they come from the same
distribution is true.

First we will present a general meta-algorithm for change detection based on
a window technique, without any specific fixed test. This algorithm is presented
in Fig. 2.6. The constant step specifies, after how many new values the change
detection should checked again.

This approach follows an simple idea: when the data from two subwindows of
W are judged as “distinct enough”, the change is detected. Here “distinct enough”
is specified by the selected statistical test for distribution change. In general, we
assume the splitting of W into two subwindows of equal size. Nevertheless, any
“valid” splitting can be used. Valid is meant in terms of the amount of data that is
needed for the test to be reliable.

However, by a badly selected cut point the change can be detected with large
delay as Fig. 2.7 shows. The rightmost part indicates a change in the data stream.
As the change occurs almost at the end of the subwindow W1, it is most likely that
the change remains at first undetected. Of course, since the window will be moved
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Fig. 2.7 Subwindows
problem

Fig. 2.8 Modification of the
algorithm for change
detection to avoid the
sub-windows problem

forward with new data points arriving, at some point the change will be detected,
but it may be from essential interest, to detect the change as early as possible.

To solve this problem, we modify the algorithm in Fig. 2.6 in the following way:
instead of splitting window W only once, the splitting is carried out several times.
Figure 2.8 shows the modified part of the algorithm in Fig. 2.6 starting at step 9.

How many times the window should be split, should be decided based on the
required performance and precision of the algorithm. We can run the test for each
sufficiently large subwindow of W , although the performance of the algorithm will
decrease, or we can carry out fixed number of splits. Note that also for the windows
technique-based approach, attention should be paid to the problem of multiple
testing (see Sect. 2.4.1.3). Furthermore, we do not specify here the effect of the
detected change. The question whether the window should be re-initialized depends
on the application. A change in the variance of the data stream might have a strong
effect on the task to be fulfilled with the online analysis of the data stream or it might
have no effect as long as the mean value remains more or less stable.

For the hypothesis test in step 10, of the algorithm, any appropriate test for the
distribution change can be chosen. Since we do not necessarily have to apply an
incremental scheme for the hypothesis test, the Kolmogorov–Smirnov test can also
be considered for change detection. The Kolmogorov–Smirnov test is designed to
compare two distribution, whether they are equal or not. Therefore, two kinds of
questions could be answered with the help of the Kolmogorov–Smirnov test:

• Does the sample arise from a particular known distribution?
• Do two samples coming from different time windows have the same distribution?

We are particularly interested in the second question. For this purpose, the two
sample Kolmogorov–Smirnov goodness-of-fit test should be used.

Let X1, . . . ,Xn and Y1, . . . ,Ym be two independent random samples from distribu-
tions with cumulative distribution functions FX and FY , respectively. We want to test
the hypothesis H0 : FX = FY against the hypothesis H1 : FX �= FY . The Kolmogorov–
Smirnov statistic is given by

Dn,m = sup
t
|SX ,n (x)− SY,m (x)| , (2.58)
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where SX ,n (x) and SY,m (x) are corresponding empirical cumulative distribution
function4 of the first and second sample. H0 is rejected at level α if

√
nm

m+ n
Dn,m > Kα (2.60)

where Kα is the α-quantile of the Kolmogorov distribution.
To adapt the Kolmogorov–Smirnov test as a change detection algorithm, first

the significance level α should be chosen (we can also use for instance the
Bonferroni correction to avoid the multiple testing problem). The value of Kα needs
either numerical computation or should be stored in a table.5 Furthermore, values
from the subwindows W0 and W1 represent two samples x1, . . . ,xn and y1, . . . ,ym.
Then the empirical cumulative distribution functions SX ,n (x) and SY,m (x) and the
Kolmogorov–Smirnov statistic should be computed. Note that for the computation
of SX ,n (x) and SY,m (x) in case of unique splitting the samples have to be sorted only
initially, afterward the new values have to be inserted and the old values must be
deleted from the sorted lists. In case of multiple splitting we have to decide either to
sort each time from scratch or to save sorted lists for each kind of splitting.

An implementation of the Kolmogorov–Smirnov test is for instance available in
the R statistics library (see [4] for more information).

Algorithm 2.8 based on the Kolmogorov–Smirnov test as the hypothesis test in
step 10 has been implemented in Java using R-libraries and has been tested with
artificial data. For the data generation process, the following model was used:

Yt =
t

∑
i=1

Xi. (2.61)

We assume the random variables Xi to be normally distributed with expected value
μ = 0 and variance σ2, i.e. Xi ∼ N

(
0, σ2

)
. Here Yt is a one dimensional random

walk [24]. To make the situation more realistic, we consider the following model:

Zt ∼ N (yt ,1) . (2.62)

The process (2.62) can be understood as a constant model with drift and noise, the
noise follows a normal distribution whose expected value equals the actual value of
the random walk and whose variance is 1.

4Let xr1 ,xr2 , . . .xrn be a sample in ascending order from the random variables X1, . . .,Xn. Then the
empirical distribution function of the sample is given by

SX ,n (x) =

⎧⎨
⎩

0 if x≤ xr1 ,
k
n if xrk < x≤ xrk+1 ,

1 if x > xrk .

(2.59)

5This applies also to the t-test and the χ2-test.
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Fig. 2.9 An example of change detection for the data generated by the process (2.62)

The data were generated with the following parameters: σ1 = 0.02, σ2 = 0.1.
Therefore, the data have a slow drift and are furthermore corrupted with noise.

Algorithm 2.8 has been applied to this data set. The size of the window W
was chosen to be 500. The window is always split into two subwindows of
equal size, i.e., 250. The data are identified by the algorithm as nonstationary.
Only very short sequences are considered to be stationary by the Kolmogorov–
Smirnov test. These sequences are marked by the darker areas in Fig. 2.9. In the
interval, [11,14,414,445] stationary parts are mixed with occasionally occurring
small nonstationary parts. For easier interpretation, we joined these parts to one
larger area. Of course, since we are dealing with the window, the real stationary
areas are not exactly the same as shown in the figure. The quality of change detection
depends on the window. For slow gradual changes in the form of concept drift a
larger window is a better choice, whereas for abrupt changes in terms of a concept
shift a smaller window is of advantage.

2.5 Conclusions

We have introduced incremental computation schemes for statistical measures or in-
dices like the mean, the median, the variance, the interquartile range, or the Pearson
correlation coefficient. Such indices provide information about the characteristics
of the probability distribution that generates the data stream. Although incremental
computations are designed to handle large amounts of data, it is not extremely useful
to calculate the above mentioned statistical measures for extremely large data sets,
since they quickly converge to the parameter of the probability distribution they are
designed to estimate as can be seen in Figs. 2.1–2.3. Of course, convergence will
only occur when the underlying data stream is stationary.

It is therefore very important to use such statistical measure or hypothesis
tests for change detection. Change detection is a crucial aspect for nonstationary
data streams or “evolving systems.” It has been demonstrated in [26] that naı̈ve
adaption without taking any effort to distinguish between noise and true changes
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of the underlying sample distribution can lead to very undesired results. Statistical
measures and tests can help to discover true changes in the distribution and to
distinguish them from random noise.

Applications of such change detection methods can be found in areas like quality
control and manufacturing [16,20], intrusion detection [27] or medical diagnosis [5].

The main focus of this chapter are univariate methods. There also extensions to
multidimensional data [23] which are out of the scope of this contribution.
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Chapter 3
A Granular Description of Data: A Study
in Evolvable Systems

Witold Pedrycz, John Berezowski, and Iqbal Jamal

Abstract A human-centric way of data analysis, especially when dealing with
data distributed in space and time, is concerned with data representation in an
interpretable way where a perspective from which the data are analyzed is actively
established by the user. Being motivated by this essential feature of data analysis,
in the study we present a granular way of data analysis where the data and
relationships therein are described through a collection of information granules
defined in the spatial and temporal domain. We show that the data, expressed in
a relational fashion, can be effectively described through a collection of Cartesian
products of information granules forming a collection of semantically meaningful
data descriptors. The design of the codebooks (vocabularies) of such information
granules used to describe the data is guided through a process of information
granulation and degranulation. This scheme comes with a certain performance index
whose minimization becomes instrumental in the optimization of the codebooks. A
description of logical relationships between elements of the codebooks used in the
granular description of spatiotemporal data present in consecutive time frames is
elaborated on as well.
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3.1 Introduction

Spatiotemporal data become visible in numerous applications. We envision data
distributed in time and space: readings associated with oil wells distributed over
space and reported in time, recordings of sensors distributed over some battlefield
area or disaster region, counts of animal disease recorded in several counties over
time, etc.—all of those are compelling examples of spatiotemporal data.

Spatial and temporal phenomena (systems) can be effectively analyzed and
described at various levels of abstraction. The selected level of abstraction is of
paramount importance as it helps realize a user-friendly approach to data analysis. In
essence, the user can establish the most suitable perspective to view the data (iden-
tifying a suitable level of detail to be included in the analysis); making an overall
analysis more humancentric. This view inherently brings a concept of information
granules into the picture. Information granules, no matter how they are formalized
(either as sets, fuzzy sets, rough sets, or others) are regarded as a collection of
conceptual landmarks using which one looks at the data and describes them. We
show that the relational way of capturing data naturally invokes the mechanisms of
relation calculus where the concepts of granulation and degranulation are crucial to
the optimization of the vocabulary (codebook) of information granules by means
of which the main dependencies in data become revealed and quantified. The key
objective of this study is to introduce a relational way of data analysis through their
granulation and degranulation and show a constructive way of forming information
granules leading to the best granular data representation. Furthermore, we introduce
some way of characterizing relationships between granular codebooks pertaining to
the description of data collected in successive time frames.

The presentation of the material is organized in a top–down fashion. We start
with an illustrative practical example (Sect. 3.2) and then move on to the problem
statement (Sect. 3.3) by stressing the relational character of data to be processed.
A mechanism of granulation of information and a way of representing data in the
language of information granules is covered in Sect. 3.4, which leads to a concept
of a so-called granular signature of data (Sect. 3.5). The fundamental concept of
information granulation–degranulation is introduced in Sect. 3.6 where we also
show how a vocabulary (codebook) of information granules can be optimized
so that the reconstruction of data implies a minimal value of the reconstruction
error. With regard to this optimization, it is discussed how fuzzy clustering leads
to the realization of information granules (Sect. 3.7). The issue of evolvability of
the relational description of data emerging in presence of a series of data frames
reported in successive time slices is covered in Sect. 3.8.
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3.2 From Conceptual Developments of Information Granules
to Applications

As an example of a real-world problem whose formulation and solutions can be
naturally cast within the conceptual framework to be discussed here, relates to
a comprehensive analysis of spatiotemporal data and associated event detection
schemes formed directly on a basis of information granules. An interesting system
where we encounter a wealth of spatiotemporal data is found at http://www1.agric.
gov.ab.ca/department/$deptdocs.nsf/all/cl12944. It concerns a set of data collection
stations distributed across the province of Alberta, see Fig. 3.1. This system helps
graph, compare, and download data in almost real-time mode for more than
270 stations where data themselves go back to April 2005. There are some
other data sets like precipitation and temperature (normal), temperature extremes,
solar radiation, soil temperature, and other important weather characteristics. In
a nutshell, we encounter a collection of spatial data—stations identified by some
x–y coordinates. For each station, there is an associated suite of time series (say,
dealing with the temperature, precipitation, radiation), see Fig. 3.2. An analysis

Fig. 3.1 A screen snapshot of the AgroClimatic Information Service (ACIS)

http://www1.agric.gov.ab.ca/department/$deptdocs.nsf/all/cl12944.
http://www1.agric.gov.ab.ca/department/$deptdocs.nsf/all/cl12944.
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Fig. 3.2 Collection stations along with associated time series

Fig. 3.3 From collection
stations to spatiotemporal
information granules
(clusters)

of such spatiotemporal data offers interesting and practically relevant insights into
their nature and helps identify main trends and relationships. Several challenging
problems are worth identifying in this context:

(a) Detection of information granules in the spatiotemporal data space, Fig. 3.3.
As shown there, the resulting information granules form regions (information
granules) in the space x–y by bringing together points (stations) characterized
by similar temporal data (time series) and being in close vicinity to each
other. From the algorithmic perspective, one can envision using a clustering
algorithm (which has to be carefully designed to capture the spatial as well as



3 A Granular Description of Data: A Study in Evolvable Systems 61

Fig. 3.4 Evolution of information granules through revealing dependencies among information
granules observed in successive discrete time moments (determined by the predetermined length
of the time horizon T)

temporal component). This implies that we have to carefully specify a distance
function used to quantify the closeness of elements in the spatiotemporal data
space. From the perspective of practical application, by forming the information
granules the user can get a better insight into the regions of the province, their
location, and size which exhibit some level of inner homogeneity while being
distinct from the others. Such findings could be of immediate value to decision-
makers in agriculture sector.

(b) Alluding to the constructs noted above, it is apparent that the temporal compo-
nent of the data depends directly on the length of the corresponding time series.
In particular, this impacts a way in which time series are represented (as the
time series could be either stationary or nonstationary, which is usually the case
when dealing with longer time horizons for which the information granules are
to be formed). This brings a concept of the temporal scale (which again triggers
some temporal granularity). The information granules are constructed over
some time horizon. They evolve so in successive time moments, say T, 2T, . . .
we obtain a collection of information granules, see Fig. 3.4.

These information granules are related. By describing relationships (dependen-
cies) between the information granules arising in time horizons T, 2T, etc., an
interesting dynamic pattern of changes (dynamics) at a more abstract level can be
revealed. It could be regarded as a generalization of the dynamic process where now
the dynamics is captured at a certain nonnumeric level and with the varying number
of granules, we witness changes in the level of specificity of the granular descriptors
(which becomes reflective of the varying level of complexity of the associated time
series).

The data collected in the system described above can be used in conjunction with
other sources of data (e.g., related with livestock and humans in the realization of
event detection systems). Those are essential to prevention of disasters and effective
risk management for livestock production, public health, and rural communities.
The need for animal health surveillance systems and ensuing decision-making
architectures capable of rapid disease detection is of paramount relevance. This is
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exacerbated by a number of factors. The speed of transportation has never been
faster, facilitating the rapid spread of pathogens around the world, and makes timely
detection more difficult. The average time to transport people and goods around the
world is less than the incubation period for most infectious diseases. The volume
of people, animals, and animal products that is moved everyday is large. Event
detectors, which could be sought as an integral functional component are formalized
and described in the language of information granules and are built on a basis of
reported weather data, disease cases reported and a way of their spread as well as
an intensity of spread itself [3–5, 7, 8]. All these phenomena can be conveniently
described and operated on through the calculus of information granules.

3.3 Problem Formulation

The data we are concerned with are of spatiotemporal character. The temporal data
(time series) are associated with some geographical x–y coordinates. Their descrip-
tion is provided in the form of a certain vector z positioned in the p-dimensional
unit hypercube. We can encounter here a genuine diversity of available ways used
to describe time series such as parameters of the autoregressive time series model
(AR model), coefficients of the Fourier expansion, cepstral coefficients, components
of discrete wavelet transforms (DWT), parameters of fuzzy rule-based system (in
case of fuzzy modeling of the series), and others. For instance, in case of the AR
model we have z= [a0 a1 a2 . . . as]

T where the model comes in the form z(K+1)=
∑s

j=0 a jz(K− j). One could also encounter models that are more specialized to fit a
certain category of signals such as this is the case in ECG signals modeled in terms
of Hermite expansion. In all these cases, we assume that the values of the descriptors
have been normalized so that the results are located in the [0,1]p hypercube.

The available data come in the form of the triples (xk,yk,zk) with xk = [xk yk]
T

being the spatial coordinates of the temporal data zk,k = 1,2, . . . ,N. The equivalent
representation that is convenient in our considerations, comes in a form of a fuzzy
relation R(x,y,z) assuming vector values in [0,1]p for specific values of xk and yk.
In other words, the above notation underlines that the pair (xk,yk) is associated with
a vector of temporal data zk. An illustration of an example fuzzy relation is included
in Fig. 3.5.

Given the relational data R, we are interested in the following two important
characterization and design issues:

(a) A description of R realized in a terms of a certain vocabulary of granular
descriptors, see Fig. 3.6. We form a certain focused view at the data provided
by the vocabulary. It has to be noted, as shown in Fig. 3.6, that different
vocabularies (codebooks) facilitate different, sometimes complementary views
at the available experimental evidence.

(b) Analysis of granulation and degranulation capabilities of the vocabularies. The
intriguing question is about capabilities of the given vocabulary to capture the
essence of the data (granular descriptors). Subsequently based upon the granular
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Fig. 3.5 Visualization of the fuzzy relation R; associated with some combination of the (x,y)-
coordinates are sine—like time series characterized, e.g., by a collection of their Fourier expansion
coefficients

Fig. 3.6 Formation of various views at relational data supported by the use of different
vocabularies

representation of the data, we discuss how to reconstruct (degranulate) the
original data, see Fig. 3.7. The quality of this reconstruction (as we anticipate
that the process of reconstruction could impart some losses) can be quantified
and the figure of merit associated with this process can be used in the
optimization of the codebook.

3.4 Granulation of Information and Granular Data
Representation

We characterize the available data R in terms of a collection of information granules-
semantically meaningful entities [1, 2, 6, 17] that are formed in the spatial and
temporal coordinates. Formally, information granules can be captured in different
ways, say in the form of sets, rough sets, fuzzy sets, to name a few alternatives.
Here we are concerned with their realization by means of fuzzy sets. We define a
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Fig. 3.7 The concept of
granulation and degranulation
realized with the aid of a
vocabulary of information
granules

collection of spatial information granules (located in the x- and y-coordinates) and
temporal information granules used to describe the spatiotemporal signal

Ai : R→ [0,1], i = 1,2, . . . ,n

B j : R→ [0,1], j = 1,2, . . . ,m

Cl : [0,1]p→ [0,1]p, l = 1,2, . . . ,r

Those are fuzzy sets described by the corresponding membership functions, that
is Ai(x),B j(y), and Cl(z). The collections of these granules are organized in the
form of families of fuzzy sets A,B,C, respectively. For instance, we have A =
{A1,A2, . . . ,An}, B = {B1,B2, . . . ,Bm} and C = {C1,C2, . . . ,Cr}. These fuzzy sets
come with a well-defined meaning. For instance, we may have linguistic descriptors
such as

• Ai—east region of x-coordinate, B j—north region of the y-coordinate.
• Cl—high frequency and low amplitude of the first component of the Fourier

expansion of the signal.

See Fig. 3.8. We form Cartesian products of the granular descriptors. For instance,
the Cartesian product of Ai and B j defined above, the Cartesian product Ai×B j,
can be regarded as a descriptor of the region of x− y space located in the north-east
region of the plane.

The Cartesian product of the above information granules can be treated as
a granular descriptor—a linguistic “probe” used to describe the available data.
A collection of all probes is used to describe/perceive the essence of data. Taken
altogether they can be sought as a granular codebook (vocabulary) supporting a
concise description of the collected experimental evidence.

The number of information granules for the spatial aspect of data could be
reduced if we consider treating both coordinates en block meaning that a family of
fuzzy sets is with respect to x- and y-coordinate. This gives rise to the membership
functions of both arguments, say A1(x,y),A2(x,y), . . . .
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Fig. 3.8 Examples of linguistic descriptors used in the granular representation of relational data:
spatial granular descriptors Ai and B j (a) and spatial granular descriptor Cl (b)

3.5 A Granular Signature (Descriptor) of Relational Data

Given the collection of information granules—vocabularies {Ai,B j,Cl}i =
1,2, . . . ,n; j = 1,2, . . . ,m; l = 1,2, ..,r they are used to describe (represent) the
relational data R. This description is realized by performing a convolution of the
elements of the vocabularies A, B, and C with the fuzzy relation of data, cf. [14]. This
convolution is realized in a way it is quite commonly present in signal processing
as well as the technology of fuzzy sets [16] that is

gi jl = (Ai×B j×Cl)◦R (3.1)

i = 1,2 . . . ,n; j = 1,2, . . . ,m; l = 1,2, . . . ,r. Expressing the fuzzy sets of the code-
books in terms of the corresponding membership functions we obtain the values of
gi jl as a result of the max-t composition operator [14] of the fuzzy sets and the fuzzy
relation

gi jl = max
xk,yk,zk

[Ai(xk)tB j(yk)tCl(z)tR(xk,yk,zk)] (3.2)

where t stands for a certain t-norm [12] (the minimum operator can be viewed as a
particular case).

This max-t composition comes with a useful interpretation: gi jl is then a
possibility measure of the relational data with respect to the selected information
granules indexed (i, j, l), Poss(Ai,B j,Cl ;R). The possibility measures arise here in
an explicit manner: they describe a degree of activation of a certain element of the
Cartesian product of the codebooks by the fuzzy relation R. As an example, let us
consider the fuzzy relation R with the following entries

⎡
⎣1.0 0.7 0.2 0.3

0.5 0.9 1.0 0.0
0.0 0.4 0.8 1.0

⎤
⎦
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and ⎡
⎣0.0 0.2 0.7 1.0

1.0 0.3 0.6 0.3
0.3 0.5 0.5 0.2

⎤
⎦

The columns of R are indexed by x-coordinates while the rows are linked with the
y-coordinate. The first relation includes the first coordinates of zk,zk1. The second
coordinates of zk form the second matrix. With each entry of the matrix associated
are the successive descriptors of the time series; the length of the descriptor vectors
of the time series is equal to 2. For instance, considering the location at (3,3)—entry
of the relation R, the descriptor of the time series positioned there is zk = [0.8 0.5]T

while zk = [0.0 0.3]T for the entry (4,2).
The vocabularies formed by information granules are as follows:

• For A with n = 2, A1 = [1.0 0.5 0.2 0.0], A2 = [0.3 1.0 0.7 0.6]
• For B with m = 2, B1 = [1.0 0.6 0.3], B2 = [0.0 0.5 1.0]
• For C with r = 2, C1 = [1.0 0.2], C2 = [0.1 1.0]

Let us now compute g111. Following the formula (3.2), we proceed with the
successive calculations, g111 = maxx,y[min(min(A1(x),B1(y)),maxz(min(C1(z),
R(x,y,z)))]. The inner expressions result in the following:

(A1×B1)(x,y) =
[

1.0 0.5 0.2 0.0
][

1.0 0.6 0.3
]T

=

⎡
⎣ 1.0 0.5 0.2 0.0

0.6 0.5 0.2 0.0
0.0 0.0 0.0 0.0

⎤
⎦

max
z
(min(C1(z),R(x,y,z))) = max

⎛
⎝
⎡
⎣1.0 0.7 0.2 0.3

0.5 0.9 1.0 0.0
0.0 0.4 0.8 1.0

⎤
⎦,

⎡
⎣ 0.0 0.2 0.2 0.2

0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2

⎤
⎦
⎞
⎠

=

⎡
⎣ 1.0 0.7 0.2 0.3

0.5 0.9 1.0 0.2
0.2 0.4 0.8 0.0

⎤
⎦

Finally, we find the minimum of the corresponding entries of

⎡
⎣ 1.0 0.5 0.2 0.0

0.6 0.5 0.2 0.0
0.0 0.0 0.0 0.0

⎤
⎦

and

⎡
⎣1.0 0.7 0.2 0.3

0.5 0.9 1.0 0.2
0.2 0.4 0.8 0.0

⎤
⎦, which yields the relation

⎡
⎣ 1.0 0.5 0.2 0.0

0.5 0.5 0.2 0.0
0.0 0.0 0.0 0.0

⎤
⎦. The maxi-

mum taken over all entries of this relation returns g111 = 1.0.
The result conveyed by (3.2) can be interpreted as a granular characterization

of R. Obviously, when we consider some other granular codebook, we arrive at
a different description or view of the same data. The flexibility available here is
essential; we customize the analysis of the data and the mechanism of customization
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Fig. 3.9 Realization of the
granular signature G of
relational data R

is offered in the form of the vocabulary. The elements of gi jl being arranged into a
single fuzzy relation G = [gi jl ] can be treated as a granular signature of R realized
for a certain collection of generic information granules (codebook) A, B, C, refer
to Fig. 3.9. It is worth noting that G supplies an important compression effect: the
original data are reduced to granular data of dimensionality n∗m∗ r. Obviously, the
reduction depends on the size of the codebook. The Cartesian products of elements
of A×B×C of information granules can be ordered linearly depending upon the
values of G = [gi jl ]; higher values of its entries indicate that the corresponding
entries are more consistent, supported by experimental evidence conveyed by R.
In this way, we can identify the most essential relational descriptors of R. More
specifically, the relational data R translate into a family of triples of descriptors
coming from the Cartesian product of the vocabularies A×B×C indexed by the
associated values of possibilities:

R = {(Ai1,B j1,Cl1),gi1 j1l1} (3.3)

We organize the entries of the granular representations gi1 j1l1 in a nonincreasing
order; the first entries of the sequence provides the essential granular descriptors of
R, that is gI ≤ gJ ≤ gK where I = (i1, j1, l1), J = (i2, j2, l2), etc.

3.6 The Concept of Granulation–Degranulation: A Way
of Describing Quality of Vocabulary

Given the granular signature of the relational data captured by G as well as the
elements of the vocabulary itself, we can reconstruct R. The result is an immediate
consequence that (3.2) is a fuzzy relational equation and for each combination of the
elements of A and B, we arrive at an individual fuzzy relational equation indexed
by the elements of the codebook of A and B [11, 14]. The degranulation problem
associates with a solution to the system of relational equations (3.1) in which the
fuzzy sets Ai, B j, Cl as well as the entries of the fuzzy relation gi jl are given while
the fuzzy relation R is to be determined. The solution to the problem comes as the
maximal fuzzy relation expressed as follows [10]:

R̂ = |i, j,l((Ai×B j×Cl)Φgi jl) (3.4)
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One can show that there is a solution to the system of fuzzy relational equations
expressed by (3.1). In terms of the membership values of the fuzzy relation, we
obtain

R̂(x,y,z) = mini, j,1[(Ai(x)tB j(y)tC1(z))Φgi jl ] (3.5)

The pseudo-residual operator [10] associated with a given t-norm is defined in the
following form:

aΦb = sup{c ∈ [0,1]|atc≤ b} (3.6)

The expression (3.8) requires some attention as we encounter here the vector-
valued membership function Cl(z). The calculations realized there are considered
coordinate-wise that is we compute consecutive entries of R̂ for the arguments
z1,z2, . . . ,zp by computing the corresponding expressions. For z1

R̂(x,y,z) = mini, j[(Ai(x)tB j(y)tC1(z1))Φgi j1] (3.7)

for z2

R̂(x,y,z) = mini, j[(Ai(x)tB j(y)tC1(z2))Φgi j2] (3.8)

In case we use the minimum operator, the corresponding pseudo-inverse (3.6) reads
as follows:

aΦb = sup{c ∈ [0,1]|min(a,c)≤ b}=
{

b a > b

1 a≤ b
(3.9)

Observe that in all cases the inclusion relationship holds, namely R ⊆ R̂. The
quality of the granulation–degranulation is expressed by comparing how much
the reconstruction of R given by (3.8), namely R̂, coincides with the relational
data themselves (R). The associated performance index expressing the quality of
reconstruction is defined as follows:

Q =
N

∑
K=1

‖R(xk,yk,zk)− R̂(xk,yk,zk)‖2 (3.10)

Again in light of the vector values assumed by the fuzzy relation, the above
distance is computed by taking distances over the successive coordinates of z.
For the Euclidean distance one explicitly specifies the components of the fuzzy
relation, which yields Q = ∑p

j=1∑
N
K=1 ‖R(xk,yk,zk j)− R̂(xk,yk,zk j)‖2. The associ-

ated optimization process may then link with a formation of information granules
minimizing the distance expressed by (3.10). This can be taken into consideration
when designing fuzzy sets (membership functions) as well as selecting the number
of fuzzy sets. Referring to the original expression for the max-t composition, the cal-
culations are carried out coordinate-wise, that is we compute min(Cl(z1),R(x,y,z1)),
min(Cl(z2),R(x,y,z2)), etc.
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In summary, the presented approach offers a general methodology of describing
data in the language of information granules, which can be schematically captured
as D→ G(D), where G denotes a granulation mechanism exploiting a collection
of information granules in the corresponding vocabularies. In view of flexibility
offered by different views at the data, we can highlight this effect in Fig. 3.7:
different granulation schemes cast an analysis of D in different perspectives and
give rise to different sequences of dominant granular descriptors.

3.7 Construction of Information Granules

Fuzzy clustering is a vehicle of information granulation. As such it can be used
here to form the elements of the codebook. As an example, we use here the well-
known method of the fuzzy c-means (FCM) [6]. The results of clustering come in
the form of the prototypes of the clusters and the partition matrix, which describes
an allocation of elements (membership degrees) to the clusters.

Let us discuss in detail on how the corresponding codebooks A, B, and C are
formed. For the spatial component, the data for the construction of elements of A
and B are one dimensional. The membership functions A1,A2, . . . ,An are expressed
in the form

Ai(x) =
1

∑n
i=1

(
x−vi
x−v j

)2/(ζ−1)
(3.11)

i = 1,2, . . . ,n, where v1,v2, . . . ,vn ∈ R are the prototypes constructed by running the
FCM using the data {x1,x2, . . . ,xN}. The fuzzification coefficient is denoted by ζ ,
ζ > 1. In the same way formed are the elements of the second codebook, B1, B2,
. . . , Bm by clustering one-dimensional data {y1,y2, . . . ,yN}. The codebook forming
the elements of C is constructed by clustering multidimensional data z1,z2, . . . ,zN .
Here, the membership functions of the elements of C are expressed in the form

C1(z) =
1

∑r
i=1

(
z−vi
z−vj

)2/(ζ−1)
, (3.12)

where v1,v2, . . . ,vr are the prototypes located in [0,1]p. The successive coordinates
of the membership function Cl , Cl(z) can be expressed explicitly by projecting the
prototypes onto the corresponding axes of the unit hypercube and computing the
membership functions based upon these projected prototypes, see Fig. 3.10.

Take the i0-th coordinate of z, that is zi0. Project the original prototypes
v1,v2, . . . ,vc on this coordinate obtaining the real numbers v1i0,v2i0, . . . ,vci0.
By making use of these scalar prototypes, we obtain the membership functions
of the i0-th coordinate of z.
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Fig. 3.10 Computing
membership values based on
i0-th coordinate of the
prototypes

There are several strategies of organizing a clustering process; the three main
categories are worth highlighting here:

(a) Clustering realized separately for the spatial data and temporal data. In this
approach, we exercise two separate clustering algorithms, which do not interact.
The results are used together. The advantage of this design strategy is that one
can consider a number of well-established clustering techniques. A disadvan-
tage comes from a lack of interaction when forming the clusters.

(b) Clustering temporal and spatial data realized by running a single clustering
method. The interplay between the temporal and spatial data is realized by
forming an aggregate distance function composed of two parts quantifying
closeness of elements in the spatial domain and the space in which temporal
data are described. The approach by [15] is an example of the clustering strategy
falling within this realm. Further more advanced approaches in which the
distance functions are quite different are worth pursuing here (say, an Euclidean
distance used for spatial data and Itakura distance with regard to the temporal
data).

(c) Clustering temporal and spatial data realized by two clustering methods with a
granular interaction realized at the structural level of data. While the clustering
methods run individually, they receive feedback about the structure discovered
for the other data set (spatial or temporal). The interaction is typically realized at
the level of proximity matrices induced at the locally formed partition matrices
[13].

There are several parameters of the codebook formed by the information granules
that could be effectively used in the optimization of the description of the relational
data. This list includes:

(a) The number of information granules defined for the corresponding spatial and
temporal coordinates.

(b) The values of the fuzzification coefficients (ζ ) used in the construction of
information granules. As discussed in the literature, by changing the value of
the fuzzification coefficient, we directly affect the shape of the membership
function. The values close to 1 yield membership functions whose shape is
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close to the characteristic functions of sets. The commonly used value of the
fuzzification coefficient is equal to 2. Higher values of this parameter result in
spike-like membership functions.

The first group of the parameters is of combinatorial nature. In general, there is a
general monotonicity relationship: higher number of clusters can help reduce the
value of the optimization criterion (3.10). The optimization is of a combinatorial
nature, though so as to assure an effective design, one has to engage some techniques
of global optimization such as, e.g., evolutionary optimization. In light of the
monotonicity relationship, it could be more legitimate to look at the allocation
of the number of information granules to the vocabularies of the information
granules formed for the spatial and temporal dimensions of the variables. Let c
be a number of available information granules used in the granulation process
and specified in advance. We choose the number of granules for the x-, y-, and
temporal coordinates of the variables, say c1, c2, and c3 so that they sum is equal
to c. How to do this allocation, comes as a result of combinatorial optimization.
The parametric aspects of the optimization are implemented by selecting suitable
values of the fuzzification coefficients; those could be assume different values for
the corresponding codebooks, say ζ1 for A, ζ2 for B and ζ3 for C.

3.8 Describing Relationships Between Granular Descriptors
of Data

The spatiotemporal data discussed so far along with their granular description
(signature) may be viewed as a certain snapshot of a certain phenomenon reported
over some period of time, say a week or a month. The data could be acquired over
consecutive time periods (time slices) thus forming a sequence of spatiotemporal
data D(T ), D(2T ), . . . D(MT ). As each data is subject to its granular description
(and behind each of these description comes a certain codebook), it is of interest
to look at the relationships between D(T ), D(2T ), etc. or better to say between
G(D(T )) and G(D(2T )). The latter task translates into a formation of relationships
between the components of the codebooks being used for the successive data
“slices” say, D(T ), D(2T ), etc. Another way of expressing such dependencies is
to look at the characterization of information granules forming a certain vocabulary
at time slice T by the elements of the vocabulary pertaining to the successive 2T th
time slice. We discuss these two approaches in more detail.

3.8.1 Determination of Relationships Elements of Vocabularies

We construct the relationships between {Ai(2T ),B j(2T ),Ck(2T )} and Ai(T ),B j(T ),
Ck(T ), so the evolution of the underlying system is expressed in terms of evolution
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Fig. 3.11 Computing the
degrees of activation of the
elements of the codebook
A(2T ) by the elements of
A(T ); vi(T ) and v j(2T )
(black and grey dots) are the
prototypes of the
corresponding fuzzy sets in
the T and 2T time periods

of information granules describing the data structure. The number of elements in
the vocabularies Ai(T ) and Ai(2T ) need not to be same as the granularity of the
vocabularies can evolve to reflect the complexity of the data and structures being
encountered. The relationships between Ai(T ) and Al(2T ) can be expressed in terms
of logic dependencies. In general, we formulate a logic relationship in the form of
the fuzzy relational equation:

a(2T ) = a(T )◦L(T,2T ) (3.13)

where ◦ stands for a certain composition operator, say a max-t or a max–min
one (being already used in the previous constructs) and L(T,2T ) captures the
relationships between coordinates of the vectors a(T ) and a(2T ). The vectors
a(T ) and a(2T ) being the elements of the unit hypercubes, contain the degrees of
activation of the elements of the vocabulary A. The dimensionality of a(T ) and
a(2T ) is equal to n(T ) and n(2T ), respectively. As noted, the dimensionality of
these two vectors might not be the same. The estimation of the fuzzy relation can
be realized in a number of different ways depending upon a formation of the input–
output data to be used in the estimation procedure of L(T,2T ). We note that the
above relational description is a nonstationary model as the fuzzy relation L depends
on the time indexes (T and 2T ). One could form a stationary model where L is time
independent that is we have a(nT ) = a(nT −T )◦L,n = 2,3, . . . .

A certain way, using which this could be realized in an efficient way is to consider
the data composed of the pairs (here we are considering the elements of the first
codebook, A)

a1(T ) = [1 0 . . . 0] a1(2T ) = [λ11 λ12 . . . λ1n(2T)] = λ1 (3.14)

Here λ1(T ) is a degree of activation of the vocabulary at 2T by the 1st element of
the vocabulary used at T . The degrees of activation λ1i are computed as follows:

λ1i =
1

∑n(2T )
j=1

( ‖v1(T )−vi(2T )‖
‖v1(T )−v j(2T)‖

)2/(ζ−1)
(3.15)

Refer to Fig. 3.11 for a more detailed explanation.
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Likewise, we have the remaining n(T ) input–output pairs

a2(T ) = [0 1 . . . 0] a2(2T ) = [λ21 λ22 . . . λ2n(2T)] = λ2 (3.16)

an(T)(T ) = [0 0 . . . 1] an(T)(2T ) = [λn(T)1 λn(T)2 . . . λn(T)n(2T)] = λ2 (3.17)

We consider all pairs of data {(a1(T ),a1(2T )), . . . ,(an(T )(T ),an(T )(2T )} and solve
a system of relational equations (3.13) with regard to L(T,2T ). In case of the max-t
composition, the result is straightforward; the solution does exist and the largest one
is expressed in the form

L̂(T,2T ) = [1 0 . . . 0]TΦ[λ11 λ12 . . . λ1n(2T)]
⋂
[0 1 . . . 0]Φ[λ21 λ22 . . . λ2n(2T)]

×
⋂

. . .
⋂
[0 0 . . . 1]Φ[λn(T)1 λn(T)2 . . . λn(T)n(2T)] (3.18)

In other words, the fuzzy relation computed in this way comes in the form

L(T,2T ) = |λ1 λ2 . . . λn(T)|T (3.19)

We can quantify the changes when moving from one vocabulary to the next one by
expressing uncertainty of expressing the elements of the codebook at 2T , A(2T ) in
terms of the elements of the codebook formed for the data at T .

3.8.2 Uncertainty Quantification of Variable Codebooks

We use the entropy measure [9] to quantify the level of uncertainty. More specifi-
cally, we look at the successive rows of L(T,2T ) and for each of them compute the
entropy. For instance, for the i-th row we have

Hλi =−
n(2T)

∑
j=1

λi j log2(λi j) (3.20)

The highest uncertainty (viz. difficulty of expressing the elements of one codebook
by another one) occurs when all elements of i are the same and equal to 1/n(2T).

At a more aggregate level, we consider an average entropy that is 1
n(T ) ∑

n(T )
i=1 H(λi).

Its value is reflective of the level of variability between the codebooks used in
successive time epochs and uncertainty when expressing the elements of A(T ) in
terms of the components of A(2T ). In the same way, we compute the entropy
associated with the evolution of the codebooks B and C. This type of evaluation
is useful in the assessment of the evolution of the granularity of the descriptors of
data. The granular description of the system presented in this way highlights and
quantifies two important facets of evolvability, that is evolvability being reflective
of the changes of the system itself and evolvability being an immediate result
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of the adjustable perception of the data caused directly by changes made to the
vocabularies used in the description of the data. These two are interlinked.

In case we fix our perception of the system that is the codebooks are left
unchanged A(T ) = A(2T ) = . . .B(T ) = B(2T ) = . . . , etc., the matrices of granular
descriptors of the data, G(T ), G(2T ), . . . , etc. are essentially reflective of the
dynamics of the system. The dynamics being captured in this way depends upon
a level of specificity of the codebooks. What is intuitive, the less detailed the
codebooks, the closer the granular descriptors become and some minor evolvability
trends present in the system are not taken into consideration. When the codebook
(vocabulary) itself changes (because of the structural complexity of the data
themselves or perception at the system, which has been changed), we envision an
aggregate effect of evolvability stemming from the dynamics of the system as well
as its varying level of perception.

3.9 Conclusions

There is an ongoing quest in data analysis to make the results more user friendly
(interpretable) as well as make the role of the user more proactive in the pro-
cesses of data analysis. The study offered in this paper arises as one among
interesting possibilities with this regard. It should be noted that the closeness
among data is expressed by taking into account a certain aggregate of closeness
in the spatial domain and temporal domain. While the x–y coordinates could
be left unchanged in successive time slices (which reflects a situation of fixed
measuring stations/sensors), one can easily handle a situation of mobile sensors
whose distribution varies over time slices.

It has been demonstrated that the concept of information granularity not only
helps conceptualize a view at the data but also construct effective algorithms
supporting the development of relational models.

The nonstationarity phenomenon might be inherent to the data themselves (viz.
the system or phenomenon producing the data). The evolution effect could be
also related to the varying position one assumes when studying the system. These
two facets of dynamical manifestation of the system/perception are captured and
quantified in terms of the relational descriptors and dependencies between them.
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Chapter 4
Incremental Spectral Clustering

Abdelhamid Bouchachia and Markus Prossegger

Abstract In the present contribution, a novel algorithm for off-line spectral
clustering algorithm is introduced and an online extension is derived in order to
deal with sequential data. The proposed algorithm aims at dealing with nonconvex
clusters having different forms. It relies on the notion of communicability that
allows to handle the contiguity of data distribution. In the second part of the paper,
an incremental extension of the fuzzy c-varieties is proposed to serve as a building
block of the incremental spectral clustering algorithm (ISC). Initial simulations are
presented towards the end of the contribution to show the performance of the ISC
algorithm.

4.1 Introduction

Spectral clustering is often considered as an efficient clustering capable of dealing
with different cluster shapes compared to other clustering algorithms such as (fuzzy)
K-means, Gaussian mixture model, K-median, deterministic annealing, etc. Indeed
spectral clustering has been proven to be efficient in many applications related to
artificial vision, image processing and web mining that exhibit complex cluster
shapes.

The goal is to find partitions of the graph formed from the data such that the
edges between these partitions have very low weight, while the edges within a
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partition have high weight. This refers to the mincut problem which consists of
solving the following minimization problem. For a given number k of subsets, the
mincut method seeks to find a partition P1, · · · ,Pk which minimizes:

mincut(P1 · · ·Pk) =
1
2

k

∑
i=1

W (Pi,Pi) such that: W (P,Q) = ∑
i∈P, j∈Q

wi j, (4.1)

where Pi and Pi are the ith partition (cluster = a set of nodes) and its complement
(the rest of nodes in the graph), wi j is the weight on the edge (i, j). The weights
correspond to pairwise affinities. We seek to find the minimum cut of the graph
which specifies the optimal partitioning of the data.

Widely used criteria are the RatioCut [18] and the normalized cut, Ncut [31]
which should be minimized.

RatioCut(P1 · · ·Pk) =
1
2

k

∑
i=1

W (Pi,Pi)

|Pi| (4.2)

Ncut(P1 · · ·Pk) =
1
2

k

∑
i=1

W (Pi,Pi)

vol(Pi)
such that: vol(P) =∑

i∈P

n

∑
j=1

wi j , (4.3)

where vol(P) indicates the volume of the set of nodes belonging to the Pth cluster
and |Pi| is the number of vertices in Pi.

Both criteria RatioCut and Ncut are however NP-hard. Spectral clustering is
considered as a less harder problem in the sense that eigenvectors corresponding to
the smallest eigenvalues of the normalized Laplacian (4.7) approximate the solution
of the normalized cut criterion, while the eigenvectors corresponding to the smallest
eigenvalues of the unnormalized Laplacian (4.5) approximate the solution of the
ratiocut criterion. Usually the eigenvector corresponding to the second smallest
eigenvalue indicates the structure of the data can be inferred by thresholding.

There exist several spectral clustering algorithms which rely on the same generic
clustering steps involving the spectral properties of the graph representing the data
and differ mainly in tuning procedures to deal with data sets having particular
geometric forms (shells, lines, etc.). The common generic clustering steps are shown
in Algorithm 1.

In the first step, there is no principled or formalized way to generate affinity
matrix, but usually the Gaussian kernel is applied:

W (xi,x j) = exp(−||xi− x j||2/2σ2) (4.4)
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Algorithm 1 Generic steps of spectral clustering
1: Let Xt be the set of points (i.e., graph vertices) to be clustered at time t: X = {x1, · · ·xn},

xi ∈ R
d and k the number of clusters

2: Compute the affinity (or weight) matrix W of Xt

3: Transform W into a Laplacian matrix (L)
4: Compute the first k smallest eigenvalues (e1, · · · ,ek) and the corresponding eigenvectors of L
5: Form the matrix V = [v1, · · · ,vk] containing the corresponding eigenvectors (arranged column

wise) whose number of rows is n (the size of the data)
6: Apply a clustering algorithm to cluster V (i.e., the k eigenvectors)
7: Assign the vertices xi (i = 1 · · ·n data points) to cluster j if and only if the rows of the vectors

vl were assigned to cluster j in step 6.

In the second step, many forms of Laplacian matrices can be derived and used
to generate the eigenvectors. Here also there is no consistent definition of Graph
Laplacian. We may use:

• Unnormalized Laplacian:
L = D−W (4.5)

where D is the diagonal degree matrix whose diagonal elements di = ∑ j wi j are
the vertex degrees of W .

• Symmetric normalized Laplacian:

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2 (4.6)

• Normalized Laplacian (the random walk normalization or discrete Laplace
operator):

Lrw = D−1L = I−D−1W (4.7)

In the sixth step, any clustering algorithm can be used. Very often k-means (of
fuzzy c-means) is applied [9, 24–26], but some authors proposed other algorithms
like k-lines [14].

Often the number of clusters is determined using the notion of eigengap, which
is the difference between two consecutive eigenvalues λk and λk−1. The most stable
clustering is generally given by the value k that maximizes the expression

Δk = |λk−λk−1| (4.8)

Recently there has been an increasing interest in incremental clustering [5, 6].
However, little work has been done in regards to spectral clustering. A concise
overview of incremental spectral clustering is presented in Sect. 4.2. In a recent
contribution by Ning et al. [27], an interesting idea in incremental spectral clustering
has been presented. It aims at estimating the eigenspace incrementally as new data
are added. This idea can easily be applied to step 4 of Algorithm 1. However, doing
so the spirit of incrementality is not fully captured in the sense that the eigenspace
will be kept which may be obviously large.
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In the present contribution, we will try to embed incrementality at a later level,
namely step 6 of Algorithm 1. The basic motivations for this approach are:

• The spectrum of a block diagonal matrix of the form:

S =

⎡
⎢⎢⎢⎣

S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . Sn

⎤
⎥⎥⎥⎦

S is given by the union of the spectra of Si. Here, Si corresponds to the spectrum
of the i-th batch of data.

• Embedding incrementality at step 6 of Algorithm 1 allows handing the data that
continuously arrive over time in an efficient manner.

To realize this solution, we introduce in this paper an incremental version of the
famous fuzzy c-varieties clustering algorithm.

Before delving into the details of the proposed solution, the structure of this
contribution is presented as follows. Section 4.2 introduces a short overview of
incremental spectral clustering. Section 4.3 provides the description of incremental
fuzzy c-varieties which serves to explain the overall incremental spectral clustering
in Sect. 4.4. In Sect. 4.5, a set of experiments are discussed to show the effectiveness
of the proposed approach. Section 4.6 highlights the contributions and future work.

4.2 Related Work

Because of the good performance of spectral clustering algorithms, they gain more
and more attention from the scientific community. Most of the standard spectral
clustering algorithms are dealing with offline data and have been proven to be
successful in various applications like speech recognition [1], image analysis and
pattern recognition [10, 32, 35], and interdisciplinary data analysis frameworks
[28, 29, 36].

In the emerging field of high dynamic online/web-based resources like social
networks, there is the need to enhance the algorithms to enable incrementally
clustering of data without the need to run the clustering from scratch each time
new data arrive. The incremental approach does not require to keep a huge and even
growing data set and the costly computation of the affinity matrix can be limited to
consider new entries only. So far there have been very few attempts to accommodate
spectral clustering to an online setting.

For instance in [33] a general purpose incremental algorithm relying on spectral
clustering for dealing with online topological mapping has been presented. Similar
approach for dealing with the problem of appearance-based localization in outdoor
environments has been also introduced in [34]. Such an approach is based on the
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clustering algorithm proposed in [26] and aims at estimating iteratively cluster
representatives. Using a similarity threshold, the number of clusters is increased if
the smallest allowed distance is less than the threshold and the cluster representative
replaces all entries of the origin data points in the affinity matrix. During the online
map updating of the robot, the incremental spectral clustering eliminates the need
of computing the similarities between the current and all previous input (images).

Most of the incremental spectral clustering algorithms are designed to support
the insertion and deletion of new data points only, while the critical issue is to react
on similarity changes between the data points. In [27], the incremental clustering is
based on the standard spectral clustering enhanced by the incidence vector/matrix
(described in [4]) representing both kinds of dynamics. Decomposing the Laplacian
matrix into two incidence matrices, each similarity change between data points
is regarded as an incidence vector appended to the original incidence matrix.
Considering the influence of the data points outside the spatial neighborhood of the
new data points, the Laplacian and incidence matrices may change which induces
an equivalent change of the eigenvalues and eigenvectors.

All mentioned algorithms above have reached similar accuracy but with much
lower computation costs compared to standard spectral clustering.

4.3 Incremental Fuzzy C-Varieties

Fuzzy c-varieties proposed in [2] is a modified version of fuzzy c-means (FCM) with
the purpose of dealing with linear varieties. It has served to inspire other extensions
of FCM such as c-elliptotypes [2, 23] and c-shells [11, 12]. A general overview of
extensions of FCM proposed in the literature is summarized in [8] as shown in
Table 4.1.

The motivation behind applying the fuzzy c-varieties algorithms stems from the
fact that the eigenvectors generated from the data have the shape of lines. Testing
the fuzzy c-varieties on an artificial data set consisting of four lines illustrates

Table 4.1 A family of shell
clustering algorithms

Algorithm Cluster shape

Fuzzy c-varieties [2, 3] Line segments and lines
Fuzzy c-shells [3, 12, 15] Circles and ellipses
Fuzzy c-spherical shells [22] Circles and spheres
Fuzzy c-rings [16] Circles
Fuzzy c-means [2] Spheres
Gustafson–Kessel [17] Ellipsoids and possibly lines
Gath–Geva [16] Ellipsoids and possibly lines
Fuzzy c-elliptotype [30] Ellipsoids and possibly lines
Fuzzy c-quadric shells [20, 21] Linear and quadric shell
Fuzzy c-rectangular shells [19] Rectangles/polygons

(approximation of circle,
lines, ellipses)
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that the algorithm is capable of discovering each line as a cluster (Fig. 4.1). When
applying the standard FCM (Fig. 4.2), the results are understandably worse. Clearly
the choice of FCV is well founded.

FCV is based on linear varieties (affine spaces) which are characterized by their
dimensions. A linear variety of dimension r (0 ≤ r < s) in ℜs through the point v
and spanned by the linearly independent vectors {d1,d2, · · · ,dr} ⊂ℜs by:

Vr(v,d1,d2, · · · ,dr) =

{
y ∈ℜs|y = v+

r

∑
j=1

t jd j; t ∈ R

}
(4.9)

Note that if r = 0, then V0 = {v ∈ ℜs} which is a point. If r = 1, V1 = {v+ td}
which represents a line and if r = 2, V2 is plane in ℜ2 defined by {d1,d2}. Generally
speaking, for r = s− 1, Vs−1 is a hyperplane in ℜs.
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The objective function of FCV has the same form as that of FCM. It measures the
weighted sum of squared errors from the data points xk ∈ℜs and the linear varieties
as shown in (4.10):

JVrm(U,V ) =
c

∑
i=1

N

∑
k=1

um
ikD2

ik (4.10)

where Dik is the orthogonal distance between, the prototype Vi which is an
r-dimensional linear variety and the data point xk. The distance is given as follows:

Dik =

(
||xk− vi||2−

r

∑
j=1

[
(xk− vi)

T d(i)
j

]2
)1/2

(4.11)

The orthogonal distance is obtained by projecting (xk − vi) onto the linear
subspace of ℜs spanned by the set {d1,d2, · · · ,dr} ⊂ ℜs and computing the length
of (xk− vi) minus its best least squares approximation.

The objective function (4.10) is subject to the following constraints:

uik ∈ [0,1];
c

∑
i=1

uik = 1,∀k; 0 <
N

∑
k=1

uik < N,∀i (4.12)

Minimization of the objective function with respect to U and V subject those
constraints in (4.12) yields the following expressions:

uik =

⎧⎪⎪⎨
⎪⎪⎩

D(xk,Vi)
(2/(1−m))

[
∑c

j=1 D(xk,Vi)
(2/(1−m))

]−1
Ik = /0{

0 i ∈ Ik

∑i∈Ik uik = 1 i ∈ Ik

Ik �= /0
(4.13)

where Ik = {i|1 ≤ i ≤ c;Dik = 0} and I = {1,2, · · · ,c} \ Ik. The prototypes are
computed using the following:

vi =
∑N

k=1 um
ikxk

∑N
k=1 um

ik

(4.14)

The d(i)
j ’s in (4.9) are the eigenvectors corresponding to the largest eigenvalues of

the fuzzy scatter matrix of the i-th cluster given by:

Si =
N

∑
k=1

um
ik(xk− vi)(xk− vi)

T (4.15)
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Algorithm 2 : Steps of FCV for static clustering
1: Given c (number of clusters), m (fuzziness factor, m ≥ 1 ), r (the dimension of the linear

varieties, r ≤ s) and ε (stopping threshold)
2: Let X = {x1, · · ·xn} be the set of points to be clustered
3: Initialize U(0) taking the constraints (4.12) into account and set t = 1;
4: repeat
5: Compute the centers v(t)i using (4.14) and (4.13)

6: Compute the fuzzy scatter matrices S(t)i of the c clusters using (4.15), (4.14) and (4.13)
7: Compute the eigenvectors corresponding to the r largest eigenvalues
8: Compute the new partition matrix U(t) using (4.13) and (4.11)
9: until ||U(t)−U(t−1)|| ≤ ε

For a static clustering problem, the FCV algorithm consists of the steps shown in
Algorithm 2.

Given a dynamic setting where data arrive over time, the FCV algorithm must
be adapted. In the present contribution, we consider an aggregative approach that
consists of two steps:

1. Cluster the new batch of data Bp yielding C(p)
1 , · · ·C(p)

c for a given number of
clusters c.

2. Merge and cluster the obtained C(p)
i clusters and the existing clusters obtained

from previous merge operation (after the arrival of Bp−1).

To realize step 2, a weighted version FCV is applied to generate an approximation
of partitioning of the data so far seen by clustering the existing clusters and the
clusters newly generated after Bp. The weighted version of the FCV is given by the
following objective function:

J′Vrm
(U,V ) =

c

∑
i=1

N

∑
k=1

wkum
ikD2

ik (4.16)

Here a weight is assigned to each data point xk (which actually represents either
a prototype or a true data point). In the case of clusters’ prototypes, the weight
reflects the proportion of the data of a batch covered the cluster of those prototypes.
Formally the weight of a cluster (generated from a batch Bp) is given in a
straightforward manner from the partition matrix associated with Bp clustering:

wi =
∑Np

k=1 uik

Np
(4.17)

where Np is the size of the batch Bp. The denominator serves as a normalization
factor over the size of the batch. Thus by removing the denominator from (4.17)
the length will impact the formulation of the partition matrix associated with
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the objective function J′Vrm
(4.16). In the present study, we adopt (4.17) so that

the current prototypes obtained from the previous aggregation stage and which
summarize the previous batches (1 · · · p− 1) have a weight 1. However, this would
mean that the aggregated prototypes will have higher weight than the ones generated
from the last batch Bp, which leads to a conservative approach in the update of the
clusters mean. In order to keep the approach flexible with respect to data drift and
shift [7], a persistence factor ζk ∈ [0,1] may be appended to the current prototypes.
Hence, in the objective function (4.16) can be rewritten as follows:

J′′Vrm
(U,V ) =

c

∑
i=1

N

∑
k=1

wkζkum
ikD2

ik (4.18)

For the new clusters obtained after Bp, ζk = 1 and for those obtained so far by
aggregation, ζk < 1 will stand as parameters. In the context of this study, we will set
all ζk for the aggregated prototypes to 0.95 to keep the algorithm stable but evolving.

Minimization of the objective function in (4.18) with respect to U and V subject
to the constraints in (4.12) yields the following expressions:

uik =

⎧⎪⎪⎨
⎪⎪⎩

D(xk,Vi)
(2/(1−m))

[
∑c

j=1 D(xk,Vi)
(2/(1−m))

]−1
Ik = /0{

0 i ∈ Ik

∑i∈Ik uik = 1 i ∈ Ik

Ik �= /0
(4.19)

vi =
∑N

k=1 um
ikwkζkxk

∑N
k=1 um

ikwkζk
(4.20)

The eigenvectors d(i)
j needed to compute the distance D(xk,Vi) are computed using

the fuzzy scatter matrices resulting from the new and old prototypes (and eventually
true data points).

For efficiency reasons, one may consider the following setup. Since the number
of clusters is always small, we could do the clustering of prototypes via the WFCV
batchwise (after the arrival of each batch), but we could reduce the frequency, say
after b batches. This gives more stability and accuracy to the clustering process.

To assign data of the recently arriving batch Bp to clusters, we compute the
membership values u.. using the formulae in (4.19) and (4.11) with respect to the
final aggregated prototypes and varieties.

4.4 Incremental Spectral Clustering

After explaining step 6 and 7 of Algorithm 1, we turn now to briefing the details of
the spectral clustering algorithm—much of it has already been mentioned.

The spectral clustering algorithm implemented in this paper relies on the notion
of communicability introduced in [13] for dealing with complex networks such as
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social networks. This idea is motivated by the fact that in general spectral clustering
is efficient if the affinity matrix (4.4) is block diagonal reflecting clear structure
of the clusters. However, this happens if the data presents clear structure with
dense clusters separated by low density boundaries. As noted in [14], a data with
nonconvex clusters as that shown in Fig. 4.3 in the form of two rings around a central
cluster where the points at the opposite sides of the external ring are far from each
other, further than from points from the central cluster, it is difficult for a spectral
clustering to detect the right structure of the data. The affinity matrix in Fig. 4.4
shows that no clear structure is visible except probably in top left corner.
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The solution lies in devising mechanisms to achieving a clear structure through
some transformation of the affinity matrix. The idea consists of enhancing the
similarity between the data points that are directly or transitively connected.

In the previous example points of a ring should be considered close to each other
whatever their coordinates are. Similar to the idea presented in [14] relying on the
notion of conductivity, in this contribution we use the communicability concept
introduced in the context of complex networks [13].

Communicability between two points x and y is defined as the number of shortest
paths, Ps

xy, of length s between x and y plus the number of walks, Wxy, of length k > s.
Hence, communicability is expressed as follows:

Gxy = αsP
s
xy +

∞

∑
k>s

βkW
k
xy (4.21)

αs and βk must be selected such as the communicability converges. By setting αs =
1/s! and βk = 1/k! we obtain:

Gxy =
∞

∑
k=0

(Ak)xy

k!
= (eA)xy (4.22)

This can be further be rewritten as:

Gxy =
n

∑
j=0

φ j(x)φ j(y)e
λ j (4.23)

where φ j(x) is the xth element of the jth orthonormal eigenvector of the adjacency
matrix associated with the eigenvalue λ j.

It is worthwhile to notice that the communicability is computed based on the
adjacency matrix. In other words, in order to apply it to weighted graphs it is
necessary to introduce some adaptation. For this purpose, we apply the symmetric
normalization of the Laplacian formulated in (4.6), that is:

Ci j =
Gi j√
DiD j

, Di =∑
k

Gik. (4.24)

The resulting affinity matrix G is not symmetric and to render it so, we apply the
following:

Ci j = min(Ci j,Cji) (4.25)

Having formulated a new affinity matrix that takes the continuity of data into
account, the remaining stages of the overall algorithm are identical to those outlined
in Algorithm 1, step 5 to step 7. In step 3, instead of the transformation into L,
we implement C. The difference here is that in step 4 we compute the k largest
eigenvalues instead of the smallest since because we are not using the unnormalized
Laplacian matrix (4.5) in the normalization stage (4.24), but directly an affinity
matrix. This is similar to the method of Ng [26].
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Algorithm 3 : Steps of the proposed offline spectral algorithm
1: Let Xt be the set of points (i.e., graph vertices) to be clustered at time t: X = {x1, · · ·xn},

xi ∈ R
d and k the number of clusters

2: Compute the affinity (or weight) matrix W of Xt

3: Compute the communicability matrix C from W
4: Compute the first k largest eigenvalues (e1 , · · · ,ek) and the corresponding eigenvectors of G
5: Form the matrix V = [v1, · · · ,vk] containing the corresponding eigenvectors (arranged column

wise) whose number of rows is n (the size of the data)
6: Apply a clustering algorithm to cluster V (i.e., the k eigenvectors)
7: Assign the vertices xi (i = 1 · · ·n data points) to cluster j if and only if the rows of the vectors

vl were assigned to cluster j in step 6.

Algorithm 4 : Steps of the proposed online spectral algorithm
1: Let {B}t be the set of batches to be clustered at time t = 1...T and k the number of clusters.

Prot is variable that contains the set of prototypes and initially is set to /0.
2: for t = 1 to T do
3: Apply the offline spectral clustering algorithm (Algorithm 3) and retain the prototypes V =

{v1 · · ·vc} resulting from the weighted fuzzy c-varieties (WFCV) clustering of the selected
eigenvectors of the communicability matrix

4: if t=1 then
5: prot=V ;
6: else
7: prot = prot

⋃
V

8: apply WFCV on prot as input data to obtain c clusters
9: end if

10: end for

Algorithms 3 and 4 show the steps of the offline and online spectral clusterings
algorithms.

4.5 Simulations

To evaluate the algorithm proposed in this contribution, we will look mainly at two
aspects following the main contributions:

• Clustering performance on data with different shapes in an offline setting
• Efficiency of clustering when data arrive over time. For such a purpose, a number

of benchmark data sets are used.

4.5.1 Offline Clustering of Data

Because the quality of the incremental spectral algorithm highly depends on the
offline spectral clustering component, it is necessary to check the quality of the
clustering algorithm in the offline setting. Figure 4.5 shows the capacity of the
algorithm to accurately cluster data having different shapes. In particular, the conti-
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guity of data has been observed by the algorithm. Even though many of these data
sets are nonconvex, the algorithm is able to uncover the true structure of the clusters.

4.5.2 Online Clustering of Data

In this section, the behavior of the algorithm in coping with incrementality is
discussed. In response to the advent of arrival of new data samples, the ISC
algorithm should adapt in order to allow for continuous self-adjustment so that the
structure of the data is discovered or completed. To study incrementality, we look at
the case of random arrival of data. The assumption here is that the data is shuffled in
a random way and presented over a certain number of batches to the algorithm. In
this contribution, we consider 4 batches for each of the data sets shown in Fig. 4.5.

In the following, we highlight the clustering results of each batch along with the
accuracy of the algorithm when tested on the whole data after the presentation of the
four batches. Figures 4.6–4.10 portray the final results of running the algorithm on
the artificial data sets split into 4 batches. In particular, Figs. 4.6a, 4.7a, 4.8a, 4.9a,
and 4.10a explain partly why the overall ISC algorithm behaves well. Thanks to the
notion of communicability, the algorithm is able to show clearly the structure of the
data clusters relying on the leading eigenvectors of the affinity matrix. This makes
it easy to use the fuzzy c-varieties to detect clusters. It is worth noticing the linear
shape of the eigenvectors entries which has motivated the application of the fuzzy
c-varieties.

Mapping the eigenvectors back to the data (step 7 of Algorithm 1), the results
of the batches shown in Figs. 4.6b, 4.7b, 4.8b, 4.9b, and 4.10b reflects the expected
structure of the data. It is, however, interesting to remark that in situations where the
structure is not clear, that is when the data of the batch is loosely dense, the spectral
clustering algorithm will not be able to discover the true structure. A typical case
where the ISC algorithm encounters difficulties is Data 4 (Fig. 4.9b). In the other
cases, the algorithm works very well.

The challenge in incremental learning is usually whether the results obtained in
the offline mode (when all data examples are available) are similar to those obtained
in the online mode. To answer this question, we use the final configuration of the
ISC algorithm to predict the cluster label of the whole data (i.e., the collection of all
batches). This way of doing may be seen as a check whether the algorithm can still
accommodate the whole data after presenting all batches sequentially.

Figures 4.11–4.15 show in particular that the overall structure is well predicted
for all data sets. However, a kind of “salt and pepper” can be noticed, especially
in the case of Data 3 (Fig. 4.13) and Data 2 (Fig. 4.12). Such noisy examples are
probably due to the accumulation and aggregation of clusters through the FCV
algorithm. The points in the eigenspace that are at the boundary of clusters may
be tricky to handle because centers in the new batches may slightly generate a shift.
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Fig. 4.6 Efficiency of the algorithm on Data 1 in the online setting
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Fig. 4.7 Efficiency of the algorithm on Data 2 in the online setting
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Fig. 4.8 Efficiency of the algorithm on Data 3 in the online setting
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Fig. 4.9 Efficiency of the algorithm on Data 4 in the online setting
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Fig. 4.10 Efficiency of the algorithm on Data 5 in the online setting
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4.6 Conclusion

The present contribution presents a novel incremental spectral clustering algorithm
that is based on an incremental version of fuzzy c-varieties. The aim is to handle
nonconvex data sets which are usually difficult to cluster. The evaluation of the
proposed algorithm is however preliminary and many issues need to be further
pursued.

While the algorithm works nicely in most of the cases presented, in some
situations where data samples are loosely connected, it behaves incorrectly. This
might, however, be the case of most clustering algorithms. Our future investigation
will be concerned with the study of such difficult cases. Moreover, we intend to
look into the salt and pepper problem more precisely at both levels: modeling the
affinity matrix and the fuzzy c-varieties which are the central components of the ISC
algorithm. It is also worth noting that the current version of the algorithm does not
open new clusters online, but can handle single samples. These are further aspects
that we will look into in the future.
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Chapter 5
Semisupervised Dynamic Fuzzy K-Nearest
Neighbors

Laurent Hartert and Moamar Sayed-Mouchaweh

Abstract This chapter presents a semi-supervised dynamic classification method
to deal with the problem of diagnosis of industrial evolving systems. Indeed, when
a functioning mode evolves, the system characteristics change and the observations,
i.e. the patterns representing observations in the feature space, obtained on the
system change too. Thus, each class membership function must be adapted to
take into account these temporal changes and to keep representative patterns only.
This requires an adaptive method with a mechanism for adjusting its parameters
over time. The developed approach is named Semi-Supervised Dynamic Fuzzy
K-Nearest Neighbors (SS-DFKNN) and comprises three phases: a detection phase
to detect and confirm classes evolutions, an adaptation phase realized incrementally
to update the evolved classes parameters and to create new classes if necessary and a
validation phase to keep useful classes only. To illustrate this approach, the diagnosis
of a welding system is realized to detect the weldings quality (good or bad), based
on acoustic noises issued of weldings operations.

5.1 Introduction

Evolving systems are functioning in a dynamic environment. With the occurrence of
new events, evolving systems change, and their corresponding classes and patterns
characteristics evolved in the feature space. Indeed, the functioning mode of an
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evolving system can evolve from normal to faulty in response to the occurrence
of a fault, such as a leak, to the wear of a tool or to a bad setting. To realize the
diagnosis of these systems, Pattern Recognition (PR) methods need to adjust their
parameters by doing automatic corrections or by warning an operator that will adjust
himself the classifier parameters. When a self-adaptation of the classifier parameters
is wanted, the method has to monitor the evolution of a system over time. In this
case, dynamic learning is necessary to update the feature space characteristics. Then,
the PR method has to use the informative patterns only to adjust the class structure.
In the literature, several PR methods [9, 10, 17] are used to monitor the functioning
modes evolutions of dynamic systems, to realize the fault diagnosis of complex
systems or to accomplish the fault prognosis. Indeed, these methods are particularly
adapted when the prior knowledge about the system behavior is not sufficient to
construct an analytical model of the process.

5.1.1 Pattern Recognition

PR methods use exclusively a set of measurements, i.e., quantitative observations,
about process operating modes to build a mapping from the observation space
into a decision space, called the feature space. In PR, historical patterns or
observations about system functioning modes are divided into groups of similar
patterns, called classes. Each class is associated to a functioning mode (normal
or faulty). Classes and patterns are represented by a set of d attributes, so they
can be viewed as d-dimensional vectors, or points, in the feature space. The PR
principle consists in classifying the new patterns by using a classifier. According to
the a priori information available on the system, three types of PR methods can be
used: supervised PR methods, unsupervised PR methods and semi-supervised PR
methods. When labeled patterns, i.e., patterns with their class assignment, can be
obtained the PR is supervised [28]. These methods use the known labeled patterns,
i.e., the learning set, to build a classifier that best separates the different known
classes in order to minimize the misclassification error. The model of each class
can be represented by a membership function which determines the membership
value of a pattern to a class. On the contrary when no information is available on
the classes of a system, PR is unsupervised [6, 11, 12, 29]. The unsupervised PR
methods, or clustering methods, are based on similarity functions, so that when
patterns with the same characteristics occur they are classified in the same class,
and when patterns with different characteristics occur a new class is created to
classify them. Once the classifier has learned the classes membership functions,
new incoming patterns are assigned to the class for which they have the maximum
membership value. The third type of PR methods, the semisupervised one [8, 13]
uses the supervised information, the known labeled patterns and classes, to estimate
the classes characteristics and the unsupervised learning is used to detect new
classes and to learn their membership functions.
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5.1.2 Evolving Systems

In the case of evolving systems [2, 3, 18, 22, 23], classes are dynamic and their
characteristics change in the course of time. Classes can evolve slowly or abruptly
to a new position in the feature space, according to the system parameters which
evolve over time. Thus, each class membership function must be adapted to take
into account these temporal changes. This requires an adaptive classifier with a
mechanism for adjusting its parameters over time. Hence, some of the new incoming
patterns reinforce and confirm the information contained in the previous ones, but
the other ones can bring new information (creation, drift, fusion, splitting of classes,
etc.). This new information can concern a change in operating conditions, the
development of a fault or simply more significant changes in the system’s dynamic.
Angstenberger [4] and Nakhaeizadeh et al. [25] act on the classifier parameters,
by substituting or adding some recent and representatives patterns to the learning
set according to the state (stable, warning, action) in which the system is. This
adaptation is based only on the most recent batch of patterns selected by a time
window [25] or by an estimation of the patterns usefulness [15]. Other approaches
providing a global model rather than a local model on demand are based on the
use of evolving neural networks [1, 4, 7]. In [2], a potential function based on the
distance between data points is defined for the new points. According to the potential
obtained for new data points, the point can reinforce or confirm the information
contained in the previous ones, or a new rule can be added. In [1], the neural
network is based on a multi-prototype Gaussian modeling of nonconvex classes.
The activation function of each hidden neuron determines the membership degree
of an observation to a prototype of a class. According to the membership degree of
new acquisitions, the prototype, i.e., the hidden neuron can be adapted, deleted or
a new prototype can be created. Data analysis can be realized on data coming from
evolving systems in order to obtain the most informative parameters of a system
that will be necessary to discriminate classes using a PR method. In this chapter,
we use the statistical characteristics to supply spatial information like the number of
peaks present in a signal, the standard deviation value, the root mean square value,
the maximum value, the kurtosis value, etc. Some information can be computed
on different parts of each signal or on entire signals. The set of characteristics,
i.e. parameters, found by these methods represents the attributes which permit to
characterize each signal obtained on a system. Using these informative parameters,
signals are transformed into patterns in the feature space. If the parameters are
well determined, classes are well discriminated and they are represented in different
regions of the feature space.
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5.1.3 Dynamic Learning and Classification

In this chapter, a semi-supervised dynamic method based on Fuzzy K-Nearest
Neighbors (FKNN) [19] is developed. It was interesting to develop this method
for the case of evolving systems since FKNN is a simple but efficient well known
classification method. However, FKNN becomes inefficient when the size of the
learning set is too important or when k is not well chosen. k is generally determined
by experimentation, but it is still a parameter difficult to determine. A criterion
often used is [9], where N is the number of patterns in the learning set. Several
other versions of KNN exist in the literature (KNN with prototype, Adaptive KNN
[26], etc.). In [21], a version of KNN pre-assigns a class to several subregions
of the feature space in order to classify more rapidly the new patterns. In [30],
a hierarchical research algorithm is developed to find the k-nearest neighbors
using a nonmetric measure in a binary feature space. This measure is a similarity
measure computed between the binary values representing the patterns. In [14, 20],
respectively high dimensional and k-dimensional trees are used to find the most
interesting parts of the feature space where to find the k-nearest neighbors. Only
some branches of the trees have to be browsed to find the k neighbors, but the
trees branches can be fast unbalanced. Another version of FKNN, called Instance-
Based Learning on Data Streams (IBL-DS) [5], detects changes in the data streams
by using a prediction error and the standard deviation of the 100 first patterns.
If a change is detected, the 20 latest classified patterns are used to estimate the
evolution realized. Based on the used indicators, a percentage of patterns initially
defined is deleted from the reference base according to their spatial location and
to their temporal behavior. Song et al. [27] uses two informative measures to find
patterns susceptible to be the k most informative neighbors. These measures are
based on probability measures calculated locally and globally. Another version
of KNN [24] uses kernel-based dimensionality reduction methods to improve the
classification results. These methods are used to solve some challenging problems
like the application of [4] which concerns the credit scoring. The authors aims to
decide whether a new customer is a good or a bad risk according to changes in
his consumption. Guedalia et al. [16] deals with the problem of classification of
the quality of fruits according to the damage resulting from bad weather or other
external events. In [1], the authors aim to detect and to follow up the progressive
evolution of the functioning modes of a thermal regulator due to the age of its
components or to other temporal factors in its environment. Cohen et al. [7] treats
dynamic traffic data streams in order to reduce the waiting time of drivers at the road
intersections.

In this chapter, we have chosen to develop the FKNN approach since it is
well known and often used in machine learning (ML) applications. The developed
Semisupervised Dynamic Fuzzy K-Nearest Neighbors method is semi-supervised
in order to consider the known information of a system, even when only a few
observations are available, and in order to detect unknown classes and to estimate
their characteristics. Semisupervised methods are particularly well adapted to
evolving systems for which all classes can not be known in advance. The developed
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method is presented to realize the monitoring of evolving systems. The method
is applied on a real industrial system in order to detect the weldings quality and
to monitor their progressive evolutions. The chapter is organized as follows. In
Sect. 5.2, the functioning of the proposed approach is detailed and illustrated. Then,
in Sect. 5.3, the approach is applied and evaluated using the application. Finally,
conclusions and perspectives end this chapter.

5.2 Semisupervised Dynamic Fuzzy K-Nearest Neighbors
(SS-DFKNN)

The selection of a PR method has to be realized according to the system on which the
method is applied. Indeed, according to the application several parameters change
as the number of patterns available for the learning set, the number of classes, the
system dynamic, the number of dimensions, i.e., attributes, of the feature space, etc.
In this section, we develop the PR method Fuzzy K-Nearest Neighbors (FKNN) in
order to detect classes evolutions and to adapt these latter according to the dynamic
of their evolutions. The proposed version is semisupervised, in order to:

• take into account an initial learning set X representative of the known information
of a system.

• improve the classes characteristics estimation by using the new patterns
• detect new classes or subclasses according to the evolutions of the system

characteristics

In this chapter, the SemiSupervised Dynamic Fuzzy KNN (SS-DFKNN) developed
method permits to consider patterns evolutions even in the area of the feature space
where no pattern was learned. The objectives of this approach are to follow classes
evolutions by taking into account the patterns usefulness, and well estimate the
new functioning modes of a system according to the estimated adapted classes
characteristics. SS-DFKNN is composed of several phases which are presented in
the following parts, and the method is illustrated with an example.

5.2.1 Learning and Classification Phases

In the learning phase of SS-DFKNN, all labeled patterns and classes are learned.
The learning set X must contain a minimum of two patterns in order to calculate
the initial center of gravity and standard deviation of each class, which are used in
the indicators of evolution computed by SS-DFKNN. These values are calculated as
follows:

• the current center of gravity CGAcurr of each class C according to each attribute A.
• the initial standard deviation σAinit of each class C according to each attribute A.
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These values permit to consider the dispersion of a class and its drift in the feature
space. The center of gravity and the standard deviation values can be calculated
for all types of classes. However, in the case of complex classes, we consider that
these latter can be estimated using Gaussian subclasses. In the classification phase
of SS-DFKNN, each new pattern is classified sequentially according to the class of
its k-nearest neighbors. So, as for FKNN, the parameter k has to be defined initially.
Once a new pattern is classified in one of the known classes, the detection of classes
evolutions can be realized based on two indicators.

5.2.2 Detection of a Class Evolution

The classification of a new pattern x in one of the known classes determines the
class, which can be evolving. Indeed, after the classification of x in the class C, only
the class C has to be updated. In this phase of SS-DFKNN, the detection phase,
the new characteristics of the class C are calculated to detect a class evolution. The
current value of the standard deviation σAcurr and of the current center of gravity
CGAcurr of C are incrementally updated by:

σAcurr =

√
NC− 1

NC
×σ2

Acurr−1
+

(
x−CGAcurr−1

)2

NC + 1
, (5.1)

CGAcurr =
CGAcurr−1 ×NC

NC + 1
+

x
NC + 1

, (5.2)

where NC is the number of patterns in C before the classification of x. σAcurr−1

and CGAcurr−1 are respectively the variance and the center of gravity of the class,
according to the attribute A, before the classification of x. Based on the computed
values of CGAcurr , σAcurr , and σAinit two drift indicators are used to monitor the
temporal changes of a system.

• the first indicator i1A represents the change of compactness of the class for each
attribute A of the feature space:

i1A =
σAcurr × 100

σAinit

− 100. (5.3)

i1A is given in percentage. If at least one attribute A has a value of i1A greater than
a threshold th1 then the class C has begun to change its characteristics according
to this attribute. th1 can be fixed to a small value when it is interesting to follow
small evolutions of the class. For example, fixed to 5, it represents an evolution of
5% of the class characteristics. On the contrary when only important evolutions
have to be detected, a greater value of th1 can be necessary.
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• the second indicator i2A represents the distance between xA and CGAcurr according
to the current standard deviation σAcurr for each attribute A of the feature space:

i2A =
|(xA−CGAcurr) |× 100

σAcurr

− 100. (5.4)

i2A is given in percentage. If at least one attribute A has a value of i2A greater than
th1, then the point is not situated in the same area of the feature space than the
other patterns of the class C.

However, one single pattern can involve changes for the center of gravity and
for the standard deviation of a class. In some cases, this pattern can be a noise
instead of a class evolution so a minimum number of successive evolved patterns
NbMin has to be detected in order to confirm the evolution. If NbMin is fixed to
a high number, then the delay detection of the class evolution can be important.
This number has to be defined according to a ratio between the noise present in
the patterns and the delay detection of a class evolution. The class evolution is
confirmed when NbMin successive values of the two indicators i1A and i2A are
greater than th1. The adaptation phase which permits to adapt classes based on their
evolution, is explained in the next section.

5.2.3 Adaptation of an Evolving Class after Validation
of its Evolution

SS-DFKNN integrates a mechanism to adjust the evolved class parameters in the
adaptation phase, when serious changes in a class’ characteristics are detected
during the detection phase. When a class evolution is confirmed, a new class or
subclass is created based on useful patterns only. This adaptation is realized in
several parts:

• a new class or subclass C′ is created and the most representative patterns of the
evolution are selected. Since the last classified pattern x of the class represents
one of the evolved patterns of the class, x is selected. x also represents the most
recent change in the class evolution. The other informative selected patterns are
the k− 1 nearest neighbors of x. No distance has to be calculated to find these
patterns since they were already determined during the classification of x. Indeed,
to classify x, the classifier has computed several distances between the known
patterns to find its nearest neighbors. These k selected patterns represent the only
new patterns of a new class C′. Indeed, only k patterns are selected to represent an
evolved class since the parameter k corresponds to the number of patterns judged
as sufficiently representative to classify a new pattern.

• the k selected patterns are deleted from the class C.
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• the new center of gravity CGAcurr of the class C is calculated and the current
standard deviation StdAcurr of the class is computed.

• CGAcurr and σAinit are computed for the class C′. These values are computed
rapidly since the number of patterns in the evolved class is equal to k.

• the number of classes is updated.

This adaptation permits to online follow the evolution of classes with a constant and
low adaptation time. Then, new patterns are classified in their corresponding class.
Using this approach, all patterns and classes are kept in the feature space and an
evolving class C generates at least one new class or subclass C′. If C is considered as
useless, i.e., not anymore representative of a class, it can be interesting to delete this
class C in order to avoid the problem of growing size of the data set. This approach
permits to update and reinforce the known classes using new patterns. This is for
classes for which no evolution has occurred but they are still informative and useful
classes. The approach also permits to create new classes when an evolution of the
system characteristics occurs. The solution presented in this chapter to deal with
useless classes is presented in the next section.

5.2.4 Validation of the Existing Classes

The noise is taken into account by SS-DFKNN since a sufficient number NbMin of
evolving patterns is needed to consider a class evolution. However, in some cases,
the noise or other events can lead to delete useless classes:

• when a short time living class is created based on few patterns, it represents only a
transitory functioning mode. This temporary functioning mode can appear during
the evolution of a system characteristics, changing this latter from a normal
functioning mode to an abnormal functioning mode. Transitory classes are not
representatives of any system functioning mode, so they can be deleted.

• when a class considered as noisy is created.
• when a class containing very few information is kept.

SS-DFKNN deletes classes corresponding to these cases, when:

• an insufficient number n1 of patterns is contained in the class (n1 > k),
• and when no pattern has been classified in the class while a sufficient number n2

of patterns has been classified in the others classes.

However, it is not an obligation to define these two parameters if the suppression
of classes is not necessary. For example, for the application considering critical data,
it can be better to keep all characteristics patterns of all classes. Sometimes, classes
do not need to be deleted but to be merged. Indeed, according to classes which can
be created and to the evolutions of classes, it is necessary to measure over time
the overlapping of classes. If several classes are created and if they drift or grow
toward a common direction, then these classes have to be merged. To decide if two
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classes have become sufficiently close to be merged, a similarity measure has been
used [11]. This measure considers the overlapping or the closeness between classes
based on the membership values of the classified patterns.

δiz = 1− ∑x∈Ci∨x∈Cz |πi(x)−πz(x)|
∑x∈Ci

πi(x)+∑x∈Cz πz(x)
, (5.5)

where πi(x) and πz(x) are respectively the membership values of x according to Ci

and Cz. δiz is the similarity measure between two classes. More the similarity value
is close to 1, more the two classes are similar and have to be merged. The maximal
value represents two classes completely overlapped so it is not needed to wait until
the similarity value is equal to 1 to merge two classes. After each new classifier
pattern, this measure is calculated, if it is greater than a threshold rmthFusion between
two classes then they must be merged.

5.2.5 SS-DFKNN Algorithm

In Fig. 5.1, the algorithm describing all parts of SS-DFKNN is presented.

5.2.6 Hints for the Definition of SS-DFKNN Parameters

SS-DFKNN needs several parameters which can be defined according to each
application characteristics. The defined parameters influence the classifier perfor-
mances, however we can propose some default values which are generally adapted
to dynamic systems:

• k corresponds to the number of neighbors considered by the k-NN methods to
realize the classification of a pattern. It is the most common parameter of the
k-NN methods. It should be defined according to the size of the data set, to the
noise of a system and to the closeness between classes.

• th1 is one of the most important parameter of the method. It permits to detect
the evolution of a class. A class which does not evolve will have almost always
the same characteristics, even if noise occurs. So, if an evolution is realized,
abruptly or gradually, its characteristics will change. To allow small changes of
class without waiting for an important evolution, a value equal of th1 equal to 5
is a good compromise.

• NbMin permits to validate an evolution. It should be defined at least equal to
k,(k ≥ 1) in order to wait for a sufficient number of representative patterns
permitting to well estimate the characteristics of a new class. Moreover it must
not be too high to delay the evolution detection. NbMin should be defined
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Fig. 5.1 Description of the semisupervised dynamic fuzzy k-NN method

between k and k+5, respectively if k is high or small. If k and NbMin are small,
the risk to obtain false alarms becomes bigger.

• thFusion is an optimization parameter. Indeed, even if no fusion occurs, the simple
occurrence of a class means an evolution of the system has been realized. In that
case, an alarm should be raised on the system to call a human operator which will
verify the system state. A thFusion value between 0.05 and 0.2 permits to merge
classes which begin to have the same characteristics.
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Fig. 5.2 (a) Learning set; (b) class evolution

• n1 should be defined greater than k,(n1 > k) since a class will contain at least k
patterns (at its creation). A default value of n1 should be k ∗ 2.

• n2 should not be defined too small since after the creation of a class, it can be
necessary to wait in order to classify more patterns in the created class. On the
contrary, if no new pattern is classified in a new class after a large number of
classified patterns, then the class is not useful. It is probably a noisy class or an
ephemeral problem has occurred on the system. Then, the value of n2 should be
defined around 20. It means than 1 pattern on 20 should be classified in a new
class, in order to confirm progressively its usefulness. For the others classes, even
if they received no more patterns for a long time they will not be deleted since
they have already confirmed their usefulness by having a sufficient number of
patterns.

5.2.7 Illustrative Example

This example presents the dynamic evolution of a class. A progressive drift is
generated according to the following equations:

• t = 0: One hundred and fifty patterns are used as a learning set. Only the initial
class is known. The values of mean and standard deviation of the class are for
the attribute 1, μ1 = 3 and σ1 = 1, and for the attribute 2, μ2 = 3 and σ2 = 1
(Fig. 5.2a).

• t = 1–50: Fifty new patterns appear with the same characteristics than the initial
ones; so, there is still no evolution or drift.

• t = 51–200: A sudden change appears in the mean values of the class according
to each attribute j, j ∈ {1,2}. This change is followed by a progressive drift of
the class mean according to each attribute (Fig. 5.2b):
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Fig. 5.3 Classification result
obtained by SS-DFKNN after
classification of all patterns

μ1′(t) = μ1 + 2+
4× (t− 50)

150
, (5.6)

μ2′(t) = μ2 + 2+
2× (t− 50)

150
, (5.7)

whenever 51≤ t ≤ 200.
• t = 201–300: One hundred new patterns appear. They have the same characteris-

tics than the ones of the final class.

During the classification of the evolving patterns, several classes have been
created. Then, some of them have been merged and others have been deleted.
The final classification result obtained by SS-DFKNN is presented in Fig. 5.3. The
method has finally obtained 3 classes: one corresponds to the initial class, one
corresponds to the final location of the class, and one corresponds to a transition
class which could have been deleted. Then, the method has succeeded in detecting
the class evolution. The initial class C1 has kept its characteristics and the class
C2 well corresponds to the expected class. The classification results of SS-DFKNN
were obtained using the following parameters (k = 5; th1 = 5; NbMin = 5; thFusion =
0.2; n1 = 10; n2 = 20) and a delay detection of 4 patterns has occurred in order to
detect the class evolution. The maximum classification time obtained was equal to
5×10−2 s and the mean classification time was equal to 5×10−3 s. In the next part,
SS-DFKNN is applied to a welding system in order to realize the diagnosis of the
system and to follow the classes evolutions.

5.3 Application Results

In this section, we use SS-DFKNN to deal with the problem of weldings quality
monitoring on an industrial welding system (Fig. 5.4) used by the company Turquais
(Raucourt-et-Flaba, France).
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Fig. 5.4 The monitored welding system with its control system (a), and the two weldings realized
between two metal pieces (b)

5.3.1 Application and Acquisition of Acoustic Noises

The welding system is able to realize the weldings of different types of metals in
few seconds in order to obtain several welded pieces in a row. In this chapter, we
monitor the weldings quality obtained between two metal pieces (Fig. 5.4b). The
interest to monitor this system is to online detect all bad welded pieces in order to
correct as soon as possible the system parameters or to change one of its welding
tools. The proposed SS-DFKNN method has to detect every change of welding
quality and it has to warn the human operator if a welded piece is considered as
bad quality. The approach is based on the analysis, on the interpretation and on
the classification of the acoustic signals issued of the weldings between two metal
pieces. Currently, the human expert operator in charge of the welding machine
detects weldings qualities according to the welding noise he hears. Based on this
observation, we have installed an acquisition system using a microphone which
is sensitive for the audible sound range that a human ear can hear. This sound
represents the noises issued of the welding operation. The microphone is placed near
the welding system, there is approximately 50 cm between the microphone and the
metal pieces being welded. This permit to obtain more accurate sounds and to reduce
significantly the welding system environment noises. The sampling frequency was
fixed initially to 15 KHz for the set of measures. This frequency has been fixed in
order to contain all sounds that a human can hear and to respect the Shannon’s law
which imposes a sampling frequency at least twice higher than the frequency of
the event to study. A signal is obtained for each welding realized by the system.
Two examples of noisy weldings obtained on the system are presented in Fig. 5.5.
In Fig. 5.5a, a good quality welding is presented, its shape is almost constant and
even if a lot of noises is present, no discontinuity is observed. On the contrary, in
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Fig. 5.5 Examples of noisy signals obtained for a good quality welding (a) and for a bad quality
one (b)

Fig. 5.5b a bad quality welding is presented. The quality of this welding is initially
bad, and then the welding becomes good. So, the evolution of welding quality can be
distinguished by observing changes in some characteristics of the emitted acoustic
signals. The quality of a welding can evolve so quickly that even when only a part of
a welding is a bad quality, the global welding quality is considered as a bad quality.
The acquisition of multiple acoustic signals was realized during the functioning of
the welding system in order to construct a learning data set and a test set of the
good and bad welded pieces. In the next part, the data analysis of these signals
is realized to find informative parameters which can be used to discriminate the
weldings qualities.

5.3.2 Signal Analysis and Feature Space

The ratio signal to noise is poor on signals issue of this industrial system in the
Turquais company. To be able to select the interesting frequencies of signals, we
have begun to search the main informative frequencies used during the realization
of a welding. To do this, we have calculated the Energy Spectral Density (ESD) of
each signal Fig. 5.6.

In Fig. 5.6, we can see some frequencies which are particularly present, for
example the ones from 2,000 Hz to 4,000 Hz and from 6,000 Hz to 7,000 Hz. From
a global point of view, the set of informative frequencies seems to be situated below
7,000 Hz. In order to follow the evolution of each welding over time, we have used
a sliding window. It is important that this window contains enough observations
in order to obtain representative patterns. We have studied experimentally different
sizes, containing between 20 and 500 patterns. A window too small did not permit
to characterize the functioning modes since it did not contain enough observations,
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Fig. 5.6 Energy spectral density of an acoustic welding signal

while a too large window creates a delay to detect evolutions and the classification
result was lower. This is a time window including 200 observations which has been
selected. A window with this size was sufficiently informative and did not generate
a delay in the computing of the parameters of the feature space. The window
shifts with 200 new patterns. For each one of these windows, we have calculated
the energy spectral density and several statistical parameters (mean, maximum,
RMS, Kurtosis, dissymmetry coefficient, standard deviation, etc.). We have selected
the statistical parameters which permitted to discriminate classes of good quality
weldings from the ones of bad quality weldings. Two parameters were kept to
establish the feature space:

• the value of dissymmetry coefficient (skewness), noted p1, calculated for the first
derivative of each time window.

• the RMS value of the spectral density for the frequencies between 6,000 Hz
and 7,000 Hz, noted p2, calculated for each time window. Parameters were only
selected for these frequencies they were the most discriminative frequencies to
characterize the welding quality.

Each observation window corresponds to a pattern in the feature space. In Fig. 5.7,
a good quality welding is represented with its corresponding patterns in the feature
space.

In Fig. 5.8a, welding signal of bad quality is represented. On that figure, the
beginning of the window of each pattern corresponding to a bad quality welding is
represented by “∗.” Patterns corresponding to this signal are presented in Fig. 5.8b.
In Fig. 5.8, we can see two classes which should be estimated by the classifier.
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Fig. 5.7 Good quality welding (a) and its corresponding patterns in the feature space (b). Each
pattern is represented by its number of window

We can also see that some patterns realize a transition between the windows
corresponding to good and bad weldings qualities. For example, the pattern of
window 18 leads the system toward the faulty class, while pattern 26 brings back
the system toward the normal functioning mode. Then, when a bad quality appears,
several round trips occur between the two classes. The functioning mode evolves
according to the temporal and frequential characteristics of the system. In order to
show with more precision the round trip of patterns, a zoom is realized on a part of
the signal and its corresponding patterns are presented in Fig. 5.9.

5.3.3 Classification Results

In order to be in the same position that a human operator that will use our method,
we only consider a single class as known; the class C1 that contains patterns which
correspond to the windows of good quality welding. For the classification of all ac-
quired weldings, we have used a learning set such as the one of Fig. 5.10. From this
learning set, we have realized the classification of each welding, i.e., the classifica-
tion of each signal acquired on the system, one after the other. After the classification
of a first welding of bad quality, SS-DFKNN (k = 5; th1 = 5; NbMin = 5;
thFusion = 0.1; n1 = 10; n2 = 400) permits to obtain classes of the Fig. 5.11. After the
classification of this first welding, two classes have been estimated by the method.
The evolution of the class has been validated at t = 299 while the evolution has
really started at t = 295. A delay detection of NbMin = 5 windows has occurred.
This delay corresponds to the patterns which can be classified in a transition class.
It permits to confirm the evolution of the class C1 with a small delay while avoiding
some false alarms which can occur with the noise present in this system. Then
the others weldings of bad quality, coming from the others acquired signals, have
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Fig. 5.8 Bad quality welding (a) and its corresponding patterns in the feature space (b)

also been classified. The classification result of all these weldings is presented in
Fig. 5.12. A new class C3 has been created, it corresponds to a transitive area of
average welding quality present between the good welding quality class and the bad
quality class. Only patterns which had a sufficient change in their characteristics
are classified in class C2. Then, no false alarm was raised during classification of
these patterns. The set of others weldings of good quality has then be classified. All
weldings of good quality are classified in C1 (Fig. 5.13).

After the classification of all acquired patterns, some conclusions can be
presented:

• 100% of the good quality weldings are classified in C1.
• 100% of the bad quality weldings are detected.
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Fig. 5.9 Zoom on the patterns corresponding to a part of the welding problem and its corre-
sponding patterns are presented in the feature space. Patterns of the class of good quality are also
presented to have a global view of the two classes and to understand the evolution realized

Fig. 5.10 Example of
learning set used for the
classification of the new
weldings. One hundred and
seventy five patterns are part
of C1

• misclassified patterns (0.2% of all patterns) correspond to transitive patterns.
They only influence the delay detection of some weldings which have a bad
welding quality,

• very few information (2 patterns of C1 at a minimum) are necessary to use SS-
DFKNN.

• the delay detection of a bad welding is small (8 ms).

All classification results obtained by SS-DFKNN for this application are presented
in Table 5.1.

The set of bad quality weldings has had several patterns classified in C2 and C3.
Only some bad quality weldings patterns were misclassified in C1. It concerns only
the patterns which have generated delay evolution detection. These patterns were
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Fig. 5.11 Classification of
the first welding of bad
quality

Fig. 5.12 Classification of
all weldings of bad quality

then not misclassified consecutively but they correspond to few first patterns of bad
quality weldings. No welding pattern of good quality was misclassified. Then, the
classification result obtained by SS-DFKNN permits to perfectly distinguish good
quality weldings from those of bad quality. Moreover, only small delay detection
occurs so that the dynamic PR proposed can be online applied to this system. An
acoustic or visible alarm system will be set up in order to warn human operators if
a welding problem occurs.
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Fig. 5.13 Classification
result of all weldings of the
database

Table 5.1 Classification results obtained by SS-DFKNN

Semi-supervised
dynamic FKNN

Detection of weldings with a bad quality 100%
Detection of weldings with a good quality 100%
Mean tdelay to detect a bad quality welding 5 patterns
Mean tdelay to detect a good quality welding No delay

5.4 Conclusion

The dynamic PR method named SemiSupervised Dynamic Fuzzy K-Nearest
Neighbors (SS-DFKNN) has been developed in this chapter in order to demonstrate
its capacities to realize the diagnosis and monitoring of industrial evolving systems.
SS-DFKNN integrates two indicators of patterns usefulness which permit to follow
classes evolutions by adapting these latter if an evolution is confirmed. When an
evolution is realized, classes or subclasses are created to represent the current
functioning mode of a system. These evolved classes can permit to better estimate
the current functioning mode of an evolving system according to the time, to well
monitor the evolutions of complex classes (defined by several subclasses) and to
progressively find which functioning mode a class may reach after its evolution.
Indeed without adapting classes, an evolution of the classes characteristics will be
detected much later than when classes are adapted. SS-DFKNN can use only a few
patterns to initiate the method. However, more the learning set is representative
of the classes characteristics, better the detection of evolutions is. The classes
characteristics of all classes are refined sequentially with the classification of the
new patterns. The update of the evolved classes parameters is realized in a low
time so that this method can be applied online. In this chapter, SS-DFKNN has
been illustrated by a drift example and applied on an industrial welding system. For
each welding operation, an acoustic signal was acquired and used by SS-DFKNN.
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SS-DFKNN has well classified these signals which permitted to detect all bad
quality weldings and it also detected each one of the welding quality evolution
realized by the welding system.

SS-DFKNN uses several parameters to monitor evolving systems. Among these
parameters we can particularly estimate that k, th1, and NbMin have a major
importance in the results the method can obtain. According to their values, a delay
detection can occur, noisy patterns can be considered as a class evolution and
patterns can be misclassified. A new version of this method is being developed in
order to progressively adapt the classes parameters and the classifier parameters, in
order to obtain better results and to simplify the initial definition of these latter.
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Chapter 6
Making Early Predictions of the Accuracy
of Machine Learning Classifiers

James Edward Smith, Muhammad Atif Tahir, Davy Sannen,
and Hendrik Van Brussel

Abstract The accuracy of machine learning systems is a widely studied research
topic. Established techniques such as cross validation predict the accuracy on
unseen data of the classifier produced by applying a given learning method to a
given training data set. However, they do not predict whether incurring the cost of
obtaining more data and undergoing further training will lead to higher accuracy.
In this chapter, we investigate techniques for making such early predictions. We
note that when a machine learning algorithm is presented with a training set the
classifier produced, and hence its error, will depend on the characteristics of the
algorithm, on training set’s size, and also on its specific composition. In particular
we hypothesize that if a number of classifiers are produced, and their observed error
is decomposed into bias and variance terms, then although these components may
behave differently, their behavior may be predictable. Experimental results confirm
this hypothesis, and show that our predictions are very highly correlated with the
values observed after undertaking the extra training. This has particular relevance
to learning in nonstationary environments, since we can use our characterization
of bias and variance to detect whether perceived changes in the data stream arise
from sampling variability or because the underlying data distributions have changed,
which can be perceived as changes in bias.
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6.1 Introduction

Predicting the accuracy of a trained machine learning system when presented
with previously unseen test data is a widely studied research topic. Techniques
such as cross validation are well established and understood both theoretically and
empirically, e.g., [18,34]. However, these techniques predict the accuracy on unseen
data given the existing training set. For example, N-fold Cross Validation (NCV)
averages the fitness estimated from N runs, each using a proportion 1− 1/N of the
available data to train a classifier and 1/N to evaluate it. Therefore, repeating with
different values of N can give the user some indication of how the error rate changed
as the training set increased to the current size, since lower values of N effectively
equate to smaller training sets. However, NCV does not predict what accuracy might
be achievable after further training. Thus if the current accuracy is not acceptable,
and obtaining data comes at cost, NCV and similar techniques do not offer any
insights into whether it is worth incurring the cost of further training.

This is of more than theoretical interest, because the successful application of
machine learning techniques to “real-world” problems places various demands on
the collaborators. Not only must the management of the industrial or commercial
partner be sufficiently convinced of the potential benefits that they are prepared to
invest money in equipment and time but, vitally, there must also be a significant
investment in time and commitment from the end-users in order to provide training
data from which the system can learn. This poses a problem if the system developed
is not sufficiently accurate, as the users and management may view their input as
wasted effort, and lose faith with the process.

In some cases this effort may be re-usable if, for example, the user has been
labeling training examples that can be stored in their original form, and which come
from a fairly stationary distribution. However, this is frequently not the case. For
example, in many applications it may not be practical to store the physical training
examples rather, it is necessary to characterize them by a number of variables. If the
failure of the Machine Learning system in such cases stems from an inappropriate
or inadequate choice of descriptors, then the whole process must be repeated. Not
only has the user’s input been a costly waste of time and effort but there also
may be a loss of faith in the process which can manifest in reduced attention and
consistency when classifying further samples. To give a concrete example from the
field of diagnostic visual inspection (e.g., manufacturing process control or medical
images), it frequently turns out that it is not sufficient to store each relevant image—
other information is necessary such as process variables, or patients’ history. If this
data is not captured at the same time, and is not recoverable post-hoc, then the effort
of collecting and labeling the database of examples has been wasted.

A significant factor that would help in gaining confidence and trust from end-
users would be the ability to quickly and accurately predict whether the learning
process was going to be successful. Perhaps more importantly from a commercial
viewpoint, it would be extremely valuable to have an early warning that the users can
save their effort while the system designer refines the choice of data, algorithms etc.
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From the perspective of learning in nonstationary environments, such a tool could
provide a number of advantages. Firstly, a deviation from the expected progress can
be used as an indicator that there has been a fundamental shift in the nature of the
training input provided to the algorithm. This could arise either because the user
providing the labels has changed, or the underlying data set is dynamic and requires
a classifier that is able to take account of this. In either case, early warning is needed
to enable corrective action to be taken.

In this chapter, we investigate a technique for making such early predictions of
future error rates. We will consider that we are given n samples, and that the system
is still learning and refining its model at this stage. We are interested in predicting
what final accuracy might be achievable if the users were to invest the time to create
n′ more samples. This leads us to focus on two questions. First, what are the most
appropriate descriptors of the system’s behavior after some limited number n of
samples, and then later after an additional n′ samples? Second, is it possible to find
useful relationships for predicting the second of these quantities from the first?

Theoretical studies, backed up by empirical results, have suggested that the total
error rate follows a power–law relationship, diminishing as extra training samples
are provided. While these theoretic bounds on error are rather loose, they provide
motivation for investigating practical approaches for quickly and reliably estimating
the error rate that may be observed after future training. In general the error will be
a complicated function, but the hypothesis of this chapter is that we can deal with it
more easily if we decompose it into a number of more stable functions. Therefore
this chapter concentrates on the use of the well-known bias–variance decomposition
[8, 21] as a source of predictors when an algorithm is used to build a classification
model from a data set. Specifically, our hypothesis is that if the observed error is
decomposed into bias and variance terms, then although these components may
behave differently, their behavior may be individually predictable.

To test our hypothesis we first apply a range of algorithms to a variety of data
sets, for each combination periodically estimating the error components as more
training samples are introduced, until the full data set has been used. All of the
data arising from this (rather lengthy) process is merged and regression analysis
techniques are applied to produce three sets of predictive models—one each for
bias, variance and total error. Each of these models takes as input a measurement
obtained from the classifier produced when only a few samples (n) from a data
set have been presented to the learning algorithm, and predicts the value after all
samples have been applied (n+ n′). As the data have been merged, the intention is
that these models are algorithm-data set independent. We examine the stability and
valid range of these models using simple linear regressors. Moving on to consider
trainable ensembles of different classifiers, we show how a similar approach can be
applied to obtain estimates on the upper bound of the achievable accuracy, which
can predict the progression of the ensemble’s performance.

The rest of this chapter proceeds as follows. In Sect. 6.2, we review related
work in the field, including the bias–variance decomposition of error that we will
use. Following that, Sect. 14.2.1 describes the experimental methodology used to
collect the initial statistics, and test the resulting models. Section 6.4 describes
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and discusses the results obtained. In Sect. 6.5, we show how this approach may
be extended to predict the future accuracy of trainable ensembles of classifiers.
In Sect. 6.6, we discuss how these methods could be applied to detect changes
in underlying data distributions that would trigger re-learning in no stationary
environments. Finally in Sect. 6.7, we draw some conclusions and suggestions for
further work.

6.2 Background

6.2.1 Notation

For the sake of clarity we will use a standard notation throughout this chapter,
reinterpreting results from other authors as necessary.

We assume classification tasks, where we are given an instance space X and a
predicted categorical variable Y . The “true” underlying function F is a mapping
F : X → Y .

Let D be the set of all possible training sets of size n sampled from the instance
space X , and d ∈ D = {(x1,y1),(x2,y2), . . . ,(xn,yn)}.

When a machine learning algorithm C is presented with d it creates a classifier,
which we may view as a hypothesis about the underlying mapping: HCd : X → Y .
The subscripts C and d make it explicit that the specific classifier H induced depends
on the learning algorithm and the training set. For a specific learning algorithm C,
the set of classifiers that it can induce is denoted H .

We consider a 0/1 misclassification error—in other words the error is zero if H
correctly predicts the true class of an item x ∈ X , and 1 otherwise. More formally,
the misclassification cost of a single data item x with a specific classifier H is:

Cost(HCd ,x) =

{
0 HCd(x) = F(x)
1 HCd(x) �= F(x)

. (6.1)

The expected error of the classifier created from n data points is then given by
integrating over X and d, taking into account their conditional likelihood, i.e.:

Error(HCn,X) =

∫
x∈X ,d∈D

P(x)P(d|n)Cost(HCd ,x), (6.2)

where P(d|n) is the probability of generating a specific training set d ∈ D given
the training set size n, and P(x) is the probability of selecting an item x ∈ X to
be classified. In practice of course it is not possible to exactly measure the true
error, so approaches such as bootstrapping, hold-out, and cross validation are used
to estimate the error, given a finite sized set of examples. In bootstrapping, new
data sets are repeatedly generated from the original data set using random sampling
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with replacement. The new data sets, which most likely contain duplicate examples,
are then used to train a classifier and the examples that are not part of the data
sets are used for testing. Hold-out approaches divide the available data into two
sets (typically using a 70/30 split), train a classifier using the larger set and then
estimate its accuracy using the “unseen” smaller set. As described above, N-fold
cross validation (NCV) is an improvement on the hold-out approach which aims
to avoid the possibility of accidentally selecting an “easy” test set. The available
data is split into N (usually equally sized) blocks. Each of the blocks in turn is then
used as a test set to estimate the accuracy of a classifier built from the remaining
N−1 blocks. The average of these is then used as an estimate of the accuracy of the
classifier that would be built from all of the available data. We will use the lower
case “error” to denote an estimation is being used for the true error.

6.2.2 Relationship to Other Work

Cortes et al. [10] presented an empirical study where they characterized the behavior
of classification algorithms using “learning curves”. These suggest that the predicted
error of the classifier after n samples have been presented will follow a power–law
distribution in n:

error(n) = an−α + b, (6.3)

where the constants a (the learning rate), α (the decay rate), and b (the asymptotic
Bayes error rate) depend on the particular combination of classification algorithm
and data set, but α is usually close to, or less than one. This suggests that given
a particular classifier–data set combination, it should be possible to commence
training, take periodic estimates of the error as n increased, and then use regression
to find values for a,b,α that fit the data, and can be used for predicted future
error rates. “Progressive sampling” uses training sets (“samples”) with progressively
larger sizes (i.e., increasing n) until some desired accuracy has been reached.
This can be inefficient if a larger number of “samples” is used as each must be
evaluated. Using a similar approach to Cortes et al. recent papers have attempted
to fit a learning curve to a few samples in order to predict the size needed
[23, 29]. Mukerhjee et al. [26] have pointed out a problem with this curve-fitting
approach, namely that for low values of n the estimated error rates are subject to
high variability, which leads to significant deviations when fitting the power–law
curve. They have presented an extension of the method which uses a “significance
permutation test” to establish the significance of the observed classifier error prior
to curve fitting.

These results fit in with theoretical bounds from “Probably Approximately
Correct” (PAC) theory such as those presented by Vapnik in [35]. These begin
with the assumption that a training set d = {xk,yk},1 ≤ k ≤ n,yk ∈ {−1,1} is
drawn independently and identically distributed (iid) from a data set, and that
future training and test data will be drawn from the data set in the same way.
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Given the restriction Y = {−1,1}, the test error Error(HCn), (the probability of
misclassification) is defined to be:

Error(HCn) = E

[
1
2
| F(x)−HCn(x) |

]
, (6.4)

where in comparison to (6.1), the division by two maps absolute values of
differences in Y onto costs (rather than having a fixed cost of 1 for misclassification),
and the HCn denotes that we are taking the expectation for the general case. The
current empirically measured training error error(HCd) is:

error(HCd) =
1
n

n

∑
k=1

1
2
|yk−HCd(xk)| . (6.5)

Note that since this estimates the error by classifying the n elements of the
training set with a classifier trained on that data, it is calculated as a summation and
will underestimate the true error. Vapnik showed that the amount of underestimation
can be bounded [35]. Ifψ represents the Vapnik–Chervonenkis (VC) dimension, and
0≤ η ≤ 1, then with probability 1−η :

Error(HCn)≤ error(HCd)+

√
ψ log(2n)+ψ(1− logψ)− log(η/4)

n
. (6.6)

Effectively this equation makes explicit an assumption that machine learning
algorithms inherently produce classifiers which overfit the available training data.
The VC-dimension ψ is a measure of the capacity of a hypothesis space of
classification algorithm C, so may be thought of as the “power” of C. It is the
maximum number of points that can be arranged so that C can always “shatter”
them—for example, the VC-dimension of a linear classifier such as a perceptron
is three, since no straight line can separate the four points of an XOR problem.
Equation (6.6) makes it clear that more powerful algorithms (higher ψ) are more
likely to over-fit the data, and so it may be used as grounds to select between two
algorithms which produce the same training error but have different complexity
(related to ψ). It also makes explicit the dependency on n: for a given training
set error, the maximum amount by which this will underestimate the true error
decreases by approximately

√
ψ logn/n.

However, in practice these bounds tend to be rather “loose.” There have been
other more recent developments in Statistical Learning Theory which use a similar
approach but exploit Rademacher complexity to provide tighter bounds, such as
those in [1–3, 27]. Common to all of these approaches, as with the use of VC-
dimension results, is the idea that on the basis of the available training data, an
algorithm selects a classifier HCd from some class H available to it. To analyze
the learning outcomes, the “error” observed when the training data is classified by
HCd is broken down into the Bayes optimal error (which cannot be avoided) plus an
amount by which best (H∗ ∈H ) in the current class of classifiers would be more
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than Bayes optimal, plus an amount by which the classifier HCd currently estimated
by the algorithm to be “best” is different to the actual best H∗. Thus for example,
approaches such as Structural Risk Minimisation can be thought of as principled
methods for increasing the size/complexity of the current class of classifiers H
until it includes the Bayes optimal classifier.

The underlying assumption is that the error is estimated using the current training
set, and that this almost certainly overfits the true underlying distribution (i.e. HCd �=
H∗) so the current estimates of error for the chosen classifier HCd will be less than
the “true” error that would be seen if it was applied to the whole data distribution.
Therefore, bounds are derived which describe the extent to which the error on the
training set underestimates the true error. Since this can be described in terms of
the search problem of identifying H∗ ∈H , it is understandable that they take into
account the amount of information available to the search algorithm—i.e., the size
n of the training set.

While this is a valid and worthwhile line of theoretical research, we would argue
that it is not currently as useful for the practitioner. Consider the example of a user
who is highly skilled in his/her domain, but knows nothing about Machine Learning,
and is providing the training examples from which a classifier is constructed.
The theory above effectively says: “Based on what you have told me, I’ve built
a classifier which seems to have an error rate of x%. I can tell you with what
probability the “true” error rate is worse than x+ y%, for any positive y.” If they
have provided enough labeled data items to create what appears to be an accurate
classifier, then this is valuable. However, if they are still early on in the process, and
the current error rates are high, it gives no clues as to whether they will drop. Instead
we attempt to provide heuristics that answer a different question: “Based on what
you have told me, I’ve built some classifiers and although the current error rate is
x% it will probably drop to y%, where y≤ x”.

To do this, we note that the analysis above relates the true test error to a specific
estimated error from a given training set size, and that the variance in the predicted
error depends strongly on n. This has prompted us to examine different formulations
that explicitly decompose the error into terms arising from the inherent bias of the
algorithm (related to its VC dimension, or to the difference between H∗ and the
Bayes optimal classifier) and the variability arising from the choice of d ∈ D.

6.2.3 Bias–Variance Decomposition

A number of recent studies have shown that the decomposition of a classifier’s
error into bias and variance terms can provide considerable insight into the
prediction of the performance of the classifier [8, 21]. Originally, it was proposed
for regression [17] but later, this decomposition has been successfully adapted for
classification [8, 21, 31]. While a single definition of bias and variance is adopted for
regression, there is considerable debate about how the definition can be extended to
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classification [5,12,16,19,21,22]. In this chapter, we use Kohavi and Wolpert’s [21]
definition of bias and variance on the basis that it is the most widely used definition
[37, 38], and has strictly nonnegative variance terms.

Kohavi and Wolpert define bias, variance and noise as follows [21]:

Squared Bias “This quantity measures how closely the learning algorithm’s aver-
age guess (over all possible training sets of the given training set size) matches
the target.”

Variance “This quantity measures how much the learning algorithm’s guess
bounces around for the different training sets of the given size.”

Intrinsic noise “This quantity is a lower bound on the expected cost of any learning
algorithm. It is the expected cost of the Bayes-optimal classifier.”

Given these definitions, we can restate (6.2) as:

Error(HC,n) =
∫

x∈X
P(x)

(
σ2

x +Bias2
x +Variancex

)
. (6.7)

Assuming a fixed cardinality for Y (finite set of classes), and noting D has finite
cardinality, the summation terms in the integral are:

Bias2
x =

1
2 ∑d∈D

P(d|F,n)∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2 ,

Variancex =
1
2
− 1

2 ∑y∈Y
∑

d∈D

P(d|F,n)P(HCd(x) = y)2,

σ2
x =

1
2
− 1

2 ∑y∈Y
P(F(x) = y)2,

where the terms P(F(x) = y),P(HCd(x) = y),P(d|F,n) make explicit that some
terms are conditional probability distributions since the Bayes error may be non-
zero, the classification output may not be crisp, and the specific choice of training
set depends on the underlying function and the number of samples.

In practice, these values are estimated from repeated sampling of training sets
to acquire the necessary statistics, which are then manipulated to give the different
terms. Thus, the Bias term considers the squared difference between the actual and
predicted probabilities that the label is y for a given input x for a given training set d.
To calculate its value, the inner term sums over all possible values of y, and then the
outer summation averages over all training sets of a given size. By comparison, the
Variance term just considers the distribution of predicted values, P(F(x) = y), but
reverses the order of the summation to emphasize the effect of different training
sets. The intrinsic noise term sums over all possible output values y the squared
probabilities that the actual target F(x) = y for a given input x. If the underlying
class boundaries are crisp, then P(F(x) = y) will be zero except for one value of y,
the summation will be 1 and σ2

x will consequently be zero.
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6.2.4 Bias as an Upper Limit on Accuracy

An alternative perspective on the analysis in Sect. 6.2.3 is that the bias term reflects
an inherent limit on a classifier’s accuracy resulting from the way in which it forms
decision boundaries. For example, an elliptical class boundary can never be exactly
replicated by a classifier which divides the space using axis-parallel decisions.
A number of studies have been made confirming the intuitive idea that the size
of variance term drops as the number of training samples increases, whereas the
estimated bias remains more stable, e.g., [8]. Therefore, we can treat the sum of
the inherent noise and bias terms as an upper limit on the achievable accuracy for
a given classifier. Noting that in many prior works it is assumed that the inherent
noise term is zero, and that for a single classifier it is not possible to distinguish
between inherent noise and bias, we hereafter adopt the convention of referring to
these collectively as bias.

6.3 Experimental Methodology

The hypothesis of the main part of this chapter is that values of the bias and variance
components estimated after n training samples can be used to provide accurate
predictions for their values after n+ n′ samples, and hence for the final error rate
observed. To do this prediction, we use statistical models built from a range of
data set-algorithm combinations. The following sections describe our choice of
experimental methodology, algorithms, and data sets.

6.3.1 Procedure for Building the Models

Our experimental procedure is as follows:

• For each data set x and classifier i, we estimated the values of error (eixn), bias
(bixn) and variance (vixn) components using the first n ∈ {100,200, . . . ,1,000}
samples.

• For each data set, we then estimated the values of error, bias, and variance using
all of the samples in the data set. Note that this results in different values of n′ for
different data sets. Note also that we do not use a separate “test set.” We consider
that since one is always making estimates of the error on unseen data it is more
consistent to relate estimates of the error at different points in training using the
same estimation methodology.

• After all of the collected data was pooled, we applied linear regression to create
models of the form Q(n+n′) = aQn ·Qn +bQn, where Q is one of bias, variance, or
total error. In these models Qn is the independent variable, Q(n+n′) the dependent
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Fig. 6.1 Methodology for creating predictive models. This is repeated for n ∈ {100,200, . . . ,
1,000}

variable and the constants aQn and bQn are estimated by the linear regression
procedure for each variable Q ∈ {total error, bias, variance} and for each value
of n. We compute the coefficient of determination R2 to measure how well the
simple linear model explains the variability of the independent variable, and
hence the quality of the predictions—the closer R2 is to 1, the better is the
prediction.

• Note that when used with a new classifier i or data set x, this gives us two ways
of predicting the final error eix(n+n′) based on the first n samples: either directly
from the observed error or by summing the predictions for bias and variance.

– In the first case there is one independent variable, so eix(n+n′) = aEn ·eixn+bEn,
where aEn and bEn are taken from our models.

– In the second case, the two decomposed components (bias bixn and variance
vixn) are treated as independent variables, i.e. eix(n+n′) = aBn ·bixn +aVn ·vixn +
b, where b (= bBn + bVn), aBn, and aVn are given by our models.

Figure 6.1 shows this process for a single value of n.
We would like to re-iterate for the sake of clarity that we are not building

models which relate error, bias, and variance as a function of the number of training
samples n. In that case, it would certainly be true that by the two models (bias as
a function of n) and (variance as a function of n) could be combined into a single
linear model (error as a function of n). As the wealth of theoretical work described
above shows, there is ample evidence to suggest that no simple predictive linear
model exists. Instead we are building and combining linear models of the form
future bias/variance/error as a function of current bias/variance/error and seeing
how the predictive power of these models changes as a result of the value of n.

These linear models are of course an extremely simple way of modeling the
relationship between our various predictors; more sophisticated techniques exist
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in the fields of statistics and also Machine Learning, and will be examined in a
later section. However, as the results will show, linear models are sufficient for
our purposes.

6.3.2 Choice of Classifiers

In order to obtain the data for modeling ten different classification algorithms were
selected, each with different bias and variance characteristics. These were: Naive
Bayes [13], C4.5 [30], Nearest Neighbor [11], Bagging [4], AdaBoost [15], Random
Forest [6], Decision Table [20], Bayes Network [13], Support Vector Machine [28],
and Ripple-Down Rule learner [39]. Note that this set includes two methods for
creating ensembles: AdaBoost (using Decision Stumps as the base classifier) and
Bagging (using a decision tree with reduced error pruning). In these cases, since
we are solely interested in the outputs, we treat the ensemble as a single entity,
rather than attempt a bias–variance–noise–covariance decomposition [9]. For all
these classifiers, the implementation in the WEKA library [39] is used, and the
default parameters in WEKA are used for each classifier. We also used WEKA’s
Java implementation of Kohavi and Wolpert’s definition of Bias and Variance
(weka.classifiers.BVDecompose).

6.3.3 Data Sets

The data collection required to build the statistical models is carried out on data sets
derived from four Artificial and five real-world visual surface inspection problems
from the European DynaVis project1 [14, 25]. Each artificial problem consists of
13,000 contrast images created by a tuneable randomized image generator. Class
labels (good/bad) were assigned to the images by using different sets of rules of
increasing complexity acting on the generator. The real-world data sets came from
CD-imprint and egg inspection problems. There are 1,534 CD images, each labeled
by four different operators, and 4,238 labeled images from the egg inspection
problem. The same set of image processing routines are applied to segment and
measure regions of interest (ROI) in each image. From each set of images are
derived two data sets. The first has 17 features describing global characteristics
of the image and the ROI it contains. In the second, these are augmented by the
maximum value (over all the ROI) for each of 57 ROI descriptors. Adding the labels
available provides a total of 18 different data sets with a range of dimensionality and
cardinality.

1www.dynavis.org

www.dynavis.org
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To build the models, we used 14 of the data sets: the six derived from the first
three artificial image sets, the six from the CD images labeled by the first three
operators and the two from the egg data. The remaining four data sets, derived from
the fourth artificial image set, and the CD labeled by Operator 4 are reserved for
evaluation purposes. In each case we took n′ = total set size− 1,000, so n′ differs
between data sets.

6.3.4 Prediction Methodology and Sampling Considerations

To create the model data, we repeatedly draw training and test sets from the n
samples from which we can estimate the total error, together with its bias and
variance components. This raises the issue of how we should do this repeated
process.

If the variables in X are continuous, or unbounded integers, then the underlying
distribution over which the classifier may have to generalize is of course infinite. For
bounded integer or categorical variables, the number of potential training sets of size
n drawn iid from an underlying distribution of X is of size |D|= |X |!/n!(|X |− n)!,
so in practice even for nontrivial data sets it is not possible to evaluate all possible
training sets d of size n. However the success (or otherwise) of the approach
proposed in this chapter depends on the accuracy with which we can predict error
components, particularly for when the training set sizes are low. This immediately
raises the question of finding the most appropriate methodology for estimating the
values of those quantities. To give a simple example of why this is important, a
later result in this chapter partially relies on being able to distinguish between those
data items that are always going to be misclassified by a given classifier, and those
which will sometimes be misclassified, depending on the choice of training set.
Since the well known N-fold cross validation approach only classifies each data
item once, it does not permit this type of decomposition and cannot be used. In
a preliminary paper [33], we have examined two possible approaches: the “hold-
out” method proposed by Kohavi and Wolpert [21] and the “Sub-Samples Cross
Validation” (SSCV) method proposed by Webb and Conilione [38]. The latter have
argued that the hold-out approach proposed in [21] is fundamentally flawed, partly
because it results in small training sets, leading to instability in the estimates it
derives. This was confirmed by our results [33] which showed that the stability of
the estimates, and hence the accuracy of the resulting prediction was far higher for
the SubSampling method. Therefore, we restrict ourselves to this approach.

The SSCV procedure is designed to address weaknesses in to both the hold-
out and bootstrap procedures by providing a greater degree of variability between
training sets. In essence, this procedure repeats N-fold CV l times, thus ensuring that
each sample x from the training set of size n is classified l times by the classifier i.
The true bix and vix can be estimated as bixn and vixn from the resulting set of
classifications. The final bias and variance is estimated from the average of all x∈D
[37, 38], thus using all n′ samples.
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6.4 Explanatory Power of the Models

Figures 6.2 and 6.3 show scatter plots of the values for error, bias, and variance as
measured after n ∈ {100,1,000} samples and after all samples. Different markers
indicate different total numbers of samples. Note that in each case the same range is
used for x- and y-axes, so a 1:1 correspondence would from a diagonal from bottom-
left to top-right of the plot. In each case we show the results of a linear regression,
with 95% confidence intervals. Thus, the values for each classifier–data set pair as
estimated after a few, then all, samples constitutes a single point marked on the plot.
For each combination, the vertical distance between the actual point and the mean
regression line shows the difference between the value as measured from all samples
available, and the value predicted on the basis of just n samples .

From Fig. 6.2, we make the following observations:

• The models built from only 100 samples do not fit the data well: the plots are very
scattered and the coefficient of determination is low—in other words the linear
regression shown would only account for 31–32% of the observed variation in
values for the final variables (bias, error, variance).

• The models predict that although the error, bias, and variance will all fall from
the values observed after 100 samples: the total error by 65%, the variance by
70%, but the bias only by 50%.

• The models also predict a nonnegative residual component for each—4%, 1%
and 3%, respectively, which clearly is incorrect since it suggests that no classifier-
data set combination would have zero error.

• From the magnitude of the effects, we can see that the bias terms account for the
majority of the observed error.

• Comparing the estimates of variance after n = 100 with the final values, the
former are much higher. This makes it apparent that the small size of the data
sets is leading to considerable noise, which introduces error into the modeling
process.

• If we visualize a diagonal line through the plots for variance and total error, in
each case the regression line lies below this—so the models show the observed
values with n = 100 overestimate the final values.

• For the bias plot, the markers for all sized data sets would fall fairly evenly on
either side of the diagonal. Thus, the “noise” in the bias plot does not seem to be
particularly a function of the data set size.

• By contrast, for the error and variance the markers for n = n′ = 1,534, which
fall at the lower end of the scales, would fall around, or often above the 1:1 line,
whereas those for the larger data sets would predominantly fall below the line.

This last observation is worthy of further consideration. It shows that the linear
regression is a compromise. For the smaller data sets (n+n′= 1,534) whatever form
the variance takes as a function of n, a Taylor expansion would give similar values to
those observed after (n = 100), whereas for the larger data sets the variance clearly
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Fig. 6.2 Scatter plots of the Error (top), Bias (middle) and Variance (bottom) estimated after 100
samples (x-axis) and the same descriptors estimated using all samples (y-axis), together with results
from linear regression (middle lines) and the 95% confidence intervals (upper and lower lines).
Absolute values on individual plots vary, but in each case the x- and y-axes scale over the same
range (so a 1:1 correspondence would form a diagonal of the plot)
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Fig. 6.3 Scatter plots of the Error (top), Bias (middle) and Variance (bottom) estimated after 1,000
(right) samples (x-axis) and the same descriptors estimated using all samples (y-axis), together with
results from linear regression (middle lines) and the 95% confidence intervals (upper and lower
lines). Absolute values on individual plots vary, but in each case the x- and y-axes scale over the
same range (so a 1:1 correspondence would form a diagonal of the plot)
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falls away. However, as the distribution of actual values for different data sets of the
same size n′ is wide, and overlaps those for different n′, it is not possible for a single
regression line to capture the differences.

Turning our attention to Fig. 6.3, we see a very different picture:

• The close fit of the models built from 1,000 samples to the observed data can be
confirmed both visual inspection (all points fall very close to the regression line),
and statistical analysis (coefficient of determination shows that for bias and total
error, the model accounts for 94% of the observed differences).

• The regression models predicts that the final error will drop to 98% from its
current value (direct error–error regression), and the variance component will
fall to 82% of its value after 1,000 samples. However, the models predict that the
bias component will rise to 104% of its current value. This is interesting since it
suggests a comparison with the PAC results in (6.6). This will merit further study.

• The models now (correctly) predict zero residual components of error (i.e., bBn =
bVn = bEn = 0).

• The variance accounts for a smaller proportion of the total error.
• There is no clear difference between the results for different values of n′.

This last observation is perhaps the least expected: if our arguments about the
Taylor expansion of variance for n = 100 hold true, they should do even more so
for n = 1,000 so we might see the difference in the distribution of variance markers
for different sized data sets to be even more extreme. The fact that it is not can be
explained by the hypothesis that the variance follows some inverse power–law in
n—as suggested by (6.3). Intuitively, if elements of this variability are caused by
the presence or absence in the training set of samples from particular regions of the
data space, then both the probability of such elements not being present, and the
averaged effect of their influence, fall nonlinearly as n increases.

However, the major point to be emphasized here is that even using a very simple
model that is a linear regression from observed quantities, and does not take into
account how far into the future (n′) one is trying to predict, the models capture the
characteristics of the observed data very closely. The results in Fig. 6.3 thus form
strong evidence to confirm our original hypothesis—that the behaviors of the bias
and variance, although different are predictable.

To show how the predictive quality of the models changes as they are built from
increasing numbers of samples, Fig. 6.4 shows the coefficients of determination
computed during the regression process as a function of n. To recapitulate, for
each value of n, the bias, variance, and total error are estimated using SSCV, and
regression models are built relating these to the final observed values. It is clear that
the use of separate models for bias and variance provides better estimates of the
predicted error. The plot also shows how rapidly the estimates (and correspondingly
the predictive quality of the regression) stabilize in these two cases. What is apparent
is that the method will hold well after only a few hundred data samples have been
presented. Although the variance does not correlate highly (over 0.9) until closer
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function of the number of samples used to build the statistical models

to 1,000 samples have been presented, the total error estimated via decomposition
is well correlated because of the relatively greater size, and stability of the bias
component.

6.5 Extension to Ensemble Classifiers

The concept of decomposing error into different terms has also been used to help
explain the behavior of ensembles of algorithms. When the algorithms concerned
are performing regression tasks, decomposing the error of an ensemble into terms
representing the mean bias and variance of the individual algorithms, and the
covariance between them is fairly straightforward. A good recent survey of both the
bias–variance–covariance and ambiguity decompositions may be found in the first
few pages of [9]. However, just as defining bias and variance for 0/1 loss functions
was nontrivial, and there were several versions before Kohavi and Wolpert [21]
created their formulation in which variance is always nonnegative, the extension to
handle covariance in a natural way is also problematic. To the best of our knowledge
there has not been a successful model decomposing 0/1 loss functions for ensembles
of classifiers, so it is not immediately possible to simply extend the approach we
took for single classifiers. However, in this section we present some initial findings
from an approach in which we treat the entire ensemble as a single classifier.
Revisiting the definitions of bias in Sect. 6.2.3, we next develop predictors for upper
limits on its attainable accuracy based on simple observations of the behavior of the
individual classifiers in the ensemble.
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6.5.1 Estimating Lower Bounds on the Bias
for Finite Data Sets

The analysis in Sect. 6.2.3 used a very general model predicated on the fact that the
data items x could be drawn from a large, potentially infinite universe of samples,
corresponding to unlimited future use of the classifiers. Here we are concerned with
the more limited case where our future estimates are still drawn from a finite set of
size n+ n′. In particular, we consider whether we can predict the values of those
estimates, before completing the training process. In order to achieve this, we can
reformulate the models above slightly as follows.

To start with, let us assume that we have a finite set X of sample data points. For
consistency with above note that |X |= n+n′. Because we are treating the ensemble
as a single high-level entity, we need not worry about the effects of Boosting or
Bagging approaches to creating ensembles by repeatedly sampling from training
sets. Therefore, we assume that at our higher level training sets of size n are created
by sampling from X uniformly without replacement. Let D denote the set of training
sets created in this way, and d be any member of D, then we note that under these

conditions P(d|X ,n) = 1
|D| =

(n)!(n′)!
(n+n′)! .

Now let A+,A−,B partition X such that A+∪A− ∪B = X , and A+∩A− = A+∩
B = A−∩B = /0, where:

• A+ is the (possibly empty) subset of data items where for all training sets a
classifier trained on that set correctly predicts the class of item x.

∀x ∈ A+,d,d′ ∈ D,y ∈ Y YH(y|x,d) = YH(y|x,d′) = YF(y|x).

• A− is the (possibly empty) subset of data items where for all training sets a
classifier trained from that set incorrectly predicts the class of item x.

∀x ∈ A−,d,d′ ∈ D,y ∈ Y YH(y|x,d) = YH(y|x,d′) �= YF(y|x).

• B is the (possibly empty) set of data items where YH(y|x,d), the hypothesis
describing the predicted class of item x depends on the choice of training sets d.

∀x ∈ B ∃d,d′ ∈ D•YH(y|x,d) �= YH(y|x,d′).

So now lets look at what this means in terms of our estimates of the bias of
the classifier. This will of course depend on the methods used for the estimates.
Following well-established previous research, we will assume that each item in
the data set is predicted exactly k times. This is true with k = 1 for N-fold cross
validation, and for k > 1 for the Webb and Conilione approach, in general although
interestingly not for the Kohavi approach [21]. This means that when we sum over
the data items x in the counterpart of (6.7) each term occurs with equal probability.

Note that biasx as stated above is composed of terms which themselves depend
on the choice of training sets, and that we are assuming a fixed set of data points
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and a fixed size training sets. We therefore refine the definition of bias to take these
into account, and average over all possible training sets.

bias2 =
1
2 ∑x∈X

P(x) ∑
d∈D

P(d|X ,n)∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2. (6.8)

If we assume we are sampling iid then P(x) = 1/|X | and P(d|X ,n) = 1/|D|. We
now turn our attention to the case where each data item x ∈ X is unambiguously
associated with one of two possible class labels y ∈Y , and we will further constrain
our ensemble to output crisp decisions so that P(HCd(x) = y) ∈ {0,1}. Partitioning
the data set X as above, we note that we make use of the following conditions when
performing the summation. First, the set A+ does not contribute to the bias since
the predicted class for this subset of items is always correct. Second, ∀x ∈ X ,C,d ∈
D,∃y1,y2 ∈Y,y1 �= y2 : F(x)= y1∧HCD(x) = y2. This means that within the partition
A− for each combination of x and d, there are exactly two values of y which both
contribute +1 to the summation. This yields:

bias2 =
1
2 ∑

x∈A−
P(x) ∑

d∈D

p(d|X ,n) ·2

+
1
2 ∑x∈B

P(x) ∑
d∈D

P(d|X ,n)∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2, (6.9)

=
|A−|
|X | +

1
2
|B|
|X | ·

n!(|X |− n)!
|X |! ∑

x,d
∑
y∈Y

[P(F(x) = y)−P(HCd(x) = y)]2.

(6.10)

The last term will take a value between 0 and |B|/|X | since for each value of y the
difference will be 0 for some training sets and 1 for others which the gives bounds:

|A−|/|X |< bias2 < (|A−|+ |B|)/|X |. (6.11)

This reformulation makes it explicit that considering the proportion of samples
which the ensemble always misclassifies will yield a strict underestimate of the bias
provided that there exist any items for which the prediction made is dependent on
the training set. Furthermore, since according to (6.7) the variance term is always
nonnegative, we can say that the quantity |A−|/|X | constitutes a strict lower bound
on the error rate of a classifier—or an ensemble treated as a single entity.

6.5.2 Experimental Approach

Previous sections illustrated the successful use of regression models built from
a variety of data set–classifier combinations to predict the error rates that could
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be attained after future training. However, decomposing the error into different
components is not straightforward for ensembles of classifiers [9]. Moreover, this
would require running N-fold cross validation a number of times to get accurate
estimates of bias and variance components for each combination of data set,
algorithm, and n. This becomes computationally expensive when extended to a
heterogeneous ensemble, particularly if the ensemble is itself trainable.

For this section, we use a slightly different approach. Previously we pooled the
results from many experiments to build regression models relating observations of
bias and variance after different values of n training data to the same variables of
n+n′ items. Here we treat each data set independently, and build regression models
to characterize the ensemble’s learning curve as a function of n. As noted above,
there is theoretical [36] as well as empirical [10,13,26] evidence that these learning
curves have a power–law dependency on the number of training samples, i.e., they
are of the form

errorensemble = a ·nb + c, (6.12)

where a is the learning rate, b the decay rate, and c the Bayes error (the minimum
achievable error or, in the error-decomposition framework, the “noise”).

In our experiments, the bound on the ensemble’s error derived in Sect. 6.5.1,
|A−|/|X |, was used as an estimate of the minimum achievable error. When faced
with a new data set–ensemble combination, we make observations of |A−| and
the ensemble error at regular intervals, and then feed these into the power–law
regression model in order to fine-tune the parameters of the model so that it fits
the new data and predicts the future development of the ensemble error, as will be
detailed in Sect. 6.5.4. Before elaborating on these results, in Sect. 6.5.3 we analyze
the stability of the estimation of the lower bound on the error by using |A−|/|X |.

6.5.3 Analysis of the Stability of Estimators of Lower Bounds
on Error

For the experiments performed here, 22 Machine Vision data sets from the DynaVis
project were used (2 different feature spaces—17 and 74 features—for each of
5 CD-Print, 5 Artificial, and the Egg image sets). The CART [7] and C4.5
[30] decision trees, the Naive Bayes [13], Nearest Neighbor [11], and eVQ [24]
classifiers were used as base classifiers, the decisions of which were combined using
the Discounted Dempster–Shafer ensemble training method [32]. For each data set,
each classifier, and each value of n ∈ {100,120, . . .,1,000} samples, N-fold cross-
validation was repeated l times to make l predictions of the class of each item in
the training set. From this data, we calculated the values of |A−|/|X | as a function
of n for each data set (i.e., 22 values for each value of n). For clarity, we denote the
values |A−|/|X | hereafter as Orn.

In order to examine the stability of the predicted bounds as n increased, we
plotted Orn against Orfinal and used linear regression as before to fit a model of
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the form Orfinal = a1 ·Orn + a0, and to estimate the quality of the model via R2.
Figure 6.5 shows the progression of the coefficients a0 and a1 and the corresponding
values of R2 as a function of n.

As can be seen in Fig. 6.5, the models generated as n increases do produce
predictions which correlate well to the observed values after further training.
However, as can be seen by the progression of the coefficients, the nature of the
regression models changes. For low values of n the models predict a high constant
value for Orfinal with a low component related to the observed value of Orn—
essentially the system has not seen enough “difficult” samples. Since the major
component of the predicted value of Orfinal is fixed for n = 100, the correlation
is fairly low. As n increases and a more representative sample of the data is seen,
the situation changes. Thus for training set sizes n ≥ 700, the predicted value is
dominated by the observed value (a1 ≈ 0.85) with only a low constant component
(a0 ≈ 0.15). For these training set sizes, R2 increases to approximately 0.9.

6.5.4 Empirical Results for Predicting Lower
Bounds and Total Errors

The values Orn for different n can be used for predicting not just a lower bound on,
but also an estimate of the error of a trained ensemble. The following procedure can
be used:

1. Orn is measured for different n and a constant regression is performed for these
values, i.e., we obtain the constant OR which minimizes the Mean Square Error
with the values of Orn across different values of n. This value forms our estimate
of the lower bound on the achievable error.
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2. The errors the ensemble makes are also recorded for different n.
3. A power–law regression is performed for the ensemble errors, asymptotically

approaching the estimated constant OR as calculated in step 1:

errorensemble = a ·nb +OR, (6.13)

where a and b are the regression parameters which are optimized in the regression
procedure.

4. An analogous procedure is used to model the standard deviation of the observed
values.

5. From the power–law regression model, we can estimate the error of the ensemble
after n+ n′ samples are presented and also some estimates of how the variation
changes.

The results of this procedure are illustrated in Fig. 6.6. The five base classifiers
listed above are combined using the Discounted Dempster–Shafer combination
ensemble [32]. Orn was measured for n= {100,120, . . . ,1,000} samples. A constant
regression was performed to model Orn with a constant value and the obtained value
is then used as an asymptote when modeling the ensemble errors. The errors the
ensemble makes are again recorded for n = {100,120, . . . ,1,000} samples and a
(robust) regression model is built according to (6.12). The results of this procedure
are illustrated in Fig. 6.6a for CD-Operator 4 and in Fig. 6.6b for Artificial 04.
The values Orn and the errors of the ensemble are shown for different n, as well as
the regression models that are built for them, together with the estimated standard
errors. Also the final error after evaluating the performance of the ensemble when
it is trained on the entire data set is indicated, to show how accurately the errors
are predicted for the ensemble when it would be trained using a larger number of
training samples (n+ n′).

First, in both cases the results show that the model of OR does as expected form
a lower bound on the error. As can be seen from Fig. 6.6b, the use of the secondary
robust regression method to predict the mean and standard deviation of the observed
ensemble error (top set of curves) for the artificial data set, extrapolates well and the
final observed error (large asterisk at n+ n′ ≈ 20,000) falls inside these values. For
the much smaller CD print data set the figure is less clear, and the estimated standard
errors on the predicted asymptote Orn (bottom set of curves) overlap those of the
robust regression prediction. Nevertheless, again the observed final ensemble error
lies within one standard deviation of the value predicted by the robust regression
procedure.

6.6 Application to Nonstationary Environments

In this chapter, we have outlined two ways in which a decomposition of the
observed error into bias and variance terms can lead to useful predictions of future
behavior. In the last section, we also introduced a means of rapidly estimating a
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lower bound on the bias when an ensemble of classifiers is used. Whereas the
discussion has been partly couched in terms of making early predictions of accuracy
in static environments, we now turn our attention to dynamic environments. We
will characterize such environments by observing that the target function is now a
function of time, i.e., F : X ,T → Y and ∃x ∈ X , t1, t2, t1 < t2 •F(x, t1) �= F(x, t2).

In this case the approaches outlined above can also act as a valuable “early
warning system”, because since for example F(x, t2) is not available to be sample at
t1 and vice versa, dynamic environments explicitly violate one of the assumptions
of the analysis, namely that the training data sets are drawn iid from the underlying
sample space. Thus the use of on-the-fly estimates of the current values of error,
bias and variance can be used to detect changes in dynamic environments—for
example:

• Both the “learning curve approaches” and the linear regressions models predict
that the variance component will decrease with the number of samples. Any
observed increase can be taken as a sign of a dynamic environment.

• Although the relative size of the bias and variance components will vary between
data set–classifier combinations, our models predict that as the size of the
training set increases then the ratio of bias to variance term should increase. Any
departure from this should be treated as a warning sign.

• If the bias and variance components of error are periodically re-estimated from
the last few samples, then the ratio of bias to variance term should remain
constant. Any departure from this should be treated as a warning sign.

These indicators can be used as “early warning” signs in a number of ways.
They could be used to trigger the classification algorithm—for example, to rebuild
a decision tree. Alternatively they could be used to recognize that the underlying
algorithm itself need changing to one which can explicitly account for dynamic
situations, such as those outlined in other chapters of this book.

6.7 Conclusion

In this chapter, we have investigated techniques for making early predictions of the
error rate achievable after further interactions. We have provided several example
scenarios where the ability to do this would be of great value in practical data mining
applications. Our approach is based on our observations that although the different
components of the error progress in different ways as the number of training samples
is increased, the behavior displayed by each component appeared to be qualitatively
similar across different combinations of data set and classification algorithm. To
investigate this finding, we have created a large set of results for many different
combinations of data set, algorithm, and training set size (n) and applied statistical
techniques to examine the relationship between the values observed after partial
training (with n samples) and those after full training.
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Perhaps surprisingly, the experimental results showed that in fact a simple
linear model provided a highly accurately predictor for the subsequent behavior
of different components. The results confirmed our hypothesis that these could be
combined to produce highly accurate predictions of the total observed error. As there
is no bias–variance(–covariance) decomposition available for 0/1 loss functions for
ensembles of classifiers, it is not straightforward to apply the methodology used to
accurately predict the performance of classifiers after further training to ensembles
of classifiers. We have shown how a reformulation of the bias component can
provide an estimate of the lower bound on the achievable error which may be
more easily computed. This is especially important when the cost of training is
high—for example, with trainable ensembles of classifiers. This bound is used as an
asymptote in a power–law regression model to accurately predict the progression of
the ensemble’s error, independently for each data set.

For future work, we will focus in two directions. First, we will combine previous
theoretical findings and the successful results from the two different approaches
here. Taken together they suggest that for even more accurate predictions, it is
worth combining the linear model for bias with an inverse power law model for
variance using both the current estimates and the period over which to predict (n′)
as factors. This can be expected to prove particularly useful for classifiers where
variance forms a major part of the observed error. Second, the work presented in
this chapter used Kohavi and Wolpert’s definition of bias and variance, and we will
investigate whether using other definitions of bias and variance further improve the
predicted accuracy.
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Chapter 7
Incremental Classifier Fusion
and Its Applications in Industrial
Monitoring and Diagnostics

Davy Sannen, Jean-Michel Papy, Steve Vandenplas, Edwin Lughofer,
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Abstract Pattern recognition techniques have shown their usefulness for
monitoring and diagnosing many industrial applications. The increasing production
rates and the growing databases generated by these applications require learning
techniques that can adapt their models incrementally, without revisiting previously
used data. Ensembles of classifiers have been shown to improve the predictive
accuracy as well as the robustness of classification systems. In this work,
several well-known classifier fusion methods (Fuzzy Integral, Decision Templates,
Dempster–Shafer Combination, and Discounted Dempster–Shafer Combination)
are extended to allow incremental adaptation. Additionally, an incremental classifier
fusion method using an evolving clustering approach is introduced—named
Incremental Direct Cluster-based ensemble. A framework for strict incremental
learning is proposed in which the ensemble and its member classifiers are adapted
concurrently. The proposed incremental classifier fusion methods are evaluated
within this framework for two industrial applications: online visual quality
inspection of CD imprints and prediction of maintenance actions for copiers from a
large historical database.
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7.1 Introduction

Automatic monitoring and diagnostics can be of great added value in industrial
production and manufacturing environments. It increases the performance of the
production processes and it increases the uptime of the production facilities. It
ensures that the parts are produced according to the specifications and helps finding
the root causes of problems. As the complexity of these machines increases, so
does the need for integrated intelligence, including smart diagnostics, predictive
maintenance, automatic quality inspection and decision support systems. In order
to effectively use the large amounts of data the complex machinery is producing,
pattern recognition [11,57] and data mining [21,40] have shown their usefulness in
many applications, including (visual) quality inspection [51], fault detection [38],
predictive maintenance [1], machine health prognostics [14], and decision support
systems [13].

Common choices for constructing the classification models are Support Vector
Machines [60], rule-based classifiers [47], Decision Trees [4, 45], Neural Net-
works [62] and Gaussian Mixture Models [54]. However, the “No Free Lunch”
theorem [64] shows that no classification outperforms all other classification
algorithms for all data sets, if no prior knowledge about the data exists. In practice,
this means that often the appropriate classification algorithm is chosen based on a
trial-and-error procedure in which many different classifiers are evaluated.

In order to alleviate the above-mentioned problem it can be beneficial to use
multiple classifier systems (also called ensembles of classifiers) [30, 44], which
produce their decision based on the decisions of a set of different classifiers. The
combination algorithm used by the ensemble tries to exploit the diversity between
the classifiers to produce a prediction which is more robust and more accurate
than the ensemble’s member classifiers. There are several reasons why ensembles
can perform better than single classifiers, based on statistical, computational,
and representational motivations [9]. Two necessary and sufficient conditions for
ensembles of classifiers for achieving a higher accuracy than any of their individual
members are [20, 26]:

1. The classifiers are accurate (they perform better than random guessing).
2. The classifiers are diverse (their errors are uncorrelated).

As the complexity and the degree of autonomy of industrial machines grows
continuously, so does the need for intelligent analysis of their behavior. This means
it is required for the machines to log sensor data, operating modes, operating
conditions, etc. As this data is usually recorded online, while the system is fully
operational, more and more industrial systems are producing large amounts of data.
For these systems, there are two main scenarios in which incremental learning is
required:

Computational resources Industrial systems can produce huge amounts of data,
possibly even stored in Very Large DataBases (VLDBs).The learning algorithms
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should not iterate over the data repeatedly, as is done by many classification
algorithms, because this would consume too much computational and memory
resources.

Online availability When running online in a production environment, the mea-
sured data can be considered as a data stream [18]. This data stream can
be thought of as an ordered sequence of data items which arrive more or
less continuously as time progresses. Modeling such data streams requires a
permanent updating of the classifiers in order to take into account the changing
system dynamics. Updating the classification system (which can even be running
on a Digital Signal Processor (DSP) or a simple microprocessor) should in this
case not revisit data previously considered, as this would be too time consuming.

The settings in which the incremental learning is to be applied can be categorized
mainly along two different axes. The first axis is the data itself which is to be
learned: the target concept might remain fixed over time (referred to as true incre-
mental learning) or might change over time (referred to as concept drift) [48, 63].
The second axis is the way the data becomes available to the classification system:
the data might be presented to the classification system in (relatively small) batches
(referred to as incremental data mining) or it might be presented one instance at
a time [referred to as incremental machine learning (IML)] [24]. IML is in [56]
further divided into weakly incremental and strictly incremental methods. Weakly
incremental method require additional computation or memory when the number of
data samples increases, in contrast to strictly incremental methods.

A number of incremental classification algorithms have been developed for
various incremental learning settings, including incremental Support Vector Ma-
chines [8, 16, 48], incremental Decision Trees [6, 58], incremental discriminant
analysis [42], and evolving fuzzy classifiers [37]. These classifiers are able to adapt
their models and parameters based on the newly arriving data samples.

As accuracy, robustness, and reliability are highly important requirements for
industrial monitoring and diagnostics systems, it would be interesting to also have
ensemble methods at our disposal which can be applied in incremental learning
settings. Fixed ensemble methods (such as Voting [32]) are a first candidate as they
do not need any updating (they simply apply fixed rules without any optimization
based on training data). These algorithms have interesting properties such as their
simplicity and the good results they can produce in certain situations. However,
they are usually suboptimal. Trainable ensembles, on the other hand, are optimized
using the available training data and the outputs of their member classifiers for this
data (see, e.g. [30,44]). Of course, these algorithms also need incremental updating
if they are to be applied in online classification systems, in contrast to the fixed
ensemble algorithms.

In this work true incremental machine learning, as defined above, is considered.
This means that the target concept is considered to be fixed over time (although the
presented algorithms are also able to incorporate new target classes which might not
be available during the initial training), and the newly arriving data samples can be
presented to the learning algorithms whenever they become available and discarded
immediately afterwards.
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The remainder of this work is organized as follows. First, the proposed clas-
sification system architecture for the incremental adaptation of both the ensemble
and its member classifiers is described in Sect. 7.2, together with an overview of
related work. Section 7.3 introduces classifier fusion more formally and Sect. 7.4
describes the incremental extensions of several batch classifier fusion methods
(Fuzzy Integral [5, 17], Decision Templates [27, 31], Dempster–Shafer Combina-
tion [46] and Discounted Dempster–Shafer Combination [52]), together with the
proposed Incremental Direct Cluster-based ensemble method, in detail. Section 7.5
demonstrates the effectiveness of the proposed framework and the developed
incremental classifier fusion methods therein for several industrial monitoring and
diagnostics applications. Finally, the conclusions which can be drawn from this
work are formulated in Sect. 7.6.

7.2 Proposed Architecture for Incremental Classifier Fusion
and Related Work

Different strategies for incrementally updating an ensemble of classifiers have been
explored [29], including:

Dynamic combiners The individual classifiers in the ensemble are trained off-line
during the initial training; only the combination algorithm is adapted online.
One example of this strategy is the Mixture of Experts methodology [23].
Another example is the use of trainable classifier fusion methods which can be
updated incrementally (such as Naive Bayes [66] and Behavior-Knowledge Space
(BKS) [22]), as is done in [34].

Updating the ensemble members Newly arriving data is used to adapt the individ-
ual classifiers in the ensemble online; the combination algorithm might or might
not be adapted. Typically the data is sampled appropriately before using it to
adapt the different classifiers. Algorithms using this strategy include the online
Bagging and Boosting algorithms [41], the Pasting Small Votes method [3] and
the Learn++ algorithm [43].

Structural changes The classifiers are re-evaluated and can be removed or replaced
by a newly trained classifier, based on this evaluation. An example of this strategy
is presented in [61], in which the classifiers are evaluated on the most recent block
of data.

The approach followed in this work is somewhat different from the strategies
described above. A classification framework is presented in this section which
allows a sample-wise, strictly incremental learning. For combining the decisions of
the different individual classifiers, adaptive extensions are presented of a number of
well-known batch classifier fusion algorithms [30]: Fuzzy Integral [5, 17], Decision
Templates [27,31] and ensembles based on Dempster–Shafer theory [46,52]. In this
sense, this work can be seen as an extension of the work presented in [34], in which
Naive Bayes [66] and BKS [22] are used as the combination algorithm. However,
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in this work the ensemble’s member classifiers are updated as well, concurrently
with the combination algorithm (in this context we use “concurrently” to indicate
that the classifiers as well as the combination algorithms are adapted continuously,
sample by sample; neither is kept fixed at any stage of the incremental adaptation
process). Besides the adaptive extensions of the batch classifier fusion algorithms
mentioned above, a novel ensemble method based on an evolving clustering based-
approach (eVQ [35]) is proposed which is capable of batch as well as incremental
learning—named Incremental Direct Cluster-based ensemble.

The architecture of the proposed classification system which allows an incremen-
tal adaptation of the ensemble method as well as its member classifiers is visualized
in Fig. 7.1. The top part of this flow diagram shows the initial (off-line) training
phase in which the classifiers and ensemble are trained in batch mode. This modus
operandi usually results in better performance compared to starting the incremental
learning completely from scratch. During this phase good parameter settings can
be determined for the classification algorithms, which can afterwards also be used
during the online adaptation. In our case, these parameter settings are determined
using a cross-validation (CV) procedure [55] coupled to a parameter grid search.
After a set of (diverse) classifiers has been trained using this approach an ensemble
algorithm is trained (also in batch mode) on the outputs of the individual classifiers
together with the target labels (a detailed description is given in Sect. 7.4).

In the bottom left part of the flow diagram in Fig. 7.1, the incremental adaptation
phase is shown. The adaptation, based on a newly arriving data sample and the
corresponding feedback from a human operator (if available), is first done for the
individual classifiers and then for the ensemble. All training data (in batch mode as
well as during the incremental adaptation) is presented to both the classifiers and
the ensemble algorithm. This ensures they are all up-to-date at any given time (so-
called “any-time-learning”) and they are all trained using the maximum amount of
information.

In industrial applications, often certain target classes are strongly underrepre-
sented in the data. In order to avoid an “unlearning” effect for the underrepresented
classes the system is only adapted in the following cases (termed as balanced
learning—a similar concept is proposed in [39] for updating individual classifiers
based on the feedback of the operators):

1. Whenever the operator overrules a decision from the classifier: this increases the
likelihood that the classifier will produce the correct decision when a similar
image is presented again;

2. Whenever the relative proportion of the samples belonging to every class is
equally balanced: in this case the refinement of the classifier always increases
its classification accuracy; or

3. Whenever the relative proportion of the samples belonging to the current class is
lower than the relative proportion of samples belonging to any other class: this
enriches the classifier by balancing out the non-equal class distribution, which
further increases the accuracy.
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Fig. 7.1 Framework for the training and adaptation of the individual classifiers and the classifier
fusion method.
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In most production environments, time for providing feedback is very limited for the
operators. It is therefore not mandatory for the operators to provide their feedback
for every new data sample. In order to save the labeling workload, it is sufficient that
they provide their input when they think the system makes an incorrect decision and
they want to overrule this decision. Active learning concepts, where the feedback
is only requested from the operators for data samples for which the classifier is
uncertain in its predictions, may also be useful in this respect [36].

The bottom right part of Fig. 7.1 shows additional components (with dashed
lines) used for evaluation and testing purposes (also used for obtaining the ex-
perimental results in Sect. 7.5). When data which is stored off-line is used in the
evaluation (e.g., data captured online and stored in a database), the online operation
can be simulated by incorporating the different data samples one by one into the
learning system. This gives the operators more time to label the data (which is often
not possible online).

7.3 Classifier Fusion: Basic Concepts and Notations

The combination methods in the ensemble that will be considered in this work are
classifier fusion methods. In order to explain them in detail in Sect. 7.4 some basic
concepts and definitions will be provided in this section, together with the notations
that will be used, based on [30].

In general, two different ensemble strategies can be distinguished: generative
and nongenerative ensembles [59]. Generative ensemble methods generate sets of
classifiers, trying to actively improve their diversity and accuracy. Examples of
algorithms using this strategy include the well-known Bagging [2] and Boosting [15]
methods. In contrast, non-generative ensemble methods do not actively generate
new classifiers but they try to combine the predictions of a set of different, existing
classifiers in an appropriate way. Non-generative ensembles can be generally di-
vided into two groups: classifier selection and classifier fusion [65]. The assumption
of the former is that each classifier is an “expert” in some local part of the feature
space. The latter assumes that all classifiers are trained over the entire feature space.
In this work classifier fusion will be considered.

Let x ∈ R
n be a feature vector and Ω = {ω1, . . . ,ωc} the set of labels for

c mutually exclusive classes. τ(x)∈Ω denotes the class label assigned to x. Suppose
L classifiers {D1, . . . ,DL} are available. In general, three types of information can
be obtained for classification systems [30, 49, 66]:

Abstract level The classifier outputs a single class label; no information about
uncertainty of the classifier’s decision or possible alternatives is available.

Rank level The classifier ranks the possible classes in order of plausibility; this is
especially suited for problems with large numbers of classes [30].

Measurement level The classifier outputs a vector Di(x) = [di,1(x), . . . ,di,c(x)].
The values di, j represent the support of classifier Di for the hypothesis that vector
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x belongs to class ω j. Using a probabilistic interpretation, the di, j(x) can be
regarded as estimates of the posterior probabilities for the classes given x (i.e.,
di, j(x) = P(ω j|x)). A more general interpretation of the classifier outputs is to
consider them as the support (belief, possibility, etc.) for the classes [31]. Without
loss of generality the condition di, j(x) ∈ [0,1] can be imposed.

The measurement level provides the most information, as quantitative information
about alternative classifications is available. Hence, it is to be expected that
combining this type of classifier outputs produces the most significant improvement
in classification performance [49]. It should be noted that the other types can be
easily represented as a measurement level output, so all further discussions will use
the previous notation for classifiers producing measurement level outputs.

An intuitive and compact (matrix) representation of the outputs of all the
classifiers in an ensemble for a given feature vector x is suggested in [27,31], named
the Decision Profile (DP):

DP(x) =

⎛
⎜⎝

D1(x)
...

DL(x)

⎞
⎟⎠=

⎛
⎜⎝

d1,1(x) . . . d1,c(x)
...

...
dL,1(x) . . . dL,c(x)

⎞
⎟⎠ . (7.1)

The combined output of the L classifiers in the ensemble, μ , is then defined as

μ(x) = [μ1(x), . . . ,μc(x)] = F (D1(x), . . . ,DL(x)) , (7.2)

where F is called an aggregation rule [31].
As explained above, only the classifier outputs are considered by the classifier fu-

sion methods. This provides an abstraction of the classification methods themselves
and of whether they are being adapted incrementally or not. Hence, in general the
batch classifier fusion methods (as well as their incremental extensions) can take the
outputs of any set of batch and/or incremental classifiers as their input, as is possible
as well in the framework proposed in Sect. 7.2.

The fusion of the outputs of the individual classifiers into one final decision can
be done using fixed rules or trainable algorithms. Fixed rules are simple and can
produce good results for some tasks, but they are usually suboptimal. To achieve
better results trainable fusion methods can be used, which try to optimize the fused
decision using some learning algorithm. These methods are discussed in detail in
Sect. 7.4, together with their proposed adaptive extensions.

7.4 Classifier Fusion Algorithms and Their Incremental
Extensions

Classifier fusion methods can be generally divided into two classes: class-conscious
and class-indifferent methods [30, 31]. Class-conscious fusion methods use one
column of the Decision Profile DP(x) at a time to classify a feature vector x,
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taking into account that this column contains the individual classifiers’ supports for
class ω j. Class-indifferent fusion methods ignore the structure of DP(x) and treat
all values di, j(x) as feature values in a new feature space. The final decision is made
by another classifier that takes this new feature space as input and provides the final
classification as its output.

In this section, different well-known batch classifier fusion methods are dis-
cussed in detail (based on [30]), together with extensions to make them capable
of incremental learning. The remainder of this section is organized as follows. In
Sect. 7.4.1 the batch algorithms for class-conscious classifier fusion are detailed,
followed by their adaptive extensions in Sect. 7.4.2. In Sect. 7.4.3 the batch algo-
rithms for class-indifferent classifier fusion are detailed, followed by their adaptive
extensions (which are also able to incorporate new class labels) in Sect. 7.4.4.
In Sect. 7.4.5, the Incremental Direct Cluster-based ensemble is presented. This
method is actually a normal trainable class-indifferent classifier fusion method, but
as this is a newly proposed method it is discussed in a bit more detail in a separate
section.

7.4.1 Batch Algorithms for Class-Conscious Classifier Fusion

This section describes the batch learning and classification algorithms for a number
of class-conscious classifier fusion methods. Different fixed classifier fusion meth-
ods and the Fuzzy Integral algorithm are described in Sects. 7.4.1.1 and 7.4.1.2,
respectively.

7.4.1.1 Fixed Classifier Fusion

A popular and simple way to combine the outputs of classifiers is the use of a
fixed combination rule. These simple rules can have a good performance in certain
situations; however, they are usually suboptimal (as they are not adapted to the
specific problem). A very well-known and widely used combination method is
voting [32,66]. Note that voting rules are applied to abstract level classifier outputs,
so if the outputs of the classifiers in the ensemble are of the measurement level
their outputs need to be made crisp first (e.g., by taking the maximum). Other rules
use simple algebraic combiners [25, 28]. These algebraic combiners are used as the
aggregation rule F in (7.2), applied separately to the classifier outputs for each of
the classes (i.e., applied separately to each of the columns of DP(x)).

μ j(x) = F
(
d1, j(x), . . . ,dL, j(x)

)
, j = 1, . . . ,c, (7.3)

where μ j(x) is the ensemble’s output for class ω j. Examples of such combiners are
maximum, minimum, product, mean, and median [25, 28].
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7.4.1.2 Fuzzy Integral

The fuzzy integral algorithm [5, 17] tries to find a compromise between the
competence of the classifiers in the ensemble (represented by a fuzzy measure g)
and the evidence for class ω j (the support for ω j by the different classifiers) [30].

Batch Training

In order to compute the fuzzy integral for the different classes, first the degrees of
support for ω j (column j of the DP) are sorted in descending order, resulting in
d∗, j = [di1, j(x), . . . ,diL, j(x)]

T. For each α ∈ d∗, j, the classifiers giving support for
ω j that is greater than or equal to α are identified. This subset of classifiers is called
an α-cut, denoted as Hα . Second, every subset of classifiers in the ensemble must
have a measure of competence assigned to it, indicating how good this group of
classifiers is for the given input x. This measure is called a fuzzy measure, g.

A problem is that usually a competence value is not available for each possible
subset of classifiers. A solution is to calculate the so-called λ -fuzzy measure, which
can provide confidence values for each of the classifier subsets, based on the
competence values of the individual classifiers, g1, . . . ,gL (called fuzzy densities).
Typically the competence values for the individual classifiers are set to their (half of
the) accuracies, estimated, e.g. on a separate data set or in a CV procedure.

The value of λ , needed to calculate the values of the λ -fuzzy measure g, is
obtained as the unique real root of the polynomial

λ + 1 =
L

∏
i=1

(
1+λgi), 0 �= λ >−1. (7.4)

In order to compute the values of the fuzzy measure g, first the fuzzy densities
g1, . . . ,gL are arranged corresponding to the sorting used to obtain d∗, j, resulting in
gi1 , . . . ,giL . Then the following recursive calculation is computed [30]:

1. Set g(1) = gi1 .
2. For t = 2 to L: g(t) = git + g(t− 1)+λgitg(t− 1).

Here, g(a) denotes the competence assigned to the subset of classifiers which are
most confident in their prediction for class ω j, as determined by the sorting of their
supports for class ω j to obtain d∗, j (i.e., classifiers Di1 , . . . ,Dia).

Classification

To calculate the combined support for class ω j of the ensemble, μ j(x), the values
of α and g are combined. The combined support for class ω j calculated through the
Sugeno fuzzy integral is given by
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μ j(x) = max
α

[min(α,g(Hα))], j = 1, . . . ,c. (7.5)

Filling in the value of α in (7.5), the final degree of support for class ω j is
calculated by

μ j(x) = max
1≤k≤L

[
min

(
dik, j(x),g(k)

)]
, j = 1, . . . ,c. (7.6)

Another popular type of fuzzy integral is the Choquet fuzzy integral. The calcu-
lations use the same λ -fuzzy measure g; the only difference with the calculation of
the Sugeno fuzzy integral is (7.6), as detailed in, e.g., [30].

7.4.2 Incremental Adaptation for Class-Conscious Classifier
Fusion

As the fixed classifier fusion algorithms are not optimized for the given data, they
obviously need no adaptation. For the remaining class-conscious classifier fusion
method discussed in Sect. 7.4.1, the Fuzzy Integral ensemble, it can be seen that the
only part which is to be updated are the fuzzy densities, g1, . . . ,gL, after which the
fuzzy integral is to be recomputed. As the fuzzy densities are usually represented
by (half of) the accuracies of the classifiers, they need to be kept track of in an
incremental way. This can be achieved by storing the number of samples that have
been used for training so far, Ntr. When a new training sample becomes available, for
each of the individual classifiers Di, its updated accuracy, gi

new, can be incrementally
computed by

gi
new =

{
giNtr+1
Ntr+1 If classifier i correctly classified the new sample;
giNtr

Ntr+1 If classifier i incorrectly classified the new sample.
(7.7)

After the accuracy estimates have been updated for each of the classifiers, Ntr is
incremented by 1 (the new training sample has been used for updating the Fuzzy
Integral ensemble).

Incorporation of New Classes

When a new classification target is added to the data set, this means that an
additional column is added to the DP. As the class-conscious classifier fusion
methods by definition use each of the columns of the DP independently, the new
class can be incorporated in these methods without any problems; c simply needs to
be replaced by (c+ 1) in (7.3)–(7.6).
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7.4.3 Batch Algorithms for Class-Indifferent Classifier Fusion

This section describes the batch learning and classification algorithms for a number
of class-indifferent classifier fusion methods. The Decision Templates, Dempster–
Shafer combination, and Discounted Dempster–Shafer combination algorithms are
discussed in Sects. 7.4.3.1, 7.4.3.2 and 7.4.3.3, respectively.

7.4.3.1 Decision Templates

The idea of the Decision Templates combination method [27, 31] is to remember
the most typical DP for each class ω j, called the Decision Template for class j
(DT j). The combined decision for a feature vector x is determined by comparing
its Decision Profile DP(x) with the Decision Templates for each of the classes,
using some similarity measure S . The closest match labels x. This comes down
to applying the Nearest Mean classifier [21] in the space of classifier outputs.

Batch Training

The decision template DT j for class ω j is calculated as the mean of the DPs of all
the members of ω j from the training data set Z:

DT j =
1

Nj
∑

zk∈Z
τ(zk)=ω j

DP(zk), (7.8)

where Nj is the number of elements of Z belonging to class ω j.

Classification

In [27, 31] several measures of similarity are proposed, including the Euclidean,
Hamming, and Mahalanobis distances. The combined classification using the
Euclidean distance is, e.g., computed by

μ j(x) = 1− 1
L× c

L

∑
i=1

c

∑
k=1

[
(DT j)i,k− di,k(x)

]2
, j = 1, . . . ,c, (7.9)

where (DT j)i,k denotes the element at row i and column k of the matrix DT j.
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7.4.3.2 Dempster–Shafer Combination Ensemble

The Dempster–Shafer theory of evidence is a generalization of the Bayesian
reasoning used to represent and combine evidences, introduced by Dempster [7] and
Shafer [53]. Without going into the details of this theory, its application to classifier
fusion will be explained in this section and Sect. 7.4.3.3.

Batch Training

In [46], a way to apply the Dempster–Shafer theory of evidence to the problem of
classifier fusion is described. The Dempster–Shafer combination training is like the
Decision Templates training: the c decision templates are calculated from the data
set in the same way—see (7.8).

Classification

Although the Dempster–Shafer combination training is equal to the Decision
Templates training, determining the combined output for a new data sample is
different. Instead of calculating the similarity between the decision template and the
DP, the “proximity” between the decision templates and the output of each classifier
is calculated. Let DTi

j denote row i of decision template DT j and Di(x) the output
of Di (row i of the Decision Profile DP(x)), as defined in Sect. 7.3. The proximity
Φ between DTi

j and Di(x) is then calculated by

Φ i
j(x) =

(
1+

∥∥∥DTi
j−Di(x)

∥∥∥2
)−1

∑c
k=1

(
1+

∥∥DTi
k−Di(x)

∥∥2
)−1 , (7.10)

where || · || can be any matrix norm (e.g. the Euclidean distance between two
vectors). This results in L proximities for each of the c decision templates.

Using these proximities, for every class ω j and for every classifier Di the
following degrees of belief are calculated (based on the orthogonal sum rule of
the Dempster–Shafer theory of evidence—for a detailed discussion, see [46, 52]):

bi
j(x) =

Φ i
j(x)∏k �= j

(
1−Φ i

k(x)
)

1−Φ i
j(x)

[
1−∏k �= j

(
1−Φ i

k(x)
)] . (7.11)

From these degrees of belief, the final combined degrees of support for each class
ω j are calculated as follows:

μ j(x) = K
L

∏
i=1

bi
j(x), j = 1, . . . ,c, (7.12)

where K is a normalizing constant.
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7.4.3.3 Discounted Dempster–Shafer Combination Ensemble

An extension to the Dempster–Shafer combination ensemble [46] (see Sect. 7.4.3.2)
is described in [52]. The idea is to augment the information used in the ensemble
with the accuracies of the individual classifiers, next to the information about the
most typical classifier outputs (represented by the Decision Templates) which is
also used by the (standard) Dempster–Shafer combination method.

Batch Training

As with the Dempster–Shafer combination ensemble, the first part of the training
of the Discounted Dempster–Shafer combination ensemble is the same as the
Decision Templates training: the c decision templates are calculated from the data
set (see (7.8)). Additionally, the accuracies of the classifiers are estimated, e.g. on a
separate data set or in a CV procedure.

Classification

The so-called “proximities” between the decision templates and the output of
each classifier is calculated in the same way as for the standard Dempster–Shafer
combination method (see (7.10)). Suppose now that the estimated accuracies for
the L classifiers are α1, . . . ,αL. Using the proximities, for every class ω j and for
every classifier Di the degrees of belief are again calculated using the orthogonal
sum rule of the Dempster–Shafer theory of evidence. However, also the estimated
classifier accuracies are taken into account, in contrast to the standard Dempster–
Shafer combination. This is done using the discounting operation. Equation (7.11)
is then replaced by the following equation (for a detailed discussion see [52]):

bi
j(x) =

αiΦ i
j(x)

[
(1−αi)+αi

(
∏k �= j

(
1−Φ i

k(x)
))]

1−αi
2Φ i

j(x)
[
1−∏k �= j

(
1−Φ i

k(x)
)] . (7.13)

From these degrees of belief, the final degrees of support for each class ω j can be
calculated using again (7.12).

7.4.4 Incremental Adaptation for Class-Indifferent
Classifier Fusion

The training of all three classifier fusion methods described in Sect. 7.4.3 is based on
the computation of the Decision Templates. Hence, for these methods to be adapted
incrementally, the Decision Templates need to be updated. In order to do so, the
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number of training samples per class in the training set Z needs to remembered. Let
us denote these numbers as Ntr

j , for all classes j = 1, . . . ,c. When a new training
sample xadapt, belonging to class ω jadapt, becomes available, the new Decision
Template for the corresponding class, DTnew

jadapt
, can be obtained as follows:

DTnew
jadapt

=
Ntr

jadapt
∗ DT jadapt +DP

(
xadapt

)
Ntr

jadapt
+ 1

, (7.14)

where ∗ denotes the elementwise scalar matrix multiplication.
For the Discounted Dempster–Shafer combination method, also incremental

estimates of the accuracies of the classifiers are required. These can be computed
completely analogously to the Fuzzy Integral combination (see (7.7)).

Incorporation of New Classes

The class-indifferent classifier fusion methods can also be adapted so that they are
able to incorporate new classes that might appear. Let us assume that at a certain
point in the training process there are L classifiers in the ensemble, classifying the
data into c classes, ω1, . . . ,ωc. When a new class, ωc+1, is present in the data, the
classifiers’ output will contain an additional value (representing their support for
the new class ωc+1). The classifier fusion methods can then detect a new class was
present in the data if the DP which is used as input to the ensemble is of size L×
(c+ 1).

Note that the training of (and the classification by) the class-indifferent fusion
methods depends on the Decision Templates. Before the new class is presented to
the fusion methods, there are c Decision Templates, DT1, . . . ,DTc, of size L× c.
After the new class ωc+1 is introduced, the DPs produced by the classifiers are of
size L× (c+1). Therefore, the outputs of the classifiers for the new class ωc+1 (i.e.
column c+1 of the DP) should be ignored by the fusion algorithms when classifying
new data, until at least one sample of class ω j is presented in the training data. This
can be achieved by simply removing the column c+1 from the DP that is presented
to the fusion method.

As new training samples are coming in, the Decision Templates for the different
classes can be updated and the new class ωc+1 can be incorporated. The first time
a sample belongs to class ωc+1, a new decision template DTc+1 for class ωc+1 is
created and initialized to the DP of this sample. Obviously, column c+ 1 of the DP
of new samples should also be used for comparison with DTc+1. For updating DTc+1

with samples belonging to class ωc+1 coming in afterward, the procedure described
in the beginning of this section can be used. The first time a sample belongs to class
ω j �= ωc+1, the Decision Template for class ω j, DT j, can be updated to incorporate
class ωc+1. This is done by adding the classifier supports for class ωc+1 into DT j

(i.e., copying column c+ 1 from the DP of the new training data to column c+ 1 of
DT j). From this point on, column c+ 1 of the DP of new samples should also be
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used for comparison with DT j. For updating DT j with samples belonging to class
ω j coming in afterward, the procedure described in the beginning of this section can
again be used.

7.4.5 Incremental Direct Cluster-Based Ensemble

The motivation to apply clustering directly on the outputs of the base classifiers,
defined by o(x) = (D1(x), . . . ,DL(x)), is the assumption that the output vectors
from different classes form different groups in the high-dimensional classifier
output space. Even if this assumption does not (completely) hold, i.e., classes are
overlapping in some regions, a reasonable classifier can be built by exploiting the
relative frequencies of the classes in these local regions and the distances of new
samples to the nearest decision boundary. Furthermore, as the method performs a
clustering on the classifier output vectors and contains no inversion of covariance
matrices, it does not suffer instabilities, caused by possibly correlated outputs of two
or more classifiers (as pointed out in [31]).

Batch and Incremental Training

For deducing an incremental classifier fusion method an evolving vector quantiza-
tion approach (eVQ) [35] is used, which adapts and evolves centers and surfaces
of ellipsoidal clusters in a samplewise and single-pass manner. This method is
inherently incremental; hence, there is no separate description of its batch training.

The update of the winning cluster center, cwin (i.e., the cluster center which is
closest to the output of the classifiers for the current data sample, onew), is given by

cnew
win = cold

win +η
(

onew− cold
win

)
, (7.15)

with the learning gain η monotonically decreasing with the number of samples
forming each cluster, kc (usually set to 0.5

kc
).

The distance of a new classifier output vector onew is not calculated to the cluster
center (as done in conventional vector quantization [19]), but to the surface of the
ellipsoids. The distance to cluster i, disti, is then calculated as follows (for a detailed
discussion, see [35]):

disti = (1− t)

√√√√L×c

∑
j=1

(
onew

j − ci j

)2
, with t =

1√
∑L×c

j=1

(
onew

j −ci j

)2

σ2
i j

, (7.16)



7 Incremental Classifier Fusion and its Applications in Monitoring and Diagnostics 169

where σ2
i j denotes the spread of the data in dimension j for cluster i (as axis-parallel

ellipsoids are used, this can be estimated by the variance of the data samples in the
corresponding dimension).

The update of the ellipsoidal axes is done using the recursive variance estimation
formula [33], i.e., by (here again for the winning cluster):

∀ j : kwinσ2
win, j(new) = (kwin− 1)σ2

win, j(old)+kiΔc2
win, j+

(
cwin, j− onew

j

)2
, (7.17)

with kwin the number of confidence vectors forming the winning cluster and Δc2
win, j

the quadratic difference between the old and the new (updated) cluster center. The
evolution of a new cluster center is done by checking whether (7.16) is greater than
a vigilance parameter ρ , which is defined in the range of

[
0,
√

L× c
]
, with L the

number of classifiers and c the number of classes. Note that the classifier outputs
are already normalized, so

√
L× c represents the diagonal of the space and hence

the largest distance. A good value for the vigilance parameter can be obtained with
an offline best parameter grid search (see Sect. 7.2).

This algorithm is extended to classification problems by introducing a hit matrix,
H, the rows of which represent the clusters and the columns of which represent the
classes. The entry hi j of this matrix simply contains the number of samples falling
into cluster i and class j. This means each row of H contains the relative frequencies
of each class falling into the corresponding cluster. Note that the incremental update
of this matrix is straightforward by simply incrementing the entries hi j, whenever a
sample of class j is attached to cluster i.

Classification

When classifying a new data sample, a winner-takes-all approach is used where the
nearest cluster is seen as the best representative to label the current sample. Similar
to the training process it is simply checked whether the classifier outputs for the
new data sample, onew, lies inside any evolved cluster by checking the following
condition:

∃i ∈ {1, . . . ,C} :
L×c

∑
j=1

(
onew

j − ci j

)2

σ2
i j

≤ 1, (7.18)

with C the number of clusters generated so far. If condition (7.18) is fulfilled, the
distance of the classifier outputs for the data sample to be classified to all the clusters
fulfilling the condition is calculated and the nearest cluster is elicited. If (7.18) is
not fulfilled, the distance of the classifiers for the data sample to be classified to all
evolved clusters is calculated using (7.16) and the nearest cluster is elicited. In this
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sense, the fused output for each of the classes, μ j(x), j = 1, . . . ,c, is calculated by
the relative frequencies of each class falling into the winning cluster:

μ j(x) =
hwin, j

∑c
k=1 hwin,k

. (7.19)

The final class output, R, can then be computed as R = argmax1≤ j≤c (μ j(x)).

7.5 Experimental Results

In this section, the proposed incremental classifier fusion techniques are evaluated
against their batch counterparts as well as against the individual classifiers. The
experimental setup is detailed in Sect. 7.5.1. For the evaluation two industrial
monitoring and diagnostics applications are considered: online visual quality
inspection of CD imprints and predicting maintenance actions for copiers from
a large historical database. These applications are described in more detail in
Sect. 7.5.2. The evaluation follows the workflow depicted in Fig. 7.1, which serves
as the classification framework for all experiments reported in this section. The
experimental results for the different applications considered here are shown and
discussed in detail in Sect. 7.5.3.

7.5.1 Experimental Setup

For all the experiments, three inherently incremental classifiers are used as members
of the ensemble: k-Nearest Neighbors (k-NN) [21], eVQ-Class [35], and (Gaussian)
Naive Bayes (NB) [10]. These classifiers are based on very different principles
for producing their classifications (distances, clusters and densities). Therefore, it
can be expected that their decisions are to a certain degree uncorrelated, which is
crucial for the ensemble to perform well. This is confirmed by the experimental
results in Sect. 7.5.3, which show that the different classifiers achieve quite different
accuracies for most of the data sets. Also the accuracies of the classifiers as more and
more samples are used for adapting them show different evolutions for the different
classifiers.

The relatively small ensemble size is motivated by the applications considered
here (see Sect. 7.5.2). The first application in Sect. 7.5.2.1, visual inspection of
CD imprints, is intended to be used in an online industrial production setting.
Such systems are typically deployed on hardware with very limited computational
resources (processing power and memory), on which also many other processes
need to run (for controlling the production, logging, reporting, etc.). Therefore, the
goal was to make the footprint of the classification system as small as possible,
which resulted in the choice of a relatively small ensemble size. The same
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architecture was chosen for the second application in Sect. 7.5.2.2, the prediction
of maintenance actions for copiers from a large historical database, such that its
results can be compared to the first application.

The batch and incremental classifier fusion methods which are evaluated are
the methods described in Sect. 7.4: as fixed classifier fusion methods the Plurality
Voting rule (Vote) [32, 66] and the Mean rule (Mean) [25, 28] are used; as trainable
classifier fusion methods the Fuzzy Integral (FI) [5, 17], Decision Templates
(DT) [27, 31], Dempster–Shafer Combination (DS) [46], Discounted Dempster–
Shafer Combination (DDS) [52], and the proposed Direct Cluster-Based ensemble
(DC) are used. The proposed incremental variants of these trainable classifier fusion
methods are abbreviated by prefixing an ‘I’ to the abbreviations of their batch
counterparts (e.g., “IFI” represents the incremental version of the Fuzzy Integral
(FI) method).

The performance of both the individual classifiers and their combinations using
the different classifier fusion methods is estimated at two stages in the learning
process: after the initial batch learning and after the incremental adaptation. This
provides two evaluation criteria: (1) comparison of the performance of the ensem-
bles against the performance of the individual classifiers, and (2) the performance
increase by using the incremental adaptation of the system. For comparison the
performance of the ensembles after the incremental adaptation is compared to their
performance when no incremental adaptation is applied. For comparing the perfor-
mance of the incremental classifiers and ensembles with their batch counterparts,
they are also trained in batch mode on the complete training data (the data used for
the initial batch learning and the data used for the incremental adaptation). Besides
the prediction accuracies also the computation times are compared between the
batch and incremental algorithms.

7.5.2 Applications

For the evaluation two industrial monitoring and diagnostics applications are con-
sidered: online visual quality inspection of CD imprints and predicting maintenance
actions for copiers from a large historical database. For the former application,
incremental learning is important as the system needs to be adapted while the pro-
duction system is fully operational; for the latter, it is important because the database
is too large for repeated training in batch mode, whenever new maintenance data
becomes available. These applications are described in Sects. 7.5.2.1 and 7.5.2.2,
respectively.

7.5.2.1 Online Visual Quality Inspection

For evaluating the proposed methodology a first application is the online visual
quality inspection of CD imprints. The data used for this application was recorded
on-line in an industrial production line. The potential defects in the recorded images,
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caused by, e.g., wrong palettes, color weaknesses, etc., should be automatically
detected and classified into “good” and “bad” according to the quality decision
made by the quality control operators. This should happen while the production
system is fully operational; hence, the requirement for incremental adaptation of the
classification system.

The complete system architecture of the online, self-adaptive visual inspection
system is shown in Fig. 7.2. As depicted, the individual classifiers as well as
the ensembles are adapted according to the operators’ decisions (if available, as
discussed in Sect. 7.2). After removing the application-dependent elements (e.g., by
comparing newly recorded images with a master), encoded in the contrast image,
Regions Of Interest (ROIs) are recognized by clustering and object recognition ap-
proaches, marking the potential defects. For these ROIs a set features is calculated,
which are used for the initial (offline) training and further (online) adaptation of
the classifiers and ensemble. This feature set includes 57 so-called object features
(characterizing a single ROI, e.g., the shape of the circumscribing ellipse, the
brightness, etc.), and 17 so-called aggregated features (characterizing the image as
a whole, e.g., the number of objects in the image, the maximal local density of the
objects, etc.), resulting in 74 features in total per image. For some of the features
there is an implicit parameter (e.g., above which gray-level value are the pixels
taken into account for computing the object’s area). These feature parameters can be
optimized with respect to the classification problem, which we refer to as “adaptive
feature calculation” [12]; also refer to Chap. 13. After the initial training, when
the system is fully operational, the classifiers and ensemble are updated based on
the decisions of the operators (by overruling the classification system’s decisions);
refer to Chap. 14, where evolving fuzzy classifiers are used for online quality
control in a wider range of inspection systems (eggs, rotor, bearings). For more
detailed information about this image classification framework and its individual
components, see [50, 51].

A set of 1,534 images was recorded from the production line and labeled
independently by five different quality control operators into two classes (“good”
and “bad”), resulting in 5 different data sets (referred to as CD1–CD5). In the
experiments for these data sets the performance evaluation is always done using
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the last third of the data. The initial batch training is done using the first half of the
data not used for evaluation (i.e., the first 33% of the data), during which also the
optimal parameter settings of the classifiers are found; the incremental adaptation is
done using the second half of the data not used for evaluation (i.e., the 33% of the
data after the data used for the initial training).

As the data was recorded online as the different CDs were produced, the true
behavior of the classification system can be estimated. If the data was shuffled
this would likely lead to overly high estimates of the predictive accuracy of the
algorithms, as more different types of failures would be present in the initial batch
training set. In practice, however, this is not the case, as specific failures might
develop while the system is fully functional.

7.5.2.2 Prediction of Maintenance Actions

The second application for evaluating the proposed methodology is the prediction
of maintenance actions for copiers. The data used for this application was recorded
in a central database, containing information about the replacement of different
components by service technicians. 17570 maintenance actions for different types of
copiers, operational at different locations, are available. The replacement of different
components of the copiers are logged, together with the time the replacement
has taken place. Concurrently, the maintenance action for the Toner Transfer
Fusing (TTF) belt cleaner is logged. The TTF belt cleaner replacement is the
most frequently occurring replacement and hence it can be important to predict
whether it needs maintenance, so that the maintenance policy can be optimized.
This maintenance action, which is to be predicted by the classification system,
can take three states: “No maintenance,” “Predictive maintenance,” and “Corrective
maintenance.” Using such a classification system, it becomes possible to predict
whether the TTF belt cleaner needs maintenance or not, based on the replacements
of other components. As the database is too large for repetitively retraining the
classifiers and ensembles in batch mode, incremental learning techniques are also
required for this application. A detailed description of this database can be found
in [1].

In the experiments for these data sets, the performance evaluation is always
done using the last third of the data. The initial batch training is done using the
first 20% of the data not used for evaluation (i.e., the first 13.2% of the data),
during which also the optimal parameter settings of the classifiers are found; the
incremental adaptation is done using the second half of the data not used for
evaluation (i.e., the 52.8% of the data after the data used for the initial training).
As the data was recorded while the copiers were fully functional, the true behavior
of the classification system can be estimated, as the last data recorded is the most
relevant to estimate the predictive performance (as explained in Sect. 7.5.2.1).
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Table 7.1 Classifier and ensemble accuracies after the initial batch train-
ing (in %)

CD1 CD2 CD3 CD4 CD5 Copier

Classifiers

NB 82.55 82.35 81.18 78.63 69.22 27.35
k-NN 68.04 79.61 79.41 77.06 64.31 84.22
eVQ-Class 85.88 89.80 75.29 75.69 70.00 75.86

Ensembles

Vote 85.88 90.59 85.29 86.08 72.35 75.40
Mean 85.88 90.59 85.29 86.08 72.35 75.52
FI 85.88 90.59 85.29 86.08 72.35 75.41
DT 78.63 82.35 80.39 78.43 64.71 75.02
DS 82.55 82.35 80.39 78.63 64.31 75.07
DDS 78.63 82.35 80.39 78.63 64.31 84.22
DC 85.88 90.59 84.51 85.88 64.31 84.22

7.5.3 Results and Discussion

The classifiers and ensembles are evaluated based on two criteria: the accuracy
and the robustness of their predictions against badly performing classifiers, and the
computation time needed to train, adapt, and evaluate them. The former is discussed
in Sect. 7.5.3.1; the latter is discussed in Sect. 7.5.3.2.

7.5.3.1 Evaluation of the Classification Performances

For all six data sets (five from the CD imprint inspection application and one from
the maintenance prediction), the predictive accuracies of the different classifiers and
ensembles for the initial batch training (on the first part of the training data) are
shown in Table 7.1; the accuracies after incremental adaptation of the classifiers
as well as the ensembles using the second part of the training data are shown in
Table 7.2; the accuracies after incremental adaptation of the classifiers using the
second part of the training data while keeping the ensembles fixed are shown in
Table 7.3; and the accuracies after training the classifiers and ensembles in batch
mode on all training data are shown in Table 7.4. The classifiers and ensembles
achieving the highest accuracies are highlighted in boldface for each of the different
data sets. These results can be summarized as follows.

The Need for Incremental Adaptation For some of the data sets, it is required to
use an incremental adaptation of the classifiers and ensembles. By comparing
Tables 7.1 and 7.2, one can see that the accuracies of the static classifiers and
ensembles (i.e., classifiers and ensembles which are not updated after being
trained on the first part of the training data) may be significantly worse than the
dynamic classifiers and ensembles (i.e., adapting both classifiers and ensembles
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Table 7.2 Classifier and ensemble accuracies after the incremental adap-
tation of the initial models (in %)

CD1 CD2 CD3 CD4 CD5 Copier

Classifiers

NB 78.63 80.98 81.76 80.00 61.96 78.64
k-NN 81.76 90.98 84.12 88.43 83.33 84.05
eVQ-Class 82.94 90.78 88.82 89.22 65.88 85.68

Ensembles

Vote 85.69 90.78 89.02 89.41 70.00 85.91
Mean 85.69 90.78 89.02 89.41 70.00 85.78
IFI 85.69 90.78 89.02 89.41 70.00 86.02
IDT 85.69 90.78 89.02 89.41 82.94 76.32
IDS 85.69 90.78 89.02 89.41 76.27 80.54
IDDS 85.69 90.78 89.80 89.41 82.94 83.32
IDC 82.35 90.78 84.12 89.41 83.33 86.92

Table 7.3 Classifier and ensemble accuracies after the incremental adap-
tation of only the base classifiers; the ensembles are not adapted (in %)

CD1 CD2 CD3 CD4 CD5 Copier

Classifiers

NB 78.63 80.98 81.76 80.00 61.96 78.64
k-NN 81.76 90.98 84.12 88.43 83.33 84.05
eVQ-Class 82.94 90.78 88.82 89.22 65.88 85.68

Ensembles

Vote 85.69 90.78 89.02 89.41 70.00 85.91
Mean 85.69 90.78 89.02 89.41 70.00 85.78
IFI 85.69 90.78 89.02 89.41 70.00 85.62
IDT 75.29 80.98 76.08 80.00 82.94 84.09
IDS 78.63 80.98 80.00 80.00 82.94 84.77
IDDS 76.08 80.98 76.08 80.00 82.94 83.99
IDC 85.69 90.78 83.33 89.41 83.33 84.05

using the second part of the training data after the initial training). For example
for the ensembles the largest increase in performance is up to more than 19%
for the CD5 data set (computed as the difference between Tables 7.1 and 7.2).
Obviously, this is due to the limited number of samples presented to the classifiers
and ensembles during the initial training (especially for the CD data sets),
resulting in undertrained classifiers and ensembles.

By comparing Tables 7.2 and 7.3, one can see that when the (trainable) ensem-
bles are kept fixed during the incremental adaptation phase while adapting the
classifiers incrementally, the accuracies of IDT, IDS and IDDS are significantly
lower than when they are adapted. The only exceptions are data set CD5 (the
accuracies are approximately the same for IDT and IDDS and the accuracy of
IDS is even better when it is not adapted) and Copier (the accuracy of IDT is
better when it is not adapted).
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Table 7.4 Classifier and ensemble accuracies after batch training using
all training data (in %)

CD1 CD2 CD3 CD4 CD5 Copier

Classifiers

NB 83.53 87.65 86.86 87.06 64.71 76.44
k-NN 82.15 91.18 84.31 88.43 82.94 84.50
eVQ-Class 81.76 90.39 87.25 87.25 64.90 84.51

Ensembles

Vote 84.71 90.98 87.84 88.24 69.41 85.71
Mean 84.71 90.98 87.84 88.24 69.41 85.83
FI 84.71 90.98 87.84 88.24 69.41 85.47
DT 80.78 91.18 82.55 88.63 81.57 84.38
DS 84.71 90.98 87.84 88.63 74.71 84.75
DDS 82.16 90.98 82.55 88.63 82.55 84.39
DC 82.16 91.18 82.16 88.04 82.94 84.43

The Need for Ensembles Inspecting all resulting accuracies (Tables 7.1–7.4), one
can see that at any stage of the learning process the performance of the best
ensemble is better than or equal to the performance of the best classifier. The
largest improvement (7.45%) is achieved for CD4, when classifiers as well as
ensembles are not adapted incrementally. The only exception is the CD2 data set,
for which the result of the best classifier is 0.2% better than the best ensemble
when the classifiers are adapted incrementally (see Tables 7.2 and 7.3). It is
thus safe to state that ensembles of classifiers should definitely be considered in
order to achieve a higher predictive performance during the online classification
if enough computing power is available during operation.

The Effectiveness of the Incremental Adaptation By comparing Tables 7.2 and
7.4, one can see that the predictive accuracy of the incremental classifier fusion
methods (trained in batch mode on the first part of the training data and afterward
incrementally adapted using the second part of the training data) is in general
approximately equal to the accuracy of the classifier fusion methods trained in
batch mode on the entire training data. For most data sets (except CD2), the
incrementally adapted classifier fusion methods even perform better than their
batch counterparts, ranging up to 2.49% for the Copier data set. Note that in both
cases the algorithms have been presented with exactly the same training data.

This result is quite important, and it even opens the question whether a
retraining of the system in batch mode is useful at all, as this puts severe
constraints on the computational requirements when the system should be kept
up-to-date at a high rate (see also the results of the computation times required
by the classifiers and ensembles discussed below).

The Robustness of the Ensembles Even though one of the ensembles’ base clas-
sifiers, Naive Bayes, is for some data sets performing much worse than the
others (even below 50% after the initial training for the Copier data set), the
ensembles’ accuracies are mostly unaffected by this. The ensembles (especially
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the trainable ones) show a robust performance in all of the experiments. This
underlines the fact that the diversity between the classifiers helps building good
ensembles. In all results (Tables 7.1–7.4), it can be seen that different classifiers
are better for different data sets. However, after further adaptation it can be seen
that yet different classifiers become the best performers (by comparing Tables 7.1
and 7.2). This makes it very difficult to select the most appropriate classifier for
a given application. Using an ensemble, this selection problem is eliminated: the
ensemble will in general perform at least as good as its best member. When the
performances of the classifiers change over time, the ensembles will also adjust
to this new situation.

The robustness of the ensembles is underlined by Figs. 7.3 and 7.4, showing
the evolution of the accuracies of the incremental classifiers and ensembles
for the CD5 and Copier data sets. Even though some classifiers show a poor
performance for these data sets, most of the ensembles remain unaffected by this
and show a quite stable performance.

The Need for Incrementally Adaptable Ensembles Inspecting the results of the
incremental ensembles in Table 7.2, one can see that the trainable ensembles
are the best performers, when they are incrementally adapted, for all of the
experiments. For CD5, the largest improvement between the best fixed ensemble
and the best trainable one is achieved (13.33%). This again underlines the
importance of the development of incrementally adaptable ensembles.

Comparison of the Ensembles From the results presented above, no clear winner
can be identified between the different incremental classifier fusion methods.
A slight preference could be given to the IDDS and the proposed IDC methods,
as they are usually among the top performers.

7.5.3.2 Evaluation of the Computation Times

The computational complexity of the algorithms is evaluated empirically by measur-
ing the computation times on a conventional PC. As the CD1–CD5 data sets contain
the same number of instances and features, the computation times are very similar
and thus only the computation times for one of these data sets are reported. The
resulting computation times for the CD data sets and the Copier data set are reported
in Table 7.5, comparing the time required for both the incremental algorithms as
their batch counterparts (retrained every 10 samples for the CD data sets and every
100 samples for the Copier data set).

The importance of the incremental adaptation of the classifiers as well as the
ensembles is immediately apparent in Table 7.5. For the NB and k-NN classifiers the
reduction in computation time is not so large (a factor 1.2–1.5). For the eVQ-Class
classifier, however, the reduction is huge (a factor 10–26). In fact, retraining eVQ-
Class every 100 samples for the Copier data set takes over 3 h, while this is less than
10 min for k-NN and approximately 0.5 min for NB. In this case, the incremental
version of eVQ-Class reduces the computation time to approximately the level of
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Fig. 7.3 Evolution of the accuracies for the CD5 data set: (a) Incremental classifiers; (b) Incre-
mental ensembles
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Table 7.5 Training times of the batch retrained and the incremental
classifiers and ensembles (in seconds)a

CD imprint
inspection

Copier maintenance
prediction

Classifiers

NB retrained 0.34 34
NB incremental 0.28 33

k-NN (update of database) 0.69 549
k-NN (no update of database) 0.47 391

eVQ-Class retrained 1.50 10,909
eVQ-Class incremental 0.13 414

Ensembles

FI retrained 0.06 8
IFI 0.02 6

DT retrained 0.55 12
IDT 0.05 6

DS retrained 0.55 12
IDS 0.05 6

DDS retrained 0.59 12
IDDS 0.06 6

DC retrained 1.13 36
IDC 0.08 7
aFor k-NN the classification time (i.e. searching for the nearest
neighbors) is stated as the training time (i.e. adding samples to the
reference database) is negligible.

k-NN. Important to note here, however, is that the computation time of k-NN is
determined by its evaluation, not its training. Hence, if more evaluations would be
done during the training/adaptation, the computation time consumed by k-NN keeps
on increasing, while it remains unchanged for the other methods.

For the ensembles also, a significant reduction in computation time is achieved.
The lowest reduction (a factor 1.3–3) is achieved by IFI (which is already the fastest
trainable classifier fusion method). The reduction is somewhat larger for IDT, IDS,
and IDDS (a factor 2–10). For IDC, the reduction is the largest (a factor 5–14). All
of the ensemble algorithms are extremely fast, especially compared to the classifiers
(of course, also the classifiers’ outputs are required for computing the ensemble’s
output). IFI is the fastest, followed by the group of IDT, IDS, and IDDS, and IDC is
the slowest. It should be noted, however, that the differences are not that large. This
shows that even for large data sets such as the Copier data set, all classifier fusion
methods can be evaluated very fast (a few seconds of computation time) and thus
the best one can be found quickly.

Putting the results of the predictive accuracy and robustness and the computation
times together, for online modeling tasks and repeatedly learning in large data sets
a clear preference can be given to an incremental learning framework as the one
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presented in this work. The main benefits are that the system is up-to-date at all
time and that the computational complexity is greatly reduced, while the accuracies
remain at the same level. A clear preference can also be given to ensembles of
classifiers as they provide the robustness necessary for industrial environments, and
in some cases they further improve the predictive accuracy.

7.6 Conclusions

In this work extensions of various classifier fusion algorithms are presented which
allow a sample-wise, strictly incremental adaptation based on newly arriving data
samples. Additionally, a novel classifier fusion method is proposed, based on an
evolving clustering approach, which can be trained in batch mode as well as adapted
incrementally. These algorithms only require a small amount of computation time
and memory, especially compared to the individual classifiers within the ensemble.
This makes these techniques suitable for learning in fast on-line applications and
for learning from large databases. The classifiers and classifier fusion methods
are integrated in an on-line classification framework in which they are adapted
concurrently, ensuring that all classifiers and classifier fusion methods are up-to-
date at any given time.

The framework and the classifier fusion methods therein are evaluated for
two industrial monitoring and diagnostics tasks: online visual quality inspection
for a CD imprint process and predicting maintenance actions for copiers. The
experimental results show that the performance of the incremental classifier fusion
methods effectively increases when more data is presented to them, to a level
which is even higher than the best incremental classifier within the ensemble. The
predictive accuracy after the incremental adaptation is approximately the same as
the accuracy of the classifier fusion methods’ batch counterparts when trained in
batch mode on the same data, but the computation times for training in batch mode
are much larger compared to the incremental adaptation. An additional advantage
of the use of the (batch and incremental) classifier fusion methods is that they are
robust with respect to changes in the performance of their member classifiers, which
ensures that their performance is at least at the same level as the best individual
member classifier. This alleviates the typically very time-consuming task of having
to select the most appropriate classifier for a given classification problem. The
robustness increases the usefulness of the framework for industrial applications even
further as reliability is one of the most important characteristics if these techniques
are to be applied in real-world settings.
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Chapter 8
Instance-Based Classification and Regression
on Data Streams

Ammar Shaker and Eyke Hüllermeier

Abstract In order to be useful and effectively applicable in dynamically evolving
environments, machine learning methods have to meet several requirements, includ-
ing the ability to analyze incoming data in an online, incremental manner, to observe
tight time and memory constraints, and to appropriately respond to changes of the
data characteristics and underlying distributions. This paper advocates an instance-
based learning algorithm for that purpose, both for classification and regression
problems. This algorithm has a number of desirable properties that are not, at least
not as a whole, shared by currently existing alternatives. Notably, our method is very
flexible and thus able to adapt to an evolving environment quickly, a point of utmost
importance in the data stream context. At the same time, the algorithm is relatively
robust and thus applicable to streams with different characteristics.

8.1 Introduction

The idea of adaptive learning in dynamical environments has recently received
increasing attention in different research communities, for example, in the database
and data mining community under the slogan of “learning from data streams”
[17, 18], and in the computational intelligence community under the notion of
“evolving fuzzy systems” [4, 5, 24, 25]. Despite small differences regarding the
basic assumptions and the technical setting, the emphasis of goals and performance
criteria, and the focus on specific types of applications, the key motivation of these
and related fields is the idea of a system that learns incrementally, and maybe even in
real-time, on a continuous stream of data, and which is able to properly adapt itself
to changes of environmental conditions or properties of the data-generating process.
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Systems with these properties have been developed for different machine learning
and data mining problems, such as clustering [1], classification [22], and frequent
pattern mining [10].

Domingos and Hulten [15] list a number of properties that an ideal stream mining
system should possess, and suggest corresponding design decisions: the system uses
only a limited amount of memory; the time to process a single record is short and
ideally constant; the data is volatile and a single data record accessed only once;
the model produced in an incremental way is equivalent to the model that would
have been obtained through common batch learning (on all data records so far);
the learning algorithm should react to concept drift [32] (i.e., any change of the
underlying data-generating process) in a proper way and maintain a model that
always reflects the current concept.

Given the existence of a number of sophisticated and partly quite complicated
methods for learning on data streams, it is surprising that one of the simplest
approaches to machine learning, namely the instance-based (case-based) learning
paradigm, has only received very little attention so far—all the more since the
nearest neighbor estimation principle, the core of this paradigm, is a standard
method in machine learning, pattern recognition, and related fields. In this chapter,
we elaborate on the potential of the instance-based approach to supervised learning
within the context of data streams and propose an efficient instance-based learning
algorithm for classification and regression. To this end, we build on [6], in which
our approach to classification was introduced.

The remainder of the paper is organized as follows: The next section recalls the
basic ideas of instance-based learning, along with a short discussion of its possible
advantages and disadvantages in a streaming context. Our approach to instance-
based learning on data streams, IBL-DS, is introduced in Sect. 8.3. In Sect. 8.4, we
provide some information about the MOA (Massive Online Analysis) framework
for mining data streams, in which IBL-DS is implemented. Experimental results are
presented in Sect. 8.5.

8.2 Instance-Based Learning

The term instance-based learning (IBL) stands for a family of machine learn-
ing algorithms, including well-known variants such as memory-based learning,
exemplar-based learning and case-based learning [23,27,28]. As the term suggests,
in instance-based algorithms special importance is attached to the concept of an
instance [3]. An instance or exemplar can be thought of as a single experience, such
as a pattern (along with its classification) in pattern recognition or a problem (along
with a solution) in case-based reasoning.

As opposed to model-based machine learning methods which induce a general
model (theory) from the data and use that model for further reasoning, IBL
algorithms simply store the data itself. They defer the processing of the data
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until a prediction (or some other type of query) is actually requested, a property
which qualifies them as a lazy learning method [2]. Predictions are then derived by
combining the information provided by the stored examples.

Such a combination is typically accomplished by means of the nearest neighbor
(NN) estimation principle [11]. Consider the following setting: Let X denote the
instance space, where an instance corresponds to the description x of an object
(usually although not necessarily in attribute-value form). X is endowed with a
distance measure Δ(·), i.e., Δ(x,x′) is the distance between instances x,x′ ∈X . Y
is the output space and 〈x,y〉 ∈X ×Y is called a labeled instance, a case, or an
example. In classification, Y is a finite (usually small) set comprised of m classes
{λ1, . . . ,λm}, whereas Y = R in regression.

The current experience of the learning system is represented in terms of a set D of
examples 〈xi,yi〉, 1 ≤ i≤ n = |D |. From a machine learning point of view, D plays
the role of the training set of the learner. More precisely, since not all examples will
necessarily be stored by an instance-based learner, D is only a subset of the training
set. In case-based reasoning, it is also referred to as the case base.

Finally, suppose a novel instance x0 ∈X (a query) to be given. The NN principle
prescribes to estimate the corresponding output y0 by the output of the nearest
(most similar) sample instance. The k-nearest neighbor (k-NN) approach is a slight
generalization, which takes the k ≥ 1 nearest neighbors of x0 into account. That is,
an estimation yest

0 of y0 is derived from the set Nk(x0) of the k nearest neighbors
of x0. In classification, this is usually done by means of a majority vote, i.e.,

yest
0 = arg max

λ∈L
#{xi ∈Nk(x0) |yi = λ}, (8.1)

with L the set of class labels, whereas in regression, a weighted average of the
outputs of the neighbors is predicted:

yest
0 = ∑

xi∈Nk(x0)

w(xi) · yi, (8.2)

with

w(xi) =
f (Δ(xi,x0))

∑x j∈Nk(x0) f (Δ(x f ,x0))
.

Here, f (·) is a decreasing function R+ → R+, which means that the smaller
Δ(xi,x0), the stronger the weight of yi.

Recall the aforementioned key requirements for learning and data mining
algorithms on data streams: Above all, such algorithms must be incremental, highly
adaptive, and they must be able to deal with concepts that may change over time. Is
lazy, instance-based learning preferable to eager, model-based learning under these
conditions? Unfortunately, this question cannot be answered unequivocally.

Obviously, IBL algorithms are inherently incremental, since adaptation basically
comes down to adding or removing observed cases. Thus, incremental learning
and model adaptation is simple and cheap in the case of IBL. As opposed to
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this, incremental learning is much more difficult to realize for most model-based
approaches. Even though incremental versions do exist for a number of well-known
learning methods, such as decision tree induction [30], the incremental update
of a model is often quite complex and in many cases assumes the storage of a
considerable amount of additional information.

The training efficiency of lazy learners does not come for free, however.
Compared with model-based approaches, IBL has higher computational costs when
it comes to answering new queries. In fact, the latter requires finding the k nearest
neighbors of the query, and even though this retrieval step can be supported by
efficient data and indexing structures, it remains costly in comparison with deriving
a model-based prediction.

Consequently, IBL might be preferable in a data stream application if the number
of incoming data is large compared with the number of queries to be answered, i.e.,
if model updating is the dominant factor. On the other hand, if queries must be
answered frequently and under tight time constraints, whereas a need for updating
the model due to newly observed examples rarely occurs, a model-based method
might be the better choice.

Regarding the handling of concept drift, a definite answer cannot be given either.
Appropriately reacting to concept drift requires, apart from its discovery, flexible
updating, and adaptation strategies. In instance-based learning, model adaptation
basically comes down to editing the case base, that is, adding new and/or deleting
old examples. Whether or not this can be done more efficiently than adapting an
other type of model, such as a classification tree or a neural network, does of course
strongly depend on the particular model at hand. In any case, maintaining an implicit
concept description by storing observations, as done by IBL, facilitates “forgetting”
examples that seem to be outdated. In fact, such examples can simply be removed,
while retracting the influence of outdated examples is usually more difficult in
model-based approaches. In a neural network, for example, a new observation
causes an update of the network weights, and this influence on the network cannot
simply be cancelled later on.

8.3 Instance-Based Learning on Data Streams

This section introduces our approach to instance-based learning on data streams,
referred to as IBL-DS. Our learning scenario consists of a data stream that
permanently produces examples, potentially with a very high arrival rate, and a
second stream producing query instances to be classified. The key problem for
our learning system is to maintain an implicit concept description in the form of a
case base (memory). Before presenting details of IBL-DS, some general aspects and
requirements of concept adaptation (case-base maintenance) in a streaming context
will be discussed.
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8.3.1 Concept Adaptation

The simplest adaptive learners are those using sliding windows of fixed size. Since
the update is very simple, these learners are also very fast. On the other hand, the
assumption that the data which is currently relevant forms a fixed-sized window, i.e.,
that it consists of a fixed number of consecutive observations, is quite restrictive. In
fact, by fixing the number of examples in advance, it is impossible to optimally adapt
the size of the case base to the complexity of the concept to be learned, and to react
to changes of this concept appropriately. Moreover, being restricted to selecting
a subset of successive observations in the form of a window, it is impossible to
disregard a portion of observations in the middle (e.g., outliers) while retaining
preceding and succeeding blocks of data.

To avoid both of the aforementioned drawbacks, nonwindow-based approaches
are needed that do not only adapt the size of the training data but also have the
liberty to select an arbitrary subset of examples from the data seen so far. Needless
to say, such flexibility does not come for free. Apart from higher computational
costs, additional problems such as avoiding an unlimited growth of the training set
and, more generally, trading off accuracy against efficiency, have to be solved.

Instance-based learning seems to be attractive in light of the above requirements,
mainly because of its inherently incremental nature and the simplicity of model
adaptation. In particular, since in IBL an example has only local influence, the
update triggered by a new example can be restricted to a local region around that
observation.

Regarding the updating (editing) of the case base in IBL, an example should
in principle be retained if it improves the predictive performance (classification
accuracy) of the classifier; otherwise, it should better be removed.1 Unfortunately,
this criterion cannot be used directly, since the (future) usefulness of an example in
this sense is simply not known. Instead, existing approaches fall back on suitable
indicators of usefulness:

• Temporal relevance: According to this indicator, recent observations are consid-
ered as potentially more useful and, hence, are preferred to older examples.

• Spatial relevance: The relevance of an example can also depend on its position
in the instance space. This is the case, for example, if a concept drift only affects
a part of the instance space. Besides, a more or less uniform coverage of the
instance space is usually desirable, especially for local learning methods. In IBL,
examples can be redundant in the sense that they do not change the nearest
neighbor classification of any query. More generally (and less stringently), one
might consider a set of examples redundant if they are closely neighbored in the
instance space and, hence, have a similar region of influence. In other words, a
new example in a region of the instance space already occupied by many other
examples is considered less relevant than a new example in a sparsely covered
region.

1Of course, this maxim disregards other criteria, such as the complexity of the method.
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• Consistency: An example should be removed if it seems to be inconsistent with
the current concept, e.g., if its own output (strongly) differs from those in its
neighborhood.

Many algorithms use only one indicator, either temporal relevance (e.g., window-
based approaches), spatial relevance (e.g., Lightweight Frequency Counting, LWF),
or consistency (e.g., Instance-Based learning algorithm 3, IB3). A few methods
also use a second indicator, e.g., the approach of Klinkenberg (temporal relevance
and consistency), but only the window-based system FLORA4 (Floating Rough
Approximation) uses all three aspects.

8.3.2 IBL-DS

In this section, we describe the main ideas of IBL-DS, our approach to IBL on data
streams that not only takes all of the aforementioned three indicators into account
but also meets the efficiency requirements of the data stream setting.

IBL-DS optimizes the composition and size of the case base autonomously. On
arrival of a new example 〈x0,y0〉, this example is first added to the case base.
Moreover, it is checked whether other examples might be removed, either since
they have become redundant or since they are outliers (noisy data). To this end, a
set C of examples within a neighborhood of x0 are considered as candidates. This
neighborhood is given by the kcand nearest neighbors of x0, determined according a
distance measure Δ (see Sect. 8.7), and the candidate set C consists of the examples
within that neighborhood. The most recent examples are excluded from removal due
to the difficulty to distinguish potentially noisy data from the beginning of a concept
change. Even though unexpected observations will be made in both cases, noise and
concept change, these observations should be removed only in the former but not in
the latter case.

In the classification scenario, the most frequent class among the kcand youngest
examples in a larger test environment of size2 ktest = (kcand)

2 + kcand is determined.
If this class corresponds to the current class y0, those candidates in C are removed
that have a different class label and do not belong to the kcand youngest examples
in the larger test environment. Furthermore, to guarantee an upper bound on the
size of the case base, the oldest element of the similarity environment is deleted,
regardless of its class, whenever the upper bound would be exceeded by adding
the new example. The similarity environment constitutes the set of instances in the
vicinity of the query instance, while the test environment can be seen as the union
of the similarity environments of the neighbored instances.

2This choice of ktest aims at including in the test environment the similarity environments of all
examples in the similarity environment of x0; of course, it does not guarantee to do so.
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In the regression scenario, the kcand youngest examples in the neighborhood

set C determines a confidence interval
[
ȳ−Z α

2

σ√
kcand

, ȳ+Z α
2

σ√
kcand

]
, where ȳ is

the average target value for the considered examples and σ is the standard
deviation. A class values y0 outside this interval indicates an unexpected change
in the neighborhood when this instance was generated. In this case, instances not
belonging to the confidence interval are removed from the larger test environment.

Using this strategy, the algorithm is able to adapt to concept drift but will also
have a high accuracy for nondrifting data streams. Still, these two situations—
drifting and stable concept—are to some extent conflicting with regard to the size
of the case base: If the concept to be learned is stable, classification accuracy will
increase with the size of the case base. On the other hand, a large case base turns
out to be disadvantageous in situations where concept drift occurs, and even more
in the case of concept shift. In fact, the larger the case base is, the more outdated
examples will have to be removed and, hence, the more sluggish the adaptation
process will be.

For this reason, we try to detect an abrupt change of the concept using a statistical
test as in [19, 20]. If a corresponding change has been detected, a large number of
examples will be removed instantaneously from the case base. In the classification
scenario, the test is performed as follows: We maintain the prediction error p and

standard deviation s =
√

p(1−p)
100 for the last 100 training instances. Let pmin denote

the smallest among these errors and smin the associated standard deviation. A change
is detected if the current value of p is significantly higher than pmin. Here, statistical
significance is determined by testing the null hypothesis H0 : p ≤ pmin against the
alternative hypothesis H1 : p > pmin. This is accomplished by using a standard (one-
sided) z-test, i.e., the condition to be tested is p+ s > pmin + zαsmin, where α is the
level of confidence (we use α = 0.999).

Finally, in case a change has been detected, we try to estimate its extent in order
to determine the number of examples that need to be removed. More specifically, we
delete pdif percent of the current examples, where pdif is the difference between pmin

and the classification error for the last 20 instances; the latter serves as an estimation
of the current classification error.3 Examples to be removed are chosen at random
according to a distribution which is spatially uniform but temporally skewed; see
[6] for details.

In the regression scenario, the above test is conducted with the mean absolute
error instead of the classification rate, and the percentage of examples to be removed
is determined by the relative increase of this error.

3Note that, if this error, p, is estimated from the last k instances, the variance of this estimation is
≈ p(1− p)/k. Moreover, the estimate is unbiased, provided that the error remained constant during
the last k time steps. The value k = 20 provides a good trade-off between bias and precision.
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8.4 MOA

IBL-DS is implemented under the MOA (Massive Online Analysis) framework,
an open source software for mining and analyzing large data sets in a stream-like
manner. MOA is written in Java and is closely related to WEKA [31], the Waikato
Environment for Knowledge Analysis, which is presently the most commonly used
machine learning software.

MOA supports the development of classifiers that can learn either in a purely
incremental mode, or in batch mode first (on an initial part of a data stream) and
incrementally afterward. The implementation of an evolving classifier is supported
by a Java interface called UpdateableClassifier. This operation simulates the case
of online learning, which means that each instance is accessed only once. A few
incremental classifiers are already included in MOA, notably the Hoeffding tree
[22], a state-of-the-art classifier often used as a baseline in experimental studies.
Some meta learning techniques are implemented, too, such as online bagging and
boosting both for static [26] and evolving streams [8].

8.4.1 Stream Generators

MOA supports the simulation of data streams by means of synthetic stream
generators. An example is the Hyperplane generator that was originally used in [22].
It generates data for a binary classification problem, taking a random hyperplane
in d-dimensional Euclidean space as a decision boundary; a certain percentage of
instances is corrupted with noise.

Another important stream generator is the RandomTree generator. Its underlying
model is a decision tree for a desired number of attributes and classes. The tree is
built by splitting on randomly chosen attributes and then giving random class labels
to the leaf nodes. Instances are generated with uniformly distributed values in the
attributes while the class label is determined by the tree.

MOA offers the ConceptDriftStream procedure for simulating concept drift. The
idea underlying this procedure is to mix two pure distributions in a probabilistic
way, smoothly varying the corresponding probability degrees. In the beginning,
examples are taken from the first pure stream with probability 1, and this probability
is decreased in favor of the second stream in the course of time. More specifically,
the probability is controlled by means of the sigmoid function

f (t) =
(

1+ e−4(t−t0)/w
)−1

.

This function has two parameters: t0 is the mid point of the change process, while w
is the length of this process.
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8.4.2 Model Evaluation

The evaluation of an evolving classifier is clearly a nontrivial issue. In fact,
compared to standard batch learning, simple one-dimensional performance mea-
sures such as classification accuracy are not immediately applicable, or at least not
able to capture the time-varying behavior of a classifier in a proper way. MOA offers
different solutions for this problem.

The holdout procedure is a generalization of the cross-validation procedure
commonly used in batch learning. Here, the training and the testing phase of a
classifier are interleaved as follows: the classifier is trained incrementally on a block
of M instances and then evaluated (but no longer adapted) on the next N instances,
then again trained on the next M and tested on the subsequent N instances, and so
forth. Thus, it becomes possible to monitor the performance of the model as time
progresses; this information can also be used as an indicator of possible changes of
the underlying concept [7, 9].

While the holdout procedure uses an instance either for training or for testing,
each instance is used for both in the prequential approach [12]: First, the model is
evaluated on the instance, and then a single incremental learning step is carried out.
The prequential error is advocated in [21], where it is also shown to converge to
the holdout measure when using a sliding window or a fading factor (exponential
weighting).

8.5 Experiments

In this section, we compare IBL-DS with state-of-the-art learners in terms of perfor-
mance and handling of concept drift, namely Hoeffding trees for classification [22]
and the FLEXFIS approach for regression [24]. Hoeffding trees is a decision tree
approach suitable for learning on data streams, whereas FLEXFIS constructs and
maintains a specific kind of fuzzy rule-based model, namely a model of the Takagi–
Sugeno type [29]. Our study is not meant as an extensive empirical evaluation
that supports statistically valid conclusions. Instead, it is only supposed to serve
an illustration purpose. We refer to [6] for more experiments with classification
problems.

We use IBL-DS in its default setting unless otherwise stated (in some binary
classification problems, we try different values for the maximum size of the instance
base). Experiments are not only conducted with real data sets, but also with
synthetic data. As an important advantage of synthetic data, let us note that it allows
for conducting experiments in a controlled way and, therefore, to investigate the
performance of a method under specific conditions. In particular, synthetic data is
useful for simulating a concept drift.

The experiments are performed in the MOA framework, using the holdout
procedure for measuring predictive accuracy. The parameters M and N vary
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Table 8.1 Summary of the data sets used in the experiments

Data Set Instances Attributes Holdout evaluation

Statlog (shuttle) 58,000 9 M = 5,000 and N = 1,000
Red wine 1,599 11 M = 100 and N = 25
White wine 4,889 11 M = 200 and N = 50
YearPredictionMSD 515,345 90 M = 200 and N = 50

depending on the size of the data set (we take M = 5,000 and N = 1,000 in the
first two experiments with synthetic data). For the experiments with real data, these
parameters are adapted to the size of the respective data set; see Table 8.1 for an
overview of the main characteristics of these data sets. The real data sets are standard
benchmarks taken from the Statlib archive4 and the UCI repository [16]. Since they
do not have an inherent temporal order, we average the performance curves over
100 randomly shuffled versions of these data sets.

8.5.1 Classification

8.5.1.1 Synthetic Data

The first two experiments are based on synthetic data with different characteristics
(i.e., different types of decision boundaries). The first experiment uses data taken
from the hyperplane generator. The ConceptDriftStream procedure mixing streams
produced by two different hyperplanes simulates a rotating hyperplane. Using this
procedure, we generated 12,000,000 examples connecting two hyperplanes in four-
dimensional space, with t0 = 500,000 and w = 100,000.

We compare the performance of two different settings of IBL-DS, one with a
value of 400 for the maximum size of the instance base and the other one with 5,000.
Figure 8.1 shows that both versions of IBL-DS initially outperform the Hoeffding
tree. The Hoeffding tree is also more affected by the concept drift, showing a more
pronounced “valley” in the performance curve, and also taking more time to recover.
IBL-DS recognizes and adapts to the concept drift quite early, recovering its original
performance as soon as the drift is over.

In a second experiment, we use the random tree generator to produce examples.
Obviously, this generator is favorable for the Hoeffding tree. Again, the same
ConceptDriftStream is used, but this time mixing two random tree generators. As
can be seen in Fig. 8.2, the Hoeffding tree is now able to outperform IBL-DS in the
first phase of the learning process; in fact, reaching an accuracy of close to 100%,
which is not unexpected given that the Hoeffding tree is ideally tailored for this
kind of data. Once again, however, the Hoeffding tree is much more affected by the

4http://lib.stat.cmu.edu/.

http://lib.stat.cmu.edu/
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Fig. 8.1 Classification rate on the hyperplane data (binary)

Fig. 8.2 Classification rate on the RandomTree data (binary)

concept drift than the IBL-DS. Both variants of IBL-DS suffer from a drop of about
15% in terms of classification rate, and recover quickly during the phase of the drift,
whereas the Hoeffding tree loses about 40% of its accuracy.

8.5.1.2 Real Data

In this experiment, we used the Shuttle data from the Statlog repository, for which
the task is to predict the class of a shuttle. The data set is highly imbalanced, with
80% of the instances belonging to one class and the remaining 20% distributed
among six other classes; in order to obtain a binary problem, we grouped these six
classes into a single one. The new problem thus consists of predicting whether a
shuttle belongs to the majority class or not. Both algorithms were initially trained
on 300 instances in batch mode; for the holdout evaluation, we used M = 200 and
N = 50. Figure 8.3 shows the results averaged over 100 randomly shuffled versions
of the data set. As can be seen, IBL-DS starts with a very strong performance,
close to 99% accuracy; the Hoeffding tree reaches this accuracy, too, but not before
observing three quarters of the whole stream.

The wine quality data is an ordinal classification problem, in which a wine
(characterized by several chemical properties) is put into a discrete category ranging
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Fig. 8.3 Classification rate on the Shuttle data (binary)

red wine

ba

white wine

Fig. 8.4 Classification rate on the wine quality data set (binary)

red wine

ba

white wine

Fig. 8.5 Classification rate on the wine quality data set (multiclass)

from 10 (best) to 0 (worst). We turned this problem into a binary classification task
by grouping the top-5 and bottom-6 classes. Actually, the data set consists of two
subsets, one for white wine and one for red wine. For both data sets, the initial
learning is done on 300 instances. In all our experiments on the wine quality data, we
average the results over 100 randomly shuffled versions. For the evaluation on the
red wine data, we used M = 100 and N = 25, because this data set is relatively small
(about 1,600 examples); for white wine, we used M = 200 and N = 50. Figure 8.4
shows the results of both experiments. As can be seen, IBL-DS is clearly superior
to Hoeffding trees on these data sets.

For evaluating the muticlass case, we used the same real data sets as above,
but without grouping the output categories. As can be seen from Fig. 8.5, the
performance of both IBL-DS and Hoeffding trees on the wine data is lower than
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Fig. 8.6 Classification rate on the Shuttle data (multiclass)

Fig. 8.7 RMSE for the hyperplane data (regression, linear case)

that for the binary case, an observation that is clearly expected. Still, IBD-DS
remains superior on the whole stream. For the Shuttle data, Fig. 8.6 shows that
the performance of IBL-DS remains almost the same, compared to the binary
case, whereas the Hoeffding tree again starts with low classification rate and never
exceeds the 85% limit.

8.5.2 Regression

For the case of regression, we modified the hyperplane generator in MOA as follows:
The output for an instance x is not determined by the sign of wTx, where w is the
normal vector of the hyperplane, but by the absolute value

∣∣wTx
∣∣. In other words,

the problem is to predict the distance to the hyperplane. As an alternative, we also
tried

(
wTx

)2
, i.e., the squared distance. Again, ConceptDriftStream was used for

simulating a concept drift by mixing two streams.
Figures 8.7 and 8.8 show the performance of IBL-DS and FLEXFIS, in terms of

the root mean squared error (RMSE), for the (piecewise) linear and the quadratic
case (and dimension d = 4), respectively. As can be seen, FLEXFIS performs quite
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Fig. 8.8 RMSE for the hyperplane data (regression, quadratic case)
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white wine

Fig. 8.9 RMSE for wine quality data set (regression)

well in the linear case. This behavior is expected and can easily be explained by
its model structure (FLEXFIS uses fuzzy rules with linear functions as consequent
parts). What is more interesting, however, is the observation that IBL-DS is much
less affected by the concept drift, both in the linear and the quadratic case. In fact,
while FLEXFIS deteriorates significantly and needs quite some time to recover, the
performance of IBL-DS remains almost unchanged.

As a real data set, we again used the wine data, this time treating the quality level
as a numerical value. Figure 8.9 shows that IBL-DS is slightly worse than FLEXFIS
[24] on these two data sets.

8.6 Summary

We have presented an instance-based algorithm for classification and regression on
data streams. This algorithm, called IBL-DS, has a number of desirable properties
that are not, at least not as a whole, shared by existing alternative methods. The
experiments presented in [6], complemented by those in this paper, suggest that
IBL-DS is very flexible and thus able to adapt to an evolving environment quickly,
a point of utmost importance in the data stream context. In particular, two specially
designed editing strategies are used in combination in order to successfully deal with
both gradual concept drift and abrupt concept shift. Besides, IBL-DS is relatively
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robust and produces good results when being used in a default setting for its
parameters. An implementation of IBL-DS under the MOA framework, along with
a documentation, can be downloaded under the following address: http://www.uni-
marburg.de/fb12/kebi/research/software/iblstreams/.

8.7 Distance Function

The distance function used in IBL-DS is an incremental variant of SVDM (Simple
Value Difference Metric) which is a simplified version of the VDM (Value Differ-
ence Metric) distance measure [28] and was successfully used in the classification
algorithm RISE [13, 14]. Let an instance x be specified in terms of � features
F1, . . . ,F�, i.e., as a vector x = ( f1, . . . , f�) ∈D1×·· ·×D�.

Numerical features Fi with domain Di = R are first normalized by the mapping
fi �→ fi/(max−min), where max and min denote, respectively, the largest and
smallest value for Fi observed so far; these values are permanently updated.5 Then,
δi ( fi, f ′i ) is defined by the Euclidean distance between the normalized values of fi

and f ′i .
For a discrete attribute Fj, the distance between two values f j and f ′j is defined

by the following measure:

δi
(

f j , f ′j
)
=

m

∑
k=1

∥∥P(λk |Fj = f j)−P
(
λk |Fj = f ′j

)∥∥ ,
where m is the number of classes and P(λ |F = f ) is the probability of the class λ
given the value f for attribute F . Finally, the distance between two instances x and
x′ is given by the mean squared distance

Δ(x,x′) =
1
�

�

∑
i=1

δi
(

fi, f ′i
)2
.

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams.
In: Proceedings of VLDB 2003, the 29th International Conference on Very Large Data Bases.
Berlin, Germany (2003)

2. Aha, D.W. (ed.): Lazy Learning. Kluwer Academic Publ., Dordrecht, Netherlands (1997)
3. Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Machine Learning

6(1), 37–66 (1991)

5To make the transformation more robust toward outliers, it makes sense to replace max and min
by appropriate percentiles of the empirical distribution.

http://www.uni-marburg.de/fb12/kebi/research/software/iblstreams/
http://www.uni-marburg.de/fb12/kebi/research/software/iblstreams/


200 A. Shaker and E. Hüllermeier
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Chapter 9
Flexible Evolving Fuzzy Inference Systems
from Data Streams (FLEXFIS++)

Edwin Lughofer

Abstract Data streams are usually characterized by an ordered sequence of
samples recorded and loaded on-line with a certain frequency arriving continuously
over time. Extracting models from such type of data within a reasonable on-line
computational performance can be only achieved by a training procedure which
is able to incrementally build up the models, ideally in a single-pass fashion (not
using any prior samples). This chapter deals with data-driven design of fuzzy
systems which are able to handle sample-wise loaded data within a streaming
context. These are called flexible evolving fuzzy inference systems (FLEXFIS) as
they may permanently change their structures and parameters with newly recorded
data, achieving maximal flexibility according to new operating conditions, dynamic
system behaviors, or exceptional occurrences. We are explaining how to deal with
parameter adaptation and structure evolution on demand for regression as well as
classification problems. In the second part of the chapter, several key extensions of
the FLEXFIS family will be described (leading to the FLEXFIS++ and FLEXFIS-
Class++ variants), including concepts for on-line rule merging, dealing with
drifts, dynamically reducing the curse of dimensionality, as well as interpretability
considerations and reliability in model predictions. Successful applications of the
FLEXFIS family are summarized in a separate section. An extensive evaluation of
the proposed methods and techniques will be demonstrated in a separate chapter
(Chap. 14), when dealing with the application of flexible fuzzy systems in on-line
quality-control systems.
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9.1 Introduction

9.1.1 Motivation

In today’s industrial real-world applications, there is a significant growth of sensor
networks [23], TCP/IP traffic, GPS data, and parallel production lines [20]. The
amount of data which needs to be synchronously processed can become so huge
that storing it as persistent tables or (feature) matrices and building process models
from these in a batch off-line manner is simply not feasible as taking too much
computation time or virtual memory requirements. Furthermore, the processes
may become very non-stationary, meaning that changing system states, varying
environmental conditions, or human behaviors may arise which have to be integrated
into the models. Under these considerations, the automatic learning and permanent
adaptation of models from on-line and massive data streams [8] are playing a more
and more central role in data-driven model design. A data stream can be seen as a
stochastic process in which events occur continuously and independently from each
other. In particular, it is characterized by [22]:

• The data samples or data blocks are continuously arriving on-line over time. The
frequency depends on the frequency of the measurement recording process.

• The data samples are arriving in a specific order, over which the system has no
control.

• Data streams are usually not bounded in a size; that is, a data stream is alive as
long as some interfaces, devices, or components at the system are switched on
and are collecting data.

• Once a data sample/block is processed, it is usually discarded immediately,
afterwards.

Furthermore, a data stream model may also be applied in case of very large data
bases (VLDB)1 (e.g., consider the storage of customers’ attitudes in a supermarket
or long-term metrological data): in this case, the data needs to be treated as a kind
of pseudo stream as have to be loaded step-wise (in blocks or single samples) into
virtual memory in order to avoid memory over-flows.

In order to build models from data streams within a reasonable time frame
(ideally in real-time manner), the incremental (step-wise) learning concept plays
an important role, as re-training steps on all or partial blocks of data seen so far
often becomes too slow [2]. Single-pass incremental training techniques where
one sample/block of data is loaded, the model updated based on this data, and
then the data discarded require minimal virtual memory and computation time.
In order to account for changing system dynamics, two learning concepts are
essential: (1) dynamic adaptation of model parameters, ideally guided by some

1http://en.wikipedia.org/wiki/Very large database.

http://en.wikipedia.org/wiki/Very_large_database.
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optimization procedure and (2) evolving new structural components on demand
to extend the model to unexplored regions in the feature space and to prevent
(precarious) extrapolation situations at an early stage.

9.1.2 Our Contribution

In literature, various methods exist which can handle the above mentioned cir-
cumstances appropriately. Some can be found under the umbrella of incremental
learning methods (e.g., incremental classifiers, clustering approaches), which are
purchasing their motivation from the machine learning community and their basic
concepts. The massive on-line analysis tool MOA2 developed by the Department
of Computer Science at the Waikato University [8] integrates some important
incremental learning methods (including Hoeffding trees [16], their extension with
naive Bayes leaves, on-line OZA bagging and boosting [58], and ultra fast forest of
trees (UFFT) [24]). Alternative approaches have emerged during the last decade
within the soft computing community under the scope of evolving (intelligent)
systems [2], evolving connectionist systems including dynamic neural networks
approaches and beyond [31], as well as evolving fuzzy systems (EFS) [44]. The
later are enjoying a great attraction for several years due to achieving a reasonable
trade-off between universal approximation capability [13] and interpretability [11]
during the extraction of models from data (streams). In this sense, pure black box
models are prevented (as achieved by neural networks of support vector machines)
and some insights in the process can be offered. In the subsequent section, we
will present the core methodologies, basic strategies, and concepts of one of the
widely used approaches within the field of EFS, namely, the FLEXFIS family (for
a comprehensive survey on various EFS methods, see [44]), which is coming with
a regression variant (FLEXFIS) [41] and a classification variant (FLEXFIS-Class)
[4], together with a pure clustering-based spin-off classifier called eVQ-Class [42].
Furthermore, we will demonstrate important extensions of the FLEXFIS family
(leading to FLEXFIS++ and FLEXFIS-Class++ variants) to guide the evolved
models/classifiers to higher predictive performance and transparency (Sect. 9.3).
This will include a rule merging strategy in order to reduce unnecessary complexity,
an attempt on how to reduce curse of dimensionality in flexible fuzzy classifiers in a
smooth and incremental manner, concepts on how to deal with drifts in data streams,
some considerations regarding interpretability of the evolved models, and concepts
dealing with reliability (self-awareness) in model predictions.

2http://moa.cs.waikato.ac.nz/.

http://moa.cs.waikato.ac.nz/.
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9.2 The FLEXFIS Family: Core Learning Engines

The FLEXFIS family contains a bunch of algorithms, which were developed during
the last years and are summarized as family tree in Fig. 9.1. The incremental
evolving clustering engine eVQ is used in all regression and classification variants
for rule evolution and updating the antecedent parameters. The methods for
improved performance which are placed more to the left-hand side (“complexity
reduction” and “drift handling”) are actually integrated in the regression resp.

Fig. 9.1 Family tree of FLEXFIS including extensions for improved performance and trans-
parency resulting in FLEXFIS++ and FLEXFIS-Class++ approaches
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MM classification variants, that which is placed more to the right (“dynamic
soft dimension reduction”) is actually integrated in all classification variants.
Interpretability considerations and reliability aspects refer to all regression and
classification variants. In the following sections and subsections, we summarize the
most important facets in each of these components.

9.2.1 Flexible Evolving Fuzzy Regression Models

In a regression context, a data stream is defined by an (theoretically) infinite
sequence of samples (x(1),y(1)),(x(2),y(2)),(x(3),y(3)), . . . or by an infinite
sequence of data blocks (x(1 : N),y(1 : N)),(x(N+1 : 2N),y(N+1 : 2N)),(x(2N+
1 : 3N),y(2N + 1 : 3N)), . . . (each containing N samples), where the output vector
y(k) contains continuous values recorded at time instance k. In the first case, we
speak about sample-wise evolving data streams, and in the second case, about
block-wise evolving data streams. For the sake of simplicity and without loss of
generality, we are considering only single-output systems, reducing y(k) for all
outputs to single values denoted as y(k). The task of regression is now to build
up models which perform a mapping of (a subset of) the input space x onto the
target concept y, explaining the functional coherence between inputs and output as
close as possible. In literature, often least squares error is applied as underlying
optimization criterion, which expresses the minimization of the average squared
deviation between estimated ŷ and measured y output values:

J =
1
N

N

∑
i=1

(y(i)− ŷ(i))2 = min! (9.1)

In general, non-linearities are implicitly contained in the data streams; hence, linear
models are usually not able to resolve the coherences with sufficient accuracy.

The Takagi–Sugeno model architecture [65] is a widely used fuzzy model
architecture, which fulfills the universal approximation theorem [13] (i.e., can
approximate any non-linear functional behavior with sufficient accuracy) and also
allows some sort of interpretability, as (1) the antecedent parts consist of linguistic
conditions and terms and (2) the consequents may indicate some local trends (see
also Sect. 9.3.4). The ith rule of a Takagi–Sugeno fuzzy model is defined by:

Rulei : IF x1 IS μi1 AND...AND xp IS μip THEN

li = wi0 +wi1x1 +wi2x2 + . . .+wipxp, (9.2)

with μi j the fuzzy set in the jth antecedent part and li a hyper-plane defining the
consequent of the ith rule. In functional form, the Takagi–Sugeno fuzzy model
containing C rules is defined by:

f̂ (x) = ŷ =
C

∑
i=1

liΨi(x) Ψi(x) =
μi(x)

∑C
j=1 μ j(x)

μi(x) =
p

T
j=1

μi j(x j), (9.3)
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where p the dimensionality of the input space and x j the jth component in the
data vector, hence reflecting the value of the jth variable. The symbol T denotes
a t-norm in general. The most common choice in the data-driven design of Takagi–
Sugeno fuzzy models and also used in the FLEXFIS approach, is the product
t-norm in connection with Gaussian fuzzy sets (called fuzzy basis function networks
going back to Wang and Mendel [68]). This yields smooth approximation surfaces
and always guarantees well-defined input states. Furthermore, the basis function
networks have a close synergy to normalized radial basis function (RBF) networks
[33,57], which means that most of the data-driven learning algorithms designed for
fuzzy basis function networks can be easily adopted to RBF networks.

In an evolving data stream context, the fuzzy models have to be learned in
an incremental manner, ideally in a single-pass fashion (see Sect. 9.1.1). This
requires:

1. A permanent adaptation of previously learned parameters with new incoming
samples.

2. An evolution of new structural elements on demand due to changing system
dynamics, new environmental influences, and operating conditions.

The first issue accounts for a model refinement and intensification of the learned
relationship; the second expands the model to new regions and prevents long-term
extrapolation effects, which may cause significant uncertainties and bad quality in
its predictions.

9.2.1.1 Consequent Learning

In FLEXFIS [41], the adaptation of linear consequent parameters is achieved by
using the least squares optimization function (9.1) as optimization setting and
applying the recursive least squares estimator (RLS) [38] in weighted form in
order to achieve locality effects of the consequent hyper-planes and handling the
learning of each rule consequent separately. In particular, the hyper-planes are then
snuggling along the real local trend of the functional dependency/approximation to
be learned and can be seen as piecewise local linear approximators [71]. This yields
nice interpretation capabilities (trend analysis, feature weights), see Sect. 9.3.4. The
weights are given by the normalized membership degree of single samples to the
current evolved rules, defined by Ψi(x(N)) (9.3) for the Nth data sample in the ith
rule. This reduces the influence of rules lying far away from actual samples in the
recursive least squares estimator, which is called recursive fuzzily weighted least
squares estimator (RFWLS) [4] and for the ith rule defined by:

ŵi(N + 1) = ŵi(N)+ γ(N)(y(N + 1)− rT (N + 1)ŵi(N)) (9.4)

γ(N) =
Pi(N)r(N + 1)

1
Ψi(x(N+1)) + rT (N + 1)Pi(N)r(N + 1)

(9.5)

Pi(N + 1) = (I− γ(N)rT (N + 1))Pi(N), (9.6)
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with Pi = (RT
i QiRi)

−1 the weighted inverse Hessian matrix and synchronously
updated to the linear parameter vector wi (omitting time-intensive matrix inversion
steps), and r(N + 1) = [1 x1(N + 1) x2(N + 1) . . . xp(N + 1)]T the regressor
values of the (N + 1)th data sample and y(N + 1) the target value.

The major important characteristics of these adaptive update scheme for conse-
quent parameters can be summarized as follows [41]:

• In order to achieve maximal convergence to the optimum at the beginning of a
data stream, reasonable start parameters are as follows: wi = 0 and Pi = αI with
α a big integer number, for example, 1,000. After having some rules evolved, for
a new rule i, a more stable initialization can be achieved by setting wi = wj with
j the nearest rule center to the center of the newly evolved rule i.

• It is a recursive adaptation scheme, meaning that, once an optimum is found, it
converges to the exact optimum within each iteration step for each newly loaded
data sample [5]. This is due to the hyper-parabolic shape of the optimization
function and the gradient-based Newton step in the update (9.4) being able to
find the global minimum of the hyper-parabola.

• For each rule, a separate recursive estimation scheme according to (9.4)–(9.6)
is conducted. This yields maximal flexibility in terms of evolving new rules and
pruning/merging old rules, as parameters from the other, non-concerned rules are
not affected, “disturbed”, therefore staying optimal in the least squares sense.

• The computation time for an update of the parameters with a single sample
is of complexity O(C(p + 1)2) with C the current number of rules and p the
dimensionality of the input space.

9.2.1.2 Antecedent Learning and Rule Evolution

The second part in FLEXFIS is dedicated to antecedent learning and rule evolution.
The update of already available rules accounts for plasticity in the learning scheme,
while the generation of new rules on demand accounts for stability (older learned
relations are not attached, changed). Finally, it is an essential matter to find a
reasonable trade-off between stability and plasticity, also known as the plasticity-
stability dilemma [1]; according to the current nature of the data distribution: if for
instance a drift in the underlying data distribution arises (see also Sect. 9.3.1.2),
the update of already available rules should be stronger than in non-drift cases
(plasticity), triggering an out-dating effect of older learned relationships; if, on the
other hand, a new previously unseen system state arises, new rules should be evolved
in order to include these in the model within a life-long learning concept (stability),
not changing any previously learned rules. This enriches and expands the knowledge
and memory of the model, achieving some sort of computational intelligence [3].

Rule evolution and update is performed in the high-dimensional feature space by
exploiting an incremental clustering algorithm, which partitions the feature space
in local regions in order to account for non-linearity in the regression problem. For
each local region (cluster), a rule is defined. Intuitively, it is clear, that the higher the
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non-linearity of the concept to be learned is, the more clusters should be generated.
In this sense, FLEXFIS uses the concept of input–output space clustering in order
to account for non-linearity in the target concept, too.

For incremental clustering, an evolving version of vector quantization (eVQ) [40]
is applied, which is deduced from conventional vector quantization [25] and moves
the cluster centers through the feature space with new incoming samples in a single-
pass manner, updates the ranges of influence of the clusters in a recursive manner
and evolves new rules on demand. Cluster center movement accounts for plasticity
in the learning algorithm and is defined by:

c(new)
win = c(old)

win +ηwin

(
x− c(old)

win

)
, (9.7)

where cwin denotes the cluster center of the winning cluster = that cluster which is
nearest to the current data sample x with respect to a distance metric:

win = argmini=1,...,C (‖x− ci‖A) . (9.8)

If using Euclidean distance for A, ellipsoidal clusters in main position, and if using
Mahalanobis distance [55], ellipsoidal clusters in arbitrary position are triggered.
The learning gain ηwin controls the movement degree of the center, hence the
plasticity-stability trade-off of the incremental clustering process; it monotonically
decreases with the number of samples belonging to the ith cluster, that is, for which
the ith cluster was the winning cluster: this finally guarantees convergence of the
cluster (centers and ranges of influence) over time (stability). In Sect. 9.3.1.2, we
will demonstrate how stronger center movements are enforced in drift cases in order
to react on changing data distributions. An evolution of a new rule accounts for
stability and is triggered whenever the current sample does not fit in the already
generated cluster partition, that is, when the following condition is fulfilled:

‖x− cwin‖A ≥ ρ , (9.9)

where A is an arbitrary distance metric (should be the same as used in (9.8)) and
ρ the so-called vigilance parameter controlling the trade-off between stability and
plasticity. It is the essential parameter in the FLEXFIS algorithm, controlling the
number of generated rules. Assuming normalized data streams in the hyper-cube
[0,1]p+1 with p the dimensionality of the input/output space, ρ is set to a fraction
of the unit space diagonal:

ρ = fac∗
√

p+ 1√
2

, (9.10)

with fac∈ [0,1]. The default setting of fac is 0.3, usually, to our best knowledge from
various real-world data streams; values lying in [0.2,0.4] produce best results. fac
can be tuned in an initial modeling phase (step 1a in Algorithm 1) on first block(s)
of samples from the stream, stepwise by changing from 0.1 to 0.9 in steps of 0.1,
to elicit the optimal setting in terms of validation error or a combined criterion
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Fig. 9.2 (a) Update progress of clusters in the product space through eVQ using the first ten
samples x1,x2, . . .,x10 from a stream. (b) Final achieved model (solid line) and consequent
functions (dotted straight lines)

including also the model complexity. Normalization of data streams to [0,1] is
achieved by dividing the feature values through their ranges after subtracting their
minimal values seen so far.

Figure 9.2a visualizes an example of the update progress of eVQ for the first ten
samples of a data stream (numerated as x1,x2, . . . ,x10): the first center c1 is set to the
first data sample x1, and the second data sample x2 is far away from c1; therefore,
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a new cluster is evolved, and its center c2 is set to x2; sample x3 lying near the second
cluster is used for updating the center c2, moving half-way between x2 and x3, and
the spread of the second cluster; x4 triggers a similar procedure, while center c2 is
only updated third way along its old position and x4; x5 again opens up a new cluster
with center c3; and so on. Figure 9.2b shows the final evolved cluster partitions and
also highlights the estimated consequent functions (straight dotted lines) and the
approximation surface (function) of the final model. The consequent functions are
serving a piece-wise linear predictors, which are combined by the normalized rule
firing degreesΨ. to a smooth non-linear function after (9.3).

9.2.1.3 Connecting Antecedent and Consequent Learning

The purpose of an appropriate connection of incremental antecedent and consequent
learning is to keep the consequent parameters as close as possible to optimality in
the least squares sense. This is automatically assured whenever a new cluster is
evolved, as this triggers an opening up of a new recursive least squares estimator
for the new rule (which is independent from the others due to the local learning
approach), not “disturbing” the consequent parameters for the other rules. In case
when a cluster center and its range of influence is updated, it triggers a structural
change in the RFWLS estimator which makes the consequent parameters estimated
based on the previous cluster position non-optimal for the current position. In order
to compensate this non-optimal situation, a correction vector resp. correction matrix
are added to the consequent parameters resp. inverse Hessian matrix before updating
them with the current data block/sample from the stream through (9.4)–(9.6).
An explicit calculation of these correction terms in incremental manner could be
not achieved so far; however, partial results are available (see [44]):

1. The sequence of corrections vectors/matrices are converging to 0 over time (due
to the convergence effect of cluster centers).

2. This convergence takes place in a quasi-monotonic fashion; hence, the sum of
correction vectors/matrices over the incremental learning steps is bounded by a
(small) constant.

Combining the aspects discussed in the previous subsections together, leads
to the FLEXFIS algorithm for evolving TS fuzzy systems from data streams as
summarized in Algorithm 1.

Algorithm 1 FLEXFIS+ (FLEXible Fuzzy Inference Systems
from Data Streams)

1a Option 1 (most commonly used): Estimate the (initial) ranges of all variables;
perform an initial training in batch mode (on pre-collected training samples
or using first on-line samples) and obtain the optimal value for the vigilance
parameter ρ in a step-wise evaluation process (e.g., testing values of f ac =
0.1,0.2...,0.9 in a CV process). Initial training is done by sending the initial
data set into eVQ first (steps 3 to 7 for each sample in the set) and then perform
consequent estimation on all data using steps 8 to 11.
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1b Option 2: Alternatively, (in case when no off-line recordings are available)
incremental learning from scratch can be carried out, by estimating the (initial)
ranges of all variables from a few dozens of on-line data stream samples and
using f ac = 0.3 as default parameter; set C = 0.

2 For each new incoming data sample x, do (steps 3 to 12).
3 If rule base is empty, set the center of the first rule to the current sample, c1 = x;

its spread to 0, σ1 = 0; and its consequent parameters w1 = 0 and P1 = αI with
α a big integer number, for example, 1,000; go to 11.

4 Normalize x to [0,1] and the cluster centers according to the estimated feature
ranges in step 1a or 1b.

5 Elicit winning cluster according to (9.8).
6 If condition (9.9) is fulfilled, then evolve a new rule by increasing the number

of rules C = C+ 1 and setting its center to the current data sample cC = x and
its range of influence in each direction by σC = 0. Set consequent parameters
wC = w j and inverse Hessian matrix PC = Pj, where j is the rule nearest center
to cC.

7 Else update the center of the nearest cluster cwin by moving it towards the current
sample as in (9.7) and update its range of influence (see below).

8 Transfer the clusters back to original feature space, according to the ranges of
the features.

9 Project modified/evolved cluster, whose support kwin exceeds a threshold (de-
fault value = 3), to the axes in order to update/evolve the fuzzy set partition in
each dimension (feature): the centers of the fuzzy sets are associated with the
corresponding center coordinates of the clusters, and the widths of the fuzzy sets
are set to max(σ .,ε) with ε a small positive constant, in order to avoid numerical
instabilities.

10 Add correction vectors to the linear consequent parameters and correction
matrices to the inverse Hessian matrices estimated in the previous step.

11 Perform recursive fuzzily weighted least squares (for local learning) using (9.4)
to (9.6) for all C rules.

12 Update the ranges of all features.

The algorithm contains two options for setting up initial models: (1a) uses an initial
batch training cycle, where the vigilance parameter may be optimized within a CV
process; this also opens the possibility to perform an a priori selection of the most
important variables in order to crisply reduce the curse of dimensionality and to
continue the incremental phase on the selected variables only. (1b) supports the
option of incremental train, the model from scratch, using the default setting of the
factor fac = 0.3 in the vigilance formula (9.10).

The concrete update formula for the range of influence of the winning cluster in
each incremental learning step (step 7 in Algorithm 1) depends on the applied dis-
tance metric A: in case of Euclidean distance, axis-parallel ellipsoids are triggered,
which requires an update of the data stream variance along each dimension; this
can be achieved by the recursive variance formula with rank-one modification for
achieving fast convergence to the batch variance, see [61]. In case of Mahalanobis
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distance, ellipsoids in arbitrary position are triggered which requires an update of
the covariance matrix (each cluster/rule is defined by the inverse of this matrix also
called shape matrix [36]), on a new sample x(N + 1) achieved by [60]:

Σ(new) =
1

N + 1
(NΣ(old)+

N
N + 1

(X̄(N)− x(N + 1))T (X̄(N)− x(N + 1))),

(9.11)
where Σ(old), the old covariance matrix and X̄(N), the mean values of all input
features, which are represented by the updated cluster centers c. In order to speed
up the incremental learning process, the inverse covariance matrix Σ−1(old) can be
directly updated in sample-wise manner by [6]:

Σ−1(new) =
Σ−1(old)

1−α − α
1−α

(Σ−1(old)(x(N +1)− c))(Σ−1(old)(x(N +1)− c))T

1+α((x(N +1)− c)TΣ−1(old)(x(N +1)− c))
,

(9.12)

with α = 1
N+1 .

9.2.2 Flexible Evolving Fuzzy Classifiers

In a classification context, a data stream is defined by an (theoretically) infinite
sequence of samples (x(1),y(1)),(x(2),y(2)),(x(3),y(3)), . . . or by an infinite se-
quence of data blocks (x(1 : N),y(1 : N)),(x(N+1 : 2N),y(N+1 : 2N)),(x(2N+1 :
3N),y(2N+1 : 3N)), . . . (each containing N samples), where the output vectors y(k)
contain integer values as class labels L = 1, . . . ,K recorded at time instance k. The
task of learning classifiers from data is now to establish decision boundaries which
are able to discriminate between the classes in form of decision or classification
models. In the fuzzy case, these classification models are again representing a
mapping between input and output space, explaining the coherence between local
input regions and their preferred classification responses.

9.2.2.1 Single Model Architecture

The classical and widely applied fuzzy model architecture [35, 62], which is also
used in the single model (SM) variant of FLEXFIS-Class, is that one based on
singleton consequent class labels. The ith rule is defined by:

Rulei : IF x1 IS μi1 AND...AND xp IS μip THEN li = Li, (9.13)

with Li ∈ {1, . . . ,K} the output class label of the ith rule.
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Rule extraction from data is performed by applying eVQ in the same manner as
described in Sect. 9.2.1.2 and its update process through stream samples visualized
in Fig. 9.2. The only difference is that for the classification case, clustering is
conducted in the input space only and a separate hit matrix H carries the information
about the number of samples attached to each cluster: the entry hik denotes the
number of samples belonging to cluster i and falling into class k. The clusters are
projected to the input feature space to form the fuzzy sets and antecedent parts of
the rules; the consequent class labels are elicited by:

Li = argmaxK
k=1hik, (9.14)

that is, the most frequent class in the ith rule = cluster is taken as response class for
the ith rule.

Classifying a new instance in the native FLEXFIS-Class SM is conducted through
a winner-takes-it-all classification scheme:

L = Li∗ with i∗ = argmax1≤i≤C μi, (9.15)

that is, that rule with the highest membership degree in the current sample is sought
and its consequent class label used as final response. Furthermore, an important
measure is also the confidence in the classifier decisions as they may be of great
help for a better interpretation of the model’s final output. This is obtained by:

con fL =
con fi∗L

con fi∗L + con fi∗L2

, (9.16)

with i∗ as defined in (9.15), L2 the second most supported class in rule i∗, and con fik

the confidence of the ith rule in the kth class (obtained by the relative frequency of
the kth class in the ith rule). An extended calculation of confidence levels is treated
in Sect. 9.3.5, dealing with a more appropriate handling of conflict cases between
classes.

9.2.2.2 Multimodel Architecture

Although the single model architecture offers some nice features such as a trans-
parent rule structure (a user can easily recognize in which local regions which class
dominates), it often has some short-comings in terms of classification accuracy [42]
(compare also with Chap. 14). This is especially the case in multi-class classification
problems with a high number of classes (K ≥ 8), as then the decision boundaries are
usually getting quite complex to learn when applying a direct multi-class mapping
[21]. Therefore, a multi-model architecture is exploited in FLEXFIS-Class [48],
which uses one Takagi–Sugeno fuzzy model (as defined in (9.3)) per class and
performs a one-versus-rest classification over the regression-based single model
outputs:

L = class(x) = argmaxm=1,...,K f̂m(x), (9.17)
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Fig. 9.3 Fuzzy regression functions approaching 1 in regions where the corresponding class is
located, and a sample to be classified are shown as big dot→; the circular class takes the maximum
and is therefore outputted by (9.17)

with f̂m the estimated regression value in [0,1] for the mth model. This means that
a decision boundary is made easier by being reduced from a direct multi-class
boundary to a boundary discriminating between one class versus the others. The
training of each TS fuzzy model is conducted in the same manner as in regression-
based FLEXFIS after Algorithm 1 by using indicator target entries in the data
stream vectors for y(k): y(k) = 1 is used when updating the mth model in the kth
time instance when the current data sample belongs to class m,y(k) = 0, is used
otherwise. This is also called fuzzy regression by indicator matrix in accordance
to the linear regression by indicator matrix technique. The latter suffers from the
masking problem in case of K > 2 classes [27] which can be solved in the fuzzy
case. An example of how regression functions are spanned and how a new sample is
classified according to (9.17) for a four-class problem in the one-dimensional input
case is visualized in Fig. 9.3.

The confidence con fL of the overall output value L = m ∈ {1, . . . ,K} is elicited
by normalizing the maximal output value with the sum of the two maximal output
values from all K models:

con fL =
maxm=1,...,K ĝm(x)

maxm=1,...,K ĝm(x)+ ĝn(x)
(9.18)
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where ĝm(x) = f̂m(x) + |min(0,min j=1,...,K f̂ j(x))| and ĝn(x) defined as ĝm(x)
corresponding to the second maximal output value f̂n(x).

The FLEXFIS-Class MM learning method is summarized in Algorithm 2 [42].

Algorithm 2 FLEXFIS-Class MM

1. Setup phase with two options as in Algorithm 1, and training K TS fuzzy models
T Si, i = {1, ...,K} for the K classes by estimating K cluster partitions CLi, i =
{1, ...,K} with eVQ separately and independently and project clusters from each
partition on the axes.

2. Take the next incoming data sample x.
3. Elicit its class label, say L.
4. If L≤ K (no new class is introduced).
5. Update the Lth TS fuzzy model by:

a. Taking y = 1 as response (target) value,
b. Performing steps 3 to 11 of Algorithm 1

6. Else (a new class label is introduced):

a. K = K + 1.
b. A new TS fuzzy system is initiated with a single rule whose center is set to

the current data sample, using the same value for ρ as in the other models.

7. Update all other TS fuzzy models by taking y = 0 as response (target) value and
performing steps 3 to 11 of Algorithm 1.

8. Update ranges of all features.
9. If new incoming samples are still available then go to step 2; otherwise stop.

One central issue in above algorithm is how to elicit the class label in a data
streaming context: usually, the class labels are not defined a priori or are given at
hand; therefore, an operator has to provide them during on-line operation mode. This
causes significant supervision effort, which can be reduced with so-called active
learning approaches [15, 37], where operator’s feedback is only required in specific
circumstances, that is, when the classifier is quite uncertain in its prediction. An
approach which tackles this problem in an unsupervised off-line setting coupled
with a supervised on-line setting is the so-called hybrid active learning (HAL)
approach [45], which uses the same multi model evolving fuzzy classifiers concept
as defined in this section. There, it could be empirically verified that a certainty
threshold of down to 0.7 (only those samples for which the classification certainty is
below this value are used for further adaptation of the models) hardly influences the
final classification rate compared to when using all samples for model adaptation.

9.2.2.3 All-Pairs Strategy for Multiclass Classification Problems: Outline

Recently, for multi-class classification problems (K > 2), a new architecture within
the context of evolving fuzzy classifiers was introduced, the so-called all-pairs
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classification technique, leading to the FLEXFIS-Class-AP or shortly to the EFC-AP
= evolving fuzzy classifiers using all-pairs technique approach [43]. For each single
pair of classes, a binary classifier is trained and evolved either based on a singleton
consequent class label architecture (as used in FLEXFIS-Class SM) or based on TS-
type fuzzy models (as used in FLEXFIS). Regression is conducted on [0,1], using
target values of 0 for all samples belonging to the first class and target values of
1 for all samples belonging to the other class. Thus, each binary classifier is only
trained on a small sub-set of samples, achieving some sort of a collection of weak
classifiers. In the classification phase, each binary classifier provides a preference
degree of one class over the other. These degrees are stored into a preference relation
matrix based on which a final classification response is provided with the help of
(weighted) voting strategies. Weights may point to conflict and ignorance cases (see
also Sect. 9.3.5.1) and are obtained based on enhanced reliability models. Results
in [43] show that EFC-AP can out-perform EFC using single-model and multi-
model architecture (EFC-SM and EFC-MM) with statistical significance (based on
Wilcoxon test) on seven high-dimensional real-world data sets. Furthermore, it is
analytically underlined that EFC-AP requires less computational complexity than
EFC-MM for performing model updates with new incoming streaming samples.

9.2.3 eVQ-Class as Spin-Off

A spin-off from the FLEXFIS-Class SM method is proposed in [39], compared with
FLEXFIS-Class MM in [42] and acting directly in the high-dimensional feature
space, that is, no projection of fuzzy sets is carried out, but the classification takes
place directly according to the position of the current sample w.r.t. to the extracted
clusters. The main advantage of this approach is that it is able to take into account:

1. The distance of a new sample to be classified to the decision boundary, that is,
to the border between the two nearest clusters having majority support in two
different classes.

2. The relative support of the most frequent classes in the two nearest clusters.

This results in a weighted classification scheme, representing a better model for
conflict situations between classes (see also Sect. 9.3.5 for underlining this), that is,
the final confidence values of the k = 1, . . . ,K classes are obtained by summing the
confidence values over the two nearest clusters i1 and i2:

con fk = wi1
hi1,k

∑K
j=1 hi1, j

+wi2
hi2,k

∑K
j=1 hi2, j

, (9.19)

with

wi1 = 0.5+
I
2

and wi2 = 0.5− I
2

(9.20)
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the weight factors of the nearest and second nearest clusters, and I = 1− distci1
distci2

,

where distci1 the distance to the nearest cluster and distci2 the distance to the second
nearest cluster. This incorporates a kind of “gravity” of clusters, pulling the decision
boundary more to the less clean cluster, such that the majority class in the more clean
cluster has a larger range of influence.

9.3 FLEXFIS++: Extensions for Improved Performance
and Transparency

The second part of this chapter summarizes important extensions of the FLEXFIS
family (highlighted in the bottom box in Fig. 9.1), which were developed mainly for
the purpose to achieve higher predictive quality and transparency of the models.

9.3.1 Drift Handling

The common denominator in the aforementioned incremental learning methods
is that they are life-long learning approaches [26], that is, treating all samples
from a data stream as equally important. This means that the models expand their
memory over time by compressing all knowledge extracted so far from the stream
in their structures (rule-base) and parameters. In a lot of learning scenarios, this
kind of modus operandi is the best choice, as older learned behaviors, relations,
and dependencies may get activated again at a later stage and then a model of this
partial local region (e.g., in form of a rule) is already available at hand. However,
in some cases, the underlying data distribution may change over time, such that
older learned behaviors are not valid any longer and should therefore be out-dated.
Such cases are referred as concept drifts [69] or shortly drifts [32] in literature.
For instance, consider an on-line production system, where (parts of) items are
permanently produced and should be supervised whether they contain any failures,
etc.; there, a drift could be in form of some changing characteristics of the items
or a new production type. In [7], several examples of real problems are presented
where change detection is necessary, including user modeling as well as monitoring
in bio-medicine and industrial processes.

In principle, three different types of drifts may occur [22]:

• Drifts in the mean of the (local) data distribution.
• Drifts in the variance of the (local) data distribution.
• Drifts in the target concept, also referred as drifts in the correlation between

inputs and outputs.

The effect of these three cases on the cluster/rule models as appearing in the inputs
of the fuzzy models are visualized in Fig. 9.4a, b: a stronger movement of either the
centers (in (a)) or the range of influence (in (b)) is required in order to model the new
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Fig. 9.4 Three drift concepts: (a) drift in the mean of a local region (cluster, rule), (b) drift in the
variance, and (c) drift in the target (correlation)

distributions appropriately; otherwise, the rules (clusters) are somehow misplaced
and usually cause a severe drop in predictive accuracy during the on-line process.
Figure 9.4c shows the effect of a drifting target concept, where the y-axis denotes
the output = target variable. There, also the consequents (parameters) of the rules
have to be enforced to a stronger movement in order to model the new correlation
in that local part appropriately.

For all these types, the drifts can be either abrupt or gradual, the latter showing a
smooth transition from the older distribution to the newer one.

9.3.1.1 Drift Detection

In literature, there exist many methods for detecting drifts in data streams fully
automatically. Some are based on the evolution of performance indicators over time,
and some others, on monitoring distributions on two different time windows. Widely
known methods for the first approach (which is the most commonly used one), are
the cumulative sum [59] and the Page-Hinkley (PH) test [56]. The latter considers a
cumulative variable mi,T defined as the cumulative difference between the observed
values and their mean till the current moment (here for the ith input variable):

mi,T =

∣∣∣∣∣
T

∑
t=1

(xi(t)− x̄− ε)
∣∣∣∣∣ , (9.21)
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Fig. 9.5 Evolution of
accumulated one-step-ahead
accuracy over time for a
specific on-line data set; note
the abrupt decrease of
accuracy towards the end of
the data stream

where ε corresponds to the magnitude of changes that are allowed. The PH test is
then simply to monitor the difference:

PHi,T = mi,T −Mi,T (9.22)

for all variables with Mi,T the minimal value of all mi,T seen so far, and provide a
drift warning whenever this difference exceeds a certain threshold. Similar checks
could be applied on the variances of single variables (instead of on original samples)
in order to detect variance drifts.

Instead of examining the single variables separately, another possibility is to
look at the joint development of all the variables by observing the evolution of
the predictive accuracy. Especially when using the block-wise holdout test [9],
but also in an interleaved test-and-then-train scenario, drifts can be recognized by
sudden downtrends of the accuracy curves or abrupt increase of the error curves.
An example is presented in Fig. 9.5 which shows the evolution of accuracies for
a visual inspection system handling metal rotor parts (see also Chap. 14). Such
significant downtrends in accuracies as shown at the end of the on-line process
indicate a drift in the data stream and can be detected with the Page-Hinkley test
(suddenly decreasing accuracies increase mi,T as measuring the absolute differences
to the mean over all accuracies). Downtrends in accuracies usually indicate drifts
somewhere in the model and does neither specify the type nor the location of the
drift.

Therefore, an alternative concept for drift detection embedded in the incremental
learning cycle of evolving fuzzy systems is presented in [47], where the concept of
rule ages is used for tracking the points of time when the evolved rules are attached
and to which extent (here for the ith rule):

agei = k− ∑ni
l=1 IlΨi,l

ni
, (9.23)
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where i is the rule index andΨi,l is the membership degree of the lth sample in the
ith rule, ni denotes the support of rule i, Il denotes the time instance at which the
data sample was read, and k is the current time instance. If this attachment changes
significantly, that is, the rule is out-dated faster than in the past resp. the gradient of
the age curves (= the second derivative) suddenly increases, a drift is detected in that
local region where the rule is defined. Forgetting mechanisms can then be triggered
particularly for that local region and not for the whole model. A possibility for
separately eliciting whether a drift in the target/output variable occurs, would be to
apply the Page-Hinkley test, as defined in (9.22), onto the output variable for each
rule (local region) separately: for each sample, the rule with highest membership
degree (nearest rule) is elicited and its drift indicator mi,T ( j) updated, where xi the
ith value of the output variable in the stream and x̄ the mean of the output values
corresponding to rule j (for which rule j was the nearest one).

9.3.1.2 Drift Reaction

Once a drift is detected, an appropriate reaction strategy during the learning process
has to be integrated into the flexible fuzzy systems approach. In particular, older
learned relations, distributions, and behaviors should be out-dated over time, ideally
in a smooth manner. Thereby, the intensity of forgetting should depend on the
intensity of the drift. Furthermore, we suggest to integrate such a strategy always in
both parts: antecedent and consequent space. In fact, in case of a drift occurring in
the target (see Fig. 9.4c for an example), for accuracy reasons, it may be sufficient
to react appropriately only in the consequent part (bending the model); however,
for interpretability reasons, it is also recommended to shift the rule/cluster center
(in the product space) to the distribution it actually should represent (after the drift).

In the Antecedent Space

Learning and evolution of rules’ antecedents are conducted with the support of eVQ
clustering algorithm (see Sect. 9.2.1.2), where two basic operations are guiding the
learning process:

1. Rule evolution due to checking whether a new sample fits into the current cluster
partition and

2. Rule movement where the nearest rule is moved by a fraction towards the current
data sample.

The first case is usually triggered when new system states, operating conditions
arise which are completely falling out of the scope of previous ones. It may also
be triggered in case of extreme drifts in the mean or correlation (also referred
as shifts). Forgetting of older rules in such cases is not required as a new rule
representing the new distribution will emerge, anyway. An older rule (before the
shift happened) stays in the model, however will not contribute with significant
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membership degree to the final model output any longer. Hence, in case of shifts,
the deletion of older rules only would account for a complexity reduction step. The
second case is triggered in normal operation modes already seen so far, but also
in (conventional) drift cases (see e.g., Fig. 9.4a), where still samples from the new
distribution would be attached to an old rule being the nearest one. However, in drift
cases, the center as well as the range of influence should be moved stronger than in
non-drift cases in order to represent the new distribution appropriately. In eVQ, this
is achieved by re-setting the learning gain in (9.7) (see also [47]):

nwin = nwin− nwin ∗λ trans, (9.24)

where nwin, the number of samples attached to the winning cluster so far and

λ trans =−9.9λ + 9.9 (9.25)

and where λ , a forgetting factor which is set according to the intensity of the drift
(e.g., how strong (9.22) is violated). This reactivates the movement of (already
converged) cluster centers and furthermore also the ranges of influence according to
recursive variance formula or incremental covariance matrix (9.11), both including
the cluster centers. With new attachments to cwin,nwin again increases, achieving a
decrease of the learning gain ηwin in a monotonic fashion and finally a convergence
within the new (drifted) distribution.

In the Consequents

Reacting on drifts in the consequents goes hand in hand with a gradual forgetting
of the linear consequent parameters in the hyper-planes. This can be achieved
by including an exponential forgetting directly in the least squares optimization
problem:

Ji =
N

∑
k=1

λN−kΨi(x(k))e2
i (k)−→min

wi
, (9.26)

with ei(k) = y(k)− ŷ(k) the error of the ith rule in sample k and λ a forgetting
factor. Deducing the recursive least squares estimator for this modified optimization
functions leads to the following consequent update [47] (compare also with formulas
(9.4)–(9.6)):

ŵi(N + 1) = ŵi(N)+ γ(k)(y(N + 1)− rT (N + 1)ŵi(N)) (9.27)

γ(N) =
Pi(N)r(N + 1)

λ
Ψi(x(N+1)) + rT (N + 1)Pi(N)r(N + 1)

(9.28)

Pi(N + 1) = (I− γ(N)rT (N + 1))Pi(N)
1
λ
. (9.29)
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Fig. 9.6 (a) Two distinct clusters from original data. (b) Samples are filling up the gap between
the two original clusters which get overlapping due to movements of their centers and expansion
of their ranges of influence

Again, here, the forgetting factor λ plays an important role keeping a reasonable
trade-off between fast update (λ = 0.9) and no update (λ = 1.0) and should depend
on the intensity of the drift (i.e., on the intensity of accuracy downtrend).

9.3.2 Reducing Complexity, Enhancing Transparency

This section deals with the reduction of unnecessary complexity as it may come
into being due to the nature of the incremental learning process from data streams,
as Algorithm 1 always sees only a small snapshot of the whole data at once. This
means that rules may be evolved at a former stage which turn out to be superfluous at
a later stage. This especially comes true in shift cases (see previous section) or when
two rules are moving together and finally may end up with significant overlap. An
example of the latter case, which is also denoted as rule redundancy, is visualized
in Fig. 9.6, (a) denotes the initial partition, (b) the updated one according to new
samples filling up the gap in-between the original clusters.

9.3.2.1 Rule Merging in the Feature Space

An elimination strategy of occasions shown in Fig. 9.6 consists of two stages:

• The first stage detects significantly overlapping rules based on a high-dimensional
similarity measure.

• The second stage performs a merging of two overlapping rules.
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For tackling the first stage, we apply a post-processing step after each incremental
learning step, where we check whether the latest rule movement leads to signifi-
cantly overlapping clusters. In particular, the latest moved rule A is checked whether
it has become redundant to any of the other rules B in the cluster partition. This can
be achieved for arbitrary fuzzy sets used in the evolved fuzzy system by using an
inclusion measure defined as:

inc(A,B) =
p

T
j=1

inc(Ap,Bp) (9.30)

with Ap the fuzzy set in the pth antecedent part of rule A and

inc(Ai,Bi) =

∫
min(Ai(x),Bi(x))dx∫

Bi(x)dx
, (9.31)

denoting the inclusion degree of the fuzzy set Ai in Bi, and in discrete (computa-
tional) form, it becomes:

inc(Ai,Bi) =
∑N

j=1 min(Ai(x j),Bi(x j))

∑N
j=1 Bi(x j)

. (9.32)

Then, the overlap (similarity) measure can be defined as a two-sided inclusion
measure:

overlap(A,B) = S(inc(A,B), inc(B,A)). (9.33)

The justification of using a t-norm in (9.30) (e.g., minimum) is underlined by the fact
that a strong non-overlap along one single dimension i (achieving a low inclusion
degree of Ai in Bi and vice versa) is sufficient that the clusters do not overlap at
all (as torn apart). A feasible choice for the t-conorm S in (9.33) is the maximum
operator, as it points to the maximal inclusion of A in B and B in A.

In case of Gaussian membership functions, a significantly faster version of
(9.33) can be achieved by using the membership values at the intersection points
of dimension-wise over-lapping Gaussian fuzzy sets [49]:

overlap(A,B) = Aggp
j=1overlapA,B( j) (9.34)

with

overlapA,B( j) = max(μ(interx(1)),μ(interx(2))), (9.35)

μ(x) the membership degree to the univariate Gaussian, and

interx(1) =−
ck jσ2

i j− ci jσ2
k j

σ2
k j−σ2

i j

+

√√√√(
ck jσ2

i j− ci jσ2
k j

σ2
k j−σ2

i j

)2

−
c2

i jσ2
k j− c2

k jσ
2
i j

σ2
k j−σ2

i j

and
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interx(2) =−
ck jσ2

i j− ci jσ2
k j

σ2
k j−σ2

i j

−

√√√√(
ck jσ2

i j− ci jσ2
k j

σ2
k j−σ2

i j

)2

−
c2

i jσ2
k j− c2

k jσ
2
i j

σ2
k j−σ2

i j

, (9.36)

the two intersections points of the two Gaussians obtained by projecting the two
rules A and B onto the jth dimension (for the sake of equation length, we use i = A
and k = B). Taking the maximum in (9.35), has the positive side effect that “cluster
crosses” can be eliminated as well.

Once two significantly overlapping clusters A and B are found (i.e., (9.33) or
(9.34) is higher than a pre-defined threshold), the two clusters have to be merged to
one single rule. This is achieved in two stages:

• Merging of the clusters in the produce space and projecting the new merged
clusters to the input axes to form the new fuzzy sets and rule’s antecedent part.

• Merging of the consequents of the two redundant rules or deleting the consequent
of the less supported rule subject to a consistency check.

The merging of clusters in the product space is achieved by (1) calculating a
weighted average of the two cluster centers where the weights represent the support
of the two clusters (hence, the new center will lie in-between and closer to the center
of the more supported cluster), (2) adaptively estimating the range of influence of
the new merged cluster by updating the range of influence of the more supported
cluster A with the range of influence of the less supported cluster B using recursive
variance formula: the less supported cluster represents a collection of data samples
with which the range of influence of the more supported cluster is updated, and
(3) summing up the support of the two clusters:

cnew
j =

cA
j kA + cB

j kB

kA + kB

σnew
j =

√
kA(σA

j )
2

kA + kB
+(cA

j − cnew
j )2 +

(cnew
j − cB

j )
2

kA + kB

+
kBσB

j

kA + kB

knew = kA + kB, (9.37)

where kA denotes the number of samples falling into rule A and kB the number of
samples falling into rule B,kA > kB. The last term in the second formula of (9.37)
expands the range of influence by a fraction of the variance of samples belonging
to the less significant cluster in order to achieve a good coverage of the data cloud
covered by the merged cluster, see [49].

The merging strategy of consequents includes a consistency check of the two
over-lapping rules according to the theory of propositions in fuzzy logic. In
particular, whenever the similarity of the rules antecedent parts is higher than the
similarity of their consequents, two contradictory rules (in the fuzzy sense) are
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present in the rule base and the consequent of one of these (that one with lower
support) is deleted; otherwise, the consequents are merged by a weighted average
according to the support of the rules. This leads us to the following combination rule
(inspired by Yager’s idea of participatory learning [70]):

wnew = wA +α ·ρ(wA,wB) · (wB−wA), (9.38)

where α = kB/(kA + kB) and ρ(wA,wB) is a measure of consistency of the two
rule consequents. This measure can be defined in different ways, for example,
“smoothly” by ρ(wA,wB) = Scons(yA,yB) or, more drastically, by:

ρ(wA,wB) =

{
1 if Scons(yA,yB)≥ overlap(A,B)
0 if Scons(yA,yB)< overlap(A,B)

,

with Scons the similarity degree of the two consequents belonging to rules A and B.
For ρ = 0, indicating an inconsistency in the rule base, we obtain wnew = wA, that
is, the consequent of the more relevant rule. For ρ = 1, on the other hand, we obtain
the weighted average of the two consequent functions according to their support.
The similarity of the consequents is elicited based on the angle spanned between
the two hyper-planes yA and yB, denoting the consequent function of the two rules:

Scons(yA,yB) =

{
1− 2

π ∗φ φ ∈ [0, π2 ],
2
π ∗ (φ − π

2 ) φ ∈ [π2 ,π ]
(9.39)

where

φ = arccos

(∣∣∣∣ aT b
|a||b|

∣∣∣∣
)

(9.40)

and a and b denoting the normal vectors of the hyper-planes defined by a =
(wm1 wm2 ... wmp − 1)T and b = (wn1 wn2 ... wnp − 1)T . Figure 9.7 visualizes two
examples of redundant rules, where in one case merging is conducted and in the
other, deletion.

Summarizing the aspects above, the elimination of redundancy can be integrated
in flexible fuzzy systems by using the following algorithmic steps (right after step
12 in Algorithm 1):

13. If a new cluster was evolved, do nothing.
14. Else, perform the following steps:
15. Check if similarity of moved/updated rule A with any other rule R ∈R \{A} is

higher than a pre-defined threshold sim thr (default setting is 0.35 when using
(9.33), 0.8 when using (9.34))

16. If yes:

a. Perform rule merging of rule A with rule B = argmaxB∈R\{A}OL(A,B)
according to (9.37).

b. Perform merging of corresponding rule consequent functions according to
(9.38).
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Fig. 9.7 (a) Merging of two rule consequent function by weighted average where weights are
identical to cluster support (number of samples belonging to a cluster): the lower rule has much
more support; hence, the consequent function of the merged rule is closer to its consequent function
than to that one of the other rule and (b) deleting of the consequent function of the rule with lower
weight, as the consequent functions are very dissimilar (as spanning an angle of almost 90◦)

c. Overwrite parameters (cA,σA) of rule A with the parameters of the merged
rule (cnew,σ new); overwrite consequents of rule A,wA, with wnew.

d. Delete rule B.
e. Decrease number of rules: C = |R|=C− 1.

Finally, we want to mention that a further complexity reduction concept in EFS
which takes into account the statistical influence of fuzzy rules over time will be
handled in Chap. 10, Sect. 10.2.

9.3.2.2 Fuzzy Set Merging in the Partition Space

Redundancy on fuzzy set level arises not only when (partially) overlapping rules
are present, but also due to the projection concept of a high-dimensional space to
low-dimensional partitions—consider one cluster laying over the other with respect
to the second dimension where in the first dimension they are covering is nearly the
same range.

Detection of similarity among fuzzy sets A and B (Sset) in the single partitions can
be achieved by the same measure as in as defined in (9.33) on one-dimensional fuzzy
set level, again using (9.32) and applying the minimum operator over the inclusion
of fuzzy set A in B and B in A. A faster kernel-based similarity measures (based
on distances between two centers and spreads in the exponent) can be defined for
Gaussians, see [49]:

Sker(A,B) = e−|cA−cB|−|σA−σB|. (9.41)

In order to be scale invariant, the centers and widths of the Gaussians should be
normalized beforehand according to the ranges of the variables.
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Fig. 9.8 Merging of two Gaussian fuzzy sets (dashed and dotted dashed lines) to a new fuzzy set
according to (9.42)

Merging is caused whenever Sset exceeds a certain threshold (default 0.35 and 0.8
when using kernel-based metric). In case of Gaussian membership functions with μ
as center and σ as spread, two Gaussian fuzzy sets are merged into a new Gaussian
kernel with the following parameters:

μnew = (max(U)+min(U))/2 and

σnew = (max(U)−min(U))/2, (9.42)

where U = {μA±σA,μB±σB}. The idea underlying this definition is to reduce the
approximate merging of two Gaussian kernels to the exact merging of two of their
α-cuts, for a specific value of α . Here, we choose α = exp(−1/2) ≈ 0.6, which
is the membership degree of the inflection points μ ±σ of a Gaussian kernel with
parameters μ and σ . A merging example is presented in Fig. 9.8. Similar merging
considerations can be made for trapezoidal or bell-shaped membership functions.

9.3.3 Soft Dynamic Dimension Reduction

In case of high-dimensional feature spaces, curse of dimensionality may become
a significant pitfall when evolving non-linear models from data. This is because
input feature spaces are inherently sparse [10], that is, with an increasing number
of features, the number of data samples should increase exponentially in order to
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guarantee dense input regions and furthermore similar quality of the models as in
low-dimensional cases [28]. In case of fuzzy systems, the curse of dimensionality
may become even more severe due to the localization effect of the rule base.
Therefore, dimensionality reduction by selecting the most important features is an
essential step in the data-driven design of fuzzy models [12, 63].

During the incremental learning process, the problem is how to exchange the
list of most important features used in the model architecture, whenever the
characteristics of the data stream regarding the most informative features w.r.t. the
target concept changes. For instance, based on the information of a new incoming
data block, it may turn out that feature #3 should be exchanged with feature
#10 in a model using the five most informative features as inputs. In this case,
a straightforward switch (feature #3 is erased from the model while feature #10
is included in the model) would immediately produce many false predictions and
classifications as the current rule centers and consequent parameters in the model
were learned for the old input space based on the past data stream blocks.

9.3.3.1 Feature Weight Integration Concept

Therefore, we pursue a soft dynamic dimension reduction approach, which uses
the concept of adaptive feature weights denoting the importance of features and
their dynamic change behavior over time. Each feature is associated with a weight
λi in [0,1], whereas a value near 0 would indicate a feature with low importance
and a value near 1 a feature with high importance. This also accounts for a kind
of complexity reduction and interpretability enhancement step (see subsequent
section), as unimportant features may be completely discarded in the antecedent
and consequent parts of the final evolved models (or of the transferred model shown
to the operator during the on-line process) as not contributing to the fuzzy inference
process for producing predictions/classifications. In particular, in the classification
phase, the integration of the feature weights λi, i = 1, . . . , p for the p input variables
in an EFS is achieved through inclusion in the calculation of the membership
degrees of the single rules (here stated for the ith rule):

μi(x) =∏ p
j=1((μi j− 1)λ j + 1) i = 1, . . . ,C. (9.43)

Due to the use of the product t-norm as conjunction operator, a value of λ j = 0 would
deliver a product term of 1, meaning that the antecedent part corresponding to the
jth input feature serves as do not care part; hence, it depends on the other features
whether this rule fires with a significant degree or not, that is, the jth feature is
ignored. A value of λ j = 1 delivers a product term of μi j which means that the real
activation level of the jth antecedent part (belonging to feature j) is used in the final
rule membership value.

The inclusion of feature weights in the training process may decrease the
complexity of the models as distances or rule movements along unnecessary



9 Flexible Evolving Fuzzy Inference Systems from Data Streams (FLEXFIS++) 233

Fig. 9.9 Impact of including feature weights when during incremental learning phase—the new
data block (circumvented by the solid box) does not trigger a new rule when Feature Y is
unimportant (out-weighted)→ avoidance of unnecessary clusters; instead, the original two clusters
are expanded by extending their ranges of influences towards the middle area of Feature X

dimensions may be down-weighted. Thereby, consider the example demonstrated
in Fig. 9.9, the integration into the training is included in the cluster movement:

c(new)
win = c(old)

win +ηwinλ I
(

x− c(old)
win

)
, (9.44)

with I the identity matrix and ηwin the decreasing learning, and in the distance
calculation (here when using Mahalanobis distance measure for A):

mahal =
√
(λ .∗ (x− c))Σ−1(λ .∗ (x− c)), (9.45)

with Σ−1 the inverse of the covariance matrix and .∗ the component-wise product
of two vectors.

9.3.3.2 Incremental Feature Weight Calculation

In a classification setting, the feature weights are extracted based on Dy-Brodley’s
interclass separability criterion [19], which is a modified, more stable version of
Fisher’s interclass separability criterion [18]. The criterion is defined by:

J = trace(S−1
w Sb), (9.46)
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with trace(A) the sum of the diagonal elements in A;Sw the within scatter matrix;
which is the sum of the covariance matrices over all classes and Sb the between
scatter matrix, defined by:

Sb =
K

∑
j=1

Nj(X̄ j− X̄)T (X̄ j− X̄), (9.47)

with Nj the number of samples belonging to class j, X̄ j the center of class j (for all
features), and X̄ the mean over all data samples (for all features). The term within
the trace operator is nothing else than the between-class scatter Sb normalized by
the average class covariance. Hence, the larger the value of trace(S−1

w Sb) is, the
larger the normalized distance between clusters is, which results in a better class
discrimination.

Then, feature weights are defined by [46]:

λ j = 1− Jj−min1,...,p(Jj)

max j=1,...,p(Jj)−min1,...,p(Jj)
, (9.48)

with Jj the separability criterion (9.46) calculated for the reduced input feature space
by neglecting the jth feature (hence p Jj criteria are obtained). Thus, a low value of
Jj means that feature j is very important, as it is discarded from the complete set of
features resulting in a significant drop in the separability criterion. This triggers a
high value of λ j after (9.48). In particular, for the most important feature, the value
of (9.48) will get 1, according to the normalization term.

The incremental adaptation of (9.46) for each j is achieved by updating the single
components in Sb (means and number of samples falling into each class), the single
covariance matrices for each class after (9.11) and re-calculating (9.48) through Dy-
Brodley’s criterion.

In Chap. 14, it will be shown how incremental feature weights integrated into
evolving fuzzy classifiers in fact significantly improve the accumulated one-step-
ahead prediction accuracies over time for visual inspection data.

9.3.4 Interpretability Considerations

Interpretability is one of the most important key drivers for choosing fuzzy system
architecture in the data-driven and evolving model design. This property is a
valuable characteristic of this kind of model architecture, providing readable rules
in linguistic (IF-THEN) form (compare with (9.2)) and linguistic terms in form
of fuzzy sets (as part of the antecedents) with a clear semantic meaning. This
valuable insight can be not achieved with other model architectures such as neural
networks [29] or support vector machines [64] which usually provide complete
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black-box models. There are several benefits drawn from interpretable (fuzzy)
models such as:

• Providing (additional) insight for operators into the nature of the process:
there may be some unknown or hidden dependencies between certain process
parameters or variables within the system from which the operators may get a
deeper understanding, etc.

• Enhanced user interaction in the on-line modeling process, where the user may
interact with the model on a structural level.

• Easiness of on-line supervision purposes; for instance, the user wants to find
reasons for certain model decisions.

• Increasing the motivation and consistency of operators’ feedback to the modeling
process (e.g., overruling model decisions).

When extracting fuzzy systems from data, the interpretability is usually sig-
nificantly worsened compared to knowledge-based systems [34] which were built
upon experiences, views, and opinions from experts. This is simply because most of
the modeling methods including all conventional EFS approaches and in particular
the FLEXFIS family are precise modeling approaches, that is, they are trying to
model the basic trend of the natural data distribution at hand as accurately as
possible without taking care of interpretability aspects (see below for a list of those).
For batch modeling methods, a large collection of interpretability improvement
techniques exist [11], ranging from constrained-based optimization techniques via
orthogonal rule parameter learning to post-processing techniques in which fuzzy
systems are post-“beautified”.

There are several important criteria for achieving interpretable models which
can be divided into high-level (on fuzzy rule level) and low-level interpretability
[72], that is, optimizing the membership functions in terms of semantic criteria
on fuzzy set/fuzzy partition level. Important facets at the high-level interpretability
stage include:

• Distinguishability
• Consistency
• Simplicity (low number of rules)
• Rule length
• Feature information
• Interpretable consequents

In the flexible EFS concept, the first two issues are tackled by the strategies
described in Sect. 9.3.2, as consistency corresponds to omittance of contradic-
tions during the learning process which is guaranteed by the consistency check
in Sect. 9.3.2.1 through comparing the similarity of rule consequent parts with
the similarity of the rule antecedents. Simplicity is partially achieved through
merging/deletion of redundant rules; some further improvements may be expected
when merging clusters grown together. The rule length depends on the number of
antecedent parts in the single rules, that is, as using a flat model architecture, on the
number of inputs. In case of classification problems, the dynamic assignment and
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adaptation of feature weights provides a possibility on how to reduce the number of
antecedent parts, as features with low weights can be neglected when interpreting
the models. Regarding interpretation of the consequents, it is essential to use local
learning by applying recursive fuzzily weighted least squares estimator (9.4)–(9.6).
This guarantees a snuggling of the partial rule hyper-planes along the real trend of
the functional behavior [51]. This also opens up the possibility of a local feature
weighting/selection step in regression problems, as being achieved for batch-trained
TS fuzzy systems, see, for example, [52]. In case of classification problems, the
consequents contain singleton class labels (corresponding to the majority class) and
are therefore interpretable per se.

9.3.5 Reliability Aspects

Apart from the predictive behavior of a model in terms of its accuracy, another pre-
requisite for the user acceptance is the reliability of a model. Reliability accounts
for the importance to offer, apart from the prediction itself, information about how
reliable this prediction is. Ideally, a learning algorithm is “self-aware” in the sense
of knowing what it knows, and what it does not. Based on the reliability degree of a
prediction (due to noise variance, high bias of the model, or conflicting situations),
the user is able to decide whether the prediction has to be treated with caution.
Therefore, reliability also can be seen as a sort of interpretability of the model
responses/outputs.

9.3.5.1 For Classification Problems

For classification problems, the uncertainty of models for a given query sample
(=sample to be classified) can be expressed by two concepts [30]: conflict and
ignorance. Conflict refers to the degree to which two classes are in conflict with
each other, as the classifier supports both of them almost equally as potential
classifications. Thus, conflict is usually caused by a query instance which lies
near the decision boundary of the classes. Ignorance represents that part of the
uncertainty which may arise due to a query point lying in a region of the feature
space which was not covered by any training samples. Thus, ignorance is somehow
related to extrapolation cases of query points. Figure 9.10(a) visualizes an example
of a conflict case and (b) shows an ignorance case. The latter arises due to an
uncertainty in the position of the decision boundary (straight lines in our case):
obviously, a lot of decision boundaries are possible, and not all may classify the
query point to the same class. This circumstance diminishes when the query point
lies closer to one of the clusters.

In the conflict case, it is not really clear whether the sample should be classified
to the first or second class; hence, someone may expect a value of 0.5 for the
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Fig. 9.10 (a) Conflict case for new query point to be classified as lying in-between both classes.
(b) Ignorance case for a new query point to be classified as lying significantly away from both rules
(marked as clusters)

confidence calculated by FLEXFIS-Class resp. eVQ-Class. However, when using
(9.16) as confidence value for the final class label according to the winner-takes-it-
all classification concept, such conflict occurrences as shown in Fig. 9.10a cannot be
modeled appropriately: the confidence value would be 1 (indicating no conflict) for
that class lying a bit nearer to the sample to be classified, as the cluster is completely
clean, that is, represented by a single class. Therefore, we extend (9.16) and use a
weighted combination of relative frequencies in order to achieve a final confidence:

con fk,l =
μ1h ∗1,k +μ2h∗2,k

μ1 + μ2
, (9.49)

with

h∗1,k =
h1,k

h1,k + h1,l
and h∗2,k =

h2,k

h2,k + h2,l
(9.50)

the relative frequency (weight) of class k in the two nearest rules supporting two
different classes k and l (h∗1 belongs to the nearest rule supporting class k and
h∗2 belongs to the nearest rule supporting another class l), and μ1 the membership
degree of the current sample to the nearest rule supporting class k and μ2 the
membership degree of the current sample to the nearest rule supporting another
class l. If a sample falls exactly into one rule (which supports a specific class k) and
all other rules are far away, then μ2 ≈ 0 which reduces (9.49) to (9.16), reflecting
the degree of conflict within the nearest rule. In eVQ-Class, a similar weighted
confidence scheme is applied, compare with (9.19), also delivering a good model
for conflict cases. In FLEXFIS-Class MM, a conflict occurs when the regression
output value of two classes are nearly identical, which would deliver a value around
0.5 according to (9.18).

Fuzzy rule bases are able to resolve ignorance in a natural way, as they deliver
(fuzzy) activation degrees of rules. Then, it is quite obvious that if no rule fires
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significantly in the actual query point, the likelihood of ignorance is high, as the
query is lying far away from the closest rule (representing some training samples).
This means whenever

μi < ε and ∀i = 1, . . . ,C, (9.51)

with ε > 0 a small threshold, no class label is significantly supported; therefore,
the confidence level of the final output class should be set to a small value,
that is, con fL = maxi=1,...,Cμi. Finally, this can be seen as a strong argument
as to why evolving fuzzy classifiers may be preferred among other crisp rule-
based classifiers (here rule activation degrees are either 0 or 1) and also among
other machine learning classifiers such as incremental SVMs, tree-based methods
(such as Hoeffding trees), or incremental statistical approaches (e.g., naive Bayes
rules), based on which it is much harder to resolve the problem of ignorance
[30]. Latest results show that the integration of ignorance levels as down-weighting
multiplicators of single predictions from binary models in multi-model classifiers
(such as FLEXFIS-Class MM or AP) mostly increases classification accuracy
significantly.

9.3.5.2 For Regression Problems

In case of regression problems, the uncertainty about predictions arises either due
to sufficient noise in the data, extrapolation regions/holes in the data clouds, or the
inflexibility of a model to follow the non-linear trend of the approximation surface.
All these can be tracked by so-called adaptive local error bars [50], which change
their behavior over the input space locally with respect to the natural characteristics
of the data distribution and the model behavior.

The local error bars for Takagi–Sugeno fuzzy systems can be calculated as an
extension of the formula for error bars for linear regression models [17], as each
consequent part denotes a linear hyper-plane and furthermore represents a linear
approximation of the local dependency in that region where the corresponding rule
antecedent parts is defined (achieved by local learning). Then, the single hyper-
planes of the single rules just need to be connected to form an over-all error bar for
the prediction on a current data sample xk using the membership fulfillment degrees
μ of all rules:

ŷfuz±
√

cov{ŷfuz}= ŷfuz± ∑C
i=1 μi(xact)

√
cov{ŷi}

∑C
i=1 μi(xact)

(9.52)

where ŷi the estimated value of the ith rule consequent function, for which cov is
calculated by:

cov{ŷ}= Xactσ2(XT
i QiXi)

−1XT
act, (9.53)
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with Xact the current sample for which a prediction is queried and its corresponding
certainty level sought (thus, cov{ŷ} reduces to a single value). Qi is the weighting
matrix as used in the local learning approach, (XT

i QiXi)
−1 is the inverse weighted

Hessian matrix, and σ is the noise variance estimated by:

σ̂2 =
2∑N

j=1(y( j)− ŷ( j))2

N− deg
, (9.54)

with N the number of samples and deg the degrees of freedom (estimated by
deg = 2Cp+ kC) with C the number of fuzzy rules and p the number of inputs
and k the number of parameters in the rule consequents. The update of the error bars
is automatically given as Pi = (XT

i QiXi)
−1 is updated through (9.4)–(9.6), and the

noise variance can be updated by:

σ̂2(new) =
(N− deg(old))σ̂2(old)+ 2∑N+m

j=N (y( j)− ŷfuz( j))2

N +m− deg(new)
, (9.55)

where deg(new), the new number of parameters, if changed in the model due to an
evolution of the structure. In Chap. 14, the adaptive local error bars will be used
for producing reliable fault indicators in an on-line multi-channel fault detection
system, improving the performance of constant error bands.

9.4 Applications of the FLEXFIS Family: Summary

In this section, we provide a short summary about successful applications of the
FLEXFIS family, including references to publications (if any):

• On-line system identification at engine test benches ([44], Chap. 7): the task was
to identify unknown interrelationships and dependencies between measurement
channels in order to characterize newly developed engines during the on-line test
phase, and to gain some important and interesting insights.

• The identified models plus confidence regions (previous section) served as
reference oracles for an extended plausibility analysis of measurements, based
on which faults and system failures can be elicited—see Chap. 14.

• Prediction of NOx emissions of diesel and petrol engines [53]: the aim was to
substitute expensive hardware sensors with a soft sensor, which is able to predict
the prospective NOx content (up to 10 s ahead); time offsets and changing engine
operating conditions had to be incorporated in the models.

• On-line prediction of resistance values at cold rolling mills ([44], Chap. 7): the
task was to predict the yield strength of a steel plate in order to guarantee a
smooth rolling process, that is, finally a steel plate with the intended a priori
defined thickness. The predictions have to be carried out during the on-line
rolling process in order to compensate deviations from intended values quickly.
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FLEXFIS could out-perform state-of-the-art physical models, especially when
applying time-delayed inputs and triggering forgetting mechanisms as soon as
new stitches appeared.

• Prediction of residential premise prices [54]: based on some main drivers such
as usable area of premises, age of a building, number of rooms in a flat, floor on
which a flat is located, number of storeys in a building, as well as the distance
from the city center, the aim was to predict the prices of houses and premises for
future years; re-setting the models with new data recordings should be avoided;
instead, the dynamic changes in the real-estate market in the course of time
should be included on the fly. Rule merging option could significantly reduce
the complexity of the evolved models and in some cases even improve accuracy
by reducing over-fitting; batch off-line expert-based estimation methods could be
significantly out-performed.

• Evolving chemometric models for viscose production process (publication sub-
mitted [14]): the aim is to set up calibration models based on NIR spectra with a
very high # of wavelengths (=dimensionality) for automatically quantifying the
contents of chemical substances H2SO4,Na2SO4, and ZnSO4. As the process is
very dynamic according to a permanently changing state of the spin bath, models
need to be updated persistently to guarantee quantifications with high quality;
FLEXFIS could significantly outperform state-of-the-art (statistical-oriented)
chemometric methods [67], which, in large parts, produced high unacceptable
errors; gradual forgetting played an important role in order to properly react onto
the highly dynamic changes.

• On-line image classifiers as part of an on-line quality-control framework based
on machine vision technology (part of an European project)—see Chap. 14.

• Perception-based texture models (part of an European project) [66]: the aim was
to build models for associating perceptions and emotions with visual textures; six
core adjectives served as final output of a MIMO model (warm, rough, complex,
elegant, natural, and like); as inputs, we used selected low-level features extracted
from the textures and characterizing best emotional states of humans when
inspecting the textures. Models with max. 20% error performance over all human
beings could be established, even showing some synergies to psychological-
oriented models.

• Application of the FLEXFIS family onto several data sets from the UCI
repository and widely used dynamic data sets (Mackey-Glass, Box-Jenkins, etc.),
showing similar performance to batch modeling methods, and justifying its con-
vergence to batch solutions. Specific tests were made on a hyper-plane data set
including a huge data stream of 1.2 million samples and a drift case: rule merging
option was indispensable in order to obtain results within a reasonable time frame
(automatic reduction from about 4,000 to 8–10 rules resulted in a reduction of
computation times from hours to minutes); forgetting was essential to increase
FLEXFIS’s accuracy during the occurrence of a drift, which could out-perform
the accuracy of Hoeffding trees as alternative incremental classification method
(from the MOA framework) [49].
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A thorough discussion on the usage of the FLEXFIS family and a detailed evaluation
and performance analysis within on-line quality control systems (measurement and
image based) will follow in Chap. 14.

9.5 Conclusion

This chapter provides an overview of the flexible evolving fuzzy systems family,
including the most important algorithms and techniques for guiding the incremental
learning process of parameters to optimal solutions and the model structures (rules)
to an appropriate representation of local data distributions and clouds. The flexible
fuzzy systems and classifiers are successively (step-wise) built up, evolved, and
further expanded on the basis of data streams which are arriving on-line in a
block- or sample-wise fashion and may represent changing systems and varying
environmental influences. Therefore, they can be seen as a substantial contribution
to dynamic learning in non-stationary environments. The chapter also embraces
advanced concepts for achieving higher predictive accuracy of the evolved models,
including an appropriate handling of concept drift in data streams; a dynamic
soft dimension reduction approach, where unimportant features are smoothly
out-weighted over time; and an incremental concept for merging and pruning
unnecessary rules in order to guarantee distinguishability of the rules and fuzzy
sets. Finally, this chapter raises considerations and aspects about interpretability of
the evolved models and the reliability of their predictions. For the latter, conflict
and ignorance models for predictions in classification settings are represented, as
well as adaptive local error bars for tracking the uncertainty due to noise, bias,
and extrapolation regions in regression problems. Therefore, a major strength of
the FLEXFIS family is the manifold of extensions which can cope with different
situations in resp. characteristics of data streams, namely, drifts, rule fusion over
time, dynamically changing curse of dimensionality, and varying noise levels.
Additional central strengths are its robustness in terms of achieving convergence
of parameters with respect to an optimization criterion and the possibility to
reduce unnecessary complexity in the evolved models, achieving more transparent
fuzzy systems. A weakness may be that an initial fuzzy model (regression type
or classifier) is needed, or at least an initial data set for estimating the ranges
of features. The evaluation and performance of the various methods (FLEXFIS,
FLEXFIS-Class SM, MM, AP, and eVQ-Class) as well as most of the enhanced
concepts will be thoroughly discussed based on several on-line quality-control
applications in Chap. 14.

Finally, we want to point out that other variants of EFS approaches, in particular,
using TS fuzzy systems architecture, emerged during the last decade, and a
comprehensive survey; and study on these can be found in [44]; a small overview of
approaches is also mentioned at the beginning of the next chapter.
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Chapter 10
Sequential Adaptive Fuzzy Inference System
for Function Approximation Problems

Hai-Jun Rong

Abstract In the classic approaches to design a fuzzy inference system, the fuzzy
rules are determined by a domain expert a priori and then they are maintained
unchanged during the learning. These fixed fuzzy rules may not be appropriate
in real-time applications where the environment or model often meets unpredicted
disturbances or damages. Hence, poor performance may be observed. In comparison
to the conventional methods, fuzzy inference systems based on neural networks,
called fuzzy-neural systems, have begun to exhibit great potential for adapting
to the changes by utilizing the learning ability and adaptive capability of neural
networks. Thus, a fuzzy inference system can be built using the standard structure
of neural networks. Nevertheless, the determination of the number of fuzzy rules
and the adjustment of the parameters in the if-then fuzzy rules are still open
issues. A sequential adaptive fuzzy inference system (SAFIS) is developed to
determine the number of fuzzy rules during learning and modify the parameters
in fuzzy rules simultaneously. SAFIS uses the concept of influence of a fuzzy rule
for adding and removing rules during learning. The influence of a fuzzy rule is
defined as its contribution to the system output in a statistical sense when the input
data is uniformly distributed. When there is no addition of fuzzy rules, only the
parameters of the “closest” (in a Euclidean sense) rule are updated using an extended
Kalman filter (EKF) scheme. The performance of SAFIS is evaluated based
on some function approximation problems, via, nonlinear system identification
problems and a chaotic time-series prediction problem. Results indicate that SAFIS
produces similar or better accuracies with lesser number of rules compared to other
algorithms.
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10.1 Introduction

A fuzzy inference system can model the qualitative aspects of human knowledge and
reasoning processes using fuzzy if-then rules. Based on this, many ill-defined and
uncertain systems in some disciplines such as engineering, economics, and other
areas [6, 10, 16, 18, 20, 23, 24, 29, 31] can be handled without employing precise
quantitative analysis. The experiment results have demonstrated that the fuzzy
inference systems are very useful to solve some practical problems involving a high
level of uncertainty, complexity, or nonlinearity compared with the conventional
modeling methods. However, the superior performance of fuzzy inference systems
mainly depends on the fuzzy rules. If the fuzzy rules are not appropriate and deviate
from the requirement of the system itself, this may result in poor performance. On
the other hand, although the rules are correct, it is hard to determine the appropriate
parameters for the fuzzy rules. Inappropriate parameters also may result in poor
performance.

To solve these problems, many researchers have built fuzzy-neural systems by
incorporating the fuzzy inference process in the structure of neural networks and
then the learning ability of neural networks are used to adjust the fuzzy rules. Except
for some special fuzzy-neural systems which made use of fuzzy neurons and fuzzy
weights [7, 25], most of the recent fuzzy-neural systems [1, 3, 5, 11, 13, 17, 19, 32]
have been built based on the standard feed-forward network with local fields to
approximate the fuzzy inference systems with local properties. In these fuzzy-neural
systems, the neurons with local fields correspond to the fuzzy rules and the proposed
algorithms for designing the fuzzy-neural systems have considered two issues, that
is, the structure identification and the parameter adjustment. Structure identification
determines the input–output space partition, antecedent and consequent variables of
if-then rules, number of such rules, and initial positions of membership functions.
The task of parameter adjustment involves realizing the parameters for the fuzzy
system structure determined in the previous step [21].

The researchers [5, 13, 15, 19, 27, 28, 30, 32] have tried to develop many efficient
approaches for solving the two issues. These methods can be broadly divided into
two classes, namely, batch learning schemes and sequential learning schemes. In
batch learning, it is assumed that the complete training data is available before the
training commences. The training usually involves cycling the data over a number
of epochs. In sequential learning, the data arrives one by one, and after the learning
of each data, it is discarded and the notion of epoch does not exist. In practical
applications, new training data arrives sequentially, and to handle this using batch
learning, one has to retrain the network all over again, resulting in large training
time. Hence, in these cases, sequential learning algorithms are generally preferred
over batch learning algorithms as they do not require retraining whenever a new data
is received. The sequential fuzzy-neural scheme, which is discussed in this chapter,
has the following distinguishing features:

1. All the training observations are sequentially (one by one) presented to the
system.

2. At any time, only one training observation is seen and learned.
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3. A training observation is discarded as soon as the learning procedure for that
particular observation is completed.

4. The learning system has no prior knowledge as to how many total training
observations will be presented.

Thus, if one strictly applies the above features of the sequential algorithms, many
of the existing algorithms are not sequential. One major bottleneck seems to be that
they need the entire training data ready for training before the training procedure
starts and thus they are not really sequential. This point is highlighted in a brief
review of the existing algorithms given below.

Jang [11] has developed an adaptive-network-based fuzzy inference system
(ANFIS) where a hybrid learning method was utilized to identify the system
parameters. The parameters in the membership functions were updated by a gradient
descent method, and the parameters in the consequent parts were adjusted by means
of a least-square error method. The number of fuzzy rules was determined according
to a grid-type partition which resulted in the exponential increase of the number
of fuzzy rules as the input variables increased. Chiu [4] solved this problem by
selecting some significant input variables from all the input variables as the input of
the fuzzy systems. However, these algorithms require cycling the whole training
data over a number of learning cycles (epochs). Thus, they are batch learning
algorithms. Besides, in these algorithms, the number of fuzzy rules are determined
beforehand and cannot be varied according to learning process.

Many approaches [5, 13, 19, 32] have been proposed based on the functional
equivalence between a radial basis function (RBF) neural network and a fuzzy
inference system to achieve the determination of the number of fuzzy rules and
parameter adjustment simultaneously during learning. These schemes utilize the
learning capabilities of the RBF for changing the rules as well as adjusting the
parameters since the hidden neurons of the RBF networks are related to the fuzzy
rules [12]. A significant contribution to sequential learning in RBF network was
made by Platt [26] through the development of resource allocation network (RAN).
In RAN, the network starts with no hidden neurons but adds hidden neurons based
on the novelty of the input data. Most of the recent algorithms for adaptively creating
fuzzy systems are based on the ideas of RAN. These algorithms claim to be “on-
line” algorithms, and if one looks closely at them, they are not sequential as per the
above distinguishing features.

A hierarchically self-organizing approach proposed by Cho and Wang [5]
automatically generated fuzzy rules without predefining the number of fuzzy rules
based on the error and distance criterion of fuzzy basis functions. The parameters
in the fuzzy rules were modified by the gradient descent algorithm. However, the
algorithm requires cycling the whole training data over a number of learning cycles
(epochs), and hence, it is not a truly sequential learning scheme.

Juang and Lin [13] have proposed a self-constructing neural fuzzy inference
network (SONFIN) in which the fuzzy rules were extracted online from the training
data together with the parameter update for all existing fuzzy rules using the gradient
descent method. For adding a new fuzzy rule, SONFIN utilized the distance criterion



250 H.-J. Rong

between the new input data and the center of the Gaussian membership function in
the existing fuzzy rules. Although this algorithm is sequential in nature, it does not
remove the fuzzy rules once created even though that rule is not effective. This may
result in a structure where the number of rules may be large.

In most of the real applications, not all fuzzy rules contribute significantly to
the system performance during the entire time period. A fuzzy rule may be active
initially, but may later contribute little to the system output. For this reason, the
insignificant fuzzy rules have to be removed during learning to realize a compact
fuzzy system structure. Using the ideas of adding and pruning hidden neurons to
form a minimal RBF network in [33], a hierarchical on-line self-organizing learning
algorithm for dynamic fuzzy neural networks (DFNN) has been proposed in [32].
Another on-line self-organizing fuzzy neural network (SOFNN) proposed by Leng
et al. [19] also included a pruning method. The pruning method utilized the optimal
brain surgeon (OBS) approach to determine the importance of each rule. In the two
algorithms, the least-square error method was utilized to update the parameters for
all the existing fuzzy rules. However, in these two algorithms the pruning criteria
need all the past data received so far. Hence, they are not strictly sequential and
further requires increased memory for storing all the past data.

A dynamic evolving neural-fuzzy inference system (DENFIS) was proposed
by Kasabov and Song [17] where the fuzzy rules were created depending on the
position of the input vector in the input space and the output was dynamically
calculated based on m-most active fuzzy rules which have been created during the
past learning process. Angelov and Filev [3] proposed an evolving Takagi–Sugeno
model (eTS) that recursively updated TS model structure based on the potential of
the input data (defined based on its distances to all other data points received so
far). In this algorithm, a new rule was added when the potential of the new data
was higher than the potential of the existing rules, or a new rule was modified
when the potential of the new data was higher than the potential of the existing
rules and the new data was close to an old rule. These two algorithms are truly
sequential learning algorithms. However, the algorithms cannot simplify the rule
base during learning by ignoring the rules which may become irrelevant with the
future data samples when the data sample sequentially arrives. A simplified version
of the eTS learning algorithm that simplified the rule base, called the simpl eTS, was
proposed by Angelov and Filev [1]. The algorithm utilized the concept of the scatter
which was similar to the notion of potential but computationally more efficient.
The algorithm could simplify the rule base to make the rules representative based
on the population of each rule determined by the number of the data samples that
belonged to a particular cluster. If the population of a rule was less than 1% of the
total data at the moment of appearance of a rule, the rule was ignored from the rule
base by setting its firing strength to zero. Besides, these algorithms employed the
least-square error method to modify the parameters of the existing fuzzy rules.

In this chapter, a sequential adaptive fuzzy inference system (SAFIS) is devel-
oped to realize a compact fuzzy system with lesser number of rules. SAFIS uses
the idea of functional equivalence between a RBF neural network and a fuzzy
inference system. Here, SAFIS uses the growing and pruning RBF (GAP-RBF)
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neural network proposed by Huang et al. [8]. The SAFIS algorithm consists of
two aspects: determination of the fuzzy rules and adjustment of the premise and
consequent parameters in fuzzy rules.

SAFIS uses the concept of influence of a fuzzy rule to add and remove rules
during learning. SAFIS starts with no fuzzy rules, and based on the data, builds up
a compact rule base. During the learning, only the current data is made use of, and
there is no need to store all the past data. The influence of a fuzzy rule is defined as
its contribution to the system output in a statistical sense. Here, we have derived an
expression for this for the case where the input data is uniformly distributed. The
parameter adjustment is done using a winner rule strategy where the winner rule is
defined as the one closest to the latest input data, and the parameter update is done
using an extended Kalman filter (EKF) mechanism.

10.2 Architecture of SAFIS

A function approximation problem can be described as follows. Suppose the sample
data, {(xn,yn) : n = 1,2, . . .}, are observed, where xn is a Nx-dimensional features
of observation n and yn is its target output of dimension Ny. It is assumed that the
observation data are free of noise, and an underlying function f exists between the
target output yn and feature space xn from the known set of data:,

yn = f (xn). (10.1)

The aim of the SAFIS algorithm is to approximate f such that:

ŷn = f̂ (xn), (10.2)

where ŷn is the output of SAFIS. This means that the objective is to minimize
the error between the system output and the output of SAFIS, ‖yn− ŷn‖. Before
describing the details of the algorithm, the structure of SAFIS network is first
described below.

The structure of SAFIS illustrated by Fig. 10.1 consists of five layers to realize
the following fuzzy rule model:

Rule k : if (x1 is A1k) . . . (xNx is ANxk), then (ŷ1 is a1k) . . . (ŷNy is aNyk), where
a jk( j = 1,2, . . . ,Ny;k = 1,2, . . . ,Nh) is a constant consequent parameter in rule k,
Aik(i = 1,2, . . . ,Nx) is the membership value of the ith input variable xi in rule k, Nx

is the dimension of the input vector x(x = [x1, . . . ,xNx ]
T ), Nh is the number of fuzzy

rules, and Ny is the dimension of the output vector ŷ(ŷ = [ŷ1, . . . , ŷNy ]
T ). In SAFIS,

the number of fuzzy rules Nh varies. Initially, there is no fuzzy rule and then during
learning, fuzzy rules are added and removed.

Layer 1: In layer 1, each node represents an input variable and directly transmits
the input signal to layer 2.
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Fig. 10.1 Structure of SAFIS

Layer 2: In this layer, each node represents the membership value of each input
variable. SAFIS utilizes the function equivalence between a RBF network and a FIS,
and thus, its antecedent part (if part) in fuzzy rules is achieved by Gaussian functions
of the RBF network. The membership value Aik(xi) of the ith input variable xi in the
kth Gaussian function is given by:

Aik(xi) = exp

(
− (xi− μik)

2

σ2
k

)
,k = 1,2, . . . ,Nh, (10.3)

where Nh is the number of the Gaussian functions, μik is the center of the kth
Gaussian function for the ith input variable, and σk is the width of the kth Gaussian
function. In SAFIS, the width of all the input variables in the kth Gaussian function
is the same.

Layer 3: Each node in the layer represents the if part of if-then rules obtained by
the sum-product composition, and the total number of such rules is Nh. The firing
strength (if part) of the kth rule is given by:

Rk(x) =
Nx

∏
i=1

Aik(xi) = exp

(
−

Nx

∑
i=1

(xi− μik)
2

σ2
k

)
= exp

(
−‖x− μk‖2

σ2
k

)
. (10.4)
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Layer 4: The nodes in the layer are named as normalized nodes whose number is
equal to the number of the nodes in third layer. The kth-normalized node is given by:

R̄k =
Rk(x)

Nh

∑
k=1

Rk(x)
. (10.5)

Layer 5: Each node in this layer corresponds to an output variable, which is given
by the weighted sum of the output of each normalized rule. The system output is
calculated by:

ŷ =

Nh

∑
k=1

Rk(x)ak

Nh

∑
k=1

Rk(x)
, (10.6)

where ŷ = [ŷ1, ŷ2, . . . , ŷNy ]
T ,ak = [ak1,ak2, . . . ,akNy ]

T .
Similar to the significance concept of a neuron in GAP-RBF [8], the SAFIS

algorithm uses the concept of “influence” of a rule to realize the growing and
pruning of fuzzy rules. It is described below.

10.2.1 “Influence” of a Fuzzy Rule

As per (10.6), the contribution of the kth rule to the overall output for an input
observation xl is given by:

E(k, l) = ‖ak‖ Rk(xl)
Nh

∑
k=1

Rk(xl)

. (10.7)

Then the contribution of the kth rule to the overall output based on all input data N
received so far is obtained by:

E(k) = ‖ak‖

N
∑

l=1
Rk(xl)

Nh

∑
k=1

N
∑

l=1
Rk(xl)

. (10.8)

Dividing both the numerator and denominator by N in (10.8), the equation becomes:

E(k) = ‖ak‖

N
∑

l=1
Rk(xl)/N

Nh

∑
k=1

N
∑

l=1
Rk(xl)/N

. (10.9)
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Using the significance concept of GAP-RBF [8], the influence of the kth fuzzy
rule is defined as its statistical contribution to the overall output of SAFIS. When
N→ ∞, the influence of the kth rule is given by:

Einf(k) = lim
N→∞

E(k) = lim
N→∞
‖ak‖

N
∑

l=1
Rk(xl)/N

Nh

∑
k=1

N
∑

l=1
Rk(xl)/N

. (10.10)

Calculation of Einf(k) using the above equation requires the knowledge of (xl ,yl),
l = 1, . . . ,N. In the truly sequential learning scheme, this is not possible. An alternate
way of calculating Einf(k) is by using the distribution of the inputs and follows the
same approach as introduced in [9]. In order to compute Einf(k), one has to compute
first Ek defined by:

Ek = lim
N→∞

N
∑

l=1
Rk(xl)

N
. (10.11)

Assume that the observations, (xl ,yl), l = 1, . . ., are drawn from a sampling range
X with a sampling density function p(x). Consider a situation where N observations
have been learned by the sequential learning scheme. Let the sampling range X
be divided into M small spaces Δ j, j = 1, . . . ,M. The size of Δ j is represented by
S(Δ j). Since the sampling density function is p(x), there are around N · p(xj) ·S(Δ j)
samples in each Δ j, where x j is any point chosen in Δ j. When the number of input
observations N is large and Δ j is small from (10.11), we have:

Ek ≈ lim
M→∞

M
∑
j=1

Rk(x j) ·N p(x j) ·S(Δ j)

N

= lim
M→∞

M

∑
j=1

Rk(x j) · p(x j) ·S(Δ j)

=

∫
X

Rk(x)p(x)dx

=

∫
X

exp

(
−‖x− μk‖2

σ2
k

)
p(x)dx. (10.12)

If the distribution of the Nx attributes (x1, . . . ,xi, . . . ,xNx)
T of observations x’s

are independent from each other, the density function p(x) of x can be written as
follows: p(x) =∏Nx

i=1 pi(xi), where pi(x) is the density function of the i-th attribute
xi of observations. In this case, (10.12) can be re-written as:

Ek =

∫
· · ·

∫
X

exp

(
−‖x− μk‖2

σ2
k

)
p(x)dx

=
Nx

∏
i=1

(∫ bi

ai

exp

(
−‖x− μk,i‖2

σ2
k

)
pi(x)dx

)
, (10.13)
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where Nx is the dimension of the input space X and (ai,bi) is the interval of the i-th
attribute xi of observations, i = 1, . . . ,Nx.

Equation (10.13) involves the integration of the probability density function p(x)
in the sampling range X . When the input samples are uniformly drawn from a range
X , the sampling density function p(x) is given by p(x) = 1

S(X) , where S(X) is the

size of the range X given by S(X) =
∫

x 1dx. Substituting for p(x) in (10.12), we get:

Ek =

∫
X

exp

(
−‖x− μk‖2

σ2
k

)
1

S(X)
dx. (10.14)

Note that, in general, the width σk of a rule k is much less than the size of range X ,
the above equation can be approximated as:

Ek ≈ 1
S(X)

(
2
∫ +∞

0
exp

(
− x2

σ2
k

)
dx

)Nx

=
πNx/2σNx

k

S(X)

=
(1.8σk)

Nx

S(X)
. (10.15)

Thus, based on (10.15), the influence of the kth rule is given by:

Einf(k) = ‖ak‖ (1.8σk)
Nx

Nh

∑
k=1

(1.8σk)Nx

. (10.16)

It is noteworthy that the significance of a neuron proposed in GAP-RBF [8] is
defined based on the average contribution of an individual neuron to the output
of the RBF network. Under this definition, one may need to estimate the input
distribution range S(X). However, the influence of a rule introduced here is different
from the significance of a neuron proposed in GAP-RBF [8]. In fact, the influence
of a neuron is defined as the relevant significance of the neuron compared to
summation of significance of all the existing RBF neurons. Seen from (10.16), with
the introduction of influence, one need not estimate the input distribution range S(X)
and the implementation has been simplified.

Influence of a rule is utilized for the addition and deletion of a fuzzy rule in
SAFIS algorithm as indicated below.

10.2.2 SAFIS Algorithm

The learning algorithm of SAFIS consists of two aspects: determination of fuzzy
rules and adjustment of the premise and consequent parameters in fuzzy rules.
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SAFIS can automatically add and remove fuzzy rules using ideas similar to GAP-
RBF [8] for hidden neurons. A description of dynamically adding and removing
the fuzzy rules along with the details of parameter adjustment when there are no
addition of rules is given below.

10.2.2.1 Adding of Fuzzy Rules

SAFIS begins with no fuzzy rules. When the first input x1,y1 is received, it is
translated into the first rule whose parameters are given as, μ1 = x1,a1 = y1,σ1 =
κ‖x1‖. Then, as inputs xn,yn (n > 1 is the time index) are received sequentially
during learning, growing of fuzzy rules is based on the following two criteria which
are distance criterion and the influence of the new added fuzzy rule Nh + 1:

‖xn− μnr‖ > εn

Einf(Nh + 1) = ‖en‖ (1.8κ‖xn− μnr‖)Nx

Nh+1
∑

k=1
(1.8σk)Nx

> eg, (10.17)

where εn, eg are thresholds to be selected appropriately, xn is the latest input data,
μnr is the center of the fuzzy rule nearest to xn, and eg is the growing threshold
and is chosen according to the desired accuracy of SAFIS. en = yn− ŷn, yn is the
true value, ŷn is the approximated value, κ is an overlap factor that determines the
overlap of fuzzy rules in the input space, and εn is the distance threshold which
decays exponentially and is given by:

εn = max{εmax× γn,εmin} , (10.18)

where εmax,εmin are the largest and smallest length of interest and γ is the decay
constant. The equation shows that initially it is the largest length of interest in the
input space which allows fewer fuzzy rules to coarsely learn the system and then it
decreases exponentially to the smallest length of interest in the input space which
allows more fuzzy rules to finely learn the system.

10.2.2.2 Allocation of Antecedent and Consequent Parameters

When the new fuzzy rule Nh + 1 is added, its corresponding antecedent and
consequent parameters are allocated as follows:⎧⎨

⎩
aNh+1 = en

μNh+1 = xn

σNh+1 = κ‖xn− μnr‖
(10.19)



10 Sequential Adaptive Fuzzy Inference System for Function Approximation... 257

10.2.2.3 Parameter Adjustment

In parameter modification, SAFIS utilizes a winner rule strategy similar to the work
done by Huang et al. [8]. The key idea of the winner rule strategy is that only the
parameters related to the selected winner rule are updated by the EKF algorithm in
every step. The “winner rule” is defined as the rule that is closest (in the Euclidean
distance sense) to the current input data as in [8]. As a result, a fast computation is
achieved in SAFIS.

The parameter vector existing in all the fuzzy rules is given by:

θ n =
[
θ1 . . . θnr . . . θNh

]T

=
[

a1,μ1,σ1, . . . , anr,μnr,σnr, . . . , aNh ,μNh ,σNh

]T
, (10.20)

where θ nr = [anr,μnr,σnr] is the parameter vector of the nearest fuzzy rule and its
gradient is derived as follows:

ȧnr =
∂ ŷn

∂anr
=

∂ ŷn

∂Rnr

∂Rnr

∂anr
=

Rnr
Nh

∑
k=1

Rk

μ̇nr =
∂ ŷn

∂μnr
=

∂ ŷn

∂Rnr

∂Rnr

∂μnr
=

anr− ŷn
Nh

∑
k=1

Rk

∂Rnr

∂μnr

σ̇nr =
∂ ŷn

∂σnr
=

∂ ŷn

∂Rnr

∂Rnr

∂σnr
=

anr− ŷn
Nh

∑
k=1

Rk

∂Rnr

∂σnr

∂Rnr

∂μnr
= 2Rnr

xn− μnr

σ2
nr

∂Rnr

∂σnr
= 2Rnr

‖xn− μnr‖2

σ3
nr

. (10.21)

After obtaining the gradient vector of the nearest fuzzy rule, that is, Bnr =
[ȧnr, μ̇nr, σ̇nr]

T , EKF is used to update its parameters as follows:

Kn = Pn−1Bn[Rn +BT
n Pn−1Bn]

−1

θn = θn−1 +Knen

Pn = [IZ×Z−KnBT
n ]Pn−1 + qIZ×Z , (10.22)
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where q is a scalar that determines the allowed step in the direction of the gradient
vector and Z is the dimension of parameters to be adjusted. When a new rule is
added, the dimension of Pn increases to:

(
Pn−1 0

0 p0IZ1×Z1

)
, (10.23)

where Z1 is the dimension of the parameters introduced by the newly added rule and
p0 is an initial value of the uncertainty assigned to the newly allocated rule.

10.2.2.4 Removing of a Fuzzy Rule

If the influence of rule k is less than a certain pruning threshold ep, the rule k
is insignificant to the output and should be removed. The pruning threshold ep is
chosen a priori. Given the pruning threshold ep, rule k will be removed if:

Einf(k) = ‖ak‖ (1.8σk)
Nx

Nh

∑
k=1

(1.8σk)Nx

< ep. (10.24)

In SAFIS, only the nearest rule instead of all the existing rules will be considered
for removing. This is explained as follows. Considering the Gaussian function
R(x) = exp(− x2

σ2 ), its first and second derivatives will approach zero much faster
when x moves away from zero. Thus, in EKF, the gradient vector of the parameters
for all the rules except the nearest rule will approach zero more quickly than those
of the nearest rule that are given by:

⎛
⎜⎜⎝ Rnr

Nh

∑
k=1

Rk

,
2(anr− ŷn)Rnr

Nh

∑
k=1

Rk

xn− μnr

σ2
nr

,
2(anr− ŷn)Rnr

Nh

∑
k=1

Rk

‖xn− μnr‖2

σ3
nr

⎞
⎟⎟⎠ .

In this case, one may only need to adjust parameters of the nearest rule without
adjusting the parameters of all rules when a new observation enters and a new rule
needs not be added. At the same time, all rules need not be checked for possible
pruning. If a new observation arrives and the growing criteria (10.17) is satisfied, a
new rule will be added. The existing rules will maintain their influence because their
parameters remain unchanged after learning the new observation. Simultaneously,
the newly added rule is also influencing, and therefore it is not necessary to check for
pruning after a new rule is added. If the growing criteria (10.17) is not satisfied after
a new observation arrives, a new rule will not be added and only the parameters of
the nearest rule will be modified. As such, only the nearest rule needs to be checked
for pruning.
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The SAFIS algorithm is summarized below:
Given the growing and pruning thresholds eg,ep, for each observation (xn,yn), where xn ∈ RNx ,

yn ∈ RNy and n = 1,2, . . ., do

1. compute the overall system output:

ŷn =

Nh

∑
k=1

akRk(xn)

Nh

∑
k=1

Rk(xn)

Rk(xn) = exp

(
− 1

σ 2
k

‖xn−μk‖2
)

(10.25)

where Nh is the number of fuzzy rules.
2. calculate the parameters required in the growth criterion:

εn = max{εmaxγn,εmin}, (0 < γ < 1)

en = yn− ŷn (10.26)

3. apply the criterion for adding rules:

If ‖xn−μnr‖> εn and Einf(Nh +1) = ‖en‖ (1.8κ‖xn−μnr‖)Nx

Nh+1

∑
k=1

(1.8σk)Nx

> eg

allocate a new rule Nh +1 with

aNh+1 = en

μNh+1 = xn

σNh+1 = κ‖xn−μnr‖ (10.27)

Else
adjust the system parameters anr , μnr , σnr for the nearest rule only by using the EKF

method.
check the criterion for pruning the rule:

If Einf(nr) = ‖anr‖ (1.8σnr)
Nx

Nh
∑

k=1
(1.8σk)Nx

< ep

remove the nr-th rule
reduce the dimensionality of EKF

Endif
Endif

10.2.3 Selecting of Predefined Parameters

In SAFIS, some parameters need to be decided in advance according to the problems
considered. They include the distance thresholds (εmax, εmin, γ), the overlap factor
(κ) for determining the width of the newly added rule, the growing threshold (eg)
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Table 10.1 Effects of parameter eg on system performance (number
of rules and the testing RMS error) under different εmax values and
κ = 1.0

εmax\eg 0.001 0.005 0.01 0.05

1.0 (61, 0.0198) (17, 0.0385) (11, 0.0535) (2, 0.0912)
5.0 (45, 0.0233) (17, 0.0385) (11, 0.0535) (2, 0.0912)
10.0 (41, 0.0249) (14, 0.0386) ( 9, 0.0461) (2, 0.0912)

Table 10.2 Effects of parameter eg on system performance (number
of rules and the testing RMS error) under different κ values and
εmax = 10.0

κ\eg 0.001 0.005 0.01 0.05

1.0 (41, 0.0249) (14, 0.0386) ( 9, 0.0461) (2, 0.0912)
1.5 (50, 0.0350) (18, 0.0586) (15, 0.0598) (3, 0.1382)
2.0 (52, 0.0557) (25, 0.0902) (15, 0.1384) (3, 0.1391)

for a new rule, and the pruning threshold (ep) for removing an insignificant rule.
Based on the observation from many experiments, a general selection procedure for
the predefined parameters is given as follows: εmax is set to around the upper bound
of input variables; εmin is set to around 10% of εmax; γ is set to around 0.99; and ep

is set to around 10% of eg. The overlap factor (κ) is utilized to initialize the width
of the newly added rule and chosen according to different problems. κ is suggested
to be chosen in the range [1.0,2.0]. The growing threshold eg is chosen according to
the system performance. The smaller eg, the better the system performance, but the
resulting system structure is more complex.

An example is given to illustrate the effects of the parameters (eg, κ , εmax) on
the system structure and performance. Consider the following two-dimension sinc
function:

z = sinc(x,y) =
sin(x)sin(y)

xy
. (10.28)

In the simulation, 2,500 training data pairs (x,y) are drawn from the input range
[−10,10]× [−10,10]. At the same time, 100 testing data pairs (x,y) are drawn from
the same input range.

The general rule for choosing the parameters (εmin,γ,ep) are obeyed. εmin is set to
10% of εmax; γ is set to 0.997; and ep is set to the 10% of eg. The parameters eg, εmax,
and κ are observed in the range [0.001,0.05], [1.0,10.0], and [1.0,2.0], respectively,
to illustrate their effect on the resulting system structure and testing accuracy.
Tables 10.1 and 10.2 give the effects of parameter eg on system performance in
terms of number of rules and the testing RMS error under different κ or εmax values.
From the two tables, it is easy to find that with the increase of eg the number of
rules is decreased and also system performance (testing RMS error) becomes worse
with the same κ or εmax value. Furthermore, it can be found from the two tables that
the resulting system structure and testing accuracy have no very big change when
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the parameter κ or εmax appears different values. However, these parameters are
problem dependent and need to be determined according to the problem considered.
Besides the above guidelines for setting the parameters, the optimal parameters can
be determined using search techniques like GA for some complex problems in the
future work.

10.3 Performance Evaluation of SAFIS

In this section, the performance of SAFIS is evaluated based on two nonlinear
system identification problems and one chaotic time-series (Mackey-Glass) predic-
tion problem. For the first system identification problem, performance of SAFIS
is compared with other well-known sequential algorithms such as MRAN [33],
RANEKF [14], eTS [3], Simpl eTS [1], and hybrid algorithm (HA) [30]. For the
second system identification problem performance of SAFIS is compared with
MRAN [33], RANEKF [14], eTS [3], Simpl eTS [1], and SONFIN [13]. For the
chaotic time-series prediction problem, the comparison is done with MRAN [33],
RANEKF [14], eTS [3], and Simpl eTS [1]. In all the studies, the parameters (r,Ω )
for eTS and Simpl eTS where r is the distance and Ω is the least-square error
parameter [1, 3] are tuned to obtain the best performance.

Performance comparison is done in terms of accuracy and the complexity (the
number of rules) of the fuzzy system. For these problems, the SAFIS algorithm
goes through the training data sequentially in a single pass and builds up the fuzzy
inference system by adding and removing the rules along with their parameters.
Then, its performance is evaluated on the unseen test data.

10.3.1 Nonlinear Dynamic System Identification

Generally, a wide class of MIMO nonlinear dynamic systems can be represented by
the nonlinear discrete model with an input–output description form:

y(n) = f[y(n− 1),y(n− 2), . . .,y(n− k+ 1);u(n),u(n− 1), . . .,u(n− p+ 1)],

(10.29)

where y is a vector containing Ny system outputs, u is a vector for Nu system inputs,
f is a nonlinear vector function, representing Ny hypersurfaces of the system, and k
and p are the maximum lags of the output and input, respectively.

Selecting [y(n−1), . . . ,y(n−k+1);u(n),u(n−1), . . . ,u(n− p+1)],y(n) as the
fuzzy system’s input–output xn,yn at time n, the above equation can be put as:

yn = f(xn). (10.30)
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The SAFIS algorithm is used to approximate f such that:

ŷn = f̂(xn), (10.31)

and the error between the system output yn and the output of SAFIS ŷn, ‖yn− ŷn‖
is minimized.

Narendra and Parthasarathy [22] have suggested two special forms of the
nonlinear system model given in (10.32) and (10.33).

Model I:

y(n+ 1) = f [y(n),y(n− 1), . . . ,y(n− k+ 1)]+
p−1

∑
i=0

βiu(n− i), (10.32)

where βi is the constant unknown parameter.
Model II:

y(n+ 1) = f [y(n),y(n− 1), . . . ,y(n− k+ 1)]+ g[u(n),u(n−1), . . .,u(n− p+ 1)].

(10.33)

These two models of nonlinear systems have been used here for performance
comparison.

Selecting [y(n),y(n− 1), . . . ,y(n− k + 1),u(n),u(n− 1), . . . ,u(n− p+ 1)], and
y(n+1) as the input–output of SAFIS, the identified model is given by this equation:

ŷ(n+ 1) = f̂ (y(n),y(n− 1), . . . ,y(n− k+ 1),u(n),u(n− 1), . . .,u(n− p+ 1)),

(10.34)

where f̂ is the SAFIS approximation and ŷ(n+ 1) is the output of the SAFIS.

10.3.1.1 Identification Problem 1

The first nonlinear dynamic system to be identified represents model I and is
described by Wang and Yen [30]:

y(n) =
y(n− 1)y(n− 2)(y(n− 1)−0.5)

1+ y2(n− 1)+ y2(n− 2)
+ u(n− 1). (10.35)

The equilibrium state of the unforced system given by (10.35) is (0,0). As in [30],
the input u(n) is uniformly selected in the range [−1.5,1.5] and the test input u(n) is
given by u(n) = sin(2πn/25); 5,000 and 200 observation data are produced for the
purpose of training and testing. The different parameter values for SAFIS are chosen
as follows: γ = 0.997,εmax = 1.0,εmin = 0.1,κ = 1.0,eg = 0.05, and ep = 0.005.

The average performance comparison of SAFIS with MRAN, RANEKF, eTS,
Simpl eTS, and HA is shown in Table 10.3 based on 50 experimental trials. From
the table, it can be seen that SAFIS obtains similar testing accuracy compared
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Table 10.3 Results of nonlinear identification problem 1

Methods No. of rules Training RMSE Testing RMSE

SAFIS 17 0.0539 0.0221
MRAN 22 0.0371 0.0271
RANEKF 35 0.0273 0.0297
Simpl eTS (r = 2.0, Ω = 106) 22 0.0528 0.0225
eTS (r = 1.8, Ω = 106) 49 0.0292 0.0212
HA [30] 28 0.0182 0.0244

Fig. 10.2 Rule update process between different algorithms for nonlinear identification problem
1 during the whole observation

to MRAN, RANEKF, eTS, Simpl eTS, and HA. However, SAFIS achieves this
accuracy with smallest number of rules. It is worth noting that HA is based on GA
iterative learning and is not sequential. The evolution of the fuzzy rules for SAFIS,
MRAN, RANEKF, eTS, and Simpl eTS for a typical run is shown by Fig. 10.2. It
can be seen from the figure that SAFIS produces least number of rules. Besides,
Fig. 10.3 gives a clear illustration for the rule evolution tendency between 0 and
1,000 observation and shows that SAFIS can automatically add and delete a rule
during learning, which is manifested by increasing and reducing the number of
rules by one. The fuzzy rules for the typical run are listed in Table 10.4, where
G(.) represents the Gaussian membership function. The first and second values in
G(.) indicate the center and the width of the Gaussian function, respectively.
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Fig. 10.3 Rule update process between different algorithms for nonlinear identification problem
1 between 0 and 1,000 observations

Table 10.4 Fuzzy rules of SAFIS for nonlinear identification problem 1

Antecedent parameters
No. of Consequent
rules y(n-1) y(n-2) u(n-1) parameters

1 G(0.6883,0.8504) G(0.3062,0.8504) G(−2.0115,0.8504) a =−1.6137
2 G(−1.6117,0.9709) G(1.0091,0.9709) G(1.7480,0.9709) a = 2.5292
3 G(−0.2325,1.1461) G(−1.5054,1.1461) G(0.2722,1.1461) a = 0.5625
4 G(−0.1653,1.1633) G(−1.0712,1.1633) G(1.9589,1.1633) a = 1.5430
5 G(1.8338,1.2341) G(0.3378,1.2341) G(1.2441,1.2341) a = 2.0280
6 G(1.5042,1.3481) G(−0.5239,1.3481) G(0.0087,1.3481) a =−0.4277
7 G(0.3110,0.9829) G(−1.0793,0.9829) G(1.7363,0.9829) a = 1.9069
8 G(−0.8126,0.6423) G(−1.2611,0.6423) G(−0.5928,0.6423) a =−1.1355
9 G(−0.6152,0.9283) G(−2.0362,0.9283) G(−1.4239,0.9283) a =−1.4374
10 G(−1.3413,0.7751) G(−1.0834,0.7751) G(−1.8843,0.7751) a =−2.4472
11 G(1.8475,1.1035) G(−1.0128,1.1035) G(−1.4383,1.1035) a =−2.1617
12 G(0.7468,0.7356) G(2.2865,0.7356) G(1.4947,0.7356) a = 1.8152
13 G(−2.3833,1.9263) G(−1.8191,1.9263) G(−1.0221,1.9263) a =−2.9007
14 G(−0.4007,1.7921) G(1.9986,1.7921) G(−1.6721,1.7921) a =−2.0982
15 G(−1.6354,1.8484) G(1.8161,1.8484) G(0.1940,1.8484) a = 1.6630
16 G(−2.8360,1.9440) G(−2.0148,1.9440) G(1.0852,1.9440) a = 0.9242
17 G(1.7938,0.9549) G(1.4088,0.9549) G(−0.3515,0.9549) a = 0.2905
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Table 10.5 Results of nonlinear identification problem 2

Methods No. of rules Testing RMSE

SAFIS 8 0.0116
MRAN 10 0.0129
RANEKF 11 0.0184
Simpl eTS (r = 0.075, Ω = 106) 18 0.0122
eTS (r = 1.0, Ω = 106) 19 0.0082
SONFIN [13] 10 0.0130
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Fig. 10.4 Membership functions of input variable y(n) for nonlinear identification problem 2

10.3.1.2 Identification Problem 2

The second nonlinear dynamic system to be identified represents model II and is
described by Juang and Lin [13]:

y(n+ 1) =
y(n)

1+ y2(n)
+ u3(n). (10.36)

In accordance with [13], the input signal u(n) is given by sin(2πn/100); 50,000
and 200 observation data are produced for the purpose of training and testing.
The SAFIS parameter values chosen are as follows: γ = 0.997,εmax = 2.0,εmin =
0.2,κ = 2.0,eg = 0.03, and ep = 0.003. The input variables y(n),u(n), respectively,
follow the uniform sample distribution in the range [−1.5,1.5] and [−1.0,1.0].

Table 10.5 shows the performance comparison of SAFIS with MRAN, RANEKF,
eTS, Simpl eTS, and SONFIN [13]. It can be seen from the table that SAFIS
achieves similar accuracy with a lesser number of rules. Figures 10.4 and 10.5
show the final membership functions of input variables y(n),u(n) achieved by
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Fig. 10.5 Membership functions of input variable u(n) for nonlinear identification problem 2

SAFIS. From the two figures, one can clearly see that the input variable membership
functions are distributed in their own entire range. Besides, the testing accuracy of
SAFIS is slightly better than those of MRAN, RANEKF, Simpl eTS, and SONFIN,
which verifies that the learning performance of SAFIS is not lost by only modifying
the nearest fuzzy rule instead of all fuzzy rules during the learning. The evolution
of the fuzzy rules for SAFIS, MRAN, RANEKF, eTS, and Simpl eTS is shown by
Fig. 10.6. It can be seen from the figure that SAFIS is able to add and delete rules
during learning and produces least number of rules. The details of the fuzzy rules
are depicted in Table 10.6.

10.3.2 Mackey-Glass Time-Series Prediction

In this example, the SAFIS is applied to predict complex time series, a special
function approximation problem. The time-series prediction is very important in
solving real-world problems such as the detection of arrhythmia in heartbeats. The
chaotic Mackey-Glass time series is recognized as one of the time series benchmark
problems, which is generated from the following differential equation [2]:

dx(t)
dt

=
0.2x(t− τ)

1+ x10(t− τ) − 0.1x(t), (10.37)

where τ = 17 and x(0) = 1.2. For the purpose of training and testing, 6,000
samples are produced by means of the fourth-order Runge-Kutta method with the
step size 0.1. The prediction task is to predict the value x(t + 85) from the input
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Fig. 10.6 Rule update process between different algorithms for nonlinear identification problem 2

Table 10.6 Fuzzy rules of SAFIS for nonlinear identification problem 2

Antecedent parameters
No. of Consequent
rules y(n) u(n) parameters

1 G(−0.9729,1.0670) G(−1.2625,1.0670) a =−6.3086
2 G(0.2731,1.4623) G(1.9572,1.4623) a = 4.5472
3 G(0.3706,0.8085) G(−0.0884,0.8085) a = 3.1725
4 G(−0.1623,1.1271) G(0.1100,1.1271) a =−6.4255
5 G(−0.8399,1.1393) G(−0.5162,1.1393) a = 4.6764
6 G(1.9988,2.1081) G(1.8151,2.1081) a = 1.8266
7 G(1.4377,2.3607) G(1.2834,2.3607) a = 2.2549
8 G(1.2992,0.8117) G(0.3417,0.8117) a =−1.8183

vector [x(t − 18) x(t − 12) x(t − 6) x(t)] for any value of the time t. As in [2],
the observations between t = 201 and t = 3,200 and the observations between
t = 5,001 and t = 5,500 are extracted from the series and used as training and
testing data. For this problem, the parameters for SAFIS are selected as follows:
γ = 0.98,εmax = 1.6,εmin = 0.16,κ = 1.68,eg = 0.0005, and ep = 0.00005. The
data follow a uniform sample distribution in the range [0.4,1.4].

Table 10.7 shows the prediction accuracies and the number of rules obtained
by SAFIS, MRAN, RANEKF, eTS, and Simpl eTS. For comparison purposes, the
prediction accuracy is based on the non-dimensional error index (NDEI) defined as
the RMSE divided by the standard deviation of the true output values. As observed
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Table 10.7 Results of Mackey-Glass time-series prediction

Methods No. of rules Testing NDEI

SAFIS 6 0.376
MRAN 14 0.375
RANEKF 18 0.378
Simpl eTS(r = 0.25, Ω = 750) [1] 11 0.394
eTS(r = 0.25, Ω = 750) [2] 9 0.380

Fig. 10.7 Rule update process between different algorithms for Mackey-Glass time-series
prediction

from Table 10.7, all the algorithms produce similar accuracies; however, SAFIS
obtains the smallest number of fuzzy rules. The evolution of the fuzzy rules for
SAFIS, MRAN, RANEKF, eTS, and Simpl eTS is shown in Fig. 10.7.

10.4 Summary

In this chapter, a sequential fuzzy inference system called SAFIS is presented to
automatically construct a fuzzy inference system using the training data during
the learning process. Specifically, SAFIS algorithm implements the structure iden-
tification and parameter adjustment for a fuzzy inference system using the ideas
from GAP-RBF algorithm. SAFIS algorithm utilizes the influence of a fuzzy rule
to add and remove the fuzzy rules during learning. At the same time, the SAFIS
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algorithm utilizes the EKF to update the parameters of the nearest rule instead of
all the rules without losing the approximation performance. Its performance has
been evaluated by some function approximation benchmark problems including
two nonlinear system identification problems and the Mackey-Glass time-series
prediction problem. The simulation results from these benchmark problems show
that, compared with other algorithms, SAFIS produces similar or better testing
accuracies with lesser number of rules.

However, for large systems, EKF algorithm used in the parameter update
equation increases the computation burden. Also, the calculation of rule influence
requires uniform distribution of the input data, and this may degrade the perfor-
mance. Further studies in these directions are required in the future.
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Chapter 11
Interval Approach for Evolving Granular
System Modeling

Daniel Leite, Pyramo Costa, and Fernando Gomide

Abstract Physical systems change over time and usually produce considerable
amount of nonstationary data. Evolving modeling of time-varying systems requires
adaptive and flexible procedures to deal with heterogeneous data. Granular com-
puting provides a rich framework for modeling time-varying systems using non-
stationary granular data streams. This work considers interval granular objects to
accommodate essential information from data streams and simplify complex real-
world problems. We briefly discuss a new class of problems emerging in data
stream mining where data may be either singular or granular. Particularly, we
emphasize interval data and interval modeling framework. Interval-based evolving
modeling (IBeM) approach recursively adapts both parameters and structure of
rule-based models. IBeM uses ∪-closure granular structures to approximate func-
tions. In general, approximand functions can be time series, decision boundaries
between classes, control, or regression functions. Essentially, IBeM accesses data
sequentially and discards previous examples; incoming data may trigger structural
adaptation of models. The IBeM learning algorithm evolves and updates rules
quickly to track system and environment changes. Experiments using heterogeneous
streams of meteorological and financial data are performed to show the usefulness
of the IBeM approach in actual scenarios.

D. Leite (�) • F. Gomide
University of Campinas, School of Electrical and Computer Engineering, Sao Paulo, Brazil
e-mail: danfl7@dca.fee.unicamp.br; gomide@dca.fee.unicamp.br

P. Costa
Pontifical Catholic University of Minas Gerais, Graduate Program in Electrical Engineering,
Belo Horizonte, Brazil
e-mail: pyramo@pucminas.br

M. Sayed-Mouchaweh and E. Lughofer (eds.), Learning in Non-Stationary Environments:
Methods and Applications, DOI 10.1007/978-1-4419-8020-5 11,
© Springer Science+Business Media New York 2012

271



272 D. Leite et al.

11.1 Introduction

Measurements and expert estimates are never exact [1]. Novel technologies have
created problems in which uncertainty, nonlinearity, nonstationarity, and complexity
are crucial. Adaptive modeling from data streams, with minimal or no supervision,
maximally exploits the information flow in dynamic environments.

Data stream modeling for knowledge discovery has recently become an im-
portant topic in various research areas. Modeling efforts are driven to processing
continuously incoming examples from quickly changing, heterogeneous, nonsta-
tionary, and endless flows of data. Data-stream-oriented adaptive models receive
examples one at a time and are constrained by the impossibility of storing previous
examples. Fundamentally, recursive algorithm scans unbounded streaming dataset
only once and should deliver models and results on demand; algorithmic procedures
must account for the fact that the unknown is likely to matter. Classification,
clustering, prediction, frequent pattern mining, regression, and control are examples
of problems addressed in context. Essentially, neither the time complexity of
structural adaptation of models, nor memory usage should scale with the number
of streaming examples.

Recent research on evolving granular systems [2–8] relies on the concepts of
granular view, information granule, and granular mapping in the process of model-
ing streaming data. Emphasis is on the tasks of data granulation and computing with
granules [9–12]. The granularity of information explicitly embedded into granular
systems offers key features in dynamic modeling, for example, transparency and
flexibility. Concept change, missing and noisy values, and superfluous and outlier
instances are common in online environment and require automatic intervention.
Particularly, structured representation of data flows is a key contribution. By
structured representation, we mean a collection of rules that tells the very essence
of the data.

Information granulation splits a problem into simpler subproblems. In this work,
the quotient structure of such a granulation process is a granular model of an
evolving system built from a repertoire of data mining and machine learning
procedures. Constructing granular models of large spatiotemporal data sets requires
choosing a computational framework to return a proper granulation and draw
conclusions useful for practical purposes. Evolvable granular models may be
expressed in the framework of interval mathematics, statistics, fuzzy sets, rough sets,
shadow sets, cluster analysis, decision trees, neighborhood systems, or hybrids. This
concedes ample freedom in electing representative granular objects and handling
tools. Regardless of the framework chosen, granulation aims to retain the essence of
original streaming data and reveal local models. Computing with granules aims at
looking to the data under different resolutions (shift back and forth between simpler
and more detailed views of data) and extract from it features of interest to attain
efficient and practical solution.

This work suggests multidimensional intervals (axis-aligned hyper-boxes) as
formal granular object to wrap uncertainty in data stream. Features that make
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interval representation attractive include: (1) easiness of acquiring parameters. Only
two parameters related with the real features (upper and lower bounds) need to
be captured. These are not cognitively complex and appear straight from data
flows; (2) adaptation of intervals demands basic fully formalized operations of
interval arithmetic; (3) intervals make no specific assumption about the content
of an information granule. This means that intervals do not require assumptions
on probability distributions, membership functions, belief intervals, or possibility
values—intervals are everything we wish to know from large amounts of data;
(4) interval data is common in practice. Moreover, interval model has a great
deal of appeal to represent counterpart interval data. Intervals may also rise after
preprocessing numeric data, that is, by comprising it into a smaller set of granular
data; (5) intervals can be translated quite easily to linguistic propositions. Interval
precision facilitates comprehension when supported by a context.

Interval-based evolving modeling (IBeM) [7, 8] considers heterogeneous
(singular and granular parts) streaming data, one-pass recursive learning algorithm,
and monotonic interval inclusion functions associated with hyperrectangle-like
forms of information granules to provide singular and granular approximations
of nonstationary functions. Essentially, an interval evolving model self-adapts
its structure when new concepts appear in data streams. Here, model structure
means interval-type information granules, IF-THEN rules, and a concept. IBeM
algorithms accumulate values associated to granules and rules. Granulation eases
incremental updating and discovering of the essence of the structure of the data
with modest storage and processing costs. Experts usually prefer models that
approximate physical system outputs and provide estimates of the approximation
bounds. Building intervals in bounded-error context is the IBeM approach for
enveloping uncertainty.

The contribution of this work over [7] and [8] is twofold. First, we extend the
IBeM approach to deal with augmented nonnumeric type of data. Second, we
employ a preprocessing time-granulation step in the algorithm. Time granulation
aims at synchronizing concurrent data flows, possibly from different sources,
incoming at random time intervals. We examine both, spatial and temporal aspects
of data stream processing, from a granular perspective.

Next section introduces a granulation approach for time and space events.
Granulation of time and space leads to temporal and spatial granularities. We argue
that granular framework better supports modeling of manifold heterogeneous data.
Sections 11.3 and 11.4 address the formalization of concepts of interval mathemat-
ics, and data stream modeling using interval representation. A data-stream-driven
recursive learning algorithm capable of operating in online environment and dealing
with nonsynchronized heterogeneous data is suggested in Sect. 11.5. Section 11.6
provides detailed analysis of the behavior of the IBeM granular approach in different
application domains, particularly, meteorology and finance. Section 11.7 concludes
the paper and lists research issues for further investigation.
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11.2 Granular Data and Systems

Information granules are conceptual objects that catch the essence of the overall
data in a concise and explainable manner [13, 14]. Granules may be interpreted
from two points of view. From the uncertainty theory, a granule is a unit lacking
precise knowledge. From the knowledge engineering, a granule is a unit of elemen-
tary knowledge. Granular computing is intended to identifying manifestations of
granules through moving back and forth among granularities to afford more or less
differentiation. Too much detail is wasteful, and too little renders a system useless.

Data and systems can be granular. Sometimes, data are not realized with full
precision but are subjectively noticed as linguistic terms, fuzzy numbers, and
intervals. Sometimes, it is hard to discriminate numeric (singular) data precisely,
and we are compelled to consider granules. Systems are better supported by granular
framework to suit granular data. Singular data is a particular case in which a granule
degenerates into a singleton. The necessity of building systems in finer granularities,
close to the singularity, justifies only when there are clear benefits on doing so.

Streaming data in online environment can be granular from different perspec-
tives. A more intuitive perspective concerns data that is granular by itself. To
elaborate on this approach, consider a simple example of predicting variable y from
the last available observation x. This leads us to search for an approximand p to
describe the process function f based on pairs (x,y). In this example, instances
x and y and function f are both singular. Singular data does not restrain models
to be singular but rather a granular system may use granular models whose size
and placement reflect the information carried by singular data. A hypothesis is that
granular representation helps to assess the structure of detailed singular data and
organizes the data into an interpretable quotient structure.

Consider x= [x,x] and y=
[
y,y

]
as instances of granular data stream and intervals

in this case. To exemplify, x and x may denote the minimum and maximum price of
an economical index during a day, and y and y, the range of fluctuation of the price
in the next day. In this example, data is originally granular, the process function
f =

[
f , f

]
is also originally granular, and models p =

[
p, p

]
must be granular to

support granular data and granular approximation of f . Figure 11.1 illustrates the
granular modeling approach for function approximation.

Figures 11.1a and 11.1b show that granular models outer approximate singu-
lar and granular functions, respectively. Outer approximations of functions can
always be obtained, for example, at the top level; the coarsest possible granular
approximation is the problem domain. Merely enclosing a solution may sound at
first shallower than finding the solution itself. We should reflect that the degree of
satisfaction involved in embracing a solution depends strongly on the compactness
of the enclosure obtained [15]. Moreover, when processing streaming data, we
rarely have idea about the error and uncertainty associated to the data. By contrary,
if we can compute with granules containing a solution, then we can take, for
example, the midpoint as a numeric approximation. Hence, we obtain both an
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Fig. 11.1 Granular models:
(a) singular functionand (b)
granular function

approximate numeric solution and tolerance bounds on the approximation. The key
task of approximating with granules is seeking for the tightest envelope for the
approximand.

Another perspective for the materialization of granules in data streams concerns
the uncertainty introduced during preprocessing and analysis. Incomplete data
makes precise discrimination of examples difficult. Missing values are usually
predicted through imputation methods [16,17]. Imputed data is uncertain by the very
nature of the prediction and motivates granules. Additionally, noise and disturbances
of bounded-error dynamic context demand granular treatment of the information.
Uncertainty in data representation may be useful to improve the quality of the
results. For example, an instance with greater uncertainty may not be as important
as one with smaller uncertainty. This incites incremental granular feature selection.

Time and space domains benefit from data granulation. Approaches for granules
building regard temporal granulation earlier than spatial granulation, as illustrated
in Fig. 11.2. This order is maintained due to several reasons. Occasionally, instances
are recorded at different time intervals, for example, as in events stream. The
need of synchronized analysis of manifold data streams and search for time
correlated structures plead us to consider temporal granulation firstly. Temporal
granulation tends to slow down the data flow once several streaming instances can
be encapsulated by a granular object and further computations be based on granules.
Time granules grant synchronism and smaller amount of data for subsequent spatial
analysis. Spatial correlation among heterogeneous data with multiple levels of
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Fig. 11.2 Time and space granulation

granularity and different representations is captured during the process of spatial
granulation. Structured representation of data is preserved over time as a synopsis
of the data stream; it warrants structured problem solving at the practical level.

The flexibility of handling data using granular framework enables us to describe
granules in different application domains without deep knowledge about the prob-
lem. Tight time constraints of online environment and interpretability requirements
inspire granulated views of detailed data and computing at coarser granularities.

11.2.1 Time-Domain Granulation

Streaming data values are ideally recorded at equal time intervals. Exception
happens either when instances arise at random time intervals or when concurrent
data flows (usually from different sources or tasks) income at different sampling
frequencies. The necessity of a synchronized analysis of concurrent data streams
demands forming time granules. A time granule describes the data for a certain
period.

Appropriate arrangement plays a key role in the definition of a time granule. If
the borders of a time granule are aligned with significant changes of the function
behavior, the resulting granulation provides a good abstraction of the data and
the function. If alignment is poorly done, models may return inadequate results.
Manifold granularities require temporal reasoning and formalizations. At this point,
it is worth to distinguish time granule from time window.

Time window [18, 19] stands for a prespecified or adaptive duration interval
within which data assembles a representation. Generally, a fixed number of sam-
plings or error values define the size of the window. Windowing the time domain
attempts to produce as few segments as possible to avoid data overfitting. Few time
segments may hide information if the concept changes. Nonstationarity modifies
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“ideal” window lengths by its own dynamic. Approaches for testing window lengths
are computationally costly and, hence, infeasible in environments with narrow time
constraints. Essentially, there may exist several information granules in a time
window. Data chunk analysis belongs to window-based approaches for information
extraction and analysis.

A time granule groups data according to their indistinguishability in time. Since
a time granule conveys similar data indexed in time, its bounds are naturally aligned
with substantial changes in the function. The result of dynamic time granulation
is a unique granule per segment. Time granules assume manifold levels of data
abstraction and are aware of the pace of concept changes.

Event streams usually come at different time granularities. They require anal-
ysis of time-domain granules for commonalities extraction prior to space-domain
analysis. Information evoked from time granules can be bounds of intervals,
statistical or membership functions, and associated features, for example, frequency
of a certain event, correlation between events, regular patterns, and the like. The
internal structure of a granule and associated data provide full description and
characterization of the granule. A granule may have complex structure itself, but
it does not come for free.

Particularly, whenever manifold data streams mismatch each other at finer time
granularities, we resort to a granulated view of the time-domain and data-mining ap-
proach. Resulting granulation should be at least as coarse as the coarsest individual
stream to agree with the notion of outer approximation and guaranteed solution.

11.2.2 Space-Domain Granulation

Data granulation over the space domain is a process of organization for compre-
hension. Data flow triggers a mechanism to collect similar examples. Basically,
granulation enables us to view different examples as being the same if low level
details are neglected. Granulating of the domain space is fundamental in methods of
clustering and information integration. Resulting granules may compose antecedent
and consequent of rules in rule-based systems.

Whenever variables are recorded simultaneously and the sampling frequency is
not extremely high so that we have enough time to step recursive algorithms, the
time granulation stage can be ignored and efforts fully put on spatial granulation.
In fact, time and space granulation somewhat relate to each other. For instance,
(1) with the minimal and maximal values occurring in a time granule, we may form
an interval granular object; (2) taking a representative mean or median of instances
resting into a time granule and the confidence interval around it, we may form a
statistical granular object; and (3) capturing the core and the uncertainty of instances
falling in a same time granule may give rise to a fuzzy granular object. Granular
objects of any precedence may be taken into consideration as input to the stage of
spatial granulation.

Spatial location of a granule and its size play a role in the process of granu-
lation. Original streaming data is compressed to few granules whose location and
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granularity reflect the structure of the data. There are many granulated views of
the same problem. When evolving granular structures, granules are created as
instances of the current knowledge. Next, granules may expand and occupy the
space wherever new instances arrive. Operations on granules combine granules to
form a coarser granule or decompose a granule into finer granules. Operations on
granules should be consistent with the size of the granules and relations between
granules; they provide the basic ingredients for the granular computing.

While concept drift and shift are terms related to the joint time-space domain, the
descriptions of data density and information specificity [20] concern to the space
domain and are choices to guide spatial granulation. Bargiela and Pedrycz [14]
state that granules should embrace as many data as possible while maintain certain
specificity in what they called principle of the maximization of the information
density. Next, the authors suggest a principle for a balanced information granularity.
This principle gives preference to the design of granules balanced along all
dimensions rather than granules with unbalanced geometry. Hyperbox-based spatial
granulation results in a description fully compatible with the intervals description.
With intervals, the pursuit of a balanced granularity and refining and coarsening of
granules are reduced to arithmetic of intervals.

11.3 Interval Analysis

Interval analysis is a branch of mathematics that provides reliable numerical tools
for problem solving; it treats an interval both as a set and as a number [15, 21–26].
While arithmetic carries operations on numbers, interval arithmetic carries opera-
tions on intervals. Generally speaking, intervals are instances of granules. Granular
computing materializes in the framework of interval analysis and provides features
for interpretability.

Interval analysis is a theory oriented for computational implementation because
it supports the development of interval-based algorithms. These algorithms are
mainly designed to automatically provide rigorous bounds on approximation errors,
rounding errors, and propagated uncertainties in initial data. This is of utmost
importance because modeling of complex systems must compromise complexity
and precision. Operations involving imprecise objects must consider the nature of
the imprecision.

The main concern of the interval analysis is to provide a guaranteed approx-
imation of the set of solutions of the underlying problem. “Guaranteed” in this
context means that outer approximations of intervals can always be obtained and,
moreover, be made as precise as desired. Intervals acknowledge limited precision by
associating with a variable of the model under investigation a set of reals as possible
values. For ease of storage and computation, these sets are restricted to intervals
[26]. Essentials of the interval theory, which form a background of fundamentals
for our investigations, are summarized below.



11 Interval Approach for Evolving Granular System Modeling 279

11.3.1 Interval Vectors

An interval I is a closed bounded set of real numbers

[l,L] = {x : l ≤ x≤ L},

where l and L denote its endpoints. An n-dimensional interval vector is an ordered
n-tuple of intervals (I1, . . . , I j, . . . , In). If I is a, for example, two-dimensional interval
vector, then I = (I1, I2) for some, I1 = [l1,L1], and I2 = [l2,L2].

Set-theoretic operations of intersection, ∩, and union, ∪, are applicable to
intervals. The intersection of two intervals, I1 and I2, is empty, I1∩ I2 = /0, if either
l1 > L2 or L1 < l2. This indicates that I1 and I2 have no common points. Otherwise,
the intersection of I1 and I2 is again an interval:

I1∩ I2 =
[
max

(
l1, l2) , min

(
L1,L2)] .

The intersection of interval vectors is empty if the intersection of any of their items

is empty. Otherwise, for I1 =
(

I1
1 , . . . , I

1
j , . . . , I

1
n

)
and I2 =

(
I2
1 , . . . , I

2
j , . . . , I

2
n

)
, we

have

I1∩ I2 =
(
I1
1 ∩ I2

1 , . . . , I
1
j ∩ I2

j , . . . , I
1
n ∩ I2

n

)
.

If two intervals have nonempty intersection, then their union,

I1∪ I2 =
[
min

(
l1, l2) , max

(
L1,L2)]

is an interval. Disconnected sets must not be expressed as a single interval.
The convex hull of two interval vectors, I1 and I2, namely, ch

(
I1, I2

)
, is the

smallest interval vector containing all their elements. Then,

ch
(
I1

j , I
2
j

)
=

[
min

(
l1

j , l
2
j

)
, max

(
L1

j ,L
2
j

)]
, j = 1, . . . ,n.

Hull computation is an efficient procedure to combine sets independently of their
connection. It follows that I1∪ I2 ⊆ ch

(
I1, I2

)
for any I1 and I2.

If I1 =
(

I1
1 , . . . , I

1
j , . . . , I

1
n

)
and I2 =

(
I2
1 , . . . , I

2
j , . . . , I

2
n

)
are interval vectors, then,

I1 ⊆ I2 if and only if I1
j ⊆ I2

j , j = 1, . . . ,n.

We denote the width of an interval vector, namely, wdt(I), as the length of its
largest side:

wdt(I) = max(wdt(I1), . . . ,wdt(I j), . . . ,wdt(In)).
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The absolute value (magnitude) of an interval I is

|I| = max(|l|, |L|).

It follows that |x| ≤ |I| ∀ x ∈ I. For the interval vector I = (I1, . . . , I j, . . . , In), we use
the vector norm:

||I|| = max(|I1|, . . . , |I j|, . . . , |In|).

Finally, it is worth defining the midpoint of an interval I:

mp(I) = (l +L)/2.

Analogously, if I = (I1, . . . , I j, . . . , In) is an interval vector, then

mp(I) = (mp(I1), . . . ,mp(I j), . . . ,mp(In)).

11.3.2 Interval Arithmetic

Operations on real numbers can be extended to intervals. Interval arithmetic treats
intervals as numbers: adding, subtracting, multiplying, and dividing them.

The rules for interval addition and subtraction are

I1 + I2 =
[
l1,L1]+ [

l2,L2]= [
l1 + l2,L1 +L2],

I1− I2 =
[
l1,L1]− [

l2,L2]= [
l1−L2,L1− l2].

Operations of addition and subtraction hold for interval vectors. For two interval
vectors, I1 = (I1

1 , . . . , I
1
j , . . . , I

1
n ) and I2 = (I2

1 , . . . , I
2
j , . . . , I

2
n ), we have

I1 + I2 =
(
I1
1 + I2

1 , . . . , I1
j + I2

j , . . . , I1
n + I2

n

)
,

I1− I2 =
(
I1
1 − I2

1 , . . . , I1
j − I2

j , . . . , I1
n − I2

n

)
.

For the product of two intervals, I1 and I2, we get

I1I2 = {x1x2 : x1 ∈ I1,x2 ∈ I2}.

Clearly, the result is again an interval, say I3, whose endpoints are

[
l3,L3]= [

min
(
l1l2, l1L2, L1l2, L1L2), max

(
l1l2, l1L2, L1l2, L1L2)] .
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The reciprocal of an interval I yields

1/I = {1/x : x ∈ I}.

If I is an interval not containing the number 0, then 1/I = [1/L,1/l] if l > 0 or 1/I =
[1/l,1/L] if L < 0. In case I contains 0 so that l ≤ 0 ≤ L, then the set is unbounded
and cannot be represented as an interval whose endpoints are real numbers. For the
quotient of two intervals, we have

I1/I2 = I1 (1/I2)= {x1/x2 : x1 ∈ I1,x2 ∈ I2}.

If 0 is not contained in I2, then I1/I2 is again an interval.
The product and quotient operations for interval numbers hold for interval

vectors. For two interval vectors, I1 = (I1
1 , . . . , I

1
j , . . . , I

1
n ) and I2 = (I2

1 , . . . , I
2
j , . . . , I

2
n ),

it follows that

I1I2 =
(
I1
1 I2

1 , . . . , I1
j I2

j , . . . , I1
n I2

n

)
,

I1/I2 =
(
I1
1/I2

1 , . . . , I1
j /I2

j , . . . , I1
n/I2

n

)
.

11.3.3 Distance Between Intervals

A suitable metric to measure the distance between two intervals, I1 and I2, is

d
(
I1, I2)= max

(|l1− l2|, |L1−L2|) .
With this metric, the correspondence between the interval number system and the
real number system, [x,x]↔ x, holds. The metric d(.) preserves the distance between
the corresponding items. We have that

d
(
[x1,x1], [x2,x2]

)
= max

(|x1− x2|, |x1− x2|)= |x1− x2|

for any x1 and x2. The real line is isometrically embedded into the metric space of
intervals [27].

The distance between two interval vectors, I1 = (I1
1 , . . . , I

1
n ) and I2 = (I2

1 , . . . , I
2
n ),

d
(
I1, I2)= (

max
(|l1

1 − l2
1 |, |L1

1−L2
1|
)
, . . . , max

(|l1
n− l2

n |, |L1
n−L2

n|
))

is an interval vector. Sometimes, we are more interested in a number to represent
the overall distance between interval vectors. A measure for the overall distance
between two interval vectors, I1 and I2, is

D(I1, I2) = max
(
d(I1, I2)

)
.
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Fig. 11.3 Image f of box I
and inclusion functions F
and F∗

11.3.4 Interval Functions

Consider a real-valued function f (x) and a corresponding interval-valued function
f (I). f (I) is an interval extension of f (x) if f (I) = f (x) for any value of x ∈ I. If
the parameters of f (I) are degenerated, then f (I) is a degenerated interval equal to
f (x). Formally, the image of an interval I under a real mapping f is

f (I) = { f (x) : x ∈ I}.
More generally, the image of a specified n-dimensional vector I admitting a multi-
variable real function f is:

f (I1, . . . , I j, . . . , In) = { f (x1, . . . ,x j, . . . ,xn) : x j ∈ I j ∀ j}.
Generally, the image of an interval through f is not a box (see Fig. 11.3), and it

may be difficult to obtain in closed form. In practice, f (I) can be approximated by
an inclusion function F(I), which is a box in the range of f .

An interval function F from IR
n to IR

m is called inclusion function of f if

f (I)⊆ F(I) ∀I ∈ IR
n.

Inclusion functions are not unique, and they depend on how we choose F. An
inclusion function is optimal if F(I) is the interval hull of f (I). In other words,
the optimal inclusion function for f (I) is the smallest box F∗(I) that contains f (I).
Figure 11.3 illustrates the idea. F∗(I) is unique.
In particular, for degenerated intervals I, it follows that

F(I) = f (I) = F∗(I).

Assume f is monotonically increasing in I = [l,L]. Then we can obtain f (I) using

f (I) = [ f (l), f (L)].

Consequently,

f (x) ⊆ [ f (l), f (L)] ∀x ∈ I.

With monotonic decreasing functions, we have to order the resulting endpoints
correctly. In these cases, f (I) = [ f (L), f (l)], that is, strict inclusion relationship
holds.
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Nonmonotonic functions could be monotonic under endpoint constraint. For
example, f (I) = sin(I) is not monotonic in general but defining I = [−Π/2,Π/2],
then f (I) is monotonic and f (I) = sin(I) = [sin(l),sin(L)].

An interval function f (I) is inclusion isotonic, when for any interval vectors,
I1 and I2,

if I1 ⊂ I2, then f (I1)⊂ f (I2).

Finite interval arithmetic [23] is inclusion isotonic. Consider that • denotes the
operations of addition, subtraction, multiplication, and division, thus

I1 • I2 ⊂ I3 • I4

holds whenever I1⊂ I3 and I2⊂ I4. In this work, all interval enclosures are inclusion
isotonic interval extensions of real-valued continuous functions.

An interval function f (I) ∈ IR is called thin when it involves only degenerate
interval parameters or, equivalently, singular parameters. For instance, the interval
function

f (I) = a0 +
n

∑
j=1

a jI j

is thin for (a0, . . . ,an) degenerated intervals. When an interval function involves at
least one interval parameter of nonzero width, it is called thick. In this work, we
consider thin interval functions only.

Interval analysis goes far beyond what has been covered in this section. We do
not address both interval integration [27], complex interval arithmetic [28], interval
statistics [29], and intervals in fuzzy set theory [30], but the essentials to pave the
IBeM framework. Moving beyond the essentials and toward the development of
effective approach to handle real-world problems is subject of the following section.

11.4 Interval-Based Evolving Modeling

The mathematical formalism of the interval analysis provides a robust framework
for the analysis of granular structures. Interval mathematics supports the core of
the IBeM learning algorithm and gives simplicity, correctness, totality, closeness,
optimality, and efficiency [26].

IBeM originated from recent research on modeling nonstationary streaming data.
IBeM models process data streams using recursive one-pass algorithm. It starts
learning from scratch and dispenses knowledge about the properties of the data.
Models developed by IBeM are interpretable via rules. Online learning algorithm
casts the IBeM structure to learn new concepts, detect concept change, cope with
uncertainty, learn forever, and to provide nonlinear approximation.
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Fig. 11.4 Approximating a
singular function with
granules

IBeM exploits bottom–up procedures to form higher level granules from raw
data. A ∪-closure granular structure ensues from more specific local granules. The
internal representation of an IBeM granule, γ i, in respect to antecedent variables,
x j, is empty. This means that bounds of intervals, [li

j,L
i
j], are all IBeM records from

input data stream. Consequent variables, yk, are identically granulated whenever
output data become available. The content of an output granule conveys additional
information in respect of a rule, for example, inclusion monotonic functions pi

k.
Bounds of consequent variables,

[
ui

k,U
i
k

]
, are determined by granulating the output

data stream, processing the inclusion function using bounds of the antecedent vari-
ables, and performing the AND operation. The result is a granular approximation
of a function. Computing pi

k using x j gives a singular approximation. Rules Ri

associated with granules γ i are of the type:

Ri: IF (li
1 ≤ x1 ≤ Li

1) AND (li
2 ≤ x2 ≤ Li

2) AND ... AND (li
n ≤ xn ≤ Li

n)

THEN (ui
1 ≤ y1 ≤Ui

1) AND pi
1 = ai

01 +∑n
j=1 ai

j1[l
i
j,L

i
j] AND

...
(ui

k ≤ yk ≤Ui
k) AND pi

k = ai
0k +∑n

j=1 ai
jk[l

i
j,L

i
j] AND

...
(ui

m ≤ ym ≤Ui
m) AND pi

m = ai
0m +∑n

j=1 ai
jm[l

i
j,L

i
j].

Functions pi
k are thin and of first order in this case. In general, each pi

k can be
of different type and does not need to be linear. The recursive least mean square
(RLMS) algorithm is used to determine the coefficients ai

jk of pi
k.

Assume that ρ j andσk are the maximum width that intervals may take in the input
and output spaces, respectively. Values of ρ and σ allow different representations of
the same problem in different levels of detail. Figure 11.4 illustrates the idea in the
input/output space. The case shown in the figure refers to a collection of granules
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γ i, i = 1, . . . ,c, of different sizes and geometric forms constructed in light of singular
data being available. The learning approach relies on the information conveyed by
the data to create and foster granules and to set the granularity. Granules are not
allowed to grow beyond ρ and σ . If so, they are immediately required to be split.

11.5 Learning Algorithm

This section details the working principle of the IBeM learning algorithm. IBeM
system grants important characteristics for evolving modeling. Its incremental
learning approach spends a small and constant processing time, that is, processing
time does not scale with the number of instances. Continuous processing on an
instance-per-instance recursive basis enables IBeM to deal with concept drift within
online environment. Nonstationarity requires detecting and tracking changes in the
joint time-space structure of the underlying data. The IBeM approach for data flow
mining and knowledge discovery relies predominantly on constructive bottom–up
modeling procedures, but allows decomposition-based top–down procedures.

Formally, IBeM learns online from a sequence (x,y)[h],h = 1, . . . , where y[h]

is known given x[h] or will be revealed some steps latter. Each pair (x,y) is an
observation of the target function f . When f is nonstationary, IBeM should track
time varying function f [h]. IBeM systems evolve whenever new information appears
in the data. When new instances do not fit current knowledge, procedures create new
information granules and rules managing the granules. Conversely, when instances
fit current knowledge, procedures adapt existing granules and rules if necessary.
Eventually, the quotient granular structure may be optimized, refined, or coarsed,
agreeing with intergranule relationships.

11.5.1 Time Granulation

From a data stream (x,y)[h],h = 1, . . . , time granulation groups successive instances
(x,y)[h],h = hb, . . . ,he−1, into a time granule. Indices hb and he−1 denote the
beginning and the end of a time granule; he is a break point value. Strict relationship
he > hb holds. The set of instances streaming during [hb,he−1] is considered
indistinguishable and the inequalities

wdt
(

ch
(

x[hb]
j , . . . ,x[he−1]

j

))
≤ ρ j, j = 1, . . . ,n, and

wdt
(

ch
(

y[hb]
k , . . . ,y[he−1]

k

))
≤ σk, k = 1, . . . ,m,

are satisfied. The instance indexed by he conveys at least one contrasting value.
The collection (x,y)[h],h = hb, . . . ,he−1, produces a unique interval granule with

lower and upper endpoints determined by
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Fig. 11.5 Expansion
of a granule

[
min

(
x[h]j

)
,max

(
x[h]j

)]
, h = hb, . . . ,he−1; j = 1, . . . ,n, and[

min
(

y[h]k

)
,max

(
y[h]k

)]
, h = hb, . . . ,he−1; k = 1, . . . ,m,

respectively, for input and output variables.
In the IBeM framework, time granulation is used as a preprocessing step

especially on occasions where instances from different sources or tasks arise at
random time intervals. Multiple time granularities allow synchronized analysis of
concurrent data streams. Thereafter, learning within the space domain is based on
time granule intervals, rather than on original data. IBeM is not exposed to all
original data, which are far more numerous than time granules.

11.5.2 Birth and Growth of Space Granules

IBeM systems start learning from scratch. No granules and rules need to be
preconceived nor needs the amount of granules to be set in advance. Granules and
rules are created and adapted on demand, dynamically, steered by the behavior of the
process function and information mirrored in the measured data. Whenever stream
pairs (x,y)[h] arrive, a decision mechanism is trigged and granules and rules can be
inserted into or adapt the IBeM structure.

Key questions to be answered for effective implementation of IBeM refer to when
and how to create or adapt granules and rules recursively to consider new never-
seen-before instances. Let Ei be the expansion region of a granule γ i. Thus,

Ei
j = [Li

j−ρ j, li
j +ρ j], j = 1, . . . ,n.

Bounds of expansion regions Ei
j help to derive criteria for deciding whether or not

two objects should be put into the same granule. Figure 11.5 illustrates the expansion
of an interval granule γ i.

An information granule is born either when an input variable, say x j, does not
fit Ei

j for all i and some j or an output variable, say yk, does not fit Ei
k for all i and

some k. This means that existing granules must not expand their bounds beyond the
limits dictated by ρ and σ to include the current input. Connective AND operators
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of IBeM rules suggest that both, Ei
j for all j and Ei

k for all k, suit (x,y) for the

corresponding granule be considered. The new granule γc+1 extends the current
collection of granules γ = {γ1, . . . ,γc}.

Adaptation of existing rules Ri expands the width of rules antecedent [li
j, Li

j ]

and consequent [ui
k, Ui

k] to accommodate new data and simultaneously adjusts the
coefficients of local interval functions pi

k. A rule Ri is adapted whenever an instance
(x,y) falls into the region Ei of γ i. This means, geometrically, that the instance lays
inside the hyperrectangle of γ i or close enough so that the granule is allowed to
expand to include (x,y). Figure 11.6 summarizes nine situations that may happen
depending on where the instance is confined and associated procedures.

In Fig. 11.6, recently arrived interval data, x, can be either outside, partially
inside, or inside of a generic granule γ i. Depending on the location of x, IBeM
creates a new granule γc+1 and/or adapts the bounds of an existing granule γ i.
Expansion is mainly based on union and convex hull operations. All uncertainty
in the data is enveloped by some granule to guarantee outer approximation of the
solution. Although data and granule may have some level of overlap, two granules
are forbidden to overlap as result of these adaptation procedures.

Adaptation of consequent intervals [ui
k, Ui

k] uses outcome data yk. Thin poly-
nomial coefficients are initialized as ai

jk = 0, j �= 0 and ai
0k = yk∀k and can be

subsequently updated using the standard RLMS algorithm and taking advantage
of the instance that activates the rule Ri. Storage of a number of recent instances
may be useful to guide alternative coefficient identification algorithms, for example,
data chunks oriented algorithms. However, it comes with some additional cost
concerning memory and processing time.

11.5.3 Choosing the Granularity

Values of ρ and σ set upper bounds of the level of abstraction of models. If ρ
and σ are equal to 0, then the existing granules cannot be expanded. Conversely,
when ρ and σ match 1, a single granule represents all the data. On trading off
these extreme situations, we intermediate complexity and precision. Calculations
involving imprecise data must consider the nature of the imprecision.

The size of a granule may be interpreted as its degree of detail. A simple
procedure we use in IBeM to tune the maximum width ρ and σ of granules over
time regards multiple views of the data and refining and coarsening of granules.

Let β be the number of rules created after a certain number of processing steps
hr. If the number of rules grows faster than a threshold value η , that is, β > η , then
ρ and σ are increased as follows:

ρ ,σ(new) =

(
1+

β
hr

)
ρ ,σ(old).
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Fig. 11.6 Recursive adaptation of IBeM granules
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Otherwise, if the number of rules grows at a rate smaller than η , that is, β < η , then
ρ and σ are decreased as follows:

ρ ,σ(new) =

(
1− (η−β )

hr

)
ρ ,σ(old).

Decreasing the maximum width allowed may require adequate diet for some
granules to get the new standard. The refinement of a granule is based on its
midpoint and redefinition of its lower and upper bounds. The mechanism to deal
with data stream granularity is useful to let ρ and σ learn values for themselves and
to avoid guesses on how fast and how often streams change.

11.5.4 Refining and Coarsening the Quotient Structure

Once granules are identified, IBeM analyzes the relationship among them and
proceeds accordingly. Top–down and bottom–up structural operations support
refining and coarsening of granules over time. Structural knowledge is generated
to help visualization of relationships between different parts of the problem.

Top–down processes produce ∩-closure granular models splitting large granules
into smaller, lower level granules. Situations in which the maximum width allowed
for a granule reduces, see Sect. 11.5.3, may cause top–down refinements. Whenever
the granularity dictated by ρ becomes finer, checking wdt(γ i)< ρ may return false.
In these cases, the granule γ i is split into

γ i1
j = [li

j ,mp(γ i
j)], and

γ i2
j = [mp(γ i

j),L
i
j], j = 1, . . . ,n.

The refining procedure is repeated until wdt(γ i) < ρ holds for i = 1, . . . ,c. Analo-
gous approach is used for output variables k and granularity σ .

A ∪-closure granular model results from a bottom–up process that involves
forming a large, higher level granule using small, lower level granules. Let

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

D(γ1,γ1) · · · D(γ1,γ i) · · · D(γ1,γc)
...

. . .
...

...
D(γ i,γ1) · · · D(γ i,γ i) · · · D(γ i,γc)

...
...

. . .
...

D(γc,γ1) · · · D(γc,γ i) · · · D(γc,γc)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

be a distance matrix relating any pair of granules. The matrix D is symmetric with
zeros in the main diagonal. Neighbor granules can be located close enough to justify
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Fig. 11.7 Intergranular conflict and data accommodation

their combination into a unique, coarser granule. Coarsening evaluates whether the
combination of the respective granules is possible or not based on the minimum
entry of the matrix D. Combination is possible if the width of the convex hull of two
granules, say γ i1 and γ i2 , returns a permissible granularity. Formally, if

wdt
(

ch
(
γ i1

j ,γ
i2
j

))
≤ ρ j, j = 1, . . . ,n,

then γ i = ch(γ i1 ,γ i2) is coarsening of γ i1 and γ i2 . Coarsening produces more
compact rule bases and contributes to eliminate spatial gaps between close enough
granules. At the top level, we close the IBeM structure by the most general granule
formed by the convex hull of all elementary granules.

11.5.5 Conflict of Interest

A requirement to be kept in mind when designing granular systems, such as IBeM,
is the goal to include every information that assembles a solution. However, at the
same time, it is desirable to keep the system as simple as possible. As learning
occurs, conflicting situations may arise and adaptation procedures that result in
narrower granules of data must be considered. Conflict of interest happens when
two or more granules can be expanded to embrace the current input. Figure 11.7
shows four typical situations considering the current input x and two granules, say
γ i1 and γ i2 ; they are (i) x∈Ei1 = [Li1−ρ , li1 +ρ ], but x does not. Conversely, x∈Ei2 ,
but x does not; (ii) Ei1 ∩ Ei2 ∩ x �= /0, but x ∈ Ei1 ; (iii) x ⊆ (Ei1 ∩ Ei2); and (iv)
Ei1 ∩Ei2 ∩ x �= /0, but x ∈ Ei2 . The respective adaptation procedures are shown in
the figure.
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In case (i), both granules cannot expand beyond ρ . Therefore, a new granule
is created to include x. Cases (ii) and (iv) avoid redundancy and inconsistency
neglecting the adaptation of the granule that cannot enclose x entirely. Case (iii)
chooses the granule closer to x according to D(.).

Intergranular conflict resolution helps to choose which IBeM rule to adapt and
prevents overlapped intervals and contradiction. The tightest envelope for the data
generates a more concise description about the information it carries.

11.5.6 Removing Granules

A granule should be removed from the IBeM structure if it is inconsistent with the
current concept. Common removing strategies either (1) remove granules by age, (2)
exclude the weakest granules based on error values, or (3) delete the most inactive
granules. In IBeM, the strategy is to delete inactive granules by exclusion. Old
granules may still be useful in the current environment, whereas weak granules are
attempted to be strengthened by adjusting coefficients of local inclusion functions,
see Sect. 11.5.7.

IBeM granules are deleted whenever they become inactive during a number of
processing steps, hr. If the application requires memorization of rare events, or
if cyclical drifts are anticipated, then it may be the case to let the granules live
forever. Removing inactive granules periodically helps to keep the rule set updated
and concise.

11.5.7 Function Approximation

For each granule identified, its associated rule has the consequent function parame-
ters adjusted using the RLMS algorithm as described next.

Let (x,y)[h] be the data pair available for training at instant h, and γ i be the granule
activated by the data pair. Local polynomials are estimated by linear equations

pi
k = ai

0k +
n

∑
j=1

ai
jk[l

i
j,L

i
j], k = 1, . . . ,m.

Using (x,y)[h] and assuming single output, without loss of generality, we get

y[h] = ai
0 +

n

∑
j=1

ai
jx
[h]
j .

In the matrix form, we have

Y = XAi,
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where Y =
[
y[h]

]
,X =

[
1 x[h]1 . . . x[h]n

]
, and Ai = [ai

0 . . . ai
n]

T is a vector of

unknown parameters. To estimate the coefficients ai
j, we let

Y = XAi +E,

where E = [e[h]] is the current modeling error. While in batch estimation, the rows in
Y,X , and E increase agreeing with the number of available instances; in the recursive
mode of the algorithm, only two rows are kept. We reformulate the state variables as

Y =

[
y[h]

y[h+1]

]
, X =

[
1 x[h]1 . . . x[h]n

1 x[h+1]
1 . . . x[h+1]

n

]
, and E =

[
e[h]

e[h+1]

]
,

where the first and second rows refer to values before and just after adaptation,
respectively. The RLMS algorithm sets Ai to minimize the functional

J(Ai) = ET E.

Derived from [31], Ai can be estimated by

Ai = (XT X)−1XTY

to minimize the square error. Assuming P = (XT X)−1 and the matrix inversion
lemma [31], similar to [32], we avoid inverting XT X at each processing step from
the following recursion:

P(new) = P(old)

[
I− XXT P(old)

1+XT P(old)X

]
,

where I is identity matrix. In practice, it is usual to choose large initial values for the
main diagonal elements of P. In this chapter, we use P[0] = 103I as default value.

After simple mathematical transformations, the vector of parameters is rear-
ranged recursively as follows:

Ai(new) = Ai(old)+P(new)X
(
Y −XT Ai(old)

)
.

Detailed derivations can be found in [33], and convergence proof in [34].

11.6 Application Examples

Experiments reported in this section consider singular and granular data streams to
show the usefulness of the IBeM approach. In the first experiment, the IBeM system
mines singular data concerning the level of rain precipitation in different European
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regions to form granules whose size and location reflect the essence of the data.
IBeM is always requested to process flowing examples it has never seen before and
that demand immediate response before being used for model training. The order of
the streaming items is out of the control of the system, and data must not be stored
nor retrieved. The second experiment delivers original interval data related to daily
fluctuation of the price of an economic index. IBeM starts learning from scratch,
and the data stream guides the creation and development of models freely. In both
experiments, IBeM plays the role of an evolving predictor.

11.6.1 Rain Precipitation

Meteorological precipitations, for example, rainfall, occur when a portion of the
atmosphere becomes saturated with water vapor; thus, the water condenses and falls
under gravity. Prediction of rain precipitation concerns with estimating the amount
of water to be accumulated over a time period in a definite region. Rainfall prediction
is essential to prevent floods, droughts, food shortage; to assist decision making
on agricultural crops, hydroelectric power plants, and dams; and to simulate the
behavior of rivers, soil erosion, and ecosystems.

Data sets from the ECA&D project (available at http://eca.knmi.nl/download/
mil-lennium/millennium.php) were considered for analysis. Measurements are
recorded in millimeters of rain per month. We admit the meteorological stations
244 (Zurich/ Fluntern), 173 (Milan), and 378 (Athens) to evaluate the IBeM per-
formance. Zurich is one of the wettest cities in Europe. Rainfall spreads throughout
the year with the highest levels of precipitation recorded during summer months.
Milan is a city known to have quite high humidity during the whole year. Its humid
subtropical climate has four distinct seasons. Rainfall is relatively low in July but
peaks by August. Rain generally falls in heavy outbursts during summer. During
autumn and spring, it storms about half of the days, whereas in winter, rainfall
lessens. Conversely, Athens is one of the driest cities in Mediterranean Europe
and experiences a differentiated climatic pattern. Due to its location in relation
to the Mount Parnitha, the Athenian climate is recognized quite dry with sparse
precipitations during summer.

The Zurich, Milan, and Athens data sets consist of 1,314, 1,818, and 1,242
time indexed instances comprising millimeters of rainfall per month recorded
from January 1901 to December 2010, January 1858 to December 2010, and
January 1899 to December 2002, respectively. The task of IBeM is to predict the
amount of rainfall in the subsequent month, y[h+1], using the last five observations,
x[h−4], . . . , x[h]. IBeM scrutinizes the data only once to build its structure and tune
local parameters. This is to reproduce a data stream. The rule base is initially empty,
devoid of knowledge. However, the apprenticeship starts immediately after the first
data pair is available.

Testing and training are performed concomitantly on a sample-per-sample basis.
First, an estimation p[h+1] is provided for a given input (x[h−4], . . . , x[h]). One

http://eca.knmi.nl/download/mil-lennium/millennium.php
http://eca.knmi.nl/download/mil-lennium/millennium.php
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Table 11.1 Performance of different algorithms in predicting levels of rainfall

Zurich Milan Athens
Model Rules RMSE NDEI Rules RMSE NDEI Rules RMSE NDEI

MLP – 0.3752 2.7032 – 0.2522 1.8170 – 0.1752 1.2622
eTS 9 0.1961 1.1193 9 0.1804 1.1168 6 0.1951 1.4056
xTS 10 0.1932 1.1029 9 0.1768 1.0946 8 0.1368 0.9861

IBeM1 6.37 0.1996 1.1393 5.53 0.1820 1.1268 5.22 0.1390 1.0017
IBeM2 9.22 0.1970 1.1248 14.24 0.1667 1.0318 8.39 0.1037 0.7475
IBeM3 27.96 0.1885 1.0760 21.45 0.1519 0.9401 14.05 0.1057 0.7617

step ahead, the actual value y[h+1] becomes available and model adaptation is
carried out if necessary. Training is necessary whenever an instance carries new
information significantly mismatching the current knowledge. Sample-per-sample
testing-before-training approach portrays the true online data stream context.

Performance evaluation is made based on the root mean square error:

RMSE =

√
1
H

H

∑
h=1

(y[h]− p[h])2

and the nondimensional error index

NDEI =
RMSE

std(y[h]∀h) ,

which basically ponders the RMSE by the inverse of the standard deviation of the
underlying data.

To evaluate the effect of different parameterizations, we conduct three experi-
ments. Firstly, IBeM1 prioritizes a more compact structure and adopts ρ [0] = σ [0] =
0.5, deletion threshold hr = 48, and η = 3. IBeM3 focuses on accuracy at the price of
a larger structure and employs ρ [0] = σ [0] = 0.4,hr = 130, and η = 3. IBeM2 plays
an intermediary role between the more compact IBeM1 and the more precise IBeM3.
IBeM2 uses ρ [0] =σ [0] = 0.5,hr = 60, and η = 3. The multilayer perceptron (MLP),
extended Takagi-Sugeno (xTS), and evolving Takagi-Sugeno (eTS) methods are
used for performance comparison. Table 11.1 summarizes the results for the Zurich,
Milan, and Athens monthly data.

Table 11.1 shows that rain precipitation in Zurich is more difficult to predict than
in Milan and Athens according to the RMSE and NDEI indices provided by the
algorithms. IBeM3 evolves an average of 27.96 rules for the Zurich data to attain
an RMSE index equal to 0.1885 and an NDEI value of 1.0760. However, using
only 6.37 rules, IBeM1 reached a performance of 0.1996 and 1.1393 for the RMSE
and NDEI, respectively, which is slightly worse than the performance of IBeM3.
While a compact structure speeds up processing time and reduces memory usage,
because the number of developed rules is smaller, input and output granules tend to
be wider to pave the problem domain. Therefore, IBeM1 granular predictions tend
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to be less significant. Analysis of the results for Milan and Athens is quite similar
to the analysis for Zurich. However, we may notice that, even using fewer rules, the
performance of IBeM2 is better than the performance of IBeM3 for the Athens data.
Narrowing the bounds of the granules does not imply that the local-valued singular
prediction will be necessarily better. Fewer instances are allocated to lower level
smaller granules, and then the RLMS algorithm takes advantage of less information
about the target function to adjust the corresponding parameters. The trend of a
better singular approximation within tighter enclosures remains.

The importance of the incremental learning is clearly verified by comparing the
accuracy of IBeM, eTS, and xTS (evolving algorithms) with the accuracy of an
offline trained MLP neural network. Once the neural network has a fixed structure,
it is limited in its ability to adapt to a new trend or concept.

By comparing evolving methods with each other, Table 11.1 shows that IBeM
outperforms eTS and xTS in predicting Athens rainfall and that these algorithms
are comparable in terms of accuracy and compactness for the Zurich and Milan data
sets. However, we have noticed that the average per sample processing time of IBeM
is the smallest. The IBeM algorithm consumed an average of 1.28 ms per item of the
data streams on a dual-core 2.54-GHz processor with 4-GB RAM against 2.64 ms
and 12.57 ms spent, respectively, by the xTS and eTS algorithms. This is explained
by the easiness of acquiring and adapting upper and lower bounds of intervals from
a data stream, and waiver of liability for adjusting parameters of fuzzy membership
functions based on more refined clustering techniques.

Figures 11.8–11.10 detail IBeM one-step singular and granular predictions for
the rainfall problem. The granular prediction [u,U ] allied to the more suggestive
singular prediction p may assist decision making giving an idea about a range of
values around p. Intervals here can be read as optimistic and pessimistic prediction
values. Bounds of granules may enhance model acceptability. Figures also illustrate
how the granules size, number of rules, and RMSE and NDEI indices vary over
time. As evidenced in the figures, the IBeM algorithm does not profit from several
granules and rules, but from a combination of ingredients concerning with structural
premises, peculiar derivations of the learning algorithm, and interval granular
framework and tools to achieve the performance. We notice that in all experiments,
IBeM runs in linear time with respect to the length of the stream.

11.6.2 Bovespa BVSP Index

In this section, we address an economic time-series prediction problem using
IBeM. Different from [8], where we deal with daily end-of-day forecast of the
Brazil Bovespa BVSP Index, here, we investigate original interval data concerning
with the range of values in which the price of the index fluctuates during a day.
Data from January 2, 1998 to December 1, 2009, were obtained from the Yahoo!
Finance website and used in the experiments. There are about 500 companies
trading at BM&F BOVESPA, the Sao Paulo Stock Market, which is the fourth
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Fig. 11.8 IBeM prediction of Zurich Fluntern rainfall

Fig. 11.9 IBeM prediction of Milan rainfall
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Fig. 11.10 IBeM prediction of Athens rainfall

largest stock exchange in the Americas in terms of market capitalization. The
market capitalization used by IBovespa is the value of the publicly tradable part
of the companies. The benchmark indicator of BM&F BOVESPA is the Bovespa
BVSP index. BVSP price forecasts aim at giving information to support portfolio
construction, risk management, and investment decisions.

The task of IBeM is to foresee the variation of the BVSP price in the next business
day, [y,y][h+1], based on granular patterns observed in the last five business days

[x,x][h−4], . . . , [x,x][h]. Notice that the vast majority of machine learning algorithms
cannot handle this type of data automatically and require off-line preprocessing
steps and assumptions on how to curtail interval data into representative real
numbers. IBeM inspects the data only once to mimic an online data stream. Its
structure, initially null, grows on demand, steered by the information flow. The
following parameter values were chosen to evaluate the IBeM behavior: ρ [0] =
σ [0] = 0.2, deletion threshold hr = 300, and η = 3. This parametrization stresses
structural stability and a small number of rules. Figure 11.11 summarizes the results.

Figure 11.11 shows how the learning algorithm self-adapts the maximum width
allowed for the granules during evolution. When the time series started bringing
many new information and patterns due to the late-2000s economic recession
(the great recession, which began in the United States, but affected the entire
world economy), the IBeM learning algorithm automatically reduced the size
of the granules to avoid losing information. The number of rules in the model
structure increased accordingly to guarantee a complete coverage of the problem
domain. Nonlinearities and novel behaviors were captured dynamically. Moreover,
Fig. 11.11 illustrates the one-step granular interval forecast of the BVSP index,
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Fig. 11.11 IBeM one-step-ahead predictions for interval BVSP index data

[p, p], and the outer approximation of the time series, [u,U ]. We notice that the
IBeM model provides accurate granular forecasts from the point of view of the
RMSE , 0.0108, and NDEI, 0.0447, indices, and that it summarizes the content
of the data stream into an average of 2.49 rules, with a maximum of eight rules.
The interval enclosure in this experiment may be interpreted as optimistic and
pessimistic bounds of the selling price, an important information which helps to
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reduce investment risks and stipulates portfolio return. We remark that IBeM runs
in linear time with respect to the number of instances. The results illustrate the
potential of evolving granular models to solve financial prediction problems that
demand online incremental adaptability.

11.7 Conclusion

This work has introduced IBeM to assess the essence of heterogeneous data
streams. The IBeM approach to granulation is based on changeable local models
for evolving data structures. Focus was given on interval manifestation of data and
on granular modeling framework. The IBeM approach for function approximation
makes no specific assumption about the properties of the data sources but rather
let the data stream guide the structural development and model learning freely.
Application examples considering rainfall prediction and finance system have
shown the usefulness of the approach. Further work shall address interval and fuzzy
granular frameworks for interval and fuzzy data streams.
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Chapter 12
Dynamic Learning of Multiple Time Series
in a Nonstationary Environment

Harya Widiputra, Russel Pears, and Nikola Kasabov

Abstract This chapter introduces two distinct solutions to the problem of capturing
the dynamics of multiple time series and the extraction of useful knowledge over
time. As these dynamics would change in a nonstationary environment, the key
characteristic of the methods is the ability to evolve their structure continuously over
time. In addition, reviews of existing methods of dynamic single time series analysis
and modeling such as the dynamic neuro-fuzzy inference system and the neuro-
fuzzy inference method for transductive reasoning, which inspired the proposed
methods, are presented. This chapter also presents a comprehensive evaluation of
the performance of the proposed methods on a real-world problem, which consists
of predicting movement of global stock market indexes over time.

12.1 Introduction

Time series data is a train of numerical data points in sequential order, usually
recorded in uniform intervals. Thus, a time series consists of a sequence of numbers
collected at regular intervals over a period of time. In statistics, signal processing,
econometrics, and mathematical finance, a time series is described as a sequence of
data points, measured typically at successive times spaced at uniform time intervals.
Some common examples of time series are the daily closing value of an equity
market, that is, the Dow Jones index or the annual flow volume of the Nile River
in Egypt.

An obvious characteristic of time series data that distinguishes it from cross-
sectional data is temporal ordering [38]. For example, given a time series data set
on employment, the minimum wage, and other economic variables for a certain
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country, it is possible to learn that the data for year 1970 immediately precedes the
data for 1971. A basic concept in analyzing time series data for a real-world phe-
nomenon is then to recognize that the past can affect the future, but not vice versa.

Another difference between cross-sectional and time series data is more subtle.
The cross-sectional data is viewed as random outcomes, which is fairly straightfor-
ward as different sample drawn from the population will generally yield different
values of the independent and dependent variables. Yet, how should randomness
in time series data be considered? Certainly, observations taken from the field
of economics satisfy the intuitive requirement for being random variables. For
instance, today’s next closing value of an equity market is not known until the end
of the trading day. Time series data of weather conditions also satisfy this intuitive
requirement as the level of air pressure, wind speed, air humidity, etc. in a certain
place at 6.00 a.m. tomorrow is not yet known today. Since the outcomes of these
variables are not foreknown, they should clearly be viewed as random variables.

Formally, a sequence of random variables indexed by time is called a stochastic
process or a time series process [38]. When time series data set is collected, one
possible outcome or realization of the stochastic process is obtained. Only a single
realization can be observed, since it is not possible to go back in time and start
the process over again. However, if certain conditions in history had been different,
generally, a different realization for the stochastic process will be obtained, and this
is why a time series data is considered as the collection of the outcomes of a set of
random variables.

These facts about randomness of a time series simply give a clear picture of
how dynamic and nonstationary real-world phenomena are. Therefore, even though
currently we are capable of estimating what might happen in the near future by
constructing a model based on historical data, the real challenge is actually to be able
to develop models that can dynamically learn and adapt to the new condition of these
nonstationary environments as new information becomes available. Furthermore, as
previous studies have revealed that dynamic relationships between series exist in
multiple time series data relating to real-world phenomenona, that is, the biological
and economic domains [2, 5, 6, 13, 23], it becomes imperative to be able to capture
the dynamics of not just the individual variables but also how they relate to each
other over time. In relation to this, this chapter outlines new methods of dynamic
learning that are capable of extracting dynamic interactions between multiple time
series data from real-world phenomenon.

We review the general concept of learning as well as existing methods of time
series modeling before the new methods of dynamic learning of multiple time series
are explained.

12.2 Time Series Analysis and Modeling

Time series analysis comprises methods for analyzing time series data in order to
extract meaningful statistics and other characteristics of the data. There are two
main goals of time series analysis: (a) identifying the nature of the phenomenon
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represented by the sequence of observations and (b) forecasting (predicting future
values of the time series variable). Both of these goals require that the pattern of
observed time series data is identified and more or less formally described. Once
the pattern is established, it can be interpreted and integrated with other data.

Regardless of the depth of the understanding and validity of the interpretation of
the phenomenon, the identified pattern can be extrapolated to predict future events.
Time series forecasting is the use of a model to foresee future events based on known
past events, that is, to predict data points before they are measured. An example of
time series forecasting in econometrics is predicting the opening price of a stock
based on its past performance.

Time series data have a natural temporal ordering. This makes time series
analysis distinct from other common data analysis problems, in which there is no
natural ordering of the observations (e.g., explaining people’s wages by reference to
their educational level, where the individuals’ data could be entered in any order).
Time series analysis is also distinct from spatial data analysis where the observations
typically relate to geographical locations (e.g., accounting for house prices by
suburb). A time series model will generally reflect the fact that observations closer
together in time will be more closely related than observations further apart.
Therefore, it is essential in time series analysis to build a model that can dynamically
evolve its structure in relation to current behavior of the system.

12.2.1 Methods of Reasoning

As it has been explained in the previous section, one of the objectives of time series
analysis is to identify the nature of the phenomenon represented by the sequence
of observations. This process can be seen as a learning or reasoning process. In
general, there are two reasoning methods that can be used in time series analysis,
and these are the inductive reasoning and transductive reasoning.

12.2.1.1 Inductive Reasoning

Induction or inductive reasoning, sometimes called inductive logic or inductive
learning, is the process of reasoning in which the premises of an argument is
believed to support the conclusion but does not entail it [8]. Induction is a form
of reasoning that makes generalizations based on individual instances. It is used
to describe properties or relations to types based on an observed instance (i.e., on
a number of observations or experiences), or to formulate laws based on limited
observations of recurring phenomenal patterns. This method is concerned with the
creation of a model (a function) from all available data representing the entire
problem space, for example, a regression formula, a neural network of multi-layer
perceptron (MLP), support vector machine (SVM), etc., and then is applied on
new data (deductive) [29]. Another name given to this type of reasoning is global
modeling [12].
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12.2.1.2 Transductive Reasoning

Transductive reasoning or transductive inference, introduced by Vapnik in 1998
[32], is defined in contrast as a method that is used to estimate the value of a
potential model (function) only for a single point of space (i.e., a new data vector) by
utilizing additional information related to that vector. While the inductive approach
is useful when a global model of the problem is needed in an approximate form, the
transductive approach is more appropriate for applications where the focus is not
on the model, but rather on every individual case. This relates to the common sense
principle which states that, to solve a given problem, one should avoid solving a
more general problem as an intermediate step [4].

12.3 Local Modeling for Knowledge Discovery

The common realization of the inductive reasoning is the construction of global
models, that is, a regression formula, MLP [16], SVM [41], etc. Global models are
built using all historical data and thus can be used to predict future trends. However,
the trajectories that global models produce often fail to track localized changes that
take place at discrete points in time. This is due to the fact that trajectories tend to
smooth localized deviations by averaging the effects of such deviations over a long
period of time [36] (Fig. 12.1).
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Fig. 12.1 Illustration of local modeling in a 2-D space
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In reality, localized disturbances may be of great significance as they capture
the conditions under which a time series deviates from the norm. For example,
financial markets react very favorably when interest rates are cut or when better than
expected economic fundamentals are announced by a government under which they
operate. To accurately capture such phenomena requires a discontinuity in the global
trajectory function, and this goes against the fundamental design philosophy behind
the construction of global models. Furthermore, it is of interest to capture similar
deviations from a global trajectory that take place repeatedly over time, in other
words, to capture recurring deviations from the norm that are similar in shape and
magnitude. Such localized phenomena can only be captured accurately by localized
models that are built only on data that define the phenomenon under consideration
and are not contaminated by data outside the underlying phenomenon.

Local models [11, 15, 18, 22, 24, 29, 40] is a type of model ensemble that breaks
down the problem into many smaller subproblems, based on its position in the
problem space. Local models can be built by grouping together data that has
similar behavior. For example, when the value of a variable suddenly increases
significantly and then maintains the increased value over a period of time, a natural
cluster containing the time points that define this heightened activity can be defined.
Different types of phenomena will define their own clusters. Models can then be
developed for each cluster (i.e., local regressions) that will yield better accuracy
over the local problem space covered by the model in contrast to a global model.

In local modeling, individual models are created to evaluate the output function
for only a subset of the problem space, for example, a set of rules over a cluster or
a set of local regressions, etc. Having a set of local models offers greater flexibility
as predictions can be either on the basis of a single model or, if needed, at a
global level by combining the predictions made by the individual local models
[12]. Additionally, it is expected that local models would enable us to capture recent
trends in the data and relate them to similar behavior from the past. This is in contrast
to a global model that takes into account all past activity, thus resulting in diluting
the effects of recent trends in the data [36].

12.3.1 Dynamic Evolving Neuro-Fuzzy Inference System

The dynamic evolving neural-fuzzy inference system, denoted as DENFIS, intro-
duced and proposed by Kasabov and Song in 2002 [15], is a fuzzy inference systems
for adaptive online learning and dynamic single time series analysis and prediction.
DENFIS evolves through incremental, hybrid (supervised/unsupervised), learning
and accommodates new input data, including new features, new classes, etc.,
through local element tuning. New fuzzy rules are created and updated during the
operation of the system. At each time moment, the output of DENFIS is calculated
through a fuzzy inference system based on the m-most activated fuzzy rules which
are dynamically chosen from a fuzzy rule set.
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12.3.1.1 Learning Processes in DENFIS

In DENFIS, the rules are created and updated at the same time with the input space
partitioning using the specially designed evolving, online, maximum distance-based
clustering method called the evolving clustering method and denoted as ECM [28].

The ECM is an evolving, online, maximum distance-based clustering method
proposed by Song and Kasabov in 2001 [28] to implement a scatter partitioning of
the input space for the purpose of creating fuzzy inference rules. ECM is a fast, one-
pass algorithm for a dynamic estimation of the number of clusters in a set of data
samples and for finding their current centers in the input data space. It is a distance-
based clustering method where the cluster centers are represented by evolved nodes
in an online mode. In any cluster, the maximum distance, MaxDist, between a data
sample and the cluster center, is less than a threshold value, Dthr, that has been set
as a clustering parameter. This parameter would affect the number of clusters to be
created.

In the clustering process, the data samples come from a data stream, and this
process starts with an empty set of clusters. When a new cluster is created, its cluster
center, Cc, is located and its cluster radius, Ru, is initially set with a value 0. As
new samples are presented one after another, new clusters may be created or some
already created clusters will be updated through changing their centers’ positions
and increasing their cluster radii. Which cluster should be updated and how it should
be changed depends on the position of the current data sample. A cluster will not be
updated any more when its cluster radius, Ru, has reached the special value that is,
usually, equal to the threshold value Dthr (Fig. 12.2).

In DENFIS, the first-order Takagi-Sugeno-type fuzzy rules [31] are employed,
and the linear functions in the consequences are created using weighted linear least-
square estimator (WLSE) and updated by recursive weighted linear least-square
estimator (RWLSE) [7] with learning data. Each of the linear functions can be
expressed as follows:

y = β0 +β1x1 +β2x2 + ...+βqxq. (12.1)

The creation of the first m fuzzy rules in DENFIS is described as follow:

• Step 1: Take the first n0 learning data samples from the learning data set.
• Step 2: Implement clustering using ECM to these n0 data to obtain m cluster

centers.
• Step 3: For every cluster center Ci, find pi data samples from the learning data

set whose positions in the input space are closest to the center, i = 1,2, ...,m.
• Step 4: To obtain a fuzzy rule corresponding to a cluster center, create the

antecedents of the fuzzy rule using the position of the cluster center and use either
a triangular or Gaussian membership function. Using the weighted linear least-
square estimator on pi data samples, calculate the coefficients of the consequent
function. The distances between pi data samples and the cluster center are taken
as the weights.
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Fig. 12.2 Illustration of ECM clustering process in a 2-D space [28]

In the above steps, m, n0, and p are the parameters of the DENFIS online learning
model, and the value of pi should be greater than the number of input variables, q.

As new data samples are presented to the system, new fuzzy rules may be created
and existing rules updated. A new fuzzy rule is created if a new cluster center is
found by the ECM. The antecedent of the new fuzzy rule is formed using either a
triangular or Gaussian membership function with the position of the cluster center
as a rule node. An existing fuzzy rule whose rule node is the closest to the new
rule node is then found; the consequence function of this rule is then taken as the
consequence function for the new fuzzy rule.

For every data sample, several existing fuzzy rules are updated using RWLSE
if their rule nodes have distances to the data point in the input space that are not
greater than 2×Dthr (the threshold value, a clustering parameter in ECM). The
distances between these rule nodes and the data sample in the input space are taken
as the weights. In addition to this, one of these rules may also be updated through
changing its antecedent so that, if its rule node position (cluster center) is changed
by the ECM, consequently, the fuzzy rule will then have a new antecedent.

For each input vector, a Takagi-Sugeno inference system with m activated rules is
dynamically created. The rules are chosen based on the position of the input vector.
Since in DENFIS the rules are updated continuously, two input vectors with the
same values at different time points may have different inferences as the fuzzy rules
may have been updated before the second input vector entered the system.
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12.3.1.2 Takagi-Sugeno Fuzzy Inference in DENFIS

The Takagi-Sugeno fuzzy inference system utilized in DENFIS is a dynamic
inference system. In addition to dynamically creating and updating fuzzy rules, the
DENFIS online model has some other major differences with the other inference
systems. Firstly, for each input vector, DENFIS chooses m fuzzy rules from the
whole fuzzy rule set for forming a current inference system.

This operation depends on the position of the current input vector in the input
space. In case of two input vectors that are very close to each other, the inference
system may have the same fuzzy rule inference group. Figure 12.3 illustrates the
cases of input vector x1 and x2 in a 2-D space. As shown in Fig. 12.3 for x1, fuzzy
rules A, B, and C are chosen to form an inference system, while for input vector x2,
fuzzy rules C, D, and E are chosen as illustrated in Fig. 12.3.

In DENFIS, however, even if two input vectors are exactly the same, their
corresponding inference systems could be different. This happens when the vectors
were presented to the system at different time moments and the fuzzy rules used
for the first input vector was updated before the second input vector had arrived.
Secondly, depending on the position of the current input vector in the input space,
the antecedents of the fuzzy rules chosen to form an inference system for this input
vector may vary.

An example of a set of three activated rules chosen to make a prediction for an
input vector x when DENFIS is applied to the Mackey-Glass data set is presented
in Fig. 12.4.

12.4 Instance-Based Learning for Knowledge Discovery

In contrast to learning methods that construct a general and explicit description of
the target function when training examples are provided, transductive reasoning
methods simply store the training examples. Generalizing beyond these examples
is postponed until a new instance must be classified. A key advantage of this type of
learning method is that instead of estimating the target function once for the entire
instance space, this method is capable of constructing local and specific estimation
models for each new instance that needs to be classified or predicted.

The k-NN [30] and WKNN algorithms, which fall under the category of instance-
based learning, are well-known realizations of transductive reasoning. This type of
learning offers the following benefits over the local model:

1. In a real-world problem where the amount of data increases on an ongoing basis,
instance-based learning will only utilize that part of the data that is relevant to
the new input vector.

2. Since only a relevant subset of the input vectors in the sample data set is used to
derive the solution, it may reduce the effect of outliers, or incorrect identification
of subproblems.
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Fig. 12.3 Illustration of the construction of two fuzzy rule groups by DENFIS in a 2-D space for
input vector x1 and x2 that is entered at a later time moment. Figure is extracted from [15]

The limitation of instance-based learning is in its reliance on good definition
of problem space utilized to build the solution (Fig. 12.5). A good definition of
problem space is important to every type of reasoning; however, it may be more
so with instance-based learning through transductive reasoning. This is because the
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Fig. 12.4 Three activated
fuzzy rules created and
chosen by DENFIS to
construct a Takagi-Sugeno
inference system when being
applied for prediction of the
Mackey-Glass data set. Rules
are extracted from DENFIS
available in the NeuCom
(http://www.theneucom.com)

Fig. 12.5 Illustration of instance-based learning in a 2-D space

definition of problem space affects the performance of the similarity function used
to identify the neighborhood, that is, a subset of input vectors in the training data
which are relevant to the new test input vector.

Despite its limitations, instance-based learning has been widely used to solve
classification problems such as text classification [9], heart disease diagnostics [39],
synthetic data classification using graph-based approach [19], digit and speech
recognition [10], promoter recognition in bioinformatics [14], image recognition
[21] and image classification [25], microarray gene expression classification [33],
and biometric tasks such as face surveillance [20].

http://www.theneucom.com
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Furthermore, this reasoning method is also used in prediction tasks such as
finding if a given drug binds to a target site [33], evaluating prediction reliability
in regression [4], and providing additional measures to determine reliability of
predictions made in medical diagnosis [17]. However, the use of this learning
method for time series analysis and prediction, in particular multiple time series,
has not been widely studied except for the preliminary study by Widiputra et al.
in 2009 [34] which investigated the possibility of using the WKNN in predicting
movement of multiple stock market indexes [34].

12.4.1 Neuro-Fuzzy Inference Method

The neuro-fuzzy inference method for transductive reasoning denoted as NFI is a
dynamic fuzzy inference system with local generalization proposed by Song and
Kasabov in 2005 [29], in which, either the Zadeh-Mamdani [42]- or the Takagi-
Sugeno [31]-type fuzzy inference is used. The local generalization means that
in a subspace of the whole problem space (local area), a model is created from
Ni training samples that are closest to the input vector xi which is later used to
generalize to the subspace.

In the Zadeh-Mamdani type of NFI model, Gaussian fuzzy membership functions
are applied in each fuzzy rule for both antecedent and consequent parts, while for
the Takagi-Sugeno type of NFI model, the consequent part is presented by a linear
or nonlinear function. A back propagation/steepest descent [1] learning algorithm
is used for optimizing the parameters of the fuzzy membership functions (in both
Zadeh-Mamdani and Takagi-Sugeno types). The distance between two vectors x
and y is measured in the NFI model as the normalized Euclidean distance defined
as follows (the values range between 0 and 1):

‖ x− y ‖=
(

1
q

q

∑
j=1

(x j− y j)
2

)1/2

, (12.2)

where x,y ∈ℜq, and q is number of input variables.
To partition the input space Ni for creating and obtaining initial values of

fuzzy rules, the ECM [28] is again applied as in DENFIS and the cluster centers
and radii are taken as initial values for the centers and widths, respectively, for
the Gaussian membership functions (for both Zadeh-Mamdani and Takagi-Sugeno
types). For the Takagi-Sugeno type of NFI model, the training samples belonging to
a cluster are used for creating a linear function as a local model for output function
evaluation.
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12.4.1.1 NFI Learning Algorithm

For each new input vector xi, the NFI model performs the following learning
algorithm [29]:

• Step 1, search in the training data set based on the input space to find Ni training
samples that are closest to xi. The value for Ni can be predefined based on
experience, or optimized through the application of an optimization procedure.
In the NFI model, the former approach is used. Here, Ni can be considered as
number of k as in the k-NN algorithm.

• Step 2, calculate the distances d j; j = 1,2, ...,Ni between each of these samples
and xi using the normalized Euclidean distance (as in (12.2)). Calculate the
weights wj = 1− (d j −min(d)); j = 1,2, ...,Ni where min(d) is the minimum
value in the distance vector d = (d1,d2, ...,dNi).

• Step 3, use the ECM to cluster and partition the input subspace that consists of
Ni selected training samples.

• Step 4, create fuzzy rules and set their initial parameter values according to the
clustering results of the ECM; for each cluster, the cluster center is taken as the
center of a fuzzy membership function (Gaussian function) and the cluster radius
is taken as the width.

• Step 5, apply the steepest descent method (backpropagation) to optimize the
parameters of the fuzzy rules in the local model LMi.

• Step 6, calculate the output value yi for the input vector xi, applying fuzzy
inference over the set of fuzzy rules that constitute the local model LMi.

• Step 7, end of the procedure.

The procedure of optimizing the parameters in the NFI model (step 5 in the above
algorithm) is described as follows:

• Consider the system having q inputs, one output, and M fuzzy rules defined
initially through the ECM clustering procedure, the lth rule would have the
form of:

Rl : if x1 is Fl,1 and ... and xq is Fl,q then y is Gl (Zadeh−Mamdani)

or,

Rl : if x1 is Fl,1 and ... and xq is Fl,q then y is nl (Takagi− Sugeno).

Here, Fl,q are fuzzy sets defined by the following Gaussian-type membership
function:

GaussianMF = α exp

(
− (x− μ)2

2σ2

)
, (12.3)

where μ is the center of the fuzzy membership function and σ is the width. In
the NFI model, the center of the fuzzy membership function is initially defined
by the cluster center, while the width is defined by the cluster radius. For the
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Zadeh-Mamdani type, Gl is of a similar type as Fl,q, while for the Takagi-Sugeno
type, nl is defined by a linear function as follows:

nl = βl,0 +βl,1x1 +βl,2x2 + ...+βl,qxq.

• Using the modified center average defuzzification procedure, the output value of
the system can be calculated for an input vector xi = (xi,1,xi,2, ...,xi,q) as follows
for the Zadeh-Mamdani type:

f (xi) =

M

∑
l=1

Gl

δ 2
l

q

∏
j=1

αl j exp

(
− (xi j− μl j)

2

2σ2
l j

)

M

∑
l=1

1

δ 2
l

q

∏
j=1

αl j exp

(
− (xi j− μl j)

2

2σ2
l j

) , (12.4)

or as follows for the Takagi-Sugeno type:

f (xi) =

M

∑
l=1

nl

q

∏
j=1

αl j exp

(
− (xi j− μl j)

2

2σ2
l j

)

M

∑
l=1

q

∏
j=1

αl j exp

(
− (xi j− μl j)

2

2σ2
l j

) . (12.5)

• Suppose the NFI model is given a training input–output data pair (xi,oi), the
system minimizes the following objective function (a weighted error function):

E =
1
2

wi ( f (xi)− oi)
2 , (12.6)

where wi is defined in step 2 of the NFI learning algorithm. The steepest
descent algorithm/backpropagation [1] is used then to obtain the formulas for the
optimization of the parameters Gl ,δl ,αl j ,μl j, and σl j of Zadeh-Mamdani-type
NFI model such that the value of E from (12.6) is minimized.

When being applied for time series prediction, the algorithm above is executed for
each new time series point. Therefore, as the NFI creates a unique submodel for each
input vector, it usually needs more processing time than inductive models, especially
in the case of large data sets. Furthermore, with the existence of new input vectors
with exactly the same or very similar condition, the NFI model will create the same
or similar models repeatedly. Consequently, time complexity of the method depends
mainly on the search algorithm, employed for similar data to the new input vector
from the complete set of data samples.
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12.5 Local Modeling of Multiple Time Series

It is interesting to note that most of the research carried out in the field of time series
modeling and prediction have based their approach on the concept of inductive
reasoning [8], in which a number of historical data samples are used to construct
a single global model covering the entire training data set space. Nevertheless,
as argued previously, local modeling is needed to cover subsets of the problem
space that the global model cannot cover with sufficient accuracy. Local model is
another type of realization of inductive reasoning. A system can be represented by
a collection of local models trained on a given data set. However, when applied to
new data, only one or a subset of the relevant models will actually contribute to the
solution.

In this section, we outline a methodology to construct local models for multiple
time series containing profiles of relationships between series from different time
localities [37]. The construction of local models in the proposed methodology
consists of two main steps, which are (1) the continuous extraction of profiles of
relationships between time series over time and (2) the detection and clustering of
recurring trends of movement in time series when a particular profile emerges.

The principal objective of the methodology is to construct a repository of profiles
and recurring trends whose structure will dynamically evolve as changes take place
in the observed nonstationary environment. This repository will then be utilized
as knowledge-based as a key data resource to learn and understand the underlying
behavior of the system and to estimate future states of the system’s variables, that is,
to perform a multiple time series prediction. To realize such an objective, a 2-level
local modeling process is utilized within the proposed methodology.

The first level of local modeling deals with the extraction of profiles of
relationships between series in a subspace of the given multiple time series data
in which the methodology utilizes a cross-correlation analysis to elucidate the
existence of relationships between pairs of time series that influence each other.
The second level of local modeling is used to capture and cluster recurring trends
of movement that take place in time series when a particular profile is emerging.
Here, the methodology employs a nonparametric regression analysis, in combi-
nation with the ECM [28]. Detailed explanation of this local modeling method,
which termed as the localized trends model and denoted as LTM, is outlined in
the upcoming sections of the chapter.

12.5.1 Extracting Profiles of Relationship of Multiple
Time Series

Most of the work in clustering time series data has concentrated on sample
clustering rather than variable clustering [27]. However, one of the key tasks in this
methodology is to group together series or variables and not samples that are highly
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correlated and have similar shapes of movement, as it is considered that multiple
local models representing clusters of similar profiles will provide a better basis than
a single global model for predicting future movements of the multiple time series.

For instance, in predicting movement of five global stock market indexes (i.e.,
New Zealand, Australia, Hong Kong, Japan, and United States), if one is able to
learn that at the current time-point New Zealand and Australia are moving together
collectively, Hong Kong and Japan are progressing mutually, while the United States
travels by itself, then it would be relevant to use only data of stock market indexes
from the past which possesses the same profiles of relationships to predict future
values of these stock market indexes, rather than to use the entire data set.

Algorithm 1 outlines the scheme for clustering together similar time series. The
first step in extracting profiles of relationships between multiple time series is the
computation of cross-correlation coefficient between the observed time series using
Pearson’s correlation analysis. Yet, only statistically significant correlations, which
are determined through the use of the t-test with a confidence level of 95%, are used.
After the most significant correlations between time series have been identified,
the RNOMC, rooted normalized one-minus correlation coefficients [27], known
henceforth as normalized correlation in this manuscript, is calculated to assess
the degree of dissimilarity between a pair of time series (a,b). The normalized
correlation is given by:

RNOMC(a,b) =

√
1− corr(a,b)

2
. (12.7)

The normalized correlation coefficient ranges from 0 to 1, in which 0 denotes high
similarity and 1 signifies the opposite condition.

Thereafter, the last stage of the algorithm is to extract profiles of relationships
from the normalized correlation matrix. The methodology used in this step is
outlined in line 3 to 24 of Algorithm 1. The whole process of extracting profiles
of relationships is illustrated in Fig. 12.6. In any case, the fundamental concept of
this algorithm is to group multiple time series with comparable fashion of movement
while validating that every time series belong to the same cluster are correlated and
hold significant level of similarity.

The underlying concept of Algorithm 1 is closely comparable to the CAST,
clustering affinity search technique, clustering algorithm [3]. However, Algorithm 1
works by dynamically creating new clusters, deleting and merging existing clusters
as it evaluates the coefficient of similarity between time series or observed variables.
Therefore, Algorithm 1 is considerably different to CAST which creates a single
cluster at one time and performs updates by adding new elements to the cluster
from a pool of elements, or by removing elements from the cluster and returning
it to the pool as it evaluates the affinity factor of the cluster in which the elements
belong.

After the profiles have been extracted, then the next step of the methodology is to
mine and cluster trends of movement from each profile. This process is outlined and
explained in the next section. Additionally, as the time complexity of Algorithm
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Fig. 12.6 The Pearson’s correlation coefficient matrix is calculated from a given multiple time
series data (TS-1,TS-2,TS-3,TS-4), and then converted to normalized correlation, (12.7), before
the profiles are finally extracted. Statistically significant correlation coefficients are marked with *,
and only these values are used to form the normalized correlation matrix whereas the insignificant
coefficients are ignored. Equation (12.7) is used to calculate the normalized correlation coefficient.
Figure is extracted from [37]

1 is O( 1
2 (n

2 − n)), to avoid expensive recomputation and extraction of profiles;
extracted profiles of relationships are stored and updated dynamically instead of
being computed on the fly.

12.5.2 Clustering Recurring Trends of a Time Series

Maintaining profiles of relationships between multiple time series allows the ability
to identify which time series most influence movement of other time series in
a particular time locality. However, this type of knowledge does not offer any
predictive power to estimate future values of multiple time series.

To predict future values of multiple time series simultaneously, information about
different shapes of movement across a group of correlated multiple time series needs
to be acquired and maintained. Therefore, the methodology groups similar trends of
movement into clusters which are then used to construct local models to predict
future trends of movement in the time series involved.
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Algorithm 5 Extracting profiles of relationship of multiple time series
Require: X , where X1,X2, ...,Xn are observed time series
Ensure: profiles of relationships between multiple time series
1: calculate the normalised correlation coefficient [Equation (12.7)] of X
2: for each time series X1,X2, ...,Xn do
3: //pre-condition: Xi,Xj do not belong to any cluster
4: if (Xi,Xj are correlated) AND (Xi,Xj do not belong to any cluster) then
5: allocate Xi,Xj together in a new cluster
6: end if
7: //pre-condition: Xi belongs to a cluster; Xj does not belong to any cluster
8: if (Xi,Xj are correlated) AND (Xi belongs to a cluster) then
9: if (Xj is correlated with all Xi cluster member) then

10: allocate Xj to cluster of Xi

11: else if (Xi ,Xj correlation > max(correlation) of Xi with its cluster member) AND (Xj is
not correlated with any of Xi cluster member) then

12: remove Xi from its cluster; allocate Xi,Xj together in a new cluster
13: end if
14: end if
15: //pre-condition: Xi and Xj belong to different cluster
16: if (Xi ,Xj are correlated) AND (Xi,Xj belong to different cluster) then
17: if (Xi is correlated with all Xj cluster member) AND (Xj is correlated with all Xi cluster

member) then
18: merge cluster of Xi,Xj together
19: else if (Xi ,Xj correlation > max(correlation) of Xj with its cluster member) AND (Xj is

correlated with all Xi cluster member) then
20: remove Xj from its cluster; allocate Xj to cluster of Xi

21: else if (Xi,Xj correlation > max(correlation) of both Xi,Xj with their cluster member)
AND (Xi is not correlated with one of Xj cluster member) AND (Xj is not correlated to
any of Xi cluster member) then

22: remove Xi,Xj from their cluster; allocate Xi,Xj together in a new cluster
23: end if
24: end if
25: end for
26: return clusters of multiple time series

12.5.2.1 General Principles

Widiputra et al. [35] proposed an algorithm to detect and cluster recurring trends
of movement from localized sets of time series based on a polynomial regression
function. In order to eliminate the limiting assumption of normality of data required
by polynomial regression, we use a nonparametric version of regression in this
research.

12.5.2.2 Learning Algorithm of Clustering Trends with Kernel Regression

The first step of the learning algorithm is to define the size of data chunk or
snapshot window from which the trend of movement will be extracted using the
autocorrelation analysis. This is done by applying autocorrelation analysis to the



320 H. Widiputra et al.

time series under examination. The next step is to extract trends of movements
by performing a bootstrap sampling process through all available data chunks.
This process of extracting trends of movement is achieved by utilizing the kernel
regression method as explained in the previous section of this chapter. Consequently,
as an outcome of the kernel regression analysis, the computed kernel weight vectors
are then used as the features vectors to represent trends of movements in this
methodology.

Thereafter, the algorithm implements a clustering process to group similar and
recurring trends of movement. Recurring trends are grouped based on a modified
version of the ECM [28], where the correlation coefficient is used in place of
the Euclidean distance to measure similarity between a kernel weight vector and
a cluster center. Additionally, in this methodology, a cluster center represents the
mean of trends of movement calculated as an average value of all kernel weight
vectors which belong to the same cluster. As new observations become available,
new data chunks or snapshots are presented to the system. Accordingly, new clusters
containing new trends of movement may be created while some existing clusters
are updated. A new cluster is created when the algorithm recognizes that a new
noncomparable trend of movement has emerged. Conversely, existing clusters are
updated when a data chunk or snapshot with recurring trends of movement is
identified.

Clusters of trends of movement are then stored in each extracted relationship
profile. This information about relationships between series and trends of move-
ments will then be exploited through knowledge repository to perform simultaneous
multiple time series prediction. A detailed algorithm for clustering recurring trends
of a time series based on the use of kernel regression is outlined as follows:

• Step 1, perform the autocorrelation analysis to the time series data set from which
trends of movement will be extracted and clustered. Number of lag, as outcome of
the autocorrelation analysis where lag > 0, with highest correlation coefficient is
then taken as the size of data chunk or snapshot window n. The process will then
progress by performing a bootstrap sampling process through all data chunks or
snapshots.

• Step 2, create the first cluster C1 by simply taking w1, which is the trend of

movement of the first data chunk or snapshot X(1) = (X (1)
1 ,X (1)

2 , ...,X (1)
n ), from

the input stream as the first cluster center Cc1 and set the cluster radius Ru1 to 0.
In this methodology, the ith trend of movement represented by the kernel
weight vector wi = (wi1,wi2, ...,win) as outcome of the nonparametric regression
analysis, is calculated using the Nadaraya-Watson kernel weighted average
formula defined as follows:

X̂ (i)
j = f j(x

(i)
j ,wi) =

n

∑
k=1

wikx jk

n

∑
k=1

x jk

. (12.8)
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Here, x(i)j = (xi
j1, ...,x

i
jk) is the extended smaller value of the original data X(i) at

domain j and certain small step dx where j = 1,2, ...,( n
dx +1). x j = (x j1, ...,x jk)

is calculated using the Gaussian MF equation as follows:

x jk = K(x j,k) = exp

(
− (x j− k)2

2α2

)
, (12.9)

where x j = dx× ( j− 1),k = 1,2, ...,n, and α is a predefined kernel bandwidth.
The kernel weight, wi, is estimated using the common OLS (ordinary least
square) such that the following objective functions is minimized:

SSR =
n

∑
k=1

(Xi
k− X̂ (i)

j ), ∀ X̂ (i)
j where x j = Xk. (12.10)

To gain knowledge about upcoming trend of movement when a particular trend
emerge in a locality of time, the algorithm also model next trajectories of a data
chunk or snapshot defined by,

X̂ (i)(u)
j = f j

(
x(u)j ,w(u)

i

)
=

n+1

∑
k=1

w(u)
ik K

(
x(u)j ,k

)
n+1

∑
k=1

K
(

x(u)j ,k
) , (12.11)

where x(u)j = dx× ( j(u)− 1); j(u) = 1,2, ...,( n+1
dx + 1);k = 1,2, . . . ,n+ 1 and the

kernel weights w(u)
i = (w(u)

i1 ,w(u)
i2 , ...,w(u)

i(n+1)).
• Step 3, if there is no more data chunk or snapshot, then the process stops (go to

Step 7); else next data chunk or snapshot, X(i), is taken. Trend of movement from
X(i) is then extracted as in Step 2, and distances between current trend and all m
already created cluster centers are calculated by

Di,l = 1−CorrelationCoefficient(wi,Ccl), (12.12)

where l = 1,2, ...,m. If found cluster center Ccl where Di,l ≤ Rul, then current
trend joins cluster Cl and the step is repeated; else, continue to next step.

• Step 4, find a cluster Ca (with center Cca and cluster radius Rua) from all m
existing cluster centers by calculating the values of Si,a given by

Si,a = Di,a +Rua = min(Si,l), (12.13)

where Si,l = Di,l +Rul and l = 1,2, ...,m.
• Step 5, if Si,a > 2×Dthr, where Dthr is a clustering parameter to limit the

maximum size of a cluster radius, then current trend of X(i), wi, does not belong
to any existing clusters. A new cluster is then created in the same way as
described in Step 2, and the algorithm returns to Step 3.
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• Step 6, if Si,a ≤ 2×Dthr, current trend of X(i), wi, joins cluster Ca. Cluster Ca

is updated by moving its center, Cca, and increasing the value of its radius, Rua.
The updated radius Runew

a is set to Si,a/2, and the new center Ccnew
a is now the

mean value of all trends of movement belong to cluster Ca. Distance from the new
centre Ccnew

a to current trend wi, is equal to Runew
a . The algorithm then returns to

Step 3.
• Step 7, end of the procedure.

In the procedure of clustering trends with the kernel regression, the following
indexes are used:

• Number of data chunks or snapshots: i = 1,2, ...
• Number of clusters: l = 1,2, ...,m
• Number of input and output variables: k = 1,2, ...,n

12.5.3 LTM for Multiple Time Series Modeling and Prediction

Figure 12.7 illustrates how a repository containing profiles of relationships and
recurring trends (the knowledge repository) is built and maintained. Using data from
the first data chunk or snapshot, the algorithm extracts two profiles of relationship in
the multiple time series by creating two clusters. The first cluster represents a profile
whereby time series #1 and time series #3 are correlated and moving together, while
the second cluster is a profile of relationship whereby time series #2 and time series
#4 are progressing in a similar fashion.

Trends of movement of each time series that belongs to a particular profile
are then extracted and kept within the profile. As illustrated in Fig. 12.7, after
extracting trend of movement from each time series in the first profile denoted by
Cluster-1[TS-1,TS-3], the algorithm creates and stores two other clusters in Cluster-
1[TS-1,TS-3], denoted by TS-1 and TS-3. Here TS-1 and TS-3 represent trends of
movement of time series #1 and #3 when they are correlated. The same process is
then applied to the second profile of time series #2 and time series #4 denoted by
Cluster-2[TS-2,TS-4].

As the second data chunk or snapshot becomes available, the algorithm applies
the same procedure to extract profiles of relationship in the multiple time series. As
it retains same profiles from the second data chunk or snapshot which are [TS-
1,TS-3], and [TS-2,TS-4], the algorithm does not create any new cluster in the
knowledge repository. However, as it extracts trends of movement from each time
series, the algorithm finds that the second data chunk or snapshot holds different
type of behavior compared to the first data chunk or snapshot.

Consequently, the algorithm updates the information about trends of move-
ment of each time series in all existing profiles. New clusters of trends are then
created and stored in Cluster-1[TS-1,TS-3] as well as in Cluster-2[TS-2,TS-4]
to represent the new behavior exhibited by the second data chunk or snapshot.
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Fig. 12.7 Creation of knowledge repository (profiles of relationships and recurring trends). Figure
is extracted from [37]

For Cluster-1[TS-1,TS-3], two instances are created to represent a new form of
relationship between the pair of time series #1 and #3 that differs from the one
which exists in the first data chunk or snapshot, whereas for Cluster-2[TS-2,TS-4]
only one a new instance is created. This is because the trend of movement of time
series #2 in the second data chunk or snapshot is comparable to the existing instance
and therefore it joins the cluster.

Additionally, as the algorithm processes the third data chunk or snapshot,
it realizes that, within this locality of time, the four series are uncorrelated and
moving individually. As a result, new profiles represented by four new clusters:
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Fig. 12.8 Multiple time series prediction using profiles of relationships and recurring trends.
Figure is extracted from [37]

Cluster-3[TS-1], Cluster-4[TS-2], Cluster-5[TS-3], and Cluster-6[TS-4], denoting
specific trends of movement are created. The procedure continues until there is no
more data chunk or snapshot to be processed.

The process of constructing the knowledge repository can be considered as
a form of spatiotemporal modeling, whereby different shapes of trends (spatio)
are extracted continuously over time (temporal). The repository illustrates how
relationships between observed time series or variables change dynamically over
different time localities, retaining different shapes of movement (trends).

After the repository has been built, there are two further steps that need to be
performed before prediction can take place. The first is to extract current profiles
of relationships between the multiple series. Thereafter, matches are found between
the current trajectory and previously stored profiles from the past. Predictions are
then made by implementing a weighting scheme that gives more importance to pairs
of series that belong to the same profile and retain comparable trends of movement.
The weight wi, j for given pair i, j of series, is given by the distance of similarity
between them.

The prediction process is illustrated in Fig. 12.8, while the procedure of pre-
dicting movements of multiple time series simultaneously using the knowledge
repository is outlined as follows:

• Step 1, after the knowledge repository KR has been initialized using the training

data set, as new data xt = (x(1)t ,x(2)t , ...,x(i)t ) becomes available, where t is current
time point and i is the number of series, new data set X

′
t is constructed as follows:

X
′
t =

⎡
⎢⎢⎢⎢⎢⎢⎣

x(1)t−(n−1) x(1)t−(n−2) · · · x(1)t

x(2)t−(n−1) x(2)t−(n−2) · · · x(2)t

...
...

...
...

x(i)t−(n−1) x(i)t−(n−2) · · · x(i)t

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where n is the size of data chunk or snapshot window used in the process to
extract profiles of relationship and cluster the recurring trends.

• Step 2, extract profiles of relationship pt = (p1
t , p2

t , ..., pk
t ) where 1≤ k≤ i, from

current data set using X
′
t as described in previous section.

• Step 3, find profiles pkr = (p1
kr, p2

kr, ..., pk
kr) from previously constructed knowl-

edge repository KR where,

pkr = pt . (12.14)

• Step 4, for each series x(i) ∈ pk
t , extract its current trend of movement w(i)

t as
described in previous section.

For each series x(i) ∈ pk
t , find j cluster centers of recurring trends in pk

kr,
where j = 1,2, ...,m is the number of series belongs to profile pk

kr by calculating

minimum distances between w(i)
t to all existing cluster centers of recurring trends

in pk
kr as follows:

Di, j = 1−max(CorrelationCoefficient(w(i)
t ,Ccl

j)), (12.15)

where l = 1,2, ... is the number of clusters of recurring trends of series j in pk
kr.

• Step 5, calculate next value of x(i) using j found cluster centers of recurring

trends, by giving more weight w to cluster centers which are closer to w(i)
t . Note:

In this methodology, cluster centers Cc j of recurring trends represent trends of
movement of time series in a particular profile.

The weight wi, j that gives more importance to cluster center j when predicting
next value of x(i) is calculated as follows;

wi, j =
max(D)− (Di, j−min(D))

max(D)
, (12.16)

where max(D) and min(D) are the maximum and minimum values of distance
vector D = (Di,1,Di,2, ...,Di, j).

In addition, next value of x(i) is given by

x(i)t+1 =

j

∑
m=1

wi,mCcm

j

∑
m=1

wi,m

. (12.17)

• Step 6, update the knowledge repository KR using current data set that has just
been processed for prediction.

• Step 7, end of the procedure.
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Fig. 12.9 Profiles of relationships in the knowledge repository constructed by LTM using 100
weeks index of ten stock markets in the Asia Pacific region. Index #1, #2, #3, #4, #5, #6, #7, #8,
#9, #10 represent the NZ50, AORD, HSI, JSX, KLX, KOSPI, Nikkei 225, SSEC, STI, and TSEC,
respectively

12.5.4 Dynamic Learning of Stock Market Indexes with LTM

The globalized security markets of today form the basis of a case study to demon-
strate the ability of LTM in performing dynamic learning of multiple time series
from a nonstationary environment. Additionally, as previous study had suggested
that the globalized security markets are characterized by interdependencies among
stock markets and often demonstrate dynamic contagious behavior in different
periods [26], analysis of how LTM responds to such behavior is also outlined in
this section of the chapter.

The financial data set comprising the globalized security markets used in this
experiment includes time series indexes of ten stock markets in the Asia Pacific
region, available from http://finance.yahoo.com/intlindices?e=asia spanning 161
weeks from 1st June 2007 to 30th June 2010. The weekly aggregated values of
the stock market indexes are considered here. The ten selected market indexes
are NZ50 (New Zealand), AORD (Australia), HSI (Hong Kong), JSX (Indonesia),
KLX (Malaysia), KOSPI (South Korea), Nikkei 225 (Japan), SSEC (China), STI
(Singapore), and TSEC (Taiwan).

Figure 12.9 illustrates the constructed knowledge repository after 100 points
(i.e., 100 weeks) of stock market indexes of the ten selected stock market in the

http://finance.yahoo.com/intlindices?e=asia
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Asia Pacific region that are conferred to LTM. Figure 12.9 shows the existence of
strong relationship between Australia (AORD), Hong Kong (HSIX), South Korea
(KOSPI), Singapore (STI), and Taiwan (TSEC). Extracted profiles of relationships
in the knowledge repository reveal that these five stock markets are grouped together
in the same cluster frequently. This outcome is in agreement with previous findings
by Masih and Masih in 2001 [23] in their research on the dynamics of stock market
interdependency which found that the five stock markets are interdependent with
each other.

Additionally, in Fig. 12.9, cluster radius represents the farthest correlation be-
tween time series in the same cluster while relative positioning of the labels indicates
the degree of similarity in behavior. For instance, in the cluster of NZ50, HSI, JSX,
KLX, KOSPI, N225, STI, TSEC, and KOSPI is positioned closer to NZ50. This
indicates that similarity between KOSPI and NZ50 is higher compared to similarity
between KOSPI and the other markets.

This initial result confirms the ability of LTM to capture the existence of diverse
profiles of relationships that exist in the globalized security markets. However,
the other imperative was to perform dynamic learning of multiple time series.
Therefore, to evaluate the effectiveness of LTM in meeting this requirement, another
50 points of weekly stock market indexes are used in addition.

Figure 12.10 illustrates the states of extracted profiles of relationships in the
knowledge repository after the total of 150 weeks of the ten stock market indexes
entered the system. It is clearly seen that new profiles of relationships have emerged
in the repository, and existing profiles, in terms of the cluster radius, have been
updated. This result confirms that LTM is capable to perform dynamic learning of
multiple time series by capturing the dynamics of relationships between the series.
Finally, the rest 11 weeks stock market indexes are presented to construct the final
knowledge repository for 161 weeks of ten stock markets from the Asia Pacific
region as illustrated in Fig. 12.11.

As mentioned before, the main objective of constructing a knowledge repository
with the capability to learn dynamically facilitates the simultaneous prediction
of multiple time series in a nonstationary environment. Figure 12.12 shows the
prediction results of the ten selected stock market indexes in the Asia Pacific region.
The prediction is made for 46 weeks and done simultaneously for the ten stock
markets using the process that was explained in the previous section.

The initial LTM’s knowledge repository was constructed by utilizing the training
data set, and throughout the experiments conducted in this work predictions for
the ten stock market, indexes are made for only one-step ahead. Nevertheless, as
new data/time series points become available, the method updates its knowledge
repository incrementally.

It is again clearly seen that the prediction results match closely with the actual
trajectory of the ten stock markets. This results confirm that, by being able to learn
dynamically from multiple time series of a nonstationary environment, complete
understanding of the underlying behavior of the observed environment can be
constructed and a simultaneous multiple time series prediction can be performed
with a high degree of accuracy.
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Fig. 12.10 Profiles of relationships in the knowledge repository constructed by LTM using 150
weeks index of ten stock markets in the Asia Pacific region. Indexes #1, #2, #3, #4, #5, #6, #7, #8,
#9, #10 represent the NZ50, AORD, HSI, JSX, KLX, KOSPI, Nikkei 225, SSEC, STI, and TSEC,
respectively

12.6 Instance-Based Learning of Multiple Time Series

As multiple data streams consist of various variables producing examples contin-
uously over time, the basic idea behind the methodology outlined in this section
is simply to find and model relationships between these streams of data at a
particular time point and then to search for similar patterns of relationships from
the past. The relationships found will then be utilized to constitute a specific model
(i.e., weighted localized linear regression, localized fuzzy rules, etc.) to predict
future values of multiple time series simultaneously. Instead of constructing a
single model or a number of local models using a fixed size training data set,
this methodology creates and updates local models dynamically whenever new data
arrives.

The use of transductive reasoning for multiple time series analysis is inspired
by the NFI proposed by Song and Kasabov in 2005 [29], see Sect. 12.4.1, which
develops further some ideas from DENFIS [15], see Sect. 12.3.1. However, the NFI
was designed to work only as a single time series prediction algorithm. Therefore,
to cope with multiple time series modeling and prediction, some adjustments need
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Fig. 12.11 Profiles of relationships in the knowledge repository constructed by LTM using 161
weeks index of ten stock markets in the Asia Pacific region. Indexes #1, #2, #3, #4, #5, #6, #7, #8,
#9, #10 represent the NZ50, AORD, HSI, JSX, KLX, KOSPI, Nikkei 225, SSEC, STI, and TSEC,
respectively

to be made. Furthermore, there are some issues that also need to be addressed in
implementing the methodology. First, what are the features to be used to describe
relationships between multiple time series? Second, how are these relationships
going to be modeled? Third, how to find similar conditions from the past and to
calculate the final prediction results of multiple time series?

12.6.1 Multivariate Transductive NFI

This section of the chapter outlines a transductive approach for multiple time series
analysis and modeling. The multivariate transductive neuro-fuzzy inference system,
denoted as mTNFI, introduced and explained in this section, is an extension of
the NFI model (see Sect. 12.4.1), in which modifications were made so that the
new methodology is capable of performing multiple time series data analysis and
modeling.
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Fig. 12.12 Prediction results [�] of the LTM against the actual trajectory [©] of ten stock market
in the Asia Pacific region

12.6.1.1 General Principles

In general, mTNFI employs the same principles as the NFI model, where a dynamic
neural-fuzzy inference system with Gaussian membership function is constructed
from a set of nearest neighbors of a new input vector. However, as the mTNFI model
is intended to perform multiple time series analysis and modeling, some alterations
had to be made to the NFI model.

The first modification made to the NFI model is the use of a different distance
metric. The NFI model considers input vector xi as feature vectors and uses the
normalized Euclidean distance (as in (12.2)) to find the closest Ni training samples.
Yet, as previous studies have found that dynamic relationships exist in multiple time
series from a specific setting, the basic idea behind the mTNFI model is to use
the state of relationships in xt , where xt = (x1t ,x2t , . . . ,xqt) and xqt to measure the
expression level of a time series q at time point t as a feature vector instead of its
actual values. Please note that in mTNFI an input vector is denoted as xt instead of
xi to represent the temporal aspect of the data set (Fig. 12.13).
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In the mTNFI model, the state of relationship between multiple time series at
a particular time point t, is defined by calculating the ratio of first-order rate of
changes denoted as RXt , from multiple time series under examination described as
follows:

RXt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x1t − x1(t−1)

x2t − x2(t−1)
· · · x1t − x1(t−1)

xqt − xq(t−1)
x2t − x2(t−1)

x1t − x1(t−1)
1 · · · x2t − x2(t−1)

xqt − xq(t−1)
...

...
. . .

...
xqt − xq(t−1)

x1t − x1(t−1)

xqt − xq(t−1)

x2t − x2(t−1)
· · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12.18)

where RXt now is the features matrix describing the state of relationship in xt .
Additionally, the process assumes that xi0 = 0; i = 1,2, ...,q. The methodology then
employs feature matrix RXt to find Nt closest or most related training samples
which form a subdata set Dt from an existing data set D. Additionally, in place of
the normalized Euclidean distance, mTNFI uses the correlation coefficient distance
measure to quantify similarity level between different features matrices defined by

SRXt RXi
= 1−

q

∑
j=1

q

∑
k=1

(
RXt j,k−RXt

)(
RXi j,k−RXi

)
√√√√(

q

∑
j=1

q

∑
k=1

(
RXt j,k−RXt

)2
q

∑
j=1

q

∑
k=1

(
RXi j,k−RXi

)2

) , (12.19)

where

RXt =
1
q2

q

∑
j=1

q

∑
k=1

RXt j,k,

RXi =
1
q2

q

∑
j=1

q

∑
k=1

RXi j,k,

and i = 1,2, . . . , t− 1.
As mTNFI is intended to perform multiple time series analysis and modeling, the

second modification made to the NFI model is the replacement of the linear function
in the consequent part of the fuzzy rule (mTNFI model uses the Takagi-Sugeno-type
fuzzy rule) defined by

f (xt) = x̂t+1 = β0 +β1x1t +β2x2t + ...+βqxqt ,
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with a different form of linear function as follows:

f (xt )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂1(t+1) = β0 +β11x1t +β12x2t + ...+β1qxqt

x̂2(t+1) = β0 +β21x1t +β22x2t + ...+β2qxqt
...

x̂p(t+1) = β0 +βp1x1t +βp2x2t + ...+βpqxqt

, (12.20)

where p is the number of dependent variables and q is the number of explanatory
variables. However, in mTNFI, p = q as the number of time series being explained
is the same as the number of the explanatory time series. Equation (12.20) can be
represented in a more general and simplified form as follows:

yt = β 0 +βxt , (12.21)

where x̂t+1 is a vector of multidependent variables, xt is a vector of multiindepen-
dent variables, and β is the coefficients matrix that maps xt to x̂t+1. Representing
the consequent part of the fuzzy rule by a linear function with multidependent and
independent variables gives rise to the ability of modeling interactions between
observed variables and performing multiple time series prediction at a particular
time point.

Other than the two modifications outlined above, the mTNFI model utilizes the
same process as the NFI model. As such, for every new input vector, the algorithm
dynamically constructs a neural-fuzzy inference system with local generalization.
As in the NFI model, the mTNFI model also employs the ECM proposed by
Kasabov and Song in 2002 [15], to partition the input subspace that consists of
Nt selected training samples. A local model LMt for input vector xt will then be
constituted in the form of a fuzzy inference system using a set of created fuzzy
rules, derived from the clustering process.

12.6.1.2 mTNFI Learning Algorithm

For each new input vector xt of multiple time series, the mTNFI model performs the
following learning algorithm:

• Step 1, construct the ratio of first-order rate of changes from input vector xt to
form features matrix RXt , using (12.18).

• Step 2, search in the training data set, based on the input space, Nt training
samples that are closest to xt which form a subdata set Dt = (x1,x2, ...,x j); j =
1,2, ...,Nt , by utilizing features matrix RXt and calculating features matrices
RXi ; i = 1,2, ..., t − 1 from all training samples. Closest training samples in
mTNFI are defined using the Correlation Coefficient distance measure, as
described in (12.19). Additionally, in mTNFI, the value for Nt is predefined based
on experience, where Nt can be considered as number of k when being related to
the k-NN algorithm.



334 H. Widiputra et al.

• Step 3, calculate the distances d j; j = 1,2, ...,Nt between each of the training
samples in Dt and input vector xt and calculate the weights wj = 1− (d j −
min(d)); j = 1,2, ...,Nt where min(d) is the minimum value in the distance vector
d = (d1,d2, ...,dNt ).

• Step 4, use the ECM clustering algorithm to cluster and partition the input sub-
space Dt that consists of Nt selected training samples.

• Step 5, create Takagi-Sugeno-type fuzzy rules by representing the consequent
part of the rules as a linear function with multidependent and independent
variables (as in (12.21)) and set their initial parameter values according to the
clustering results of the ECM.

For each cluster, the cluster center is taken as the center of a fuzzy membership
function (Gaussian function) μ and the cluster radius is taken as the width σ .

Consider at time point t the system under examination has q inputs and
outputs, where q is the amount of time series being observed. As the outcome
of this step, M fuzzy rules are defined initially through the ECM clustering
procedure, and the lth rule has the form of

Rl : if x1t is Fl1 and x2t is Fl2 and ... and xqt is Flq, then x̂t+1 is fl(xt).

Here, Flk are fuzzy sets of xk in cluster l, where k = 1,2, ...,q, defined by the
following Gaussian-type membership function:

GaussianMFl(xk) = αlk exp

(
− (xk− μlk)

2

2σ2
lk

)
. (12.22)

Additionally, fl(xt) in Rl is represented as linear function with multidependent
and independent variables as follows:

fl(xt) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂1(t+1) = β0 +β11x1t +β12x2t + ...+β1qxqt

x̂2(t+1) = β0 +β21x1t +β22x2t + ...+β2qxqt
...

x̂p(t+1) = β0 +βp1x1t +βp2x2t + ...+βpqxqt

.

The M created fuzzy rules are then utilized to constitute the local model LMt in
the form of Takagi-Sugeno inference system.

• Step 6, apply the steepest descent method (backpropagation) to optimize the
parameters of the fuzzy rules in the local model LMt .

Suppose the mTNFI model is given a training input–output data pair (xt ,yt),
the parameters are being optimized by minimizing the objective function (a
weighted error function) as follows:

E =
1
2

wt

q

∑
k=1

(ŷkt − ykt)
2 , (12.23)
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where wt is the weight of the input–output training data pair, ŷt = f (xt), and q is
again the amount of time series being observed.

In mTNFI, the training input–output data pairs used to optimize the fuzzy
rules’ parameters are the Nt selected training samples from step 2,
(x,y) = ((x1,y1) ,(x2,y2) , ...,(x j,y j)),and j = 1,2, ...,Nt . The weight of each
input–output training data pairs wj, is defined in step 3.

• Step 7, calculate the output value f (xt), for the input vector xt , applying fuzzy
inference over the set of fuzzy rules that constitute the local model LMt using the
modified center average defuzzification procedure as follows:

f (xt) =

M

∑
l=1

fl(xt)
q

∏
j=1

αl j exp

(
− (x jt − μl j)

2

2σ2
l j

)

M

∑
l=1

q

∏
j=1

αl j exp

(
− (x jt − μl j)

2

2σ2
l j

) .

• Step 8, end of the procedure.

The procedure of optimizing the parameters β l ,αl j ,μl j, and σl j of the Takagi-
Sugeno type in the mTNFI model (step 6 in the mTNFI algorithm) is carried
out using the steepest descent method such that the value of E from (12.23) is
minimized. The optimization equations for each parameter are then defined as
follows:

βl0(k+ 1) = βl0(k)−ηβwtΦ(xt)

(
1
q

q

∑
i=1

(ŷit(k)− yit)

)
, (12.24)

βl i, j(k+ 1) = βl i, j(k)−ηβ x jtwtΦ(xt)(ŷit(k)− yit) , (12.25)

αli(k+ 1) = αli(k)− ηα
αli(k)

wtΦ(xt)

(
1
q

q

∑
i=1

(ŷit(k)− yit)

)

×
(

1
q

q

∑
i=1

(ŷl it(k)− ŷit(k))

)
, (12.26)

μli(k+ 1) = μli(k)− ημ
σ2

li(k)
wtΦ(xt)

(
1
q

q

∑
i=1

(ŷit(k)− yit)

)

×
(

1
q

q

∑
i=1

(ŷl it(k)− ŷit(k))

)
(xit − μli(k)) , (12.27)



336 H. Widiputra et al.

σli(k+ 1) = σl j(k)− ησ
σ3

li(k)
wtΦ(xt)

(
1
q

q

∑
i=1

(ŷit(k)− yit)

)

×
(

1
q

q

∑
i=1

(ŷl it(k)− ŷit(k))

)
(xit − μli(k))

2 , (12.28)

where

ŷt(k) = f (k)(xt); ŷl t(k) = f (k)l (xt)

and

Φ(xt) =

q

∏
i=1

αli exp

(
− (xit(k)− μli(k))

2

2σ2
li(k)

)

M

∑
l=1

q

∏
i=1

αli exp

(
− (xit(k)− μli(k))

2

2σ2
li(k)

) ,

ηβ ,ηα ,ημ , and ησ are learning rates for updating the parameters β l ,αli,μli, and σli

respectively. Additionally, in the mTNFI learning algorithm, the following indexes
are used:

• Training data samples: t = 1,2, ...,N
• Input variables: i, j = 1,2, ...,q
• Fuzzy rules: l = 1,2, ...,M
• Learning epoch: k = 1,2, ...

12.6.2 Dynamic Learning of Stock Market Indexes
with mTNFI

As in Sect. 12.5.4, the weekly indexes of ten stock markets in the Asia Pacific region
spanning 161 weeks from 1st June 2007 to 30th June 2010 is again utilized to
evaluate mTNFI’s capability to perform dynamic learning of multiple time series
in a nonstationary environment.

However, as mTNFI falls under the category of transductive reasoning or
instance-based learning, no training phase is required to construct global or local
models as in LTM. Consequently, the training data set is put in place as the initial
search space. A number of nearest neighbors that form a subdata set to construct
specific estimation models will then be located from this search space. Additionally,
the experiment employs an incremental testing process, which means that, whenever
a new instance arrives, the accuracy of predictions is first tested before it is added to
the training set or search space as a training example.
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Table 12.1 Comparison of the proposed integrated framework prediction
error rates against single time series prediction methods: MLR, MLP, and
random walk model, in RMSE

No Stock market IMMF MLR MLP Random walk

1 AORD 25.1345 171.7993 88.5213 85.7106
2 HSI 156.3394 460.3831 428.6957 320.0959
3 JSX 19.8513 77.3591 41.7204 47.5735
4 KLSE 5.2856 36.4490 26.6499 22.5799
5 KOSPI 13.5639 47.6204 28.5997 27.3852
6 Nikkei 225 61.8075 311.8844 293.4835 220.9357
7 NZ50 8.8974 126.1689 48.9904 46.8238
8 SSX 30.7801 175.5635 105.7773 113.7639
9 STI 16.1047 75.2957 60.7475 57.2612
10 TSEC 57.3583 198.6822 141.3183 108.3788

In our experimentation, 100 weeks of stock market indexes out of the 161 weeks
of data is selected as the training data set. Furthermore, as mTNFI constructs specific
solutions for every input vector, different fuzzy inference systems are extracted for
input vectors corresponding to different time points.

Table 12.1 outlines the fuzzy rules created by mTNFI using the 30 nearest
samples from the 100 weeks training data set when calculating output for input
vector at time-point 101. Please note that throughout the experimentation, the
number of selected nearest samples in mTNFI is set to a fixed value of 30 samples.
Table 12.1 indicates that three clusters are created in the clustering process of the
30 nearest samples. These three clusters are then utilized to form the fuzzy rules (as
described in the mTNFI learning algorithm) which in the end constructs the final
fuzzy inference system as in Fig. 12.14.

To demonstrate mTNFI’s capability to construct an individual local model that
best fits a new input vector or problem, a number of fuzzy rules is again extracted
when estimating output for input vector at time-point 110. Consequently, new fuzzy
inference systems as presented in Fig. 12.15, consisting of different number of fuzzy
rules is constructed by mTNFI for this particular input vector. Additionally, instead
of having three fuzzy rules, the fuzzy inference system has only two fuzzy rules,
indicating that in the learning process the 30 nearest samples are now being clustered
to only two clusters. These results confirm that, by being able to construct specific
individual local models for every new input vector or problem, mTNFI retains the
capability to perform dynamic learning of multiple time series in a nonstationary
environment.

By constructing different inference systems for every new input vector, the
mTNFI is expected to be able to predict simultaneously movement of multiple time
series of a nonstationary environment. To evaluate this, an experiment for predicting
future index values for the ten stock markets is performed. The experiment utilizes
the last 46 weeks of observed indexes as the test data set and the first 115 weeks
of observed indexes as the search space. However, the experiment employs an



338 H. Widiputra et al.

Fig. 12.14 Extracted fuzzy rules (first-order Takagi-Sugeno type) from mTNFI when predicting
upcoming indexes of ten stock markets in the Asia Pacific on week 101. RatioOfDiff is the
representation of variable RXt in (12.18)

incremental testing process, which means that whenever a new instance arrives the
accuracy of predictions is first tested before it is added to the training set as a training
example.

Figure 12.16 shows the performance of mTNFI when predicting movement
of ten stock market indexes in the Asia Pacific region simultaneously. The plots
indicate that the predicted trajectories closely track the actual ones. This result
confirms mTNFI’s capability to estimate upcoming movement of multiple time
series by dynamically constructing a specific fuzzy inference system for every state
or condition that emerges in a nonstationary environment.
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Fig. 12.15 Extracted fuzzy rules (first-order Takagi-Sugeno type) from mTNFI when predicting
upcoming indexes of ten stock markets in the Asia Pacific on week 110. RatioOfDiff is the
representation of variable RXt in (12.18)

12.7 Integrated Framework of the LTM and mTNFI

Local models are capable of capturing local patterns valid for subsets of the
problem space, and the transductive models are capable of constructing local and
specific estimation models for each new instance that needs to be classified or
predicted. These two approaches are useful for complex modeling tasks, and both
of them provide complementary information and knowledge learned from the data.
Integrating the two approaches into a single multimethodological approach would
be a useful and challenging task.

Integrating different types and levels of knowledge about the dynamics of the
relationships in a multiple time series under examination is a key objective in this
work. It is expected that by integrating different types of models, one should be able
to constitute a comprehensive understanding about the underlying behavior of the
dynamics of the system being investigated.

An integrated scheme to assimilate different types of knowledge has been
introduced by Kasabov in 2007 [12] in the bioinformatics domain. In his study,
Kasabov stated that every model has their own power in prediction, and by being
able to combine models, a more powerful model for time series prediction can
be realized. In his study, Kasabov proposed an integrated multimodel system that
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Fig. 12.16 Prediction results [�] of the mTNFI against the actual trajectory [©] of ten stock
market in the Asia Pacific region

includes a global model, a local model, and a transductive model to increase the
accuracy and power of prediction in gene expression data. However, in this work,
we limit the realization of the integrated framework to only consist of the local and
transductive models, as explained in previous sections.

The key idea of constructing the integrated framework is to estimate which
model out of the local and transductive models should be trusted more in any given
time point based on the characteristics of the series under observation. Completely,
the whole structure of the integrated framework is illustrated in Fig. 12.17. The
main component of the integrated framework is the accumulator module. The
accumulator will calculate, based on performance of each model, weight values that
will be associated with each model. The output of the accumulator represented by
a is the final prediction formed by the weighted output of the local and transductive
model defined by (12.29):

a = wlocal ∗ out putLTM+wtransductive ∗ out putmTNFI, (12.29)

where out putLTM and out putmTNFI represent predictions calculated by the LTM as
the local model and the mTNFI as the transductive model.
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Fig. 12.18 ADALINE as the accumulator module in the integrated framework to find the most
optimum weight distribution to be assigned to each model

Equation (12.29) describes a linear relationship between the values of the input
units and the value of the output unit. Finding the most appropriate weight values
to be assigned to each model (represented by the weight vector w) now amounts to
solving a linear optimization problem.

Here, the integrated framework of multiple time series analysis and modeling is
constructed by utilising the concept of the adaptive linear neuron network known
as ADALINE and illustrated in Fig. 12.18. Using ADALINE learning rules, the
accumulator module of the integrated framework would be able to calculate weight
values for each model based on their relative performances in predicting movements
of multiple time series. The weight vector w represents the trust values given to each
model by the accumulator. Additionally, by implementing recursive learning rules,
these weights can then be recalculated and adjusted based on current characteristics
of the new data arriving in the system.

Comparison of the absolute prediction error, when predicting movement of the
New Zealand NZ50 index as presented previously in Figs. 12.12 and 12.16, between
the LTM and the mtNFI model is illustrated in Fig. 12.19. The plot reveals that in
different localities of time, the performance of prediction of each model changes
dynamically. Therefore, it is logical to expect that in different localities of time a
particular model of multiple time series analysis should be trusted more than the
other one.

Figure 12.20 shows how the contributing weights assigned by the integrated
framework to each model are changing dynamically over time based on their
performance. For instance, when the absolute prediction error of LTM is higher
than mTNFI (time-point 1 to 9 in Fig. 12.19), the integrated framework assigns a
larger weight to the mTNFI compared to the LTM, as showed in time-point 1 to
9 in Fig. 12.20. Consequently, when LTM shows better performance (time-point
10 to 12 in Fig. 12.19) the integrated framework adjusts its contributing weights
structure by assigning more weight to the LTM. Therefore, the plot confirms that
the integrated framework is capable of adjusting its level of trust by changing the
contributing weight structure when it learns that the performance of that particular
model is decreasing.
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Fig. 12.20 Contributing weights assigned to the LTM and mTNFI by the integrated framework
when calculating final prediction of the New Zealand NZ50 index

Additionally, Fig. 12.21, which compares the prediction trajectory produced by
the integrated framework to the prediction trajectories produced by the LTM and the
mTNFI, indicates that the integrated approach is superior.

To validate if forecasting movements of multiple time series simultaneously
offers better prediction accuracy, a comparative analysis with multiple linear
regressions (MLR), MLP, and random walk methods applied on single time series
is conducted in this work. The random walk model is a time series analysis that
assumes that next value of a time series is equal to current value. Here, the random
walk without drift model defined simply by (12.30) is used:

xt+1 = xt . (12.30)

The random walk model in some cases might offer better prediction accuracy
(in terms of sum squared residual). However, this model produces a shadow plot of
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Fig. 12.21 Prediction results of the LTM, the mTNFI, and the integrated framework against the
actual trajectory of the New Zealand NZ50 index

the observed data, lagging exactly one period behind and providing no knowledge
on the observed system as it simply assumes that the upcoming value is exactly the
same as current value. Therefore, it can be considered that this model is actually
have no predictive power.

Table 12.1 shows the much smaller root mean square error (RMSE) of the
proposed integrated framework in comparison to the other methods applied for
single time series prediction. This outcome clearly indicates the value of extracting
and exploiting relationships between multiple variables in prediction when the
variables concerned are influencing each other in a dynamic fashion.

12.8 Conclusion

The chapter presented two novel approaches for multiple time series of a nonsta-
tionary environment analysis and modeling. The first approach, named the localized
trends model and denoted by LTM, constructs local models which captures recurring
specific behavior of the data set under observation. The recurring specific behavior
in this model is described as recurring relationships between pairs of time series that
influence each other, and recurring trends of movement within the series. Outcomes
of conducted experiments using index values of ten selected stock markets in the
Asia Pacific region prove that LTM demonstrates the ability to:

• Extract profiles of relationships and recurring trends from a multiple time series
data.
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• Perform simultaneous prediction of multiple time series with excellent precision.
• Evolve by continuing to extract profiles of relationships and recurring trends over

time when new data samples become available.

The second approach, named the multivariate transductive neuro-fuzzy inference
system denoted as mTNFI, develops an individual model over the new input vector
(by considering the state of relationships between multiple time series in the new
vector to the training samples or search space) and therefore provides a specific
and better local generalization. Furthermore, outcomes of conducted experiments
suggests that mTNFI is capable of performing multiple time series prediction
accurately.

Additionally, an integrated framework that assimilates the capabilities of both
LTM and mTNFI is also proposed and outlined in this chapter. Conducted experi-
ments using the New Zealand NZ50 index as test data set reveals that the integrated
framework is capable of changing its structure dynamically by in response to
changes in the underlying movement of the multiple time series. The integrated
framework dynamically assigns different weights to each contributing model based
on their current predicting power. By being able to do so, the integrated framework
produces a prediction trajectory that matches closer to the actual trajectory com-
pared to the prediction trajectories calculated by the LTM and mTNFI individually.

Nevertheless, application of proposed methods is not limited to only the mod-
eling of relationships between variables from financial domain, but also for other
real-world problems, that is, to model interactions of climatology variables in our
global weather system or to learn about profiles of relationships between genes in
a living being from the gene expression level data sets. Conclusively, the proposed
local and transductive model and the integrated framework indicate that by being
able to dynamically learn and model changes that emerge in a nonstationary
environment, one could have complete understanding of the underlying behavior
of the observed environment and hence would help to estimate its future states more
accurately.
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Chapter 13
Optimizing Feature Calculation in Adaptive
Machine Vision Systems

Christian Eitzinger and Stefan Thumfart

Abstract A classifier’s accuracy substantially depends on the features that are
utilized to characterize an input sample. The selection of a representative and—
ideally—small set of features that yields high discriminative power is an important
step in setting up a classification system. The features are a set of functions that
transform the raw input data (an image in the case of machine vision systems) into a
vector of real numbers. This transformation may be a quite complex algorithm, with
lots of parameters to tune and consequently with much room for optimization. In
order to efficiently use this additional room for optimizing the features, we propose
an integrated optimization step that adapts the feature parameters in such a way that
the separation of the classes in feature space is improved, thus reducing the number
of misclassifications. Furthermore, these optimization techniques may be used to
“shape” the decision boundary in such a way that it can be easily modeled by a
classifier. After covering the relevant elements of the theory behind this automatic
feature optimization process, we will demonstrate and assess the performance on
two typical machine vision applications. The first one is a quality control task,
where different types of defects need to be distinguished, and the second example is
a texture classification problem as it appears in image segmentation tasks. We will
show how the optimization process can be successfully applied in morphological
and textural features that both offer a number of parameters to tune and select.

13.1 Introduction

In many classification tasks, the investigations start with a set of features that are
the input to various machine learning structures, such as classifiers. In nonstationary
learning environments,the classifier is adjusted to adapt to changes in the concepts
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or rules that apply. However, quite often we find situations where the rules should
remain the same, but the underlying processes that generate the input data (the
features) have changed. This may quickly turn an initially well-posed classification
task into an overly complex problem with weird decision boundaries. This may
happen, for example, in a machine vision system, when the surface properties of
the objects change. The statistical properties of the features will change, which
may increase the complexity of the following classification tasks and may make
it hard for the classifier to find reasonable decision boundaries. On-line adaptation
and evolution of the classifiers (as applied in Chap. 7 for on-line surface inspection
problems) may help to overcome these problems by permanent adjustments of the
decision boundaries; however, the real class labels are not always available or may
require high costs due to significant operators’ efforts.

Another promising approach to counter such a change is to adapt the procedures
that generate the features in such a way that they compensate for the change in
surface properties. This chapter thus focuses on what can be achieved by adapting
feature calculation. Features are always application specific and are often assumed
to be carefully chosen by an expert, who makes sure that these features are relevant
for the task. However, it has to be understood that the resulting feature vector is
just a very low-dimensional representation of the object and that much—possibly
relevant—information is already lost by converting the raw data of the object into
a set of features. In fact, the feature calculation is the step that performs the largest
reduction in the dimension of the problem. A typical image used in machine vision
applications is several thousand pixels wide and thus may be considered a data
vector coming from a 106- to 107-dimensional space. Clearly, the gray values
of neighboring pixels are highly correlated, and images used in typical machine
vision applications are usually very far from filling up this huge space. Instead,
they are restricted to a comparably small subspace, which allows a compression of
the information by means of features. Feature calculation thus reduces this high-
dimensional space to a representation with dimensions in a typical range of 20–200.
Depending on the number of samples that are available as training data and also
on the properties of the features, the dimension needs to be reduced further before
applying machine learning methods and classifiers. Therefore, a feature selection
step is used that typically reduces the number of features down to 5–15 features.

Essentially, feature selection tries to select a subset of features that is optimal
for the task at hand. Optimal here means that the subset contains low redundancy
and that correlated features are removed while preserving most of the relevant
information. This approach depends on various hypotheses about the distribution
of the features and is called “filter approach”. Alternatively, one may directly select
a subset in such a way that the classification accuracy is optimized. This “wrapper
approach” does not require any additional hypotheses, but depends on the classifier
that is used. Some classifiers have a built-in feature selection process, for example,
decision trees that select a single feature for the decision that is to be made at each
node.
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Table 13.1 Reduction of dimension when processing an image

Processing step Data representation Dimension

Raw (image) data Image 106–107

Initial feature space Feature vector 20–200
Feature space after selection Feature vector 5–15
Classification result Discrete value 1

The classifier then performs the final data reduction step and reduces the feature
space to a one-dimensional space of a small, discrete set of classes. Table 13.1
illustrates this data reduction.

Within this chapter, we want to focus on the first processing step that converts the
raw input data to an initial set of features. This processing step builds the basis for
the downstream processing, and it also performs the most significant reduction and
compression of data. The algorithms used for this reduction may be highly complex
and are domain specific. For example, in the analysis of time signals, one may apply
spectral methods to characterize the signals, whereas in image processing, texture
analysis might be appropriate to calculate a set of relevant features. In any case,
these algorithms include a large number of parameters that have to be chosen and
that can be tuned to a particular application. This tuning process is often left to the
expert in the field and is sometimes done on an intuitive basis coming from past
experience and from the particular requirements of the task. We claim that these
parameters can be used with great effect to improve the accuracy of downstream
classification by directly optimizing feature calculation during the off-line and on-
line adaptation of classification systems.

At this point, we would also like to make a clear distinction between feature
selection and feature optimization. Feature selection converts a high-dimensional set
of features into a smaller set [8] while maintaining most of the relevant information.
In the case of a filter approach, various hypotheses are used that lead to optimization
criteria based on distance, information, consistency, or dependency [7, 15, 27]. In
the case of wrapper approaches [18], the goal is to directly improve classification
accuracy. At the heart of the problem is a subset selection task that has a runtime
of O(2N), but good approximations can be obtained using heuristic methods with
a runtime of O(N2). A wide range of algorithms have been developed for this
task, such as RELIEF [19, 28], the decision tree method [4], or branch and bound
[25]. A recent survey lists 42 different algorithms [14, 24]. Feature selection may
thus be considered a projection of the features to a low-dimensional space. This
transformation is continuous, and its main property is that objects that were close
together in the initial feature space will also be close together in the reduced feature
space. If these two objects belong to different classes, then the margin between the
two classes will be narrow no matter how the features are selected.

Feature optimization, on the other hand, has access to the original raw data for
adapting the features. Even if two objects are identical in the initial feature space,
they will not necessarily be so in the space of raw data. If these objects belong to
different classes, then feature optimization may be used to create or tune features to
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put particular emphasis on this difference in the raw data and thus optimize feature
calculation. It thus has the potential of increasing the margin between the two classes
beyond what is possible with projections or other continuous transformations of
feature space.

13.2 Parameterized Image Features

In the following, we will focus on two different types of features, both of which are
widely used in image processing. The first set of features includes shape descriptors
that are used to characterize the properties of image regions (so-called “blobs”).
“Blobs” usually refer to small-image regions that are darker or brighter than the
background and that can be more or less easily detected using (locally adaptive)
thresholding methods or edge detectors. In the area of surface inspection, these blobs
often correspond to the defects that have to be found and analyzed. For this purpose,
the defects are characterized by a set of descriptors such as the total area of the blob,
the position of the blob in the image, the ratio of area and circumference of the blob,
or the inner structure of the blob.

The second set contains texture features that are used for image segmentation.
Texture is a small-scale, visible surface structure that is characterized by local
similarity. Small patches of a single texture, so-called texels, thus share a set
of properties or features that are similar for all texels coming from this texture.
These features may thus be used to characterize the texture and to enable texture
segmentation. By using a classifier, one may determine which texels belong to
the texture and which do not to establish a boundary between regions of different
texture. There is a huge variety of texture features among which Gabor features are
a popular choice for segmentation, classification, and image retrieval.

13.2.1 Blob Features

The notion “blob” is a commonly used abbreviation for “binary linked objects”.
“Linked objects” mean that the objects are usually connected in the sense that there
is a path from one pixel of the object to any other pixel of the object that is fully
inside the object. Such linked objects can be easily extracted from the image using
various (sometimes recursive) algorithms, for example, by following the edge of the
object. “Binary” refers to the fact that the algorithms are often applied to bi-valued
images, where pixel values of 0 corresponds to background and 1 corresponds to
pixels inside the blob. Such binarization is obtained using thresholding algorithms
that search for dark or bright areas in the image. This threshold value is also a very
important parameter for optimizing feature calculations. This is demonstrated in
Fig. 13.1.

If we consider a simple “area” feature that describes the number of pixels covered
by the blob, then this feature will substantially depend on the threshold value that



13 Optimizing Feature Calculation in Adaptive Machine Vision Systems 353

Fig. 13.1 “Area” feature for different threshold values in an 8-bit gray-level image. From left
to right: original image; segmented area using a threshold of 55, 115, and 200. With increasing
threshold value, the area is becoming smaller, and may even split into two disconnected regions

Table 13.2 Typical shape features used in blob analysis

Feature Description Parameter(s)

Area Number of pixels inside the blob Threshold value
Bounding rectangle Width and height of the bounding

rectangle
Threshold value, parameters

dealing with outliers, for
example, percentage of
outlying pixels not
considered

Roundness Ratio of the principal axis to the
secondary axis of the
circumscribing ellipse

Threshold value, parameters
dealing with outliers

Second-order moments Second-order moments calculated
along an axis (column-wise,
row-wise, or arbitrary angle)

Threshold value, angle of the
axis relative to the
principal axis

Circumference Number of pixels along the edge of
the blob

Threshold value

Perimeter Perimeter of a circle covering the
same area as the blob

Threshold value, parameters
dealing with outliers

Compactness Ratio of the total area of the blob
and the area of the circular disc
that fully covers the blob

Threshold value, parameters
dealing with outliers

p-Percentile 1 Gray value for which p percent of
the total number of pixels
inside the blob are above that
value

p

p-Percentile 2 Percentage of pixels inside the
blob below/above a certain
threshold value

Gray value threshold

is chosen for binarization of the image during feature calculation. The region may
even split into two separate blobs for higher threshold values. The correct choice
of the threshold value is not immediately clear, and obviously, there is room for
optimization.

There is a huge variety of features used in blob analysis, most of which describe
the shape of the blob, but there are also features that provide information about the
contrast or the inner structure (texture) of the blob. Table 13.2 below lists 9 examples
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of such features, including a description of the feature and parameters that can
possibly be used for optimization. We have not included formulas or algorithms for
the calculation of each feature and refer the reader to the vast amount of literature
on basic image processing algorithms, for example, Chap. 10 of [9].

13.2.2 Gabor Features

A wide variety of features has been developed for the characterization of textures.
The goal of these features is to capture the local properties of textures and to enable
higher-level processing of textures for applications such as image segmentation,
content-based image retrieval, or texture defect detection. The main approach in
these tasks is to use the features as input to a machine learning structure such as
classifiers or regression models. In the following, we describe Gabor features as an
example of parameterized texture features and later show how these parameters can
be tuned to a specific task.

Gabor features are often used in the above mentioned applications, and their
importance also comes from the fact that in some way they resemble processing
steps going on in the human visual cortex. However, Gabor features are just one
example of a huge set of texture features, and we use them purely for demonstrating
the general concept of feature adaptation. For the purpose of texture segmentation,
which will be the example that we investigate here, the Gabor features are calculated
for every image pixel to obtain a feature map. Thus, each image location ωi ∈Ω is
characterized by a d-dimensional vector of Gabor features. The actual value of d
depends on the number of Gabor filters that form the applied Gabor filter bank and
the type of Gabor features.

The calculation of a Gabor feature map for the image requires an intermediate
step, in which a set of Gabor filters (a Gabor filter bank) is applied to the image. The
feature map is calculated from the individual filter responses. A two-dimensional
Gabor filter g(x,y),(x,y) ∈ Ω is a sinusoidal plane wave, modulated by a Gaussian
envelope given by

gλ ,θ ,γ,ϕ(x,y) = e−
x′2+γ2y′2

σ2 cos
(

2π j x′
λ +ϕ

)
,

where

x′ = xcosθ + ysinθ , y′ = −xsinθ + ycosθ and
σ = cσλ .

This filter acts as an oriented local-band-pass filter that is optimal in terms of joint
localization and resolution in image and frequency domain [16]. The parameters
that can be tuned to obtain a selective Gabor filter are:

λ : Wavelength of the sinusoidal plane wave
θ : Orientation of the Gabor filter
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Fig. 13.2 Gabor filters in image and Fourier domain for various filter parameters. Compared to
the mother wavelet filter (λ = 1/23,θ = 0,γ = 0.5,ϕ = 0,cσ = 0.56) in (a), the filters (b) to (f)
are different in one parameter setting: (b) λ = 1/49, (c) θ = π/2, (d) γ = 0.25, (e) ϕ = −π/2,
(f) cσ = 1.0. All filters in image domain are cropped and zoomed by factor 2 to increase visibility

γ : Elongation of the Gaussian envelope
ϕ : Shift of the sinusoidal plane wave that determines whether the filter is

symmetric (ϕ = 0) or antisymmetric
(
ϕ = π

2

)
cσ : Factor that determines the size of the Gaussian envelope

A plot of typical Gabor filters for different parameters is shown in Fig. 13.2. In
Sect. 13.5.3.2, we will demonstrate the importance of tuning these parameters to
obtain highly accurate segmentation results.

By calculating the convolution of a Gabor filter g with an image I as in

r(x,y) =
∫∫
Ω

I(x,y)g(x− ξ ,y−η)dξdη ,

a new image (the filter response r) is obtained as shown in Fig. 13.3.
Usually, one does not only apply a single Gabor filter, but a family of filters—

often called a filter bank—generated by varying the wavelength and orientation of
a mother wavelet filter. A typical value is to use six orientations and four different
scales, resulting in 24 different Gabor filters and thus in 24 filtered images. Spatial
frequencies (scale) are chosen to cover the relevant frequencies in the image.

In many applications, these images are then converted into so-called Gabor
energy maps. The energy map e(x,y) of a Gabor filter [13] is calculated by
considering filter responses to symmetric and antisymmetric Gabor filters:

eλ ,θ ,γ(x,y) =
√

r2
λ ,θ ,γ,0(x,y)+ r2

λ ,θ ,γ,−π/2(x,y).

The Gabor energy e is related to the local power spectrum p as follows:

pλ ,θ ,γ(x,y) = e2
λ ,θ ,γ(x,y),
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Fig. 13.3 The Gabor filter responses r for an image I from the Brodatz texture album [3]. The
operator | ∗ | represents a convolution, which is typically done in Fourier domain to reduce the
computational load for larger images

as the Gabor filters are essentially a Fourier transformation with a Gaussian
windowing function. The resulting image contains an energy value per pixel
and describes the local energy contained in the different spatial frequencies and
directions. In order to finally obtain a single feature value, some kind of aggregated
information is calculated for the image. This can be done in several different ways,
some of which are described in the following:

The sum of Gabor orientation energy difference (SGOED) [17] is obtained by
summing over all pixels of the energy map:

Eλ ,θ ,γ =
∫∫
Ω

pλ ,θ ,γ(x,y)dxdy.

Assuming that we operate with a filter bank with Θ different orientations and Λ
different scales, we can further sum up the entries of all energy maps E∗,∗,γ along
scales or orientations such that we obtain two vectors

EΘ =
Λ
∑

i=1
Ei,θ ,γ

and

EΛ =
Θ
∑

i=1
Eλ ,i,γ ,

withΘ and Λ elements, respectively. The SGOED [17] is then found by

fSGOED =
Θ
∑

i=1
|EΛ (θi)−EΛ (θi+1)| ,
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where the index θi is to be understood as being calculated θi = mod (i,Θ). SGOED
generates large values for abrupt orientation changes between energy values. The
features thus measure in some sense whether the texture is isotropic (low value for
SGOED) or whether it has a strong directional structure (high values for SGOED)
in a certain spatial frequency range. In a similar fashion, one can derive the sum of
Gabor scale energy differences (SGSED) by

fSGSED =
Λ
∑

i=1
|EΘ (λi)−EΘ(λi+1)| ,

where the index λi is to be understood as being calculated λi = mod (i,Λ). The
SGSED is high if the image under investigation shows a dominant texture scale,
while it is low if multiple texture scales are present.

While the aggregation of Gabor energy map entries as described so far has been
applied successfully, for example, to distinguish natural from man-made objects in
[17] or to texture classification and content-based retrieval [31], their basic idea
can hardly be transferred to texture segmentation as these features aim to capture
properties of larger image areas.

For pixel-wise segmentation, the energy map entries eλ ,θ ,γ(x,y) for a fixed
image location ωi but different filter parameters (i.e., the energy maps obtained
from a Gabor filter bank) are directly used to build a Gabor energy feature vector
fωi . Grigorescu et al. [13] evaluated the segmentation accuracy for more complex
Gabor filter-based features, inspired by the early processing in human vision system
and could show that Gabor energy features outperform complex moment features
[13]. Superior performance was reported for grating cell operator features that are
computed in a two-stage process. The first stage, based on a Gabor filter bank as
described above, detects the presence of three parallel bars at any image location.
The second stage integrates the output of the first within a certain surrounding and
therefore detects the presence of multiple combinations of parallel bars.

13.3 Feature Adaptation Concepts (Off-line)

In the following, we first outline existing approaches to feature adaptation for blob
and Gabor features. Next, we describe the general concept of feature optimization
for off-line processing which will also be the basis for the on-line adaptation. To
motivate the necessity for feature adaptation, let us consider a simplified inspection
task, where we have to detect elongated scratches of predefined orientation and
size. These scratches are present on a milled surface that shows an oriented surface
texture itself. Given an image of a part with a scratch orientation of 10◦ and a surface
texture orientation of 35◦, the energy response for two Gabor filters with θ = 10◦
and θ = 35◦ with an appropriate scale λ would be highest. For an image without
scratch, only the Gabor filter with θ = 35◦ would yield a high energy response.
Obviously, the energy for the Gabor filter with θ = 10◦ can be used to distinguish
defective and defect-free surface patches. However, if we would rely on a fixed
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Gabor filter set with θ = {0◦,45◦,90◦,135◦}, the distinction between defective and
defect-free areas cannot be based on a single filters’ energy response any more. In
real-world inspection tasks, we can never be sure that the properties of a (defect free)
surface or the scratches remain constant over time (e.g., wear of the machine tools,
material differences, temperature difference, etc.). Thus, it is crucial to adapt the
feature parameters to discriminate between defective and defect-free surface areas.

13.3.1 Blob Feature Adaptation

For blob features, the main approach to feature adaptation is a manual selection of
the relevant parameters by an expert. Automatic adaptation is rarely implemented,
because of the perceived simplicity of the features. In some applications, however,
such as tracking of objects, the features will change, for example, because the
object that needs to be tracked is seen from a different viewpoint. Consequently, the
relevance of features may change depending on the angle of view, because certain
parts of the object will not be visible any more. Some recent results that cover this
topic can be found in [5] and [6]. An adaptive feature transformation is described in
[1], where the feature vector is postprocessed by an adaptive transformation matrix
that is used to make the features invariant to environmental changes. The joint
optimization of classifiers and features is investigated in [20], but also in this case,
the optimization of features is done by a selection process rather than by adapting
parameters inside the feature calculation.

13.3.2 Gabor Feature Adaptation

The filter bank which is required to derive Gabor energy map features obviously
offers a set of parameters that can be used for optimizing the subsequent processing
steps. These parameters include the scale λ , the orientation θ , as well as the number
of scales Λ and directions Θ used. Gabor filter banks are usually designed to
optimally represent the texture signal of the image. Optimality is measured by the
mean squared error between the reconstructed and the original signal [21]. The goal
of texture segmentation, however, is not to optimally represent the single textures
but to divide the image into regions that contain the different textures. The focus of
the optimization should thus be on identifying those parameters for the Gabor filters
that allow an optimal discrimination between the different textures.

The second aspect that needs to be considered is computing time. Calculating the
convolution of a Gabor filter with a whole image is computationally costly, and one
is thus interested in minimizing the number of filters used and on choosing those
with the highest discriminative power.

For the optimization, we may either focus on a single filter or the whole filter
bank. Both approaches are slightly different.
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In the filter bank design, one generally uses a set of directions that cover 180◦
(360◦ is not required, because the filter is symmetric), and the only question that
needs to be answered is how many directions we want to consider. This decision is
made purely on computational cost, and typical values are in the range of four (0◦,
45◦, 90◦, 135◦) to eight directions. The scale parameter of the Gaussian function
is generally selected intuitively and assumed to be a constant. In [11], guidelines
for selecting values for the scale parameter are proposed, but quite often, human
intervention is still required to assist in selecting the appropriate filter parameters
for texture segmentation. The selection of filters is then done by visually inspecting
the filtered images, to identify those filters that best characterize different textures
in the image.

For filter design, the focus is on selecting one or very few filters with parameters
that are optimal for the task. This avoids some of the problems of filter banks, espe-
cially the high computational effort that is required for calculating the convolution
with a larger number of filters. In many cases, the choice of parameters for the
single filters is made based on a priori knowledge about the texture. Such knowledge
may include typical dominating directions in the textures or the visual coarseness of
the textures. This may be put on a more objective basis by performing a Fourier
analysis on the whole image to identify the most significant (or discriminative)
spectral components to deduce the scale and orientation for the Gabor filter. An
explicit method for the selection of scale and direction parameters is proposed in
[32]. The main idea is to solve a max-min optimization problem that maximizes
the minimal ratio of Gabor energies contained in the different textures. The idea
has a strong similarity to Fisher discriminant analysis [10] (Sect. 3.8.2) and to
the optimization criteria used in support vector machines. It basically tries to
maximize the margin between the two Gabor energy representations of the textures.
A more recent approach presented in [29] aims at maximizing the fraction of
separable harmonic signal pairs in a given frequency range. Separable here means
that the filter responses are disjoint in at least one component of the response vector.
This method proved to be more efficient than previous methods while achieving the
same accuracy on texture segmentation tasks. For solving the resulting optimization
problem, a range of methods has been applied such as genetic algorithms [22],
simulated annealing [10] and any other kind of optimization method that can deal
with the discrete nature of the optimization problem.

13.3.3 General Feature Adaptation Concept

Optimization of features as proposed in this context is an optimization step that
is done once the classification system is already in place. The assumption is that
a set of features has been selected and that a classifier has been trained off-line to
achieve reasonable accuracy. At this stage, it makes sense to reconsider and optimize
the feature calculation in order to make the classification system more robust and
to further increase its accuracy. Optimizing features “from scratch” is not likely
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Table 13.3 Different target functions J for commonly used classifiers

Classifier Within-class scatter sW

Between-class
scatter sB J

Nearest neighbor 1
n0
∑ j=1...n0

∥∥F(x0, j,p)−μ0
∥∥2 ‖μ0−μ1‖2 sW(p)

sB(p)

+ 1
n1
∑ j=1...n1

∥∥F(x1, j,p)−μ1
∥∥2

Linear classifier 1
n0
∑ j=1...n0

(
cT (F(x0, j ,p)−μ0)

)2 (
cT (μ0−μ1)

)2 sW(c,p)
sB(c,p)

+ 1
n1
∑ j=1...n1

(
cT (F(x1, j,p)−μ1)

)2

Decision tree 1
n0
∑ j=1...n0

(
eT

i (F(x0, j ,p)−μ0)
)2 (

eT
i (μ0−μ1)

)2 ∑i=1...m
sW(ei,p)
sB(ei,p)

+ 1
n1
∑ j=1...n1

(
eT

i (F(x1, j,p)−μ1)
)2

to succeed, because the search space is huge and features are in the danger of
degenerating into measurements for properties that are totally different from the
originally intended meaning of the feature. This would impair the interpretability of
the classification system and should thus be avoided.

For the adaptation of a set of features Fi, i= 1, . . . ,m, which we collect in a feature
vector F ∈ R

m and which depend on a parameter vector p, we try to minimize
the within-class scatter sW in relation to the between-class scatter sB. Feature
adaptation should lead to a decision boundary that can be easily reproduced by the
classifier at hand and that maximizes the distance between the classes perpendicular
to the decision boundary. The way how we quantify the scatter thus depends on
the classifier that is used. We will discuss this for three commonly used types of
classifiers: nearest neighbor classifiers, linear classifiers, and decision trees.

Nearest neighbor classifiers use a distance measure ‖.‖ to determine the distance
of a feature vector to the class center. Classification performance will improve if the
feature parameters are adapted to maximize the distance between the classes with
respect to this distance measure. Linear classifiers create a separating hyperplane
in feature space. This hyperplane is usually characterized by its normal vector cT .
Feature parameters should thus be chosen to optimize the distance perpendicular to
this hyperplane. Adaptation requires a joint optimization of feature parameters and
classifier. Finally, for decision trees, the decision boundaries are in general parallel
to the feature space axes eT

i . Thus, the scatter perpendicular to the feature space
axes needs to be considered. The different methods of calculating the within- and
between-class scatter and the target function J are shown in Table 13.3, where μ0

and μ1 define the average feature vectors over the class 0 (with n0 representatives)
and class 1 (with n1 representatives), respectively. The target function aims at
maximizing the distance between the classes, while minimizing the scatter within
each class. The distance measure is selected in such a way that it favors the
separation perpendicular to boundaries that can be easily modeled by the different
classifiers.

Clearly, it will be beneficial for the simplicity of the optimization if the features
can be optimized independent of the current parametrization of the classifier, but
this will not always be the case. We can thus think of three different strategies:
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• For decision-tree classifiers and also for the nearest neighbor classifiers using the
L2-norm (‖x‖2 =

√
xT x) as a distance measure, one can optimize the features

independent of the current classifier. The optimization process thus consists of
calculating the target function and applying a numerical optimization method.

• For linear classifiers, the target function depends on the particular parametriza-
tion of the classifiers, as the direction of the decision boundary may change.
A similar situation is found if the Mahalanobis distance is used instead of the L2
norm for the nearest neighbor classifiers. The Mahalanobis distance accounts
for the variance differences of the individual features and scales the features
accordingly:

‖x‖Mahalanobis =
√
(x− μ)TΣ−1(x− μ),

where Σ is the covariance matrix of x.
In this case, the distance measure (and thus the target function) will change

depending on the distribution of the features. Clearly, this distribution will change
whenever the feature calculation is adapted. These changes have to be included
in the target function during the optimization. Alternatively, one may think of
optimizing the features for a fixed classifier (i.e., fixed direction of the decision
boundary or fixed distance measure) coming from the initial off-line training step.
This clearly simplifies the optimization process, but probably gives away some
potential for improvement.

• For some types of classifiers, such as neural networks, the decision boundary
is so complex that the basic concept of optimizing the scatter perpendicular to
the decision boundary cannot be directly applied. In this case, we propose to
implement a strategy similar to the “wrapper” approach that directly optimizes
classification accuracy. This joint feature and classifier optimization will lead to
a quite complex optimization problem, which is limiting its applicability.

Independent of the particular choice of strategy the resulting optimization prob-
lems are usually nonsmooth and—considering the discrete nature of the threshold—
even discontinuous. If there are only few parameters to tune, an exhaustive search is
possible. For more complicated data sets, we found that gradient descent methods
with a simple numerical estimation of the gradient work well. As usual, only a
local minimum can be guaranteed in this case. More details of the algorithms are
presented in [12].

13.4 Feature Adaptation Concept (On-line)

The basic assumption for the on-line adaptation of features is that a reasonable
initial set of parameters has been found and that also an initial set of training
data is available from which we can estimate certain feature statistics. The general
approach will then be a gradient-based optimization that uses a numeric estimate of
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the gradient. This is due to the discrete nature of many parameters, especially of the
threshold values that are usually chosen from a discrete set of 0,1, . . . ,255 for 8-bit
gray-level images.

Referring to Table 13.3, we find for the linear classifier that the gradient of
the target function J with respect to the classifier’s parameter c and the feature
parameters p can be calculated analytically. For the derivation, we reformulate sW

and sB of J(c,p) = sW(c,p)
sB(c,p)

, compute the partial derivatives ∂ sW(c,p)
∂c , ∂ sW(c,p)

∂p , ∂ sB(c,p)
∂c ,

∂ sB(c,p)
∂p , and combine them using the quotient rule

∂J(c,p)
∂ · =

∂ sW(c,p)
∂ · sB(c,p)− sW(c,p) ∂ sB(c,p)

∂ ·
sB(c,p)2 . (13.1)

By introducing the per class feature covariance matrices

Σk(p) =
1
nk

(
F(xk,p)− μk

)(
F(xk,p)− μk

)T
, (13.2)

we can rewrite the scatter terms into the quadratic forms

sW(c,p) = cT
(
Σ0(p)+Σ1(p)

)
c (13.3)

and

sB(c,p) = cT (μ0− μ1)(μ0− μ1)
T c . (13.4)

The vector-valued derivatives are then

∂ sW(c,p)
∂c

= 2
(
Σ0(p)+Σ1(p)

)
c (13.5)

∂ sB(c,p)
∂c

= 2(μ0− μ1)(μ0− μ1)
T c (13.6)

∂ sW(c,p)
∂p

= c
(
∂Σ0(p)
∂p

− ∂Σ0(p)
∂p

)
cT (13.7)

∂ sB(c,p)
∂p

= 2c(μ0− μ1)

(
∂μ0

∂p
− ∂μ1

∂p

)
cT . (13.8)

Regarding the on-line adaptation, the key issue is to avoid the repeated processing
of a large number of test images. We thus have to make some compromises with
respect to the quality of the estimates of the second-order statistics and the gradients.

For the second-order statistics, we create two buffers in which we store samples.
These buffers are of fixed length with a typical size of 25–100 samples. Each
buffer corresponds to one of the two classes (accept/reject). Depending on the label
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Fig. 13.4 Overview of the concept for on-line feature optimization

obtained from the classifier or from an expert, the feature vectors F from the images
as well as their gradients with respect to the feature parameters p are routed to one
of the two buffers. The buffers can also be thought of as a sliding window over the
sequence of sample images. Based on the buffered samples, second-order statistics
(the average μ and the variances Σ ) of the features and the feature gradients are
computed along with their derivatives with respect to their parameters. From the
statistics and the classifier’s parameters c, the target function J and its gradients
with respect to c and p can be computed. Incremental optimization of the quality
criterion is then performed by updating the p and c in the direction of the negative
gradient of J. The step length is controlled by a fixed learning rate η :

pn+1 = pn−η∇pJn

cn+1 = cn−η∇cJn.

An overview of the whole concept is shown in Fig. 13.4.
A basic evaluation of this method on a simple test case showed that learning rates

of 0.001–0.01 lead to good results and that a buffer size of 25–100 is required. After
about 500 to 1,000 iterations (samples), the parameters were reasonably close to
their optimal values. It should be noted, however, that depending on the length of
the queue, there will also be fluctuations in the parameters.
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13.5 Experimental Evaluation

In order to assess the influence of feature optimization on the final classification
accuracy, we perform experiments with artificial and real-world test data. Starting
from a standard off-line classification approach, we investigate how much can be
gained by including a separate optimization step for the features.

13.5.1 Test Data

13.5.1.1 Test Data for Blob Analysis

For optimizing the blob-analysis features, an artificial data set of images was
created. The images are preprocessed so that they only show the potential defects
(objects). These images are called “contrast images,” whose (gray scale) pixel values
depend on the degree of deviation from the “normal” appearance of the part (white
denoting complete similarity, black denoting complete dissimilarity). This may be
considered an abstraction of a surface inspection task in machine vision. By using
contrast images, we remove the application-specific low-level image processing
from our consideration and focus purely on the classification problem. Figure 13.5
shows an example that represents a deviation image from a printing process: blobs
that correspond to potential defects are highlighted in different gray levels.

We used five sets of artificial test data, each with 20,000 images, which were
labeled automatically either as good (accept) or as bad (reject) with about 10,000
images in each class. In order to generate the labels, a set of rules was used for

Fig. 13.5 For testing, we use
contrast images. Only
deviations from the normal
appearance are shown in the
image, the background is
removed
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Fig. 13.6 Texture mosaic m1 (right) built from five source textures (top row) according to the
ground truth map (left)

each set of test images. The rules were based on descriptions that are regularly
found in quality control instructions, such as “part is bad, if there is a fault with size
>1.5 mm.” The rules also included more complicated combinations, such as “part
is bad, if there is a cluster of 4 faults, each with a size >0.75 mm.” Three to five
such rules were logically combined for each set of images. The images and the rules
were chosen to have some resemblance to inspection of machined parts.

13.5.1.2 Test Data for Texture Segmentation

In order to assess the discriminative power of texture features, we perform a texture
segmentation experiment on so-called texture mosaics. A texture mosaic m(x,y) is
built from n source textures si(x,y), i = 1, . . . ,n. For each pixel of m(x,y), the ground
truth map t(x,y) defines its source texture index si. Figure 13.6 shows the source
textures, ground truth map, and the resulting mosaic for n = 5.

In order to investigate the adaptation properties of Gabor-feature-based segmen-
tation, we utilize mosaics combined from Brodatz [3], VisTex [23], and MeasTex
[30] source textures to ensure diverse texture properties. Diversity of the source
textures is crucial for our experiments as it calls for Gabor filter (banks) that
adapt to the specific properties of each source texture. Table 13.4 contains detailed
information about the selected mosaics. Figure 13.7 shows all texture mosaics and
their ground truth information, respectively.
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Table 13.4 All evaluated texture mosaics. The mosaics m1 to m5 are
composed from five source textures each and are available on-line [26].
Mosaics m6 and m7 are composed from two source textures in order to
obtain reasonable test data for single Gabor filter adaptation. All texture
mosaics are shown in Fig. 13.7

ID Size n Source of textures

m1 256 × 256 5 Brodatz
m2 256 × 256 5 VisTex
m3 256 × 256 5 VisTex
m4 256 × 256 5 VisTex
m5 256 × 256 5 MeasTex
m6 256 × 256 2 Brodatz, Vistex
m7 256 × 256 2 Brodatz, Vistex

Fig. 13.7 Texture mosaics m1 to m7 and the corresponding ground truth maps
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13.5.2 Classification with Adaptive Features

This section describes how the classification experiment based on adaptive features
was conducted. The quantitative results of these experiments are discussed in
Sect. 13.5.3.

13.5.2.1 Blob Analysis Features

For those features that allow an optimization, one parameter was chosen, which in
most cases was a gray-level threshold value. If the pixel was above the threshold,
it was considered as belonging to the fault and otherwise as belonging to the
background. A reasonable range for the threshold was between 0 and 255 (as we
deal with 8-bit gray-level images, these are the minimum and maximum values of
the pixels). For the sake of optimization, this range was scaled to an interval of [0,1].
The goal was to adapt these thresholds in such a way that the classification accuracy
is improved and that the decision boundary can be more easily reproduced by the
classifier.

Regarding the computational complexity, it should be noted that the computa-
tional effort of optimizing the feature parameters can be significant. This is caused
by the fact that for each iteration, the features of all objects in all images need to be
calculated with the current parameter settings. Depending on the size and number
of the images, this optimization may take several hours. On the other hand, once
the optimal parameters are found, the feature calculation and classification takes the
same amount of time as for any other method. With respect to the application of
surface inspection, this is important because the “on-line” processing of the images,
which usually has tight constraints on computing time, is not affected. It is just the
“off-line” training process that becomes quite time-consuming.

13.5.2.2 Gabor Features

We choose a fixed feature extraction method, classification, and postprocessing
setup in order to investigate the influence of feature adaptation on the segmentation
accuracy. These subsequent processing steps are briefly outlined below as it is not
the aim of our evaluation to optimize classification or postprocessing. A detailed
discussion of Gabor filter (bank) optimization can be found in Sect. 13.5.3.2.

For feature extraction, we choose Gabor energy features to compute a feature
map as described in Sect. 13.2.2 as their computational costs are reasonably low
to perform multiple segmentation runs. Thus, we obtain a feature vector F of
dimensionality d for each texture mosaic locationωi = (x,y), where d is the number
of Gabor filters in the filter bank. The training feature matrix is created by randomly
selecting 200 feature vectors per source texture.
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Table 13.5 Change of
classification accuracy
achieved by optimizing the
feature calculation for
different classifiers

Classifier Initial (%) Optimized (%)

C4.5 74.2 88.08
CART 73.8 87.77
Cluster-based 74.0 77.9
kNN 68.7 87.8

For the pixel classification, we choose two methods. We compute the mean Fisher
criterion as described above to obtain a score that is independent from the classifier
and describes the separation between the different texture classes for the current
feature parameters. In order to obtain mosaic class-label results, we train a Random
forest (RF) [2] with 300 trees on the source textures in order to classify each pixel
of the texture mosaic. We rely on the R-package of the Random forrest available at
http://cran.r-project.org/web/packages/randomForest/.

It is well known [13] that filtering of the class label improves the segmentation
accuracy which is measured as ratio of misclassified pixels divided by the total
number of mosaic pixels.

To remove isolated pixels and to smooth the boundaries between the segmented
regions, we apply a filtering approach [13] of the classification result. Therefore,
we assign that class label to a pixel that occurs most frequently in its 24× 24
neighborhood.

For all experiments, we postprocess our class labels by applying a filter that
replaces each label with the mode of its surrounding (size 24× 24).

13.5.3 Results

The results are discussed separately for blob and Gabor features as these tasks differ
in terms of classification and postprocessing of the results. Despite these differences,
we show that both machine vision tasks benefit from feature adaptation.

13.5.3.1 Blob Analysis Features

We have chosen four different classifiers that performed well on surface inspection
tasks and used target functions of Table 13.3 for optimization. Even though this
required the repeated processing of 10,000 images an exhaustive search was
performed in order to be sure that the global optimum is found. The improvement
in classification accuracy that could be achieved is shown in Table 13.5.

For some classifiers, the change is quite substantial, and we find improvements
of more than 10%. It should be noted however that the gain that can be achieved
highly depends on the initial parameter settings. If these parameters are preset by
a machine vision expert, then the improvement may be minimal, if any. Feature

http://cran.r-project.org/web/packages/randomForest/
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Table 13.6 Parameter ranges that consti-
tute the parameter grid for single Gabor filter
optimization. The reciprocal of the filter
wavelength (1/λ ) denotes the number of
cycles of the plane wave for the whole image

Parameter Range

Wavelength: λ [1/11,1/47]
Orientation: θ [0,π ]
Elongation: γ [0.3,0.7]
Size of Gaussian: cσ [0.3,0.7]

Table 13.7 This table shows the filter parameters that resulted in the highest classification
accuracy per mosaic. It lists the average Fisher criterion, the accuracy for classification with
density estimation, and the corresponding filter parameters for single Gabor filter optimization

Mosaic ID Fisher criterion Accuracy (%) Parameters

m1 0.946 61.5 λ = 0.026,θ = 0.000,γ = 0.5,cσ = 0.7
m2 0.858 53.7 λ = 0.029,θ = 1.396,γ = 0.3,cσ = 0.7
m3 0.959 49.9 λ = 0.091,θ = 0.000,γ = 0.7,cσ = 0.5
m4 0.788 46.2 λ = 0.091,θ = 0.000,γ = 0.7,cσ = 0.5
m5 0.691 40.2 λ = 0.091,θ = 1.047,γ = 0.7,cσ = 0.5
m6 0.950 92.5 λ = 0.032,θ = 1.396,γ = 0.7,cσ = 0.7
m7 1.968 98.2 λ = 0.091,θ = 0.000,γ = 0.7,cσ = 0.7

adaptation, however, may help for those features that have multiple parameters. The
results given as “initial” in Table 13.5 were obtained for parameter values chosen as
a first guess by an expert without further manual optimization.

13.5.3.2 Gabor Features

Gabor filters offer many tuning knobs that are likely to influence the discriminative
power of any Gabor feature. These parameters (λ , θ , γ , cσ ) were already discussed
in Sect. 13.2.2. The parameter ϕ , which determines the shift of the sinusoidal plane
wave will not be tuned as we require both the symmetric and the antisymmetric filter
response to compute Gabor energy features. Table 13.6 contains the parameters’
ranges that form our search grid for single Gabor filter optimization.

As we are dealing with a one-dimensional feature space in single filter op-
timization, we do not apply a complex RF but a classifier that fits a Gaussian
density to each texture class and assigns a mosaic pixel to the class with highest
probability for the pixels’ feature value. The results for single filter optimization
are listed in Table 13.7 and visualized in Fig. 13.8. The classification accuracy is
substantially above the baseline accuracy (i.e., 20% for m1 to m5 and 50% for m6,
m7) for all mosaics. We can also observe that the Fisher criterion scores do not
necessarily correlate with the classification accuracy because of the postprocessing
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Fig. 13.8 Results for single Gabor filter optimization. The top row shows the ground truth map,
and the middle row contains the best segmentation result obtained for the Gabor filter show in the
bottom row (Fourier domain)

Table 13.8 Parameter ranges that constitute the parameter grid for filter bank optimization

Parameter Range Comments

Wavelength: λl [1/11,1/47] Wavelength of the filter with lowest frequency
Orientation offset: oθ [0,π/Θ ] oθ is added to the equidistant orientation values
Elongation: γ 0.5 Not tuned to reduce the computational costs
Size of Gaussian: cσ [0.3,0.7]
No. scales: Λ [1,4] For example Λ = 3, λl = 11 then λ ∈ {1/11,1/19,1/35}
No. orientations: Θ [2,8] Orientation of filter j: θ j = ( j−1)∗ (π/Θ)

of the segmentation result. In general, we can observe that a single filter is not
sufficient to distinguish between five texture classes while a two-class segmentation
problem can be solved with reasonable accuracy.

However, a single Gabor filter is likely to be insufficient for real-world segmenta-
tion tasks as the classification decision is obtained on the basis of a one-dimensional
feature space. Thus, Gabor filter banks that contain a family of self-similar Gabor
filters are typically applied for classification, segmentation, and retrieval systems.
The optimization of a whole Gabor filter bank introduces several additional param-
eters such as the number of filter orientationsΘ and scales Λ . In order to reduce the
computation cost for optimization, it is worthwhile to consider interdependencies
between different parameters. For instance, the filter orientation which can be
chosen in the range [0,π ] for a single feature can be treated as orientation offset
oθ in case of a filter bank that alters the filters orientation that is typically chosen
equidistant to cover the range of [0,π ]. The tuned parameters are listed in Table 13.8.

The results for the Gabor filter bank optimization are listed in Table 13.9 and
visualized in Fig. 13.9. We compare our results to the baseline, obtained for the
Gabor filter bank proposed in [13] that is based on experimental findings on early
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Table 13.9 This table shows the filter bank parameters that resulted in the highest RF classifica-
tion accuracy per mosaic. It lists the average Fisher criterion, the baseline accuracy obtained for the
filter bank proposed in [13], the RF accuracy, and the corresponding Gabor filter bank parameters

Mosaic
ID

Fisher
criterion

Baseline
accuracy (%)

RF
accuracy (%) Parameters

m1 2.520 95.3 97.0 λl = 0.029,oθ = 0.196,cσ = 0.5,Λ = 3,Θ = 8
m2 0.524 70.8 77.0 λl = 0.037,oθ = 0.000,cσ = 0.3,Λ = 3,Θ = 2
m3 1.178 69.4 75.6 λl = 0.053,oθ = 0.000,cσ = 0.5,Λ = 3,Θ = 6
m4 1.129 65.8 72.8 λl = 0.053,oθ = 0.000,cσ = 0.3,Λ = 3,Θ = 6
m5 1.979 77.1 82.0 λl = 0.029,oθ = 0.000,cσ = 0.7,Λ = 3,Θ = 8
m6 1.390 98.9 99.1 λl = 0.029,oθ = 0.000,cσ = 0.5,Λ = 3,Θ = 4
m7 2.251 98.9 99.5 λl = 0.037,oθ = 0.000,cσ = 0.5,Λ = 3,Θ = 8

Fig. 13.9 Segmentation results for an optimized Gabor filter bank. The top row shows the ground
truth map, and the middle row contains the best segmentation result obtained for the Gabor filter
bank shown in the bottom row (Fourier domain)

human vision processes. Therefore, this baseline is no arbitrary choice of filter bank
parameters but a setting that is hard to improve without excessive knowledge about
Gabor filter design and the application domain.

Compared to the baseline, a substantial gain in segmentation accuracy could be
achieved with Gabor filter bank optimization. Interestingly, the best filter banks
differ with respect to many parameters. For instance, the best segmentation for
m2 was obtained for a filter bank with Θ = 2, whereas for m5, eight different
orientations gave the best result. In general, a substantial reduction of the segmen-
tation error rate (between 54.6% and 18.2%, average 27.5%) could be achieved.
This clearly demonstrates that Gabor filter optimization should be conducted
on a common basis, as feature selection and classifier hyperparameter selection,
whenever a segmentation system is designed.
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13.6 Conclusion

Features are a way of compressing raw data into a set of real numbers that represent
the relevant information contained in the original data.

The properties of the raw data that are relevant cannot be determined a priori, but
are application dependent. To tune features to the particular application, one may
use the parameters available in feature calculation to optimize the features in such
a way that the margin between the classes in a classification problem is increased.
Furthermore, it may also shape the decision boundary so that it can be more easily
reproduced by the classifier. This optimization may take place in an off-line mode
or in an on-line mode.

In most cases, the assumption is that an initial set of features and possibly also an
initial classifier are already in place. The purpose of feature optimization is then to
provide an additional increase in robustness and classification performance. Tests on
two quite different applications (decision making based on blob features and texture
segmentation) have shown that parameter tuning has a positive influence on the ac-
curacy of a classifier. This increase may be substantial in some situations and feature
adaptation may be particularly helpful if the underlying processes that generate the
raw data are instationary. The improvement that can be achieved, however, depends
on the ability of the machine vision expert to preset the parameters. The main area
in which feature optimization can be used with great effect are thus features with
a larger number of tunable parameters and complex machine learning problems,
where the effects of parameter changes cannot be easily assessed.

In this chapter, we demonstrated the effect of feature adaptation for two kinds of
applications using blob features that are common in real-world inspection systems,
as well as Gabor features that are a common choice for tasks related to segmentation,
classification and retrieval of (textured) images. For both scenarios, we demon-
strated a substantial reduction of the classification error rate that underpins the need
for feature adaptation whenever a feature-based machine vision system is designed.
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Chapter 14
Online Quality Control with Flexible Evolving
Fuzzy Systems

Edwin Lughofer, Christian Eitzinger, and Carlos Guardiola

Abstract This chapter is dealing with the application of flexible evolving fuzzy
systems (described in Chap. 9) in online quality-control systems and therefore also
provides a complete evaluation of these on (noisy) real-world data sets. Hereby, we
are tackling with two different types of quality-control applications:

• The first one is based on visual inspection of production items and therefore can
be seen as a postsupervision step whether items or parts of items are ok or not,
laying the basis for sorting out of bad products and decreasing customers’ claims.

• The second one is conducted directly during the production process as dealing
with a plausibility analysis of process measurements (such as temperatures,
pressures, etc.) and therefore opens the possibility of an early intervention for
product improvement (internal correction or external reaction).

In both scenarios, permanent update of nonlinear fuzzy models/classifiers during
online operation based on data streams is an essential issue in order to cope with
changing system dynamics, range extensions of measurements and features, and
the inclusion of new operating conditions (e.g., fault classes) on demand without
requiring time-intensive retraining phases. In the result section of this chapter,
we will explicitly highlight the performance gains achieved when using flexible
evolving fuzzy systems (EFS) in both quality-control paths.
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14.1 Introduction

During the last two decades, a significant growth of the size and complexity
of the technological installations in the automotive, power, chemical, and food
industries has been observed [12]. A side effect of this growth is the increase in
the concentration of measuring, processing, and control devices. The likelihood of
appearance of a fault that may lead to a breakdown of a component or the whole
system increases with the complexity of the system [10]. Faults can affect the system
itself, the measuring and monitoring devices, or the control system (which also
modifies the system behavior). Faults may not only spoil production items (or parts
thereof), but in severe cases also may lead to dangerous situations for operators
working at the systems (e.g., consider emission gas gushing out of a leakage in a
pipe). Quality control is also a nonproductive part of the production process aiming
to prevent the production of defective products. Quality control is thus a necessary
part of production lines for increasing both product quality and process safety. There
is a trend of integrating quality control earlier in the production process which leads
to two main lines of quality control:

• Postprocessing quality control by product inspection (conducted visually with
machine vision techniques [14, 20])

• Process quality control by plausibility analysis of process measurement data [37]

Postprocessing style quality control is centered in the evaluation of the product
characteristics. Depending on the considered product, different tests can be used and
usually combined. Ordinary quality tests include visual inspection, meteorological
verification, physical characteristics evaluation, or performance tests, where the
individual item is tested according to its use. In some cases, tests are of destructive
nature, as in the case of aging tests. Depending on the intensity, cost, and
destructiveness of the tests to be run and also of the quality standards to be
satisfied, postprocessing style quality control can be performed to all the produced
items, or to a selection of a representative sample of the production [35]. In some
cases, postprocessing quality control can be fully automated, as is the case of the
visual inspection of the product surface. For that, images showing the surfaces
of production items are automatically analyzed towards the appearance of any
untypical occurrences and reflections (e.g., scratches, pinholes, weak colors, dents,
renouncements, etc.) once they have been produced. An automatic decision is then
made whether the product is accepted or rejected. Occasionally, there is a third class
of product items, called “rework,” that includes those products that may be repaired
in some way. The latter is particularly relevant for high-value products at the end
of the production process. In any case, the ultimate goal of quality control is to
prevent the production of rejects. This necessitates feedback from quality control
to the production process. Currently, such feedback is often provided manually by
experts who analyze the data and deduce changes in the production process. The
feedback is thus usually long term and focused on gradual improvements of the
processes rather than dealing with short-term fluctuations.
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Process quality control operates on one stage earlier by examining the correctness
of process parameters. The input for this quality-control system approach are
process data rather than data about the product itself, and this has the advantage
that weak indications of defects can be detected. Furthermore, it has the potential
of recognizing upcoming faults at an early stage. The quality control is based
in the assumption that product faults result from measurable deviations in the
production process. However, this cannot always be ensured in all production
processes, then postprocessing quality control is necessary. Beyond the monitoring
of the production process, process quality control can provide valuable data for
the correction and control of the production process and opens the possibility
for preventing bad production items by the inclusion of feedback control for
automatically correcting system parameters. Hence, this quality-control approach
has a substantial overlap with feedback process control. For many production
systems, the feedback can also be fully automated, and in case explicit process
model exists, model predictive control techniques can be used [2, 8].

14.1.1 Motivation for Evolving Components

In many quality-control applications, supervision and failure analysis approaches
act in so-called dynamic environments, where the data is collected over time within
an online (production) process. This means that data are not stored as persistent
tables or feature matrices, but are rather processed in a transient stream-like manner.
This is especially the case of large sensor networks or multiparallel production lines
where the data (stream) is massive [5] and hence have to be handled on demand
appropriately. For the failure detection algorithms, this means that they have to be
able to cope with online data which also may permanently include changing system
states, varying operating conditions, or different types of product items which
trigger different characteristics of the collected process or feature data (extracted
from signals or images).

In principle, fault models may be developed off-line and simply applied to the
online data to produce fault indicators, symptoms or warnings [24, 27] without any
model adaptation cycles; however, this may lead to several shortcomings:

• A significant amount of process or feature data has to be collected in advance
in order to cover as many different system states and behaviors as possible (for
guaranteeing models with high-process safety). However, this triggers a high-
effort in designing excitation signals and annotating samples (e.g. assigning fault
classes).

• Also, if doing so, still new operating conditions, changing system behaviors, or
new fault classes may arise during online operation (e.g., some environmental
influences change). Often, a system is affected by a so-called concept drift [26],
where the underlying data distribution may change over time and makes older
learned relations/dependencies obsolete.
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In order to overcome these deficiencies, incremental and adaptive learning
techniques for the fault models are required which (1) adapt some important
parameters and (2) evolve structural components (e.g., rules, neurons, leafs, and
new mathematical expressions) on demand based on the characteristics of the
current streaming data blocks. This guarantees more accuracy of the fault indicators
and furthermore higher product quality and even process safety in case of faults
being dangerous for human beings. In this chapter, we will clearly demonstrate
how evolving components in terms of flexible evolving fuzzy systems (EFS) and
classifiers can actually increase the detection rate of faults and failures in various
online quality-control applications (for both, process-based and postproduction-
based quality checks).

14.1.2 Our Contribution

In the subsequent two sections, we will describe two machine learning oriented
approaches for tackling two variants of quality control:

• The first one acts on images showing the surfaces of production items. Images are
usually recorded using matrix or line scan cameras at resolutions of 0.1 mm per
pixel or lower. In more complex applications, different light sources are used
and combined to acquire complementary information about the surface, such
as an approximation of the 3D shape of the surface and standard grey-value
texture information. Such combination requires complex preprocessing steps
including precise image registration, illumination models, and texture analysis
for segmentation. After such preprocessing, a set of features is extracted, used
as main input to the classifiers. In this sense, a reliable combination of machine
vision and machine learning is the key driver of our framework: (1) the machine
vision parts are settled on the image preprocessing phase including a substraction
of newly recorded images to the master (called deviation image or also contrast
image), recognizing the regions of interest in the deviation images, and extracting
a wide variety of reasonable features describing the shape, outlook, appearance,
distributions, etc. of the single regions of interests (objects); (2) the machine
learning parts are basically dealing with appropriate feature preprocessing steps,
including the concept of adaptive features (see also Chap. 7), handling different
levels of details and operators’ experiences/skills, and finally, with classifier
training and evaluation stages.

• The second one directly acts as plausibility analysis engine on the (multichannel)
measurement data recorded at the production process, reflecting specific opera-
tion modes and system characteristics. Thus, it is able to detect system failures
at an early stage, preventing faults and defective production items. Usually,
dependencies and relations within (parts of) the system can be modeled by means
of system identification methods using data-driven modeling approaches based
on the measurement data [36]. For instance, there may exist certain correlations
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between pressures and temperatures in the system. Failure detection is then
conducted by means of measuring the degree of deviation (called residuals)
between newly recorded measurements and the identified models at hand (see
also [3]) according to some model reliability criteria (extracted from the data in
order to measure regions where the models are more or less certain) and examine
the development of these residuals over time with statistical approaches [32].

Our main contribution handled in this chapter basically consists of extending
conventional data-driven modeling tools in quality-control systems with online
learning and adaptation capabilities in order to appropriately react on changing
system dynamics and new operating conditions upcoming at these systems (see
Sect. 14.1.1). For postprocessing quality control, this is achieved by introducing
evolving image classifiers including the fuzzy methodology (fuzzy model architec-
tures) and some enhanced concepts as described in Chap. 9. The image classifiers
are able to classify production items into “good” and “bad” parts on image level
and also to assign different fault classes to different parts on the items’ surfaces
on object level. For the quality control directly conducted at the production process,
we propose evolving fuzzy-regression-based models using the Takagi–Sugeno fuzzy
model architecture (refer to Chap. 9, Sect. 9.2.1) as fault-free reference oracle. Any
deviation from these resp. from the adaptive local error bars surrounding these
models as kind of confidence bands (see Sect. 9.3.5) and serving as model reliability
criterion can be treated as a potential fault candidate.

14.2 Postprocessing Online Quality Control

After introducing our online image preprocessing and classification framework, we
provide a summary of the machine vision and machine learning key components
used in these (Sect. 14.2.1)—for further details refer to [18,34]. The applicability of
the framework will be validated based on four different concrete surface inspection
problems (CD imprint, eggs, rotor parts, and bearings) defined in Sect. 14.2.2; the
results are presented in Sect. 14.2.3, where a specific focus will be placed on the
impact of the online evolution of image classifiers in order to include dynamic
changes in the actual process and therefore to significantly boost their predictive
performance.

14.2.1 Methodology

In order to circumvent manual tuning, long-time developments, and application-
dependent components in visual inspection systems, we designed an image clas-
sification which is applicable to a wider range of applications. This is achieved
by removing application-dependent elements and applying machine vision and
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Fig. 14.1 Online image classification framework at surface inspection systems

learning approaches based on image descriptors (also called features) extracted fully
automatically from the images. In this way, the problem of a stepwise deduction
of classification rules (based on analytical and expert knowledge) is shifted to the
problem of gaining sufficient training samples. The latter can be done fully auto-
matically during production phases, the annotation of the training samples is made
as easy as possible by a user-friendly GUI front-end integrated in an annotation
wizard (see also [34]). Furthermore, the framework contains a lot of other aspects
for extending the applicability, improving the user-friendliness and the accuracy of
visual inspection systems and providing a coherent technology for joining various
components and responding a unique accept/reject decision. Figure 14.1 visualizes
the core components of the framework, whose functionality can be summarized
as follows (the numbers in Fig. 14.1 correspond to the enumeration points and the
feedback loop (issue 7) is specifically underlined by a bigger font as this part is the
major focus under study in detail in this chapter):

1. Low-level processing on the images for removing the application dependent
elements (contrast image): hereby, the basic assumption is that a fault-free master
image is available; for newly recorded images during the production process, the
deviation to these master images (deviation image) is calculated by subtraction
(± a threshold for an upper and lower allowed bound). The pixels in a deviation
image represent potential fault candidates, but need not indicate necessarily a
failure in the production item. This depends on the structure, density, and shape of
the distinct pixel clouds (also called regions of interest). The degree of deviation
is reflected in the brightness of the pixels. For color images, the color-wise (RGB)
deviations from the master are calculated and averaged over the absolute values
of the deviations to produce one grey-level image.

2. Recognition of regions of interest (objects) in the contrast image: the deviation
pixels belonging to the same regions are grouped together; therefore, various
clustering techniques were exploited which can deal with arbitrary shape of
objects and arbitrary number of objects, ranging from hierarchical type to
density- and spectra-based approaches [30, 47]. A specific examination was
dedicated to a sensitivity analysis among these methods with respect to the
classification accuracy of the final classifiers trained on the features extracted
from the found clusters (wrongly extracted regions of interest = clusters may
cause a bias in the classifiers), see [38].
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3. Extraction of features with a feature calculation component: object features
characterizing single objects (potential fault candidates) and aggregated features
characterizing images as a whole are extracted. Aggregated features are im-
portant to come to a unique final accept/reject decision and are, for example,
the number of objects, the maximal local density of objects in an image or the
average brightness of objects. A key aspect was the extraction of as many features
as possible in order to cover a wider range of different application scenarios and
problem settings. Hence, a feature selection step during classifier training is
included in order to reduce the curse of dimensionality. Adaptive feature concepts
as described in the previous chapter (Chap. 13) were applied prior to classifier
training.

4. Building of high-dimensional classifiers based on the extracted features and
label information on the images (or even single objects) provided by one or
more operators. In some cases, the label information contained not only a
good/bad label for an image but also additional information like, for instance,
the uncertainty in his/her decision (during annotation). The training process
consisted of three steps:

• Dimension reduction (deletion of redundancies and filter feature selection
approaches [22]) in order to reduce the high-initial set of features.

• Best parameter grid search coupled with 10-fold cross-validation (in order to
elicit the optimal parameter setting for final classifier training).

• Training of the final classifier with all training samples and the optimal
parameter setting achieved in the previous step.

5. Classifier fusion methods for resolving contradictory input among different
operators: various operators may label the same training examples or give
feedback during online production mode on new samples. Hence, some con-
tradicting feedback may arise, especially when the skills of the operators vary.
Fusion methods are able to resolve these contradictions by performing a voting,
democratic decision, or more complex decision templates—how this can be
calculated in online mode or dynamic changing environment is handled in more
detail in Chap. 7.

6. Early prediction of success or failure of a classifier: it was examined how
classification accuracies behave with an increasing number of samples and at
which point of time the classifier cannot be improved further by feeding more
samples into the training algorithm—this issue is handled in more detail and in a
more generic context for arbitrary ML classifiers in Chap. 6.

7. Finally, within the scope of this chapter, we are interested in and concentrate
on the impact of image classifier updates during the online classification phase
with the help of incremental evolving (fuzzy) classification techniques. This part
of the component is highlighted by the feedback loop to the image classifiers
based on the operator’s feedback upon the classifiers decisions (circumvented
by an ellipsoid in Fig. 14.1). This feedback is necessary, especially when the
classifier is uncertain in its response or the operator even disagrees with the
classifier decision: in this case, the likelihood is high that the classifier trains
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its own errors into its structure and parameters, deteriorating its performance
over time. In Sect. 14.2.4, we will show that updating the classifiers (instead of
keeping them static once they are built-in batch off-line phase) is a central aspect
for integrating new data and for improving the performance of the classifiers set
up during the off-line phase. Incremental learning steps during the online oper-
ation mode are necessary as a regular rebuilding of the classifiers from scratch
with all samples seen so far did not terminate in real-time—consider massive
data streams from production process to be analyzed as (parts of) items are
produced with a high-frequency and may change their characteristics, etc. (see
also Sect. 14.1.1). The evolving fuzzy classifier (EFC) approach FLEXFIS-Class
MM and AP (short for FLEXible Fuzzy Inference Systems for Classification
using Multi-Model resp. All-Pairs architecture) and the evolving clustering-
based classifier eVQ-Class (as spin-off from FLEXFIS-Class SM and short for
evolving Vector Quantization for Classification) were used to achieve this goal
(see Chap. 9 for a detailed description of these). We will also demonstrate how a
dynamic soft dimensionality reduction by including incremental feature weights
and a rule merging/pruning step to eliminate local redundancies increase the
performance and reduce the complexity of the evolved classifiers, evaluating the
advanced concepts for EFS proposed in Sect. 9.3.

For further details on the components of the image classification framework, see
[18, 34].

14.2.2 Experimental Setup

14.2.2.1 Surface Inspection Scenarios

The whole framework and its image classification components were applied to four
real-world surface inspection problems:

• CD imprint inspection: the task was to identify faults on the compact discs caused
by the imprint system, for example, a color drift during offset print, a pinhole
caused by a dirty sieve (→ color cannot go through), occurrence of colors on
dirt, palettes running out of ink, and distinguish them between so-called pseudo-
faults, like, for instance, shifts of CDs in the tray (disc not centered correctly) or
masking problems at the edges of the image or illumination problems (causing
reflections). An example of a typical deviation image is shown in Fig. 14.2.

• Egg inspection: the main task was to identify broken eggs on a conveyor belt by
recognizing some spoors of yolk and scratches on them. Here, the main problem
was to distinguish these spoors from dirt on the eggs. Whereas yolk is always a
defect, dirt may or may not be considered a defect, for example, depending on
the countries in which the eggs are sold.

• Inspection of bearings: The main challenge in this application is whether the
trainable system is able to learn how to distinguish between different types of
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Fig. 14.2 Deviation image from the CD imprint production process, different grey levels and pixel
groups represent different regions of interest circumscribed by ellipses (five in sum, two faulty,
three nonfaulty); note that most of the image is white which means that the deviation to the fault-
free master is concentrated in small parts of the whole pixel space; the faulty and nonfaulty regions
of interest are exclusively marked as such: clearly, it requires some enhanced object descriptors in
order to be able to distinguish between faulty and nonfaulty regions of interest

faults with only a good/bad label for the whole image. This is of particular
importance as quite often the quality expert can only spend very short time on
each part and is not able to provide more detailed training input. The main types
of defects found on the surface are small dents and scratches. Even if they do not
lead to an immediate failure of the product, they will lead to noise and possibly
reduce the lifetime of the bearing. Figure 14.3 visualizes a typical deviation
image from this process.

• Inspection of metal rotor parts: main problems are gas bubbles in the die cast
part (so-called link holes or pores). As the excess material is cut away during
milling or grinding, the gas bubbles become visible on the surface. They usually
appear as dark spots on the surface with a mostly circular shape. They are
3D deformations of the surfaces and cause problems particularly on sealing or
bearing areas, since casings will not be tight any more.

14.2.2.2 Data Collection

The data collection for the four application scenarios was conducted in a way that
the recorded data was stored onto hard disk in the same order as it appeared during
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Fig. 14.3 Deviation image
from the bearing production
process, all regions of interest
(found by clustering and
highlighted by surrounding
ellipsoids) are denoting faults
on the surface and the upper
right denotes a typical scratch

Table 14.1 Image data sets from surface inspection scenarios and their characteristics

# Images # Tr. samples # Feat.
Obj.
labels # Classes

Class distr.
in %

CD imprint 1,687 1,534 29/74 Yes 2 (bad/good) + 12 (6/6) 15–20/80–85
Eggs 4,341 11,312 57 Yes 2 (yolk/dirt) 51.4/48.6
Rotor 225 225 74 No 2 (bad/good) 66.6/33.3
Bearing 997 997 74 No 2 (bad/good) 69.8/30.2

the online production process. In this sense, after preprocessing the raw images,
recognizing the regions of interest in the deviation images and the feature extraction
process, the order of the features in the feature matrix belongs to the order of
the image recordings. This finally means that we were able to simulate the online
modeling process in MATLAB by taking feature vector per feature vector together
with the class labels from the stored matrices and send these into the image classifier
evolution algorithm (using FLEXFIS-Class MM and eVQ-Class). The class labels
are coming from the annotation process conducted by an operator, supported by an
own developed software (called annotation wizard) in order to make the annotation
process as comfortable and as fast as possible [34].

The number of collected image samples varied from application to application
and are summarized in Table 14.1: these images can be all seen as critical images
along the borderline between being “good” or “bad”. Images for which the deviation
to the master was 0 (or lied within an acceptable range) are the most usual case
and could be neglected for training purposes as can be trivially classified as good
ones. Object labels (resulting in various fault and fault-free classes) could only be
collected for CD imprint and egg data sets.

The features extracted from the images (denoted as aggregated features) were
selected based on several discussions with experts. These features are summarized
in Table 14.2.

The list of selected objects features (57 in sum) includes statistical values such as
skew, kurtosis, grey-level histograms, as well as shape and density descriptors (due
to space reasons we neglect a complete listing at this stage).
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Table 14.2 List of aggregated features used. These features have been chosen because of their
relevance for a very wide range of surface inspection applications

No. Description No. Description

1 Number of objects 10 Max. grey-value in the image
2 Average minimal distance between two objects 11 Average grey-value of the image
3 Minimal distance between any two objects 12 Total area of all objects
4 Size of largest objects 13 Sum of grey-values in all objects
5 Center position of largest objects, x-coord 14 Maximal local density of objects
6 Center position of largest objects, y-coord 15 Average local density of objects
7 Maximal intensity of objects 16 Average area of the objects
8 Center position of object with max. intensity, x-coord 17 Variance of the area of the objects
9 Center position of object with max. intensity, y-coord

14.2.3 Some Results

Summarizing the off-line results (for further details, see [18]), (averaged) accuracies
from a 10-fold cross-validation process (with 10 different shuffles of the training
data) ranged from 93% to 98% for CD imprint data, from 70% to 95% for bearing
data, from 94% to 96% for egg production, and from 84% to 92% for the metal rotor
parts, depending on the classifier used. An essential issue was to apply a specific
feature preprocessing step including operators’ levels of detail and confidence in
their rankings (see also [34]): this could improve the accuracies up to 5% in
most cases. The sensitivity with respect to the folds in the 10-fold CV as well
as w.r.t. shuffles of data is nearly negligible, as laid around ±1% for most of
the classifiers and data sets. FLEXFIS-Class MM and eVQ-Class applied in batch
mode could compete with renowned machine learning methods such as k-nearest
neighbor algorithm, classification and regression trees (CART) [7], support vector
machines (SVMs) [40, 43], AdaBoost [13], bagging (Bagg) [15], or possibilistic
neural networks (NN) [45] (most of these included in the hall of fame of top 10
data mining methods [46]). Taking into account that usually 96% of the deviation
images are black and therefore trivially classified as good ones, a final CV accuracy
rate of about 99.5–99.8% could be achieved, which was inline the expectations of
the manufacturers.

14.2.4 Impact of Online Evolution of Image Classifiers

The results for batch off-line trained classifiers, however, significantly deteriorated
on separate online test data sets, which could be verified by taking the last third of
the online collected data as test data set (including new images in an online setup).
This means the samples shown in Table 14.1 were divided into three parts: the first
third was used as training and evaluation set for the off-line CV, the second set
for simulating the online update of the classifiers, and the third for verifying the
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Table 14.3 Comparison of the accuracies (in %) between static image classifiers built on the first
half of the training data and sample-wise evolved image classifiers with the second half of the
training data for the three surface inspection problems of CD imprints (operator #2 labels), eggs,
and rotor parts

CD imprint (#2) Eggs Rotor Bearing

Static image classifiers
(trained in off-line mode)

eVQ-Class variant A 75.69 91.55 66.67 63.75
eVQ-Class variant B 88.82 90.11 66.67 64.65
EFC SM 78.82 95.20 66.67 60.73
EFC MM 73.53 95.89 54.67 55.59
k-NN 79.61 91.51 53.33 58.30
CART 78.82 91.78 52.00 65.26

Evolved image classifiers
(updated in online mode)

eVQ-Class variant A 89.22 (+13.5) 91.12(−0.4) 86.67 (+20) 67.67 (+3.9)
eVQ-Class variant B 90.39 (+1.6) 93.33 (+3.2) 86.67 (+20) 67.98 (+3.3)
EFC SM 78.82 (+0.0) 96.21 (+1.0) 64.00 (−2.6) 63.14 (+2.4)
EFC MM 87.65 (+14.1) 97.19 (+1.3) 78.67 (+24) 65.56 (+10.0)
k-NN (retrained) 90.98 (+11.4) 96.06 (+4.6) 74.67 (+21.3) 59.52 (+1.2)
CART (retrained) 90.59 (+11.8) 97.02 (+5.2) 52.00 (+0.0) 69.18 (+3.9)

+max % 14.1 5.2 21.3 10.0

accuracy on separate test data for off-line trained, retrained, and online updated
classifiers—we also used k-NN and CART as batch off-line methods retrained on
each data block containing 100 new data samples for comparison purposes with the
evolving fuzzy classifiers: this gives us a feeling how close our incremental methods
can achieve the accuracies of batch classifiers.

Table 14.3 shows the results when using FLEXFIS-Class (as described in
Chap. 9) as evolving fuzzy classifier (EFC) method. By comparing the accuracies
in the first part of the table with those in the second part, it can be realized that
an evolution of the image classifiers is necessary in order to boost the predictive
accuracy and to guide the predictive accuracies to a reasonable range, especially for
CD imprint and rotor data sets; also, for eggs and bearings, the increase is significant
as up to 5% (for eggs) and 10% (for bearings). Furthermore, the table also shows us
that a retraining of batch classifiers does not pay off in terms of significantly higher
accuracies, only in one case (bearings) CART could outperform all evolving fuzzy
classifiers when retrained on all samples; in case of rotors, both batch classifiers
are significantly behind EFC MM. The maximal expected performance increase is
stated in the last row of Table 14.3. However, the computation times are significantly
higher for batch approaches, as CART takes about 1,000 times more computation
time than eVQ-Class and EFC SM and about 150 times more computation time
than EFC MM for CD imprint and egg data sets when updated= retrained for
each new incoming sample. This finally means that an evolving classifier installed
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Fig. 14.4 Work-flow of updating accumulated (sample-wise) accuracy and classifier update
during online processing—note the two back-path options, the upper indicates that no update of
the classifiers is performed (update process is excluded) and the lower includes the update and
evolution phase

at a machine vision system can be seen as an essential component in order to
achieve high-qualitative predictions and products with high-quality during online
(data stream) operation mode.

Another test concerned simulating the impact of updating classifiers when
directly predicting the next samples in the production process. This is achieved
by measuring their performance on online accumulated one-step-ahead prediction
scenarios in an interleaved test-and-then-train manner (as also recommended in the
MOA framework for massive online analysis, see [5]), that is, a new sample comes
in, the classifier classifies this sample to a certain class, which is compared to the
real class (e.g., obtained from operator’s feedback) and based on this comparison
the classifier accuracy is updated. Afterwards, the classifier is updated based on this
new sample with the real class label. In this sense, we compare the one-step-ahead
accuracies of permanently updated classifiers with the accuracies on the online
samples achieved by static (not updated) classifiers. This procedure is shown in
Fig. 14.4.

We used the EFC (FLEXFIS-Class) MM approach for this purpose and compared
the evolution of the accumulated one-step ahead prediction accuracy of the evolved
(indicated by the lower back-path in Fig. 14.4) with those of static classifiers
(indicated by the upper back-path in Fig. 14.4). Furthermore, we examined the effect
of rule merging and feature weighting during classifier update (as described in
Sects. 9.3.2 and 9.3.2.1, Chap. 9). The accuracy improvement lines are shown in
Fig. 14.5a–d for the four data sets.

For all data sets, the impact of classifier update and evolution is significant as
clearly outperforming the accumulated accuracy of static classifiers (dotted line);
in fact, when not using any update approach, the basic accuracy trend of the
classifier is even deteriorating when more and more new online samples are loaded,
especially for CD imprint data and rotor data sets (for egg data set the accuracy stays
constant after 1,500 online samples). This means that an update of classifier is even
strictly necessary in these cases in order to keep the accuracy on a reasonable level.
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Fig. 14.5 Accumulated accuracy lines over the number of online samples for CD imprint (a), egg
(b), rotor (c), and bearing (d) data sets; in each plot, four lines are shown according to static image
classifiers (no update) (dotted line), evolved image classifiers with conventional update (solid line),
evolved image classifiers with incremental feature weighting included (dashed line with crosses)
and evolved image classifiers with rule merging/pruning steps included

The inclusion of incremental feature weights for dynamic soft dimension reduction
brings an improvement in three of four cases and stays at a similar level as the
conventional update for one case (CD imprint data set). Rule merging/pruning
steps after each incremental learning cycle provides similar accuracy trends in case
of bearing and egg data and exactly the same in case of rotor data (no pruning
is required as no upcoming redundancies exist) and is able to increase classifier
performance for CD imprint data. The reduction of the number of rules in final
classifiers over conventional update is significant: from 29 to 15 in case of bearing,
from 19 to 2 in case of CD imprint, and from 6 to 3 in case of egg data (for bearing
always 7 rules were present), while achieving same accuracy levels.

Finally, Table 14.4 shows the accuracy results obtained on object labels for CD
imprint data set which is a 12-class classification problem. For this purpose, the data
set were shuffled 10 times and the whole online modeling process executed for all
10 shuffles, the accuracies averaged over all shuffles and σ denotes the variance
of the shuffles, that is, the sensitivity of the methods for different shuffles of data.
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Table 14.4 Performance comparison of evolved and batch-trained image classifiers on multiclass
classification scenario

Data set EFC SM EFC MM EFC AP eVQ-Class A eVQ-Class B CART k-NN

CD imprint 62.0±2.5 73.1±1.1 82.6±1.5 64.1±2.4 74.9±1.6 75.81±2.1 73.85±2.9

We compare the results with those obtained by CART and k-NN using all samples
at once in batch training mode. Obviously, the recently introduced all-pairs (AP)
technique in connection with EFC [31] (see Chap. 9) is able to outperform all
other evolving methods and even the batch-trained classifiers (with optimal selected
parameters) significantly. eVQ-Class B and EFC-MM show similar performance as
CART and k-NN.

14.3 Online Plausibility Analysis of Process Data
(Process Quality Control)

Opposed to the previous section which was dealing with online quality control in a
postprocessing manner (the products are first produced and inspected, afterwards—
upon recognizing failures on their surfaces they are sorted out and not sent to the
customer(s)), this section deals with process quality control, where measurement
data recorded at the production process (therefore, also called process data) is
supervised. The basic assumption is that any anomalies in the measured data point
to failures during the production system, which further on leads to faulty production
items. In this sense, process quality control can be seen as a kind of generalization
of postprocessing quality control, as not only faults on the surface of the items, but
also in their inner structure can be detected. In connection with feedback control,
that is, reacting to any detected systems failure by appropriately controlling the
process, process quality control has even the ability to prevent faulty items and
system failures. Such failures may even be dangerous for system components and
operators.

14.3.1 Methodology

The section is divided into subsections, the first one dealing with a univariate
quality-control approach, where times series in form of data streams are supervised
with respect to showing any untypical behaviors or uncommon trends. Update of
simple models (weak learners) with forgetting is necessary in order to track local
trends. The second one describes a multivariate fault detection framework, where
high-dimensional data-driven models are used as fault-free reference situation.
These models are either generated based on past recorded historic data or with first
dozens/hundreds of online measurements. A permanent update and evolution of the
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models during the online production/recording phase is necessary in order to include
new system states and operating conditions in the models. This improves the fault
detection performance.

The advantage of the first approach is that it is very fast and does not require
any search which measurement channels/variables are affected by a fault. This is
often important for a subsequent fault reasoning process in order to perform a
control feedback/change to the production system adequately. The disadvantage of
the first approach is that it is a simple one-dimensional view and does not take
any interrelation between measurement variables into account. Therefore, faults
which are manifested in a combination of variables cannot be detected. This can
be achieved by the multivariate approach.

14.3.1.1 Univariate Approach using EFS

The univariate approach focuses preliminary on the detection of untypical patterns
and behaviors in the data streams viewed as independent time series data. Opposed
to many state-of-the-art (off-line, batch) approaches for analyzing time series signals
toward some anomaly content (see [4, 11] or [25]), our approach sees the data in a
sample-wise snapshot manner. This means that based on the past behavior of the
signal, the anomaly content of one single new incoming sample can be provided.
No inspection of future recordings and trends is necessary.

Untypical signal occurrences in data streams can be roughly categorized in two
stages:

• Sudden untypical occurrences in form of peaks, jumps, intense drifts, or other
form of significant outliers. These types of anomalies usually represent typical
fault cases at the system.

• More complex upcoming untypical patterns in the time series curves, often also
called discords. These types of anomalies usually represent more intrinsic, not so
obvious fault cases.

An example of the former is type is shown in Fig. 14.6a, and an example of the latter
in Fig. 14.6b. In both images, the anomalies are marked by surrounding ellipses.

For detecting both types of anomalies, we exploit the evolving fuzzy modeling
component for regression problems FLEXFIS as described in Chap. 9. In the first
case, it is sufficient to describe the local trend of the time series by a sliding fuzzy
regression model (using Takagi–Sugeno model architecture), in most simple form
including only one rule (capturing the basic linear trend) and in a more complex
form with 2, 3, up to 5 rules (also capturing some nonlinear trend). Locality can
be achieved by including a forgetting factor, which outdates older trends of the
time series signal. We use the methodology described in Sect. 9.3.1 for achieving
a gradual smoothed outdating of older learned relationship. Opposed to Sect. 9.3.1,
where this was performed for reacting on drifts in data streams, here, the purpose is
to model the latest local trend of the time series. Hence, the value of the forgetting
factor λ depends on the window size specifying the degree of locality of the model.
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Fig. 14.6 (a) anomaly as sudden jump, (b) anomaly as untypical pattern (discord) in the basic
frequency

Assuming to have a window size M given and assuming that the sample at the border
of this window, that is, the sample, which lies M time steps back, should have a very
low-weight ε > 0 when included into the fuzzy model training, then the wished
forgetting factor λ can be automatically elicited by:

λ = e
logε

M . (14.1)
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For the detection of more complex untypical patterns in the process signals, the
concept of autoregressive models (AR) is a feasible option. This type of models
extracts the relevant patterns from the past time series in order to establish a (usually
one-step ahead) prediction model, which predicts future values of the time series
based on past ones. Formally, such models are defined by:

yt = f (yt−1,yt−2, . . . ,yt−m)+ ε0 and (14.2)

in extended form (ARMA) defined by:

yt = f1(yt−1,yt−2, . . . ,yt−m)+ f2(εt−1,εt−2, . . . ,εt−m), (14.3)

with yt the value of the current sample in a time series sequence and yt−l denoting
past samples in this sequence and εt a noise term at time instance t. In the classical
case [6], the function f explicitly consists of linear parameters, being able to predict
only simple patterns (following a linear behavior). However, in our applications
applying evolving (TS-type) fuzzy systems as function of f resp. f1 and letting the
rule base evolve over time with more and more samples recorded was necessary
to handle nonlinearities in the past patterns properly (achieving autoregressive
evolving fuzzy models).

In both cases, first, a model response is obtained—for sliding fuzzy regression,
the new sample is processed through the inference, for autoregressive evolving
fuzzy models, a prediction ŷ(t) from past signal values is made—which is compared
with the measured signal value y(t) by taking into account the confidence regions
surrounding the evolved models and which are permanently incrementally updated
as well (see Sect. 9.3.5.2): whenever the confidence region conf f =

√
cov{ŷ} is

narrow, the tolerance for a new sample to be an anomaly is low. In fact, a new
sample is classified as anomaly whenever

|y(t)− ŷ(t)|> σ ∗conf f , (14.4)

where σ is a threshold operator. A feasible consideration is to set this to 2:2 means
a 2−σ area is triggered, which usually covers 96% of the data (used for training).
Thus, with a confidence level of 1–0.04, a sample can be confirmed as a fault when
exceeding (14.4). A value of 3 would lead to a more optimistic threshold (less
samples are recognized as faults), but to a more firm confidence level of around
1–0.005. We had to use larger values in our applications cases due to high-noise
levels, see Sect. 14.3.2 (experimental setup).

14.3.1.2 Multivariate Approach using EFS

The multivariate approach is based on the identification of high-dimensional models
from multichannel measurement data characterizing internal dependencies and
relations between certain system variables. Hence, these models are able to express
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the fault-free characteristics of a system and any significant deviation from them
are potential fault candidates. Therefore, faults affected and becoming apparent
within a combination of variables can be also detected, which is not the case for
the univariate approach (as performing a single dimension-wise view on the data
streams). Several data-driven fault detection methods have been proposed in the
past (see [12, 27]), also in connection with data-driven nonlinear estimators such as
fuzzy models [29] and neural networks [39], usually based on fixed thresholding
principles on the residuals (= deviation of new samples to the data-driven models)
and/or off-line batch training phases.

Key Aspects of Our Approach

Specific characteristics of the approach presented in this section are:

1. It is based on a dynamic data-driven modeling approach with the help of flexible
TS fuzzy systems (see Chap. 9), which are able to dynamically change its
structure with newly recorded measurements and hence able to include flexibly
and quickly dynamic changes or extensions in the system behavior. In this sense,
it is more flexible than static analytical or knowledge-based models and also than
recursive parameter estimation methods (as, e.g., used in [44]).

2. It uses the concept of adaptive local error bars which are updated synchronously
to the flexible fuzzy systems and denoting a confidence region for fuzzy model
predictions according to uncertainties in the process, noise in the data, and
extrapolation effects.

3. It uses an adaptive threshold concept (for fault warnings) through statistical
analysis of residual signals.

4. It does not require any time-intensive annotation phase for classifying samples
into faulty and fault-free (as is necessary in case of pattern recognition and
classification approaches [12] and also for the postprocessing approach as
described in Sect. 14.2). This is because faults are recognized by measuring
the deviation of new samples to the regression models, where the targets are
also measurement channels and therefore by-measured. This also means that
an operators’ feedback is only required in case of detected faults. On the other
hand, it can be only discriminated between fault and nonfault situations, so no
categorization into different fault classes/modes can be made.

5. It does not focus on one global system model, but is cascadable in the sense
that a larger collection of systems models can be integrated (describing various
dependencies in the system). The intention of this aspect of the framework is to
cover the detection of as many faults as possible which may arise in any of the
P variables. Only models with sufficient quality (>0.8) will be used in the fault
detection component, omitting responses from uncertain or even nonreasonable
models—in the fully automatic all-coverage approach, each system variable is
selected as target and a model is built by mapping a subset of the other variables
onto the target.
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Fig. 14.7 Online fault detection framework in an online measurement system using evolving fuzzy
systems

The self-explanatory framework joining these components to one process
work-flow is shown in Fig. 14.7. It applies an initial off-line modeling step
and further evolution of models using fuzzy system architecture. The optional
components are shown in dotted boxes: input structure selection is only necessary
when P is large and analysis of the residual signals over time can be seen as add-on
for bringing in more flexibility regarding setting appropriate thresholds for fault
warnings.

A feedback of operator(s) is required in case when a fault warning of the system
is produced, otherwise it is likely that real faults (warnings confirmed as faulty)
are trained into the models which may spoil their correctness and deteriorate their
performance further on. If a measurement is not confirmed as faulty, at least one
model’s decision was wrong (usually due to a new operating condition or due to a
badly generalizing model) and the measurement is incorporated into the evolution
process in order to improve and extend the fuzzy models to new system states. In
general, each data-driven model component can be used in the framework, which
is able to permanently update the models with new incoming measurements and to
provide some confidence regions for the fault detection logic. In our case, we are
focusing on flexible (evolving) fuzzy systems as described in Chap. 9 as data-driven
design component. Therefore, the initial modeling phase is performed by flexible
fuzzy inference systems using batch mode training (clustering first and learning of
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consequents in least squares mode afterward) and Takagi–Sugeno fuzzy systems
architecture which are claimed to be universal approximators [48] (i.e., able to
approximate any nonlinear behavior up to a certain accuracy degree). In case of
a high-input dimensionality, we apply an own modification of forward selection
[21] for eliciting a set of most important variables in order to explain each target:
the variables are ranked according to their importance (most important first, etc.)
and the additional contribution of each further variable measured in terms of quality
increase; those variables are selected which provide a significant contribution to
this increase. The online evolving phase is performed by an incremental training
procedure included in FLEXFIS, see Chap. 9. Model qualities are obtained by
applying the r-squared-adjusted measure [23], confidence regions are achieved by
adaptive local error bars according to Sect. 9.3.5.2.

Basic and Advanced Fault Condition

The native fault condition which decides whether a new measurement is affected
by a fault or not includes the sensor inaccuracy of the target channel ε and
incorporates the expected prediction error of the model “model error” measured by
a combination of bias error (error due to low-model flexibility) and variance error
(error due to high-noise in the data) (for details of the derivation see [33]):

∃m :
f̂fuz,k,m− xk,m− εxm

model errorm
> thr

∨ f̂fuz,k,m− xk,m + εxm

model errorm
<−thr, (14.5)

with f̂fuz,k,m the estimated value for variable xm from the mth evolved fuzzy model
f at time instance k—note that there are m = 1, . . . ,M reasonable models (models
with quality higher than 0.8) which are checked through (14.5), and if one of these
is violated, then it is sufficient to provide a fault warning. This is simply because
an error in one single variable may already indicate a fault or system failure. The
tunable parameter is “thr” which controls the sensitivity of the fault condition as it
provides the width of the tolerance band (as a kind of confidence region) around the
model. A too large value of “thr” yields a very optimistic fault detection system,
where usually small errors are overseen. A too small value produces too much
fault warnings, hence many overdetections, can be expected, which reduces the
trustability of the operators in the system. In accordance to the consideration in
the univariate approach (below (14.4)), we considered to apply a value of 2 or
3 for “thr”, which however resulted in unsatisfactory performance and was very
application dependent, that is, especially depending on the characteristics of noise
levels in the data sets. Thus, a dynamical analysis of residual signals produced by
(14.5) over time was developed which could compensate a weakly tuned “thr”, that
is, omitting more or less completely its necessity—see paragraph below.
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The main drawback of condition (14.5) is its global constant nature not changing
its width due to the actual data distributions in different regions. In fact, there may be
holes or extrapolation regions in the feature space not covered with any data, where
the model produces more uncertain predictions than in regions with a high-training
data density. Hence, the above fault condition is extended by using the concept of
adaptive local error bars, where the final fault condition becomes (for details, see
[32]):

∃m :
ŷfuz,k,m− xk,m− εxm√

cov{ŷfuz,k,m}
> thr

∨ ŷfuz,k,m− xk,m + εxm√
cov{ŷfuz,k,m}

<−thr, (14.6)

that is, the constant band width model errorm is substituted by the locally changing
error bar

√
cov{ŷfuz,k,m} in dependency of the actual (the kth) measurement

(see Chap. 9, Sect. 9.3.5.2 for the concrete formula), where ŷfuz,k,m is the estimated
output value for the kth measurement of the mth fuzzy model (approximating the
mth (measurement) variable xm). Similar considerations as above for setting “thr”
can be made.

Towards Automatic Thresholding Concept

Although the adaptive local error bars are allowing for more flexibility to model
appropriate confidence bands with different width in different regions of the feature
space (following the distribution and the noise level of the samples therein), still a
fixed threshold value for deciding on a fault alarm has to be set in (14.6). However,
to our best experience, for different applications the optimal threshold for producing
a high-detection rate while keeping the overdetection rate at a low-level varies. In
this sense, we propose to use a kind of automatic thresholding concept by analyzing
the behavior of the residual signals over time: each (normalized) residual (forming
the fault condition (14.6)),

resi=1,...,k−1;m =
min

(∣∣ŷfuz,i,m− xi,m− εxm

∣∣ , ∣∣ŷfuz,i,m− xi,m + εxm

∣∣)√
cov{ŷfuz,i,m}

, (14.7)

denotes one sample in the residual signal for the mth model. Now, for the kth data
sample (measurement), the residuals resk;m are computed for all m models with
(14.7) and are not checked versus a fixed defined threshold, but whether they denote
an anomaly in the current time instance k or not. Therefore, the same univariate
approaches as discussed in Sect. 14.3.1.1 are used, relying on the past history of
all the residual signals extracted from the m models and using local error bars as
confidence regions “conf regionk” for the sliding regression or ARMA models as
defined in (14.4). A fault alarm is triggered whenever the following condition is



14 Online Quality Control with Flexible Evolving Fuzzy Systems 397

fulfilled in one of the m residual signals:

resk > ˆresk + conf regionk, (14.8)

with ˆresk the estimated and resk the actual residual at time instance k.
If the fault alarm is not confirmed as correct, the measurement can be assumed as

fault-free and is taken into account for the evolution of the fuzzy models as outlined
by the back-path in Fig. 14.7. In this case, a new operating condition is more likely
and the sliding regression models updated with a decreased λ in order to adapt faster
to the new residual signal behavior and therefore to reduce false alarms. On the other
hand, if the fault alarm is confirmed as correct, the corresponding residual resk is not
sent into the parameter update and the measurement is not taken into account for the
evolution of the fuzzy models.

14.3.1.3 Fault Isolation, Reasoning, and Feedback to the Production
Process

This section deals with the problem to allow more automatization in fault detection
systems. Fault detection is a very useful and often necessary option to call attention
to failures in the system. In severe cases, an operator has to be informed about these
failures, which in turn may switch off some system components or perform some
manual control operations in order to prevent damages on production items and
system tools. In other cases, the system should automatically correct itself, reducing
significant supervision workload for the operators. Therefore, it is a challenge to
analyze the origin of a fault in a first step (fault reasoning) and then to react on this
by performing an adequate feedback to the production process.

Fault Isolation

In order to find the origin of a fault, it is important to know which variables are
affected by the fault. In case of univariate approach as discussed in Sect. 14.3.1.1,
this is automatically achieved, as each time series (belonging to one process
variables) is analyzed as data stream separately and completely independently. In
multivariate approaches, this issue gets more complicated, as (most) “responsible”
variables for triggering a fault alarm need to be isolated (hence, the process is called
fault isolation). If for instance in m1 < m (out of m) residual signals, an untypical
behavior could be observed, indicating a fault in the system, and all measurement
channels occurring in these m1 models are potential candidates to be affected by
the fault. This means in our problem setting, fault isolation reduces to rank all
the involved measurement channels in the m1 models according to the likelihood
that they were affected by the fault. A fault isolation value in [0,1] indicates this
likelihood (1= very likely, 0= not likely). A two-dimensional example of the fault
isolation problematic is shown in Fig. 14.8, where it is not obvious to decide whether
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Fig. 14.8 A two-dimensional visualization of the fault isolation problematic: a new measurement
affected by a fault (dark dot) appears significantly outside the error bar of a two-dimensional
relationship (modeled by a fuzzy model, shown as solid line); it is not obvious whether this
“disturbance” occurs because the input channel or because the target channel was affected by the
fault (or even both)

the sample (lying significantly outside the confidence regions) is affected by a
fault in the target (vertical deviation) or by a fault in the input channel (horizontal
deviation).

A fault isolation approach which solves this task within our problem setting is
demonstrated in [17], which exploits the idea of calculating a sensitivity vector as
proposed in [19]. The sensitivity vector includes the normalized partial derivative at
the current measurement (for which a fault alarm was triggered) with respect to each
variable in m1 models, denoted as ∂ fl

∂x j
for the partial derivative of the jth variable

in the lth violated model. The normalization is achieved by the proportion of the
ranges between input variable x j and target variable xl . Hence, the sensitivity vector
for model l is defined by [17]:

s j =

{
max(1−β j,0) l �= j ∈ {1, . . . , p}
1 l = j ∈ {1, . . . , p},

(14.9)

with

β j = γ
range(xl)

range(x j)

1∣∣∣ ∂ fl
∂x j

∣∣∣ (14.10)
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and γ usually set to 1. The partial derivative of a Takagi–Sugeno fuzzy model using
Gaussian membership functions (as defined in Chap. 9) with respect to a single
variable x j can be calculated by:

∂ fl

∂x j
=

C

∑
i=1

wi jΨi + li
∂Ψi

∂x j
. (14.11)

A faster (local) calculation of the derivative for online operation mode can be
numerically achieved through Newton’s difference quotient. Furthermore, the model
qualities measured by means of r-squared-adjusted values are included in the fault
isolation likelihood, as multiplied with the sensitivity information of each variable,
see also [16]: the lower the model quality the lower the fault isolation likelihood.
Finally, the likelihoods Li j, i = 1, . . . , and m1 from all violated m1 models are
summed up for each variable j (note that some variables may appear in more than
one model as input channel) which yields an overall likelihood Lj = ∑m1

i=1 Li j , j ∈
{1, . . . , p} for each variable.

Fault Reasoning and Feedback to the Production Process (Outline)

Once the fault isolation is finished, a fault reasoning mechanism can be initiated
which takes into account the fault likelihoods of the single variables and the intensity
of the faults according to the maximal deviation from the confidence band of the
m1 violated models. Usually, the reasoning process is conducted based on expert
knowledge, which can be automatized in an expert (fuzzy) system or in a symptom-
fault map [42]. Important input features for a fuzzy-based expert system are the
degree of likelihood of each variable (or an amalgamated value of this such as the
maximal likelihood or the sum of likelihoods over all variables), the (amalgamated)
intensity of the symptom (deviation from the model(s)’ confidence bands), and the
intensity of the anomaly in the residual signal.

Based on the elicited type of the fault in the fault reasoning process, a feedback
to the production system can be initiated in form of control actions for preventing
the system (1) from further failures and (2) from increasing severity of an upcoming
failure (e.g., a drift of the system). Such control actions usually require a process
model to make sure that the process remains stable. The actions that are taken
fully depend on the particular production process and also on the actuators that
are available for making automatic adjustments.

14.3.2 Experimental Setup and Results

14.3.2.1 For Univariate Approach

The methods described in Sect. 14.3.1.1 were developed for anomaly detection in
a variety of injection molding machines when producing different die cast parts.
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There, data is sampled from the available channels once for each part produced,
and contains information about configuration settings, timing, forces and pressures,
temperatures, speed, and dimensions, among others. In normal operation mode, the
sampled data from most of the process variables show a quite constant behavior,
varying around a specific value in a fluctuating manner. Therefore, sliding fuzzy
regression models (showing the latest trend of the pseudoconstant behavior) with
only two rules equally partitioning the one-dimensional input space represented a
sufficient complexity. The parameters (forgetting factor, maximal time delay, and
the σ -multiplicator of the confidence band) were tuned in an extensive tuning phase
based on various sets of collected measurements from the process using grid search
techniques and automatic evaluation procedures (based on annotated samples by
experts). Finally, a quite common optimal setting could be achieved:

• A forgetting factor of λ = 0.9 enforcing a strong forgetting.
• For autoregressive evolving fuzzy models (in order to detect more complex

abnormal patterns), a time delay of 10 turned out to be the best performing
choice.

• The optimal σ -multiplicator for the confidence bandwidth varied in a small range
of 12–15.

The models implemented in this way were applied to real online production process,
where a detection rate of between 80% and 90% could be elicited while keeping the
overdetection rate (falsely detected anomalies) at a low-level around 5%. Currently,
the system is installed in half-automatic manner, that is, whenever an anomaly is
detected, the operator is informed by a red light to check the system. This finally
means that when the process is running properly for one day, it can be expected that
an operator is superfluously informed within a time frame of around 20 min.

Other experiments with evolving autoregressive fuzzy models were conducted
within the scope of an audio inspector software. There, the task was to find, among
others, dropouts, clicks, crackles, and other high-frequent distortions in music hull
curves (stereo, 44.1 KHz, 16 bit) recorded from compact discs and magnetic tapes
as part of a larger audio inspection tool (see http://www.audioinspector.com/ under
rubric Features for more information about the complete functionality). These types
of faults also represent anomalies in the current music content and therefore in the
corresponding one-dimensional curves (left and right stereo channels are usually
treated as completely independent). Sliding fuzzy regression model technique was
used to find dropouts, holds, and mutes in the music content, all characterized
by unintended, abrupt pauses in the waveforms. Hence, the gradient of the latest
model trend served as reliable indicator for a fault hint, for which the characteristics
of its surrounding was further analyzed by an IF–THEN fuzzy rule base. In case
of clicks and crackles, half autoregressive evolving fuzzy models helped to find
the patterns of the typical audio content, not only based on time-based but also
on frequency-based features. A typical dropout example is shown in Fig. 14.9a, a
typical click/crackle example in Fig. 14.9b, both in 1-to-1 zoom.

http://www.audioinspector.com/
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Fig. 14.9 (a) A typical dropout (small unexpected pause) in music; (b) typical click (unexpected
high-frequency part)

After extensive parameter tuning phases the following results could be achieved
using evolving fuzzy models as internal pattern/trend model:

• detection rate (80%) and 5% overdetection rate for (significant) dropouts on
analogues tapes

• detection rate (98%) and 1% overdetection rate for (significant) dropouts on
compact discs

• detection rate (85%) and 5% overdetection rate for (significant) clicks and
crackles on analogues tapes

• detection rate (95%) and 2% overdetection rate for (significant) clicks and
crackles on compact discs

• overdetection rate (1.5%) for all detectors on sum on fault-free customized music
discs

The detection rates for analogue media are significantly lower than for digital media,
as the occurrence of the faults is much less distinct.

14.3.2.2 For Multivariate Approach

The multivariate fault detection framework was tested on measurement data
recorded online at engine test benches (courtesy of AVL List GmbH). The task was
to perform an online plausibility analysis of the measurements arising during test
and evaluation phases of new engine developments. Based on these measurements,
it is possible to detect faults and failures in an early stage which may cause some
incorrect conclusions about that state/behavior of the engine. Categories of faults
are:

• Sensor overheatings resulting in sensor drifts
• Broken interfaces
• Pipe leakages
• Erratic behavior of the engine
• Undesired environmental conditions



402 E. Lughofer et al.

Table 14.5 Comparison of basic (using constant error bars) and advanced fault detection logic
(using adaptive local error bars) on simulated faults at engine test bench

Test case FD method Detection rates (in %)

FLEXFIS on off-line data (kept fixed during online phase) Basic 61.36
FLEXFIS on off-line data (kept fixed during online phase) Advanced 75
Update on online data (using FLEXFIS) Basic 70.55
Update on online data (using FLEXFIS) Advanced 81.90

Especially, leakages of pipes for emissions and erratic behaviors of the engine may
lead to severe failures which are dangerous for operators working at the engine test
bench. In this system, up to a few hundreds different channels may be recorded
and sampled in parallel, both in dynamic mode (yielding dynamic measurements)
where around each millisecond a new value is sampled and in steady-state mode
(yielding static data) averaging the dynamic measurements over 30 s. For the latter,
one stationary measurement is achieved per minute, and it is necessary to wait 30 s
before averaging over another 30 s in order to allow the system to move from a
transient phase to a steady-state phase.

According to the large variety of measurement channels, a dimensionality
reduction algorithm is necessary. We used our own method of a modified version
of forward selection [21] based on prerecorded/simulated data or based on the first
few dozens of online measurements. The idea was not only to apply fuzzy models
in off-line mode and letting them fixed during the whole online FD process but also
to further evolve and adapt the models based on the response of the fault detection
component, that is, to adapt the models only in fault-free cases, according to the
FD framework as shown in Fig. 14.7, in order to extend the model on the fly to new
operation conditions (here manifested by new regions in the engine map defined
over the “control variables” rotation speed and torque).

Table 14.5 demonstrates the results achieved when performing fault detection
with the help of evolving fuzzy models on measurement data collected during the
evaluation and test phase of a BMW diesel engine (1,180 stationary points, 160
affected by real faults).

The overdetection rates (samples are falsely classified as faults) stayed at around
1–2%, that is, at a very low (same) level in all cases. The results in Table 14.5 were
achieved by using a fixed threshold of 12 in the fault conditions and show that the
more flexibility brought in by the adaptive local error bars (outlined as advanced FD
method) pays off in terms of 10–15% more accuracy. Furthermore, when the initial
models are built up on off-line data and further on kept fix during the whole online
process (simulated by loading samples from a prestored online collected data matrix,
see Sect. 14.2.2.2 for a detailed description), that is, not updated with new online
information, the accuracy suffers to be lower by about 6–10%. Based on expert
knowledge, we could detect all major faults when updating FLEXFIS on online data
and using advanced fault condition; the miss of 18.1% are all corresponding to tiny
faults, mostly lying beyond the noise level. In fact, the threshold in fault conditions
(14.5) and (14.6) is important for the performance as it controls the trade off between
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Fig. 14.10 (a) ROC curve for FLEXFIS using only consequent adaptation; (b) ROC curve for
FLEXFIS using its full version including structure evolution

detection and overdetection rate: lower thresholds will generally provide a high-
detection rate while also increasing the overdetection rate. Therefore, we varied
the threshold to see the effect on the detection and overdetection rates and plot
this as ROC curve in Fig. 14.10, showing the x-axes as the false detection rate (1-
specificity) and the y-axes as the detection rate (sensitivity). The larger the area
under this curve is, the better the method performs as achieving higher detection
rates with lower accompanied overdetection rates.

For comparison purposes, Fig. 14.10a shows the ROC curve when using only
adaptation of consequent parameters (with recursive fuzzily weighted least squares)
without any structure evolution on demand, whereas Fig. 14.10b shows the full
performance of FLEXFIS approach. A severe drop in the area under the ROC
curve can be observed, which means that structural evolution during online phase
significantly boosts fault detection performance.

In order to get an impression about the achievable bounds of our approach, we
studied the performance on tiny faults with levels of about 5% and 10% deviation
from the normal situation. Therefore, we disturbed some values in channels of
simulated engine data (including a very low-noise level) by a small fraction of±5%
and±10%. In order to circumvent threshold tuning, we used the value of 12 leading
to the results for the BMW diesel engine as shown in Table 14.5 and found out
that no faults could be detected at all, neither for 5% nor for 10% disturbed data.
Then, we applied the statistical residual analysis as described in Sect. 14.3.1.2 and
obtained significant detection rates of 26% for 5% fault levels and 66% for 10% fault
levels. For the 5% fault levels, the detection rate seems to be quite low; however,
engine experts usually request to detect faults with a fault level > =10%, according
to some expert standard. Therefore, using our FD approach, reasonable detection
rates (>50%) can be expected in-line with the expert standard. In Table 14.6, EFS
is compared with other data-driven modeling techniques such as multivariate linear
regression [23] and lazy learning [1] and with analytical fault models (deduced from
physical laws), best performing method for each fault level is highlighted in bold
font.
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Table 14.6 Comparison of fault detection approaches on simulated car engine
data with small built in errors (10% and 5% fault levels)

Fault level
(in %) Method

Detection
rates (in %)

10 EFS, adaptive error bars with residual analysis 66.23
10 Analytical models 35.13
10 Linear regression models 20.67
10 Local linear (lazy learning) 49.08
5 EFS, adaptive error bars with residual analysis 26.23
5 Analytical models 23.92
5 Linear regression models 12.88
5 Local linear (lazy learning) 20.04

14.4 Conclusion and Future Directions

This chapter deals with two major lines of online quality control approaches,
postproduct inspection quality control and process quality control. While the former
is based on visual inspection based on images showing the surfaces of production
items, the latter directly uses the measurement data recorded from the processes and
tries to identify the process behavior in conventional (nonfaulty) state. Compared
to state-of-the-art quality control with fixed analytical [10, 41] or data-driven fault
models [27] resp. classifiers [14], our approach is able to adapt dynamically to
process changes, operating conditions and varying environmental influences by
updating the reference models based on which fault indicators (residual signals resp.
classification statements together with uncertainty levels) are extracted. The impor-
tance of evolving models for providing reliable and high-qualitative indicators is
underlined by several application scenarios and online collected data streams from
these. For that purpose, a specific variant of evolving models, the so-called flexible
EFS are applied, whose integrated methodologies are described in Chap. 9. These
are compared with fixed models which are set up during an off-line development
phase and kept static during online phase.

In case of process quality control, a two-sided approach is presented where
regression-based evolving fuzzy models are used for discriminating between faults
and nonfaults. At this stage, this approach is not able to handle different types of
faults or in general different operation modes. An approach which integrates this
possibility is presented in [28], however requiring operator’s feedback (effort) in
case of new operation modes. Furthermore, an open point is the feedback control
to the production process in an online manner. This may require some adaptive
open-loop control approaches which are able to update their control structure. First
investigations into this direction within the scope of adaptive fuzzy control are
made in [9].
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Chapter 15
Identification of a Class of Hybrid Dynamic
Systems

Moamar Sayed-Mouchaweh, Nadhir Messai, Omar Ayad,
and Sofiane Mazeghrane

Abstract The behavior of hybrid dynamic systems (HDS) switches between
several modes with different dynamics involving both discrete and continuous
variables in the course of time. Their identification aims at finding an accurate model
of the system dynamics based on its past inputs and outputs. The identification can
be achieved by two steps: the clustering and the regression. The clustering step aims
at the estimation of the mode (discrete state) of each input–output data point as well
as the switching sequence among these modes. The regression step determines the
sub-models controlling the dynamic (continuous states) in each mode. In Pattern
Recognition (PR) methods, each mode is represented by a set of similar patterns
forming restricted regions in the feature space, called classes. A pattern is a vector
built from past inputs and outputs. In this chapter, we propose to use an unsupervised
PR method to realize the clustering step of the identification of switched linear
HDS. The determination of the number of modes as well as the switching sequence
does not require any information in advance about the modes, for example, their
distribution, their shape, . . . , or their number.

15.1 Introduction

Pattern recognition (PR) is the study of how machines can learn from experience
to make sound decisions about the categories or classes of patterns of interest. In
statistical PR methods [10], patterns are described as random variables, from which
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class densities can be inferred. These variables carry discriminating information
about patterns. They are called features, which are usually quantitative observations,
or measurements, about patterns. Therefore, a pattern is represented by a set of d
features so it can be viewed as a d-dimensional feature vector in the feature space.

PR involves two stages: preprocessing and classification. The aim of the pre-
processing is to find features in such a way that patterns belonging to different
classes occupy different regions of the feature space. The classification stage is a
mapping of a pattern from the feature space into the decision one. The latter is
defined by a set of predefined classes. This mapping is achieved using a classifier.
The latter is a method or algorithm which generates a class membership function
in order to classify unlabeled incoming patterns into one of the predefined classes.
Depending on the information available for classifier training, one can distinguish
between supervised [21] and unsupervised [4, 11, 12] learning. In the first case,
called also classification, there exists a set of patterns with their class assignment
or label, called learning set. The goal of supervised learning is to learn a set of
membership functions that allows the classification of new patterns into one of the
existing classes. The problem of unsupervised learning, also called clustering, arises
if clusters’, that is, classes, memberships of available patterns, and perhaps even the
number of clusters, are unknown. In such cases, a classifier is learned based on
similar properties of patterns: patterns belonging to the same cluster should be as
similar as possible and patterns belonging to different clusters should be clearly
distinguishable. Hence, the goal of clustering is to partition a given set of patterns
into clusters based on their similarity.

One of the applications of PR is the identification of hybrid dynamic systems
(HDS). The latter are characterized by the interaction between continuous time dy-
namics and discrete events or logic rules [6,15]. The identification aims at obtaining
an accurate model of the system dynamics based on its past inputs and outputs. The
problem of obtaining a model of a hybrid system from a given set of input–output
data has attracted, since few years, the attention of several researchers. Many models
have been proposed to describe them as piecewise autoRegressive with exogenous
inputs (PWARX), switched AR (SAR), switched ARX (SARX), switched nonlinear
ARX (SNARX) and PW nonlinear ARX (PWNARX) ones [2, 14, 22].

Generally, the identification is divided into two steps: clustering and regression.
In the clustering step, the discrete modes, that is, classes, that each input–output
data point belongs to as well as the switching sequence among these modes are
estimated. The regression step aims at finding the models governing the continuous
dynamic in each mode.

In this chapter, we propose an approach to achieve the clustering step of the iden-
tification of switched HDS described by SAR or SARX models. The latter are a par-
ticular class of HDS [14]. In this approach, the number of discrete modes, classes,
and the switching sequence among them are estimated using an unsupervised PR
method. This estimation is achieved without the need to any prior information about
these modes, for example, their shape or distribution, or their number.

This chapter is organized as follows. In Sect. 15.2, the principles of the proposed
approach are detailed. Then, its performance is evaluated using two examples. The
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first one is an example of HDS, modeled as SARX, switching among 3 modes. The
second example exploits the acoustic signals used to detect a leak in the steam gener-
ator unit of the nuclear power generator prototype fast reactors (PFR). These signals
record the noises in the steam generator unit. The latter functioning, described as
SAR model, switches between two modes (normal and faulty representing a leak)
in several time instants. The advantages and the drawbacks of the proposed approach
according to the ones of literature are discussed in Sect. 15.4. We finish the chapter
with a conclusion and the future work.

15.2 Proposed Approach for the Identification of HDS

In this section, we present an approach to achieve the clustering step of the
identification of switched HDS. This approach determines the number of modes
or classes, i = 1, . . . ,c and the switching sequence λ j, j = 1, . . . ,N using a historic
of N observations of the system input u j and output y j, j = 1, . . . ,N.

The proposed approach is based on two phases: the feature space construction
and the modes estimation ones. The first phase aims at finding the features, based
on the input–outputs data points, leading to well separate the modes in the feature
space. The second phase uses the unsupervised fuzzy pattern matching (FPM) as a
clustering method to determine the number of modes and to learn their membership
functions. The performances of the mode estimation phase are evaluated by the
closeness of the number of modes and of the time instants of switching among them
to the real ones. These performances depend on the discrimination power of the
feature space. Better the modes are separated in the feature space, better the modes
estimation is. Figure 15.1 illustrates these phases of the proposed approach.

Fig. 15.1 Phases of the
proposed approach
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Fig. 15.2 Illustration of the feature space construction

15.2.1 Feature Space Construction Phase

Let [u0 y0,u1 y1, . . . ,uk−1 yk−1,uk yk] be the set of the system past and actual input–
output observations, where uk ∈R and yk ∈R are, respectively, the input and output
at time step k. The goal of this phase is to build the feature space from past inputs and
outputs. In the obtained feature space, the pattern at the actual time step k is defined
as follows: xk =Φ(uk−1,yk−1), whereΦ is the mapping from the observation space,
that is, input–output space, to feature one. In this chapter, we propose to use the
Least Square Method (LSM) with a sliding window [17] to estimate the parameters
of the continuous dynamic of each mode. In this method, the parameters about the
system dynamic modes are estimated at instant t so that it minimizes the sum of
the squares of the differences between the output of the system and the one of the
prediction model over a sliding window of t measurements. These parameters are
then used as features to represent the different modes or classes.

Hence, in order to construct the feature space, we propose to estimate the sub-
models parameters using a sliding window as shown in Fig. 15.2. The latter shows
clearly that two cases are possible: the first one corresponds to the use of the data
points of the current mode (i.e., the first and the third data sets) and the second one
corresponds to the case when the data points of the current and the successor modes
are used to estimate the parameters (i.e. the second data set). Thus, the parameters
estimation procedure will provide different sets of parameters. Some of these sets
represent the real modes of the switching system (for example the parameters sets
estimated using the first and the third data sets) and other sets represent some biased
models (e.g. the second data set in Fig. 15.2). The latter case will be distinguished
in the modes estimation phase as belonging to two different modes.

15.2.2 Modes Estimation Phase

In order to determine the number of modes contained in the learning set X =
[xN , . . . ,xk,xk−1, . . . ,x1]

T and to learn their membership functions, we use unsuper-
vised FPM which is a developed version of the original supervised FPM [7]. The
proposed unsupervised FPM has an agglomerative characteristic. Thus, it does not
require any prior information about the number of classes. The classes’ membership
functions are constructed sequentially with the patterns arrival. According to the
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ratio r = L
U+L of the number L of labeled points to the one U of unlabeled points, the

proposed method can be totally supervised, r = 1, or totally unsupervised, r = 0. The
functioning of unsupervised FPM is divided into detection, adaptation and fusion
steps.

15.2.2.1 Classes Detection Step

Let x = (x1,x2, . . . ,xd) ∈ R
d be a given pattern vector in a feature space constituted

of d parameters or attributes. Statistically, the features are assumed to have a
probability density function (pdf) conditioned on the pattern class. Thus, a pattern
vector x belonging to the class Ci is viewed as an observation drawn randomly from
the class-conditional probability function p(x/Ci). Each attribute is divided into
equal intervals defining the bins of the histogram according to this attribute. This
histogram is used to estimate the conditional probability density for the class that
x is driven from. Let X j

min and X j
max be, respectively, the lower and upper borders

of the histogram according to the attribute j. These borders can be defined as the
minimal and maximal values of all the patterns of the learning set X according to
each attribute or parameter. Let h be the number of histogram bins, then each bin,
according to the attribute j, has the larger:

Δ j =
X j

max−X j
min

h
, j ∈ {1,2, . . . ,d}. (15.1)

Thus, the limits of these bins are defined as follows:

b j
1 = [X j

min,X
j

min +Δ j], b j
2 = [X j

min +Δ j,X j
min + 2Δ j]

b j
h = [X j

min +(h− 1)Δ j,X j
max], j ∈ {1,2, . . . ,d}. (15.2)

Generally, the histogram or the distribution of probability

{
p j

i (b
j
ik), i ∈ {1,2, . . . ,c}, j ∈ {1,2, . . . ,d},k ∈ {1,2, . . . ,h}

}
for a class Ci according to the attribute j is determined by calculating the probability
p j

i (b
j
ik) of each bin b j

ik:

p j
i (b

j
ik) =

n j
ik

Ni
, (15.3)

where n j
ik is the number of points of the class Ci which are in the bin b j

ik and Ni is
the total number of points of the class Ci. The resulting distribution of probability is
transformed into a distribution of possibility

{
π j

i (b
j
ik), i ∈ {1,2, . . . ,c}, j ∈ {1,2, . . . ,d},k ∈ {1,2, . . . ,h}

}



412 M. Sayed-Mouchaweh et al.

by using the transformation of Dubois and Prade [9]:

π j
i (b

j
ik) =

h

∑
z=1

min(p j
i (b

j
iz), p j

i (b
j
ik)). (15.4)

A membership function can be generated by considering the possibility distribution
numerically equal to the fuzzy membership function [23]. The possibility distribu-
tion is more adapted than the probability one to estimate membership functions in
the case of data infected by noises and uncertainties related to the features estimation
[9]. Finally, the density of possibilityΠ j

i of the class Ci according to the attribute j is
obtained by a linear interpolation of the bins centers of the histogram of possibility.

The first incoming pattern x will be considered as the point prototype of the first
class: C1 ← x,c← 1. If x is located in the bin b j

k,k ∈ {1,2, . . . ,h}, then the prob-

ability histogram of C1 according to the attribute j is: π j
1 = {p j

11 = 0, p j
12 = 0, . . . ,

p j
1k = 1, . . . , p j

1h = 0}. The possibility histogram will then be computed using (15.2).
Since there is just one pattern, the possibility histogram is equal to the probability
one. The possibility density of the class C1 is obtained by a linear linking between
the center of the bin b j

k, which has the height 1, and the ones of its left b j
k−1

and right b j
k+1 neighbors, which have both at present the height 0. Generally, if

C = {C1,C2, . . . ,Cc} is the set of learned classes at present. Let x be a new incoming
pattern which is not assigned to any of the learned classes (membership rejection).
The detection strategy is defined as follows:

πi(x) = 0, ∀i ∈ {1,2, . . . ,c}⇒ c← c+ 1,Cc = {x},πc =
{
π1

c , . . . ,π
j

c , . . . ,π
d
c

}
.

(15.5)

15.2.2.2 Classes Adaptation Step

The local adaptation step aims at updating the classes’ possibility densities after
the classification of each new pattern in order to take into account the information
carried by the new classified patterns in the class.

Let x′ be a new pattern classified in the class Ci,∀i ∈ {1,2, . . . ,c}. This
classification is obtained by a projection of the pattern on the possibility density
Π j

i of the class Ci according to each attribute j and then merging the values
according to all attributes using the aggregation operator “minimum.” The point
x will be assigned to the class for which it has the highest membership value. If
the membership value πi(x′) of x′ to the class Ci is different of zero, then this
pattern will be assigned to the class Ci and the possibility densities of this class
according to each attribute will be updated. The goal is to take benefit of the
information carried by the new classified pattern for the classification of the next
incoming ones. To establish an incremental update of possibility densities, let p j

i ={
p j

i1, p j
i2, . . . , p j

ik, . . . , p j
ih

}
and π j

i =
{
π j

i1,π
j

i2, . . . ,π
j

ik, . . . ,π
j

ih

}
define, respectively,
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the probability and possibility histograms of the class Ci according to the attribute j.

Let p′ ji =
{

p′ ji1, p′ ji2, . . . , p′ jik, . . . , p′ jih

}
and π ′ ji =

{
π ′ ji1 ,π

′ j
i2 , . . . ,π

′ j
ik , . . . ,π

′ j
ih

}
define,

respectively, the updated probability and possibility histograms of the class Ci

according to the attribute j after the assignment of x′ to the class Ci. Let us suppose
for the simplicity that: p j

ih < p j
i(h−1) < .. . < p j

i1, then these new probabilities can be
computed incrementally by [21]:

x′ j ∈ b j
k,∀k ∈ {1, . . . ,h}⇒ p′ jik = p j

ik ∗
Ni

Ni + 1
+

1
Ni + 1

p′ jiz = p j
iz ∗

Ni

Ni + 1
,∀z ∈ {1, . . . ,h},z �= k. (15.6)

Then the new possibilities can be computed using Dubois and Prade transformation
defined by (15.2). Thus, the local adaptation step is defined as follows:

πi(x
′) = max

z∈{1,...,c}
(πz(x

′))⇒Ci←{Ci,x
′},π ′i =

{
π ′1,π ′2, . . . ,π ′ j, . . . ,π ′d

}
. (15.7)

The flow chart of the detection and local adaptation steps of unsupervised FPM
is presented in Fig. 15.3.

15.2.2.3 Classes Merging Step

The occurrence order of incoming patterns influences the final constructed clusters.
This may lead to obtain several different partitions or number of clusters. Thus,
several clusters can represent the same functioning mode. These clusters must be
merged into one cluster to obtain one partition and one membership function. This
fusion can be done using a similarity measure. The latter measures the overlap
or closeness between constructed clusters. There are different similarity measures
in the literature. Most of them are based on the computation of the degree of
overlapping of clusters or the distance between clusters’ centers. The clusters
overlapping degree is based on the number of ambiguous patterns, belonging to
several clusters, and their membership values to these clusters. If the number of these
ambiguous patterns is large enough and their membership values to several clusters
are high, then these clusters cannot be considered as heterogeneous anymore and
must be merged. An interesting similarity criterion which takes into account at the
same time the number of ambiguous patterns as well as their membership values is
defined by [12]:

δiz = 1−
∑

x∈Ci∨x∈Cz

|πi(x)−πz(x)|

∑
x∈Ci

πi(x)+ ∑
x∈Cz

πz(x)
. (15.8)
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Fig. 15.3 Flow chart of unsupervised FPM for the detection and local adaptation steps

Where πi(x) and πz(x) are, respectively, the membership values of x to Ci and Cz. δiz

is the similarity measure between the two classes. More the similarity value is close
to 1, more the two classes are similar and must be merged. Figure 15.4 shows the
values of this similarity measure according to the closeness of two Gaussian classes.

The clusters are merged when this measure reaches a predefined threshold. In
general, a value of the similarity measure greater than 0.1 is enough to merge two
clusters. Indeed, starting from this value, two clusters begin to be partially over-
lapped in the feature space. Figure 15.5 shows the flow chart of unsupervised FPM
for the merging step.
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Fig. 15.4 Similarity measure between two classes

Fig. 15.5 Flow chart of unsupervised FPM for the merging step
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15.3 Experimental Results

15.3.1 Simulation Example

In order to illustrate and to show the effectiveness of the proposed approach, let us
consider the switched HDS described by Fig. 15.6. Where modes 1, 2, and 3 are,
respectively, described by the following discrete-time transfer functions:

F1(z) =
z+ 0.5

2z4 + 0.5z3 + 0.8z2− 0.3z+ 0.9
0≤ t < t12 = 900 ∧ 3,800≤ t ≤ 5,000

(15.9)

F2(z) =
z+ 0.9

z4− 0.8z3 + 0.13z2− 0.16z+ 0.45
900≤ t < t23 = 2,500 (15.10)

F3(z) =
z+ 0.2

z4− 0.4z3 + 0.29z2− 0.65z− 0.2
2,500≤ t31 < 3,800. (15.11)

On the other hand, the output of the system is defined by:

yc(k) =
3

∑
i=1

pi,kyi(k), (15.12)

where k represents the time index, i = {1,2,3} represents the index of the local
mode, yc ∈ R is the output of the system, yi(k) ∈ R is the output of the local model
i, and pi,k is the weight associated to yi,k.

Note that for each time step k, the weights verify the following conditions:

pi,k ∈ {0,1},
n

∑
i=1

pi,k = 1. (15.13)

In mode 1, the system switches to mode 2, at the time instant t12 = 900. Then when
the system is in the second mode, it switches to the third one at the time instant
t23 = 2,500. Finally, the system switches to mode 1 at the time instant t31 = 3,800.

Fig. 15.6 Switching
sequence for the simulation
example
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Fig. 15.7 Signal output of the simulation example of Fig. 15.6

Table 15.1 Similarity
measure between the classes
obtained by the application of
the proposed approach on the
learning set of the example of
Fig. 15.6

Class 1 2 3 4 5 6

1 – 0 0 0 0 0
2 0 – 0 0 0 0
3 0 0 – 0.17 0 0.21
4 0 0 0.17 – 0.33 0
5 0 0 0 0.33 – 0
6 0 0 0.21 0 0 –

In order to simulate the system, an input–output identification data set has been
generated. The output signal contains 5,000 data points and is generated using a
pseudo random binary sequence (PRBS) as an input. Figure 15.7 shows the output
signal of this example with the course of time. The feature estimation using the
LSM, developed in Sect. 2.1, with a sliding window of 100 data points shifted by
one time unit are used to determine the 4,900 patterns. This allows obtaining the
learning set X containing 4,900 patterns in a feature space of 6 parameters. The
number of parameters depends on the transfer function order. We have applied
unsupervised FPM on the learning set X of the example of Fig. 15.6. Six classes are
obtained. The similarity measures between these classes are shown in Table 15.1.
If the fusion threshold δ is equal to 0.17, then we can obtain the following three
classes: {C1},{C2},{C3}← {{C3}∪{C4}∪{C5}∪{C6}}.

Figure 15.8 shows the distribution of the patterns of the learning set in each of
the obtained three classes according to their occurrence time. Table 15.2 shows the
switching time obtained for each mode or class. We can see that the error of time
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Fig. 15.8 Data points classes according to their occurrence time for the example of Fig. 15.6

Table 15.2 Switching time
between the modes of the
example of Fig. 15.6 obtained
by the proposed approach

Real switching
time

Estimated switching
time

Estimation
error

t12 900 901 1
t23 2,500 2,495 5
t31 3,800 3,794 6

switching is small (six time steps in the worst case). The proposed approach has a
low computational complexity and low learning or classification time which depend
both on the number of attributes and not on the number of patterns in the data set.
This classification time for each pattern of the learning set is equal to 3.4×10−4 s
using a computer with Pentium 4 2.8 GHz.

However, the performance of the proposed approach depends on the separability
between the different modes, that is, classes, in the feature space. These different
modes occupy separated regions in the feature space if their parameters are properly
estimated. This needs a suitable size of the sliding time window in order to include
enough of input–output data points. Thus, in order to find a suitable time window
size, the proposed approach is applied using several time window sizes. We choose
the smallest window size which minimizes the similarity measure (maximizes the
separability) between the obtained classes. For the example of Fig. 15.6, we can
notice that mode 3 has a very close behavior to the one of mode 1. While mode 2
has a clear different behavior of the one of other modes. Thus, the sliding window
must have a sufficient size to well separate modes 1 and 3. Figure 15.9 shows the



15 Identification of a Class of Hybrid Dynamic Systems 419

Fig. 15.9 Similarity measure between modes 1 and 3 for different sizes of the sliding window
used to estimate the parameters of each mode

similarity measure between modes 1 and 3 for different sizes of the sliding window.
We can notice that a sliding window of 30 input–output data points is not sufficient
to enough separate modes 1 and 3. Indeed, the similarity measure indicates that
these two modes belong to the same class or mode. Thus, in this case, modes 1 and
3 are merged into one mode and unsupervised FPM provides two modes which is
an erroneous result. While a sliding window of 50 points or plus is sufficient to well
separate the classes and to obtain the right number of modes. Figures 15.10 and
15.11 show the values of all the patterns of the learning set X according to each
attribute for two sliding windows of sizes 30 and 100, respectively. We can observe
that, for the case of a window size of 100 points, features 3 and 4 separate well
modes 1 and 3, and the other features separate mode 2 from the other modes. In the
case of a window of 30 points, mode 1 has a very close behavior to the one of mode
3 according to each one of the 6 features. This entails to consider these two modes
as one mode by unsupervised FPM.

15.3.2 Application Example

PFR are used to produce nuclear power from nuclear fuel. They are cooled by metal
liquid sodium. Indeed, water is difficult to use as a coolant for a fast reactor because
collisions with the hydrogen nuclei in water quickly remove most of the kinetic
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Fig. 15.10 Classes features estimated using a sliding window with 30 input–output data points

Fig. 15.11 Classes features estimated using a sliding window with 100 input–output data points
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energy from the neutrons [8]. In contrast, sodium atoms are much heavier than both
the oxygen and hydrogen atoms found in water, and therefore the neutrons lose less
energy in collisions with sodium atoms. Sodium also does not need to be pressurized
since its boiling point is higher than the reactor’s operating temperature. However,
a disadvantage of sodium is its violent chemical reactivity, which requires special
precautions. If sodium comes into contact with water it explodes.

Actually, in-sodium hydrogen detectors are used in PFR to detect steam leaks
in steam generator. However, they have long detection times of the order of two
minutes. This is because hydrogen needs to transport from the leak site to the
detector location [19]. Therefore, leaks will grow to a large leak which may cause
serious damage through an explosion due to an increase of in-sodium gas pressure.

This limitation can be avoided using acoustic signals recording the background
noises in the steam generator. Thus, the objective of this application is to design
an acoustic leak detection to detect at early stage (faster than the hydrogen
detectors) the reactions sodium/water. This acoustic leaks detection can be used
as a supplementary tool besides the hydrogen detectors to detect steam leaks.

The available acoustic signals were recorded using data from background noise
measurements on the steam generator from the end-of-life of PFR at United
Kingdom. In these experiments, argon was injected into sodium, and acoustic
noises were measured. Indeed, experimental results have shown that steam and
argon injections give similar acoustic noise output at a given mass flow rate
[20]. Figure 15.12 shows an acoustic signal recorded in response to an injection
command. The signal records the noises resulting of the injection of argon in the
steam generator unit of PFR. This injection simulates a fault occurred by a leak in
the steam generator unit. Thus, the functioning of the steam generator unit switches
between two modes (normal: non-injection and faulty: argon injection) in several
time instants as it is shown in Fig. 15.12. The signal is sampled at the frequency
2,048 Hz.

We apply the proposed approach on the acoustic signal of Fig. 15.12. The signal
is considered as the output of switched autoregressive (SAR) system. Therefore, the
feature space is defined by the estimated parameters (coefficients) ai of the model
AR. AIC criterion [1] has been used in order to select the order of the AR dynamic
model. d = 152 is the AR model order which minimizes AIC criterion (Fig. 15.13).
These features change with time. In order to capture this change, these features
are calculated during a sliding time window. The latter size must include a sufficient
number of data points in order to properly estimate the parameters of each mode. We
have tested several sizes of time window. We have selected the one which maximizes
the discrimination power between the different modes in the feature space, that
is, obtaining compact and separated classes. This experimentation leads to select
a sliding window with an initial length Δtf = 8,192 data points and a shift length
Δts equal to 2,048 data points. Therefore, to define a pattern in the feature space, a
time window containing 8,192 data points is required. Consequently, to determine
the functioning mode (injection or non-injection), a delay time of 4 s is needed.

It is useful to reduce the feature space defined by the coefficients of the
dynamic parametric model AR (d). The reduction operation aims at keeping the
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Fig. 15.12 Acoustic signal in response to argon command signal. W1: non-injection class, W2:
injection class, t12: time of switching from W1 to W2, t21: time of switching from W2 to W1

Fig. 15.13 AR model order selection based on AIC criterion

distinguishing features leading to separate as well as possible the different classes.
We used the principal component analysis (PCA) to extract from the set of features
the ones which are uncorrelated. 13 parameters have been selected because they
are independent and conserve about 82% of the complete inertia carried by the
152 parameters. Then, we selected from this set of independent features the ones
which have a combination leading to obtain the lowest error of classification. Two
independent and discriminative AR model coefficients (coefficients 3 and 5) were
conserved to define the feature space.
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Fig. 15.14 Estimation of the feature space parameters using a sliding time window

Table 15.3 Similarity
measure between the three
obtained classes for the
example of Fig. 15.12

Class 1 2 3

1 – 0.4 0
2 0.4 – 0.17
3 0 0.17 –

Feature space parameters represent the estimated coefficients of SAR model.
These parameters, features, change with time. In order to capture this change, these
features are calculated during a sliding time window (Fig. 15.14). However, the
sliding window size must include a sufficient number of data points to properly
estimate the parameters of each mode. We have tested several sizes of time window.
We have selected the one which maximizes the discrimination power between
the different modes in the feature space, that is, obtaining compact and separated
classes. This experimentation leads to select a sliding window with a fixed length
Δtf = 8,192 data points and a shift length Δts equal to 2,048 data points. We apply
the proposed approach on the acoustic signal of Fig. 15.12. The obtained results of
clustering are shown in Table 15.3. Table 15.4 shows the switching times between
the modes for the example of Fig. 15.12. The similarity, obtained by unsupervised
FPM, between C1 and C2, is very important (equal to 0.40). Thus, the classes C1 and
C2 must be merged. These two classes correspond to the non-injection class. The
class C3 corresponds to the injection class. The similarity value between C2 and C3

indicates that the class C2 is a transitory one between C1 and C3.
Table 15.4 shows the switching time obtained for each mode, class. We can notice

that the activation of the injection command several times leads to increase the
delay required to detect the switching from injection to non-injection classes. This
is due to the fact that the time required to allow the attenuation of the excitation
resulted by the injection command increases with the number of activation of the
injection command. However, there is no time delay to detect the switching from
non-injection to injection classes. This advantage is very useful in a critical system
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Table 15.4 Switching times
between the modes for the
example of Fig. 15.12
obtained by the proposed
approach

Real switching
time

Estimated switching
time

Estimation
error

t12 19 19 0
t21 112 119 7
t12 169 169 0
t21 215 226 11
t12 275 275 0
t21 305 314 9
t12 363 363 0
t21 395 411 16

as the nuclear reactor since the transition from non-injection to injection modes
simulates a leak in the steam generator. This leak must be detected as soon as
possible to avoid an explosion.

15.4 Discussion and Related Work

Identification approaches of the literature are generally divided into clustering-
based, Bayesian, bounded-error, algebraic-geometric, and optimization-based ones.
Each of these approaches has its own advantages and drawbacks according to
the assumptions needed on the number of modes, their order, the computational
complexity, the dwell time in each mode, the achievable performance, the possibility
to achieve on-line and/or off-line identification, etc.

In [13], the authors proposed a clustering-based approach that partitions the
regressor space into regions on which a linear local model is valid. Then, it estimates
each model parameters by standard least squares regression tools. However, this
approach requires the knowledge of the ARX sub-models orders, and it stills
suboptimal since the convergence depends strongly on the initialization step. In [5],
a clustering-based method using the evidential theory is proposed. This approach
supposes that each input–output data point is a cluster, that is, model. Then, the
evidential theory is used for grouping data points that are more likely to have been
generated by the same mode. The advantage of this approach is that it does not
require the number of modes to be known a priori. However, the number of modes
obtained by this approach depends strongly on a tuning parameter which is the
number of neighbors. Moreover, the models order needs to be known a priori.

In [16], a Bayesian approach is proposed. This approach treats the parameters
to be identified as random variables described with their pdfs. The data classifi-
cation problem is posed as the problem of computing the a posteriori pdf of the
model parameters, and the data are clustered in a suboptimal way using Bayesian
inferences. However, this approach needs a priori knowledge about: the number of
the modes, the ARX sub-models order and the pdfs of the parameters. In [3], a
bounded-error approach is proposed. The main feature of this approach is to impose
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that the identification error is bounded by a given bound for all the samples in the
data set. The approach consists of three main steps: initialization, refinement, and
region estimation. At the initialization step, the estimation of the number of sub-
models, data classification, and parameter estimation are performed simultaneously
by partitioning a set of linear complementary inequalities derived from data into a
minimum number of feasible subsystems. Then, a refinement procedure is proposed
in order to reduce misclassifications and to improve parameter estimates. Region
estimation is finally performed via two class or multi-class linear separation
techniques. However, this approach requires the orders of the ARX sub-models
to be known a priori. Moreover, the bound needs to be properly adjusted in
the identification procedure in order to find the desired trade-off between model
complexity and fit quality.

In [22], the authors proposed a solution for the identification of noiseless
PWARX models with unknown and different orders. The presented algorithm is
based on an algebraic approach in which homogeneous polynomials are used to
realize a segmentation of the regression space into regions that correspond to the
discrete states. [18] proposed an identification approach that considers the plant as a
nonlinear black-box and uses feedforward neural networks to predict the continuous
outputs of the given HDS. In the same context, [2] proposed an on-line identification
that uses an adaptive growing and pruning radial basis function neural network.

In this chapter, we considered the identification of Switched linear autoregressive
(SAR) and switched linear autoregressive with exogenous inputs (SARX) models.
In this class of HDS, the system switches arbitrary from one mode to another
one. The proposed approach is a clustering-based one. It does not require the
knowledge about the number of modes, the model parameters, and the switching
sequences. In addition, this approach can be used to achieve both off-line and on-
line identification. This is possible thanks to the low classification time and to
the agglomerative and recursive character of the proposed approach. Finally, this
approach overcomes the problem of initialization thanks to the use of a similarity
measure to merge the clusters belonging to the same mode.

15.5 Conclusions

In this chapter, a clustering-based approach is proposed for the identification
of switched linear autoregressive (SAR) and Switched linear autoregressive with
exogenous inputs (SARX) models of hybride dynamic systems (HDS). The goal
is to determine the number of modes as well as the switching sequence among
them. The estimation of the number of modes is achieved using unsupervised FPM.
The latter is based on a competitive agglomerative technique which allows the
detection of new clusters sequentially without the need to any prior information
about these clusters, that is, modes, or their number. Then, the clusters membership
functions are refined sequentially with the assignment of new unlabeled patterns.
Since the order of patterns’ occurrences can be different according to the switching
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sequence and there is no information about the clusters positions, several different
portioning or clusters can be obtained. Thanks to the use of a similarity measure,
the clusters, which are close to each other so that they cannot be considered
anymore heterogeneous, are merged. The complexity and the computation time of
the proposed approach are low and depend only on the dimension of the feature
space. However, the proposed approach requires a discriminate feature space in
order to separate the classes or the modes. Thus, a LSM with a sliding window is
used to estimate the parameters of each mode or class. This estimation enhances the
discrimination among classes. However, the sliding window must include enough
of output data points in order to well separate the modes which have close dynamic
behavior. We are developing this approach to be operant for the other classes of
HDS as the piecewise autoregressive exogenous (PWARX), switched nonlinear
ARX (SNARX), and PW nonlinear ARX (PWNARX) ones. In addition, we aim at
relaxing the prior knowledge of the order of the transfer function for the construction
of feature space. The goal is to be able to realize the identification of HDS containing
subsystems or modes of different orders.
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Epilogue: Achievements, Open Problems,
and New Challenges

The aim of this book is to provide the reader a round picture of the latest important
developments and investigations within the field of learning in non-stationary envi-
ronments. As such, it contains methodologies, concepts, algorithms, and innovations
for dynamic evolution and adaptation of system models, which emerged during the
last years in various fields of intelligent systems research. Therefore, this books
intends to attract people likewise from the machine learning, soft computing, fuzzy
systems, neural networks, data mining, and pattern recognition communities. In this
sense, this volume comprehends:

1. Unsupervised dynamic and evolving learning concepts (Part I), including single-
pass updates of statistical measures taking into account drifting data distributions,
evolvable granules in spatiotemporal environments equipped with the ability to
build relational and cluster-type models from time-dependent data recorded at
different locations, and an incremental clustering variant based on the spectral
information concept.

2. Dynamic and evolving learning concepts for supervised classification problems
(Part II), including a new approach for semi-supervised learning based on
dynamic fuzzy k-nearest neighbors, a concept how to predict the success or
failure of classifiers at an early stage, thus addressing the problem whether
classifiers accuracies can be increased by further updates, an instance-based
learning approach dealing with an appropriate update of the reference (case) base
for capturing the most important samples used for further predictions, and several
incremental learning algorithms for trainable classifier fusion methods, which
may exploit the diversity of single incremental base classifiers for achieving
significant performance boost and improved stability.

3. Dynamic and evolving learning concepts for supervised regression/function
approximation problems (Part III), including flexible fuzzy systems updated
sequentially and on the fly from on-line data streams and equipped with
several enhanced concepts for improved performance, self-awareness in own
predictions and reduced complexity, sequential neuro-fuzzy type systems with
an enhanced rule pruning and evolution concepts based on statistical information
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criteria as well as exploiting an extended Kalman filter for robust updates of
singleton consequents, and an interval granular modeling approach based on
multi-dimensional interval analysis and arithmetic which is used for function
approximation and time series forecasting purposes.

Furthermore, the volume deals with attractive and successful real-world appli-
cations of dynamic learning methodologies (Part IV and some evaluation sections
in the other parts), including dynamic forecasting of stock market indices based
on granular and multiple time-series data (the latter using local and transductive
modeling concepts), on-line optimization of feature calculation in machine vision
systems (for improved classification of textures and images), on-line quality control
in dynamically changing production lines by surface inspection (CD imprints, eggs,
rotor parts, and bearings) and early fault detection/diagnosis (engine test benches,
audio tapes), identification of hybrid dynamic systems containing switching se-
quences of modes and classes, monitoring of welding quality in an industrial
welding system, prediction of maintenance actions for copiers, and the prediction
of rain precipitation in different European regions.

Although, due to various reasons (especially space and time restrictions, un-
availability), some substantial approaches could have not been included, the volume
should lie a broad information and inspiration basis for ongoing future developments
and further publications in this still emerging field of research. In this context, we
finally want to mention some future challenges in dynamic and evolving learning
issues which we see as important and, from our point of view, were not sufficiently
handled so far:

• Dynamic changes in the input structure: Current methodologies for learning
in non-stationary environments basically include two essential concepts: (1)
permanent adaptation and refinement of model parameters (e.g., movement of
decision boundaries or adjustments of clusters, hyper-planes to fit the natural data
stream distribution appropriately) and (2) changes in the structural components
(rules, granules, intervals, neurons, leafs, etc.). Very little attention is paid to
dynamic changes in the input structure of the models in order to account for
changing importance/impact of system variables, features over time. An attempt
to handle this issue is presented in Chap. 9 (second part) for evolving fuzzy
classifiers, where input features may get out-weighted according to their discrim-
inative power between two or several classes, and other features may receive a
higher weight, thus having a higher influence on the final prediction (hence, a
soft dimensionality reduction effect is achieved). Although a variety of on-line
subset selection algorithms exists in literature, their smooth combination with
incremental, evolving models is still in its infants, especially was hardly handled
in connection with other model architectures than evolving fuzzy systems (EFS).

• Enhanced incremental optimization procedures: a lot of state-of-the art methods
apply the least squares optimization problem as basis for learning linear and
non-linear parameters in a recursive manner (see, e.g., Chaps. 9–12), some use
incremental clustering, granule extraction techniques for approximation local
data distributions as close as possible (see, e.g., Chaps. 3–5). However, little
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effort is investigated so far in the inclusion of model complexities during
the optimization/extraction process in order to avoid over-fitting by applying
for example, enhanced optimization problems with constraints or regularized
incremental learning procedures.

• On-line model-based design of experiments: currently, models are evolved and
updated based on incoming streams in the same order as samples from the
streams are processed; however, no concepts are worked out how to steer the data
acquisition process in order to incorporate new valuable information quickly into
the models and to omit unnecessary samples containing no new information.

• More clear focus on model interpretation: currently, most of the techniques
are conducting precise modeling, such that the evolved models have very
little interpretable meaning as major attention is paid to achieve models with
high predictive accuracy. This restricts the communication and interaction with
operators at an enhanced level and prevents the inclusion of experts/operators
knowledge aside the information provided by the data.

• Self-awareness in model responses: most of the methods provide predictions,
classification statements for query points, forecasts, and cluster information, but
little care is taken in the certainty/uncertainty of these models responses (some
concepts are mentioned in Chap. 9, second part)—this could serve as another
viewpoint of model interpretation.

Linz, Austria Edwin Lughofer
Douai, France Moamar Sayed-Mouchaweh
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