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Preface

Inventory control has emerged as a leading application of operations research. The

Survey of Current Business reported that the dollar value of inventories in the USA

alone exceeded $1.3 trillion at the end of 2010. Cost-effective control of inventories

can cut costs significantly, and contribute to the efficient flow of goods and services

in the economy. Many techniques can be brought to bear on the inventory manage-

ment problem. Linear and nonlinear programing, queueing, and network flow

models, are some examples. However, most inventory control packages are based

on the methodology of inventory theory. Inventory theory is an important subfield

of operations research that addresses the specific questions: when should an order

be placed, and for how much?

Inventory theory had its roots in the well-known EOQ formula, first discovered

by Ford Harris nearly 100 years ago (Harris 1915). Harris, working as a young

engineer at the Westinghouse Corporation in Pittsburgh, was able to see that a

simple formula for an optimal production batch size could be obtained by properly

balancing holding and set-up costs. The EOQ formula, first derived by Harris, is

amazingly robust – it still serves as an effective approximation for much more

complex models. After Harris’s work, the development of inventory theory was

largely stalled until after World War II. The success of operations research in

supporting the war effort was the spur needed to get the field off the ground. It

seems that the newsvendor model of inventory choice under uncertainty was

developed around this time, although it appears that the fundamental approach of

balancing overage and underage costs under uncertainty was really first derived by

Edgeworth (1888) in the context of banking.

Serious research into stochastic inventory models began around 1950. An early

landmark paper was Arrow, Harris, and Marschak (1951). They were the first

researchers to provide a rigorous analysis of a multiperiod stochastic inventory

problem. Three significant books on the theory stimulated substantial interest in

inventory theory research: Whitin (1957), Arrow, Karlin, and Scarf (1958), and

Hadley andWhitin (1963). The 1960s saw an explosion of papers in inventory theory.
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None of the books or hundreds of papers on inventory control written up to this

time addressed an important class of problems. In every case, a tacit assumption

was made that items stored in inventory had an infinite lifetime and unchanging

utility. That is, once placed into stock, items would continue to have the same value

in the marketplace in perpetuity. In truth, there is a very large class of inventories

for which this assumption is wrong. These include inventories subject to decay,

obsolescence, or perishability.

Let us define our terms. Decay (or exponential decay) means that a fixed fraction

of the inventory is lost every planning period (this has also been referred to as age

independent perishability). In continuous time, this translates to the size of the

inventory decreasing at an exponential rate. Very few real systems are accurately

described by exponential decay. For example, suppose the local grocery store

discards an average of 10% of its production each day due to spoilage. In actuality

though, some days it will not have to discard any product and some days it will have

to discard much more than 10%. Assuming a 10% loss each day is a convenient

approximation of a more complex process. Exponential decay has been proposed as

a model for evaporation of volatile liquids, such as alcohol and gasoline. But how

often are these substances stored in open containers, so that they would be subject to

evaporation? Radioactive substances (such as radioactive drugs) are one example of

true exponential decay. However, inventory management of radioactive substances

is a rather specialized narrow problem. While exponential decay has been proposed

as an approximation for fixed life perishables, there are better approximations.

A related problem is that of managing inventory subject to obsolescence. What

distinguishes obsolescence from perishability is the following. Obsolescence typi-

cally occurs when an item has been superseded by a better version. Electronic

components, maps, and cameras are examples of items that become obsolete.

Notice that in each case, the items themselves do not change. What changes is

the environment around them. As a result of the changing environment, the utility

of the item has declined. In some cases, the utility goes to zero, and unsold items are

salvaged or discarded. However, it is often the case that utility does not decrease to

zero. Declining utility can result in declining demand and/or decreasing prices. For

example, older electronic items, such as a prior generation of PDAs or hard drives,

continue to be available for some time, but are typically sold at reduced prices.

From a modeling perspective, the point at which an item becomes obsolete cannot

be predicted in advance. Hence, obsolescence is characterized by uncertainty in the

useful lifetime of the product.

Finally, we come to perishability. We assume the following definition of perish-

ability throughout this monograph. A perishable item is one that has constant utility

up until an expiration date (which may be known or uncertain), at which point the

utility drops to zero. This includes many types of packaged foods, such as milk,

cheese, processed meats, and canned goods. It also includes virtually all pharma-

ceuticals and photographic film. This writer’s interest in this area was originally

sparked by blood bank management. Whole blood has a legal lifetime of 21 days,

after which time it must be discarded due to the buildup of contaminants. When

uncertainty of the product lifetime is assumed, the class of items one can model is
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substantially larger. For example, perishable inventory with an uncertain lifetime

can accurately describe many types of obsolescence.

Considering the large number of perishable items in the economy, why was this

important class of problems ignored for so long? The short answer is that the

problems are difficult to analyze. Interestingly, Pete Veinott, a major figure in

inventory theory, wrote his doctoral thesis (in the early 1960s) on various deter-

ministic models for ordering and issuing perishable inventories, but never published

this work. When this writer inquired why, he said that the notation was so complex

and awkward, and he preferred putting the work aside and move on to other

problems (Veinott 1978). Van Zyl’s (1964) important work on the two period

lifetime case with uncertain demand remained largely unknown, as it was never

published in the open literature. (This author became aware of Van Zyl’s work after

completing his doctoral thesis on the subject).

Preface ix





Contents

1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Deterministic Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Periodic Review Versus Continuous Review. . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Periodic Review Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 A One Period Newsvendor Perishable Inventory Model. . . . . . . . . . . . . 6

2 The Basic Multiperiod Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The Functional Equations for the General Dynamic Problem . . . . . 10

3 Extensions of the Basic Multiperiod Dynamic Model . . . . . . . . . . . . . . . . . 15

3.1 Random Lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Inclusion of a Set-Up Cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Multiproduct Models of Perishables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Continuous Review Perishable Inventory Models . . . . . . . . . . . . . . . . . . . . . 25

4.1 One for One (S�1, S) Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Continuous Review Models with Zero Lead Time. . . . . . . . . . . . . . . . . 29

4.3 Optimal (Q, r) Policies with Positive Lead Time . . . . . . . . . . . . . . . . . . 29

4.4 An Alternative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Approximate Order Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Forms of Approximate Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 S Policy Approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Higher Order Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Fixed Order Quantity Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Inventory Depletion Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Deterministic Field Life Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Stochastic Field Life Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



7 Deterministic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 The Basic EOQ Model with Perishability . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Dynamic Deterministic Model with Perishability . . . . . . . . . . . . . . . . . . 50

8 Decaying Inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1 EOQ Models with Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Uncertain Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9 Queues with Impatient Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10 Blood Bank Inventory Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11 Afterword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xii Contents



Chapter 1

Preliminaries

Contents

1.1 Deterministic Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Periodic Review Versus Continuous Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Periodic Review Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 A One Period Newsvendor Perishable Inventory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Deterministic Demand

When demand is known with certainty, the problem of managing perishables is

straightforward for the most part. Consider first the basic EOQ model. Suppose the

demand rate is l, the fixed cost of placing new orders is K, and the holding cost per
unit time is h. Then, it is well known that the optimal order size is

Q� ¼
ffiffiffiffiffiffiffiffiffi
2Kl
h

r

and the optimal time between placement of orders is T� ¼ Q�=l. Suppose now

that the item has a usable lifetime of m. All deliveries are assumed to be of fresh

units only. Then, there are two cases: (a) T� � m and (b) T� >m. In case (a) the

optimal policy remains the same, since in each order cycle, all units are consumed by

demand before they expire. However, in case (b) ifQ� is ordered at the beginning of
the cycle, there will be positive inventory on hand at time m, which will have

outdated and must be discarded, and a new order placed at that time. Notice,

however, that if we reduce the order quantity from Q� ¼ lT� to Q ¼ lm<Q�,
then the cycle length will remain at m, no units will expire and holding costs will

be reduced, since average inventory will be reduced from Q�=2 to Q=2: Hence, the
modification of the standard EOQ model to include perishability is straightforward.

However, not all deterministic perishable inventory problems are solved so

easily. In particular, consider the deterministic nonstationary production planning

S. Nahmias, Perishable Inventory Systems, International Series in Operations
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problem. Demands over an n period planning horizon are known constants, say

ðr1; r2; . . . ; rnÞ. Costs include holding, hi, set-up, Ki, and marginal production cost,

Ci in each period. Then, Wagner and Whitin (1958) showed (in the infinite lifetime

case) that an optimal policy has the following structure. If starting inventory is zero,

then the order quantity in each period is either zero or exact requirements – namely,

the sum of requirements in the current to some future period. Furthermore, an

optimal policy only orders in periods when the starting inventory is zero. As a

consequence of this result, one only needs to determine the periods in which

ordering takes place, thus reducing the calculations significantly.

It turns out that an exact requirements policy may not be optimal when perish-

ability is introduced. A counterexample is presented in Chap. 7, and methods for

resolving this problem is discussed there. When demand is nonstationary, finding

optimal order policies for a fixed life inventory is not trivial. However, the vast

majority of the research on ordering policies for perishables has focused on

stochastic demand – a significantly more difficult problem.

1.2 Periodic Review Versus Continuous Review

Demand uncertainty and (fixed life) perishability combine to result in challenging

and complex problems. Stochastic perishable inventory problems fall into one of

the two basic categories: periodic review or continuous review.

Most of the research in inventory theory assumes inventory levels are reviewed

periodically. This means that the state of the system (on hand inventory) is known

only at discrete points in time. This assumption is appropriate, for example, if

inventory levels are checked once a day, once a week, etc. The landmark collection

of Arrow et al. (1958) assumed periodic review in every case considered, and set the

stage for much of the subsequent research on inventories. From a practice point of

view, it is probably true that most inventory systems were periodic review 50 years

ago. Today, however, point-of-sale scanners and automated inventory control

systems have made true continuous review more common.

There are two reasons why continuous review has grown in importance. First,

with automated inventory control systems computers can automatically trigger

orders when inventory levels hit predetermined levels. Second, continuous review

models often are able to provide simple approximations to complex problems that

are difficult to solve with periodic review formulations.

Perishable inventory research has also evolved along the two separate tracks of

periodic review and continuous review. The periodic review track generalizes the

kind of models considered by Arrow et al. (1958), among many others, to incorpo-

rate perishability. The continuous review track is largely an outgrowth of the theory

of queues with impatient servers. An impatient customer is one who leaves the

queue if they have not been served by a fixed time. Queueing models with impatient

customers are discussed in detail in Chap. 9.

2 1 Preliminaries



1.3 Periodic Review Preliminaries

As noted earlier, we assume that the on hand inventory level is known only at

discrete points in time, which are labeled periods. Assume that periods are

numbered 1, 2, . . . . Demands in successive periods are not known, but are assumed

to be random variables, D1; D2; . . . with a known probability distribution. For

convenience, assume that the demand distribution is continuous with cumulative

distribution function (CDF) F(x) and probability density function (PDF) f(x). (Note
that basic results have been shown to carry over to the discrete demand case as well.

Also, virtually all of the results carry over to nonstationary demand. Stationarity of

the demand distribution is assumed for notational convenience.)

Assume that new orders are always of fresh units that have a usable lifetime of

m periods. A little reflection should convince the reader that it is necessary to track the

entire age distribution of the on hand inventory in order to determine outdates each

period. Hence, the system state is described by a vector x ¼ ðxm�1; xm�2; . . . ; x1Þ
where xi is the number of units on hand with i useful periods of life remaining. Note

that there are many notation options for the state vector. The state could be defined in

terms of age rather than remaining lifetime and the vector could be numbered in order

of oldest to youngest rather than vice versa, as we have done. This convention was

chosen to reflect that aging occurs in the direction left to right, like the flow of the

English language, and that the decision variable, y, can be equated to xm and placed

in the proper position in the vector. Note that x0 would represent the number of units

on hand that have just expired or outdated. We do not need to carry x0 in the state

vector since outdated units are assumed to leave the system. We use the convention

throughout that boldface x is the vector of on hand inventories of each age level,

and x ¼ Pm�1

i¼1

xi is a scalar quantity representing the total on hand inventory.

The necessity to define a vector valued state variable is only one of the things

that separate the perishable inventory problem from the conventional nonperish-

able problem. As we see, several other concerns arise as a result of perishability.

One is the sequence that items are issued to meet demand. Note that there is a

substantial literature on optimal issuing policies independent of the ordering

problem. The appropriate assumption concerning issuing policies depends on

whether the producer or consumer chooses which items satisfy demand. If the

producer determines the issuing policy, it is clearly in his interest to issue items on

an oldest first basis (known in accounting parlance as FIFO for first in first out). If

the consumer determines the issuing policy, it is likely that the consumer will

choose the freshest items, resulting in units issued in last in first out (LIFO)

sequence. The vast majority of the perishable inventory literature assumes FIFO

issuing, and we do so as well unless stated otherwise. Clearly, FIFO is most cost-

efficient and results in minimum outdating. (A third alternative, which might be

appropriate in some contexts, is to issue the items in a random order. To our

knowledge, random issuing policies have not been considered in the context of

optimal ordering policies for perishables.)

1.3 Periodic Review Preliminaries 3



If items are issued according to FIFO, then the aging and demand processes

travel in opposite directions. To see what this means, consider the representation of

the system state in Fig. 1.1. Bins are labeled m�1, m�2, . . ., 1, where the contents
of bin i are the number of units on hand with i useful periods of life remaining.

At the end of each period, all contents of a bin are moved to the next lower bin, and

the contents of bin 1 outdate and must be discarded (or salvaged). Because of the

FIFO assumption, demand depletes first from bin 1, then from bin 2, etc. Excess

demands may be lost or backordered. If excess demands are backordered, then this

is reflected in a negative value of xm�1.

Consider now the ordering policy. The optimal number of units to order each

period is function of the state vector, x. We represent this function as y(x). As we
see, y(x) is a complex nonlinear function of the state variable x. We assume that

costs are assessed in the usual way for finite horizon periodic review inventory

systems. At the end of each period, the total inventory is determined. If it is positive,

assess a holding cost of h per unit held per period. If it is negative (which occurs

when excess demands are backordered), assess a cost of p per unit of unsatisfied

demand. Furthermore, we assume a marginal order cost only. That is, there is a cost

of c per unit ordered. For now, assume that there is no fixed order cost. Finally, we

come to the issue of how to assess the cost for items that must be discarded due to

outdating. Let y be the cost of disposing of outdated units. If D is the demand in a

period, then the number of units outdating at the end of the period when starting

inventories are x, is maxðx1 � D; 0Þ, which we represent as ðx1 � DÞþ.
We now face the first issue. The astute reader will notice that the outdating cost,

yEðx1 � DÞþ, is independent of the decision variable y. That means that any single

period model ignores the effects of outdating. In fact, one would need to churn

through at least m periods of a dynamic programing formulation before the

outdating penalties of over ordering would be reflected in the optimal order policy.

(This was, in fact, the approach taken in Fries 1975.)

Suppose, however, that one were interested in constructing a one period model

that reflected the outdating penalties of over ordering. How could this be done? Let

D1;D2; . . . represent demands in successive periods, starting with the current

period. Then, the current order, y, would not outdate until m periods into the future,

if it had not been consumed by demand by that time. Consider how one would

determine the expected outdating of the current order y, m periods into the future.

Fig. 1.1 The flow of demand

and product in an FIFO

fixed life perishable inventory

system
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Define the following sequence of random variables:

R1 ¼ yþ
Xm�1

i¼1

xi

R2 ¼ ½yþ
Xm�1

i¼2

xi � ðD1 � x1Þþ�þ

R3 ¼ ½yþ
Xm�1

i¼3

xi � ðD2 þ ðD1 � x1Þþ � x2Þþ�þ

etc.

Then, Ri represents the amount of the current inventory on hand i periods into the
future, assuming we start with x and order y. Each value of Ri is a random variable,

since it is a function of the future demands. Note the use of the imbedded + functions

are necessary to keep track of units lost due to outdating.

To simplify the notation, define the following sequence of random variables

recursively:

B0 ¼ 0

B1 ¼ ðD1 � x1Þþ
..
.

Bj ¼ ðDj þ Bj�1 � xjÞþ for 1 � j � m� 1:

Interpret the random variable Bj as the total unsatisfied demand in period j after
depleting the on hand inventory that would have outdated in period j. It follows that

Rm ¼ ½y� ðDm þ Bm�1Þ�þ

represents the amount of the current order y, that outdates in m periods.

The goal of the analysis is to compute the expected value of Rm and incorporate

this into the one period model.

DefineGnðt; wn�1Þ ¼ PfDn þ Bn�1 � tÞ where wi ¼ ðxi; xi�1; . . . ; x1Þ:Note that
wm�1 ¼ x.

We present the first result without proof, which is based on a standard induction

argument. Details can be found in Nahmias (1972).

Theorem 1.1. Gnðt; wn�1Þ ¼
Ðt
0

Gn�1ðvþ xn�1; wn�2Þf ðt� vÞdv.
Theorem 1.2. EðRmÞ ¼

Ðy
0

Gmðt; xÞdt
Proof. It is well known that for any nonnegative random variable, X, the expecta-
tion may be computed two ways:

EðXÞ ¼
ð1

0

xf ðxÞdx ¼
ð1

0

½1� FðxÞ�dx:

1.3 Periodic Review Preliminaries 5



We have PfRm � tg ¼ Pfy� ðDm þ Bm�1Þ � tg ¼ 1� Gmðy� t; xÞ for t � 0

Since Rm is a nonnegative random variable, the result follows from the second

representation of the expected value above (after a change of variable). ☐

1.4 A One Period Newsvendor Perishable Inventory Model

Most readers should be familiar with the classic newsvendor model. A newsvendor

must decide at the beginning of each day how many newspapers to purchase. Daily

demand is not known, but is assumed to follow a known probability distribution.

Let y be the number of newspapers purchased and D the demand. There are two

penalties: overage (ordering too much) and underage (ordering too little).

Now, let us consider the perishable inventory model. The penalty for ordering

too much is the future penalty of outdating, at y per unit, and the penalty for

ordering too little is penalty cost for excess demand, at p per unit. Hence, a sensible
expected one period cost function for the perishable inventory problem is:

Lðx; yÞ ¼ p

ð1

xþy

½t� ðxþ yÞ� f ðtÞdtþ y
ðy

0

Gmðt; xÞdt:

It is easy to show that Lðx; yÞ is convex in y (and is strictly convex as long

f ðtÞ> 0 for all t> 0: Hence, the optimal order quantity, y, for this simple model

satisfies:

@Lðx; yÞ
@y

¼ �pð1� Fðxþ yÞÞ þ yGmðy; xÞ ¼ 0:

The optimal one period solution, say y�ðxÞ; is a nonlinear function of the entire

state vector, x. In this case, y�ðxÞ> 0 for all positive real vectors x. In addition, as

we see in the analysis of the dynamic problem, y�ðxÞ is decreasing in each

component of the state vector, x, but at less than unit rate.

Somewhat sharper results can be obtained when we add holding and marginal

order costs.

Theorem 1.3. Suppose that in addition to penalty and outdate costs, we also

include marginal order cost at c per unit ordered, and a unit holding cost, h, charged
against each unit on hand at the end of the period. Then, the optimal solution has

the following form: If x< �x order y�ðxÞ solving

cþ hFðxþ yÞ þ pð1� Fðxþ yÞÞ þ yGmðy; xÞ ¼ 0

where �x solves

cþ hFð�xÞ � pð1� Fð�xÞÞ ¼ 0:

If x � �x, no order is placed.

6 1 Preliminaries



Proof. The expected one period cost function is now:

Lðx;yÞ¼ cyþh�
ðxþy

0

ðxþ y� tÞ f ðtÞdtþp

ð1

xþy

ðt�ðxþ yÞÞ f ðtÞdtþy
ðy

0

Gmðt; xÞdt:

Convexity in y is easy to show so that the minimizing value of y occurs, where the
partial derivative of Lðx; yÞ vanishes. The partial derivative is given by:

@L x; yð Þ
@y

¼ cþ hFðxþ yÞ � pð1� Fðxþ yÞÞ þ yGmðy; xÞ

thus giving the definition of the optimal ordering quantity. Notice that

If x< �x; @L x; yð Þ
@y

���
y¼0

< 0 and if x � �x; @L x; yð Þ
@y

���
y¼0

� 0, thus establishing that y�ðxÞ is

positive in the region x< �x and zero in the region x � �x. ☐

In the next chapter, we extend this approach to a multiperiod dynamic model.

1.4 A One Period Newsvendor Perishable Inventory Model 7



Chapter 2

The Basic Multiperiod Dynamic Model

Content

2.1 The Functional Equations for the General Dynamic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 1 outlined an approach for constructing a single-period newsvendor-type

model that explicitly accounts for future outdating of the current order. In this

chapter, we present the extension of this one-period model to a finite horizon

dynamic model. We present only the general m-period lifetime case, but the reader

may be interested in reviewing the simpler case for m ¼ 2, as this requires only a

single-dimensional state variable.

The problem dynamics are described by the one-period transfer function. Given

the current state of the system, x, the quantity of fresh product ordered, y, and the

realization of demand t, the transfer function, s(y, x, t), gives the vector of starting
inventories of the next period. The logic behind the transfer function dynamics is

very similar to the logic required to derive the expected outdating functionÐy
0

Gmðt; xÞdt. The one-period transfer function is:

siðy; x; tÞ ¼ ½xiþ1 � ðt�
Xi

j¼1

xjÞþ�þ

and

sm�1ðy; x; tÞ ¼
y� ðt� xÞþ if excess demand is backordered,

½y� ðt� xÞþ�þ if excess demand is lost:

(

Note the similarity of the form of the transfer function to the definition of the

sequence of random variables B0;B1; :::; defined in the previous chapter. This is,

of course, not coincidental. In fact, both are just two different ways of showing the

system dynamics. This is shown precisely in the following result which is central

to the analysis of the dynamic problem.

S. Nahmias, Perishable Inventory Systems, International Series in Operations

Research & Management Science 160, DOI 10.1007/978-1-4419-7999-5_2,
# Springer Science+Business Media, LLC 2011
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Theorem 2.1. Gnðy;wn�1Þ ¼
Ð1
0

Gn�1½sðy;wn�1; tÞf ðtÞdt:
Proof. The proof is somewhat tedious, but conceptually straightforward. Note that

by defining G0ðtÞ ¼ 1 for all t, the theorem easily holds for n ¼ 1. One proceeds by

induction, assuming that the theorem is true for n � 1 and showing that this leads to

the theorem for n. Again, the details appear in Nahmias (1972).

2.1 The Functional Equations for the General

Dynamic Problem

Following the usual approach for dynamic programming analysis, define CnðxÞ as
the minimum expected discounted cost when n periods remain. Then CnðxÞ satisfies
the following system of functional equations:

CnðxÞ ¼ min
y�0

Lðx; yÞ þ a
ð1

0

Cn�1ðsðy; x; tÞf ðtÞdt
8<
:

9=
;;

which we write as

CnðxÞ ¼ min
y�0

fBnðx; yÞg:

In order to establish the existence and to define the properties of an optimal

policy, the key result we need to establish is the convexity of Bnðx; yÞ in y for every
set of starting inventories x. In addition, the main theorem describes several

important properties of the optimal order function, ynðxÞ, when n periods remain

in planning horizon. The main theorem requires 17 steps and is proven via a

complex induction argument.

We will not present the proof of the main theorem here, but the interested reader

can refer to Nahmias (1974) for an outline of the proof or Nahmias (1972) for a

detailed exposition.

It is interesting to note that the traditional approach to proving convexity of

Bnðx; yÞ for the standard nonperishable problem breaks down in this case. Typi-

cally, one shows that CnðxÞ is convex in x, that convexity is preserved via the

transfer function, and sums of convex functions are convex, thus easily giving

the required convexity of Bnðx; yÞ in the decision variable, y.
Unfortunately, this straightforward approach does not work for the perish-

able inventory problem. Consider the case of m ¼ 2. Here, the decision variable

has only a single dimension. A necessary and sufficient conditions for CnðxÞ to
be convex are that Cn

00ðxÞ � 0 for all x � 0. We can demonstrate that, in fact,

10 2 The Basic Multiperiod Dynamic Model



C1
00ðxÞ< 0 for some value of x. As is shown in Nahmias and Pierskalla

(1973) (and Nahmias 1972),

C1
0ðxÞ ¼ �yFðxÞFðy1ðxÞÞ

giving

C1
00ðxÞ ¼ �yFðy1ðxÞÞf ðxÞ � f ðy1ðxÞÞFðxÞy10ðxÞ;

where y1ðxÞ is the optimal order quantity when x is the (one period old) on-hand

inventory, and one planning period remains in the horizon. Note that the sign of

C1
00ðxÞ is not obvious, since y1

0ðxÞ< 0. Consider, however, the following special

case. Let us assume that the periodic demand follows the negative exponential

distribution with parameter l. That is f ðxÞ ¼ le�lx and FðxÞ ¼ 1� e�lt. Since

y1ð0Þ> 0 and the function y1ðxÞ is continuous, there must exist at least one value

of x, say ~x> 0, such that y1ð~xÞ> ~x. Because the exponential density is monotonically

decreasing in the region x � 0 and the cumulative distribution function

for the exponential is monotonically increasing in this same region, we have

that Fðy1ð~xÞÞ >Fð~xÞ and f ðy1ð~xÞÞ< f ð~xÞ. In addition, it has been shown that y1
0 �

ð~xÞ � �1: Combining these results gives C1
00ð~xÞ< 0. Hence, we conclude that

C1ðxÞ is not convex in x. However, it turns out that the degree of nonconvexity

(as measured by a lower bound on C1
00ðxÞ) is not very great, and we can show that

B2ðx; yÞ ¼ Lðx; yÞ þ a
Ð1
0

C1ðsðy; x; tÞf ðtÞdt is convex in y. That is, the nonconvexity
of C1ðxÞ is more than compensated for by the convexity of Lðx; yÞ. For the general
m-period problem, it is the convexity of Bnðx, y) in y that allows us to establish the

existence and basic properties of the optimal order function, ynðxÞ.
We will assume the following notational convention. For any vector valued

function, g(x), gðiÞðxÞ is the first partial derivative of g with respect to the ith
variable, and gði; jÞðxÞ is the second partial derivative with respect to the ith and

jth variables, respectively.

In the general m-period lifetime problem, the key result that allows us to prove

convexity of Bn(x, y) is Cn
ð1;1ÞðxÞ � �yGm�1

ð1ÞðxÞ (where the differentiation is

done with respect to the first variable in the vector x, which is xm�1). Establishing

the validity of this lower bound via induction is extremely complex, requiring a

network of inequalities on the first and second partial derivatives of the optimal

return functions, Cn(x). To provide the reader with an appreciation of the complex-

ity of this problem, we provide a complete statement of the theorem required to

prove convexity. As noted, the proof will not be presented here.

Theorem 2.2. Assume that demands in each period form a sequence of indepen-

dent identically distributed random variables (although the theorem also holds for

nonstationary demands) and that:

(a) The demand distribution, F, possesses a bounded continuous density f with the

property that f(t) > 0 if t > 0 and f(t) ¼ 0 if t < 0.

2.1 The Functional Equations for the General Dynamic Problem 11



(b) Future costs are discounted by a discount factor a, where 0 < a < 1. Then:

1. Bnðx; yÞ is convex in y for all x 2 Rm�1 and is strictly convex in a neighbor-

hood of the global minimum.

2. lim
y!0

@Bnðx;yÞ
@y < 0 and lim

y!1
@Bnðx;yÞ

@y > 0 for all x.

3. There is a unique function ynðxÞ given as the solution to
@Bnðx;yÞ

@y

���
y¼ynðxÞ

¼ 0

and 0< ynðxÞ<1. In addition yn
ðiÞðxÞ exists and is continuous for all x;

1 � i � m� 1.

4. CðiÞ
n ðxÞ¼�y

Xi

j¼1

Gm�jðxðm� jÞÞHjðynðxÞ;�xðm� jÞÞþa
Xm�i

j¼1

ðwj

wj�1

fCðiþ1Þ
n�1 ½zjðtÞ�

�C
ð1Þ
n�1½zjðtÞ�g f ðtÞdtþa

Xm�1

j¼m�iþ1

ðwj

wj�1

fCm�jþ1
n�1 ½zjðtÞ��C

ð1Þ
n�1½zjðtÞ�g f ðtÞdt;

where zjðtÞ¼ ðy;xm�1; :::;xjþ1;
Pj
i¼1

xi� t;0; :::0Þ and wj ¼
Xj

i¼1

xi, and C
ðmÞ
n ðxÞ� 0.

The result holds for 1 � i � m�1.

5. � 1 � y
ð1Þ
n ðxÞ � y

ð2Þ
n ðxÞ � � � � � ym�1

n ðxÞ< 0.

6. (a) C
ði;kÞ
n ðxÞ exists and is continuous for all x 2 Rm�1 and 1 � k, i � m� 1.

However, C
ð1;1Þ
n ðt; xðm� 2ÞÞ will be discontinuous at t ¼ 0 whenever

f(t) is discontinuous at t ¼ 0.

(b) Ci
n½�xðm� iÞ; 0� � Ci�1

n ½�xðm� iÞ; 0� ¼ 0 for 2 � i � m� 1. The notation

is meant to be interpreted as the last m�i components being zeros.

7. (a) C
ð1; jÞ
n ðxÞ � �yGð jÞ

m�1ðxÞ 1 � j � m�1:

(b) C
ði; jÞ
n ðxÞ � C

ði�1; jÞ
n ðxÞ � �yGð jþiþ1Þ

m�i ðxðm� iÞÞ½1�
Xi�1

k¼1

Hk ðxm�iþk0 ; . . . ;
xm�iþ1Þ� for m� 1 � j � i � 1:

(c) C
ð1;iÞ
n ðxÞ � C

ð1;i�1Þ
n ðxÞ � y½Gði�1Þ

m�1 ðxÞ � G
ðiÞ
m�1ðxÞ� for m� 1 � i � 2:

(d) ½Cði;jÞ
n ðxÞ�C

ði�1;jÞ
n ðxÞ�� ½Cði;j�1Þ

n ðxÞ�C
ði�1;j�1
n ðxÞ� � y½Gðj�iÞ

m�i ðxðm� iÞÞ

�G
ðj�iþ1Þ
m�i ðxðm� iÞÞ�½1�

Xi�1

k¼1

Hkðxm�iþk; . . . ;xm�iþ1Þ�

form�1� j> i� 2:

8. (a) �y
Xi

j¼1

Gm�jðxðm� jÞÞ½1�
Xj�1

k¼1

Hkðxm�jþk; . . . ;xm�jþ1Þ� �CðiÞ
n ðxÞ� 0

for 1� i�m�1 and for all x:

(b) C
ðiÞ
n ðxÞ � C

ðjÞ
n ðxÞ � y

Xi

k¼jþ1

Gm�kðxðm� kÞÞ

½
Xk�1

q¼k�j

Hqðxm�kþq; . . . ; xm�kþ1Þ� for 1 � j<i � m� 1 and for all x:
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(c) C
ðiÞ
n ðxÞ�C

ðjÞ
n ðxÞ��y

Xi

k¼jþ1

Gm�kðxðm�kÞÞ½1�
Xk�1

q¼1

Hqðxm�kþq; . . . ;xm�kþ1Þ�
for 1� j<i�m�1 and for all x:

(d) C
ðiÞ
n ðxÞ ¼ 0 for x ¼ ðxm�1; 0Þ and xm�1 � 0:

9. (a) lim
xi!1 ynðxÞ ¼ 0 1 � i � m� 1:

(b) lim
xj!1C

ðiÞ
n ðxÞ ¼ 0 1 � i; j � m� 1:

Note that the functions Hk referred to in steps 7 and 8 are used as a convenience

for representing derivatives of the outdating function, Gm. As they add nothing to

the exposition, we will not discuss them further here. Aside from all of the

machinery involving the derivatives of the optimal value functions, what does

the theorem tell us about the behavior of the optimal policy function? The key

piece of information we obtain from the theorem is step 5: � 1 � yn
ð1ÞðxÞ � yn

ð2Þ

ðxÞ � � � � � yn
ðm�1ÞðxÞ< 0. This says two things. First, since all partial derivatives

are negative, the optimal order quantity decreases as starting inventories increase.

More importantly, it characterizes the sensitivity to starting stocks of different ages.

The larger the derivative of yn(x) in absolute value, the greater the sensitivity of the
optimal order function to changes in starting stock. This means that increasing

the on-hand quantity of newer stock has a larger effect on optimal order quantities

than increasing the on-hand quantity of older stock.

This is a fundamental property of perishable inventory systems that separates

such systems from traditional nonperishable systems. One is concerned not only

with the amounts of on-hand inventory, but also their ages as well. Because the

dimension of the state variable is proportional to the lifetime of the stock in

periods, computing an optimal policy is feasible only for relatively short lifetimes.

One quickly faces the “curse of dimensionality” that plagues many dynamic

programming formulations. For product lifetimes much more than two or three

periods, it is unlikely one would use optimal policies. Also, implementation of

optimal policies would be complicated by the fact that one needs to keep track of

the age distribution of stock. Approximations that depend only on the total stock on-

hand are of interest as they are easy to compute and easy to implement. Methods of

finding simple approximations for the periodic review problem will be the subject

of the next chapter.

An interesting question is whether or not these results hold when demand is

discrete rather than continuous, as is assumed in Theorem 2.2. To try to prove

convexity of the functions Bn(x, y) directly under discrete demand would be

extremely tedious, if even possible. To circumvent these difficulties, Nahmias

and Schmidt (1986) considered a very novel approach to the discrete demand

problem. They considered an infinite sequence of continuous demand distributions,

F1, F2,. . ., that converged weakly to the discrete distribution of demand, F. We

know all of the results of Theorem 2.2 hold for each of the continuous distributions

F1, F2,. . .. Without going into the mathematical details, the authors show that the

essential results of Theorem 2.2 carry over in the limit for the discrete case. We do

2.1 The Functional Equations for the General Dynamic Problem 13



not believe that this approach has been used before or since in the context of a

dynamic inventory problem.

It should be noted before closing this section that Fries (1975) also provided

a rigorous analysis of the perishable inventory problem, but did not work with

the outdate function Gm(y, x). Instead, he developed a straightforward dynamic

programming formulation that required m periods before the effects of outdating

appeared in the optimal order function. This approach is equally valid as ours

outlined here, and preferred for computing optimal policies, as the functional

equations are somewhat simpler. As Nahmias (1977a) shows, the two methods

give the same policy if one is sufficiently far from the end of the planning horizon,

and the discount factor is adjusted in a suitable fashion.

14 2 The Basic Multiperiod Dynamic Model



Chapter 3

Extensions of the Basic Multiperiod

Dynamic Model

Contents

3.1 Random Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Inclusion of a Set-Up Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Multiproduct Models of Perishables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

The basic model treated in Chap. 2 is the building block for several extensions.

In many cases, these extensions are suggested by specific applications. Other

extensions provide a wide range of applications of the basic theory.

3.1 Random Lifetime

A natural extension of the basic model is to allow for uncertainty in the product

lifetime. The basic model is applicable for products with a known expiration date,

since the time of outdating is known in advance. However, there are many classes of

items whose useful lifetime cannot be predicted in advance. Fresh produce, meat,

fowl, and fish would fall into this category. Even in blood banking, local blood

banks may receive transfers from other banks that are not completely fresh, making

the remaining lifetime uncertain. Perishable inventory models with uncertainty in

the product lifetime could be used to model some classes of items subject to

obsolescence as well.

Providing an accurate model of lead time uncertainty has long been difficult

problem in inventory management (see Hadley andWhitin (1963), pp. 200–204, for

a discussion of the issues involved.) The main issue is order crossing. That is, are

orders placed on Tuesday allowed to arrive before orders placed on Monday?

If successive lead times are independent random variables, then order crossing is

inevitable. However, if one is placing orders with the same supplier, then order

crossing does not make sense. If we do not allow order crossing, then successive

lead times are dependent random variables, making the analysis very complex.

S. Nahmias, Perishable Inventory Systems, International Series in Operations

Research & Management Science 160, DOI 10.1007/978-1-4419-7999-5_3,
# Springer Science+Business Media, LLC 2011
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The simpler results for (Q,R) models with stochastic lead times (such as the formula

presented in Hadley and Whitin on page 153), are based on simultaneously assum-

ing independence of lead times and no order crossing.

As noted, if lead times are random and orders do not cross, then successive lead

times are dependent random variables. Allowing for dependency is difficult, and is

rare in operations research. A very innovative approach to this problem was

developed by Kaplan (1970). Let A1;A2; . . . be a sequence of IID discrete random

variables defined on the set f1; 2; . . . ; tg where t is the maximum value of the lead

time in any period. In any period, when the event {Ai ¼ k} is realized, all orders k
or more old periods arrive in the next period.

Nahmias (1977c) adapted this approach to the perishable inventory problem.

Here, one assumes that if {Ai ¼ k} is realized, then all on hand inventory remaining

in stock (after satisfying demand) that is at least k periods old at the end of period i
will outdate at that time. The random variables A1;A2; . . . are not realizations of
the lifetimes of successive orders, but the lifetime distribution can be derived

from them.

Suppose that Pk ¼ PfAn ¼ kg independent of n. If the event fAn ¼ kg is

realized, then the one-period transfer function sðy; x; t; kÞ ¼ ðsm�1ðy; x; t; kÞ; . . . ;
s1ðy; x; t; kÞÞ is:
for k ¼ 1:

sjðy; x; t; 1Þ ¼ 0 if 1 � j � m� 2

sm�1ðy; x; t; 1Þ ¼ �ðt� x� yÞþ

and for 2 � k � m:

sjðy; x; t; kÞ ¼
0 if 1 � j � m� k

ðxjþ1 � ðt� wjÞþÞþ if m� k þ 1 � j � m� 1

y� ðt� xÞþ if j ¼ m� 1

8><
>:

where wj ¼
Pj
i¼1

xi; x ¼
Pm�1

i¼1

xi:

The sequence of events in a period is given as follows. First, the current state

is observed, and based on that an order is placed for fresh stock. After the order

arrives, the demand for the current period is realized, which then is satisfied to the

extent possible on an FIFO basis. After demand is either satisfied or backordered

(or lost), the aging process random variable, An is realized, and outdating determined.

To understand themechanics of the transfer function, consider the following example.

Fix the current period at period 10. Suppose that m ¼ 4, and the starting state in

period 10 is x ¼ ð18; 12; 20Þ (i.e., 18 units remain from the order delivered one

period ago, 12 units remain from the order delivered two periods ago, and 20 units

remain from the order delivered three periods ago). Assume that the order quantity

of fresh stock in period 10 is 23 units and the realization of demand is 28 units.

16 3 Extensions of the Basic Multiperiod Dynamic Model



Consider how the system state evolves given all of the possible realizations of the

aging process random variable, A10. By FIFO, all of the 20 units are consumed first,

followed by 8 units of the 12 units of two-period old stock. The vector of on hand

inventories in period 10 after the arrival of fresh stock and the realization of the

demand is (23, 18, 4, 0). If A10 ¼ 4, there is no outdating, since all inventories

of age 4 was depleted by demand, and the starting state in period 11 is (23, 18, 4).

If A10 ¼ 3, then the on hand inventory ordered three periods ago will outdate

(4 units), and the starting state in period 11 is (23, 18, 0). If A10 ¼ 2, then there

will be 18 + 4 ¼ 22 units outdating at the end of period 10, and the starting state in

period 11 is (23, 0, 0), and finally if A10 ¼ 1 is realized all 45 units on hand outdate,

and period 11 starts with zero inventory.

The functional equations defining an optimal policy are similar to those in Chap. 2,

and are now given by:

CnðxÞ ¼ min
y�0

fcyþ Lðxþ yÞ þ y
Xm
k¼1

Pk

ðwm�kþ1

0

ðwm�kþ1 � tÞf ðtÞdt

þ a
Xm
k¼1

Pk

ð1

0

Cn�1 sðy; x; t; kÞf ðtÞdtg:

The optimal policy when n periods remain in the horizon, ynðxÞ, possesses
virtually all of the same properties of the optimal policy discussed in Chap. 2 for

the deterministic problem. The full statement of the appropriate theorem for

analyzing the optimal policy can be found in Nahmias (1977c). Note that these

functional equations charge the outdating cost in the current period rather than

m periods into the future when the current order outdates (similar to Fries 1975).

This was done to make the dynamic problem tractable, for as we see, computing the

expected outdating of the current order is a very complex problem in itself.

If the lifetime of successive orders were independent, it would not be possible to

compute the expected outdating of the current order, since future orders could

outdate before the current order. However, due to our assumption that orders

outdate in the same sequence that they enter stock, we are guaranteed that this

will not occur. Hence, given a current order y and state vector x, it should be

possible to determine the expected outdating of the current order (which could

be 1, 2,. . ., m periods into the future).

To understand the mechanics of the outdating process when the product lifetime

is uncertain, consider another simple example. Let j1; j2; . . . correspond to succes-

sive realizations of the lifetime process, An. Suppose that m ¼ 5; j1 ¼ 4; j2 ¼ 4;
j3 ¼ 2; and the starting state in period 1 is ðx4; x3; x2; x1Þ. The goal is to compute

the expected outdating of the order placed in period 1, y. Based on the realizations

of the aging process, the remaining amounts of x1 and x2 (after satisfying demand in

period 1) outdate at the end of period 1. The remaining amount of x3 on hand at the
end of period 2 after satisfying demand outdates at that time, and the remaining
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amounts of y and x4 outdate at the end of period 3. The expected amount of yþ x4

outdating at the end of period 3 is given by
Ryþx4

0

G3ðu; x3; x1 þ x2Þdu so that the

expected outdating of y only at the end of period 3 is
Ryþx4

0

G3ðu; x3; x1 þ x2Þdu�Rx4
0

G3ðu; x3; x1 þ x2Þdu ¼ Ryþx4

x4

G3ðu; x3; x1 þ x2Þdu. This simple example should

give the reader a glimpse of the complexities in the general calculation.

Define rk ¼
Pk
i¼1

Pi. Then, it can be shown that the expected outdating of the

current order for y units is

Xm
k¼1

rk
Xm
j1¼2

� � �
Xm
jk�1¼k

Yk�1

i¼1

Pji

ðyþvk

vk

Gkðu; vðk � 1ÞÞdu;

where the vector terms vðk � 1Þ are appropriate partial sums of the state vector x

based on the realizations of the aging process, An. This is a very tedious calculation

and it is unlikely that one would resort to trying to find an optimal policy except for

small values of m. However, an explicit representation of the expected outdating of
the current order can be used to construct simple approximations, similar to the

manner that approximations were constructed for the deterministic lifetime

problem.

The essence of the calculation is to find an expression for the unconditional

probability that any new order has a lifetime of exactly k periods for all 1 � k � m.

We call this probability qk. Based on the definition of the aging process, it

follows that

qk ¼
Xm
k¼1

rk
Xm
j1¼2

� � �
Xm
jk�1¼k

Yk�1

i¼1

Pji :

It is not difficult to show that this expression can be simplified to:

qk ¼ rk
Yk�1

i¼1

ð1� riÞ:

The idea is to use an approximate expression for the expected outdating of the

current order, y, and utilize this expression to approximate the expected one-period

cost function as well as the one-period transfer function, much as was done in

Chap. 3 for the fixed life case. Again, one can use either the Nahmias’s bounds or

the Chazan and Gal bounds. Calculations reported in Nahmias (1977c) indicate

that the Chazan and Gal bounds give slightly better results, and appear to improve

as m increases while Nahmias’s bounds degrade as m increases.
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Using the Chazan and Gal bounds, the myopic expected one-period cost function

one obtains is:

WðzÞ ¼ cð1� aÞzþ LðzÞ þ
Xm
k¼1

qkðak�1yþ acÞmkðzÞ:

Since W(z) is quasi-convex in z, the minimizing value occurs where the first

derivative is zero so that z* satisfies:

cð1� aÞ þ L0ðzÞ þ
Xm
k¼1

qkðak�1yþ acÞ Fðz=kÞ þ Fk� ðzÞ
2k

� �
¼ 0:

Comparisons of this approximation with the optimal policy for lifetimes of 2 and

3 periods, and a variety of costs and demand distributions shows close agreement

with the optimal.

3.2 Inclusion of a Set-Up Cost

All of the work reviewed thus far on the periodic review perishable inventory

problem assumes there is no fixed cost (set-up cost) for placing an order. Fixed

order costs can rarely be ignored in practice. In rare occasions, when deliveries are

pre-scheduled on a daily or weekly basis, fixed order costs are sunk costs. However,

it is more common that fixed costs determine the optimal frequency of orders,

and cannot be ignored.

The results of this section are based on Nahmias (1978). Both optimal and

approximate ordering policies are considered. The optimal policy is derived only

for the one-period problem, but it is likely the multiperiod version possesses the

same policy structure. The optimal policy requires calculation of two functions

of the starting state, sðxÞ and yðxÞ with sðxÞ � yðxÞ. These functions determine

the optimal policy as follows: if sðxÞ>0, the optimal policy is to place an order

for yðxÞ, and if sðxÞ � 0, then no order should be placed. As in the case of no

set-up cost, yðxÞ minimizes the expected one-period cost function, Bðx; yÞ. The
function sðxÞ solves Bðx; sðxÞÞ ¼ Bðx; yðxÞÞ þ K, and sðxÞ � yðxÞ. Since Bðx; yÞ is
convex in y, these equations uniquely define sðxÞ. Note that Nahmias is able to

derive only first period results, but given the fact that the structure of the optimal

policy is the same for the first period problem as the multiperiod problem when

there is no set-up cost present, it is reasonable to speculate that this is the case

here as well.

Except for product lifetimes of two or three periods, the optimal policy is too

complex to be practical. Hence, approximations are of particular interest. The

natural form of an approximate policy is ðs; SÞ, since this policy is known to be
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optimal for the nonperishable problem, and is easy to implement in practice.

(An ðs; SÞ policy is one in which an order is placed up to S if and only if the starting
inventory position is less than s.) The approach to constructing an approximation

follows closely the method outlined in Chap. 3 for the case of K ¼ 0. That is, the
expected outdate function is approximated by a function of the total on hand

inventory using either the Nahmias or Chazan and Gal bounds, and this approxima-

tion is then used to construct a surrogate problem whose optimal solution is used to

approximate the original problem. The surrogate problem has only a single dimen-

sional state variable, and is solved by dynamic programing.

Extensive computations reported in Nahmias (1978) indicate that the approxi-

mation generally gives costs within 1% of the optimal, although because of the

difficulty of computing an optimal policy, the comparisons were done for m ¼ 2

only. However, the results would seem to indicate that this is a valid approach for

approximating this problem.

3.3 Multiproduct Models of Perishables

Blood bank applications, in particular, have given rise to several multiproduct

perishable inventory models. The earliest was explored by Nahmias and Pierskalla

(1976). Blood banks store both whole blood and frozen packed red blood cells.

Since frozen red blood cells have a lifetime of a year or longer, one can assume

that the usable lifetime of frozen blood is infinite. Although frozen blood can be

used in place of fresh blood when necessary, one would only want to use the frozen

blood as a last resort. This is because the cost of extracting the red blood cells,

freezing them, and then subsequently thawing them and combining them with

plasma is considerably more expensive than the cost of extracting and storing

fresh blood.

The model developed is a direct extension of the approach applied by Nahmias

(1975a). Assume that at the beginning of each planning period prior to the

realization of demand, orders for both product 1 (the perishable product) and

product 2 (the nonperishable product) must be placed. There is a single demand

source that depletes first from product 1 according to FIFO, and then product 2 until

the demand is either satisfied or backordered. (Note: in the context of blood banking,

it is probably more accurate to assume that excess demand is lost rather

than backordered. This would mean that excess demand is made up by emergency

shipments from other blood banks. The backorder assumption is not crucial to

the analysis.)

Costs are charged separately for holding at h1 for product 1 and h2 for product 2.
Outdating of product 1 is charged at y and there is a penalty cost of p for

unsatisfied demand. Let x, x, and y be defined as earlier for the single product

case. Define x2 as the on hand inventory of product 2 at the start of any period,

and let z be the on hand inventory of product 2 after ordering in any period so that
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the order quantity of product 2 is z � x2. Then, the one-period expected cost

function has the form:

Lðx; y; zÞ ¼ c1yþ h1

ðxþy

0

ðxþ y� tÞf ðtÞdtþ y
ðy

0

Gmðu; xÞduþ c2ðz� x2Þ

þ h2zFðxþ yÞ þ h2

ðxþyþz

xþy

ðxþ yþ z� tÞf ðtÞdtþ p

ð1

xþyþz

ðt� x� y� zÞf ðtÞdt:

Assume the following relationships among the cost parameters:

(i) 0 � h2 � h1

(ii) 0< c1 < c2

(iii) p> ð1� aÞc2
(iv) 0 � ð1� aÞðc2 � c1Þ þ ðh2 � h1Þ < y:

The rationale for these assumptions is given as follows. Assumption (1) says

that the cost of storing the nonperishable product is at least as large as the cost of

storing the perishable product. Assumption (2) says that the cost of acquiring the

nonperishable product exceeds the cost of acquiring the perishable product.

Assumption (3) is common for single product inventory systems. It says that the

unit cost of excess demand exceeds the one-period discounted cost of acquiring new

nonperishable product. This guarantees that it is not more economical to incur

stockouts than purchase new stock – otherwise, there would be no motivation to

operate the system. The expression in the final case corresponds to the cost of

acquiring one unit of product 2 and salvaging it one period later minus the cost of

acquiring one unit of product 1 and salvaging it one period later plus the difference in

the holding costs. If this termwere negative, one would never order product 1. If this

term exceeded the outdate cost, it would never be optimal to order product 2.

The functional equations defining an optimal policy for the multiperiod version

of the problem are

Cnðx; x2Þ ¼ min
y�0; z�x2

Lðx; y; zÞ � c2x
2 þ a

ð1

0

Cn�1ðs1ðx; y; tÞ; s2ðxþ y; z; tÞÞf ðtÞdt
8<
:

9=
;:

In this case, the transfer function is m dimensional. The first m� 1 components,

s1ðx; y; tÞ, are essentially the same as the single product form. The mth component

is s2ðxþ y; z; tÞ ¼ z� ðt� ðxþ yÞÞþ in the backorder case and s2ðxþ y; z; tÞ ¼
½z� ðt� ðxþ yÞÞþ�þ in the lost sales case.

The structure of the optimal policy is shown in Fig. 3.1. When m ¼ 2, the state

vector is two dimensional, so the optimal policy can be represented graphically.
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Note that figure includes two cases: (a) where ac1 � h2 < c1 and (b) where

ac1 � h2 � c1. The structure of the optimal policy is essentially the same in both

cases, but the boundary between Regions II and III differ slightly. Region I

corresponds to ordering both the perishable and nonperishable products. In Region II,

one orders only the perishable product, and in Region III, one does not order.

Note that in Region I, one orders so that the total stock on hand after ordering is u�

where

u� ¼ F�1 p� c2ð1� aÞ
pþ h2

� �
:

What is unusual is that the line xþ x2 ¼ u� lies completely outside of Region I.

Typically, when there are ordering regions in a multiproduct inventory problem,

one orders to the boundary of the region. In Region I, however, one orders to the

Fig. 3.1 The optimal ordering regions for a two-product perishable/nonperishable problem
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interior of Region II. Just the opposite is true in Region II. When ordering only the

perishable product, one orders so that one remains short of the boundary between

Regions II and III. This unusual behavior of the optimal policy is a direct result

of the perishability of product 2. If both products were nonperishable, then the

boundary between Regions I and II would be the line xþ x2 ¼ u�. However, the
perishability adds a penalty to orders of product 2, which has the effect of tightening

the boundary between Regions I and II. In the same way, when one is in Region II,

the additional penalty of perishability results in a decreased order size so that one

does not order to the boundary of Regions II and III. Note that there an apparent

instability in Region II. Since one orders short of the boundary, it implies that

one would want to order again, since after ordering the total stock on hand still lies

within Region II. However, note that this is not exactly the case, since the

state consists of one-period old inventory, and the order quantity consists of

fresh inventory.

Note that Nahmias (1982) shows how the approximation techniques discussed in

Chap. 3 can be applied to this problem. Although these approximations have never

been tested, the success of the approximations in the single product case suggests

that this approximation should be effective as well.

Deuermeyer (1979) considered a multiproduct perishable inventory model also

suggested by a blood banking application. Consider two production processes,

A and B. Process A produces two products (1 and 2) while Process B produces

only product 2. Both products are perishable, and both face independent stochastic

demands. In the blood banking application, product 1 is platelets (a blood compo-

nent) and product 2 is whole blood. Process A separates some of the whole blood

into platelets and packed red cells while Process B just produces whole blood.

Suppose that the lifetime of product 1 is m periods and the lifetime of product 2

is l periods. The state vector consists of the starting stocks of each product at each

age level, represented as ðx;wÞ having dimension ðm� 1Þ þ ðl� 1Þ. The decision
variable is the pair (a, b), which corresponds to the production quantities for

Process A and Process B, respectively. Assume that a units of Type A production

yields �1a of product 1 and �2a of product 2 while b units of Type B produc-

tion yield b units of Product 2.

Deuermeyer develops a one-period model using the expected future outdating of

both products in the one-period cost function as we did in Chap. 2. This makes it

likely that the structure of the optimal one-period policy is the same as the structure

of the optimal multiperiod policy. (Unfortunately, due to the complexity of the

problem, he was able to obtain first period results only.)

The optimal policy structure is pictured in Fig. 3.2 when m ¼ l ¼ 2. The policy

is defined by four regions in the ðx;wÞ space. In Region I, both processes are

used. The graph pictures the increase in the inventories of both products first due

to Process A and then the increase in product 2 inventory due to Process B.

In Region II, one only applies Process A (which increases the inventories of both

products) while in Region III one applies only Process B so that only product 2

inventory is increased. Finally, in Region IV, neither process is applied.
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Deuermeyer (1980) considers a system consisting of n products all of which are

perishable with respective lifetimes of li for 1 � i � n, and assumes that the system

has the substitution property. That is, the order quantity of each product is a

nonincreasing function of the on hand inventories of the other products. Again,

he is able to characterize the optimal policy for a single-period problem only.

Fig. 3.2 Characterization of the optimal policy for the Devermeger two-product model
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Chapter 4

Continuous Review Perishable Inventory Models
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Continuous review means that the state of the inventory system is known at all

times, as opposed to periodic review where the state of the system is known only at

discrete points in time labeled periods. Surprisingly, very little is known about

optimal ordering policies for fixed life perishables under continuous review. The

difficulty is that when an order lead time is present, aging is applied only to the units

on hand, and not to the units on order. Furthermore, since units may be ordered at

any point in time, there is no limit to the number of different orders that comprise

the on-hand inventory at any point in time. Hence, the vector describing the

on-hand inventory of each age level has an unlimited number of dimensions.

One way to circumvent this problem is to assume zero order lead time. We

briefly review the two papers that take this approach. Before doing so, note that we

believe that the simultaneous assumptions of continuous review and zero order lead

time are unrealistic, and it is likely that these models have little practical use. There

is a big difference between assuming zero order lead time in periodic review

systems and in continuous review systems. In the former case, it only means that

the lead time is less than a review period, as orders are assumed to be placed at

the beginning of the planning period, and are assumed to arrive at the end of the

planning period. In the case of continuous review, it means that orders arrive

instantaneously. For that reason, the policies obtained are not likely to be useful

in a practical setting.

It is worth noting that the primary driver of the continuous review heuristic

(Q, R) inventory models that form the basis for most commercial inventory control

systems is uncertainty of demand over the replenishment lead time. Where lead

S. Nahmias, Perishable Inventory Systems, International Series in Operations

Research & Management Science 160, DOI 10.1007/978-1-4419-7999-5_4,
# Springer Science+Business Media, LLC 2011
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times reduced to zero, optimal order quantities would collapse to the simple

EOQ formula and reorder levels would be zero. (See Nahmias (2009), Chap. 5,

for example).

When there is a positive lead time for ordering, the form of an optimal order

policy for perishables under continuous review is not known. Part of the problem is

defining the state of the system. As noted above, the state could be an infinite

dimensional vector of all previous orders placed and their ages. Given the com-

plexity of the continuous review problem, a reasonable starting point is to find the

best policy from a prespecified class of policies.

4.1 One for One (S–1, S) Policies

The only rigorous analysis of a continuous review perishable inventory system with

positive order lead time of which we are aware is Schmidt and Nahmias (1985) (and

an extension by Perry and Posner (1998)). They assumed the so-called (S�1, S)
policy in which the inventory position (stock on hand plus stock on order) is

maintained at a fixed level S. Assume that demands occur one-at-a-time, which

would be the case, for example, if demands were generated by a stationary Poisson

process. For nonperishables, a (S�1, S) policy places an order for one unit at each

occurrence of a demand. With perishability, orders are placed at both the occur-

rence of demands and outdating. (S�1, S) policies are optimal for very high value

items, and are common in military resupply and repair systems. See Nahmias

(1981) for a review of models for repairable item systems. A more comprehensive

and up-to-date discussion of these systems can be found in Muckstadt (2005)). It is

common in both military and civilian applications that equipment goes in for

maintenance either when the equipment fails, or at fixed intervals, whichever

comes first. Since unplanned failures occur at random, these can be modeled as a

stochastic process, and may be labeled the demand process. If an item reaches agem
and has not failed (i.e., been demanded), the system for routine maintenance is

taken out, and thus “outdates.” Hence, the extension of traditional (S�1, S) policies
to the case of fixed life perishable inventories, is potentially a very useful extension

for modeling maintenance systems.

As noted above, what makes the problem difficult is the interaction of perish-

ability and the order lead time. Assume that demands, (i.e., failures), occur one-at-

a-time completely at random according to a stationary Poisson process with rate l.
Costs are charged in the usual way against proportional ordering at c per unit,

holding at h per unit held per unit time, outdating at y per unit, and lost sales at p per
unit of unsatisfied demand. Assume a positive order lead time of t.

Define the multidimensional stochastic process xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; :::; xSðtÞÞ as
the amount of time elapsed since the last S orders were placed. That is, xSðtÞ is the
elapsed time since the last order was placed, xS�1ðtÞ is the elapsed time since the

second to last order was placed, etc. This process is the superposition of the demand

and outdating processes. The approach is to derive the stationary distribution of xðtÞ
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and use that to develop an explicit expression for the expected system cost rate as a

function of S.
Let pðt; x1; x2; :::; xSÞ be the probability density of xðtÞ. Utilizing the partial

differential equations of the process, the authors show that

lim pðt; x1; x2; :::; xSÞ ¼
Ke�lt for x1<t

Ke�lx1 for x1 � t

(

Where

K ¼ e�lttS=S!þ
ðtþm

t
x1

S�1e�lx1=ðS� 1Þ!� �
dx1

� ��1

:

From these results one can derive the steady state distribution of the on-hand

inventory at a random point in time, say ðP0;P1; :::;PSÞ:. The expected cost rate as a
function of S is:

CðSÞ ¼ clþ ðp� cÞlP0 þ h
XS
j¼1

jPj þ ðcþ yÞp;

Where p is the expected outdating rate given by:

p ¼ Ke�lðtþmÞðtþ mÞS�1=ðS� 1Þ!:

Although these equations appear straightforward, computation of the stationary

state probabilities, ðP0;P1; :::;PSÞ is complex, requiring numerical integration.

Although the authors were unable to prove convexity of C(S), numerical tests

suggested that it is at least quasi-convex.

One of the interesting aspects of the problem revealed by numerical tests is the

relationship between S and m. One would expect that S would be an increasing

function of m. That is, as the lifetime of the product increases, the optimal stocking

level would also increase, since the penalty for outdating decreases as m increases.

Consider the following case: Fix t ¼ 1; y ¼ 100; p ¼ 600 and l ¼ 50: The optimal

values of S and the optimal expected cost, C(S) for various values of m observed in

this case are:

m S* C(S*)

0.005 0 30.00

0.007 7 29.98

0.008 25 29.62

0.009 38 29.01

0.01 47 28.30

0.02 72 21.79

(continued)
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m S* C(S*)

0.03 73 17.92

0.04 71 15.49

0.05 70 13.82

0.08 66 10.95

0.10 64 9.86

0.30 62 6.45

0.50 64 5.71

0.80 68 5.45

1.00 68 5.43

As one would expect, the expected cost rate decreases as the product lifetime

increases. However, note the unusual behavior of S* as m increases. The reason that

S* is 0 when the product lifetime is very small is that at this value of m, it is more

economical not to run the system at all, since virtually all new items outdate before

being able to satisfy demand. As m increases, the likelihood that a unit is able to

satisfy demand before outdating increases, and so it becomes economical to hold

positive stock. Because we chose a very high stockout penalty cost, it is desirable to

maintain a larger inventory to decrease the likelihood of stockouts when m has a

moderately low value. The value of S* reaches a maximum in this case when

m ¼ 0.03. As m continues to increase, the likelihood of outdating decreases, so less

stock is needed to maintain the same risk of stocking out. Note that for m ¼ 1, the

lifetime is essentially infinite, and the solution coincides with the optimal value of

S for the nonperishable problem.

Perry and Posner (1998) developed the following extension of this model.

Suppose that customers arriving to the system when it is out of stock are willing

to wait a random amount of time Y for the next arrival of a unit. The rationale for

this extension is that one can keep track of the times of orders, so one can determine

the instance of the next arrival. If this is imminent, it makes sense that a customer

would wait rather than leave the system unsatisfied.

As an example, suppose that H is the CDF of Y. They suggest the following

form for H:

HðyÞ ¼ qþ p1fy�tg

Where 1fy�tg is the indicator function of the event fy � tg. This means that a

customer is willing to wait for t units of time for the next arrival (which must come

within that time) with probability p. Since HðyÞ ¼ q for y � t, Y has mass q at 0 so
that Pf0< Y � tg ¼ p). The authors also consider several other forms of H.

Their analysis is based on computing the joint distribution of the process W
given by

W ¼ fW1ðtÞ;W2ðtÞ; :::;WSðtÞ : t � 0g

where WiðtÞ is time to outdate the ith youngest item if the demand process were

stopped at time t.While this extension is interesting, and could be potentially useful

(continued)
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in some circumstances, the authors do not provide any calculations to compare the

results of their model to those of Schmidt and Nahmias (1985). Until that is done,

there is no way to tell if their extension leads to policies that differ significantly from

those computed assuming customers do not wait when the system is out of stock.

4.2 Continuous Review Models with Zero Lead Time

As noted above, we feel the simultaneous assumptions of continuous review and

zero lead time are unrealistic. Nevertheless, we briefly review the major results in

this area. The first to look at this problem was Weiss (1980). Weiss assumed that

demands are generated by a stationary Poisson process with fixed rate l. His main

result is that, in the case of lost sales, the form of the optimal policy is to either

never order, or to order to a fixed level S when the inventory level drops to zero.

Notice that the issue of perishability never really comes up, as order cycles are

completely independent. One simply waits until the inventory level drops to zero

(whether through demand or outdating) and replenishes to a fixed level (much as

one does in the simple EOQ model).

Weiss’s results were generalized by Liu and Lian (1999). They assumed full

backordering of demand and generalized from a Poisson demand process to a

stationary renewal process. They showed that the form of the optimal policy is

(s, S) with s ��1, and provide explicit formulas for computing the optimal policy

parameters. (A correction of their results appears in Gurler and Ozkaya (2003).)

Gurler and Ozkaya (2008) extended their model to the case where the lifetime of a

batch is a random variable. Note that for all of these models, the form of the optimal

policy (namely that one only orders when the system is backordered), depends

heavily on the assumption that order lead times are zero. It is unlikely that one

would use such a policy in the real world, where order lead times are always

positive. Hence, it would appear that these results do not provide much insight

into the general continuous review perishable inventory problem.

4.3 Optimal (Q, r) Policies with Positive Lead Time

Short of finding optimal policies, a common method in inventory control is to

determine the best policy from a class of policies. This is the approach taken by

Berk and Gurler (2008). It is well known that for many nonperishable continuous

review systems, the optimal policy is a (Q, r) policy. That is, when the inventory

position hits r, an order for size Q is placed. As the form of the optimal policy is not

known, it would seem natural to consider the best (Q, r) policy in the perishable

inventory setting. In this version, the authors assume that r<Q, which means that

there is atmost a single order outstanding. (Futurework considers the generalization to

the case where multiple orders are outstanding.) They also assume throughout that
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demands are generated from a stationary Poisson process, thus allowing them tomake

use of the memoryless property of the exponential interarrival time distribution.

Because items can perish, a slight modification of the standard policy is required.

In nonperishable continuous review systems, one is guaranteed that an order can be

placed at the instant the inventory level (or inventory position when more than one

outstanding order is allowed) hits the reorder point, r. However, if only a single

order is in inventory, the entire order will perish at the same instant, thus dropping

the inventory level immediately to zero. Hence, the policy must be modified to: One

orders Q units whenever the inventory level hits r or zero, whichever comes first.

This modification points out the inadequacy of this policy, however. Consider a

blood bank storing a rare form of blood (AB negative, for example). The lead time

for replenishment is three weeks owing to the difficulty of finding donors with this

blood type. Suppose that there is a substantial amount of AB negative blood on

hand due to outdate in one day. According to this policy, the blood bank would sit

on their current supply until it outdates the next day, dropping their inventory to

zero. During the three week lead time, there would be no AB negative blood

available, precipitating a crisis situation. (Note that this problem does not arise in

the model considered by Schmidt and Nahmias (1985), since all orders are for size

one only, so the on-hand inventory level can only drop by one unit at a time

independent of whether the drop is due to outdating or filling demand.)

Clearly, perishability fundamentally changes the form of the optimal policy. The

blood bank seeing the supply of this rare blood type would soon expire and would

take steps to replenish the inventory far in advance of the outdating. Hence, this

type of (Q, r) policy does not make sense in this context. Before one can consider

effective heuristics for this problem, a better understanding of the nature of the

optimal policy is required.

A modification of the (Q, R) policy which ameliorates this problem to some

extent is considered by Tekin et al. (2001). They suggest a (Q, R, T) policy. The
policy is implemented in the following way: A replenishment order of size Q is

placed whenever the on-hand inventory level drops to r, or when T units of time have

elapsed since the last instance at which the inventory level hit Q, whichever occurs
first. For this policy to make sense, they require the unusual assumption that the

aging of items in a batch begins only after all of the units of the previous batch are

exhausted either by demand or outdating. It seems likely that this would be true only

in rare circumstances.With this assumption, epochs at which the inventory hitsQ are

regeneration points of the system. The analysis can then proceed using renewal

reward processes. Their main finding is that when service levels are high, the value

of r is not increased as much as it would be in an ordinary (Q, r) system. This policy

only makes sense when their assumption about aging is accurate, however.
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4.4 An Alternative Approach

As noted above, the difficulty with trying to characterize the optimal policy for a

continuous review perishable inventory system is properly defining the state vari-

able. If the state is defined in terms of on-hand inventory (as is almost always done

in inventory modeling), then the optimal solution would be a function of an infinite

dimensional state variable. This would correspond to all of the on-hand orders and

their ages. An interesting question is whether or not there is a single dimensional

surrogate variable that might provide reasonable operating policies. We speculate

that there is such a surrogate variable. It is the expected remaining lifetime or

virtual lifetime of the on-hand inventory. That is, given all of the on-hand orders

and their ages, and knowledge of the demand process, what is the expected time that

this inventory will be depleted either by demand or by outdating?

Consider the following two scenarios. Product lifetime is 10 days, and expected

inter-demand time is 1 day. In case one, assume that there are 100 units of 9-day-old

inventory on hand, and in case two, there are 100 units of 1-day-old inventory on

hand. The expected remaining lifetime of the on-hand stock in the first case is

essentially one day, and in the second case it is slightly less than 9 days (since it is

possible for 100 demands to occur before the nine days have elapsed). The expected

remaining lifetime measure is far more useful than just knowing the number of units

on hand, and a policy based on its value should perform reasonably well. The policy

we suggest is the following: Let E(L) be the expected remaining lifetime of the

current on-hand inventory. Place an order for Q units at the first instance that E(L)
drops below a trigger level, r. (This policy assumes only one outstanding order. If

multiple orders are outstanding, the form of the policy would have to be modified to

take into account unit on order as well as on hand.)

A problem with this idea is that computation of the expected remaining lifetime

for an arbitrary stockpile of items appears to be very difficult. An alternative

approach would be to use some type of virtual lifetime measure. This would operate

much like the virtual waiting time in queueing theory. At each arrival of new stock,

the virtual lifetime process would jump upward by an amount related to the size of

the order, the lifetime of the product, and the demand process. One would reorder

when the virtual lifetime crossed a critical threshold. Conceptually, this is similar to

the suggestion above to base the reorder decision on the expected remaining

lifetime in the stockpile, but could be easier to compute and implement.

We are not aware of any work that has explored these ideas, but they could provide

a way of obtaining reasonable control policies for perishables in a continuous review

environment.
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Chapter 5

Approximate Order Policies
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Because optimal policies require the solution of an m – 1 dimensional dynamic

program, finding optimal policies is feasible only for moderately small values of m.
For that reason, approximate policies are of particular interest. The first issue to

be addressed when trying to find approximations is the form of the approximate

policy. When perishability is not present, we know that an optimal policy is a

function of the total inventory on hand. A reasonable starting point is to restrict

attention to policies that are only a function of the total starting stock in any period,

independent of the age distribution of stock. (As we see, this approach has pitfalls

as well.)

5.1 Forms of Approximate Policies

The obvious choice for an approximation based only on total starting inventory is

the simple order-up-to or S policy. That is, if x is the starting inventory in any

period, the optimal order quantity is maxðS� x; 0Þ. However, there are other

choices as well. Nahmias (1975b) compared the performance of three simple

approximations all based on total inventory, x. These are the S-type policy defined

above (called the critical number policy in the reference), the linear policy and

the modified critical number policy. Notice that in addition to the fact that all three

approximations are based on x, they all require determination of a single parameter

value: x� for the critical number policy, b for the linear policy, and w� for the
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modified critical number policy. The latter two policies are suggested by the form

of the optimal policy.

Extensive comparisons of these three policies were done via simulation for a

product lifetime of two periods. The main result was that policies 1 and 2 were

competitive, with no significant cost difference observed at the 5% level of sig-

nificance in most cases tested, and policy 3 performed significantly more poorly

in most cases tested. These results suggest that the S policy should be a good

approximation in most circumstances.We also discuss a fixed order quantity approxi-

mation, suggested by the operation of a blood bank. Fixed order quantity policies

are not cost-efficient, as they do not respond to demand fluctuations (as does

an S policy).

5.2 S Policy Approximations

Having identified the S policy as a suitable form for an approximation, one would

like to be able to find the optimal S policy. Finding optimal S policies was

considered by Van Zyl (1964) for the case of m ¼ 2 and for arbitrary m > 2 by

Cohen (1976).

The basis of the analysis is to show that the state (that is, the vector of inventories

of each age level) under a stationary S policy is a Markov chain. Hence, there exists

a stationary or invariant distribution for the system state. When m ¼ 2, Van Zyl

showed that the stationary distribution of the system state, say G(y), is

GðyÞ ¼ FðyÞ½1� FðS� yÞ�=½1� FðyÞFðS� yÞ�:

Given an explicit form of G, finding the optimal S is straightforward. While this

is a useful result, the reader should keep in mind that when m ¼ 2, the dynamic

program defining an optimal policy only has a single dimensional state variable so

that calculating a true optimal policy in this case is also straightforward. It is more

desirable to use an optimal policy than to use the best S policy, which is known to

be suboptimal.

The real question is whether this method provides easily computable S policies

for larger values of m. Unfortunately, Cohen was not able to obtain explicit

results for the stationary distribution of the starting state when m > 2. He suggests

using successive approximations to find the stationary distribution, but this is

comparable to the difficulty of finding a true optimal solution, so is of questionable

practical value.

Hence, there is value to considering simpler methods for computing approx-

imate S policies. One of the key advantages of our approach of first develop-

ing a meaningful one period model is that this approach is more convenient for

constructing approximations. Nahmias (1976) developed a unique approach for
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finding approximate order policies for the perishable inventory problem that

requires essentially the same computational effort for any value of m. In Chap. 2,

we observed that there are two reasons why a simple critical number order policy

is not optimal: the outdating function,Gmðt; xÞ, and the one period transfer function,
s(y,x,t), are functions of the entire state vector, x, and not simply the total inven-

tory, x. Nahmias’s approach requires finding approximations of both the expected

outdating and the one-period transfer function that depend only on x only through x.
It turns out that either of two sets of bounds for the expected outdating can

be used to construct the approximation. The first, below in Lemma 1, are due

to Nahmias.

Lemma 1.
Ð y
0
Fm� ðtÞdt � Ð y

0
Gmðt; xÞdt �

Ð y
0
Fm� ðtþ xÞ, where Fm�

is the m-fold
convolution of the one period demand distribution.

Proof. In Chap. 2, we have that Gmðt; xÞ ¼ PfDm þ Bm�1 � tg where the random

variables B0;B1; ::: follow the recursion Bj ¼ ðDj þ Bj�1 � xjÞþ for 1 � j� m� 1.

Using the fact that for any function wþ ¼ maxðw; 0Þ � w, it follows that Dmþ
Bm�1¼DmþðDm�1þBm�2� xm�1Þþ �DmþDm�1þBm�2� xm�1 � :::�Pm

i¼1

Di�
Pm�1

i¼1

xi,

which gives the right hand side of the Lemma. The left hand side of the Lemma is

obtained by noting that Fm
� ðtÞ¼Gmðt;0Þ� Gmðt;xÞ for any vector x� 0:

Note that the lower bound is independent of x. Since the expected outdating is an
increasing function of the state vector, the upper bound is likely to be more

accurate. An entirely different approach to bounding the expected outdating was

developed by Chazan and Gal (1977). Like Cohen, they assume that a stationary S
policy is followed in each period so that the system state evolves according to a

Markov chain. Their bounds are based on the following observation. Suppose that

the demand per period is bounded above by S=m (where m is the product lifetime).
Let D be a random variable representing one period demand and m the mean

demand. In this case, the outdating of each period has expectation S=m� m:
Why? Consider the following simple example. Suppose m ¼ 2, S ¼ 10, and

suppose the initial state vector is (5, 5). (Note that here the state vector is of

dimension m since we track both fresh and one period old inventory.) Then by

assumption, demand is bounded above by S/m ¼ 5. It follows that demand depletes

from the oldest inventory first, and the outdating in period 1 is simply 5 – D1.

The order quantity is 5, and the state returns to (5, 5). The expected outdating of

each period is thus 5� EðDÞ. As another example, suppose the starting state is

(10, 0), the demand is fixed at one unit each period. Then, the reader should check

that the outdating in successive periods follows the pattern 0, 8, 0, 8,. . . and the

average outdating per period is 4 ¼ 5� EðDÞ.
When demand is not bounded above by S/m, this argument provides an upper

bound on the expected outdating per period. The lower bound is obtained as

follows: Let �D be the average demand over m periods and �DT the average demand
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over m periods truncated at S=m. That is, �DT ¼ minð �D; S=mÞ. Then, the lower

bound on the expected outdating per period is given by S=m� Eð �DTÞ. A proof of

the validity of the lower bound appears in Chazan and Gal (1977). We do not

present it here, but note that their main result is:

Lemma 2. If one orders to S each period, then the expected outdating per period,

say E(O), is bounded by:

S=m� Eð �DTÞ � EðOÞ � S=m� EðDTÞ:

Chazan and Gal (1977) also develop bounds in the special case where daily

demands follow a Poisson distribution. The Poisson case provides a tighter lower

bound than the one indicated in Lemma 2.

Chazan and Gal do not consider the problem of optimizing the value of S,
the order up to point. However, the methods developed by Nahmias (1976) can

be utilized to find S using either the bounds in Lemma 1 or Lemma 2. Suppose

we use the upper bound in Lemma 1. Then, one replaces the one period outdate

function as follows:

ðy

0

Gmðu; xÞdx �
ðy

0

Fm� ðuþ xÞdu ¼ Hðxþ yÞ � HðxÞ

where HðtÞ ¼ Ðt
0

Fm�ðuÞdu so that the one period expected cost function is now

expressed in the form:

Lðx; zÞ ¼ cðz� xÞ þ LðzÞ þ yHðzÞ � yHðxÞ

and

z ¼ xþ y:

The approximation technique is based on the approach developed by Veinott

(1965). Veinott observed that under reasonably general circumstances, when there

is no fixed order cost, the expected cost function for the standard multiproduct,

multiperiod, dynamic inventory problem can be decomposed into the sum of N
independent one period cost functions, and the optimal solution has the property of

being “myopic.”

Suppose we approximate the one period transfer function, sðy; x; tÞ, with the

simpler form sðz; tÞ. Then, the total discounted n period cost can be represented in

the form
PN
n¼1

an�1EðWðznÞÞ � cx1 � yHðx1Þ, where a is the one period discount

factor. The optimal policy for this modified model is to order up to S each period,

where SminimizesWðzÞ. It was Veinott’s observation that the traditional backward
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dynamic programing approach could be replaced by this much simpler forward

approach under the right circumstances. As the N period model is decomposed into

N one period models, one needs only look forward one period to achieve an optimal

policy. Hence, the term “myopic” describes these policies.

To utilize the myopic approach to constructing approximations, it was indicated

that both the one period expected cost function and the transfer function need to be

approximated by functions of z ¼ x + y, and x. The approximate transfer function

takes the form

sðz; tÞ ¼ z� t� HðzÞ þ Hðz� tÞ

based on the following argument: if the total on-hand inventory in the current

period is z and the demand realization is t, then the total inventory on-hand

one period hence is z – t – the amount of inventory outdating at the end of the

current period. The expected outdating is approximated by the final two terms using

arguments similar to the above.

Utilizing this approximate transfer function and approximate one period cost

function, we obtain the following for the myopic one period expected cost function:

WðzÞ ¼ ð1� aÞczþ LðzÞ þ ðyþ acÞHðzÞ � aðyþ cÞ
ðz

0

Hðz� tÞf ðtÞdt:

The ease of optimizing WðzÞ depends of course, on it shape. Nahmias (1976)

showed that when the demand density is a PF2 density (Polya Frequency function of

order 2), that this form ofW(z) is quasi convex in z, and is thus easily minimized by

binary gradient search. (More specifically, he showed thatW0ðzÞ changes sign once
from minus to plus as z increases from 0.) The class of PF2 densities is large,

including the exponential, gamma, normal, truncated normal, and lognormal to

name a few. Computations reported in Nahmias (1976) for a variety of parameter

settings resulted in cost errors of under 1% in most cases tested. Tested cases

included lifetimes of two and three periods and exponential and Erlang-2 demands.

Because of the difficulty of determining an optimal policy, the accuracy of the

approximation for longer lifetimes is difficult to determine.

As indicated earlier, the same approach can be applied to the Chazan and

Gal bounds in Lemma 2. We can express the bounds in Lemma 2. as S/m – a(S)
and S/m – b(S) where

aðSÞ ¼
ðS=m

0

mxf m
� ðmxÞdxþ ðz=kÞð1� Fm� ðSÞÞ

bðSÞ ¼
ðS=m

0

xf ðxÞdxþ ðS=mÞð1� FðS=mÞÞ

5.2 S Policy Approximations 37



Since we have no reason to believe that either the lower or upper bound is more

accurate, a reasonable approximation for the expected outdating based on these

bounds is simply the average of the upper and lower bounds. That means we would

approximate the outdating function as:

OðzÞ ¼ z=m� 0:5ðaðzÞ þ bðzÞÞ

Using this bound, and the same logic described above using Lemma 1 bounds,

we obtain the following form for W(z):

WðzÞ ¼ cð1� aÞ þ LðzÞ þ ðam�1yþ acÞOðzÞ:

As with the other form of W(z) using the Nahmias approximation, the

minimizing value of W(z) is also easy to find. Calculations reported in Nahmias

(1977c) for a more general version of the problem, indicate that the Chazan and Gal

bounds provide more accurate results, especially for larger values of m. This
approach should provide very accurate S policy approximations for ordering

perishables.

S type approximations were also considered by Nandakumar and Morton (1993)

and Cooper (2001). Nandakumar and Morton (1993) applied methods developed by

the second author for approximating the standard lead time lost sales problem to the

perishable inventory problem. Their approach is relatively simple, and considers

bounds on the optimal policy obtained if one considers an infinite lifetime and

if one considers a very short lifetime with high likelihood of perishing. They

compared the performance of their heuristic to those of Nahmias (1976) described

in detail above, and the approximation obtained using Chazan and Gal bounds, also

described above. Their computational results indicated virtually no difference in

performance between the three methods. We speculate that their parameter set was

in too narrow a range to distinguish the methods. Based on this writer’s experience,

we speculate that the method described above using Chazan and Gal’s bounds

would perform best in a more extensive numerical test.

Cooper (2001) considered an extensive analysis of the stochastic process that

generates outdates and was able to obtain a slightly tighter lower bound on outdates

than prior bounds. However, the improvement in expected costs his method resulted

in was very small, and the expressions he obtained were quite complex. In the

opinion of this writer, the benefit was not justified by the additional complexity of

his heuristic.

5.3 Higher Order Approximations

While an S policy based only on total starting stock each period might be adequate

for many applications, it is important to remember that it is suboptimal, and ignores

the age distribution of starting stock. This can cause serious problems in some
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situations. For example, consider the blood bank application. Whole blood has a

legal lifetime of 21 days. Suppose a large supply of 20-day-old blood is available

for a particular blood type, and no other blood of this type is available at the blood

bank. An approximation based only on total stock on hand would indicate that there

are sufficient stocks in the system, and the recommended order quantity would

likely be small. However, on-hand inventories would go to zero one day later due to

outdating. Hence, such approximations must always be viewed in the context of

the application. If there is a substantial lead time for new procurements (as there

would be in the blood bank setting), this could lead to a disastrous situation. One

might want to use an optimal policy in this situation. However, an optimal policy

requires a state variable with 20 dimensions, so is not really feasible. However,

there is a middle ground between an optimal policy and a simple approximation,

such as an S type policy, based only on total stock.

This issue was addressed in Nahmias (1977b). The basic idea is to

approximate an m period lifetime problem with a k period lifetime problem,

where k < m. He suggests collapsing the state vector from ðxm�1; xm�2; :::; x1Þ to
ðxm�1; xm�2; :::; xkþ1;

Pk
i¼1

xiÞ based on the fact that the optimal policy is more sensi-

tive to changes in newer rather than older inventory. He then proceeds to show how

one can construct a dynamic program with dimensionality k as an approximation to

the original problem. For large values of m, other aggregation schemes might make

more sense. For example, in the case of the blood bank, we might define a two

dimensional state variable, ðx1; x2Þ where x1 is the on-hand inventory of age 5 days

or less, and x2 is the on-hand inventory of age 6–20 days. Another alternative,

described in Nahmias (1975b) is to use a multiple critical number policy, where

each critical number would correspond to the on-hand inventory of a particular

age grouping. For example, in the blood bank case, one critical number would

correspond to the inventory of age 5 days or less, and another of age 6 to 20 days.

Still another approach would be to simply change the defined length of a period.

In the blood bank example, if a period were defined as a week instead of a day, the

lifetime would be three periods, and it would be feasible to compute an optimal

policy, as the state variable would have dimension 2.

5.4 Fixed Order Quantity Approximation

Consider a system where a fixed quantity of fresh product is added to the inventory

each period. This approach was suggested by Brodheim et al. (1975) to model the

operation of a blood bank. In the blood banking context, a fixed replenish-

ment policy assumption might be reasonable if the bank has a relatively constant

pool of donors. However, fixed order quantity policies are likely to be inferior to

S policies in terms of cost performance, since they do not respond to demand. Since

an S policy orders exactly the previous period’s demand, it is responsive to highs

and lows in the pattern of demand realizations.
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However, the analysis is significantly simplified under a fixed order quantity

policy. Suppose q units are brought into the system each period. Then, the age

distribution of on-hand inventory is of the form (q, q, q,. . ., r, 0, 0,. . ., 0) where
0 � r � q. Notice that this means that knowing only the total stock on hand

uniquely defines the state vector. If the product lifetime is m periods, and the

total inventory on hand starting any period is i, then every age category will

contain exactly q units up until age category ½i=m�, which will contain exactly

r ¼ i� ½i=m�q units. Interpret ½x� as the largest integer less than or equal to x.
(Note that the original article contained several typos in this part of the

description.)

This means that knowing only the total inventory on hand provides a complete

description of the system state, and the total starting stock forms a Markov chain

of one dimension. This obviates the need to keep track of the age distribution

of stock, and significantly simplifies the analysis. The range of possible values

of state is 0 to qm. Since under reasonable assumptions, the resulting Markov chain

is recurrent, there exists a stationary distribution p ¼ ðp1; p2; :::; pqmÞ satisfying

p P ¼ p , where P is the one step transition matrix for the chain.

Even though the state is only one dimensional, the number of states is likely to

be large for most applications. In the blood banking application, m ¼ 21, and for a

value of q of 100 the resulting chain has 2,100 states. As this is a bit unwieldy,

approximations are considered which provide reasonably tight bounds on the prob-

ability of shortage and the expected daily outdating. The authors do not consider

the problem of optimizing the value of q. While potentially useful in the right

environment, this approach is of limited interest (as noted above) due to the fact that

a fixed order quantity policy does not respond to demand fluctuations. In the blood

banking context, a sudden surge in demand brought on by a catastrophe would

certainly be caused to seek larger supplies of fresh blood.
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Chapter 6

Inventory Depletion Management
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6.1 Preliminaries

The inventory depletion management problem is discussed in this chapter. Items are

stored in a stockpile for the purpose of serving a demand in the field. Items typically

age at different rates in the stockpile and in the field. The stockpile may or may not

be replenished, and there may be different costs to replenish the stockpile and make

emergency replacements in the field. The vast majority of the analysis on this

problem is to determine conditions under which either FIFO (i.e., issuing the oldest

item next) or LIFO (issuing the newest item next) is optimal.

How does this problem relate to the problem of ordering perishable inventory,

which is the primary topic of this monograph? The problems are similar in that they

both deal with optimal management of perishable inventory. But that is where the

similarity ends. In the basic perishable inventory problem, items are assumed to be

of uniform utility to the field irregardless of their ages at issue, as long they have not

expired in inventory. This means that from the inventory management point of

view, it is optimal to issue the items in FIFO order. The classic inventory depletion

problem is static in most cases: most of the research assumes a fixed stockpile of

items with no opportunity for replenishment. There is also no external demand,

other than the “field.” Items are simply issued on a one-at-a-time basis as they die in

the field. For the ordering problem, once items are “issued” (i.e., leave inventory to

satisfy demand) they leave the system. One is not concerned with how long these

items last in the field. In the inventory depletion management problem, the key

driver is the relative rates of aging in the stockpile and in the field.
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Hence there is little, if any, crossover between the two problems. It is clear that

there is a large body of real problems accurately described by the perishable

inventory problem. Many products are stamped with an expiration date. An item

is considered acceptable as long as the expiration date has not been reached, and

useless on or after the expiration date. The inventory depletion problem is much

more specialized, and would appear to have limited applicability in the real world.

6.2 Deterministic Field Life Functions

Irregardless, there is a fairly large body of research on the depletion problem.

The first published work on the depletion problem was Greenwood (1955).

Greenwood’s interest in the problem clearly arose from military applications. As

he notes in his introduction, the prevailing thinking of the time was that FIFO was

the preferred issuing order, but that LIFO might be a better choice in many cases.

Greenwood notes that the basic trade-off is that under FIFO, issuing occurs

frequently, but fewer items expire in the stockpile, while under LIFO, one observes

longer field lives, but many items might expire in storage. Greenwood’s basic

observation is that if the field life function is linearly decreasing with slope one,

both LIFO and FIFO are optimal, but if the field life function is convex, LIFO is

optimal and if it is concave FIFO is optimal. He notes that when the field life

function is convex and decreasing, FIFO requires substantially more replenishment

of the stockpile. Formal proofs of these results were not provided.

Derman and Klein (1958) considered a rigorous analysis of a more narrowly

defined problem. Virtually, all of the research that followed is based on Derman and

Klein’s formulation, which is as follows: Assume a fixed stockpile of n items of

varying ages, say ðS1; S2; :::; SnÞ. Items are issued one-at-a-time to the field upon

expiration of the previously issued item. An item issued at age S has a field life of

L(S), where L(S) is a known function (later extensions would consider the case

where field life is a random variable). The objective is to determine the sequence in

which to issue the items so as to maximize the total field life (or total expected field

life) of the stockpile. While Greenwood (1955) considered only simple linear forms

for L(S), he raised some interesting questions that do not appear to have been

considered again in the operations research literature. For example, one can con-

sider a model in which there are relative costs of failure in the stockpile versus

failure in the field. It is likely that failure in the field is far more costly in most

applications. Another aspect of the problem considered by Greenwood is to incor-

porate ongoing replenishment of the stockpile. Greenwood assumed that new items

replenish the stockpile at a steady rate of y units per unit time. An interesting

question would be to consider optimization of y, or to allow for more complex

replenishment mechanisms.

To understand how the problem might arise in the real world, consider the

following. Most portable electronic items, such as digital cameras, mp3 players,

and flashlights use disposable batteries. As batteries fail, they are replaced.
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Batteries age in storage, but much more slowly than while in use. Given a stockpile

of batteries of varying ages, in what order should the batteries be issued to

maximize the total useful lifetime of the stockpile?

As noted above, in the case of the standard perishable inventory ordering

problem, the issue of field life never arises. Items are assumed to age at unit

rate while in storage, but once issued to meet demand, they leave the system.

In the basic perishable inventory model, a new item with remaining lifetime m
has the same utility to the buyer as an item with one unit of time remaining in its

lifetime. To this writer’s knowledge, the only study which considers both ordering

and issuing of perishable items is the unpublished work of Veinott (1960), but as

noted in an earlier chapter, only deterministic demand was considered in this study.

It seems likely that a stochastic model which treats both ordering and issuing would

be very difficult to analyze.

Consider the field life function, which defines the relative rates of aging in the

stockpile and in the field. The simplest assumption is that items age at the same

rate in the field as in the stockpile. This would correspond to a field life function of

the form LðSÞ ¼ m� S, where m is the useful lifetime of a new item. Note that in

this case, we would require that LðSÞ ¼ 0 for S>m: As we see, this is a trivial case
in which all issuing policies are optimal. However, if items age at different rates in

the stockpile and in the field, the field life function will not have unit slope.

Suppose, for example, that items in the stockpile are refrigerated and age at exactly

half the rate of items in the field. In this case, the appropriate field life function is

LðSÞ ¼ 0:5ðm� SÞ, where m should be interpreted as the lifetime of a new item that

remains in the stockpile until it expires. We would expect that many real cases can

be expressed in the form LðSÞ¼bðm� SÞ, where the slope term b indicates the

relative rate of aging of items in the stockpile and the field. In virtually all of the real

world applications, we can envision 0 � b � 1 implying that items age more

quickly in the field than in the stockpile.

One can also envision cases where the field life function is nonlinear. For

example, automobile batteries age relatively slowly when not in use. Suppose a

brand new battery can be expected to last 5 years. A battery which has been stored

for 1 year lasts 4.5 years, and one which has been stored 2 years lasts 4.25 years.

This would give rise to a convex decreasing field life function with the property that

L0ðSÞ>�1. In fact, one can envision field life functions that are nonlinear and

nonmonotonic. Consider a family that consumes wines one bottle at a time from

their cellar. It is well known that many wines improve with age. Suppose that there

is an optimal time, say t� at which a bottle should be decanted. If L(S) measures the

utility of a bottle of wine decanted at age S, the field life function would be concave
with the maximum occurring at t�.

Consider once more the case of a linear field life function with slope�1. This

means that

LðSÞ ¼ m� S for 0 � S � m

LðSÞ ¼ 0 for S � m:
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In this case, all issuing policies yield exactly the same field life for the stockpile.

As a simple example, consider a stockpile of five items, labeled 1, 2, 3, 4, 5 with

initial ages 1, 2, 3, 4, 5. Suppose that each item has a useful lifetime of m ¼ 10. It is

easy to show that in this example, no matter what order one issues the items, the

total field life of the stockpile is 9. If the items are issued in LIFO order, then item 1

is issued first and lasts 9 units of time in the field. By this point, the other four items

in the stockpile have expired, so the total field life of the stockpile is 9. If the items

are issued in FIFO order, then the first item issued (item 5) would have a field life of

5 units, and each of the remaining four items would have a field life of exactly one

unit, thus totaling 9 units again. One can easily check that issuing the items in a

random order also gives a total field life of the stockpile of 9 units.

Hence, when items age at the same rate in the stockpile as in the field, all issuing

policies are optimal. However, we know that FIFO minimizes outdating in the

standard perishable inventory problem. Hence, these two problems have a funda-

mentally different structure, and the results from one do not necessarily carry over

to the other.

Consider another example. Suppose that items age twice as fast in the field as

they do in the stockpile. As noted earlier, the field life function for this case is

LðSÞ ¼ 0:5ðm� SÞ for 0 � S � m

LðSÞ ¼ 0 for S � m:

In this case, the order of issue makes a difference. Again, suppose that the

stockpile consists of five items of ages 1, 2, 3, 4, 5 and assume m ¼ 10. Issuing

the newest first (LIFO) results in the following: Item 1 at age one issued at time

0 has field life of 4.5. Item 2 at that point has age 6.5 (and remaining lifetime 3.5)

and hence has field life of 1.75 and expire at time 6.25. Item 3 is then 9.25 units old

and has field life of 0.375. Items 4 and 5 expire by this point, thus giving a total field

life of 6.625 for LIFO.

Consider now issuing the items according to FIFO. Item 5 issued at time zero has

field life of 2.5. At this point, item 4 has age 6.5 and field life of 1.75. Item 4 expires

at time 4.25. Thus, item 3 has age 7.25 at issue and has field life of 1.375 taking us

to time 5.625. Item 2 has age 7.625 and field life of 1.1875 taking us to time 6.8125,

and finally the remaining field life of item 1 is L(7.8125) ¼ 1.09375, giving a total

field life of the stockpile from FIFO of 7.90625. In this case, FIFO is optimal.

Although increasing field life functions have also been treated in the literature, it

would seem that there are few real world applications of this case. In most contexts,

we think of items deteriorating as they age rather than improving with age.

Greenwood only considered field life functions of the form LðSÞ ¼ kðm� SÞ
for k > 0. If 0 < k < 1, then items age more slowly in the stockpile than in the

field, and if k > 1, then items age more quickly in the stockpile than in the field.

However, Greenwood also assumed that new items are added to the stockpile at a

constant rate of y. He derives several measures of system performance under this

scenario, including average age of items at the time they are sent to the

field, number of items that die in the field per unit time, average age of items in
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the field, average number of items maintained in storage, rate of items dying in

storage per unit time, and average age of stored items. Expressions are derived

for the various measures of system performance as functions of several input

parameter values.

As noted earlier, Derman and Klein defined the problem more narrowly than

Greenwood. This allowed them to develop rigorous proofs of their results for more

general forms of L(S). Their paper was significant in several respects. One was their
problem definition. More importantly, they discovered what would become the

standard approach for analyzing the issuing problem – namely, an induction argu-

ment on n, the number of items in the stockpile. Derman and Klein’s main result is:

Theorem 6.1. If

1. LðSÞis a positive convex function and

2. LIFO is optimal when n ¼ 2,

then LIFO is optimal when n � 3:

Proof. The proof is by induction on n, the number of items in the stockpile. The total

field life of the stockpile may be written in the form QðxÞ ¼ xþ Lðxþ S�Þ, where x
is the total field life from the first n� 1 items and S� is the initial age of the last (n-th)
item issued. Since Q is the sum of a convex function and a linear function, it is also

convex. The objective is to maximize Q. It is well known that the maximum of a

convex function over a convex set occurs at the extreme points of that set. Hence, Q
(x) is maximized at either x ¼ 0 or x ¼ its maximum value. Clearly the first case,

x ¼ 0, is suboptimal – that would mean never issuing the first n – 1 items. But the

induction assumption says that x is maximized by an LIFO policy on the first n – 1

items issued. That said, either the last item issued is the oldest item in the stockpile or

not. If it is not, then it must be younger than the next to the last item issued. But that

contradicts assumption (1) which says that for any two items, LIFO is optimal.

Hence, by switching the order of the last two items, the total field life can be

increased. Hence, LIFO must be optimal for the entire stockpile.

Zehna (1962) points out that one must qualify the assumptions of this theorem.

It is untrue, for example, if L(S) is an increasing function, or is not monotone.

As noted earlier, this is unlikely to occur in the real world, as it implies that items

improve in the field. He also points out that the assumption made by Derman and

Klein that issuing a single item is never optimal may, in fact, not be true in all

circumstances. Zehna provides a proof of the slightly modified theorem that does

not require this assumption. It is:

Theorem. If L(S) is a convex, nonincreasing function and LIFO is optimal for

n ¼ 2, then LIFO is optimal for all n � 2:

In order for this result to be useful, one still needs to determine those convex

functions for which LIFO is optimal when n ¼ 2. Two examples presented by

Derman and Klein are (a) LðSÞ ¼ a=ðbþ SÞ for a> 0; b � 0 and (b) LðSÞ ¼ ce�ks

ðc; k>0Þ. (Note that the first case was misprinted in the original as LðSÞ ¼
ða=bþ SÞ). In both cases, the field life function is monotonically decreasing,

so they do correspond to perishable items. Both functions are also nonlinear.
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In a follow-up note to their original paper, Derman and Klein (1959), show that

no matter what the form of the field life function, the issuing problem can be

formulated and solved as an assignment problem. Since algorithms for the assign-

ment problem are very efficient, this implies that any real problem can easily be

solved if the exact form of the field life function is known. From a practical

standpoint, this obviates much of the need for further theoretical results for the

deterministic problem, although the advantage of their earlier results is that one can

determine optimality of LIFO or FIFO only knowing the shape of the field life

function, and not necessarily having to know its exact form.

The first extension of the Derman and Klein work was due to Lieberman (1958)

who showed that if L0ðSÞ � �1 and LIFO is optimal for n ¼ 2, then LIFO is

optimal for n> 2, and if FIFO is optimal for n ¼ 2, then FIFO is optimal for n> 2.

Zehna also provided several extensions of Derman and Klein’s and Lieberman’s

results. He considers cases where L0ðSÞ<� 1 and shows that LIFO is optimal in

both cases where L is convex or concave. However, this is an unlikely case, as it

implies that items age faster in stockpile than in the field. Zehna was also the first to

consider stochastic field life functions, but obtained few results for this case.

As noted earlier, Derman and Klein’s original work sparked a series of papers.

In the opinion of this writer, most of these are of limited practical interest because

of Derman and Klein’s earlier result that if the form of the field life function is

known, all inventory problems can be solved as assignment problems. One of these

minor extensions was due to Bomberger (1961), who extended Derman and Klein’s

results based on the properties of the inverse function L�1ðSÞ.
Eilon (1961) focused on the problem of whether LIFO or FIFO is optimal for the

case n ¼ 2: This is of interest since most of the earlier work used the Derman and

Klein induction argument, which requires one to assume that LIFO or FIFO is

optimal for n ¼ 2: One interesting idea was that if one expressed the field life

function as a power series expansion, one can find conditions for the optimality of

LIFO or FIFO for two items based on these expansions. In a later work, Eilon

(1963) focused on the problem of providing closed form expressions for the total

field life of a stockpile under several circumstances. He considered cases of

identical items, and nonidentical items. He also considered the case where items

flow into the stockpile at a constant rate. The replenishments could be of identical or

nonidentical items.

Pierskalla (1967a) considered several extensions of earlier work. In particular,

he considered the case where there are multiple demand sources that draw from the

stockpile. He focused attention on the case where the field life function, L(S), is a
continuous nonincreasing function, and considers primarily FIFO issuing for the

demand sources. Unfortunately, because of the complexity of the problem, he is

able to prove the optimality of FIFO only in special cases. He also considers the

addition of penalty costs – namely, there is a penalty cost incurred each time an item

is issued from the stockpile. Again, the analysis focuses on cases where FIFO

issuing is optimal. Finally, he treats S-shaped field life functions. Such functions are

neither convex nor concave, so do not fall into categories previously studied.
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6.3 Stochastic Field Life Functions

An extension to the basic issuing problem is the case where the field life is uncertain.

The problem is easy to state. As in the deterministic case, assume a stockpile

of n items with varying ages. An item of age S issued to the field has a field life

L(S) that is a random variable whose distribution depends on S. When an item

expires, another is issued from the stockpile until it is depleted. The goal is to

maximize the total expected field life of the stockpile. Although easy to state, this

problem is essentially unsolved. The difficulty lies in the fact that when items

are issued one-at-a-time, the age of an item issued to the field depends on the

realizations of the lifetimes of the previous items issued. Hence, successive lifetimes

of items issued to the field are dependent random variables, whose distributions are

very difficult to find. For this reason, researchers have been able to obtain results in

special cases only.

The first to consider stochastic field lives was Zehna (1962). For the general

problem, he was only able to obtain very limited results. He claimed that under the

general assumption that L(S) has an expectation that is a decreasing function of S,
there is very little one can say about the optimality of any issuing policy. He did

note, however, that in the case where EðLðSÞÞ ¼ aþ bS with a; b> 0, FIFO is

optimal. Of course, this case is not very interesting, as one would almost always

expect that EðLðSÞÞ is decreasing in S. He also obtained explicit results for the case
where items are issued on a fixed schedule, rather than upon expiration of the

previously issued item, and also where there are only two items in the stockpile.

Neither case is very interesting from a practical point of view.

The next to consider stochastic field lives was Pierskalla (1967b). He assumes

that there is a family of field life functions of the form LiðSÞ ¼ aiSþ bi, where
ai < 0; and bi > 0 such that LiðS0Þ ¼ 0 for all values of i. That is, each field life

function is a decreasing linear function with the same truncation point. He then

assumes that upon issue an item of age S has field life LiðSÞ with probability pi. This
is, of course, a very restrictive assumption, but it overcomes the difficulties that

Zehna had dealing with truncation points. Pierskalla goes on to show that FIFO is

optimal under such a setting. He extends his results to the case of multiple item

demands on the stockpile.

While Pierskalla’s model allows him to obtain explicit results, it contradicts

the purpose of assuming uncertainty in the field lives. Assuming all items die at the

same age is a very restrictive assumption. One would think that the purpose of

considering uncertainty in this context would be to allow different items to have

different lifetimes when issued at the same age.

An entirely different approach was taken by Nahmias (1974), which was based

on the concept of stochastic ordering. Consider two random variables, X and Y.
Then, X is said to be stochastically smaller than Y (written X � Y) if and only if

FXðtÞ � FYðtÞ for all t � 0, where FXðtÞ and FYðtÞ are the cumulative distribution

functions of the random variables X and Y, respectively. Nahmias defines a new

criterion based this concept.
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Let p(n) be a permutation of the integers {1, 2,. . ., n}. Without the loss

of generality, assume that the n items in the stockpile are arranged such

that 0< S1 < S2 < ::: < Sn, and let pLðnÞ ¼ f1; 2; 3; :::; ng and pFðnÞ ¼ fn; n� 1;
n� 2; :::; 1g so that these represent LIFO and FIFO issuing policies, respectively.

Furthermore, let ZðpðnÞÞ be the field life of the stockpile when issued in the order p
(n). He assumes that ZðpðnÞÞ is a random variable with an arbitrary distribution. We

say that an issuing policy p�ðnÞ is strongly optimal if ZðpðnÞÞ � Zðp�ðnÞÞ for

all issuing policies p(n). Nahmias shows that if either FIFO or LIFO is strongly

optimal for n ¼ 2, then under fairly general assumptions, it will be strongly optimal

for n > 2. The proof follows the logic of Derman and Klein’s original proof.

He then considers two specific cases. Let X be a nonnegative random variable

whose range is restricted to the interval ð0; S0Þ. Suppose that XðSÞ is the field life of
an item issued at age S. Then, define XðSÞ ¼ max½X � hðSÞ; 0�, where h(S) is a

known function defining the rate of deterioration. In this scenario, the realization of

a single random variable determines the lifetimes of all of the items in the stockpile.

He considers two versions of this scenario, and is able to show that when h(S) ¼ S
(i.e., items age at the same rate in the field as in the stockpile) then both LIFO and

FIFO are strongly optimal. In a modification of this model to guarantee items do not

die in the stockpile, he shows that only FIFO is strongly optimal. Other forms of

h(S) are not considered.
While Nahmias’s approach skirts some of the problems with models of Zehna

and Pierskalla, it does bring up a host of other issues. Are there common cases

where either LIFO or FIFO are strongly optimal for n ¼ 2? And what results

can one obtain for more general forms of h(S) in the simpler case, where the

lifetimes of all of the items in the stockpile are determined by the realization of a

single random variable?

Albright (1976) approaches the problem differently. As noted above, the

difficulty with this problem is that if items are issued one-at-a-time upon the

death of the previously issued item, successive field lives are dependent random

variables. Albright avoids this problem by assuming that items are issued at

random times independent of the realizations of successive field lives. This is

essentially a different problem. Perhaps this would be appropriate if the stockpile

were to serve a large number of distinct customers. In this case, the failure process

is the superposition of a large number of failure processes, and might look like an

independent renewal process. For this case (which he calls the independent case),

he is able to obtain interesting results assuming increasing failure rate (IFR)

distributions, and a deterministic mechanism that measures aging in storage

relative to aging in the field. He does consider the dependent case, but was able

to obtain results here only for n ¼ 2 items.
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Chapter 7

Deterministic Models
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7.1 The Basic EOQ Model with Perishability

As we have seen, managing perishables when demand is uncertain is a challenging

problem. When demand is known, one can always find an ordering rule that

guarantees no outdating. Hence, at first glance, it would appear that the deterministic

demand case is trivial. However, this is not the true when demand is nonstationary.

Consider first the stationary demand case (namely, the basic EOQmodel). In this

case, incorporating perishability is straightforward. We follow the notation from

Nahmias (2009). It is well known that in the EOQ setting, the optimal number of

units to order each cycle is given by the formula

Q� ¼
ffiffiffiffiffiffiffiffiffi
2Kl
h

r
;

where K is the fixed order cost, h is the holding cost measured on a unit per unit time

basis, and l is the fixed rate of consumption also in units per unit time. The cycle

time, T, is the time between placement of orders, given by

T ¼ Q�=l ¼
ffiffiffiffiffiffi
2K

lh

r
:

Themodel is based on the assumption that goods are durable (i.e., have an infinite

lifetime). Now, let us suppose that new orders have a lifetime of m units of time.

If T � m, there is no modification of the policy required. All units are consumed by

demand prior to outdating. Consider the case T>m. Here, all units on hand at time

S. Nahmias, Perishable Inventory Systems, International Series in Operations

Research & Management Science 160, DOI 10.1007/978-1-4419-7999-5_7,
# Springer Science+Business Media, LLC 2011
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m (which will be Q� � lm) expire, and one must immediately reorder to avoid

shortages. It is obvious that in this situation, reducing the order size from Q� to lm
eliminates outdating and reduces the holding cost andmarginal order cost and has no

effect on fixed costs. Hence, the optimal policy is to order minðQ�; lmÞ.
It follows that in the EOQ environment one orders so that outdating never

occurs. It appears safe to assume that this property of an optimal solution carries

over to all deterministic perishable inventory problems. This includes problems

with nonstationary costs, capacity restrictions, etc.

7.2 Dynamic Deterministic Model with Perishability

In what has become a seminal paper, Wagner and Whitin (1958) provided the first

analysis of the economic lot scheduling (ELS) problem. Consider a set of known

requirements over N planning periods, say r ¼ ðr1; r2; :::rNÞ. They assumed station-

ary only fixed order costs and holding costs, and furthermore that these costs are

not changing with time. The key result which allowed them to construct an effi-

cient solution algorithm was that an optimal policy only ordered in periods

where starting inventory was zero. (We refer to this as the zero inventory property.)

This means that if starting inventory at the beginning of the planning horizon

is assumed to be zero, an optimal policy is completely specified by knowing the

periods in which ordering occurs. It also means that every order quantity is the

sum of requirements for some set of future periods (this is known as an exact

requirements policy). Because of this result, the problem can be formulated as a

shortest path through an N node network and solved efficiently either by forward or

backward dynamic programing. Their paper sparked a great deal of interest among

researchers, and led to several generalizations. It has become known as the ELS

problem.

Consider the extension of the Wagner Whitin ELS problem, but assume that the

usable lifetime of the product is m periods. Clearly, it is now optimal to restrict

attention to policies that allow no outdating. Suppose that y ¼ ðy1; y2; :::; yNÞare the
production (or purchase) quantities over the N period planning horizon, and further

suppose that the order quantity yi results in outdating of k units in period i + m.
Then, replacing yi with yi

0 ¼ yi � k must result in costs less than or equal to those

incurred by ordering yi, since (as with the EOQ model) fixed order costs

are unaffected, but both holding costs and marginal order costs as well as outdate

costs, are reduced. Hence, one might think that this implies that the ELS problem

with perishability is uninteresting. This is certainly not the case, however.

The first to consider the extension of the ELS problem to the case of perishable

inventory appears to have been Smith (1975). Smith assumed that the zero inven-

tory property carried over to the perishable case (which is not true). He also seems

to have ignored the property that (in the fixed life case) an optimal policy always

has zero outdating.

50 7 Deterministic Models



Friedman and Hoch (1978) noted that Smith’s algorithm was flawed, since it was

based on incorrect assumptions. They provided the following example to show that

when fixed life perishability is included, the zero inventory property does not

always hold. Consider a problem with a three period planning horizon, and nonsta-

tionary costs. Suppose that requirements in each period are for one unit, set-up costs

are 0.5 each period, holding costs are $1 per unit held each period, and marginal

production (or order) costs are respectively 8, 10, and 12. Furthermore, suppose that

the product lifetime is two periods. The optimal solution to this problem is to order

two units in period 1 and one unit in period 2. The cost of this policy is the

following: $1 for setting up in two periods, $2 for holding since there is one unit

on hand at the end of periods 1 and 2, and marginal production costs of $16 + $10,

for a total cost of $29 over the three period planning horizon. Since this policy never

orders more than two periods of demand, no units outdate. The key point is that this

policy results in placing an order in period 2 when the entering inventory is one unit.

Hence, the zero inventory property is violated. (Notice, that if we removed the

two period lifetime restriction, the optimal policy would call for ordering 3 units in

period 1.)

The stochastic problem is difficult for several reasons. One is that it is neces-

sary to define a multidimensional state variable to keep track of the on hand

inventories of each age level. This is not necessary in the deterministic case,

however. Friedman and Hoch discovered a very clever way to track the age of the

inventory without having to employ a multidimensional state variable. If one

keeps track of both the period in which production (or ordering) occurs for a unit,

and the period in which that unit is used to satisfy demand, then one can easily find

the age of the unit in every period it is stored in the system. In this way, one

can compute the total cost associated with that unit during its lifetime in the

system. This cost matrix (which excludes fixed costs) is the main driver of the

computational algorithm.

They assume on hand inventory of each age level is subject to decay at the end of

each period. That is, if there are I units on hand of age i at the end of a period (after
satisfying demand in that period), then only riI units will be available at the start of
the next period, where 0 � ri � 1. On the surface, this looks like simple exponen-

tial decay. However, because decay constants are age dependent, it is in fact much

more general. As they note, their model includes fixed life perishability as a special

case by defining ri ¼ 1 for 1 � i � m, and ri ¼ 0 for i > m.
The input to the algorithm is the cost matrix having elements, ajt defined

as the holding and marginal production cost of meeting one unit of demand in

period t from production in period j, where 1 � j � t. It follows that

ajt ¼ cj
Qt�j

k¼1

rk

� ��1

þPt�1

i¼j

ht
Qt�j

k¼i�jþ1

rk

 !�1

for j < t. The idea behind the first term

is the following. If a unit is produced in period j and held until period t, it will have

decayed in the intervening periods to
Qt�j

k¼1

rk, which means one will have had to have

produced the inverse of this quantity in period j. By applying the decay factor in
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each of the intervening periods between periods j and t, one determines the holding

cost in those intervening periods, thus accounting for the second term. Based on

this cost matrix, the authors develop a dynamic programing algorithm for solving

the problem. The cost matrix only includes marginal production costs and holding

costs. Fixed production costs are treated separately.

While the authors show that it is not necessarily true that ordering only occurs in

periods in which starting inventory is zero, they did correctly state that all of the

demand in a period is completely satisfied by production in a single prior

(or current) period only. This observation is an important feature of their solution

algorithm.

Friedman and Hoch’s results were extended by Hsu (2000). Hsu defined the

following:

zit ¼ the amount of the demand from period t to be satisfied from production in

period i.
yit ¼ the amount produced in period i and held at the beginning of period t which

excludes the amount zit used to satisfy the demand in period t.
HitðyitÞ ¼ the cost of holding yit units of inventory in period t, which are produced

in period i.
ait ¼ the fraction of yit which is lost during period t.

Hsu’s development is easier to follow, as he clearly defines the state variables.

He generalizes the aging mechanism defined by Friedman and Hoch. Note the

variable ait depends on both the age of the inventory and the period in which aging

occurs. This allows for different rates of aging based not only on the age of the

inventory, but also based on the time of year. For example, one might expect food

products to age more quickly in hot weather than in cool weather. This would be

reflected by larger values of ait in summer months.

Hsu assumes a more general cost structure than Friedman and Hoch. In particu-

lar, both the production and holding cost functions are assumed to be nondecreasing

concave functions. He makes the following assumptions:

For 1 � i � j � t � n:

Assumption 1. ait � ajt
Assumption 2. HitðyÞ � HjtðyÞ for y � 0:

Note that by the way the aging mechanism is defined, the age of an item in period

t that is produced in period i is the difference t – i. It follows that since j � i,
t� j � t� i. Therefore, Assumption 1 says that older items age deteriorate at least

as fast as younger items. Assumption 2 says that as items age, the cost of holding

older items is at least as high as the cost of holding younger items. Part of the

justification for Assumption 2 is that the holding cost term may also include a

disposal cost for perishable items. Note that Hsu’s formulation uses exactly the

same mechanism for tracking the age of items as that developed by Friedman

and Hoch.
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The optimization problem is then stated as

Minimize
Xn
t¼1

½CtðxtÞþ
Xt
i¼1

HitðyitÞ�

subject to: xt � ztt ¼ ytt 1 � t � n

ð1� ai;t�1Þyi;t�1 � zit ¼ yit 1 � i< t � n

Xt
i¼1

zit ¼ dt; 1 � t � n

xt;yit;zit � 0 1 � i � t � n

He assumes that both the order cost functions CtðxtÞ and the holding cost

functions HitðyitÞ are concave nondecreasing functions, generalizing Friedman

and Hoch’s assumptions that these were linear. Hsu shows that the solution of

this generalized version of Friedman and Hoch’s model is equivalent to a minimum

cost network flow problem on a specially constructed network with flow loss.

Hsu shows that for every t, 1 � t � n; there is a unique i, 1 � i � t; such that

z�it ¼ dt. This means that at an optimal solution, every demand is satisfied completely

by production in a single prior period. Note that the production quantity must be

inflated by the decay losses as was noted by Friedman and Hoch. A second structural

result (which we do not quote here) is then used to construct the solution algorithm.

Hsu notes the result obtained by Friedman and Hoch that the zero inventory property

(namely that an optimal solution only produces when starting inventory is zero) does

not necessarily hold when perishability is present. In fact, even when perishability is

not present, nonstationary costs could result in this property failing to hold. The

solution algorithm developed for solving the problem is similar to the one developed

by Friedman and Hoch. However, because Hsu allows for nonlinear costs, the cost

matrix approach of Friedman and Hoch is no longer possible. In summary, Hsu

generalizes Friedman and Hoch’s results in two ways: one is allowing for the decay

variables to depend on both the age of the inventory and the planning period, and the

other is allowing for more general holding and ordering cost functions.

An extension of these results to allow for backorders is considered in Hsu

(2003). In this paper, Hsu essentially combines the results for Hsu (2000) and

Hsu and Lowe (2001), which did not deal with perishables, but considered the ELS

problem with backorders and age-dependent backorder costs. The idea is to allow

for backorder costs to depend on both the period in which the backorder occurs and

the period in which an item is produced to meet that backorder. We do not review

these papers in detail, but note that the earlier Hsu and Lowe paper built a solution

algorithm based on properties similar to those discovered by Hsu (2000) when

generalizing Friedman and Hoch’s model.

An extension of Hsu (2000) was considered by Chu et al. (2005). The model is

identical to Hsu (2000), except that the order cost function, Ctð�Þ is generalized to

the so-called economies of scale function.

7.2 Dynamic Deterministic Model with Perishability 53



A cost function, FðXÞ, defined on ½0;1� is called an economies of scale
function if:

1. Fð0Þ ¼ 0:
2. FðXÞ is nondecreasing on ½0;1�.
3. The average cost function defined as �FðXÞ ¼ FðXÞ=X for X>0, is a

nonincreasing function on ð0;1Þ.
The idea behind the economies of scale function is that it includes many types of

discount schedules not captured by the simpler concave nonincreasing function

assumed in Hsu (2000). Because there is no requirement that the economies of scale

function be continuous or have continuous derivatives, it includes incremental, all

units, and carload discount schedules. Except for that, the assumptions and structure

of the model are the same as Hsu (2000). The problem is that the important property

of an optimal solution under the simpler cost structure that demand in a period is

completely filled by production in a single prior period no longer holds. Hence, the

algorithm developed in Hsu (2000) no longer holds. It turns out that finding an

optimal solution to this problem is NP hard, so the authors consider approximations.

They suggest an approximation which has properties similar to the optimal

solution structure in Hsu (2000). Their main result is that this approximation results

in a cost that is no higher than ð4 ffiffiffi
2

p þ 5Þ=7 (1.5224) times the optimal solution,

and this bound is tight. Unfortunately, this means the cost error can be more than

50%, making the value of this approximation questionable. Note that even though

the general problem is NP hard, it does not mean that most reasonable sized

problems cannot be solved for an optimal solution by dynamic programing.

54 7 Deterministic Models



Chapter 8

Decaying Inventories
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Decay differs fundamentally from fixed life perishability. Decay means that the

amount of loss due to outdating is a function of the amount of on hand inventory.

The most common case is exponential decay, which means that a fixed fraction of

the inventory is lost each unit of time. Decay has been studied in both continuous

review and periodic review settings.

There is a substantial literature on the decay problem. Raafat (1991) lists 70

references, and a more recent review by Goyal and Giri (2001) has 130 references,

almost all since Raafat’s review. Undoubtedly, the number is in the several

hundreds at the time of this publication. One might think that this implies a large

number of real-world applications. However, this is not the case. Few products age

in this way. Certainly, exponential decay is clearly not appropriate for modeling

fixed life inventories. The aging process in these cases is described by the fixed

life models treated in earlier chapters of this monograph.

One might conjecture that exponential decay would be a reasonable model of

the aging process for fresh produce or other fresh food items. A little reflection

quickly reveals this not to be the case, however. For example, suppose a shipment

of bananas arrives at a grocery store. When placed on the shelves, they are likely to

be either green (unripe) or nearly ripe. At this point, one would expect the loss due

to spoilage to be virtually zero. As the batch ages, the rate of spoilage increases,

until it eventually reaches 100%, as all of the unsold bananas become overripe.

Exponential decay would posit that some fixed percentage, say 10%, of the bananas

would spoil each period.

One might argue that if the bananas are replenished on a daily basis, there would

always be a mix of old and new bananas in stock, and therefore assuming some

S. Nahmias, Perishable Inventory Systems, International Series in Operations

Research & Management Science 160, DOI 10.1007/978-1-4419-7999-5_8,
# Springer Science+Business Media, LLC 2011

55



fixed fraction spoils each period would be reasonable. However, the fraction of the

on hand stock spoiling each period would not be fixed. It varies depending on many

factors, including the realization of demand, the age of the bananas when they

arrive in stock, the manner in which the bananas are stored, etc.

Volatile liquids, such as alcohol and gasoline, have been suggested as examples

of exponential decay. However, these products are virtually always stored in

sealed containers, thus making the volatility a nonissue. One might then ask what

real situations are accurately described by exponential decay. Radioactive decay is

perhaps the one case accurately modeled in this way. Even in this case, it is only

the level of radioactivity that is subject to decay, not the quantity of inventory

on hand. The interesting application study of Emmons (1968) is perhaps one of the

few examples of true exponential decay. Why then, one might ask, is there such

a voluminous literature on decaying inventory models? This writer speculates that

the reason is that these problems are mathematically tractable, thus affording

opportunities for publication. While many of these papers are mathematically

interesting, their real-world applicability is suspect at best.

One might justify studying decaying inventories because they provide a reason-

able approximation to fixed life inventories. However, this does not appear to be

true. Tests which have compared various approximation schemes for ordering fixed

life inventories show that exponential decay does not provide a very accurate

approximation (Nahmias 1975b). Why, then, is there a chapter devoted to this

topic here? Decaying inventories are of theoretical interest, even if they are of

limited practical value. And, in the opinion of this writer, this monograph would not

be complete if this topic were ignored, especially in light of the very substantial

literature on the problem.

8.1 EOQ Models with Decay

The earliest work on exponential decay in the context of inventory management

seems to be that of Ghare and Schrader (1963). Their approach was to analyze the

differential equations resulting from incorporating continuous exponential decay

into the standard EOQ model. Consider a system in which the loss due to decay is

assumed to be y units per unit time. Then, temporarily ignoring losses due to

demand, the on hand inventory level function, say IðtÞ, declines according to an

exponential function, which can be represented in the form

Iðtþ dtÞ ¼ IðtÞe�ydt:

It follows that the loss due to decay during the interval ðt; tþ dtÞ is

IðtÞ � Iðtþ dtÞ ¼ IðtÞð1� e�ydtÞ:
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Now, suppose that the demand rate at time t is given by the continuous

function DðtÞ: The differential in the decline in the inventory due to both demand

and decay is given by

dI ¼ �IðtÞð1� e�ytÞ � DðtÞ dt:

Using the fact that e�ydt � 1� y dt, one obtains the following differential

equation for the decline in on hand inventory due to both demand and decay:

dIðtÞ
dt

¼ �yIðtÞ � DðtÞ:

One can derive the solution of this differential equation in terms of the integral of

the function DðtÞ: When DðtÞ ¼ l, the model reduces to the standard EOQ with

decay. The analysis leads to a transcendental equation (which has no explicit

algebraic solution). To avoid this problem, the authors suggest in most practical

cases of interest it is likely true that the life period, 1=y, is much larger than the

cycle time, T. In that case, one can approximate the resulting exponential with

the first two terms of the Taylor series expansion. that is eyT � 1þ yT þ y2T2

2

� �
.

Doing so gives the following expression for the cycle time, T:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K

lyc
2

þ lhcþ lhcyT

vuut ;

where c is the unit purchase cost, K the fixed set up cost, and h the unit holding cost.
Note that this is equivalent to a cubic equation in T, which can be seen most easily

by squaring both sides of the equation. Ghare and Schrader suggest an iterative

scheme for finding the optimal cycle time, T�. Given the optimal T, say T�, the

optimal order quantity is Q� ¼ lT� þ lyT�2

2
. We present Ghare and Schrader’s

model in detail because it does appear to be the first inventory study of exponential

decay. The approach is based on several approximations whose accuracy would

have to be verified in any particular application.

Ghare and Schrader’s model was first extended by Covert and Philip (1973).

The analysis and the model were similar to Ghare and Schrader’s, except that

Covert and Philip assumed that the instantaneous deterioration followed a Weibull

distribution rather than an exponential distribution. It is well known that the

Weibull distribution plays an important role in reliability theory. It accurately

describes the aging of many types of electrical components. One can envision

the following scenario where the Covert and Philip model might be applied.
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Consider a collection of items, such as automobile batteries, that are stored and

issued to the field as required. Suppose that the batteries age in storage according to

a Weibull distribution. Assume batteries are ordered in fixed lot sizes only when

the entire stockpile is depleted and delivery of fresh batteries is instantaneous.

(This assumption is easily relaxed by placing the order prior to the end of the cycle

as is done with the simple EOQ model.) The demand rate is a known constant.

Because the shipment of new batteries occurs only when the previous batch has

been used up, either by demand or failure, one never mixes items of different ages.

Hence, the instantaneous rate of decay is the same for the entire batch. Covert and

Philip followed a similar method of analysis to that of Ghare and Schrader. In this

case, one writes the differential decline of the inventory, dI, as

�dI ¼ IðtÞZðtÞ dtþ l dt;

where the instantaneous decay rate of the inventory is given by

ZðtÞ ¼ abtb�1:

(note that the original article had several typos in these expressions). This leads

to the differential equation of the system

dI

dt
þ abtb�1IðtÞ ¼ �l:

It is easy to find the optimal order quantity, Q�, in terms of the cycle time, T. It is

Q� ¼
ðT

0

R expðatbÞ dt:

The difficult part of the analysis is to find an expression for the cycle time, T.
Without presenting all of the details, by using a Taylor series expansion of the

exponential, they obtain the following implicit equation for the cycle time, T:

cl
X1
n¼1

½annbTðnb�1Þ�=½ðnbþ 1Þn!� þ hl expðaTbÞ=2� K=T2 ¼ 0:

The authors suggest a simple gradient search to find the optimal value of T.
Cohen (1977) considered an extension of the basic Ghare and Schrader model to

include price as well as inventory level as a decision variable. Assume that

the demand rate, DðpÞ, is a function of the price p. If one holds the price fixed,

Cohen shows that the cycle time, Tp can be approximated by the simple formula

Tp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K

DðpÞðclþ hÞ
r

where K is the fixed set up cost per order, c is the unit cost per
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item ordered, and h is the holding cost. This expression results from approximating

the exponential with the first two terms of the Taylor Series expansion, as previous

authors have done. Define the profit function,

pðT; pÞ ¼ pDðpÞ � cDðpÞ � K=T � ðclþ hÞDðpÞT=2:

For a given value of p, the profit function is maximized at Tp: Therefore, the
problem reduces finding the solution to

max
p�0

pðTp; pÞ:

Cohen shows that this function achieves its maximum value at p�>c, where p�

could be infinite. One numerical example suggests that the optimal price is rela-

tively insensitive to the decay rate, l. The model is extended to allow for complete

backlogging of excess demand.

8.2 Uncertain Demand

If one assumes fixed lifetime, the memoryless property of the exponential distribution

is lost. However, exponential decay is a memoryless process, thus allowing for

Markovian analysis. One example of a case where Markovian analysis has been

applied is due to Kalpakam and Sapna (1996) who consider a system in which

orders are placed on a one-for-one basis (i.e., an (S�1, S) system). They assume that

lead times are exponential, demands are generated by a renewal process, and the

inventory is subject to exponential decay. While it would seem unlikely that these

assumptions would hold in any real world scenario, the model is interesting in that

it does lead to a tractable analysis of the system.

The authors show that under their particular assumptions, the joint process

ðI; TÞ ¼ fIn; Tn : n ¼ 0; 1; 2; :::g is a Markov Renewal Process, where I is the

inventory level and T is the times of demand epochs. Using the theory of Markov

renewal processes, they obtain expressions of the various system measures in

terms of the steady state distribution of the inventory level. Explicit results are

obtained only in the case, where the demand process is assumed to be a memoryless

(that is, Poisson) process.

There is a large body of literature on decay models with uncertain demand,

but virtually all of these assume zero order lead time or in a few cases, exponential

lead time. Few real scenarios would appear to be accurately described by an

exponential lead time distribution, and the simultaneous assumptions of continuous

demand and zero lead time are even more unrealistic (this was discussed in Chap. 4

in the context of fixed life inventories.)

Periodic review models with zero lead time are useful when lead times are

relatively small. When lead times are assumed to be zero, exponential decay is
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easily incorporated into the standard periodic review models. Consider first the case

where there is no order lead time and excess demand is lost. In this case, it is well

known that the one period transfer function is

sðy; tÞ ¼ ðy� tÞþ

where y is the on hand inventory in the previous period after ordering and t is the
realization of demand in the current period. Interpret sðy; tÞ as the starting stock in

the current period. Recall that xþ ¼ maxðx; 0Þ:
Now, suppose that a fixed fraction of the on hand inventory is lost each period

due to decay. Suppose that y represents the fraction of inventory surviving from

one period to the next (i.e., 1� y is the decay rate). Then, again assuming zero lead

time and lost sales, the one period transfer function now becomes

sðy; tÞ ¼ yðy� tÞþ:

Clearly, the addition of decay in this context has no effect on the form of an

optimal policy (which is well known to be an order up to policy, or S policy). Now,
consider the case of full backlogging of demand. This case is slightly more

complex, since decay can only be applied to the on hand inventory and not to the

backlogged inventory. In this case, we obtain

sðy; tÞ ¼ yðy� tÞ if y � t

t� y if y< t:

(

The optimal policy is still an order up to policy in every period.

If a positive order lead time is present, the problem is much more complex.

The problem is that the decay can only be applied to the inventory on hand and not

to the inventory on order. Hence, one cannot collapse the state vector into the

inventory position (i.e., total stock on hand and on order). The state vector must

include each outstanding order as a separate state variable. (The same issue arises

in the analysis of the lead time, lost sales problem.)

The only study known to this writer that considers decay in the context of

stochastic demand and positive lead times is that of Nahmias and Wang (1979).

The authors’ approach was to modify the well-known heuristic (Q, R) model

developed by Hadley and Whitin (1963) for the no-decay case, and modify it to

account for exponential decay. The resulting heuristic was tested against the

optimal (Q, R) policy found by simulation for a variety of demand variance to

mean ratios and parameter values. The simulated and heuristic (Q, R) values agreed
well in most cases, resulting in a worst case performance for the heuristic of 2.77%

cost error. Note that the heuristic performed better than the simulated policy in

several test cases due to the high variance in the simulated cost making it difficult

to reliably search for the optimal (Q, R) in the simulation.
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Chapter 9

Queues with Impatient Customers

Consider the following queueing scenario: Customers arrive one-at-a-time to a

single server and are served in a first-come–first-served sequence (FIFO). However,

customers are impatient in that if they have not completed service by a fixed time,

say m, they leave the system. There is an obvious analogy with the perishable

inventory problem. Identify the queue with the on hand inventory, completion of

service with occurrences of demand, and the impatience time with the lifetime

of the product. Hence, it is possible that such queueing models could be useful for

describing some types of perishable inventory systems.

However, there are also fundamental differences between the queueing scenario

and the inventory management scenario. For one, in the queueing scenario, one

assumes that arrival rates and service rates are fixed and known. Hence, one does

not reorder units in response to demand. The replenishment process (i.e., the arrival

process) is outside the control of the user. Even if one treats the arrival rate as a

control variable, arrivals still occur according to a random process. Another issue is

what happens when the queue is empty. In queueing, service is suspended when the

queue is empty, but in the inventory context demands continues to occur when

the system is out of stock. For these reasons, this analogy has limited utility in the

context of perishable inventory management.

However, one important real world problem that could be accurately described

by a queuing model is blood banking. Units of fresh blood “arrive” to a blood bank

via donations, which are likely to occur one-at-a-time according to some random

process. One might affect the arrival rate by using Bloodmobiles, advertising,

company-wide donation programs, etc. Since blood banks rarely stock out, the

issue of what happens when the queue is empty is moot.

For the most part, queueing models are descriptive rather than proscriptive. That

is, given a set of parameters and assumptions about the system, the goal of queueing

analysis is to describe various measures of the system. Inventory models are

proscriptive in that a solution involves optimizing the replenishment policy.

There is a very substantial literature on queues with impatient customers.

Because these models only have limited applicability to perishable inventory

management, we only briefly review this literature. The first study of queues with
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impatient customers appears to be that of Barrer (1957). Barrer generalized the

standard M/M/1 queueing analysis to the case of impatient customers. He consid-

ered both the cases, where the customer leaves the system if service has not begun

by time m, and where the customer leaves the system if service is not completed by

time m. The latter assumption would appear to be most appropriate for describing

perishable inventories.

In an M/M/1 queue, arrivals occur according to a simple Poisson process and

service times are independent exponential random variables. The traditional

method of analysis is birth and death analysis, with the state being the number of

customers in the system (i.e., the number in the queue plus the number in service).

Birth and death analysis is based on the fact that the number of customers in the

system is a Markov process. However, a little reflection reveals the fact that the

number of customers in the system is not Markovian when customer impatience is

introduced. To determine if a customer leaves the queue before completing service,

one must keep track of the elapsed time that customer has been in the queue. Hence,

it would appear that Barrer’s analysis, which uses birth and death analysis, is flawed

in principle as was pointed out by Gnedenko and Kovalenko (1968). However,

it does appear that his results were correct.

The proper way to analyze a queueing model with impatience is via the virtual

waiting time process, and a closely related process, that of the oldest unit in the

queue. Gnedenko and Kovalenko analyze the queue with impatient customers in

this fashion assuming multiple servers. In the inventory context, the appropriate

assumption is a single server.

The first to use a queueing model in the context of controlling perishable

inventories appears to be Nahmias (1982). Assume that customers arrive to the

queue at a rate of l and service occurs at a rate m. Customers whose service is not

completed by time m leave the system. Let the traffic intensity be r ¼ l=m, and
define a ¼ mm. Furthermore, assume that there are two costs incurred. When the

system is empty, there is a stockout cost of p per unit per unit time and outdating

costs are incurred at y per unit. Then, Nahmias shows that the expected cost rate as a

function of the traffic intensity is

GðrÞ ¼ ðr� 1Þm
reaðr�1Þ � 1

ðryeaðr�1Þ þ pÞ if r 6¼ 1;

and

GðrÞ ¼ m
aþ 1

ðyþ pÞ if r ¼ 1:

The goal of the analysis is to find the value of the traffic intensity that minimizes

GðrÞ: Note that if demand rate, m, is known, this is equivalent to optimizing the

arrival rate l. Nahmias was unable to prove that GðrÞ is a convex function.

However, numerical tests showed that G0ðrÞ appeared to follow sign pattern

minus/plus, implying a unique solution to the equation G0ðrÞ ¼ 0: The solution is

easily found by numerical methods.
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Graves (1982) was the next to consider the application of queueing models for

controlling perishable inventories. Graves considered a different model from

Nahmias and a different mode of analysis. He assumes that production occurred

at a constant rate of c units per unit time. This would be appropriate, for example,

if one is considering a chemical processing plant with continuous production.

Furthermore, the demand process was assumed to be a compound process. That

is, demand occurrences followed a Poisson process with rate m, and the size of

individual demands follows an exponential distribution with rate g. Inventory is

issued to meet demand on an oldest first basis (FIFO), backorders are not permitted,

and inventory that reaches age m before being consumed by demand is outdated

and leaves the system.

Graves’ approach bypasses the (apparently incorrect) birth and death analysis

used by Barrer, and instead focuses on the process A(t) ¼ age of the oldest unit in

inventory at time t. Interestingly, the process A(t) is Markovian. It is, in a sense, the

dual of the virtual waiting time process (which would be m – A(t)). Although
Graves does not consider optimizing the production rate, he does derive simple

expressions for the expected outdates per unit time, expected shortages per unit

time, the expected age of the oldest unit supplied to satisfy demand, and the

expected inventory level. He also considers a model with unit demands occurring

according to a Poisson process. In this case, only approximate results are obtained,

however.

Kaspi and Perry (1983) is the first in a long series of research papers by the

second author. These papers are studies of queues with impatient customers,

although their titles would indicate otherwise. They are typical of queueing papers

in that they do not treat issues of optimization, but only consider various descriptive

measures of the system under specific assumptions about the arrival and service

processes. The extent to which these models can be applied to perishable inventory

control is unclear. The key result in this paper is that the process of deaths (that is,

outdating) is a delayed renewal process when the input process is a Poisson pro-

cess and services are exponentially distributed. We do not review this stream of

research here.

Several authors have considered variations of the basic queueing model sugges-

tion specifically by blood banking applications. One such study is due to Goh et al.

(1993). They considered a blood banking system with Poisson input and two classes

of age category: new and old. New blood (typically 10 days old or newer) is

reserved for special applications, such as heart transplants and neonatal procedures.

They consider two issuing policies: one where the stock of newer blood is reserved

only for the use of these critical procedures. In the second case, new blood may be

used to satisfy demand if the stock of older blood is zero. The analysis is based on

identifying first and second moments of time between successive outdate epochs.

The expressions are complex functions of the various system parameters. Simpler

approximations are also considered and tested via simulation.

In a more recent study suggested by the same application, Deniz and Scheller-

Wolf (2007) also consider the case, where customers demand items of different

ages. As with Goh et al. (1993) only two age categories are allowed. However, this

study differs from that of Goh et al. in that replenishment policies are considered.
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The authors consider two heuristic ordering policies. They are labeled TIS and

NIS. The TIS policy is what we previously referred to as an order-up-to-policy or

an S policy. The NIS policy is what we previously referred to as fixed order quantity

policy: one orders S units of new stock independent of the inventory position.

A unique aspect of this study is the assumptions made regarding upward and

downward substitution. First, suppose there are given fractions of customers

denoted 0 � pD � 1 and 0 � pU � 1 that are willing to accept downward and

upward substitution, respectively. Downward substitution means that new product

is sold to a customer that requests old stock, and upward substitution is the opposite.

The authors examine the following four scenarios: no substitution, downward

substitution only, upward substitution only, and both downward and upward substi-

tution. What makes this study interesting and unique is the consideration of

four distinct issuing policies. The vast majority of the perishable inventory literature

assumes FIFO issuing; and a few studies assume LIFO issuing. The primary focus of

this research is to determine under what conditions one of these four issuing rules is

preferred given the replenishment policy. In particular, they delineate ten scenarios

involving relationships among the costs and substitution parameters resulting in a

preferred issuing policy.
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Chapter 10

Blood Bank Inventory Control

As noted earlier, many of the models reviewed in this monograph were motivated

by the problem of optimally storing and issuing whole blood. However, actual

blood banking applications have features too complex to include in the mathe-

matical models. In this chapter, we briefly review the significant papers in the

management science literature aimed specifically at blood banking that incorporate

these features.

The earliest theoretical work on perishables appeared in the literature in the 1970s.

Even earlier than that, researchers began to consider blood banking applications.

The field of blood banking is very large, with dedicated journals on the subject

(notably, Transfusion). This chapter treats only mathematical and computer simula-

tion models aimed at improving inventory management of blood banks.

The first quantitative analysis of inventory management of blood banks is due to

Elston and Pickerel (1963, 1965). Their earlier paper considers the distribution

blood usage in the hospital. Let Y be a random variable representing the demand

for blood of a specific type at a hospital blood bank. They show that under

certain assumptions about the frequency of demands for blood, and the size of

each request, the distribution of Y follows a negative binomial distribution with

parameters p and k, where the parameters depend on the blood type, the day of the

week, and possibly other factors. The form of the distribution is

PðyÞ ¼ ðy� k � 1Þ!
y!ðk � 1Þ! pyð1� pÞk; y ¼ 0; 1; 2; :::

They claimed that this distribution also describes input and usage. Note that

the negative binomial distribution is the result of assuming that the number of

patients requiring transfusions is a Poisson random variable, and the size of each

transfusion is a logarithmic random variable. The authors raised several issues here

and in Elston and Pickerel (1970) that were later considered in much more detail by

other researchers. These included a comparison of outdates when using the freshest
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(LIFO) verses the oldest (FIFO) blood as well as simulating the operation of the

blood bank assuming various S type order up to policies.

Jennings (1973) followed up on the work of Elston and Pickerel with a simula-

tion study of S type policies. Jennings noted that there were several special features
of blood banking management not considered in the theoretical models discussed

in this monograph. For one, blood is crossmatched and assigned prior to use.

Consider a physician making a request for four units of blood prior to a surgery.

The correct blood type is removed from the hospital blood bank and tested against

the patient’s blood to make sure that it is a match. Then, the blood is assigned for

the surgery, and is not available for any other use between the time it is assigned

and the surgery occurs. Typically, the surgeon requests more blood than he or she

expects to use. The unused units are then returned to the unassigned inventory,

assuming that they have not outdated.

Jennings notes that dynamic programing models of blood inventory are imprac-

tical, owing to the large dimension of the state variable. (At the time, blood had

a legal lifetime of 21 days, resulting in a 20 dimensional state vector. Today,

it appears that it has been extended under certain circumstances to longer periods,

perhaps as much as 35 days.) Jennings assumed an S-type order policy and analyzed
the problem via Monte Carlo simulation. He assumed that the hospital blood bank

can raise its total inventory of a blood type to a desired level S at the start of each

day. (This ignores real issues of supply uncertainty.) Jennings’ analysis focused on

the trade-off is between shortages and outdates. As the value of S increases,

shortages decline, but outdates increase. He represents both shortages and outdates

as percentages of the annual number of pints transfused. This obviates the problem

of assigning costs to these measures. He constructs a shortage/outdating trade-off

curve, where each point on the curve is generated by a different value of S.
The shortage outdating curve can potentially be a useful tool for managers

seeking the most effective inventory level. He also develops a family of curves for

regional systems consisting two, five, and twenty bank systems. He considers the

cases where the system operates using a common inventory policy (which means,

the regional system operates as if it were a single hospital) versus a threshold transfer

policy, which defines how units are transferred from one hospital to another.

Pegels and Jelmart (1970) present a Markov chain formulation of the blood-

banking problem that, at first blush, appears to provide insight into the problem.

However, Jennings and Kolesar (1973) note that there are several problems with

the approach. For one, Jennings notes that it would be almost impossible to find

the transition probabilities in a real-world setting. Furthermore, Kolesar points

out that their construction is not even a Markov chain (that is, it does not satisfy

the memoryless property required of Markov chains).

Cumming et al. (1976) consider alternatives for collection policies to improve

system wide efficiency. They note that requirements for blood do not appear to be

seasonal, but do exhibit a fair amount of variation over days of the week. Based on

their data, usage rates are highest on Monday, Tuesday, and Wednesday and lowest

on weekends and holidays.
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They considered several models of issuing policies based on age. The random

draw model, for example, assumed that any age of blood was equally likely to be

transfused. Since most hospitals follow FIFO issuing to some extent, this is clearly

not an accurate descriptor of reality. A better model of age at issue that they

discovered is the following. Let

pjt ¼ gð21�jÞp21;t

where pjt is the probability that a unit of blood having a remaining life of j days
is transfused on day t, and g is a constant that specifies the preference for older or
fresher blood. In most cases, one would expect that g< 1, which implies a type

of FIFO policy. Based on actual data, the authors discovered that g was typically in
the range of 1.05–1.10.

Cohen and Pierskalla (1979) follow-up on the work of Jennings (1973). They

treat the trade-off of shortages and outdating in terms of costs rather than as a

percentage of annual demand. They approached the problem in terms of developing

a decision rule that specifies the order-up-to-level S as a function of various key

parameters of the system. Parameter values are optimized via linear regression.

Using this approach, they obtained the following decision rule:

ln S� ¼ 1:7967þ 0:7604 lnðdMÞ þ 0:1216 lnðpÞ � 0:0677 lnðDÞ

which is a result of taking natural logs of both sides of the multiplicative equation

S� ¼ 6:03ðdMÞ0:7604p0:1216D0:0677;

where dM is the mean daily demand for a blood type, p is the average transfusion to
crossmatch ratio (i.e., the proportion of crossmatched blood actually transfused),

andD is the crossmatch release period (i.e., the amount of time that elapses from the

point the blood is ordered until it is ready for transfusion or is returned to the

inventory).

The idea of a multiplicative decision rule has been used before in other inventory

planning models, but Cohen and Pierskalla were the first to apply it in the blood-

banking context.

Several researchers considered improving the efficiency of regional blood

distribution systems via rotation policies among the hospitals in a region. This

approach was first considered by Brodheim and Prastacos (1979a, b). In the second

reference, they formulate the problem as a mathematical program which is executed

parametrically. The algorithm was successful in providing rotation policies in the

Long Island region. The technical details of the algorithm are presented in Prastacos

and Brodheim (1980). Kendall and Lee (1980) also suggest a mathematical

programing model of regional redistribution and illustrate their method with data

from a Midwest regional blood system. Their method does not appear to have been

implemented, however.
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An improvement in the standard crossmatching policy was considered by Dumas

and Rabinowitz (1977). Because crossmatching and assigning blood means that this

blood is effectively removed from the system, and often 50% or more of assigned

blood comes back to the bank, their concept was that efficiencies could be obtained

by double-crossmatching. That is, assigning units of blood to two patients rather

than one, thus increasing the probability that a larger portion of the assigned blood

would be used. To show why significant wastage occurs, they quote the experience

at Mount Sinai hospital in New York City. First, half of the original reservation

requests are cancelled on average. Of those requests not cancelled, on average two

thirds of the assigned units are transfused, and one third returned to the blood bank.

That means that typically only one third of the originally requested units are

actually used. Now, suppose that p is the probability that an assigned unit is

transfused, and suppose the unit is shared by two patients, each having the same

probability of usage. The unit will be used if either or both of the patients require it.

The problem can be modeled with a binomial distribution with n ¼ 2 and p as the

probability of success. The probability of at least one success in two trials is easily

seen to be 2pð1� pÞ þ p2 ¼ pð2� pÞ> p, which means the probability of usage

increases with the double crossmatching. Of course, actually implementing such a

policy has many complications (involving reservation cancellations, valid and

invalid blood type substitutions, using triple rather than double crossmatching,

etc.) We do not go into these details here. It does not appear that anyone has ever

attempted to implement a double crossmatching policy, so its effectiveness has not

been tested in the field.

Pegels et al. (1977) consider a variety of policy changes that could improve

blood banking effectiveness. The four policy alternatives they consider are

1. Utilizing frozen red cells

2. Increasing the legal shelf life of whole blood

3. Rescheduling blood collection operations

4. Improving inventory control

Since they made these suggestions, it appears that the use of frozen red cells

has increased substantially. Also, they suggest that increasing the legal shelf life

from 21 to 28 days. In some circumstances, blood over 30 days old has been used.

In order to evaluate the effect of these policy changes, they used an empirical

database consisting of six months of data from a Midwest blood region that collects

50,000 units annually and seeks to maintain 2,000 units in inventory at all times.

Using this database, they simulated the operation of the system under the various

policy scenarios above. We do not go into their results in detail, but provide only a

brief summary of their findings. For one, they found that increasing the use of

frozen red blood cells smoothed out the fluctuations in inventory, but increased the

operating cost of the system.

A simulation of the system was developed to test the effect of increasing the legal

lifetime from 21 to 28 days. Their results were surprising. They found that the

average age at transfusion increased from 9.53 to 13.50 days (implying the quality of

the transfused blood decreased), but the decrease in units wasted per day improved

only minimally (from 19.4 to 18.9). The percent wastage only declined by 0.2%.
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They also considered smoothing out the collections process. They noted that

the recruitment of donors and actual collections were poorly distributed over time

and over geographic locations. They found that changing the schedule of the

bloodmobile was effective in smoothing out the variations in the inventory levels.

Finally, they considered increasing the FIFO-ness of transfusions. This means

increasing the adherence to using an FIFO issuing policy, and using the older blood

first as often as possible. This issue is not so simple, however. Surgeons insist on the

use of fresher blood for certain critical procedures, such as organ transplants, and

the process of crossmatching and assigning often means that it can be very difficult

to use the oldest blood for a procedure.

Virtually all of the studies discussed which attempt to compare shortages and

outdating for various values of stocking levels employ computer simulation.

As noted, the issue of crossmatching significantly complicates the problem, thus

making mathematical modeling difficult. The only study this writer is aware of that

considers a purely mathematical model for this tradeoff is Jagannathan and Sen

(1991). Suppose that the lifetime of blood is L and the crossmatch release period

is d. (This is the time between the point that the blood is crossmatched and tested for

compatibility and it is released or made available for either transfusion or returned

to inventory.) As a rule, a significantly larger amount of blood is ordered by the

surgeon than is expected to allow for unforeseen contingencies. Thus, the propor-

tion of crossmatched blood that is actually transfused is less than one. Typically,

these ratios vary from 0.27 to 0.67. This is known as the transfusion-crossmatch

ratio, denoted by p. Crossmatched demand is denoted by d, and is assumed to be

normally distributed. One interesting result they obtain is that if the crossmatch

demand d is constant, the mean daily outdating is given by

o ¼ pdð1� pÞn
1� ð1� pÞn

where n ¼ L=d: The authors obtain analytical expressions for several other measures

of system performance, and show by a comparison with simulated results that they

provide accurate estimates of shortages and outdating for various stocking levels.
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Chapter 11

Afterword

The purpose of this monograph has been to provide a reasonably comprehensive

summary of the theory of inventory management of perishables. Admittedly, much

of the focus has been on my own work. However, I have tried to cover the primary

developments in the field as I see them. As the field has grown enormously since

I did the formative work on my doctoral dissertation some 40 years ago, I have

undoubtedly omitted citing some significant references. I apologize in advance for

this. While I expect there to be errors of omission, I hope there are few errors of

commission.

My hope in writing this monograph was to create a springboard for aspiring

researchers. Given the now large body of work on perishables, it is a daunting task

try to familiarize oneself with the literature, which is certainly required before

embarking on a research program. While much work has been done, I believe that

there are substantial opportunities for additional contributions. I look forward to

seeing these contributions in the literature over the coming years.
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Field life function, 42, 43

FIFO (First In First Out), 3

Fixed order quantity approximation, 39–40

Fixed order quantity policies, 34

Functional equations, 10, 17

H

Higher order approximations, 38–39

I

Induction argument, 5, 45

Infinite lifetime, viii

Inventory control, vii

Inventory depletion management, 41

Issuing policies, 43

L

Lead time uncertainty, 15

LIFO (Last In First Out), 3

Linear regression, 67

M

Maintenance systems, 26

Markov chain, 34, 40

Markov renewal process, 59

M/M/1 queue, 62

Multiperiod Dynamic Model, 9–14

Multiproduct Models, 20–24
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Multiproduct perishable inventory, 23

Myopic, 36

N

Negative exponential distribution, 11

Newsvendor model, 6

Nonperishable product, 21

NP hard, 54

O

Obsolescence, viii

One period transfer function, 9

Operations research, vii

Optimal issuing policies, 3

Optimal policy, 10

Order crossing, 15

Ordering and issuing of perishable items, 43

Order lead time, 25

P

Periodic review, 2

Poisson process, 29

Polya Frequency function, 37

Power series expansion, 46

Price, 58

Production-planning problem, 1–2

Q

(Q,R) models, 16

(Q,r) policy, 29
Quasi-convex, 19

Queueing theory, 31

Queues with impatient customers, 61–64

R

Radioactive substances, viii

Random lifetime, 15–19

Regeneration points, 30

S

Shortage/outdating trade-off curve, 66

Stationary distribution, 26, 40

Steady state distribution, 27

Stochastic field life functions, 47–48

Stochastic ordering, 47

S type approximations, 38

V

Vector valued state variable, 3

Virtual waiting time, 31

Virtual waiting time process, 63

W

Weibull distribution, 57

Z

Zero inventory property, 51
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