
Rollout Algorithms for Discrete Optimization:
A Survey

Dimitri P. Bertsekas

Contents

1 Introduction. 2989
2 The Basic Rollout Algorithm for Discrete Optimization. 2993

2.1 Termination and Sequential Consistency. 2996
3 Applications in Discrete Optimization. 3007
4 Further Reading. 3011
Recommended Reading. 3012

Abstract
This chapter discusses rollout algorithms, a sequential approach to optimization
problems, whereby the optimization variables are optimized one after the other.
A rollout algorithm starts from some given heuristic and constructs another
heuristic with better performance than the original. The method is particularly
simple to implement and is often surprisingly effective. This chapter explains the
method and its properties for discrete deterministic optimization problems.

1 Introduction

Rollout is a form of sequential optimization that originated in dynamic program-
ming (DP for short). It may be viewed as a single iteration of the fundamental
method of policy iteration. The starting point is a given policy (called the base
policy), whose performance is evaluated in some way, possibly by simulation. Based
on the evaluation, an improved policy is obtained by one-step lookahead. When
the problem is discrete and deterministic, as will be assumed in this chapter, the

D.P. Bertsekas (�)
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA, USA
e-mail: dimitrib@mit.edu

P.M. Pardalos et al. (eds.), Handbook of Combinatorial Optimization,
DOI 10.1007/978-1-4419-7997-1 8, © Springer Science+Business Media New York 2013

2989

mailto:dimitrib@mit.edu

2990 D.P. Bertsekas

method is very simple to implement: the base policy is just some heuristic, and the
rollout policy consists of repeated application of this heuristic. The rollout policy is
guaranteed to improve the performance of the base policy, often very substantially
in practice. In this chapter, rather than using the dynamic programming formalism,
the method is explained starting from first principles.

Consider the minimization of a function

g.x1; : : : ; xN /

of the discrete variables x1; : : : ; xN , assumed to take values in some finite set. This
can be done (at least conceptually) by minimizing over x1 the result of minimization
of g over the remaining variables x2; : : : ; xN , with x1 held fixed, that is, finding

x�
1 2 arg min

x1

J1.x1/

where the function J1 is defined by

J1.x1/ D min
x2;:::;xN

g.x1; x2; : : : ; xN /:

Leaving aside for the moment the difficulty of calculating J1.x1/, given the optimal
value x�

1 , the optimal value of x2 can be found by the minimization

x�
2 2 arg min

x2

J2.x�
1 ; x2/;

where the function J2 is defined by

J2.x1; x2/ D min
x3;:::;xN

g.x1; x2; x3; : : : ; xN /:

Similarly, for every k D 1; : : : ; n, given the optimal values x�
1 ; : : : ; x�

k�1, the
optimal value of xk can be found by the minimization

x�
k 2 arg min

xk

Jk.x�
1 ; : : : ; x�

k�1; xk/; k D 1; : : : ; N; (1)

where the function Jk is defined by

Jk.x1; : : : ; xk/ D min
xkC1;:::;xN

g.x1; : : : ; xk; xkC1; : : : ; xN /: (2)

This is a calculation that is typical of DP, where the functions Jk are called the
optimal cost-to-go functions, and are defined by the recursion

Jk.x1; : : : ; xk/ D min
xkC1

JkC1.x1; : : : ; xk; xkC1/;

Rollout Algorithms for Discrete Optimization: A Survey 2991

starting from the boundary condition

JN .x1; : : : ; xN / D g.x1; : : : ; xN /:

[The validity of this recursion can be seen from the definition of Jk .]
Unfortunately, there is a serious difficulty with the preceding approach: calcu-

lating numerically and storing the functions Jk in tables is impossible in practice
(except for very special problems; if each of the variables x1; : : : ; xk may take m

distinct values, the storage of Jk requires a table of size mk). In DP this is known as
the curse of dimensionality.

In the rollout approach, Jk is approximated by a function that is more easily
calculated and does not require excessive storage. In particular, for any given
x1; : : : ; xk , an easily implementable heuristic (called base heuristic) is used to
approximate the minimization (2). If Hk.x1; : : : ; xk/ denotes the corresponding
approximately optimal value, the rollout algorithm obtains a suboptimal solution
by replacing Jk with Hk in Eq. (1):

xk 2 arg min
xk

Hk. Qx1; : : : ; Qxk�1; xk/; k D 1; : : : ; N:

These minimizations are carried out in sequence, first obtaining Qx1 2
arg minx1 H1.x1/, then obtaining Qx2 2 arg minx2 H2. Qx1; x2/, and proceeding with
Qx3; : : : ; QxN in that order.

With some analysis and algorithmic refinement, it can be shown that rollout
results in no performance deterioration over just applying the base heuristic once
to the original problem. Most importantly, experimentation has shown that rollout
typically results in significant and often dramatic improvement over the common
approach of just applying the base heuristic. This improvement comes at the
expense of a substantial but often tractable (polynomial) increase in computational
requirements. The following example provides some insight into the nature of cost
improvement.

Example 1 (The Breakthrough Problem) Consider a binary tree with N stages as
shown in Fig. 1. Stage k of the tree has 2k nodes. There are two types of tree arcs:
free and blocked. A free (or blocked) arc can (cannot, respectively) be traversed in
the direction from the root to the leaves. The objective is to break through the graph
with a sequence of free arcs (a free path) starting from the root and ending at one of
the leaves.

One may use a DP-like algorithm to discover a free path (if one exists) by starting
from the last stage and by proceeding backward to the root node. The kth step of
the algorithm determines for each node of stage N � k whether there is a free path
from that node to some leaf node, by using the results of the preceding step. The
amount of calculation at the kth step is O.2N �k/. Adding the calculations for the N

stages, it can be seen that the total amount of calculation is O.N 2N /, so it increases
exponentially with the number of stages.

2992 D.P. Bertsekas

Fig. 1 Binary tree with N stages for the breakthrough problem. Each arc is either free or is
blocked (crossed out in the figure). The problem is to find a path from the root to one of the
leaves, which is free (such as the one shown with thick lines)

As an alternative, one may suboptimally use a greedy algorithm, which starts at
the root node, selects a free outgoing arc (if one is available), and tries to construct
a free path by adding successively nodes to the path. Generally, at the current node,
if one of the outgoing arcs is free and the other is blocked, the greedy algorithm
selects the free arc. Otherwise, it selects one of the two outgoing arcs according to
some fixed rule that depends only on the current node (and not on the status of other
arcs). Clearly, the greedy algorithm may fail to find a free path even if such a path
exists, as can be seen from Fig. 1 (e.g., if the choice at the root node is the right-
hand side arc). On the other hand the amount of computation associated with the
greedy algorithm is O.N /, which is much faster than the O.N 2N / computation of
the optimal algorithm. Thus, one may view the greedy algorithm as a fast heuristic,
which is suboptimal in the sense that there are problem instances where it fails while
the DP algorithm succeeds.

Consider also the rollout algorithm that uses the greedy algorithm as the base
heuristic. This algorithm starts at the root and tries to construct a free path by
exploring alternative paths constructed by the greedy algorithm. At the current node,
it proceeds according to the following two cases:
(a) If at least one of the two outgoing arcs of the current node is blocked, the rollout

algorithm adds to the current path the arc that the greedy algorithm would select
at the current node.

(b) If both outgoing arcs of the current node are free, the rollout algorithm considers
the two end nodes of these arcs, and from each of them it runs the greedy
algorithm. If the greedy algorithm succeeds in finding a free path that starts
from at least one of these nodes, the rollout algorithm stops with a free path
having been found; otherwise, the rollout algorithm moves to the node that the
greedy algorithm would select at the current node.

Thus, when both outgoing arcs are free, the rollout algorithm explores further
the suitability of these arcs, as in case (b) above. Because of this additional

Rollout Algorithms for Discrete Optimization: A Survey 2993

discriminatory capability, the rollout algorithm always does at least as well as the
greedy (it always finds a free path when the greedy algorithm does, and it also finds
a free path in some cases where the greedy algorithm does not). This is consistent
with our earlier discussion of the generic cost improvement property of the rollout
algorithm over the base heuristic. On the other hand, the rollout algorithm applies
the greedy heuristic as many as 2N times, so that it requires O.N 2/ amount of
computation – this is intermediate between the O.N / computation of the greedy
and the O.N 2N / computation of the DP algorithm.

The greedy and the rollout algorithms may be evaluated by calculating the
probabilities that they will find a free path given a randomly chosen breakthrough
problem. In particular, the graph of the problem may be generated randomly, by
selecting each of its arcs to be free with probability p, independently of the other
arcs. If the corresponding probabilities of success for the greedy and the rollout
algorithms are calculated, it follows that the rollout algorithm has an O.N / times
larger probability of finding a free path than the greedy algorithm, while requiring
O.N / times more computation (see [3], Example 6.4.2). This type of tradeoff
is qualitatively typical: the rollout algorithm achieves a substantial performance
improvement over the base heuristic at the expense of extra computation that is
equal to the computation time of the base heuristic times a factor that is a low order
polynomial of the problem size.

2 The Basic Rollout Algorithm for Discrete Optimization

The rollout algorithm will now be formalized by introducing a graph search problem
that can serve as a general model for discrete optimization. A graph is given that has
a finite set of nodes N , a finite set of arcs A, and a special node s, called the origin.
The arcs are directed in the sense that arc .i; j / is distinct from arc .j; i/. A subset
N of nodes is also given, called destinations and a cost g.i/ for each destination i .
The destination nodes are terminal in the sense that they have no outgoing arcs. The
problem is to find a path that starts at the origin s, ends at one of the destination
nodes i 2 N , and is such that the cost g.i/ is minimized.

In our terminology, a path is a sequence of arcs

.i1; i2/; .i2; i3/; : : : ; .im�1; im/;

all of which are oriented in the forward direction. The nodes i1 and im are called the
start node and the end node of the path, respectively. For convenience, and without
loss of generality,1 it will be assumed that given an ordered pair of nodes .i; j /,
there is at most one arc with start node i and end node j , which (if it exists) will be

1In the case where there are multiple arcs connecting a node pair, all these arcs can be merged to
a single arc, since the set of destination nodes that can be reached from any non-destination node
will not be affected.

2994 D.P. Bertsekas

denoted by .i; j /. In this way, a path consisting of arcs .i1; i2/; .i2; i3/; : : : ; .im�1; im/

is unambiguously specified as the sequence of nodes .i1; i2; : : : ; im/.
Let us assume the availability of a heuristic path construction algorithm, denoted

H, which given a non-destination node i … N , constructs a path .i; i1; : : : ; im; i/

starting at i and ending at one of the destination nodes i . Implicit in this assumption
is that for every non-destination node, there exists at least one path starting at that
node and ending at some destination node. The algorithmH is referred to as the base
heuristic and will be used as the basic building block for constructing the rollout
algorithm to be introduced shortly.

The end node i of the path constructed by the base heuristic H is completely
specified by the start node i . The node i is called the projection of i under H and is
denoted by p.i/. The corresponding cost is denoted by H.i/,

H.i/ D g
�
p.i/

�
:

The projection of a destination node is the node itself by convention, so that
i D p.i/ and H.i/ D g.i/ for all i 2 N . Note that while the base heuristic H
will generally yield a suboptimal solution, the path that it constructs may involve
a fairly sophisticated suboptimization. For example, H may construct several paths
ending at destination nodes according to some heuristics and then select the path
that yields minimal cost.

One possibility for suboptimal solution of the problem is to start at the origin s

and use the base heuristic H to obtain the projection p.s/. It is instead proposed
to use H to construct a path to a destination node sequentially. At the typical step,
a path that starts at s and ends at a node i is available, the base heuristic H is
run starting from each of the downstream neighbors j of i , and the corresponding
projections and costs are obtained. The neighbor that gives the best projection is
chosen as the next node in the current path. This sequential version of H is called
the rollout algorithm based on H and is denoted by RH.

Formally, let N.i/ denote the set of downstream neighbors of a non-destination
node i ,

N.i/ D ˚
j j .i; j / is an arc

�
:

The rollout algorithm RH starts with the origin node s. At the typical step, given
a node sequence .s; i1; : : : ; im/, where im is not a destination, RH adds to the
sequence a node imC1 such that

imC1 2 arg min
j 2N.im/

H.j /: (3)

If imC1 is a destination node, RH terminates. Otherwise, the process is repeated
with the sequence .s; i1; : : : ; im; imC1/ replacing .s; i1; : : : ; im/; see Fig. 2.

Once RH has terminated with a path .s; i1; : : : ; im/, the projection p.ik/ of each
of the nodes ik, k D 1; : : : ; m, will have been obtained. The best of these projections
yields a cost

Rollout Algorithms for Discrete Optimization: A Survey 2995

s i1 im

j1

j2

j3

j4

p(j1)

p(j2)

p(j3)

p(j4)

im-1

Neighbors of im Projections of
Neighbors of im

Fig. 2 Illustration of the rollout algorithm. After m steps, the algorithm has constructed the path
.s; i1; : : : ; im/. To extend this path at the next step, the set N.im/ of neighbors of the terminal node
im is generated, and the neighbor that has the best projection is selected from this set, that is,
imC1 2 arg minj2N.im/ H.j / 2 arg minj2N.im/ g

�
p.j /

�

min
kD1;:::;m

H.ik/ D min
kD1;:::;m

g
�
p.ik/

�
;

and the projection that corresponds to the minimum above may be taken as the final
(suboptimal) solution produced by the rollout algorithm. The above minimal cost
may also be compared with the cost g

�
p.s/

�
of the projection p.s/ of the origin,

so that p.s/ is used as the final solution if it produces a smaller cost. This will
ensure that the rollout algorithm will produce a solution that is no worse than the
one produced by the base heuristic. Note that while the best neighbor of im is imC1

according to Eq. (3), it does not necessarily follow that imC1 has a better projection
than im under H, that is, that

H.imC1/ � H.im/: (4)

The reason is that if the path constructed by H starting from im is .im; j1; : : : ; jk; i/,
it is not necessarily true that the path constructed by H starting from j1 is
.j1; : : : ; jk; i/. If this were so, then Eq. (4) would hold, since imC1 would have no
worse projection that j1 according to Eq. (3). This argument will be the basis for
further analysis to be given later (see Proposition 1).

Example 2 (Traveling Salesman Problem) Let us consider the traveling salesman
problem, whereby a salesman wants to find a minimum mileage/cost tour that visits
each of N given cities exactly once and returns to the city he started from. With
each city i D 1; : : : ; N , a node is associated and an arc .i; j / with traversal cost aij

is introduced for each ordered pair of nodes i and j . Note that the graph is assumed
complete; that is, there exists an arc for each ordered pair of nodes. There is no
loss of generality in doing so because a very high cost aij can be assigned to an arc

2996 D.P. Bertsekas

.i; j / that is precluded from participation in the solution. The problem is to find a
cycle that goes through all the nodes exactly once and whose sum of arc costs is
minimum.

There are many heuristic approaches for solving the traveling salesman problem.
For illustration purposes, consider a simple nearest neighbor heuristic. It starts from
a path consisting of just a single node i1, and at each iteration, it enlarges the path
with a node that does not close a cycle and minimizes the cost of the enlargement.
In particular, after k iterations, a path fi1; : : : ; ikg consisting of distinct nodes has
been constructed, and at the next iteration, an arc .ik; ikC1/ that minimizes aiki over
all arcs .ik; i/ with i ¤ i1; : : : ; ik , is added. After N � 1 iterations, all nodes are
included in the path, which is then converted to a tour by adding the final arc .iN ; i1/.

The traveling salesman problem can be formulated as a graph search problem
as follows: A starting city, say i1, is chosen corresponding to the origin of the
graph search problem. Each node of the graph search problem corresponds to a
path .i1; i2; : : : ; ik/, where i1; i2; : : : ; ik are distinct cities. The neighbor nodes of
the path .i1; i2; : : : ; ik/ are paths of the form .i1; i2; : : : ; ik; ikC1/ that correspond
to adding one more unvisited city ikC1 ¤ i1; i2; : : : ; ik at the end of the path. The
destinations are the cycles of the form .i1; i2; : : : ; iN /, and the cost of a destination
in the graph search problem is the cost of the corresponding cycle. Thus, a path from
the origin to a destination in the graph search problem corresponds to constructing
a cycle in N � 1 arc addition steps and at the end incurring the cost of the
cycle.

Let us now use as base heuristic the nearest neighbor method. The corresponding
rollout algorithm operates as follows: After k iterations, a path fi1; : : : ; ikg con-
sisting of distinct nodes has been constructed. At the next iteration, the nearest
neighbor heuristic is run starting from each of the paths of the form fi1; : : : ; ik; ig
where i ¤ i1; : : : ; ik , and a corresponding cycle is obtained. The node ikC1

of the path is selected to be the node i that corresponds to the best cycle thus
obtained.

2.1 Termination and Sequential Consistency

The rollout algorithm RH is said to be terminating if it is guaranteed to terminate
finitely starting from any node. Contrary to the base heuristicH, which by definition,
has the property that it yields a path terminating at a destination starting from
any node, the rollout algorithm RH need not have this property in the absence
of additional conditions. The termination question can usually be resolved quite
easily, and a few different methods by which this can be done will now be
discussed.

One important case where RH is terminating is when the graph is acyclic, since
then the nodes of the path generated by RH cannot be repeated within the path,
and their number is bounded by the number of nodes in N . As a first step toward
developing another case whereRH is terminating, consider the following definition,
which will also set the stage for further analysis of the properties of RH.

Rollout Algorithms for Discrete Optimization: A Survey 2997

Definition 1 The base heuristic H is said to be sequentially consistent if for every
node i , it has the following property: If H generates the path .i; i1; : : : ; im; i/ when
it starts at i , it generates the path .i1; : : : ; im; i/ when it starts at the node i1.

Thus, H is sequentially consistent if all the nodes of a path that it generates have
the same projection. There are many examples of sequentially consistent algorithms
that are used as heuristics in combinatorial optimization, including the following.

Example 3 (Greedy Algorithms as Base Heuristics) Consider a function F , which
for each node i , provides a scalar estimate F.i/ of the optimal cost starting from i ,
that is, the minimal cost g.i/, that can be obtained with a path that starts at i and
ends at one of the destination nodes i 2 N . Then, F can be used to define a base
heuristic, called the greedy algorithm with respect to F , as follows:

The greedy algorithm starts at a node i with the (degenerate) path that consists
of just node i . At the typical step, given a path .i; i1; : : : ; im/, where im is not a
destination, the algorithm adds to the path a node imC1 such that

imC1 2 arg min
j 2N.im/

F .j /: (5)

If imC1 is a destination, the algorithm terminates with the path .i; i1; : : : ; im; imC1/.
Otherwise, the process is repeated with the path .i; i1; : : : ; im; imC1/ replacing
.i; i1; : : : ; im/.

An example of a greedy algorithm is the nearest neighbor heuristic for the
traveling salesman problem (cf. Example 2). Recall from that example that nodes
of the graph search problem correspond to paths (sequences of distinct cities), and
a transition to a neighbor node corresponds to adding one more unvisited city to the
end of the current path. The function F in the nearest neighbor heuristic specifies
the cost of the addition of the new city.

It is also interesting to note that by viewing F as a cost-to-go approximation,
the greedy algorithm may be considered to be a special type of one-step lookahead
policy. Furthermore, if F.j / is chosen to be the cost obtained by some base heuristic
starting from j , then the greedy algorithm becomes the corresponding rollout
algorithm. Thus, it may be said that the rollout algorithm is a special case of a
greedy algorithm. However, the particular choice of F used in the rollout algorithm
is responsible for special properties that are not shared by other types of greedy
algorithms.

Let us denote by H the greedy algorithm described above and assume that it
terminates starting from every node (this has to be verified independently). Let us
also assume that whenever there is a tie in the minimization of Eq. (5), H resolves
the tie in a manner that is fixed and independent of the starting node i of the
path, for example, by resolving the tie in favor of the numerically smallest node
j that attains the minimum in Eq. (5). Then, it can be seen that H is sequentially
consistent, since by construction, every node on a path generated by H has the same
projection.

2998 D.P. Bertsekas

For a sequentially consistent base heuristic H, a restriction will be imposed in
the way the rollout algorithm RH resolves ties in selecting the next node on its
path; this restriction will guarantee that RH is terminating. In particular, suppose
that after m steps, RH has produced the node sequence .s; i1; : : : ; im/, and that the
path generated by H starting from im is .im; imC1; imC2; : : : ; i /. Suppose that among
the neighbor set N.im/, the node imC1 attains the minimum in the selection test

min
j 2N.im/

H.j /; (6)

but there are also some other nodes, in addition to imC1, that attain this minimum.
Then, the tie is broken in favor of imC1, that is, the next node added to the
current sequence .s; i1; : : : ; im/ is imC1. Under this convention for tie-breaking,
the following proposition shows that the rollout algorithm RH terminates at a
destination and yields a cost that is no larger than the cost yielded by the base
heuristic H.2

Proposition 1 Let the base heuristic H be sequentially consistent. Then, the rollout
algorithm RH is terminating. Furthermore, if .i1; : : : ; i Qm/ is the path generated by
RH starting from a non-destination node i1 and ending at a destination node i Qm,
the cost of RH starting from i1 is less or equal to the cost of H starting from i1. In
particular,

H.i1/ � H.i2/ � � � � � H.i Qm�1/ � H.i Qm/: (7)

Furthermore, for all m D 1; : : : ; Qm,

H.im/ D min

�
H.i1/; min

j 2N.i1/
H.j /; : : : ; min

j 2N.im�1/
H.j /

�
: (8)

Proof Let im and imC1 be two successive nodes generated by RH, and let
.im; i 0

mC1; i 0
mC2; : : : ; im/ be the path generated by H starting from im, where im is

the projection of im. Then, since H is sequentially consistent,

H.im/ D H.i 0
mC1/ D g.im/:

Furthermore, since i 0
mC1 2 N.im/, using the definition of RH [cf. Eq. (3)],

2For an example where this convention for tie-breaking is not observed and as a consequence RH
does not terminate, assume that there is a single destination d and that all other nodes are arranged
in a cycle. Each non-destination node i has two outgoing arcs: one arc that belongs to the cycle and
another arc which is .i; d/. Let H be the (sequentially consistent) base heuristic that, starting from
a node i ¤ d , generates the path .i; d/. When the terminal node of the path is node i , the rollout
algorithm RH compares the two neighbors of i , which are d and the node next to i on the cycle,
call it j . Both neighbors have d as their projection, so there is tie in Eq. (6). It can be seen that if
RH breaks ties in favor of the neighbor j that lies on the cycle, then RH continually repeats the
cycle and never terminates.

Rollout Algorithms for Discrete Optimization: A Survey 2999

H.i 0
mC1/ � min

j 2N.im/
H.j / D H.imC1/:

Combining the last two relations,

H.im/ � H.imC1/ D min
j 2N.im/

H.j /: (9)

To show that RH is terminating, note that in view of Eq. (9), either H.im/ >

H.imC1/ or else H.im/ D H.imC1/. In the latter case, in view of the convention
for breaking ties that occur in Eq. (6) and the sequential consistency of H, the path
generated by H starting from imC1 is the tail portion of the path generated by H
starting from im and has one arc less. Thus, the number of nodes generated by RH
between successive times that the inequality H.im/ > H.imC1/ holds is finite. On
the other hand, the inequality H.im/ > H.imC1/ can occur only a finite number
of times, since the number of destination nodes is finite, and the destination node
of the path generated by H starting from im cannot be repeated if the inequality
H.im/ > H.imC1/ holds. Therefore, RH is terminating.

Finally, if .i1; : : : ; i Qm/ is the path generated by RH, the relation (9) implies the
desired relations (7) and (8). Q. E. D.

Proposition 1 shows that in the sequentially consistent case, the rollout algorithm
RH has an important “automatic cost sorting” property, whereby it follows the
best path generated by the base heuristic H. In particular, when RH generates a
path .i1; : : : ; i Qm/, it does so by using H to generate a collection of other paths and
corresponding projections starting from all the successor nodes of the intermediate
nodes i1; : : : ; i Qm�1. However, .i1; : : : ; i Qm/ is guaranteed to be the best among
this path collection, and i Qm has minimal cost among all generated projections
[cf. Eq. (8)]. Of course, this does not guarantee that the path generated by RH
will be a near-optimal path, because the collection of paths generated by H may
be “poor.” Still, the property whereby RH at all times follows the best path found
so far is intuitively reassuring.

The following example illustrates the preceding concepts.

Example 4 (One-Dimensional Walk) Consider a person who walks on a straight
line and at each time period takes either a unit step to the left or a unit step to the
right. There is a cost function assigning cost g.i/ to each integer i . Given an integer
starting point on the line, the person wants to minimize the cost of the point where
he will end up after a given and fixed number N of steps.

This problem can be formulated as a graph search problem of the type discussed
in the preceding section. In particular, without loss of generality, assume that the
starting point is the origin, so that the person’s position after n steps will be some
integer in the interval Œ�n; n�. The nodes of the graph are identified with pairs
.k; m/, where k is the number of steps taken so far (k D 1; : : : ; N) and m is the
person’s position (m 2 Œ�k; k�). A node .k; m/ with k < N has two outgoing arcs

3000 D.P. Bertsekas

g(i)

iNN - 20-N

(N,0)

(0,0)

(N,N)(N,-N)

i
_

i
_

Fig. 3 Illustration of the path generated by the rollout algorithm RH in Example 4. The algorithm
keeps moving to the left up to the time where the base heuristic H generates two destinations .N; i/

and .N; i �2/ with g.i/ � g.i �2/. Then it continues to move to the right ending at the destination
.N; i/, which corresponds to the local minimum closest to N

with end nodes .k C 1; m � 1/ (corresponding to a left step) and .k C 1; m C 1/

(corresponding to a right step). The starting state is .0; 0/ and the terminating states
are of the form .N; m/, where m is of the form N � 2l and l 2 Œ0; N � is the number
of left steps taken.

Let the base heuristic H be defined as the algorithm, which, starting at a node
.k; m/, takes N � k successive steps to the right and terminates at the node .N; m C
N � k/. Note that H is sequentially consistent. The rollout algorithm RH, at node
.k; m/, compares the cost of the destination node .N; mCN �k/ (corresponding to
taking a step to the right and then following H) and the cost of the destination node
.N; mCN �k�2/ (corresponding to taking a step to the left and then following H).

Let us say that an integer i 2 Œ�N C 2; N � 2� is a local minimum if
g.i � 2/ � g.i/ and g.i/ � g.i C 2/. Let us also say that N (or �N) is a
local minimum if g.N � 2/ � g.N / [or g.�N / � g.�N C 2/, respectively].
Then, it can be seen that starting from the origin .0; 0/, RH obtains the local
minimum that is closest to N (see Fig. 3). This is no worse (and typically better)
than the integer N obtained by H. This example illustrates how RH may exhibit
“intelligence” that is totally lacking from H and is in agreement with the result of
Proposition 1.

Rollout Algorithms for Discrete Optimization: A Survey 3001

2.1.1 Sequential Improvement
It is possible to show that the rollout algorithm improves on the base heuristic
(cf. Proposition 1) under weaker conditions. To this end the following definition
is introduced.

Definition 2 The base heuristic H is said to be sequentially improving if for every
non-destination node i ,

H.i/ � min
j 2N.i/

H.j /: (10)

It can be seen that a sequentially consistent H is also sequentially improving,
since sequential consistency implies that H.i/ is equal to one of the values H.j /,
j 2 N.i/. The following proposition generalizes Proposition 1.

Proposition 2 Let the base heuristic H be sequentially improving and assume that
the rollout algorithm RH is terminating. Let .i1; : : : ; i Qm/ be the path generated by
RH starting from a non-destination node i1 and ending at a destination node i Qm.
Then, the cost of RH starting from i1 is less or equal to the cost of H starting from
i1. In particular, for all m D 1; : : : ; Qm,

H.im/ D min

�
H.i1/; min

j 2N.i1/
H.j /; : : : ; min

j 2N.im�1/
H.j /

�
: (11)

Proof For each m D 1; : : : ; Qm � 1,

H.im/ � min
j 2N.im/

H.j /;

by the sequential improvement assumption, while

min
j 2N.im/

H.j / D H.imC1/;

by the definition of the rollout algorithm. These two relations imply Eq. (11). Since
the cost of RH starting from i1 is H.i Qm/, the result follows. Q. E. D.

Example 5 (One-Dimensional Walk: Continued) Consider the one-dimensional
walk problem of Example 4, and let H be defined as the algorithm that, starting at
a node .k; m/, compares the cost g.m C N � k/ (corresponding to taking all of the
remaining N � k steps to the right) and the cost g.m � N C k/ (corresponding to
taking all of the remaining N � k steps to the left) and accordingly moves to node

.N; m C N � k/ if g.m C N � k/ � g.m � N C k/;

or to node

3002 D.P. Bertsekas

.N; m � N C k/ if g.m � N C k/ < g.m C N � k/:

It can be seen that H is not sequentially consistent, but is instead sequentially
improving. Using Eq. (11), it follows that starting from the origin .0; 0/,RH obtains
the global minimum of g in the interval Œ�N; N �, while H obtains the better of the
two points �N and N .

Proposition 2 actually follows from a general equation for the cost of the
path generated by the rollout algorithm, which holds for any base heuristic (not
necessarily one that is sequentially improving). This is given in the following
proposition.

Proposition 3 Assume that the rollout algorithm RH is terminating. Let
.i1; : : : ; i Qm/ be the path generated by RH starting from a non-destination node
i1 and ending at a destination node i Qm. Then, the cost of RH starting from i1 is
equal to

H.i1/ C ıi1 C � � � C ıi Qm�1
;

where for every non-destination node i ,

ıi D min
j 2N.i/

H.j / � H.i/:

Proof By the definition of the rollout algorithm

H.im/ C ıim D min
j 2N.im/

H.j / D H.imC1/; m D 1; : : : ; Qm � 1:

By adding these equations over m,

H.i1/ C ıi1 C � � � C ıi Qm�1
D H.i Qm/:

Since the cost of RH starting from i1 is H.i Qm/, the result follows. Q. E. D.

If the base heuristic is sequentially improving, there holds ıi � 0 for all non-
destination nodes i , so it follows from Proposition 3 that the cost of the rollout
algorithm is less or equal to the cost of the base heuristic (cf. Proposition 2).

2.1.2 The Fortified Rollout Algorithm
A variant of the rollout algorithm will now be described, which implicitly uses a
sequentially improving base heuristic, so that it has the cost improvement property
of Proposition 2. This variant, called the fortified rollout algorithm, and denoted by
RH, starts at the origin s, and after m steps, maintains, in addition to the current
sequence of nodes .s; i1; : : : ; im/, a path

P.im/ D .im; i 0
mC1; : : : ; i 0

k/;

Rollout Algorithms for Discrete Optimization: A Survey 3003

ending at a destination i 0
k . Roughly speaking, the path P.im/ is the tail portion of

the best path found after the first m steps of the algorithm, in the sense that the
destination i 0

k has minimal cost over all the projections of nodes calculated thus far.
In particular, initially P.s/ is the path generated by the base heuristic H starting

from s. At the typical step of the fortified rollout algorithm RH, a node sequence
.s; i1; : : : ; im/ has been constructed and the path P.im/ D .im; i 0

mC1; : : : ; i 0
k/ is

available, where im is not a destination. Then, if

min
j 2N.im/

H.j / < g.i 0
k/; (12)

RH adds to the node sequence .s; i1; : : : ; im/ the node

imC1 2 arg min
j 2N.im/

H.j /

and sets P.imC1/ to the path generated by H, starting from imC1. On the other
hand, if

min
j 2N.im/

H.j / � g.i 0
k/; (13)

RH adds to the node sequence .s; i1; : : : ; im/ the node

imC1 D i 0
mC1

and sets P.imC1/ to the path .imC1; i 0
mC2; : : : ; i 0

k/. If imC1 is a destination, RH
terminates, and otherwise, RH repeats the process with .s; i1; : : : ; imC1/ replacing
.s; i1; : : : ; im/ and P.imC1/ replacing P.im/, respectively.

The idea behind the construction of RH is to follow the path P.im/ unless a
path of lower cost is discovered through Eq. (12). It can be shown that RH may
be viewed as the rollout algorithm RH corresponding to a modified version of H,
called fortified H, and denoted H. This algorithm is applied to a slightly modified
version of the original problem, which involves an additional downstream neighbor
for each node im that is generated in the course of the algorithm RH and for which
the condition (13) holds. For every such node im, the additional neighbor is a copy
of i 0

mC1, and the path generated by H starting from this copy is .i 0
mC1; : : : ; i 0

k/. From
every other node, the path generated by H is the same as the path generated by H.

It can be seen that H is sequentially improving, so that RH is terminating and
has the automatic cost sorting property of Proposition 2; that is,

H.im/ D min

�
H.i1/; min

j 2N.i1/
H.j /; : : : ; min

j 2N.im�1/
H.j /

�
:

The above property can also be easily verified directly, using the definition of RH.
Finally, it can be seen that when H is sequentially consistent, the rollout algorithm
RH and its fortified version RH coincide.

3004 D.P. Bertsekas

2.1.3 Using Multiple Base Heuristics: Parallel Rollout
In many problems, several promising path construction heuristics may be available.
It is then possible to use all of these heuristics in parallel within the rollout frame-
work, essentially by combining them into a single “superheuristic.” In particular, let
us assume that K algorithms H1; : : : ;HK are available. The kth of these algorithms,
given a non-destination node i , produces a path .i; i1; : : : ; im; i/ that ends at a
destination node i , and the corresponding cost is denoted by Hk.i/ D g.i/. The
K algorithms can be incorporated in a generalized version of the rollout algorithm,
which uses the minimal cost

H.i/ D min
kD1;:::;K

Hk.i/; (14)

in place of the cost obtained by any one of the K algorithms H1; : : : ;HK .
In particular, the algorithm starts with the origin node s. At the typical step, given

a node sequence .s; i1; : : : ; im/, where im is not a destination, the algorithm adds to
the sequence a node imC1 such that

imC1 2 arg min
j 2N.im/

H.j /:

If imC1 is a destination node, the algorithm terminates, and otherwise, the process is
repeated with the sequence .s; i1; : : : ; im; imC1/ replacing .s; i1; : : : ; im/.

An interesting property, which can be readily verified by using the definitions, is
that if all the algorithms H1; : : : ;HK are sequentially improving, the same is true
for H. This is evident from the fact that the heuristics run in parallel from a given
node may be viewed as a single heuristic, which has the cost improvement property
of Definition 2. The fortified version of the rollout algorithm RH easily generalizes
for the case of Eq. (14), by defining the path generated starting from a node i as the
path generated by the path construction algorithm, which attains the minimum in
Eq. (14).

In an alternative version of the rollout algorithm that uses multiple path construc-
tion heuristics, the results of the K algorithms H1; : : : ;HK are weighted with some
fixed scalar weights rk to compute H.i/ for use in Eq. (3):

H.i/ D
KX

kD1

rkHk.i/: (15)

The weights rk may be adjusted by trial and error or more sophisticated techniques
which may be found in the literature (see e.g., [6]).

2.1.4 Extension for Intermediate Arc Costs
Let us consider a variant of the graph search problem where in addition to the
terminal cost g.i/, there is a cost c.i; j / for a path to traverse an arc .i; j /. Within
this context, the cost of a path .i1; i2; : : : ; in/ that starts at i1 and ends at a destination
node in is redefined to be

Rollout Algorithms for Discrete Optimization: A Survey 3005

g.in/ C
n�1X

kD1

c.ik; ikC1/: (16)

Note that when the cost g.i/ is zero for all destination nodes i , this is the problem
of finding a shortest path from the origin node s to one of the destination nodes,
with c.i; j / viewed as the length of arc .i; j /. However, here we are interested in
problems where the number of nodes is very large, and the use of the shortest path
algorithms is impractical.

One way to transform the problem with arc costs into one involving a terminal
cost only is to redefine the graph of the problem so that nodes correspond to
sequences of nodes in the original problem graph. Thus, having arrived at node ik
using path .i1; : : : ; ik/, the choice of ikC1 as the next node is viewed as a transition
from .i1; : : : ; ik/ to .i1; : : : ; ik; ikC1/. Both nodes .i1; : : : ; ik/ and .i1; : : : ; ik; ikC1/

are viewed as nodes of a redefined graph. Furthermore, in this redefined graph, a
destination node has the form .i1; i2; : : : ; in/, where in is a destination node of the
original graph, and has a cost given by Eq. (16).

After the details are worked out, it can be seen that to recover our earlier
algorithms and analysis, the cost of the heuristic algorithm H needs to be modified
as follows: If the path .i1; : : : ; in/ is generated by H starting at i1, then

H.i1/ D g.in/ C
n�1X

kD1

c.ik; ikC1/:

Furthermore, the rollout algorithm RH at node im selects as next node imC1 the
node

imC1 2 arg min
j 2N.im/

�
c.im; j / C H.j /

�I

[cf. Eq. (3)]. The definition of a sequentially consistent algorithm remains un-
changed. Furthermore, Proposition 1 remains unchanged except that Eqs. (7) and (8)
are modified to read

H.ik/ � c.ik; ikC1/ C H.ikC1/ D min
j 2N.ik/

�
c.ik; j / C H.j /

�
; k D 1; : : : ; m � 1:

A sequentially improving algorithm should now be characterized by the property

H.ik/ � c.ik; ikC1/ C H.ikC1/;

where ikC1 is the next node on the path generated by H starting from ik.
Furthermore, Proposition 2 remains unchanged, except that Eq. (11) is modified to
read

H.ik/ � min
j 2N.ik/

�
c.ik; j / C H.j /

�
; k D 1; : : : ; m � 1:

3006 D.P. Bertsekas

Finally, the criterion minj 2N.im/ H.j / < g.i 0
k/ [cf. Eq. (12)] used in the fortified

rollout algorithm, given the sequence .s; i1; : : : ; im/, where im … N , and the path
P.im/ D .im; i 0

mC1; : : : ; i 0
k/, should be replaced by

min
j 2N.im/

�
c.im; j / C H.j /

�
< g.i 0

k/ C c.im; i 0
mC1/ C

k�1X

lDmC1

c.i 0
l ; i 0

lC1/:

2.1.5 Rollout Algorithms with Multistep Lookahead
It is possible to incorporate multistep lookahead into the rollout framework. To
describe the case of 2-step lookahead, suppose that after m steps of the rollout
algorithm, the current node sequence is .s; i1; : : : ; im/. Then, the set of all 2-step-
ahead neighbors of im is considered, defined as

N2.im/ D ˚
j 2 N j j 2 N.im/ and j 2 N , or j 2 N.n/ for some n 2 N.im/

�
:

The base heuristic H is then run starting from each j 2 N2.im/, and the node
j 2 N2.im/ that has projection of minimum cost is found. Let imC1 2 N.im/ be the
node next to im on the (one- or two-arc) path from im to j . If imC1 is a destination
node, the algorithm terminates. Otherwise, the process is repeated with the sequence
.s; i1; : : : ; im; imC1/ replacing .s; i1; : : : ; im/.

Note that a fortified version of the rollout algorithm described above is possible
along the lines described earlier. Also, it is possible to eliminate from the set N2.im/

some of the 2-step neighbors of im that are judged less promising according to
some heuristic criterion, in order to limit the number of applications of the base
heuristic. This may be viewed as selective depth lookahead. Finally, the extension
of the algorithm to look ahead more than two steps is straightforward: The 2-step-
ahead neighbor set N2.im/ is simply replaced with a suitably defined k-step-ahead
neighbor set Nk.im/.

2.1.6 Interpretation in Terms of DP
Let us now reinterpret the graph-based rollout algorithm within the context
of deterministic DP. The base heuristic will be viewed as a suboptimal
policy, and the rollout algorithm will be viewed as a policy obtained by a
process of policy improvement, provided the base heuristic is sequentially
consistent.

To this end, the graph search problem is cast as a sequential decision problem,
where each node corresponds to a state of a dynamic system. At each non-
destination node/state i , a node j must be selected from the set of neighbors N.i/;
then, if j is a destination, the process terminates with cost g.j /, and otherwise, the
process is repeated with j becoming the new state. The DP algorithm calculates
for every node i , the minimal cost that can be achieved starting from i , that is, the
smallest value of g.i/ that can be obtained using paths that start from i and end
at destination nodes i . This value, denoted J �.i/, is the optimal cost-to-go starting
at node i . Once J �.i/ is computed for all nodes i , an optimal path .i1; i2; : : : ; im/

Rollout Algorithms for Discrete Optimization: A Survey 3007

can be constructed starting from any initial node/state i1 by successively generating
nodes using the relation

ikC1 2 arg min
j 2N.ik/

J �.j /; k D 1; : : : ; m � 1; (17)

up to the point where a destination node im is encountered.3

A base heuristic H defines a policy � , that is, an assignment of a successor node
to any non-destination node. However, starting from a given node i , the cost of
� need not be equal to H.i/ because if a path .i1; i2; i3; : : : ; im/ is generated by
H starting from node i1, it is not necessarily true that the path .i2; i3; : : : ; im/ is
generated by the base heuristic starting from i2. Thus, the successor node chosen at
node i2 by policy � may be different than the one used in the calculation of H.i1/.
On the other hand, if H is sequentially consistent, the cost of policy � starting from
a node i is H.i/, since sequential consistency implies that the path that the base
heuristic generates starting at the successor node is part of the path it generates at
the predecessor node. It turns out that the cost improvement property of the rollout
algorithm in the sequentially consistent case is a special case of a cost improvement
property for rollout algorithms that holds for more general DP contexts, including
stochastic ones.

Generally, in the DP context the rollout algorithm RH is viewed as a one-step
lookahead policy that uses H.j / as a cost-to-go approximation from state j . In
some cases, H.j / is the cost of some policy (in the DP sense), such as when H is
sequentially consistent, as explained above. In general, however, this need not be so,
in which case H.j / can be viewed as a convenient cost-to-go approximation that is
derived from the base heuristic. Still, the rollout algorithm RH may improve on the
cost of the base heuristic (e.g., when H is sequentially improving, cf. Proposition 2).

3 Applications in Discrete Optimization

Finally, to provide some perspective on the rollout methodology, let us explore the
connections with some important discrete optimization problems and methods. In
particular, let us consider the generic discrete optimization problem of minimizing
a cost function g.x/ over a finite set X of feasible solutions. This problem will be
reformulated as a graph search problem. It may be noted that several reformulations
are possible, and different choices of the underlying graph give rise to different
rollout algorithms. Thus, it is important to select a reformulation that matches
the type of rollout algorithm one wishes to develop. Some reformulations and
corresponding rollout algorithms will be discussed in what follows, and these
algorithms will be related to some general computational methods.

3It is assumed here that there are no termination/cycling difficulties of the type illustrated in the
footnote following Example 3.

3008 D.P. Bertsekas

Suppose that each solution x has N components; that is, it has the form
x D .x1; : : : ; xN /, where N is a positive integer. For example, in a 0-1 integer
programming problem, each component xk may correspond to a single variable that
can take the values 0 or 1, or alternatively, it may correspond to a multidimensional
vector involving several variables each taking the values 0 or 1. In a network
optimization problem, each component xk may correspond to a vector involving
the flows of several arcs of the network. One way to reformulate the problem

minimize g.x/

subject to x 2 X

into the framework of the search problem is to introduce an acyclic graph involving
an artificial origin node s and N subsets of nodes I1; : : : ; IN . In particular, for each
feasible solution x 2 X and each k D 1; : : : ; N , the node set Ik contains a node
.x.k/; k/, where x.k/ consists of the first k components of x [two feasible solutions
x; x0 2 X whose first k components are identical are mapped onto the same node
.x.k/; k/ of Ik]. Each node .x.N /; N / 2 IN is viewed as a destination node of the
graph and has cost g.x/, where x is the feasible solution mapping onto x.N /. The
origin node is connected with an arc to each node .x.1/; 1/ 2 I1. Furthermore, for
every k D 1; : : : ; N � 1, each node .x.k/; k/ 2 Ik is connected with an arc to each
node .x.k C1/; k C1/ 2 IkC1 such that the components x1; : : : ; xk of x.k/ and the
first k components x.k C 1/ are identical. A few observations may be made:
(a) Selecting one neighbor out of the set of neighbors of the origin node amounts

to selecting the first component x1 of x, while selecting one neighbor out of the
set of neighbors of a node .x.k/; k/ 2 Ik amounts to selecting the .k C 1/st
component xkC1 of x.

(b) Choosing a path that starts at s and ends at a destination node .x.N /; N /

amounts to a sequential choice of the components of x: The first component
is chosen when the arc connecting s to a node .x.1/; 1/ 2 I1 is selected,
and the kth component is chosen (k D 2; : : : ; N) when the arc connecting a
node .x.k � 1/; k � 1/ 2 Ik�1 to a node .x.k/; k/ 2 Ik is selected. For each
k D 2; : : : ; N , the first k � 1 components of x.k � 1/ and x.k/ are identical.

(c) Any base heuristic that starts at node s amounts to a sequential choice of
the components xk , k D 1; : : : ; N , so that the final result .x1; : : : ; xN / is
feasible (belongs to X). Any base heuristic that starts at a non-destination node
.x.k/; k/ 2 Ik amounts to a sequential choice of the components xkC1; : : : ; xN ,
so that after they are added to the k components x1; : : : ; xk specified by x.k/,
the final result .x1; : : : ; xN / is feasible.

Given a base heuristic H, as described in (c) above, the kth step of the rollout
algorithm RH minimizes g with respect to the kth component xk , while keeping
the preceding components x1; : : : ; xk�1 at the values selected at the preceding steps,
and using the base heuristic H to supply the remaining components xkC1; : : : ; xN .

Here is an example where the base heuristic is trivial, and the rollout algorithm
leads to a well-known method.

Rollout Algorithms for Discrete Optimization: A Survey 3009

Example 6 (Coordinate Descent) Assume that the set X has the (Cartesian product)
form ˚

.x1; : : : ; xN / j xk 2 Xk; k D 1; : : : ; N
�
; (18)

where Xk, k D 1; : : : ; N , are some given finite sets. In principle, there is no loss
of generality in this assumption since sets Xk such that the set (18) contains X can
always be found, and the cost g.x/ can be set to a very high value for every x … X

that belongs to the set (18).
Let x be some given feasible solution. Consider the base heuristic that operates

as follows:
(a) Starting from the origin s, it generates the solution x.
(b) Starting from .x.k/; k/ 2 Ik , k D 1; : : : ; N1, it generates the solution that has

the first k components equal to the corresponding k components of x.k/ and
the last N � k components equal to the corresponding last N � k components
of x.

Then, it can be seen that the rollout algorithm is equivalent to a coordinate descent
method that starts from x and yields . Qx1; : : : ; QxN / according to

Qx1 2 arg min
x12X1

g.x1; x2; : : : ; xN /;

Qxk 2 arg min
xk2Xk

g. Qx1; : : : ; Qxk�1; xk; xkC1; : : : ; xN /; k D 2; : : : ; N:

Note that a more general version of coordinate descent is obtained by using a base
heuristic similarly defined by multiple solutions x1; : : : ; xm in place of x. Then, the
preceding equation is replaced by

Qx1 2 arg min
x12X1

min
˚
g.x1; x1

2; : : : ; x1
N /; : : : ; g.x1; xm

2 ; : : : ; xm
N /

�
;

Qxk 2 arg min
xk2Xk

min
˚
g. Qx1; : : : ; Qxk�1; xk; x1

kC1; : : : ; x1
N /; : : : ;

g. Qx1; : : : ; Qxk�1; xk; xm
kC1; : : : ; xm

N /
�
; k D 2; : : : ; N:

The preceding example provides a baseline. It shows what can be achieved in a
coordinate-based formulation of the rollout algorithm, even with a very trivial base
heuristic. One can expect much better performance with more sophisticated base
heuristics.

There are interesting variations of the coordinate-based reformulation of the
generic discrete optimization problem into a graph search problem. In particular, the
problem has been reformulated so that the components of x1; : : : ; xN are selected in
a specific order. Alternative orders are possible, and in fact an attempt to optimize
the choice of order may be effected through the rollout algorithm. This can be done
by introducing the index of the component of x as part of the specification of a node.
In particular, the nodes in the “layer” Ik of the graph may have the form .x.k/; k; n/

where n specifies the next component to be chosen by the rollout algorithm.

3010 D.P. Bertsekas

Let us also explore the relation between rollout algorithms and local search
methods, which are a broad and important class of heuristics for the generic discrete
optimization problem of minimizing g.x/ over the finite set X . A local search
method uses the notion of a neighborhood N.x/ of a feasible solution x 2 X ,
which is a (usually small) subset of X , containing solutions that are “close” to x in
some sense.

In particular, given a solution x, the method selects among the solutions in the
neighborhood N.x/ a successor solution x0, according to some rule. The process is
then repeated with x0 replacing x (or stops when some termination criterion is met).
Thus, a local search method is characterized by:
(a) The method for choosing a starting solution
(b) The definition of the neighborhood N.x/ of a solution x

(c) The rule for selecting a successor solution from within N.x/

(d) The termination criterion
The definition of a neighborhood often involves intricate calculations and

suboptimizations that aim to bring to consideration promising neighbors. While the
definition of neighborhood is typically problem dependent, some general classes of
procedures for generating neighborhoods have been developed. An example of such
a class is the well-known genetic algorithms.

The criterion for selecting a solution from within a neighborhood is usually the
cost of the solution, so that a neighbor of minimum cost is selected. Then, by
assuming that each x 2 X belongs to its own neighborhood N.x/, the local search is
cost improving and effectively stops at a local minimum, that is, a solution that is no
worse than all other solutions within its neighborhood. Attention will be restricted
to such methods, but there are important alternatives, such as in the methods of tabu
search and simulated annealing, which will not be discussed here.

Consider a cost-improving local search method, as described above, and let
N.x/ and x be the neighborhood definition and the starting point of the method,
respectively. Let us assume that there is a given limit M to the number of iterations,
so that the method terminates when it reaches this limit (if it encounters a local
minimum before M iterations are performed, it may be assumed that it simply
repeats the local minimum, until the limit M is reached). We will provide a
reformulation of the problem into the framework of the search problem of the
preceding section, so that the rollout algorithm becomes identical to the local search
method described above.

To this end, an acyclic graph is introduced, which consists of an origin node
that corresponds to the starting solution x, and M subsets of nodes I1; I2; : : : ; IM ,
which may be viewed as replicas of the feasible set X . In particular, for each feasible
solution x 2 X and each k D 1; : : : ; M , the node set Ik contains a node .x; k/. Each
node .x; M / 2 IM is viewed as a destination node of the graph and has cost g.x/.
The origin node is connected with an arc to each node .x; 1/ such that x 2 N.x/,
while for every k D 1; : : : ; M � 1, each node .x; k/ 2 Ik is connected with an arc
to each node .x0; k C 1/ 2 IkC1 such that x0 2 N.x/.

Consider now the base heuristic that, starting from a node .x; k/ 2 Ik , generates
the destination .x; N / with cost g.x/. Then, it can be seen that the rollout algorithm

Rollout Algorithms for Discrete Optimization: A Survey 3011

reduces to the local search method. In particular, the rollout algorithm, given x after
k steps [i.e., when at node .x; k/], it considers all x0 in the neighborhood N.x/

and runs the base heuristic starting at x0 and yielding the cost g.x0/. It then selects
x0 2 N.x/ that yields the minimum cost. This is exactly what the local search
method also does.

The preceding reformulation suggests that rollout algorithms can provide an
additional dimension to local search methods, whereby intermediate infeasible solu-
tions may be generated, and these solutions are evaluated through their projections,
which are obtained through a base heuristic. Thus, while local search methods rely
on a single construct, namely, neighborhoods, for selecting successive solutions,
rollout algorithms bring to bear two independent constructs, neighborhoods and
base heuristics. It should be mentioned also that rollout algorithms embody some
additional important methodological ideas, namely, DP and policy iteration. For this
reason, rollout algorithms admit natural extensions to stochastic control problems,
for which there is no known analog of a local search method.

4 Further Reading

The main idea of rollout algorithms, obtaining an improved policy starting from
some other suboptimal policy using a one-time policy improvement, has appeared in
several DP application contexts. In the context of game-playing computer programs,
it has been proposed by Abramson [1] and by Tesauro and Galperin [24]. The name
“rollout” was coined by Tesauro in specific reference to rolling the dice in the game
of backgammon. In Tesauro’s proposal, a given backgammon position is evaluated
by “rolling out” many games starting from that position, using a simulator, and the
results are averaged to provide a “score” for the position. The internet contains a
lot of material on computer backgammon and the use of rollout, in some cases in
conjunction with multistep lookahead and cost-to-go approximation.

The application of rollout algorithms to discrete optimization problems has its
origin in the neuro-dynamic programming work of the author and J. Tsitsiklis [6].
The formalization as a path construction algorithm, including the notions of
sequential consistency, sequential improvement, and fortified and parallel rollout,
was given in the paper by Bertsekas, Tsitsiklis, and Wu [7]. The subsequent paper
by Bertsekas and Castanon [5] considered its application to stochastic DP and
stochastic scheduling. The analysis of the breakthrough problem (Example 1) is
given in the DP book by Bertsekas [3] and is based on unpublished work by
Bertsekas, Castanon, and Tsitsiklis. An analysis of the optimal policy and some
suboptimal policies for this problem is given by Pearl [18]. A discussion of rollout
algorithms as applied to network optimization problems may be found in the
author’s network optimization book [2].

For applications of rollout algorithms, see Christodouleas [11], Duin and
Voss [12], Secomandi [20–22], Ferris and Voelker [13, 14], McGovern, Moss,
and Barto [16], Savagaonkar, Givan, and Chong [19], Bertsimas and Popescu [8],
Guerriero and Mancini [15], Tu and Pattipati [25], Wu, Chong, and Givan [26],

3012 D.P. Bertsekas

Chang, Givan, and Chong [10], Meloni, Pacciarelli, and Pranzo [17], Yan, Diaconis,
Rusmevichientong, and Van Roy [27], Besse and Chaib-draa [9], and Sun, Zhao,
Lun, and Tomastik [23]. These works discuss a broad variety of applications and
case studies and generally report positive computational experience. The survey [4]
discusses rollout algorithms from a control theory point of view and explores its
close connection with model predictive control (MPC).

Recommended Reading

1. B. Abramson, Expected-outcome: a general model of static evaluation. IEEE Trans. Pattern
Anal. Mach. Intell. 12, 182–193 (1990)

2. D.P. Bertsekas, Network Optimization: Continuous and Discrete Models (Athena Scientific,
Belmont, 1998)

3. D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. I (Athena Scientific,
Belmont, 2005)

4. D.P. Bertsekas, Dynamic programming and suboptimal control: a survey from ADP to MPC,
in Fundamental Issues in Control. Eur J. Control, 11(4–5), 310–334 (2005)

5. D.P. Bertsekas, D.A. Castanon, Rollout algorithms for stochastic scheduling problems. Heuris-
tics, 5, 89–108 (1999)

6. D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific, Belmont,
1996)

7. D.P. Bertsekas, J.N. Tsitsiklis, C. Wu, Rollout algorithms for combinatorial optimization.
Heuristics, 3, 245–262 (1997)

8. D. Bertsimas, I. Popescu, Revenue management in a dynamic network environment. Transp.
Sci. 37, 257–277 (2003)

9. C. Besse, B. Chaib-draa, Parallel rollout for online solution of DEC-POMDPs, in Proceedings
of 21st International FLAIRS Conference, Coconut Grove, FL, 2008, pp. 619–624

10. H.S. Chang, R.L. Givan, E.K.P. Chong, Parallel rollout for online solution of partially
observable Markov decision processes. Discret. Event Dyn. Syst. 14, 309–341 (2004)

11. J.D. Christodouleas, Solution methods for multiprocessor network scheduling problems with
application to railroad operations, Ph.D. thesis, Operations Research Center, Massachusetts
Institute of Technology, 1997

12. C. Duin, S. Voss, The pilot method: a strategy for heuristic repetition with application to the
Steiner problem in graphs. Networks, 34, 181–191 (1999)

13. M.C. Ferris, M.M. Voelker, Neuro-dynamic programming for radiation treatment planning.
Numerical Analysis Group Research Report NA-02/06, Oxford University Computing Labo-
ratory, Oxford University, 2002

14. M.C. Ferris, M.M. Voelker, Fractionation in radiation treatment planning. Math. Program. B
102, 387–413 (2004)

15. F. Guerriero, M. Mancini, A cooperative parallel rollout algorithm for the sequential ordering
problem. Parallel Comput. 29, 663–677 (2003)

16. A. McGovern, E. Moss, A. Barto, Building a basic building block scheduler using reinforce-
ment learning and rollouts. Mach. Learn. 49, 141–160 (2002)

17. C. Meloni, D. Pacciarelli, M. Pranzo, A rollout metaheuristic for job shop scheduling problems.
Ann. Oper. Res. 131, 215–235 (2004)

18. J. Pearl, Heuristics (Addison-Wesley, Reading, 1984)
19. U. Savagaonkar, R. Givan, E.K.P. Chong, Sampling techniques for zero-sum, discounted

Markov games, in Proceedings of 40th Allerton Conference on Communication, Control and
Computing, Monticello, IL, 2002

20. N. Secomandi, Comparing neuro-dynamic programming algorithms for the vehicle routing
problem with stochastic demands. Comput. Oper. Res. 27, 1201–1225 (2000)

Rollout Algorithms for Discrete Optimization: A Survey 3013

21. N. Secomandi, A rollout policy for the vehicle routing problem with stochastic demands. Oper.
Res. 49, 796–802 (2001)

22. N. Secomandi, Analysis of a rollout approach to sequencing problems with stochastic routing
applications. J. Heuristics, 9, 321–352 (2003)

23. T. Sun, Q. Zhao, P. Lun, R. Tomastik, Optimization of joint replacement policies for multipart
systems by a rollout framework. IEEE Trans. Autom. Sci. Eng. 5, 609–619 (2008)

24. G. Tesauro, G.R. Galperin, On-line policy improvement using Monte Carlo search. Presented
at the 1996 neural information processing systems conference, Denver, CO, 1996; also in
Advances in Neural Information Processing Systems 9, ed. by M. Mozer et al. (MIT, 1997)

25. F. Tu, K.R. Pattipati, Rollout strategies for sequential fault diagnosis. IEEE Trans. Syst. Man
Cybern. Part A 33, 86–99 (2003)

26. G. Wu, E.K.P. Chong, R.L. Givan, Congestion control using policy rollout, in Proceedings of
2nd IEEE CDC, Maui, HI, 2003, pp. 4825–4830

27. X. Yan, P. Diaconis, P. Rusmevichientong, B. Van Roy, Solitaire: man versus machine. Adv.
Neural Inf. Process. Syst. 17, 1553–1560 (2005).

	Rollout Algorithms for Discrete Optimization: A Survey
	1 Introduction
	2 The Basic Rollout Algorithm for Discrete Optimization
	2.1 Termination and Sequential Consistency
	2.1.1 Sequential Improvement
	2.1.2 The Fortified Rollout Algorithm
	2.1.3 Using Multiple Base Heuristics: Parallel Rollout
	2.1.4 Extension for Intermediate Arc Costs
	2.1.5 Rollout Algorithms with Multistep Lookahead
	2.1.6 Interpretation in Terms of DP

	3 Applications in Discrete Optimization
	4 Further Reading
	Recommended Reading

