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Abstract
This chapter mainly studies four problems proposed in social networks: they are
link prediction problem, community detection problem, influence maximization
problem, and routing problem for networks that satisfy power-law distribu-
tion property. As for these problems, corresponding efficient approximation
algorithms with different aspects are introduced. Except numerical results of
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experimental simulations of these algorithms, theoretical analysis for influence
maximization problem and routing problem is provided.

1 Introduction

A social network is a kind of social structure that is made up of a finite set
of individuals (called “nodes”) and relationships (friendship, kinship, common
interest) defined on them. Social network existed before the emergence of internet.
In a social network, a person can use existing contacts as potential social links
to extend their relationships to more people. Recently, online social network,
which appears after internet, becomes popular among the public. Most online
social network such as MySpace, LinkedIn, and Facebook provide a convenient
platform for people to communicate with each other, exchange their ideas or spread
information, and so on. Therefore, based on the relationships established between
people, communities are shown to be an important local structure, which can be
used to efficiently predict new links or disseminate information to their members by
already known information.

This chapter consists of four parts: social network structure, local structure,
influence maximization problem, and routing scheme for power-law graphs in social
networks. In Sect. 2, a link prediction problem, which is a basic computational
problem underlying social network evolution, is introduced. Section 3 focuses on
local structural properties of social networks, also known as community structure.
Some community properties and several algorithms for community identification
are introduced. Sections 4 and 5 present two hot research topics in social networks.
Influence maximization problem is addressed when a new idea is supposed to have
more people to believe it or a company would like to make more customers to
purchase a new product with the “word-of-mouth” effect in a social network. How
to choose the people and take advantage of the relationships between people to
promote your idea or product is what the influence maximization problem concerns
about. Routing problem mainly focuses on compact routing scheme by using
the theory of unweighted random power-law graphs with fixed expected degree
sequence. The method discussed has the first theoretical bound coupled to the
parameter of the power-law graph model for a compact routing scheme.

2 Social Network Structure

In recent years, people have witnessed the rapid growth of interests in networks,
which are pervasive in the real world. With extensive studies, many researchers
point out that the real-world networks demonstrate certain surprising consistent
structure properties across different fields. Particularly, studies on three major
characteristics of the networks, which are small world, clustering, and scale-free, are
of great popularity. And based on those structural properties, three basic topological
measurements including average path length, clustering coefficient, and degree
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distribution are proposed to study the network from the topological perspective. In
general, the average path length is the average distance between any pair of nodes.
The degree of a node is the number of edges connected to that node. Newman [51]
defined the clustering coefficient measure as

C D 3 � number of triangles in the graph

number of connected triples
(1)

where a triangle is formed by a set of three vertices, among which each node is
connected to both of the others. A connected triple is three vertices u � v � w, with
both vertices u and w connected with v (u � v � w and w � v � u are considered
as the same connected triple). According to topological features, networks fall
into mainly four different classes, which are information network, social network,
technological networks, and biological networks. In this section, we focus on social
networks.

A social network is a set of people or groups of people with some pattern of
contacts or interactions among them under certain situation. From a graph theory
point of view, a social network structure is defined as this: among a set of nodes and
edges, the nodes represent people or other entities embedded in an underlying social
context, and the edges represent interaction, collaboration, or influence between
two entities. For instance, in the academic domain, nodes represent scientists in a
particular discipline, and an edge is generated between two individuals if they have
coauthored papers.

On one hand, from a static perspective that all edges are considered simultaneous,
a social network has many classical invariant structural properties, such as small
world phenomenon, clustering, scare-free, and so on. All of these characteristics
provide us important information for probing other features of networks. On the
other hand, in reality, social networks are highly dynamic, that is, they grow and
change over time by adding new edges between nodes, which means that new
connections occur in underlying networks. In order to realistically model the real
world networks, it is of great advantage to consider the structure of social networks
from a dynamic perspective.

Nowadays, along with the development of online large networks and the
availability of the dataset collected from social networks, people are able to use
the existing information to understand social network evolution or the potential
structure pattern already existing but unobserved in the whole network. In this
section, we would like to introduce the link prediction problem, which is a basic
computational problem concerned with social network evolution.

2.1 Link Prediction Problem on Social Network

As a subfield of social network analysis, unlike other problems such as influence
maximization, community detection, and small network, link prediction problem is
concerned with the problem of predicting the future existence of links among nodes
in a social network.



3092 K. Yang et al.

The link prediction problem defined in [66] is as follows: Given a social network
G D .V; E/, where V denotes the set of entities and E is the set of observed
links among those groups, then the aim of the problem is to predict how likely
an unobserved link eij … E exists between an arbitrary pair of nodes .vi; vj/ in the
network. In general, the link prediction problem can be studied from three different
perspectives: they are link existence prediction (Does a link exist between two
nodes?), link classification (What type of the relationship between a pair of nodes?),
and link regression (How does the user estimate the item?), separately.

Until recently, link prediction has obtained a wide variety of applications among
areas including bibliographic domain, molecule biology, criminal investigations,
recommendation systems, and so on.

The authors in [66] summarized that the techniques used in the link prediction
problem for social network fall into three categories according to the types of mod-
els: node-wise similarity-cased approaches, topological pattern-based approaches,
and probabilistic model-based approaches. According to the resources used to
predict links between nodes, methods are developed from two aspects: one is based
on the attributes of nodes, and the other takes advantage of the structural properties
of networks. Since it is hard to collect accurate individual attributes in real world,
the structural properties make more contribution to the prediction problem.

In the following, we introduce approaches that use the topological features of
social networks in link prediction problem.

2.2 Graph Proximity Approaches

The graph proximity measures for link prediction problem depend on structural
features of the given network. The basic and intuitive method for predicting links
is to rank all node pairs according to their graph topology measurements. That is,
with regard to the input graph, a weight Score.x; y/, which is a subtle predictor
based on node neighborhood or path information, is assigned to a pair of nodes
.x; y/; after each pair of nodes get their own scores, these nodes are ranked
in decreasing order according to the values of their associated scores, and the
top-ranked pairs of nodes are predicted to have high probability to have links
between them. In addition, the meanings of these scores vary according to certain
contexts.

2.2.1 Original Graph Proximity Measures
In [39], Liben-Nowell et al. studied this problem through a number of proximity
measures to predict the new collaborations in a coauthorship network. Given
a network G D .V; E/, where V denotes the groups of authors, e D .u; v/ 2 E
represents the interactions(coauthorship) that take place at a particular time t.e/

between author u and author v.
In order to predict the interactions that will occur among those people, firstly, the

authors in [39] chose four distinct time stamps t0 < t00 < t1 < t01. Assume Œt0; t00� as



Social Structure Detection 3093

the training interval, in which the subgraph GŒt0; t00� contains the edges that appear
between the time period from t0 to t00. Meanwhile, regard Œt1; t01� as the test interval,
which is used to validate the prediction accuracy. Then, a variety of predictors
modified from techniques adopted in graph theory and network analysis are applied
to predict the similarity of pairs of nodes. These predictors are common neighbors,
graph distance, Jaccard’s coefficient, and so on, among which Score.x; y/ plays a
vital role for predicting links that are likely to appear in the future. In this section,
Score.x; y/ denotes the proximity or similarity between nodes x and y with respect
to the network topology.

To estimate the validity of these predictors, the authors in [39] brought in
two parameters, ktraining and ktest, and focused on a set Core, which contains
all nodes that are incident to at least ktraining edges in GŒt0; t00� and ktest edges
in GŒt1; t01�. For each link predictor p, the ranked list Lp of pairs of nodes in
V � V � Eold (the set of edges developed in training interval) is made up of
predicted links, which are arranged in the order of decreasing probability to
appear in the future. Denote E�new WD Enew \ .Core � Core/ and n DW jE�newj, and
take the initial n pairs of nodes in the set of Core � Core; here, the size of
the intersection component of these nodes with set E�new is used to measure the
performance of predictor p. According to the experiment analysis of predictors
on coauthorship networks from different conferences, it was suggested that the
datasets applied to this kind of networks are less noisy compared to other online
networks, that is, these coauthorship networks rely on their own topological
features rather than other external factors. Moreover, the experiment results showed
that the approaches based on the structural features outperform those ones ob-
tained from random prediction. Meanwhile, the score proved to be better than
others.

2.2.2 Weighted Graph Proximity Measures
Unlike previous methods based on structural features such as Newman’s
common neighbors [48], Adamic and Adar method [4], and preferential
attachment [45, 46] took into account of the weight of a link, here, the weight
can be viewed as the number of encounters of a user on QABB (question-
answering bulletin boards) corresponding to the number of times they meet or
communicate.

The authors in [46] defined new scores that combine both structure proximity
and link weight as follows:

The score of weighted common neighbor:

Score.x; y/ D
X

z2N.x/\N.y/

w.x; z/ C w.y; z/

2
; (2)

where w.x; z/ denotes the weight of the link between node x and node z.
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The score of weighted Adamic and Adar method:

Score.x; y/ D
X

x02N.x/\N.y/

w.x; z/ C w.y; z/

2
� 1

log.
P

z02N.z/ w.z0; z//
: (3)

The score of weighted preferential attachment:

Score.x; y/ D
X

x02N.x/

w.x0; x/ �
X

y02N.y/

w.y0; y/: (4)

Murate and Moriyasu [46] collected the data information from the perspectives of
encrypted user ID, categories, date, and time. The main idea is first, group QABB
Data into two categories, that is, the early time data is used for training and the
later one for testing, which aimed at making computation valid. Then, model a
social network by adding links to all pairs of the answers in each question for
each category. Finally, predict links that are possible to occur based on proximity
measures. The validity of the predictors is measured by

accuracy D number of correctly predicted links

number of new links
: (5)

According to the experiment results in [46], it is shown that Adamic and
Adar method performs better than the measure of common neighbors, and for
networks whose degree distributions are almost uniform, preferential attachment
performs bad. To be excited, the weighted Adamic and Adar method outperforms
the original Adamic and Adar approach, weighted common neighbor measure
also outperforms original common neighbors over almost all cases, and weighted
preferential attachment works slightly better than original preferential attachment
only when social networks are relatively dense. In general, when the weighted
case is considered, the performances of link predictors are improved compared to
previous pure proximity measures. The most important contribution of this measure
is that it is fairly effective for open and dynamic online social networks, especially
when the network is sufficiently dense.

2.2.3 Generalized Clustering Coefficient-Based Measures
The above two approaches solve the prediction problem under the condition that a
network model has been given. However, when the model is not provided, how to
build the model of a network? Moreover, it is shown that the methods for prediction
problem have close relation with the topological structure of large-scale networks.
Thus, it is plausible to generate parsimonious graph models, whose characteristics
can be used to describe the significant mechanisms governing the structure of
graphs.

Huang [33] showed that structural predictors summarize graph data categories
with respect to graph generation model and explain link occurrences in an observed
graph. Thus, those measures are of great value to predict the link appearance in the
future. As for other predictors, more attention was paid on analyzing generalized
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clustering coefficient, which is supposed to describe a cycle formation model. Based
on the model, a new method for prediction problem was proposed.

Firstly, Huang [33] introduced relevant notations of a graph and defined the
generalized clustering coefficient. Given G D .V; E/ a finite undirected graph
with only simple edges, that is, there are no multiple edges or self-loops in the
graph. V D .1; 2; � � � ; N/ is the set of vertices of G, and E D .e1; e2; � � � ; eM/

is the set of edges of G, each es corresponds to a sequence of two vertices
.i; j/, and the terms of link and edge can be viewed as the same one. A path
of length k is denoted as p D .v0; v1; � � � ; vk/, where .vi; viC1/ is an edge of
the graph for all 0 � i � k � 1. Define a cycle of length k as a list of vertices
p D .v0; v1; � � � ; vk; v0/, where .vi; viC1/ is an edge of G for all 0 � i � k � 1. Pijk

represents the set of paths of length k starting at i and ending at j, and jPijkj is the
number of such paths. A generalized clustering coefficient C.k/ of degree k was
defined as

C.k/ D number of cycles of length k in the graph

number of paths of length k
: (6)

Then the algorithm applied to the cycle formation link probability model is
introduced, in which the occurrence probability of a link is determined by the
number of cycles (of different lengths) that will be formed by adding this link. The
algorithm made the assumption that the clustering coefficient (of deferent degrees)
is static.

The Algorithm [33]
In this algorithm, a cycle formation model of degree k.k � 1/ is denoted as CF.k/,
and a list of parameters c1; � � � ; ck are adopted for corresponding link generation
mechanisms g.1/; � � � ; g.k/, which are used to determine the probability that a link
will appear. Here, g.1/ is a mechanism similar to a random link generation process.
Other mechanisms g.k/0s .k > 1/ are consistent with link probability governed
by the paths of length k, where length one means one edge between two nodes.
ck D Pr..i; j/ 2 EjjPrijkj D 1/ is used to measure the probability that a length-k path
will become a length-k cycle. Derive from an instance, an equation for ck was
generalized:

Pr..i; j/ 2 EjjPijkj D m/ D cm
k

.cm
k C .1 � ck/m/

; k > 1: (7)

Considering the effects coming from multiple mechanisms, the above equation
can be furthered as follows:

Pm2;��� ;mk D Pr..i; j/ 2 EjjPij2 D m2; � � � ; jPijkj D mk/

D c1cm2
2 � � � cmk

k

c1cm2
2 cmk

k C .1 � c1/.1 � c2/m2.1 � ck/mk
; (8)
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where Pm2;��� ;mk denotes the total link occurrence probability under the cycle
formation model of degree k.

Then we introduce the approaches adopted to estimate the parameters of the cycle
formation model based on the generalized clustering coefficients. Actually, when the
parameters are figured out, to obtain the link probabilities, it only needs to apply the
estimated parameters to Eq. (7). The operations used in this algorithm are iterative.

Firstly, according to the degree distribution, start the computation with a com-
plete random model, then get the cycle formation probability c1. C.k/ is regarded
as the generalized clustering coefficient and is calculated one by one. Secondly,
compare C.2/ with c1, if C.2/ cannot be expressed by c1, then new formation
mechanism for length-2 cycle will be generated. Then, continue to compare the
observed C.3/ with the expected C.3/ under the length-2 cycle formation model,
so the estimator c3 can be derived. When it satisfies the degree of the model, the
procedure terminates. The primary component of this method depends on the fact
that C.k/ is a function of c1 and has no relation with ck0 , here, k0 > k. The method
is formally described as follows:
1. Input information of G D .V; E/.
2. Compute the generalized clustering coefficients C.2/; � � � ; C.k/ through Eq. (6).
3. Compute the connecting probability under random graph with the degree distri-

bution of G as c1, which is the cycle formation probability.
4. Denote c2 as

c2 D .1 � c1/C.2/

.c1 � 2c1C.2/ C C.2//
:

5. Set ci D 0:5, where i D 3; � � � ; k.
6. For i D 3; � � � ; k, iteratively apply the following equation:

ci D argminc0

i
.jC.i/ � f.c1; � � � ; c0i; � � � ; ck/j/:

7. Output the values of c1; � � � ; ck that have been figured out.
The function which is denoted as

f.c1; � � � ; c0i; � � � ; ck/ D
X

i

#.Gi/Pr.Gi/Pr..1; k C 1/ 2 EjGi/ (9)

is the total probability of link .1; k C 1/’s occurrence conditional on a path
p D .1; 2; � � � ; k C 1/. It is also the theoretical prediction of the expected clus-
tering coefficient of degree k, denoted as EŒC.K/� based on the cycle formation
model. For a given path of length k, Gi is supposed to be a possible graph
pattern, #.Gi/ denotes the number of subgraphs corresponding to this graph
pattern, and Pr.Gi/ is the probability for one of the subgraphs to occur, the
probability for edge .1; k C 1/ to occur under certain condition of Gi is denoted as
Pr..1; k C 1/ 2 EjGi/.
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Experiment Evaluation ([33])
The experiments were carried out on Enron email dataset, which is a large email
collection from a real organization over the course covering a 3.5 years period. In
the experiment, the author mainly evaluated the performances of the cycle formation
link probability model and the corresponding link prediction algorithm. The dataset
analyzed contains 40,489 emails during May 11, 1999, to June 21, 2002. And this
paper implements the link prediction analysis on the monthly email graph in 2001.
The email graph is undirected and unweighted, and the edges connect senders and
recipients of emails during the corresponding time periods. An edge .a; b/ means
that there is at least one email communication between a and b, that is, either a sends
at least one email to recipients including b or b sends at least one email to recipients
including a. And month t was set in 2001 to build the initial graph Gtb through the
emails in the previous 3 months .t � 3; t � 2; t � 1/. This graph is regarded as the
input for prediction of email links in Gt, thus, the primary goal is to predict the
occurrence of links in Gt that do not exist in Gtb.

To evaluate the performance of link prediction, construct a receiver operating
characteristics (ROC)-style curve with x-axis as the percent of total possible
new links selected and y-axis as the percent of actual new links that are
in the selected links, respectively. Then area under curve (AUC) measure
is applied to estimate the link prediction performance. It is shown that the
algorithm based on the cycle formation model performs better than others
that already existed, and has great power to predict the probability of link
occurrence.

2.3 Supervised Learning-Based Approaches

Facing the challenge of a wide application of the link prediction, it is necessary
to construct both a powerful and universal framework. Although the work in
[39] demonstrated improvement of measures for prediction problem over random
predictors, they used the properties only based on network intrinsic topological
structure, while there are other non-topological properties that proved to enhance
the performance of methods for link prediction problem. In [32, 40, 43], the
authors regarded the prediction problem as a classification modeling, in which
they extracted the features both from topology and non-topology. Throughout their
studies, supervised learning played a vital role, and [40] improved the predictive
accuracy of supervised learning.

Firstly, we introduce the concept of supervised learning. Supervised learning is
a task to infer a function from the supervised training data, which contains a big
volume of samples, where each sample consists of an input object and a desired
output value. Based on the data information, a supervised learning algorithm is used
to analyze the training instances to produce the expected function, which will be
applied to predict the output value of any input instances. In general, supervised
learning contains the following steps:
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1. Determine the types of training examples.
2. Collect a training set.
3. Determine the input feature representation for the learned function.
4. Determine the structure of the learned function and its corresponding learning

algorithm.
5. Complete the design process.
6. Evaluate the performance accuracy of the learned function.

During supervised learning, four major issues should be considered. The first
is the amount of training data available relative to the complexity of the “true”
function (classifier or regression function), the second is the trade-off between bias
and variance, the third is the dimensionality of the input space, and the fourth is the
degree of noise in the desired output values (the supervisory targets).

2.3.1 Work of Madadhain et al. [43]
In this article, the authors studied an event-based network dataset, which consists
of sets of events over time. They paid special attention to the temporal feature
of the data, and two specific problems related to the event network data were
extensively studied. Here, we only introduce one of them: predicting future event
co-participation of entities, which aims to estimate to what extent that a given pair
of individuals will co-participate in at least one event during some specific time
period in the future.

To simplify the following analysis, we introduce the definition in [43], where
E D fe1; � � � ; emg denotes a set of events and V D fv1; � � � ; vng represents the set
of participating entities. The set of entities that participate in event ei is named as
Pi. Each event and each entity can have a set of attributes or covariates. And the
covariates for ei and vj are denoted as yi and xj, respectively. The sets of all events
and entity covariates are represented by Y and X, respectively. The time that an event
ei occurrs is denoted as ti, and i means that ei is the ith occurred events. vj; vk 2 Pi

means that vj and vk are co-participants in event ei, and vj; vk 2 Pt;tC�t means
that vj and vk are co-participants in one or more events in the interval Œt; t C �t�.
Meanwhile, name the subset of events taking place in the interval Et;tC�. Usually, a
vertex corresponds to an entity in a network derived from such a dataset, and edges
connect vertices that participate in the same events.

The prediction problem was considered as a data-driven classification prob-
lem, in which there are two classes consisting of co-participating and not co-
participating. Firstly, probabilistic classifiers were used to offer a probability to each
class according to the values of some specified features. The probability is defined
as follows:

p.vj; vk 2 Pt;tC�tjf.E1;t;V ; X; Y/ D w/; (10)

where vj; vk 2 Pt;tC�t is a binary suggestion determining whether entities vj and
vk co-participate in any event in the time period Œt; t C �t�, f is a function used to
produce a vector w of feature values, E1;t is the historical event data through to time t,
and X,Y are the relevant entity and event covariate data, respectively. Then based on
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the formulation, the problem can be regarded as learning the mapping from feature
vectors to class probabilities, and it can be computed by standard “off-the-shelf”
prediction algorithms.

To construct a classification model, the authors proposed foundational compo-
nents for the operation of classification, which include feature selection, training
sets and test sets, classification method, and evaluation metric. Then based on
the model, experiments were implemented and indicated that relatively standard
machine learning approaches could be used to draw predictive information from the
event data, which could be regarded as a ranking machine to detect the individual
pairs that have high probability to co-participate in future event.

2.3.2 Work of Lichtenwalter et al. [40]
As for previous supervised methods, the researchers were interested in a domain of
the prediction problems with highly imbalanced class distributions [32], although
the measures adopted work well, the results of the tests operated on the modified
data cannot provide the precise information of the real world, and the performance
measures in tests were not available to present the strength and weakness of
the models. On the other hand, these models mainly use both the semantic and
contextual information related almost exclusively with the bibliographic realm. In
addition, the surprising influence of geodesic distance and the complexity of class
imbalance specific to the task of link prediction were neglected in those works.
Furthermore, many factors, which played significant role in influence and guide
classification, had not been explored previously by supervised learning.

In [40], the authors first proposed a supervised framework, which considered the
factors of the observational period in the network: generality of existing methods,
variance reduction, topological causes, and degrees of imbalance. The attractive
merit of the framework is its universality, which means that it can be used on any
kind of networks, that is, whether a network is weighted, unweighted, directed, or
undirected, the framework can be applied to it. Additionally, the framework has
the capability of accepting vertex attributes even though it does not need them.
Besides studies in supervised learning for prediction problems, an intuitive flow-
based metric was applied to the unsupervised measures to obtain more predictive
results.

Next, we would like to introduce the PropFlow method for unsupervised
prediction, which was proved to be an efficient predictor. The procedure of the
algorithm is given as follows.

The PropFlow method [40] corresponds to the possibility that a restricted random
walker starts at vi and terminates at vj in k steps or fewer by using link weights as
transition probabilities. The walker chooses links based on their weights, and the
score in the method is applied to predict the occurrence of new links in the future.
PropFlow is somewhat like rooted PageRank, but it is a more localized approach
of diffusion and is insensitive to topological noise that is far from the source node.
Furthermore, PropFlow simply employs a modified breadth-first search restricted to
height k, by which it computes faster.
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Algorithm 1 PropFlow predictor [40]
Input information of network G D .V; E/, node vs and maximal length l

1: Add node vs to a set denoted as Found
2: Put node vs to another set called NewSearch
3: Add .vs; 1/ into S
4: For CurrentDegree, which ranges from 0 to l, do
5: Assign the value of NewSearch to a set OldSearch
6: Make NewSearch as a empty set
7: While OldSearch is not empty, do
8: Bring out vi from OldSearch
9: Find NodeInput through vi in S

10: Assign SumOutput 0
11: For each vj in vi’s neighborhood do
12: Add weight of eij to SumOutput
13: End for
14: Set the value of Flow to be 0
15: For each vj in vi’s neighbors do
16: Assign the weight of eij to wij

17: Assign Flow the value of NodeInput �wij SumOutput
18: Sum (vj, Flow) and put it into S
19: If vj is not in Found then
20: Add vj into Found
21: Put vj to NewSearch
22: end if
23: end for
24: end while
25: end for
26: Output score Ssd for all n � l-degree neighbors vd of vs

Supervised learning, which includes dataset collection, generalization, variance
reduction, and sampling, was investigated. Based on the detailed study of those
above operations, class imbalance is proposed. Combining the nature of the
prediction problem and the benefit of supervised learning, the author implemented
the supervised framework by classification including general feature extraction,
ensemble of classifiers, and overcoming imbalance.

The experiments in [40] were carried out on two datasets: one is a stream
of 712 million cellulars from a major non-American cellular phone service
provider, and the other is a stream of 19,464 multi-agent events representing
condensed matter physics collaborations from 1995 to 2000. For the former
dataset, a weighted, directed network (phone) was built, in which a node vi

represented a caller, and if vi called vj, a weighted and directed link eij would
connect vi with vj, where weight was the number of calls on the link. For the
latter dataset, a weighted, undirected network (condmat) from the collaborations
was constructed, in which a node represented an author in the event, and a
weighted, undirected link was used to denote the interactions between each pair of
authors.

Based on those above experiments, it is shown that the general supervised frame-
work outperformed other existing approaches, and the framework was demonstrated
to be entirely general, that is, it is able to operate on any kinds of networks whether it
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is weighted, unweighted, directed, or undirected. It has the capacity to accept vertex
attributes though it does not need to consider them. Get more useful results reading
[40].

3 Local Structure

One of the most significant characters of social networks is the local structure, also
known as community structure. That is, a massive social network always contains
many very dense subgraphs. Identifying these dense subgraphs or communities will
help reveal the underlying network structure and analyze the common activities of
individuals. In this section, we will introduce the community properties and review
several algorithms for community identification.

3.1 Social Community

Several significant characters of social networks have drawn the attentions of many
researchers, such as the small-world property, power-law degree distributions, and
local structures, also known as communities. In this section, we will focus on this
community property.

In a social network, individuals are shown as nodes, and interactions between the
individuals are presented by edges, like relationships and influence. The individuals
tend to form communities. A community is a group of nodes that are similar to each
other and dissimilar from the rest nodes in the network. In a network, it is usually
thought as a group where nodes are densely interconnected and sparsely connected
to other parts of the network.

So far, several definitions for community structure have been derived. One of the
most intuitive ways is to define community in terms of cliques. A clique in a graph is
a subgraph in which any pair of nodes are linked. Based on this, the authors in [58]
regard maximal cliques in a graph as communities. A maximal clique is a clique
that is not contained by any larger clique. Abello et al. [1] generalized the definition
of clique and proposed a structure named quasi-clique. A connected subgraph is
considered to be a quasi-clique when it is dense enough. Filippo et al. [54] proposed
two definitions for community structure. Consider a subgraph V of graph G. For any
node i 2 V, let Kin

i be the inside degree of node i, for example, the number of links
toward nodes in V. And let Kout

i be the outside degree of node i. Then they defined
that the subgraph V is a community in a strong sense if

Kin
i > Kout

i ; 8i 2 V: (11)

In this strong community, each node has more connections within the community
than with the rest of the graph. Also, they defined the community in a weak sense by

X

i2V

Kin
i >

X

i2V

Kout
i : (12)
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In this weak community, the sum of all degrees within V is larger than the sum of
all degrees toward the rest of the network.

Although none of the above definitions can be considered universal, they are all
capable to capture the underlying properties of social networks.

3.2 Social Community Identification

Community identification is to find groups that either have an inherent or an exter-
nally specified notion of similarity among their nodes. As mentioned earlier, people
in the same community are more similar than people from different communities.
Which means that they might share more on information, interests, experiences,
and other useful resources. So discovering the underlying community structures has
direct impacts on optimizing and managing activities in a social network. Agarwal
and Kempe [5] showed that identifying communities might help people study the
whole massive network by communities. That is, after partitioning the graph into
communities, one can start focusing on single community. Since nodes of the same
community have considerable overlapping on their characters, the analysis inside
one community would be more convenient and meaningful. They also claimed that
by contracting each community into a node, one can simplify the original large-scale
network considerably. This will help people get to know the network from a very
high point of view.

Due to the above reasons, community identification has become a very important
issue in the social network study. However, nowadays, social networks are usually
huge massive networks consisting of millions of nodes, so in general, very little
is known about the community structure of a graph; thus, one of the challenges
in community identification is that the number of communities in a network
and their sizes are not known beforehand. Furthermore, the communities need
to be established by the community detection algorithm. Next, we will introduce
algorithms within different categories and show how they deal with the challenge
and generate communities effectively.

3.2.1 Hierarchical Clustering
Hierarchical clustering is the most widely used method among traditional commu-
nity identification methods. The core of any hierarchical clustering method is the
definition of a similarity measure between vertices. Once such a measure is set, one
can compute and sort the similarity values for all pairs of nodes in the given network.
Based on the direction of a community formulation procedure, the corresponding
methods fall into the following two categories:

Agglomerative algorithms: start with a non-edge graph with only node set. Edges
are iteratively added into this graph by decreasing order of similarity values until the
original graph is formed.

Divisive algorithms: run in the opposite direction of agglomerative algorithms.
They start with the original graph, and edges are deleted based on the increasing
order of the similarity values.
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The two categories of algorithms will finally generate a tree or dendrogram for
the original graph. All the nodes of the given graph are presented by leaves. A
non-leaf node on the tree denotes the community resulted from the merging of two
smaller communities. The root would be the original graph.

The hierarchical clustering method does not provide any measure of when
the clustering procedure should be terminated. So as for the size and number of
communities, the terminating point should be manually decided according to the
application scenario.

Several Similarity Measures
Structural equivalence is a property derived from sociological studies. Two nodes
are of structural equivalence if they have the same set of neighbors. A measure
called correlation coefficient was proposed in [63] based on structural equivalence.
Suppose Ai;j is the adjacent matrix for the given graph. Define means and variances
of the columns as

�i D 1

n

X

j

Aij; ¢2
i D 1

n

X

j

.Aij��i/
2I (13)

the correlation coefficient is

xij D
1
n

P
k.Aik � �i/

P
k.Ajk � �j/

¢i¢j
: (14)

Vertices that have a high degree of structural equivalence will have high values of
this similarity measure, and meanwhile, those that do not have a high degree of
structural equivalence will have low values.

Another similarity measure is the number of edge (vertex)-independent paths
between two nodes [64]. Intuitively, the more independent paths between two nodes,
the more related they are. This measure is easy to calculate through augmenting path
algorithm.

A measure called “edge betweenness” was proposed in [26]. Recall that in
hierarchical clustering method, the algorithm iteratively finds the most “central”
edges and adds them into communities. Different from those traditional similarity
measures, “edge betweenness” describes how an edge is “between” communities
and the algorithm will run in a divisive manner.

For edge e, the edge betweenness of e is defined to be the number of shortest
paths between pairs of other vertices that run through e. The idea behind this
definition is that if a network contains communities or groups that are only loosely
connected by a few intergroup edges, then all shortest paths between different
communities must go along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness.

Their algorithm is proposed as follows:
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Algorithm 2 Algorithm based on edge betweenness [26]
1: For each edge in the graph, calculate its edge betweenness. Sort all the edges by decreasing

order of the edge betweenness.
2: Recalculate betweennesses for all edges (or for time efficiency, only those whose betweenness

value are changed after the removal). Perform another sorting process.
3: Repeat steps 2 and 3 until there is no edge left.
4: Based on the removal, a hierarchical dendrogram can be generated. Then a community partition

can be decided manually.

3.2.2 Modularity-Based Algorithm
As mentioned earlier, so far, there is no universal definition for communities. But a
quantity known as modularity, derived by Newman and Girvan [50], can measure
how good a community partition is.

For a given graph G D .V; E/, let A be its adjacent matrix; then

Avw D
�

1 when .v; w/ 2 E;

0 otherwise:
(15)

Suppose all the vertices have been divided into communities. Let cv denote the
community node v belongs to. Define function • to be

•.i; j/ D
�

1 if i D j;
0 otherwise:

(16)

Then the fraction of edges that fall within communities, that is, edges that connect
vertices that both lie in the same community, is

P
vw Avw•.cv; cw/P

vw Avw
D 1

2m

X

vw

Avw•.cv; cw/; (17)

where m D 1
2

P
vw Avw is the number of edges of graph G. This quantity is not

suitable to measure the strength of community partitions for the case that all
the nodes form the same community. Under this case, the quantity is maximized
while there is no community structure information proposed at all. However, if the
expected value of the same quantity is subtracted from it in the case that every edge
is generated randomly, an effective measure can be obtained.

Set kv to be the degree of node v:

kv D
X

v

Avw: (18)

Then the probability that there is a random edge between node v and node w is

pvw D kv � kw

2m
: (19)
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The modularity Q is defined to be

Q D 1

2m

X

vw

�
Avw � kvkw

2m

�
•.cv; cw/: (20)

By defining modularity in this way, the case that the whole graph forms one
community can be avoided since the corresponding quantity is 0. This modularity
expression can be reformulated through the following two quantities:

eij D 1

2m

X

vw

Avw•.cv; j/•.cw; j/; (21)

which denotes the fraction of edges between community i and community j. Another
quantity is

ai D 1

2m

X

v

kv•.cv; i/; (22)

which is the fraction of edges that have one endpoint falling in community i. Notice
that

•.cv; cw/ D
X

i

•.cv; i/•.cw; i/; (23)

then

Q D 1

2m

X

vw

�
Avw � kvkw

2m

�
•.cv; cw/

D 1

2m

X

vw

�
Avw � kvkw

2m

� X

i

•.cv; i/•.cw; i/

D
X

i

"
1

2m

X

vw

Avw•.cv; i/•.cw; i/ � 1

2m

X

v

kv•.cv; i/
1

2m

X

w

kw•.cw; i/

#

D
X

i

.eii � a2
i /:

(24)
Newman and Girvan [50] showed that, in practice, values being greater than

about 0.3 appear to indicate significant community structure. Based on modularity,
many algorithms have been designed, which makes modularity currently the most
widely used measurement for community identification. Next, we start introducing
several of these algorithms.

Greedy Algorithms
One most intuitive algorithm is a greedy strategy derived by Newman [49]. At the
beginning, each node forms a sole community. Then communities are integrated
together in pairs repeatedly. Which pair to be combined is based on the increase
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that they make on Q. The procedure continues until all the nodes are contained in
one community. Clearly when the algorithm terminates, a dendrogram is generated,
showing the order of these combinations. Then as introduced earlier, communities
partition can be manually determined. Each step of the algorithm takes time
O.m C n/ in worstcase. At most, n � 1 combination operations are needed to
construct the complete dendrogram. So the algorithm runs in time O..m C n/n/.
When it comes to sparse graph, it is O.n2/.

Clauset et al. [16] improved the above algorithm and proposed another similar
algorithm but has running time O.mdlogn/, where d is the depth of the dendrogram
describing the community structure. In their algorithm, instead of maintaining the
adjacency matrix and calculating �Qij for each pair .i; j/, a matrix of value of �Qij

was directly maintained and updated. Communities that have no edges between
them will not make changes to the value of Q. Hence, the algorithm will only
focus on communities that are linked by some edges. Additionally, another two
data structures, which will further save both memory and time consumption of the
algorithm, were maintained to track the largest Qi. These two data structures are
described as follows:
1. A vector array H recording the largest element of each row of matrix �Qij and

the corresponding labels i,j
2. A vector array with elements ai

The algorithm also starts with the state that each vertex forms a sole community.
Initially

eij D
�

1=2m if .i; j/ 2 E;

0 otherwise;
(25)

and ai D ki=2m. So

�Qij D
�

1=2m � kikj=.2m/2 .i; j/ 2 E;

0 otherwise:
(26)

The algorithm then proceeds as follows:

Algorithm 3 Greedy algorithm [16]
1: Calculate the values of �Qij and ai, and construct vector array H.
2: Choose the largest �Qij from H, merge the corresponding communities, and update the matrix

�Q, vector array H, Q, and ai.
3: Repeat step 2 till there is only one community left.

Step 2 is supposed to be carried out faster according to the definition of H and ai.
If communities i and j are merged, then the ith row and column of �Q are removed
and the jth row and column are updated. The update rules are as follows:

If community k is connected to both i and j, then

�Q0jk D �Qik C �Qjk: (27)



Social Structure Detection 3107

If k is only connected to i, then

�Q0jk D �Qik � 2ajak: (28)

If k is only connected to j, then

�Q0jk D �Qik � 2aiak: (29)

Searching Strategies
Simulated annealing [7] is an optimization technique that stochastically avoids local
peaks by introducing a computational temperature T. When T is high, the searching
direction is flexible. Which means that the algorithm is allowed to reach an area with
an objective value worse than the current spot. When T decreases, such flexibility
is weakened. And after T reaches 0, the algorithm will stop and output the current
solution.

In [31], the authors applied the simulated annealing technique for modularity-
based identification algorithm to maximize the modularity value. So here, the
objective of the simulated annealing procedure is

C D �Q; (30)

where Q is still the value of the modularity.
There are three operations during the annealing process:

1. Movements of nodes between communities
2. Merging two communities into a new community
3. Splitting one community into two new communities

These operations are performed with probability

p D
�

1 if Cf � Ci;

exp
�� Cf�Ci

T

�
if Cf > Ci:

(31)

The algorithm starts with an initial value for T and runs iteratively. In each
iteration, certain numbers of operation are performed based on the probability
defined above. Then T is decreased for a fixed value and another iteration starts.
Once T reaches 0, the algorithm will terminate and the final communities will be
outputted.

3.2.3 Fast Algorithms
The real-world networks are usually huge in size and always have massive struc-
ture thus, time efficiency of the community detection algorithm is an important
performance measure. The above several algorithms we introduced are usually
very time-consuming while facing such complex networks. In this section, we will
introduce several algorithms that have near linear running time.
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In [65], the authors presented a method that allows for the discovery of
communities within graphs of arbitrary size in times that scale linearly with their
size. The basic idea behind the algorithm is as follows.

Firstly, partition the given graph G D .V; E/ into two communities. At the
very beginning, two nodes A and B are selected and assumed to belong to two
different communities (the selection policy will be introduced later). Suppose the
two communities are presented by G1 and G2. Then the whole graph is considered
as an electric circuit. Edges of the graph are taken as resistors of the same resistance.
A battery is placed with A and B as the poles, which will add constant voltages on
them, suppose 1 on A and 0 on B. Then there will be flows flowing through all
the edges. By solving Kirchhoff equations, the voltages Vi for each node i can be
obtained, which lie between 0 and 1. Based on a threshold given beforehand, it will
be easy to decide which community each node belongs to.

For a certain node C in the graph, suppose its neighbors are D1; : : : ; Dn.
According to Kirchhoff equations, let Ii denote the current flowing from Di to C,
the following equation holds

nX

iD1

Ii D
nX

iD1

VDi � Vc

R
D 0; (32)

which means that the total current flowing into C should sum up to zero. Hence the
voltage of a node equals to the average of its neighbors, that is,

VC D 1

n

nX

iD1

VDi : (33)

According to the above equation, the Kirchhoff equations of G can be formulated
as follows:

V1 D 1; (34)

V2 D 0; (35)

Vi D 1

ki

X

.i;j/2E

Vj D 1

ki

X

j2G

Vjaij i D 3; 4; : : : ; n; (36)

where ki is the degree of node i and aij is the element of the adjacency matrix of the
graph. Equation (36) can be further written as

Vi D 1

ki

nX

jD3

Vjaij C 1

ki
ai1 i D 3; 4; : : : ; n: (37)

By defining
V D .V3; : : : ; Vn/T; (38)
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B D

0

BB@

a33
k3

� � � a3n
k3

:::
:::

an3
kn

� � � ann
kn

1

CCA ; (39)

C D
�

a31

k3
; : : : ;

an1

kn

�T

; (40)

the Kirchhoff equations can be presented by a matrix form

V D BV C C: (41)

The corresponding solution to the above equation is

V D .I � B/�1C: (42)

Furthermore, the equation can be simplified as

LV D D; (43)

where

B D

0
BB@

k3 � a34 � � � � a3n

�a43 k4 � � � � a4n

� � � � � �
�an3 � an4 � � � kn

1
CCA ; (44)

D D .a31; : : : ; an1/: (45)

To solve the equations, instead of applying the well-known spectral partitioning
method, the authors derived a much faster technique that does not compute the
eigenvectors of G. Their algorithm starts with a precomputing process which
evaluates the initial values for each node. This process takes O.V/ time. Then
iteratively, based on Eq. (33), the algorithm starts updating the voltage value of
each node. The final precision is related to the number of such rounds. Therefore,
the performance of the algorithm is proportional to the time it consumes, and this
procedure costs O.

Pn
iD3 ki/ D O.E/ time.

After the above processes terminate, each node gets a voltage value. Then all
nodes are sorted according to the voltage value. The authors applied a spectrum
presentation, that is, each node is illustrated as a vertical line at the abscissa which
is equal to the corresponding voltage value.

Then two challenges come up. One is that if the initial two poles are actually in
the same community, obviously, the algorithm will fail. In [65], the authors gave a
strategy based on the idea that two nodes that are far away from each other belong to
different communities with high probability. So while determining the pole nodes,
two nodes with as long distance between them as possible are considered firstly.
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This is done by starting with an arbitrary node. Find a node farthest from it by
breadth-first search, then find a node farthest from this second node. After certain
steps, choose the farthest pair. The other challenge is how to identify the two
communities based on the voltage spectrum. Their idea is to find the reasonable gap
in the voltage spectrum as large as possible. Here, a reasonable gap is mentioned
because the largest gap usually appears at the two endings of the voltage spectrum,
which does not make clear sense.

Having shown the algorithm that partitions a network into two parts, it would be
easy to discuss the condition that more than two communities are required. Wu and
Huberman [65] explained this by an example of partitioning the US college football
data into 13 conferences. Here totally 115 teams are involved. The algorithm runs in
13 iterations, in each of which, one community is found. At the beginning of the first
iteration, two poles are selected. Then the algorithm for two community identifica-
tions is applied to generate the spectrum. Based on this spectrum, two communities
are found from the two endings of the spectrum according to the preestimated com-
munity size. The process is repeated for 50 times to generate 100 such communities,
which are called candidates. Then the rest task is to find 13 communities out of
these 100 candidates. This is done by firstly specifying a node(team) that appear in
the maximum number of candidate sets. Then select another several nodes based on
the number of times they appear in the same candidate set with the specific node.
Together, they form the first community. Then find the second specific node that
appears in the maximum number of candidate sets, ignoring the nodes in the first
community. After another 12 iterations, all the 115 teams will be partitioned into 13
conferences.

Recently, Raghavan et al. [55] proposed a localized community detection
algorithm based on label propagation. In their algorithm, initially, each node is
assigned a unique label. Then at every iteration of the algorithm, each node scans its
neighbors, finds the label that most of them take, and adopts it. It is easy to regard
the process as a label propagation through the network. Finally, nodes sharing the
same label are considered to be of the same community. Clearly, this algorithm is
distributed and takes almost linear time.

4 Influence Maximization Problem

A social network is like a huge container, in which thousands of individuals
build up their relationships and interactions. Within a social network, ideas or
information among its members spread like a cascade and the influence of the
information has practical value. When it comes to marketing, for example, a
salesman wants to promote the new products of his company, how should he make
his marketing strategy such that the products are purchased by as many customers
as possible? This kind of problem is called influence maximization problem in
social networks. In order to estimate the influence between individuals and the
probability of customers’ acceptance, some promotion (discount) will be given to
certain customers for free to maximize the sales of the products. Therefore, it can



Social Structure Detection 3111

be seen that the most important step is to select proper target customers, then the
question is that by what standard a group of initial target customers will be chosen
to get the best influence result. In other words, it is valuable to maximize “word-of-
mouth” effect [8, 10, 27, 28, 44].

Due to the strong network effect, only taking into consideration the intrinsic
value (the value that an individual purchases a product based on his own desire)
is not enough. A more important values, say, network value should be taken
into account. A network value is used to evaluate the positive influence of one
customer on the others around him/her. The combination of the intrinsic value
and network value comes up to be the standard that is used to target the initial
customers.

In this section, we will introduce the influence maximization problem and its
corresponding algorithms. Domingos and Richardson [20] firstly addressed this
problem as a fundamental algorithmic problem. To solve this problem, we introduce
two probabilistic models and two operational diffusion models in next section.
Except the simplest linear function probabilistic model, the other three are all
NP-hard problems. Greedy approximation algorithms with .1 � 1=e/ – approxima-
tion performance are given.

4.1 Two Probabilistic Models

4.1.1 A General Model
Suppose there are n potential customers in the system. Define them as Xi, which
is a Boolean variable (Table 1). If customer i purchases the product, Xi is 1;
otherwise, Xi is 0. Xi corresponds to the ith customer. Ni is the set of all
neighbors of Xi, i.e., Ni D fXi;1; : : : ; Xi;nig � X � Xi, where X D fX1; : : : ; Xng.
Let Xk(Xu) be the customers whose value is known(unknown), and let
Nk

i = Ni\ Xk and Nu
i = Ni \ Xu. Assume the product is described by a set of

attributes Y = fY1,. . . ,Ymg. Define Mi as a variable showing the marketing action
of customer i. For instance, Mi could be a Boolean variable, with Mi = 1 if the
customer is offered a given discount, and Mi = 0 otherwise. Let M = fM1; : : : ; Mng.
Thus, for all Xi … Xk, there is

[20]P.XijXk; Y; M/ D
X

C.Nu
i /

P.Xi; Nu
i jXk; Y; M/

D
X

C.Nu
i /

P.XijNu
i ; Xk; Y; M/P.Nu

i jXk; Y; M/

D
X

C.Nu
i /

P.XijNi; Y; M/P.Nu
i jXk; Y; M/: (46)
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Table 1 Symbols in the system model

Item Description

X: fX1; X2; X3; : : : ; Xng denotes the set of customers or the purchase activity of customers
Ni: fXi;1; : : : ; Xi;nig denotes Xi’s neighbors
Nk

i : Neighbors in Ni which are known of purchasing the product
Nu

i : Neighbors in Ni which are unknown of purchasing the product
Y: fY1; : : : ; Ymg denotes the set of product attributes
M: fM1; : : : ; Mng denotes the marketing plan
C.Nu

i /: The set of all possible configurations of the unknown neighbors of Xi

According to [53], P.Nu
i jXk; Y; M/ is approximated by its maximum entropy

estimate if the marginal P.XjjXk; Y; M/ is given for Xj 2 Nu
i . Then

[20]P.XijXk; Y; M/ D
X

C.Nu
i /

P.XijNi; Y; M/
Y

Xj2Nu
i

P.XjjXk; Y; M/: (47)

Because in Eq. (47), P.XijXk; Y; M/ is expressed as the function of themselves, it
can be applied iteratively with an initial value. One of the initial value is P.XijY,M/,
which is the network-less probabilities. Note that the number of terms in Eq. (47) is
exponential in the size of Nu

i . If this number of the unknown neighbors of Xi is small,
this should not be a problem, otherwise, an approximate solution is necessary. Gibbs
sampling [25] is one of the standard methods for this problem, and another one is
based on an efficient k-shortest-path algorithm presented by Chakrabarti et al. [12].

If Ni and Y are given, Xi should be independent of the marketing actions for other
customers except its neighbors. Then a naive Bayesian model is used to present Xi

as a function of Ni; Y1; : : : ; Ym, and Mi:

[20]P.XijNi; Y; M/ D P.XijNi; Y; Mi/

D P.Xi/P.Ni; Y; MijXi/

P.Ni; Y; Mi/

D P.Xi/P.NijXi/P.MijXi/

P.Ni; Y; M/

mY

kD1

P.YkjXi/

D P.XijNi/P.MijXi/

P.Y; MijNi/

mY

kD1

P.YkjXi/: (48)

It is known that
P.Y; MijNi/ D P.Y; MijXi D 1/P.Xi D 1jNi/ C P.Y; MijXi D 0/P.Xi D 0jNi/.
The corresponding network-less probabilities are P.XijY; M/ D P.Xi/

P.MijXi/
Qm

kD1
P.YkjXi/

P.Y;Mi/
[20].
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To compute Eq. (47), it only needs to know the following probabilities if Eq. (48)
is given. These probabilities are P.XijNi/; P.Xi/; P.MijXi/, and P.YkjXi/ for all k.
All of these are easily obtained except probability P.XijNi/. The form of P.XijNi/

depends on how the system is built. In other words, due to the mechanism by which
customers are influenced by others, this probability will vary from application to
application.

4.1.2 Approximate Algorithms Based on the Probability Model
For the sake of simplicity, it is assumed that M is a Boolean vector. When marketing
a product, suppose the cost is a constant. Use c to represent this number. Let r0 and
r1 be the revenue from selling the product to the customer whether marketing action
is performed. Let f1

i .M/ show the result of setting Mi to 1 and leaving the rest of M
unchanged and f0

i .M/, the result of setting Mi to 0 and remaining the rest of the part
in M the same as before. Thus, customer i0s expected lift in profit in isolation is

[20]ELPi.X
k; Y; M/ D r1P.Xi D 1jXk; Y; f1

i .M//

�r0P.Xi D 1jXk; Y; f0
i .M// � c: (49)

Let M0 be the null vector in which all the members are zero. The global lift in
profit that after a particular choice M of customers to market is as

[20]ELP.Xk; Y; M/ D
nX

iD1

riP.Xi D 1jXk; Y; M/

�r0

nX

iD1

P.Xi D 1jXk; Y; M/ � jMjc; (50)

where ri D r1 if Mi D 1; ri D r0 if Mi D 0, and the number of 1s in M is jMj. The
goal is to find the assignment of values to M that maximizes ELP. Trying to find
the optimal M is intractable. It needs to compute every possible combinations of the
assignments to its members. There are three approximate methods that can finish
this job. They are single-pass method, greedy search method, and hill-climbing
method. Each method is much more expensive than the previous one but better
solution. The algorithms are as follows:

Algorithm 4 Single pass [20]
1: For each i,
2: if ELP.Xk; Y; f1

i .M0// > 0
3: Mi = 1;
4: else
5: Mi = 0;
6: end if
7: end for
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Algorithm 5 Greedy search [20]
1: set M D M0;
2: Loop through the Mi’s, until no change to Mi’s;
3: if ELP.Xk; Y; f1

i .M0// > ELP.Xk; Y; M/ then
4: Mi = 1;
5: else
6: Mi = 0;
7: end if

Algorithm 6 Hill-climbing search [20]
1: Set M DM0;
2: Set Mi1 D 1, where i1 D argmaxiELP.Xk; Y; f1

i .M//;
3: Set Mi2 D 1, where i2 D argmaxiELP.Xk; Y; f1

i .f1
i1 .M///;

4: Repeat until there is no i for which setting Mi D 1 increases ELP.

4.1.3 A Polynomial-Time Solvable Model
In last two subsections, we introduce a general probabilistic model for influence
maximization problem, where the optimization problem cannot even be approxi-
mated to within a nontrivial factor. In this subsection, we introduce a similar but
simpler model. Suppose the symbol is the same as listed in the last subsection, then,
for all Xi, there is

[56]P.XijX � Xi; Y; M/ D P.XijNi; Y; M/

D “iP0.XijY; Mi/ C .1 � “i/PN.XijNi; Y; M/: (51)

P0.XijY; Mi/ is Xi’s internal probability of buying the new product. PN.XijNi; Y; M/

is the effect that Xi’s neighbors directly put on her. “i is between 0 and 1
that measures how neighbor-reliant Xi is. In a general probabilistic model, these
interactions between neighbors and Xi are modeled by a nonlinear function. In
this model, a simpler linear model is used to approximate this effect instead, the
probability is as follows:

[56]PN.Xi D 1jNi; Y; M/ D
X

Xj2Ni

wijXj: (52)

wij represents the extent that customer i is affected by her/his neighborj, with
wij � 0 and

P
Xj2Ni

wij D 1. Linear models often perform well, especially when
data is sparse [19], and they provide significant advantage for computation. Thus,
by combining the last two equations, there is

[56]P.XijNi; Y; M/ D “iP0.XijY; Mi/ C .1 � “i/
X

Xj2Ni

wijXj: (53)
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Because the optimal marketing strategy for a product has not yet been introduced
to the market, the state of the neighbors will not be known. Thus, a formula for
computing P.Xi D 1jY; M/ is listed as follows:

[56]P.Xi D 1jY; M/ D
X

QN2C.Ni/

P.Xi D 1j QN; Y; M/P. QNjY; M/

D
X

QN2C.Ni/

“iP0.Xi D 1jY; Mi/P. QNjY; M/

C
X

QN2C.Ni/

.1 � “i/
X

Xj2Ni

wij QNjP. QNjY; M/

D “iP0.Xi D 1jY; Mi/

C.1 � “i/
X

Xj2Ni

X

. QN2C.Ni//withNjD1

wijP. QNjY; M/: (54)

Denote the set of all possible configurations of Xi’s neighbors as C.Ni/, and QN
is one of the state assignments. QNj is the value of Xj specified by QN. Since the inner
summation is over all possible values of QN whenever QNj D 1, it is equivalent to
wijP.Xj D 1jY; M/, therefore,

[56]P.Xi D 1jY; M/ D “iP0.Xi D 1jY; Mi/

C.1 � “i/
X

Xj2Ni

wijP.Xj D 1jY; m/: (55)

The equation above expresses the probabilities P.Xi D 1jY; M/ as a function of
themselves. It can be applied iteratively to find them, starting from a suitable initial
assignment. A natural choice for initialization is to use the internal probabilities
P0.Xi D 1jY; M/.

In this simple probabilistic model, both the propagation of influence and the
effect of the initial targeting are linear. Thus, the influence can be maximized by
solving a system of linear equations.

4.2 Two Operational Models

In the last section, we introduce two descriptive models which give a joint
distribution over all vertex behaviors in a global view. In this section, operational
models from mathematical sociology [29, 57] and interacting particle systems
[21, 41], which show the dynamics of adoption step-by-step, are considered. Two
basic diffusion models, linear threshold model and independent cascade model,
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are presented. The influence maximization problem on these two models and their
extension models are NP-complete, but can be approximated well. It is shown that
the approximate algorithms for maximizing the spread of influence on these models
can be developed in a general framework based on submodular functions. In the
next subsections, the definition of submodular function and the description of these
two models are given, and based on them, the influence function is shown to be
submodular and the influence maximization problem is NP-hard on them.

4.2.1 Submodular Function
Consider a function f.�/, which is submodular if it satisfies a natural “diminishing
returns” property. This property states that the marginal gain from adding an element
to a set A is at least as high as the marginal gain from adding the same element to a
superset B. Formally, a submodular function satisfies

f.A [ fvg/ � f.A/ � f.B [ fvg/ � f.B/ (56)

for all elements v and all pairs of sets A � B.
Suppose a function f has the following four attributes:

1. Submodular
2. Takes only non-negative values
3. Monotone
4. Not decreasing: f.A [ fvg/ � f.A/ for all elements v and sets A

The influence maximization problem is to find a k-element set A such that
f.A/ is maximized. This problem is NP-hard, but Nemhauser, Wolsey, and Fisher
[17, 47] showed that the greedy hill-climbing algorithm approximates the optimum
to within a factor of .1 � 1=e/ (where e is the base of the natural logarithm): start
with the empty set A.0/, and repeatedly add an element that gives the maximum
marginal gain.

Theorem 1 ([17, 34, 47]) For a nonnegative, monotone submodular function f,
let S be a set of size k obtained by selecting elements one at a time, each time
choosing an element that provides the largest marginal increase in the function
value. Let S� be a set that maximizes the value of f over all k-element sets. Then
f.S/ � .1 � 1=e/f.S�/; in other words, S provides a .1 � 1=e/-approximation.

4.2.2 Independent Cascade Model
Regard A0 as the initial node set, and the process proceeds in discrete steps
according to the following randomized rule. When one node u wants to activate
its neighbor v, the process can succeed only with a probability pu;v. If u succeeds
at step t, then v will become active in step t C 1, but whether or not u succeeds, it
cannot make any further attempts to activate v in subsequent steps. When there are
no more nodes that can be activated, the process terminates.

Theorem 2 ([34]) For an arbitrary instance of the independent cascade model, the
resulting influence function ¢.�/ is submodular.
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At first sight, it is hard to compute ¢.A [ fvg/ � ¢.A/ for arbitrary set A and
node v. The increase of the diffusion effect is very difficult to analyze directly
because of the hardness of computing the size of ¢.A/. Fortunately, an equivalent
view of the diffusion process can be formulated to an order-independent outcome.
Since between each pair of nodes, for example, node v and node w, there is a
probability pv;w between v and w, this can be regarded as a result of flipping a
coin. From the aspect of process, no matter what is the sequence of the node being
activated or whether the node is activated, the result is the same. Based on this fact, it
can be assumed that for each pair of neighbors .v; w/, a coin of bias pv;w is flipped at
the beginning of the influence diffusion. Store the result for the later check whether
w is activated with v already active. If the activation is successful, the edge between
the two nodes becomes live, otherwise, it is blocked. So, if the initial active set A
and the outcome of the coin flips are fixed, the set of all the activated nodes will be
determined.

Let X be one of the outcome and A the initial node set. Denote ¢X.A/ as the total
number of nodes activated when the outcome is X and the initial target set is A. Let
R.u; X/ be the number of nodes that can be reached on live-edge paths from u, soS

u2A R.u; X/ D ¢X.A/:

Let A and B be two sets of nodes and A � B. Consider the quantity
¢X.A [ fug/ � ¢X.A/. This is the number of elements in R.u; X/ that are not
already in the union

S
u2A R.u; X/, it is at least as large as the number of

elements in R.u; X/ that are not in the (larger) union
S

u2B R.u; X/. It follows
that ¢X.A [ fug/ � ¢X.A/ � ¢X.B [ fug/ � ¢X.B/, which is the definition of
submodularity. Finally, there is

[34]¢.A/ D
X

outcomes X

ProbŒX�¢X.A/: (57)

since the expected number of nodes activated is just the weighted average over all
outcomes. And a nonnegative linear combination of submodular functions is also
submodular, hence ¢.�/ is submodular.

Theorem 3 ([34]) The influence maximization problem is NP-hard for the indepen-
dent cascade model.

The influence maximization problem on independent cascade model can be
reduced from set cover problem. Consider an instance of the NP-complete
set cover problem, define a collection of subsets T1; T2; : : : ; Tm and a
ground set Q D fq1; q2; : : : ; qng. The problem aims to find out whether there
are k subsets whose union is equal to Q. It is assumed that k < n < m.
This also can be viewed as a special case of the influence maximization
problem.

Given an arbitrary instance of the set cover problem, define a corresponding
directed bipartite graph with n C m nodes: there is a node i corresponding to
each set Ti, a node j corresponding to each element qj, and a directed edge .i; j/
with activation probability pi;j D 1 whenever qj 2 Ti. The set cover problem is
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equivalent to deciding whether there is a set A of k nodes in this graph with
¢.A/ � n C k. Note that for the instance we have defined, activation is a deter-
ministic process, since all probabilities are 0 or 1. Initially activating the k nodes
corresponding to sets in a set cover solution results in activating all n nodes
corresponding to the ground set Q, and if any set Q of k nodes has ¢.A/ � n C k,
then the set cover problem must be solvable.

4.2.3 Linear Threshold Model
In the linear threshold model, a node v is influenced by each neighbor w according
to a weight bv;w and

P
w neighbor of v bv;w � 1. The dynamic process proceeds as

follows: each node v chooses a threshold ™v uniformly at random from the interval
[0,1], this shows that, in order to activate node v, all the weight between v and
its active neighbors must be over the threshold. If there is an initial target set
A0 and a bunch of random thresholds between each pair of nodes, the diffusion
process proceeds deterministically in discrete steps: at step t, all the active nodes
are still active and inactive nodes whose neighbors’ overall weight larger than their
thresholds become active.

[34]
X

w active neighbor of v

bv;w � ™v: (58)

Theorem 4 ([34]) For an arbitrary instance of the linear threshold model, the
resulting influence function ¢.�/ is submodular.

In the last subsection, the independent cascade model was transferred into the
live-edge graph and the influence function on it proved to be submodular.

Similarly, in the linear threshold model, given a graph G, assume the active node
set is At at step t, for t D 0; 1; 2; : : :, and A0 is the initial set. If node v is inactive
in step t, then the probability of v to be activated by its neighbors in step t C 1 isP

u2AtnAt�1
bu;v

1�P
u2At�1

bu;v
.

In the live-edge model, it also starts with an initial set A0. At step t, if node v0s
edge is among the live-edge set, then v is known, otherwise, v is unknown. Then,
at step t C 1, the chance of v being known is equal to the chance that its live edge
comes from At n At � 1, given that its live edge has not come from any of the earlier

sets. The probability is
P

u2AtnAt�1
bu;v

1�P
u2At�1

bu;v
, same as above. Thus, the two distribution

processes are the same.
Once the equivalence between live-edge model and linear threshold model is

proved to be true, it can be used in the last subsection to show that the influence
function in linear threshold model is also submodular.

Theorem 5 ([34]) The influence maximization problem is NP-hard for the linear
threshold model.

Consider an instance of the NP-complete vertex cover problem: given an
undirected n-node graph G D .V; E/ and an integer k, the problem is to find whether
there is a set S with k nodes in G such that every edge has at least one endpoint in S.
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It is shown that this is a special case of the influence maximization problem. Given
an instance of the vertex cover problem involving a graph G, define a corresponding
instance of the influence maximization problem by directing all edges of G in both
directions. If there is a vertex cover S of size k in G, then one can deterministically
make ¢.A/ D n by targeting the nodes in the set A D S, conversely, this is the only
way to get a set A with ¢.A/ D n.

4.2.4 Greedy Algorithms for Operational Models
In this section, two approximate algorithms are given for the operational model. One
is the basic greedy heuristic algorithm [47]; the other is CELF (cost-effective lazy
forward selection) algorithm [38].

Basic Greedy Heuristic Algorithm [47]
The natural way to find the solution of a submodular function model is to start
with the empty set and add new element which has the largest influence increase.
Repeat the same selection process until the stop condition is satisfied. For influence
maximization problem, define dv.A/ D f.A [ fvg/ � f.A/. Concrete description of
the algorithm is as follows:

Algorithm 7 Greedy heuristic for submodular function model [47]
1: A0 D NULL
2: N0 D N and t D 1.
3: Iteration t
4: Select i.t/ 2 Nt�1

5: Loop di.t/.At�1/ D maxi 2 Nt�1.At�1/

6: with connection settled arbitrarily. Set dt�1 D di.t/.At�1/

7: At D At�1 [ i.t/ and Nt D Nt�1 � i.t/.
8: if t < K then
9: t D tC 1:

10: end if
11: repeat until t D K. Here K is the number of the total iteration.

Let fg be the solution of the greedy heuristic. There is

[47]fg D f0 C f1 C : : : C fK (59)

CELF Algorithm for Submodular Function Model [38]
The basic greedy heuristic algorithm has two drawbacks. One is time-consuming for
the reason that at each iteration, it needs to reevaluate each node’s marginal gain;
the other is that greedy heuristic algorithm only applies to uni-cost problem (the
cost of choosing each node is the same). In the case of different cost problem, this
algorithm works badly. It will choose the node with highest marginal gain every
time without considering the cost. For example, there are two nodes, say u and v.
Choosing u will improve the influence at I and cost C, while selecting v will lead to
influence increase at I C � but cost 2 � C. Here, I and C are two constant numbers.
When � ! 0, one should definitely choose u rather than v with considering the cost.
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A new greedy heuristic algorithm called benefit-cost algorithm was presented
in [38]. Instead of only taking the benefit into account that argmaxf.Ak�1 [ fvg/�
f.Ak�1/, the new algorithm computes the ratio of benefit and cost, which is

argmaxf.Ak�1 [ fvg/ � f.Ak�1/

c.s/
; (60)

where c.s/ is the cost to choose node v.
But in fact, this new algorithm is much worse than the original one. For

example, there are two nodes n1 and n2 with c.n1/ D � and c.n2/ D B, the total
budget is B. R.n1/ D 2 � � and R.n2/ D B. R..fn1g/ � R.;//=c.n1/ D 2 and
R..fn2g/ � R.;//=c.n2/ D 1. Here, R.�/ is the benefit function, and c.�/ is the cost
function. The benefit-cost greedy algorithm would pick n1. After selecting n1, n2
cannot be satisfied anymore, and the total reward would be �. However, the optimal
solution would pick n2, achieving total penalty reduction of B. As � approaches 0,
the performance of the benefit-cost greedy algorithm becomes arbitrarily bad.

When combining the two algorithms into one algorithm, here comes the CELF
algorithm [38]. It has two steps:
• Set (solution) R.A/: use benefit-cost greedy algorithm

Set (solution) R.B/: use uni-cost greedy algorithm
• argmax.R.A/; R.B//

It is shown that although both of the two solutions can be arbitrarily bad, there
is at least one of them which is not too far away from optimum, and hence CELF
provides a constant factor approximation.

Theorem 6 ([38]) Let R be a nondecreasing submodular function with R.;/ D 0.
Then maxfR.A/; R.B/g � 1=2.1 � 1=e/OPT, where OPT is the optimal value.

In [35], a special case of the budgeted MAX-COVER problem is proved. For
arbitrary nondecreasing submodular functions, the proof is shown in [30]. This
theorem stated that the best solution of the basic greedy and benefit-cost greedy
(which is returned by CELF) is at most a constant factor within 1=2.1 � 1=e/ of the
optimal solution. But CELF’s running time is only O.TjVj/ compared to the basic
greedy algorithm which is .TjVj4/. Here, jVj is the number of nodes and T is the
budget. Sviridenko [60] showed that an approximation guarantee of .1 � 1=e/ can
be achieved even in a nonconstant environment.

5 Compact Routing Scheme for Power-Law Graphs in Social
Network

In the field of complex networks, a number of different characteristics [59] have
been explored for social networks. These characteristics contain: (1) small-world
property: although not all nodes are neighbors of one another, most nodes can be
reached from each other through a small number of hops or steps; (2) heavy-tailed
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degree distributions: degree distribution of this graph approximates a power-law
distribution; (3) community structure: groups of nodes in a network are more
densely connected internally in a community than with the rest in the network.
Based on property (2), this section mainly focuses on compact routing scheme
by using the theory of unweighted random power-law graphs with fixed expected
degree sequence. The method here we introduce is the first theoretical bound
coupled to the parameter of the power-law graph model for a compact routing
scheme.

5.1 Compact Routing Scheme for Power-Law Graphs

For a network with n nodes, a routing scheme is only allowed to have routing tables
with sizes sublinear in n and message header sizes polylogarithmic in n. In general,
there are two classes of compact routing schemes: the first is the labeled scheme,
which is allowed to add labels to node addresses to encode useful information
for the sake of routing, where each label has length at most polylogarithmic in n.
On the other hand, the second scheme, name-independent scheme, does not allow
the renaming of node addresses, instead they must function with all possible
addresses. Both of these two kinds of compact routing schemes have been studied
widely recently. Therefore, this phenomenon demonstrates the relationship between
compact routing scheme and power-law graphs, which will play an important role
in social network routing problem.

Power-law graphs form an essential family of networks appearing in various real-
world scenarios such as some collaboration networks and the famous World Wide
Web, especially in social networks, which is a rapidly expanding network in social
connectivity. In a power-law graph, for some constant £, the number of nodes with
degree x is proportional to x�£. In general, the range of the power-law exponent
£ for many real-world networks is between 2 and 3. However, power-law graphs
do not seem to belong to any of the previous well-studied network families such
as trees, planar graphs, or low doubling-dimension graphs, which means that the
importance of the power-law graphs should be noticed, and this property is worth
paying attention.

Recently, there are some other experimental studies which concentrate on
compact routing in power-law graphs and Internet-like graphs. However, they all
have some drawbacks. For example, although Krioukov et al. [37] evaluated the
universal routing scheme of Thorup and Zwick (TZ) [61] on random power-law
graphs and they also provided experimental evidence of much better performance
than the theoretical worst-case bound, however, they did not provide a theoretical
bound of the TZ scheme on power-law graphs such as stretch and table size.
Some other papers such as Enahescu et al. [22] and Brady and Cowen [9], even
though they contributed to compact routing schemes for power-law graphs, both of
them did not provide rigorous analysis. Therefore, bridging the gap in the study
of compact routing schemes for power-law graphs becomes a main optimization
problem.
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5.1.1 Related Work
Due to the comparison with Thorup and Zwick’s routing schemes and other random
power-law graph models, it is necessary to provide some related work. Thorup and
Zwick [61] mainly contributed two different routing schemes. The first scheme is a
stretch-3 scheme with an O.n1=2 log3=2 n/-bit routing table per node and O.log n/-
bit labels and headers, which is based on Cowen’s earlier scheme in [18]. They both
used a small subset A of nodes, called landmarks, and they used the landmarks to
route messages. In a graph G = (V,E), for every node u, define its cluster C(u) = fv
2 V: d.v; u/ < d.v; A/g, where d.v; u/ and d.v; A/ denote the graph distance from
v to u and A, separately. Let l.u/ denote the landmark in A, which is the closest
one to node u (ties are arbitrarily resolved). The routing table of node u stores
the port identifiers to route messages to all nodes in A and C.u/. If a destination
v is not in A [ C.u/, u routes through l.v/, which guarantees a stretch bound
of 3 because of the definition of the cluster C.u/. A resampling method was
used by Thorup and Zwick to achieve jA [ C.u/j D O(n1=2 log1=2 n) for every
node u.

The second scheme of Thorup and Zwick [61] is on the basis of their approximate
distance oracle in [62]. For any k � 2, they designed a compact routing scheme
with the attributes of QO .n1=k/-bit tables, O(k log2 n/log log n)-bit addresses, and
O(log2 n/log log n)-bit headers (both the bounds on addresses and headers are
for fixed-port schemes). The stretch 2k � 1 with a stretch 4k � 5 handshake is
achieved by this scheme. In order to reduce the stretch to 3, a handshake is needed.
The scheme used and appeared in this article is similar to the second scheme.
However, there are two main differences even both the two schemes use balls
and landmarks to route messages. One difference is that high-degree nodes are
chosen as landmarks instead of the randomly selected nodes. By using this strategy,
jA [ B.u/j D O.n”/ with ” D £�2

2£�3 C © and © > 0 is achieved. Another difference
is that the improved scheme will directly encode the shortest path from l.v/ to v
in v’s address. It is short within the probability of 1 � o.1/ because of the distance
properties in random power-law graphs. The result of the modified scheme shows
smaller routing table size, and the address and header size of O.log n log log n/ is
better than the second scheme and near the result of the first scheme. However,
the improvement of this scheme here is only tailored to unweighted power-law
graphs.

5.1.2 Preliminaries
The method adopted in this section is the random graph model for fixed expected
degree sequence as defined in [6, 14, 15, 42]. The expression fixed degree random
graph (FDRG) is used to refer to the original random graph distribution. Conse-
quently, from the previous related paper, a definition for the random power-law
graph distribution RPLG(n,£) is obtained.

Definition 1 ([13]) For a constant £ 2 f(2,3)g, the random power-law graph distri-
bution RPLG(n,£) is defined as follows. First, we let the sequence of generating
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parameters w = fw1,w2. . . ,wng obey a power law, which is wk D . n
k /1=.£�1/ for k 2

f1; 2; : : : ng. Then we insert the edge between vi and vj into the random graph within
the probability of minfwiwjæ; 1g, where æ D 1P

k wk
.

In the FDRG model, the value wi corresponds to the expected degree of vertex
vi, and w is referred to as the expected degree sequence. The graph is sampled
here because of the generating parameter values wi. Let Di be the random variable
denoting the degree of node vi. In this adapted model, it can be found that
the expected degree E[Di] of node vi is smaller than or equal to the generated
parameter wi.

It is required that n D kV.G/k is sufficiently large, satisfying the following:

n
©.2£�3/
.£�1/ � 2.£ � 1/

£ � 2
ln n: (61)

The results do not have any other implicit dependencies on ©. Furthermore, the
core of a graph consists of nodes having large degrees. Let ” D £�2

2£�3 C © for some

© > 0 and ”0 D 1�”

£�1 .

Definition 2 ([13]) For a power-law graph which has the degree sequence w and a
graph G with n nodes, we can define the core with degree threshold n”0

, ”0 2 .0; 1/,
this kind of equations form as follows:

core” 0.w/ WD fvi W wi > n” 0g; (62)

core” 0.G/ WD fvi W degG.vi/ > n” 0=4g; (63)

where degG.vi/ is the degree of vi in G (the subscript G is omitted when the graph
is clear from the context).

The meaning of n”0

-Core is as what core” 0.w/ means in [42].
For each vertex u of graph G, the ball relative to the core can be defined as

BG.u/ WD fv 2 V.G/ W d.u; v/ < minv02core”0 .G/d.u; v0/g: (64)

5.2 The Adapted Compact Routing Scheme

The scheme adapted here is a fixed-port scheme, and it works with arbitrary
permutations of port number assignments. Let the unweighted graph G D .V; E/

model the network. Each node v in the network has a unique dlog2 ne-bit static
name. Whenever v is written in a routing table, a message header, or a node address,
represents dlog2 ne-bit static name representation. Each node v has deg(v) ports
connecting it with its neighbors. Number these ports by 0; 1; : : : ; deg.v/ � 1, and
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thus each port number of v requires dlog2 deg.v/e bits. For every packet, the routing
scheme needs to determine clearly which port the packet is to be forwarded to.

5.2.1 Routing Scheme
The routing algorithm is based on [18, 61]. A set of landmarks A � V is used, but
it is different from [18,61]. Core”0.G/ is used as landmarks instead of nodes sampled
at random. For each node u in G, let l.u/ denote u0s closest landmark, which
means l.u/ WD arg minv02core”0 .G/d.u; v/: The local targets of node u are defined as
the elements of its ball BG.u/. Each node u stores the ports used to route messages
along the shortest paths to all landmarks and its local targets. If the target v is neither
a landmark nor a local target of u, the message is routed to v’s closest landmark l.v/

and from there to the target v.
The scheme used is a labeled scheme. For a node u knowing l.v/ of any target v,

the address of node v contains an encoding of l.v/. Moreover, for a node w on the
shortest path from l.v/ to v(w ¤ l.v/ and w ¤ v), v may not be in BG.w/ and thus
w may not know the port to route messages to v. To resolve this issue, it is necessary
to extend the address of v by encoding the shortest path from the landmark l.v/ to v.

Let s D u0; u1; : : : ; um D t denote the sequence of nodes on a shortest path
from s to t. Let SP.s; t/ be the encoding of this shortest path as an array with m
entries, where SP.s; t/ can be encoded with

Pm�1
iD0 log2 d deg.ui/e bits. The precise

definitions of addresses, message headers, and local routing tables are provided as
follows:

Definition 3 ([13]) The address of node u 2 V is addr.u/: = .u; l.u/; SP.l.u/; u//.
The header of a message from node s to node t is in one of the following

formats:
1. header = (route,s,t), where route = local,
2. header = (route,s,addr), where route = toLandmark and addr = addr(t),
3. header = (route,s,t,pos,SP), where route 2 fromLandmark,direct, pos is a

nonnegative integer that may be modified along the route, and SP = SP(s,t) if
route = direct or SP = SP(l(t),t) if route = fromLandmark,

4. header = (route,s,t,SP), where route = handshake and SP is a reversed shortest
path from t to s to be encoded along the path from s to t.
The local routing table for each node u forms the information about routes to the

core and the information about local routes:

tbl.u/ WD f.v; portu.v// W v 2 core”0.G/g [ f.v; portu.v// W v 2 BG.u/g; (65)

where portu(v) is the local port of u to route messages toward node v along some
shortest path from u to v.

5.2.2 Routing Algorithm
Algorithm 8 describes the routing procedure. It includes pseudocode for the source
node s to determine the method of sending a message to target t which is based on
whether t is local and whether a shortest path to t is known or not. It also describes
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the details that an intermediate node u determines whether to forward the message
using its local routing table, or forward the message using the shortest path encoded
in the header, or to switch the routing direction from the landmark l.t/ to the target t.
The correctness of the algorithm is based on the simple observation t 2 BG(w) [
core”0.G/.

Moreover, an additional handshake protocol described here handles the special
case when t does not belong to BG.s/ but s belongs to BG.t/. In this situation, the
basic LANDMARKBALLROUTING scheme only achieves worst case stretch 5
not stretch 3. However, t knows the reverse path from t to s. Since the graph is
undirected, t can send a special handshake message back to s, and each node
along the path encodes the reverse port number such that, in the end, s knows the
shortest path from s to t. For simplicity of expression, the reasonable assumption
in [2] that node u knows port q on which the message is received is used. If this
assumption does not hold, this handshake protocol can be adapted accordingly as
follows. In the routing table of node u, for all v 2 BG.u/ [ core”0.G/, store a
rev-portu.v/ = portw.u/, where w is the first node on the path from u to v. Then,
when forwarding the handshake message from t to s, every node u on the path
(including t) pretends rev-portu.s/ to the SP in the header. This adds the routing
table size by at most dlog2 ne bits per entry. In the description of this algorithm,
the case of s 2 core”0.G/ is also included in the case that stretch can be improved
from 3 to 1.

Both the performance of Algorithm 1 and the statement described above are
evaluated, we will induce the following theorem from the two previous algorithms
in [13].

Theorem 7 ([13]) LANDMARKBALLROUTING along with the handshake proto-
col is a routing scheme with the following properties: (1) the worst-case stretch is
5 and it is without handshaking, (2) the worst-case stretch is 3 after handshaking,
and (3) every routing decision takes constant time. In addition, for random graphs
sampled from RPLG(n; £), the following properties hold: (4) the expected maximum
table size is O(n” log n) bits; this bound also holds with probability at least
1 � 1=n; (5) address length and message header size are O(log n log log n) bits with
probability 1-o(1); and (6) addresses and routing tables can be generated efficiently
in expected time O(n1C” log n), and this bound also holds with probability at least
1 � 1=n.

5.3 Analysis of Properties in Performance

This subsection analyzes the performance of LANDMARKBALLROUTING for
random power-law graphs from different parts.

5.3.1 Analysis of Properties
In stretch part, LANDMARKBALLROUTING has worst-case stretch 5. After hand-
shaking with stretch 5, LANDMARKBALLROUTING has worst-case stretch 3,
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Algorithm 8 LANDMARKBALLROUTING on node u, with source s, target
t ¤ s, and header [61]
1: First, if u D s then
2: if t 2 BG.s/ then
3: send packet with header = (local,s,t) using ports(t) stored in tbl(s)
4: else if u knows SP.s; t/ then
5: send packet and the header = (direct,s,t,0,SP.s; t/) by using port SP.s; t/Œ0�

6: else
7: send packet and the header = (toLandmark,s,addr(t)) using ports.l.t// stored in tbl(s)
8: end if
9: exit

10: end if
11: Under the condition u¤ s, we decide if u = header.t then
12: exit as the packet arrived.
13: end if
14: if header.route = toLandmark then
15: if u = header.addr.l.t/ then
16: header.route fromLandmark; header.pos 0; header.SP header.addr.SP.l.t/; t/;
17: forward packet with the new header using port header.SP[0]
18: else
19: forward the packet to portu(header.addr.l(t)) stored in tbl.u/

20: end if
21: else if header.route 2 f fromLandmark,directg then
22: We should do the header.pos + 1, then we assign it to header.pos
23: after doing the assignment, we forward the packet by using port header.SP[header.pos]
24: else if header.route = local then
25: forward the packet using portu(header.t) stored in tbl(u)
26: end if

which is proved by the triangle inequality as in [18, 61]. In random power-law
graphs, some properties of the adapted random power-law graph model should be
addressed. Let G be a random graph sampled from RPLG.n; £/, the volume Vol.G/

satisfies

n < Vol.G/ � £ � 1

£ � 2
n: (66)

In random power-law graphs and their cores and ball parts, the concentration results
for the actual degree of a vertex and for the volume of a set of vertices in the adapted
RPLG.n; £/ model will be shown, and the corresponding results in the original
FDRG model are also restated. For a random graph sampled from FDRG(w), the
random variable Di measuring the degree of vertex vi is around its expectation wi as
follows:

PrŒDi > wi � c
p

wi� � 1 � e�c2=2 (67)

PrŒDi < wi C c
p

wi� � 1 � e
� c2

2.1Cc=.3
p

wi// : (68)

For a random graph sampled from FDRG.w/, a subset of vertices S and all
0 < c � p

Vol.S/, there is
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PrŒjvol.S/ � Vol.S/j < c
p

Vol.S/� � 1 � 2e�c2=6: (69)

Let n � 4
£�1

.£�2/2 . For a random graph sampled from RPLG.n; £/, if wi � 32 ln n,
for vertex vi, the degree Di satisfies the following condition: Pr[wi=4 � Di � 3wi]
> 1 � 2=n4. Let G be a random graph sampled from RPLG.n; £/. For a subset of
vertices S satisfying Vol.S/ � 192 ln n, it holds with probability at least 1 � 2=n3

that Vol.S/=8 � vol.S/ � 4Vol.S/. From previous lemma, a corollary, in which
the number of edges of a random graph sampled from RPLG.n; £/ is at most
vol.G/=2 � 4.£�1/

£�2 n with probability at least 1 � 1=n2, was obtained. For any two
disjoint subsets S and T with Vol.S/:Vol.T/ > c:Vol.G/, there is

PrŒd.S; T/ > 1� D
Y

vi2S;vj2T

maxf0; .1 � wiwj=Vol.G//g � e�c: (70)

Regarding to the issue of core size, let G be a random graph sampled from
RPLG.n; £/. The probability of the core size is at least 1 � 1=n2, which holds
that core”0.w/ = fvi:wi > n”0g � fvi:deg(vi) > n”0

/4 g = core”0.G/. Moreover,
jcore”0.G/j = ‚.n”/.

Now we about the ball sizes. According to the original definition of a ball by
Eq. (64), let “ = ”0.£ � 2/ C .2£�3/©

£�1 be a constant. Assume Eq. (61) is satisfied. For
a random graph G sampled from RPLG.n; £/, with probability at least 1 � 3=n2, it
holds that for all u 2 V.G/, there is

jBG.u/j D jfu0 2 V.G/ W d.u; u0/ < d.u; core”0.w//gj
D O.n“/; jE.BG.u//j D O.n“ log n/; (71)

where E.BG.u// is the set of internal edges among vertices in BG.u/.
The existence of every edge in random graph G is determined only when it

is needed. It is treated as a probability distribution before determining which is
defined in the random graph model of this analysis. According to the probability
distribution revealing the edge, it is easy to know when the existence of an edge
is determined. Under the condition that given vertex u 2 V.G/ and a sequence
of balls (B0 D fug; B1; B2; : : :), let V0 D Vncore”0.w/ and Bi D fv W dG.u; v/ � ig.
Circles Ci D BinBi � 1 for i � 0 with B�1 D Ø. Then, focus on the result of Ei

when the condition Ei, which is the number of edges between Ci and Ci [ CiC1,
is given. For circle Ci, the following holds with probability at least 1 � 2=n3:
(1) If Vol.Ci/ < 192 ln n, then Ei � 4 � 192 ln n and (2) if Vol.Ci/ � 192 ln n, then
Ei � 4Vol.Ci/.

For table sizes and their computation issue, it is known that core core”0.G/

has size ‚.n”/ with probability at least 1 � 1=n2 and all balls BG.u/ have size
O.n”/ with probability at least 1 � 3=n2. Therefore, for a random graph G
sampled from RPLG(n,£/, for all u 2 V.G/, the expected table size is at most
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jtbl.u/j D O.n”/, and all tables can be generated in expected time at most
O.n1C” log n/. These bounds also hold with probability at least 1 � 1=n.

Last but not least, the address lengths should be considered seriously. Bounding
the number of bits for the address of each vertex is: for a node u; its address
contains the encoding of the shortest path SP.u; l.u// from u to its landmark
l.u/. Moreover, bounding the diameter of a random power-law graph and the
diameter of its core is also needed. Therefore, for a random graph sampled from
RPLG(n,£/, with probability at least 1 � o.1/, the diameter of its largest connected
component is ‚.log n/[14]. If it holds for all s; t 2 V.G/; SP.s; t/ can be encoded
with O.log n log log n/ bits. In order to extend the core, a definition is given as
follows:

Definition 4 ([13]) The extended core of a random graph from RPLG.n; £/ con-
tains all nodes vi with wi at least n1= log log n, that is, coreC.w/ = fvi 2 V W wi

� n1= log log ng.

From the fact that the extended core “contains” a dense random graph [24], let
G be a random graph sampled from RPLG.n; £/. The diameter of the subgraph
induced by coreC.w/ in G is O.log log n/ with probability at least 1 � 1=n [14].
Moreover, from [14], it is known that there exists a constant C, such that each
vertex vi with wi � logC n is at distance O.log log n/ from the extended core,
with probability at least 1 � 1=n2. However, from the previous statement, if the
probability changed with at least 1 � 1=n, the distance between any two vertices
vi and vj with wi � logC n and wj � logC n is O.log log n/.

5.3.2 Analysis of Approximate Distance Oracle
For social networking sites, the graph of this kind of application is preprocessed,
and a special data structure is used for efficient queries. Precomputing all shortest
paths by using an all-pairs shortest path algorithm and reading a shortest path
from a distance table is one way to prepare for queries. However, this approach
is impractical due to the constraints of time and memory. If it is supposed to
efficiently preprocess a graph to allow for fast distance queries, an approxima-
tion method is needed because of general and directed graphs with n vertices,
which is necessary to return the shortest distance by using �.n2/ space. The
trade-off between approximation ratio, space, preprocessing, and query time can
be addressed by approximation distance oracle, and this kind of scenario can
be interpreted as a generalization of the all-pairs (approximate) shortest path
problem.

To solve this kind of distance oracle for power-law graphs problem, let
” D £�2

2£C3 C © be a constant and suppose Eq. (61) is satisfied. There exists a
preprocessing algorithm for random power-law graphs from RPLG.n; £/, which
creates a distance oracle of expected size O.n1C”/ and runs in expected time
O.n1C” log n/. This method in this chapter is modified from Thorup and Zwick’s
distance oracle, which guarantees stretch 3 when k D 2. Unlike Thorup and Zwick’s
preprocessing method, each node v 2 V is chosen as a landmark independently at
random with probability n1=2 for general graphs, a better balance is possible by
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using high-degree nodes as landmarks for power-law graphs. In this way, fewer
landmarks will be chosen, and smaller-sized balls can be obtained than original
method at the same time. In preprocessing period, the first step is to compute the
core for any v 2 V and deg.v/ > n”0

=4, then for each v 2 core, run the breadth-first
search from v 2 G. Moreover, if for each node u ¤ v, store d.u; v/ and set portu.v/

to be the penultimum node on the shortest path. As for each u 2 V, compute and
store BG.u/ and its distances. Finally, for each v 2 BG.u/, set portu.v/ to be the first
node on the shortest path to v.

As far as the exact distance.s; t/ is concerned with, the distance query result
d.s; t/ is exact if s 2 B.t/ or t 2 B.s/, which runs in time O.1/ and achieves stretch 3.

With the rapid development of society, people have more and more opportunities
to communicate with each other. From the aspect of social networks, it is of
great importance to find the shortest paths for pairs of nodes. In this section,
we introduced some properties that theoretically justify the importance of high-
degree nodes in power-law graphs. After analyzing the adapted compact routing
scheme and its algorithm for random power-law graphs, it is shown that optimizing
for power-law graphs may induce better algorithm performance for problems in
social network. From both real-world graphs and random power-law graphs, the
optimization algorithm shows the efficiency.

Apart from compacting routing scheme in power-law graphs, some techniques in
universal graphs are proposed: in [3], the first optimal compact name-independent
routing scheme for arbitrary undirected graphs is proposed, and in [52], tight upper
and lower bounds for the efficiency of a routing scheme and its space requirement
are presented; furthermore, the bounds are improved in [24]. In addition, new
compacting schemes about special graphs appear for tree graphs [36], directed
graphs [11], weighted graphs [61], and so on.

6 Conclusion

Social network has shown wide range applications in real world, therefore, it
is practically necessary to probe into social network structure to find its special
properties, based on which many optimization problems regarding social networks
in real life can be solved efficiently. In this chapter, approximation algorithms for
four problems including link prediction problem, community detection problem,
influence maximization problem, and routing problem are investigated. It particular,
it can be seen that almost all of these algorithms are designed by using the structure
features of social networks. For example, the routing schemes in Sect. 5 take
advantage of power-law link distribution property of certain social networks.
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