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Abstract
In combinatorial group testing, there are n items; each has an unknown binary
status, positive (i.e., defective) or negative (i.e., good), and the number of
positives is upper bounded by an integer d . Suppose there is some method to
test whether a subset of items contains at least one positive or not. The test result
is said to be positive if it indicates that the subset contains at least one positive
item; otherwise, the test result is called negative. The problem is to resolve the
status of every item using the minimum number of tests.

Group testing (GT) algorithms can be adaptive or nonadaptive. An adaptive
algorithm conducts the tests one by one and allows to design later tests using the
outcome information of all previous tests. A nonadaptive group testing (NGT)
algorithm specifies all tests before knowing any test results, and the benefit is
that all tests can be performed in parallel. For the above group testing problem,
nonadaptive algorithms require inherently more tests than adaptive ones.

Though the research of group testing dates back to Dorfman’s 1943 paper, a
renewed interest in the subject occurred recently mainly due to the applications
of group testing to the area of computational molecular biology. In applications
of molecular biology, a group testing algorithm is called a pooling design,
and the composition of each test is called a pool. While it is still important
to minimize the number of tests, there are two other goals. First, in the
biological setting, screening one pool at a time is far more expensive than
screening many pools in parallel; this strongly encourages the use of nonadaptive
algorithms. Second, DNA screening is error prone, so it is desirable to design
error-tolerant algorithms, which can detect or correct some errors in the test
results.

In this monograph, some recent algorithmic, complexity, and mathematical
results on nonadaptive group testing (and on pooling design) are presented.

1 Introduction

In combinatorial group testing, there are n items; each has an unknown binary
status, positive (i.e., defective) or negative (i.e., good), and the number of positives
is upper bounded by an integer d . Suppose there is some method to test whether
a subset of items contains at least one positive or not. The test result is said to be
positive if it indicates that the subset contains at least one positive item; otherwise,
the test result is called negative. The problem is to resolve the status of every item
using the minimum number of tests.

Group testing (GT) algorithms can be adaptive or nonadaptive. An adaptive
algorithm conducts the tests one by one and allows to design later tests using
the outcome information of all previous tests. A nonadaptive group testing (NGT)
algorithm must specify all tests before knowing any test results, and the benefit
is that all tests can be performed in parallel. For the above group testing problem,
nonadaptive algorithms require inherently more tests than adaptive ones. It is known
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that any nonadaptive algorithm must use a number of �.d
2 log n
log d / tests, and the best

known nonadaptive algorithm uses O.d2 logn/ tests. In contrast, the best adaptive
algorithm requiresO.d logn/ tests (see, e.g., [17]) in the worst case.

Pooling Design. Though the research of combinatorial group testing dates back
to Dorfman’s 1943 paper [15], probably the most important modern applications
of group testing are in the area of computational molecular biology, in which one
important subject is clone library screening [3, 17, 26]. In applications to molecular
biology, a group testing procedure is called a pooling design, and the composition
of each test is called a pool.

A DNA library consists of thousands of separate DNA clones. The basic task of
DNA library screening is, for a collection of probes, to determine which clone from
the library contains which probe. Given a probe, a clone is said to be positive if
it contains the probe; otherwise, it is said to be negative. In practice, to identify
all positive clones from a library, clones are often pooled together to be tested
against each probe, since checking each clone-probe pair is expensive and usually
only a few clones in the library contain a given probe. An example is when
sequenced-tagged site markers (also called STS probes) are used [46]. In practice,
there are experimental tests, for example, the polymerase chain reaction, which can
determine in a given pool whether or not there exists at least one clone containing a
given probe.

In applications to molecular biology, while it is still important to minimize the
number of tests, there are two other goals. First, in the biological setting, screening
one pool at a time is far more expensive than screening many pools in parallel; this
strongly encourages the use of nonadaptive algorithms. Second, DNA screening is
error prone, so it is desirable to design error-tolerant algorithms, which can detect
or correct some errors in the test outcomes. The reader is referred to the monograph
by Du and Hwang [17] for a comprehensive discussion of this topic.

Between fully adaptive and nonadaptive (one stage) algorithms, the so-called
trivial two-stage algorithms [36] are of considerable interest for screening problems.
Such an algorithm has two stages. In the first stage, the pools are tested in parallel,
and a set CP of candidate positives from the items is chosen based on the test
results; in the second stage, individual tests are performed on all the items in
CP to resolve the status of each item. Previous works on two-stage group testing
algorithms are, among others, [4,14,24,36,41]. The following quotation from Knill
[36] well emphasizes the importance of such algorithms: “It is generally feasible
to construct a number of pools (much fewer than the number of clones) initially by
exploiting parallelism, but adaptive construction of pools with many clones during
the testing procedure is discouraged. The technicians who implement the pooling
strategies generally dislike even the 3-stage strategies that are often used. Thus the
most commonly used strategies for pooling libraries of clones rely on a fixed but
reasonably small set of non-singleton pools. The pools are either tested all at once or
in a small number of stages (usually at most 2) where the previous stage determines
which pools to test in the next stage. The potential positives are then inferred and
confirmed by testing of individual clones. In most biological applications each



96 Y. Cheng

positive clone must be confirmed even if the pool results unambiguously indicate
that it is positive. This is to improve the confidence in the results, given that in
practice the tests are prone to errors.”

Separating Matrices. A nonadaptive group testing procedure can be represented
as a 0-1 matrix M D .mij /, in which the columns are associated with the items
and the rows are associated with the tests, and mij D 1 indicates that item j

is contained in test i . The test outcomes can be represented by a 0-1 vector, the
outcome vector, where 0 indicates a negative outcome and 1 indicates a positive
outcome. It is not hard to verify that if a subset S of columns exactly corresponds
to all the positive items, then the outcome vector is equal to vector U.S/, the union
(i.e., the componentwise Boolean sum) of all column vectors in S . Given the matrix
representation of an algorithm and the outcome vector, the process of identifying
all the positive items is called decoding. For a 0/1 matrix to be a valid nonadaptive
group testing algorithm, some separating property is often required. This monograph
focuses on two most used and studied separating properties: disjunctness and
separability.

In order to identify all positives as long as the number of positives is no more
than d , matrix M should satisfy that for any two distinct subsets S1 and S2 of
columns such that jS1j � d and jS2j � d , U.S1/ ¤ U.S2/. A matrix satisfying
this property is called Nd -separable. In the definition, if the condition “jS1j � d

and jS2j � d” is replaced by “jS1j D jS2j D d ,” a matrix satisfying this property
is called d -separable. If the matrix representing a nonadaptive pooling design is
Nd -separable (or d -separable), then theoretically based on the test outcomes one can

unambiguously identify all the up to d (or exactly d ) positives. However, the actual
process of determining the positives from the outcome vector, that is, the decoding
process, could be very time-consuming. In practice, one can adopt matrices with
stronger property to make the decoding process more efficient.

For two 0-1 vectors u and v with the same number of components, if for any
component of u with value 1, the corresponding component of v is also 1, then u is
said to be covered by v. A 0-1 matrix is said to be d -disjunct if no column is covered
by the union of any d other columns. The same structure is also called cover-free
family in combinatorics [25, 29, 53], and superimposed code in information theory
[22, 23, 34], and has been extensively studied. Obviously if a matrix is d -disjunct,
then it is also Nd -separable, and thus is d -separable. If the matrix M representing
a nonadaptive pooling design is d -disjunct and the number of positives is no more
than d , then the following efficient decoding procedure exists with running time
linear in the size of M : A column c corresponds to a positive item if and only if
c is covered by the outcome vector. d -disjunct matrices are important structures in
pooling design, and there have been a lot of works on their constructions [2, 10, 20,
23–25, 28, 32–34, 38, 44, 45, 49, 50].

A 0/1 matrix is said to be .d I z/-disjunct [22, 39] if for any set D of d columns
and any column c … D, there exist at least z rows such that each of them has
value 1 at column c and value 0 at all the d columns of D. Clearly, d -disjunctness
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is just .d I 1/-disjunctness. As mentioned above, if the matrix M representing a
nonadaptive group testing algorithm is d -disjunct and the number of positives is
no more than d , then there exist efficient decoding procedures with running time
linear in the size of M . However, when there are errors in the test outcomes, the
above decoding procedure generally does not work, and in this case, the matrix
is required to be .d I z/-disjunct, which results in a b z�1

2
c-error-correcting NGT

algorithm. In this case, linear decoding that successfully identifies all positives still
exists, provided that there are no more than d positives and at most b z�1

2
c errors in

the test outcomes. d -disjunct and .d I z/-disjunct matrices form the basis of error-
free and error-tolerant nonadaptive group testing.

Main Contents. In this monograph, some recent algorithmic, complexity, and
mathematical results on nonadaptive group testing (and on pooling design) are
presented. The main contents consist of five parts. In the first part, new randomized
constructions of one- and two-stage nonadaptive group testing are presented.
Comparisons with other known constructions on the number of required tests are
also discussed.

In the second part, some complexity results for problems that are basic to
nonadaptive group testing are given. The problem to determine whether a given
matrix H is Nd -separable and minimal, MIN-SEPARABILITY, is showed to be DP -
complete. Here the meaning of being minimal is that the removal of any row from
H will make it no longer Nd -separable. The second problem is, given a binary matrix
M and a positive integer d , find a minimum Nd -separable submatrix of M with the
same number of columns. The complexity of the decision version of this problem,
Nd -separable submatrix, is conjectured to be†P2 -complete. As an evidence to support

this conjecture, the †P2 -completeness of a problem which is a little more general
than Nd -separable submatrix is established.

In the third part, the parameterized complexities of three basic problems in
nonadaptive group testing are studied. They are, given anm�n binary matrix and a
positive integer d , to determine whether the matrix is d -separable ( Nd -separable, or
d -disjunct). Though the three problems are all known to be coNP-complete in the
classical complexity theory, the motivation of this study is that in most applications
d is very small compared to n; it is interesting to investigate whether there are
efficient algorithms solving the above problems when the value of d is small. In this
part, the parameterized versions of the three problems, with d as the parameter, are
showed to be co-W[2]-complete. The immediate implications of the results are that,
given an m � n binary matrix and a positive integer d , a deterministic algorithm
with running time f .d/ � .mn/O.1/ (where f is an arbitrary computable function)
to determine whether the matrix is d -separable ( Nd -separable, or d -disjunct) should
not be expected.

In the fourth part, upper bounds on the minimum number of rows required by
any d -disjunct matrix and any .d I z/-disjunct matrix with n columns, t.d; n/ and
t.d; nI z/, respectively, are studied. A very short proof is given for the currently best
upper bound on t.d; n/; the method is also generalized to obtain a new upper bound
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on t.d; nI z/. In the final part, a way to transform an error-tolerant separable matrix
to an error-tolerant disjunct matrix is given; the optimality of this transformation
in some senses is also discussed. If no base is specified, then log is of base 2
throughout.

2 New Constructions of One- and Two-Stage Pooling Design

In [10] new constructions of one- and two-stage pooling design are given. For one-
stage pooling design, the focus is on the construction of disjunct matrices, which are
widely studied for various applications including the design of nonadaptive group
testing algorithms. There have been a lot of works on the construction of disjunct
matrices [2, 10, 20, 23–25, 28, 32–34, 38, 44, 45, 49, 50].

For two-stage pooling designs, De Bonis et al. [14] first present an asymptotically
optimal two-stage algorithm that requires a number of tests within a constant factor
7:54.1Co.1// of the information theoretic lower bound d log.n=d/. Eppstein et al.
[24] improve the constant factor to 4.1 C o.1// by using the concept of .d; k/-
resolvable matrices (which will be explained later), which is currently the best.
There are also probabilistic pooling designs [40, 41, 44] with good performance in
practice.

In the sequel of this section, two Las Vegas algorithms for constructing
d -disjunct and .d I z/-disjunct matrices are presented. For two-stage pooling
designs, an algorithm using a number of Cd.1 C o.1// logn tests is presented,
where Cd � 3

log 3d for d � 1 and Cd ! d log e as d ! 1. This improves the
previously best bound given in [24] by a factor of more than 2. New probabilistic
pooling designs are also proposed. Compared to [44], the new probabilistic designs
have different type of possible errors and require much fewer tests. All the results
presented in this section are from [10].

2.1 Preliminaries

Transversal Design. A pooling design is transversal if the pools can be divided into
disjoint families, each of which is a partition of all items. The concept of q-ary
.d; 1/-disjunct matrix will be first introduced: A q-ary matrix is .d; 1/-disjunct if
for any column c and any setD of d other columns, there exists at least one element
in c such that the element does not appear in any column ofD in the same row.

As described in [17, 20], one can transform a q-ary .d; 1/-disjunct matrix M 0
into a (binary) d -disjunct matrix M as follows. Replace each row Ri of M 0 by
several rows indexed with entries of Ri ; for each entry x of Ri , the row with index
x is obtained from Ri by turning all x’s into 1’s and all others into 0’s. Thus, the
following theorem holds.

Theorem 1 ((Theorem 3.6.1 in [17])) A t0 � n q-ary .d; 1/-disjunct matrix M 0
yields a t � n d -disjunct matrix M with t � t0q.



Advances in Group Testing 99

Clearly, one can perform the above transformation even when the q-ary matrix
M 0 is not .d; 1/-disjunct. Transversal designs are favorable in practice because
every column of the resulting matrix M has equal weight, which means that every
item is contained in equal number of pools, so that to perform the tests, one needs
the same number of copies for each item.
Two Probabilistic Lemmas. The following two lemmas will be useful later. The
first is the Markov inequality (see, e.g., Theorem 3.2 in [42]), and the second is
commonly known as Chernoff’s bounds (Theorems 4.1 and 4.2 in [42]).

Lemma 1 (Markov inequality) Let Y be a random variable assuming only
nonnegative values, then for all t > 0,

PrŒY � t � � EŒY �

t
;

where EŒY � is the expectation of Y .

Lemma 2 (Chernoff’s bounds) Let X1;X1; : : : ; Xn be independent 0/1 random
variables, for 1 � i � n, PrŒXi D 1� D pi , where 0 < pi < 1. Let X D Pn

iD1 Xi
and � D EŒX� D Pn

iD1 pi . Then, for any ı > 0,

1. PrŒX � .1C ı/�� �
�

eı

.1Cı/1Cı

��
.

2. PrŒX � .1 � ı/�� � e��ı2=2.

2.2 One-Stage Pooling Designs

Two efficient randomized constructions will be given for d -disjunct and .d I z/-
disjunct matrices, respectively. The constructions are based on the transversal
design.

2.2.1 A New Construction of d-Disjunct Matrices
A Las Vegas algorithm will be presented next, which for given n, d and 0 < p < 1,
successfully constructs a t � n d -disjunct matrix with probability at least p, with

t � cd2.log
2

1 � p
C logn/;

where c � 4:28 is constant.
For given n, d and 0 < p < 1, define n0 D 2n. Let � be the unique positive root

of

ln.1C �/ D 2�

1C �
:

� � 3:92 is chosen to minimize the leading constant of t (see the remarks in later
part). Let
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Algorithm 1 (constructing d -disjunct matrixMt�n)
1. Construct a random q-ary matrix M 0

t0�n0
with each cell randomly assigned from f1; 2; : : : ; qg,

independently and uniformly.
2. For any 1 � i < j � n0, let wi;j be the random variable denoting the number of rows r such

that the two entries M 0.r; i/ and M 0.r; j / are equal. Then,

EŒwi;j � D � .D t0

q
/:

Create an edge between columns i and j if wi;j � .1C �/�.
3. For each edge created in Step 2, remove one of its two columns arbitrarily. Let M 00 denote the

resulting matrix.
4. If M 00 has less than n .D n0

2
/ columns, exit and the algorithm fail.

5. Using the transformation in Theorem 1, turn the first n columns of M 00 into a binary matrix
Mt�n with t � t0q.

q D .1C �/d; t0 D 1C �

�
d ln

2n � 1
1 � p ; � D t0

q
:

Please see Algorithm 1 as the algorithm for constructing d -disjunct matrices.
In Algorithm1 , at Step 3,M 00 must be q-ary .d; 1/-disjunct since for any column

i , the union of any d other columns can only cover less than

d � .1C �/� D d � t0

d
D t0

entries of column i . Therefore, if the algorithm successfully returns a matrix, it must
be d -disjunct. Moreover,

t � t0q

D .1C �/2

� log e
d2 log

2n � 1

1 � p

< cd2.log
2

1 � p C logn/;

where c D .1C�/2
� log e � 4:28.

2.2.2 Analysis of Algorithm 1
The analysis of the success probability and running time of Algorithm 1 will be
presented next.
Success Probability. First, the expectation of the number of edges created at Step 2
is estimated.

Lemma 3 Let m be the random variable denoting the number of edges created at
Step 2 of Algorithm 1 , then EŒm� � n.1 � p/.
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Proof For 1 � i < j � n0; 1 � k � t0, at Step 2 of Algorithm 1 , define 0/1
random variable Xi;j

k such that

X
i;j

k D 1 if and only if M 0.k; i/ D M 0.k; j /:

Then,
wi;j D X

i;j
1 CX

i;j
2 C � � � CX

i;j
t0 :

Let Xi;j be the indicator random variable for the event that there is an edge between
column i and column j , that is,

Xi;j D
�
1 there is an edge between column i and column j , that is, wi;j � .1C�/�I
0 otherwise.

Since wi;j is the sum of t0-independent 0/1 random variables, the Chernoff bound,
(1) in Lemma 2, implies that

PrŒXi;j D 1� D PrŒwi;j � .1C �/�� �
�

e�

.1C �/1C�

��
:

Notice that q D .1C �/d , and

t0 D 1C �

�
d ln

2n � 1

1 � p
:

Then,

� D EŒwi;j � D t0

q
D 1

�
ln
2n � 1

1 � p
:

From

ln.1C �/ D 2�

1C �
;

it follows that .1C �/1C� D e2� , and so

e�

.1C �/1C�
D e��;

which implies that

�
e�

.1C �/1C�

��
D .e��/

1
� ln 2n�1

1�p D 1 � p
2n � 1 :

Thus,

EŒXi;j � D PrŒXi;j D 1� � 1 � p

2n � 1
;

for 1 � i < j � n0. Since m D P
1�i<j�n0 X

i;j and all the Xi;j ’s are identically
distributed, and n0 D 2n, it follows that
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EŒm� D
 
n0

2

!

EŒX1;2� �
 
n0

2

!
1 � p
2n � 1 D n.1 � p/: �

Clearly, m denotes the most number of columns that may be removed at Step 3.
Since EŒm� � n.1 � p/, by applying the Markov inequality (Lemma 1), the
probability that there are less than n columns left in M 00 at Step 4 (i.e., the failure
probability of Algorithm 1 ) is at most PrŒm > n� � EŒm�

n
� 1 � p.

Running Time. The time required by Algorithm 1 is dominated by Step 2, which is

 
n0

2

!

t0 D O.dn2 lnn/;

by simply counting, for all pairs of columns, the number of rows at which the
two columns have equal entry. In fact, an expected O.n2 lnn/ running time can
be obtained by counting along the rows.

For 1 � i < j � n0, let n.i; j / denote the number of equal entries between
column i and column j in the same row. Initially, set n.i; j / D 0 for 1 � i < j �
n0. For each row r , let Sr;1; Sr;2; : : : ; Sr;q denote the sets of column indices such that

Sr;k D fi W M 0.r; i/ D kg:

Clearly, the sets Sr;k, 1 � k � q, can be constructed in n0 time. For each k, increase
the values of n.i; j / by 1 for all i < j and i; j 2 Sr;k. The expected number of
such pairs .i; j / for each Sr;k is EŒ

�jSr;k j
2

�
�. Since jSr;kj are identically distributed for

1 � k � q, the expected running time of Step 2 is

t0 �
 

n0 C qE

" 
jSr;1j
2

!#!

:

Notice that jSr;1j has the binomial distribution with parameters n0 and 1=q; thus,

n0 C qE

" 
jSr;1j
2

!#

D n0 C q
1

q2
.n20 � n0/ D O.n2=d/;

and so the expected running time of Step 2, which is also the expected running time
of Algorithm 1 , is t0 �O.n2=d/ D O.n2 lnn/.

Therefore, the following theorem is established.

Theorem 2 Given n, d , and 0 < p < 1, Algorithm1 successfully constructs a t�n
d -disjunct matrix with probability at least p, with

t < cd2.log
2

1 � p
C logn/;
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where c � 4:28 is constant. The algorithm runs in expectedO.n2 lnn/ time.

Remarks In Algorithm 1 , � is chosen to minimize the leading constant of t . It is
required that

.1C �/� � t0

d
;

where � D t0
q

, that is, q � .1 C �/d , to guarantee that matrix M 00 is .d; 1/-
disjunct. To guarantee that with reasonable probability M 00 has at least n columns,
it is required that

n0 �EŒm� � n;

where EŒm� D �
n0
2

�
EŒX1;2�. This implies that

PrŒX1;2 D 1� � n0 � n
�
n0
2

� :

Since

max
n0

n0 � n
�
n0
2

� D 1

2n� 1
;

which can be achieved when n0 D 2n� 1 or n0 D 2n, it should have that

PrŒX1;2 D 1� � 1

2n � 1 :

This can be guaranteed by

�
e�

.1C �/1C�

��
� 1

2n � 1 ;

that is,

� ln
.1C �/1C�

e�
� O.1/C ln n:

By plugging in � D t0
q

D t
q2

and q � .1C �/d , it follows that

t � .1C �/2

ln .1C�/1C�

e�

d 2.O.1/C ln n/:

Define

f .�/ D .1C �/2

ln .1C�/1C�

e�

D .1C �/2

.1C �/ ln.1C �/ � �
:

To minimize f .�/ for � > 0, from basic calculus, f 0.�/ D 0 implies that
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ln.1C �/ D 2�

1C �
:

It is easy to verify that this equation has one unique positive root � � 3:92. Also,
the equation implies that

f .�/ D .1C �/2

.1C �/ ln.1C �/ � �
D .1C �/2

�
:

2.2.3 Error-Tolerance Case
Algorithm 1 is modified next, so that given n, d , z > 1 and 0 < p < 1, the modified
algorithm successfully constructs a t � n .d I z/-disjunct matrix with probability at
least p, with

t � cd2
�

log
2

1� p
C logn

�

C 2.1C �/d z CO

�
z2

lnn

�

;

where � � 3:92 and c � 4:28 are constants, and the O.�/ notation hides
dependencies on p.

First a generalization of .d; 1/-disjunct matrices is given. A q-ary matrix is
.d; 1I z/-disjunct if for any column c and any setD of d other columns, there exist at
least z elements in c such that each of these elements does not appear in any column
of D in the same row. Clearly, by applying the same transformation in Theorem 1,
one can turn a t0�n q-ary .d; 1I z/-disjunct matrix into a .d I z/-disjunct matrix with
n columns and at most t0q rows.

For given n, d , z > 1 and 0 < p < 1, let n0, � be as in Algorithm 1 . Let

q D .1C �/d C �z

ln 2n�1
1�p

; t0 D z C 1C �

�
d ln

2n� 1

1 � p ; � D t0

q
:

It can be verified that by this assignment,

.1C �/� D t0 � z

d
;

and �
e�

.1C �/1C�

��
D 1 � p
2n� 1

:

Please see Algorithm 2 as the algorithm for constructing .d I z/-disjunct matrices.
Firstly, at Step 3 of Algorithm 2 ,M 00 must be q-ary .d; 1I z/-disjunct because for

any column i , any d other columns can only cover less than d �.1C�/� D t0�z of
its entries. Therefore, if the algorithm successfully returns a matrix, it must be .d I z/-
disjunct. Secondly, when z D o.d ln n/, by similar arguments, Algorithm 2 runs in
time O.dn2 lnn/ in the straightforward manner, and can be improved to expected
O.n2 lnn/ time by counting the pairs of equal entries along the rows. Thirdly,
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Algorithm 2 (constructing .d I z/-disjunct matrix Mt�n)

Algorithm 2 works in the same way as Algorithm 1 , except that with q D .1C �/d C �z
ln 2n�1

1�p

and t0 D z C 1C�
�
d ln 2n�1

1�p
.

t � t0q

D .1C �/2

� log e
d2 log

2n� 1

1 � p C 2.1C �/d z C .� log e/z2

log 2n�1
1�p

� cd2
�

log
2

1 � p C logn

�

C 2.1C �/d z CO

�
z2

lnn

�

;

where c D .1C�/2
� log e � 4:28.

For the success probability, if one let m� be the random variable denoting the
number of edges created at Step 2, since

�
e�

.1C �/1C�

��
D 1 � p
2n � 1

still holds, the same result in Lemma 3 also holds here, that is,

EŒm�� � n.1 � p/:

Therefore, the probability that there are less than n columns left at Step 4 (i.e., the
failure probability of Algorithm 2 ) is at most PrŒm� > n� � 1 � p. The following
theorem is established.

Theorem 3 Given n, d , z > 1 and 0 < p < 1, Algorithm 2 successfully constructs
a t � n .d I z/-disjunct matrix with probability at least p, with

t � cd2
�

log
2

1� p
C logn

�

C 2.1C �/d z CO

�
z2

lnn

�

;

where � � 3:92 and c � 4:28 are constants. When z D o.d lnn/, the algorithm
runs in expected O.n2 ln n/ time.

2.3 Two-Stage Pooling Designs

New two-stage pooling designs, which require a number of tests asymptotically no
more than a factor of 3

log 3 (the factor approaches log2 e � 1:44 as d tends to infinity)
of the information-theoretic lower bound d log.n=d/, will be presented next.
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This improves the previously best upper bound of 4.1Co.1// times the information
theoretic bound in [24] by a factor of more than 2.

For a 0/1 matrix M , let C denote the set of columns of M , recall that M is
d -disjunct if for any d -sized subset D of C , each column in C �D is not covered
by U.D/, where U.D/ denotes the union of the columns in D. Such matrices form
the basis for nonadaptive (one-stage) pooling designs. However, a d -disjunct matrix

with n columns requires no less than �.d
2 log n
log d / rows, which is a factor of d= logd

of the information-theoretic lower bound.
Instead of determining all the positives immediately, in [24] the authors relax

the property of M by introducing the concept of .d; k/-resolvable matrices,
which form a good two-stage group testing regimen. A 0/1 matrix M is called
.d; k/-resolvable if, for any d -sized subsetD of C , there are fewer than k columns
in C �D that are covered by U.D/. Thus, a matrix is d -disjunct if and only if it is
.d; 1/-resolvable.

For a set of n items in which at most d are positives, one can construct a “trivial
two-stage” pooling design based on a t � n .d; k/-resolvable matrix as follows.
Define the first round tests according to the rows of the matrix. By identifying the
items in a negative pool (a pool with negative test outcome) as negatives, one can
restrict the positives to a set D0 of size smaller than d C k. Then, perform an
additional round of tests on each item in D0 individually. Thus, the total number
of tests of the two stages is less than t C d C k.

2.3.1 Near Optimal Two-Stage Pooling Designs
Let M1 be a q-ary matrix, and let C denote the set of columns of M1. Matrix M1 is
said to be .d; 1I k/-resolvable if, for any d -sized subsetD ofC , there are fewer than
k columns in C �D that are covered by D. Here by saying a column c is covered
byD, it means that for each element of c, the element appears at least once in some
column of D in the same row. By applying the transformation in Theorem 1, one
can turn a t0 � n q-ary .d; 1I k/-resolvable matrix into a t � n .d; k/-resolvable
matrix with t � t0q.

LetM 0 be a random t0�n q-ary (where q will be specified later) matrix with each
cell assigned randomly from f1; 2; : : : ; qg, independently and uniformly. For each
setD of d columns and a column c … D, for each element ci (i D 1; 2; : : : ; t0) in c,

the probability that ci appears in some column ofD in the same row is 1�
�
1 � 1

q

�d
;

thus, the probability that every element in c appears in some column of D in the

same row, that is, c is covered by D, is Œ1 �
�
1 � 1

q

�d
�t0 . Parameter t0 is chosen

such that

"

1 �
�

1 � 1

q

�d
#t0

D 1

n� d
;
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that is,

t0 D � log.n � d/

log
h
1 �

�
1 � 1

q

�d i :

Let C denote the set of columns of M 0. For any set D of d columns of M 0, and
for each c 2 C �D, let Xc be the indicator variable such that Xc D 1 if and only if
c is covered by D. Then,

PrŒXc D 1� D 1

n � d
:

Define
XD D

X

c2C�D
Xc:

Then, XD is the random variable denoting the number of columns in C � D that
are covered by D. Since XD is the sum of .n � d/ i.i.d. 0/1 random variables and
EŒXD� D 1, the Chernoff’s bound implies that the probability thatD covers at least
.1C ı/ columns in C �D is

PrŒXD � .1C ı/� � eı

.1C ı/1Cı
:

Therefore, the probability thatM 0 is not .d; 1I 1Cı/-resolvable, that is, there exists
some set D of d columns that covers at least .1C ı/ columns in C �D, is at most

p D
 
n

d

!
eı

.1C ı/1Cı
:

In order to satisfy p < 1, it suffices to assign ı such that

�
1C ı

e

�1Cı
D nd ;

since which implies that

.1C ı/1Cı

eı
>
.1C ı/1Cı

e1Cı
D nd >

 
n

d

!

:

Notice that . 1Cı
e
/1Cı D nd implies . 1Cı

e
/
1Cı
e D n

d
e ; thus,

1C ı D .1C o.1//
d ln n

ln.d lnn/
:

Hence, by probabilistic arguments, the existence of a t0 � n q-ary .d; 1I 1C ı/-
resolvable matrix with t0 and ı as specified above has been proved.
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By applying the transformation in Theorem 1, one can turn the t0 � n q-ary
.d; 1I 1C ı/-resolvable matrixM 0 into a (binary) t�n .d; 1C ı/-resolvable matrix
M with

t � t0q < � q logn

log
h
1 � .1 � 1

q
/d
i :

Define
Cd.x/ D x

� log
	
1 � .1 � 1

x
/d

 ; for x > 1:

Choosing q to be the positive integer that minimizes Cd.x/, and let Cd D Cd.q/.
Then, t � Cd logn. For d � 1,

Cd=d � Cd.3d/=d D 3

� log
	
1 � .1 � 1

3d
/d

 � 3

log 3
:

Also it is not hard to see that when d D 1, C1 D C1.3/ D 3
log 3 indeed holds.

Furthermore, the following lemma estimates that q D ‚.d/ and Cd ! d log e as
d ! 1.

Lemma 4 For d � 1, let q D q.d/ be the point that minimizes Cd.x/ D
x

� logŒ1�.1� 1
x /
d �

for x > 1, and let Cd D Cd.q/. Then, q.d/ D ‚.d/, and

limd!1 Cd=d D log e.

To prove Lemma 4, the following useful fact is proved first.

Fact 1 Let f .y/ D lny ln.1 � y/, 0 < y < 1. Then f .y/ achieves maximum at
y D 1

2
.

Proof of Fact 1: By symmetry, it is sufficient to show that f 0.y/ > 0 for 0 < y

< 1
2
. Since

f 0.y/ D 1

y
ln.1 � y/ � 1

1 � y
lny

D 1

y.1 � y/
Œ.1 � y/ ln.1 � y/ � y ln y� ;

let
g.y/ D .1 � y/ ln.1 � y/ � y lny;

Next it will be showed that g.y/ > 0 for 0 < y < 1
2
.

Rewrite

g.y/ D ln.1 � y/C y ln
1

y.1 � y/ :

For 0 < y < 1
2
, ln 1

y.1�y/ > ln 4 since y.1 � y/ < 1
4
; thus,
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g.y/ > ln.1 � y/C y ln 4:

Let
h.y/ D ln.1 � y/C y ln 4:

Notice that h0.y/ D ln 4 � 1
1�y , h0.y/ > 0 for 0 < y < 1 � 1

ln 4 and h0.y/ < 0

for 1 � 1
ln 4 < y < 1

2
. Thus, h.y/ is monotone increasing when 0 < y < 1 � 1

ln 4
and monotone decreasing when 1 � 1

ln 4 < y <
1
2
. From h.0/ D h.1

2
/ D 0, one can

obtain that

h.y/ > 0 for 0 < y <
1

2
:

Therefore, for 0 < y < 1
2
, g.y/ > h.y/ > 0, and so f 0.y/ D 1

y.1�y/ g.y/ > 0. �

Proof of Lemma 4: Notice that if q1 satisfies .1� 1
q1
/d D 1

2
, then q1 D ‚.d/ since

q1
d

! log e as d ! 1. Moreover,

Cd.q1/ D q1 D ‚.d/:

The lemma is proved by contradiction. First assume that q.d/ D O.d/ does not
hold, that is, for any c > 0 and any d0 > 0, there exists d > d0 such that q.d/ > cd .
Then, since q

d
> c (for simplicity q is used instead of q.d/, if it is clear from the

context), as c ! 1,

Cd.q/ D q

� log

�

1 �
�
1 � 1

q

�d
�

� q

� log
h
1 �

�
1 � d

q

�i

D d

q

d

log q

d

D !.d/I

here, a � b means that limc!1 a
b

D 1. However, this contradicts since q is the
point that minimizes Cd.q/ and on the other hand Cd.q1/ D ‚.d/. On the other
hand, assume that q.d/ D �.d/ does not hold, that is, for any c > 0 and any
d0 > 0, there exists d > d0 such that q.d/ < cd . Write

Cd.q/ D q

� log

�

1 �
�
1 � 1

q

�d
�

D q ln 2

� ln

(

1 �
h�
1 � 1

q

�qi dq
) :
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Since 0 <
�
1 � 1

q

�q
< 1

e
for q > 1, as c ! 0, d

q
> 1

c
! 1, and

h�
1 � 1

q

�qi dq
<

e
� d
q ! 0; thus,

Cd.q/ � q ln 2
h�
1 � 1

q

�qi dq
> e

d
q q ln 2 D d

e
d
q ln 2
d
q

D !.d/I

this also contradicts (here a � b means that limc!0
a
b

D 1). Therefore,
q.d/ D ‚.d/.

Next Cd as d ! 1 is estimated. Since
�
1 � 1

q

�q
< 1

e
for q > 1, thus

�

1 � 1

q

�d
<

�
1

e

� d
q

D e
� d
q ;

and

� log

"

1 �
�

1 � 1

q

�d
#

< � log
�
1 � e

� d
q

�
;

it follows that

Cd.q/ D q

� log

�

1 �
�
1 � 1

q

�d
�

>
q

� log
�
1 � e

� d
q

�

D d ln 2
h
� d
q

ln
�
1 � e� d

q

�i :

Let y D e
� d
q , then � d

q
D lny, andCd.q/ > d ln 2

ln y ln.1�y/ . Since lny ln.1�y/ achieves

maximum at y D 1
2

(Fact 1), Cd.q/ > d log e for q > 1, thus Cd > d log e for
d � 1. On the other hand, as mentioned at the beginning of the proof, as d ! 1,
q1
d

! log e, and Cd.q1/ D q1 ! d log e. Therefore, as d ! 1, Cd ! d log e. �
The above arguments showed existence of a t � n .d; 1C ı/-resolvable matrix

with t � Cd logn and 1 C ı D .1 C o.1// d ln n
ln.d ln n/ , which implies the following

theorem.

Theorem 4 Given n and d , there exists a two-stage pooling design for finding up
to d positives from n items using no more than Cd lognC d C ı C 1 tests, where
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Cd D min
x2N

x

� log
h
1 � �

1 � 1
x

�di � 3

log 3
d;

for d � 1, and ı D .1C o.1// d ln n
ln.d ln n/ . Moreover,

lim
d!1Cd=d D log e:

2.4 Probabilistic Pooling Designs

A probabilistic pooling design identifying up to d positives from n items with high
probability will be presented next. In a probabilistic group testing algorithm, one
may identify a positive item as negative; such a wrongly identified item is called
a false negative; a negative item which is wrongly identified as positive is called
a false positive. Clearly, the algorithm correctly identifies all positives if and only
if there are no false positives or false negatives. Previous works on probabilistic
nonadaptive group testing algorithms can be found from, among others, [40,41,44].

Algorithm. Given n and d , first construct a t0 � n random q-ary matrix M 0 with
each cell randomly assigned from f1; 2; : : : ; qg independently and uniformly (where
t0 and q will be specified later). Then, use the transformation in Theorem 1 to obtain
a t � n 0/1 matrix M with t � t0q. Associate the n items with the columns of M ,
and test the pools indicated by the rows of M . The items not in any negative pool
are identified as positives.

Analysis. Let D be the set of columns corresponding to the positives, then
jDj � d . First, it is easy to see that no positive item will be identified as negative if
there is no error in the test outcomes. For any negative item, let c denote the column
associated with it, then the item is wrongly identified if and only if c is covered by
U.D/ inM , or equivalently, c is covered byD inM 0 (here the same notations c and
D are used for different matricesM andM 0, to denote the corresponding columns).
The probability that c is covered by D, as analyzed in Sect. 2.3, is

"

1 �
�

1 � 1

q

�jDj#t0
�
"

1 �
�

1 � 1

q

�d
#t0

:

Choosing q and t0 such that

"

1 �
�

1 � 1

q

�d
#t0

D 1 � p

n
;

that is,

t0 D �
lognC log 1

1�p
logŒ1 � .1 � 1

q
/d �
:
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Then, the probability that there exists some negative item wrongly identified is no
more then

.n � jDj/Œ1 � .1 � 1

q
/d �t0 � 1 � p;

which implies that with probability at least p, the above algorithm successfully
identifies all the positives. The number of pools required is no more than

t � t0q D � q

logŒ1 � .1� 1
q
/d �
.lognC log

1

1 � p
/:

By choosing q to be the positive integer minimizing

Cd.x/ D x

� logŒ1 � .1 � 1
x
/d �

for x > 1;

obtaining

t � Cd.lognC log
1

1 � p
/:

Theorem 5 The above one-stage algorithm, with probability at least p, correctly
identifies up to d positives from n items using no more than Cd.logn C log 1

1�p /
tests.

Remarks

1. The one-stage probabilistic pooling design is also transversal. This design never
gets false negatives, while the probabilistic algorithms in [40, 41, 44] never get
false positives. The algorithm in [44] identifies up to 9 positives from 18,918,900
items using 5,460 tests, with success probability of 98.5 %. For the method
proposed here, n D 18;918;900, d D 9, and p D 0:985, by choosing q D 14, it
requires Cd.q/.lognC log 1

1�p / < 408 tests, which is much fewer.
2. In contrast to the two-stage design in Sect. 2.3, this probabilistic algorithm is

explicitly given and can be easily implemented in practice. In addition, one
can extend this algorithm to two stage, by performing an additional round of
individual tests on the candidate positives identified by the first round, so that
no item will be wrongly identified. It is easy to verify that, for this extended
two-stage probabilistic algorithm, by choosing the same value q, and choosing
t0 such that Œ1 � .1 � 1

q
/d �t0 D 1

n
, the expected total number of tests required is

no more than Cd lognC d C 1, which is better than the deterministic two-stage
design in Sect. 2.3.

2.5 Conclusion and Future Studies

New one- and two-stage pooling designs, together with new probabilistic pooling
designs, are presented in this section. The approach presented works for both error-
free and error-tolerance scenarios. The following remarks end off this section:
1. The constructions of pooling designs in Sects. 2.3 and 2.4 can also be generalized

to error-tolerance case, in a similar manner as in the construction of .d I z/-
disjunct matrices in Sect. 2.2.3. The details are omitted due to the similarities.
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2. Efficient constructions (i.e., in time polynomial in n and d ) of the two-stage
designs in Sect. 2.3 are not given. Up to now, no efficient construction of two-
stage pooling designs using the number of tests within a constant factor of the
information theoretic lower bound is known. In [14], the construction requires�
n
n
2d

�
time, and in [24], the authors gave existence proof as in this section.

Although once such a design is found it can be used as many times as wanted,
efficient construction is an important issue.

3. The two-stage pooling design presented in Sect. 2.3 uses the number of tests
asymptotically within a factor of Cd=d (� 3

log 3 for general d , and tends to
log2 e � 1:44 as d ! 1) of the information theoretic bound d log.n=d/. Can
two-stage algorithms do as good as fully adaptive algorithms, that is, achieve
a factor of asymptotically 1 of the information theoretic bound? Or, how good
could it be?

4. Last but the least, efficient (i.e., polynomial time in n and d ) deterministic
constructions of d -disjunct matrices with t D O.d2 logn/ are known [2, 50].
Regarding the leading constant within the big-O notation, the results indicate
that they are considerably larger than the result given in this section (where the
leading constant is approximately 4:28). An efficient randomized construction
of d -disjunct matrices with t D O.d2 logn/ and efficient decoding (in time
polynomial in t) is given in [33], and an efficient deterministic construction with
the same properties is obtained recently [45]. Improved constructions of disjunct
matrices are interesting to investigate.

3 New Complexity Results on Nonunique Probe Selection

Given a collection of n targets and a sample S containing at most d of these targets,
and a collection ofm probes each of them hybridizes to a subset of the given targets,
the goal is to select a subset of probes, such that all targets in S can be identified
by observing the hybridization reactions between the selected probes and S . For
each probe p, there is hybridization reaction between p and S if S contains at
least one target that hybridizes with p, otherwise there is no hybridization reaction.
The above probe selection problem has been extensively studied recently [5, 31,
51, 52, 56] due to its important applications, particularly in molecular biology. For
example, one application of this identification problem is to identify viruses (targets)
from a blood sample. The presence or absence of the viruses is established by
observing the hybridization reactions between the blood sample and some probes;
here, each probe is a short oligonucleotide of size 8–25 that can hybridize to one or
more of the viruses.

A probe is called unique if it hybridizes to only one target; otherwise, it
is called nonunique. Identifying targets using unique probes is straightforward.
However, in situations where the targets have a high degree of similarity, for instance
when identifying closely related virus subtypes, finding unique probes for every
target is difficult. In [54], Schliep, Torney, and Rahmann proposed a group testing
method using nonunique probes to identify targets in a given sample. Since each
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nonunique probe can hybridize with more than one target, the identification problem
becomes more complicated. One important issue is to select a subset from the
given nonunique probes so that the hybridization results can be decoded, that is,
determine the presence or absence of targets in sample S . Also, the number of
selected probes is exactly the number of hybridization experiments required, and
it is desirable to select as few probes as possible to reduce the experimental cost.
In [35, 54], two heuristics using greedy and linear programming-based techniques,
respectively, are proposed for choosing a suitable subset of nonunique probes. In
[11], the computational complexities of some basic problems in nonunique probe
selection are studied, in the context of the theory ofNP -completeness (see Chap. 10
in [17,19] and [30]). The complexity results in [11] will be presented in this section.

3.1 Preliminaries

The nonunique probe selection problem can be formulated as follows. Given
a collection of n targets t1; t2; : : : ; tn, and a collection of m nonunique probes
p1; p2; : : : ; pm, a sample S is known to contain at most d of the n targets. The
probe-target hybridizations can be represented by anm�n 0-1 matrixM .Mi;j D 1

indicates that probe pi hybridizes to target tj , and Mi;j D 0 indicates otherwise.
The subset of probes selected corresponds to a subset of rows in M , which forms
a submatrix H of M with the same number of columns. The hybridization results
between the selected probes and S also can be represented as a 0-1 vector V . Vi D 1

indicates that there is hybridization reaction between pi and S , that is, pi hybridizes
to at least one target in S , and Vi D 0 indicates otherwise. If there is no error in the
hybridization experiments, then V is equal to the union of the columns of H that
correspond to the targets in S . Here, the union of a subset of columns is simply
the Boolean sum of these column vectors. In order to identify all targets in S , the
submatrixH should satisfy that all unions of up to d columns inH are different; in
other words, H should be Nd -separable. Also, as mentioned above, it is desirable to
minimize the number of rows in H .

A matrix H is said to be Nd -separable if all unions of up to d columns in H are
different. However, the following equivalent definition is more useful in the proofs
here. Let H be a t � n Boolean matrix. For each i 2 f1; 2; : : : ; tg, define

Hi D fj j 1 � j � n;Hi;j D 1g:

For any subset S of f1; 2; : : : ; ng and any i 2 f1; 2; : : : ; tg, write

Hi.S/ D
�
1 if Hi \ S 6D ;I
0 otherwise.

Two sets S1; S2 	 f1; 2; : : : ; ng are said to be separated by H if there exists
an integer i , 1 � i � t , such that Hi.S1/ 6D Hi.S2/. Matrix H is said to be
Nd -separable if for any two different subsets S1, S2 of f1; 2; : : : ; ng, with jS1j � d

and jS2j � d , S1 and S2 can be separated by H .
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3.2 Complexity of Minimal Nd -Separable Matrix

In nonunique probe selection, one natural problem of interests is to determine
whether a submatrix H chosen is Nd -separable and minimal. By minimal, it means
that the removal of any row fromH will make it no longer Nd -separable. The problem
can be formulated as follows.

MIN-SEPARABILITY (MINIMAL SEPARABILITY): Given a t � n Boolean matrix H and
an integer d � n, determine whether it is true that (a) H is Nd -separable, and (b) for any
submatrix Q of H of size .t � 1/� n,Q is not Nd -separable.

For a given binary matrix H and a positive integer d , the problem to determine
whether H is Nd -separable is known to be coNP -complete ([17], Theorem 10.2.1).
Here a DP -completeness proof of problem MIN-SEPARABILITY will be presented.

The class DP is the collection of sets A which are the intersection of a set
X 2 NP and a set Y 2 coNP . The notion of DP -completeness has been used to
characterize the complexity of the “exact-solution” version of many NP -complete
problems. For instance, the exact traveling salesman problem, which asks, for a
given edge-weighted complete graph G and a constant K , whether the minimum
weight of a traveling salesman tour of the graph G is equal to K , is DP -complete
(see [47], Theorem 17.2). In addition, the “critical” version of some NP -complete
problems is also known to be DP -complete. For instance, the following problem
is the critical version of the 3-satisfiability problem and has been shown to be
DP -complete by Papadimitriou and Wolfe [48]:

MIN-3-UNSAT: Given a 3-CNF Boolean formula ' which consists of clauses
C1; C2; : : : ; Cm, determine whether it is true that (a) ' is not satisfiable, and (b) for
any j , 1 � j � m, the formula 'j that consists of all clauses C`, ` 2 f1; 2; : : : ; mg � fj g,
is satisfiable.

Although most exact-solution version of NP -complete problems have been
shown to be DP -complete, many critical versions are not known to be DP -
complete. The problem MIN-SEPARABILITY may be viewed as a critical version
of the Nd -separability problem. ItsDP -completeness will be proved by constructing
a reduction from MIN-3-UNSAT.

Theorem 6 MIN-SEPARABILITY is DP -complete.

Proof Recall that DP D fX \ Y j X 2 NP; Y 2 coNP g. A problem A is
DP -complete if A 2 DP and, for all B 2 DP , B �P

m A. For convenience, for any
t � n matrix H , eHj is used to denote the .t � 1/ � n submatrix of H with the j th
row removed. First, to see that MIN-SEPARABILITY 2 DP , let

X D ˚
.H; d/ j H is a t � n 0/1 matrix, 1 � d � n, .8j; 1 � j � t/ eHj

is not Nd -separable


;

and

Y D f.H; d/ j H is a t � n 0/1 matrix, 1 � d � n, H is Nd -separableg:
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It is clear that MIN-SEPARABILITY D X\Y . It is also not hard to see thatX 2 NP
and Y 2 coNP . In particular, to see that X 2 NP , note that .H; d/ 2 X if and
only if there exist 2t subsets Sj;1, Sj;2 of f1; 2; : : : ; ng, for j 2 f1; 2; : : : ; tg, such
that, for each j , Hk.Sj;1/ D Hk.Sj;2/ for all k 2 f1; 2; : : : ; tg � fj g.

Next, a reduction from MIN-3-UNSAT to MIN-SEPARABILITY will be described.
Let ' be a 3-CNF Boolean formula which consists of m clauses C1, C2; : : : ; Cm,
over n variables x1; x2; : : : ; xn. For each j 2 f1; 2; : : : ; mg, let 'j denote the
Boolean formula that consists of all clauses C` for ` 2 f1; 2; : : : ; mg � fj g. From
', a .3n C m C 1/ � .2n C 2/ Boolean matrix H will be constructed, and define
d D nC 1. For convenience, the columns ofH are denoted by

X D fxi ; Nxi j 1 � i � ng [ fy; zg;

and denote the rows of H by

T D fxi ; Nxi ; ui j 1 � i � ng [ fyg [ fCj j 1 � j � mg:

Next H is defined by specifying each row of it:
1. For each 1 � i � n, let Hxi D fxi g, H Nxi D f Nxi g, and Hui D fxi ; Nxi ; zg.
2. Hy D fyg.
3. For each 1 � j � m, let HCj D fxi j xi 2 Cj g [ f Nxi j Nxi 2 Cj g [ fy; zg

(so that jHCj j D 5).
To prove the correctness of the reduction, first verify that if ' is not satisfiable,

then H is Nd -separable. To see this, let S1 and S2 be two subsets of X , each of size
� nC 1.

Case 1. S1� fzg 6D S2� fzg. Then, there exists v 2 X � fzg such that v 2 S1�S2.
Then, Hv.S1/ 6D Hv.S2/.

Case 2. S1 � fzg D S2 � fzg. Then, it must be true that S1�S2 D fzg. Without
loss of generality, assume S2 D S1 [ fzg. Note that jS2j � nC 1 implies jS1j � n.

Subcase 2.1. There exists an integer i such that jS1 \ fxi ; Nxi gj 6D 1. First, if
jS1\fxi ; Nxi gj D 0 for some i , thenHui .S1/ D 0 andHui .S2/ D 1 (because z 2 S2).
Next, if jS1 \ fxi ; Nxi gj D 2 for some i , then it must have jS1 \ fxk; Nxkgj D 0 for
some k, because jS1j � n. Then, againHuk .S1/ D 0 6D 1 D Huk .S2/.

Subcase 2.2. jS1 \ fxi ; Nxi gj D 1 for all i 2 f1; 2; : : : ; ng. Note that, in this case,
y 62 S1. Define a Boolean assignment � W fx1; x2; : : : ; xng ! fTRUE; FALSEg by

�.xi / D TRUE if and only if xi 2 S1:

Since ' is not satisfiable, there exists a clause Cj that is not satisfied by � . It means
that Cj \ S1 D ;, and so HCj .S1/ D 0. However,HCj .S2/ D 1 since z 2 S2.

The above completes the proof that H is Nd -separable.
Next, it will be showed that if 'j is satisfiable for all j D 1; 2; : : : ; m, then eH v

is not Nd -separable for all v 2 T . First, for v 2 X � fzg, let S1 D fzg and S2 D fv; zg.
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Then, for all rows w 2 X � fz; vg, Hw.S1/ D 0 D Hw.S2/. Also, for all other rows
w 2 T � X , Hw.S1/ D Hw.S2/ D 1 since z 2 Hw. So, S1 and S2 are not separable
by eH v.

Next, consider the case v D ui for some i 2 f1; 2; : : : ; ng. Let

S1 D fxk j 1 � k � n; k 6D ig [ fyg;

and S2 D S1 [ fzg. It is clear that jS1j D n and jS2j D n C 1. Now the following
claim is made: S1 and S2 are not separable by eH ui .

To prove the claim, note that the rows Hxk , H Nxk , for 1 � k � n, and row Hy

cannot separate S1 from S2, since S1 � fzg D S2 � fzg. Also, rows Huk .S1/ D
Huk .S2/ D 1, for all k 2 f1; 2; : : : ; ng � fig, because jS1 \ fxk; Nxkgj D 1 if k 6D i .
In addition, for any j D 1; 2; : : : ; m, HCj .S1/ D 1 D HCj .S2/, since y 2 S1. It
follows that eH ui cannot separate S1 from S2.

Finally, consider the case v D Cj for some j 2 f1; 2; : : : ; mg. Note that 'j is
satisfiable. So, there is a Boolean assignment � W fx1; x2; : : : ; xng ! fTRUE; FALSEg
satisfying all clauses C`, except Cj . Define

S1 D fxi j �.xi / D TRUEg [ f Nxi j �.xi / D FALSEg;

and S2 D S1[fzg. Then, similar to the argument for the case v D ui , one can verify
that Hw.S1/ D Hw.S2/ for w 2 X � fzg, and for w 2 fui j 1 � i � ng. In addition,
for any clause C`, with ` 6D j , C` is satisfied by � . It follows that C` \ S1 6D ; and
HC`.S1/ D 1 D HC`.S2/. This completes the proof that eH v is not Nd -separable, for
all v 2 T .

Conversely, it will be showed that if ' 62 MIN-3-UNSAT, then .H; nC1/ 62 MIN-
SEPARABILITY. First, consider the case that ' is a satisfiable formula. Let
� W fx1; x2; : : : ; xng ! fTRUE; FALSEg be a Boolean assignment satisfying '.
Define

S1 D fxi j �.xi / D TRUEg [ f Nxi j �.xi / D FALSEg;
and S2 D S1 [ fzg. Then, similar to the earlier proof, one can verify that H cannot
separate S1 from S2. In particular, HCj .S1/ D 1 for all j 2 f1; 2; : : : ; mg, because
� satisfies Cj and so Cj \ S1 6D ;. Thus, .H; nC 1/ 62 MIN-SEPARABILITY.

Next, assume that there exists an integer j 2 f1; 2; : : : ; mg such that 'j is not
satisfiable. The following claim is made: eHCj is Nd -separable. The proof of the claim
is similar to the first part of the proof (for the statement that if ' is not satisfiable
then H is Nd -separable).

Case 1. S1� fzg 6D S2� fzg. Then, there exists v 2 X � fzg such that v 2 S1�S2.
So, Hv.S1/ 6D Hv.S2/.

Case 2. S1 � fzg D S2 � fzg. Then, it must be true that S1�S2 D fzg, and one
may assume S2 D S1 [ fzg. It must have jS2j � nC 1 and jS1j � n.

Subcase 2.1. There exists an integer i such that jS1 \ fxi ; Nxi gj 6D 1. Similar to
the earlier proof, if jS1 \ fxi ; Nxi gj D 0 for some i D 1; 2; : : : ; n, then Hui can be
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used to separate S1 from S2. If jS1 \ fxi ; Nxi gj D 2 for some i D 1; 2; : : : ; n, then
jS1 \ fxk; Nxkgj D 0 for some k, and again Huk separates S1 from S2.

Subcase 2.2. jS1 \ fxi ; Nxi gj D 1 for all i 2 f1; 2; : : : ; ng. Then, since jS1j � n,
y 62 S1. Define a Boolean assignment � W fx1; x2; : : : ; xng ! fTRUE; FALSEg by
�.xi / D TRUE if and only if xi 2 S1. Since 'j is not satisfiable, there exists a
clause C`, ` 6D j , such that �.C`/ D FALSE. It means that C` \ S1 D ;, and so
HC`.S1/ D 0. However, HC`.S2/ D 1 since z 2 S2. So, HC` separates S1 from
S2. This completes the proof that eHCj is Nd -separable, and hence .H; n C 1/ 62
MIN-SEPARABILITY. �

3.3 Minimum Nd-Separable Submatrix

A more important problem in nonunique probe selection is to find a minimum
subset of probes that can identify up to d targets in a given sample. In the
matrix representation, the problem can be formulated as the following: Given
a binary matrix M and a positive integer d , find a minimum Nd -separable sub-
matrix of M with the same number of columns (problem MIN- Nd -SS in [17],
Chap. 10).

For d D 1, MIN- Nd -SS has been proved to be NP -hard ([17], Theorem 10.3.2),
by modifying a reduction used in the proof of theNP -completeness of the problem
MINIMUM-TEST-SETS in [30]. For fixed d > 1, MIN- Nd -SS is believed to be
NP -hard; however, up to now, no formal proof is known. Next the decision version
of MIN- Nd -SS is considered.

Nd -SS ( Nd -SEPARABLE SUBMATRIX): Given a t � n Boolean matrix M and two integers
d; k > 0, determine whether there is a k � n submatrix H of M that is Nd -separable.

Recall that †P2 is the complexity class of problems that are solvable in nonde-
terministic polynomial time with the help of an NP -complete set as an oracle. For
instance, the following problem SAT2 is †P2 -complete ([19], Theorem 3.13): Given
a Boolean formula ' over two disjoint setsX and Y of variables, determine whether
there exists an assignment to variables in X so that the resulting formula (over
variables in Y ) is a tautology. It is easy to see that Nd -SS is in †P2 . It is conjectured
to be †P2 -complete. Here a similar problem that is a little more general than Nd -SS
will be considered, and its †P2 -completeness will be proved.

Nd -SSRR ( Nd -SEPARABLE SUBMATRIX WITH RESERVED ROWS): Given a t � n Boolean
matrixM and three integers d > 0; s; and k � 0, determine whether there is a Nd -separable
.s C k/ � n submatrix H of M that contains the first s rows of M and k rows from the
remaining t � s bottom rows of M .

Let ' be a Boolean formula, an implicant of ' is a conjunction C of literals that
implies '. The following problem is proved to be †P2 -complete by Umans [55].

SHORTEST IMPLICANT CORE: Given a DNF formula ' D T1 C T2 C � � � C Tm, and an
integer p, determine whether ' has an implicant C that consists of p literals from the last
term Tm.
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By a reduction from SHORTEST IMPLICANT CORE, one can obtain the following
result.

Theorem 7 Nd -SSRR is †P2 -complete.

Proof The problem Nd -SSRR can be solved by a nondeterministic machine that
guesses a .s C k/ � n submatrixH of M which contains the first s rows of M and
then determines whether H is Nd -separable. Note that the problem of determining
whether a given matrix H is Nd -separable is in coNP . Thus, Nd -SSRR 2 †P2 .

Next, Nd -SSRR is proved to be †P2 -complete by constructing a polynomial-time
reduction from SHORTEST IMPLICANT CORE to it. To define the reduction, let
.'; p/ be an instance of the problem SHORTEST IMPLICANT CORE, that is, let

' D T1 C T2 C � � � C Tm

be a DNF formula over n variables x1; x2; : : : ; xn, and let p be an integer> 0. Note
that each term Tj , 1 � j � m, of ' is a conjunction of some literals. Also, Tj
is used to denote the set of these literals. Assume that the last term Tm of ' has
q literals `1; `2; : : : ; `q . Define a .3n C m C q/ � .2n C 1/ Boolean matrix M as
follows:
1. Let the 2n C 1 columns of M be X D fx1, Nx1, x2, Nx2; : : : ; xn, Nxn, zg and the
3n C m C q rows of M be T D fxi ; Nxi ; ui j 1 � i � ng [ ftj j 1 � j � mg
[fcj j 1 � j � qg.

2. For i D 1; 2; : : : ; n, Mxi D fxi g, M Nxi D f Nxi g, and Mui D fxi ; Nxi ; zg.
3. For j D 1; 2; : : : ; m, Mtj D fxi j Nxi 2 Tj g [ f Nxi j xi 2 Tj g [ fzg. (Note that
Mtj \ Tj D ;).

4. The bottom q rows of M are Mcj D f`j ; zg, for j D 1; 2; : : : ; q.
Let d D nC 1, s D 3nCm, and k D p, and consider the instance .M; d; s; k/ for
the problem Nd -SSRR.

First assume that ' has an implicant C of size p that is a subset of Tm. Let H be
the submatrix of M that consists of the first s D 3nCm rows plus the k D p rows
Mcj for which `j 2 C . The following claim is made:H is Nd -separable. That is, for
any subsets S1 and S2 of fx1; Nx2; : : : ; xn; Nxn; zg of size � d , there exists a row in H
that separates them.

Case 1. S1� fzg 6D S2� fzg. Then, there exists v 2 X � fzg such that v 2 S1�S2.
Then, Mv.S1/ 6D Mv.S2/, and so H separates S1 from S2.

Case 2. S1 � fzg D S2 � fzg. Then, it must be true that S1�S2 D fzg. Without
loss of generality, assume S2 D S1 [ fzg. Note that jS2j � nC 1 implies jS1j � n.

Subcase 2.1. There exists an integer i such that jS1 \ fxi ; Nxi gj 6D 1. First, if
jS1 \ fxi ; Nxi gj D 0 for some i , then Mui .S1/ D 0 and Mui .S2/ D 1 (because
z 2 S2). Next, if jS1\fxi ; Nxi gj D 2 for some i , then it must have jS1\fxk; Nxkgj D 0

for some k, because jS1j � n. Then, againMuk .S1/ D 0 6D 1 D Muk .S2/. It follows
that H separates S1 from S2.



120 Y. Cheng

Subcase 2.2. jS1 \ fxi ; Nxi gj D 1 for all i 2 f1; 2; : : : ; ng. Define a Boolean
assignment � W fx1; x2; : : : ; xng ! fTRUE; FALSEg by �.xi / D TRUE if and only if
xi 2 S1. This is further divided into two subcases:

Subcase 2.2.1. � satisfies the conjunction C . Since C is an implicant of ' D
T1 C T2 C � � � C Tm, � must satisfy some Tj , 1 � j � m. Thus, Tj 	 S1: For
any xi 2 Tj , �.xi / D TRUE, and so xi 2 S1, and for any Nxi 2 Tj , �.xi / D
FALSE, and so Nxi 2 S1. It follows that Mtj .S1/ D 0 since Mtj \ Tj D ;. On the
other hand, Mtj .S2/ D 1 since z 2 Mtj \ S2. So, Mtj , and hence H , separates S1
from S2.

Subcase 2.2.2. � does not satisfy C . Then, for some literal `j 2 C , �.`j / D 0.
Thus, `j 62 S1, and Mcj .S1/ D 0. On the other hand, Mcj .S2/ D 1 since z 2 Mcj .
Thus, Mcj , which is a row in H , separates S1 from S2.

Conversely, assume that H is a .3nCm C k/ � .2nC 1/ submatrix of M that
contains the first 3n C m rows of M and is Nd -separable. Let C be the conjunction
of literals `j for which Mcj is a row in H . Then, obviously, jC j D k. Now the
following claim is made: C is an implicant of '.

Let � W fx1; x2; : : : ; xng ! fTRUE; FALSEg be a Boolean assignment that satisfies
C . It will be showed that � satisfies '. Let

S1 D fxi j �.xi / D TRUEg [ f Nxi j �.xi / D FALSEg;

and S2 D S1 [ fzg. Then, S1 and S2 can be separated by some row in H . Since
S2 D S1 [ fzg, they are not separable by a rowMxi orM Nxi , for any i D 1; 2; : : : ; n.
In addition, since jS1\fxi ; Nxi gj D 1 for all i D 1; 2; : : : ; n, they cannot be separated
by row Mui , for any i D 1; 2; : : : ; n. Furthermore, note that for any literal `j 2 C ,
�.`j / D 1 and so `j 2 S1 and Mcj .S1/ D Mcj .S2/ D 1. Thus, S1 and S2 cannot
be separated by any row Mcj of H .

Therefore, S1 and S2 must be separable by a rowMtj , for some j D 1; 2; : : : ; m.
That is, Mtj .S1/ D 0 6D 1 D Mtj .S2/. Since Mtj contains the complements of the
literals in Tj , Tj 	 S1. It follows that � satisfies the term Tj , and hence '. �

3.4 Conclusion

In this section, the computational complexities of problems related to nonunique
probe selection are presented. The problem of verifying the minimality of a
Nd -separable matrix is showed to be DP -complete, and hence is intractable, unless
DP D P . For the problem of finding a minimum Nd -separable submatrix, it is
conjectured to be †P2 -complete and, hence, is even more difficult than the minimal
Nd -separability problem. To support this conjecture, the problem Nd -SSRR, which is

a little more general than the minimum Nd -separable submatrix problem, is shown
to be †P2 -complete. The complexity of the original problem MIN- Nd -SS remains
open.
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4 Parameterized Complexity Results on NGT

Given an m � n binary matrix and a positive integer d , to decide whether the
matrix is d -separable ( Nd -separable, or d -disjunct) is a basic problem in nonadaptive
group testing (NGT). They are known to be coNP-complete in classical complexity
theory [18]. Thus, one should not expect any polynomial time algorithm to solve
any of them. However, since in most applications d 
 n, an interesting question is
whether there are efficient algorithms solving the above decision problems for small
values of d .

In [12] by studying the parameterized complexity of the above three problems
with d as the parameter, the authors gave a negative answer to the above
question. More formally, they studied the parameterized decision problems
p-DISJUNCTNESS-TEST, p-SEPARABILITY-TEST, and p-SEPARABILITY�-TEST

defined as follows (where N denotes the set of positive integers).

p-DISJUNCTNESS-TEST

Instance: A binary matrix M and d 2 N .
Parameter: d .
Problem: Decide whether M is d -disjunct.

p-SEPARABILITY-TEST

Instance: A binary matrix M and d 2 N .
Parameter: d .
Problem: Decide whether M is d -separable.

p-SEPARABILITY�-TEST

Instance: A binary matrix M and d 2 N .
Parameter: d .
Problem: Decide whether M is Nd -separable.
The main results obtained in [12] will be presented in this section; they are

summarized in the following theorem.

Theorem 8 p-DISJUNCTNESS-TEST, p-SEPARABILITY�-TEST, and p-SEPA-
RABILITY-TEST are all co-W[2]-complete.

W[2] is the parameterized complexity class at the second level of the
W-hierarchy, and co-W[2] is the class of all parameterized problems whose
complements are in W[2]. They will be formally introduced in the sequel.
Theorem 8 indicates that, given an m � n binary matrix and a positive integer
d , a deterministic algorithm with running time f .d/ � .mn/O.1/ (where f is
an arbitrary computable function) to decide whether the matrix is d -separable
( Nd -separable, or d -disjunct) does not exist unless the class W[2] collapses to
FPT (the class of all fixed-parameter tractable problems), which is commonly
conjectured to be false.
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4.1 Preliminaries

Before proving Theorem 8, the notions of fixed-parameter tractability, relational
structures, first-order logic, and the W-hierarchy of parameterized complexity
classes are formally introduced.

4.1.1 Fixed-Parameter Tractability
The theory of fixed-parameter tractability [16, 27] has received considerable
attention in recent years, for both theoretical research and practical computation.
The notations and conventions in [27] are adopted here. Let † denote a fixed finite
alphabet. A parameterization of †� is a polynomial time computable mapping
� W †� ! N . A parameterized problem (over †) is a pair .Q; �/ consisting of
a set Q 	 †� and a parameterization � of†�.

An algorithm A with input alphabet † is an fpt-algorithm with respect to �, if
for every x 2 †� the running time of A on input x is at most f .�.x//jxjO.1/, for
some computable function f . A parameterized problem .Q; �/ is fixed-parameter
tractable if there is an fpt-algorithm with respect to � that decidesQ. The key point
of the definition of fpt-algorithm is that the superpolynomial growth of running time
is confined to the parameter �.x/, which is usually known to be comparatively small.
The class of all fixed-parameter tractable problems is denoted by FPT.

Many NP-hard problems such as the VERTEX COVER problem [8] and the ML
TYPE-CHECKING problem [37] have been shown to be fixed-parameter tractable.
On the other hand, there is strong theoretical evidence that certain well-known
parameterized problems, for instance the INDEPENDENT SET problem and the
DOMINATING SET problem, are not fixed-parameter tractable [16]. This evidence is
provided, similar to the theory of NP-completeness, via a completeness theory based
on the following notion of reductions: Let .Q; �/ and .Q0; �0/ be parameterized
problems over alphabets † and †0, respectively. An fpt-reduction from .Q; �/ to
.Q0; �0/ is a mappingR W †� ! .†0/� such that:
1. For all x 2 †�, x 2 Q if and only if R.x/ 2 Q0.
2. R is computable by an fpt-algorithm (with respective to �). That is, there is a

computable function f such that R.x/ is computable in time f .�.x//jxjO.1/.
3. There is a computable function g W N ! N such that �0.R.x// � g.�.x//, for

all x 2 †�.
In the above definition, the last requirement is to ensure that class FPT is closed

under fpt-reductions, that is, if a parameterized problem .Q; �/ is reducible to
another parameterized problem .Q0; �0/ and .Q0; �0/ 2 FPT, then .Q; �/ 2 FPT.

4.1.2 Relational Structures
In later discussions, the conventions in descriptive complexity theory are adopted, in
which instances of decision problems are viewed as structures of some vocabulary
instead of languages over some finite alphabet.
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A (relational) vocabulary � is a set of relation symbols. Each relation symbol
R 2 � has an arity arity.R/ � 1. A structure A of vocabulary � consists of a set
A called the universe and an interpretationRA 	 Aarity.R/ of each relation symbol
R 2 � . For a tuple Na 2 Aarity.R/ , writeRA Na (or Na 2 RA) to denote that Na belongs to
the relation RA. Here only nonempty finite vocabularies and structures with a finite
universe are considered.

Recall that a hypergraph is a pair H D .V;E/ consisting of a set V of
vertices and a set E of hyperedges. Each hyperedge is a subset of V . Graphs are
hypergraphs with hyperedges of cardinality two. The following example illustrates
how to represent a hypergraph using a relational structure.

Example 1 Let �HG be the vocabulary consisting of the unary relation symbols
VERT and EDGE and the binary relation symbol I . A hypergraph H D .V;E/

can be represented by a relational structure H of vocabulary �HG as follows:
• The universe of H is V [ E .
• VERTH WD V and EDGEH WD E .
• IH WD f.v; e/ W v 2 V; e 2 E , and v 2 eg is the incidence relation.

4.1.3 First-Order Logic
First the syntax of first-order logic is briefly recalled. Let � be a vocabulary. Atomic
first-order formulas of vocabulary � are of the form x D y or Rx1 : : : x`, where
R 2 � is `-ary (i.e., has arity `) and x; y; x1; : : : ; x` are variables. First-order
formulas of vocabulary � are built from atomic formulas using Boolean connectives
^ (and), _ (or), : (negation), together with the existential and universal quantifiers
9 and 8. The connectives ! (implication) and $ (equivalence) are not part of the
language defining first-order formulas, but they are used as abbreviations: ' !  

stands for :' _  , and ' $  stands for .' !  / ^ . ! '/.
A variable x is called a free variable of ' if x occurs in ' but is not in the scope

of a quantifier binding x. Write '.x1; : : : ; x`/ to indicate that all free variables of '
belong to set fx1; : : : ; x`g. A formula without free variables is called a sentence. Let
both †0 and …0 denote the class of quantifier-free first-order formulas. For t � 0,
let †tC1 be the class of all formulas .9x1 : : : 9x`/', where ' 2 …t , and let …tC1 be
the class of all formulas .8x1 : : :8x`/', where ' 2 †t .

For formulas of second-order logic, in addition to the individual variables, they
may also contain relation variables; each of the relation variables has a prescribed
arity. Here lowercase letters (e.g., x; y; z) are used to denote individual variables,
and uppercase letters (e.g.,X; Y;Z) are used to denote relation variables. As in [27],
for convenience free relation variables are allowed to be in first-order formulas, since
the crucial difference between first-order and second-order logic is not that second-
order formulas can have relation variables, but that second-order formulas can
quantify over relations. Therefore, here the syntax of first-order logic is enhanced by
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including new atomic formulas of the formXx1 : : : x`, where X is an `-ary relation
variable. The meaning of formula Xx1 : : : x` is: The tuple of elements interpreting
.x1; : : : ; x`/ is contained in the relation interpreting the relation variable X . The
classes such as †t and …t are also extended to include formulas with free relation
variables. It is worth emphasizing again that in first-order logic quantification over
relation variables is now allowed.

4.1.4 W-Hierarchy
First a brief introduction to the W-hierarchy of parameterized complexity classes
is given. Roughly speaking, the W-hierarchy classifies problems according to
the syntactic form of their definitions, and the definitions are formalized using
languages of mathematical logic. The W-hierarchy can be defined in several
different ways; here the following definition based on the weighted Fagin-defined
problems is adopted.

Let '.X/ be a first-order formula with a free relation variableX of arity s. Define
p-WD' to be the following parameterized decision problem.
p-WD' :
Instance: A structure A and k 2 N .
Parameter: k.
Problem: Decide whether there is a relation S 	 As of cardinality k such that
A ˆ '.S/.

Here, A ˆ '.S/ stands for that structure A satisfies sentence '.S/ (or, A is
a model of '.S/), and S is called a solution for ' in structure A. The readers
are referred to, for example, Sect. 4.2 of [27], for more detailed introduction to the
semantics of first-order formulas.

For a class ˆ of first-order formulas, let p-WD-ˆ be the class of all parameter-
ized problemsp-WD' with ' 2 ˆ. For t � 1, define W[t]WD Œp-WD-…t�

fpt , which
is the class of all parameterized problems that are fpt-reducible to some problems in
p-WD-…t . The classes W[t], for t � 1, form the W-hierarchy. Thus, the levels of
W-hierarchy essentially correspond to the number of alternations between universal
and existential quantifiers in the definitions of their complete problems. Problems
hard for W[1] or higher class are assumed not to be fixed-parameter tractable. For
instance, the INDEPENDENT SET problem is W[1]-complete, and the DOMINATING

SET problem is W[2]-complete.
For a parameterized problem .Q; �/ over the alphabet †, let .Q; �/c denote

its complement, that is, the parameterized problem .†� n Q; �/. Let C be a
parameterized complexity class. Then co-C is defined to be the class of all
parameterized problems .Q; �/ such that .Q; �/c 2 C . Clearly, FPT = co-FPT. From
the definition of fpt-reductions, it is easy to see that if class C is closed under fpt-
reductions, so is co-C . In particular, each class W[t], t � 1, gives rise to a new
parameterized complexity class co-W[t]. Also, it is easy to prove that if .Q; �/ is
complete in parameterized complexity class C under fpt-reductions, then .Q; �/c is
complete in class co-C under fpt-reductions.
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4.2 Proof of Theorem 8

Now the proof of Theorem 8 is ready to presented. For a binary matrix M , let RM
be the set consisting of all rows inM , and letCM be the set consisting of all columns
in M .

Relational Structure for a Binary Matrix. Let �BM be the vocabulary consisting
of the unary relation symbols ROW and COLUMN and the binary relation symbol I.
Then, the binary matrix M can be represented by a structure M of vocabulary
�BM , where the universe of M is RM [ CM , and the interpretations for the relation
symbols in �BM are as follows:
• ROWM WD RM .
• COLUMNM WD CM .
• IM WD f.r; c/ W r 2 RM; c 2 CM , and M.r; c/ D 1g, which is the incidence

relation.
The proof of Theorem 8 is partitioned into the following six lemmas:

Lemma 5 p-DISJUNCTNESS-TEST 2 co-W[2].

Proof Consider the following complement problem of p-DISJUNCTNESS-TEST.

p-NONDISJUNCTNESS-TEST

Instance: A binary matrix M and d 2 N .
Parameter: d .
Problem: Decide whether M is NOT d -disjunct.

A…2 formula nondisj(X) with a free relation variableX of arity 2will be defined,
and p-NONDISJUNCTNESS-TEST will be showed to be equal to p-WDnondisj.X/

(see Sect. 4.1.4 for the definition of problem p-WD'). This implies that p-
NONDISJUNCTNESS-TEST is in p-WD-…2, therefore is in W[2].

A binary matrix is not d -disjunct if and only if there is a set D of d columns and
another column c … D such that U.D/ covers c. The idea here is assuming that the
solution S to X is of the form f.ci ; c/ W ci 2 Dg. Therefore, X should be a binary
relation variable, and the solution S to X should have cardinality d .

Define

	1 WD 8c18c2.Xc1c2 ! .COLUMNc1 ^ COLUMNc2 ^ .c1 ¤ c2///;

and define

	2 WD 8c38c48c58c6..Xc3c4 ^Xc5c6/ ! .c4 D c6//:
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Here 	1 and 	2 are to guarantee that the solution S to X of cardinality d has the
form f.c1; c/; : : : ; .cd ; c/g, where c 2 CM , ci 2 CM , and ci ¤ c, for 1 � i � d .
Define

nondisj 0.X/ WD 8r9c79c8.ROW r ! .Xc7c8 ^ .I rc8 ! I rc7///:

Here nondisj 0.X/ is to guarantee that the solution S to X satisfies that the union
of columns in fci W .ci ; c/ 2 Sg covers c (so that M is not d -disjunct). Finally,
define

nondisj.X/ WD 	1 ^ 	2 ^ nondisj 0.X/;

which is equivalent to a …2 formula.
From the above definition, clearly if there exists a relation S 	 C2

M of cardinality
d such that M ˆ nondisj.S/, then M is not d -disjunct. On the other hand,
if M is not d -disjunct, then there exist a subset D of d columns c1; : : : ; cd and
another column c … D such that c is covered by U.D/. It is not hard to verify
that the relation S D f.c1; c/; : : : ; .cd ; c/g satisfies M ˆ nondisj.S/. Therefore,
M is not d -disjunct if and only if there exists a relation S of cardinality d such
that M ˆ nondisj.S/. That is, p-NONDISJUNCTNESS-TEST is p-WDnondisj.X/.
Thus, p-NONDISJUNCTNESS-TEST 2 W[2], and so p-DISJUNCTNESS-TEST 2
co-W[2]. �

Lemma 6 p-SEPARABILITY-TEST 2 co-W[2].

Proof Consider the following complement problem of p-SEPARABILITY-TEST.

p-NONSEPARABILITY-TEST

Instance: A binary matrix M and d 2 N .
Parameter: d .
Problem: Decide whether M is NOT d -separable.

A formula nonsep.Y / with a free relation variable Y of arity 2 will be defined,
and p-NONSEPARABILITY-TEST will be shown to be equal to p-WDnonsep.Y /.

A binary matrix is not d -separable if and only if there exist two distinct subsets
D1 and D2, each contains d columns such that U.D1/ D U.D2/. Assume that
D1 D fc11; c12; : : : ; c1d g and D2 D fc21; c22; : : : ; c2d g. The idea is to assume that
the solution S to Y is of the form f.c11; c21/; .c12; c22/; : : : ; .c1d ; c2d /g, and so Y
should be a binary relation variable, and the solution S to Y should have cardinality
d . Define the formula nonsep.Y / such that it satisfies the following: There exists a
relation S 	 C2

M of cardinality d such that M ˆ nonsep.S/ if and only if M is
not d -separable.

Define

	3 WD 8c18c2.Yc1c2 ! .COLUMNc1 ^ COLUMNc2//;

	4 WD 8c38c48c58c6..Yc3c4 ^ Yc5c6/ ! ..c3 D c5/ $ .c4 D c6///;

and
	5 WD 9c79c88c9..Yc7c8 ^ :Yc9c7//:
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Here 	3 is to guarantee that the relation variable Y 	 C2
M ; 	4 is to build a bijection

between the first component of elements in S and the second component of elements
in S , which guarantees that the two subsets fc1i W 9c s:t: .c1i ; c/ 2 Sg and
fc2j W 9c s:t: .c; c2j / 2 Sg (which intend to be D1 and D2, respectively) have the
same cardinality; 	5 is to guarantee that the two subsets fc1i W 9c s:t: .c1i ; c/ 2 Sg
and fc2j W 9c s:t: .c; c2j / 2 Sg are distinct from each other. Define

nonsep0.Y / WD 8r.ROW r ! ..9c109c11Yc10c11 ^ I rc10/
$ .9c129c13Yc12c13 ^ I rc13///;

which is to guarantee that the solution S to Y satisfies that the union of
columns in fc1i W 9c s:t: .c1i ; c/ 2 Sg is equal to the union of columns in
fc2j W 9c s:t: .c; c2j / 2 Sg. From basic logic computation, it is not hard to verify
that nonsep0.Y / is a …2 formula with free relation variable Y . Finally, define

nonsep.Y / WD 	3 ^ 	4 ^ 	5 ^ nonsep0.Y /:

From the above definition of nonsep.X/, if a relation S 	 C2
M of cardinality d

satisfies that M ˆ nonsep.S/, then the two subsets fc1i W 9c s:t: .c1i ; c/ 2
Sg and fc2j W 9c s:t: .c; c2j / 2 Sg both contain d columns of M
and are distinct from each other; moreover, their unions are identical.
This implies that M is not d -separable. On the other hand, if M is not
d -separable, then there exist two distinct subsets D1 and D2, each contains d
columns such that U.D1/ D U.D2/. Assume that D1 D fc11; : : : ; c1d g and
D2 D fc21; : : : ; c2d g. It is not hard to verify that the relation

S D f.c11; c21/; .c12; c22/; : : : ; .c1d ; c2d /g

satisfies M ˆ nonsep.S/.
From above, there exists a relation S 	 C2

M of cardinality d such that M ˆ
nonsep.S/ if and only if M is not d -separable; therefore, p-NONSEPARABILITY-
TEST is p-WDnonsep.Y /. 	3 and 	4 are …1 formulas; 	5 is a †2 formula;
nonsep0.Y / is a …2 formula; therefore,

nonsep.Y / D 	3 ^ 	4 ^ 	5 ^ nonsep0.Y /

is equivalent to a †3 formula, which implies that p-NONSEPARABILITY-TEST

is in p-WD-†3. Here the following fact is applied: p-WD-†3 	 p-WD-…2

(more generally, p-WD-†tC1 	 p-WD-…t , for t � 1. The main idea to prove
this conclusion is not complicated; the reader is referred to, e.g., Proposition
5.4 in [27] for the proof). Thus, p-NONSEPARABILITY-TEST 2 W[2], and so
p-SEPARABILITY-TEST 2 co-W[2]. �

Lemma 7 p-SEPARABILITY�-TEST 2 co-W[2].
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Proof Since W[2] is closed under fpt-reductions, so is co-W[2]. It will be showed
next that p-SEPARABILITY�-TEST is fpt-reducible to p-SEPARABILITY-TEST.
Since the latter is in co-W[2] (Lemma 6), this implies that p-SEPARABILITY�-
TEST 2 co-W[2]. The reduction can be obtained immediately from the following
fact (Lemma 2.1.6 in [17]): A binary matrix M 0 containing a zero column is
d -separable if and only if the matrix M obtained by removing this zero column
from M 0 is Nd -separable.

Let .M; d/ be an instance of p-SEPARABILITY�-TEST, where M is a binary
matrix and the parameter d is a positive integer. Map .M; d/ to .M 0; d /, where M 0
is obtained by adding a zero column to M . From the above lemma, .M; d/ 2 p-
SEPARABILITY�-TEST if and only if .M 0; d / 2 p-SEPARABILITY-TEST.
It is easy to see that this is an fpt-reduction from p-SEPARABILITY�-TEST to
p-SEPARABILITY-TEST.

Lemma 8 p-DISJUNCTNESS-TEST is co-W[2]-complete.

Proof A hitting set in a hypergraphH D .V;E/ is a set T of vertices that intersects
each hyperedge, that is, T \ e ¤ ; for all e 2 E . The classical HITTING-SET

problem is to find a hitting set of a given cardinality k in a given hypergraph H,
which is known to be NP-complete. The following parameterized hitting set problem
is W[2]-complete (see, e.g., Theorem 7.14 in [27]).

p-HITTING-SET

Instance: A hypergraph H and k 2 N .
Parameter: k.
Problem: Decide whether H has a hitting set of k vertices.

An ftp-reduction from p-HITTING-SET to p-NONDISJUNCTNESS-TEST will be
given, based on an idea similar to that in [18]. Let .H; k/ with H D .V;E/ be an
instance of p-HITTING-SET, where V D f1; : : : ; ng, E D fe1; : : : ; emg, and each
ei , 1 � i � m, is a subset of V . Define d D k, and define an .n C m/ � .n C 1/

binary matrix M with rows Ri as follows (here each row is represented as a subset
of the set of all columns f1; 2; : : : ; nC 1g, in the most natural way):

Ri D fig; i D 1; : : : ; nI
RnCj D ej [ fnC 1g; j D 1; : : : ; m:

First, assume that H has a hitting set T 	 V of size k. Consider the subset
S1 D T of columns ofM . Since T is a hitting set of H, U.S1/ covers column nC1.
Notice that jS1j D d and column nC 1 is not in S1, M is not d -disjunct.

Conversely, assume that M is not d -disjunct. Then, there exist a subset S1 of d
columns in f1; 2; : : : ; nC 1g and another column c … S1 such that U.S1/ covers c.
From the way the first n rows of matrixM are defined, c can only be column nC 1.
Thus, column nC 1 is not in S1. Set T D S1, then jT j D k, and T is a subset of V .
Since U.S1/ covers column nC 1, it is easy to see that T is a hitting set of H.
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It is not hard to verify that the above is an fpt-reduction. Therefore,
p-NONDISJUNCTNESS-TEST is W[2]-complete, and so p-DISJUNCTNESS-TEST is
co-W[2]-complete. �

Lemma 9 p-SEPARABILITY�-TEST is co-W[2]-complete.

Proof To prove the lemma, an ftp-reduction from p-HITTING-SET to
p-NONSEPARABILITY�-TEST will be given. For an instance .H; k/ of
p-HITTING-SET, define matrixM in the same way as in the proof of Lemma 8, and
define d D k C 1. Next the correctness of this reduction will be shown.

First, assume that H has a hitting set T 	 V of size k. Consider the following
two subsets of columns in M : S1 D T and S2 D T [ fnC 1g. Then, for 1 � i � n,
it is obvious that U.S1/i D U.S2/i ; for n < i � n C m, since T is a hitting set
of H, U.S1/i D 1 D U.S2/i . Notice that jS1j; jS2j � d and S1 ¤ S2, M is not
Nd -separable.

Conversely, assume that M is not Nd -separable. Then, there exist two subsets S1
and S2 of columns in f1; 2; : : : ; n C 1g such that jS1j; jS2j � d , S1 ¤ S2, and
U.S1/ D U.S2/. Since U.S1/i D U.S2/i for 1 � i � n, it follows that

S1 \ f1; : : : ; ng D S2 \ f1; : : : ; ng:

To have S1 ¤ S2, column n C 1 must belong to exactly one of S1 and S2. Without
loss of generality, assume that nC 1 … S1 and nC 1 2 S2. Set T D S1, then

jT j D jS1j D jS2j � 1 � d � 1 D k;

and T is a subset of V . From U.S1/i D U.S2/i D 1 for n < i � n C m, T is a
hitting set of H.

Therefore, p-NONSEPARABILITY�-TEST is W[2]-complete, and so
p-SEPARABILITY�-TEST is co-W[2]-complete.

Lemma 10 p-SEPARABILITY-TEST is co-W[2]-complete.

Proof Since as proved before in Lemma 7 that p-SEPARABILITY�-TEST is
fpt-reducible to p-SEPARABILITY-TEST, and in Lemma 9 that p-SEPARABILITY�-
TEST is co-W[2]-complete, p-SEPARABILITY-TEST is co-W[2]-hard. Together
with Lemma 6 that p-SEPARABILITY-TEST 2 co-W[2], it is obtained that
p-SEPARABILITY-TEST is co-W[2]-complete.

4.3 Discussion

In this section, the parameterized complexity is established for the following
three basic problems in pooling design: Given an m � n binary matrix and a
positive integer d , to decide whether the matrix is d -separable ( Nd -separable, or
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d -disjunct). It is showed that these problems are co-W[2]-complete; thus, do not
admit algorithms with running time f .d/ � .mn/O.1/ for any computable function
f . The best known algorithms for the above general problems are all in a brute-
force manner. It is interesting to investigate that whether these problems admit better
algorithms. For instance, are there algorithms with running time no.d/O.m/ to solve
these problems when d is small compared to n?

5 Upper Bounds on the Minimum Number of Rows of
Disjunct Matrices

A 0-1 matrix is d -disjunct if no column is covered by the union of any d other
columns, where the union means the bitwise Boolean sum of these d column
vectors. In other words, a 0-1 matrix is called d -disjunct if for any column C and
any d other columns, there exists at least one row such that the row has value 1
at column C and value 0 at all d other columns. The same structure is also called
cover-free family [25, 29, 53] in combinatorics and superimposed code [22, 23, 34]
in information theory. It is called a d -disjunct matrix in group testing [17, 32, 39].
A 0-1 matrix is .d I z/-disjunct [22,39] if for any columnC and any d other columns,
there exist at least z rows such that each of them has value 1 at column C and
value 0 at all the other d columns. Thus, d -disjunct is .d I 1/-disjunct. Besides
other applications, d -disjunct and .d I z/-disjunct matrices form the basis for error-
free and error-tolerant nonadaptive group testing algorithms, respectively. These
algorithms have applications in many practical areas such as DNA library screening
[3, 6, 17, 43] and multi-access communications [57].

Let t.d; n/ denote the minimum number of rows required by a d -disjunct matrix
with n columns. The bounds on t.d; n/ have been extensively studied in the fields of
combinatorics, information theory, and group testing, under different terminologies.

For lower bounds, it is known that t.d; n/ D �.
d2 log n

log d / [21, 29, 53]. In particular,

D’yachkov and Rykov [21] proved that t.d; n/ � d2

2 log d .1 C o.1// logn, which is
the best lower bound so far. For upper bounds on t.d; n/, it is known that t.d; n/ D
O.d2 logn/ [2, 22, 32, 33, 45, 50]. In [22], Dyachkov, Rykov, and Rashad obtained
the following asymptotic upper bound on t.d; n/with a rather involved proof, which
is currently the best.

Theorem 9 (Dyachkov, Rykov, and Rashad [22]) For d constant and n ! 1,

t.d; n/ � d

Ad
Œ1C o.1/� logn;

where

AdD max
0�p�1 max

0�P�1

�

�.1 � P/ log.1 � pd /Cd
�

P log
p

P
C.1 � P/ log

1 � p
1� P

��

:
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Moreover, Ad ! 1
d log e as d ! 1.

For .d I z/-disjunct matrices, let t.d; nI z/ denote the minimum number of rows
required by a .d I z/-disjunct matrix with n columns. For given d and z, D’yachkov,
Rykov, and Rashad [22] studied the value of limn!1 logn

t
, among others, and they

proved that t.d; nI z/ � cŒ
d2 log n

log d C .z � 1/d � where c is a constant.
In [13], by using q-ary .d; 1/-disjunct matrices [17, 20] and the probabilistic

method (see, e.g., [1]), the authors gave a very short proof for the currently best
upper bound on t.d; n/. In contrast to the previous result in [22] (Theorem 9), which
is an asymptotic upper bound, the upper bound on t.d; n/ in [13] does not contain
the asymptotic term o.1/. Also, the method in [13] is generalized to obtain a new
upper bound on t.d; nI z/. These results will be presented in this section.

5.1 Upper Bounds on t.d; n/

Theorem 10 For n > d � 1,

t.d; n/ � d C 1

Bd
logn;

where Bd D maxq>1
� log

�

1�
�
1� 1

q

�d
�

q
. Moreover, Bd ! 1

d log e as d ! 1.

Before proving the above theorem, the concept of q-ary .d; 1/-disjunct matrix
will be first introduced: A matrix is called q-ary .d; 1/-disjunct if it is q-ary, and for
any column C and any set D of d other columns, there exists an element in C such
that the element does not appear in any column of D in the same row.

As described in [17, 20], one can transform a q-ary .d; 1/-disjunct matrix M to
a (binary) d -disjunct matrix M 0 as follows. Replace each row Ri of M by several
rows indexed with entries of Ri . For each entry x of Ri , the row with index x is
obtained from Ri by turning all x’s into 1’s and all others into 0’s. The following
fact is useful in later proof, which is the same as Theorem 1 only using different
notations:

Fact 2 (Theorem 3.6.1 in [17]) A t � n q-ary .d; 1/-disjunct matrix M yields a
t 0 � n d -disjunct matrix M 0 with t 0 � tq.

Now it is time to present the proof of Theorem 10.

Proof of Theorem 10: Givenn > d � 1, first construct a random t�nq-ary (q > 1)
matrix M with each entry assigned randomly and uniformly from f1; 2; : : : ; qg,
where q and t will be specified later. For each column C and a set D of d other
columns, for each element ci (i D 1; 2; : : : ; t) of C , the probability that ci appears
in some column of D in the same row is 1 � .1 � 1

q
/d . Thus, the probability that

every element of C appears in some column ofD in the same row is Œ1� .1� 1
q
/d �t .
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M is not .d; 1/-disjunct if and only if there exist a column C and a set D of d
other columns such that the above holds. Therefore, the probability that M is not
.d; 1/-disjunct is no more than

.n � d/

 
n

d

!

Œ1 � .1 � 1

q
/d �t :

What follows next is to try to minimize tq, the number of rows of the d -disjunct
matrix M 0 as in Fact 2, under the condition that q and t satisfy

ndC1Œ1 � .1 � 1

q
/d �t � 1: (1)

Notice that Eq. (1) implies

.n � d/
 
n

d

!

Œ1 � .1 � 1

q
/d �t < 1I

thus, the probability that M is .d; 1/-disjunct is greater than zero. Therefore, by
probabilistic argument, Eq. (1) implies the existence of a t � n q-ary .d; 1/-disjunct
matrix, and so a d -disjunct matrix with n columns and at most tq rows.
To satisfy Eq. (1), let

t D .d C 1/ logn

� logŒ1 � .1� 1
q
/d �
:

Define

Bd .q/ D
� logŒ1 � .1 � 1

q
/d �

q
;

then

tq D .d C 1/ logn

Bd.q/
:

Let q0 be the point that maximizes Bd .q/, and let Bd D Bd .q0/ (one can estimate
that q0 D ‚.d/ and Bd D ‚. 1

d
/, since the proof here can stand alone without

this observation; they are put into Lemma 11) in later part. By assigning q D q0, it
follows that

t.d; n/ � .tq/jqDq0 D .d C 1/ logn

Bd.q0/
D .d C 1/ logn

Bd
:

Next estimate Bd as d ! 1. Since .1 � 1
q
/q < 1

e
for q > 1,

�

1 � 1

q

�d
<

�
1

e

� d
q

D e
� d
q ;
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and

� logŒ1 � .1 � 1

q
/d � < � log.1 � e� d

q /:

It follows that

Bd.q/ D
� logŒ1 � .1 � 1

q
/d �

q

<
� log.1 � e

� d
q /

q

D 1

d ln 2
Œ�d
q

ln.1 � e
� d
q /�:

Let x D e
� d
q , then � d

q
D lnx, and

Bd.q/ <
1

d ln 2
lnx ln.1 � x/:

Since lnx ln.1�x/ achieves its maximum at x D 1
2
, it follows that Bd.q/ < ln 2

d
for

q > 1. Thus,Bd < ln 2
d

for d � 1. On the other hand, when q satisfies .1� 1
q
/d D 1

2
,

as d ! 1, it is easy to see that q

d
! 1

ln 2 , and Bd.q/ D 1
q

! ln 2
d

. Therefore, as

d ! 1, Bd ! ln 2
d

D 1
d log e . �

Lemma 11 Given d � 1, let q0 D q0.d/ be the point that maximizes Bd .q/ D
� logŒ1�.1� 1

q /
d �

q
for q > 1. Then, as d ! 1, q0.d/ D ‚.d/, and Bd D Bd.q0/ D

‚. 1
d
/.

Proof Notice that if q1 satisfies .1� 1
q1
/d D 1

2
, then q1 D ‚.d/, since q1

d
! 1

ln 2 as

d ! 1. Moreover, Bd.q1/ D 1
q1

D ‚. 1
d
/. The lemma is proved by contradiction.

First assume that q0 D O.d/ does not hold, that is, for any c > 0 and any d0 > 0,
there exists d > d0 such that q0.d/ > cd . Then, since q0

d
> c, as c ! 1,

Bd.q0/d D
� logŒ1 � .1 � 1

q0
/d �

q0
d

�
� logŒ1 � .1 � d

q0
/�

q0
d

D log q0
d

q0
d

D o.1/;
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here a � b means that limc!1 a
b

D 1. Thus,

Bd.q0/ D o.1/

d
:

However, this is a contradiction since q0 is the maximum point of Bd .q/ and
Bd .q1/ D ‚. 1

d
/ with .1 � 1

q1
/d D 1

2
.

On the other hand, assume that q0 D �.d/ does not hold, that is, for any c > 0

and any d0 > 0, there exists d > d0 such that q0.d/ < cd . Then,

Bd .q0/d D
� logŒ1 � .1 � 1

q0
/d �

q0
d

D
� lnf1 � Œ.1 � 1

q0
/q0 �

d
q0 g

q0 ln 2
d:

Since 0 < .1 � 1
q0
/q0 < 1

e
for q0 > 1, as c ! 0, d

q0
> 1

c
! 1, and

Œ.1 � 1

q0
/q0 �

d
q0 < e

� d
q0 ! 0:

Thus,

Bd.q0/d �
Œ.1 � 1

q0
/q0 �

d
q0

q0 ln 2
d

D 1

ln 2

d

q0
Œ.1 � 1

q0
/q0 �

d
q0

<
1

ln 2

d

q0
e

� d
q0

D o.1/;

which is also a contradiction (here a � b means that limc!0
a
b

D 1). Therefore,
q0.d/ D ‚.d/. Then, .1 � 1

q0
/d < 1 is ‚.1/, and thus

Bd.q0/ D ‚.1/

q0
D ‚

�
1

d

�

: �

5.2 New Upper Bounds on t.d; nI z/

The above method is now generalized to obtain new upper bounds for .d I z/-disjunct
matrices, by establishing the following theorem:



Advances in Group Testing 135

Theorem 11 For d; z constants, and n ! 1,

t.d; nI z/ � d C 1

Bd
lognC z

Bd
log lognCO.1/;

where Bd D maxq>1
� logŒ1�.1� 1

q /
d �

q
. Moreover, Bd ! 1

d log e as d ! 1.

A q-ary matrix is called .d; 1I z/-disjunct if for any columnC and any setD of d
other columns, there exists at least z elements in C such that each of these elements
does not appear in any column of D in the same row. Clearly, by using the same
method mentioned above, one can transform a t � n q-ary .d; 1I z/-disjunct matrix
to a .d I z/-disjunct matrix with n columns and at most tq rows.

Proof of Theorem 14: For given n; d , and z, similarly construct a random t � n

q-ary (q > 1) matrix M with each entry assigned randomly and uniformly from
f1; 2; : : : ; qg; q and t will be specified later. For each column C and a set D of d
other columns, for each element ci of C , the probability that ci appears in some
column of D in the same row is 1 � .1 � 1

q
/d . Thus, the probability that there exist

t � z C 1 elements of C such that each of them appears in some column ofD in the
same row is at most

 
t

t � z C 1

!

Œ1 � .1 � 1

q
/d �t�zC1 D

 
t

z � 1

!

Œ1 � .1 � 1

q
/d �t�zC1:

M is not .d; 1I z/-disjunct if and only if there exists a column C and a set D of d
other columns such that the above holds. Therefore, the probability that M is not
.d; 1I z/-disjunct is no more than

.n � d/
 
n

d

! 
t

z � 1

!

Œ1 � .1 � 1

q
/d �t�zC1:

The goal is to minimize tq, the number of rows of the corresponding .d I z/-
disjunct matrix, under the condition that

ndC1t zŒ1 � .1 � 1

q
/d �t�z � 1: (2)

Notice that Eq. (2) implies

.n � d/
 
n

d

! 
t

z � 1

!

Œ1 � .1 � 1

q
/d �t�zC1 < 1:

Thus, the probability thatM is .d; 1I z/-disjunct is greater than zero, which similarly
implies the existence of a t � n q-ary .d; 1I z/-disjunct matrix, and a .d I z/-disjunct
matrix with n columns and at most tq rows.
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Let q0 be the point that maximizes

Bd.q/ D
� logŒ1 � .1 � 1

q
/d �

q
:

Assign q D q0. To satisfy Eq. (2), which is equivalent to

.d C 1/ lognC z log t � �.t � z/ logŒ1 � .1 � 1

q0
/d �;

let

t D .d C 1/ logn

� logŒ1 � .1 � 1
q0
/d �

C z C t1:

Then, t1 should satisfy

z log

(
.d C 1/ logn

� logŒ1 � .1 � 1
q0
/d �

C z C t1

)

� �t1 logŒ1 � .1� 1

q0
/d � (3)

Let

t1 D z log logn

� logŒ1 � .1 � 1
q0
/d �

C t2:

From Eq. (3), t2 should satisfy that

z

� logŒ1 � .1 � 1
q0
/d �

log

(
.d C 1/

� logŒ1 � .1 � 1
q0
/d �

C 1

logn

 
z log logn

� logŒ1 � .1 � 1
q0
/d �

C z C t2

!)

� t2 (4)

For d and z constants (thus, q0 is also constant), as n ! 1, the minimum value
of t2 satisfying Eq. (4) is

t2 D z

� logŒ1 � .1 � 1
q0
/d �

log
.d C 1/

� logŒ1 � .1 � 1
q0
/d �

D O.1/:

Thus,

t D .d C 1/ logn

� logŒ1 � .1 � 1
q0
/d �

C z log logn

� logŒ1 � .1 � 1
q0
/d �

CO.1/

satisfies Eq. (2) (where the constant term z in t is absorbed in O(1)). Therefore, the
number of rows of the corresponding .d I z/-disjunct matrix is at most
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tq0 D d C 1

Bd
lognC z

Bd
log lognCO.1/;

where

Bd D Bd .q0/ D max
q>1

� logŒ1 � .1 � 1
q
/d �

q
:

Also,

Bd ! 1

d log e
as d ! 1;

as proved in Theorem 10. �

6 Transformation from Error-Tolerant Separable Matrices to
Error-Tolerant Disjunct Matrices

Let M be a 0/1 matrix. For any set S of columns of M , U.S/ will denote the
union of the row indices of 1-entries of all columns in S . When S is the singleton
set fC g, by abusing the notation, U.S/ is simply written as C: Matrix M is called
d -separable if for any two distinct d -sets S and S 0 of columns, U.S/ ¤ U.S 0/. M
is called Nd -separable if the restrictions jS j D d and jS 0j D d above are changed to
jS j � d and jS 0j � d , respectively. Finally, M is called d -disjunct if for any d -set
S of columns and any column C not in S , C is not contained in U.S/. These three
properties of 0/1 matrices have been widely studied in the literature of nonadaptive
group testing designs (pooling designs), which have applications in DNA screening
[17, 25, 32, 38, 39].

It has long been known that d -disjunctness implies Nd -separability which in turn
implies d -separability [17, Chap. 2]. Recently, Chen and Hwang [7] found a way
to construct a disjunct matrix from a separable matrix to complete the cycle of
implications.

Theorem 12 (Chen and Hwang [7]) Suppose M is a 2d -separable matrix. Then
one can construct a d -disjunct matrix by adding at most one row to M .

The notion of d -separability, Nd -separability, and d -disjunctness has their error-
tolerant versions. A 0/1 matrix M is called .d I z/-separable if jU.S/4U.S 0/j � z
for any two d -sets of columns ofM . It is . Nd I z/-separable if the restriction of d -sets
is changed to two sets each with at most d elements. Finally, M is .d I z/-disjunct
if for any d -set S of columns and any column C not in S , jC n U.S/j � z. Note
that the variable z represents some redundancy to tolerate errors [17]. For z D 1, the
error-tolerant version is reduced to the original version.

In [17], Du and Hwang attempted to extend Theorem 12 to its error-tolerant
version, as stated in the following theorem:

Theorem 13 ([17], Theorem 2.7.6) Suppose M is a .2d I z/-separable matrix.
Then one can obtain a .d I z/-disjunct matrix by adding at most z rows to M .
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By Theorem 13, Du and Hwang obtained the following corollary:

Corollary 1 ([17], Theorem 2.7.7) A .d I 2z/-separable matrix can be obtained
from a .2d I z/-separable matrix by adding at most z rows.

Unfortunately, Theorem 13 is incorrect; thus, Corollary 1 is also incorrect, as seen
by the following counterexample. Let

M1 D

0

B
B
@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C
C
A

:

It is easily verified that M1 is .2I 2/-separable. It will be showed next adding two
rows to M1 cannot produce a .1I 2/-disjunct matrix.

Let C1; C2; C3; and C4 denote the four columns of M1. Suppose setting C D Ci
and S D fCj g, i ¤ j . Then two rows are needed such that each containing Ci
but not Cj . One such row is already provided by M1. So one .1; 0/-pair is needed
in a new row. Since this is required for each pair of .i; j / with i ¤ j , there are
4 � 3 D 12 choices of .i; j / pair, and each such pair needs a .1; 0/-pair in a new
row, or equivalently, the new rows should provide 12 such .1; 0/-pairs. However, one
new row can provide at most four .1; 0/-pairs (achieved by a row with two 1-entries
and two 0-entries). So two new rows are not sufficient to provide the 12 .1; 0/-pairs
required by the .1I 2/-disjunctness property.

In [9], the authors gave a correct version of Theorem 13 and obtained a
more rigorous statement of Theorem 12. Their results will be presented in this
section.

6.1 Main Results

Lemma 12 ([17], Lemma 2.1.1) Suppose M is a d -separable matrix with n

columns where d < n, then it is k-separable for every positive integer k � d .

Note that the condition d < n in Lemma 12 is necessary as seen by the following
example: Let

M2 D
0

@
1 1 0

1 0 1

0 1 1

1

A

:

M2 is trivially 3-separable. However, it is not 2-separable, as the union of any pair of
its columns is identical. Now Lemma 12 is generalized to an error-tolerant version.

Lemma 13 If a matrix M with n columns is .d I z/-separable for d < n, then it is
.kI z/-separable for every positive integer k � d .
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Proof It suffices to proveM is .d�1I z/-separable. Assume thatM is not .d�1I z/-
separable. Then there exist two distinct sets S and S 0 each consisting of d � 1

columns ofM such that jU.S/4U.S 0/j < z.

If jS n S 0j D jS 0 n S j � 2, then there must exist a pair of columns .Cx; Cy/ such
that Cx 2 S n S 0 and Cy 2 S 0 n S . It is easy to see that

jU.S [ fCyg/4U.S 0 [ fCxg/j � jU.S [ fCyg/4U.S 0/j � jU.S/4U.S 0/j:

This violates the .d I z/-separability of M , as desired.
Now consider the case of jS nS 0j D jS 0 nS j D 1. It is obvious that jS[S 0j D d .

Thanks to d < n, one can take a column C of M which is in neither S nor S 0. It is
easily seen that

jU.S [ fC g/4U.S 0 [ fC g/j � jU.S/4U.S 0/j < z:

This contradicts the .d I z/-separability of M , completing the proof. �

Now it is ready to give a correct version of Theorem 13.

Theorem 14 Suppose M is a .2d I z/-separable matrix with n columns where
n � 2d C 1. Then one can obtain a .d I dz=2e/-disjunct matrix by adding at most
dz=2e rows to M .

Proof Suppose M is not .d I dz=2e/-disjunct. Then there exist a column C and
a set S of d other columns such that jC n U.S/j < dz=2e. By adding at most
dz=2e rows to M such that each row has a 1-entry at column C and 0-entries at
all columns in S , one can obtain jC n U.S/j � dz=2e. Of course, there may exist
another pair .C 0; S 0/ where C 0 is a column and S 0 is a set of d columns other than
C 0, such that jC 0 n U.S 0/j < dz=2e in M . Then break it up by using those dz=2e
rows in the same fashion. Here what one needs to show is that this procedure is not
self-conflicting, that is, there does not exist two pairs .C; S/ and .C 0; S 0/ such that
jC n U.S/j < dz=2e, yet on the other hand C 2 S 0 while jC 0 n U.S 0/j < dz=2e.

Suppose to the contrary that there exist two pairs .C; S/ and .C 0; S 0/ in M as
described above with jS j D jS 0j D d . Define

S0 D fC 0g [ S [ S 0; S1 D S0 n fC g; and S2 D S0 n fC 0g:

Let s D jS0j, then s � 2d C 1 and jS1j D jS2j D s � 1 � 2d .
Note that S1 ¤ S2, but they have the same cardinality which is less than 2d C 1.

Next it will be showed that the symmetric difference of U.S1/ and U.S2/ is less
than z, thus violating the assumption of .2d I z/-separability.

Since the only column in S1 but not in S2 is C 0 and jC 0 n U.S 0/j < dz=2e, it
follows that

jU.S2/ n U.S1/j < dz=2e: (5)

Similarly, one can obtain
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jU.S1/ n U.S2/j < dz=2e: (6)

Equation (5) along with Eq. (6) gives jU.S/4U.S 0/j < z, implying that M is not
.s � 1I z/-separable. This contradicts with Lemma 13, and so the theorem is proved.

�

Corollary 2 SupposeM is a 2d -separable matrix with n columns where n�2dC1.
Then one can obtain a d -disjunct matrix by adding at most one row to M .

Proof It follows from Theorem 14 by setting z D 1:

Corollary 2 is a more rigorous version of Theorem 12. The following example
shows the necessity of the extra condition n � 2d C 1 in Corollary 2. Let

M3 D

0

B
B
@

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 1

1

C
C
A

:

Then M3 is trivially 4-separable, but it can be easily verified that no row can
be added to M3 to make it 2-disjunct. Similarly, any matrix with 2d columns
is trivially .2d I z/-separable, and one does not expect that adding dz=2e rows to
an arbitrary matrix with 2d columns would make it .d I dz=2e/-disjunct. To see
a specific counterexample, note that M1 is trivially a .4I 4/-separable matrix, but
adding two rows does not make it a .2I 2/-disjunct matrix – It is even not .1I 2/-
disjunct as indicated at the end of Sect. 1.

Corollary 3 Suppose M is a .2d I z/-separable matrix with n columns where
n � 2d C 1. Then, for any positive integer k � dz=2e, one can obtain a .d I k/-
disjunct matrix by adding at most k rows to M .

Proof The proof of Theorem 14 shows that there does not exist two pairs .C; S/
and .C 0; S 0/ such that jC n U.S/j < dz=2e, yet on the other hand, C 2 S 0 while
jC 0 n U.S 0/j < dz=2e. In fact, the term dz=2e can be replaced by any positive
integer k which satisfies the symmetric difference of U.S1/ and U.S2/ is less than
z. Therefore, for any k � dz=2e, one can obtain a .d I k/-disjunct matrix by adding
at most k rows to M in the same fashion. �

The following equivalence relation is given in [17] without giving a proof. Now a
proof is given, and a stronger result is obtained by using the equivalence relation.

Lemma 14 ([17], Lemma 2.7.5) A matrix M is . Nd I z/-separable if and only if it is
.d I z/-separable and .d � 1I z/-disjunct.
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Proof Suppose M is . Nd I z/-separable but not .d � 1I z/-disjunct; in other words,
there exists a set S of d�1 columns other than a columnC such that jC nU.S/j � z.
Then it is easy to see that

jU.S [ fC g/4U.S/j D jU.S [ fC g/ n U.S/j � z;

a contradiction to . Nd I z/-separability. Thus, M is .d � 1I z/-disjunct and .d I z/-
separable trivially.

Let M be .d I z/-separable and .d � 1I z/-disjunct. It suffices to show that

jU.X/4U.Y /j � z

for any two sets X , Y of at most d columns. If jX j D jY j � d , then
jU.X/4U.Y /j � z by .d I z/-separability and Lemma 13. Assume jX j < jY j � d ,
then there exists a column Cy 2 Y but not in X . By .d � 1I z/-disjunctness, it must
have jCy n U.X/j � z; hence, jU.X/4U.Y /j � z. It concludes the proof. �

By Lemmas 14 and 13, Corollary 3 is extended to a stronger version.

Corollary 4 Suppose M is a .2d I z/-separable matrix with n columns where n �
2d C 1. Then, for any positive integer k � dz=2e, one can obtain a . Nd C 1I k/-
separable matrix by adding at most k rows to M .

6.2 Concluding Remarks

The following remarks demonstrate the optimality of the results presented in this
section.
1. The constraint k � dz=2e in Corollary 3 is necessary to make the number of

rows added to be independent of n and d . To see a specific example, consider
that M is an .ndz=2e/ � n matrix such that each column has dz=2e 1-entries and
any 2 columns have no intersection. Then, M is .2d I z/-separable. Since every
column has only dz=2e 1-entries, to makeM .d I k/-disjunct by adding rows, the
rows added must form a .d I k � dz=2e/-disjunct submatrix when k > dz=2e.
In this case, the minimum number of rows required would depend on n; d , and
k � dz=2e.

2. Let N be a 0/1 matrix of constant row sum 1 and constant column sum z, and let
M be obtained from N by adding one zero column. It is easy to verify thatM is
.2d I z/-separable. Since there is a zero column in M , one cannot obtain fromM

a .d I k/-disjunct matrix by adding less than k rows. This shows that the bound
on the number of additional rows given in Corollary 3 is optimal in this sense.
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7 Conclusion

Some recent algorithmic, complexity, and mathematical results on nonadaptive
group testing (and on pooling design) are presented in this monograph. New
construction of disjunct matrices with even reduced number of rows remains
interesting to investigate. The complexity of the problem MIN- Nd -SS introduced in
Sect. 3.3 remains unsolved. On the bounds of the minimum number t.d; n/ of rows
of d -disjunct matrices with n columns, closing the gap between O.d2 logn/ and

�.
d2 log n

log d / remains as a major open problem in extremal combinatorics.
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