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Abstract
This chapter presents data mining techniques that are formulated as combinato-
rial optimization problems together with their applications. There are a number
of cases where fundamental data mining tool is not combinatorial in nature,
yet widely used special-purpose combinatorial extensions exist. For the sake
of completeness, these fundamental tools are also discussed in detail before
the extensions with underlying combinatorial optimization problems. A number
of computationally challenging data mining algorithms that have non-convex
formulations are also explored.

1 Introduction

Data mining is defined as the practice of searching through large amounts of
computerized data to find useful patterns or trends [101]. Being closely related
to statistics and machine learning, data mining has been referred to as statistical
learning and learning from the data. Different classifications of data mining methods
exist in the literature [24], but one of the most commonly used classifications is
based on the type of input data. Other than the features (attributes), input data
can contain information on classes data instances belong to or responses of the
underlying system, or it may contain no additional prior information. If information
on classes or responses are available, the data is considered as labeled, and
supervised learning techniques would be appropriate. Conversely, unlabeled data
consists of only features with no class or response information, where unsupervised
learning techniques attempt to identify patterns in data. Semi-supervised learning,
which can be considered as halfway between supervised and unsupervised learning,
utilizes both labeled and unlabeled data.

Regardless of the data mining tool employed, a data instance belongs to one of
the two sets: training set or test set. Training set contains data instances that are used
to train the data mining tool. That includes discovering patterns and relationships.
Test set contains data instances that are used to assess the success of the predictions
on relationships, which shed a light on the generalization performance of the
employed tool.

Generalization performance of a model is its capability to find a more general
classification based on given instances, i.e., how accurate the model can classify
independent sample sets. To evaluate the generalization performance of a mining
model, cross validation methods are used. Two widely used cross validation
methods are k-fold cross validation and leave-one-out cross validation (jackknife).
In k-fold cross validation, all available data is randomly partitioned into k approxi-
mately equal subsets. Then, one of the k subsets is chosen as test set and the rest of
the subsets are used as training set. This process is repeated k times in a way that
each subset is chosen as test set once. The k results obtained will be averaged to find
the generalization performance of the classification method. Leave-one-out cross
validation (LOOCV), also known as jackknife, is a special case of k-fold where k

is equal to the number of data instances.
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In this chapter, methods to learn from data are explored in three main sections:
supervised, unsupervised, and semi-supervised, with an emphasis on underlying
combinatorial optimization problems. Discrete decision making based on analysis
of data is the goal of fundamental problems in data mining (e.g., class assignment,
feature selection, data categorization, identifying outlier instances). These problems
are combinatorial in nature and can be formulated and solved by combinatorial
approaches [33]. Last two sections are devoted to combinatorial ranking and feature
selection problems.

2 Supervised Learning

Supervised learning refers to data mining tools that utilize labeled data. These
labels can be discrete categories or continuous responses where the corresponding
techniques are called classification or regression, respectively. Labels are input
to the data mining tool during the training stage by a supervisor, hence the
name supervised learning. In this section, combinatorial optimization problems are
investigated in the context of classification and regression.

2.1 Support Vector Machines

Support vector machines (SVMs) are the state-of-the-art supervised machine learn-
ing methods that are initially introduced to classify pattern vectors that belong to
two different classes (see [136]). Although there are multi-class generalizations,
hyperplane-based methods have major drawbacks in classifying data from multiple
classes (see [19]). Besides, classification of two classes has a wide variety of
applications in image and voice recognition, text mining, healthcare, and clinical
data mining.

The SVM classification function is a hyperplane that separates given two classes.
The desired hyperplane maximizes the distance from the convex hulls of both
classes. This problem can be formulated as a quadratic (and convex) optimization
problem. SVM classifiers’ success relies on strong fundamentals from the statistical
learning theory, implementation advantages due to regularization (hence sparsity),
and their generalization performance. When misclassified instances are penalized in
the linear form, SVM classifiers are proven to be universally consistent (see [130]).
A classifier is consistent if the probability of misclassification (in expectation)
converges to a Bayes optimal rule when the number of data instances increases.
A classifier is universally consistent if it is consistent for all distributions of data.
SVMs can also perform nonlinear classification utilizing separating curves by
implicitly embedding the original data in a nonlinear space using kernel functions
(see, e.g., [121]).

The training is performed by minimizing a quadratic convex function that
is subject to linear constraints. Although minimizing a convex function has a
polynomial worst-case complexity, the general purpose methods are not practical for
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large problems. SVM Light [78] and LIBSVM [71] are among the most frequently
used implementations that use chunking [107] and decomposition [110] methods
efficiently and use subsets of points to find a near-optimal hyperplane. Recently,
Shalev-Shwartz et al. [120] propose a stochastic sub-gradient descent algorithm
(Pegasos), whose run-time does not depend directly on the size of the training set
but the bound on the number of nonzero features in each data instance. Experimental
results show that Pegasos is especially successful for linear kernels.

SVM classifiers have a wide spectrum of application areas ranging from pattern
recognition [92] and text categorization [77] to biomedicine [26, 43, 106, 109], cell
death [112], nanotoxicology [113], brain-computer interface [60, 89], and financial
applications [72, 134].

Based on SVM classifiers, support vector regression (SVR) is an optimization-
based regression framework for solving machine learning problems. SVR approach
is based on estimation of a linear function in a kernel-induced feature space.
The objective is to optimize a certain boundary to the optimal regression line;
therefore, errors within a certain distance (") of predicted value are disregarded. The
learning algorithm minimizes a convex functional with sparse solution comparable
to classification technique. For improved illustration, this can be considered a hyper-
tube (insensitive band) about a linear function in the kernel-induced nonlinear space,
such that pattern vectors in this tube are assumed not to contribute any error. This
form of regression is called "-insensitive because any point within " distance of the
anticipated regression function does not contribute an error. An important advantage
for considering the "-insensitive loss function is the sparseness of the dual variables
similar to the case with SVM classifiers. Representing the solution by a small
subset of training points has computational advantages. Furthermore, "-insensitive
regression ensures the existence of a global minimum and minimization of a reliable
generalization error bound (see [45]).

SVR has various applications in numerous technological [15, 116], analytical
[73,91], and scientific fields [131,145]. Wu et al. [142] perform location estimation
using the Global System for Mobile communication (GSM) based on an SVR
approach which demonstrates promising performances, especially in terrains with
local variations in environmental factors. SVR method is also used in agricultural
schemes in order to enhance output production and reduce losses [42, 108, 143].
Based on statistical learning theory, SVR has been used to deal with forecasting
problems. Performing structural risk minimization rather than minimizing the train-
ing errors, SVR algorithms have better generalization ability than the conventional
artificial neural networks [70].

2.1.1 SVM Classifiers: Mathematical Formulation
In a typical binary classification problem, class SC and S� are composed of pattern
vectors xi 2 R

d , i D 1; : : : ; n. If xi 2 SC, it is given the label yi D 1; if xi 2 S�,
then it is given the label yi D �1. The ultimate goal is to determine which class a
new pattern vector xi 62 fSC [ S�g belongs to. SVM classifiers solve this problem
by finding a hyperplane .w; b/ that separates instances in classes SC and S� with
the maximum interclass margin.
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A hyperplane in the feature space hw; xi C b D 0 is represented as the normal
vector w and the offset parameter b. The geometric distance to be maximized
between a data point xi and the hyperplane is given by .hw; xii C b/=kwk. Instead
of maximizing the geometric distance fixing kwk, the approach is minimizing kwk
fixing hw; xii C b, which is referred to as the functional distance.

In practice, many real-life problems are composed of nonseparable data which
is generally due to noise. In this case, slack variables �i are introduced for each
pattern vector xi in the training set. Slack variables allow misclassifications for each
pattern vector, but they are subject to a penalty to avoid trivial solutions. Therefore,
the SVM classifier formulation is given as

ŒSVM� min
w;b;�

1

2
kwk2 C C

2

nX

iD1

�2
i (1a)

subject to yi .hw; xii C b/ � 1 � �i i D 1; : : : ; n; (1b)

where nonnegativity of the slack variables is assured implicitly since the solution
cannot be optimal when �i < 0 for any pattern vector.

Using the optimal solution .w�; b�/ for (1), a new pattern vector x0 can be
classified as positive if hw�; x0i C b� > 0 and negative if hw�; x0i C b� < 0 (see
Fig. 1). It is common to penalize the two-norm of the slack in the objective of SVM
classifiers. Alternative formulations exist with one-norm penalization of the slack
vector in the objective function, which is commonly referred to as the hinge loss
function [45].

Lagrangian dual formulation of (1) and optimality conditions lead to an
optimization problem where input vectors only appear in the form of dot products.
Therefore, kernel trick can be introduced for nonlinear classification [45]. The dual
problem is a concave maximization problem, which can also be solved efficiently.
However, when the number of data points increases for better generalization
performance, the dual tends to get harder to solve compared to the primal. The
dual for two-norm soft margin formulation in (1) is given as

ŒDual� SVM� max
˛

nX

iD1

˛i � 1

2

nX

iD1

nX

j D1

yi yj ˛i ˛j hxi ; xj i � 1

2C

nX

iD1

˛2
i (2a)

subject to
nX

iD1

yi ˛i D 0 (2b)

˛i � 0 i D 1; : : : ; n: (2c)

When the dual formulation is used, b� is calculated as follows using Karush-
Kuhn-Tucker complementarity conditions:
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w,xi + b =0

MARGIN
2/ w

0 <
ξ i

<
1

ξ i
>

2

Fig. 1 Illustration of linear support vector machine classifiers

b� D
X

i W˛�

i >0

yi �
nX

j D1

yj ˛�
j hxj ; xi i; (3)

and a new pattern vector, x0, can be classified as positive if
Pn

j D1 yi ˛
�
j hxj ; x0i C

b� > 0, and negative otherwise. Note that dot products in (2) and (3) can be
substituted with a suitable kernel function. The kernel function transforms the
original input space, X to a usually higher dimensional dot product space H
called the feature space, with a map ˆ W X ! H, such that K.xi ; xj / D
hˆ.xi /; ˆ.xj /i. The function must satisfy conditions for Mercer’s theorem which
are equivalent to the requirement that the corresponding matrix is positive semidef-
inite for any finite subset of X . Further information on the kernel trick can be
found in [45, 117].

2.1.2 SVM Regressors: Mathematical Formulation
There are many reasonable choices of loss function for regression. SVR uses
"-insensitive loss function to ensure that the solution is characterized as the min-
imum of a convex functional. Another motivation for considering the "-insensitive
loss function is that it will ensure sparseness of the dual variables similar to SVM
classifiers.

The linear "-insensitive loss function L".x; y; f / is defined by

L".x; y; f / D jy � f .x/j" D max.0; jy � f .x/j � "/;
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where f is a real-valued function on a domain X , x 2 X , and y 2 R. The quadratic
"-insensitive loss function L"

2.x; y; f / is similarly

L"
2.x; y; f / D jy � f .x/j2":

Let X be a set of pattern vectors xi 2 R
d , with dependent variable values (i.e., real-

valued response) yi 2 R. The problem of finding a regression function f .�/ for these
pattern vectors is minimizing the sum of "-insensitive losses over all pattern vectors
x. Let the distance between the regression hyperplane and the closest pattern vector
x� be j.hw; x�i/ C bj. Then, the solution to the following quadratic programming
problem finds the regression hyperplane with the minimum sum of quadratic
"-insensitive losses. Similar to the goal programming approach in SVM classifiers,
there is an associated penalty of C for outliers. Therefore, the primal SVR problem
is as follows:

ŒSVR� min
w;b;� ;O�

1

2
kwk2 C C

2

nX

iD1

�
�2

i C O�2
i

�
(4a)

subject to .hw; xii C b/� yi � "C �i i D 1; : : : ; n (4b)

yi � .hw; xii C b/ � "C O�i i D 1; : : : ; n: (4c)

The main idea is to create a linear function in the kernel-induced space such
that the quadratic loss function for regression from the generalization theory is
minimized. First component of the objective function deals with minimizing the
squared norm of the regression hyperplane (kwk2). The goal here is to enclose all
pattern vectors with the "-insensitive band of the regression hyperplane. Second
component of the objective introduces penalty cost for instances outside the "

boundaries. Note that both �i and O�i will be zero for all points inside the limits. The
objective function seeks to minimize this penalty cost to reveal the best regression
fit to the model. Constraints (4b)–(4c) imply that the pattern vectors are allowed to
be " below or above the target value without penalty. All pattern vectors outside the
" range are still allowed; however, they incur a cost of C [121].

The dual can be found using the Lagrangian function for the primal problem,
differentiating this function with respect to the primal variables, and substituting
equivalent expression for the primal variables back in the Lagrangian function. The
resulting dual formulation is given as

ŒDual� SVR� max
˛; Ǫ

� 1

2

nX

iD1

nX

j D1

. Ǫ i � ˛i /. Ǫ i � ˛i /hxi; xji (5a)

� "

nX

iD1

.˛i C Ǫ i /C
nX

iD1

yi . Ǫ i � ˛i /
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subject to
nX

iD1

.˛i � Ǫ i / D 0 (5b)

0 � ˛i ; Ǫ i � C i D 1; : : : ; n: (5c)

From the solution ˛� and Ǫ �, the regression function can be written as f .x/ DPn
iD1. Ǫ�i � ˛�

i /hxi ; xiC b�, where b� is chosen such that f .xi /� yi D �" for any
i with 0 < Ǫ�i < C .

2.1.3 Combinatorial Extensions of Support Vector Machines
Recently proposed combinatorial optimization problems related to SVMs are
based on penalization of different loss functions and generalizations of traditional
classification problem. Integer programming formulations for SVM classifiers with
the ramp loss (6) and hard margin loss (7) are proposed in [25]. Facet-defining
inequalities are presented and both ramp loss and hard margin loss SVM classifiers
are proven to be universally consistent. The idea behind these combinatorial
formulations is to obtain classifiers that are more robust to the outliers compared
to hinge or smooth loss functions:

ŒRL � SVM� min
w;b;� ;z

1

2
kwk2 C C

 
nX

iD1

�i C 2

nX

iD1

zi

!
(6a)

subject to yi .hw; xii C b/ � 1 � �i if zi D 0; i D 1; : : : ; n (6b)

zi 2 f0; 1g i D 1; : : : ; n (6c)

0 � �i � 2 i D 1; : : : ; n (6d)

ŒHML � SVM� min
w;b;z

1

2
kwk2 C C

nX

iD1

zi (7a)

subject to yi .hw; xii C b/ � 1 if zi D 0; i D 1; : : : ; n (7b)

zi 2 f0; 1g i D 1; : : : ; n: (7c)

Seref et al. [118] introduce novel selective linear and nonlinear classification
methods, in which sets of pattern vectors sharing the same label are given as input.
One pattern vector is selected from each set in order to maximize the classification
margin with respect to the selected positive and negative pattern vectors. The
problem of selecting the best pattern vectors is referred to as the hard selection
problem. Kernelized hard selection problems are also developed for classification.
However, these combinatorial problems cannot be solved in polynomial time unless
P D NP [119]. Alternative approaches are proposed with relaxed formulations.
The selective nature of these formulations is satisfied by the restricted free slack
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concept. The intuition behind this concept is to reverse the combinatorial selection
problem by detecting influential pattern vectors which require free slack to decrease
their effect on the classification functions. Iteratively removing problematic pattern
vectors, better classification results can be found.

Two variations of the free slack method, namely, pooled free slack (PFS) and free
slack per set (FSS), are introduced for selective linear classification together with
kernelized dual formulations for selective nonlinear classification. These methods
are further extended to direct separation by increasing the total free slack to diminish
the effect of multiple pattern vectors per set and provide more flexibility for the
hyperplane to reorient itself with respect to well-separated pattern vectors. The
performance of iterative elimination and direct selection algorithms is compared
with each other, as well as with a naı̈ve elimination algorithm that uses standard
SVM method and ideas from the proposed methods. Results are reported for linear
and nonlinear simulated data.

Kundakcioglu et al. [88] consider the margin maximization problem within the
multiple instance learning (MIL) context. Training data is composed of labeled bags
of instances. Despite the large number of margin maximization-based classification
methods, there are only a few methods that consider the margin for MIL problems
in the literature. A combinatorial margin maximization problem (8) is formulated
for multiple instance classification which is proven to be NP-hard. Kernel trick is
applied on this formulation to classify nonlinear MIL data. A branch and bound
algorithm is proposed that outperforms a leading commercial solver in terms of
the best integer solution and optimality gap in a majority of image annotation
and molecular activity prediction test cases. The major difference between the
MIL setting and the selective setting is the interpretation of negative bags. In
selective learning, a selection is performed on negative bags as well as positive
bags. In MIL, on the other hand, only actual positives are to be discovered where
all negative instances must be kept. The mixed-integer nonlinear programming
(MINLP) formulation for this problem is as follows:

ŒMI � SVM� min
w;b;�;�

1

2
kwk2 C C

2

nX

iD1

�2
i (8a)

s.t. hw � xii C b � 1 � �i �M.1� �i / i 2 I C (8b)

� hw � xii � b � 1 � �i i 2 I � (8c)
X

i2Ij

�i � 1 j 2 J C (8d)

�i 2 f0; 1g i 2 I C: (8e)

In this formulation, I C D fi W i 2 Ij ^ yj D 1g is the index set for instances that
are in a positive bag, I � D fi W i 2 Ij ^ yj D �1g is the index set for instances
that are in a negative bag (negative instances), and J C D fj W yj D 1g is the index
set for positive bags. Note that M is a sufficiently large number that ensures that
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η i = 0

η i = 0

η i = 0

η i = 0

η i = 0

η i = 1

η i = 1

η i = 1

η i = 0

Fig. 2 Multiple instance support vector machine classifiers

the constraint is active if and only if �i D 1. �i is a binary variable that is 1 if i th
instance is one of the actual positive examples of its bag (see Fig. 2).

Recently, Poursaeidi and Kundakcioglu [111] propose a hard margin loss formu-
lation for multiple instance learning. The main idea is to avoid the dependency of
the classifier in (Eq. 8) to the number of negative instances and make it dependent on
the number of negative bags. Proposed formulations in [111] are also less sensitive
to outliers, showing better generalization performance.

Next, consistent biclustering is introduced, another classification technique that
employs combinatorial optimization formulations.

2.2 Consistent Biclustering

The concept of consistent biclustering is introduced by Busygin et al. [29]. In this
method, a classification of features as well as data instances are needed as input.
Formally, a biclustering B is consistent if in each instance (feature) from any set
Sr (set Fr ), the average expression of features (instances) that belong to the same
class r is greater than the average expression of features (instances) from other
classes. The model for supervised biclustering involves solution of a special case
of fractional 0–1 programming problem whose consistency is achieved by feature
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selection. Computational results on microarray data mining problems are obtained
by reformulating the problem as a linear mixed 0–1 programming problem.

An improved heuristic procedure is proposed in [103], where a linear program-
ming problem with continuous variables is solved at each iteration. Numerical
experiments on the data, which consists of instances from patients diagnosed with
acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) diseases (see
[10,11,64,141,144]), confirm that the algorithm outperforms the previous results in
the quality of solution as well as computation time. Busygin et al. [30] use consistent
biclustering to analyze scalp EEG data obtained from epileptic patients undergoing
treatment with a vagus nerve stimulator (VNS).

Given an m � n data matrix A, each column represents a data instance and each
row represents a feature. Formally, A D .aij /m�n, where aij is the expression of
i th feature of j th instance. A classification of instances is provided through a 0–1
matrix S D .sjr /n�k, where sjr D 1 if instance j is classified as a member of the
class r (i.e., aj 2 Sr ), and sjr D 0 otherwise. Similarly, given a classification of
the features, Fr , let F D .fir /m�k denote a 0–1 matrix where fir D 1 if feature i

belongs to class r (i.e., ai 2 Fr ), and fir D 0 otherwise. Corresponding centroids
are constructed as follows:

CS D AS.ST S/�1 D .cS
i� /m�r ; (9)

CF D AT F.F T F /�1 D .cF
j �/n�r : (10)

The elements of the matrices, cS
i� and cF

j � , represent the average expression of the
corresponding instance and feature in class �, respectively:

cS
i� D

Pn
j D1 aij sj �Pn

j D1 sj �

D
P

j jaj 2S�
aij

jS� j ;

and

cF
j � D

Pm
iD1 aij fi�Pm

iD1 fi�

D
P

i jai 2F�
aij

jF� j :

Using the elements of matrix Cs , one can assign a feature to a class where it
is overexpressed. Therefore, feature i is assigned to class Or if cS

i Or D max�fcS
i�g.

Similarly, one can use the elements of matrix CF to classify the instances. Data
instance j is assigned to class Or if cF

j Or D max�fcF
j �g. Formally,

ai 2 OFOr H) cS
i Or > cS

i� ; 8�; � ¤ Or; (11)

aj 2 OSOr H) cF
j Or > cF

j � ; 8�; � ¤ Or: (12)

Note that the constructed classification of the features and instances OFr and OSr

are not necessarily the same as classifications Fr and Sr , respectively.
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Biclustering B is referred to as a consistent biclustering if relations (11) and (12)
hold for all elements of the corresponding classes, where matrices CS and CF are
defined according to (9) and (10), respectively. A data set is biclustering-admitting
if some consistent biclustering for it exists. Furthermore, the data set is called
conditionally biclustering-admitting with respect to a given (partial) classification
of some instances and/or features if there exists a consistent biclustering preserving
the given (partial) classification. Busygin et al. [29] prove conic separability which
also indicates convex hulls of classes do not intersect.

By definition, a biclustering is consistent if Fr D OFr and Sr D OSr . However,
a given data set might not have these properties. In such cases, one can remove
a set of features and/or instances from the data set so that there is a consistent
biclustering for the truncated data. This feature selection process may incorporate
various objective functions depending on the desirable properties of the selected
features. One general choice is to select the maximal possible number of features in
order to lose minimal amount of information provided by the training set:

ŒCB� max
x

mX

iD1

xi (13a)

subject to

Pm
iD1 aij fi OrxiPm

iD1 fi Orxi

>

Pm
iD1 aij fi�xiPm

iD1 fi�xi

Or; � D 1; : : : ; k; Or ¤ �; j 2 SOr

(13b)

xi 2 f0; 1g i D 1; : : : ; m: (13c)

In this formulation, xi ; i D 1; : : : m are the decision variables. xi D 1 if i th
feature is selected, and xi D 0 otherwise. fik D 1 if feature i belongs to class
k, and fik D 0 otherwise. The objective is to maximize the number of features
selected and (13b) ensures that the biclustering is consistent with respect to the
selected features.

The goal of the CB problem is to find the largest set of features that can be used to
construct a consistent biclustering. A problem with selecting the most representative
feature set is the following. Assume that there is a consistent biclustering for a given
data set, and there is a feature, i , where the difference between the two largest
values of cS

ir is negligible. For such cases, additive and multiplicative consistent
biclustering are introduced in [103] by relaxing (11)–(12) with (14)–(15) and
(16)–(17), respectively:

ai 2 FOr H) cS
i Or > ˛S

i C cS
i� ; 8�; � ¤ Or (14)

aj 2 SOr H) cF
j Or > ˛F

j C cF
j � ; 8�; � ¤ Or (15)

ai 2 FOr H) cS
i Or > ˇS

i cS
i� ; 8�; � ¤ Or (16)

aj 2 SOr H) cF
j Or > ˇF

j cF
j � ; 8�; � ¤ Or: (17)
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Using these relaxations, ˛-consistent and ˇ-consistent biclustering problem
formulations are obtained as follows:

Œ˛�CB� max
x

mX

iD1

xi (18a)

subject to

Pm
iD1 aij fi OrxiPm

iD1 fi Orxi

> ˛j C
Pm

iD1 aij fi�xiPm
iD1 fi�xi

8Or;

� D 1; : : : ; k; Or ¤ �; j 2 SOr (18b)

xi 2 f0; 1g i D 1; : : : ; m (18c)

Œˇ�CB� max
x

mX

iD1

xi (19a)

subject to

Pm
iD1 aij fi OrxiPm

iD1 fi Orxi

> ˇj

Pm
iD1 aij fi�xiPm

iD1 fi�xi

8Or;

� D 1; : : : ; k; Or ¤ �; j 2 SOr (19b)

xi 2 f0; 1g i 2 1; : : : ; m: (19c)

The information obtained from these solutions can be used to classify additional
instances in the test set. These solutions are also useful for adjusting the values of
vectors ˛ and ˇ to produce more characteristic features and decrease the number
of misclassifications. Feature selection for consistent (13), ˛-consistent (18), and
ˇ-consistent biclustering (13) is proven to be NP-hard [86].

2.3 Other Classification Approaches

A special case of biclustering introduced by Ben-Dor et al. [12] is the order-
preserving submatrix problem, which is proven to be NP-hard. The goal of this
problem is to select a subset of rows and columns from the original data matrix in
which there exists a permutation of columns such that in each row the values are
strictly increasing. Trapp and Prokopyev [135] propose a general linear mixed 0–1
programming formulation and an iterative algorithm that makes use of a smaller
linear 0–1 programming formulations. The proposed solution algorithm enhanced
by a number of enhancements including valid inequalities and bounding schemes
is able to solve problems with approximately 1,000 rows and 50 columns to
optimality.

Bertsimas and Shioda [16] introduce mixed-integer linear methods to the clas-
sical statistical problems of classification and regression and construct a software
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package called classification and regression via integer optimization (CRIO). CRIO
separates data points into different polyhedral regions. In classification, each region
is assigned a class, while in regression, each region has its own distinct regression
coefficients. Computational experimentations show that CRIO is comparable to the
leading methods in classification and regression.

Logical analysis of data is a technique that is used for risk prediction in medical
applications [2]. This method is based on combinatorial optimization and boolean
logic. The goal is essentially classifying groups of patients at low and high mortality
risk, and LAD is shown to outperform standard methods used by cardiologists.

Kundakcioglu and Ünlüyurt [87] consider the problem of generating the se-
quence of tests required to reach a diagnostic conclusion with minimum average
cost, which is also known as a test-sequencing problem. In this setting, the
training data consists of asymmetrical tests (i.e., a probabilistic outcome for a
feature or test) and the decision rule is obtained using an optimal binary AND/OR
decision tree. An efficient bottom-up tree construction algorithm is developed based
on fundamental ideas of Huffman coding. Computational results show that the
algorithm outperforms previously proposed heuristic algorithms in reasonable time.

3 Unsupervised Learning

Unsupervised learning can be defined as finding patterns in unlabeled data. The goal
is finding similarities among instances that belong to same class, where no class
information is available. In this group of methods, N instances .x1; x2; : : : ; xN /

of a random p-vector X having joint density P r.X/ are given and a decision is
to be made based on representation of instances. Unlike the supervised methods
that are trying to minimize some external error criterion, in unsupervised methods,
calculating the difference between the target and input data instances is not possible.
This results in different methods that are not relying on any outside information. It
should be noted that unsupervised methods are particularly useful since unlabeled
data is usually less costly compared to labeled data. Two widely used applications
of unsupervised learning are clustering and dimensionality reduction.

Clustering (or cluster analysis) is defined as finding a convenient and valid
organization of the data to establish rules for separating future data into categories
[75]. Clustering algorithms can be divided into two major groups: partitional and
hierarchical [74]. In partitional clustering, all clusters are found simultaneously as
partitions of the data. In hierarchical clustering, nested clusters are found recur-
sively. This can be done by one of the following two approaches. Agglomerative
methods initially consider each data point as the head of its own cluster and try to
merge the most similar pair of clusters successively to form a cluster hierarchy. On
the contrary, divisive methods initially assign all data instances in one cluster and
divide each cluster into smaller clusters (see [62]).

Another useful application of unsupervised learning is dimensionality reduction.
These techniques aim to find a lower dimensional representation of the original data,
which captures the content of the original data based on some criterion. A lower



Combinatorial Optimization in Data Mining 609

dimensional representation of data is desired mainly because the computational
advantage of handling a smaller data set outweighs the loss of information.
Frequently used in the preprocessing stage, dimensionality reduction helps mitigate
computational limitations of data mining algorithms for large data sets.

3.1 Latent Variable Models

In this section, probabilistic methods that utilize latent variables are introduced.
Latent variable (or hidden variable) is a statistical variable that is not observed
directly but can be estimated based on its relation with an observed variable. Latent
variable models can be used to perform dimensionality reduction and clustering, the
two cornerstones of unsupervised learning. Clustering problems that are addressed
in this section are hard clustering problems and fuzzy clustering problems (FCP).
In hard clustering problems, each data point needs to be assigned to one and only
one cluster. On the other hand, in fuzzy clustering, each data point is a member of
all clusters and it has a membership grade for each cluster showing its likelihood of
belonging to that cluster.

3.1.1 k-Means
k-means is a hard clustering problem that has been introduced by several researchers
across different disciplines, most notably Lloyd [95], Forgy [54], Friedman and
Rubin [58], Ball and Hall [6], and MacQueen [96]. Given a data set of n vectors
xj 2 R

d , j D 1; : : : ; n, the goal is to find a partition S D fS1; S2; : : : ; Skg that
minimizes the expected loss (see [96]). A random point z 2 R

d with a known
distribution p generates a loss proportional to the square of the error resulting from
the choice of clusters, formally kz� Ozk2, where Oz is the cluster centers or exemplars.
The goal is to minimize the expected loss over possible choices of clusters, which
is formally defined as

w2.S/ D
kX

iD1

Z

Si

kz � Ozk2dp.z/: (20)

Given a selection of cluster members from the data, it is easy to see that the
cluster mean minimizes the squared error term. Therefore, the problem reduces
to selection of cluster members, which can be formulated as the following mixed-
integer programming (MIP) problem:

Œk �means� min
�;r

kX

iD1

nX

j D1

rijkxj � �ik2 (21a)

subject to
kX

iD1

rij D 1 j D 1; : : : ; n (21b)
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rij 2 f0; 1g i D 1; : : : ; k; j D 1; : : : ; n: (21c)

This problem is proven to be NP-hard [3]. One of the most widely used iterative
heuristic approaches is the k-means algorithm, also known as Lloyd’s algorithm
[95], which can be considered as an expectation-maximization algorithm. Initially,
k initial exemplars are randomly selected. Next, by repeating the following two
steps, the clusters will be iteratively refined. In the first (i.e., expectation) step,
each instance will be temporarily associated with the cluster whose exemplar is
the closest. In the second (i.e., maximization) step, based on the temporary cluster
assignment, each exemplar is updated as the mean of instances in its cluster. The
algorithm terminates when no exemplar can be further updated. The convergence
is guaranteed since the objective is finite and an improvement is assured in
each step.

It should be noted that the term k-means is used to define the problem of
minimizing the within-cluster sum of squares (i.e., (21)) as well as Lloyd’s
expectation-maximization algorithm defined above.

One observation is that k-means algorithm is sensitive to the initial set of
exemplars especially when k is large. Thus, random initialization of exemplars
is acceptable for relatively small values of k. There are alternative approaches,
especially useful when number of clusters is increased, including, but not limited
to, heuristic initialization schemes and parallel implementations with multiple initial
exemplars.

Typically, k-means problem considers spherical clusters by minimizing Eu-
clidean distance between points and cluster centers, as presented in formula-
tions (20) and (21). Other distances that are used in k-means are mahalanobis
distance metric [99], Itakura-Saito distance [93], L1 distance [81], and Bregman
distance [7].

It has been proven that the worst-case complexity of the k-means algorithm is
O.kn2�2/ [4]. Although it is introduced over 50 years ago, k-means is still one
of the most widely used algorithms for clustering. This algorithm is particularly
useful due to its simplicity, ease of implementation, efficiency, and success in
practice.

3.1.2 Message Passing
In order to overcome difficulties associated with the sensitivity of k-means to the
initialization process, Frey and Dueck [57] propose a message-passing method
where every data instance is a potential exemplar. The problem to be solved is the
NP-hard k-median problem. For computational tractability, an affinity propagation
scheme is proposed, where data instances are nodes of a network, real-valued
messages are transmitted along edges, and the magnitude of each message is
updated based on the current affinity that one data instance has for choosing
another data instance as its exemplar. Two types of messages are transmitted:
First, responsibility, r.i; j /, sent from data instance i to candidate exemplar j ,
is a cumulative variable for how appropriate instance j is to be the exemplar
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for instance i . Second, availability, a.i; j /, sent from potential exemplar j to
data instance i , reflects the accumulated evidence for how good it is for instance
i to select instance j as its exemplar. Availability includes support from other
instances that instance j is an exemplar. Formally, responsibility and availability are
defined as

r.i; j / s.i; j / � max
j 0s:t:j 0¤j

fa.i; j 0/C s.i; j 0/g (22)

a.i; j / min

8
<

:0; r.j; j /C
X

i 0s:t:i 0…fi;j g
maxf0; r.i 0; j /g

9
=

; ; (23)

where s.i; j / is the similarity between instances i and j . The objective is to
minimize the total squared error; thus, s.i; j / is defined as �kxi � xj k2. Since
availabilities are zero in the first iteration, r.i; j / is equal to the input similarity
between instance i and instance j as its exemplar minus the largest of the
similarities between instance i and other potential exemplars. In the subsequent
iterations, when an instance is effectively assigned to an exemplar, its updated
availabilities will become below zero. This negative availability removes some
of the exemplars from candidate exemplars of that data instance. If availability
of some other instances becomes negative for that exemplar, the exemplar is out
of competition.

When j D i , the responsibility r.j; j / equals s.j; j /, minus the largest of
the similarities between instance i and all other candidate exemplars. If r.j; j /

(i.e., self-responsibility) is negative at any iteration, it is more appropriate for
instance j to belong to another exemplar rather than being an exemplar itself. This
transmission continues until a good set of exemplars and corresponding clusters are
obtained.

3.1.3 Fuzzy Clustering
Fuzzy clustering is an extension of k-means problem, in which instances have a de-
gree of membership for all clusters. In this setting, a data instance is not designated
to a specific cluster, but it belongs to each cluster to a certain extent, referred to as the
membership grade. To solve this problem, different nonexact (i.e., soft computing)
approaches have been introduced in the literature (see [8, 17, 82, 102]). An exact
reformulation-linearization technique (RLT)-based approach has been introduced
by Sherali and Desai [123], where the objective is to minimize the total degree-
2 fuzzifier weighted squared Euclidean distance. Formally, given a data set of n

vectors aj 2 R
d , j D 1; : : : ; n, the problem is

ŒFCP� min
w;z

nX

iD1

cX

j D1

w2
ij kai � zj k2 (24a)



612 S. Saedi and O.E. Kundakcioglu

subject to
cX

j D1

wij D 1 8i D 1; : : : ; n (24b)

wij � 0 8.i; j /; (24c)

which is essentially a weighted version of (21). Since the objective function (24a)
is nonlinear, RLT is used to relax (24) as a linear programming problem and a spe-
cialized branch and bound algorithm is employed. To further speed up the process,
data reduction is performed on instances by replacing group examples with their
centroids [53].

3.2 Network-Based Models

In the last few decades, network-based data mining models have received increasing
attention for their capability of extracting useful information from large-scale data
sets that are widely available in network structure. Boginski [22] presents a wide
variety of applications for network-based data mining models.

One use of networks is finding the structural properties of a data set by degree
(i.e., number of edges emanating from a node) distribution of constructed graphs,
which is a representation of large-scale pattern of connections in the graph. This
leads to the fact that graphs that are related to completely different data sets might
have a similar well-defined power-law structure. Power-law structure states that the
probability that a vertex of a graph has degree k is P.k/ _ k�� [22].

Network-based models are widely used in clustering. Finding cliques and
independent sets in a network is synonymous with discovering clusters in that data
set. Given a graph G D .V; E/, a subgraph whose vertices are pairwise adjacent is
called a clique or complete subgraph. On the contrary, an independent set or stable
set is a set of vertices none of which are adjacent. Therefore, maximum clique in
a graph gives the maximum possible size of a group of similar objects, whereas
maximum independent set leads to the largest group of essentially different objects.
It should be noted that a clique in graph is an independent set in the complement
graph and vice versa. Maximum clique problem and the maximum independent set
problem are proven to be NP-hard [61].

These two problems are extended to find the minimum number of distinct cliques
for clustering purposes [22]. There also exist relaxations of clique problems such as
quasi-clique problems ensuring a lower bound on the total number of edges within
the subgraph [1] and k-plex problems ensuring a lower bound on the number of
adjacent nodes for each selected node within the subgraph [5]. See [125] for a
detailed survey on combinatorial optimization techniques for network-based data
mining.
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3.3 Biclustering

Biclustering is simultaneous partitioning of data instances and their features into
classes. Instances and features classified together are expected to have a high
relevance with each other (i.e., similar data values).

Given an m � n data matrix A, each column represents a data instance and each
row represents a feature. Formally, A D .aij /m�n, where aij is the expression of
i th feature of j th instance. Biclustering is applied by simultaneous partitioning
of the instances and features into k classes. Let S1; S2; : : : ; Sk denote the classes
of the instances (columns) and F1; F2; : : : ; Fk denote the classes of features (rows).
Biclustering is defined as a collection of pairs of instance and feature subsets
B D f.S1; F1/; .S2; F2/; : : : ; .Sk; Fk/g such that

S1; S2; : : : ; Sk � faj gj D1;:::;n;

k[

rD1

Sr D faj gj D1;:::;n;

S�

\
S� D ;, � ¤ �;

F1; F2; : : : ; Fk � fai giD1;:::;m;

k[

rD1

Fr D faigiD1;:::;m;

F�

\
F� D ; , � ¤ �;

where faj gj D1;:::;n and fai giD1;:::;m denote the set of columns and rows of the matrix
A, respectively. The ultimate goal in a biclustering problem is to find a partitioning
scheme for which instances from the same class have similar values for that
class’ characteristic features. One of the early algorithms to obtain an appropriate
biclustering is [69], which is known as block clustering. Given a biclustering B,
the variability of the data in the block .Sr ; Fr/ is used to measure the quality
of partitions. A lower variability in the resulting problem is desired. The number
of classes should be fixed in order to avoid a trivial, zero variability solution in
which each class consists of only one instance. A more sophisticated approach for
biclustering is introduced in [40], where the objective is to minimize the mean
squared residual. In this setting, the problem is proven to be NP-hard and a
greedy algorithm is proposed to find an approximate solution. A simulated annealing
algorithm is proposed in [27]. Dhillon [49] proposes another biclustering method
for text mining using a bipartite graph. In the graph, the nodes represent features
and instances, and each feature i is connected to an instance j with a link .i; j /,
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which has a weight aij . The total weight of all links connecting features and
instances from different classes is used to measure the quality of a biclustering.
A lower value corresponds to a better biclustering. A similar method for microarray
data is suggested in [83].

Dhillon et al. [50] treat input data as a joint probability distribution between two
discrete sets of random variables. The goal of the method is to find disjoint classes
for both variables. A Bayesian biclustering technique based on Gibbs sampling can
be found in [122]. A detailed survey on biclustering techniques can be found in
[31, 97].

4 Semi-supervised Learning

Semi-supervised learning is a branch of machine learning that utilizes both labeled
and unlabeled data to improve generalization performance. Since unlabeled data is
relatively easier to collect, these methods are less expensive than supervised learning
methods. Moreover, these methods are more accurate than unsupervised learning
because they are using information obtained from labeled data as well.

Data used in these methods are comprised a set to be used for training and a
set to be used for testing. Let X D .x1; : : : ; xn/ be a set that consists of l labeled
examples f.xi ; yi /gliD1, yi D ˙1 and of u unlabeled examples fxi gniDlC1. In the
literature, u unlabeled examples are referred to as the working set and l labeled
examples are referred to as the training set [14]. Both training set and working set
in this definition are used during the training process. Test set is used to test the
accuracy of the learning method as usual.

Based on definition of semi-supervised learning, two types of data are available:
the similarity distances for the training and working set and class labels of training
set. According to the capability of an algorithm to handle unseen data instances
(in the test set), semi-supervised methods can be classified as transductive or
inductive. In transductive learning, training, and working sets are processed but
test set cannot be used during the algorithm. The early graph-based methods in
semi-supervised learning are transductive. On the other hand, inductive learning
algorithms can handle test set as well. Semi-supervised learning algorithms can
be divided into three main groups based on the data representation considered.
These groups are manifold assumption, cluster assumption, and manifold-cluster
assumption. In manifold assumption, the data instances lie on a low-dimensional
manifold in the input space. These algorithms generally represent data as a graph,
instances as vertices, and pairwise similarities between instances as edge weights.
In cluster assumption, decision boundaries between classes must lie in low-density
regions as the aim of these algorithms is placing instances with high similarities
in the same cluster. Manifold-cluster assumption proposed by Mallapragada et al.
[98] uses both manifold and cluster assumptions to overcome weaknesses of both
approaches.

One of the earliest semi-supervised learning methods proposed in the literature
is self-training. This method initially constructs a temporary classifier using only
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labeled data. Using this classifier, labels are predicted for the instances in the
working set and the classifier is progressively updated [150]. Next, some of the
most notable methods for semi-supervised learning are introduced.

4.1 Semi-supervised Support Vector Machines (S3VM)

The idea of using SVMs to solve semi-supervised learning problems is introduced
by Vapnik and Sterin [138]. The combinatorial formulation for semi-supervised
support vector machines is as follows (see [37]):

ŒS3VM� min
w;b;�;y2Ru

1

2
kwk2 C C

"
lX

iD1

�i

#p

C C �
2

4
lCuX

j DlC1

�i

3

5
p

(25a)

subject to yi .w � xi C b/C �i � 1 i D 1; : : : ; l C u (25b)

�i � 0 i D 1; : : : ; l C u (25c)

1

u

lCuX

iDlC1

yi D 2r � 1 (25d)

yi 2 f�1; 1g i D l C 1; : : : ; l C u: (25e)

In this formulation, yi are given as input for i D 1; : : : ; l (i.e., training set) and
are decision variables for i D l C 1; : : : ; l C u (i.e., working set). Equation (25d)
is called the balancing constraint since it enforces the solutions to be balanced by
assigning specified percentages of unlabeled data to positive and negative classes
[133]. r is the ratio of positive labels to be assigned to the number of instances
in the working set.1 Usually, r is hard to predict; thus, it is assumed to be equal
to the ratio of positive labels in the training set. C and C � represent the penalty
weight for labeled (training) and unlabeled (working) data, respectively. To obtain a
good generalization performance, ideally C and C � should be different (see [38]);
however, they are usually assumed equal for the sake of simplicity. Some common
penalty functions for the objective are linear (i.e., p D 1) and quadratic (i.e., p D 2)
functions.

Bennett and Demiriz [14] introduce a 0–1 variable dj for each instance xj in
working set to formulate (25) as a MINLP problem. An instance belongs to positive
class if dj D 1 and negative class if dj D 0. With this change, S3VM can be
formulated as

1An exact equality for balancing constraint is likely to lead to infeasible solutions depending on
the number of instances and ratios. Therefore, a subtle adjustment is usually necessary to ensure
feasibility.
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ŒS3VM � MINLP� min
w;b;�;�;z

C

2

4
lX

iD1

�i C
lCuX

jDlC1

.�j C zj /

3

5C kwk (26a)

subject to yi .w � xi � b/ C �i � 1 i D 1; : : : ; l

(26b)

w � xj � b C �j C M.1 � dj / � 1 j D l C 1; : : : ; l C u
(26c)

� .w � xj � b/ C zj C Mdj � 1 j D l C 1; : : : ; l C u
(26d)

�i � 0 i D 1; : : : ; l

(26e)

�j � 0 j D l C 1; : : : ; l C u
(26f)

zj � 0 j D l C 1; : : : ; l C u
(26g)

dj 2 f0; 1g j D l C 1; : : : ; l C u;

(26h)

where M is a large enough number that ensures �j D 0 when dj D 0 and
zj D 0 when dj D 1. It should be noted that Bennett and Demiriz [14] assume
C D C �, ignore balancing constraint, and use one-norm of w in the objective
function.

A number of methods have been introduced to solve non-convex problem (25)
(see [38]). These methods typically utilize continuous relaxations or heuristics
except one hard approach solving (25) directly.

4.1.1 Branch and Bound
Proposed briefly as a framework in [137], this method is used to find the global
optimum for (25). Chapelle et al. [37] implemented a branch and bound algorithm
that performs a search over yu’s. This approach is particularly useful for relatively
smaller data sets due to its complexity. Based on empirical evidence, the general-
ization performance of the global optimum solution can be significantly better than
nonexact solutions.

The initial solution for the root node of branch and bound tree is the SVM
solution for labeled training data. Branching is performed on unlabeled instances
in the working set. To achieve optimal solution quickly, unlabeled instance x� to be
labeled next is selected in a way that its label (y�) assignment has a high potential
to improve the objective function. To formulate this concept, let s.L/ be the SVM
objective function trained on labeled set that is formally defined as

s.L/ D min
w;b

1

2
kwk2 C C

X

.xi ;yi /

max.0; 1 � yi .w � xi C b//2: (27)
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The branching is performed on the following unlabeled instance:

arg maxx2U;y2˙1s.L [ fx; yg/: (28)

The lower bound for each node will be the objective function value after optimiz-
ing a standard SVM on instances that have been labeled so far, i.e., s.L/ introduced
in (27). The incumbent solution will set the upper bound; thus, exploration strategy
in the tree is depth first search. This approach promotes reaching leaves frequently
and having tight upper bounds to perform aggressive pruning.

4.1.2 Continuous Relaxations
To solve the problem by continuous optimization methods, integer variables yi

for i D l C 1; : : : ; l C u should be relaxed. Chapelle et al. [36, 38] introduce
a soft computing approach that balances the distance of unlabeled instances
from the hyperplane instead of the number of instances as in (25d). The problem
is formulated as

ŒS3VM � R� min
w;b;�;z

1

2
kwk2 C C

lX

iD1

�
p
i C C �

lCuX

jDlC1

zp
j (29a)

subject to yi .w � xi C b/ � 1 � �i i D 1; : : : ; l (29b)

�i � 0 i D 1; : : : ; l (29c)

jw � xj C bj � 1 � zj j D l C 1; : : : ; l C u (29d)

zj � 0 j D l C 1; : : : ; l C u (29e)

1

u

lCuX

jDlC1

wT xj D 2er � 1: (29f)

Note that (29f) balances the sum of distances for the working set, givener . This
constraint is first proposed in [35], and the problem with and without the balancing
constraint is solved in [36, 38], respectively.

The problem can be solved via a concave convex-procedure, where the non-
convex objective function is rewritten as the sum of a convex component and
a concave component [148]. At each iteration of this algorithm, concave part
is estimated by its tangent and the convex part is minimized using traditional
algorithms. This type of methods to minimize the concave function is discussed
by Fung and Mangasarian [59] and improved in [44,139] to handle larger data sets.
rS3VM method [35] minimizes the objective function by gradient descent. Since

the objective function is not smooth, zp
j in the objective function is replaced by an

exponential function exp.�s.w �xj C b/p/, where s is a parameter. Furthermore, an
annealing procedure is performed by increasing C � at each iteration. Chapelle et al.
[36] propose a continuation technique to solve the S3VM problem. In this method,
a system of nonlinear equations is solved through a simpler system of equations
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by smoothing the objective function. Annealing is performed without increasing
C �, but instead keeping it fixed, and continuation technique is used to transform
the objective function. Chapelle [34] later introduces Newton S3VM that is more
efficient compared to rS3VM and Continuation S3VM. This technique utilizes a
new loss function for unlabeled instances in the primal problem and an associated
Newton method.

Bie and Cristianini [18] propose a convex relaxation using the dual of (25) and
solve through semidefinite programming (SDP). The dual formulation also allows
kernel trick to be used for nonlinear classification and classification of nonvectorial
data. The dual problem can be formulated as

min
Y

max
˛

2˛T 1 � ˛T .K ˇ YYT /˛ (30a)

subject to 0 � ˛i � C i D 1; : : : ; l C u (30b)

Yu 2 f�1; 1gu: (30c)

In this formulation, ˛ D .˛1; : : : ; ˛lCu/ is a vector of dual variables ˛i , K is

the complete kernel matrix, and Y D
��

Yl

Yu

��
is the complete label vector. The

optimization problem (30) can be reformulated as follows by introducing the outer
product of labels 	 D YYT :

min
	

max
˛

2˛T 1 � ˛T .K ˇ 	/˛ (31a)

subject to 0 � ˛i � C i D 1; : : : ; l C u (31b)

Yu 2 f�1; 1gu: (31c)

In (31), 	 D YYT D
��

YlYT
l Yl YT

u

YuYT
l YuYT

u

��
, objective function is linear in 	 ,

concave in ˛, and constraints are linear. The problem is not convex due to (31c);
therefore, a relaxation is proposed as

ŒS3VM � SDP� min
	

max
˛

2˛T 1 � ˛T .K ˇ 	/˛ (32a)

subject to 0 � ˛i � C i D 1; : : : ; l C u (32b)

diag.	/ D 1 (32c)

	 � 0; (32d)

where 	 D
�

YlYT
l 	lu

	ul 	uu

�
. In (32), Yu’s lie in the interval Œ�1; 1�. Furthermore,

rank of 	 is not necessarily 1. Although the problem is convex, this method is not
widely used due to its high time complexity O..1C u2/2.l C u/2:5/ [38].
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4.1.3 Heuristics
Introduced by Thorsten [133], S3VMlight is an S3VM implementation within the
SVMlight software package. It is based on local combinatorial search guided by a
label-switching procedure. In this method, the labels of test instances are switched
in a way that improves the objective function. In an outer loop, the value of C �
is gradually increased. This temporary adjustment of C � helps algorithm avoid
suboptimal local minima.

Deterministic annealing (DA) is a metaheuristic that has been used to solve
hard combinatorial or non-convex problems. Sindhwani and Keerthi [127] use
DA for S3VMs by relaxing discrete label variables yu to real-valued variables
pu D .plC1; : : : ; plCu/, where pi is interpreted as the probability that yi D 1 .
Based on these new variables, an easier reformulation is solved.

4.2 Expectation-Maximization (EM) Method

The expectation-maximization (EM) algorithm is first introduced by Dempster
et al. [48] as an iterative procedure for estimating parameter values that maximize
the likelihood function, when there is missing data. This method has two steps:
expectation (E-step) and maximization (M-step). E-step calculates the expected
values of the sufficient statistics given the current parameter estimates. M-step sets
parameters to their maximum likelihood estimates given the estimated values of the
sufficient statistics. Starting with a randomly generated set of parameter estimates,
these steps are repeated either for a predefined number of steps or more commonly
until the difference between parameter estimates in two consecutive iterations is
negligible. In this setting, labels for working set are considered as missing data and
EM method attempts to label these instances [100].

4.3 Graph-Based Methods

Graph-based semi-supervised methods define an empirical graph G D .V; E/. In
this graph, nodes V D 1; : : : ; n are instances given in training and working sets,
and edges E represent the similarity between these instances. A weight matrix W D
Œwij � is also defined in a way that wij ¤ 0 if there is an edge between i and j . Weight
matrix can be introduced in a number of different ways. For example, W can be a
k-nearest neighbor matrix, i.e., wij D 1 if i is among the k-nearest neighbors of j .
The way the weight matrix is defined affects the performance of graph-based semi-
supervised learning [41].

These methods rely on the geometry of data induced by labeled and unlabeled
instances and usually assume a smooth distribution of labels over the graph. Graph-
based methods are nonparametric, discriminative, and transductive in nature, yet
they can be modified to be inductive. Goal of a graph-based method can be label
propagation on a similarity graph or minimization of a quadratic cost criterion.
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In label propagation, known labels are used to spread information through the
graph in order to label unlabeled nodes [151]. Szummer and Jaakkola [132] propose
a Markov random walk algorithm based on label propagation on similarity graph.
In this method, labeling is performed based on how easy it gets to move from one
node to the other via a random walk.

In quadratic cost criterion-based methods, rapid changes of estimated labels
(i.e., OY ) between close instances are penalized. The penalty term is defined as
follows:

1

2

nX

i;j D1

Wi;j . Oyi � Oyj /2 D 1
2

�
2
Pn

iD1 Oy2
i

Pn
j D1 Wij � 2

Pn
i;j D1 Wij Oyi Oyj

�

D OY T .D �W / OY
D OY T L OY : (33)

In (33), L D D�W is an un-normalized graph laplacian. In [153], the penalty term
is minimized over OYu. Other methods considering quadratic cost criterion can be
found in [9,47,79]. Bengio et al. [13] show that minimizing quadratic cost criterion
is equivalent to label propagation.

4.4 Co-training

In co-training, two learners are iteratively combining their outputs to increase
size of the training set, which is reused for training and generating more labeled
data automatically. Co-training is proposed by Blum and Mitchell [21] for semi-
supervised learning. This technique assumes features are separable into two sets
that are conditionally independent given the classes. In first step, two classifiers
are trained with the labeled data using subfeature sets. Then, each classifier is used
to designate labels to unlabeled instances. Each classifier is retrained by the most
confident predictions given by the other classifier. This process is repeated until all
instances in the working set are labeled [149].

5 Ranking

Ranking is one of the fastest growing areas in machine learning. In ranking, a group
of alternatives are ranked based on aggregate scores assigned by voters. Some of the
most popular applications are internet databases, search engines, and e-commerce
sites. A number of algorithms have been proposed for ranking in the literature
[28, 52, 56] with different limitations.

Recently, Jiang et al. [76] propose a model called HodgeRank using graph
Helmholtzian. Alternatives to be ranked by voters are vertices of a graph, where
preferences are quantified and aggregated into an edge flow. Hodge theory
yields an orthogonal decomposition of the edge flow known as the Hodge or
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Helmholtz decomposition and analyzes pairwise rankings represented as edge
flows. HodgeRank uses combinatorial Hodge theory to reduce rank aggregation
to a linear least squares regression and avoids usual NP-hard combinatorial
optimization problems. HodgeRank outperforms classical ranking methods due
to its ability to handle incomplete and imbalanced data as well as large complex
network data. Furthermore, although this method is designed for cardinal data (i.e.,
each alternative is given a score), it can also give insights about ordinal data sets
(i.e., a set of alternatives is compared and ranked by each voter).

6 Feature Selection

Feature selection has been studied since the 1970s in statistical pattern recognition,
machine learning, and data mining [94]. Feature selection is applied in a variety
of fields such as text categorization, gene expression array analysis, combinatorial
chemistry, and bioinformatics [66, 115] and is one of the key techniques in data
preprocessing for data mining [20]. Feature selection is the process of removing
irrelevant (features that do not affect the underlying target concept) and redundant
features (features that do not add any information to the target concept) [46, 80].
Feature selection’s role is more significant in real-world problems in which the
data set is large (i.e., larger than the desired learning tool can handle). The
idea with feature selection is to decrease running time of the learning process
without decreasing the accuracy of the result significantly. It is needed because
of generalization performance, running time requirements, constraints, and in-
terpretational issues imposed by the problem itself. Further benefits of feature
selection include facilitating data visualization and data understanding, reducing
the measurement and storage requirements, reducing training and utilization times,
and defying the curse of dimensionality to improve prediction performance [66].
Problem of selecting the optimal subset of features is proven to be an NP-complete
problem [63].

Based on availability of class information, feature selection methods can be
divided into three groups: supervised feature selection (feature selection for clas-
sification), unsupervised feature selection (feature selection for clustering), and
semi-supervised feature selection. Feature selection methods can also be categorized
based on role of the mining algorithm: the filter model, the wrapper model, and the
hybrid model. Filter models start with an empty set of features and add features
until a combination consistent with the training data is found. Mining method is
applied next based on the selected features. On the other hand, wrapper models
need a predefined mining method to use as evaluation criterion. Generally, wrapper
methods are more accurate than filter methods due to the interaction between
a mining algorithm and its training data [84, 90]. Wrapper methods are also
computationally more expensive as they run the mining algorithm repeatedly during
the evaluation process.

Feature selection in classification is defined as methods that select minimal
sized subset of features based on two criteria. First, classification accuracy should
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Fig. 3 Illustration of a
branch and bound algorithm
for feature selection

not notably decrease. Second, the resulting class distribution based on selected
features should be as close as possible to the original class distribution based
on all features. There are a number of studies in the literature (e.g., [51, 126])
that explore stages of feature selection methods. Dash and Liu [46] breaks down
a typical feature selection method into four basic steps: generation, evaluation,
stopping criterion, and validation. Generation procedure is a search approach that
generates subsets for evaluation. When number of features is N , order of search
space is O.2N /. The search approach can be complete, heuristic, or random. Using
complete methods guarantees optimality of the feature subset because they do
backtracking. Backtracking is done by using techniques such as branch and bound,
best first search, and beam search. Stopping criterion can be based on genera-
tion (predefined number of features/iterations) or evaluation procedure (optimal
subset is obtained or addition/deletion of any feature does not result in a better
subset).

Basic branch and bound algorithm omits r out of m features by producing r

levels as shown in Fig. 3. At each level, one of the features is discarded. The level
number indicates the number of features that have been omitted at that level. The
root of the tree (at level 0) refers to the set of all m features. The leaves at the bottom
of the tree correspond to all possible subsets of size m � r features. The paths in
this tree denote all combinations of r-eliminated features. Numbers in the nodes
correspond to omitted features. The problem is selecting the best path through the
tree that yields the best criterion function result. Ideally, this path should be achieved
with the fewest number of calculations.

Branch and bound is first used for solving feature selection problem by Narendra
and Fukunaga [105]. This algorithm assumes monotonicity of criterion function
to find optimal feature subset without evaluating all possible feature subsets.
Monotonicity property states that a subset of features is not better than any larger set



Combinatorial Optimization in Data Mining 623

that contains the subset. A criterion function that satisfies the monotonicity property
helps to cut off some subtrees and decreases the search area in the branch and bound
algorithm. Generally, all branch and bound algorithms used for feature selection fall
into two groups based on monotonicity assumption. Hamamoto et al. [68] show
that criterion function is not monotonic, branch and bound still can result in a good
recognition rate. A more efficient branch and bound algorithm with same assump-
tion is introduced by Yu and Yuan [147]. This method can handle high-dimensional
data by dynamically searching for the optimal solution on a minimum solution tree
which is a subtree of the traditional solution tree. Another high-dimensional branch
and bound algorithm (HDBB) that assumes monotonicity is introduced in [32]. To
improve the speed of branch and bound, right-left search strategy is employed in
addition to top-down strategy and backtracking in [39]. Frank et al. [55] propose
a branch and bound algorithm using Bhattacharyya distance which is monotonic
and additive. This method finds a feature subset of a given size with the lowest
Bayesian classification error. A branch and bound method that can give a large initial
bound using a floating search method is introduced in [104]. This model can order
the tree nodes by the significance of features and has a jump search strategy to
avoid redundant criterion function calculations. There are a number of methods that
utilize monotonicity assumption (see [85, 128, 140, 146]). Recently, Ris et al. [114]
introduce a branch and bound algorithm, which bases the representation and explo-
ration of the search space on new lattice properties and the criterion function is not
monotonic.

Another widely used approach in feature selection is the use of SVMs. Combined
with filter methods, SVMs can be used after features are selected. SVMs can
also be used in wrapper strategies, where one-norm SVM is used for automatic
feature selection [23, 129, 152]. It is shown that the one-norm SVM has advantages
over the two-norm SVM when there are features that present noise [152]. Having
more spare solutions implies w has more zero components; thus, less features
could be chosen. An extension of one-norm SVM is used in [154]. This method
generates groups among features by clustering and uses F1-norm SVM. Shi
et al. [124] introduce a feature selection strategy using lp-norm support vector
classification (lp-SVC) and lp-norm proximal support vector machine (lp-PSVM)
where 0 < p < 1. Guyon et al. [67] have proposed a recursive feature
elimination (RFE) method. Adaptive scaling methods can be used for feature
selection in SVMs [65]. For scaling, a linear transformation is done within the
input space.

7 Conclusion

This review presents the numerous applications in data mining, which have ben-
efited from the theory of combinatorial optimization. Combinatorial optimization
improves quality and robustness of numerous applications and will certainly
continue to support the constantly growing field of data mining.
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