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Abstract

Decision-making is an ongoing process for humankind. Many of these real-world
decisions can be modeled using the problems contained in the generalized area
of combinatorial optimization. Another area with recent advancements is fuzzy
logic.

This chapter is concerned about the fuzzy solution approaches of combinato-
rial optimization problems. First section presents the fuzzy graph theory. Fuzzy
linear programming and fuzzy integer programming are explained in second
and third sections. Fuzzy spanning trees, fuzzy shortest path, fuzzy network
flows, and the fuzzy minimum cost flow problems are introduced at Sects. 4—7.
Fuzzy matching algorithm, fuzzy matroids, and fuzzy approximation algorithm
are discussed in Sects. 8—10. Basic information on fuzzy knapsack and fuzzy
bin-packing problems is given in Sects. 11 and 12. Fuzzy multicommodity flows
and edge-disjoint paths are explained in Sect. 13 in detail with four subsections.
Fuzzy network design problems and fuzzy traveling salesman problem are
provided in Sects. 14 and 15 respectively. Finally, fuzzy facility location is
presented in the last section.

1 Fuzzy Graph

A pair G = (V, E) with E C E(V) is called a graph (on V). The elements of V
are the vertices of G, and those of E the edges of G. The vertex set of a graph G is
denoted by V and its edge set by Eg. Therefore, G = (Vg, Eg).

In the literature, graphs are also called simple graphs; vertices are called nodes or
points; edges are called lines or links. More extensive information on graph theory
can be found at [1,2].

Fuzzy graph theory was introduced by Rosenfeld in 1975 [3], and some important
definitions about this theory are as follows [3—10]:

Definition 1 A fuzzy graph G which is a pair of functions can be denoted by G :
(0, ) where o is a fuzzy subset of set V (a nonempty set) and p is a symmetric fuzzy
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relation on ¢. The underlying crisp graph of G : (o, ) is denoted by G*(V, E)
where £ C V x V. A fuzzy graph G is complete if u(uv) = o(u) A o(v) for all
u,v € V where uv stands for the edge between u and v.

Definition 2 A fuzzy graph G denoted by G : (o, ;t). The degree of a vertex u is
dw = Dz uv). As p(uv) > 0 foruv € E and pu(uv) = 0 for uv ¢ E, this
is equivalent to dgy = Y_,,cp H(uv). Then the minimum degree of G is §(G) =
A{d(v)/v € V}, and the maximum degree of G is A(G) = v{d(v)/v e V}.

Definition 3 The strength of connectedness between two vertices u and v is
u>®u,v) = sup{uf(u,v)/k =1,2....} where

w1 (u,v) = sup{p(uuy) A Qi) A oo A pug—1v)uy ... ... ux—1 € V}.

Definition 4 An edge uv is a fuzzy bridge of G : (o, u) if deletion of uv reduces
the strength of connectedness between pair of vertices.

Definition 5 A vertex u is a fuzzy cut vertex of G : (o, ) if deletion of u reduces
the strength of connectedness between some other pair of vertices.

Definition 6 Let G : (o, u) be a fuzzy graph such that G*(V, E) is a cycle. Then
G is a fuzzy cycle if and only if there does not exist a unique edge xy such that

plxy) = Vipv)/(uv) > 0}.

Definition 7 The order of a fuzzy graph G is O(G) = Y
fuzzy graph G is S(G) = Y, cp 1(uv).

wey 0(u). The size of a

Definition 8 Let G : (o, 1) be a fuzzy graph on G*(V, E). If dg(v) = k for all
v € V, that is, if each vertex has some degree k, then G is said to be a regular fuzzy
graph of degree k or a k-regular fuzzy graph. This is analogous to the definition of
regular graphs in crisp graph theory.

Definition 9 Let G : (o, i) be a fuzzy graph on G*(V, E). The total degree of a
vertex u € V is defined by tdg(u) = Y., w(UV) + o) = 3, cp n(UV) +
o(u) = dg(u) + o (u). If each vertex G has the same total degree k, then G is said to
be a totally regular fuzzy graph of total degree k or a k-totally regular fuzzy graph.

The most important areas for the application of fuzzy graphs and fuzzy relations
are logic, topology, pattern recognition, information theory, control theory, artificial
intelligence, neural networks, operations research, planning, and systems analysis.

Bhattacharya [4] established some connectivity concepts regarding fuzzy cut
nodes and fuzzy bridges. The author also introduced the notions of eccentricity and
center.

Moreover, Bhattacharya and Suraweera [11] introduced an algorithm to find the
connectivity of a pair of nodes in a fuzzy graph [4].
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Furthermore, Tong and Zheng [12] presented an algorithm to find the connect-
edness matrix of a fuzzy graph. While, Xu [13] introduced connectivity parameters
of fuzzy graphs to problems in chemical structures, Sunitha and Vijayakumar [7]
focused on characterizing fuzzy trees using its unique maximum spanning tree. In
addition, a sufficient condition for a node to be a fuzzy cut node is presented in
[14]. Also, center problems in fuzzy graphs [15], blocks in fuzzy graphs [16], and
properties of self-complementary fuzzy graphs [17] were introduced by the same
authors. Therefore, using the concept of the strongest paths, they have obtained
a characterization for blocks in fuzzy graphs [15]. Bhutani and Rosenfeld have
focused on the concepts of strong arcs [18], fuzzy end nodes [19], and geodesics
in fuzzy graphs [20]. In [17], the authors have defined the concepts of strong arcs
and strong paths. They have pointed out the existence of a strong path between any
two nodes of a fuzzy graph and have studied the strong arcs of a fuzzy tree. In [15],
the concepts of fuzzy end nodes and multimin and locamin cycles are studied. The
concept of strong arc in maximum spanning trees [21] and its applications in cluster
analysis and neural networks were presented by Sameena and Sunitha [21, 22].
According to Mathew and Sunitha, there are different types of arcs in fuzzy graphs
and they have obtained an arc identification procedure [14].

2 Fuzzy Linear Programming

Linear programming is one of the most widely used decision-making tools for
solving real-world problems. Many researchers focus on the area of fuzzy linear
programming because of the fact that the real-world situations are characterized by
imprecision rather than exactness. In order to have a clear understanding, few of
such researches are discussed/shown below.

Gupta and Mehlawat studied a pair of fuzzy primal-dual linear programming
problems and calculate duality results using an aspiration level approach. They use
an exponential membership function, which is in contrast to the earlier works that
relied on a linear membership function. As the fuzzy environment causes a duality
gap, they investigate how choosing the exponential membership function impacts
the gap [23].

Amiria and Nasseria applied a linear ranking function to order trapezoidal
fuzzy numbers. Then, they establish the dual problem of the linear programming
problem with trapezoidal fuzzy variables and hence deduce some duality results.
In particular, they prove that the auxiliary problem is indeed the dual of the
linear programming problems with trapezoidal fuzzy variables (FVLP). Having
established the dual problem, the results will then follow as natural extensions of
duality results for linear programming problems with crisp data. Finally, using the
results, they develop a new dual algorithm for solving the FVLP problem directly,
making use of the primal simplex tableau [24].

In his paper, Ramik introduced a broad class of FLP problems firstly and defined
the concepts of B-feasible and (o, f)-maximal and minimal solutions of FLP
problems. The class of classical LP problems can be embedded into the class of
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FLP ones. Furthermore, he defines the concept of duality and proves the weak and
strong duality theorem generalizations of the classical ones for FLP problems [25].

On the other hand, Inuiguchi treats fuzzy linear programming problems with
uncertain parameters whose ranges are specified as fuzzy polytopes in his study.
The problem is formulated as a necessity measure optimization model. It is shown
that the problem can be reduced to a semi-infinite programming problem and
solved by a combination of a bisection method and a relaxation procedure. An
algorithm in which the bisection method and the relaxation procedure converge
simultaneously is proposed. A simple numerical example is given to illustrate the
solution procedure [26].

Wua et al. present an efficient method to optimize such a linear fractional
programming problem. First, some theoretical results are developed based on the
properties of max-Archimedean t-norm composition. Then, the result is used to
reduce the feasible domain. The problem can thus be simplified and converted into
a traditional linear fractional programming problem and eventually optimized in a
small search space. A numerical example is provided to illustrate the procedure [27].

In addition to above-mentioned studies, a new method to find the fuzzy optimal
solution of same type of fuzzy linear programming problems is proposed by Kumar
et al. It is easier to apply the proposed method, compared to the existing method in
order to solve the fully fuzzy linear programming problems with equality constraints
occurring in real-life situations. To illustrate, the proposed method numerical
examples are solved, and the obtained results are discussed [28]. Additionally,
Lotfi et al. discussed full fuzzy linear programming (FFLP) problems of which all
parameters and variables are triangular fuzzy numbers. They use the concept of the
symmetric triangular fuzzy number and introduce an approach to defuzzify a general
fuzzy quantity [29].

By proposing the fuzzy multiobjective linear programming (FMOLP) model with
triangular fuzzy numbers, Zenga et al., transformed the FMOLP model and its
corresponding fuzzy goal programming (FGP) problem to crisp ones. These can be
solved by the conventional programming methods. The FMOLP model was applied
to crop area planning of Liang Zhou region, Gansu province of northwest China,
and then the optimal cropping patterns were obtained under different water-saving
levels and satisfaction grades for water resources availability of the decision-makers
(DM) [30].

Further, Liang developed an interactive fuzzy multiobjective linear programming
(i-FMOLP) method for solving the fuzzy multiobjective transportation problems
with piecewise linear membership function. Proposed i-FMOLP method aims to
simultaneously minimize the total distribution costs and the total delivery time.
i-FMOLP method also has reference to fuzzy available supply and total budget at
each source and fuzzy forecast demand with maximum warehouse space at each des-
tination. Additionally, the above-mentioned method describes a systematic frame-
work that facilitates the fuzzy decision-making process, enabling a decision-maker
(DM) to interactively modify the fuzzy data and related parameters until a set of sat-
isfactory solutions are obtained. An industrial case is presented to demonstrate the
feasibility of applying such proposed method to real transportation problems [31].
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Peidro et al. modeled supply chain (SC) uncertainties by fuzzy sets and develop
a fuzzy linear programming model for tactical supply chain planning in a multi-
echelon, multiproduct, multilevel, multi-period supply chain network in their
study. In this approach, the demand, process, and supply uncertainties are jointly
considered. The aim is to centralize multi-node decisions simultaneously to achieve
the best use of the available resources along the time horizon so that customer
demands are met at a minimum cost. With this intention, Peidro et al.’s proposal
is tested by using data from a real automobile SC. Thus, fuzzy model provides
the decision-maker (DM) with alternative decision plans with different degrees of
satisfaction [32].

Other solutions are found by Bucley and Feuring to the fully fuzzified linear
program where all the parameters and variables are fuzzy numbers in their study.
First, they change the problem of maximizing a fuzzy number, the value of
the objective function, into a multiobjective fuzzy linear programming problem.
Then, they prove that fuzzy flexible programming can be used to explore the
whole nondominated set to the multiobjective fuzzy linear program. Hence, an
evolutionary algorithm is designed to solve the fuzzy flexible program, and they
apply this program to two applications to generate good solutions [33].

Comparatively, Chanas and Zielinski analyzed the linear programming prob-
lem with fuzzy coefficients in the objective function. The set of nondominated
(ND) solutions with respect to an assumed fuzzy preference relation, according
to Orlovsky’s concept, is supposed to be the solution of the problem. Special
attention is paid to unfuzzy nondominated (UND) solutions (the solutions which
are nondominated to the degree 1). The main results of their paper are sufficient
conditions on a fuzzy preference relation which allows reducing the problem of
determining UND solutions to that of determining optimal solutions of a classical
linear programming problem. These solutions can thus be determined by means of
classical linear programming methods [34].

Another major study is by Stanciulescu et al., modeling a multiobjective
decision-making process by a multiobjective fuzzy linear programming problem
with fuzzy coefficients for the objectives and the constraints. Moreover, the decision
variables are linked together because they have to sum up to a constant. Most of the
time, the solutions of a multiobjective fuzzy linear programming problem are crisp
values. Thus, the fuzzy aspect of the decision is partly lost, and the decision-making
process is constrained to crisp decisions. However, they propose a method that uses
fuzzy decision variables with a joint membership function instead of crisp decision
variables. First, they consider lower-bounded fuzzy decision variables that set up the
lower bounds of the decision variables. Second, the method is generalized to lower—
upper-bounded fuzzy decision variables that also set up the upper bounds of the
decision variables. The results are closely related to the special type of the problem
they are coping with, since they embed a sum constraint in the joint membership
function of the fuzzy decision variables. Numerical examples are presented in order
to illustrate their method [35].

By the same token, as a case study, Sadeghi and Hosseini tried to demonstrate
the method of application of FLP for optimization of supply energy system in Iran.
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They used FLP model comprises fuzzy coefficients for investment costs. Following
the mentioned purpose, it is realized that FLP is an easy and flexible approach that
can be a serious competitor for other confronting uncertainties approaches, that is,
stochastic and minimax regret strategies [36].

On the other hand, Liu proposed a new kind of method for solving fuzzy linear
programming problems based on the satisfaction (or fulfillment) degree of the
constraints. Using a new ranking method of fuzzy numbers, the fulfillment of the
constraints can be measured. Then the properties of the ranking index are discussed.
With this ranking index, the decision-maker can make the constraints tight or
loose based on his optimistic or pessimistic attitude and get the optimal solution
from the fuzzy constraint space. The corresponding value of objective distribution
function therefore can be obtained. A numerical example illustrates the merits of the
approach [37].

Chen and Ko proposed fuzzy linear programming models to determine the
fulfillment levels of PCs under the requirement to achieve the determined contri-
bution levels of design requirements (DRs) for customer satisfaction. In addition,
by considering the design risk, they incorporate failure modes and effect analysis
(FMEA) into quality function deployment (QFD) processes, which are treated as
the constraint in the models. In order to cope with the vague nature of product
development processes, fuzzy approaches are used for both FMEA and QFD. The
illustration of the suggested models is performed with a numerical example to
indicate the applicability in practice [38].

Eventually, Katagiri et al. considered multiobjective linear programming prob-
lems with fuzzy random variables coefficients. A new decision-making model
is proposed to maximize both possibility and probability, which is based on
possibilistic programming and stochastic programming. An interactive algorithm
is constructed to obtain a satisficing solution satisfying at least weak Pareto
optimality [39].

3 Fuzzy Integer Programming

The linear programming models that have been discussed thus far all have been
continuous, in the sense that decision variables are allowed to be fractional.

Often this is a realistic assumption. For instance, we might easily produce 102
3/4 gallons of a divisible good such as wine. It might also be reasonable to accept
a solution giving an hourly production of automobiles at 58 1/2 if the models were
based upon average hourly production, and the production had the interpretation of
production rates.

At other times, however, fractional solutions are not realistic, and we must
consider the optimization problem:

. . n
Maximize Zj=l CjXj, (1)
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subject to

S ay=bi=1.2,....m), )
j=
x; =0 =1,2,...,n,), 3)
x; integer (for some orall j =1,2,...,n). @

This problem is called the (linear) integer programming problem. It is said to be a
mixed-integer program when some, but not all, variables are restricted to be integer
and is called a pure integer program when all decision variables are integers.

The implications of fuzzy set theory in optimal decision-making were first rec-
ognized by Bellman and Zadeh [40] and were later extended to linear programming
problems with fuzzy constraints and multiple objectives by Zimmermann [41]. The
latter formulation was subsequently extended to integer programming problems
[42—45]. Fuzzy techniques have recently been applied to the analysis and optimiza-
tion [46,47]. Also, linear and integer linear programming are known to capture well
optimization problems relevant to high-speed networks [48].

The fuzzy integer programming (FIP) methods provide another type of poten-
tially useful approach for integer programming under uncertainty. Major short-
comings with the FIP methods are that, firstly, it may be difficult to obtain
membership information for all system components in practical problems; secondly,
FIP methods may lead to more complicated submodels that are computationally
difficult for practical applications; and thirdly, most of the FIP solution algorithms
are indirect approaches containing intermediate control variables or parameters,
which are difficult to determine by certain criteria. They are thus unable to
communicate uncertainty directly into the optimization processes and resulting
specific solutions [49].

Tan et al. present integer programming optimization models for planning the
retrofit of power plants at the regional or national level at their study. In addition to
the base case (i.e., non-fuzzy or crisp) formulation, two fuzzy extensions are given to
account for the inherent conflict between environmental and economic goals, as well
as parametric uncertainties pertaining to the emerging carbon capture technologies.
Case studies are shown to illustrate the modeling approach [50].

Asratian and Kuzjurin considered covering programs with 0—1 variables and
cost function of the form ) ; *; under the assumption that they know a pattern of
coefficients in constraints, which are nonzero and only those coefficients can vary
in some interval [1, M] (zero elements do not change their value). As their main
result, they found some sufficient conditions guaranteeing the variation of integral
optimum in the average case (over all zero—nonzero patterns) is close to 1 as the
number of variables tends to infinity. This means that for typical patterns the values
of nonzero elements in A can vary without affecting significantly the value of the
optimum of the integer program (i.e., the optimum value depends mostly on the
pattern but not on the values of nonzero elements) [48].
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Gharehgozli et al. present a new mixed-integer goal programming (MIGP) model
for a parallel-machine scheduling problem with sequence-dependent setup times
and release dates. Two objectives are considered in the model to minimize the total
weighted flow time and the total weighted tardiness simultaneously. Due to the
complexity of the above model and uncertainty involved in real-world scheduling
problems, it is sometimes unrealistic or even impossible to acquire exact input
data. Hence, they consider the parallel-machine scheduling problem with sequence-
dependent setup times under the hypothesis of fuzzy processing time’s knowledge
and two fuzzy objectives as the MIGP model [51].

Li et al. developed a two-stage fuzzy robust integer programming (TFRIP)
method for planning environmental management systems under uncertainty. Their
approach integrates techniques of robust programming and two-stage stochas-
tic programming within a mixed-integer linear programming framework. It can
facilitate dynamic analysis of capacity-expansion planning for waste-management
facilities within a multistage context. The TFRIP method is applied to a case study
of long-term waste-management planning under uncertainty. Generated solutions
for continuous and binary variables can provide desired waste-flow allocation,
capacity-expansion plans with a minimized system cost, and maximized system
feasibility [52].

Allahviranloo and Afandizadeh formulated an investment model to find the
optimum investment steps by application of operational research science and fuzzy
logic concept to model the available uncertainties. Fuzzy integer linear program-
ming models are used to determine the optimum investment and development of a
port [53].

Also, Emam studied a bi-level integer nonlinear programming problem [54] with
linear or nonlinear constraints, where nonlinear objective function at each level
is maximized. The bi-level integer nonlinear programming (BLI-NLP) problem
can be thought as a static version of the Stackelberg game, which is used as a
leader—follower game. A Stackelberg game is used by the leader, or the higher-level
decision-maker (HLDM), given the rational reaction of the follower, or the lower-
level decision-maker (LLDM). He proposed a two-planner integer model and a
solution method for solving this problem. This method uses the concept of tolerance
membership function and the branch-and-bound technique to develop a fuzzy max—
min decision model for generating Pareto optimal solution for this problem; an
illustrative numerical example is given to represent the obtained results [53].

4 Fuzzy Spanning Trees

In classical mathematical programming, the coefficients of objective functions or
constraints in problems are assumed to be completely known. However, in real
systems, they are uncertain than constant. In order to deal with such uncertainty,
stochastic programming [55] and fuzzy programming [56] were considered. Both
are useful tools for the decision-making under a stochastic environment or a fuzzy
environment, respectively [57].



1366 P.M. Pardalos et al.

In parallel Gao and Lu formulated a fuzzy quadratic minimum spanning
tree problem as expected value model, chance-constrained programming, and
dependent-chance programming according to different decision criteria in their
study. Then the crisp equivalents are derived when the fuzzy costs are characterized
by trapezoidal fuzzy numbers. Furthermore, a simulation-based genetic algorithm
using Priifer number representation is designed for solving the proposed fuzzy
programming models as well as their crisp equivalents, and a numerical example
is displayed to illustrate the effectiveness of the genetic algorithm at the end of the
study [57].

Katagiri et al. [58] investigated bottleneck spanning tree problems where each
cost attached to the edge in a given graph is represented with a fuzzy random
variable. The problem is to find the optimal spanning tree that maximizes a degree
of possibility or necessity under some chance constraint. After transforming the
problem into the deterministic equivalent one, they introduce the subproblem which
has close relations to the deterministic problem. Utilizing fully the relations, they
give a polynomial order algorithm for solving the deterministic problem.

Additionally, Katagiri et al. [59] studied minimum spanning tree problems where
each edge weight is a fuzzy random variable. A fuzzy goal for the objective function
is defined to capture the imprecise judgment of the decision-maker. They also
proposed a decision-making model based on a possibilistic programming model
and the expectation optimization model in stochastic programming.

5 Fuzzy Shortest Path

The shortest path problem (SPP) is one of the most fundamental and well-known
combinatorial optimization problem that appears in many applications, including
communications, transportation, routing, supply chain management, or models
involving agents as a subproblem [60].

The problem of finding the shortest path from a specified source node to the other
nodes is a fundamental matter in graph theory and one that is currently being greatly
studied [61-68].

The classical problem seeks to select a path with minimum length from a finite set
of paths. In real-world problems, arc lengths represent traveling time, cost, distance,
or other variables. However, in practice, uncertainty cannot be avoided, and usually,
the arc lengths cannot be determined precisely. For instance, on road networks,
for several reasons, that is, traffic, accidents, or weather condition, arc lengths
representing the vehicle travel time are subject to uncertainty. In such situations,
a fuzzy shortest path problem (FSPP) seems to be more realistic and reliable.

According to Hernandes et al., an iterative algorithm assumes a generic ranking
index for comparing the fuzzy numbers involved in the problem, in such a way
that each time in which the decision-maker wants to solve a concrete problem(s)
he/she can choose (or propose) the ranking index that best suits that problem.
Hernandes et al.’s algorithm is based on the Ford-Moore—Bellman algorithm for
classical graphs. In concrete, it can be applied in graphs with negative parameters,
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and it can detect whether there are negative circuits. For the sake of illustrating the
performance of the algorithm in the study, it has been developed using only certain
order relations. However, it is not restricted at all to use these comparison relations
exclusively. As the theoretical base of a decision support system’s concern is to solve
this kind of problems, the proposed iterative algorithm is easy to understand [69].

Tajdin et al. concerned with the design of a model and an algorithm for
computing a shortest path in a network having various types of fuzzy arc lengths.
Firstly, to obtain membership functions for the considered additions, they developed
a new technique for the addition of various fuzzy numbers in a path using «-cuts by
proposing a linear least squares model. Then, using a recently proposed distance
function for comparison of fuzzy numbers, they present a dynamic programming
method for finding a shortest path in the network [70].

Moazeni discussed the shortest path problem in his study. A positive fuzzy
quantity is assigned to each arc as its arc length on a network. He defines an
order relation between fuzzy quantities with finite supports. Then by applying
Hansen’s multiple labeling method together with Dijkstra’s shortest path algorithm,
he proposes a new algorithm for finding the set of nondominated paths with respect
to the extension principle. Moreover, he shows that the only existing approach for
this problem, Klein’s algorithm, may lead to a dominated path in the sense of
extension principle [60].

Keshavarz and Khorram concentrated on a shortest path problem on a network
where arc lengths (costs) are not deterministic numbers, but imprecise ones in their
study. Here, costs of the shortest path problem are fuzzy intervals with increasing
membership functions, whereas the membership functions of the total cost of the
shortest path are a fuzzy interval with a decreasing linear membership function.
By the max—min criterion suggested in [71], the fuzzy shortest path problem can
be treated as a mixed-integer nonlinear programming problem. They pointed out
that this problem can be simplified into a bi-level programming problem that is
very solvable. In order to solve the bi-level programming problem, they propose an
efficient algorithm based on the parametric shortest path problem. An illustrative
example is used to denote their algorithm [72].

In a network, the arc lengths may represent time or cost. In practical situations,
it is reasonable to assume that each arc length is a discrete fuzzy set. It is called
the discrete fuzzy shortest path problem. There are several methods reported to
solve this kind of problem in the literature. In these methods, they can obtain either
the fuzzy shortest length or the shortest path. In their study, Chuang and Kung
claimed a new algorithm which can obtain both of them. The discrete fuzzy shortest
length method is proposed to find the fuzzy shortest length, and the fuzzy similarity
measure is utilized to get the shortest path. An illustrative example represents their
proposed algorithm [62].

Ji et al. considers the shortest path problem with fuzzy arc lengths in their study.
According to different decision criteria, the concepts of expected shortest path,
a-shortest path, and the shortest path in fuzzy environment are originally introduced,
and three types of models are formulated. In order to solve these models, a hybrid
intelligent algorithm integrating simulation and genetic algorithm are asserted and
numerous examples illustrate its effectiveness [73].
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Okada deals with a shortest path problem on a network in which a fuzzy number,
instead of a real number, is assigned to each arc length in his study. Such a
problem is “ill-posed” because each arc cannot be identified as being either on the
shortest path or not. Therefore, based on the possibility theory, he introduces the
concept of “degree of possibility” that an arc is on the shortest path. Every pair
of distinct paths from the source node to any other node is implicitly assumed to
be noninteractive in the conventional approaches. This assumption is unrealistic
and also involves inconsistencies. To overcome this drawback, he defines a new
comparison index between the sums of fuzzy numbers by considering interactivity
among fuzzy numbers. An algorithm is presented to determine the degree of
possibility for each arc on a network. This algorithm is evaluated by means of large-
scale numerical examples. Consequently, this approach is found efficient even for
real-world practical networks [66].

The fuzzy shortest path (SP) problem aims at providing decision-makers with the
fuzzy shortest path length (FSPL) and the SP in a network with fuzzy arc lengths.
In their study, Chuand and Kung represent each arc length a triangular fuzzy set and
propose a new algorithm to deal with the fuzzy SP problem. First, they proposed
a heuristic procedure to find the FSPL among all possible paths in a network. It is
based on the idea that a crisp number is a minimum number if and only if any other
number is larger than or equal to it. It owns a firm theoretic base in fuzzy sets theory
and can be implemented effectively. Second, they propose a way to measure the
similarity degree between the FSPL and each fuzzy path lengths. The path with the
highest similarity degree is the SP. An illustrative example is added to display their
proposed approach [61].

6 Fuzzy Network Flows

Network flow problems have a wide range of engineering and management ap-
plications such as analyses and design of computer networks, cable television
networks, transportation systems, communication networks, project schedules,
queuing systems, inventory systems, and manpower allocation [74].

In parallel, Liu and Kao [74] studied the network flow problems in that the arc
lengths of the network and the objective value are fuzzy numbers. The illustrative
example is on the problem of multimedia transmission over Internet.

Flows in networks provide very useful models in a number of practical contexts.
The major techniques in the area revolve around celebrated max-flow min-cut
theorem (MFMCT) and associated algorithms. In this context, Diamond develops
analogues of the MFMCT and Karp—Edmonds algorithm for networks with fuzzy
capacities and flows in their study. The principal difference between fuzzified and
traditional crisp versions is that although the maximum fuzzy flow corresponds
to a minimum fuzzy capacity, the latter may incorporate a number of network
cuts. Preliminary results are for interval-valued flows and capacities which, in
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themselves, provide robustness and estimates for flows in an uncertain environment.
In turn, a fuzzy theorem and algorithm are obtained by regarding these intervals as
level sets of fuzzy numbers [75].

Georgiadis considered a general class of optimization problems regarding span-
ning trees in directed graphs (arborescence). In his study, Georgiadis considered
the following optimization problem. He assumed that edge costs take values in
a set U endowed with a dyadic relation and a dyadic operation. He sought to
find the directed spanning tree whose cost (with respect to the dyadic operation)
is minimal with respect to the dyadic relation. Then, he provided an algorithm
for solving the problem, which can be considered as generalization of Edmonds’
special cases of this problem provide algorithms for the minimum sum, bottleneck
and lexicographically optimal arborescence, as well as the widest-minimum sum
spanning arborescence problem [76].

7 Fuzzy Minimum Cost Flow Problems

Minimal cost flow problem (MCFP) is an important problem in combinatorial opti-
mization and network flows and has many applications in practical problems, such
as communication, transportation, urban design, and job scheduling models [77].

The aim of the minimal cost flow problem (MCFP) in fuzzy nature, denoted
with FMCEFP, is to find the least cost of the shipment of a commodity through a
capacitated network in order to satisfy imprecise concepts in supply or demand of
network nodes and capacity or cost of network links [78].

Ghatee and Hashemi presented a model in which the supply and demand of nodes
and the capacity and cost of edges are represented as fuzzy numbers. For easier
reference, they refer to this group of problems as fully fuzzified MCFP. Hukuhara’s
difference and approximated multiplication are used to represent their model.
Thereafter, they sort fuzzy numbers by an order using a ranking function and show
that it is a total order, that is, a reflexive, antisymmetric, transitive, and complete
binary relation. Utilizing the proposed ranking function, they transform the fully
fuzzified MCFP into three crisp problems solvable in polynomial time [79].

Also, Ghatee and Hashemi deal with fuzzy quantities and relations in multi-
objective minimum cost flow problem in their study. When t-conorms and t-conorms
are available, the goal programming is applied to minimize the deviation among the
multiple costs of fuzzy flows and the given targets. To obtain the most optimistic and
the most pessimistic satisficing solutions of the problem, two different polynomial
time algorithms are introduced by applying some network transformations. To
verify the performance of this approach in actual substances, network design under
fuzziness is considered, and an efficient scheme is proposed including genetic
algorithm including fuzzy minimum cost flow problem [80].

Similarly, Ghatee et al. study the minimal cost flow problem (MCFP) with fuzzy
link costs, say fuzzy MCFP, to understand the effect of uncertain factors in applied
shipment problems. With respect to the most possible case, the worst case, and the
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best case, the fuzzy MCFP can be converted into a three-objective MCFP. Applying
a lexicographical ordering on the objective functions of derived problem, two
efficient algorithms are provided to find the preemptive priority-based solution(s),
namely, p-successive shortest path algorithm and p-network simplex algorithm.
In both of them, lexicographical comparison is used which is a natural ordering
in many real problems especially in hazardous material transportation where
transporting through some links jeopardizes people’s lives. Presented schemes
maintain the network structure of the problem, and so, they are efficiently imple-
mentable. A sample network is added to illustrate the procedure and to compare the
computational experiences with those of previously established works. Finally, the
above-presented approach is applied to find an appropriate plan to transit hazardous
materials in Khorasan roads network using annual data of accidents [81].

8 Fuzzy Matching Algorithm

Matching problem is one of the most important optimization problems. The model
is widely used in practice such as pattern recognizing, system optimization, and job
assignment problem. A matching of a graph is an independent subset M of edge set.
In other words, a matching is a set of pairwise disjoint edges.

To explain this algorithm, first, we will explain fuzzy maximum matching
algorithms. A maximum matching has as many edges in it as possible. Another
version of this general problem is called the maximum weighted matching problem,
and significantly more difficult will be captured in the second subsection of this
section.

A maximum weighted matching problem is to choose a maximum matching in
a given graph so that the sum of weight of the edges in it is at the maximum level.
Nonbipartite weighted matching appears to be one of the “hardest” combinatorial
optimization problems that can be solved in polynomial time.

Another version of weighted matching algorithms is a well-known problem
called the assignment problem (AP). It can also be called as the minimum weight
perfect matching problem in bipartite graphs. The fuzzy assignment problem (FAP)
is also introduced at the Sect. 8.2.1.

There are several other inexact matching methods based on continuous optimiza-
tion that have been proposed in the recent years. Among them we can cite the fuzzy
graph matching (FGM) that is a simplified version of weighted graph matching
(WGM) problem and based on fuzzy logic. In FGM, as the cost of matching two
nodes does not depend on the matching of the other nodes of the graph, the objective
function is considerably simpler than the objective function in WGM problem [82].

Medasani et al. [83] provided a relaxation approach to graph matching based on
a fuzzy assignment matrix. Hence, the authors are able to derive that iterative FGM
algorithm, which has a matching accurate than the graduated assignment algorithm.

Medasani and Krishnapuram [84] introduced a fuzzy approach to content-based
retrieval of segmented images using fuzzy attributed relational graphs (FARGs) and
an efficient FGM. In sum, the FGM algorithm is of the order O(n?m?) and hence
suitable for image retrieval.
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8.1 Fuzzy Maximum Matching Algorithms

The maximum matching model is also called cardinality matching problem. An
independent subset of the edges set is called a matching of a graph, and a matching
with as many edges in it as possible is called a maximum matching.

Matching problems with fuzzy weights arise when the decision-maker has some
vague information about some data of the real-world system. In other words, the
parameters of a system can be characterized by fuzzy variables.

Essentially, Liu et al. initialized the concepts of expected maximum fuzzy
weighted matching, the o-maximum fuzzy weighted matching, and the most
maximum fuzzy weighted matching. According to various decision criteria, by
using the credibility theory, with crisp equivalents are also given, the maximum
fuzzy weighted matching problem is formulated as expected value model, chance-
constrained programming, and dependent-chance programming. Furthermore, a
hybrid genetic algorithm is designed to solve the proposed fuzzy programming
models. Finally, a numerical example is given. The weights of the edges are
trapezoidal fuzzy variables in the numerical example [85].

Liu and Gao [86] suggested concepts of the maximum random fuzzy weighted
matching problem: (a) the expected maximum random fuzzy weighted matching,
(b) the (a, B)-maximum random fuzzy weighted matching, and (c) the most
maximum random fuzzy weighted matching. Later they formulated the maximum
random fuzzy weighted matching problem as an expected value model, chance-
constrained programming, and dependent-chance programming. To get the expected
maximum random fuzzy weighted matching, the expected maximum random fuzzy
weighted matching problem can be formulated as follows:

max Z(i,j)EE Xij

max E[Z(l.’j)eE &ixij]

S'I'Zj:(i,j)eExij <Li=12,...,|V]
xj=0o0rl1,(i,j)€E.

)

Later a knowledge-based hybrid genetic algorithm is designed for solving the
problem.

8.2 Fuzzy Weighted Matching Algorithm

Main goal of the algorithm is to find a matching in a given graph such that sums
the weights of the edges at its maximum level. The sum of the weights of the edges
in a matching is called the weight of matching. Sometimes, instead of a matching
maximum weighted matching problem is used to find a maximum matching with
maximum weight.
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When the decision-maker has some vague information about some data of a real-
life system, the matching model with fuzzy weighted is used. In other words, fuzzy
variables are used for the parameters of a system.

In recent years, a lot of researches on matching have been conducted. A quite
compact and flexible search-based artificial algorithm that makes use of relations
based on representation of the graph is proposed by Balakrishnarajan and Venu-
vanaligam [87] to find all the perfect matching on a general graph.

An extension of the bipartite weighted matching problem is studied by Hsieh
et al. [88]. A reduction algorithm reducing the matching problem to the assignment
problem is proposed. Also, three examples are used to illustrate the process of the
proposed method and its applications. As a result of the reduction to assignment
problem on a larger graph, exact solution can be found at polynomial time.

Hsieh et al. [89] studied the weighted matching problem for on-line handwritten
Chinese character recognition. The Hungarian method and a greedy algorithm based
on the Hungarian method are proposed to solve the matching problem by a reduction
algorithm. For each iteration of the greedy algorithm, a matched pair is deleted, and
if the relation of their neighbors does not match, a new matching is then found by
applying Hungarian method.

Lamb [90] studied the weighted matching with penalty and showed that bipartite
weighted matching with penalty problem can be reduced to a bipartite maximum
weight matching problem. The reduction to a maximum weight matching problem is
not only easier than the reduction of Hsieh et al. [88,89] to an AP, but also produces
a smaller problem.

By using the appropriate data structures, Steiner and Yeomans [91] designed
a linear time algorithm for maximum matching in convex, bipartite graphs and
showed that the maximum matching problem can be efficiently transformed into
an off-line minimum problem. This algorithm finds a maximum matching in less
time complexity which is less than the graph size.

Kim and Wormal [92] studied the matching problem as an extension of matching
problem, in random regular graphs, which are showing a random d-regular graph
for even d asymptotically, almost surely (a.a.s.), has an edge decomposition into
Hamilton cycles.

Zito [93] also studied bipartite and d-regular random graphs, and proved that
with high probability, ratio between the sizes of any two maximal matchings
approaches one in dense random graphs and random bipartite graphs. According to
their findings, weaker bounds hold for sparse random graphs and random d-regular
graphs.

For this model primarily, some preliminary knowledge of credibility theory and
notations could be used. Let £ be a fuzzy variable with membership function p(x)
and r a real number. Then, the possibility measure [94] and the necessity measure
of fuzzy event < {§ r} are defined as

Pos{§ < r} = sup, ., {pu(x)}, Nec{§ < rj =1—Pos{¢ > r},

respectively.
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The credibility measure of fuzzy event {§ < r} is defined by Liu and Liu [95] as

Crig = 7} = 5 (PostE = 7} + Necft < r}).

It can easily verified that Cr{¢ < r} 4+ Cr{§ > r} = 1 for any fuzzy event
{& < r}. Liu [96] also presented two critical values, say «-optimistic value which
was defined as

Ssup(@) = supir|Cri§ = r} = o}

and a pessimistic value which was defined as
§int(e) = inf{r|Cr{§ < r} = aj,

which serve as roles to rank fuzzy variables, where ae(0, 1] and £ is a fuzzy variable.
The expected value of a fuzzy variable £ is defined as

o) 0
E[§]= | Cr{é > r}dr — Cr{é <r}dr
[eteznar- |

provided that at least one of the two integrals is finite.

For more detailed properties of credibility measure, the interested reader may
consult Liu [97].

For this model, it is thought that all the graphs are undirected and simple. Let
G(V, E,§) be a graph, where V, E, and £ are the vertices set, edges set, and weights
vector of the graph G. Sometimes, we employ E£(G) and V(G) to denote the edges
set and the vertices set of graph G, respectively. The degree and the set of incident
edges of the vertex v ¢ V are denoted by dG(v) and Ne[v], respectively. For a subset
S of E or V, G[S] denotes the subgraph induced by the subset S. The weight of edge
(i, j)eE is denoted by a fuzzy variable &;, where

Ei=0and&; =§;,i, 7 =1,2,...,[V(G)].
Let M C E be a matching of G(V, E, £). Let

1, ifi,j) e M,

0, otherwise.

Then the matching M can also be denoted by such a vector x, and the cost function
of matching x can be defined as

f(x.8) = > &xy

(i.j)EE
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where x and ¢ denote the vectors consist of x;; and &, (i, j)eE, respectively.

Definition 10 The a-cost of f(x, £) is defined as the cost value f such that

Crif(x.§ = f}za
where « is a predetermined confidence level between 0 and 1.

It is clear that the cost function f(x, &) is also a fuzzy variable when the vector &
is a fuzzy vector. In order to rank f(x, &), different ideas are employed in different
situations. If the decision-maker wants to find a maximum weighted matching with
maximum expected value of the cost function f(x, ), then the following concept is
induced.

Definition 11 A maximum matching x* is called the expected maximum fuzzy
weighted matching if

E[x*] = E[f(x.§)]

for any maximum matching x.

In other situation, the decision-maker hopes to maximize the a-cost value f with

Crif(x.§) = [} =z .

For this case, we propose the concept of a-maximum fuzzy weighted matching as
follows:

Definition 12 A maximum matching x* is called a-maximum fuzzy weighted
matching if

max{ f|Cr{f(x*,§) = f} = o} = max{ f|Cr{f(x.§) = [} = &}

for any maximum matching x, where a is a predetermined confidence level.
Furthermore, the most maximum weighted matching arises when the decision-
maker gives a cost value f* and hopes that the credibility of the cost value exceeding

f will be as maximized as possible

Definition 13 A maximum matching x* is called the most maximum fuzzy
weighted matching if

Crif(x*.§) = f} = Crlf(x,6) = [}

for any maximum matching x, where f is a predetermined cost value.
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Based upon these, we will recast the maximum fuzzy weighted matching
problem as multiobjective expected value model, chance-constrained programming,
and dependent-chance programming, respectively.

Liu and Liu [95] initialized the fuzzy expected value model. Its main idea is to
optimize the expected value of the objective function subjected to some expected
constraints. Therefore, the expected maximum fuzzy weighted matching problem
can be formulated as

max Z(i,j)EE Xij

max E[Y; i ep §ixyl

s.t.Z(i’j)eExij <1l,i=12,....|V],
xj=0orl.

(6)

With respect to stochastic chance-constrained programming [98], Liu and Iwamura
[99] offered the concept of fuzzy chance-constrained programming. When the
decision-maker wants to optimize the critical value of the cost function subjected
to some chance-constraints, the chance-constrained programming is employed.
Therefore, the ¢-maximum fuzzy weighted matching problem can be formulated
as follows:

max Z(U)_GE Xjj

max [
sit. Crid g hep &%y = [} >« (7)
YiperXi = Li=12...|V]|
x;j=0orl.

Liu [100] proposed the dependent-chance programming in which the goal is to
optimize a fuzzy event’s chance in an uncertain environment, such as possibility,
necessity, or credibility. According to this model, the problem to find a most
maximum fuzzy weighted matching with given cost value f can be formulated as
follows:
max Z(i,j)EE Xij
max Cr{Z(i,j)EE Eixij = [}
st yep X < 1L =12, V],
xj=0orl.

®)

8.2.1 Fuzzy Assignment Problem

Assignment problem (AP) is a special type of linear programming problem and
widely used in both manufacturing and service systems. AP can also be called as
the minimum weight perfect matching problem in bipartite graphs.

In this model the objective is to assign n number of jobs to n number of persons
at a minimum cost or time. The problem’s mathematical formulation suggests
that this is a 0—1 programming problem and is highly degenerate. It is applicable
for transportation problems in which all the algorithms developed to find optimal
solution.
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Fig. 1 Membership function A
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The AP parameters are imprecise numbers instead of fixed real numbers because
time or cost for doing a job by a firm (machine or person) might vary due to a lot of
reasons. Assigning men to jobs, drivers to buses, trucks to delivery routes, etc. are
some examples over the past 50 years for this matter.

Here, it is aimed to find such an assignment, in which the total costs or sum of
the single assignments is to become a minimum ratio [101]. The Hungarian method
[102], which is the most popular algorithm for AP, carries through the algorithm
directly on the nxn cost matrix [c;], where c; represents the cost associated with
worker i(i = 1,2,.....n) who has performed job j(; = 1,2,....n) as seen
in Fig. 1.

In this model, all ¢;;’s are deterministic numbers.

The AP also could be modeled as a 01 integer programming problem:

. n n 9
mlnz Z CiiXji
i=1 j=1 97" ®)

S'Z'Zj:]xlj =1fori =1,2,...,n, (10)
Zf’_lxijzlforj:l,z,...,n, (11)
xj€{0,1}fori,j =1,2,...,n. (12)

However, many real-world application costs are not deterministic. For example, a
consultant company provides different services to their customers for predetermined
charges in each case. The job or case quality (may be the satisfaction of the customer
or the job performance of the worker) may assume to be positively correlated to the
input time or cost of the worker. Highest quality of the case is different because of
the difference among individual workers. Furthermore, the manager of the company
usually restricts the total labor hours or costs to a range as his fuzzy goal.
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Fig. 2 Membership function A
of cr
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Hence, a minimum personnel cost is assumed to perform a job, and bigger
spending costs to get result for higher quality until it reaches an upper bound,
but it has to be thought that an increase in cost does not increase the quality. In
this case, the costs are no longer deterministic numbers, and they will be denoted
as ¢;;’s, o; as the least cost associated with the worker i performing the job j
and B;; as the least cost associated with worker i performing the job j at the
highest quality (it is assumed that 8;; j >, a;; > 0). Also the quality matrix [g;;]
that represents the highest quality associated with the worker i performing the job
Jj(O < gij < 1) is defined. In most real cases, 0 < ¢;; < 1 and then ¢;; is a
subnormal fuzzy interval. The membership function of ¢;; is defined as the linear
monotone increasing function shown in Fig. 2, which suggests that any expense
exceeding f;; is useless since the quality (worker’s job performance or customer’s
satisfaction) can no longer be increased at its upper limit ¢;; condition.

x;; = 11is added to (13) because there is no real expense if x; = 0 in any feasible
solution x of (12).

qU lfCUZﬂU,XUZ 1,
ij(ciji—aif) .
wij(ciy) = WTUJ ifo; <cy < Bij.x; =1, (13)
0 otherwise.

The notation «;;, B;; is used to denote ¢;; (all the «;;’s form the matrix [e;;] and
Bij’s form the matrix [B;;]).
Matrix [c;;] is shown as follows:

{arr, Bi) -+ {oan, )
[¢] = [ay. Bij)] = RS : : (14)
(anlv ﬂnl) e (aﬂﬂv ﬂnn)

In addition to this model, let ¢y denote the total cost that is related to the job
performance of the manager, and for the upper and lower bounds of the total cost,
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numbers a and b are defined. The membership function of ¢y is defined as the linear
monotonically decreasing function in (15) and uses the notation (a,;b) to denote
fuzzy interval c7. The manager chooses a and b numbers as constant values. Then
Werners [103] fuzzy linear programming in which taking a number less than or
equal to the minimum assignment of matrix [e;] as a, and a number larger than or
equal to the maximum assignment of matrix [B;] as b could be used:

1, c¢r <a
n n b=y "_ N CiiXij _
prler) = “T(Zizl ZFI CijXif) = % =5 a<cr <b,
0, cr>b.
(15)
The performance of worker i, denoted as j;, based on the solution x will be
wi = wi(cy) for x;; = 1. (16)

Here Bellman—Zadeh’s criterion [71] was chosen that maximizes the minimum of
the membership functions corresponding to which solution, to equally emphasize
the performance of workers and manager, that is,

max —miny, (i4;, i (cT)) (17)

or
max —miny,; = 1(w;(cy), ur(cr)), (18)

where x;; is an element of a feasible solution x of (9). Then we can represent the
fuzzy AP as follows:

max — min(u;i(cij), pr(cr))x; = 1 (19)
n .
s.t.2j=1xl;,- =1fori =1,2,...,n, (20)

Zjl=lxlj = lforj = 1727"-7’17
xj €40, 1} fori, j =1,2,...,n.
The cost of worker i performing job j is restricted to be less than or equal to B;;

since any expense exceeding f;; is useless. By membership functions of (13) and
(15), the following model (20) could be showed:

max\ 1)

qii(c; — i)

s.tAx; < B —ar x; for i,j=12,....n (22)
ij ij
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b— Z—IZ]—I l]'xU

A< .
b—a

0 < Axj < gjxj fori =1,2,...,n, (23)
0<A<l

> =1 fori =12, .n, (24)

=

Z'f_lx,,»:l fori = 1,2.....n, (25)
chxy < Byxy  fori.j=1.2.....n (26)
x; €{0,1} fori,j =1,2,...,n, 27)

where CA denotes the a-cut of ¢y, and 37— >, ¢}

cost CT In (26), since x;;, c and A all are decision variables, it can be treated as a
mixed-integer nonlinear programmmg model.

In recent years, both fuzzy transportation and fuzzy assignment problems have
received major attention. Many have been developed to advance numerous method-
ologies and applications to various decision problems. To deal with imprecision, and
vagueness in real-life situations, Zadeh [104] introduced the concept of fuzzy sets.

Chen [105] presented a fuzzy assignment model that did not consider the
differences of individuals. Similarly, Wang [106] solved a model by graph theory.

Dubois and Fortemps [107] proposed a flexible assignment problem, which
combines with fuzzy theory, multiple criteria decision-making, and constraint-
directed methodology. They survey refinements of the ordering of solutions supplied
by the max-min formulation, namely, the discrimin partial ordering and the
leximin complete preordering. Additionally, they have given a general algorithm
which computes all maximal solutions in the sense of these relations. They also
demonstrated and solved an example of fuzzy assignment problem.

On the other hand, Sakawa et al. [108] dealt with actual problems on production
and work force assignment in a housing material manufacturer and a subcontract
firm and formulated two-level linear and linear fractional programming problems
according to profit and profitability maximization respectively. By applying inter-
active fuzzy programming for two-level linear and linear fractional programming
problems, they derived satisfactory solutions to the problems.

Chanas et al. [109] solved transportation problems with fuzzy supply and demand
values. Tada and Ishii [110] and Chanas and Kuchta [111] added an integer
restriction to that fuzzy transportation problem and solved it. Also they suggested a
specific definition for an optimal solution to the transportation problem using fuzzy
cost coefficients and proposed an algorithm [112].

Lin and Wen [113] solved the assignment problem with fuzzy interval number
costs by a labeling algorithm. The algorithm begins with primal feasibility and
proceeds to obtain dual feasibility while maintaining complementary slackness until
the primal optimal solution is found.

" x;j is the corresponding total
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Feng and Yang [114] investigated a two-objective-cardinality assignment prob-
lem. A chance-constrained goal programming model is constructed for the problem,
and tabu search algorithm based on fuzzy simulation is used to solve the problem.

Majumdar and Bhunia [115] proposed an elitist genetic algorithm with interval-
valued fitness function to solve generalized assignment problem with imprecise
cost/time. In their study, the coefficient of the interval-valued assignment problem’s
objective function has been considered as interval-valued number. Also, they
represented the impreciseness of cost(s)/time(s) with interval-valued numbers.

Ye and Xu [116] proposed an effective method on priority-based genetic algo-
rithm to solve fuzzy vehicle routing assignment when there is no genetic algorithm
which can give clearly procedure of solving it.

Liu and Gao [117] proposed an equilibrium optimization problem using genetic
algorithm. Then they extended the assignment problem to the equilibrium multi-job
assignment problem and equilibrium multi-job quadratic assignment problem.

Kumar et al. [118] proposed a new method to find the fuzzy optimal solution of
fuzzy assignment problems by representing all the parameters as triangular fuzzy
numbers. In their method, decision-maker takes the final results as fuzzy numbers,
and if there is no uncertainty about the cost, their method gives the same result as in
crisp assignment problem.

Mukherjee and Basu [119] introduced a mathematical model of the assignment
problem considering the restrictions on job cost and person cost based on his/her
efficiency/qualification. Under these conditions, both the cost and the restriction of
qualification are considered as triangular or trapezoidal fuzzy numbers. They also
considered the case where a person without certain qualification/efficiency should
not be assigned a particular job.

However, Nagarajan and Solairaju [120] considered the assignment costs as
imprecise numbers described by fuzzy numbers. They transformed the fuzzy
assignment problem to a crisp assignment problem using Robust’s ranking indices.

9 Fuzzy Matroids

In combinatorial optimization, matroid means independence structure which is a
structure that generalizes linear independence in vector spaces. Many real-world
problems can be defined and solved using matroids theory. Matroids are precisely
the structures for which the very simple and efficient greedy algorithm works.
When we take as E the set of all edges in graph G and consider a set of edges
independent if and only if it does not contain a simple cycle, this edge set is called
a forest in graph theory. It can also be called the cycle matroid or graphic matroid
of G; it is usually written M(G). The graphic matroid of G can also be defined as
the column matroid of any oriented incidence matrix of G. A base can be called a
spanning tree in G, and a circuit is a subset of edges creating a simple cycle in G.
When we want to find an object A composed of the elements of a given finite
set E, a real weight w(e) is associated with every element e of E, and we seek an
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object A for which the total weight w(4) = ) ,., w(e) is minimal or maximal.
A classical example is finding the minimum spanning tree or a shortest path in a
given graph, where E is the set of edges of this graph [121].

A system is called weighted if there is a nonnegative weight w(e) given for every
element e € E [122].

In the matroidal combinatorial optimization problem, a nonnegative weight w(e)
is given for every element e € E, and we seek a base B, for which the cost F(B) =
> oer We is maximal (or minimal) [123].

In classical problem, it is assumed that all the weights are precisely known.
However, this assumption may be a serious restriction since in many practical
applications, the exact values of the weights are not known in advance. A typical
example is traveling time between two cities in the shortest path problems or
activity durations in scheduling problems. One of the simplest methods of modeling
the imprecise weights is to define them as closed intervals. It is then assumed
that the value of each weight may fall within a given range, independently on
the values taken by the other weights. Classical intervals can be generalized into
so-called fuzzy numbers, which are actually fuzzy intervals, and are richer in
information [120].

In [121, 122,124, 125], when all values of a weight function are closed intervals
or fuzzy numbers, the optimality of solutions and the optimality of elements are
characterized by means of a family of interval matroids {(E, I,) : a € [0, 1]}.
Because of the varying nature of the world, they used fuzzy intervals to model the
not precisely known element weights.

Another use of fuzzy sets is in a matroid problem solved by Goetschel and
Voxman where a group of independent fuzzy sets was defined as a crisp family
of fuzzy subsets of a finite set satisfying certain set of axioms [126]. Their closed
regular fuzzy matroid can be shown as follows: [155] if w is a weight function on E
and A is a fuzzy subset of E, it could be defined as:

w(Ad) = ZWM w(e)Ale). (28)

The question asked is whether we can find an object B € [0, 1] for which the total
weight w(B) is minimal or maximal?

For Goetschel-Voxman fuzzy matroids, we can refer to studies [127-131].

Defining a fuzzy subset of a finite set E as a subset of E (0, 1], we obtain fuzzy
matroids by fuzzifying independence spaces on E, (0, 1]. Instead, by defining fuzzy
subsets of E as functions from E into [0, 1], we can obtain fuzzy matroids from
polymatroids associated with “real” rank functions [132].

The concepts of fuzzy pre-matroid and hereditary fuzzy pre-matroid are in-
troduced and investigated. The property “to be perfect” for hereditary fuzzy pre-
matroids is also considered. It is shown that Goetschel and Voxman fuzzy matroids
coincide with perfect hereditary fuzzy pre-matroids. The fuzzy rank function of a
Goetschel-Voxman fuzzy matroid (E, I) was defined by a map R : [0,1]® — N.
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But in general, a Goetschel-Voxman fuzzy matroid and its fuzzy rank function are
not one-to-one corresponding [133].

Also in the literature, Shi [121] proposed a closed fuzzy pre-matroid as a
fuzzifying matroid and generalized it to L-fuzzy set theory. They showed that
an L-fuzzifying matroid can be characterized by means of its L-fuzzifying rank
function which is one-to-one corresponding with the L-fuzzifying matroid.

10 Fuzzy Approximation Algorithms

In Sect. 10.1 we focus on the quite general problem called the minimum weight set
cover problem. The minimum weight edge cover problem is also a special case
of the minimum weight set cover problem. In Sect. 10.2 we discuss a strongly
NP-hard problem, the maximum weight cut problem. The edge coloring and the
vertex coloring in planar graphs will be defined in Sect. 10.3.

10.1 Fuzzy Set Covering

Hwang et al. [134] proposed the fuzzy set-covering model which uses auxiliary 0—1
variables and a system of inequalities. Model is obtained by taking logarithm of the
inequalities constraints and using the nature of the Boolean variables of this fuzzy
set-covering model.

Given two subsets I = {1,2,...,m} and J = {1,2,...,n} of integers, let
pj = {(,u;(@)) : i € I} be a fuzzy subset of I and (u;(i)) € [0, 1] be the
membership grade of i € 7, using the membership function p; of fuzzy set p;.

The model is proposed as

rl’lil‘lzj=1 CJ'XJ' (29)

s.t.l—l_[j=1(1—,uj(i)za, i=1,2,....m, (30)

x; €{0,1}, j =1,2,....n, 31
1, if p; €*,

where x; = =i

0, otherwise.

In this model « is a given real number (level degree) that represents the desired
level (each i € I and the membership grade of i is no less than the level degree o).
According to Theorem 1 in [135], Problem (P;) can be transformed to Problem (P,)
by replacing the product of 0—1 variables in constraints (30) with auxiliary variables
and a system of linear inequalities. The details can be found in [135].
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n
min Z Cixj (32)
—

n n k
s.t. Zﬂjt(i)th + Z Z (—1)kHt (l_[ th(i)) Yivjaje = o, (33)
p

k=2 j1<j2<..<jk t=1

i=1,2,...,m,
2Yjijpii S Vitjpoims T X5 SV Yjjpjut = L2, 0k, (34)
k
yjljz...jk = l_lxj,/ (35)
t=1
xjefo1}, j=12....n. (36)

The mentioned formulation is mathematically appropriate and also elegant, but
solutions are difficult to find because of the fact that the number of decision variables
is proportion to the number of auxiliary variables and extra constraints that usually
grows exponentially [135] as the number of variables increases.

10.2 Fuzzy Max-Cut Problem

The max-cut problem is a combinatorial optimization problem and is one of the first
problems proved to be NP-hard [136], because it determines the maximum cut of a
graph. Its goal is to find a division of a vertex set into two parts, maximizing the sum
of weights over all the edges across the two vertex subsets in a given edge-weighted
graph. For an unweighted graph, the weights over the edges are equal to 1. Such a
division is called a maximum cut.

This problem has many applications in various fields, that is, network design,
circuit layout design [137], and data clustering [138]. The weight of the cut in the
max-cut problem has real and concrete implications when applied in real life due
to the fact that parameters are not so deterministic owing to the effects of many
factors. For example, for network design, the weight may represent the cost of some
infrastructure.

There are many optimization problems that are based on this theory, and several
optimization models in stochastic models [95] and also including various fuzzy
programming models [139], fuzzy shortest path problems [66], and fuzzy max-flow
problems [75] have been studied. Recently, Liu [140] developed a credibility theory
where the expected value criterion, the optimistic value criterion, and the credibility
criterion are used as fuzzy ranking methods.

10.2.1 The Max-Cut Problem with Fuzzy Coefficients
The max-cut problem is widely used in practical applications. When applied in real
life, the weights of a graph have real and concrete implications. They are often not
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so deterministic. The weights on edges can be formulated as fuzzy variables and are
more proper to describe the quantities in the real world since decision-makers are
often faced with some uncertain situations due to the vagueness or subjective nature
of these parameters.

To compute this problem with fuzzy coefficients, let G = (V,E) be an
undirected edge-weighted graph with nonnegative weights £ : E — R™. A cut
C of G is any nontrivial subset of V, and the weight of a cut is the sum of weights of
edges crossing C and C, where

C=V-CA. 37

Then a max-cut is defined as a cut of G with maximum weight. The max-cut
problem’s goal is to find such a cut.

Assume that the vertices in V are labeled as (vi,vs,...,v,) and the edges in E
are labeled as

ej = (vi,v;), wheren = |V|,i,j =1,2,...,n. (38)

&; is the weight associated with the edge e;. We define a binary variable x; for each
vertex v; to denote whether it is in a cut

C or not:
1 ifv; e C
X = nY (39)
-1 ifv; eV -C.
Then any cut of the graph G can be denoted by an n-dimensional binary vec-
tor (x1,x2,...,x,)7 over {1,—1}. Similarly, any n-dimensional binary vector
X1,X2, ..., Xy over {1,—1} corresponds to a cut of G. So the weight of a cut
(x1,%2,...,%x,)7 can be denoted as
1 n n
Wee) =53 D &l —xx;). (40)

Obviously, if and only if v; and v; respectively belong to two parts of the vertex set
V(xix; = —1), the weight of the edge (if any) linking them is considered. Let 8
be the set of all cuts of G. Then a cut x* is called a maximum cut if and only if
W(x*, &) > W(x,§) forany x € B.

10.3 Fuzzy Coloring

A vertex coloring of graph G is defined as an assignment of colors to the vertices of
G. So, no adjacent vertices get the same color. An edge coloring of graph G is an
assignment of colors to the edges of G so that no adjacent edges have the same color.
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A total coloring of a graph G is a coloring of the vertices and edges of G in
such a way that no two adjacent elements have the same color. More information on
coloring graphs can be found in [141].

The smallest possible total over all vertices that can occur among all colorings
of G using natural numbers for the colors is called the chromatic sum of a
graph G [142].

Munoz et al. [143] discussed two different approaches to the graph coloring
problem of a fuzzy graph with crisp nodes and fuzzy edges. The traffic lights
problem and a timetabling problem are studied according to these two different
approaches. They also provided the concept of chromatic number of fuzzy graphs.

Chaudhuri and De [144] also introduced a timetabling problem called the
university course timetable problem. Fuzzy genetic heuristic for this problem is
discussed. There is a considerable amount of uncertainty involved in objectives
which comprises of different aspects of real-life data. This uncertainty is handled
by formulating some parameters using fuzzy membership functions.

The class of quasi-line graphs and more specifically fuzzy circular interval
graphs gained a lot of attention recently. Eisenbrand and Niemeier [145] introduced
a combinatorial algorithm that calculates weighted colorings and the weighted
coloring number for fuzzy circular interval graphs efficiently.

11 Fuzzy Knapsack Problems

Knapsack problem (KP) has m different objects to choose from to put into the
knapsack. Each object has a weight (w;) and benefit (p;). Aim of the problem
is to choose the objects giving the maximum benefit without exceeding the total
knapsack capacity. There are many real-life problems that can be modeled as the KP,
such as cargo loading, capital budgeting, cutting stock, and economic, and network
planning. Basic model for the crisp KP is as follows:

Indices

i : object indice(m)

Decision Variables

X if object i lays in knapsack, 1

not in knapsack, 0

Parameters

pi: benefit of project i

w;: cost of project i

c: capacity of knapsack not to be exceeded
Objective Function

m . . .
max E _ Pixi Benefit maximization 41)
i=
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Constraints

m
Z, 1 w; X; < cVi size not to be exceeded 42)
i=

x; €[0,1]" V integer constraint (43)

Kuchta [146] discussed a fuzzy multiple choice KP where the total risk is minimized
while staying in the budget. Each project has a risk and cost where each of these is
represented with fuzzy numbers.

In Kasperski and Kulej [147], the concept of using fuzzy weights and fuzzy prof-
its for the KP is used. This is different than the classical problem where it is assumed
that all the item profits and weights are deterministic, because in practice many
knapsack-type problems involve items whose weights or profits are not precisely
known which is a useful extension. One of the methods of dealing with imprecision
in real-world data is applying the fuzzy sets theory; they used the concept of a fuzzy
interval to model the imprecise profits and the imprecise weights of items.

Lin and Yao [148] introduced a fuzzy KP where all weight coefficients are fuzzy
numbers to model the imprecise weights in practical situations. They find it easier
for the decision-maker to decide the value of the weight of an object as a range
rather than a crisp value. After defuzzyfying the fuzzy number, they use the same
methodology to solve the problem as the crisp version.

On the other hand, Lin [149] provided a genetic algorithm methodology to solve
imprecise weight coefficients in KPs.

In addition, Sakawa et al. [150] introduced an interactive fuzzy satisficing method
for multiobjective multidimensional 0—1 KPs by using both the interactive fuzzy
programming methods and genetic algorithms. By considering the imprecise nature
of decision-maker (DM) judgments, fuzzy goals of the objective functions are
quantified by using linear membership functions.

Chen [151] proposed a parametric programming approach to the continuous
knapsack problem with fuzzy objective weights. The fuzzy maximum total return is
analyzed. In this model, when the object weights are fuzzy, the maximal total profit
also becomes fuzzy.

The mathematical model of the crisp continuous KP is as follows: Lin and
Yao [152],

n
Z = max Zi:l DiXi (44)
1
s.t.zizwixi <M (45)
0<x; <1, i=12,...,n. (46)

The continuous KP with fuzzy object weights is of the following form Chen [153]:

Z = max Z DiXi (47)

i=1



Fuzzy Combinatorial Optimization Problems 1387

s.t.ZW,-x,- <M (48)
0<x; <1, i=12,...,n. (49)

For this model there are some example studies. One is Nezhad et al. [154],
introducing a fuzzy capital budgeting model for selecting an optimum portfolio of
projects. A real-world extension of all parameters of the projects was assumed to be
imprecise.

Verdegay and Moreno’s work [155] focused on the advantage of a fuzzy
termination criterion providing results with low errors and with very short times
with respect to both the exact and approximate solutions especially when the number
of objects increases. The fuzzy-rule based systems and mathematical programming
models and methods are used to solve the conventional KP.

Kato and Sakawa [156] provided a genetic algorithm with decomposition
structures for large-scale multidimensional 0—1 KPs with block angular structures.

Lin [157] introduced a generalized fuzzy multiconstraint KP model, and extend it
to another fuzzy multiobjective programming model. The multiconstraint 0—1 KPs
are solved with imprecise weight coefficients.

Hasuike et al. [158] proposed a new model of random fuzzy 0-1 KPs where the
objectives are represented with fuzzy goals and expected returns assumed as random
fuzzy numbers.

Shih [159] focused on fuzzy multiobjective and multilevel KPs and proposed a
solution procedure.

12 Fuzzy Bin Packing

Within a given rectangular area, finding an efficient packing has much relevance
to operating systems, operations research, and manufacturing industries [160, 161].
For example, in a given time to operating systems or in steelworks, the problem is
related with the allocation of resources. The task is cutting the roll of raw steel to
make components of products. As these are mentioned, such can be formulated as
bin-packing (BP) problems. BP is a problem that has long been studied by many
researchers to better formulate and efficiently solve practical problems [162].

The problem is known to be NP-hard [163], while its description seems to be
simple; it is very difficult to solve this problem precisely. In order to simplify
the formulations of the problem, we have to concentrate on finding more efficient
heuristics. Most formulations, therefore, assume rigidity, orientation, and orthogo-
nality of the pieces [164, 165].

Suppose that there is a bin B = (W, H) and a set of pieces P = {p1,..., pu}.
We can represent each piece in the following manner: p; = (w;, h;) because the
piece is rigid and oriented (we cannot change the size of a piece or its orientation).
Letting (x;, y;) denote the center position of a piece p;, we can also obtain the
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height of the packing as max; (y; + h;/2) because of the orthogonality assumption
[166]. The bin-packing problem’s goal is to minimize the height of the packing
max; (y; + h;/2) by choosing appropriate center positions (x;, y;)’s, which also
satisfy the two following constraints: (1) all pieces should be contained within the
bin and (2) no two pieces should overlap. By applying simple arithmetic, we can
convert the two constraints as a set of inequalities.

However, assuming that the heights are rigid, that is, a constraint becomes
too strong in many applications. When facing strong conflicting requirements, we
should trade-off between the efficiency and the satisfaction. If we want to pay
additional costs for decreasing the designer’s satisfaction, then we could degrade
the satisfaction because of the reduction.

However, in above-mentioned issue, we are not supposing the long-term cost
such as deterioration of production quality or customer dissatisfactions. Long-term
cost is due reducing the heights of pieces; thus, we call the cost as reduction cost. In
fuzzy bin-packing problems, the model formulates the height of a piece as a fuzzy
number. So, its goal is to minimize the height cost and the reduction cost. From
these costs combining, the total cost emerges.

The fuzzy bin packing problem alleviates the rigidity constraint of the conven-
tional bin-packing problem. In the conventional bin-packing problem, a piece p;
is represented as an ordered pair of two real numbers, (w;, #;) in which w; stands
for the width, and & stands for the height. In the fuzzy bin-packing problem, we
represent the piece as an ordered pair of a real number and a fuzzy number, (w;, h7”).

We define the fuzzy bin-packing problem N as a tuple with three components,
N = (B, P, V), where B is the bin, P is the set of pieces, and W is the reduction
cost function. The bin B is a rectangle which has a limited width (W) and an
unlimited height (H = o0). The set of pieces P is a collection of rectangular pieces
pi = (wi,h7’), where h is a fuzzy number. Therefore, we can get a membership
degree for a reduced height /;. At the initial height h?, the membership degree is 1.
This degree is called as the satisfaction degree. As a trade-off for reducing the height
of a piece, the reduction cost function W is also given to evaluate the additional cost
due to reduction. It is a function of the satisfaction degree and the initial height.

Yet, the conventional bin-packing problems’ two constraints are not changed in
the fuzzy bin-packing problem. Unlike in the conventional bin-packing problem,
these constraints cannot be represented by a set of inequalities because the height is
a fuzzy number. Therefore, we define the two constraints using the a-cut operation of
fuzzy sets. The fuzzy set A is usually represented by a mapping u4 : U — [0, ..., 1].
The a-cut of a fuzzy set A at the given membership degree n produces a crisp set,
a(A, p) = {x|pa(x)} = p.

In this model a-cut of a fuzzy number always becomes an interval because the
fuzzy number is a convex and normal fuzzy set. If we have two a-cuts of two fuzzy
numbers a and b, that is, if we have «(a, i) and a(b, ip), c-cut can be defined as
follows:

(@, pra). ex(b. pra)}
={x||V, € a(a,pu,) and Vb € a(b: Ha) (50)
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st.a <x <b}. (51)

If the below constraints satisfy these conditions, it could be stated that the piece p;
is contained within the bin at the satisfaction degree p;.

x,-—w,-/ZiOandx,-—i—w,-/ZfW, (52)
lee(yi = b7 /2, ) (i + B, )] () (—00,0) = 0. (53)

And also if below constraints satisfy the two conditions, it could be said that the two
pieces p; and p; are nonoverlapping at satisfaction degree ; and ;.

lxi —x;| > [(w; +w;)/2] (54)

1 _ _ _
[ee(yi — E’Mi)’a(yi +hi /2, u)] NV a(yi —hj /2, wp)a(yi +hj/2, 1)) =0

(55)

It can be said that, the packing is feasible with the satisfaction degrees (i, . .., in),
if the bin contains all the pieces and no overlapping occurs with satisfaction degrees
(s s tn)-

Because a piece’s height can be reduced by sacrificing satisfaction, the objective
of the fuzzy bin-packing problem is defined by minimizing the tofal cost X fora
feasible fuzzy bin-packing.
¢ The total cost is defined as the sum of the height cost X},

e The reduction cost X,.

e The height cost X represents the maximum height of the packing, which is
similar to the conventional bin-packing problem.

e The reduction cost X, represents the extra cost due to the decrease in satisfaction.

From these expressions, the total cost can be formulated as

X=X+ X,.

The height cost and the reduction cost can be defined in algebraic forms. Suppose a
piece p; is located at the top of packing.
_The upper edge y; of the piece p; can be represented as y; = max[a(y; +
(h/2). ).
Therefore, we can represent the height cost as follows: X;, = (J;). Also, the
reduction cost X, can be defined in an algebraic form. If all the functions sum
taken, we get the reduction cost of the fuzzy bin-packing as follows:

X, = W(u.hY),

where ! is the initial height of the piece and W(i;, h?) should be defined according
to the problem.
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13 Fuzzy Multicommodity Flows and Edge-Disjoint Paths

In optimization techniques, we have to well define the given precise data because
these problems do not include inexact and unsure data. But using the fuzzy sets
as a technology coping with granular information is useful [167]. Also, generally
speaking, information granules are collections of entities that usually originate at the
numeric level and are arranged together due to their similarity, functional adjacency,
indistinguishability, coherency, or the like [168]. As a theoretical perspective, it
encourages an approach to data that recognizes and exploits the knowledge present
in data at various levels of resolution or scales. In this sense, it encompasses
all methods which provide flexibility and adaptability in the resolution where
knowledge or information is extracted and represented, see Bargiela and Pedrycz
[169] for details.

While solving optimization problems, following the principle of information
granulation is important [170]. Fuzzy data, which are various in the literature [79],
are used as a concept of the solution of these programs. Fuzzy network solutions,
for example, fuzzy shortest path problem [171] or fuzzy minimal cost flow problem
[172], are limited when compared to the classical fuzzy optimization programming
problems. These problems can be stated as the minimal cost multicommodity flow
problem (MCMFP).

A fuzzy number is a convex normalized fuzzy set of the real line R, whose
membership function is piecewise continuous. The set of fuzzy numbers on
R is denoted with F(R). An LR type flat fuzzy number [171] is denoted as
a= (a1 ,ads,ds, a4)LR, if

L(”Z_x),m <x < a,

ar—daj
pa(x) = 11, a, < x < as, (56)
R (L__‘;’B) .43 < X < ag,

where the symmetric nonincreasing function L : [0, 0] + [0, 1] is the left shape
function, that is, L(0) = 1. Naturally a right shape function R(.) is similarly defined
as L(.) (see Fig. 3). We denote the LR type flat fuzzy numbers on real line with
LR(R).

According to the extension principle, the binary operation * € {+~ =~ x™ -7}
on fuzzy number a and b with the membership functions pz(x) and wj;(x) with the
following:

Wazi(Z) = Sup,— sy (g (X) s (1)) (57)

Also the fuzzy scalar product of two fuzzy vectors X = (X;,...,X,) and y =
(D1, ..., Yn) in F(R") is defined [23] as follows:

- ~ ~+T L
IxTy=Y" %X (58)
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Fig. 3 An LR type flat A
fuzzy number a = (ay, a,,
as,as)LRr
aj a -

Leta = (ay,az,as,as) g belong to LR(R). The exact formula for the extended
addition and approximated formula for the extended multiplication are as follows:

(a1, az,as,as)Lr+ (b1, b2, b3, ba)Lr = (a1 + bi,as + by, az + by, as + by) Lr
(59)
(ar,az,a3,a4) g @ (b1,b2,b3,bs) g = (a1.b1,a2.b2,a3.b3,a4.b4) Lk (60)

wherea > 0 and b > 0.

LR fuzzy number could not be attained with multiplication of two LR fuzzy
numbers. In a situation like this, interpolation methods to get a fuzzy number
could be used, whose some «-cuts are equal to the multiplication of two u-cuts
of corresponding operands. The details of this idea [173] and scalar multiplication
are derived as follows:

May,az,az,as) r = (Aay, Aaz, Aaz, Aag) g

where A>0.

b=a is not really a difference and is rather unnatural with respect to a linear
structure. For example, b-+(—1)a is not compatible with the difference in the
function space. But the Hukuhara difference [174], defined as the solution for X in
the equation a+x = b if it exists, does coincide with the difference in the function
space. This property justifies the application of this difference instead of the fuzzy
number, b+ (—1)a.

Hukuhara [174], Diamond and Korner [175], and Ghatee et al. [176] entitled as
Hukuhara difference is observed to identify these differences as follows:

Definition 14 For @ and b belong to LR(R) if the Hukuhara difference boya
exists, it is given by

b ©&n dla = {s € R}[alaF{s} S [bla. (61)



1392 P.M. Pardalos et al.

where = in the above equation for two sets X and ¥ means as follows:
X+Y={x+yxeX,yeV}
For some cases, it can be proved that
(b1,b2,b3,b4) LR © 1 (a1,a2,a3,a1)Lr = (C1,C2,C3,Ca) LR’
where
co=bi—ay, ca=by—ax, c¢3=b3z—as, cs=Dbs—ay.

From this definition it can be said that Zadeh’s difference is not true because a Sy a
is zero.

Therefore, this operator for solving systems seems to be more accurate and
reasonable results in comparison with Zadeh'’s difference.

Definition 15 For a and a belong to LR(R), we have:

561—15 =(b1,b2,b3,b4) LrOH (a1, a2,a3,a4) g =(b1—a1, by—ay, b3—a3, by—as) k.

13.1 Minimal Cost Multicommodity Flow Problem

The minimal cost multicommodity flow problem (MCMFP) which transships the
flows of the commodities by minimal cost has been evaluated in this section.

The MCMFP satisfies the demand for each commodity at each vertex without
violating the constraints imposed by the supply—demand and capacity.

Let N and A be the sets of nodes and links, and for a given network G = (N, A):
general MCMFP can be expressed:

T
: t
min E _ E jen SN (62)

y S X <up Y. j) €A

63
D iiiyea X — 2jiyeaXi =bi, YieN=1,..T. )

The notations are as follows:

. xfj is a positive integral regarding the amount of flow from #th commodity which
streams through link (7,j).

* uy; is the capacity of link (i,)).

¢ Tis the number of commodities.

¢ Moreover, for commodity ¢, cfj and bt’ are the unit cost of flow through link (i,j).

e The supply or demand of node i.
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If not change the variables, it can be assumed that each commodity has one resource
and one customer without loss of generality [177]. Also r’,s’, and d’ denote the
resource node, the customer node, and the travel demand for a given commodity ¢,
respectively. Then, the following model regarding the path-flow variables is met:

. T t t
min Z[:] Zpepz CP p’ (64)

Yoy fi=dl. Vi=1....T.

s.t. )
X = iy X pep 85 S S u Vi, ) € A,

(65)

where the flow of commodity 7 along the path p is denoted by f, p’.

Additionally, §, = (§,7)(i, j) € A is link-path incident vector and assigns 1
when the link (i,j) shares in path p and 0 otherwise. p’ includes all of the directed
paths joining ' and s’.

From the first constraint, it can be said that the demand for each commodity is
supplied by the path flows activated for that commodity. Including the link (i,j), x;;
denotes the sum of flow of individual paths, and the other constraint shows the total
flow is less than its capacity.

Equally important, vast majority of this classic model is deterministic. While
this problem is influenced by social and economic interactions and is dependent
on users’ perceived information and granular information, one assumes the travel
cost and demand to be known a priori for the entire links and nodes [177]. On
the other hand, granular computing offers a landmark change from the current
machine-centric to human-centric approach in information and knowledge and is
an emerging conceptual and computing paradigm of information processing. It has
been motivated by the urgent need for intelligent processing of empirical data that
is now commonly available in vast quantities, into a humanly manageable abstract
knowledge.

In other words, the granular computing’s theoretical foundations involve fuzzy
sets, rough sets, and random sets that linked together in a highly comprehensive
treatment of this emerging paradigm [178]. In transportation concepts, due to
granular information and the different provision of traffic information, the different
types of transportation might be deduced. Now, we consider a case that the data
of MCMFP have been exhibited with LR (R) numbers, which handle vagueness as
an important category of uncertainty. So, first, we elaborate the origin of fuzziness
in real problems. In the next section, two extended variants to take uncertain travel
cost, and uncertain travel demand into account will be explained.

13.2 Fuzziness in Real Transportation Problems

In uncertainty modeling, transportation models adopted with fuzzy relations and
quantities can contribute stochastic versions. In other words, since the classical
random utility-based approach is not sufficient for uncertainty handling, some
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alternate solution to probability-based models, for example, Ghatee and Hashemi

[179], may be obtained with possibility-based methods. Initially Das et al. [180]

applied fuzzy logic tools to transportation problems. Then, many researches are

conducted particularly on this problem. From a high level categorization, in

real networks, such as urban networks, we face the following three uncertainty

sources:

e Unsure network topology (a network with fuzzy nodes and fuzzy links)

* Inexact travel cost (a network with fuzzy link cost)

e Imprecise travel demand (a network whose nodes include fuzzy excess or fuzzy
deficit)

When the supply and demand of nodes and the capacity and cost of links are

represented as fuzzy numbers, finding the lowest transportation cost of some

commodities through a capacitated network is the aim of fuzzy transportation. This

problem is a new branch in combinatorial optimization and network flow problems

[79]. Some applications of such standpoint were presented in industries [181] such

as the one we will discuss in the next section.

13.3 MCMFP in Fuzzy Environment

MCMFP is widely used in engineering and economics contexts. In urban transporta-
tion systems problems and production—distribution problems, this method emerges.
Also, in designing telecommunication networks, it also has an important role. In
all of aforementioned problems, finding the lowest transportation cost of some
commodities through a capacitated network in order to satisfy demands at certain
nodes, using available supplies at other nodes, is crucial.

Since this model is influenced by complex social and political interactions,
this problem is dependent on user perception of information and nondeterministic
factors of the network. Considering fuzzy numbers as the amount of supplies,
demands, capacities, and costs provides a reasonable infrastructure is used to handle
vagueness as an important category of uncertainty. Such an implementation of
MCMEFP can be applied to recognize the appropriate models of traffic assignment
with intelligent agents; see, for example, [179] for details.

Ghatee and Hashemi treat with the minimal cost multi commodity flow problem
(MCMEFP) in the setting of fuzzy sets, by forming a coherent algorithmic frame-
work, referred to as a fuzzy MCMFP. Given the character of granular information
captured by fuzzy sets, the objective is to find multiple flows satisfying the demands
of commodities, by using available supplies consuming the least possible cost.
Having this aim in mind, the supply and demand of nodes may be presented
linguistically; the travel cost and capacity of links can be defined under uncertainty
as well. Then, to solve the problem, two efficient algorithms are motivated. In the
first algorithm, they utilize fuzzy shortest paths and K-shortest paths to generate
preferred and absorbing paths, and then they find the flow on them by solving a
classic MCMFP. Coupled with the first, the second algorithm exhibits with fuzzy
supply—demand and employs a total order on trapezoidal fuzzy numbers to reduce
the fuzzy MCMFP into four classic MCMFPs [182].
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13.4 MCMFP with Uncertain Travel Cost

Under traffic conditions, it is necessary to reflect a driver’s perception of link travel
time. For this purpose fuzzy sets of perceived link travel time are developed due the
fuzziness of a driver’s perception over link travel time.

There are various traffic conditions such as congestion and construction or
incident, so for most frequent traffic conditions, it is necessary to construct fuzzy
sets. To show these fuzzy set, Liu et al. [183] used linguistic descriptions. Obviously,
if necessary, more fuzzy sets can be constructed to show other traffic conditions.
Additionally, Henn [184] considered the meaning of fuzzy costs in fuzzy traffic
assignment models.

In this chapter, assume that the cost, the length, or the travel time of a link (i)
for commodity ¢ is given by

& j = (Clrjya-Clijya Cijya Ciya) € LRR). (66)

Then for shipping T commodities through the network, we can write:

: T ~t t
min Zt=1 Zpepr cpfp (67)
> f=dl Ve=1,....T,
st 47 g , (68)
xj =2 2 8/, =u V. j) €A,
1=1 pep!
(69)

where ¢}, = Z(TJ)GP ¢; j foreach p € p'.

This problem has an important concept that is the way of generating the absorbing
and preferred paths p’. Usually, the column generation approach [185] is used for
solving the classic MCMFP. But we can take path enumeration techniques, which
include a great number of algorithms with the capability of finding reasonable and
preferred paths through a network, to understand p’. In this method, the preference
can be defined in terms of time, cost, distance, or some combination of these items.
These reasonable paths are the base of problems consisting of path-flow variables.

14 Fuzzy Network Design Problems

In recent years, with the advance of computation evolutionary, new methods such as
the optimal design of neural networks and fuzzy systems have been represented
in the literature. For solving more complex real-world problems, computation
evolutionary provides more robust and efficient approaches.

Network design is a combinatorial optimization problem involving optimization
of several objectives such as cost, average delay, and reliability of network.
Similarly, search space of the problem is huge even for small number of computers
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and is intractable for nonevolutionary approaches. A network is basically a graph G
of a set of nodes N and a set of links L. The links denote the connections between
the nodes and are assumed to be directional.

In formulating and solving engineering or management problems, network flow
models provide a rich and powerful framework. For problems such as transporta-
tion systems, communication networks, project schedules, inventory systems and
man/machine allocation, there have been studies in the literature [185]. In theory
and practice, this model is particularly important and it is considered in uncertain
environment by many researchers [186]. Transportation models adopted with fuzzy
relations and quantities can contribute stochastic versions in uncertainty modeling.
More specifically, since the classical random utility-based approach is not sufficient
for uncertainty handling, some alternate solution to probability-based models may
be obtained with possibility-based methods; see, for example, Ghatee and Hashemi
[179]. However, in order to refer their historical background, fuzzy logic tools have
initially been applied to transportation problems by Das et al. [187]. Then, great
attention has been focused on this problem. From a high-level categorization, in
real networks, such as urban networks, there are three uncertainty sources:

e Unsure network topology (a network with fuzzy nodes and fuzzy links)

e Inexact travel cost (a network with fuzzy link cost)

¢ Imprecise travel demand (a network whose nodes include fuzzy excess or fuzzy

deficit)

The aim of fuzzy transportation is to find the lowest transportation cost of some
commodities through a capacitated network when the supply and demand of nodes,
capacity, and cost of links are represented as fuzzy numbers. Given the character
of granular information captured by fuzzy sets (where one could capitalize on
the nonbinary character of their membership functions), such methods are capable
of handling the decision-maker’s risk taking. This problem is a new branch in
combinatorial optimization and network flow problems [79,179]. Some applications
of such standpoint were presented in industries [188].

Furthermore, the network design problem is one of the most important problems
in combinatorial optimization, which has been considered by many researchers and
engineers [189]. The aim of this problem is to design a network to satisfy the
demand of users who wish to travel through the network by consuming minimum
construction cost. Steiner tree is the traditional variants of this problem, which
have been applied to design communication and water networks [185]. In some
cases, a network exists, and the management wishes to extend the network to
satisfy future demand. The extension of a network can also be considered by
interchanging the objectives such as cost, reliability, mobility, and accessibility. To
consider such concepts, the designer needs to consider a great number of concepts.
One important point in this problem is the granular information about this problem,
because designing is done for a long-term period and the future statues cannot to
be considered in a clear manner. It is worth reporting the sources of uncertainty in
measurement of data in this problem [190]:

e The demand for transportation of each node, which is dependent on many items
such as time, season, and weather conditions
e Linguistic definition of important travel
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e Imperfect realization of the definition of important travel

¢ Nonrepresentative sampling (the sample measured may not represent the defined
travels)

¢ Inadequate knowledge of the effects of environmental conditions on the measure-
ment or imperfect measurement of environmental conditions.

e Personal bias in reading analogue instruments

* Finite instrument resolution or discrimination threshold

e Inexact values of measurement standards

¢ Inexact values of traffic constants and other parameters obtained from external
sources and used in the data-reduction algorithm

e Approximations and assumptions incorporated in the measurement method and
procedure

e Variations in repeated observations of travel under apparently identical condi-
tions

¢ The minimum cost flow problem (MCFP) as mentioned before is a general struc-
ture in these models which provides a unified approach to many applications.

To design a network after processing these granular information, one can consider

fuzzy numbers as transportation and construction costs, and with respect to these

parameters, the following model may be expressed:

:F
minY " Y @# Y g Ve=1...K
t=1:T gy (i.jea e

(i,j)€A
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0< 0 & < iz Vi, j)e AVk=1,....4

(70)

where )?,’j is the fuzzy flow of commodity ¢ and variables z;£{0, 1} are associated
with the construction of link (i, j)eA.;z; = 1, if (i,j) belongs to the final solution;
otherwise, z; = 0. The objective function (Eq. 70) is the sum of variable and fixed
fuzzy costs. In this function ¢ is the linear fuzzy cost associated with fuzzy flow
of tth commodity through link (i,j), and fi; is the fixed fuzzy cost associated with
the selection of link (i,j) in the final solution. 6 is a control parameter implying the
trade-off between two objective functions.

14.1 Steiner Tree Problem

One of the most basic versions of finding a subgraph that optimizes some global
cost function is known as the minimum weight. Steiner tree [191] (or the minimum
Steiner tree problem, MST) is a problem in combinatorial optimization, which may
be formulated in a number of settings, with the common part being that it is required
to find the shortest interconnect for a given set of objects.
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Given an undirected graph with positive weights on the edges, the MST problem
consists in finding a connected subgraph of minimum weight that contains a selected
set of “terminal” vertices [192]. Such construction may require the inclusion
of some nonterminal nodes which are called Steiner nodes. Clearly, an optimal
subgraph must be a tree. Solving MST is a key component of many optimization
problems involving real networks. Concrete examples are network reconstruction
in biology (phylogenetic trees and regulatory subnetworks), Internet multicasting,
circuit design, and power or water distribution networks design, just to mention few
famous ones. MST is also a beautiful mathematical problem in itself which lies at the
root of computer science being both NP complete [193] and difficult to approximate
[194]. In physics the Steiner tree problem has similarities with many basic models
such as polymers, self-avoiding walks, or transport networks (e.g., [195]) with a
nontrivial interplay between local an global frustration. The Steiner tree problem
has applications in circuit layout or network design. Most versions of the Steiner
tree problem are NP complete.

The Steiner tree problem is superficially similar to the minimum spanning tree
problem: given a set V' of points (vertices), interconnect them by a network (graph)
of shortest length, where the length is the sum of the lengths of all edges. Difference
between the Steiner tree problem and the minimum spanning tree problem is that,
in the Steiner tree problem, extra intermediate vertices and edges may be added to
the graph in order to reduce the length of the spanning tree. These new vertices
introduced to decrease the total length of connection are known as Steiner points or
Steiner vertices. It has been proved that the resulting connection is a tree, known as
the Steiner tree. There may be several Steiner trees for a given set of initial vertices.

The fuzzy steiner tree (FST) problem on a graph is the version of the classical
ST problem where edge weights are defined as fuzzy numbers. Seda [196] provided
a modification of the shortest paths approximation for solving FST problem. Linear
triangular fuzzy numbers as the edge weights and Cheng’s centroid point fuzzy
ranking method were used in his study [196].

15 Fuzzy Traveling Salesman Problem

Traveling salesman problem (TSP) is finding the shortest route for a given number
of cities. It is one of the most widely studied combinatorial optimization problems
[197]. Main characteristics of TSP are that every city has to be visited and no profit
is associated to the cities.

TSP is one of the most widely studied combinatorial optimization problems. This
has led to numerous extensions and modifications of the basic TSP.

A variant of TSP where a profit value is associated to each city and cities are
selected depending on their profit is proposed in the literature. Feillet et al. [198]
define these kinds of problems as TSP with profit [198].

The problem in which cities are selected to be visited depending on the profit
associated with them is called traveling salesman problem with profit (TSP with
profit). TSP with profit is encountered in many different situations. For instance,
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it may not be possible to visit every city in a TSP application. In this kind of
application, some constraints can enforce selection of cities to be visited. Balas
and Martin [199] introduce the scheduling of daily operations of a steel rolling
mill, which is an application of TSP with profit. This problem gives rise to a prize
collecting traveling salesman problem (prize collecting TSP) with penalty terms in
the objective function.

In the literature, TSP with profit is studied as a single-objective problem. The
only attempt to solve TSP with profit as a biobjective problem is studied by Keller
and Goodchild [200]. The main difference of biobjective approach compared to a
single-objective approach is finding not only one but Pareto optimal solutions. By
finding more solutions, the trade-off among them can be analyzed to make better
decision. The purpose of this study is to develop a multiobjective approach for the
biobjective TSP with profit in order to obtain the Pareto optimal solutions.

The TSP can be described as follows:

In the graph G = (V, E), V is the set of nodes, or cities, and E is the set of edges,
E ={(a,b) : a,b € V}. The Euclidean distance between a and b is D, supposing
that D,, = Dy,. The object of TSP is to find a minimal-length closed tour that visits
each city once and only once, and the closed tour is also called Hamiltonian cycle.
TSP has been proven to be an NP complete problem.

15.1 Fuzzy Matrix to Represent TSP Solution

When domains X, Y are finite sets, fuzzy relation can be expressed by fuzzy matrix.
Suppose X = {X |, Xs..., Xn}; Y = {Y1,Ys,...,Y,}, then the fuzzy relation from
X to Y can be expressed as follows:

Fip =+ T'tn
Rz(rij)monz . (71)

Yml = Ymn

Here r;; € [0, 1] represents the degree of membership of the ith element X; in
domain X and the jth element ¥; in domain Y to relation R. First we introduce the
following definitions:

Definition 16 Set S is a sequence of a TSP solution,
if § ={S1,8S,...,S,}, nis the number of the cities, S; (i € {1,2,...,n}) is the
ith node in the visit tour (TSP solution).

Definition 17 Set N is the serial number of a TSP,
if N = {Ny, Na,...,N,}}, nis the number of the cities, N;(i € {1,2,...N})
represents the concrete node (city) in a TSP problem.
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Explanation: For each element in Set S, S; means that current tour has visited i—1
nodes and will visit the ith nodes. The state space can be expressed as Sy,

Sy =S8xN ={(S;.V,)|Si € S.N; € N}. (72)

The fuzzy relation R of S and N has the following meaning: for each element in the
matrix R,
rij = ur(Si, Ni), (0 <ri; <1). (73)

M r is the membership function; the value of r;; means the degree of membership that
the ith node S; in the feasible solution S “choose” the node with the serial number
of N; in a concrete problem.

15.1.1 Fuzzy Branch-and-Bound Algorithm
In this algorithm, each node is a particular schedule and tree structure is used in
this model. The strategy of “breath first search” is used to determine the best partial
schedule node to branch, the lower-bound values for completion times of whole
partial schedule limits are calculated, and the node having the least value is chosen.
Branching from lowest bound, the procedure is repeated at each time. The nodes
having highest values of the lower bounds than the completion time of this schedule
are fathomed after obtaining an order where all jobs are scheduled.

As shown below, A indicates the set of scheduled jobs. In Eq. 2, the lower-bound
value of fuzzy completion time of each schedule beginning with A is calculated.

Gy ® Y icy P @ min—y{ Py + Pi3}
AS gy =max 3 By ® ey Pio ® mini—y { Pi3} (74)
Vi ® Xiev Pis

In this equation:
* r;: Fuzzy operation time of i th job on jth workstation
e U : The set of jobs which are not scheduled
* a,4: Completion time of the last job in schedule A on the first machine
¢ fB4: Completion time of the last job in schedule A on the second machine
e y4: Completion time of the last job in schedule A on the third machine
In this model, firstly the first machine assumed to operate first and third machine as
last.
The completion times of the jobs on the machines are calculated by using Eqgs. 3
and 4. If there is only one job in the set of A, then the completion times are computed
by Eq. 3. If there is more than one job, then Eq. 4 is used.

@& =P1.pi=P1®Pn.ji=P®Pr® P (75)
G4y = Ga—i) ® Pi (76)
Biay = max{Ba—i). @)} & Pr (77)
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Pty = max{F—i. Bay} ® Pis (78)

After fuzzy lower-bound values for nodes are calculated, branching from the lowest
bound to form new nodes for all jobs is not scheduled yet. This process is continued
until all jobs are scheduled. Addition and maximum operations are fuzzy operations
in this computation process.

Lee and Li’s [201] approach is used for ranking in the maximum operation. They
propose the use of generalized mean and standard deviation based on the probability
measures of fuzzy events to rank fuzzy number. Let us assume that two fuzzy sets,
where each member is a number,

&1 = {(I’waxl)v (I’szvXZ)} (79)
a2 = {(Kyys Y1)s (Hyy5 ¥2)5 (Hys, ¥3)} (80)

are given. The dimensions of the fuzzy numbers can be various. By using the
extension principle, the addition of @; and &, is calculated as follows:

ar @ & = {(min(py,, py,), (X1 + y1)),

(min(py,, py,), (X1 + ¥2)), (min(pey, @y,), (X1 + y3)),

(min(py,, py,), (X2 + 1)), (min(py, . 1y, ), (X2 + 32)),

(min(px,, fy;), (X2 + ¥3)) (81)

If there are more than one (x; + y; ) having the same value, then only the one having
the largest membership degree is kept.

According to Agin [202], branch and bound is a powerful method capable
of solving combinatorial problems with nonlinear, discontinuous, or nonmathe-
matically defined objective functions and under several types of constraints. In
branch-and-bound method, a tree structure which consists of properly connected
nodes is established. Throughout the search, constraints imposed by the problem
should be taken into account. Agin [202] divides these into two groups, namely,
implicit and explicit constraints. In a successfully developed branch-and-bound
algorithm, implicit constraints are satisfied by the manner in which the search tree
is established. Explicit constraints, however, are to be considered in each step of
the search. An example to implicit constraints might be given as the precedence
relations, whereas explicit constraints might be exemplified by resource limitations
in RCPSP [203]. A feasible solution to the problem, therefore, has to assign
numerical values to the set of decision variables (e.g., start dates of all activities
in RLP and RCPSP) so that both implicit and explicit constraints are satisfied.

Nodes, of which a search tree consists of, are subsets of the set of all solutions of
the combinatorial problem. Branching, on the other hand, is the partitioning of any
set of feasible solutions into separate subsets [202].
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Branching process starts from the root node (the node in the uppermost level
of the tree) which represents the set of all solutions. In some instances during the
search, there might be nodes from which no branching has occurred yet. These
nodes which are to be discovered further are called intermediate nodes. On the
contrary to intermediate nodes which imply a partial solution, final nodes represent
a complete solution. In order to reach a final node (leaf), all decisions required to
establish a valid solution set have to be made. In RLP, for example, a leaf stores start
dates of all noncritical activities. Obviously final nodes are located in the lowermost
level of the search tree.

Two main characteristics of branch-and-bound algorithms presented by
Agin [202] are branching characteristic and bounding characteristic. According
to the definitions provided, branching characteristic ensures that an optimal solution
is going to be reached at the end of the search since all possible combinations are
going to be considered, whereas bounding characteristic implies a possibility to
reach the optimal solution without visiting each node by pruning some parts of
the tree.

Finally definition of the lower bound should be given since this concept is in the
very heart of the branch-and-bound logic. Lower bound is a value of the objective
function for all solutions included in a specific node such that none of the solutions
that could be branched from that node will have a better objective function value
than that bound. As this definition implies, there is no use to branch a node any
further if its lower-bound value is worse than the objective function value of one of
the explored final nodes (complete solutions). Objective function value of the best
complete solution explored so far, that is, upper bound, is used to decide whether a
node is promising or not. Obviously, upper bound at the end of the search provides
the optimal solution to the problem.

According to Agin [202], a branch-and-bound algorithm might be said to consist
of rules for:

1. Deciding on how to continue the search given an intermediate node (branching
rule)

. Deciding on how to calculate lower bounds on each established node

. Deciding on the intermediate node from which to branch next

. Recognizing when a node contains only infeasible or nonoptimal solutions

. Recognizing optimal solutions encountered on final nodes

N B~ W

16 Fuzzy Facility Location

In earlier studies in location problems literature, we saw that this area firstly related
to industrial contexts, referring to the supply of a single commodity from a set of
potential locations, where facilities may be placed, to clients of known locations
and demands, at minimum cost. Location problems consist of determining the
locations of the facilities and the flows of the commodity from facilities to clients at
a minimum cost.



Fuzzy Combinatorial Optimization Problems 1403

Facility location selection that exhibits a significant impact on market share
and profitability is critical and also has strategic issues in supply chain design and
management [204,205].

Solving the problems in which the demands and the costs are deterministic, many
efficient methods are used. In the literature there are some examples such as the
following: Akinc and Khumawala [206] used a branch- and-bound algorithm for a
capacitated warehouse location problem. Dearing and Newruck [207] developed
an implicit enumeration algorithm with Lagrange relaxation for a capacitated
bottleneck facility location problem. Badri [208] used analytic hierarchy process
with multiobjective goal programming methods for a facility location. Dupont [209]
introduced a new type of facility location model with a concave global cost function
and proposed a branch-and-bound algorithm for this model. For other types of
methods also some examples in the literature, for example, Drezner and Hamacher
[210], Ernst and Krishnamoorthy [211], Lozano et al. [212], and Misra et al. [213].

Facility location problem copes with the imprecise or qualitative nature of the
linguistic assessment in real applications. Also this problem processes imprecise,
uncertain, or vague data, such as the imprecise experience-based demands of the
clients or the costs of operating the facilities. The imprecise nature of these data is
due to the fact that the precise and complete historical data are usually unavailable in
real situations. To the former, fuzzy sets and fuzzy logic [104,214-216] are suitable
methods of dealing with the linguistic assessment.

For example, Batanovi et al. [217] discussed a class of fuzzy maximum covering
location problems in networks by assuming that the relative weights of demand
nodes are imprecise and described by linguistic expressions and developed algo-
rithms for choosing the best facility locations based on comparison operations on
discrete fuzzy sets. Bhattacharya et al. [218] considered facilities located under
multiple fuzzy criteria and proposed a fuzzy goal programming approach to deal
with the problem. Ishii et al. [219] developed a location model by considering
the customer satisfaction degree with respect to the distance of each customer
from the facility. Kahraman et al. [220] solved facility location problems by using
four different approaches to fuzzy multiattribute group decision-making, that is,
fuzzy model of group decision, fuzzy synthetic evaluation, Yager’s weighted goals
method, and a fuzzy analytic hierarchy process.

Uncertainty is closely related to risks that include environmental and organiza-
tional. For the companies it is important to reduce risks that involves in their
location decisions in order to enhance customer service and improve their business
processes, toresultincreasing competitiveness and profitability. Uncertain parameters
based on fuzzy set theory [95,221-223] have been developed, which aim to
deal with the cases of imprecise or vague data. For instance, Bhattacharya et al.
[224] considered facilities located under multiple fuzzy criteria and proposed a
fuzzy goal programming approach to deal with the problem. Ishii et al. [225]
developed a location model by considering the satisfaction degree with respect
to the distance from the facility for each customer. Assuming that demands of
customers are represented as fuzzy variables, Wen and Iwamura [226] presented
a continuous «-cost facility location model employing Hurwicz criterion, while
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Zhou and Liu [227] presented three types of continuous capacitated location—
allocation problem with different decision criteria.

Stochastic problems deal with the cases where the parameters are treated as
random variables. In real applications, randomness and fuzziness may coexist in
a facility location problem. Due to the fact that there are some variables such
as subjective judgment, imprecise human knowledge and perception in capturing
statistical data may embrace randomness and fuzziness at the same time or some
data that belong to the history for the location problems may be insufficient.
Therefore, the experience-based fuzzy information can be incorporated into the
originally available statistic data. In both cases, there is a genuine need to deal
with a hybrid uncertainty containing simultaneously randomness and fuzziness. The
concept of fuzzy random variables [228-230] was introduced to quantify and deal
with the phenomena in which vagueness and randomness appear at the same time.
This formalism serves as a basic tool to construct a framework of decision-making
models operating in a fuzzy and random environment.
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