
Neural Network Models in Combinatorial
Optimization

Mujahid N. Syed and Panos M. Pardalos

Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2028
1.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2029
1.2 Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2029

2 Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2030
2.1 Artificial Neural Networks (ANNs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2030
2.2 Example: Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2033
2.3 Hopfield and Tank (H-T) Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2037
2.4 Durbin-Willshaw (D-W)’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2040
2.5 Kohonen Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2041
2.6 Lagrangian Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2042
2.7 General Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2044
2.8 Example: Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2045

3 Optimality Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2047
3.1 System Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048
3.2 Lyapunov Energy Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2049
3.3 Penalty-Based Energy Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2057
3.4 Lagrange Energy Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2059

4 Escaping Local Minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2061
4.1 Stochastic Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2061
4.2 Chaotic Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2063
4.3 Convexification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2065
4.4 Hybridiziation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066

5 General Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066
5.1 Linear Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066

M.N. Syed (�)
Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
e-mail: smujahid@ufl.edu; snumujahid@gmail.com

P.M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
e-mail: pardalos@ufl.edu

P.M. Pardalos et al. (eds.), Handbook of Combinatorial Optimization,
DOI 10.1007/978-1-4419-7997-1 65, © Springer Science+Business Media New York 2013

2027

mailto:smujahid@ufl.edu
mailto:pardalos@ufl.edu
mailto:snumujahid@gmail.com


2028 M.N. Syed and P.M. Pardalos

5.2 Convex Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2069
5.3 Quadratic Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2070
5.4 Nonlinear Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2071
5.5 Complementarity Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2072
5.6 Mixed Integer Programming Problems (MIPs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2073

6 Discrete Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2076
6.1 Graph Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2076
6.2 Shortest Path Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2081
6.3 Number Partitioning Problems (NPP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2082
6.4 Assignment Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2082
6.5 Sorting Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2083
6.6 Traveling Salesman Problems (TSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084

7 Criticism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2085
8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2087
Cross-References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2087
Recommended Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2087

Abstract
This chapter reviews the theory and application of artificial neural network
(ANN) models with the intention of solving combinatorial optimization prob-
lems (COPs). Brief introductions to the theory of ANNs and to the classical
models of ANNs applied to COPs are presented at the beginning of this chapter.
Since the classical ANN models follow gradient-based search, they usually
converge to a local optimal solution. To overcome this, several methods that
extend the capability of ANNs to avoid the local minima have been reviewed
in this chapter. Apart from that, not all the ANNs converge to a local minimum;
thus, stability and/or convergence criteria of various ANNs have been addressed.
The thin wafer that divides continuous and discrete optimization problems while
applying ANNs to solve the COPs is highlighted. Applications of ANNs to
solve the general optimization problems and to solve the discrete optimization
problems have been surveyed. To conclude, issues regarding the performance
behavior of the ANNs are discussed at the end of this chapter.

1 Introduction

Combinatorial optimization problems (COPs) are special problems in the field of
operations research, where a real-valued mathematical function is optimized over a
given domain (feasible set). Either some or all the variables of these problems are
discrete in nature. The main criterion in proposing a solution method to solve the
COPs is to provide a solution strategy better than the complete enumeration method.
The conventional methods that are used to find the solution of a COP include
branching, bounding, cutting planes, etc. Usually, COPs are NP-Hard in nature;
the solution time of the conventional solution methods grows exponentially with the
problem size. A curiosity to improve the solution time of finding an optimal solution
of a COP directed the research toward unconventional methods. The primary
unconventional methods for solving the COPs are the heuristics, and the most
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prominent ones among them are the metaheuristics, such as simulated annealing,
genetic and evolutionary algorithms, tabu search, and greedy randomized adaptive
search procedure [15, 38, 44, 46, 53, 87, 94, 98, 115]. On the other hand, there were
simultaneous research [32,112] to use the analog circuits instead of the conventional
computers for solving COPs. A method for solving the linear and the quadratic
programs using resistors, diodes, transformers, current sources, and voltage sources
(the basic building blocks of the analog circuit) was proposed in [32]. However,
this method was impractical due to the unavailability of an ideal diode. Thus, this
method remained in the theory until improved methods were proposed in [23, 62].
The first known analog circuit implementations which were capable of solving
linear and quadratic programming problems were presented in [24, 131]. However,
these methods were not ideal due to the use of negative resistors [131]. Later in
1985, Hopfield and Tank [121] proposed an analog circuit consisting of neurons,1

called artificial neural networks (ANNs), to solve the COPs. This method caught
the attention of many researchers, when Hopfield and Tank [121] solved some
sufficiently large instances of the symmetric traveling salesman problem (TSP).
The proposed method illustrated an alternate approach to solve the COPs, which
is independent of the digital computers. After this illustration, many researchers
were curious to utilize ANNs as a tool to solve various COPs.

1.1 Objective

The main objective of this chapter is to present different ideas of applying ANNs
in solving the COPs. Furthermore, the issues related to the optimality and/or
the stability analysis of various ANNs will be dealt. In addition to that, the
implementation and the mapping of ANNs to solve the COPs will be illustrated
by examples. Nevertheless, a brief history about the ANNs will be reviewed. In
addition to that, usage of ANNs in solving the general optimization problems will
be addressed.

1.2 Outline

In this chapter, ANN models which are applied in solving the COPs are described.
This chapter is organized as follows: an introduction of ANNs in general and a
review of the classical models in ANNs that are suitable for solving the COPs
in particular are presented in Sect. 2. A systematic method, which illustrates the
stability and convergence analysis of ANNs, is described in Sect. 3. Subsequently,
the extensions and the improvements that can be incorporated to the classical ANN
models are presented in Sect. 4. In addition to that, a methodology of mapping and

1A term similar to the smallest processing unit in the brain, in ANNs it consist of a small
independent circuit with resistors, diodes, capacitors etc.
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solving some of the general optimization problems is discussed in Sect.5. Moreover,
the applications of ANNs for solving various discrete programming problems are
surveyed in Sect. 6. Nonetheless, in Sect. 7, the criticism of using ANNs to solve the
COPs is presented. Finally, this chapter ends with the concluding remarks in Sect. 8.

2 Review

Human brain and its functionality has been the topic of research for many years,
and until now, there has been no model that could aptly imitate the human brain.
Curiosity of studying human brain lead to the development of ANNs. Henceforth,
ANNs are the mathematical models mimicking the interactions among the neurons2

within the human brain. Initially, ANNs were developed to provide a novel solution
approach to solve the problems which do not have any algorithmic solution
approach. The first model that depicted a working ANN used the concept of
perceptron3 [82, 101]. After the invention of perceptron, ANNs were the area of
interest for many researchers for almost 10 years. However, this area of research
was crestfallen due to the results shown by Minsky and Papert in [85]. Their results
showed that the perceptron is incapable to model the simple logical operations.
However, their work also indirectly suggested the usage of multilayer ANNs. After a
decade, as a requital, this area of research became popular with Hopfield’s feedback4

ANN [56, 57]. A pioneer practical approach to solve the COPs was presented
in [58, 121]. The mathematical analysis illustrated by Hopfield demonstrated that
ANNs can be used as a gradient descent method in solving optimization problems.
Moreover, some instances of traveling salesman problem (TSP) were mapped and
solved using ANNs. This approach kindled enthusiasm among many researchers
to provide an efficient solution methodology for solving NP-Hard problems. Since
then, ANNs were modified and applied in numerous ways to solve the COPs.

2.1 Artificial Neural Networks (ANNs)

Neurons are the primary elements of any ANN. They posses some memory
represented by their state. The state of a neuron is represented either by a single
state or a dual state (internal and external state). The state of a neuron can take any
real value between the interval Œ0; 1�.5 Furthermore, the neurons interact with each
other via links to share the available information. In general, the external state of the

2Biological neurons are the basic building blocks of the nervous system.
3A simple single-layered artificial neural network invented by Frank Rosenblatt.
4Feedback and feed-forward are two main classes of neural networks and will be explained in the
following subsections.
5Some authors prefer to use the values between [�1,1]; however, both the definition are
interchangeable and have the same convergence behavior. Hence, in this work [0,1], representation
is followed.
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neuron takes part in the outer interactions, whereas the internal state of the neuron
takes part in the firing6 decision. The intensity and sense of interactions between
any two connecting neurons are represented by the weight (or synaptic7 weight) of
the links.

A single neuron itself is incapable to process any complex information. However,
it is the collective behavior of the neurons that results in the intelligent information
processing. Usually, neurons update their states based on the weighted cumulative
effect of the states of the surrounding neurons. The update rule for the states is

Ii D
nX

j D1;j ¤i

wij xi � Ui (1)

xi D � .Ii / (2)

where xi and Ii represent the external and internal states of an i th neuron,
respectively, wij represents the weight between the i th neuron and the j th neuron,
and Ui represents the threshold level of the i th neuron. Function �./ is called the

transfer function.8 If the collective input to the i th neuron
�Pn

j D1;j ¤i wij xi

�
is

greater than the threshold (Ui ), then the neuron will fire (value of xi is set as 1).
This is the basic mechanism of any ANN. With appropriate network structure and
link weights, ANNs are capable of making any logical operations.

Example 1 Consider the following neural networks:
In Fig. 1, a simple neural network, which performs logical AND and logical

OR operations, is depicted. The number over the links represents the weight of the
link. The number inside the neurons represents the threshold value. Each neural
network has two binary input signals and one binary output signal. Similarly, in
Fig.2, another elementary logical operator XOR is presented (where XOR is logical
exclusive OR operator). From this figure, it can be seen that for a specific operation,
neural network may not have a unique representation.

From Figs. 1 and 2, it can be seen that although a single neuron does not possess
the computation ability, collectively, they can perform any logical operations very
easily. Moreover, these are just the elementary form of logical operations that can
be performed using simple neural networks. ANNs can be used for the complex
logical operations as well. In order to use ANNs for complex logical operations,
feedback method is used. Based on the feed mechanism, ANNs can be classified as
feed-forward neural networks and Feedback neural networks as shown in Fig. 3.

6Whether to set the value of the corresponding external state to 0 or 1
7The term synaptic is related to the nervous system and is used in ANNs to indicate the weight
between any two neurons.
8This function may be continuous or discontinuous based on the type of the neuron. That is, for
a discrete case, this function is similar to a signum function, whereas for continuous case, this
function is similar to a sigmoidal function.



2032 M.N. Syed and P.M. Pardalos

1
1

1
1

0.5 3.5

a b
1

1

1

1

Fig. 1 Example:1 simple logical operations in ANNs. (a) OR. (b) AND

1

1

1

1

1.5 0.5

1

−2 −1

−1

1

a b

1
1

1

1

11
1

1

1

Fig. 2 Example:2 simple logical operations in ANNs. (a) XOR. (b) XOR

i ij j
a bFig. 3 Major categories of

ANNs. (a) Feed-forward
ANN. (b) Feedback ANN

In the feed-forward neural networks, information is processed only in one di-
rection. Whereas in the case of feedback neural networks, information is processed
in both the directions. From the literature, typically, there are three main types of
applications of ANNs in information processing. They are categorized as:

Type 1: Pattern Recognition
• This is the most explored application of the ANNs [14, 19, 88, 89]. In pattern

recognition, two sets of data, namely, training data, and testing data are given.
Generally, the data sets consists of input parameters which are believed to be
the cause of the output features. The aim of pattern recognition is to find a
relation that maps the input parameters with the output features. This is obtained
by learning, where the weights of the neural network are updated by error
backpropagation. When the error between the generated features and the required
output features falls below some acceptable limit, the weights are frozen or set
to the current value. These weight are used to validate the performance of the
obtained neural network using the testing data. This approach is used in function
approximation, data prediction, curve fitting, etc.

Type 2: Associative Memory
• Advancement in the theory of ANNs from feed-forward neural networks to

feedback neural networks led to this application [18, 84, 93]. In associative
memory application, a neural network is set to the known target memory pattern.
Later, if an incomplete or partly erroneous pattern is presented to the trained
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ANN, then the ANN is capable to generate or repair the input pattern to the most
resembling target pattern.
This approach is used in handwriting recognition, image processing, etc.

Type 3: Optimization
• Further extensions of associative memory approach led to the application of

ANNs in solving the optimization problems. This application is fundamentally
different from the pattern recognition application. In this approach, weights
of the neural network are fixed, and the inputs are randomly (synchronously
or asynchronously) updated such that the total energy of the network is min-
imized. This minimization is achieved if the network is stable. Based on the
different optimality conditions, the system may converge to the local (or global)
optimal solution. ANNs have been applied not only for solving the COPs
[3, 43, 64, 97, 110, 111] but also for solving the optimization problems in general
[39, 86, 90, 104]

In the following subsection, an example implementation of ANNs for solving a
general linear programming (LP) problem is presented.

2.2 Example: Implementation

One of the conventional methods of solving any COP is to relax the problem into
a series of continuous problems, and solve them until the desired discrete solution
is obtained [47]. Although simplex is the most widely used method to solve the
linear relaxation of COPs, it has been shown in the literature that other methods
like dual-simplex, barrier methods, and interior point methods perform better
than simplex on certain occasions [66, 99, 133]. Apart from that, the convergence
time of simplex method is exponential in time [69], yet in practice, it performs
better than polynomial time interior point method. Thus, finding a polynomial
time algorithm (polynomial both in theory and in practice) for solving linear
programming problems is still an attractive area of research. Therefore, it becomes
an attractive choice to study the method of solving an LP problem using an ANN.
Apart from that, the purpose of selecting an LP model to show the implementation
of ANNs is due to the simple nature of LP models. Thus, a reader familiar with the
theory of LP will find it easy to understand the analog circuit of the LP problem.

Consider a standard form of a linear programming problem described as

minimize W
cT x

subject to W
Ax D b

0 � xi � xmax 8i D 1; 2; : : : ; n (3)
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where c 2 R
n, b 2 R

m, A 2 R
m�n, and x 2 R

n. In order to apply an ANN to solve
this problem, the above stated problem has to be transformed into an unconstrained
optimization problem using either a penalty function or a Lagrange function method.
For the sake of simple illustration, a penalty function approach will be presented. Let
x.t/ represent the instantaneous or dynamic value of the solution vector at time t . Let
E.x.t/; t/ represent the modified (penalized) objective function, which is given as

E.x.t/; t/ D C1

2
.Ax.t/ � b/T .Ax.t/ � b/ C C2cT .x C x.t/e�C3t / (4)

where C1; C2, and C3 represent the positive scaling parameters of the system. Let
the system dynamics be defined as

rtI D �rx.t/E.x.t/; t/ (5)

where I represents the internal energy of the neuron. Based on the system dynamics
defined in Eq. (5), the system can be described as

rtI D �C1A
T Ax.t/ C C1A

T b � C2c e�C3t (6)

and
xi .t/ D xmax

1 C e.�C4I.t//
(7)

where C4 is a positive scaling parameter,

rtI D
�

dI1

dt
;

dI2

dt
; : : : ;

dIn

dt

�T

; I 2 R
n

and

rx.t/E.x.t/; t/ D
�

@E.x.t/; t/

@x1

;
@E.x.t/; t/

@x2

; : : : ;
@E.x.t/; t/

@xn

�T

Equations (6) and (7) are the main equations which are used to design the ANN.
The first thing in designing the neural network is to know the number of neurons.
Since each variable is represented by a neuron, there will be altogether n neurons
required for the construction of ANN. Let Ii represent the internal state of an i th
neuron and xi represent the external state of an i th neuron. At any given time,
both the states of an i th neuron can be represented by ŒIi .t/; xi .t/�. The next step
will be to connect the network using links. These links will have resistors, which
represent the weights (synaptic weights) of the link. Based on the coefficients in
Eq. (6), the weights are taken as the corresponding coefficients of the first-order
term. The constant term in Eq. (6) is taken as the input bias to the neurons. From the
Eq. (6), the following weight matrix and bias vector is obtained:

W D �C1A
T A and �.t/ D C1A

T b � C2c e�C3t (8)



Neural Network Models in Combinatorial Optimization 2035

or

wij D �C1

mX

kD1

aki akj and �i .t/ D C1

X
k D 1maki bk � C2ci e�C3t (9)

where aij is the i th row j th column element of A and wij is the i th row j th column
element of W .

Now, in order to set the appropriate weights, we use resistors. The absolute value
of synaptic weight wij (between i th and j th neuron) is obtained as the ratio of the
resistors Rf and Rij , that is,

jwij j D Rf

Rij

(10)

The next step is to assign input bias to each neuron. This can be done using the
voltage Ei and the resistor Ri , given as

�i D Rf Ei

Ri

(11)

The other part of the input bias, that is, C2ci e
�C3t is obtained by providing

a discharging loop, with an additional set of capacitor Cd , and resistor Rd . The
configuration is shown in Fig. 4. The values of Rd and Rf are taken arbitrarily such
that Rd � Rf . The initial value of Cd is assigned as �C2 ci 8 i . Once these values
are set, the other values are given as

Rij D Rf

wij

(12)

C3 � 1=.Rd Cd / (13)

The positive (or negative) value of weight is obtained by using the xi th terminal
(or �xi th terminal) of the neuron. For the sake of simplicity, the neuron in Fig.4 can
be represented as depicted in Fig. 5. Once the structure of a single neuron is formed,
it is connected to the other neurons to form the ANN which can be represented as in
Fig. 6. As the time proceeds, the neurons update their internal and external energies
based on the update rules and based on the dynamics of selecting the neurons for
the update. If the network is stable and the dynamics is appropriate, the network
will converge to a limit point(local minimum), which will give the optimal solution
of the LP [39]. Applying ANNs to solve the LP problems has been studied and
analyzed in [25–28, 35, 67, 100, 136].

The objective of depicting the method of developing analog circuit for solving
LP was to illustrate the reader various complexities involved in the deployment of
an analog ANN for solving any COP. In the following subsections, some of the
classical models of the ANNs that are applied in solving COPs will be described.
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These are the basic models proposed in 1980s–1990s as an alternate analog method
to solve COPs. These models can be broadly classified as:
• Gradient-based methods

– Hopfield and Tank’s discrete and continuous models
• Self-organizing methods

– Durbin-Willshaw’s and Kohonen’s models
• Projective gradient methods

– Lagrange-based models
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2.3 Hopfield and Tank (H-T) Models

In 1982, Hopfield [56] proposed a novel feedback type neural network, which
is capable of performing computational tasks. Although feedback type models
were proposed earlier by Anderson and Kohonen [10, 71], however, Hopfield [57]
provided a complete mathematical analysis of feedback type neural networks. Thus,
these feedback type neural networks were named as Hopfield networks. There are
two different models proposed by Hopfield and Tank [58] for solving COPs. They
are described below:
(a) H-T’s Discrete Model

The discrete model consists of n interconnected neurons. The strength of the
connection between the i th neuron and the j th neuron is represented by the weight
wij . A presence of connection between any two neurons is indicated by a nonzero
weight. Weights maybe positive or negative, representing the sense of connection
(excitatory or inhibitory). In this model, each neuron has been assigned with the
two states (external and internal states, like that in McCullough and Pitts [82] model)
representing the embedded memory at each neuron. Moreover, the internal state of
i th neuron Ii is continuous valued, whereas the external state xi is binary valued.
The internal and external state of a neuron are related as
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Ii .t C 1/ D
nX

j D1

wij xj .t/ C �i (14)

xi .t C 1/ D ‰d .Ii /

(
1 if Ii > Ui

0 if Ii � Ui

(15)

where �i is a constant representing an external input bias to the i th neuron. ‰d ./

represents a transfer function, which assign binary values to xi . Ui represents the
threshold value of the i th neuron. If the aggregate sum of the internal energies
supplied to the i th neuron is greater than Ui , then this neuron will “fire,” that
is, xi will be set to 1. On the other hand, if the aggregate sum of the internal
energies is less than the threshold, the neuron will be in a dormant or “not-
firing” state. For solving the COP, wij ’s are calculated based on the objective
function and the constraints of a given COP. The only decision variables of
this model are xi and Ii . Unless or otherwise specified, the values of Ui ’s are
taken as 0.

Initially, a random value is assigned to each external state, and the neurons update
their states based on the updating rules. Usually, the neurons are selected randomly
for the update (asynchronous updating). This updating rule is proven to converge
to one of the stable states [83], which minimizes the energy function, provided the
energy function is given by Eq. (16):

Ed D �1

2

nX

iD1

nX

j D1

wij xi xj �
nX

iD1

�i xi (16)

Since one of the states is binary and the update sequence of neurons is random,
this model is known as a discrete model with stochastic updates. With the above
details, Algorithm 1 summarizes the mechanism of this model.

This model can be used to compute the local minimum of any quadratic function.
Hopfield and Tank [58, 121] showed that the way energy function is constructed
will always result in decrease of energy and the algorithm leads to one of the stable
states. The algorithm proceeds as the gradient descent method, converging to a local
minimum.

The main step in solving a COP using H-T’s discrete model is to convert the
constrained COP into an unconstrained COP using a penalty function method (or
Lagrange method). Once the unconstrained penalty objective function is obtained,
it is compared with the energy function given in Eq. (16).
(b) H-T’s Continuous Model

In the subsequent research [57], H-T proposed another model in which both
the states of the neuron are continuous. In addition, in this model, two additional
properties have been assigned to the neurons, namely, the input capacitance Ci and
the transmembrane resistance Ri . Moreover, a finite impedance Rij between the
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Algorithm 1 Hopfield Discrete Model
Randomly assign initial values to xi

termination = false
while (termination) do

Select one neuron randomly
Update the states Ii and xi :
Ii .t C 1/ D Pn

jD1 wij xj .t/ C �i

if Ii > 0 then
xi .t C 1/ D ‰d .Ii / D 1

else
xi .t C 1/ D ‰d .Ii / D 0

end if
Calculate the energy of the system Ed :
Ed D � 1

2

Pn
iD1

Pn
jD1 wij xi xj �Pn

iD1 �i xi

if termination criteria is met then
termination = true

end if
end while

i th neuron and the output xj from j th neuron is assigned on the link ij . The main
difference between the continuous model and the discrete model is in the continuous
model, the external states of the neurons are continuous valued between 0 and 1. The
equations of motion for this model are given as

dIi

dt
D

nX

j D1

wij xj .t/ � Ii

�
C �i (17)

xi D ‰c.Ii / (18)

where � D Ri Ci and usually, � is assigned a value of 1, if the time step of
any discrete time simulation is less than unity. A widely used transfer function is
continuous sigmoidal function which is of the form, ‰c.Ii / D 1

2
.1C tanh.Ii

T
//. The

slope of the transfer function is controlled by parameter T . Similar to the previous
model, this model will converge to a stable state which will minimize the energy
function, given by Eq. (19):

Ec D �1

2

nX

iD1

nX

j D1

wij xi xj �
nX

iD1

�i xi C
Z xi

0

‰�1
c .a/ da (19)

The only decision variables in this model are xi and Ii . Algorithm 2 describes
the mechanism of this model. From this illustration, it can be seen that a continuous
ANN can be applied to solve discrete optimization problems, just by tuning the
parameters of the transfer function. In specific, if the value of the slope, T , in the
transfer function is set to a very high value, then this model will approximately
behave as the discrete model.
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Algorithm 2 Hopfield Continuous Model
Randomly assign initial states xi

termination = false
while (termination) do

Select randomly one neuron
Update the states Ii and xi :
dIi

dt
D Pn

jD1 wij xj .t / � Ii

�
C �i

xi .t C 1/ D ‰c.Ii / D 1
2
.1 C tanh.Ii

T
//

Calculate the energy of the system Ed :
Ec D � 1

2

Pn
iD1

Pn
jD1 wij xi xj �Pn

iD1 �i xi C R xi

0 ‰�1
c .a/ da

if termination criteria is met then
termination = true

end if
end while

The first attempt to solve the COP using ANN was demonstrated by Hopfield and
Tank [58] in 1985. They illustrated the usage of ANN by solving sufficiently large
instances of the famous traveling salesman problem (TSP). After this illustration by
Hopfield and Tank, numerous approaches and extensions were proposed to solve
various COPs using ANNs. Most of the proposed extensions were in the direction
of improving H-T’s ANN model. In the following subsection, the alternative
approaches which are significantly different from H-T’s ANN model are presented.

2.4 Durbin-Willshaw (D-W)’s Model

In 1987, Durbin and Willshaw [34] proposed a fundamentally different approach
to the H-T’s approach for solving the geometric COPs. The proposed method was
named as elastic nets and often referred as deformable templates. The origin of
this method is the seminal work of Willshaw and Malsburg [130]. In this model,
the neurons have no memory or states. Moreover, the network is not arbitrarily
connected based on the values of the weights. Instead, it is connected in the form of
a ring (elastic ring), where the neurons are placed on the circumference of the ring.
Since this model is used to solve the geometric COPs, we will describe the model
with respect to TSP.

In this model, there are M neurons on the circumference of the ring, where M is
greater than N, the number of cities. The first step is to find the center of gravity of
the network. This point is taken as the center for the ring, and iteratively neurons on
the rings are pulled apart. In every iteration, neurons are pulled in such a way that
the distance between the neurons and the closest city is minimized. However, there
is another force from the ring that tries to keep the length of the ring as small as
possible. Thus, in the end, when each city has been close enough to a corresponding
neuron, a Hamiltonian tour is obtained. The equation describing the movement of
j th neuron is given as
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�yj D ˛

NX

iD1

wij .ai � yi / C ˇK.yj C1 C yj �1 � 2yj / (20)

where ai is the coordinate of the i th vertex of the TSP; ˛; ˇ; and K are the scaling
parameters:

wij D �.dai yj ; K/
PM

kD1 �.dai yk
; K/

8i; j (21)

dai yj is the Euclidean distance between the i th city and the j th neuron; and

�.dai yj ; K/ D e
�dai yj

2=2K2

(22)

˛ represents the scaling factor that drives the neurons toward the cities whereas ˇ

represents the scaling factor for the force that keeps the neighboring neurons on the
ring closer. Parameter K is gradually decreased, so that the neurons get closer to
the cities. This parameter acts like temperature in simulated annealing and requires
a cooling schedule. The energy of this system is given by Eq. (23):

Edw D �˛K

NX

iD1

ln

MX

j D1

�.dai yj ; K/ C ˇ

2

MX

j D1

d 2
yj yj C1

(23)

The mechanism of this model can be explained by Algorithm 3 .

2.5 Kohonen Model

Another fundamentally different approach to the H-T’s approach was proposed by
Kohonen [72] for solving geometric COPs. This model utilizes self-organizing maps
(SOMs) [70, 71] which fall under the category of the competitive neural networks.
In this model, there are two layers of neurons (input and output). The input layer
of the neurons are fully connected to the output layer of the neurons. In general,
the neurons at the inner layer represent the input from a high-dimensional space.

Algorithm 3 Durbin-Willshaw model
Find the center of gravity of the system, and assign it as the center of the circle with M equispaced
ring points.
termination = false
while (termination) do

Update the coordinates yi of ring points using equation Eq. (20)
if (min1;:::;M fdai ;yi g � ") or (K < Kmin) then

termination = true
end if
K D ˛K ˛ 2 .0; 1/

end while
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However, the neurons at the output layer represent output to a low-dimensional
space. Therefore, the whole model act as a mapping from a higher dimensional
space to a lower dimensional space. The property of self-organizing maps is to
map the neurons close in the input space to the neurons that are close in the
output space. The output layer of the neurons is arranged according to a topological
structure, which is based on the geometry of the problem under consideration.
For example: for the TSP, the output layer is arranged in a ring structure. Let
ai D .ai

1; ai
2; : : : ; ai

n/
T 8i D 1; : : : ; N be the coordinates of i th city to be

visited. Let wj D .w1j ; w2j ; : : : ; wNj /T ; 8j D 1; : : : ; M; M � N represent
the weight vector of the j th output neuron. Unlike the previous models, in this
model, the weights are the decision variables. They are changed over the time using
the following equation:

wj D wj C �fj;j �.ai � wj /; 8j D 1; 2 : : : ; M; 0 < � < 1 (24)

where � is called learning rate, j � is called winning neuron, defined as j � D
argmin8 j fdai wj

g for a given city i , and the function f W .j; j �/ 7! Œ0; 1� is a
decreasing function and represents the lateral distance between output units j and
j �. This function acts like a weight of attraction between two points. Typically, the
function is modified as the algorithm proceed to gradually reduce the magnitude of
the weight of attraction. This method can be described by Algorithm 4 .

Thus, this iterative approach at the end produces a Hamiltonian tour. Since
both Durbin-Willshaw’s and Kohonen’s models are for geometrical problems, these
models have not been widely used in the application of ANNs in solving COPs.

2.6 Lagrangian Model

Another approach which is based on the Lagrange programming is presented
by Zhang and Constantinides [139]. The main difference in this method when
compared to the Hopfield and Tank [58] approach is that this method is not similar to
the gradient descent method. In this method, the constraints and objective function
are not coupled using the penalty function. Instead, two types of neurons are used

Algorithm 4 Kohonen Model
Randomly assign initial weights wj , set i = 0.
termination = false
while (termination) do

Select neuron i, i D .i C 1/mod.N C 1/

Calculate dj D dai wj
8j D 1; : : : ; M

Assign j � D argminj fdj g and dj D dj �

Update the weights as: wj D wj C �f .j; j �/.ai � wj /; 8j D 1; : : : ; M; I & 0 < � < 1

if minj fdai wj g � "; 8i D 1; : : : ; N then
termination = true

end if
end while
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(variable type, x, and Lagrangian type, 	). One type of neurons (Lagrangian) looks
for a feasible solution, and the other type of neurons (variable) looks for an optimal
solution.

The main advantage of this model over the previous model is that the objective
function can be free from the Lyapunov function criterion and can be different from
a quadratic function. That is, any type of function can be optimized, unlike the
quadratic function requirements of H-T’s model [58]. For example, consider any
general optimization problem defined as

minimize W
f .x/

subject to W
hi .x/ D 0 8i D 1; : : : ; m

x 2 R
n (25)

where f .x/; hi .x/ W Rn 7! R are any continuous and twice differentiable functions
of x. The Lagrange for the problem Eq. (25) is written as

L.x; �/ D f .x/ C �T h.x/ (26)

The equations of motion that describe this model are

rt x D �rxL.x; �/ (27)

rt � D �r	L.x; �/ (28)

where

rt x D
�

dx1

dt
;

dx2

dt
; : : : ;

dxn

dt

�T

; x 2 R
n

rt � D
�

d	1

dt
;

d	2

dt
; : : : ;

d	m

dt

�T

; 	 2 R
m

rxL.x; �/ D
�

@L.x; �/

@x1

;
@L.x; �/

@x2

; : : : ;
@L.x; �/

@xn

�T

and

r	L.x; �/ D
�

@L.x; �/

@	1

;
@L.x; �/

@	2

; : : : ;
@L.x; �/

@	m

�T

The above model is iterative as described in Algorithm 5 , similar to that of H-T’s
continuous model. Both the types of neuron are the decision variables.

The mathematical properties and proofs related to convergence of ANN models
will be discussed in Sect. 3 of this chapter.
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Algorithm 5 Lagrangian Model
Randomly assign initial states xi and 	i

termination = false
while (termination) do

Select randomly one neuron (either variable or lagrangian)
if ordinary variable is selected then

Update the states xi as:
rt x D �rxL.x; �/

else
Update the states 	i as:
rt � D �r	L.x; �/

end if
Calculate the energy of the system L.x; �/:
L.x; �/ D f .x/ C �T h.x/

if termination criteria is met then
termination = true

end if
end while

2.7 General Methodology

In the previous subsections, a brief picture of different models that can be used to
solve a COP is presented with their algorithmic structure. In the following part of
this subsection, general guidelines for mapping COPs onto the ANNs models will
be presented.

Guidelines for H-T’s Model (Discrete and Continuous)
• The output state of the neurons represents the decision variables of

the COP.
• Combine the objective function and constraints using the penalty functions, such

that the overall modified objective function is quadratic in nature, and it is called
as the energy function of the system.

• Obtain the weights and the bias for each neuron. This is the main step that
maps the COP onto ANN. This can be done by any one of the following
methods:
– Compare the coefficients of terms in energy function with the coefficients in

Ed or Ec functions. This comparison will determine the weights on the links
and will determine the input bias of a neuron.

– Compare the coefficients of degree 1 in the differential update rule to the
weights. Similarly, compare the constant term of differential update rule to
the bias.

• Assign a random initial state to all the neurons, and proceed as described in
Algorithm 1 or 2 .
Note: Only models with linear and/or quadratic objective function can be solved

using the classical H-T’s model. For solving the general COPs, various extensions
are proposed, like the Lagrange function method.
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Guidelines for Durbin-Willshaw’s Model
• The decision variable of the COP is represented by the Euclidean position of the

neurons.
• Find the center of gravity of the given geometry and mark it as the ring’s center.
• Initially, all the neurons are placed uniformly on the circumference of the ring.
• Update the position of the neurons as described in Algorithm 3 .

Guidelines for Kohonen’s Model
• The decision variables of the COP are represented by the weight vector.
• Initially, all the cities of the input layer are connected with all the neurons of

output layer.
• Update the weights of the neurons as described in Algorithm 4 .

Note that only COPs which have a low-dimensional geometrical structure can be
solved using the Durbin-Willshaw’s model or the Kohonen’s model. However, there
has been extension proposed for solving other COPs, like self-organizing neural net-
works (SONNs) [108]. SONNs exploit the fact that solutions to many optimization
problems can be seen as finding the best arrangement in the permutation matrix. The
best arrangement is the one which is both feasible and optimal to the given COP.

Guidelines for Lagrangian Model
• The output state of the neurons (both Lagrangian and variable neurons) represents

the decision variable of the COP.
• Combine the objective function and constraints using the Lagrange method. This

overall Lagrange function is called the energy function of the system.
• Obtain the weights and the bias. This is the main step that maps COP onto ANN.

This can be done by any one of the following methods:
– Compare the coefficients of terms in energy function with the coefficients in

the L.x; �/ function. This comparison will determine the weights on the links
and will determine the input bias of a neuron.

– Compare the coefficients of degree 1 in the differential update rule to the
weights. Similarly, compare the constant term of differential update rule to
the bias.

• Assign a random initial state to all neurons and proceed as described in
Algorithm 5 .
In the following subsection, a detail mapping of a COP using the H-T’s model

will be presented.

2.8 Example: Mapping

In this subsection, an illustration of mapping a COP to the H-T’s model will
be presented. A symmetric traveling salesman problem (TSP) is selected for the
illustration because this problem has been considered as a standard representative
test problem for COPs.
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Hopfield Mapping
Consider the TSP formulated as

minimize W
NX

iD1

NX

kD1;k¤i

NX

j D1

dikxij .xk;iC1 C xk;i�1/ (29)

subject to W
NX

iD1

xij D 1 8j D 1; : : : ; N (30)

NX

j D1

xij D 1 8i D 1; : : : ; N (31)

xij 2 0; 1 8i; j D 1; : : : ; N (32)

where

xij D
(

1 if city i is in the position j

0 otherwise

and dik represents the distance between the cities i and j . The first step in mapping
TSP to a H-T’s model will be converting the given problem into an unconstrained
quadratic programming problem, using the penalty functions. Following transfor-
mations are used by Hopfield and Tank to map the problem:
• The function in Eq. (30) is transformed into

NX

iD1

NX

kD1;k¤i

xij xkj

• The function in Eq. (31) is transformed into

NX

j D1

NX

kD1;k¤j

xij xik

• In order to preserve the equality of 1 in Eqs. (30) and (31), additional penalty is
added as

0

@
NX

iD1

NX

j D1

xij � N

1

A
2

Thus, the penalized objective function can be written as
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Etsp D A

2

NX

jD1

NX

iD1

NX

kD1;k¤i

xij xkj C B

2

NX

iD1

NX

jD1

NX

kD1;k¤j

xij xik

C C

2

0

@
NX

iD1

NX

jD1

xij � N

1

A
2

C D

2

NX

iD1

NX

kD1;k¤i

NX

jD1

dikxij .xk;iC1 C xk;i�1/ (33)

Comparing the Eq. (33) with (1 ), we have the following values for the synaptic
weights and the input bias:

wijkl D �Aıik.1 � ıjl / � Bıjl .1 � ıik/ � C � Dıik.ıl.j C1/ C ıl.j �1// (34)

�ij D CN (35)

where ıik is the Kronecker Delta.9 With the values of weight and bias, H-T’s energy
function can be written as

Etsp D �1

2

NX

i;j;k;lD1

wijkl xij xkl �
NX

i;j D1

�ij xij (36)

Thus, the system represented by Eqs. (34)–(36) can be implemented via an analog
circuit or stepwise simulation on a digital computer. Although this mapping is not
the best mapping (see [119] for a better mapping) for TSP, however, the purpose of
this mapping was to illustrate the reader about various changes that are needed for
mapping a simple COP onto a given ANN.

In this section, some of the classical models of the ANNs applied to solve the
COPs were reviewed. However, the conditions under which the ANNs will converge
to the optimal solution are not addressed in this section. In Sect. 3, conditions that
guarantee the stability and the convergence ability of ANNs while solving the COPs
will be presented.

3 Optimality Conditions

In the previous sections, it was stated that the ANNs will perform a gradient
descent method. However, there were no mathematical analysis or proofs provided
to support the claim. In this section, the stability and convergence analysis of ANNs
will be presented. The objective of the such analysis is to prevent the network
from oscillation or chaos and to guarantee its convergence to a local minimum
[83, 106]. That is, to analyze that under what conditions from any arbitrary initial
point, the ANN will converge to a local stable point. Although the stability term is
used frequently from the electrical engineering point of view but from the view

9ıik D 0 if i ¤ k; ıik D 1 if i D k.
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of optimization, these are more likely to be called as the optimality conditions.
Therefore, in the following subsections, the necessary and sufficient conditions that
lead the ANNs to converge at the local minima will be analyzed.

3.1 System Dynamics

The method of selecting neurons for the update in a given ANN is called its
system dynamics. In the previous subsection, a random method to select a neuron
for update is mentioned. However, it should be a valid question to ask, why to
select a neuron randomly for the update? Why not select them in a synchronous,
parallel, or consecutive way? This subsection investigates the best methods of
selecting neurons. Before analyzing different update rules, in this subsection,
different dynamics that can be applied to an ANN are described for a discrete state
discrete dynamics system.

Consider a general form of discrete time ANN with the following dynamic
equations:

Ii .t C 1/ D
nX

j D1

wij xj .t/ C �i (37)

xi .t C 1/ D ‰d .Ii / D
(

1 if Ii > Ui

�1 if Ii � Ui

(38)

where xi and Ii represent the external state and internal state of an i th neuron and
wij represents the weight between an i th neuron and a j th neuron. �i is a constant
representing an external input to the i th neuron. Function ‰d ./ is called as the
transfer function. It assigns binary values to xi . It should be noted that function
‰d ./ is slightly different from the conventional sign or signum function. This is
due to the simple observation that a single dormant neuron (i.e., not-firing neuron)
will never excite itself (since wi i D 0). Ui represents the threshold value of the i th
neuron. If the aggregate sum of internal energies supplied to the i th neuron is greater
than Ui , then this neuron will “fire,” that is, xi will be set to 1. On the other hand, if
the aggregate sum of internal energies is less than the threshold, the neuron will be
in a dormant or “not-firing” state. Note that, here the external state of the neurons
can take values of �1 or 1. The dynamic equation of the discrete state system can
be written in a compact form as

xi .t C 1/ D ‰d

0

@
nX

j D1

wij xj .t/ C �i

1

A (39)

The three main types of dynamics that can be implemented in any ANN are
described as:
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• Synchronous Dynamics

xi .t C 1/ D ‰d

0

@
nX

j D1

wij xj .t/ C �i

1

A 8 i D 1; : : : ; n (40)

• Parallel Dynamics

xi .t C 1/ D
8
<

:
‰d

�Pn
j D1 wij xj .t/ C �i

�
8 i 2 S.t/

xi .t/ otherwise
(41)

• Consecutive Dynamics

xi .t C 1/ D
8
<

:
‰d

�Pn
j D1 wij xj .t/ C �i

�
i D K

xi .t/ otherwise
(42)

where S.t/10 represents the set of selected neurons at time t and K11 represents the
single selected vertex at time t . The above equations were defined for discrete state
discrete dynamic system. That is, if the system is updated in discrete time, then
the system is called as the discrete time system. Similarly, if the state (external)
of the system is discrete, it is called as the discrete state system. On the other
hand, if the system is updated in continuous time, it is called as the continuous
time system. Moreover, if it has continuous state, it is called as the continuous state
system. Thus, in general, all the ANN can be classified as discrete states discrete
dynamics (DSDD), continuous state discrete dynamics (CSDD), continuous state
continuous dynamics (CSCD), and discrete state continuous dynamics (DSCD). In
the following sub sections, stability and optimality analysis of different systems will
be presented.

3.2 Lyapunov Energy Function

When Hopfield introduced the notion of feedback type ANN, Lyapunov function
was used to analyze the convergence characteristics of the H-T’s model. This is

10They can be selected randomly; however, the best way to select them is considering an
independent set of neurons. This will be discussed in the following subsections.
11There are many ways to select the k based on the distribution function defined by:

• The gradient rule [50]
• The probabilistic-gradient rule
• The Hopfield rule [56]

However, these distribution functions are independent and have the same mean value (n) [83].
Thus, they convey the idea of random selection of the Kth neuron.
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done in order to prove that H-T’s models are stable in nature and are capable of
finding solutions to the optimization problem. Keeping the importance of Lyapunov
analysis of ANNs in COPs, some of the main results from the literature will be
presented in this subsection. Before proceeding for the Lyapunov analysis, some of
the definitions are to be stated.

Basic Definitions:
Consider a dynamic system of the following form:

rx.t/ D E.x.t//; x.t0/ D x0 2 R
n (43)

Definition 1 A point x� is called the equilibrium point (or critical point, or steady
state point) of the system described by Eq. (43) if E.x�/ D 0.

Definition 2 A function f W Rn 7! R is said to be a Lyapunov function if it holds
the following properties:
• Function f is continuous and differentiable.
• The partial derivatives of function f w.r.t. any element of x are continuous.
• Function f is nonnegative function over its entire domain.
• The derivative of function f w.r.t. time is nonpositive.

Definition 3 For the system described by Eq. (43), an equilibrium point x� is said
to be Lyapunov stable (or stable in the sense of Lyapunov) if for any positive scalar

, there exists a positive scalar ı such that

jjx.t0/ � x�jj < ı �! jjx.t/ � x�jj < " 8t � t0

Definition 4 An equilibrium point x� is said to be asymptotically stable (or
asymptotically stable in the sense of Lyapunov) if the following conditions are
satisfied:
• x� is stable.
• limt!1 x.t/ D x�.

For the detailed explanation of the above definitions, see [76].
Analysis of DSDD Systems
Now, let us begin with systems of type DSDD. The two widely known Lyapunov

functions for the DSDD systems can be written as
• Lyapunav 1

EDD1.t C 1/ D � hx.t C 1/; W x.t/i C h�; .x.t C 1/ C x.t//i (44)

or

EDD1.t C 1/ D �
nX

iD1

nX

j D1

wij xi .t C 1/xj .t/
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C
nX

iD1

�i .xi .t C 1/ C xi .t// (45)

• Lyapunav 2

EDD2.t C 1/ D �1

2
hx.t C 1/; W x.t C 1/i C h�; .x.t C 1//i (46)

or

EDD2.t C 1/ D �1

2

nX

iD1

nX

j D1

wij xi .t C 1/xj .t C 1/ C
nX

iD1

�i .xi .t C 1// (47)

Theorem 1 If W is symmetric and update rule is synchronous, then a discrete
system defined by Eq. (45) will converge to either a local minima or to a two-edge
cycle.

Proof The change brought to the energy function given by Eq. (45) in one
iteration is

4EDD1.t C 1/ D .EDD1.t C 1// � .EDD1.t//

D
0

@�
nX

iD1

nX

j D1

wij xi .t C 1/xj .t/ C
nX

iD1

�i .xi .t C 1/ C xi .t//

1

A

�
0

@�
nX

iD1

nX

j D1

wij xi .t/xj .t � 1/ C
nX

iD1

�i .xi .t/ C xi .t � 1//

1

A

(48)

solving Eq. (48) will lead to the following:

4EDD1.t C 1/ D
 

nX

iD1

�i .xi .t C 1/ � xi .t � 1//

!

C
0

@�
nX

iD1

nX

j D1

wij xi .t C 1/xj .t/ C
nX

iD1

nX

j D1

wij xi .t/xj .t � 1/

1

A

(49)

Changing index in the second term and using symmetry of W matrix, following
simplification is obtained:
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4EDD1.t C 1/ D
 

nX

iD1

�i .xi .t C 1/ � xi .t � 1//

!

C
0

@�
nX

iD1

nX

j D1

wij xj .t/.xi .t C 1/ � xi .t � 1//

1

A (50)

Rewriting the above equation,

4EDD1.t C 1/ D �
nX

iD1

.xi .t C 1/ � xi .t � 1//

0

@
nX

j D1

wij xj .t/ � �i

1

A (51)

For each i th neuron, the contribution to the change in the energy function will be
given by

.4EDD1.t C 1//i D �.xi .t C 1/ � xi .t � 1//

0

@
nX

j D1

wij xj .t/ � �i

1

A (52)

or

.4EDD1.t C 1//i D .xi .t � 1/ � xi .t C 1// Ii .t/ (53)

Thus, for the Lyapunov energy function given by Eq. (45), the change in energy
of i th neuron is given by Eq. (3.2).

Since the update rule is synchronous, at every iteration any of the following
scenarios may arise:
• If Ii .t/ > 0 ) xi .t C 1/ D 1 ) .4EDD1.t C 1//i � 0 8 i 2 N:

• If Ii .t/ � 0 ) xi .t C 1/ D 0 ) .4EDD1.t C 1//i � 0 8 i 2 N:

From the above implication, for every i th neuron, .4EDD1.t C 1//i � 0. Thus,
the system is converging. At the converging limit, .4EDD1.t C 1//i D 0. This
implies the following cases:
• Ii .t/ D 0 ) xi .t/ D xi .t C 1/ D 0 8 i 2 N , a trivial case and can be

discarded
• xi .t � 1/ � xi .t C 1/ D 0 8 i 2 N:

– ) xi .t � 1/ D xi .t C 1/ ¤ xi .t/ 8 i 2 N ) two-edge cycles.
– ) xi .t � 1/ D xi .t C 1/ D xi .t/ 8 i 2 N ) local minima.

Thus, the system will converge to a local minimum or to a two-edge cycle. �

The next case to consider will be DSDD system with parallel dynamics. If a
similar energy function is used, then following a similar argument, it is observed for
the parallel dynamics that if i 2 S.t � 1/ and i … S.t/, then the sign of Eq. (3.2)
is undetermined. Thus, there could be an increase in the energy of the system, if
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parallel dynamics is followed. However, this case will not arise, if the set of neurons
for parallel update is selected in a specified way and if a different energy function
is used. The following theorem will give the necessary and sufficient condition for
convergence of parallel dynamics.

Theorem 2 If W is a symmetric matrix with zero diagonals and if the update rule
is parallel, then a discrete system defined by Eq. (47) will converge to a local minima
if and only if S.t/ contains an independent set of neurons for each iteration t . Where
S.t/ is said to contain independent set of neurons, if i; j 2 S.t/, then wi;j D 0

Proof Consider a generalized Lyapunov energy function given by Eq. (47). Let
S.t/ be the independent set of neurons. The change in energy of the system is
given by

4EDD2.t C 1/ D .EDD2.t C 1// � .EDD2.t//

D 1

2

0

@�
nX

iD1

nX

j D1

wij xi .t C 1/xj .t C 1/ C
nX

iD1

�i .xi .t C 1//

1

A

�1

2

0

@�
nX

iD1

nX

j D1

wij xi .t/xj .t/ C
nX

iD1

�i .xi .t//

1

A (54)

Splitting the above equation for the cases i; j 2 S.t/ and using symmetric
property of W , we get

4EDD2.t C 1/ D 1

2

0

@�
X

i2S.t/

X

j …S.t/

wij xi .t C 1/xj .t C 1/ C
nX

iD1

�i .xi .t C 1//

1

A

�1

2

0

@�
nX

iD1

nX

j D1

wij xi .t/xj .t/ C
nX

iD1

�i .xi .t//

1

A (55)

Now, based on the above equation, the following two scenarios may happen:
• If Ik.t/ > 0 ) xk.t C 1/ D 1 ) 4EDD2.t C 1/ � 0

• If Ik.t/ � 0 ) xk.t C 1/ D 0 ) 4EDD2.t C 1/ � 0

Thus, the above system is converging.At the converging limit, 4EDD2.t C1/ D 0,
which implies the following cases:
• Ik.t/ D 0 ) xk.t/ D xk.t C 1/ D 0 8 k 2 N , a trivial case and can be

discarded.
• xk.t/ � xk.t C 1/ D 0 8 k 2 N ) local minima.

Thus, the system will converge to a local minimum. For the proof of the converse,
see [83]. �
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Theorem 3 If W is symmetric, the update rule is consecutive, then a discrete system
defined by Eq. (47) will converge to a local minimum.

Proof Consider the Lyapunov energy function given by Eq. (47). The change in
energy is given by

4EDDC.t C 1/ D .EDDC.t C 1// � .EDDC.t//

D 1

2

0

@�
nX

iD1

nX

j D1

wij xi .t C 1/xj .t C 1/ C
nX

iD1

�i .xi .t C 1//

1

A

�1

2

0

@�
nX

iD1

nX

j D1

wij xi .t/xj .t/ C
nX

iD1

�i .xi .t//

1

A (56)

Splitting the above equation for cases when i D K and when i ¤ K and using
the property that W is symmetric, we get

4EDDC.t C 1/ D .xk.t/ � xk.t C 1// Ik.t/ (57)

The following two scenarios may happen:
• If Ik.t/ > 0 ) xk.t C 1/ D 1 ) 4EDDC.t C 1/ � 0

• If Ik.t/ � 0 ) xk.t C 1/ D 0 ) 4EDDC.t C 1/ � 0

Thus, theabovesystem isconverging.At theconverging limit,4EDDC.t C1/ D 0,
which implies the following cases:
• Ik.t/ D 0 ) xk.t/ D xk.t C 1/ D 0 8 k 2 N , a trivial case and can be

discarded.
• xk.t/ � xk.t C 1/ D 0 8 k 2 N ) local minimum.

Thus, the system will converge to a local minimum. �

Theorem 4 If W is symmetric positive semidefinite, then a discrete system defined
by Eq. (47) will converge to a local minimum.

Proof See [83]. �

The above analysis is performed for DSDD system. Another important class of
system is CSDD system. Similar to the discrete state, three main types of dynamics
can be applied for the continuous state system; they can be described as
• Synchronous Dynamics

xi .t C 1/ D ‰c

0

@
nX

j D1

wij xj .t/ C �i

1

A 8 i D 1; : : : ; n (58)
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• Parallel Dynamics

xi .t C 1/ D
8
<

:
‰c

�Pn
j D1 wij xj .t/ C �i

�
8 i 2 S.t/

xi .t/ otherwise
(59)

• Consecutive Dynamics

xi .t C 1/ D
8
<

:
‰c

�Pn
j D1 wij xj .t/ C �i

�
i D K

xi .t/ otherwise
(60)

where S.t/ and K have the same meaning as in the DSDD case. The main difference
between the above equations and the discrete state equations is the definition of the
transfer function. Here the transfer function is not similar to sign function. However,
here the transfer can be a general real valued monotonically increasing continuous
function with the following properties:

if a ! 1; ‰c.a/ ! 1 8 a 2 R

if a ! �1; ‰c.a/ ! �1 8 a 2 R (61)

Apart from the above properties, the following property is also incorporated to
maintain an easy shift from a discrete state to a continuous state neuron. This is one
of the important property of the transfer function, which adds the flexibility of using
a continuous state model for solving a discrete COP.

‰c.�a/ ! ‰d .a/ as � ! 1 (62)

Even the monotonic increasing criteria is not necessary. To be specific, any
monotonic nondecreasing continuous function with the above properties may be
used as the transfer function. However, the monotonic increasing continuous
function is used only for the sake of simplicity and clearness [83].

There are many standard mathematical functions that appropriately fit the above
restriction for the transfer function. The following are some of the widely used
transfer functions:
1. ‰c.a/ D tan h.a/

2. ‰c.a/ D 2
�

tan�1.a/

3. ‰c.a/ D 1�e�a

1Ce�a

4. ‰c.a/ D cot h.a/ � 1
a

In the following part of this section, some more theorems without proof for the
CSDD systems are presented. Interested readers are directed to [83] for the detailed
proofs of the following theorems.

Theorem 5 If W is symmetric, wi i � 0, and the update rule is synchronous, then a
discrete system will converge to a local minima or a two-edge cycle, if the following
energy function is used.
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ECDS.t C 1/ D �
nX

iD1

nX

j D1

wij xi .t C 1/xj .t/ C

nX

iD1

�i

 
xi .t C 1/ C xi .t/ C

nX

iD1

 Z xi .tC1/

0

‰c
�1
i .a/ d.a/ C

Z xi .t/

0

‰c
�1
i .a/ da

!!

(63)

Theorem 6 If W is symmetric and positive semidefinite, then a discrete system
will converge to a local minima (irrespective of the type of dynamic used), if the
following energy function is used.

ECD.t C 1/ D �1

2

nX

iD1

nX

j D1

wij xi .t C 1/xj .t/

C
nX

iD1

�i .xi .t C 1// C
nX

iD1

Z xi .tC1/

0

‰c
�1
i .a/ da (64)

The restriction of positive semidefinite W can be relaxed if ‰c and ‰c
�1 are

differentiable. Let �i be a scalar, defined as

‰c
0
i � �i and Œ‰c

�1�0 � 1

�i

(65)

If such �i ’s exists, then the following theorem holds:

Theorem 7 Let bwij D wij C ıij

�ij
, where ıi;j is Kronecker delta. Let the energy

function be defined as

ECD.t C 1/ D �1

2

nX

iD1

nX

j D1

wij xi .t C 1/xj .t/

C
nX

iD1

�i .xi .t C 1// C
nX

iD1

Z xi .tC1/

0

‰c
�1
i .a/ da (66)

If bW is positive definite, then a discrete system will converge to a local minimum
(irrespective of the type of dynamic used).

Furthermore, for the specific case of consecutive dynamics, a more relaxed
optimality condition can be used.

Theorem 8 Let the energy function be defined as
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ECD.t C 1/ D �1

2

nX

iD1

nX

j D1

wij xi .t C 1/xj .t/

C
nX

iD1

�i .xi .t C 1// C
nX

iD1

Z xi .tC1/

0

‰c
�1
i .a/ da (67)

If wi i � 0, wij C 1
�i

> 0, the update rule is consecutive, and ‰c & ‰c
�1 are

differentiable, then a discrete system will converge to a local minimum.

A similar analysis can be done for continuous dynamics. Interested readers are
referred to [83] for detailed analysis. The above theorems can be easily extended
to f0; 1g systems. Continuous dynamics are usually hard to simulate on the digital
computers and are mostly used in designing the analog circuits. The typical way of
implementing continuous dynamics on the digital computer is to discretize the time
into small steps. Nevertheless, the objective of presenting the proofs for discrete
state systems is to highlight the reader that the convergence of ANNs is a critical
issue. Moreover, the convergence of ANNs depends not only on the energy function
but also on the systems dynamics. However, it can also be seen from the above
proofs that a careful design of energy function (based on various properties of the
weight matrix, W ) will converge the system to a local minimum, irrespective of
the dynamics.

Although Lyapunov function analysis is enough to understand that only for
specific scenarios ANNs will converge to local optima. Lyapunov analysis is useful
for those optimization problems whose constraints and objective function can be
converted into a quadratic form. Moreover, the constraints are to be incorporated
into the Lyapunov function using an appropriate penalty function. In general, it is
hard to obtain a Lyapunov energy function for a given system. This does not mean
that ANNs cannot be applied to these systems. Therefore, for such systems, different
types of energy functions are designed.

The primary approach that replaced the usage of Lyapunov energy function
analysis is the usage of a general penalty function analysis (by incorporating
constraints of a given optimization problem [77]). In the following subsections, the
convergence and stability criteria for penalty- and Lagrange-based ANNs will be
presented.

3.3 Penalty-Based Energy Functions

Consider the following constrained optimization problem:

minimize W
f .x/
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subject to W
gi .x/ � 0 8i D 1; : : : ; m

x 2 R
n (68)

where, f; gi W Rn 7! R. It is assumed that both f; gi are continuously differentiable
functions. The above problem can be converted to an unconstrained optimization
problem as

minimize W
Epen.x/

subject to W
x 2 Rn (69)

where

Epen.x/ D f .x/ C
mX

iD1

ci Pi .x/ (70)

and Pi .x/ is the penalty function. Now, the convergence of ANNs to solve
the above problem depends upon the structure of the penalty function. In this
work, convergence analysis based on the penalty function of the form Pi .x/ D
1
2
Œminf0; gi .x/g�2 8 i D 1; : : : ; m will be presented. One of the properties of this

penalty function is that it can be converted to a continuous differentiable penalty
function [77]. Consider the following transformation:

Let


i D
(

ci gi .x/ if gi .x/ < 0

0 if gi .x/ � 0
8 i D 1; : : : ; m (71)

then,

ci Pi .x/ D ci

2
Œminf0; gi .x/g�2 D 1

2

i gi .x/ 8 i D 1; : : : ; m (72)

since gi ; 8 i D 1; : : : ; m; is assumed to be differentiable, the above penalty
function is differentiable.

The dynamics of this system12 is defined as

dxi

dt
D � 1

Ci

@E.x/

@xi

8 i D 1; : : : ; n (73)

Thus, these systems are also called as gradient-based systems. These systems
[77] have some of the useful properties that can be used to solve the COPs. These
properties are described in the following theorems:

12Using Kirchoffs law, see [77]
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Theorem 9 Let the system be described by Eq. (73). The isolated equilibrium point
of the system is asymptotically stable if and only if it is a strict local minimizer of
function Epen.

Theorem 10 Let the system be described by Eq. (73). If the isolated equilibrium
point of the system is stable, then it is a local minimizer of function Epen.

For the gradient-based systems, assuming Lipschitz continuity, Han et al. [51]
proposed many other convergence properties.

One of the difficulties in applying the penalty based method in the ANNs, is the
selection of various penalty parameters. Due to the physical limits on the analog
circuits, ci cannot be set to a large value. In order to overcome the difficulties of
the penalty method, and to generalize the use of ANNs, Lagrange based energy
function was proposed [139]. Following subsection discuss some of the results for
the Lagrange-based ANNs.

3.4 Lagrange Energy Functions

Lagrange based neural networks are inspired by the saddle point theory and the dual-
ity analysis. The focus of these networks is to search for a point that satisfies K.K.T’s
first order necessary conditions of optimality [12]. Therefore, analogous to the gra-
dient descent systems, these network are also known as projective gradient systems.

In the following subsections, necessary and sufficient conditions related to La-
grange type energy functions will be presented. Consider the following optimization
problem:

minimize W
f .x/

subject to W
hi .x/ D 0 8i D 1; : : : ; m (74)

x 2 R
n

where, f; hi W Rn 7! R. It is assumed that both, f; hi are continuously differentiable
functions. The above problem can be converted to an unconstrained optimization
problem using the Lagrange function, as:

L.x; �/ D f .x/ C �T h.x/ (75)

In this subsection, some of the basic optimality condition in the form of theorems
are stated without proof. Interested readers may refer to [12] for the complete
discussion, with proofs.

Theorem 11 Let us assume that x� is a regular point (one that satisfies constraint
qualification). If x� is the local minimum of problem Eq. (74), then there exists
�� 2 R

m such that:
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rxL.x�; ��/ D 0 (76)

and
dT r2

xxL.x�; ��/d � 0; 8 d 2 fd W rxh.x�/T d D 0g (77)

Theorem 12 Let us assume that h.x�/ D 0. If 9 �� 2 R
m such that:

rxL.x�; ��/ D 0 (78)

and
dT r2

xxL.x�; ��/d > 0; 8 d 2 fd W d ¤ 0I rxh.x�/T d D 0g (79)

then x� is the local minimum of problem Eq. (74).

Similar to the case of gradient-based dynamics, Lagrange systems has the
following dynamic equations:

rt x D �rxL.x; �/ (80)

rt � D �r	L.x; �/ (81)

Although, the above equations are similar to the gradient-based systems, due to
the difference in type of variables (ordinary variables and Lagrange variables), the
system is named as projective gradient systems. In the presence of different types of
the variables, the Lagrange will decrease w.r.t. one type of the variables and increase
w.r.t. the other. This leads to the saddle point theory. For example, it is very easy to
see that

dL.x; �/

dt

ˇ̌
ˇ
�Dconstant

D
nX

iD1

@L.x; �/

@xi

dxi

dt
D �

nX

iD1

�
dxi

dt

�2

� 0 (82)

dL.x; �/

dt

ˇ̌
ˇ
xDconstant

D
mX

iD1

@L.x; �/

@	i

d	i

dt
D

mX

iD1

�
d	i

dt

�2

� 0 (83)

Thus, .x�; ��/ act as a saddle point of the system.

Theorem 13 If r2
xxL.x; �/ is positive definite 8 x 2 R

n and 8 � 2 R
m , then

the proposed ANN is Lyapunov stable.

The proof of this theorem is presented by Zhang and Constantinides in [139].
From the above theorem, following corollaries can be obtained:

Corollary 1 x tends to a limit x� at which rxL.x�; �/ D 0.

Corollary 2 If rhi .x�/ 8 i D 1; : : : ; m are linearly independent, then �

converges to ��.

Theorem 14 Let the network be described by Eqs. (75), (80), and (81). If the
network is physically stable, then the ANN converges to a local minimum. The point
of convergence is a Lagrange solution to problem Eq. (74).
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The above restriction of the global convexity can be relaxed to a local convexity,
and the following theorem can be stated:

Theorem 15 Let the network be described by Eqs. (75), (80), and (81). If following
conditions hold:
1. 9.x�; ��/ such that .x�; ��/ is a stationary point
2. r2

xxL.x�; ��/ > 0

3. x� is a regular point of problem Eq. (74)
the initial point is in proximity of .x�; ��/, then the ANN will asymptotically
converge to .x�; ��/.

In this section, different ways to study convergence and stability performance
of ANNs were illustrated. Various theorems were presented to understand the
critical role of the energy functions in the convergence behavior of ANNs.
However, the convergence will guarantee local optimality provided suitable
energy function, and dynamics are used to update the states of neurons. For
obtaining global optimality, there are numerous extensions proposed in the
literature. In the following section, a discussion on the methods that can be
used to escape from local minima, in the hope of finding the global minimum, is
presented.

4 Escaping Local Minima

The very thought of the gradient descent method will kindle the question regarding
global optimality. Classical ANNs perform gradient descent method and will hardly
converge to the global minimum. In order to overcome such difficulties, various
extensions have been proposed. The extension methods that may converge ANNs to
global minima by escaping local minima can be broadly classified as:
• Stochastic extensions
• Chaotic extensions
• Convexification
• Hybridization

Clearly, any extension that can be applied to H-T models can be easily ap-
plied to the general penalty or the Lagrange-based ANNs. Thus, in most of the
cases, the extensions for the H-T’s model will be reviewed. In the following
part of this section, a brief discussion of the above extension methods will be
presented.

4.1 Stochastic Extensions

There are basically four ways to include stochasticity in the H-T’s model [107].
They are:
1. Introducing stochasticity in the transfer function
2. Introducing noise in the synaptic weights
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3. Introducing noise in the input bias
4. Any combination of the above three

The prominent stochastic extensions that can be applied to the classical ANNs
are discussed in the following parts of this subsection.

4.1.1 Boltzmann Machines
This is the first extension of H-T’s model, which proposes a way to escape from
the local minima [1, 2, 54, 55]. This is done by replacing the deterministic transfer
function with a probabilistic transfer function. Let the change in energy of the i th
neuron of the H-T’s model be represented by rEi . Then, irrespective of the previous
state, the i th neuron will fire with probability pi , which is defined as

pi D 1

.1 C exp �rEi =T /
(84)

and

xi D ‰Blz.Ii / D
(

1 with probability pi

0 with probability .1 � pi /
(85)

where T is the parameter similar to the concept of temperature in simulated
annealing.

4.1.2 Gaussian Machines
These are the extensions to the Boltzmann machines, where noise is introduced in
the inputs [7]. The updating dynamics of an i th neuron in the H-T’s model will be
modified as

Ii D
nX

j D1

wij xj C �i C "i (86)

where "i is the term representing the noise, which follows Gaussian distribu-
tion with mean zero and variance �2. The deviation of � depends upon the
parameter T , the temperature of the Gaussian network. In addition to the noise,
activation level ai is being assigned to every neuron, which has the following
dynamics:

dai

dt
D �ai

�
C Ii (87)

The external state of the i th neuron is determined by the following equation:

xi D ‰Gss.ai / D 1

2

�
tanh

�
ai

a0

�
C 1

�
(88)

where a0 is the additional parameter added to the Gaussian network.
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4.1.3 Cauchy Machines
This system is an extension of the Gaussian machines, where instead of a Gaussian
noise, a Cauchy noise is added to the system [114, 116]. The reason of replacing
the Gaussian noise with the Cauchy noise is based on the observation that the
Cauchy noise produces both global random flights and local random flights, whereas
Gaussian noise produces only local random noise. Thus, the system has a better
chance of convergence to the global minimum. The probability that a neuron will
fire is given as

pi D 1

2
C 1

�

�
arctan.

Ii

T
/

�
(89)

and

xi D ‰Cau.Ii / D
(

1 with probability pi

0 with probability .1 � pi /
(90)

where T is the temperature of the system which has the similar meaning as in
the Gaussian or Boltzmann machines. In [63], comparison of lower bounds for
Boltzmann and Cauchy machines is presented.

4.2 Chaotic Extensions

Let EHop represent the general H-T’s energy function. Then chaotic extensions for
the H-T’s model can be obtained by adding an additional function to EHop [73,111],
which can be described as

ECNN D EHop C H.x; W; �/ (91)

Different definitions for the function H./ lead to different chaotic extensions.
Some of the chaotic extension methods for the H-T’s model will be presented in the
following subsection.

4.2.1 Chen and Ahira’s Model
Chen and Ahira [20, 21] proposed a chaotic addition to the energy function, which
is given as

HCA D 	.t/

2

X

i

xi .xi � 1/ (92)

where 	.t/ is the decay parameter. If this term is added to H-T’s energy function,
then the system’s dynamics is defined by the following equation:

dIi

dt
D �@ECNN

@xi

(93)

The update rule for the internal energy of this model is given as
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Ii .t C 1/ D kIi .t/ C ˛

0

@
nX

j D1;j ¤i

wij xj .t/ C �i

1

A � z.t/.xi .t/ � �0/ (94)

z.t C 1/ D .1 � ˇ/z.t/ (95)

where ˛ D rt , z.t/ is the self-feedback connection weight z.t/ D 	.t/rt , ˇ is the
damping factor, �0 D 1=2, and k D 1 � rt=� .

Initially, z is very high to create strong self-coupling, thereby leading to the
chaotic dynamics. Chaotic dynamics acts like an exploration stage in the simulated
annealing, searching for a global minima. In the later stages, z is decayed so that the
system starts to converge to a stable fixed point (similar to exploitation stage in the
simulated annealing).

4.2.2 Wang and Smith’s Model
Wand and Smith [124] proposed the following chaotic addition to the H-T’s energy
function, which is given as

HWS D .ˇT � 1/Ec (96)

where Ec is the original H-T’s energy function and ˇ is the parameter which takes
the values between Œ0; 1�. If this term is added to H-T’s energy function, then the
system is defined as

dIi

dt
D �@ECNN

@xi

(97)

The update rule of the internal energy for this model is given as

Ii .t C 1/ D
�

1 � ˇT rt.0/

�

�
Ii .t/ C ˇT rt.0/

0

@
nX

j D1;j ¤i

wij xj .t/ C �i

1

A (98)

ˇT rt.0/ D rt.t/ (99)

Initially, rt is sufficiently large to trigger chaotic search. As t ! 1, rt

gradually decreases.

4.2.3 Chaotic Noise Model
Recently, Wang et al. [125] proposed the following chaotic addition to the H-T’s
energy function, which is given as

H� D �
X

i

�i .t/xi .t/ (100)

where �i is the noise term. In general, �i is a normalized time series. Initially, the
neuron is set with the chaotic time series. If this term is added to H-T’s energy
function, then the system is defined as
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dIi

dt
D �@ECNN

@xi

(101)

The update rule of the internal state for this model is given as

Ii .t C 1/ D
�

1 � rt

�

�
Ii .t/ C rt

0

@
nX

j D1

wij xj .t/ C �i C �i .t/

1

A (102)

This model has a linear form of function H./, when compared to the quadratic
forms presented in the earlier models. This may be the reason for its superior
optimization performance among the chaotic extension models.

4.3 Convexification

One of the important properties of a convex optimization problem is that the local
minimum is the global minimum. Thus, convex reformulation of the problem and
finding a local minimum of the reformulation will give the global minimum. If the
actual model is nonconvex, then convexification leads to different approximations
(or relaxations), which in turn may be useful in studying various bounds (lower
and/or upper bound) of a given COP. Both penalty-based ANNs and Lagrange-
based ANNs can be convexified. Convexification of COPs using penalty function
depends upon the type of penalty function. Thus, it will not be discussed in
this subsection. Nevertheless, convexification of Lagrange-based ANNs will be
discussed. From the Theorem 15, it can be seen that the local convexity of Lagrange
systems is hard to obtain in practice. However, an augmented Lagrange method
can be used to convexify any Lagrange-based ANN. In this subsection, one of the
convexification methods that can be used for Lagrange-based ANN is presented. Let
us assume that problem Eq. (74) is nonconvex, then its augmented Lagrange can be
written as

LAug.x; �/ D f .x/ C �T h.x/ C 1

2
cjh.x/j2 (103)

Using Eq. (103), different ANNs can be designed which are known as Aug-
mented Lagrange Neural Networks (ALNN). The state equations can be obtained
as

dxi

dt
D � @f

@xi

�
mX

j D1

.	j C chj /
@hj

@xi

8 i D 1; : : : ; n (104)

d	j

dt
D hj ; 8 j D 1; : : : ; m (105)
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By selecting a sufficiently large value of c, the local convexity for any Lagrange
neural networks can be obtained under some restrictions (see [13]). However, due
to analog circuit and implementing restrictions, the selection of c will become a
critical issue [139].

4.4 Hybridiziation

ANNs have been coupled with metaheuristics like simulated annealing [103, 123–
125], tabu search [43], and evolutionary algorithm [102, 126] for solving COPs.
The main purpose of these hybridizations is to find the global optimal solution, by
adding flexibility to the classical H-T’s model. The usual method of coupling H-T’s
model with a metaheuristic is to incorporate the constraint handling technique of the
ANNs in the global search technique of the metaheuristic.

Moreover, there has been research to hybridize H-T’s model with SONNs
(see [108]). One of the successful implementations is illustrated by Smith et al.
[109]. The experimental result from the illustration indicates that a careful and
appropriate hybridization of H-T’s model with SONNs will result in a better solution
methodology, which can be competitive to the state-of-the art optimization solvers.

5 General Optimization Problems

In this section, a discussion on applying ANNs to some of general optimization
problems will be presented. For the sake of simplicity and convenience, following
general optimization problem will be considered:
• Linear programming problems
• Convex programming problems
• Quadratic programming problems
• Nonlinear programming problems
• Complementarity problems
• Mixed integer programming problem

The objective of selecting mixed integer programming problem is to highlight
the reader, the method of transformation between discrete and continuous variables,
when applying ANNs.

5.1 Linear Programming

Linear programming (LP) is the most widely used optimization technique for
solving numerous optimization problems. Dantzig [30], the father of linear program-
ming, proposed the famous and widely used simplex method to solve LP problems.
However, simplex method has an exponential complexity. A polynomial time algo-
rithm (ellipsoid method) for solving LP problems was presented by Khachiyan [68].
Although the ellipsoid method is polynomial time algorithm, in practice simplex
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outperforms ellipsoid method. Later, in 1984, Karmarkar [66] proposed a more
efficient algorithm than ellipsoid method, and it outperforms simplex method in few
complicated problems like scheduling, routing, and planning. Based on the solution
methodology, the simplex method is categorized as exterior point method, whereas
Karmarkar’s algorithm is categorized as interior point method. Further studies [122]
on the classification of these two fundamentally different ideas lead to a conclusion
that LP problems are finite in nature. Moreover, simplex method is a finite algorithm
suitable to solve LP problems. However, it was also noted that sometimes, infinite
algorithms like interior point method may outperform exterior point algorithms.
Thus, there has been always a curiosity among researchers to investigate the infinite
algorithms. ANNs approach in solving COPs can be seen as an infinite approach.

From the demonstration of Hopfield and Tank [58], ANNs were seen as an
alternative solution approaches to solve the COPs. Many studies has been conducted
to solve LP problems using ANNs [25–28, 35, 67, 100, 136]. Most of these models
were extensions of H-T’s continuous model. As noted in Sect. 2.7, these models
will have an energy function-based model for minimization. Before presenting the
models, consider the following notations for LP problem in canonical LPc and
standard LPs form:

LPc

minimize W
cT x

subject to W
gi .x/ � 0 8i D 1; : : : ; m

LPs

minimize W
ecT x

subject to W
egi .x/ D 0 8i D 1; : : : ; m

Following are the prominent models from the literature.

5.1.1 Kennedy and Chua’s Model
Kennedy and Chua’s [67] model has neurons similar to the H-T’s continuous model.
The external states of this model are represented by x. The equations of updates for
states and energy function are given as

rx D C �1.�c � rg.x/ �.g.x///

E.x.t// D cT x C
mX

j D1

Z gj .x/

0

�j .s/ ds

where C is a matrix of capacitance and is usually taken as I for most of the cases.
Kennedy and Chua showed that Tank and Hopfield’s model is a special case of
the proposed model. Furthermore, they proved that their model will converge to a
steady state, under the assumption that E is bounded from below. Selection of �./

is similar to that of a penalty function. In [80], it was shown that �./ is indeed
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an implicit form of the penalty function. The most widely used representation of
�./ is s g�

i .x/, where s > 0 is the penalty weight. Moreover, g�
i .x/ is same as

�minfgi .x/; 0g. Based on the idea of applying penalty function, there were many
extension of neural networks for LP. Some of the prominent extensions can be seen
in [100,138]. These prominent extensions will be presented in the following part of
this section.

5.1.2 Rodriquez-Vazquez et al. Model
Rodriquez-Vazquez et al. [100] proposed another model for LP. This model is
described as

rx D �u.x/c � s.1 � u.x//rg.x/ v.x/

where v.x/ D Œv1; : : : vm�T ,

u.x/ D
(

1 if gi .x/ � 0 8j D 1; : : : ; m;

0 otherwise

vj .x/ D
(

1 if gj .x/ � 0

0 otherwise

and s > 0. This model can be viewed as a dynamic system, which can start from
any arbitrary point. Initially, the model will move from an infeasible point to a
feasible point. Once a feasible point is obtained, the model will try to move to an
optimal point. In [45], the convergence analysis of Rodriquez-Vazquez et al. [100]
model was performed. It was shown that if the problem is convex, network will
converge. However, Zak et al. [138] proposed that discrete time implementation
of Rodriquez-Vazquez et al. model with an adaptive step size may have problem
in reaching feasible region. In the following paragraph, the model proposed by
Zak et al. will be presented.

5.1.3 Zak et al. Model
This model differs from the earlier ANNs for the LP, as Zak et al. used the exact
penalty function (non-differentiable) to formulate the energy function. This selec-
tion of penalty function eliminates the selection of very high penalty weight. Apart
from that, all the earlier models were proposed for the canonical representation of
LP. However, this model is applicable for both standard and canonical representation
of LP. Although, in the theory, there is no difference in solving the problem in any
representation. But in the case of neural networks, changing from one representation
to other will increase in the number of neurons (due to slack or artificial variables)
and may increase in the complexity of the ANN model. The proposed model can be
described as

rx D �rEp;�;� .x/
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rEp;�;� .x/ DecT x C �rkeg.x/kp C �r
 

mX

iD1

x�
i

!

where x�
i D �minfxi ; 0g; � > 0; � > 0; 1 � p � 1. Although the model uses

exact penalty function, this penalty function is also non-differentiable and hence has
few drawbacks. In [137], convergence analysis of Zak et al.’s model is performed.
It was shown that the system trajectory will converge to the solution of LP under
some positivity restriction on �; �; p. In fact, it is shown that equilibrium points of
the ANN are solutions to the corresponding LP problem [137].

These are some of the prominent models of ANNs applied to solve LP problems.
Similar to the duality theory in LP, there were attempts to solve LP using dual ANNs.
Interested reader may refer to [29, 81].

5.2 Convex Programming

Consider the following convex problem:

minimize W
f .x/

subject to W
gi .x/ D 0 8i D 1 : : : m

x 2 X (106)

where f .x/; gi .x/ W Rn 7! R are any convex functions of x. In order to apply ANNs
to solve this problem, the problem is reformulated into unconstrained optimization
problem using penalty function. Let ˆ./ be the penalty function which has the
following properties:

ˆ.x/

(
D 0 if x is feasible

> 0 otherwise
(107)

Then, consider the following transformed convex problem:

minimize W
E.x; s/

subject to W
x 2 X

where E.x; s/ D f .x/ C s
Pm

iD1 ˆ.gi .x//.
The update equation is
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rx D �� rE.x; s/ (108)

rE.x; s/ D rf .x/ C s

mX

iD1

�.gi .x// rgi .x/

The stability and convergence analysis of this model has been performed in [22].
It has been shown that dynamics given by Eq. (108) leads to an equilibrium point.

5.3 Quadratic Programming

Similar to the linear programming, quadratic programming problems can be mod-
eled using ANNs. Consider the following quadratic programming problem:

minimize W
xT Hx C cT x

subject to W
Ax D b

x 2 X (109)

where x 2 R
n A; H 2 R

n�n. This program can be converted to an unconstrained
problem using a penalty function method or a Lagrange method. A Lagrange
method will be presented in the following part of this section. The Lagrange of
problem Eq. (109) is written as

L.x; �/ D xT Hx C cT x C �T .Ax � b/ (110)

The equations of motion that describe this model are

rt x D �rxL.x; �/ (111)

rt � D �r	L.x; �/ (112)

where

rt x D
�

dx1

dt
;

dx2

dt
; : : : ;

dxn

dt

�T

; x 2 R
n

rT � D
�

d	1

dt
;

d	2

dt
; : : : ;

d	m

dt

�T

; 	 2 R
m

rxL.x; �/ D
�

@L.x; �/

@x1

;
@L.x; �/

@x2

; : : : ;
@L.x; �/

@xn

�T
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and

r	L.x; �/ D
�

@L.x; �/

@	1

;
@L.x; �/

@	2

; : : : ;
@L.x; �/

@	m

�T

The above model is iterative Lagrangian neural network. The convergence
analysis of this model is presented in Sect. 3 and in [139]. Apart from that,
quadratic programming problems with ANNs have been exhaustively studied in
[39, 80, 134, 135].

5.4 Nonlinear Programming

Similar to the quadratic and convex programming, general nonlinear programming
problems can be solved using ANNs. One of the ways is to use a penalty method
approach [67]. Another approach is based on the Lagrange method, presented by
Zhang and Constantinides [139]. The main differences with penalty function method
and the advantages of Lagrange methods are discussed in Sect. 3 of this chapter. In
the following part of this subsection, the method of writing a Lagrange for any
generalized nonlinear problem will be presented.

minimize W
f .x/

subject to W
hi .x/ D 0 8i D 1 : : : m

x 2 R
n (113)

where f .x/; hi .x/ W Rn 7! R are any continuous and twice differentiable functions
of x. The Lagrange of the above COP is written as

L.x; �/ D f .x/ C �T h.x/ (114)

The equations of motion that describes this model are

rt x D �rxL.x; �/ (115)

rt � D �r	L.x; �/ (116)

where

rt x D
�

dx1

dt
;

dx2

dt
; : : : ;

dxn

dt

�T

; x 2 R
n
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rt � D
�

d	1

dt
;

d	2

dt
; : : : ;

d	m

dt

�T

; 	 2 R
m

rxL.x; �/ D
�

@L.x; �/

@x1

;
@L.x; �/

@x2

; : : : ;
@L.x; �/

@xn

�T

and

r	L.x; �/ D
�

@L.x; �/

@	1

;
@L.x; �/

@	2

; : : : ;
@L.x; �/

@	m

�T

The above model is iterative, similar to that of H-T’s continuous model. Both
the types of neuron are decision variables. Lagrangian variables tend to take the
solution to a feasible space, whereas the ordinary variables will take the solution to
an optimal value. The mathematical properties and proofs related to convergence of
this model have been discussed in Sect. 3.

5.5 Complementarity Problem

5.5.1 Linear Complementarity Problem (LCP)
Given a matrix M 2 R

n�N and a vector q 2 R
n, the LCP can be stated as:

find W
x

subject to W
M x C q � 0

xT .M x C q/ D 0

x � 0 (117)

where x 2 R
n. This problem can be solved by ANNs, by converting it to a nonlinear

problem by using Fischer function. Let �.a; b/ be the Fischer function, defined as
�.a; b/ D p

a2 C b2 � a � b. The purpose of using this function is that it has an
important property, which can be stated as

�.a; b/ D 0 , a � 0; b � 0 and ab D 0 (118)

Thus, this property is exploited while solving LCP using ANN. The above
property mimics the LCP, which can be represented as

�i.xi ; Fi .x// D 0 8 i (119)

where Fi .x/ D xi .M x C q/i . Let ˆ.x/ represent a vector, where the i th element is
�i .xi ; Fi .x//. Then, solving LCP is same as solving the following problem:
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minimize W
F.x/ (120)

where

F.x/ D 1

2
jjˆ.x/jj2 (121)

Now, the above problem can be solved by ANNs as a quadratic programming
problem, using either a H-T’s model or Lagrange model.

5.5.2 Nonlinear Complementarity Problem (NCP)
Given a set of functions Fi W Rn 7! R

n; 8 i D 1; : : : ; n, the NCP can be stated
as

find W
x

subject to W
Fi .x/ � 0

xi F.x/ D 0

x � 0 (122)

where x 2 R
n and Fi is assumed to be continuously differentiable function. ANNs

can be used to solve NCP by using the idea of Fischer function [75]. Similar to the
LCP case, define a vector ˆ.x/, where each i th element is represented by

�i.xi ; Fi .x// D 0 8 i (123)

Thus, solving NCP is same as solving the following problem:

minimize W
E.x/ (124)

where

E.x/ D 1

2
jjˆ.x/jj2 (125)

Now, this above problem can be solved by ANNs using a Lagrange model.

5.6 Mixed Integer Programming Problems (MIPs)

The difficulty in solving any optimization problems is not due to the
nonlinear (or discrete) representation of the problem. The criteria that separate
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difficult and easy problems are the convexity of the problem. A convex problem
in a linear or nonlinear representation is tractable, whereas a nonconvex
problem in any representation is difficult to solve. By presenting the example
of a general MIPs, we would like to highlight the thin line that separates a
continuous optimization problem from a discrete optimization problem while
applying ANNs.

Consider the following MIPs defined as

minimize W
f .x; y/

subject to W
gi .x; y/ � 0 8i D 1; : : : ; m

hj .x; y/ D 0 8j D 1; : : : ; p

lk � xk � uk 8k D 1; : : : ; n

yr 2 f0; 1g 8r D 1; : : : ; q (126)

Similar to any previous approaches, this problem can be converted to un-
constrained optimization problem using either a penalty function or a Lagrange
function. For the sake of completeness, both approaches are illustrated in the
following part of this subsection.

5.6.1 Penalty Function Approach
The modified (penalized) energy function for problem Eq. (126) can be written as

Emip.x; y/ D C1 f .x; y/ C C2

mX

iD1

ˆŒgi .x; y/�

CC3

pX

j D1

h2
j .x; y/ C C4

qX

rD1

yr .1 � yr/ (127)

where C1; C2; C3; and C4 are scaling constants, used as the penalty parameters.
ˆ is the penalty function. The dynamics of the network defined by Eq. (127) can be
described as

dIx
k

dt
D ��x

@Emip

@xk

8k D 1; : : : ; n (128)

dIy
r

dt
D ��y

@Emip

@yr

8r D 1; : : : ; q (129)

xk D ‰c.Ix
k / 8k D 1; : : : ; n (130)

yr D ‰d .Iy
r / 8r D 1; : : : ; q (131)
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where �x and �y are positive scaling coefficients for the dynamics of the system.
In addition to that, ‰d can be replaced by the tuned ‰c that results in the discrete
values of yr .

5.6.2 Lagrange Function Approach
The Lagrange of problem Eq. (126) can be written as

Lmip.x; y; �; 
1; 
2/ D f .x; y/ C
mX

iD1

�i gi .x; y/

C
pX

j D1


1
j hj .x; y/ C

qX

rD1


2
r yr .1 � yr/ (132)

where �i � 0 8 i D 1 : : : m and 
1
j ; 
2

r 2 R 8 j D 1 : : : p and
8 r D 1 : : : q. Similar to penalty function approach, the system dynamics can be
described as

rt x D �rxLmip.x; y; �; �1; �2/ (133)

rt y D �ryLmip.x; y; �; �1; �2/ (134)

rt 

1 D r
1Lmip.x; y; �; �1; �2/ (135)

rt 

2 D r
2Lmip.x; y; �; �1; �2/ (136)

d�i

dt
D
8
<

:
0 for �i D 0 & @Lmip.x;y;�;�1;�2/

@�i
< 0

@Lmip.x;y;�;�1;�2/

@�i
otherwise

8i (137)

In [127], penalty-based approach is applied to solve factory allocation problem,
and to solve the unit commitment problem. Direct use of inequality constraints in
Lagrange programming ANNs have been introduced in [61, 79]. In Eq. (137), a
simple method of update for inequality constrained is illustrated from [79]. A prim-
itive way to deal with the inequality constrains is to transform them into equality
constraints. Another novel approach for direct usage of inequality constraints is to
use the square of the Lagrange multiplier for the inequality constraints [61].

From this section, it should be clear that ANNs are not limited for solving
either a linear or a quadratic programming problem. With development of penalty-
and Lagrange-based methods for the ANNs, they can be applied to any typical
optimization problem. With the ease of transformation from continuous to discrete
variable space, they can be appropriately designed for any COPs. In the following
section, some of the applications of ANNs in solving discrete optimization problems
will be surveyed.
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6 Discrete Optimization Problems

Discrete optimization problems find their application in the problems related
to transportation, scheduling, sorting, networking, etc. In this section, various
methods of mapping the discrete optimization problems to the ANNs will be
presented.

6.1 Graph Problems

Graph problems are one of the extensively studied and applied problems in
operations research. The goal of this subsection is to discuss these problems and
their mapping onto ANNs [96].

6.1.1 Graph Partitioning Problem (GPP)
Problem Statement: Given a graph G D .V; E/, where V represents the vertices,
jV j D n and E represents the edges, jEj D m. Let wi be the weight on each vertex.
Let eij be the weight on the link connecting i th and j th vertices. The problem is to
partition the graph into two partitions of nearly equal weights, such that the cut-size
is minimized. In other words, the problem is to bisect the graph, such that the sum
of weights of the vertices assigned to the partitions is nearly equal, while the sum of
weights on the links connecting the partitions is minimum.

Solution Methodology: A continuous H-T’s model was used to solve this
Problem [9]. Let xi represent the external state of the neuron, which can take any
values between 0 and 1. All the neurons that have the value of 0 are assigned to the
first partition. The others neurons, which have the value of 1, were assigned to the
second partition. The objective function for GPP is given as

EGPP D 1

2

nX

iD1

nX

j D1

eij .xi C xj � 2xi xj / C
nX

iD1

nX

j D1

wi wj .1 � xi � xj C 2xi xj /

(138)

The first term of the objective function aims at minimizing the weighted sum
of the edges which belong to the cut, whereas the second term of the objective
function aims at balancing the weights in both the partitions. When the EGPP is
compared with Ec , the following values for the synaptic weights and the input bias
are obtained:

Wij D 2eij � 4wi wj and �i D �
nX

j D1

eij C 2wi

nX

j D1

wj (139)

Thus, the H-T’s model is complete. The above system is solved to get the solution
of GPP.
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6.1.2 Graph K-Partitioning Problem (GKP)
Problem Statement: Given a graph G D .V; E/, where V represents the vertices,
jV j D n and E represents the edges, jEj D m. Let wi be the weight on each vertex.
Let eij be the weight on the link connecting i th and j th vertices. This problem is
a generalized version of GPP, where the objective is to partition given graph with
similar description as GPP into K partitions. In general, K is not the multiple of 2.

Solution Methodology: This problem can be formulated as an assignment
problem, where each node is assigned to only one partition. Since there are K

partitions and n nodes, there will be N D nK number of variables. Since, in
H-T’s model, each variable represents a neuron, there will be altogether N neurons.
Let xij be the external state of the neuron, which can take value between 0 and 1.

The objective function with penalty parameters is written as

EGKP D 1

2

nX

iD1

KX

j D1

KX

kD1;k¤j

xij xjk C 1

2

0

@
nX

iD1

KX

j D1

xij � n

1

A
2

C1

2

nX

i;j D1

KX

k;lD1

eij .xik C xjl � 2xikxjl /

C
KX

kD1

nX

iD1

nX

j D1

xikxjkwi wj (140)

When the EGKP is compared with Ed , the following values for the weights and
input bias are obtained:

Wij;kl D �ıij .1 � ıij / � 1 C 2eij � 2wi wj and �i D Cn �
nX

j D1

eij (141)

where Wij;kl is the synaptic weight between neuron ij 13 and neuron kl . Thus, with
the above mapping, the H-T’s model is complete. The above system is solved by
using Algorithm 1 to get the solution of GKP. A higher order ANNs for solving
GKP was presented in [40].

6.1.3 Vertex Cover Problem (VCP)
Problem Definition: Given a graph G D .V; E/, where V represents the vertices,
jV j D n and E represents the edges, jEj D m. Let A be the adjacency matrix,
where aij D 1 if there is an edge between i th and j th vertices, otherwise aij D 0.
A subset C of the vertices V of the graph G is called the vertex cover if all the edges

13neuron ij corresponds to variable xij
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of G are adjacent to at least one vertex in the set C . The VCP is to find the vertex
cover, such that the cardinality of set C is minimum.

Solution Methodology: Let

xi D
(

1 if vertex i 2 C

0 otherwise
(142)

Since there are jV j D n vertices in G, there will be n neurons used to design the
model. The modified objective function designed for H-T’s model will be

EVCP D C1

0

@
nX

iD1

nX

j D1

xi xj

1

A � C2

2

0

@
nX

iD1

nX

j D1

.1 � xi /.1 � xj /aij

1

A (143)

where C1 and C2 are penalty terms whose values decide the relative importance
of the constraints and the objective function. The first term in EVCP ensures the
minimality of the cover. The second term (is the penalty term) will be zero if the
nodes which are not in the vertex cover have no edges between them. By comparing
the coefficients of EVCP and Ed , the synaptic weights and the input bias are obtained
as

Wij D �2C1 � C2aij and �i D C2

nX

j D1

aij (144)

Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 1 to get the solution of GKP.

6.1.4 Maximum Independent Set Problem (MISP)
Problem Definition: Given a graph G D .V; E/, where V represents the vertices,
jV j D n and E represents the edges, jEj D m. Let A represent the adjacency
matrix, where aij D 1 if there is an edge between i th and j th vertices, otherwise
aij D 0. A subset I of the vertices V of the graph G is called the independent set
if there is no edge between any pair of vertices which belong to I . The MISP is to
find an independent set with the maximum cardinality.

Solution Methodology: Let

xi D
(

1 if vertex i 2 I

0 otherwise
(145)

Since there are jV j D n vertices in G, there will be n neurons used to design the
model. The modified objective function designed for H-T’s model will be

EMISP D �C1

0

@
nX

iD1

nX

j D1

xi xj

1

AC C2

2

0

@
nX

iD1

nX

j D1

xi xj aij

1

A (146)
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where C1 and C2 are penalty terms whose values decide the relative importance
of the constraints and the objective function. The first term in EMISP minimizes
cardinality of the set I . The second term will ensure that the set I forms an
independent set. By comparing the coefficients of EMISP and Ed , the synaptic
weights and the input bias are obtained as

Wij D 2C1 � C2aij and �i D 0 (147)

Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 1 to get the solution of MISP.

6.1.5 Maximum Clique Set Problem (MCSP)
Problem Definition: Given a graph G D .V; E/, where V represents the vertices,
jV j D n and E represents the edges, jEj D m. Let A represent the adjacency
matrix, where aij D 1 if there is an edge between i th and j th vertices, otherwise
aij D 0. A subset of the vertices V of the graph G is called clique if every pair of
vertices in the subset is connected by an edge. The MSCP is to find a clique with
the maximum cardinality.

Solution Methodology: Let

xi D
(

1 if vertex i 2 clique

0 otherwise
(148)

Since there are jV j D n vertices in G, there will be n neurons used to design the
model. Let ac

ij D 1 � aij , then with this modification, MSCP will be same as MISP.
The modified objective function designed for H-T’s model will be

EMCSP D �C1

0

@
nX

iD1

nX

j D1

xi xj

1

AC C2

2

0

@
nX

iD1

nX

j D1

xi xj ac
ij

1

A (149)

where C1 and C2 are penalty terms whose values decide the relative importance
of the constraints and the objective function. The first term in EMCSP minimizes
cardinality of the clique set. The second term will ensure that the selected set forms
a clique. By comparing the coefficients of EMCSP and Ed , the synaptic weights and
the input bias are obtained as

Wij D 2C1 � C2a
c
ij and �i D 0 (150)

Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 1 to get the solution of MCSP.
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6.1.6 Graph Coloring Problem (GCP)
Problem Definition: Given a graph G D .V; E/, where V represents the vertices,
jV j D n and E represents the edges, jEj D m. Let A represent the adjacency
matrix, where aij D 1 if there is an edge between i th and j th vertices, otherwise
aij D 0. The GCP is to find the minimum number of subsets of V such that no two
adjacent vertices (two vertices connected by an edge) belong to the same subset. In
other words, find the minimum number of different colors needed to color the graph
such that no two adjacent vertices are of the same color.

Solution Methodology: Let

xij D
(

1 if vertex i is colored in the color j

0 otherwise
(151)

Since there are jV j D n vertices in G, from the graph theory, the maximum
number of different colors needed to color the graph will be one plus the maximum
degree of any vertex. Let 
 represent the maximum number of different colors. Thus,
there will be n
 neurons used to design the model. The modified objective function
designed for H-T’s model will be

EGCP D 1

2

0

@

X

kD1

nX

iD1

nX

j D1

xikxjkaij

1

A �
0

@

X

kD1

nX

iD1

nX

j D1

xikxjk

1

A (152)

By comparing the coefficients of EGCP and Ed , the synaptic weights and the
input bias are obtained as

Wij D 1 � aij =2 and �i D 0 (153)

Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 1 to get the solution of GCP.

6.1.7 Graph Matching Problem (GMP)
Problem Definition: Given a graph G D .V; E/, where V represents the vertices,
jV j D n and E represents the edges, jEj D m. Let B be the incidence matrix,
where bij D 1 if j th edge is incident on i th vertex, otherwise bij D 0. A subset
M of the edges E of the graph G is called matching if there are no two edges in
M that share a common node. The GMP is to find a matching with the maximum
cardinality.

Solution Methodology: Let

xi D
(

1 if edge i 2 M

0 otherwise
(154)
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Since there are jEj D m vertices in G, there will be m neurons used to design
the model. The modified objective function designed for H-T’s model will be

EGMP D �
 

mX

iD1

xi

!
C
0

@
mX

iD1

mX

j D1

xi xj

nX

kD1

bkibkj

1

A (155)

By comparing the coefficients of EGMP and Ed , the synaptic weights and the
input bias are obtained as

Wij D �2

nX

kD1

bki bkj and �i D 1 (156)

Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 1 to get the solution of GMP.

6.2 Shortest Path Problems

Problem Description: Given a network G D .V; E/, where V represents the vertices
or cities, jV j D n and E represents the edges or paths, jEj D m. Let the distance
between the cities be represented by a distance matrix D, where dij represents the
distance between the i th city and the j th city. The problem is to find the shortest
path between two given pair of cities. Let s be the origin and e be the destination.

Solution Methodology: Let

xij D
(

1 if edge .i; j / is in the path

0 otherwise
(157)

Since there are n cities, there will be n neurons used to design the model. The
modified objective function designed for H-T’s model will be

ESPP.t/ D C1

0

@
nX

iD1

X

j ¤i

dij exp�t=� xij

1

A C C2

2

nX

iD1

0

@
X

k¤i

xik �
X

l¤i

xli � ıis C ıie

1

A

(158)

By comparing the coefficients of ESPP and Ec , the synaptic weights and input
bias are obtained as

Wij D 2 � C2 and �i D �2 � C2 (159)
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Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 2 to get the solution of SPP.

6.3 Number Partitioning Problems (NPP)

Problem Definition: Given a set of n numbers a1; a2; : : : ; an 2 S , partition the set
S into two sets S1 and S2 such that the following cost function is minimized:

C.S1; S2/ D
ˇ̌
ˇ̌
ˇ̌
X

i2S1

ai �
X

i2S2

ai

ˇ̌
ˇ̌
ˇ̌ (160)

Solution Methodology: Let

xi D
(

1 if edge i 2 S2

0 if edge i 2 S1

(161)

Since there are n numbers, there will be n neurons used to design the model. The
modified objective function designed for H-T’s model will be

ENPP D
0

@
nX

iD1

nX

j D1

.1 C 2xi xj � xi � xj /ai aj

1

A (162)

The term .1 C 2xi xj � xi � xj / ensures that only numbers which belong to the
same partition will contribute to the sum. By comparing the coefficients of EGMP

and Ed , the synaptic weights and input bias are obtained as

Wij D �4ai aj and �i D
nX

iD1

ai (163)

Thus, with the above mapping, the Hopfield model is complete. The above
system is solved by using Algorithm 1 to get the solution of GMP.

6.4 Assignment Problems

Problem Definition: Given n entities, n cells, and the cost cij of assigning i th entity
to j th cell. The linear assignment problem (LAP) is to assign each entity to one cell,
such that the assignment cost is minimized.

Solution Methodology: Since there are n entities and n cells, there will be
altogether n2 neurons used for designing ANN. Let xij represent the external state
of H-T’s model. Let Iij represent the internal state of H-T’s neuron, such that
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xij D
(

1 if entity i is assigned to cell j

0 otherwise
(164)

The dynamics of this system is given as

dIij .t/

dt
D �C1

nX

kD1

vkj .t/ � C1

nX

kD1

vik.t/ C 2C1 � C2cij exp.�t=�/ (165)

xij .t/ D fij

�Iij .t/
�

(166)

From the above equations, the weights and input bias of H-T’s model are defined
as

wij D ıij 2C1 C .1 � ıij /C1 and �ij D 2C1 (167)

Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 2 to get the solution of LAP.

6.5 Sorting Problems

Problem Definition: Given n real numbers a1; a2; : : : ; an, the problem is to order
them in ascending, descending, or biotonic order (where both the ends have higher
numbers).

This problem can be formulated as an assignment problem, that is, given n

numbers that are to be assigned to n cells. The cost cij of assigning i th number to j th
cell is given by cij D ai cj , where cj is an arbitrary sequence of real numbers, which
are selected based on the sense of sorting (ascending, descending, or biotonic).

Solution Methodology: Since there are n numbers and n cells, there will be
altogether n2 neurons used for designing ANN. Let xij represent the external state of
H-T’s continuous model. Let Iij represent the internal state of H-T’s model such that

xij D
8
<

:
1 if entity i is assigned to cell j

0 otherwise
(168)

The energy function and dynamics of this system are given as

ESP.x.t/; t/ D C1

0

@
nX

iD1

nX

j D1

ai cj exp.�t=�/xij

1

A

C
nX

iD1

C i
2

2

0

@
nX

j D1

xij � 1

1

A
2
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C
nX

j D1

C
j
2

2

 
nX

iD1

xij � 1

!2

(169)

dIij .t/

dt
D �C

j
2

nX

kD1

vkj .t/ � C i
2

nX

kD1

vik.t/

CC
j
2 C C i

2 � C1ai cj exp.�t=�/ (170)

xij .t/ D fij

�Iij .t/
�

(171)

From the above equations, the weights of H-T’s model can be obtained as

wij D �ıij .C
j
2 C C i

2 / � .1 � ıij /C i
2 and �ij D C

j
2 C C i

2 (172)

Thus, with the above mapping, the H-T’s model is complete. The above system
is solved by using Algorithm 2 to get the solution of SPP.

6.6 Traveling Salesman Problems (TSP)

Problem Definition: Given n cities with the Euclidean distance between them, dij .
A path that starts from a given city, passing through all the cities (without visiting a
city twice), and returning to the first city is called a tour. The TSP problem can be
defined as finding the shortest tour for the given cities.

Solution Methodology: In Sect. 2, a detailed mapping of TSP onto H-T’s model
was shown. However, in this subsection, one of the improved TSP mappings
[119] will be presented. This is the modification of H-T’s approach, which can be
described as

Emod
tsp D Etsp C Ecns C Edrv (173)

where Etsp is same as defined in Eq. (33),

Ecns D C1

2

X

i

0

@
X

j

xij � 1

1

A
2

C C 2

2

X

j

 
X

i

xij � 1

!2

(174)

Edrv D C 3

2

X

i

X

j

xij .1 � xij / C C 4

2

0

@N 2

4
�
X

j

X

i

�
xij � 1

2

�2

1

A (175)

and C1; C 2; C 3, and C 4 are new penalty parameters that are used for scaling
the respective penalty terms. Ecns represents a better way of mapping the TSP
constraints, whereas Edrv represents the penalty that deflects the external state of
the neurons to take the value of 0 or 1.
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There are numerous COPs in the literature, and presenting ANNs model for each
of them will be a cumbersome task. However, a similar approach (like the above
models) can be followed for any discrete optimization problem. Moreover, the above
mappings were based on H-T’s model with penalty approach. As seen in Sect. 3, the
capability of ANNs to solve COPs can be extended by using the Lagrange approach.
Thus, any discrete optimization problem (linear or nonlinear) can be modeled using
the techniques given in Sect.5. In the following part of this section, a survey of some
of the recent models in ANNs is cited.

A recent survey that presents the usage of ANNs in mathematical programming
problems is conducted in [128]. Apart from the theoretical COPs, there has been
many practical problems that have been mapped onto ANNs. For example, some of
the recent applications of ANNs within the past 2 years are
• Resource allocation in wireless communication [17, 78]
• Scheduling in wireless sensors [105]
• Scheduling in packet radio networks [113]
• Scheduling via H-T’s model [31]
• Scheduling in water pumps [49]
• Scheduling to minimize earliness and tardiness [8]
• Small-world nature of H-T’s model [141]
• Constrained least absolute deviation problem [60]
• Hybrid approach with genetic algorithms [5]
• Hybrid approach with particle swarm optimization [33]
• Hybrid approach with ant colony optimization [129]
• Parameter setting for the GCP [118]
• Placement of electronic circuit problem [36]
• Edge detection in wood logs [95]
• Economic load dispatching problem [48]
• Hybrid routing algorithm [11]
• Data envelopment analysis [59]
• Water system management problem [120]
• Graphs isomorphism discernment problem [140]
• Nonlinear vector encoding problem [41]

7 Criticism

After the eye-catching implementation of applying ANNs in solving TSP, H-T’s
model caught the attention of many researchers [92]. However, this method had two
drawbacks at that time. It has a lot of parameters to select, and it performs a gradient
descent method while solving COPs. In [132], it was illustrated that H-T’s model
does not perform well. In fact, the results in [132] raised serious questions about
the validity of this method. Thus, it drifted many researchers away from the use of
ANNs in solving COPs. However, some of the researchers were inclined to improve
the method proposed by Hopfield and Tank. One of the direction of improvements
was to develop a method of optimally selecting the parameters in Hopfield and
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Tank’s energy function [37, 52, 65, 74, 117]. Recently, in [119], a systematic way
of selecting optimal parameters for various TSP is presented. Apart from that, an
enhanced method of mapping TSP onto an ANN is illustrated, and convergence and
stability analysis is presented. From the results shown in [119], it can be concluded
that by proper construction of energy function and by proper selection of parameters
(penalty parameters), there can be a significant difference in the performance of
ANNs while solving COPs.

Another direction of improvement in Hopfield and Tank’s ANN was to free
the algorithm from gradient descend method, that is, to avoid falling into the
local minima. One of the methods, that was adopted by many researchers, was
to modify Hopfield and Tank’s objective function [4, 16]. However, some of the
successful methods were to use hybrid techniques like convexification, improve
choice of penalty function, and use hill-climbing techniques [123]. In [109], a
novel approach that combines self-organizing neural networks and H-T’s model is
presented. Convergence of such networks is analyzed. The algorithm was tested on
car-sequencing problem. From the results, it was concluded that hybrid method of
ANN is better than MINOS14 solver. The results from this study showed that proper
application of ANNs to solve COPs will prove better than the conventional solution
methods of COPs.

Moreover, there were many stochastic and metaheuristic methods that were
incorporated in H-T’s model. Some of the studies showed that global convergence
can be obtained with ANNs if they are properly coupled with metaheuristic methods
like simulated annealing [91]. Apart from that, sophisticated penalty methods and
Lagrange methods made the use of ANNs more general (i.e., not only applied to
linear and quadratic but can be applied to any nonlinear optimization problems).
Among the use of penalty methods, in [6, 42], subspace and hyperplane approaches
were used. These were the pioneer approaches that modified the use of penalty
function, by incorporating the feasibility issues of the system into a single penalty
parameter. In [43], the capability of ANNs were demonstrated based on polyhedral
combinatorics. It was one of the novel methods in ANNs that proposed the use
of memory (like tabu search) to overcome the entrapment of algorithm at the
polyhedral vertices. However, not many studies have actually tried to compare
performance of ANNs with other conventional or heuristic methods for solving
COPs. Thus, it is very hard to conclude if ANNs perform better or worse than other
methods. Apart from that, most of the implementations were simulations of ANNs
on the digital computers. Thus, the computing limitations of digital computer may
hinder the performance of ANNs. Nevertheless, it should be noted that ANNs can
overcome the limitations of digital computers since they can be implemented on the
analog circuits.

14A standard nonlinear programming problem solver
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8 Conclusion

In this chapter, a simple and brief introduction of ANNs is presented, which is
followed by addressing the usage of ANNs in solving COPs. Our focus throughout
this chapter was not only to highlight the application of ANNs in solving COPs but
also to present the theoretical aspects of ANNs in solving COPs. At the beginning
of this chapter, some of the classical ANN models that were used in solving COPs
were illustrated. Along with these illustration, a methodology of implementing an
LP to analog circuit is depicted. Moreover, a detail method of mapping TSP on
one of the classical ANNs is presented. In addition to that, some of the stability
and convergence analysis of ANNs is studied. Lastly, examples from literature on
solving general optimization problems and discrete optimization problems using
ANNs were presented.

It can be seen that unlike other metaheuristics, based on appropriate conditions,
ANNs do converge to local and/or global optima. Simple methods that are used to
define such optimality conditions were shown with proofs in Sect. 3 of this chapter.
The aim in presenting these proofs was to highlight the importance of selecting
proper energy function and the type of dynamics (i.e., consecutive, parallel, or
synchronous). Apart from that, methods to extend the classical models (which
can solve only linear or quadratic problems) by using penalty functions, Lagrange
functions, or hybrid approaches were presented. Through various illustration, it was
shown that a continuous model can be used to solve discrete problem very easily. It
was underlined that the only change in solving a discrete problem and continuous
problem is the adjustment in the transfer function and the adjustment in the energy
function for the discrete variables.

Since the first implementation of ANN in 1980s until the present, there are
handful analog implementations of ANNs in solving COPs. Due to the limitations
of performance comparison of ANNs with other solution procedures, a concrete
conclusion regarding the advantage or disadvantage of ANNs in solving COPs
cannot be presented at this point. However, proper implementation of the analog
circuit and systematic study in deployment of these circuits to solve real world
problems will demonstrate the true potential of ANN.
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