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Abstract
The matters of discussion are combinatorial optimization aspects, concepts,
and applications arising in the broad area of network-based data mining.
The approach of representing real-world datasets as large-scale networks
(graphs) has become increasingly popular during recent years. The purpose of
this chapter is to briefly review the graph-theoretic and combinatorial optimiza-
tion concepts that are important in the context of data mining, as well as to discuss
the interpretation of these concepts from mathematical modeling perspective.

1 Introduction

The process of studying real-life complex systems often deals with large datasets
arising in diverse applications including telecommunications, biotechnology,
medicine, finance, physics, ecology, and geographical information systems [2, 21].
Understanding the structural properties of a certain dataset is in many cases the task
of the crucial importance. To extract useful information from data, one often needs
to apply advanced mathematical modeling techniques to summarize, visualize, and
process the information contained in a dataset. Data mining problems deal with
multiple aspects of information retrieval from datasets, and a variety of techniques
has been developed to address different types of tasks arising in this area. Data
mining is a part of knowledge discovery in databases (KDD) [81]. This is the
process of converting data into useful information, which includes several main
steps summarized in Fig. 1. The purpose of preprocessing is to transform input
data to a proper format for further analysis. An example of postprocessing is
visualization, which allows to research and explore data and data mining results
from different viewpoints. One can also apply statistical measures and hypothesis
testing techniques at the postprocessing step to potentially eliminate inconsistent
data mining results. However, data mining itself is a crucial step in the KDD
process. The purpose of this chapter is to review possible methods of utilizing
combinatorial optimization and network-based tools to extract information from
real-world datasets.

During the past several years, optimization-based approaches have received
increased attention in the context of data mining problems [27]. Moreover, along
with classical data mining techniques (e.g., support vector machines, artificial
neural networks, decision trees, K-means/K-median clustering, and fuzzy C-means
clustering), many recent studies deal with network (graph)-based representations
of large real-world datasets and utilize graph-theoretic and network optimization
concepts to extract useful and nontrivial information from these datasets. In this
approach, a dataset is represented as a graph (network) with certain attributes
associated with its vertices and edges. As it will be discussed later, combinatorial
optimization problems often arise in this analysis, and solving these problems is an
integral part of network-based data mining.

Studying the structure of a graph representing a dataset is often important for
understanding the internal properties of the application it represents, as well as for
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Fig. 1 Knowledge discovery
in databases

improving storage organization and information retrieval. One can visualize a graph
as a set of dots and links connecting them, which often makes this representation
convenient and easily understandable.

The main concepts of graph theory were founded several centuries ago, and many
network optimization algorithms have been developed since then. However, the
trend of applying graph models to represent various real-life massive datasets has
started relatively recently. Graph theory and related operations research techniques
are quickly becoming a field with a strong practical impact. The expansion
of graph-theoretical approaches in various applications gave birth to the terms
“graph practice” and “graph engineering” [47]. Graph (network)-based data mining
techniques have gained significant popularity in the recent years. Various aspects of
this emerging field are addressed in [32, 84]. The term “network science” referring
to a broad variety of network-based modeling approaches has also been widely
used recently. In [10] potential relevance between “network science” and operations
research is discussed. Although potential applications of operations research in this
broad field can be diverse, network-based data mining is among the areas where
optimization-based techniques can provide valuable contributions.

Network-based models allow one to extract information from real-world datasets
using various standard concepts from graph theory. In many cases, one can
investigate specific properties of a dataset by detecting special formations in the
corresponding graph, for instance, connected components, spanning trees, cliques,
and independent sets. In particular, connected components, cliques, and independent
sets can be used to address the important clustering problems arising in many
data mining applications. This problem essentially represents partitioning the set of
elements of a certain dataset into a number of subsets (clusters) of objects according
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to some similarity (or dissimilarity) criterion. These concepts are associated with a
number of network optimization problems that will be discussed below.

Another aspect of investigating network models of real-world datasets is studying
the global organization and structural properties of these networks, which are
reflected by degree distributions of the constructed graphs. The degree distribution
represents the large-scale pattern of connections in the graph, which reflects the
global properties of the dataset. One of the important results discovered during the
last several years is the observation that many graphs representing the datasets from
diverse areas (Internet, telecommunications, biology, sociology) obey the power-
law model [5]. The fact that graphs representing completely different datasets
have a similar well-defined power-law structure has been widely reflected in the
literature [4, 8, 16, 17, 21, 31, 47]. It indicates that global organization and evolution
of datasets arising in various spheres of life follow similar laws and patterns. This
fact served as a motivation to introduce a concept of “self-organized networks.”
The information about the degree distribution of a graph that represents a certain
dataset can be significant in the data mining context, since it may allow one to
analytically predict the size of certain types of clusters in this graph (e.g., connected
components, cliques, and other structures). In particular, the size of connected
components (clusters) in very large power-law graphs has been studied in [5].

Further in this chapter, the main issues and concepts arising in network-based
data mining will be addressed: specifically, the process of representing a dataset as
a graph using appropriate similarity (proximity) measures, which serves as a basis
for applying graph-theoretic and network optimization techniques. These concepts
and techniques are discussed later in this chapter. Finally, there will be given several
examples of popular recent application areas of network-based data mining.

2 Similarity Measures Used in Graph-Based Data Mining

As indicated above, the essence of network-based data mining is representing a
dataset under consideration as a network (graph) where vertices and edges are
constructed according to certain principles that may depend on the structure and
the origin of this dataset. The vertices of the graph usually represent data records
(objects), whereas the edges that connect the vertices are constructed using an
appropriate similarity criterion. That is, two data objects (vertices) are connected
if they are “similar enough” to each other. However, there are a lot of different
ways to quantify the degree of similarity. In this section, possible types of similarity
measures (also referred to as proximity measures) will be discussed. More precisely,
those are proximity measures between data objects that can be used for constructing
the corresponding graph representations of datasets.

Usually, the similarity between two objects is a numerical measure of the degree
to which the two objects are alike. It can often be scaled between 0 (no similarity)
and 1 (complete similarity). The dissimilarity between two objects is a numerical
measure of the degree to which the two objects are different. Also, the term distance
is used to measure the degree of similarity/dissimilarity. Dissimilarities sometimes
occupy the interval Œ0; 1�, but it is usual for them to belong to the range Œ0; 1/.
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Transformations are used to convert similarity to dissimilarity and vice versa.
First of all, proximity measures should be converted to the interval Œ0; 1�. For
instance, if the grade has a range from 1 to 5, it makes sense to use the formula
Os D .s � 1/=4 to replace the initial proximity measure s by standard Os that belongs
to the interval Œ0; 1�. Generally, the transformations of similarities to the interval
Œ0; 1� are given by the formula

Os D s � min s

max s � min s
:

Analogously, dissimilarity measures with a finite range can be mapped to the
interval Œ0; 1� by transformation

Od D d � min d

max d � min d
:

In other cases, when values of the original proximity measure fill the interval Œ0; 1/,
a nonlinear conversion is necessary. As an example, the formula Od D d

1Cd
can be

utilized. The dissimilarities 0; 1
3
; 2

3
; 1; 5; 10; 100; 1;000 will be converted to

the new dissimilarities 0, 0.25, 0.4, 0.5, 0.833, 0.909, 0.99, 0.999. Transforming
dissimilarities into similarities and vice versa is rather straightforward too. If the
similarity falls in the interval Œ0; 1�, then the dissimilarity can be defined by the
formula d D 1 � s. For d 2 Œ0; 1/, various nonlinear transformations can be
employed. Consistent examples are s D 1=.d C 1/ and s D e�d .

In the standard setup of many data mining problems, one deals with a dataset
of N data records that can be represented by vectors xi D .xi

1; xi
2; : : : ; xi

n/,
i D 1; : : : ; N , where every vector xi has n components that are referred to as
the features, or attributes, of the data record. The similarity/dissimilarity measure
between any two data records would be defined by the corresponding values of their
attributes. The following similarity/dissimilarity measures are commonly used in
practice.
• Distance metrics: Generally it can be expressed in the form of Minkowski

distance metric

d.x; y/ D
 

nX
kD1

jxk � ykjr
!1=r

;

where r is a parameter that defines different types of metrics. The most
commonly used distance metrics are L1 norm for r D 1 (Manhattan distance,
city block distance), L2 norm for r D 2 (Euclidean distance), and L1 norm for
r D 1 (supremum distance) that signifies

d.x; y/L1
D max

iD1;:::;n
jxk � ykj:

A common particular instance of Manhattan distance is the Hamming distance,
which is the number of bits that are different between two objects that have
only binary attributes (i.e., between two binary vectors). In Fig. 2, the difference
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a b c

Fig. 2 Circumferences in different Lp norms. (a) Standard circle in L1 norm. (b) Standard circle
in L2 norm. (c) Standard circle in L4 norm

Fig. 3 Comparison of city block distance and Euclidean distance

between L1, L2, and L4 can be observed graphically on the example of the
standard circle presented in all these metrics. The norms L1 and L2 are compared
visually in Fig. 3.

Supremum (Lmax or L1 norm) distance is the maximum difference between
any attribute of two objects. More rigorously, L1 is defined by the limit

d.x; y/ D lim
r!1

 
nX

kD1

jxk � yk jr
!1=r

:
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a

b

g

Fig. 4 Geometric representation of cosine similarity

To add more flexibility in the situations when the values of some attributes
have substantially different importance levels or orders of magnitude, the formu-
las of proximity can be modified by weighting the contribution of each attribute.
In the case of the distance metrics, the Minkowski distance can be modified as
follows:

d.x; y/ D
 

nX
kD1

!k jxk � ykjr
!1=r

;

where !k is the relative weight of the kth component in the considered vector
space.

• Cosine similarity: This measure is often used to characterize text document
similarity (e.g., documents represented as vectors with attributes denoting the
frequency of each word in the considered document) and can be expressed as

cos.a; b/ D a � b

jjajjjjbjj ;

where a � b is a scalar product of vectors a and b. Even though documents have
thousands of attributes, each document is sparse because there is a few nonzero
attributes. Thus, similarity should not depend on the number of shared zero
values. Therefore, a proximity measure for documents must ignore 0–0 matches
like Jaccard measure. The cosine similarity is one of the useful measures in this
case (Fig. 4).

• Correlation: The standard correlation measure is commonly used to characterize
the similarity between different types of data, for instance, time series data,
where the attributes represent the values of a certain parameter for different time
moments. A well-known example that the correlation measure can be effectively
used is the analysis of stock market data, where high correlation would mean
high degree of similarity between a given pair of stocks.
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The general correlation coefficient is given by the formula

r D
P

i<j cij .x/cij .y/qP
i<j c2

ij .x/ �Pi<j c2
ij .y/

;

where x and y are two samples of comparable data and cij is some function
measuring relative distance between xi and xj (i th and j th coordinates of the
sample vector x). Three particular examples of the general correlation coefficient
are given below.

Pearson’s correlation coefficient is the most widely used correlation measure.
It is defined by the formula

corr.x; y/ D covariance.x; y/

standard deviation.x/ � standard deviation.y/
;

where from statistics theory it is known that

covariance.x; y/ D
nX

kD1

.xk � x/.yk � y/;

standard deviation.x/ D
vuut 1

n � 1

nX
kD1

.xk � x/2;

standard deviation.y/ D
vuut 1

n � 1

nX
kD1

.yk � y/2:

Using standard notations, x and y are means of two samples x and y, re-
spectively. Notice that Pearson’s correlation coefficient could be easily derived
from the general correlation coefficient if it is assigned that cij D xj � xi .
Also, Spearman’s rank correlation coefficient [79] and Kendall’s tau (�) rank
correlation coefficient [55] are frequently utilized for peculiar statistical tests and
hypotheses.

If it is assigned that cij D Rj � Ri where Rk is the rank of xk in the given
sample vector x D .x1; : : : ; xn/ for each k D 1; : : : ; n, then the formula below
for Spearman’s rank correlation coefficient can be derived:

�S D
Pn

iD1.Ri � R/.Si � S/qPn
iD1.Ri � R/2

Pn
iD1.Si � S/2

;

where Rk and Sk are the ranks of xk and yk in the samples x and y,
correspondingly. Also, it should be pointed out that always R D S D .n C 1/=2.
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Having assigned cij D sgn.xj � xi / D sgn.Rj � Ri /, the formula for
Kendall’s tau (�) rank correlation coefficient is obtained:

� D
X
i<j

sgn.Ri � R/ � sgn.Si � S/;

where Rk and Sk are ranks of the given samples as in the previous notations.
Regarding binary data, other definitions of similarity (proximity) measures

are also used in practice [81]. For instance, simple matching coefficient, Jaccard
coefficient, and extended Jaccard coefficient can be efficiently used to measure the
similarity between data objects of aforementioned kind. Let x and y be two objects
that consist of n binary attributes. Comparing of binary data x and y induces the
following qualities:

f00 D the number of attributes where xi D 0 and yi D 0

f01 D the number of attributes where xi D 0 and yi D 1

f10 D the number of attributes where xi D 1 and yi D 0

f11 D the number of attributes where xi D 1 and yi D 1.

Simple matching coefficient (SMC) is commonly used similarity measure for binary
data. It does not pay attention to elimination of 0–0 matches from consideration.
SMC reflects both presences and absences equally. For instance, it can be utilized
to find respondents who had answered questions on a test similarly.

SMC D f00 C f11

f00 C f01 C f10 C f11

Jaccard coefficient can be employed for sparse data. The idea is to compare nonzero
elements belonging to two samples. Consequently, it makes little sense to use SMC
coefficient in such a case because samples will be always similar because of the
large number of zeros. In this case, 0–0 matches must not be counted. That is why
under such conditions, Jaccard coefficient is more reasonable than simple matching
coefficient.

J D f11

f01 C f10 C f11

Extended Jaccard coefficient is an expansion of Jaccard coefficient to real data. In
the binary case, it is equal to a regular Jaccard coefficient. The extended Jaccard
coefficient can be used for document data and also known as Tanimoto coefficient.

EJ.x; y/ D x � y

jjxjj2 C jjyjj2 � x � y

A significant issue related to distance measures is how to handle the situation
when attributes do not have the same range of values. Often there is some
correlation between some of attributes. In this case, a generalization of Euclidean
distance referred to as Mahalanobis distance can be applied to measure similarity.
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Fig. 5 Mahalanobis distance versus Euclidean distance [81]. The Mahalanobis distance between
these two points are represented by large dots is 6. The corresponding Euclidean distance is 14.7.
The correlation between axes causing distortion of data is equal to 0.6

The Mahalanobis distance between two objects x and y is defined as follows:

mahalanobis.x; y/ D .x � y/†�1.x � y/T ;

where † is the covariance matrix of the given data that reflects dependence between
some attributes. The good example [81] is provided in Fig.5. In practice, computing
the Mahalanobis distance is worth doing it for correlated points in spite of its
expensive cost.

Moreover, besides defining the similarity between data objects, in some cases, it
is also needed to quantify the dissimilarity. The aforementioned proximity measures
can be also used to define the pairwise dissimilarity. Therefore, all further discussion
is applicable to clustering applications based on either similarity or dissimilarity.
Without loss of generality, the term “similarity” will mostly be used throughout this
chapter.

Determining an appropriate similarity measure is often a nontrivial task. How-
ever, if a suitable similarity measure is determined for a given dataset, this
gives one the information about pairwise proximities for all pairs of data ob-
jects. Based on this information, one can easily construct the N � N proximity
matrix and then use the proximity matrix to create a graph with N vertices
and N.N � 1/=2 weighted edges, where the weights wij D d.xi ; xj / are
equal to the corresponding proximity measures between data objects xi and xj .
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Note that this simple procedure would produce a complete weighted graph (with
all possible edges), which can be challenging to analyze from both theoreti-
cal and computational perspectives. To reduce the edge density of the obtained
graph, one can use an appropriate sparsification procedure that can substan-
tially reduce the number of edges in the graph while still preserving valuable
information about the dataset. The following simple principles can be used to
achieve this:
• k-nearest neighbor approach: For every vertex i , keep only the edges that

connect it to its k-nearest neighbors, that is, preserve k edges .i; j / with the
smallest values of wij (as determined by an appropriate proximity measure) and
delete the remaining edges.

• Threshold approach: For every edge .i; j /, delete it if the corresponding
similarity measure wij is below (or above) a specified threshold.
Applying one or both of these approaches can, in many cases, eliminate most

of the edges in the constructed graph and make sure that the remaining edges
preserve the most meaningful similarity relationships between the data objects in
the considered dataset. It should be noted that the similarity measures between each
pair of vertices can be further updated to incorporate the idea of shared nearest
neighbors. That is, if two vertices i and j are both connected to certain number
of other vertices, the weight of the edge .i; j / is increased by the number of these
shared neighbors. This idea can be used for constructing the shared nearest neighbor
(SNN) similarity graph. In particular, the concept of SNN graph has been used in
the Jarvis-Patrick clustering algorithm, which essentially performs clustering on the
considered dataset by identifying connected components in the corresponding SNN
graph [49].

Finalizing this section, it should be emphasized that in many real-world sit-
uations, one of the most crucial problems is to choose a suitable proximity
measure which is the best fit for the considered type of data. For many cases
with dense continuous data, metric distance measures such as Euclidean distance
are appropriate and often used. On the contrary, for sparse data, measures that
disregard 0–0 matches are frequently utilized. The cosine similarity, Jaccard, and
Extended Jaccard measures are typically used for such data. For comparing time
series, Euclidean distance or various correlation coefficients depending on the given
data should be employed. If the time series contain similar quantities, then Euclidean
distance can be used. On the contrary, if the time series represent different quantities
(for instance, quantities of various substances in human organism in different
biomedical studies), then one should use the one of aforementioned definitions of
correlation coefficients.

In general, after the graph representing a dataset has been constructed and
sparsified, one can use a variety of graph-theoretic concepts and techniques to
extract useful information about the considered dataset and divide the dataset into a
number of meaningful clusters according to the specified similarity criterion. The
next section discusses relevant concepts, definitions, and optimization problems
arising in this analysis.
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3 Basic Concepts from Graph Theory and Their Data Mining
Interpretation

To facilitate further discussion, several formal basic definitions and notations from
graph theory will be presented, and the interpretation of the introduced concepts
from the perspective of data mining and information retrieval will be discussed.

Let G D .V; E/ be an undirected graph with the set of N vertices V and the
set of edges E D f.i; j / W i; j 2 V g. Directed graphs, where the head and tail
of each edge are specified, are considered in some applications. The concept of a
multigraph is also sometimes used. A multigraph is a graph where multiple edges
connecting a given pair of vertices may exist. A directed multigraph is a directed
graph in which loops and multiple edges between any two vertices are permitted.
Examples of different types of graphs are given in Fig. 6.

One of the important characteristics of a graph is its edge density: the ratio
of the number of edges in the graph to the maximum possible number of edges.
A dense graph is a graph in which the number of edges is close to the maximum
possible number of edges. A sparse graph is a graph in which the number of edges
is substantially smaller than maximum possible number of edges. In undirected
graphs, edge density formally defined as

D D 2jEj
jV j.jV j � 1/

; (1)

where jEj denotes the number of edges and jV j denotes the number of vertices in
graph G. Clearly, the maximum number of edges is 1

2
jV j.jV j � 1/, so the highest

possible edge density is 1 (for complete graphs) and the lowest edge density is 0. As
indicated in the previous section, one often needs to eliminate a substantial number
of edges from a graph representing a real-life dataset, so that the edge density is
reduced and only the most meaningful connections are preserved.

Often, a real-world dataset can be represented as a graph with the particular
structure, and the examined properties of such graphs can be used for data mining.
Some examples of well-known graph structures are:
• Complete graph: a graph, which contains all possible edges, that is, any two

vertices are adjacent.
• Bipartite graph: a set of graph vertices decomposed into two disjoint sets such

that no two graph vertices within the same set are adjacent.
• Complete bipartite graph: a bipartite graph such that every pair of graph vertices

in the two sets are adjacent.
• Linear (path) graph: a graph, which vertices can be listed in order, v0; v1; : : : ; vn,

so that the edges are .vi�1; vi / 2 E for each i D 1; 2; : : : ; n. If a linear graph
occurs as a subgraph of another graph, it is a path in that graph.

• Cycle graph: a graph containing a single cycle through all nodes.
• Planar graph: a graph whose vertices and edges can be drawn in a plane such

that no two of the edges intersect.
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a b

c d

Fig. 6 Examples of different concepts of graphs. (a) Undirected graph. (b) Directed graph.
(c) Multigraph. (d) Directed multigraph

• Tree: a connected graph with no cycles.
• Forest: a graph with no cycles, that is, the disjoint union of one or more trees.

3.1 Connected Components and Degree Distributions

The graph G D .V; E/ is connected if there is a path from any vertex to any vertex in
the set V . If the graph is disconnected, it can be decomposed into several connected
subgraphs, which are referred to as the connected components of G. A graph is
called K-vertex-connected or K-edge-connected if there is no set of K � 1 vertices
(edges, respectively) that disconnects the graph. A K-vertex-connected graph is
often simply called K-connected. In many clustering techniques, distinct connected
components are interpreted as distinct clusters in the corresponding dataset. It
should be noted that although using connected components for clustering is rather
common in a variety of applications, there are alternative graph-theoretic concepts
that can be utilized in clustering problems. These concepts will be discussed in
further sections.

The degree of a vertex is the number of edges emanating from it. For every integer
k, one can calculate the number of vertices n.k/ with a degree equal to k, and then
get the estimate of the probability that a vertex has the degree k as P.k/ D n.k/=n,
where n is the total number of vertices. The function P.k/ is referred to as the
degree distribution of the graph. In the case of a directed graph, the concept of
degree distribution is generalized: one can distinguish the distribution of in-degrees
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and out-degrees, which deal with the number of edges ending at and starting from a
vertex, respectively.

Degree distribution is an important characteristic of a dataset represented by a
graph. It reflects the overall pattern of connections in the graph, which in many
cases reflects the global properties of the dataset this graph represents. As mentioned
above, many real-world graphs representing the datasets coming from diverse areas
(Internet, telecommunications, finance, biology, chemistry, sociology) have degree
distributions that follow the power-law model, which states that the probability
that a vertex of a graph has a degree k (i.e., there are k edges emanating from
it) is P.k/ / k�� . Equivalently, one can represent it as log P / �� log k; which
demonstrates that this distribution forms a straight line in the logarithmic scale, and
the slope of this line equals the value of the parameter � . Figures 7 and 8 illustrate
the power-law distribution in a regular and logarithmic scale.

An important characteristic of the power-law model is its scale-free property.
This property implies that the power-law structure of a certain network should not
depend on the size of the network. Clearly, real-world networks dynamically grow
over time; therefore, the growth process of these networks should obey certain rules
in order to satisfy the scale-free property. The necessary properties of the evolution
of the real-world networks are growth and preferential attachment [17]. The first
property implies the obvious fact that the size of these networks grows continuously
(i.e., new vertices are added to a network, which means that new elements are
added to the corresponding dataset). The second property represents the idea that
new vertices are more likely to be connected to old vertices with high degrees. It is
intuitively clear that these principles characterize the evolution of many real-world
complex networks and massive datasets they represent.

From another perspective, some properties of graphs that follow the power-law
model (and the corresponding datasets) can be predicted theoretically. Interesting
properties of power-law graphs were studied using the theoretical power-law
random graph model [5,31]. Among these results, one can mention the existence of
a giant connected component (i.e., a giant cluster that contains ‚.N / vertices) in a
power-law graph with � < �0 � 3:47875 and the fact that all connected components
(clusters) are small (o.N / vertices) otherwise.1 The emergence of a giant connected
component (or a giant connected cluster) at the point �0 � 3:47875 is often referred
to as a phase transition.

The size of connected components of the graph may provide useful information
about the structure of the corresponding dataset, since, as indicated above, the
connected components would normally represent clusters of “similar” objects. In
many applications, decomposing the graph into a set of connected components can
provide a reasonable solution to the clustering problem. From the computational
perspective, identifying all connected components in a graph is a polynomially

1These results are valid asymptotically almost surely (a.a.s.), which means that the probability that
a given property takes place tends to 1 as the number of vertices N goes to infinity.
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Fig. 7 A power-law distribution in the regular scale. The horizontal axis represents node degrees,
and the vertical axis represents the corresponding probabilities (frequencies)

Fig. 8 A power-law distribution in the log-log scale. The interpretation of the axes is the same as
in the previous figure

solvable problem, which is especially important when the considered graphs and
datasets are very large.

However, in some situations, clusters based on connected components can be ex-
tremely large (e.g., comparable with the size of the whole graph, as indicated above),
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a b

Fig. 9 Correspondence between the maximum clique and the maximum independent set in the
complementary graph. (a) Clique in the graph (size 5). (b) Independent set in the complement
graph (size 5)

and/or they may not be “tight enough,” that is, the degree of connectivity within a
cluster may not be sufficient to make reliable conclusions regarding the similarity of
the data objects. This motivates one to look for substantially more “robust” clusters
that have specific properties of their connectivity patterns. The corresponding graph
structures that address these issues are discussed in the next subsections.

3.2 Cliques and Independent Sets

Given a subset S � V , G.S/ is denoted as the subgraph induced by S . A subset
C � V is a clique if G.C / is a complete graph (i.e., it has all possible edges).
Figure 9a shows an example of a clique in the graph.

One of the most well-known problems in combinatorial optimization, the
maximum clique problem [26], is to find the largest clique in a graph. The maximum
clique problem has several equivalent formulations as an integer programming (IP)
problem, or as a continuous nonconvex optimization problem.

The simplest formulation of maximum clique problem is the following edge
formulation [70]:

max
NX

iD1

xi (2)
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s.t.

xi C xj � 1; 8.i; j / 2 NE
xi 2 f0; 1g; i D 1; : : : ; N:

In the above formulation, NE is the set of edges in the complementary graph
NG.V; NE/, defined as follows. If an edge .i; j / 2 E , then .i; j / … NE , and if

.i; j / … E , then .i; j / 2 NE . Decision variables xi defined as

xi D
(

1; if vertex i is in the clique

0; otherwise:

The objective (2) is to maximize the number of vertices, which are in the clique.
The maximum clique problem finds a clique of maximum cardinality. It can be

easily transformed into the maximum-weight clique problem, which finds a clique
of maximum weight, by introducing positive weights wi associated with node i .
Clearly, the objective of formulation (2) in the weighted case will be of the form

max
NX

iD1

wi xi

with the same set of constraints as in (2).
An independent set is a subset I � V such that the subgraph G.I/ has no edges.

Figure 9b shows an example of an independent set in the graph. The maximum
independent set problem can be easily reformulated as the maximum clique problem
in the complementary graph NG.V; NE/. A maximum clique in NG is a maximum
independent set in G, so the maximum clique and maximum independent set
problems can be easily transformed to each other and are essentially equivalent. Let
I denote the set of all maximal independent sets of G. An alternative formulation is
the following independent set formulation [70]:

max
NX

iD1

xi (3)

s.t.X
i2S

xi � 1; 8S 2 I

xi 2 f0; 1g; i D 1; : : : ; N;

where S � V is a subset of graph G.
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The advantage of formulation (3) over (2) is the fact that it is a tighter formula-
tion, that is, the gap between the optimal values of (3) and its linear programming
relaxation is smaller [70].

Clearly, locating cliques and/or independent sets in a graph representing a dataset
provides important information in terms of identifying completely connected (or, on
the contrary, completely disconnected) clusters. Therefore, cliques would naturally
represent very dense clusters of similar objects. On the contrary, independent sets
can be treated as groups of objects that differ from every other object in the group.
This information may be important in some applications. In particular, it is often
useful to find a maximum clique or independent set in the graph, since it would give
the maximum possible size of the groups of “similar” or “different” objects.

Although finding large cliques in a graph representing a dataset may be useful
in terms of identifying large tightly connected clusters, an important computational
disadvantage of this approach is that the maximum clique problem (as well as the
maximum independent set problem) is known to be NP-hard [44]. Moreover, it
turns out that these problems are difficult to approximate [11,46]. This makes these
problems especially challenging in large graphs.

3.3 Clustering via Clique Partitioning

The problem of locating cliques and independent sets in a graph can be naturally
extended to finding an optimal partition of a graph into a minimum number of
distinct cliques or independent sets. These problems are referred to as minimum
clique partition and graph coloring [43], respectively. Pardalos et al. [71] give
various mathematical programming formulations of these problems. Clearly, as in
the case of maximum clique and maximum independent set problems, minimum
clique partition and graph coloring are reduced to each other by considering the
complimentary graph, and both of these problems are NP-hard [44]. The example
of optimal graph coloring is represented in Fig. 10. The simplest formulation of
graph coloring for graph G.V; E/ is given below. Solving these problems for
graphs representing real-life datasets is important from a data mining perspective,
especially for addressing the clustering problem.

min
NX

kD1

yk (4)

s.t.
NX

kD1

xik D 1; 8i 2 V (5)

xik C xjk � 1; 8.i; j / 2 E (6)
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Fig. 10 Vertex coloring of
the Petersen graph (minimum
number of colors – 3)

yk 	 xik; 8i 2 V; k D 1; : : : ; N (7)

yk; xik 2 0; 1; 8i 2 V; k D 1; : : : ; N: (8)

In the above model, decision variables xik and yk defined as

xik D
(

1; if color k is assigned to vertex i

0; otherwise

yk D
(

1; if color k is used

0; otherwise:

Constraints ( 5) ensure that exactly one color is assigned to each vertex. Con-
straints (6) prevent adjacent vertices from having the same color. Constraints (7)
ensure that no xik can be 1 unless color k is used. The optimal objective value
gives the chromatic number of a graph (�.G/), and the sets Sk D fi jxik D 1g; 8k,
comprise a partition of the vertices the minimum number of independent sets.

Since the data elements assigned to the same cluster should be similar to
each other, the goal of clustering is achieved by finding a clique partition of
the graph, and the number of clusters will equal the number of cliques in the
partition.

Similar arguments hold for the case of the graph coloring problem which should
be solved when a dataset needs to be decomposed into the clusters of “different”
objects (i.e., each object in a cluster is different from all other objects in the same
cluster) that can be represented as independent sets in the corresponding graph. The
number of independent sets in the optimal partition of graph G is referred to as the
chromatic number (�.G/) of the graph.
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3.4 Using Clique Relaxations for Graph-Based Clustering

Although cliques and independent sets address the issue of “robust” tightly
connected clusters, a significant practical drawback of these structures is that
they are often too restrictive, that is, all pairs of vertices need to be connected
(disconnected). On the contrary, as mentioned above, a simple connectivity
requirement is not restrictive enough to guarantee sufficient tightness of a
cluster. In an attempt to provide a tradeoff between the clique-based and sparse
connected component-based clusters, the concepts of clique relaxations are
introduced.

Several concepts of clique relaxations first appeared in studying cohesive
subgroups in social networks and were based on relaxing some of the desirable
properties that a clique idealizes. For instance, instead of cliques and independent
sets, one can consider quasi-cliques and quasi-independent sets and partition the
graph on this basis. Quasi-cliques are subgraphs that are dense enough (i.e., they
have a sufficiently high edge density, but the edge density does not have to be 1 as in
the case of cliques). Formal definitions of a quasi-clique and other clique relaxations
will be given below.

It is often reasonable to relate clusters to quasi-cliques, since they still rep-
resent sufficiently dense clusters of similar objects [50, 88]. Obviously, in the
case of partitioning a dataset into clusters of “different” objects, one can use
quasi-independent sets (i.e., subgraphs that are sparse enough) to define these
clusters.

Other types of clique relaxations have also been introduced. Many of these
definitions come from the studies of social networks; however, these concepts
clearly have important data mining interpretations. The main idea behind these
concepts is to “relax” certain properties of a clique while still maintaining sufficient
connectivity and robustness characteristics of the obtained network structures. Note
that in many cases, the size of these clique relaxations is substantially larger than
the size of cliques, which provides a significant advantage in situations when a
large tightly connected cluster needs to be identified. In addition, an important
factor that motivates the use of these clusters instead of cliques is the fact that
they are not as sensitive to potential errors in data collection and measurement.
For instance, if one link in a clique-based cluster is missing because of an error,
the structure of the clique is violated, and the corresponding cluster may not be
adequately reflected in data mining results. However, if one uses quasi-clique-based
clusters, the absence of several edges due to such errors is usually not as critical,
since it will likely not have a significant effect on the required edge density of the
cluster.

The ideas for the clique relaxation concepts discussed below originally come
from the study of social networks; however, these definitions can be efficiently
utilized in the data mining context. More specifically, there are three main directions
for possible relaxations of the clique definition:
1. Density-based relaxations – relaxing the requirement for the edge density of a

clique to be 1: quasi-cliques (� -dense subgraphs) [3]
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Fig. 11 Visual comparison of maximum clique (� D 1) versus maximum quasi-clique (� D
0:7; 0:6; 0:5) in the same uniform random graph G.50; 0:1/

2. Degree-based relaxations – relaxing the requirement that the degree of each node
in a clique of size q to be q � 1: k-plexes [78]

3. Path (diameter)-based relaxations – relaxing the requirement that the length of
the path between any two nodes in a clique to be 1: k-cliques [59], k-clubs, and
k-clans [66]
As mentioned above, a quasi-clique (also referred to as a � -clique or a � -dense

subgraph) is a subgraph that has the edge density of at least � , where � 2 .0; 1�.
Clearly, a quasi-clique becomes a clique when � D 1. A more rigorous definition
is provided below. Let G D .V; E/ be the graph with the set of vertices G and
the set of nodes E . Denote the graph induced by the vertex subset S � G by GS .
Under these notations, GS is a quasi-clique (� -dense subset) if jE.GS /j 	 �

�jV.G/j
2

�
(recalling that

�jV.G/j
2

� D jV.G/j.jV.G/j�1/

2
) and it is connected. The illustrative

example is shown in Fig. 11. The given graph G.50; 0:1/ is a random graph on 50
vertices with probability p D 0:1 that each edge exists. The size of the maximum
clique is equal to 3, and the size of the maximum quasi-clique with � D 0:7 is equal
to 5, with � D 0:6 is equal to 6 and with � D 0:5 is equal to 8. As one can observe,
the sizes of quasi-cliques are substantially larger than the size of the maximum
clique, whereas the density of these clusters is still high. Therefore, clusters based
on quasi-cliques may be more meaningful as they include a larger number of data
elements, which are still “similar enough” to be included in the same cluster.

A k-plex is a subgraph in which the degree of each node is at least q�k (assuming
that q is the number of nodes in this subgraph). Figure 12 presents an illustrative
example of k-plexes in a small graph on 7 vertices.

A k-clique is a subgraph where the length of the path between any two nodes is at
most k (note that other nodes in this path are not required to belong to the k-clique).
Consider the graph G D .V; E/ as in the previous definition and the subset S � G
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a b

dc

Fig. 12 Maximum k-plexes
in the graph for different k.
(a) Maximum 1-plex (clique)
subgraph in the given graph.
(b) Maximum 2-plex
subgraph in the given graph.
(c) Maximum 3-plex
subgraph in the given graph.
(d) Maximum 4-plex
subgraph in the given graph

Fig. 13 The example of
2-clique but not 2-club

1

2

3

4

5

6

denoted by GS . Then, GS is a k-clique if 8i; j 2 V it is given that dG.i; j / � k.
Note that distances between any two points in k-clique can be greater than k because
some paths might pass through the complementary graph GnGS to the k-clique. An
example illustrating this fact is mentioned in [7] and given in Fig. 13. As one can
see, there is the set L D f1; 2; 3; 4; 5g that forms a 2-clique, but the diameter of this
cluster is equal to 3. Therefore, the concept of k-clique does not necessarily embody
the idea of “tightness” of the corresponding cluster of points in a graph. In order to
ensure a higher level of tightness and low diameter of a cluster, the concept of a
k-clique can be “upgraded” to a k-club (Fig. 14).

A k-club is a subgraph that has a diameter of at most k (note that in this
definition, all the nodes in the shortest path that connects any pair of nodes within a
k-club have to also belong to this k-club). Using the same notations as in previous
definitions, it can be pointed out that GS is a k-club if 8i; j 2 V it is given that
dGS .i; j / � k. Thus, k-club can be viewed as a “tighter” structure than a k-clique.
It is more applicable for connectivity and clustering problems on networks where
cluster “cohesiveness” and “robustness” issues play an important role.
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a b

c d

Fig. 14 Maximum k-clubs in the graph for different k. (a) Maximum 1-club (clique) subgraph in
the given graph. (b) Maximum 2-club subgraph in the given graph. (c) Maximum 3-club subgraph
in the given graph. (d) Maximum 4-club subgraph in the given graph

Although the given definitions are rather straightforward and intuitively clear,
mathematically rigorous studies on related optimization aspects (e.g., mathematical
programming formulations for finding the largest clique relaxation-based clusters in
graphs) have started to appear only within the past few years.

For instance, an important combinatorial optimization problem associated with
quasi-cliques is the maximum � -clique problem. Pattillo et al. [72] proved that the
decision version of the � -clique problem is NP-complete for any fixed positive
� 2 .0; 1/.

Furthermore, linear 0–1 formulations for the maximum � -clique problem were
proposed in [72]. Consider the problem of finding a maximum � -clique in the graph
G D .V; E/. If for some subgraph GS one wants to check whether this subgraph is
a � -clique, one can define x D .x1; : : : ; xN / as a 0–1 vector with xi D 1 if node
i belongs to GS , or zero otherwise. Since x2

i D xi 8i , then the subgraph GS is a

� -clique if it consists of 1
2
�

NP
i;j D1;i¤j

xj xi arcs. The number of arcs in the subgraph

GS can be calculated as
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1

2
xT Ax D

NX
i;j D1;i¤j

aij xj xi :

Therefore, the problem of finding the maximum � -clique in the graph G can be
formulated as follows:

max
NX

iD1

xi :

subject to
NX

i;j D1;i¤j

aij xj xi 	 �

NX
i;j D1;i¤j

xj xi :

This is the problem with a linear objective and one quadratic constraint. In [72],
two possible linearizations of this problem were proposed.

The simplest linearization is rather straightforward with the main idea of
introducing new variables wij D xi xj . The constraint wij D xi xj is equivalent to

wij � xi ;

wij � xj ;

wij 	 xi C xj � 1:

Now, the problem can be formulated as the following linear 0–1 problem:

max
NX

iD1

xi

subject to

NX
i;j D1;i<j

aij wij 	 �

NX
i;j D1;i<j

wij ;

wij � xi ;

wij � xj ;

wij 	 xi C xj � 1:

This problem contains N.N � 1/=2 variables and 3
2
N.N � 1/ C 1 constraints,

that is, it has O.N 2/ entities. Besides this formulation, the problem of finding
a maximum � -clique can also be represented by the linear 0–1 formulation with
O.N / variables and constraints as described in [72], although this linearization is
not as straightforward as the one mentioned above, since it explicitly uses the special
structure of the considered problem. Despite the fact that the second linearization
is more compact, it does not always provide better computational performance
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compared to the O.N 2/ linearization, although it does perform faster on sparse
graphs and relatively high values of � , which is a typical setup in many situations
that deal with finding dense clusters in sparse networks representing real-world
datasets.

Besides the maximum quasi-clique problem, similar problems for other types of
clique relaxations representing tight clusters (in particular, k-plexes and k-clubs)
have been considered in the recent literature from the combinatorial optimization
perspective. The maximum k-plex problem has been addressed by Balasundaram
et al. in [15], where they provide the most compact formulation with N variables
and constraints. It has also been proven in [15] that the decision version of this
problem is NP-complete for any fixed positive integer k.

The maximum k-club problem was considered in several previous studies. The
first mathematical programming formulations (linear 0–1 formulations containing
O.N k/ variables and constraints) and complexity analysis of this problem were
addressed in [14]. In a recent study, Veremyev and Boginski in [82] developed a new
compact linear 0–1 programming formulation for finding maximum k-clubs that
substantially reduces the number of entities compared to the known formulations
with O.kN 2/ entities and allows one to find exact solutions to problems with larger
values of k, which can provide more flexibility in terms of modeling k-club-based
clusters.

In conclusion, utilizing clique relaxations in the context of clustering in data
mining appears to be a promising approach with attractive characteristics, since
it provides sufficient flexibility in terms of the tightness and size of the obtained
clusters. The chapter describes more details on clique relaxation models in graph
theory.

4 Examples of Real-World Applications

The aforementioned network-based data mining techniques have been used in a
variety of real-world applications during recent years. Although it is impossible
to describe all the applications in detail within one chapter, several examples of
networks and datasets that have been addressed in the recent literature will be briefly
discussed.

4.1 Biological Networks

Nowadays, representing complex biological systems as networks and studying the
properties of these networks has become a very popular tool in computational
biology and biomedical applications. For instance, an overview of graph-based
molecular data mining approaches is presented in [41]. An extensive recent volume
[30] covers many topics related to clustering problems in biological network appli-
cations, such as the analysis of regulatory and interaction networks from clusters of
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co-expressed genes, graph-based approaches for motif discovery, identifying critical
nodes in protein-protein interaction networks, genetic graph partitioning algorithms,
and so on. The most recent review of network-based approaches in biomedical
applications is presented in [18].

As new advances in experimental design produce a large amount of data to
describe biological interactions at a genome scale, this data is increasingly being
deposited into biological databases. These interaction networks include, among
others, protein interaction networks [54, 77], metabolic networks [33, 69], gene
regulatory networks [6], and signal transduction networks [80]. Since there is
evidence that preserved interaction pathways exist across organisms, efficient
algorithms to analyze common pathways in these networks can make significant
contributions to understanding of these networks. The most common representation
of such networks is a graph with vertices representing biological entities and
edges representing interactions between them. With this representation, one can
look for the presence of special substructures in these graphs to answer various
questions. By studying paths in these graphs, one can investigate the properties
of pathways and their relationships, and by finding similar subgraphs, one can
search for network motifs and study common substructures embedded in these
networks. While path matching allows the study of individual “linear” paths or
chains, graph matching allows one to investigate entire “nonlinear” pathways or
functional modules. Efficient algorithms for solving these problems give biologists
an opportunity to study evolutionary mechanisms such as pathway conservation,
duplication, and specialization. Thus, one important strategy is to start from a
given pathway of interest and find related pathways within the same organism.
By comparing proximities and differences in the returned pathways, it is possible
to evaluate various hypotheses concerning evolution. Although the path matching
problem models linear interaction chains well, many biological pathways are more
complex and may consist of multiple interacting components [86].

To solve the problem of finding similar paths in two graphs, a combined graph
from the two given graphs should be constructed, so that each vertex in the combined
graph represents a pair of related vertices, one from each of the two given graphs,
and each pathway alignment is represented as a simple path in the combined
graph. A randomized algorithm for finding simple paths by imposing acyclic edge
orientations may be useful in this case. The main difficulty here arises from the
presence of cycles in the given graphs. To avoid substantial repetitions of vertices
in a path, the problem of finding similar paths in two graphs has been reduced to
the NP-hard problem of finding high-scoring simple paths of a given length in a
combined graph (see [54]).

In contemporary post-genomic era, protein interactions are well captured by so-
called protein-protein interaction networks. In particular, protein-protein interaction
networks (see Fig. 15) have been experimentally constructed for many known
organisms. A protein interaction network is represented by a graph with the proteins
as nodes, and an arc exists between two nodes if the proteins are known to
interact. Also, it has been discovered that the degree distribution of many of these
complex protein interaction networks follows a power law. For instance, the protein



Combinatorial Optimization Techniques for Network-Based Data Mining 657

Fig. 15 A cluster in the
protein-protein interaction
network of the yeast [87]

interaction network of S. cerevisiae, as well as many other networks of this type,
has been experimentally shown to have a power-law degree distribution. Due to
the power-law structure, an average node degree is no longer representative, and
the majority of nodes have few neighbors, while a smaller number of nodes have
very high degrees. Many problems for biological networks can be solved via
identification of large clusters or functional modules. Cliques have formed the basis
for several studies that attempt to decompose a protein interaction network into
functional modules and protein complexes. Protein complexes are groups of proteins
that interact with each other at the same time and place, while functional modules
are groups of proteins that are known to have pairwise interactions by binding with
each other to participate in different cellular processes at different times. Clique
models have been popular in this area as they represent tight clusters in a network,
but sometimes they are too restrictive, as indicated earlier in this chapter. Therefore,
employing clique relaxations instead of cliques may be useful in this case. Network-
based clustering techniques utilizing clique relaxations (e.g., k-clubs) have been
applied to studying those networks in [13] and [14].

There are several computational methods to measure sequence similarities
between proteins. Some homology search algorithms capture similar database
sequences to a query from a database and calculate the statistical significance
of their similarities. However, retrieved proteins with evident similarities are
often uninformative from a practical perspective. To cope with this problem, it
is important to consider alternative approaches, such as signature identification
and sequence clustering. Functionally or structurally related proteins often have
locally conserved regions, referred to as functional motifs or signatures. Proteins
sharing the same signatures do not always exhibit apparent similarities between
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P1

[1 / 1.25] [2 / 1.00]

[cut / Ncut]

P2

Fig. 16 An instance of a graph representation of protein sequence similarities. Graph partitions
are shown by dashed lines P1 and P2 relatively. Each of these lines partitions vertices of the
graph into two distinct sets. Numbers below the dashed lines show the capacities of their cuts and
normalized cuts

their sequences. Therefore, they are referred to as distantly related proteins. Massive
amounts of signature data have been accumulated in special signature databases.
These databases enable one to accurately find proteins that share signatures and
their relative positions on the protein sequences. Clustering protein sequences is
an important approach to finding distant relationships. Distantly related proteins
may be grouped together into a cluster even though they do not show apparent
similarities. The most well-known and simplest method for clustering proteins is
single linkage (SL). A detailed description of SL method can be found in [57].
Although the method is simple, fast, and widely used, it has difficulty in detecting
an appropriate cutoff score for sequence similarity. More advanced algorithms
employ a graph representation of a given set of proteins. Such algorithms are SL-
based clustering method, named SL-KL (see [52]), and p-quasi complete linkage
algorithm (see [61]). They allow some proteins to overlap between two or more
groups. However, such clustering techniques usually carry high computational costs.
Therefore, in order for the algorithms to be applicable to a large number of proteins,
attention should be focused on approximate distantly related proteins without
overlapping groups. This approach to clustering proteins is based on iterative
partitioning. The key concept of graph partitioning is a “cut,” which is a set of edges
between two distinct sets of nodes (or proteins). When the sum of edge weights in
a cut (referred to as the cut capacity) is small, the two sets are considered to be
dissimilar.

Figure 16 shows a very simple example of graph representation of protein
similarities, where for simplicity all edges have unit weights. The proteins are
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naturally grouped into two sets on the left and right side of the cut P2. However, P1
is a partition with the lowest capacity of the cut, called the minimum cut, due to the
sparseness of the set of edges (e.g., one edge) connecting the proteins on the left side
of P1. Unfortunately, it is difficult for applications to find distant relationships in a
protein set containing various kinds of signatures using minimum-cut partitioning.
The normalized cut partitioning is proposed to avoid the tendency of inaccurate
clustering by the minimum-cut partitioning. It uses the normalized cut capacity
(Ncut) criterion, which is the ratio of the capacity of a cut to the sum of similarities
in each of the two distinct sets. In the context of the graph in Fig.16, P2 is a partition
with the minimum normalized cut. In addition, a locally minimal cut criterion can
also be used. All the aforementioned methods are described in detail in [53].

The genome is also a highly interactive system, and the expression of a gene
depends on the activity of other genes. Gene expression data is often represented
in a network format. Cliques are widely used for gene co-expression networks’
clustering. In the case of gene expression data, nodes represent the genes and arcs
represent the relations between co-expressed genes with correlation higher than a
specified threshold (see [51]) based on microarray experiments. Quasi-clique-based
clusters can also be identified in these networks [73].

The main challenge in the analysis of this data is to understand biological
functions from the topology of the network. There is a rather useful approach
based on efficient sequence alignment algorithms and a statistical theory to assess
the significance of the results (see [35]). Another way to address these challenges
leads to an algorithmic procedure referred to as local graph alignment, which
is conceptually similar to sequence alignment. It is based on a scoring function
measuring the statistical significance for families of mutually similar subgraphs.
This scoring involves quantifying the significance of the individual subgraphs, as
well as their mutual similarity. As a computational problem, graph alignment is
more challenging than sequence alignment. Sequences can be aligned in polynomial
time by using dynamic programming algorithms. For graph alignment, the existence
of a polynomial-time algorithm is unlikely. Thus, an important issue for graph
alignment is the construction of efficient heuristic search techniques, such as those
described in [19].

4.2 Chemical Networks

Chemical datasets are often represented as graphs, since they are natural represen-
tations of chemical compounds. Such graphs can be used to model topological and
geometric characteristics of chemical structures. The nodes correspond to atoms,
and the edges correspond to bonds connecting the atoms. For instance, Fig.17 shows
ball-and-stick diagrams of chemical compounds pentacene (Fig. 17a) and lysozyme
(Fig. 17b).

Chemical graph mining techniques have many applications in the drug discovery
procedure that include structure-activity-relationship (SAR) model construction and
bioactivity classification. Many data mining algorithms are based on the assumption
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Fig. 17 Representation of chemical data. (a) Pentacene molecule. (b) Lysozyme molecule

that the properties of a chemical element are related to its structure. For further
details, see [83]. Studying and mining chemical graphs can provide new perspectives
to chemistry, biology, and toxicology.

In recent years, a lot of algorithms on frequent graph pattern mining and
related chemical graph mining problems have been published. The amount and
complexity of the available data is steadily increasing. Within molecular databases,
it is interesting to find patterns (fragments) that appear at least in a certain percentage
of graphs. Another problem is to find fragments that are frequent in one part of the
database but infrequent in the other. Recently developed approaches for chemical
graph data mining include Subdue (see [32]), inductive logic programming (see
[40]), and Gaston (see [68]).

Chemical graph data mining can be considered in the context of search in the
lattice of all possible subgraphs. In Fig. 18, a small example is shown based on a
small molecule of nitrous acid (shown in the bottom of the figure). The four nodes
are labeled corresponding to their atom types (H, N, and O), and the edges are
labeled with their corresponding bond types (single and double bonds). All possible
subgraphs of this small graph are shown in the figure. At the top, the empty graph
is denoted by ;. In the next row, all possible fragments containing just one atom are
listed and so on. At the bottom of the figure, the complete molecule with three bonds
is given. Many chemical graph mining algorithms are based on the common idea of
performing search this subgraph lattice. They are interested in finding a subgraph (or
several subgraphs) that is the most frequent in the considered graph. Building this
lattice of frequent subgraphs involves two main steps: candidate generation, where
new subgraphs are created out of smaller ones, and support computation where the
frequency or support of the new subgraphs in the database is determined. Both steps
are computationally challenging, and various algorithms and techniques have been
developed to find frequent subgraphs in reasonable time. For more details, see [42].

Another approach utilized in chemical graph data mining is based on kernels.
Kernel methods have emerged as an important class of machine-learning methods
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Fig. 18 The lattice of all
subgraphs in nitrous acid
HNO2

suitable for variable-size structured chemical data (see [76]). Applications of kernel
methods to molecular bond graphs require the construction of graph kernels, that
is, functions that measure the similarity between graphs with labeled nodes and
edges. Also, kernel methods can be applied to molecular clustering and regression
problems, such as predicting the boiling point of alkanes and other organic
substances [12].

4.3 Brain Networks

One more interesting application of network-based data mining is associated with
studying human brain. It is a significant practical task since the results of this
analysis are important in medical practice, especially studying brain diseases. The
analysis of connectivity patterns of the brain function is extremely challenging
because of the complex structure with the huge numbers of neurons and dynamic
nature of connections between them. According to [67], the number of neurons is
estimated to be 8:3�109, and the number of connections is approximately 6:6�1013.
The empirical analysis of such structures represented as a graph with neurons as
nodes is computationally prohibitive.

Several aspects of the analysis of brain connectivity are studied in [48]. One can
potentially use the following technique to analyze the graph representing the brain.
Different functional units of the brain containing a large number of neurons can
be considered as a nodes in the graph. This approach enables the use of different
algorithms proposed for much smaller graphs. This method can be applied in order
to study properties of the connections between these functional units. In [37], the
authors applied this approach to study the cortical visual system of a macaque
monkey represented by a graph.

A similar approach can also be applied to study some properties of the human
brain. The major areas of the human brain and their functions are represented
on Fig. 19. In [36], the authors investigated a graph corresponding to 147,456
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Frontal lobe
Planning/reasoning,
problem-solving,
recognising and
regulating emotion,
social skills.

Temporal lobe
Understanding language,
processing auditory
information, organising
information, memory,
learning.

Brain stem
Regulates breathing,
body temperature,
heart activity etc.

Parietal lobe
Recognising sensations

and body position,
recognising objects,
spatial judgements,
understanding time.

Occipital lobe
Integrating and

processing visual
information (colour,

shape, distance).

Cerebellum
Controls balance and
muscle co-ordination

Fig. 19 Functional areas of the human brain

functional units of the human brain, which were selected by dividing the entire
brain into a set of 64 � 64 � 36 voxels of a small size. The set of edges of
this graph were constructed using the time series defined by the recorded signals
representing the activity of each functional unit. The correlation coefficients were
calculated according to the formula similar to (9) using the time series representing
the signals obtained from functional units, and the corresponding nodes were
connected if the correlation exceeded a certain threshold value. It turned out
that the resulting brain graphs also follow the power-law distribution with the
parameter � � 2 [36].

Investigating different characteristics of brain networks is a crucial practical task.
One can study various structures (network motifs) in the brain networks as spanning
trees, cliques/independent sets, clique relaxations, etc., which may provide a new
insight into the process of signal propagation between the functional brain units
and neurons. This information could potentially be very useful in studying brain
disorders. More detailed information on network models in brain dynamics is given
in the chapters [75].

4.4 Telecommunication/Information Exchange Networks

Large-scale information exchange networks arise in a great variety of areas, includ-
ing large-scale wireless communication/sensor networks, the Internet/World Wide
Web, and telephone traffic networks. The Internet, the World Wide Web, and the
telephone call networks (also referred to as call graphs) were experimentally shown
to have a power-law structure. Studying the structural properties and the global
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organization of these networks has been addressed in recent literature. Graph theory
has been applied for web search [28, 56], web mining [63, 64], and other problems
arising in the Internet and World Wide Web [9]. In an interesting experimental study
of the World Wide Web, Broder et al. [29] used two Al tavista crawls, each with
about 200 million pages and 1.5 billion links and identified certain properties of
the connected components of this graph. Studying the structural properties of the
Internet is an exciting area of ongoing research [85]. The necessity of such research
is justified because the usage of the Internet increases very rapidly in the world
over years. The graph on the Fig. 20 represents the growth of number of Internet
users through 1995–2010 [65]. The overall structural characteristics of the Internet
are sometimes referred to as “robust yet fragile” [34], which implies the overall
robustness with respect to random disruptions/errors, but potential vulnerability to
targeted attacks on “hubs” (i.e., high-degree vertices).

Another well-known experimental study of a large communication network was
conducted on the “call graph” representing daily telephone traffic data from AT&T
telephone billing records [1]. The call graph is also very large, and the considered
instance contained 53,767,087 vertices and over 170 million edges. The size of
cliques and quasi-cliques in this graph was investigated, and it turned out that
the size of the largest clique did not exceed 32, and the size of the largest quasi-
clique with � 	 0:5 did not exceed 96. Since the size of the considered graphs
is extremely large, the problems of identifying tight clusters, such as cliques and
quasi-cliques, cannot be solved exactly due to computational challenges. Therefore,
appropriate heuristic algorithms need to be applied to tackle these problems. For
instance, in [1], the greedy randomized adaptive search procedure (GRASP) [38,39]
was successfully used.
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4.5 Financial Networks

Stock market data can also be represented as a network and analyzed using
combinatorial optimization techniques. One can represent each traded stock by a
node in a network, and a given pair of nodes will be connected by an edge if
the corresponding stocks exhibit a similar behavior over a certain period of time
(this similarity can be measured as a correlation between the corresponding time
series, and a threshold can be set, so that an edge would be place if this threshold is
exceeded) [23].

Boginski et al. [24, 25] have previously done the work on studying the behavior
of the US stock market and modeling the corresponding massive dataset as a large-
scale network (referred to as the market graph).

It is possible to construct the market graph in a relatively simple way [23]. As it
was mentioned, the set of nodes of such graphs corresponds to the set of stocks. For
each pair of stocks i and j , the correlation coefficient Cij is calculated using the
following procedure. Let Pi .t/ denote the price of the instrument i at time t . Then,

Ri .t; �t/ D log
Pi .t C �t/

Pi .t/

defines the natural logarithm of return of the stock i over the certain period of time
Œt; t C �t�.

Correlation coefficients Cij between all pairs of stocks i and j are calculated as

Cij D EŒRi Rj � � EŒRi �EŒRj �p
VarŒRi �VarŒRj �

; (9)

where EŒRi � is the average return of the instrument i over T considered time units
[58, 60, 74]:

EŒRi � D 1

N

TX
tD1

Ri .t/:

If one defines a threshold � 2 Œ�1; 1�, then an undirected edge between the
nodes i and j is added to the graph if the corresponding coefficient Cij 	 � .
Usually, the value of � is chosen to be significantly larger than zero, and therefore,
an edge between two nodes reflects the fact that stocks i and j are significantly
correlated.

The values of the correlation threshold � can be changed in order to construct
market graphs where the edges between the nodes reflect different correlation
between the corresponding stocks. As the threshold value � increases, the number
of edges in the market graph decreases.

The edge density (as defined in Sect. 3) of the market graph is a measure of
the fraction of pairs of stocks exhibiting a similar behavior over some certain time
period. One can define different “levels” of this similarity by specifying different
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values of � . Figure 21 represents the plot of the edge density of the market graph as
a function of � [23].

In [20], the authors also looked at the changes of the edge density of the market
graph over time. The authors analyzed these dynamics for 11 overlapping 500-day
period in 2000–2002 (the 1st period was the earliest, and the 11th period was the
latest). A relatively large value of � (� D 0:5) was chosen in order to consider
only highly correlated stocks. It turned out that the edge density of the market graph
corresponding to the 11th period was more than 8 times higher than for the first
period. The corresponding plot is shown in Fig. 22. This jump of the edge density
suggests that there is a trend to the globalization of the modern stock market. It
means that the number of stocks that significantly affect the behavior of the others
was consistently increasing during the considered time period, and it is possible to
derive some regularities in the structure of the market.

In order to define the pattern of connections between stocks, the concept of
degree distribution defined above in the previous sections can be utilized. It turns
out that the degree distribution of the market graph has a well-defined power-law
structure [23].

In [22], the authors proposed to relate combinatorial properties of the market
graph to some properties of the stock market. For instance, one can apply algorithms
for finding cliques or quasi-cliques in the market graph and relate them to groups of
highly correlated stocks (the market graph should be constructed using a relatively
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large value of �). A clique and quasi-clique (as defined in Sects. 3.2 and 3.4) of
the graph are subsets of the this graph which are complete or “almost” complete
graphs itself, respectively (i.e., has all possible edges or needed edge density is
satisfied). Also, one can define the minimum clique partition problem for the market
graphs, which solution (the minimum number of distinct cliques that the market
graph) would represent the minimum number of clusters in the partition of the set
of financial instruments.

It is worth mentioning that even though the problem of finding maximum clique
in the graph is NP-hard, the exact solutions of this problem were found for different
instances of the market graph, which was possible because the market graph is
clustered (i.e., it contains dense groups of connected nodes).

Recall from Sect. 3.2 that an independent set is a subset of nodes which are
not connected with any other node in this set. Therefore, this notion can be
utilized for the market graphs in order to partition these graphs into clusters
with stocks whose price fluctuations are not correlated or negatively correlated.
It is rather important because finding independent sets in market graphs gives a
method of choosing fully diversified portfolios. Partitioning the market graph in
such a way that the number of clusters containing distinct diversified portfolios
is minimal would represent the optimization problem of partitioning this graph
to minimal number of independent sets. The optimal solution to this problem
is a chromatic number corresponding to the graph coloring problem. As it was
mentioned above, modern stock markets are usually highly correlated, so it is
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much more likely to observe a relatively large cliques and quasi-cliques which
represent correlated sets of the stocks in the market graph than a large independent
sets which represent diversified portfolios in the modern stock market. These
results are interesting since they support the idea of the globalization of the stock
market.

Overall, finding cliques (as well as quasi-cliques, k-plexes, and other clique
relaxations) and independent sets, along with the extensions similar to clique
relaxations, in the market graph provides an efficient tool of performing data mining
based on the stock market data, that is, partitioning the set of stocks into clusters of
“similar” or “dissimilar” objects.

4.6 Social Networks

The process of formation of new communities, their integration and disintegration,
attracting new members and their interaction with each other, and growth of the
network and its progress, is among the most important research problems in social
sciences. Political, religious, professional, and other forms of social organizations
provide examples of such communities. A social network is a structure of people
related directly or indirectly to each other through a common relation or interest.
Therefore, it is very natural to represent these systems as graphs: the nodes
are the people, groups, organizations, or other social entities and links represent
relationships or flows between the nodes.

A number of recent studies have focused on the statistical properties of social
networks. Researchers have concentrated particularly on a few properties that seem
to be common to many social networks: the small-world property, power-law degree
distribution (which was mentioned earlier in this chapter), and network transitivity.
“Small-world effect” is the name given to the finding that the average distance
between vertices in a network is short, usually scaling logarithmically with the
total number of vertices. A characteristic that many networks have in common is
clustering, or network transitivity, which is the property that two vertices that are
both neighbors of the same third vertex have a higher probability of also being
neighbors of each other. In the language of social networks, two of one’s friends
will have a greater probability of knowing each other than two people chosen at
random from the population. Another important property that appears to be common
in many networks is the property of community structure. Consider the case of social
networks of friendships or other acquaintances between individuals. It is intuitively
clear that such networks would contain “communities”: subsets of vertices, within
which vertex-to-vertex connections are dense, but between which connections are
not as dense. A visual sketch of a network with such a community structure is
shown in Fig. 23. The ability to detect community structures in a network clearly
has practical applications. Detection of community structures can be performed
using different approaches. A traditional method is hierarchical clustering that
constructs a measure that tells one which edges are most central to communities.
An alternative approach to the detection of communities is focused on the edges
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Fig. 23 A representation of a network with community structure. In this network, there are four
communities of densely connected nodes (circles with solid blue lines), with a much lower density
of connections (gray lines) between them

that are most “between” communities and strongly connected cores of commu-
nities (see [45]). In addition, the aforementioned concepts of clique relaxations
(k-cliques, k-clubs, k-plexes) have their origins in the context of communities
(tightly knit clusters) in social networks; therefore, efficient combinatorial algo-
rithms for identifying these structures in networks have significant implications in
this important application area.

Nowadays, social online communities are growing extensively, and the number
of people using such services is increasing very fast; therefore, the necessity of
social science research and related data mining techniques is unquestionable. More
details on this emerging application of network-based data mining techniques can
be found in [62].

5 Conclusion

Network-based data mining and related combinatorial optimization techniques are
promising in a variety of applications, which have been demonstrated by multiple
recent studies. In this chapter, several graph-theoretic concepts and problems have
been discussed in the context of their interpretation from both data mining and
combinatorial optimization perspectives. In addition, important real-world appli-
cation areas have been briefly described, including biological/medical, chemical,
telecommunication, financial, and social networks. Clearly, the research in this
broad area is far from complete, and new methodological and application aspects
will likely continue to be developed in the near future.
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