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Abstract
This chapter provides a survey on the problem of partitioning points in the
d -dimensional space with the goal of maximizing a given objective function;
the survey is based on the forthcoming book (Hwang FK, Rothblum UG (2011b)
Partitions: optimality and clustering. World Scientific). The first two sections
describe the framework, terminology, and some background material that are
useful for the analysis of the partition problem. The middle two sections study
the case of d D 1, and the last two sections study the case of general d . Results

�

Work of Uriel G. Rothblum was supported by The Israel Science Foundation (Grant 669/06).

F.K. Hwang
National Chiao Tung University (Retired), Hsinchu, People’s Republic of China
e-mail: fkhwang@gmail.com

U.G. Rothblum
Faculty of Industrial Engineering and Management Science, Technion - Israel Institute of
Technology, Haifa, Israel
e-mail: uri.rothblum@gmail.com

P.M. Pardalos et al. (eds.), Handbook of Combinatorial Optimization,
DOI 10.1007/978-1-4419-7997-1 40, © Springer Science+Business Media New York 2013

2301

mailto:fkhwang@gmail.com
mailto:uri.rothblum@gmail.com


2302 F.K. Hwang and U.G. Rothblum

are presented without proofs, but with motivations, comments, and references.
Complete proofs can also be found in the forthcoming book.

1 Formulation and Classification of Partition Problems

Consider a finite set N of distinct positive integers (for most of the development
N D f1; : : : ; jN jg). A partition of N is a finite collection of sets � D .�1; : : : ; �p/

where �1; : : : ; �p are pairwise disjoint nonempty sets whose union is N . In this
case, p is called the size of � , and the sets �1; : : : ; �p are called the parts
of � . Further, if n1; : : : ; np are the sizes of �1; : : : ; �p , respectively, the vector
.n1; : : : ; np/ is called the shape of �; of course, in this case,

Pp
j D1 nj D jN j.

The prefix “p-” or “.n1; : : : ; np/-” is sometimes added to explicitly express the
size or shape of a partition, referring to a p-partition of N or to an .n1; : : : ; np/-
partition of N . Further, for brevity, the reference to the set N as the partitioned set is
frequently omitted, referring simply to partitions. In the forthcoming development,
it is sometimes required that partitions’ parts are nonempty, while at other times,
this requirement is relaxed.

Partition problems are (combinatorial) optimization problems in which a par-
tition � is to be selected out of a given set … so as to optimize (i.e., minimize
or maximize) an objective function F that is defined over …. Such problems are
classified by (i) the set of partitions … over which optimization takes place, (ii) the
number of characteristics associated with each of the partitioned elements, and (iii)
the objective function F that is defined over …. It is next elaborated on each of these
classifiers.

1.1 Sets of Partitions

At times, attention is restricted to the set of all partitions or to the set of all
partitions whose size or shape satisfies prescribed restrictions; these situations are,
respectively, referred to as open, constrained-size, and constrained-shape sets of
partitions. Situations where the restrictions on the size or shape are expressed by
prescribing a single element are referred to as single-size or single-shape sets of
partitions, and situations where restrictions are expressed through lower and upper
bounds on the size or shape are referred to as bounded-size or bounded-shape sets of
partitions, respectively. All of the above classes of sets of partitions can be treated as
special cases of a constrained-shape class. Their respective names simply emphasize
the kind of constraints on the shapes. For example, the class of p-partitions collects
those partitions with p (nonempty) parts, and the class of open partitions collects all
partitions without restriction on the number of (nonempty) parts. Thus, constrained-
shape class is the most general class. Still, the general framework of constrained-
shape sets of partitions does not appear in the forthcoming development, and
whenever constrained-shape partition problems are mentioned, all shapes have the
same size; consequently, the terminology “constrained shape” is used for sets of
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Table 1 Classification of
sets of partitions

Open Constrained-size Constrained-shape (size given)

Bounded-size Bounded-shape (size given)
Single-size Single-shape

partitions with restricted shapes that have the same size (though formally, these are
single-size constrained-shape sets of partitions). Sometimes, the above adjectives
will be used casually to refer to partitions that belong to corresponding sets.

Let the (partitioned) set N be given and let n � jN j. When a single-size set
of partitions is considered, the prescribed single-size is given as a positive integer
p. Given a positive integer p and a set � of positive integervectors .n1; : : : ; np/,
each satisfying

Pp
j D1 nj D n, …� will denote the corresponding constrained shape

partitions, that is, all partitions with shape in � . In particular, if � consists of a
single vector .n1; : : : ; np/, the notation ….n1;:::;np/ refers to (the single-shape set
of partitions) …� . Also, if L and U are nonnegative integer p-vectors satisfying
L � U and

Pp
j D1 Lj � n � Pp

j D1 Uj , �.L;U / will denote the set of nonnegative
integervectors .n1; : : : ; np/ satisfying Lj � nj � Uj for j D 1; : : : ; p; in this case,

the notation ….L;U / is used for (the bounded-shape set of partitions) …�.L;U /
. (The

restrictions on L and U assure that �.L;U / and ….L;U / are nonempty.) Of course,
single-size and single-shape sets of partitions are instances of bounded-shape sets
obtained, respectively, by setting Lj D 1 and Uj D jN j�pC1 for all j or Lj D n

for all j . Similarly, open and single-size sets partitions are instances of bounded-size
sets. The hierarchy of the classification of partitions is summarized in Table 1.

A multiset is a group of elements where each element is allowed to have multiple
occurrence. The formal notation of a multiset has double brackets, for example,
ff1; 1; 2; 2; 3gg, or is given as a bracketed list of distinct elements with superscripts
designating their duplications, for example, f12; 22; 3g. However, at times, (the
abused notation of) single brackets is used, for example, f1; 1; 2; 2; 3g.

It is implicitly assumed in the above definitions that the parts of partitions are
distinguishable. But, in some applications, the parts are indistinguishable and can
be permuted without any restrictions. These situations are referred to as unlabeled
partitions. Formally, an unlabeled partition of N is a finite collection of sets
� D f�1; : : : ; �pg where the �j ’s are as above. Again, p and the sets �1; : : : ; �p

are referred to as the size and the parts of � , respectively. Further, if n1; : : : ; np are
the sizes of �1; : : : ; �p , respectively, the shape of � is the multiset ffn1; : : : ; npgg;
again,

Pp
j D1 nj D jN j is required. In the literature, unlabeled partitions are

commonly referred to as allocations. Herein, the term “partitions” is reserved to
labeled ones; but, at times (when potential ambiguity may arise), there is reference
to labeled partitions.

The classification to sets of labeled partitions applies to unlabeled ones;
see Table 1. Single-shape and bounded-shape sets of unlabeled partitions
are defined, respectively, by a multiset ffn1; : : : ; npgg or a multiset of pairs
ff.L1; U1/; : : : ; .Lp; Up/gg; the specification or the bounds on the sizes of the
parts of partitions then hold for some labeling of the parts. Frequently, as parts of
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unlabeled partitions are indistinguishable, sizes and bounds of unlabeled partitions
are uniform, namely, all parts have the same size and a multiset of bounds
ff.L1; U1/; : : : ; .Lp; Up/gg consists of p identical pairs.

1.2 The Number of Characteristics Associated with each
Partitioned Elements

It is assumed throughout that each element i of the partitioned set N is associated
with a vector Ai 2 Rd where d is a fixed positive integer (independent of i ); the
coordinates of Ai are referred to as parameters or characteristics associated with i .
The n vectors Ai are part of the data for the problem and are given in the form of
a real d � n matrix A. For a subset S of N D f1; : : : ; ng, AS is the submatrix of
A consisting of the columns of A indexed by S , ordered as in A. Also, “bars” over
matrices are used to denote the multiset consisting of their columns, for example,
a subset S of N D f1; : : : ; ng, AS is the set of columns of AS , accounting for
multiplicities.

1.3 The Objective Function

An objective function F.�/ associates each (feasible) p-partition � with a value
F.�/, and F.�/ is to be maximized (or minimized) over the given set of partitions.
The value F.�/ of a partition � is assumed to depend on the parameters of the
elements that are assigned to each part. More specifically, for each positive integer
v, there is a column-symmetric function hv W Rd�v ! Rd , defined over multisets
of v d -vectors; there are functions gj W Rd ! Rm, j D 1; : : : ; p, and a function
fp W Rm�p ! R. Then the value F.�/ associated with partition � having shape
.n1; : : : ; np/ is given by

F.�/ D fp

�
g1Œhn1.A

�1/�; : : : ; gpŒhnp .A�p /�
�

: (1)

The functions hnj can, in a more general context, depend on the location within
the variables of fp , that is, on the index j ; also, the functions gj may depend
on nj . In many common applications, each of the functions hnj is the summation
function; in such cases, the problems are called sum-partition problems. When hv

or gj is independent of the indexing parameter, the corresponding subscripts are
dropped. Also, when referring to partitions of common size, the subscript “p” of
fp is dropped. Functions fp are called additive when fp is the sum function. It is
also possible to consider partition problems where the domain of the functions hnj

consists of ordered lists (and the functions hnj are not symmetric).
Some further notation is next introduced for a more concise form of sum-partition

problems. For a d � n real matrix A and a p-partition � D .�1; : : : ; �p/ of N , the
�-summation-matrix of A, denoted A� , is given by
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A� �
2

4
X

i2�1

Ai ; : : : ;
X

i2�p

Ai

3

5 2 Rd�p; (2)

where the empty sum is defined to be 0. When each of the gj ’s is the identity over
Rd , the objective function F associates with partition � the value F.�/ with the
representation

F.�/ D fp.A�/: (3)

(As was already mentioned, when the optimization over partitions concerns only
partitions of fixed size p, the dependence of the functions fp on p is suppressed).

Of particular interest is the case where all Ai ’s have a common coordinate, say
the first one, and it equals 1 for each Ai . In this case, row 1 of A� is the shape
of � . It follows that ( 3) allows for the objective function F to depend on the
shape of partitions. Of course, for single-shape problems, the part-sizes (i.e., the
coefficients of the shape) are fixed and can be viewed as parameters of the objective
function.

In summary, the major classifiers of partition problems are:
(1) The family of partitions … over which the function F (with representation as

in (1) or (3)) is considered and optimized: Using the classification of families
of partitions provided in Table 1, there are open, constrained-size, bounded-
size, single-size, constrained-shape, bounded-shape, and single-shape partition
problems. In addition, relaxed-size problems refer to single-size problems
which allow for empty parts. The description of the set of feasible partitions
has to specify whether or not empty parts are allowed.

(2) The number of parameters associated with each of the partitioned elements: The
forthcoming development refers to single-parameter problems, two-parameter
problems, and multiparameter problems.

(3) The objective (cost) function F as expressed by (1): Adjectives like “sum-
,” “max-,” or “mean-” of partition problems reflect properties of hv while
properties of f , like “linear,” “convex,” “Schur convex,” and “separable,” are
explicitly referred to fp , for example, sum-partition problems with f Schur
convex.

A partition that maximizes/minimizes F.�/ over a prescribed family of partitions …

is called optimal over ….
For single-, bounded-, and constrained-shape families of partitions, the inclusion

or exclusion of empty parts is implicit in the description of the set of feasible
shapes – empty parts are prohibited when the set of feasible shapes consists
only of positive vectors, whereas the inclusion of nonnegative shapes that are not
(strictly) positive indicates that empty parts are allowed. In particular, results that
apply to all single-, bounded-, or constrained-shape partition problems with empty
parts allowed extend to corresponding problems with empty parts prohibited (by
restricting attention to corresponding sets of shapes that consist only of positive
vectors). Still, there are results in this chapter that apply to constrained-shape
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problems that require the exclusion of empty parts. For sets of partitions that are
determined by restrictions on size, for example, the case of single-size, the inclusion
or exclusion of empty parts, must be made explicit as neither variant captures the
other; see the results of the forthcoming Sect. 3 (summarized Table 4) about the
optimality of monopolistic partitions for size problems with empty parts allowed and
the optimality of extremal partitions for size problems with empty parts prohibited.
Default positions in different parts of this chapter differ – at times they allow for
empty parts, at times they exclude them, and at times they allow either way (to be
determined through the specification of the set of feasible shapes).

The above classification refers to labeled partitions. Optimization problems over
sets of unlabeled partitions can be embedded in the above framework, with … and
F being invariant under part permutation.

A major goal of this chapter is the identification of properties that are present
in optimal partitions, thereby allowing one to restrict attention to correspond-
ing subclasses of partitions. These properties are usually defined in terms of
geometric/algebraic characteristics of the set of vectors associated with the indices
assigned to the parts of the underlying partition. In particular, the focus is on
properties that capture “clustering” of these vectors. The number of single-shape
partitions is exponential in n (which implies the number of size partitions, open
partitions, and other varieties of partitions are all exponential in n), so that it is not
feasible to enumerate efficiently the partitions for selecting the optimal one. On the
other hand, if a property has only polynomially many members, then it is possible
to find an optimal partition by enumerating the subclasses of partitions having this
property and comparing the values of the objective function.

Formally, a property Q of a partition is a unitary relation over sets of partitions,
and it can be identified with the sets of partitions that satisfy it. Properties that are
considered when studying multiparameter problems depend on the Ai ’s; as such, it
seems natural to consider the partitioning of the Ai ’s rather than the partitioning of
the underlying index set. But, possible equality among the Ai ’s often obscures the
partition property. This situation is easily handled when the partitions are of the set
of distinct indices and not of the Ai ’s.

A type 1 result for a partition problem is one that establishes a property for every
optimal partition; a type 2 result is one that establishes a property for some optimal
partition.

The next lemma, observed by Golany et al. [29], records a useful implication for
the presence of properties in optimal solutions for single-shape/size and constrained-
shape/size partition problems. For simplicity, attention is restricted to partitions
whose size p is fixed.

Lemma 1 Consider an objective function F over partitions, a set � of integer
p-vectors whose coordinate-sum is n and a property Q of partitions such that
each single-shape partition problem corresponding to a shape in � and the
objective function F , Q is satisfied by some (every) optimal partition. Then, for
each constrained-shape partition problem corresponding to a subset of � and the
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objective function F , Q is satisfied by some (every) optimal partition. Also, the
above holds with “shape” replaced by “size.”

For single-parameter problems, the n elements in the single row of A are usually
denoted �1; : : : ; �n. In particular, for single-shape sum-partition problems, the
�-summation matrix associated with a partition � is a p-vector, which is denoted
�� and referred to as �-summation vector, that is,

�� �
0

@
X

i2�1

� i ; : : : ;
X

i2�p

� i

1

A 2 R1�p: (4)

Evidently, when �i D 1 for each i , �� is the shape of � . For single-parameter
problems, the partitioned elements can be renumbered so that �i is monotone in i ,
that is,

�1 � � � � � �n: (5)

(Still, when analyzing the complexity of algorithm that solve partition problems,
one should account for time required to sorting �i ’s, if needed).

Much of the analysis focuses on partition problems with fixed size (single-shape,
bounded-shape, constrained-shape, and single-size problems). When considering
problems that allow for varying partition sizes, the objective function is, effectively,
parameterized by an integer p representing the partition sizes; see (1). In particular,
results about optimal partitions will then depend on some structure that expresses
a connection between the objective function of p-partitions for different values
of p. The most natural structure is the “reduction assumption” that asserts that F

is invariant under the permutation/elimination of empty parts. For example, this is
the case when fp in (1) is the sum- (max/min)-function and the value assigned to
empty parts is 0 (�1/1). A natural assumption that accompanies the “reduction
assumption” is symmetry of F under part permutations.

Open problems that do not satisfy the reduction assumption can be difficult to
analyze: They may have infinitely many feasible partitions, and there need not be an
optimal one; this situation is demonstrated in the next example.

Example 1 Let N D f1; 2g and consider the open problem where empty sets

are allowed and objective function is given by F.�/ D Pp
j D1 j

�P
i2�j

i
�

for

partitions � of size p. Then every single-size problem will assign both elements of
N to the part with the highest index. But, the open problem does not have an optimal
partition as every p-partition is dominated by the best .p C 1/-partition. �

When the “reduction assumption” is satisfied, each partition with p nonempty
parts can, effectively, be viewed as (one of several) p0-partitions (with empty
sets allowed) for any p0 � p. In particular, upper bounded-size problems with
upper bound p and open problem can be embedded in single-size problems with,
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respectively, p or n as the prescribed size (and with empty parts allowed). The
amount of computation of solving n-size problems may be high, but the reduction
may be useful in establishing properties of optimal solutions. Further, in cases where
an optimal solution for a single-size problem with empty parts excluded is simple,
optimizing over the number of nonempty parts may be computationally tractable.
When the reduction assumption is in effect, allowing for empty parts is a technical
notion that helps us address bounded-size and open problems.

The following list provides a collection of applications of the optimal partition
problem reported in the literature (number 11 has not yet appeared in the literature):
1. Assembly of systems (Derman et al. [17]; El-Newerbi et al. [22, 23]; Du [19];

Du and Hwang [20]; Malon [49]; Hwang et al. [41]; Hwang and Rothblum [36])
2. Group testing (Dorfman [18], Sobel and Groll [68], Gilstein [28], Pfeifer and

Enis [59], Hwang et al. [41])
3. Circuit card library (Kodes [47]; Garey et al. [27])
4. Clustering (Fisher [24]; Boros and Hwang [7]; Golany et al. [29])
5. Abstraction of finite state machines (Oikonomou and Kain [58], Oikonomou

[56, 57]).
6. Multischeduling (Mehta et al. [51] Rothkopf [62], Tanaev [69], Graham [31],

Cody and Coffman [16], Chandra and Wang [13], Easton and Wong [21])
7. Cashe assignment (Gal et al. [26])
8. Blood analyzer problem (Nawijn [53])
9. Joint replenishment of inventory (Chakravarty et al. [11, 12], Goya [30], Silver

[67], Nocturne [55], Chakravarty [10], A.K. Chakravarty 1983, Coordinated
multi-product purchasing inventory decisions with group discounts, unpub-
lished manuscript; A.K. Chakravarty, 1982b, Consecutiveness rule for inventory
grouping with integer multiple constrained group-review periods, unpublished
manuscript)

10. Statistical hypothesis testing (Neyman and Pearson [54])
11. Nearest neighbor assignment
12. Division of property (Granot and Rothblum [32])
13. Consolidating farm land (Brieden and Gritzmann [8]; Borgwardt et al. [5])

2 Preliminaries: Optimality of Extreme Points

This section presents sufficient conditions for the optimality of vertices, conditions
that unify classical quasi-convexity and of Schur convexity. Throughout, standard
definitions and facts about polytopes and convex sets are used; in particular, the
vertices of a polytope are its extreme points.

Let C be a convex subset of Rp and let f W C ! R. The function f is (strictly)
quasi-convex along a nonzero vector d 2 Rp , or briefly (strictly) d -quasi-convex, if
the maximum of f over every line segment in C with direction d is attained (only)
at one of the two endpoints of that line segment, possibly both. The function f is
(strictly) quasi-convex along a set D � Rp, or briefly (strictly) D-quasi-convex,
if f is (strictly) quasi-convex along every nonzero vector d 2 D. The function f
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Fig. 1 Quasi-convexity

is (strictly) quasi-convex if it is (strictly) Rp-quasi-convex. Reference to (strict)
directional quasi-convexity is an abbreviation of (strictly) quasi-convexity along
sets. Recall that a function f is (strictly) convex on C if for every distinct x; y 2 C

and 0 < ˛ < 1, f Œ˛x C .1 � ˛/y� � .</ f̨ .x/ C .1 � ˛/f .y/; of course, every
(strictly) convex function is (strictly) quasi-convex.

The next lemma states a simple, but useful, characterization of directional quasi-
convexity.

Lemma 2 Let C be a convex subset of Rp, f W C ! R and d 2 Rp n f0g. Then
the following are equivalent:
(a) f is d -quasi-convex.
(b) For each x 2 C , the restriction of f to C \ fx C �d W � 2 Rg (when viewed

as a function in the parameter � ) cannot decrease after an increase.

The behavior of a function, which is d -quasi-convex over line segments with
direction d , can follow the patterns demonstrated in Figures (a), (b), or (c) of Fig. 1,
but not (d) (where a line segment is identified over which the function does not attain
a maximum at an endpoint).

Let C and D be subsets of Rp where C is compact and convex. The set D is a
through-set for C if for every point x 2 C which is not an extreme point of C , there
is a line segment Ł � C with direction in D such that x is in the relative interior
of L. The following lemma identifies a necessary condition for through-sets. It also
shows that this condition is sufficient for polytopes.

Lemma 3 Let C be a convex set in Rp . Then a subset D of Rp is a through-
set for C only if D contains a direction for each edge of C . Further, if C is a
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polytope, then every subset of Rp that contains a direction for each edge of C is
a through-set for C .

There are convex sets which have no edges, for example, the `2-unit ball
in Rp. As the empty set is obviously not a through-set for any convex set of
positive dimension, the sufficiency condition of Lemma 2 does not generalize from
polytopes to general convex sets.

Sufficient conditions for optimality of extreme points are next presented. The
result was developed independently by Tardella [70] and Hwang and Rothblum
[37]. It unifies the classical conditions of quasi-convexity and results about Schur
convexity (see the paragraph following Corollary 2).

Theorem 1 Let C be a compact convex set in Rp , let E be the set of extreme points
of C , and let D be a through-set for C , and let f W C ! R be D-quasi-convex.
Then supC f D supE f ; in particular, if f is continuous or if C is a polytope, f

attains a maximum over C at one of C ’s extreme points.

Theorem 2 Let C be a compact convex set in Rp, let D be a through-set for C , and
let f W C ! R be strictly quasi-convex along D. Then every maximizer of f over
C is an extreme point of C ; in particular, if f is continuous or if C is a polytope,
then such maximizers exist.

Let C be a convex subset of Rp and let f W C ! R. The function f is
(strictly) edge-quasi-convex on C if it is (strictly) quasi-convex along every (some)
subset D of Rp that contains a direction for each edge of C . Evidently, f is
(strictly) edge-quasi-convex on C if and only if the maximum of f over any
line segment in C which is parallel to one of C ’s edges is attained at one of the
two endpoints (and not at a point in the relative interior). Also, a (strictly) quasi-
convex function is (strictly) edge-quasi-convex on every convex set over which it is
defined.

Corollary 1 Let P be a polytope and let f W P ! R. If f is edge-quasi-convex
on P , then f attains a maximum over P on one of P ’s vertices. Further, if f is
strictly edge-quasi-convex, then every maximizer of f over P is a vertex of P ; in
particular, such a maximizer exists.

The assumption in Corollary 1 depends on the polytope P through its edge-
directions, and the conclusion of the corollary specifically refers to P .

For k 2 f1; : : : ; pg, let ek be the k-th unit vector in Rp . Also, let ƒ � f.i; j / W
i; j 2 f1; : : : ; pg and i ¤ j g, and for .i; j / 2 ƒ, let eij � ei �ej . Let C be a convex
subset of Rp and f W C ! R. The function f is called (strictly) asymmetric Schur
convex if it is (strictly) quasi-convex along the set feij W .i; j / 2 ƒg. The use of the
term “asymmetric” is to emphasize that these properties apply to functions which
are not necessarily symmetric. Of course, every quasi-convex function, let alone a
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convex function, is asymmetric Schur convex. (See the forthcoming definition of
Schur convex functions).

The next lemma provides a characterization of asymmetric Schur convexity of
continuously differentiable functions.

Lemma 4 Let C � Rp be an open convex set of dimension p and let f W C ! R

be continuously differentiable. Then f is asymmetric Schur convex on C if and
only if

for all x 2 I p and i; j D 1; : : : ; p;
h

@f

@xi
� @f

@xj

i
Œx C �.ei � ej �

cannot change sign from positive to negative as � increases.
(6)

For a vector x 2 Rn and k D 1; : : : ; n, let xŒk� be the k-th largest coordinate of x.
A vector a 2 Rp majorizes a vector b 2 Rp , written a 	 b, if

kX

iD1

aŒi � �
kX

iD1

bŒi � for all k D 1; : : : ; p (7)

and
pX

iD1

aŒi � D
pX

iD1

bŒi � : (8)

Evidently, (7) and (8) are, respectively, equivalent to

max
jI jDk

X

i2I

ai � max
jI jDk

X

i2I

bi for all k D 1; : : : ; p (7a)

and
pX

iD1

ai D
pX

iD1

bi : (8a)

The vector a strictly majorizes b if a majorizes b, but b does not majorize a.
Let B be a convex subset of Rp and let f W B ! R. The function f is called

Schur convex on B if

f .a/ � f .b/ for all a; b 2 B satisfying a 	 b : (9)

Condition ( 9) asserts that f is order-preserving with respect to the partial order
majorization. The function f is called strictly Schur convex if it is Schur convex
and (9) holds strictly whenever a strictly majorizes b.

Asymmetric Schur convexity is next related to classical Schur convexity.
A subset B of Rp is symmetric if B contains all vectors obtained by permuting
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the coordinates of vectors in B . A real-valued function on a symmetric subset of
Rp is called symmetric if it is invariant under coordinate-permutations.

Theorem 3 Let I � R be an open interval and f W I p ! R. Then the following
are equivalent:
(a) f is (strictly) Schur convex on I p .
(b) f is symmetric and (strictly) asymmetric Schur convex on I p .

As every (strictly) convex function is clearly (strictly) asymmetric Schur convex,
Theorem 3 implies that a symmetric (strictly) convex function is necessarily
(strictly) Schur convex.

The next result relates asymmetric Schur convexity to edge quasi-convexity. Let
RC be the nonnegative real numbers.

Corollary 2 Let f W .RC/p ! R. Then f is asymmetric Schur convex
if and only if for every ˇ > 0 the restriction of f to the polytope˚
x 2 Rp W x � 0;

Pp
iD1 xi D ˇ

�
is edge-quasi-convex.

Evidently, quasi-convex functions and Schur convex functions are asymmetric
Schur convex. Thus, asymmetric Schur convexity unifies classical quasi-convexity
and Schur convexity. The following example identifies functions that are asymmet-
ric Schur convex but neither convex nor symmetric, let alone Schur convex.

Example 2 Let f W R2 ! R be given by f .x1; x2/ D g.x1 C x2/ C h.x1 � x2/

with g arbitrary and h convex. To see that f is asymmetric Schur convex consider a
line with direction e1 � e2, say fx C�.e1 � e2/ W � 2 Rg. It then follows that f Œx C
�.e1 � e2/� D g.x1 C x2/ C h.x1 � x2 C 2�/, and this expression is clearly convex
in � . The function f need not be symmetric nor convex, for example, f .x/ D
sin.x1 C x2/ C .x1 � x2/

2. �

Theorem 4 Let P be a polytope all of whose edges have direction in feij W .i; j / 2
ƒg and let f W P ! R. If f is asymmetric Schur convex on P , then f attains a
maximum over P at one of P ’s vertices. Further, if f is strictly asymmetric Schur
convex, then every maximizer of f over P is a vertex of P ; in particular, such a
maximizer exists.

Polytopes of the form fx 2 Rp W x � 0,
Pp

iD1 xi D ˇg with ˇ � 0

clearly satisfy the assumption of Theorem 4 about the direction of their edges.
Theorem 4 follows Hwang and Rothblum [37]. It streamlines the classical result
about quasi-convexity being a sufficient condition for optimality of extreme points
with a corresponding result about Schur convex functions. Interestingly, histori-
cally, these two conditions were considered distinct; in fact, Marshall and Olkin
[50, p. 13] refer to the use of “convexity” in describing Schur convex functions as
“inappropriate” and state that they adhere to the “historically accepted term ‘Schur
convexity’.” Figure 2 below provides a graphical illustration of the relationships
between quasi-convexity, directional quasi-convexity, classical Schur convexity (for
symmetric functions), and asymmetric Schur convexity.
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Quasi-convexity

Directional
quasi-convexity

Schur convexity

Asymmetric
Schur convexity

Fig. 2 Relationships among quasi-convexity, directional quasi-convexity, Schur convexity, and
asymmetric Schur convexity

3 Single-Parameter: Polyhedral Approach

This section examines single-parameter partition problems. In particular, a class of
polytopes, called partition polytopes, is introduced, and these polytopes are used to
study partition problems.

Throughout this section and the next one, let (the partitioned set) N D
f1; : : : ; ng, (the size of partitions) p and (the real numbers associated with the
partitioned elements) �1; : : : ; �n be fixed. Without loss of generality, assume that
the �i ’s are ordered and satisfy

�1 � �2 � � � � � �n I (10)

also, � will stand for the vector .�1; : : : ; �n/.
Recall from Sect. 1 that for a p-partition � D .�1; : : : ; �p/ of N , �� is given by

�� � �
��1 ; : : : ; ��p

� D
0

@
X

i2�1

� i ; : : : ;
X

i2�p

� i

1

A 2 Rp : (11)

Given a set … of ordered p-partitions, the …-partition polytope is denoted P … �
conv f�� W � 2 …g � Rp; when the set … is either generic or clear from the
context, the prefix “…�” is omitted. In forthcoming sections, partition problems are
examined where the partitioned elements are associated with vectors rather than
scalars; in the broader context, the above polytopes are called single-parameter
partition polytopes.

The abbreviated notation P � will be used for P …�
when � is a set of nonnegative

integer p-vectors .n1; : : : ; np/ satisfying
Pp

j D1 nj D n, and such a polytope will
be referred to as a constrained-shape partition polytope. Further, if � consists of a
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single vector .n1; : : : ; np/, P .n1;:::;np/ will stand for P ….n1;:::;np/

and such a polytope
will be referred to as a single-shape partition polytope; if L and U are nonnegative
integer p-vectors satisfying L � U and

Pp
j D1 Lj � n � Pp

j D1 Uj , P .L;U /

will stand for P ….L;U /
and such a polytope will be referred to as a bounded-shape

partition polytope; finally, if … consists of all partitions of size p, P p will stand for
P …p

and such a polytope will be referred to as a single-size partition polytope.
The vertices of a …-partition polytope P … have a representation �� with � 2 ….

Thus, in seeking an optimal partition in … when the objective function F has the
representation F.�/ D f .��/ for each � 2 …, it is useful to examine an extension
of the functions f to P … (from f�� W � 2 …g) and use results of Sect.2 to determine
conditions that suffice for this extension to attain a maximum over P … at a vertex.

Consider a single-shape problem corresponding to shape. If nj D 0 for some
j D 1; : : : ; p, then for every partition � 2 ….n1;:::;np/ �j is empty and .��/j D 0;
so, part j is redundant. Consequently, such indices j can be eliminated, and there is
no loss of generality by imposing the restriction that all nj ’s are positive. But, such
a reduction needs not be possible when considering constrained-shape problems.
The analysis of partition polytopes usually allows for empty parts (diverting from
the default position that empty parts are prohibited).

The following example identifies an important class of partition polytopes.

Example 3 Consider the single-shape partition polytope defined by .n1; : : : ; np/ D
.1; : : : ; 1/. In particular, in this case, n D Pp

j D1 1 D p. A partition � with shape
.1; : : : ; 1/ corresponds to a permutation of .1; : : : ; p/, and for such a partition,
�� is the p-vector obtained from the corresponding coordinate permutation of
.�1; : : : ; �p/. The partition polytope P .1;:::;1/ is then the convex hull of these
(permuted) vectors, and it is called the generalized permutahedron corresponding to
.�1; : : : ; �p/. The standard permutahedron is the generalized permutahedron with
�i D i for i D 1; : : : ; p. �

Generalized permutahedra were first investigated by Schoute [63]; see also
Ziegler [71, pp. 17–18 and 23].

A set of partitions … is next associated with two additional polytopes; it will
be shown that the definition of these polytopes provides useful representations for
partition polytopes under general conditions. First, let C … be the solution set of the
following system of linear inequalities:

X

j 2I

xj � min

8
<

:

X

j 2I

.��/j W � 2 …

9
=

;
for each ; 
 I � f1; : : : ; pg (12)

pX

j D1

xj D
nX

iD1

� i I (13)

evidently, C … is bounded and it is therefore a polytope.
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An important property of partitions is next introduced; it will then be used
to define the third polytope associated with a set of partitions. A partition is
called consecutive if each of its parts consists of consecutive integers. Such a
partition is determined by an order on its (nonempty) parts with a part preceding
another when the indices of each element in the first part are smaller than each
element in the second part. When the parts of a partition are nonempty, the order
defining a consecutive partition is unique; further, a consecutive partition is uniquely
determined by its order and its shape. In particular, for every nonnegative integer
vector .n1; : : : ; np/, there exists a consecutive partition � with shape .n1; : : : ; np/.
The third polytope associated with a set of partitions …, denoted H …, is defined by
H … � convf�� W � is a consecutive partition in …g.

When … � ….n1;:::;np/ or … D ….L;U /, superscripts .n1; : : : ; np/ and .L; U / are
used for ….n1;:::;np/ and ….L;U /, respectively, to index the polytope C and H , for
example, C .n1;:::;np/ and H .L;U /. The next result relates the polytopes P …, C …, and
H … for sets of partitions ….

Lemma 5 For every set … of p-partitions, H … � P … � C ….

In order to explore conditions under which the inclusions in Lemma 5 hold as
equalities (yielding useful representations for partition polytopes), two polytopes
associated with a real-valued functions on subsets are next introduced.

Let � be a real-valued function on the subsets of f1; : : : ; pg with �.;/ D 0.
A permutation (of f1; : : : ; pg) is formally defined as an ordered collection of sets
� D .�1; : : : ; �p/ where �1; : : : ; �p are singletons that partition f1; : : : ; pg; given
such a partition � and k 2 f1; : : : ; pg, there is a unique index j with �j D fkg – it is
denoted j� .k/. Each permutation � defines a vector �� 2 Rp whose k-th coordinate
.�� /k for k D 1; : : : ; p equals �.[j

tD1�t / � �.[j �1
tD1 �t / with j D j� .k/ (i.e., j as

the unique index satisfying �j D fkg). The permutation polytope corresponding
to �, denoted H �, is the convex hull of the vectors �� with � ranging over all
permutations of f1; : : : ; pg. A second polytope associated with �, denoted C �, is
the solution set of the system of linear inequalities given by

X

j 2I

xj � �.I / for each nonempty subset I of f1; : : : ; pg; (14)

pX

j D1

xj D �.f1; : : : ; pg/ : (15)

In the game theoretic literature, C � is referred to as the core of the p-person game
defined by �. Under this interpretation, 1; : : : ; p are considered players, subsets of
f1; : : : ; pg are called coalitions, �.I / for a coalition I is the value of I , and the
vectors in C � represent allocations to the players with (14) assuring that the players
in coalition I get together at least �.I / and (15) assuring that all players together
get the value of the grand coalition f1; : : : ; pg. These games and their cores were
introduced by Morgenstern and Von Neuman [52] and explored in Shapley [66].
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A real-valued function � on the subsets of f1; : : : ; pg with �.;/ D 0 is called
supermodular if for every pair I and J of subsets of f1; : : : ; pg,

�.I [ J / C �.I \ J / � �.I / C �.J /I (16)

� is called strictly supermodular if strict inequality holds whenever the two
sets I and J are not ordered by set inclusion, that is, I 6� J and J 6� I .
Supermodular/submodular functions have extensive applications in optimization
and polyhedral combinatorics.

The p standard unit vectors (in Rp) will be denoted e1; : : : ; ep . Parts (a) and (b)
of the next theorem are due to Shapley [66], whereas part (c) is due to Hwang, Lee,
and Rothblum [46].

Theorem 5 Suppose � is supermodular on the subsets of f1; : : : ; pg. Then:
(a) H � D C �

(b) For v 2 Rp , the following are equivalent:
(i) v is a vertex of H �

(ii) There is a permutation � of f1; : : : ; pg with v D �� ;
in particular, H � has at most p Š vertices. Further, if � is strictly supermodular,
then the correspondence between vertices of H � and permutations of f1; : : : ; pg
is one to one.

(c) For distinct vertices v and v0 of H �, the following are equivalent:
(i) convfv; v0g is an edge of H �

(ii) There exist permutations � and � 0 of f1; : : : ; pg such that fv; v0g D
f��; �� 0g and � and � 0 coincide on all but exactly two parts which are
indexed by consecutive integers under both � and � 0.

Further, if the above equivalent conditions hold and j and k are the elements
in the noncoinciding parts of the permutations corresponding to v and v0, then
v � v0 is a scalar multiple of .ej � ek/.

Theorem 5 will be used to provide conditions that suffice for having the
inclusions in Lemma 5 hold as equalities. For that purpose, for each set of partition
…, define the function �…� on the subsets of f1; : : : ; pg by setting

�
�…�
�

.I / � min

8
<

:

X

j 2I

.��/j W � 2 …

9
=

;
for each I � f1; : : : ; pgI (17)

in particular,
�
�…�
�

.f1; : : : ; pg/ D
nX

iD1

� i : (18)

Trivially, C … D C �…
� .

The set of partitions … is called complete if for every permutation � of
f1; : : : ; pg, there exists a partition � in … with
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�� D .�…� /� : (19)

Note that for a permutation � D .fj1g; : : : ; fjpg/ of f1; : : : ; pg and t D 1; : : : ; p,

tX

sD1

��
�…�
�

�

�
js

D �
�…�
�

.fj1; : : : ; jt g/ D min
	2…

tX

sD1

.�	 /js
I

hence, �� D .�…� /� for a partition � , if and only if

tX

sD1

.��/js
D min

	2…

tX

sD1

.�	 /js
for each t D 1; : : : ; p :

It is emphasized that completeness depends both on … and on the �i ’s.
The vector � is called one-sided, if all �i ’s are nonnegative or if all of them are

nonpositive. Also, a constrained shape set of partitions is called single symmetric
shape if the corresponding set of shapes consist of all coordinate-permutations of
a single shape. The next result follows Hwang and Rothblum [39] in identifying
several families of complete sets of partitions.

Theorem 6 Every single-shape set of partitions is complete. If � is one-sided, then
every bounded-shape, single-size with empty parts allowed or prohibited, and single
symmetric shape are complete.

The following result is fundamental to the forthcoming development.

Theorem 7 Let … be a complete set of partitions. Then:
(a) �…� is supermodular.
(b) P … D C … D H … D H �…

� .
(c) The direction of each edge of P … is the difference of two unit vectors.
(d) v is a vertex of P … if and only if v D .�…� /� for some permutation � of

f1; : : : ; pg, and in this case, v D �� for some consecutive partition � .
(e) If no partition in … has an empty set and the �i ’s are distinct, then �…� is

strictly supermodular, and for each vertex v, there is a unique permutation � of
f1; : : : ; pg satisfying v D .�…� /� ; in particular, P … has exactly pŠ vertices.

(f) If … is constrained-shape, the �i ’s are distinct, and either all �i ’s are positive
or they are all negative, then there is a unique partition � with �� D v.

Theorem 7 shows that when the set of partitions … is complete, the edge-
directions of P … are differences of unit vectors, assuring (by Theorem 4) that
asymmetric Schur convex functions over P … attain a maximum at a vertex. The
next result states these conclusions formally, providing conditions for some (every)
optimal partition to have its associated vector a vertex of the corresponding partition
polytope.
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Theorem 8 Suppose … is a set of p-partitions and f W P … ! R where either f is
quasi-convex, or … is complete, and f is asymmetric Schur convex. Then:
(a) A partition �� is optimal if and only if ��� maximizes f over P ….
(b) There exists a partition �� which is optimal over … and has ��� as a

vertex of P ….
(c) If f satisfies the corresponding property strictly on P …, then every partition �

that is optimal over … has �� as a vertex of P ….

Theorem 8 provides a tool for establishing properties of optimal partitions for
a wide range of partition problems by identifying properties of partitions whose
associated vectors are vertices of corresponding partition polytopes. Constrained
shape problems are considered first, establishing the optimality of consecutive
partitions.

Theorem 9 Suppose … is a constrained-shape set of partitions and f W P … ! R

is asymmetric Schur convex. Then:
(a) There exists a partition which is optimal and consecutive; if furthermore either

f is quasi-convex or … is complete, then there exists a partition � which is
optimal and consecutive and has �� as a vertex of P ….

(b) If the �i ’s are distinct and f is strictly asymmetric Schur convex, then every
optimal partition is consecutive; if furthermore either f is strictly quasi-convex
or … is complete, then every optimal partition � is consecutive and has �� as
a vertex of P ….

Jointly, Theorems 8 and 9 present ten(!) results about optimal partitions – five
providing conditions under which some optimal partition � is consecutive and/or
has �� as a vertex of the partition polytope and five providing conditions under
which every optimal partition has those properties. The “some” results are useful as
they facilitate the restriction of the search for an optimal solution to subclasses of all
partitions. When the set of partitions is complete, vertex enumeration is particularly
efficient as the partition polytope is a permutation polytope having at most pŠ

vertices. The “some” results of Theorems 8 and 9 are summarized in Table 2. In this
table (and the forthcoming ones in this section), “…�” under the “…”-column means
that … is constrained-shape, “q-c” stands for quasi-convex, “(a-)S-c” stands for
(asymmetric) Schur convex, an empty entry in the �-column reflects no restrictions
on � , and a “C” in the “P … perm”-column means P … is a permutation polytope.
Other abbreviations are self-explanatory (e.g., “cons.” stands for “consecutive”).

Table 2 Properties of optimal partitions

Property ��� 2 P …

… f � of �� V .P …/ perm Ref

Complete q-c + Theorem 8
a-S-c + + Theorems 8 and 7

…� a-S-c cons Theorem 9
…� q-c cons + Theorem 9
…� +comp a-S-c cons + + Theorems 9 and 7
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Additional partition problems are next explored – their analysis requires addi-
tional definitions. A partition is size-consecutive (reverse size-consecutive) if it is
consecutive and the larger elements are assigned to the bigger (smaller) parts. Also,
a set of shapes is called symmetric if it contains every coordinate permutation of
each of its members.

Theorem 10 Suppose � is a symmetric set of shapes, … D …� , � � 0 .� � 0/ and
f W P … ! R is asymmetric Schur convex. Then:
(a) There exists a partition which is optimal and size-consecutive (reverse size-

consecutive); if furthermore either f is quasi-convex or … is complete, then
there exists a partition � which is optimal and size-consecutive (reverse size-
consecutive), and has �� as a vertex of P ….

(b) If the �i ’s are distinct and f is strictly asymmetric Schur convex, then every
optimal partition is size-consecutive (reverse size-consecutive); if furthermore
either f is strictly quasi-convex or … is complete, then every optimal partition
� is size-consecutive (reverse size-consecutive) and has �� as a vertex of P ….

Theorem 11 Suppose … is a constrained-shape set of partitions corresponding to
a set of partitions � , � � 0 .� � 0/ and f W Rp ! R is Schur convex. Then:
(a) There exists a partition which is optimal and size-consecutive (reverse size-

consecutive); if furthermore … is complete, then there exists a partition � which
is optimal, size-consecutive (reverse size-consecutive), and has �� as a vertex
of P ….

(b) If the �i ’s are distinct and f is strictly Schur convex, then every optimal
partition is size-consecutive (reverse size-consecutive); if furthermore … is
complete, then every optimal partition � is size-consecutive (reverse size-
consecutive) and has �� as a vertex of P ….

Theorem 11 does not include a variant that parallels the “quasi-convexity” of
Theorem 10 as an alternative to completeness that allows one to augment (reverse)
size-consecutiveness of optimal partitions with the property that �� is a vertex of
P …. Situations where the last property can be used to accelerate the search for an
optimal partition when … is not complete are not known.

Table 2 is next augmented with the “some” results of Theorems 10 and 11 into
Table 3.

Theorem 12 Suppose … is a bounded-shape set of partitions, f W P … !
R is asymmetric Schur convex. Then (i) there exists a partition � which is
optimal, consecutive, and has �� as a vertex of P …; (ii) if the �i ’s are distinct
and f is strictly asymmetric Schur convex, then every optimal partition � is
consecutive and has �� as a vertex of P …. Further, if f is Schur convex and
� � 0 (� � 0), “consecutive” can be tightened to “size-consecutive (reverse
size-consecutive).”

Of course, the conclusions of Theorem 12 apply to single-shape problems which
are instances of bounded-shape problems.
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Table 3 Properties of optimal partitions (continued)

Properties ��� 2 P …

… D …� f � of �� V .P …/ perm Ref.

� sym a-S-c �0 s-cons Theorem 10
a-S-c �0 r-s-cons Theorem 10

� sym q-c �0 s-cons + Theorem 10
q-c �0 r-s-cons + Theorem 10

� sym a-S-c �0 s-cons + + Theorems 10 and 7
+complete a-S-c �0 r-s-cons + + Theorems 10 and 7

S-c �0 s-cons Theorem 11
S-c �0 r-s-cons Theorem 11

Complete S-c �0 s-cons + + Theorems 11 and 7
Complete S-c �0 r-s-cons + + Theorems 11 and 7

A bounded-shape set of partitions is called uniform bounded-shape if both L and
U are multiples of the vector .1; : : : ; 1/ (i.e., the lower/upper bounds of all parts
coincide).

Theorem 13 Suppose … is a uniform bounded-shape set of partitions,
f W P … ! R is asymmetric Schur convex and � � 0 (� � 0). Then (i) there exists
a partition � which is optimal, size-consecutive (reverse size-consecutive), and has
�� as a vertex of P …; (ii) if the �i ’s are distinct and f is strictly asymmetric Schur
convex, then every optimal partition � is size-consecutive (reverse size-consecutive)
and has �� as a vertex of P ….

An important instance of Theorem 13 is the case where … is single-symmetric
shape.

The following additional properties of partitions are relevant only for size
problem since the sets of shapes meeting the requirements of the definitions are
severely restricted.

A (reverse) size-consecutive partition � with all parts, but one, consisting of a
single element is called (reverse) extremal; if all parts, but one, are empty, � is called
monopolistic. A consecutive partition is called bipolar if either of the following
conditions holds: (i) It has two nonempty parts, one containing all indices i with
�i < 0 and the other containing all indices i with �i > 0, and the two parts
arbitrarily split the indices with �i D 0, or alternatively (ii) if either � � 0 or
� � 0 and the partition is monopolistic. Evidently, if all �i ’s are positive or all of
them are negative, a partition is bipolar if and only if it is monopolistic. Finally, the
definition of the next property is lengthy. For p > 1, a consecutive partition � is
called polarized-extremal if it has two distinguished parts, say �j˚

and �j�
, such

that:
(i) (a) If i 2 �j˚

and u > i , then u 2 �j˚
.

(b) If i 2 �j�
and u < i , then u 2 �j�

.
(ii) (a) If �j˚

is not a singleton, then �j˚
� fi 2 N W �i � 0g.

(b) If �j�
is not a singleton, then �j�

� fi 2 N W �i � 0g.
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(iii) If j … fj˚; j�g, then �j is a singleton; further, if either �j˚
is not a singleton

and �u D 0 for some u 2 �j˚
, or �j�

is not a singleton and �u D 0 for some
u 2 �j�

, then the single element in �j , say i , has �i D 0.
When � � 0 (� � 0), every extremal (reverse-extremal) partition is polarized-

extremal and when � > 0 (� < 0), a partition is extremal (reverse-extremal) if and
only if it is polarized-extremal.

Example 4 Let n D 7 and � D .�3; �2; �1; 0; 0; 1; 2/. Then .f1; 2; 3g; f4g;
f5; 6; 7g/ and .f1; 2g; f3g; f4g; f5g; f6; 7g/ are polarized-extremal partitions, but
.f1; 2g; f3g; f4g; f5; 6; 7g/ is not.

Theorem 14 Suppose … is a single-size set of partitions with empty parts allowed,
f W P … ! R is asymmetric Schur convex and � � 0 (� � 0). Then (i) there exists
a partition � which is optimal, monopolistic, and has �� as a vertex of P …; (ii) if
the �i ’s are distinct and f is strictly asymmetric Schur convex, then every optimal
partition � is monopolistic and has �� as a vertex of P ….

Attention is next turned to the partition problems considered in Theorem 14
without the restriction that the �i ’s are one-sided.

Theorem 15 Suppose … is a single-size set of partitions with empty parts prohib-
ited and f W P … ! R is quasi-convex. Then (i) there exists a partition � which
is optimal, polarized-extremal, and has �� as a vertex of P …; (ii) if the �i ’s are
distinct and nonzero and f is strictly quasi-convex, then every optimal partition �

is polarized extremal and has �� as a vertex of P ….

Table 4 Properties of optimal partitions (continued)

Properties ��� 2 P …

… D …� f � of �� V .P …/ Perm Ref

bdd-shape a-S-c consec + Theorem 12
bdd-shape S-c �0 s-cons + + Theorems 12, 6, and 7

S-c � 0 r-s-cons + + Theorems 12, 6, and 7
Uniform a-S-c �0 s-cons + Theorem 13
bdd-shape a-S-c �0 r-s-cons + Theorem 13
Single a-S-c �0 s-cons + + Theorems 13, 6, and 7
sym-shape a-S-c �0 r-s-cons + + Theorems 13, 6, and 7
Single-size+ a-S-c �0 ext + + Theorems 14, 6, and 7
no ; parts a-S-c �0 rev-ext + + Theorems 14, 6, and 7
Single-size+ q-c polar-ext + + Theorems 15, 6, and 7
no ; parts
Single-size+ a-S-c �0 monop + + Theorems 16, 6, and 7
; parts ok a-S-c �0 monop + + Theorems 16, 6, and 7
Single-size+ a-S-c Bipolar + + Theorems 16, 6, and 7
; parts ok
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When � � 0 or � � 0, the conclusions of Theorem 15 follow from Theorem 14.

Theorem 16 Suppose … is a single-size set of partitions with empty parts allowed
and f W P … ! R is asymmetric Schur convex. Then (i) there exists a partition �

which is optimal, bipolar, and has �� as a vertex of P …; (ii) if the �i ’s are distinct
and nonzero and f is strictly asymmetric Schur convex, then every optimal partition
� is bipolar and has �� as a vertex of P …. Further, if � � 0 or � � 0, then
“bipolar” in the above conclusions can be replaced by “monopolistic.”

Sections 2 and 3 are next augmented with a summary of the “some” results of
Theorems 12–16 (Table 4).

4 Single-Parameter: Combinatorial Approach

The main goal in this section is to develop combinatorial tools for establishing
that given a partition property Q and a set of partitions, some (every) partition in
the set satisfies Q. Such results are useful for the analysis of partition problems
when the set consists of all optimal partitions for a particular partition problem.
The tool that is developed, referred to as local sorting, is to move from a partition
in the given family that does not satisfy Q to a partition (in the family) that
does by recursively rearranging (the elements in) a small number of parts at each
step. Two conditions must be observed to guarantee that successive (local) sorting
will produce a partition satisfying the given property Q have two parts: first, in
each step, the sorting must produce a partition in the given set; and second, in
order to avoid being trapped in a cycle, some statistic must decrease (or increase)
monotonely as the sorting progresses. The first condition concerns the set of
partitions, while the other concerns property Q. A useful approach of local sorting
is the intuitive one which requires that the (sub)partition consisting of the sorted
parts satisfies Q. These techniques will be applied to some specific optimization
problems later, demonstrating the existence of optimal partitions with particular
properties.

Some properties of partitions were introduced in Sect. 3. These include (with
abbreviations added in parenthesis) consecutiveness (C), size-consecutiveness (S ),
reverse size-consecutiveness (S�1), extremalness (E), reverse extremalness (E�1),
monopolisticness (Mp), bipolar (BP ), and polarized-extremalness (PE).

Let S and S 0 be two disjoint subsets of N . Then S is said to penetrate S 0, written
S ! S 0, if there exists a; c in S 0 and b in S such that a < b < c. Note that if
.S [ S 0/ ! S 00 then either S ! S 00 or S 0 ! S 00, but if S ! .S 0 [ S 00/, it is
possible that neither S ! S 0 nor S ! S 00. In addition, the convention that each
part penetrates itself will be adopted.

For a partition � D f�1; : : : ; �pg of a subset N 0 of N , define the digraph
associated with � , denoted G.�/, as the digraph with p vertices representing the
parts of � and edges .i; j / for i; j 2 f1; : : : ; pg if �i penetrates �j . A partition �

is called noncrossing (NC ) if �i ! �j implies �j 6! �i . Noncrossing partitions
were first studied in Kreweras [48].
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Table 5 Properties of partitions

Noncrossing NC Consecutive C

Nested N Nearly nested NeN

Size-consecutive S Reverse size-consecutive S�1

Extremal E Reverse extremal E�1

Polarized-extremal PE Order-nonpenetrating O

Monopolistic Mp Bi-polar BP

There are three special cases of noncrossingness that are of particular interest.
The first concerns the consecutive partitions, introduced and studied in Sect. 3.
A partition is called consecutive if and only if the penetration relation among
its parts is an empty partial order, that is, no part penetrates any other part. The
second instance of NC is nestedness (N ); a p-partition � is called nested if the
penetration relation among its parts is linear. Finally, a partition � is called order-
nonpenetrating (O) if its parts can be indexed (ordered) such that for i D 2; : : : ; p,
�i 6! [i�1

j D1�j . Note that order-nonpenetrating was called order-consecutive by
Chakravarty et al. [11]. Examples of partitions that satisfy the properties considered
so far are next illustrated.

Example 5 Let N D N 0 D f1; : : : ; 5g, n D 5 and p D 3. Then:
(a) ff2g, f4g, f1; 3; 5gg is noncrossing but, is not order-nonpenetrating.
(b) ff2g, f1; 3g, f4; 5gg is order-nonpenetrating, but neither nested nor consecutive.
(c) ff1g, f2; 3g, f4; 5gg is consecutive.
(d) ff3g, f2; 4g, f1; 5gg is nested. �

A noncrossing partition is called nearly nested (NeN ) if it is nested except for
some parts of size 1.

Example 6 Let N D f1; 2; 3; 4; 5; 6; 7g and p D 4. Then the partition
.f1; 4; 7g; f2; 3g, f5g; f6g/ is nearly nested but not order-nonpenetrating. �

Table 5 summarizes partition properties mentioned so far.
The following result records implications among the above properties of

partitions. The relationship between C , N , NC , and O was determined in
Hwang et al. [42].

Theorem 17 The implications among the properties C , N , NC , O , NeN , S , E ,
PE, Mp , and BP of partitions are represented precisely by the partial order
illustrated in Fig. 3.

Given a (single-parameter) partition problem, let nC, n�, and n0 denote the
number of �’s which are positive, negative, and equal 0, respectively. Following
Hwang and Mallows [35] and [39], Table 6 provides the exact numbers of
(single-)size partitions for the various properties listed in Table 5. Note that all the
numbers are polynomial in n.
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Mp

BP PE

E S C

O NC

N NeN

Fig. 3 Implications among E , S , C , O , N , NeN , NC , PE , Mp , and BP

Table 6 The number of size partitions satisfying NC , C , N , NeN , S , S�1, E , E�1, PE , O ,
Mp , and BP

Q Number Q Number

NC

�
n

p�1

��
n
p

�

n

C
�

n�1
p�1

�

N
�

n�1
p�2

�
NeN

Pp�1
jD0 nj

�
n�j�2

2p�2j�2

�

S
np�1

.p � 1/pŠ

S�1 np�1

.p�1/pŠ

E 1 E�1 1

PE n0 � p � 1 if n0 � p � 2, nC > 0 and n� > 0 O
Pp�1

jD0

�
n�1

j

��
n�1�j

2p�2j�2

�

(different numbers in other cases)
Mp 1 BP n0 C 1

The focus will be on local sorting which changes only a prescribed number of
parts. Local sorting requires that attention be given to subsets of the set of parts
of a given partition which are then considered themselves as (sub)partitions. Let
N D f1; : : : ; ng and E D f1; : : : ; pg. To facilitate reference to the indices of these
(sub)partitions, it will be useful to consider a framework where a labeled partition
of a set N 0 � N over an index set E 0 � E is a set � D f.j; �j / W j 2 E 0g where
the �j ’s are disjoint subsets of N 0 whose union is N 0. In particular, E 0, jE 0j, and
f.j; j�j j/ W j 2 E 0g will be referred to as, respectively, the support, size, and shape
of � . The notation � D .�1; : : : ; �p/ for “(labeled) partitions,” used so far, captures
the case where N 0 D N and E 0 D E ; its use will be continued in those cases. Given
a labeled partition of N 0 over E 0, say � D f.j; �j / W j 2 E 0g, and a subset J of
E 0, �J � f.j; �j / W j 2 J g will be called the subpartition of � corresponding to
J ; in particular, �J is a partition of [j 2J �j over J (having support J , size jJ j and
shape f.j; j�j j/ W j 2 J g). The reference to the partitioned set and/or the support
will be sometimes suppressed, referring to partition, subpartitions, etc. Also, a
k-partitions/subpartition is a partition/subpartiton of size k. Generically, “local”
will refer to subpartitions of limited size.
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Some definitions about properties of partitions that connect global satisfiability
and local satisfiability are next introduced. Suppose Q is a property of partitions.
Property Q is hereditary if every subpartition of a partition that satisfies Q must
also satisfy Q. Also, for a positive integer k, property Q is k-consistent if for each
p � k, a p-partition satisfies Q whenever all of its k-subpartitions satisfy Q. The
minimum consistency index of a property of partitions is defined as the minimal
positive integer k for which the property is k-consistent provided such an integer
exists and as 1 if Q is not k-consistent for any positive integer k.

The next lemma records an order for k-consistency.

Lemma 6 Let k be a positive integer and let Q be a property of partitions such that
a partition � satisfies Q if and only if every k-subpartition of � satisfies Q. Then
Q is k0-consistent for all k0 > k.

Attention is next turned to transformations of partitions, where the image
of a partition � consists of partitions obtained from � by sorting elements of
subpartitions of � that do not satisfy Q to subpartitions that satisfy Q, while
preserving the remaining parts of the partition.

For a partition � , let 
.�/ denote its support and �.�/ denote its shape. Formally,
three partition-transformations are defined for a given property Q of partitions
and a given positive integer k. The transformations are T Q;k;open, T Q;k;support, and
T Q;k;shape, where for J � E and partition � , T

Q;k;t
J .�/ � ŒT Q;k;t �J .�/ is given by

T
Q;k;open
J .�/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

f� 0 W �
.�/nJ =� 0

.�/nJ

;

[j 2
.�/�j = [j 2
.� 0/ � 0
j ;

and � 0

.� 0/nŒ
.�/nJ �

2 Qg if �J 62 Q and jJ j=k � j�j
f� 0 W � 0 2 Qg if �J 62 Q and jJ j=k > j�j
; otherwise;

T
Q;k;support
J D

n
� 0 2 T

Q;k;open
J .�/ W 
.� 0/ D 
.�/

o

and
T

Q;k;shape
J .�/ D

n
� 0 2 T

Q;k;open
J .�/ W �.� 0/ D �.�/

o
:

For t 2 fopen, support, shapeg, partitions in T Q;k;t .�/ are called .Q; k; t/-sortings
of � .

Recall that N D f1; : : : ; ng and E D f1; : : : ; pg are assumed given. The
natural universal domains for T Q;k;open, T Q;k;support, and T Q;k;shape are partitions
without restriction, those with a prescribed support and those with prescribed shape,
respectively (where no restriction is to be interpreted as p D n and the support of
the partitions is restricted to subsets of E D f1; : : : ; ng). To index these potential
domains, define Xopen � fopeng; X support � f
 W ; ¤ 
 � Eg, and X shape �
f� D f.j; nj / W j 2 
g: 
 � E ; each nj is an integer and

P
j 2
 nj D jN jg Wg;
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in particular, X support and X shape represent, respectively, all potential supports and
shapes of subpartitions over E . If b… is the set of all partitions, then it will be denoted
b…open (the support of partitions in b…open is in the power set of f1; : : : ; ng). Further,
the set of all partitions with a prescribed support 
 will be denoted b…
, the set of
all partitions with a prescribed shape � will be denoted b…� , and finally, for positive
integer p, write b…p for b…f1;:::;pg. If b… is, respectively, b…open, b…
 for a particular

, or b…� for a particular �, a corresponding transformation on b… is called open,
support-preserving, or shape-preserving, respectively. The potential domains of the
transformations T Q;k;t for given Q and t 2 fopen, support, shapeg are then the sets
b…x with x 2 Xt (but degenerate instances are sometimes excluded).

For t 2 fopen, support, shapeg and x 2 Xt , a property Q of partitions is t-regular
for x, if for every N 0 � N with …x.N 0/ ¤ ;, there is a partition in …x.N 0/ \ Q

(with the intuitive interpretation of …x.N 0/); Q is t-regular if it is t-regular for
every x 2 Xt .

Lemma 7 Let Q be a t-regular property of partitions. Then for every x 2 Xt ,
� 2 b…x and J � E with jJ j D k,

Œ�J 2 Q� , ŒT
Q;k;t
J .�/ D ;�I (20)

further, if Q is also k-consistent and hereditary, then

Œ� 2 Q� , ŒT Q;k;t .�/ D ;�: (21)

Let k be a positive integer, let t 2 fopen, support, shapeg, let Q be a property of
partitions, and let …� be a set of partitions. Then:
(i) …� is Q-(strongly, k; t)-invariant if for each � 2 …� n Q: for every subset

J of E having k elements and with �J … Q, every � 0 in .T
Q;k;t
J /.�/ satisfies

� 0 2 …�.
(ii) …� is Q-(sort-specific, k; t)-invariant if for each � 2 …� nQ: for every subset

J of E having k elements and with �J … Q, some � 0 in .T
Q;k;t
J /.�/ satisfies

� 0 2 …�.
(iii) …� is Q-(part-specific, k; t)-invariant if for each � 2 …� nQ: for some subset

J of E having k elements and with �J … Q, every � 0 in .T
Q;k;t
J /.�/ satisfies

� 0 2 …�.
(iv) …� is Q-(weakly, k; t)-invariant if for each � 2 …� n Q: for some subset J

of E having k elements and with �J … Q, some � 0 in .T
Q;k;t
J /.�/ satisfies

� 0 2 …�.
When referring to Q-(`; k; t)-invariance, the values of `, k, and t are called level,

degree, and type of the corresponding invariance. The level ` can take four possible
values, forming two pairs – fstrongly, weaklyg and fpart-specific, sort-specificg; if `

is a specific value, then and `�1 is defined as the other value in the same pair. Also,
type can take one of three possible values – “open,” “support,” and “shape” – and
the possible values of degree are k D 1; 2; : : : . When a variable is not quantified
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in forthcoming statements/results about .`; k; t/, it means that the statement is valid
for all choices of that variable.

A multivalued function on a set of partitions will be called a statistic. To compare
values of a statistics, “<” will stand for “� and ¤.” Let k be a positive integer, let
t 2 fopen, support, shapeg, and let Q be a t-regular property of partitions. Then:

(i) Q is (strongly, k; t)-sortable if for every x 2 Xt , there is a statistic s.:/ on b…x

such that for every � 2 …x n Q for every J � E having k elements and
�J … Q: every � 0 2 .T

Q;k;t
J /.�/ satisfies s.� 0/ < s.�/.

(ii) Q is (sort-specific, k; t)-sortable if for every x 2 Xt , there is a statistic s.:/

on b…x such that for every � 2 …x nQ and for every J � E having k elements
and �J … Q: some � 0 2 .T

Q;k;t
J /.�/ satisfies s.� 0/ < s.�/.

(iii) Q is (part-specific, k; t)-sortable if for every x 2 Xt , there is a statistic s.:/

on b…x such that for every � 2 …x n Q, for some J � E having k elements
and �J … Q: every � 0 2 .T

Q;k;t
J /.�/ satisfies s.� 0/ < s.�/.

(iv) Q is (part-specific, k; t)-sortable if for every x 2 Xt , there is a statistic s.:/

on b…x such that for every � 2 …x n Q, for some J � E having k elements
and �J … Q: some � 0 2 .T

Q;k;t
J /.�/ satisfies s.� 0/ < s.�/.

As for invariance, the variables `, k, and t of (`; k; t)-sortability are referred to as
level, degree, and type. A comparison of the above definitions of sortability and
historic ones is deferred till after Theorem 19.

Theorem 18 Let Q be a k-consistent and hereditary property of partitions,
let x 2 Xt , and let …� � b…x . If …� is Q-(`; k; t)-invariant and Q is (`�1; k; t)-
sortable on b…x , then for every partition � 2 …�, there is a finite sequence �0 D � ,
�1; : : : ; �s of partitions in …� with �s satisfying Q (s D 0 when � 2 Q). In
particular, if …� is nonempty, then …� \ Q is nonempty.

Suppose one wishes to prove that a property Q of partitions is not T -sortable.
Using the definition of .`; k; t/-sortability, it is then necessary to demonstrate that
there is no statistic s having the property that all corresponding .Q; k; t/-sorting
of a partition � in b… which does not satisfy Q have a lower s-value than � . It is
impossible to consider all potential statistics. But, the next corollary of Theorem 18
and the following Theorem 19 provide one with tools to establish non-sortability.

Corollary 3 Let Q be a k-consistent and hereditary property of partitions and let
x 2 Xt . If some …� � b…x is Q-(`; k; t)-invariant and does not satisfy Q, then Q

is not (`�1; k; t)-sortable on b…x

Theorem 19 Let Q be a t-regular, k-consistent, and hereditary property of parti-
tions. Then the following are equivalent:
(a) Q is (strongly, k; t)-sortable.
(b) For every x 2 Xt , every set of partitions …� � b…x which is (weakly, k; t)-

invariant satisfies Q.
(c) There exist no x 2 Xt and finite sequence �0; �1; : : : ; �q�1; �q D �0 of

partitions in b…x with �j 2 .T Q;k;t /.�j �1/ n Q for j D 1; : : : ; q.
(d) For every x 2 Xt , �.Q; t; x/ is acyclic.
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The historic evolution of sortability is next reviewed. The notion of sortability
(as well as consistency and invariance, the latter under a different name) was first
proposed by Hwang et al. [42]. However, this reference focused on sortability
parameterized by (sort-specific, k, support). Chang et al. [15] extended the definition
to the full .`; k; t/ range and gave sortability results in the full range to most
properties listed in Table 5. Both papers defined sortability by the conclusion
of Theorem 18, namely, a property Q is called .`; k; t/-sortable if for every
Q-.`�1; k; t/-invariant family … contains a partition satisfying Q. While sortability
results for particular properties relied on the construction of a corresponding
decreasing statistic, the existence of a statistic was not part of the definition
of sortability. Theorem 18 demonstrates that the definition used herein is more
demanding than the historic definition. Still, Theorem 19 establishes an equiva-
lence between the two definitions when ` = strongly (but, for other values of `,
“historic sortability” does not imply the “current sortability” as the implication
.b/ ) .a/ of Theorem 19 needs not hold. It is noted that the current defini-
tion of sortability explicitly requires consistency, whereas the historic definition
does not; consequently, a result asserting that any .`; k; t/-sortability implies k-
consistency (e.g., Hwang et al. [42], Chang et al. [15]) does not appear in this
chapter.

The next lemma summarizes some implications of (`; k; t)-sortability of partition
properties.

Lemma 8 Let Q be a k-consistent, hereditary property of partitions. The various
categories of sortability of Q satisfy the following implications:
(a) (strongly, k; t) implies both (sort-specific, k; t) and (part-specific, k; t), and

(sort-specific, k; t) and (part-specific, k; t) imply, each by itself, (weakly, k; t).
(b) With ` 2 fstrongly, part-specificg, if Q is support-regular, then (`; k, open)

implies (`; k, support), and if Q is shape-regular, then (`; k, support) implies
(`; k, shape).

(c) With ` 2 fsort-specific, weaklyg, (`; k, shape) implies (`; k, support), and (`; k,
support) implies (`; k, open).

The table below summarizes the implications among the various categories of
sortability established in Lemma 8 (using obvious abbreviations). The table should
be viewed as a 2 � 6 matrix where each cell specifies a different pair .`; t/, for
example, cell .1; 2/, corresponds to ` D st rongly and t D support . Implications
represented by “)�” require the corresponding regularity of Q, see part (b) of
Lemma 8 (Table 7).

The .`; k; t/-sortability of each property Q discussed in this section has been
explicitly solved in the literature (see Hwang et al. [42], Chang et al. [15], and
Hwang and Rothblum [39]).

It is next shown how the notions of consistency and sortability can be used to
facilitate the search of an optimal partition in a family … under a given objective
function F . Let …�

F � … denote the set of partitions that maximize F over ….
Recall that there are two general types of results:
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Table 7 Sortability-implications

(st,k,op) )� (st,k,supp) )� (st,k,shape) ) (s-s,k,shape) ) (s-s,k, supp) ) (s-s,k,op)
+ + + + + +
(p-s,k,op) )� (p-s,k,supp) )� (p-s,k,shape) ) (w,k,shape) ) (w,k,supp) ) (w,k,op)

Type 1. Every optimal partition in … satisfies a property Q, that is, …�
F � Q.

Type 2. There exists an optimal partition in … satisfying a property Q, that is,
…�

F \ Q is not empty.
Tools for establishing type 2 results are sortability arguments that show that

starting from a partition in …�
F , local Q-sortings which preserve optimality will

result in an optimal partition satisfying Q. Type 1 results are typically easier to
prove, if true, by showing that the objective function of a partition not satisfying Q

can be strictly improved. This last idea is next cast formally.

Theorem 20 Suppose Q is k-consistent and … is a t-family for t 2fshape,
supportg. If every � 2 … not satisfying Q has a k-subpartition which can be
.Q; k; t/-sorted with F increasing, then every optimal partition in … satisfies Q.

Consider objective functions of the form

F.�/ D f
�
g1Œh.��1 /�; : : : ; gpŒh.��p /�

�
; (22)

where f W Rp ! R is (monotone), convex, or Schur convex, the gj ’s are
real-valued functions over the reals, and h is a real-valued function over finite
subsets of the reals. Types 1 and 2 results will be established for such objective
functions. In stating type 1 results, “strict conditions” will be imposed on f; g, and
h that are strict (e.g., “nondecreasing” becomes “increasing” and “nonnegative”
becomes “positive”) along with the requirement that the �i ’s are distinct. Also,
Lemma 1 shows that for verifying the optimality of partitions that satisfy a particular
property, it suffices to consider the “single” versions. Instances of ( 22) with h

as the sum-function and gj ’s as the identity, that is, F expressed by F.�/ D
f .
P

��1 ; : : : ;
P

��p /, were studied in Sect. 3. Results which are in a more general
form are next recorded.

Theorem 21 Suppose F.�/ is given by (22) where f is convex and one of the
following holds:
(a) f is nondecreasing, and each gj is convex.
(b) f is nonincreasing, and each gj is concave.
(c) Each gj is linear (and no monotonicity assumption imposed on f).
Then every shape-problem has a consecutive optimal partition. Further, if � � 0

(� � 0), then every shape problem has a size-consecutive (reverse size-consecutive)
optimal partition, every size-problem has an extremal (reverse extremal) optimal
partition and every relaxed-size problem has a monopolistic optimal partition.
Finally, under strict conditions that exclude f from being strictly convex under (a)
and (b), the corresponding type 1 conclusions hold.
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The case of single-shape-problems with gj

�P
��j

� D g.��j ; nj / where
.n1; : : : ; np/ is the prescribed shape of � was first studied by Chakravarty et al. [11].

Recall the definition of majorization in Sect. 2 and the terminology used
in that section. The notion of majorization is next extended to (two types of)
weak majorization by dropping the requirement

Pp
iD1 aŒi � D Pp

iD1 bŒi � (condi-
tion (8)). Specifically, a p-vector a is said to weakly submajorize a p-vector b,
written a w 	 b if

kX

iD1

aŒi � �
kX

iD1

bŒi � for k D 1; : : : ; pI (23)

a is said to weakly supermajorize b, written a w 	 b if

pX

iDk

aŒi � �
pX

iDk

bŒi � for k D 1; : : : ; p: (24)

Strict weak sub-/super-majorization will refer to situations where at least one of the
corresponding inequalities is strict. The following lemma is standard (e.g., Marshall
and Olkin [50]).

Lemma 9 Suppose f W Rp ! R is Schur convex and nondecreasing (nonincreas-
ing) and a and b are vectors in Rp with a weakly submajorizing (supermajorizings)
b. Then f .a/ � f .b/. Further, if the weak submajorization (supermajorizings) is
strict and the function f is strictly Schur convex and increasing (decreasing), then
f .a/ > f .b/.

As majorization and weak sub/super-majorization are invariant over permuta-
tions of vectors, these relations can be applied to multisets of real numbers (with the
interpretation that the relation holds for any representing vectors).

Lemma 10 Let f be Schur convex and nondecreasing (nonincreasing) and Q be
.`,k,t/-sortable with ` 2 fstrongly, sort-specific, part-specific,weakg, k D 2; 3; : : :

and t 2 fshape, sizeg. Suppose for any partition � not satisfying Q, there always
exists an .`�1; k; t/-Q-sorting from � to � 0 such that, with K as the indices of the
sorted parts, ffgj Œh.�� 0

j
/� W j 2 Kgg w 	 . w 	/ffgj Œh.��j /� W j 2 Kgg. Then every

t-problem has an optimal partition satisfying Q. Further, under strict conditions,
every optimal partition satisfies Q. Finally, the above conclusions hold if f is just
Schur convex and the weak majorization requirement is replaced by majorization.

Objective functions that are given by (22) with f Schur convex, gj independent
of j and h as the sum-function, are next addressed. The result modifies Theorem 21
which considered problems with f convex and gj ’s allowed to depend on j .
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Theorem 22 Suppose

F.�/ D f Œg.��1 /; : : : ; g.��p /�; (25)

where f is Schur convex and either of the following holds:
(a) f is nondecreasing, and g is convex and nondecreasing (nonincreasing).
(b) f is nonincreasing, and g is concave and nondecreasing (nonincreasing).
(c) g is linear and nondecreasing (nonincreasing) (and no monotonicity assump-

tion imposed on f ).
Then every shape-problem has a consecutive optimal partition. Further, if in
addition � � 0 (� � 0), then every shape-problem has a size-consecutive (reverse
size-consecutive) optimal partition, every size-problem has an extremal (reverse
extremal) optimal partition, and every relaxed-size problem has a monopolistic opti-
mal partition. Finally, under strict conditions, the corresponding type 1 conclusions
hold.

The objective function of (25) with g as the identity and f Schur convex,
but not necessarily monotone, was studied in Sect. 3. In fact, the conclusions of
Theorem 22 for those cases were established in Theorem 11 for shape-problems
and in Theorem 14 for size-problems (the latter with the Schur convexity of f

relaxed to asymmetric Schur convexity).
In a clustering problem, one wishes to partition the points into clusters such

that under some distance measure, points in the same cluster are close to each
other compared to points in different clusters. It is natural to formulate the
clustering problem into a minimization problem. To preserve this spirit, con-
sider through the end of this section partition problems where F.�/ is to be
minimized. The notion of “strict conditions,” will continue to refer to strict
properties of functions appearing in the objective function, for parameters (the
forthcoming wj ’s) to be distinct and nonzero and, in addition, for �i ’s being
distinct.

A general distance function (gdf) is a continuous symmetric function
D W R2 ! R such that for x0 � x � y � y0, D.x0; y/ � D.x; y/ and
D.x; y0/ � D.x; y/ (the continuity requirement can be relaxed for much of
the forthcoming results, but technical details are required). A gdf is strict if
nondecreasing and nonincreasing are replaced by increasing and decreasing,
respectively. A gdf is normalized if D.x; x/ is independent of x.

Boros and Hammer [6] considered the strict and normalized gdf D.x; y/ D
jx � yj and established the following theorem.

Theorem 23 Suppose

F.�/ D
pX

j D1

X

i;u2�j

j�i � �uj : (26)

Then every size problem has a noncrossing optimal partition. Further, under strict
conditions, the corresponding type 1 conclusions hold.
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It is not known whether or not the conclusions of Theorem 23 extend
to shape-problems, except that the case of uniform shape was solved by
Pfersky et al. [60].

Theorem 24 Suppose p divides n and consider the single shape-problem corre-
sponding to .n=p; : : : ; n=p/ with F defined by (26). Then there exists a consecutive
optimal solution. Further, under strict conditions, a corresponding type 1 conclu-
sion holds.

Assume the �i ’s are given. For a given gdf D and a set S � N , c is
called a centroid of S with respect to D, or briefly the D-centroid of S , if
c 2 argminx

P
i2S D.�i ; x/; continuity assures that every finite set has a centroid.

When D.x; y/ D d.jx � yj/ where d.�/ is a continuous, nondecreasing function on
the nonnegative reals with d.0/ D 0, a d -centroid will refer to the corresponding
D-centroid. If d is the identity, then the d -centroid is the median. Chang and Hwang
[14] proved the type 1 results of the following theorem.

Theorem 25 Suppose

F.�/ D
pX

j D1

wj

X

i2�j

d.j�i � cj j/ ; (27)

where d.�/ is a nondecreasing function on the nonnegative reals with lg d concave
and d.0/ D 0, and for each j , wj > 0 and cj is a d -centroid of ��j . Then every
size problem has a noncrossing optimal partitions. Further, under strict conditions
the corresponding type 1 conclusions hold.

Boros and Hwang [7] considered shape problems with the objective function
given by (27) where d is the identity function (and cj is a medium). They proved
the following result.

Theorem 26 Suppose

F.�/ D
pX

j D1

wj

X

i2�j

j�i � mj j ; (28)

where for each j , wj > 0 and mj is the median of �j . Then every shape problem has
a noncrossing optimal partition. Further, under strict conditions, the corresponding
type 1 conclusions hold.

For uniform weights, the consecutive property can be preserved under more
general distance functions.

Theorem 27 Suppose

F.�/ D
pX

j D1

X

i2�j

Di .�
i ; cj / ; (29)
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where for each i , Di is a gdf and for each j , cj is a centroid of �j with respect to
fDi W i 2 �j g (in the sense that cj 2 min argx

P
i2�j

Di .�
i ; x/). Then every size

problem has a consecutive optimal partition. Further, under strict conditions, the
corresponding type 1 conclusions hold.

Theorem 27 for Di .�
i ; cj / D wi d.� i �cj /2 where wi is a weight on element was

proved by Fisher [24]. Hwang [34] extended the Fisher result to distance functions
Di .�

i ; cj / D wi D.�i ; cj /.
To obtain a shape-version of Theorem 27, uniform Di ’s that satisfy some further

structure have to be assumed. Specifically, a gdf D is submodular if for every
x; x0; y; y0 2 R with x � x0 and y � y0, D.x0; y0/ C D.x; y/ � D.x0; y/ C
D.x; y0/. The following result was proved by Hwang et al. [41].

Theorem 28 Suppose

F.�/ D f

0

@
X

i2�1

D.�i ; c1/; : : : ;
X

i2�p

D.�i ; cp/

1

A ; (30)

where D is a submodular gdf, f is Schur concave nondecreasing, and for each
j , cj is a D-centroid of �j . Then every shape problem has a consecutive optimal
partition. Further, under strict conditions, the corresponding type 1 conclusions
hold.

5 Multiparameter: Polyhedral Approach

Sections Sect. 3 and Sect. 4 examined partition properties that facilitate a reduction
of the size of the set of partitions through which one has to search for an optimal
partition (for one-dimensional problems). This approach is continued in the current
section and the next one but with d � 1 instead of d D 1. The properties that were
explored in those sections are mostly geometric in nature, though the geometric
characteristics may be in disguise for some of them. For example, the property
“consecutive” was defined as “each part consists of consecutive integers,” but it can
also be defined as “the convex hulls of the parts are pairwise disjoint.” This section
and the next one continue the study of geometric properties of partitions but when
the partitioned points are vectors in a high-dimensional space.

A unique feature ofR1 vs. Rd for d > 1 is that it has a natural order. In particular,
when ordering the partitioned elements �1; �2; : : : ; �n so that �1 � �2 � � � � � �n, it
is possible to express all relevant geometric properties of the partitioned elements in
terms of the corresponding partition of the index set N , except hiding the distinction
whether two disjoint intervals of �’s touch at the boundary (see next paragraph on
this issue). This conversion allows us to focus on “index-partitions.” However, when
the dimension d exceeds one, there is no natural ordering of the points which allows
the conversion of geometric properties that depend on the formation of the points to
properties of partitioned indices. Consequently, it is more natural to define partitions
on the set of vectors and not on the set of indices.
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There is still the question why the focus so far was on partitioning index
sets in the case of single-parameter partition problems. The reason is that
“index-partitions” have an advantage over “vector-partitions” in situations where
the columns of A have duplicate vectors. As the indices are always distinct, such
situations do not require any attention when partitioning the index set. But, when
considering “vector-partitions,” the presence of duplicate points requires one to
account for the duplication of each vector in each part, that is, the parts are multisets,
rather than sets, and more importantly, the same vector may appear in different parts.
Partitioning the index set in the case where d D 1 voided the need of dealing with
multisets and allowed us to focus on the main development of the theory. In Sect. 5,
the focus is to prove that there exists an extreme point of the partition polytope
which corresponds to an optimal partition with certain geometric property. When
Ai ’s are distinct, then this geometric property does not allow two disjoint parts
to touch at boundary; when Ai ’s are not distinct, then the geometric property is
weakened to allow such touching. But this distinction does not affect the role the
partition polytopes play. Therefore, partition of the index set can be continued so as
to take advantage of the convenience it provides. However, in Sect. 6, the emphasis
is to study these two and other geometric properties in detail, not only in their
natures, but also in their differences. In order to understand these fine points, the
framework will then revert to partitioning the set A.

Throughout this section, it is assumed that d � 1 and A1; : : : ; An 2 Rd are given.
In the sum-partition problem, an objective function F.:/ is maximized over a family
of p-partitions … where the objective value of a p-partition � D .�1; : : : ; �p/ is

given by F.�/ D f .A� /, with A� D
�P

i2�1
Ai ; : : : ;

P
i2�p

Ai
�

2 Rd�p and

f .:/ a real-valued function on Rd�p (or a relevant subset thereof). The approach
that is followed in the current section is to consider the problem of optimizing
(an extension of) f over the partition polytope P …

A defined as the convex hull of
fA� W � 2 …g. When the function f is guaranteed to obtain a maximum over P …

A

at a vertex, enumerating the vertices of P …
A and selecting a partition corresponding

to a vertex that maximizes f will produce a solution to the partition problem.
This approach is enhanced when the vertices are associated with partitions having
properties that are present only in a “small number” of partitions.

The case that is considered has the function f .:/ linear. It will be shown how
linear programming can be used to solve the corresponding partition problem.
Here, the approach is to obtain a representation of the problem as a projection of
an optimization problem over a (generalized transportation) polytope which has a
simple linear inequality representation. The resulting algorithm is polynomial in
the number of partitioned vectors, their dimension, and the number of parts of the
partitions. The approach follows Hwang, Onn, and Rothblum [44].

Superscripts will be used to denote columns of matrices, subscripts for rows,
and double indices for elements, for example, Ut , U j , and U

j
t . For matrices U and

V of common dimension, say d � p, the inner product of U and V is defined as
the scalar hU; V i � Pd

tD1

Pp
j D1 U

j
t V

j
t . For matrices U , V , and W of dimension

d � p, d � q, and q � p, respectively,
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hU; V W i D hV T U; W i D hU W T ; V i : (31)

Let I be the n�n identity matrix. At times, the columns of I (the n standard unit
vectors in Rn) will be the vectors that are associated with the partitioned elements
1; : : : ; n. In such cases, for each p-partition � , I� 2 Rn�p is the matrix associated
with � , namely,

.I�/
j
t �

	
1 if t 2 �j and
0 otherwise .

(32)

For a set of partitions …, P …
I D convfI� W � 2 …g will be referred to as a

generalized transportation polytope (associated with …) and to the corresponding
partition problem as a generalized transportation problem. Classical transportation
polytopes are obtained when … consists of a single shape. The special attention
given to this class of partition problems is justified by the following properties that
will be established:
(i) The correspondence � ! I� is a bijection; further, none of the matrices I� are

expressible as a convex combination of others.
(ii) Explicit representing systems of linear inequalities are available for bounded-

shape generalized transportation polytopes.
(iii) Constrained-shape partition problems are reducible to generalized transporta-

tion problems.
These properties are next verified and then used to develop efficient computational
methods for solving the (linear) partition problem.

Lemma 11 Let … be a set of p-partitions. Then the correspondence � ! I� is
a bijection of … onto the vertices of P …

I ; in particular, the vertices of P …
I are

precisely the matrices fI� W � 2 …g. Further, the inverse correspondence of vertices
of P …

I onto the partitions of … has vertex v corresponding to the partition � with
�j D ft W vj

t D 1g for j D 1; : : : ; p.

An important feature of the bijection � ! I� of Lemma 11 is the fact that it is
constructive in both directions, namely, it is easy to determine I� from � and, vice
versa, � from I� .

Linear-inequality representation for bounded-shape generalized transportation
polytopes is next provided.

Theorem 29 Let L and U be positive integer p-vectors satisfying L � U andPp
j D1 Lj � n � Pp

j D1 Uj , and let … � ….L;U /. Then P …
I is the solution set of the

linear system:

.a/ X
j
t � 0 for t D 1; : : : ; n and j D 1; : : : ; p: (33)

.b/

pX

j D1

X
j
t D 1 for t D 1; : : : ; n:
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.c/ Lj �
nX

tD1

X
j
t � Uj for j D 1; : : : ; p :

When L D U , Theorem 29 specializes to the following inequality description of
classical transportation polytopes.

Corollary 4 Let n1; : : : ; np be positive integers with
Pp

j D1 nj D n and let … �
….n1;:::;np/. Then P …

I is the solution set of the linear system:

.a/ X
j
t � 0 for t D 1; : : : ; n and j D 1; : : : ; p: (34)

.b/

pX

j D1

X
j
t D 1 for t D 1; : : : ; n:

.c/

nX

tD1

X
j
t D nj for j D 1; : : : ; p :

�

Theorem 30 Let A 2 Rd�n and let … be a set of p-partitions. Then the partition
polytope P …

A is the image of the generalized transportation polytope P …
I under the

linear function mapping X 2 P …
I � Rn�p into AX 2 Rd�p . In particular, for

every p-partition � , A� D AI� .

The representation of partition polytopes as a projection of generalized trans-
portation polytopes derived in Theorem 30 yields the following test for vertices of
constrained-shape partition polytopes:

Corollary 5 Let A 2 Rd�n, let … be a set of p-partitions, and let V 2 P …
A . Then

V is a vertex of P …
A if and only if every representation V D 1

2
A.X 0 C X 00/ with

X 0; X 00 2 P …
I has AX 0 D AX 00. �

Theorem 30 yields the following result that shows that partition problems over …

may be lifted to optimization problems over generalized transportation polytopes.

Corollary 6 Let A 2 Rd�n, … be a set of p-partitions, f W Rd�p ! R, and F W
… ! R with F.�/ D f .A�/ for each � 2 …. Consider the function h W P …

I ! R

with h.X/ D f .AX/ for each X 2 P …
I . If � is a p-partition such that I� maximizes

h over fI� 0 W � 0 2 …g, then � maximizes F.�/ over …; further, if f is linear with
f .X/ D hC; Xi for every X 2 Rk�p , then

h.Z/ D hC; AZi D hAT C; Zi for all Z 2 P …
I ; (35)

and a partition � with I� maximizing h over P …
I � fI� 0 W � 0 2 …g exists.
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Let A 2 Rd�n, C 2 Rd�p and let L and U be positive integer vectors
satisfying L � U and

Pp
j D1 Lj � n � Pp

j D1 Uj , and F W ….L;U / ! R

with F.�/ D hC; A�i for each � 2 ….L;U /. The goal is to maximize F.:/ over
… � ….L;U /. Let h W P …

I ! R with h.X/ D hC; AXi D hAT C; Xi for each
X 2 P …

I . In view of Corollary 6 and Lemma 11, the problem of maximizing F

over ….L;U / reduces to finding a vertex of P …
I that maximizes the linear objective

with coefficients f.AT C /
j
t W t D 1; : : : ; n and j D 1; : : : ; pg over P …

I ; with
a � maxflg jAi

t j W Ai
t ¤ 0g and c � maxflg jC j

i j W C
j
i ¤ 0g, these coefficients

are bounded by keaCc and are computable in time OŒnpd.a C c/� (the availability
of sophisticated fast algorithms for multiplying matrices is ignored); using the
explicit representation of P …

I provided in Theorem 29, the problem reduces to a
structured linear program, and standard results show that an optimal vertex for P …

I

can be identified in strongly polynomial time OŒ.n C p/np C .n C p/2u� where
u � maxi lg.Ui �Li / � n (see Ahuja and Orlin [1] or Ahuja, Orlin, and Tarjan [2]).

The above solution method applies (in fact, in a simplified form) to single-shape
partition problems (with linear objective) and, consequently, to constrained-shape
problems where the set of shapes is tractable. Thus, for a set of shapes … whose
size is polynomial in the parameters k; n, and p, a polynomial solution method by
solving j…j linear programs (each having L D U is available).

It is next shown that, with linear objective and special structure, a solution to
single-shape partition problems can be obtained explicitly without addressing the
linear programming problem over P …

I .

Theorem 31 Let A 2 Rd�n, C 2 Rd�p , n1; : : : ; np be positive integers withPp
j D1 nj D n, and F W ….n1;:::;np/ ! R with F.�/ D hC; A�i for each

� 2 ….n1;:::;np/. If A and C satisfy

.At � AtC1/T .C j � C j C1/ � 0 for 1 � t < n and 1 � j < p ; (36)

then the p-partition � with �j D
nPj �1

uD1 nu C 1; : : : ;
Pj

uD1 nu

o
for j D 1; : : : ; p

maximizes F.:/ over ….n1;:::;np/; further, if the inequalities of (36) hold strictly, then
� is a unique maximizer.

Standard arguments show that condition ( 36) is equivalent to (the seemingly
stronger assertion):

�
At1 � At2

�T �
C j1 � C j2

� � 0 for 1 � t1 < t2 � n and 1 � j1 < j2 � p : (37)

Theorem 31 facilitates the identification of optimal partitions when specified
permutations of the columns of A and C satisfy (36). This is always possible when
d D 1 by sorting the two sets of scalars A1; : : : ; An and C 1; : : : ; C p to increasing
sequences, thereby yielding an explicit solution to the partition problem.

Two properties of partitions – separability and almost separability – are next
introduced. In particular, conditions are determined for these properties to be present
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in partitions whose associated vector is a vertex of a constrained-shape partition
polytope; results of Sect. 2 can then be used to deduce conditions which assure the
existence of optimal partitions which are (almost) separable.

Two subsets �1 and �2 of Rd are called separable if there exists a nonzero
d -vector C such that

C T u1 > C T u2 for all u1 2 �1 and u2 2 �2: (38)

Two subsets �1 and �2 of Rd are called almost separable if there exists a nonzero
d -vector C such that

C T u1 > C T u2 for all u1 2 �1 and u2 2 �2 with u1 ¤ u2: (39)

In either of these cases, the vector C is referred to as a separating vector. Of course,
separable sets are necessarily almost separable and disjoint and for disjoint sets
almost separability and separability coincide. When two sets are not disjoint, almost
separability (as defined by (39)) is the strongest possible form of separation by
a linear functional, as the condition asserts strict separation of the values of the
functional for all pairs of points at which the sets do not overlap. In particular, (39)
implies that �1 \ �2 contains at most a single point, for if u and w were distinct
points u and w in the intersection, it would follow that C T u > C T w and C T w >

C T u.
The next lemma converts separability of finite sets to separability of their convex

hulls, yielding as a corollary, a characterization of the former.

Lemma 12 Let �1 and �2 be two finite sets in Rd and let C be a nonzero vector
in Rd . Then:
(a) C T u1 > C T u2 for all u1 2 �1 and u2 2 �2 if and only if C T w1 > C T w2 for

all w1 2 conv �1 and w2 2 conv �2.
(b) C T u1 > C T u2 for all u1 2 �1 and u2 2 �2 with u1 ¤ u2 if and only if

C T w1 > C T w2 for all w1 2 conv �1 and w2 2 conv �2 with w1 ¤ w2.

Call a partition � D .�1; : : : ; �p/ separable (almost separable) if the sets
fAi W i 2 �j g for j D 1; : : : ; p are pairwise separable (almost separable). The
next result and its corollary establish (almost) separability of a partition � whose
associated matrix A� is a vertex of a corresponding constrained-shape partition
polytope. Under the restriction that the columns of A are distinct, the results are due
to Barnes et al. [4]. Some of the results about separable partitions for the general
case appear in Hwang et al. [43] and the results about almost separable partitions
are from Hwang and Rothblum [38, 40].

Theorem 32 Let � be a nonempty set of positive integer p-vectors with coordinate-
sum n, and let � be a partition in …� where A� is a vertex of P �

A . Then for some
matrix C 2 Rd�p (with columns C 1; : : : ; C p)
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.C r � C s/T u > .C r � C s/T w for all distinct r; s 2 f1; : : : ; pg; u 2 conv
fAi W i 2 �r g and w 2 conv fAi W i 2 �sg with u ¤ w:

(40)

Corollary 7 Let � be a nonempty set of positive integer p-vectors with coordinate-
sum n, and let � be a partition in …� where A� is a vertex of P �

A . Then � is almost
separable; further, if the columns of A are distinct, then � is separable.

The next result shows that when d D 1, the necessary condition for the matrix
(in fact, vector for d D 1) associated with a partition to be a vertex is also sufficient.

Theorem 33 Let A 2 R1�n, let n1; : : : ; np be positive integers with
Pp

j D1 nj D n

and let � be a partition with shape .n1; : : : ; np/. Then � is almost separable if and

only if A� is a vertex of P
.n1;:::;np/

A .D P �
A for � D f.n1; : : : ; np/g/.

The next result establishes the optimality of (almost) separable partitions.

Theorem 34 Let � be a nonempty set of positive integer p-vectors with coordinate-
sum n and let f .�/ be an (edge-)quasi-convex function on the constrained-shape
partition polytope P �

A . Then there exists an optimal partition � which is almost
separable and has A� as a vertex of P �

A . Further, if f .�/ is strictly (edge-)quasi-
convex, then every optimal partition � is almost separable and has A� as a vertex
of P �

A . If A’s columns are distinct, the quantifier “almost” can be dropped in the
above statements.

Theorem 34 shows that when considering constrained-shape partition problems
with f .�/ (edge-)quasi-convex, it suffices to consider partitions that are (almost)
separable (and whose associated matrix is a vertex of the corresponding partition
polytope).

Cone-separability, another property of partitions, it next introduced and studied.
In particular, it will be shown that single-size partition problems have optimal par-
titions with this property and an enumeration algorithm for solving such problems
will be developed. It is emphasized that the results require the assumption that empty
parts are allowed. Of course, single-size problems with empty parts prohibited
(allowed) are instances of constrained-shape problems corresponding to the set of
all positive (nonnegative) shapes. In particular, problems of either type have optimal
solutions that are (almost) separable, and enumerating (almost) separable partitions
can be used to solve these problems. The following stronger conclusions do not
apply to single-size problem when parts are required to nonempty.

Two subsets �1 and �2 of Rd are called cone-separable if there exists a nonzero
d -vector C such that

C T u1 > 0 > C T u2 for all u1 2 �1 n f0g and u2 2 �2 n f0g (41)

(if either �1 n f0g or �2 n f0g is empty and the other set is not, then (41) is to be
interpreted as a requirement just on the elements of the nonempty set).
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A relation between cone-separability and (almost) separability is determined in
the next lemma.

Lemma 13 Suppose �1 and �2 are subsets of Rd that are cone-separable. Then
�1 and �2 are almost separable with the vector C satisfying (41) as a separating
vector; in this case, 0 is the only possible vector in �1 \ �2. Further, if 0 … �1 or
0 … �2, then �1 and �2 are separable.

The next example demonstrates that (almost)-separability does not imply cone-
separability.

Example 7 For k D 1; 2, let �k D f�k
0

�
;
�

k
2

�g � R2. Then �1 and �2 are separable
(with C D �

1
0

�
as a separating vector), but they are not cone-separable as a vector

C 2 R2 satisfies C T
�

1
0

�
> 0 if and only if C T

�
2
0

�
> 0. �

Recall that the conic hull of a set � � Rd , denoted cone �, is defined as the
set of linear combinations

Pq
tD1 �t x

t with �t � 0 and xt 2 � for t D 1; : : : q

(with cone ; D f0g). A set is a cone if it equals its conic hull. A cone is pointed
if for no nonzero vector x, both x and �x are in the cone. A fundamental result
about cones (see Rockafellar [61], Schrijver [64], or Ziegler [71]) shows that a set
is the conic hull of a finite set in Rm if and only if it has a representation fx 2
Rm W Ax � 0g with A as a real matrix having m columns; such a cone is called a
polyhedral cone.

Lemma 14 Let �1 and �2 be two finite sets in Rd and let C be a nonzero vector
in Rd . Then C T u1 > 0 > C T u2 for all u1 2 �1 n f0g and u2 2 �2 n f0g if and only
if C T w1 > 0 > C T w2 for all w1 2 .cone �1/ n f0g and w2 2 .cone �2/ n f0g.

The next result provides characterizations of cone-separability for polyhedral
cones.

Lemma 15 Let �1 and �2 be two finite sets in Rd . Then the following are
equivalent:
(a) �1 and �2 are cone-separable.
(b) cone �1 and cone �2 are cone-separable.
(c) cone �1 and cone �2 are almost separable.
(d) cone �1 and cone �2 are pointed cones and .cone �1/ \ .cone �2/ D f0g.

Attention is next turned to partition problems. Here, fixed-size problems with
a relaxation of the assumption that partitions’ parts are nonempty are considered.
Formally, let c…p denote the set of p-partitions which allow empty parts. For � 2
c…p , A� has the natural definition with the empty sum taken as zero. The partition

polytope corresponding to c…p is defined by P b…p

A � conv fA� W � 2 c…pg. As in
all sum-partition problems, it is assumed that the objective function F over c…p is

given by F.�/ D f .A� / with f as a real-valued function on P b…p

A .
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Call a partition � D .�1; : : : ; �p/ cone-separable if the sets fAi W i 2 �j g for
j D 1; : : : ; p are pairwise cone-separable. Lemma 13 shows that cone-separability
implies almost separability, with 0 as the only potential overlapping vector for any
pair of parts; moreover, a cone-separable partition with at most one part containing
indices that correspond to the 0 vector is separable. The next two theorems extend
results of Barnes, Hoffman, and Rothblum [1992] (which considered the case where
the Ai ’s are distinct).

Theorem 35 If � 2 c…p and A� is a vertex of P b…p

A , then for some matrix C 2 Rd�p

.C r/T u > .C s/T u for all distinct r; s D 1; : : : ; p and u 2 .cone �r/ n f0g: (42)

Theorem 36 Let f .�/ be an (edge-)quasi-convex on P b…p

A . Then there exists an
optimal partition � which is both cone-separable and (almost) separable and has

A� as a vertex of P b…p

A . Further, if f .�/ is strictly (edge-)quasi-convex, then every

optimal partition � is cone-separable and has A� as a vertex of P b…p

A .

The next two results consider cone-separable partitions when d D 1 and d D 2.

Theorem 37 Suppose A 2 R1�n has no zero column. If p � 2, then a p-partition
� is cone-separable if and only if two of its parts are fi 2 N W Ai > 0g and
fi 2 N W Ai < 0g (where either may be empty) and all other parts are empty. If
p D 1, then the (only) 1-partition .N / is cone-separable if and only if A contains
either just positive elements or just negative elements.

To study cone-separable partitions with d D 2, associate each x 2 R2 n f0g
with the angular coordinate of its polar-coordinate representation denoted 
.x/

(measured in degrees). It is observed that for ; ¤ C � R2 nf0g, C [f0g is a pointed
polyhedral cone if and only if for some 0 � 
 � 
: 
 < 360ı, 
 < 
 C 180ı and

C D
(

fx 2 R2 n f0g W 
 � 
.x/ � 
g if 
 < 360ı

fx 2 R2 n f0g W 
 � 
.x/ < 360ı or 0 � 
.x/ � 
 � 360ıg if 
 � 360ı:

Theorem 38 Suppose A 2 R2�n has no zero column. A p-partition � is cone-
separable if and only if for some q � p, there exist 0 � 


1
� 
1 < 


2
� 
2 <

� � � < 

q

� 
q < 

1

C 360ı such that 

q

< 360ı, 
t � 

t

< 180ı for each

t D 1; : : : ; q, and the nonempty parts of � are

fi 2 N W 

t

� 
.Ai/ � 
t g for t D 1; : : : ; q � 1

and

( fi 2 N W 

q

� 
.Ai/ � 
qg if 
q < 360ı

fi 2 N W 

q

� 
.Ai/ < 360ı or 0 � 
.Ai / � 
q � 360ıg if 
q � 360ıI

further, the 

t
’s and 
t ’s can be selected from f
.Ai/ W i 2 N g.
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6 Multiparameter: Combinatorial Approach

This section explores a combinatorial approach which can apply to partition
problems that are more general than the sum-partition problems studied in Sect. 5.
Here, vector partitions rather than index partitions are used – see the first three
paragraphs of Sect. 5.

A finite subset �1 ofRd penetrates another finite subset �2 of Rd , written �1 !
�2, if �1 \ .conv �2/ ¤ ;; �1 strictly penetrates �2 if �1 \ .riŒconv �2�/ ¤ ;.
Some implications about penetration that are true in R1 do not hold in Rd with
d > 1. For example, �1 ! �2 and �2 6! �1 no longer imply conv �1 
 conv �2.

Properties of partitions of vectors in Rd , with d > 1, are next introduced.
The fact that some implications of penetration in R1 do not hold in Rd for
d > 1 implies that some properties of partitions of points in R1 that were defined
in terms of penetration have more than one counterpart for partitions of points
in Rd .

A sphere in Rd is defined as a set of the form S D fx 2 Rd W kx � ak � Rg for
some a 2 Rd and R > 0, where k k stands for the Euclidean norm. The interior
and boundary of such a sphere is given by int S D fx 2 Rd W kx � ak < Rg and
bd S D fx 2 Rd W kx � ak D Rg.

Consider a partition � D .�1; : : : ; �p/ of a finite set of vectors in Rd . The
following properties of such partitions will be considered; the first three were
introduced in Sect. 5.
• Separable .S/ (also referred to as “disjoint” in the literature): For all distinct

r; s D 1; : : : ; p, �r and �s are separable, that is, .conv �r/ \ .conv �s/ D ;.
• Almost separable .AS/: For all distinct r; s D 1; : : : ; p, �r and �s are almost

separable, that is, .conv �r / \ .conv �s/ contains at most a single point,
and if the intersection contains a point, it is a vertex of both conv �r and
conv �s .

• Cone-separable .CnS/: For all distinct r; s D 1; : : : ; p, �r and �s are cone-
separable, that is, .cone �r/ \ .cone �s/ D f0g.

• Sphere-separable .SS/: For all distinct r; s D 1; : : : ; p, there exists a sphere
S 
 Rd such that either .U; W / D .�r ; �s/ or .U; W / D .�s; �r /, satisfies
S � U and S \ W D ;.

• Convex-separable .CvS/: For all distinct r; s D 1; : : : ; p, there exists a convex
set S 
 Rd such that either .U; W / D .�r ; �s/ or .U; W / D .�s; �r /, satisfies
S � U and S \ W D ;. (Evidently, without loss of generality, it is possible to
assume that dim S D d .)

• Almost sphere-separable .ASS/: For all distinct r; s D 1; : : : ; p, there exists
a sphere S 
 Rd such that either .U; W / D .�r ; �s/ or .U; W / D .�s; �r /,
satisfies S � U and jS \ W j � 1 and if x is a single point in S \ W , then
U \ .bd S/ D fxg.

• Nonpenetrating .NP /: For all distinct r; s D 1; : : : ; p, �r 6! conv �s .
• Noncrossing .NC /: For all distinct r; s D 1; : : : ; p, either .conv �r/ \

.conv �s/ D ; or one convex hull is contained in the other with no member
of the larger part penetrating the smaller part.
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• Acyclic .AC /: There do not exist q � 2 parts of � , say �i1 ; : : : ; �iq , such that
�i1 ! �i2 ! : : : ! �iq ! �i1 .

• Monopolistic .Mp/: One part has all elements. Note that if empty parts are
prohibited, there is only one partition satisfying Mp and its size is 1, if empty
parts are allowed it means that p � 1 parts are empty.

• Nearly monopolistic .NeMp/: At most one part of � has more than a single point.
• Nearly cone-separable .NeCnS/: For all distinct r; s D 1; : : : ; p, �r and �s are

either cone-separable or at least one of them is a singleton.
A property defined by penetration is called “weak” if the penetration allows

touching at boundary. Also note that two subsets �1 and �2 of Rd are separable if
and only if there exists a (closed) half-space S such that S � �1 and S \ �2 D ;,
and �1 and �2 are cone-separable if and only if there exists a (closed) cone S of
dimension d such that S � �1 and S \ �2 D f0g.

S and CnS were first considered in Barnes et al. [4]; CvS (called “noncrossing”)
in Boros and Hwang [7]; AS in Hwang and Rothblum [38]; SS , NP (called
“nested”), and AC (called “connected”) in Boros and Hammer [6]; NC (for d D 1)
in Kreweras [48], and NeMp in Pfersky et al. [60].

When d D 1, both S and NP reduce to consecutiveness, while NeCnS , NC ,
SS , AC , and CvS all reduce to noncrossingness. Further, when d D 1, partitions
in CnS can have at most one part containing positive elements, at most one part
containing negative elements, and some parts each consisting of only the 0-element
(but may have multiple copies). For a set of points with k 0-elements, this set is not
size(p)-regular for p > k C 2 and not shape-regular for almost all shapes. Hence,
CnS is not studied for d D 1. For d D 1, when there are enough 0-elements, CnS

reduces to bi-extremal, but NeMp does not reduce to extremal since the singletons
can be anywhere, not necessarily the smallest elements.

Theorem 39 The relations among the properties of partitions that were introduced
are represented in Fig. 4.

Golany et al. [29] proved an unexpected relation between S and SS . Here, an
“almost” version of the result is added. To state these results, the partitioned vectors
are embedded in RdC1 by defining

bAi �
 

Ai

kAi k2

!

2 RdC1 for i D 1; : : : ; n : (43)

Next, for each p-partition � D .�1; : : : ; �p/, letb� be the p-partition for the problem
with partitioned vectors bA1; : : : ;bAn with b�j D fbAi W Ai 2 �j g for j D 1; : : : ; p;
in particular,

bAb� D
2

4
X

Ai 2�1

bAi ; : : : ;
X

Ai 2�p

bAi

3

5 2 R.dC1/�p: (44)

Theorem 40 A partition � is (almost) sphere-separable if and only if b� is (almost)
separable when the partitioned vectors are bA1; : : : ;bAn.
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Mp NeMp SS

S NC

NP

WNP

WAC

WNC

WSS

WS

ASSAS

WCvS

WCnS

NeCnS

CnS

AC

CvS

Fig. 4 Implications among properties of multiparameter partitions

The proofs of (Golany et al. [29]) of the equivalences of Theorem 40 are
constructive and show how to convert separating vectors that verify (almost)
separability into spheres that verify (almost) sphere separability and vice versa.

The next result provides conditions that suffice for .A/SS ) .A/S .

Lemma 16 Assume that all the Ai ’s lie on the boundary of a sphere. Then a
partition is (almost) sphere-separable if and only if it is (almost) separable.

Next, the number of Q-partitions for each property Q introduced earlier
is bounded. Since vector-partitions are considered, the counts may depend on
the partitioned vectors. For each A 2 Rd�n, let #A

Q.p/ be the number of p-partitions
of the columns of A that satisfy Q, allowing empty parts. The emphasis is to exam-
ine whether #Q.n; p; d/ � maxA2Rd�n #A

Q.p/ grows exponentially or polynomially
in n, with p � 2 and d fixed (in the latter case, enumeration algorithms exist for all
relevant properties Q, see [39]. Counting of a polynomial class is usually done by
providing an upper bound of the form O.nm/ for some positive m.

Every unlabeled p-partition corresponds to at most pŠ labeled partitions (the
option for identical parts implies that the bound needs not always be tight). Thus,
the number of labeled p-partitions is bounded by pŠ times the number of unlabeled
p-partitions (for index-partitions, there are no identical parts, so the bound is
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realized), a multiplier that is independent of n. Consequently, the O.�/ order of the
classes of labeled and unlabeled partitions with a given property coincide. Here, it
is convenient to count the labeled classes. Also, empty parts will be allowed.

When columns of A are not distinct, a vector x 2 Rd is referred to as a multiple
point (of A) if it appears more than once among the columns of A; the multiplicity
of a multiple point x is the number of times x appears among the columns of A.
As vector partitions are considered, two partitions are identified if their parts are
assigned, respectively, the same number of copies of each multiple point. The next
lemma records a standard combinatorial fact.

Lemma 17 Suppose a point in Rd has n copies. Then there are
�

n�1
p�1

�
ways of

splitting the point into p nonempty (labeled) parts and
�

nCp�1
p�1

�
ways of splitting it

into p parts when empty parts are allowed; in either case, the number is bounded
by O.np�1/.

A set of points in Rd is called generic, or in general position, if for k D 1; : : : ; d

no k C 1 points of them lie in a k � 1-dimensional hyperplane. A matrix is called
generic, if the set of its columns is generic. Harding [33, Theorem 1] gave an
exact count of the number of A-separable 2-partitions when A is generic. Harding’s
result is next presented in a more general context which corrects [33, Theorem 2];
see Hwang and Rothblum [38]. For n; d � 1, define the .n; d/-Harding number,
denoted H.n; d/, by

H.n; d/ �
dX

j D0

 
n � 1

j

!

; (45)

(where the standard convention that
�

n
0

� D 1 for each n � 0 and
�

n
k

� D 0 if k > n is
used).

For A 2 Rd�n and E 2 Rd�u, a p-partition � is .A; E/-separable if every pair
of parts of � are separable by a hyperplane that contains the columns of E .

Theorem 41 Suppose A 2 Rd�n and E 2 Rd�u, where 0 � u � d and ŒA; E� is
generic. With empty parts allowed, the number of .AjE/-separable 2-partitions is
2H.n; d � u/ � 2d�uC1

�
n

d�u

�
. With empty parts prohibited, the number of .AjE/-

separable 2-partitions is 2H.n; d � u/ � 2 if either u < d or if u D d and neither
side of the unique hyperplane spanned by the columns of E contains all of A’s
columns. Finally, if empty parts are prohibited, u D d and all columns of A are on
one side of the unique hyperplane spanned by the columns of E , then the number of
.AjE/-separable is 0.

Corollary 8 Suppose A 2 Rd�n is generic. Then #A
S .2/ � 2H.n; d/ D O.nd /.

Hwang et al. [43] proved the equality #A
S .2/ D O.nd / of Corollary 8 without

using the Harding function. They also extended their result to arbitrary A in Rd�n

by perturbing A into A0 which is generic and proved that the set of A-separable
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2-partitions is contained in the set of A0-separable 2-partitions, thus bounding #A
S .2/

by #A0

S .2/ which equals O.nd / by Corollary 8. Finally, they gave a construction of
each A-separable partition by merging a given set of

�
p
2

�
2-partitions �ij of A, for

all “1 � i < j � p,” and showed that all A-separable p-partitions can be obtained
from such constructions (by varying the given set of 2-partitions).

Theorem 42 For A 2 Rd�n, #A
S .p/ � Œ#A

S .2/�.
p
2/ D O.nd.p

2//. Also, #S.n; p; d/ D
O.nd.p

2//.

Alon and Onn [3] proved that the O.nd.p
2// bound of Theorem 42 cannot be

improved for either p � 3 or d � 3.
Using Theorem 40, the above results can be used to derive bounds for sphere-

separability.

Theorem 43 Suppose A 2 Rd�n, p � 2 and Nn is the number of distinct columns
of A. Then #A

SS.p/ � Œ#A
SS.2/�.

p
2/ � Œ2H. Nn; d C 1/�.

p
2/ � Œ2dC1

� Nn
dC1

�
�.

p
2/. Also,

#SS.n; p; d/ D O.n.dC1/.p
2//.

Given A 2 Rd�n, Theorem 40 also shows that any enumeration method for
separable partitions immediately yields a method for enumerating the A-sphere-
separable partitions (with a complexity bound obtained by substituting d C 1

for d ).
Hwang and Rothblum [39] obtained the following result.

Theorem 44 For A 2 Rd�n having no zero-column, #A
CnS .p/ � Œ#A

CnS .2/�.
p
2/ �

Œ2H.n; d � 1/�.
p
2/ D OŒn.d�1/.p

2/�. Also, #CnS.n; p; d/ � Œ2H.n; d � 1/�.
p
2/ D

O.n.d�1/.p
2//.

Almost separable partitions are next considered, starting with 2-partitions. The
result follows Hwang and Rothblum [40].

Lemma 18 For A 2 Rd�n having en distinct columns, #A
AS .2/ � 2H.n; d/ C

.n �en/Œ2H.en � 1; d � 1/� � 2H.n; d/. Also, #AS .n; 2; d/ D #S .n; 2; d/ D
2H.n; d/.

Two difficulties prevent one from mimicking the perturbation argument and
the merging argument used for separable partitions to obtain an extension of
Lemma 18 to general p. First, using the same perturbation A to A0, the set of
A-almost separable 2-partitions is no longer contained in the set of A0-separable
partitions (though for generic A0, almost separable and separable coincide). Thus,
one cannot transform a bound of the latter into a bound of the former. Second,
the straightforward merging construction for separable partitions is not delicate
enough to cover the almost separable case. Hwang and Rothblum [40] showed how
to overcome these two problems. The first problem is solved by using the second
conclusion of Lemma 18, that is, #AS .n; 2; d/ D 2H.n; d/ for the need to bound
#A

AS .2/. They also gave a much more elaborated construction to deliver the merging
successfully. The resulting bound of #AS.n; p; d/ is given in the next theorem.



Optimal Partitions 2347

Table 8 Bounds of
#Q.n; p; d/

Q #Q.n; p; d/ Ref.

S O
�
nd.p

2/
�

Theorem 42

SS O
�
n.dC1/.p

2/
�

Theorem 43

CnS O
�
n.d�1/.p

2/
�

Theorem 44

AS O
�
nd.p

2/
�

Theorem 45

ASS O
�
n.dC1/.p

2/
�

Theorem 46

Theorem 45 #AS.n; p; d/ � Œ#AS .n; 2; d/�.
p
2/ D O.nd.p

2//.

The following result is an immediate consequence of Theorems 40 and 45.

Theorem 46 #ASS.n; p; d/ D O.n.dC1/.p
2//.

The following Table 8 summarizes the bounds of #Q.n; p; d/ for those properties
Q discussed above.

Several simple bounds on the number of partitions that satisfy other properties
are next recorded. First, it is trivial that #MP .n; p; d/ D �

n
p�1

� D O.np�1/,

consequently, #NeMP .n; p; d/ D pŠ
�

n
p�1

�
. Also, a careful combinatorial argument

yields #NeC nS .n; p; d/ D Pp�1
qD0

�
n
q

�
qŠ#C nS.n � q; p � q; d/ D O.n.d�1/.p

2/Cp�1/.
Finally, for Q 2 fNP; AC; NC g, Hwang, Lee, Liu, and Rothblum [45] gave
examples to show that even for d D p D 2, the number of Q-partitions is
exponential. From the implication relation shown in Fig. 4, the number of C vS

partitions must also be exponential. Finally, it is easily verified that all weak
properties are exponential.

Consistency and sortability, as introduced in Sect. 4, refer to properties of
index-partitions, without reference to the representation of the partitioned elements.
However, p-partition or k-subpartition is said to satisfy Q, and then satisfaction of
a part or parts of indices always implies the same satisfaction of the part or parts
of the corresponding points. Further, the extension of the notion of satisfaction
from a 1-dimensional point to a multi-dimensional point is straightforward. Hence,
consistency and sortability can still be discussed for vector-partitions, and the
approach of using Q-sortability to prove the existence of a Q-optimal partition is
valid as it was for the single-parameter case.

The remainder of this section discusses geometric properties that are present in
optimal partitions. Let fA1; : : : ; Ang be a set of n vectors in Rd and let F.�/ denote
an objective function over partitions of these vectors. Throughout the remainder
of this section, unless explicitly stated otherwise, F.�/ is to be minimized in
the partition problems that are considered (as is usually the case in “clustering
problems”). Also, the results for size problems hold regardless of whether empty
parts are allowed or not (for constrained-shape problems, prohibiting empty parts is
captured by having the set of feasible shapes contain only positive integer vectors).
However, if a result depends on allowing empty parts or on prohibiting such parts,
then the condition will be stated explicitly.
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Golany et al. [29] extended results of Barnes et al. [4] to the following (which
extends Theorem 34):

Theorem 47 Suppose

F.�/ D f .j�1j; : : : ; j�pj; A�/; (46)

where for each fixed set of values .j�1j; : : : ; j�pj/, f is (edge-)quasi-concave on
the corresponding single-shape partition polytope (in the d � p variables of A� ).
Then every constrained-shape problem has an almost separable optimal partition.
If furthermore, f is strictly (edge-)quasi-concave, then every optimal partition for
a constrained-shape problem is almost separable.

Recall the use of “b” introduced in (43) and (44). The following result is reported
in Golany et al. [29].

Corollary 9 Suppose

F.�/ D f .j�1j; : : : ; j�pj;bA�/ ; (47)

where for each fixed set of values .j�1j; : : : ; j�pj/, f is (edge-)quasi-concave on
the corresponding single-shape partition polytope (in the .d C 1/ � p variables of
bA� ). Then every constrained-shape problem has an almost sphere separable optimal
partition. Further, if f is strictly (edge-)quasi-concave, then every optimal partition
for a constrained-shape problem is almost sphere separable.

If the function f in Corollary 9 is linear in the variables corresponding to bA�

and in the shape-variable, the results of Sect. 5 can be used; that is, bounded-shape
partition problems with such objective functions can be solved by LP methods,
applied in the enlarged .d C 2/-dimensional space where the partitioned vectors

are
�bAi

1

�
.

Following Golany et al. [29], Corollary 9 is next used to address some clustering
problems.

Theorem 48 Let w1; : : : ; wp be positive numbers. Suppose F.�/ has either one of
the following three expressions:

(i) F.�/ D
pX

j D1

wj

X

Ai ;Ak 2�j

kAi � Akk2.

(ii) F.�/ D
pX

j D1;�j ¤;
wj

X

Ai 2�j

kAi � NAj k2, where for j D 1; : : : ; p,

NAj D
P

Ak
2�j

Ak

j�j j .

(iii) F.�/ D
pX

j D1

wj

X

Ai 2�j

kAi � tj k2, where t1; : : : ; tp are prescribed d-vectors.
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Then every constrained-shape problem has an almost sphere separable optimal
partition.

The third objective function can be expressed as a linear function of cA� and
of the parts’ sizes. Consequently, the comment following Corollary 9 applies and
corresponding bounded-shape partition problems can be solved by LP methods.

Uniform versions of the objective functions that are listed in Theorem 48 are next
considered, where uniform means that the wj ’s are constant.

Theorem 49 Consider uniform versions of the objective functions that are listed in
Theorem 48. Then:

(i) For a constrained-shape problem with constant part-sizes and with the first
function, every optimal partition is almost separable.

(ii) For a constrained-shape problem with the second function, every optimal
partition is almost separable.

(iii) For a constrained-shape problem with the third function, there exists an almost
separable optimal partition.

Boros and Hammer [6] considered case (i) of Theorem 49 and proved that
every single size problem has a weakly separable optimal partition. Theorem 49
strengthens their result in several ways: A stronger property is satisfied for every
optimal partition, and the conclusion holds for a wider class of partition problems.

Attention is next turned to single-size problems. For a p-partition � and i 2 N ,
let j� .i/ denote the index of the part of � that contains Ai (here, distinction must
be made between multiple copies of the same vector).

Lemma 19 Let t1; : : : ; tp be prescribed distinct vectors in Rd . Then, allowing for
empty parts, there is a separable partition � such that

jjAi � tj� .i/jj � jjAi � tj�0 .i/jj for every partition � 0 and i 2 N : (48)

Further, a partition � satisfies ( 48) if and only if each vector Ai is assigned to a
part �j for which kAi � tj k D minuD1;:::;p kAi � tuk; each such partition is weakly
separable.

Theorem 50 Let t1; : : : ; tp be prescribed distinct vectors in Rd and consider the
single-size problem, allowing empty parts, which has

F.�/ D f .kA1 � tj� .1/k; : : : ; kAn � tj� .n/k/; (49)

where f W Rn ! R is nondecreasing. Then the partition � which assigns each
vector Ai to the part �j with the lowest index j among those for which kAi � tj k is
minimized is both optimal and separable. Further, if f is increasing, then a partition
� is optimal if and only each vector Ai is assigned to a part �j for which kAi �
tj k D minuD1;:::;p kAi � tuk, and every optimal partition is weakly separable.
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Corollary 10 The conclusions of Theorem 50 hold for the single-size problem,
allowing empty parts, which has

F.�/ D
pX

j D1;�j ¤;

X

Ai 2�j

h.kAi � tj k/; (50)

where t1; : : : ; tp be prescribed distinct vectors in Rd where h W R ! R is
nondecreasing/increasing.

Theorem 50 and Corollary 10 specify a single separable partition that is
uniformly optimal for all underlying partition problems, independently of the
functions f and h that occur in (49) and (50).

The characterization of optimal partition of Theorem 50 (and Corollary 10)
allows one to construct all optimal solutions by assigning each vector Ai to any
part �j for which tj is the closest to Ai . More specifically, associate each vector
Ai 2 Rd with the vector Di � .kAi � t1k; : : : ; kAi � tpk/T 2 Rp. A partition is
then optimal if and only if it assigns Ai to �j with Di

j being any minimal coordinate
of Di . The amount of effort needed to compute each vector Di is O.dp/, so the total
amount of effort to compute all of the Di ’s (and thereby solve the partition problem)
is O.dpn/.

Since the boundary of the convex hull of two parts can contain points of both
parts, the optimal partitions identified in Theorem 50 and Corollary 10 need not be
almost separable, let alone separable. Still, it is noted that breaking ties by using any
part-ranking will produce separable partitions.

The geometric figure of the partition of Rd into p convex subsets S1; : : : ; Sp with
Sj consisting of all points in Rd closest to tj (a point on a boundary is closest to all
tj whose Sj shares that boundary) is known in the literature as the Voronoi diagram.
Efficient constructions of Voronoi diagrams are well studied in theoretical computer
science (see Fortune [25] for a survey). In particular, hyperplanes representing a

Voronoi diagram for p given points t1; : : : ; tp in Rd can be constructed in O.d
pC1

2 /-
time. For d D 2, Shamos and Hoey [65] showed that the Voronoi diagram can be
constructed in O.p log p/-time.

A tool is next developed for using results about properties of optimal partitions
of problems with objective functions that depend on prescribed vectors to results
where the prescribed vectors are replaced by some minimizing vectors. Two new
definitions are needed to present a formal result. A function g W Rd ! R is inverse-
bounded if for every K 2 R fx 2 Rd W jg.x/j � Kg is a bounded set of Rd .
Evidently, an inverse-bounded function that is continuous is guaranteed to attain
a minimum over Rd . Also, let P �.Rd / be the set of finite subsets of Rd , that is,
P �.Rd / D f� 
 Rd W j�j is finiteg.

Theorem 51 Let Q be a partition property, f W Rp ! R be nondecreasing and g W
P �.Rd /�Rd ! R with the property that for every � 2 P �.Rd /, g.�; �/ is inverse-
bounded and continuous. Let � be a set of p-integer vectors with coordinate-sum n.
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Assume that for any t1; : : : ; tp 2 Rd , some optimal partition of the constrained-
shape problem corresponding to � and having objective function F t1;:::;tp .�/, empty
parts not allowed, given by

F t1;:::;tp .�/ D f Œg.�1; t1/; : : : ; g.�p; tp/� for each partition � (51)

satisfies Q. Then some optimal partition for the corresponding constrained-shape
problem with objective function F.�/ given by

F.�/ D f

"

min
x12Rd

g.�1; x1/; : : : ; min
xp2Rd

g.�p; xp/

#

for each partition � (52)

satisfies Q. Further, the above holds with “every” replacing “some.”

Theorem 51 can be used to obtain Theorem 49 (ii) from Theorem 49 (iii) by
noting that

Pp
j D1 wj

P
Ai 2�j

kAi � tj k2 is minimized over .t1; : : : ; tp/ at

. NA1; : : : ; NAp/ (with NAj D
P

Ak
2�j

Ak

j�j j for j D 1; : : : ; p).
The proof of Theorem 51 in [39] can, in fact, be applied to a partition

that is not optimal. Specifically, if � is any partition and t1; : : : ; tp are mini-
mizers of g.�1; �/; : : : ; g.�p; �/, respectively, then any partition �# that satisfies
F t1;:::;tp .�#/ � F t1;:::;tp .�/ satisfies F.�#/ � F.�/. In particular, any sorting
method that is applicable to partition problems with objective function F t1;:::;tp .�/
for fixed tj ’s which does not rely on a statistics depending on the tj ’s, applies to the
partition problem with objective function F.�/. This is the case for p-sortings for
which no statistics is needed.

For h W R ! R, an h-centroid of a finite set � � Rd is a minimizer ofP
Ai 2� h.kAi � xk/ over x 2 Rd . When h is continuous, bounded from below

and inverse-bounded, each finite set � has an h-centroid. (This definition extends
the definition given in the paragraph preceding Theorem 25 from d D 1 to d > 1.)

Theorem 52 Consider the single-size problem which has

F.�/ D
pX

j D1

X

Ai 2�j

h.jjAi � cj jj/; (53)

where h W R ! R is nondecreasing, continuous, and inverse-bounded, and for
j D 1; : : : ; p, cj is the h-centroid of �j and where the sum over an empty set of
h.�/-values in (53) is defined to be 0. Then there exists a separable optimal partition.
Further, if h is increasing, then every optimal partition is weakly separable.

Corollary 11 Consider the partition problem of Theorem 52. Then there exists a
separable optimal partition without empty parts. Further, if h is increasing, then
every optimal partition has no empty parts.
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Theorem 52 asserts the existence of a separable optimal partition that is specific
to the function h which occurs in (53). This type of result is weaker than the uniform
optimality of a specific separable partition asserted in Theorem 50.

The second paragraph following Theorem 51 shows that the assignment of each
vector to its closest tj can be used to replace a partition � that is not separable with
one that is and has improved F -value where F.�/ is given by (53).

Partition problems that are next considered have objective functions that depend
on the least radii of spheres that, respectively, include the parts. It is first shown that
given a partition whose parts are included in prescribed spheres, there is a separable
partition with the same property. The proof of this result follows an approach of
Capoyleas, Rote, and Woeginger [9] who proved the case d D 2 (and claimed its
extension to general d ).

Lemma 20 Let t1; : : : ; tp be prescribed distinct vectors in Rd . Allowing partitions
to have empty parts, for each partition � , there exists a separable partition � 0 such
that

max
Ai 2� 0

j

jjAi � tj jj � max
Ai 2�j

jjAi � tj jj for j D 1; : : : ; p: (54)

Further, if rj � maxAi 2�j
jjAi �tj jj for j D 1; : : : ; p (i.e., rj is the smallest radius

of a sphere that is centered at tj and contains �j ), then � 0 can be selected by the
following rule: Ai 2 � 0

j if j is the lowest index of those for which jjAi � tj jj2 �r2
j D

minuŒjjAi � tujj2 � r2
u � (of course, one may use any a priori permutation of the part-

indices).

Capoyleas, Rote, and Woeginger [9] did not mention a tie-breaking rule; as such,
the “power diagram” they used to repartition the vectors leads to weak separability
rather than strict separability (earlier results in this section show that the number
of weakly separable partitions is not necessarily polynomial in the number of
partitioned vectors).

The separating hyperplane between parts � 0
j and � 0

w of the partition � 0 con-
structed in Lemma 20 is given by

H � fx 2 Rd W jjx � tj jj2 � r2
j D jjx � twjj2 � r2

wg
D fx 2 Rd W 2.tw � tj /T x D jjtwjj2 � jjtj jj2 C r2

j � r2
wg: (55)

This hyperplane is called the power-hyperplane of the underlying spheres fx 2
Rd W jjx � ts jj � rsg and fx 2 Rd W jjx � twjj � rwg. Further, the construction
of � 0 from � in the proof of Lemma 20 is a sorting operation of all p-parts called
power-hyperplane sorting. The use of p-sorting has the advantage that it achieves
the goal in one step and therefore does not require a monotone statistics that shows
iterative sortings will not cycle.

A natural variant of the use of power-hyperplane p-sorting to prove the con-
clusions of Lemma 20 is to iteratively apply power-hyperplane 2-sorting (of pairs
of parts). For this approach to work, that is to avoid the possibility of cycling, it
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is necessary to identify a statistics over partitions that is reduced at each iteration.
Unfortunately, it is not known that such a statistics exists. Still, power-hyperplane
2-sortings can be used to prove a weaker result. Specifically, consider t1; : : : ; tp 2
Rd and r1; : : : ; rp 2 R. Lemma 20 implies that power-hyperplane p-sorting
will convert a partition � whose parts are included, respectively, in the spheres
fx 2 Rd W jjx � tj jj � rj g, j D 1; : : : ; p, into a separable partition having the same
property. Here, one can use iterative power-hyperplane 2-sorting and assure that the
process does not cycle because of strict lexicographic reduction of the statistics

s.�/ �
0

@
pX

j D1

X

Ai 2�j

ŒjjAi � tj jj2 � r2
j �; �j�1j; : : : ; �j�pj

1

A

in each step. In particular, this proves that S is (sort-specific, 2, support)-sortable
with “sort-specific” referring to the power-hyperplane method with fixed center and
fixed radii.

Theorem 53 Let t1; : : : ; tp be prescribed distinct vectors in Rd and consider the
single-size problem, allowing empty parts, which has

F.�/ D f Œ max
Ai 2�1

jjAi � t1jj; : : : ; max
Ai 2�p

jjAi � tpjj�; (56)

where f W Rp ! R is nondecreasing. Let � be a given partition. Then the partition
� 0 which satisfies the conclusions of Lemma 20 is separable and satisfies F.� 0/ �
F.�/. In particular, the underlying single-size problem has a separable optimal
partition.

Theorem 53 provides a construction (appearing explicitly in the statement of
Lemma 20) of a separable partition that improves on the objective function of a
given partition � . This result can be cast as p-sortability result, as were the results
of Theorem 50 and Corollary 10. The construction of Theorem 53 is independent
of the f appearing in ( 56), but unlike the construction of Theorem 50 (and
Corollary 10), it is specific to the underlying partition � .

For a bounded set � 
 Rd , let r.�/ denote the minimum radius of a sphere
that includes �; in particular, when � is finite, r.�/ D infx2Rd Œsupy2� jjx � yjj�,
and the “inf” and “sup” are attained (and can therefore be replaced by “min”
and “max”). For a p-partition � , let r.�/ D .r.�1/; : : : ; r.�p//. The next result
considers partition problems with objective function that is determined by these
partition characteristics; Capoyleas, Rote, and Woeginger [9] considered the case
d D 2.

Theorem 54 Consider the single-size problem which has F.�/ D f Œr.�/� where
f W Rp ! R nondecreasing. Then some optimal partition is separable.

A result of Pfersky et al. [60] is next generalized; their result is then deduced as
a corollary.
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Theorem 55 Consider the single-size problem, not allowing empty parts, which has

F.�/ D
pX

u;vD1

u¤v

X

Ai 2�u

X

Ak2�v

h.Ai ; Ak/; (57)

where h.�; �/ is a metric. Then there exists a nearly monopolistic optimal partition.
If h is strict, then every optimal partition is nearly monopolistic. Finally, when
allowing empty parts, “nearly monopolistic” can be replaced by “monopolistic.”

The reason that there is no strict version for Theorem 55 is that even if h is strict,
when the Ai ’s are all the same point, then all p-partitions are optimal.

The Pfersky, Rudolf, and Woeginger result is next derived. It is stated in the
original framework of a maximization problem (of course, multiplying the objective
function by �1 converts a maximization problem into an equivalent minimization
problem).

Corollary 12 Consider the single-size problem in which

F.�/ D
pX

j D1

X

Ai ;Ak 2�j

kAi � Akk2 : (58)

is to be maximized. Then there exists a nearly monopolistic optimal partition.
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