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Abstract

The survey presents an overview of approximation algorithms for the classical
bin packing problem and reviews the more important results on performance
guarantees. Both on-line and off-line algorithms are analyzed. The investigation
is extended to variants of the problem through an extensive review of dual
versions, variations on bin sizes and item packing, as well as those produced
by additional constraints. The bin packing papers are classified according to a
novel scheme that allows one to create a compact synthesis of the topic, the main
results, and the corresponding algorithms.

1 Introduction

In the classical version of the bin packing problem, one is given an infinite supply
of bins with capacity C and a list L of n items with sizes no larger than C: the
problem is to pack the items into a minimum number of bins so that the sum of the
sizes in each bin is no greater than C. In simpler terms, a set of numbers is to be
partitioned into a minimum number of blocks subject to a sum constraint common
to each block. Bin packing rather than partitioning terminology will be used, as it
eases considerably the problem of describing and analyzing algorithms.
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The mathematical foundations of bin packing were first studied at Bell Lab-
oratories by M.R. Garey and R.L. Graham in the early 1970s. They were soon
joined by J.D. Ullman; then at Princeton, these three published the first [103]
of many papers to appear in the conferences of the computer science theory
community over the next 40 years. The second such paper appeared within months;
in that paper, D.S. Johnson [125] extended the results in [103] and studied general
classes of approximation algorithms. In collaboration with A. Demers at Princeton,
researchers Johnson, Garey, Graham, and Ullman published the first definitive
analysis of bin packing approximation algorithms [129]. In parallel with the research
producing this landmark paper, Johnson completed his 1973 Ph.D. thesis at MIT
which gave a more comprehensive treatment and more detailed versions of the
abbreviated proofs in [129].

The pioneering work in [129] opened an extremely rich research area; it soon
turned out that this simple model could be used for a wide variety of different
practical problems, ranging from a large number of cutting stock applications to
packing trucks with a given weight limit, assigning commercials to station breaks in
television programming, or allocating memory in computers. The problem is well-
known to be N'P-hard (see, e.g., Garey and Johnson [100]); hence, it is unlikely
that efficient (i.e., polynomial-time) optimization algorithms can be found for its
solution. Researchers have thus turned to the study of approximation algorithms,
which do not guarantee an optimal solution for every instance, but attempt to
find a near-optimal solution within polynomial time. Together with closely related
partitioning problems, bin packing has played an important role in applications
of complexity theory and in both the combinatorial and average-case analysis of
approximation algorithms (see, e.g., the volume edited by Hochbaum [115]).

Starting with the seminal papers mentioned above, most of the early research
focused on combinatorial analysis of algorithms leading to bounds on worst-case
behavior, also known as performance guarantees. In particular, letting A(L) be the
number of bins used by an algorithm A and letting OPT(L) be the minimum number
of bins needed to pack the items of L, one tries to find a least upper bound on
A(L)/OPT(L) over all lists L (for a more formal definition, see Sect. 2). Much
of the research can be divided along the boundary between on-line and off-line
algorithms. In the case of on-line algorithms, items are packed in the order they
are encountered in a scan of L; the bin in which an item is packed is chosen without
knowledge of items not yet encountered in L. These algorithms are the only ones
that can be used in certain situations. For example, the items to be packed may arrive
in a sequence according to some physical process and have to be assigned to a bin as
soon as they arrive. Off-line algorithms have complete information about the entire
list throughout the packing process.

Since the early 1980s, progressively more attention has been devoted to the
probabilistic analysis of packing algorithms. A book by Coffman and Lueker [46]
covers the methodology in some detail (see also the book by Hofri [119, Chap. 10]).
Nevertheless, combinatorial analysis remains a central research area, and from time
to time, numerous new results need to be collected into survey papers. The first
comprehensive surveys of bin packing algorithms were by Garey and Johnson [101]
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in 1981 and by Coffman et al. [50] in 1984. The next such survey was written
some 10 years later by Galambos and Woeginger [96] who gave an overview
restricted to on-line algorithms. New surveys appeared at the end of the 1990s.
Csirik and Woeginger [62] concentrated on on-line algorithms, while Coffman et al.
[52] extended the coverage to include off-line algorithms, and Coffman et al. [53]
considered both classes of algorithms in an earlier version of the present survey.
Worst-case and average-case analysis are surveyed in [62] and [52]. More recently,
classical bin packing and its variants were covered in Coffman and Csirik [43] and
in Coffman et al. [54, 55].

This survey gives a broad summary of results in the one-dimensional bin packing
arena, concentrating on combinatorial analysis, but in contrast to other surveys,
greater space is devoted to variants of the classical problem. Important new variants
continue to arise in many different settings and help account for the thriving interest
in bin packing research. The survey does not attempt to give a self-contained work,
for example, it does not present all algorithms in detail nor does it give formal
proofs, but it refers to certain proof techniques which have been used frequently
to establish the most important results. Also, in the coverage of variants, the
restriction to partitioning problems in one dimension is maintained. Packing in
higher dimensions, for example, strip packing and two-dimensional bin packing,
is itself a big subject, one deserving its own survey. The interested reader is referred
to the recent survey by Epstein and van Stee [79].

Another important feature of this survey is that it adopts the novel classification
scheme for bin packing papers recently introduced by Coffman and Csirik [44]. This
scheme allows one to create a compact synthesis of the topic, the main results, and
the corresponding algorithms.

Section 2 covers the main definitions and as well as a full description of the
classification scheme. For the classical bin packing problem, on-line (and semi-
on-line) algorithms are discussed in Sect. 3 and off-line algorithms in Sect. 4.
(Section 4.4 is a slight departure from this organization: it deals with anomalous
behavior both for on-line and off-line algorithms.)

The second part of this survey concentrates on special cases and variants of the
classical problem. Variations on bin size are considered in Sect. 5, dual versions
in Sect. 6, variations on item packing in Sect. 7, and additional conditions in
Sect. 8. Finally, Sect. 9 gives a series of examples to familiarize the reader with
the classification scheme. The classification of the papers considered in the survey
is also given, when appropriate, in the Bibliography.

2 Definitions and Classification

This section introduces more formally all of the relevant notation required to
define, analyze, and classify bin packing problems. Starting with the classical
problem, the notation is then extended to more general versions, and finally, the
new classification scheme is described. Additional definitions needed by specific
variants are introduced in the appropriate sections.
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2.1 Basic Definitions for Classical Bin Packing

The classical bin packing problem is defined by an infinite supply of bins with
capacity C and a list L = (ay,...,a,) of items (or elements). A value s; = s(a;)
gives the size of item @; and satisfies 0 < 5; < C, 1 < i < n. The problem is to
pack the items into a minimum number of bins under the constraint that the sum of
the sizes of the items in each bin is no greater than C.

In the classical problem, the bin capacity C is just a scale factor, so without loss
of generality, one can adopt the normalization C = 1. Unless stated otherwise,
this convention is in force throughout. One of the exceptions will be in the sections
treating variants of the classical problem in which bins B; have varying sizes. In
those sections, bin sizes will be denoted by s(B;).

In the algorithmic context, nonempty bins will be classified as either open
or closed. Open bins are available for packing additional items. Closed bins are
unavailable and can never be reopened. It is convenient to regard a completely full
bin as open under any given algorithm until it is specifically closed, even though
such bins can receive no further items. Denote the bins by Bj, B,,.... When no
confusion arises, B; will also denote the set of items packed in the j-th bin, and
| B | will denote the number of such items.

The items are always organized into a list L (or a list L; in some indexed
set of lists). The notation for list concatenation is as usual; L = L{L,...Ly
means that the items of list L; are followed by the items of list L;4; for
each i = 1,2,....,k — 1. When the number of items in a list is needed
as part of the notation, an index in parentheses is used: L, denotes a list
of n items.

If B; is nonempty, its current content or level is defined as

C(Bj) = Z Si.

a;€B;

A bin (necessarily empty) is opened when it receives its first item. Of course, it may
be closed immediately thereafter, depending on the algorithm and the item size.
It is assumed, without loss of generality, that all algorithms open bins in order of
increasing index. Within any collection of nonempty bins, the earliest opened, the
leftmost, and the lowest indexed all refer to the same bin.

In general, in the considered lists, the item sizes are taken from the interval (0, «],
with @ € (0, 1]. It is usually assumed that @ = % for some integer » > 1, and many
results apply only tor = o = 1.

There are two principal measures of the worst-case behavior of an algorithm.
Recall that A(L) denotes the number of bins used by algorithm A to pack the
elements of L; OPT denotes an optimal algorithm, one that uses a minimum number
of bins. Define the set V,, of all lists L for which the maximum size of the items is
bounded from above by «. For every k > 1, let



460 E.G. Coffman et al.

Ry(k,a) = sup % :OPT(L) =k¢.

LeV,

Then the asymptotic worst-case ratio (or asymptotic performance ratio, APR) as a
function of « is given by

RY () = limgsoo Rk, ).

Clearly, RS° () > 1, and this number measures the quality of the packings produced
by algorithm A compared to optimal packings in the worst case. In an equivalent
definition, RP («) is a smallest number such that there exists a constant K > 0 for
which
A(L) < R (@)OPT(L) + K.

for every list L € V,,. Hereafter, if « is left unspecified, the APR of algorithm A
refers to RP = RY(1).

The second way to measure the worst-case behavior of an algorithm A is the
absolute worst-case ratio (AR)

- A(L)
Rale) = sup % OPT(L) }

The comparison of algorithms by asymptotic bounds can be strikingly different
from that by absolute bounds. Generally speaking, the number of items n must
be sufficiently large (how large will depend on the algorithm) for the asymptotic
bounds to be the better measure for purposes of comparison. Note that the ratios are
bounded below by 1; the better algorithms have the smaller ratios. When algorithm
A is an on-line algorithm, the asymptotic ratio is also called the competitive ratio.

There are some further proposals to measure the quality of a packing, like
differential approximation measure (see Demange et al. [66], [67]), random-order
ratio (see Kenyon [136]), relative worst-order ratio (see Boyar and Favrholdt [27]),
and accommodation function (see Boyar et al. [28]).

It is finally worth mentioning a special sequence #; of integers which was
investigated by Sylvester [170] in connection with a number theoretic problem
and later generalized by Golomb [107]. (In describing the performance of various
algorithms in later sections, such sequence will occasionally be considered.) For an
integer r > 1, define

Hhry=r+1
bry=r+2

l,’+1(r)Il[(r)(l[(r)—1)+1, for i > 2.

(The Sylvester sequence was defined for r = 1). It was conjectured by Golomb that
for r = 1, this sequence gives the closest approximation to 1 from below among
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the approximations by sums of reciprocals of k integers, the basis of the conjecture
being
k

1 1
2wt mmoi =t

i=1

Furthermore, it is also easily proved that the following expression is valid for the
Golomb sequences:

k

(r—1) 1 1
+ + =1 forany r > 1.
H(r) ; 4(r) e (r)—1 d

On the other hand, the following value appears in several results:

|
hw(r)=l+;—ti(r)_l.

The first few values of hoo(r) are the following: hs(l) &~ 1.69103, heo(2) =~
1.42312, hoo(3) &~ 1.30238.

2.2 General Definitions

This survey covers results on several variants of the one-dimensional bin packing
problem. In such variants, the meaning of a number of notations can be different,
so more general definitions are necessary. These will be introduced in the present
section, together with the basic ideas behind the adopted classification scheme.

The notion of packing items into a sequence of initially empty bins helps
visualize algorithms for constructing partitions. It is also helpful in classifying
algorithms according to the various constraints under which they must operate in
practice. The items are normally given in the form of a sequence or list L =
(ay,...,a,), although the ordering in many cases will not have any significance. To
economize on notation, a harmless abuse is adopted whereby s; denotes the name
as well as the size of the i-th item. The generic symbol for packing is P, the number
of items in P is denoted by |P|, the sum of the sizes of the items in P is denoted
by ¢(P), and the number of bins in P is denoted by #P. In the classical bin packing
optimization problem, the objective is to find a packing P of all the items in L such
that #P is minimized over all partitions of L satisfying the sum constraints. Recall
that C is only a scale factor in this problem; it is usually convenient to replace the
s; by s;/C and take C = 1.

Let P4 (L) denote the packing of L produced by algorithm A. In the literature,
one finds the notation A(L) representing metrics such as #P, but since A(L) may
denote different metrics for different problems (the same algorithm A may apply
to problems with different objective functions), the alternative notation will be
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necessary on occasion. The minimum of #P over all partitions P of L satisfying
the sum constraints will have the notation OPT(L) := ming ) #P(L), where (L)
denotes the set of all such partitions. The notation OPT(L) suffers from the same
ambiguity as before, that is, the objective function to which it applies is determined
by context. Moreover, in contrast to other algorithm notation, OPT does not denote
a unique algorithm.

There are two variants of classical bin packing that arise immediately from the
definition. In one, a general bin capacity C and a number m of bins are part of
the problem instance, and the problem is to find a maximum cardinality subset
of {s;} that can be packed into m bins of capacity C. In the other, all n items
must be packed into m bins, and the problem is to find a smallest bin capacity
C such that there exists a packing of all the items in m bins of capacity C. The
first problem suggests yet another in which the total size of the items in a subset
S is the quantity of interest rather than the number |S| of items. Problems fixing
the number of bins fall within scheduling theory whose origins in fact predate those
of bin packing theory. In scheduling theory, which is very large in its own right,
makespan scheduling is more likely to be described as scheduling a list of tasks or
jobs (items) on m identical processors (bins) so as to minimize the schedule length
or makespan (bin capacity). This incursion into scheduling problems will be limited
to the most elementary variants and applications of bin packing problems, such as
those above.

Bin covering problems are also included in bin packing theory for classification
purposes, and these change the sum constraints to c¢(B i) = 1, where again, bin
capacity is normalized to 1. The classical covering problem asks for a partition,
C, called a cover, which maximizes the number #C of bins satisfying the new
constraint. Both the packing and covering combinatorial optimization problems
are N'P-hard. With problems defined on restricted item sizes or number of items
per bin being the major exceptions, this will be the case for nearly all problem
variants in the classification scheme. Note that there are immediate variants to
bin covering, just as there were for bin packing. For example, one can take the
number m of bins to be fixed and ask for a minimum cardinality subset of {a;}
from which a cover of m bins can be obtained. Or one can consider the problem
of finding a largest capacity C such that L can be made to cover m bins of
capacity C.

Order-of-magnitude estimates of time complexities of fundamental algorithms
and their extensions are usually easy to derive. The analysis of parallel algorithms
for computing packings is an example where deriving time complexities is not
always so easy. However, the research in this area, in which results take the form of
complexity measures, has been very limited.

Several results quantify the trade-off between the running time of algorithms
and the quality of the packings. They produce polynomial-time (or fully
polynomial-time) approximation schemes [100], denoted by PTAS (or FPTAS).
In simplified terms, a typical form of such results is illustrated by “Algorithm
A produces packings with O(e) wasted space and has a running time that is
polynomial in 1/¢.”
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The most common approach to the analysis of approximation algorithms has
been worst-case analysis by which the worst possible performance of an algorithm is
compared with the performance of an optimization algorithm. (Detailed definitions
will be provided shortly.) The term performance guarantee puts a more positive
slant on results of this type. So also does the term competitive analysis, which usu-
ally refers to a worst-case analysis comparing an on-line approximation algorithm
with an optimal off-line algorithm. Probability models also enjoy wide use and have
grown in popularity, as they bring out typical, average-case behavior rather than the
normally rare worst-case behavior. In probabilistic analysis, algorithms have ran-
dom inputs; the items are usually assumed to be independent, identically distributed
random variables. For a given algorithm A, A(L,) is a random variable whose
distribution becomes the goal of the analysis. Because of the major differences in
probabilistic results and in the analysis that produces them, they are not covered
in this survey, which focuses exclusively on combinatorial analysis. For a general
treatment of average-case analysis of packing and related partitioning problems, see
the text by Coffman and Lueker [46].

2.3 Classification Scheme

The scheme for classifying problems and solutions is aimed at giving the reader a
good idea of the results in bin packing theory to be found in any given paper on
the subject. Although in many, if not most cases, it is impractical to describe every
result contained in a paper, an indication of the main results should be useful to the
reader.

The classification uses four fields, presented in the form

problem | algorithm class | results | parameters

For a brief preview, observe that, normally, the problem is to minimize or
maximize a metric under sum constraints and refers, for example, to the number
of bins of fixed capacity and the capacity of a fixed number of bins. The algo-
rithm class refers to paradigms such as on-line, off-line, or bounded space. The
results field specifies performance in terms of absolute or asymptotic worst-case
ratios, problem complexity, etc. Lastly, the parameters field describes restric-
tions on problem parameters, such as a limit on item sizes or on the number
of items per bin, and a restriction of all data to finite or countable sets. In
many cases, there are no additional parameters to specify, in which case the
parameters field will be omitted. The three remaining fields will normally be
nonempty.

In the following, a detailed description of the classification scheme is introduced.
Section 9 gives a number of annotated examples to familiarize the reader with
the proposed classification. The special terms or abbreviations adopted for entries
will be given in bold face. In the large majority of cases, the entry will have a
mnemonic quality that makes the precise meaning of an entry clear in spite of its
compact form.
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2.3.1 Problem

The combinatorial optimization problems of interest can easily be expressed in the
notation given so far, but for readability, abbreviations of the names by which the
problems are commonly known will be used. Most, but not all, of the problems
below were discussed earlier. Moreover, some of them are not treated in this survey
and are listed for the sake of completeness.

1.

pack refers to the problem of minimizing #P(L). The default sum constraints
are c(B;) < 1. But they are ¢(B;) < s(B;), if variable bin capacities s(B;)
are considered, and more simply c¢(B;) < C if there is only a common bin
capacity C.

. maxpack problems invert the problem above, that is, #P is to be maximized.

Clearly, such problems trivialize unless there is some constraint placed on open-
ing new bins. The tacit assumption will be that packings under approximation
algorithms must obey a conservative, any-fit constraint: a new bin cannot be
opened for an item s; unless s; cannot fit into any currently open bin. Optimal
packings by definition must be such that, for some permutation of the bins, no
item in B; fits into B; forany j < i.

. mincap refers to the problem of minimizing the common bin capacity needed

to pack L into a given number m of bins. Bin-stretching analysis applies if the
problem instances are restricted to those for which an optimization rule can pack
L into m unit-capacity bins. Under this assumption, in the analysis of algorithm
A, one asks how large must the bin capacity be (how much must it be stretched)
for algorithm A to pack L into the same number of bins.

. maxcard(subset) has the number m of bins and their common capacity C as part

of the problem instance. The problem is to find a largest cardinality subset of L
that can be packed into m bins of capacity C.

. maxsize(subset) has the number m of bins and their common capacity C as part

of the problem instance. The problem is to find a subset of L with maximum total
item size that can be packed into m bins of capacity C.

. cover refers to the problem of finding a partition of L into bins that maximizes

#P (L) subject to the constraints c(B;) > 1. The partition is called a cover.

. capcover refers to the problem of finding, for a given number m of bins, the

maximum capacity C such that a covering of m bins of capacity C can be
obtained from L.

. cardcover(subset) is the related problem of minimizing the cardinality of the

subset of L needed to cover a given number m of bins with a given capacity C.

2.3.2 Algorithm Class

1.

on-line algorithms sequentially assign items to bins, in the order encountered
in L, without knowledge of items not yet packed. Thus, the bin to which a; is
assigned is a function only of the sizes sy, ..., s;.

. off-line algorithms have no constraints beyond the intrinsic sum constraints; an

off-line algorithm simply maps the entire list L into a packing P(L). All items
are known in advance, so the ordering of L plays no role.
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. bounded-space algorithms decide where an item is to be packed based only

on the current contents of at most a finite number k of bins, where k is a
parameter of the algorithm. A more precise definition and further discussion of
these algorithms appear later.

. linear-time algorithms have O(n) running time. More precisely, all such algo-

rithms take constant time to pack each item.

The three characterizations above are orthogonal. But the literature suggests
that the following convention allows to use one term in classifying algorithms
most of the time: bounded space implies linear time and linear time implies on-
line. Exceptions will be noted explicitly: it will be seen below (under repack)
how off-line algorithms can be linear time.

. open-end refers to certain cover approximation algorithms. An open bin B, that

is, one for which ¢(B;) < s(B;) and further packing is allowed, must be closed
just as soon as ¢(B;) > s(B;). (The item causing the “overflow” is left in the
bin.)

. conservative algorithms are those required to pack the current item into an open

bin with sufficient space, whenever such a bin exists; in particular, it cannot
choose to open a new bin. Scheduling algorithms satisfying a similar constraint
are sometimes called work conserving.

. repack refers to packing problems which allow the repacking (possibly limited

in some way) of items, that is, moving an item, say s;, from one bin to another.

. dynamic packing introduces the time dimension; an instance L of this problem

consists of a sequence of triples (s;, b;,d;) with b; and d; denoting arrival and
departure times, respectively. Under a packing algorithm A, A(L,t) denotes the
number of bins occupied at time 7, that is, the number of bins occupied by those
items a; for which b; <t < d;.

2.3.3 Results
Almost all results fall into the broad classes mentioned in Sect. 2.1.

1.

2.

R%° is the asymptotic worst-case ratio, with algorithm A specified when appro-
priate. When only a bound is proved, the word bound is appended.

R, is the absolute worst-case ratio. When only a bound is proved, the word
bound is appended.

. Where possible, complexity of the problem will be given in the standard notation

of problem complexity. Approximation schemes are classified as complexity
results and have entries like PTAS and FPTAS as noted earlier.

. Complexity of the algorithm may also be a result; it refers to running-time

complexity and will be signaled by the entry running time.
A paper classified as a worst-case analysis may also have complexity results (but

not conversely, unless both types of results figure prominently in the paper, in which
case both classifications will be given).

2.3.4 Parameters
These typically correspond to generalizations whereby limitations can be placed on
the problem instance, or further properties of the algorithm classification. In some
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cases, problems may be simplified by certain limitations, such as a specific upper

limit of two to the number of items per bin.

1. {B;} means that there can be more than one bin size and an unlimited supply of
each size.

2. stretch refers to certain asymptotic bounds which compare the number of bins
of capacity C needed to pack L by algorithm A to the number of unit-capacity
bins needed by an optimal packing.

3. mutex stands for mutual exclusion and introduces constraints, where needed, in
the form of a sequence of pairs (s;,s;), i # j, meaning that s; and s; cannot be
put in the same bin.

4. card(B) < k gives a bound on the number of items that can be packed in
a bin.

5.s; < aors; > « denotes bounds on item sizes, the former being far more
common in the literature. In some cases, « is specialized to a discrete parameter
1/k, k an integer. The problems with item-size restrictions are called parametric
cases in the literature.

6. restricted s; refers to simplified problems where the number of different item
sizes is finite.

7. discrete calls for discrete sets of item sizes, in particular, item sizes that, for
a given integer r, are all multiples of 1/r with C = 1. Equivalently, the bin
size could be taken as r and item sizes restricted to the set {1,..., j} for some
j € {1,...,r}. While this may not be a significant practical constraint, it will
affect the difficulty of the analysis and may create significant changes in the
results.

8. controllable means that one has the possibility not to pack an item as is, but
to first take some decision about it, such as rejecting it or splitting it into
parts.

3 On-Line Algorithms

Recall that a bin packing algorithm is called on-line if it packs each element
as soon as it is inspected, without any knowledge of the elements not yet en-
countered (either the number of them or their sizes). This review starts with
results for some classical algorithms and then generalizes to the Any-Fit and
the Almost Any-Fit classes of on-line algorithms. The subclass of bounded-space
on-line algorithms will also be considered: an algorithm is bounded space if
the number of open bins at any time in the packing process is bounded by a
constant. (The practical significance of this condition is clear; e.g., one may have
to load trucks at a depot where only a limited number of trucks can be at the
loading dock). This section will be concluded by a detailed discussion of lower
bounds on the APRs of certain classes of on-line algorithms, but before doing
so, relevant variations of old algorithms and the current best-in-class algorithms
will be presented. Anomalous behavior occurring in on-line algorithms is discussed
in Sect.4.4.
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3.1 Classical Algorithms

In describing an on-line algorithm, it will occasionally be convenient, just before a
decision point, to refer to the next item to be packed as the current item; right after
Apacksa;, i < n,a;4+| becomes the current item. A simple approach is to pack the
bins one at a time according to
Next-Fit (NF): After packing the first item, NF packs each successive item in the bin
containing the last item to be packed, if it fits in that bin; if it does not fit, NF closes
that bin and packs the current item in an empty bin.

The time complexity of NF is clearly O(n). Note that only one bin is ever open
under NF, so it is bounded space. This advantage is compensated by a relatively
poor APR, however.

Theorem 1 (Johnson et al. [129]) One has

if 1

1
2
(I-a)™ if 0

IA

o

IA

RRk(@) =

A

a<i
Fisher [86] discovered an interesting property that NF does not share with other
classical approximation algorithms. He proved that NF packs any list and its reverse
into the same number of bins. The conspicuous disadvantage of NF is that it closes
bins that could be used for packing later items. An immediate improvement would
seem to be never to close bins. But then the next question is: if an item can be put
into more than one open bin, which bin should be selected? One possible rule drawn
from scheduling theory (where it is known as the greedy or largest processing time
rule) is the following

Worst-Fit (WF): If there is no open bin in which the current item fits, then WF
packs the item in an empty bin. Otherwise, WF packs the current item into an open
bin of smallest content in which it fits; if there is more than one such bin, WF
chooses the lowest indexed one.

Although one might expect WF to behave better than NF, it does not.

Theorem 2 (Johnson [127]) Forall « € (0, 1]
Ryp(0) = RR(@).

To achieve smaller APRs, there are many better rules for choosing from among the
open bins. One that quickly comes to mind is
First-Fit (FF): FF packs the current item in the lowest indexed nonempty bin in
which it fits, assuming there is such a bin. If no such bin exists, FF packs the current
item in an empty bin. FF is neither linear time nor bounded space.

A natural complement to WF packs each item into a bin that minimizes the space
leftover.
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Best-Fit (BF): If there is no open bin in which the current item fits, then BF packs
the item in an empty bin. Otherwise, BF packs the current item into an open bin of
largest content in which it fits; if there is more than one, such bin BF chooses the
lowest indexed one.

By adopting appropriate data structures for representing packings, it is easy to
verify that the time complexity of these algorithms is O(nlogn). The analysis of
the worst-case behavior of the packings they produce is far more complicated. The
basic idea of the upper bound proofs is the weighting function technique, which
has played a fundamental role in bin packing theory. So, before proceeding with
other algorithms, it is convenient to describe this technique, which was introduced in
[103, 129] and subsequently applied in many other papers (see, e.g.,
[13,92,127,143]).

3.2 Weighting Functions

To bound the asymptotic worst-case behavior of an algorithm A, one can try to find
a function Wy : (0, 1] — R with the properties: (i) There exists a constant K > 0
such that for any list L
> Wala) = A(L) - K (1)
a€L
and (ii) there exists a constant K* such that for any set B of items summing to no
more than 1
> Wala) < K*. )
a€B
The value Wy(a) is the weight of item a under A’s weighting function W . Note
that (1) requires that, for large packings (large A(L)), the average total weight of
the items in a bin must satisfy a lower bound close to 1 for all lists L. On the other
hand, (2) says that the total weight in any bin of any packing is at most K*, so for
an optimal packing

OPT(L)
Y Wa@= Y Y Wala) < K*OPT(L). 3)
a€Ll j=1 a€B;

Together, (1) and (3) obviously imply the bound A(L) < K*OPT(L) + K, and
hence RS < K*. Note that the technique above is only representative; it is easy
to find weaker conditions on the weighting function which will produce the same
upper bound for the APR.

The proof of the NF upper bound is not appreciably simplified by a weighting
function argument, but it does offer a simple example of such arguments. Consider
the case o = 1 and define Wyg(a) = 2s(a) for all a, where s(a) denotes the size of
item a. An observation is needed about NF when NF(L) > 1: Since the first item
of Bj i didnotfitin B;, 1 < j < NF(L), the sum of the item sizes in B; U B, 1
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exceeds 1, and hence the sum of the weights of the items in B; U B; 1| exceeds 2.
Then

NE(L) [NF(L)/2]
Z Z Wie(a) = Z Z Wii(a)
j=1 aEBj j=1 aesz,IUsz

> 2|NF(L)/2] = NF(L) — 1,

so (1) holds with K = 1. The inequality (2) with K* = 2 is immediate from the
definition of Wy, so RR} < 2, as desired.

There is no systematic way to find appropriate weighting functions, and the
approach can be difficult to work out. For example, consider the proof of the
following result.

Theorem 3 (Johnson et al. [129])

17 . 1
0 lf§<a<1

RE =RL ="
TUUR Tl L i 0<as<

The proof of the % upper bound consists of verifying that the following weighting
function suffices

6 : 1
= < < =
=X if 0_x_6
gx—ll—o if %<x§%

W(x) =

) Sx+ L if l<x<i
5 10 3 =2
6 2 e 1
6 2 1 <
X + 2 if 2<)c_1

and it requires a substantial effort. (The argument encompasses several pages of case
analysis.) Yet, despite a few hints that emerge in this effort, a clear understanding of
how this function was obtained in the first place requires still more effort.

Theorem 3 for o < % can be proved without weighting functions (see [129]),

but the reader may find it instructive to prove the 1 + Lé]‘l upper bound with the
weighting function

r+1

1
Wer(a) = s(a), a=—,r>2.
r

Sequences of specific examples establish lower bounds for R . In particular,
one seeks a sequence of lists L), L(u,). . .. satisfying L,y € Vo (k = 1,2,...),
limy —s00 OPT(L(n;)) = 00, and for some constant K,

1 A(L(”k)) _
im —— 7 —
k—00 OPT(L(,lk))

K.
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Then R > K., and if K is equal to K* of the upper bound analysis, one has the
APR for the algorithm considered. Finding worst-case examples can be anywhere
from quite easy to quite hard. For example, the reader would have little trouble with
NF but would probably find FF to be quite challenging.

3.3 Any-Fit and Almost Any-Fit Algorithms

The algorithms described so far belong to a much larger class of on-line heuristics
satisfying similar worst-case properties. It is clear that FF, WF, and BF satisfy the
following condition:
Any-Fit constraint: If By, ..., B; are the current nonempty bins, then the current
item will not be packed into B; 1 unless it does not fit in any of the bins By, ..., B;.
The class of on-line heuristics satisfying the Any-Fit constraint will be denoted
by AF. The following result shows that FF and WF are best and worst algorithms
in AF, in the APR sense.

Theorem 4 (Johnson [127]) For every algorithm A € AF and for every o € (0, 1]
RiE (@) = RY (@) = R§p(a).

By a slight tightening of the Any-Fit constraint, one can eliminate the high-APR
algorithms like WF and define a class of heuristics all having the same APR.
Almost Any-Fit constraint: If By,..., B; are the current nonempty bins, and
By (k < J) is the unique bin with the smallest content, then the current item will
not be packed into By unless it does not fit in any of the bins to the left of By.

Clearly, WF does not satisfy this condition, but it is easy to verify that both FF
and BF do. The class of on-line algorithms satisfying both constraints above will be
denoted by AAF.

Theorem 5 (Johnson [127]) R (o) = RF (@) for every A in AAF.

Almost Worst-Fit (AWF) is a modification of WF whereby the current item is always
placed in a bin having the second lowest content, if such a bin exists and the current
item fits in it; the current item is packed in a bin with smallest content only if it
fits nowhere else. Interestingly, though it seems to differ little from WF, AWF has a
substantially better APR, since it is in AAF and hence RS p(0) = RER(a) = %.

34 Bounded-Space Algorithms

An on-line bin packing algorithm uses k-bounded space if, for each item, the choice
of where to pack it is restricted to a set of at most k open bins. One obtains bounded-
space counterparts of the algorithms of the previous section by specifying a suitable
policy for closing bins.
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As previously observed, NF uses only 1-bounded space; the only algorithm to
use less is the trivial algorithm that puts each item in a separate bin. To improve on
the APR of NF, yet stay with bounded-space algorithms, Johnson [126] proposed an
algorithm that packs items according to the First-Fit rule, but considers as candidates
only the k most recently opened bins; when a new bin has to be opened and there are
already k open bins, then the lowest indexed open bin is closed. It can be expected
that the APR of the resulting algorithm, which is known as Next-k-Fit (NFy), tends
to % as k increases. Finding the exact bound was not an easy task, although Johnson
did give a narrow range for the APR. Later, Csirik and Imreh [58] constructed the
worst-case sequences, and then Mao was able to prove the exact bound:

Theorem 6 (Mao [153]) Foranyk > 2, Rf\’,%k = % + 10(,3_1).

In general, a bounded-space algorithm is defined by specifying the packing and
closing rules. An interesting class of such rules is based on FF and BF as follows:

— Packing rules: The elements are packed following either the First-Fit rule or the

Best-Fit rule.

— Closing rules: The next bin to close is either the lowest indexed one or one of
largest content.

The algorithm that uses packing rule X, closing rule Y, and k-bounded space
is denoted by AX Yy, where X = F or B for FF or BF and Y = F or B for the
lowest indexed (First) open bin or the largest-content (Best) open bin. With this
terminology, NF, can also be classified as AFF;. Note that, independently of the
chosen rules, if k = 1, then one always gets NF.

Algorithm ABF} was first analyzed by Mao, who called it Best-k-Fit. He proved
that for any fixed k, this algorithm is slightly better than NF;.

Theorem 7 (Mao [152]) Foranyk =2, R{gg = }_g + ﬁ'

The tight asymptotic bound for AFB; was found by Zhang [184] (see also the paper
version [187]).

Theorem 8 (Zhang [187]) Forany k > 2, R%Bk

= R§,-
Finally, consider the algorithm ABB; whose asymptotic behavior is, rather surpris-
ingly, independent of k¥ > 2 and equal to that of FF and BFE.

Theorem 9 (Csirik and Johnson [60]) Ifk > 2 then RX%Bk = ¥

Since all of the above algorithms fulfill the Any-Fit constraint with respect to
the open bins, the overall bound R} > % is to be expected from Theorem 4.
A better on-line algorithm can only be obtained without the Any-Fit constraint. In
the remaining part of this section, it is shown how the fruitful idea of reservation

techniques (introduced by Yao [180] for unbounded-space algorithms and discussed
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in the next section) led to on-line algorithms which are neither in class AF nor in
AAF.

Yao’s idea appeared in the work of Lee and Lee [143] who developed the
Harmonic-Fit algorithm, which will be denoted by HF; since, for the case o = 1, it
uses at most k open bins. The algorithm divides the interval (0, 1] into subintervals
I; = (jlﬁ, }] (1 < j <k—=1 and It = (0,7]. An element is called an
I j-element if its size belongs to interval /;. Similarly, there are k different bin
types: an /;-bin is reserved for /;-elements only. An /;-element is always packed
into an /;-bin following the Next-Fit rule, and so at most, k bins are open at the
same time. Galambos [92] extended the idea to general . Observe that, by selecting
o€ (hlL1 , %] the number, say M, of bin types exceeds the space bound k by r — 1;
this is because /;-bins for j < r are never opened. Instead of notation HF; with
k the space bound, the literature often uses HFy; with M = k 4+ r — 1 being the
number of bin types.

The general APR can be formulated as follows. (See the end of Sect. 2 for the
definitions of the quantities #,(r) and /oo (r).)

Theorem 10 (Lee and Lee [143], Galambos [92]) Suppose that L € V, with « €

(r_}_l , %] for some positive integer r and choose any sequence kg, s > 1, such that

ty(r) < ks + 1 <tep1(r). Then

al 1 ke +r—1
: o0 — : —
lim REE, () = Jim 1+ ]E=2 oo + = hoo(r).

)= 1t () = DM = 1)

The results in [92, 143] gave tight bounds only for the cases k = ¢;(r) —r + 1 and

k =t;1(r) —r forintegers j > 1. Also, considering only the @ = 1 case, one can

see that, to obtain an APR better than %, at least seven open bins are needed. These

observations raised two further questions:

— For the case o = 1, is there an on-line, bounded-space algorithm that uses fewer
than 7 bins and has an APR better than %?

— What are tight bounds on HF; for specific k?

An affirmative answer to the first question was given by Woeginger [175]. Using

a more sophisticated interval structure, one based on the Golomb sequences, the

performance of his Simplified Harmonic (SHy) algorithm improved on the % bound

with six open bins; precisely, Rgy ~ 1.69444. Moreover, Woeginger proved the

following deeper, more general result.

Theorem 11 (Woeginger [175]) To achieve the worst-case performance ratio of
heuristic HFy, with k open bins and a = 1, heuristic SHy, only needs O(loglogk)
open bins.

The second question was investigated by Csirik and Johnson [60] (see also [59]) and
van Vliet [172, 173]. They gave tight bounds for the case « = 1 with k = 4 and 5.
Tight bounds for further k remain open problems.
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Table 1 APR values for bounded-space algorithms, rounded to five decimals. The values in
column HF < are upper bounds and are tight if starred. Note that 42 = #,(1) — 1

k NFx ABF; ABBj HF, < SHy best

2 2.00000 1.85000 1.70000 2.00000* 2.00000 1.70000
3 1.85000 1.80000 1.70000 1.75000* 1.75000 1.70000
4 1.80000 1.77500 1.70000 1.71429* 1.72222 1.70000
5 1.77500 1.76000 1.70000 1.70000* 1.70000 1.70000
6 1.76000 1.75000 1.70000 1.70000* 1.69444 1.69444
7 1.75000 1.74286 1.70000 1.69444* 1.69388 1.69388
8 1.74286 1.73750 1.70000 1.69388 1.69106 1.69106
9 1.73750 1.73333 1.70000 1.69345 1.69104 1.69104
10 1.73333 1.73000 1.70000 1.69312 1.69104 1.69104
42 1.70732 1.70714 1.70000 1.69106™ 1.69103 1.69103
+00 1.70000 1.70000 1.70000 1.69103 1.69103 1.69103

Similarly, the general case has not been discussed exhaustively, and some
questions raised by Woeginger [175] are still open:

— What is the smallest k such that there exists an on-line heuristic using k-bounded
space and having an APR strictly less than %?

— What is the best possible APR for any on-line heuristic using 2-bounded space?
(ABB; achieves a worst-case ratio of %.)

— By considering only algorithms that pack the items by the Next-Fit rule according
to some fixed partition of (0, 1] into k subintervals, which partition gives the best
APR ? (It is known that for k < 2, the best possible APR is 2 (see Csirik and
Imreh [58]), but for £ > 3, no tight bound is known.)

Tables 1 and 2 show the best results known for bounded-space algorithms.
Note that the worst-case ratios of all algorithms in Table 1 are never smaller than
hoo(1) =~ 1.69103. As pointed out by Lee and Lee [143] for the « = 1 case,
bounded-space algorithms cannot do better. The result holds for general « too, as
shown by Galambos, that is,

Theorem 12 (Lee and Lee [143], Galambos [92]) Every bounded-space on-line
bin packing algorithm A satisfies RS (o) > hoo(r) for all a, rlﬁ <a < %

None of the known bounded-space algorithms achieves the lower bound using a
finite number of open bins. It will be later shown (see Sect. 3.7) that the bound can
be achieved with three open bins if repacking among the open bins is allowed, but
without such a relaxation, the question remains open.

3.5 Variations and the Best-in-Class

Chronologically, Yao [180] was the first to break through the /(1) barrier with
his Refined First-Fit (RFF) algorithm. RFF classifies items into types 1, 2, 3, or 4
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Table 2 APR values for HF ( ’l) Starred values are tight

k r=1 r=2 r=3 r=4 r=>5 r==6
2 2.00000* 1.50000* 1.33333* 1.25000* 1.20000* 1.18888*
3 1.75000* 1.44444* 1.31250* 1.24000* 1.19444* 1.16326*
4 1.71429* 1.43750 1.31000 1.23888 1.19387 1.16294
5 1.70000* 1.43333 1.30833 1.23809 1.19345 1.16269
6 1.70000* 1.43055 1.30714 1.23750 1.19312 1.16250
7 1.69444* 1.42857 1.30625 1.23703 1.19285 1.16233
8 1.69388 1.42708 1.30555 1.23666 1.19264 1.16220
9 1.69345 1.42592 1.30500 1.23636 1.19246 1.16208
10 1.69312 1.42499 1.30454 1.23611 1.19230 1.16198
+o00 1.69103 1.42307 1.30238 1.23441 1.19102 1.16102

accordingly as their sizes are in the respective intervals (0, %] (%, %] (%, %] and
(%, 1]. RFF packs four sequences of bins, one for each type. With one exception,
RFF packs type-i items into the sequence of type-i bins using First-Fit. The
exception is that every sixth type-2 item (with a size in (%, %]) is thrown in with the
type-4 items, that is, packed by First-Fit into the sequence of type-4 bins. It is easily
verified that RFF uses unbounded space and has a time complexity O(nlogn). Yao
proved that RR%y = % = 1.666. ... Yao did not use the usual weighting function
technique but based his proof on enumeration of the elements in each class. Also,
the APR remains unchanged if the special treatment given every sixth type-2 item
is instead given every m-th type-2 item, where m is taken to be one of 7, 8, or 9.

It was immediately clear that this reservation technique was a promising
approach, a fact supported by the Harmonic-Fit algorithm discussed in the previous
section. The main disadvantage of the latter algorithm is that each /;-element, even
with a size slightly over % is packed alone into a bin. An immediate improvement
is to try to add other items to these bins. In their algorithm Refined Harmonic-Fit
(RHF), Lee and Lee [142, 143] modified HF,y by subdividing intervals /; and I,
into two subintervals:

I = LisUlp,

L, = 5L,UlL,
with Is = (3. 32], Loy = (3. 3], Iis = (3. 5¢), and Iy, = (32. 1]. This brought
the number of bin types to M = 22. The packing strategy for /;-elements 3 < j <
M — 2 = 20), I, p-elements, and I, 5-elements is the same as in Harmonic-Fit, but
the I, s-elements and the /, ;-elements are allowed to share the same bins in certain
situations. The details are omitted. Note however that the time complexity of RHF
is O(n), but the algorithm is no longer bounded space. Its APR is given by

Theorem 13 (Lee and Lee [143]) R < % ~ 1.63596.

It is not known whether this bound is tight.
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In 1989, several improved algorithms were presented by Ramanan et al. [159].
The first one, called Modified Harmonic-Fit (MHF), applies Yao’s idea in a more
sophisticated way. Instead of choosing % as the point dividing (%, 1], the problem
is handled in a more general fashion. Let the number of bin types satisfy M > 5,
and consider the subdivision of (0, 1]:

M=2
o1=Jr
j=1
with [y = 113 U I, and I, = I, U I, as earlier, but now

Ly =(G.1=y] Ly = (3.Y]
]l.b = (1 - 1] IZ,b = (y’ %]
for some y satisfying % <y < % Initially, the set of empty bins is divided into M
infinite classes, each associated with a subinterval. All /; ;-bins, /5 -bins, /5 ;-bins,
and /;-bins 3 < j < M — 2) are only used to pack elements from the associated
interval (as in Harmonic-Fit). /| ;-bins on the other hand can contain /; ;-elements
and some of the /5 -elements and /;-elements (j € {3,6,7,..., M — 2}). The
algorithm also includes more complicated rules for packing and for deciding when
items with sizes in different intervals can share the same bin. For this algorithm with
M = 40, the following bounds hold.

Theorem 14 (Ramanan et al. [159])

16156146<3+1+ 1 1 < R <3+1+ 1 = 1.615615
' 2 9 222 987012 — MHFE "o T g T ooy

The above algorithm was further generalized by Ramanan et al. [159] who
introduced a sequence of classes of on-line linear-time algorithms, called C™; an
algorithm A belongs to C™, for a given & > 1, if it divides (0, 1] into disjoint
subintervals including

Il,b = (1 _y17 1]7 ]2.b = (y}’h%]a

Lj=0=yj+1,1=y;l, L= ) yn—jnl, 1=j=h,
and

Ly = (0.4], L= .3 0<Ai<jy

where% =Y <V << Yp < Vg1 = % and [, = 0if A = % Elements are
classified, as usual, according to the intervals in which their sizes fall.

Note that algorithm MHF belongs to C ). Ramanan et al. [159] developed an
algorithm (Modified Harmonic-2, MH2), which is in C @ and proved that R{5,, <
1.612.... The algorithm is quite elaborate and beyond the scope of this survey.
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The authors discussed further improvements aimed at reducing the APR to 1.59.
They also proved the lower bound result.

Theorem 15 (Ramanan et al. [159]) There is no on-line algorithm A in C" such
that RY < 3 + 5 = 1.58333 ...

The HARMONIC+1 algorithm of Richey [160] subdivides intervals (3, 1] and (1,
very finely (using 76 classes of subintervals!) in order to allow a precise item pairing
in these two intervals. It also allows items of size (%, %] to be mixed with larger

items of various sizes and not just with those of size at least % Seiden [163] showed
that such result was flawed and gave a new algorithm, HARMONIC++, whose
asymptotic performance ratio is at most 1.58889, which is the current best APR
for on-line bin packing.

3.6 APR Lower Bounds

In previous sections, some results concerning lower bounds on the APR were
mentioned, but the fundamental problem was not considered yet: what is the best
an on-line algorithm can do in the asymptotic worst case? In this section, lower
bound results are discussed in chronological order.

Most of the existing lower bounds come from the same idea. To obtain a good
packing, it seems advisable to first pack the large elements so that either a bin is
“full enough” or its empty space can be reduced by subsequent small elements.
Therefore, in order to force bad behavior on a heuristic algorithm A, one should
challenge it with a list in which small items come first. If A adopts a policy that
packs these small items tightly, then it will not be able to find a good packing for the
large items which may come later. If, instead, A leaves space for large items while
packing the small ones, then the expected large items might not appear in the list. In
both cases, the resulting packing will be poor.

To give a more precise description, consider a simple example involving two
lists L; and L,, each containing n identical items. The size of each element in L
is % — ¢&, and the size of each element in L, is % + &. The asymptotic behavior
of an arbitrary approximation algorithm A will be investigated on two lists: L
alone and the concatenated list L1 L;. It is easy to see that OPT(L;) = 5 and
OPT(LiL,) = n. Consider the behavior of this algorithm on L;: it will pack
some elements alone into bins (say x of them), and it will match up the remaining
n — x. Hence A(L,) = # For the concatenated list L L,, when processing the
elements of L,, the best that A can do is to add one element of L, to each of x bins
containing a single element of L; and to pack alone the remaining n — x elements.

Therefore, A(L;L,) = 3”T_x Since n may be arbitrarily large,

R > max

A(Ll) A(L]Lz) }_ {n+x 3}1—)6}

OPT(L,)’ OPT(LL,) n  2n



Bin Packing Approximation Algorithms: Survey and Classification 477

Table 3 Lower bounds and RS® for various algorithms

r Lower bound R{? R R3P Best known
1 1.54037 1.69103 1.70000 2.00000 1.58889
2 1.38966 1.42307 1.50000 2.00000 1.42307
3 1.29144 1.30238 1.33333 1.50000 1.30238
4 1.22986 1.23441 1.25000 1.33333 1.23441
5 1.18881 1.19102 1.20000 1.25000 1.19102
6 1.15982 1.16102 1.16667 1.20000 1.16102

for which the minimum is attained when x = %, implying a lower bound of % for
the APR of any on-line algorithm A.

The above idea can be easily generalized by taking a carefully chosen series of
lists L1, ..., L; and evaluating the performance of a heuristic on the concatenated
lists Ly...L;, (1 < j < k). The first step along these lines was made by Yao
[180]. He proved a lower bound of % based on three lists of equal-size elements,
the sizes being % + &, % + &, and é — 2¢. Using Sylvester’s sequences, Brown [32]
and Liang [147] independently gave a further improvement to 1.53634577 . ... (The
largest sizes in their sequences were as follows: % + &, % + e, % + ¢, 4—13 + &, and
ﬁ + &.) Galambos [92] used the Golomb sequences to extend the idea to general
a. The proof in [92] was considerably simplified by Galambos and Frenk [93]. van
Vliet gave an exhaustive analysis of the lower bound constructions with a linear
programming technique applied to all &« and gave the following lower bound:

Theorem 16 (van Vliet [171]) For any on-line algorithm A, R > 1.54015. ..

The current best-in-class, Rjo > 1.54037, was given by Balogh et al. [15].
Table 3 gives a comparison for several values of o« = % between the best lower
bounds and the corresponding upper bounds for various algorithms. It is interesting
to note that the gap between the lower and upper bounds becomes rather small for
r>2.

Faigle, Kern, and Turan [83] proved that if there are only two item sizes, then no
on-line algorithm can be better that 4/3.

Chandra [38] has examined the effect on lower bounds when randomization
is allowed in the construction of on-line algorithms, that is, when coin flips are
allowed in determining where to pack items. The performance ratio for randomized
algorithm A is now E[A(L)]/OPT(L), where E[A(L)] is the expected number of
bins needed by A to pack the items in L. Chandra has shown that there are lists such
that this ratio exceeds 1.536 for all randomized on-line algorithms, and so from this
limited standpoint, results suggest that randomization is not a valuable tool in the
design of on-line algorithms.
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3.7 Semi-on-line Algorithms

The APR of on-line algorithms cannot break through the 1.540... barrier (see
Sect. 3.6). For almost 20 years, only the pure on-line and off-line algorithms were
analyzed, and no attention was paid to algorithms lying between these two classes.
In a more general setting, one can consider giving the algorithm more information
about the list and/or more freedom with respect to the pure on-line case. This section
deals with semi-on-line (SOL) algorithms that can

— Repack elements

— Look ahead to later elements before assigning the current one

— Assume some preordering of the elements

First consider the case where repacking is allowed. SOL algorithms allowing
only a restricted number of elements to be repacked at each step are called
c-repacking SOL algorithms. It was seen in Sect. 3.4 that no known on-line bounded-
space algorithm reaches the bound /1o, (1) using finitely many open bins. It will be
shown that this is possible with SOL algorithms.

In 1985, Galambos [91] made a first step in this direction. His Buffered Next-
Fit (BNF) algorithm uses two open bins, say B and B;. The arriving elements are
initially packed into Bj, until the first element arrives for which B; does not have
enough space. This element and those currently packed in B; are then reordered by
decreasing size and repacked in B; and B, following the Next-Fit rule. B is now
closed, B; is renamed B, and a new bin B, is opened. Using a weighting function
approach, it was proved that /15, (1) < RgRp < %.

Galambos and Woeginger [95] generalized the above idea, adopting a better
weighting function. Let w(B) be the sum of the weights associated with the items
currently packed in bin B. Their Repacking algorithm (REP3) uses three open bins.
When a new item a; arrives, the following steps are performed: (i) @; is packed into
an empty bin; (ii) all the elements in the three open bins, sorted by nonincreasing
size, are repacked by the FF strategy, with the result that either one bin becomes
empty or at least one bin B has w(B) > 1; and (iii) all bins B with w(B) > 1 are
closed and replaced by new empty bins. In [95], it was proved that this repacking
in fact helps, since Rggp, = hoo(1). It is not known whether the same result can be
obtained with two bins.

Gambosi et al. [99] (see also [97] and [98]) were the first to beat the 1.540 on-
line bound via repacking. They gave two algorithms. Both of them use an unusual
step to repack the elements: the small elements are grouped into a “bundle” of O(n)
elements, which can be repacked in a single step.

In the first algorithm, A, the interval (0, 1] is divided into four subintervals,
and the elements are packed into bins in a Harmonic-like way. As each new
item is packed, groups of small elements can be repacked — in a bundle —
so as to fill up gaps in bins that are not full enough. By using appropriate
data structures, this repacking is performed in constant time. The algorithm
has linear time and space complexity, and it has an APR, RZ‘}’ < % In the
second algorithm, A,, the unit interval is divided into six subintervals, and, as
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each new item is encountered, the elements are repacked more carefully, in
O(logn) time, by means of a pairing technique analogous to that introduced
by Martel (see Sect. 4.2). The time complexity of A, is O(nlogn), and its
APRis R < 1.

Ivkovic and Lloyd [122] gave a further improvement on SOL algorithms
achieving a % worst-case ratio. Their algorithm is much more complicated than
the previous ones, as it was designed for handling the dynamic packing case. The
dynamic bin packing problem will be considered in Sect. 7.1 in detail, but here it
is enough to know that in case of dynamic packing, deletions of some elements
are allowed in each step and A(L) is considered as the maximum number of
occupied bins during the packing. Ivkovic and Lloyd proved a % lower bound for the
c-repacking SOL algorithms. This result was improved by Balogh et al. [14].

Theorem 17 (Balogh et al. [14]) For any c-repacking SOL algorithm A, the APR
satisfies RY > 1.3871 ...

Ivkovic and Lloyd [121] also presented approximation schemes for their dynamic,
SOL model, applying the techniques of Fernandez de la Vega and Lueker and those
of Karmarkar and Karp cited in Sect.4.3.

Consider now the case in which the algorithm is allowed to look ahead, in the
sense that, when an element arrives, it is not necessary to pack it immediately; one
is allowed to collect further elements whose sizes can effect the packing decision.
In order to avoid relaxation to off-line algorithms, consider the case of bounded
lookahead. Grove [111] proposed a k-bounded algorithm which had, in addition, a
capacity (or warehouse) constraint W. The algorithm can delay the packing of item
a; until it has collected all subsequent elements a; 41, ..., a; such that Zf:i a, <
W. For any fixed k and W, the hoo(1) lower bound (see Theorem 12) remains
valid, but Grove’s Revised Warehouse (RW) algorithm reaches the bound if W is
sufficiently large. In his proof, Grove uses a weighting function argument.

Another subclass of the lookahead SOL problems arises if the input list is divided
into a number of batches. If an algorithm works on a batched list, then it has to pack
each batch as an off-line list (i.e., lookahead is only possible within the current
batch). However, while packing elements of the current batch, the items of earlier
batches cannot be moved. If the number of batches is bounded by m, the problem
is called m-batched bin packing (BBP) problem. Gutin et al. [112] were the first to
study the BBP problem: they investigated in depth the 2-BBP problem and proved
a lower bound of 1.3871 ... for this case.

The rarely considered class of algorithms in which it is assumed that the input
list is presorted is finally considered. Because of the lower bound constructions, it
is easy to see that, if the list is presorted by increasing item size, the on-line lower
bounds remain valid. Moreover, the Johnson result holds: if the list is presorted
by decreasing item size, then % < Ry < % for any algorithm A € AF (see
Theorem 21). This begged the broader question of lower bounds: how good can an
arbitrary algorithm be? Based on two different lists, a partial answer was given in
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the early 1980s by Csirik et al. [64]. They proved that if the list is presorted by
decreasing item size, then R} > % for all algorithms A. Although this approach
seemed to be very simple (the authors used only two different list types), no progress
was made until very recently Balogh et al. [15] gave an improved lower bound:

Theorem 18 (Balogh et al. [15]) If the list is presorted by decreasing item size,
then R} > %for all algorithms A.

4 Off-line Algorithms

An off-line algorithm has all items available for preprocessing, reordering, grouping,
etc. before packing. It has been seen that most of the classical on-line algorithms
achieve their worst-case ratio when the items are packed in increasing order of
size (see, e.g., FF and BF), or if small and large items are merged (see, e.g., NF).
Thus, one is led to expect improved behavior by a sorting of the items in decreasing
order of size. Note that the O(nlogn) sorting step makes the algorithm no longer
linear time.

The review starts with results for approaches that sort the items before executing
one of the on-line algorithms. Linear-time heuristics are then considered. The sec-
tion is concluded by approximation schemes and by a discussion of the anomalous
behavior that is exhibited by many bin packing algorithms, including both on-line
and off-line algorithms.

4.1 Algorithms with Presorting

When the sorted list is packed according to the Next-Fit rule, one obtains the Next-
Fit Decreasing (NFD) algorithm. This heuristic was investigated by Baker and
Coffman, who proved by a weighting function argument that its APR is slightly
better than that of FF and BF:

Theorem 19 (Baker and Coffman [13]) Ifa € (rjrl , %] (r = 1), then R () =
heo(r).

Packing the sorted list according to First-Fit or Best-Fit gives the algorithms First-
Fit Decreasing (FFD) and Best-Fit Decreasing (BFD), with much better asymptotic
worst-case performance.

Theorem 20 (Johnson et al. [129]) R, = R3S, = -
The original proof was based on the weighting function technique, but subsequent

proofs introduced dramatic changes; the giant case analysis made in 1973 by
Johnson [126] was considerably shortened by Baker [12] in 1985, and in 1991, Yue
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[183] presented the shortest proof known so far. In parallel, the additive constant
was also improved; Johnson had proved that FFD(L) < %OPT(L) + 4, but Baker
reduced the constant to 3, and Yue reduced it to 1. Then, in 1997, Li and Yue [146]
further reduced the constant to % and conjectured the tight value to be g. However,
in 2007, D6sa [68] closed the issue by proving that the tight value is g.

The behavior of BFD for general « is not known, but that of FFD has been
intensively investigated. Johnson et al. [129] analyzed several cases, showing that
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and conjecturing that, for any integer m > 4,
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Twenty years later, Csirik [57] proved that the above conjecture is valid only for m
even, and that, for m odd,
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In the same year, the complete analysis of FFD for arbitrary values of o < % was
published by Xu [178] (see also [179]), who showed that if m is even, then F,, is the

correct APR for any « in (mlrl , %], while for m odd, the interval has to be divided
into two parts, with
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where d,, ;= (m + 1)*/(m*® + 3m?> + m + 1).

Recall that, after a presorting stage, all of the above algorithms belong to the
Any-Fit class (see Sect.3.3). Johnson showed that, after a presort in increasing order,
Any-Fit algorithms do not perform well in the worst case; for example, their APRs
must be at least (1) when o« = 1. But presorting in decreasing order is much
more useful.

Theorem 21 (Johnson [126, 127]) Any algorithm A € AF operating on a list
presorted in decreasing-size order must have
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For a long time, the FFD bound was the smallest proved APR. Johnson [126] made
an interesting attempt to obtain a better APR. His Most-k-Fit (MFy,) algorithm takes
elements from both ends of the sorted list, packing bins one at a time. At any step,
after trying to place the largest unpacked element into the current bin, the algorithm
attempts to fill up the remaining space in the bin using the smallest k (or fewer)
as yet unpacked items. As soon as the available space becomes smaller than the
smallest unpacked element, the algorithm starts packing a new bin. The algorithm
has time complexity O(n*logn), so it is practical only for small k. Johnson
conjectured that limy—oo Ry, = %, but almost 20 years later, the conjecture
was contradicted by Friesen and Langston [90], who gave examples for which
RI(\)/IQF/( = %’ k z 2.

Yao [180] devised the first improvement to FFD. He presented a complicated
O(n'’logn) algorithm, called Refined First-Fit Decreasing (RFFD), with worst-
case ratio RR%pp < % — 1077, Following this result, further efforts were made to
develop better off-line algorithms. Garey and Johnson [102] proposed the Modified
First-Fit Decreasing (MFFD) algorithm. The main idea is to supplement FFD with
an attempt to improve that part of the packing containing bins with items of sizes
larger than % by trying to pack in these bins pairs of items (to be called S items) with
sizes in (%, %] The non-FFD decisions of MFFD occur only during the packing of S
items. At the time these items come up for packing, the bins currently containing a
single item larger than % are packed first, where possible, in decreasing-gap order as
follows. In packing the next such bin, MFFD first checks whether there are two still
unpacked S items that can fit into the bin; if not, MFFD finishes out the remaining
packing just like FFD. Otherwise, the smallest available S item is packed first in the
bin; the largest remaining available S item that fits with it is packed second. The
running time of MFFD is not appreciably larger than that for FFD, but Garey and
Johnson proved that

Theorem 22 (Garey and Johnson [102]) Ry = % = 1.18333....

Another modification of FFD was presented by Friesen and Langston [90]. Their
Best Two-Fit (B2F) algorithm starts by filling one bin at a time, greedily; when
no further element fits into the current bin, and the bin contains more than one
element, an attempt is made to replace the smallest one by two unpacked elements
with sizes at least é. When all the unpacked elements have sizes smaller than é, the
standard FFD algorithm is applied. Friesen and Langston proved that RS, = %,
which is worse than %. However, they further showed that a combined algorithm
(CFB), which runs both B2F and FFD and takes the better packing, has an
improved APR.

Theorem 23 (Friesen and Langston [90]) 1.16410...= ] < R®, < ¢ =12.
Concerning the absolute worst-case ratio, Johnson et al. [129] had already conjec-
tured that, if the number of bins in the optimal solution is more than 20, then the
absolute worst-case ratio of FF is no more than 1.7. The first results were given by
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Johnson et al. [129] and Simchi-Levi [169]. They showed that FF and BF have an
absolute performance bound not greater than 1.75 and that FFD and BFD have an
absolute performance ratio of 1.5. The latter is the best possible for the classical
bin packing problem, unless P = NP. Xie and Liu [177] improved the bound
for FF to 1.737. Zhang et al. [188] provided a linear-time bounded-space off-line
approximation algorithm with an absolute worst-case ratio of 1.5 and a linear-
time bounded-space on-line algorithm with an absolute worst-case ratio of 1.75.
Berghammer and Reuter [24] gave a different linear-time algorithm with an absolute
worst-case ratio of 1.5.

4.2 Linear Time, Randomization, and Other Approaches

The off-line algorithms analyzed so far have time complexity at least O(n logn). It
is also interesting to see what can be accomplished in linear time — in particular,
without sorting. The first such heuristic was constructed by Johnson [127]. His
Group-X-Fit Grouped (GXFG) algorithm depends on the choice of a set of
breakpoints X, defined by a sequence of real numbers 0 = xp < x; <--- < x, = L.
For a given X, the algorithm partitions the items, according to their size, into at
most p classes, and renumbers them in such a way that items of the same class are
consecutive and classes are ordered by decreasing maximum size. The bins are also
collected into p groups according to their actual gap, defined as the maximum x;
such that the current empty space in the bin is at least x ;. The items are packed using
the Best-Fit rule with respect to the actual gaps. The algorithm can be implemented
so as to require linear time and has the following APR.

Theorem 24 (Johnson [127]) Forallm > 1, if X contains m+_2 ﬁ, and n% then
R&pg(@) = 25 forall a < 1 such thatm = | L |.

For oo = 1, the above theorem gives Ry p; = %, a bound subsequently improved
by Martel. His algorithm, Hy, uses aset X = {%, %, %, %}, but it does not reorder the
items. It instead inserts them into heaps and uses a linear search for the median-size
item. The packing strategy makes use of an elaborate pairing technique.

Theorem 25 (Martel [154]) Rﬁj = %.

Later, Békési et al. [23] applied the Martel idea to a set X = % %, % % %
%, %} and improved the bound to %. Making experimental comparisons, they further
showed that this linear-time algorithm is faster than the less complicated FFD
rule even for small problem instances. They also mentioned that, by using more
breakpoints, one can further improve the above result, but the resulting algorithms
would be linear time with a constant term so large that they would not be useful in

practice.
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Table 4 Worst-case ratios of off-line algorithms. NA means “not analyzed”

Algorithm Time R°(1) R$°(2) R$°(3) R$°(4)
NFD O(n) 1.691... 1.424... 1.302... 1.234
FFD O(nlogn) 1.222... 1.183... 1.183... 1.15
BEFD O(nlogn) 1.222... 1.183... 1.183... 1.15
GXFD O(n) 1.5 1.333... 1.25 1.2
MFFD O(nlogn) 1.183... 1.183... 1.183... 1.15
H, O(n) 1.333... NA NA NA

H, ) 1.25 NA NA NA
B2F O(nlogn) 1.25 NA NA NA
CFB O(nlogn) 1.2 <1.183... <1.183... <1.15

Table 4 summarizes the tightest worst-case ratios of off-line algorithms (H;
denotes the algorithm of Békési and Galambos [22]).

As a final note on fast off-line algorithms, the reader is referred to the work
of Anderson et al. [4] for the implementation of approximation algorithms on
parallel architectures. They show that, with n/ log n processors in the EREW PRAM
model, a packing can be obtained in parallel in O(logn) time which has the same
asymptotic % bound as FFD.

Caprara and Pferschy [34] proposed a simple (although non-polynomial) al-
gorithm, discussed in Sect. 7.2, for which they proved an upper bound on the
worst-case ratio of 4/3 +1n4/3 = 1.62102. ...

4.3 Asymptotic Approximation Schemes

In 1980, Yao [180] raised an interesting question: does there exist an ¢ > 0 such
that every O(n)-time algorithm A must satisfy the lower bound R > 1 + ¢?
Fernandez de la Vega and Lueker [84] answered the question in the negative by
constructing an asymptotic linear approximation scheme for bin packing. In their
important paper, LP (linear programming) relaxations were first introduced as a
technique for devising bin packing approximation algorithms. (See Sect. 8.1 for
an integer programming formulation of the bin packing problem.) In this section,
their result is first discussed, and then some improvements proposed by Johnson
and by Karmarkar and Karp are introduced. Further discussion can be found
in [52,116].

The main idea in [84] is the following. Given an ¢, 0 < ¢ < 1, define &; so
that § < g < 88? Instead of packing the given list L, the algorithm packs a
concatenation of three lists L L, L3 determined as follows:

— L contains all the elements of L with sizes smaller than &;.
— Ljisalist of (m — 1)h dummy elements with “rounded” sizes, corresponding to

the (m — 1)h smallest elements of L \ Ly, wherem = [ %] and h = L%J
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The elements of L, have only m — 1 different sizes, and, for each size s, the list
has & elements; the sizes of the corresponding 4 elements in L\ L are no greater
than s.
— L3 contains the remaining elements of L \ L, that is, those not having a
corresponding rounded element in L,, hence |L3| < 2h — 1.
By construction, for each group of & elements of L, having the same size s, there
exists a distinct group of /2 elements of L \ L; having sizes at least s. It follows that
OPT(L,) < OPT(L \ Ly).
It is first proved that for a given ¢, one can construct, in linear time via an LP
relaxation, a packing for the elements of L, that requires no more than OPT(L \

L)+ % bins. The next step is to pack each element of L3 into a separate bin, so the
number of open bins at this point is bounded by

4 4 2 4
0PT(L\L1)+;+2h—1<0PT(L\L])+;+|L\L1|%50PT(L\L])(1+£)+;

(using the fact that OPT(L \ L1) > 5|L \ L))

Finally, the items of L; are added to the current packing, one bin at a time, using
the Next-Fit rule. If no new bin is opened in this phase, the resulting packing has
the desired performance. If at least one new bin is opened, this implies that all the
bins, except possibly the last one, are filled to at least (1 — &;), and hence the total
number of bins is bounded by

OPT(L 4
1—() +1<OPT(L)(1 + ) + 1 < OPT(L)(1 + &) + ~.
— €] &
Combining this with an analysis of the time to pack L,, Fernandez de la Vega
and Lueker proved the following result.

Theorem 26 (Fernandez de la Vega and Lueker [84]) For any ¢ > 0, there
exists a bin packing algorithm A with asymptotic worst-case ratio RY < 1 + ¢,
requiring time C, + Cnlog %, where C, depends only on ¢ and C is an absolute
constant.

Although the time complexity of the above approximation scheme is polynomial
in the number of elements, it is exponential in %

The first improvement was given by Johnson [128], who observed that, if ¢ is
allowed to grow suitably slowly with OPT(L), one can use the above approach to
construct a polynomial-time algorithm A such that A(L) < OPT(L) + o(OPT(L));
incorporating a scheme suggested by Karmarkar and Karp, he achieved A(L) <
OPT(L) + O(OPT(L)'~?), where § is a positive constant. Thus, as a corollary
to Theorem 26, there exists a polynomial-time approximation algorithm for bin
packing with an APR equal to 1.

Karmarkar and Karp [132] made further improvements and produced an asymp-
totic fully polynomial-time approximation scheme. They brought several new
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techniques into play. The ellipsoid method applied to an LP relaxation drove the
approach; a feasible packing was determined by an extension of the approach of
Fernandez de la Vega and Lueker. A function 7', estimated below, describes the
time complexity of the LP problem in terms of properties of the problem instance.
Let ¢(L) denote the total size of the items in L and recall that k denotes the number,
perhaps infinite, of possible item sizes. The main results are several different forms
of asymptotic optimality and their associated running-time bounds. Recalling that
the absolute error for an algorithm A is simply A(L) — OPT(L), one has the
following.

Theorem 27 (Karmarkar and Karp [132]) For each row in the table below, there
is an approximation algorithm with the given running-time and absolute-error
bounds; the approximation parameters in the last two rows satisfy o € [0, 1] and
e>0:

Running-time bound = Absolute-error bound

O(T,,(c(L))) O(log” OPT(L))
O(T,, (k)) O(log’ k)

O(T, (c(L)' ™) O(OPT(L)*)

o(T, (e72) eOPT(L) + 0(¢7?)

where
T,(v) = 0(4logvlog®n + v*nlogvlogn).

The bound on 7, (v) is not especially attractive, so this approach as it stands is
not likely to be very practical, although the authors mention that a mixture of their
technique with a column generation method [105, 106] may be very efficient in
practice.

Taking a complementary approach, Hochbaum and Shmoys [118] (see also
[117]) define an e-dual approximation algorithm for bin packing, denoted in the
following by M,. For a given ¢ > 0, M, finds in polynomial time a packing of
L in OPT(L) bins, each of capacity C = 1 + ¢. A primary objective of M, is the
approximation scheme for the capacity minimization problem discussed in Sect. 6.1,
but such algorithms also find use in bin packing settings where precise bin capacities
vary or are unknown.

The above dual approach can be likened to a search for near-feasible, optimal
solutions rather than feasible, near-optimal solutions. The construction of M,
exploits a reduction of the problem to bin packing with a finite number of item
sizes and hence the integer program formulation in Sect. 5.2. A general discussion
of the details has been given by Hochbaum [116], who describes a version of M,
that requires only linear running time (with constants depending on ¢).
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4.4 Anomalies

For a given algorithm A, one usually expects that if a list is made shorter, or its
items made smaller, then the number of bins needed by A to pack the list could
not increase, and if the reductions were large enough, then the number of bins
required would actually decrease. This is certainly true for optimal algorithms, but
as this section shows, it is not the case for many of the better on-line and off-line
approximation algorithms. This anomalous behavior can explain the difficulty in
analyzing algorithms; with such behavior, inductive arguments cannot normally
be expected to work. The following instances illustrate bin packing anomalies.
Define

L = (0.7, 0.68, 0.5399, 0.3201, 0.15, 0.14, 0.08, 0.08, 0.08, 0.08, 0.08, 0.07)
L’ = (0.7, 0.68, 0.5399, 0.32, 0.15, 0.14, 0.08, 0.08, 0.08, 0.08, 0.08, 0.07)

and note that the two instances differ only in the fourth element, which is slightly
smaller in L’. BF and BFD produce the same packing of L:

¢(By) = 0.7 + 0.15 + 0.08 + 0.07
¢(B,) = 0.68 + 0.08 + 0.08 + 0.08 + 0.08
¢(B3) = 0.5399 + 0.3201 + 0.14

BF and BFD also produce the same packing of L', which is larger by one bin:

¢(By) = 0.7+ 0.15 + 0.14

¢(B>) = 0.68 +0.32

¢(B3) = 0.5399 + 0.08 + 0.08 + 0.08 + 0.08 + 0.08
¢(Bs) = 0.07

Alist Ly = (a1, a2, . ... ay) dominates alist L{,, = (aj.a;,....a,,)ifn =m

and the size of each element a; is no less than the size of the corresponding element
a. An algorithm A is monotonic if A(L) > A(L’) whenever L dominates L’. An
anomalous algorithm is one that is not monotonic.

Graham [110] and Johnson [126] observed that algorithms FF and FFD are
anomalous. However, the current insights into the anomalous behavior of bin
packing algorithms are due mainly to Murgolo. In the notation of Sect. 3.4 (with
W meaning Worst-Fit), he proved

Theorem 28 (Murgolo [156]) Algorithms NF and NF, are monotonic, but each
of BF, BFD, WF, WFD, ABF,, AWF,, and AFFy, with k > 3 is anomalous.

Murgolo also obtained upper and lower bounds on the behavior of anomalous
algorithms. An algorithm is called conservative if it never opens a new bin unless
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the current element cannot fit into an open bin. For conservative algorithms, the
following bound applies.

Theorem 29 (Murgolo [156]) If L' dominates L and A is conservative, then
A(L") < 2A(L). In addition, if A € {FFD, BFD}, then A(L") < L A(L) + 4.

He also proved the following complementary results:

Theorem 30 (Murgolo [156]) There exist arbitrarily long lists L; and L}, with L,
dominating L;, (i = 1,2,3), such that

if A€{BF,BFD} then A(L\) = BA(L)),
if Ae{FF} then A(Ly) > 22A(L)),
if A€ {WF,WFD} then A(L3) > 12A(L}).

The following sections discuss problems in which special types of lists, alter-
native objective functions, or any of various constraints on items or packings are
considered. It will be seen that in some cases the problem becomes easier, in the
sense of approximability, while in others it becomes harder. Similarly, adaptations
of classical heuristics give more or less attractive results depending on the new
problem.

5 Variations on Bin Sizes
5.1 Variable-Sized Bins

Consider the case where one is given different bin types, Bj, B,, ..., By with sizes
1 = s(By) > s(By) > --- > s(By). For each type, an unlimited number of bins
are available, and the aim is to pack a list L of elements a;, with s; € (0, 1], into a
subset of bins having the smallest total size. Let s(A4, L) denote the total size of the
bins used by algorithm A to pack the items of L. Then

A, L
RS =lim sup SAL) :s(OPT, L) > ky .
k—+o00 S(OPT, L)

The problem has practical importance in many of the classical bin packing
applications, for example, cutting stock problems, the assignment of commercials
to variable size breaks in television or radio broadcasting, and memory allocation
for computer operating systems.

At first glance, one might expect variable-sized bin packing to be harder than the
classical problem. However, this need not be true in general. For example, if there
are bin types for all sizes between % and 1, then packing large elements with sizes at
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least % can be done without wasted space. Similarly, smaller elements can be packed
together without any waste, so long as their sum is at least %

For general sets of bin sizes, an on-line algorithm must select the bin size for
packing the current element whenever a new bin is opened. Friesen and Langston
[89] proposed an on-line algorithm based on the Next-Fit rule, which always selects
the largest bin size (Next-Fit, using Largest possible bins, NFL), and proved that its
APR is 2. Kinnersley and Langston [138] showed that the same APR is obtained by
adopting the First-Fit rule, both for an algorithm that uses the largest possible bins
and for an algorithm that uses the smallest bins. Burkard and Zhang [33] pointed
out that this APR characterizes a large class of algorithms that use one of the above
bin-opening rules.

Kinnersley and Langston [138] analyzed other fast on-line algorithms. They

proposed a scheme based on a user-specified fill factor, f > % and proved that

this strategy guarantees an APR smaller than % + % < 1.75. Zhang [185] proved

that with /= 1, the APR is 17.

Csirik [56] investigated an algorithm based on the Harmonic-Fit strategy (Vari-
able Harmonic-Fit, VH) and showed that its APR is at most /1o, (1) &~ 1.69103. For
special collections of bin types, the algorithm may perform better; for example,
Csirik proved that if there are only two types of bins, with s(B;) = 1 and
s(B>) = 15, then R33; = L.

This result is very interesting since the bound is smaller than the 1.54 on-line
lower bound of Balogh et al. [15] for the classical problem (see Sect. 3.6), and
implies that, for certain sets of two or more bin sizes, on-line algorithms can behave
better than those restricted to a single bin size.

Csirik’s VH algorithm suffers from the same “illness” as the classical HFy
algorithm (see Sect. 3.4); it reaches the /(1) bound only for a very large number
of open bins. More precisely, let M > 1 be a positive integer, and suppose that the
algorithm can use / different bin types. Let M; = [Ms(B;)] (j = 1,...,1), and
denote by VH,, the resulting VH algorithm, which is a k-bounded-space algorithm
withk = Y\ M; =1+ LIf M; < 5then R, > 17

This raised further questions. If there are only two different bin types, which
combination of sizes produces the smallest APR? What lower bounds depending on
bin sizes can be proved? What can be said about the problem with at least three (or
an arbitrary number of) bin sizes?

Some of the above questions were answered by Seiden [162], who revisited the
VH algorithm. For the case where there are two bin sizes, he developed an algorithm
that provides a lower bound for any fixed «. Specifically, he proved the following

result:

78,392,621 - 395,101,163

137530 < ——"— < inf R (@) < o=
57,000,000 ~ (0.1 287,280,000

< 1.37532.

He additionally proved that the upper bound /(1) &~ 1.69103, given in [56],
is tight and that algorithm VH is optimal among bounded-space algorithms.
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To obtain this result, Seiden used the weighting function technique and de-
veloped “twin” mathematical programs, which have the same sets of condi-
tions but different objective functions. He used the mathematical programs to
get lower and upper bounds for the asymptotic performance ratio of VH. He
proved the asymptotic optimality of VH, although the precise value could not be
computed.

The third question remained open even in the case of three different sizes.

Burkard and Zhang [33] investigated other bounded-space algorithms for
variable-sized bin packing. They distinguished three different components: the
opening rule, packing rule, and closing rule. The opening rule was fixed as follows.
If the current item has size s5; > % and there exist bin sizes smaller than 1 that can
accommodate a;, then the rule opens the smallest such bin; otherwise, it opens a bin
of size 1. The packing rules analyzed were First-Fit (the F rule) and Best-Fit (the
B rule). The closing rule closes a bin of size less than 1, if one exists; otherwise, it
closes either the lowest indexed bin (the first-bin or F rule) or the most nearly full
bin (the best-bin or B rule). With this terminology, VXY, denotes the k-bounded
algorithm that incorporates packing rule X and closing rule Y. Burkard and Zhang
showed that, among the four resulting algorithms (VFF;, VFBy, VBFy, and VBBy),
VBB is the best and that the following holds.

Theorem 31 (Burkard and Zhang [33]) RU3p, = }—0. Moreover, R3y;, = RUpp,
if and only if M; <7, with k > 61 + 1.

The authors proved the theorem by a weighting function technique. They also
mentioned that, with a small modification in the weighting function, they could
prove that Ryzp, = % + % for any k > 2. So, one of the more interesting
questions remains open: does there exist an on-line algorithm with an APR strictly
less than /14, (1) for all collections of bin sizes?

For the off-line case, few results have been proved. Friesen and Langston [89]
presented two algorithms based on the First-Fit Decreasing strategy. The first one,
FFD using Largest bins and Repack (FFDLR), begins by packing the presorted
elements into the largest bins, then repacks the contents of each open bin into the
smallest possible empty bin. The second algorithm, FFD using Largest bins and
Shift (FFDLS), improves on the first phase of FFDLR: whenever the bin (say of
type B;) where the current item has been packed contains an item of size at least 1
the contents of the bin are shifted, if possible, to the smallest empty bin (say of type
Bj,) such that s(By,) > ¢ > %S(Bh), where ¢ denotes the total item size packed into
the current bin. Friesen and Langston proved that RZZ, g = % and Rpp ¢ = %.

Seiden et al. [164] made great strides by improving the upper bound and giving
the first — and to this very day the only — general lower bound for the case
with two bin sizes. First, they introduced a parameter y € (% %). They gave an
algorithm VHI(u) for all « € (0, 1), and an algorithm VH2(u), only defined
for o > max{ﬁ, ﬁ} Both algorithms are combinations of the Harmonic and
Refined Harmonic algorithms. The upper bound was achieved by optimizing p over

each choice of «, and the authors chose the best value among VH1 (i), VH2(u), and



Bin Packing Approximation Algorithms: Survey and Classification 491

VH. The resulting upper bound is at most % < 1.63597 for all . Note that this is
the asymptotic performance ratio of the RHF algorithm in the classic bin packing

context. The lower bound result is summarized by the following theorem.

Theorem 32 (Seiden et al. [164]) Any on-line algorithm for the variable-sized

bin packing problem with two bin sizes has asymptotic performance ratio at least
495,176,908,800 > 1 33561

370,749,511,199
The result is quite good since the largest gap between the two bounds is 0.18193 for
a = 0.9071, and the smallest gap is 0.003371 for ¢ = 0.6667.

Murgolo [157] proposed an efficient approximation scheme. He first gave an
algorithm with a running time linear in the number of items but exponential in % and
the number of bin sizes. Then, following the ideas in Karmarkar and Karp [132], he
solved a linear programming formulation of the problem by the ellipsoid method,
thus obtaining a fully polynomial-time approximation scheme.

Zhang [186] considered a variant of the on-line version of the problem, in which
item-size information is known in advance, but no information on bin sizes is
available, except that each bin size is known to be no less than the size of the largest
item. Bins arrive one at a time, and one has to decide which items to pack into the
current bin. Zhang proved that the analogues of the classical NF, FF, NFD, and FFD
algorithms all have an APR equal to 2 and left as an open question whether one can
devise an algorithm with an APR better than 2.

Kang and Park [130] investigated a problem where there are m different bin sizes,
and the total cost of a unit of each bin size does not increase with the bin size, that is,

Ci . . .
< 2 if 1<i <i, <m.

They analyzed two algorithms, Iterative First-Fit Decreasing (IFFD) and Iterative
Best-Fit Decreasing (IBFD), for three cases. If both the bin and item sizes are
divisible, then both algorithms are optimal. If only the bin sizes are divisible, then
Rirrp = Riep = %, whereas for the general (non-divisible) case, Rppp =
Rigrp = % In addition, they proved that an algorithm by Coffman et al. [51]
for the variable-sized bin case does not provide the optimal solution.

The case of weak divisibility has not been treated.

5.2 Resource Augmentation

The idea of resource augmentation was introduced by Csirik and Woeginger [63].
The motivation is that the worst-case examples are “pathological,” that is, if for a
unit-capacity bin one considers items with size % + & with a sufficiently small ¢,
then only one item per bin can be packed. If the size of the bins is slightly increased,
then two items can be packed in a bin, thus sparing a lot of capacity. (This is also
called bin stretching.)
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In this problem, an algorithm A has to pack a list L of elements in (0, 1] into
a minimal number of bins of capacity C > 1. Denote by A¢ (L) the number of
bins used by A for packing L into bins of capacity C. Then the APR is defined as
follows:

X = li Ac (L),

¢ OPTl%EI}—N)O Slzp C( )
where OP T/ (L) is the optimal (off-line) packing of L into unit-capacity bins. Csirik
and Woeginger considered on-line bounded-space algorithms and gave a complete
analysis. For each C, a sequence T(C) = (t,t2,...,) of positive integers is
defined:

1 1+ C| an r c o

and, fori =2,3,...,

1 1
i = 1+— and ri =ri—1 — —.

ri—1 i

It is clear that this is a simple transformation of the Sylvester sequence, so

They defined a new function

p(C) = tlTl

i=1

for which it is easy to prove that p(C) is strictly decreasing on [1, 00), and p(1) =
hoo(1) =~ 1.69103, p(2) & 0.69103. Furthermore, the following inequalities hold:

< p(m) <

1 for integer m > 2.

|-

jcj,%]forj =1,....t1—1,and

7, = (0, %] For these intervals, they constructed a Harmonic-Fit type algorithm.
There is one active bin for every interval Z;, and all items from the interval Z; N
(0, 1] are packed into it using a Next-Fit rule. Using a weighting function (which
is an adaptation of the one defined for the classical Harmonic-Fit algorithm), they
proved the following theorem.

Foragiven/ > 3, they defined ¢, intervals: Z; = (

Theorem 33 (Csirik and Woeginger [63]) For every bin size C > 1, there exist
on-line, bounded-space bin packing algorithms with APRs arbitrarily close to p(C).
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For every bin size C > 1, the bound p(C') cannot be beaten by an on-line bounded-
space bin packing algorithm.

Azar and Regev [7] presented two on-line algorithms, each guaranteeing a worst-
case performance of 5/3 for any number of bins. They also combined the algorithms
to obtain an algorithm with a tight worst-case performance of 13/8 = 1.625. This
turns out to be an interesting result, as the best lower bound for any algorithm is
equal to 4/3 for m > 2.

On-line bounded-space bin packing with limited repacking was considered by
Epstein and Kleiman [75], who extended to this case the ideas of Galambos
and Woeginger [95]. They defined a semi-on-line algorithm, Resource Augmented
REP;(C) (RAR3(C)), which is allowed to repack the elements within three active
bins, and proved the following theorem.

Theorem 34 (Epstein and Kleiman [75]) For every bin size C > 1, and for any
on-line bounded-space bin packing algorithm A that allows repacking within k
active bins, R3°(C) > p(C). Algorithm RAR3(C) has the best possible APR.

Epstein and van Stee [80] extended the study to on-line algorithms, investigating
both lower and upper bounds. For the upper bound, they started with an analysis
of the harmonic type algorithms. Recall that by introducing two new interval
endpoints, A > 1/2 and 1 — A, one can combine one small element with an item
in the interval (1/2, A]. Also recall that in this case, only a fraction of the bins
belonging to interval i can be used to reserve space for a (possibly later arriving)
element from the interval (1/2, A]. This fraction is denoted as ' . (The values of a's
obviously depend on the number of intervals, and they are the crucial point of any
such algorithm.) On this basis, they developed four algorithms, which are applied to
the intervals [1,6/5), [6/5,4/3), [4/3,12/7),and [12/7,2), respectively.

An analytical solution was given only for the Tiny Modified-Fit algorithm, which
was applied to interval [12/7,2). To examine the worst-case behavior of the other
algorithms, they defined two weighting functions and constructed a linear program
P(f). By applying it to the cost function, they could use the method introduced
by Seiden [163], thus obtaining upper bounds for the asymptotic behavior of the
algorithms. The cost functions were not given explicitly, but program P was solved
for many C values, and a diagram was given to show the upper bounds.

Concerning lower bounds, Epstein and van Stee [80] followed the argument
laid down by van Vliet [171]. In this case too, an LP was generated for many
values of C, and appropriate sublists were obtained through specialized greedy
algorithms.

Chan et al. [37] further extended the study to dynamic bin packing. They
considered the case where the items may depart at any time and where moving
items among the open bins is disallowed. They first investigated Any-Fit algorithms,
proving the following theorem.
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Theorem 35 (Chan et al. [37]) Consider the resource augmentation problem with
bin capacity C, and let A be an Any-Fit algorithm. Then A can achieve 1-
competitiveness if and only if C = 2.

They also gave a new lower bound, as a function of C, for on-line algorithms. Let
m be the largest integer such that C — % < 1, and define, for any positive integer
1<i<m,

i —1)
m—i+2)(m—i+1)

a() =mlm =D pi) =) a()  al) =

Jj=1

Theorem 36 (Chan et al. [37]) Let A be an on-line algorithm. Then

RY(C) > max% plm) 2 } .

ml(m—1)!" C

They also analyzed certain classical algorithms:

Theorem 37 (Chan et al. [37])

2C+1 5-C C?+3
R‘F’E(C)fmin% + i }

20-1'2C—1'CQ2C —1)

1
Rgx(C) = -1

and

) %2C+2 C?*—-8C +20
min

oo 4
Yol C40) } SRWF(C)EE- 4

Very recently, Boyar et al. [31] gave a complete APR analysis of algorithms WF
and NF for the resource augmentation case. They showed that WF is strictly better
than NF in the interval 1 < C < 2 but has the same APR for all C > 2:

Theorem 38 (Boyar et al. [31]) Let ic = |z ]. Then

2£ifC e[1,2]
R.(C) = 3C—2’lf >
wr(€) . ifC €[2,00)

and

212C — 212 —41c + 2+ 2Cic
12C +2Ctc — 12 —3tc =2 +2C°

RRE(C) =
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6 Dual Versions
6.1 Minimizing the Bin Capacity

Suppose that the number of bins is fixed, and let the objective be a smallest C such
that a given list L of items can be packed in m bins of capacity C. This dual of bin
packing actually predates bin packing and is known as multiprocessor or parallel-
machine scheduling. It is a central problem of scheduling theory and is surveyed
in depth elsewhere (see, e.g., Lawler et al. [141] and Hall [114]), so only relevant
results and research directions will be highlighted. The problem is referred to as
P||Cpax in scheduling notation.

Optimal and heuristic capacities normally differ by at most a maximum item
size, so absolute worst-case ratios rather than asymptotic ones are considered. The
first analysis of approximation algorithms was presented by Graham [108, 109],
who studied the worst-case performance of various algorithms. For the on-line case,
he investigated the Worst-Fit algorithm (better known as the List Scheduling, LS
algorithm), which initially opens m empty bins and then iteratively packs the current
item into the bin having the minimum current content (breaking ties in favor of the
lowest bin index). Graham proved that Ry s = 2 — % a bound that for many years
was thought to be best among on-line algorithms. Galambos and Woeginger were
first to prove that the bound could be improved. Let A(L, m) denote the bin capacity
needed under A for m bins, and define

A(L,m)

R =0 G

} and R(m) = ingA(m).

Theorem 39 (Galambos and Woeginger [94]) There exists a sequence of nonneg-

ative numbers €1, &2, ..., with &, > 0, m > 4 and ¢,, — 0 as m — 00, such that
1
<
R(m) <2 T Eme

This result encouraged further research; important milestones on the way to the
current position on the problem are as follows. Bartal et al. [19] presented an
algorithm with a worst-case ratio 2 — % = 1.98571 ... for all m > 70. Earlier,
Faigle et al. [83] proved lower bounds for different values of m. They pointed out
that for m < 3, the LS algorithm is optimal among on-line algorithms, and they
proved a 1 + % = 1.70710... lower bound for m > 4. Then these bounds were

improved, as shown below.

Theorem 40 (Chen et al. [41]) For all m = 80 4 8k with k a nonnegative integer,
R(m) > 1.83193.

Theorem 41 (Bartal et al. [20]) For all m > 3,454, R(m) > 1.8370.
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For some time, the following result gave the best upper bound for R(m) and was a
generalization of the methods in [20].

Theorem 42 (Karger et al. [131]) R(m) < 1.945 for all m.
A tighter result was found by Albers [2], who proved the next two bounds.
Theorem 43 (Albers [2]) R(m) < 1.923 for all m.

Just as previous authors, Albers recognized that, during the packing process, a
good algorithm must try to avoid packings in which the content of each of the
bins is about the same, for in such cases many small items followed by a large
item can create a poor worst-case ratio. Albers’ new algorithm attempts to maintain
throughout the packing process |7 | bins with small total content and [7 ] bins
with large total content. The precise aim is always to have a total content in the
small-content bins that is at most y times the total content in the large-content bins.
With an optimal choice of y, one obtains a worst-case ratio of at most 1.923.
For her new lower bound, Albers proved

Theorem 44 (Albers [2]) R(m) > 1.852 for all m > 80.

Attempts to further reduce the general gap of about .07 continue. For the special case
m = 4, itis proved in Chen et al. [41] that 1.73101 < R(4) < % = 1.7333..., but
the exact value of R(4) remains an open problem. Another enticing open problem
is: does R(m) < R(m + 1) hold for any m?

The off-line case is now considered. By preordering the elements according
to nonincreasing size and applying the LS algorithm, one obtains the so-called
Largest Processing Time (LPT) algorithm for P ||Cp,x. Graham [109] proved that
Ripr = % — # The Multifit algorithm by Coffman et al. [47] adopts a different
strategy, leading to better worst-case behavior. The algorithm determines, by binary
search over an interval with crude but easily established lower and upper bounds,
the smallest capacity C such that the FFD algorithm can pack all the elements into
m bins. Coffman, Garey, and Johnson proved that if k binary search iterations are
performed, then the algorithm, denoted by MFy, requires O(nlogn + knlogm)
time and has an absolute worst-case ratio satisfying

Ry, < 1224275,

Friesen [87] improved the bound uniform in k to 1.2, but Yue [182] later settled the

question by proving that this bound is % Friesen and Langston [89] developed

a different version of the Multifit algorithm, proving that its worst-case ratio is
bounded by % + 27k,

A different off-line approach was proposed by Graham [109]. His algorithm
7y optimally packs the min{k,n} largest elements and completes the solution by

packing the remaining elements, if any, according to the LS algorithm. Graham
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proved that
_1
Rz, <14 ——"—
k L+ )
and that the bound is tight when m divides k. Algorithm Z; implicitly defines an
approximation scheme. By selecting k = k., = [@] one obtains Rz, =<

1 + &. The running time is O (n logn + m”(1=9/¢)_and so the method is unlikely to
be practical. The result was improved by Sahni [161], in the sense that the functional
dependence on m and & was reduced substantially. His algorithm A, has running
time O(n(”s—z)'”_l) and satisfies Ry, < 1 + ¢; hence it is a fully polynomial-time
approximation scheme for any fixed m.

For m even moderately large, the approach of Hochbaum and Shmoys [118]
offers major improvements. They developed an e-approximate algorithm that
removed the running-time dependence on m and reduced the dependence on n.
The dependence on % is exponential, which is to be expected, since a polynomial
dependence would imply P = A/P. Their algorithm is based on the binary search of
an interval (like MFy), but it uses the e-dual approximation algorithm of Sect. 4.3 at
each iteration. Hochbaum and Shmoys show that, after k steps of the binary search,
the bin capacity is at most (1 + &)(1 + 27%) times optimal. From this fact and
the properties of M, given in Sect. 4.3, one obtains a linear-time approximation
scheme for the capacity minimization problem. (See also Hochbaum’s [116] for
a more extensive discussion of this interesting technique.) The Hochbaum and
Shmoys result was generalized by Alon et al. [3], who gave conditions under which
a number of scheduling problems on parallel machines admit a polynomial-time
approximation scheme.

6.2 Maximizing the Number of Items Packed

This section considers another variant in which the number of bins is fixed; the
objective is now to pack a maximum cardinality subset of a given list L. The
problem arises in computing applications, when one wants to maximize the number
of records stored in one or more levels of a memory hierarchy or to maximize the
number of tasks performed on multiple processors within a given time interval.
The classical bin packing notation is extended in an obvious way by defining
Ra(m,n) = min{M}
OPT(L ), m)

so that the APR is defined by

R (m) = nlgglo inf R4(m,n)

and has values less than or equal to 1.
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First consider off-line algorithms. The problem was first studied by Coffman
et al. [48], who adapted the First-Fit Increasing (FFI) heuristic. The items are
preordered according to nondecreasing size, the m bins are opened, and the current
item is packed into the lowest indexed bin into which it fits, stopping the process as
soon as an item is encountered that does not fit into any bin. It is proved in [48] that
Iégﬁl(m) = % for all m.

The Iterated First-Fit Decreasing (IFFD) algorithm was investigated by Coffman
and Leung [45]. The algorithm sorts the items by nonincreasing size and iteratively
tries to pack all the items into the m bins following the First-Fit rule. Whenever the
current item cannot be packed, the process is stopped, the largest item is removed
from the list, and a new FFD iteration is performed on the shortened list. The search
terminates as soon as FFD is able to pack all the items of the current list. Coffman
and Leung showed that IFFD performs at least as well as FFI on every list and that
% < R;’FOFD (m) < % The time complexity of IFFD is O(n logn + mn logm), but a
tight APR is not known.

Lower bounds on the APR are now considered. If an algorithm A packs items
ai,...,a; fromalist L = (ai,...,a,) so thats; > 1 —s(B;) for any j and for
any i > t (i.e., no unpacked item fits into any bin), then it is said to be a prefix
algorithm. Note that both FFI and and IFFD are prefix algorithms.

Theorem 45 (Coffman et al. [48]) Let A be a prefix algorithm and let k =
mini<;<m{|B;|} be the least number of items packed into any bin. Then

Moreover, the bound is achievable forall m > 1 and k > 1.

The case of divisible item sizes was investigated by Coffman et al. [51]. They
proved that both FFI and IFFD produce optimal packings if (L, C) is strongly
divisible. IFFD remains optimal even if (L,C) is weakly divisible, but FFI
does not.

The case of variable-sized bins was first analyzed by Langston [140], Who proved
that if the bll’lS are rearranged by nonincreasing size, then RFFI (m) = 5 and 2 <

RfF"FD (m) < 11 for all m. Friesen and Kuhl [88] gave a new efficient algorlthm,
which is a hybrid of two algorithms defined earlier: First-Fit Decreasing (FFD) and
Best-Two-Fit (B2F). The hybrid is iterative: it attempts to pack smaller and smaller
suffixes of its list of items until it succeeds in packing the entire suffix. During each
attempt, the hybrid partitions the current list of items and packs one part by B2F and
then the other part by FFD. They proved an APR of % for this hybrid.

Coming to the on-line case, Azar et al. [9] (see also [8]) studied the behavior
of so-called fair and unfair algorithms. When there is a fixed number of bins, an
on-line algorithm is fair if it rejects an item only if it does not fit in any bin, while
an unfair algorithm is allowed to discard an item even if it fits. They show that
an unfair algorithm may get better performance compared with the performance
achieved by the fair version. In particular, they show that an unfair variant of
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First-Fit can pack approximately 2/3 of the items for sequences for which an
optimal off-line algorithm can pack all the items, while the standard (fair) First-Fit
algorithm has an asymptotically tight performance arbitrarily close to 5/8. Later,
Epstein and Favrholdt [74] proved that the APR of any fair, deterministic algorithm

is %fR A 5% and that a class of algorithms including BF has an APR of 2,1”—_1

6.3 Maximizing the Number of Full Bins

In this variant of the problem, the objective is to pack a list of items into a maximum
number of bins subject to the constraint that the content of each bin be no less than a
given threshold 7. Each such bin is said to be full. Potential practical applications are
(1) the packing of canned goods so that each can contains at least its advertised net
weight and (ii) the stimulation of economic activity during a recession by allocating
tasks to a maximum number of factories, all working at or beyond the minimal
feasible level.

This problem is yet another dual of bin packing. A comprehensive treatment can
be found in Assmann’s Ph.D. thesis [5]; Assmann’s collaboration with Johnson,
Kleitman and Leung (see [6]) established the main results. They first analyzed an
on-line algorithm, a dual version of NF (Dual Next-Fit, DNF): pack the elements
into the current bin B; until s(B;) > T, then open a new empty bin B, as the
current bin. If the current bin is not full when all items have been packed, then merge
its contents with those of other full bins. All on-line algorithms are allowed this last
repacking step to ensure that all bins are full. It is proved in [6] that I?g‘f\,F =
where

L
A(L)
OPT(L)

Assmann et al. [6] also studied a parametrized dual of FF, called Dual First-Fit
(DFF[r]). Given a parameter r (1 < r < 2), the current item a; is packed into the
first bin B; for which c¢(B;) + s; < rT. If there are at least two nonempty and
unfilled bins (i.e., bins B; with 0 < ¢(B;) < T) when all items have been packed,
an item is removed from the rightmost such bin and added to the leftmost, thus
filling it. Finally, if a single nonempty and unfilled bin remains, then its contents
are merged with those of previously packed bins. It was shown that IQB%FW = %,
although a better bound might have been expected. But some years later, Csirik and
Totik proved that DNF is optimal among the on-line algorithms.

m—>00

Iéflo = lim inf (min% :OPT(L) = m}) .

Theorem 46 (Assmann et al. [6] and Csirik and Totik [61]) 153‘;};[,] = % and

there is no on-line dual bin packing algorithm A for which ﬁjo > %

Turning now to off-line algorithms, first consider the observation of Assmann et al.
[6] that presorting does not help the adaptations of algorithms Next-Fit Decreasing
and Next-Fit Increasing, for which R, = Ry = 3. On the other hand, the
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off-line version DFFD[r] of DFF[r], obtained by presorting the items according to
nonincreasing size, has better performance.

Theorem 47 (Assmann et al. [6]) Ié](;]):FD[r] = % zf% < r < % and

: [ 00 1 [ 00 _ 1
lim, RDFFD[r] = lim, -, RDFFD[r] =72

The Iterated Lowest-Fit Decreasing (ILFD) algorithm was also investigated in [6].
It is analogous to algorithm IFFD described in Sect. 6.2. The items are preordered
by nonincreasing size. At each iteration, a prefixed number m of bins is considered,
and a Lowest-Fit packing is obtained by iteratively assigning the current item to the
bin with minimum contents. Binary search on m determines the maximum value
for which all m bins are filled. Since n is an obvious upper bound on the optimal
solution value, it is easily seen that the algorithm has O(n log? 1) time complexity.
Moreover,

Theorem 48 (Assmann et al. [6]) R, = 4—31.
It is not difficult to see that DNF does not produce optimal packings even when
(L, C) is strongly divisible. However, the following optimality results hold.

Theorem 49 (Coffman et al. [S1]) If (L, C) is strongly divisible, then the dual
version of NFD (DNFD) produces an optimal packing. For weakly divisible lists,
DNFD is no longer optimal, but ILFD is.

Concerning approximation schemes for the dual bin packing problem, first observe
that the approach used by Fernandez de la Vega and Lueker [84] and Karmarkar
and Karp [132] (see Sect. 4.3), which eliminates the effect of small items on
worst-case behavior, does not appear applicable, as in the dual problem, small
items can play an important role in filling small gaps. Csirik et al. [65] have
given a PTAS for this problem. Later, an FPTAS was presented by Jansen and
Solis-Oba [124].

7 Variations on Item Packing
7.1 Dynamic Bin Packing

The idea of Dynamic Bin Packing (DBP) was introduced by Coffman et al. [49]. In
the case of dynamic packing, deletion of some elements is allowed at each step, and
A(L) is defined as the maximum number of bins used during the packing.
Consider the generalization in which each item a; is characterized by a triple
(s;, b, d;), where b; is the start (arrival) time, d; (with d; > b;) is the departure time,
and, as usual, s; is the size. Item a; remains in the packing during the time interval
[bi,d;). Assume that b; < b; if i < j. The problem calls for the minimization
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of the maximum number, OPTp (L), of bins ever required in dynamically packing
list L when repacking of the current set of items is allowed each time a new item
arrives. More formally, if A(L, ) denotes the number of bins used by algorithm A
to pack the current set of items at time ¢, the objective is to minimize

A(L) = max A(L,t).
Oftfbn

Note that, in this case, an open bin can later become empty, so the classical
open/close terminology is no longer valid. The definition of the APR is straight-

forward: AL
RT = lim sup _AD)
n—oo OPTD (L)

The problem models an important aspect of multiprogramming operating systems:
the dynamic memory allocation for paged or other virtual memory systems (see,
e.g., Coffman [42]), or data storage problems where the bins correspond to storage
units (e.g., disk cylinders or tracks), and the items correspond to records which must
be stored for certain specified periods of time (see Coffman et al. [49]).

Research on dynamic packing is at the boundary between bin packing and
dynamic storage allocation. The most significant difference between the two areas
lies in the repacking assumption of dynamic bin packing; repacking is disallowed
in dynamic storage allocation, so fragmentation of the occupied space can occur.
Coffman et al. [49] studied two versions of the classical FF algorithm. The first is
a direct generalization of the classical algorithm. The second is a variant (Modified
First-Fit, MFF) in which the elements with s; > % are handled separately, in an
attempt to pair each of them with smaller elements.

JLl =

Theorem 50 (Coffman et al. [49]) If = < max{s;} < ¢, then
U< Ree(k) < 3+ 3 Y=l —289674... ifk = 1;

2 .
G S RER) =5+ Inply k=2
2.77 < Rp(1) < 3 +1In§ =2.78768....

For k = 2, one gets 7 < RFP(2) < 1.78768 . ... Although these results are worse
than their classical counterparts relative performance is much better than one might
think. This can be seen in the following lower bounds.

Theorem 51 (Coffman et al. [49]) For any on-line dynamic bin packing algorithm
A RY > 3and Ry(k) = 1+ kfkfl ifk > 2, which gives R4(2) > 1.666.

By restricting attention to strongly divisible instances (see Sect. 8.1), then matters
improve, as expected. The gap between the general lower bound and that for FF
disappears. Indeed,
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Theorem 52 (Coffman et al. [51]) If (L, C) is strongly divisible and L is such
that sy > s > +-+ > s (k > 2), then the APR of the dynamic version of FF is

Moreover, for any on-line algorithm A that operates only on strongly divisible
instances, R > RZ.

By a straightforward inductive argument, it can be shown that the continued
product has the upper bound

1\ 2 1
lim (14— 1+~ )| =2384....
kirfoo( +2H),E[1( +2,)

Other algorithms were developed, which, in addition to deletion, allow at least
one of the following capabilities: repacking, look ahead, and preordering. For those
algorithms which may use all of the above operations, Ivkovic and Lloyd [122] (see
also [120]) introduced the fully dynamic bin packing (FDBP) term and presented an
algorithm, MMP, which is 2-competitive.

7.2 Selfish Bin Packing

Consider the case in which the items are controlled by selfish agents, and the cost
of a bin is split among the agents in proportion to the fraction of the occupied
bin space their items require. Namely, if an agent packs its item a of size s(a)
into bin B, then its cost is Cs((aB)) where ¢(B) is the content of the bin. In other
words, the selfish agents would like their items to be packed in a bin that is as
full as possible. Hence, given a feasible solution, the agents are interested in bins
B’ such that s(a) + ¢(B’) < 1 and % < Cs((aB)) If such a bin exists, then a
unilaterally migrates from B to B’, as in this new feasible packing its cost decreases.
When no such bin exists for any agent, a stable state has been reached. The social
optimum is to minimize the number of bins used, which is the aim of the standard BP
problem.

This problem corresponds to a noncooperative game, and the stable state is a
pure Nash Equilibrium (NE). There is a Strong Nash Equilibrium (SNE) if there is
no subset of agents, which can profit by jointly moving their items to different bins
so that all agents in the subset obtain a strictly smaller cost.

More precisely, a noncooperative strategic game is a tuple G = (N, (S;)ien,
(¢i)ien) where N is a finite set of players. Each player has a finite set S;
of strategies and a cost function c¢;, and each player has complete information
about the strategy of all players. Players choose their strategies independently
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of each other. A combination of strategies chosen by the players is denoted by
s = (xj)jen € XjenS; and is called a strategy profile. The social cost of a game
is an objective function SC(s) : X —> R, that gives the cost of an outcome of the
game for a strategy profile s € X, where X denotes the set of all strategy profiles.
The social optimum of the game is then OPT(G) = mingey SC(s).

The quality of an NE is measured by the Price of Anarchy (PoA) and the Price
of Stability (PoS), which are defined as follows:

SC
PoA = sup i
seNEG) OPT(G)

PoS= inf —C®)
seNE(G) OPT(G)

By using the SNE, one gets the Strong Price of Anarchy (SPoA) and the Strong
Price of Stability (SPoS):

SC SC
SPoA = sup —(S) SPoS = in —(S)
SESNE(G) OPT(G) SESNE(G) OPT(G)

For the bin packing problem asymptotic measures are used:

PoA(BP) = limsup sup PoA(G) PoS(BP) = limsup inf PoS(G)
OPT(G)—>00 GEBP OPT(G)—>00 GEBP

and

SPoA(BP)= limsup sup SPoA(G) SPoS(BP)= limsup inf SPoS(G).
OPT(G)—00 GEBP OPT(G)—>o0 GEBP

To stress the connection with game theory the problem is called the bin packing
game. The first publication which discussed this problem from a game theoretical
perspective was presented by Bilé (see [25]). He showed that starting from an
arbitrary feasible packing, one can always reach an NE using an exponential number
of migration steps. This result implies that, for every instance of the bin packing
game, there exists an optimal packing which provides a NE, thatis, PoS(BP) = 1.
He also proved that computing the best NE is NP — hard. Yu and Zhang [181]
constructed an O(n*)-time Recursive First-Fit Decreasing (RFFD) algorithm for
finding an NE. They also investigated the PoA(BP) and proved the following
theorem:

Theorem 53 (Yu and Zhang [181]) For the bin packing game,

41 + /145
+3—2 ~ 1.6575.

o0
1
1.6416 ~ > —— < PoA(BP) <
=14 2

Epstein and Kleiman [76] improved the upper bound to 1.64286 and conjectured
that the best upper bound is equal to the lower bound.
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Bin packing algorithms look for a good global solution; hence, in general, they do
not produce a Nash equilibrium. An exception is the Subset Sum (SS) algorithm by
Caprara and Pferschy [34], which produces an NE by repeatedly solving a knapsack
problem to pack a bin as full as possible. Unfortunately, the knapsack problem is
not polynomial unless P = N'P. Indeed, Epstein and Kleiman [76] on the one hand
proved equality among the SPoS(BP) and the SPoA(BP) and the asymptotic
behavior of the Subset Sum algorithm and on the other hand showed that finding
an SNE is A"P-hard.

Caprara and Pferschy proved that 1.6062 < RS < 1.6210. So, by comparing
PoA(BP) and SPoA(BP), it appears that they have similar values. Therefore, the
efficiency in the bin packing game is only due to selfishness, and coalitions do not
help. In addition, PoS(BP) is significantly better than SPoS(BP), which in turn
equals SPoA(BP), implying that in the bin packing game the best equilibrium is
less efficient if coalition among agents is allowed.

7.3 Bin Packing with Rejection

This variation is motivated by the following problem, arising in file management.
Suppose that files are used by a local system. Either a file is downloaded in advance
or the system downloads it only when it is actually requested. The first option needs
space on a local server, and it has a local transmission cost, while a program uses the
file. The second option has a communication cost that one incurs, while the system
downloads the file from an external server. An algorithm which manages the local
file system has the choice of either packing a file (item) on the local storage device or
(according to the costs) downloading it when needed. The problem can be modeled
as the following bin packing problem. A pair (s;, r;) is associated with each item i
(i =1,...,n), where s; is the size and r; is the rejection cost of the item. An algo-
rithm has the choice of either packing an element into the bins or rejecting it. The
objective is to minimize the number of bins used, plus the sum of all rejection costs.
(If all rejection costs are larger than 1 then every item will be packed, and a standard
problem arises.) This model was introduced by Désa and He [69], who considered
both off-line and on-line algorithms, and investigated their absolute and asymptotic
behavior.

For off-line algorithms, Désa and He gave an algorithm with absolute worst-
case ratio 2. They also observed that the lower bound for the standard problem
remains valid, that is, there is no algorithm with absolute worst-case ratio better
than % unless P = NP. The lower bound was reached by Epstein [73] (see also
[70]). Based on the ratio r; /s;, Ddsa and He classified the elements into subclasses
and used a sophisticated greedy-type algorithm, RFF4, for which they proved that
RRFrs = %

For the on-line case, they investigated an algorithm, called RFF1, and proved
that the absolute worst-case ratio of the best on-line algorithm lies in the interval
(2.343,2.618). For the asymptotic competitive ratio, they introduced another
algorithm, RFF2, and proved the following:
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Theorem 54 (Désa and He [69]) For any positive integer m > 2, R%:p,(m) <

Z% g Hence there exists an on-line algorithm with an APR arbitrarily close to
7/4 = 1.75.

Not surprisingly, this result was beaten by a variant of the HF algorithm proposed
by Epstein [73]. Her RejHy algorithm classifies the items as HE. Then thresholds are
defined for the rejection choice as follows. Suppose that the next item is a; € I},
where /; = (ﬁ, jl] for some 1 < j < k. Item a@; will be rejected if either j = k
and r; < %si or j < kandr; <

Epstein proved the following theorem.

71,. Using the weighting function technique,

Theorem 55 (Epstein [73]) The APR of RejHy, tends to hoo(1) = 1.6901 if k—o00.
No algorithm with a constant number of open bins can have a smaller APR.

For the unbounded-space case, the latter result was improved by a Rejective
Modified Harmonic (MHR) algorithm, which is an adaptation of the Modified
Harmonic analyzed by Ramanan et al. [159]:

Theorem 56 (Epstein [73]) The APR of MHR is at most %
Starting from the classical results of Fernandez de la Vega and Lueker [84]
and Hochbaum and Shmoys [118], Epstein [73] also proposed an APTAS for

—4ye ! .
bin packing with rejection, having time complexity O(n°( " ). Using some

results on the multiple knapsack problem (see Chekuri and Khanna [40] and
Kellerer [134]) a faster, O(n°¢ ")) time, approximation scheme was constructed by
Bein et al. [21].

7.4 Item Fragmentation

Menakerman and Rom [155] investigated a variant of the bin packing problem
in which items may be subdivided into pieces of smaller size, called fragments.
Fragmenting an item is associated with a cost, which makes the problem A/P-hard.
They studied two possible cost functions. In the first variant, called Bin Packing with
Size-Increasing Fragmentation (BP-SIF), whenever an item is fragmented, overhead
units are added to the size of every fragment. In the second variant, called Bin
Packing with Size-Preserving Fragmentation (BP-SPF), each item has a size and
a cost, and, whenever it is fragmented, one overhead unit is added to its cost without
changing its total size. (Actually, problem BP-SIF was first introduced by Mandal
et al. [150] who showed that it is A"P-hard.)

It is supposed that the item sizes are positive integers and the bins are all of
size C. It is obvious that a good algorithm should try to perform the minimum
number of fragmentations. Menakerman and Rom developed algorithms that do
not fragment items unnecessarily. More precisely, an algorithm is said to prevent
unnecessarily fragmentation if it follows the next two rules:
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1. No unnecessary fragmentation: An item (or a fragment of an item) is fragmented
only if it must be packed into a bin that cannot contain it. In case of fragmen-
tation, the item (or fragment) is divided into two fragments. The first fragment
must fill one of the bins, while the second is packed according to the rules of the
algorithm.

2. No unnecessary bins: An item is packed into a new bin only if it cannot fit in any
of the open bins.

For the BP-SIF problem, it is proved that for any algorithm A that prevents

unnecessary fragmentation, R < C 5 for every C > 2. For the obvious

generalization of the Next-Fit algorithm, called Next-Fit with item fragmentation

(NFy), a = bound for all C > 6 was proved. For a more sophisticated algorithm,

which is actually an 1terated version of First-Fit Decreasing, they proved that the

APR is not greater than 7= when C < 15, while it is between CCI and == C > when

C > 1e.

As to the BP-SPF problem, the performance of an algorithm for a given list L,
OH 4(L) is measured by its overhead, that is, by the difference between the cost
of the solution produced by the algorithm and the cost of an optimal solution. The
worst-case performance of an algorithm is

OH' = inf{h : OH4(L) < h for all L with OPT(L) = m}.

Menakerman and Rom [155] proved that for any algorithm A that prevents
unnecessary fragmentation, OH}' < m — 1 and that an appropriate modification of
Next-Fit reaches this bound. First-Fit Decreasing performs better when the bin size
is small.

Naaman and Rom [158] considered two generalizations of the BP-SPF. The first
one is quite simple: r overhead units are added to the size of every fragment. This
changes the performance of Next-Fit to % The other generalization is more
challenging: a set B of m bins is given, whose (integer) bin sizes may be different.
Denote by C = ,}1 Zm_l s(Bj) the average bin size. In this case, the asymptotic

worst-case bound for Next-Fit is =< for every C > 4r.

Shachnai et al. [168] studied shghtly modified versions of BP-SIF and BP-
SPFE. For the BP-SIF, a header of fixed size A is attached to each (whole or
fragmented) item, that is, the size required for packing a; is s; + A. When an
item is fragmented, each fragment gets the header. For the BP-SPF, the number
of possible splits is bounded by a given value. They presented a dual PTAS
and an APTAS for each of the problems. The dual PTASs pack all the items in
OPT(L) bins of size (1 + &), while the APTASs use at most (1 + ¢)OPT(L) + 1
bins. All of these schemes have running times that are polynomial in n and
exponential in 1/¢. They also showed that both problems admit a dual AFPTAS,
which packs the items in OPT(L) + O(1/£?) bins of size 1 + &. Shachnai and
Yehezkely [167] developed fast AFPTASs for both problems. Their schemes pack
the items in (1 4+ &)OPT(L) + O(¢~'loge™") bins in a time that is linear in n and
polynomial in 1/e.
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Epstein and van Stee [81] investigated a version where the items may be split
without extra cost, but each bin may contain at most k (parts of) items, for a given
constant k. They provided a polynomial-time approximation scheme and a dual
approximation scheme for this problem.

7.5 Fragile Objects

Bansal et al. [17] (see also [16]) investigated two interrelated optimization problems:
bin packing with fragile objects and frequency allocation in cellular networks
(which is a special case of the former problem). In this problem, each item has
two attributes: size and fragility. The goal is to pack the items so that the sum
of the item sizes in each bin is not greater than the fragility of any item in the
bin. They provided a 2-approximation algorithm for the problem of minimizing the
number of bins and proved a lower bound of % on the asymptotical approximation
ratio. They also considered the approximation with respect to fragility and gave a
2-approximation algorithm.

Chan et al. [35] considered the on-line version of the problem and proved that
the asymptotic competitive ratio of any on-line algorithm is at least 2. They also
considered the case where the ratio between maximum and minimum fragility is
bounded by a value k, showing that the APR of an Any-Fit algorithm (including
First-Fit and Best-Fit) is at least k. For the case where k is bounded by a constant,
they developed a class of on-line algorithms which achieves an APR of % + 35 for
any r > 1.

7.6 Packing Sets and Graphs

Let the bin capacity C be a positive integer and suppose that the items are sets
of elements drawn from some universal set. A collection of items can fit into a
bin if and only if their union has at most C elements. As usual, the object is to
pack the items in the smallest number of bins. Good approximation algorithms
have yet to be analyzed for this problem; adaptations of the classical bin packing
approximation algorithms do not have finite APRs. One observes immediately that
while classical algorithms prioritize items based on cardinality and position in
sequence, a good algorithm for set packing will have to consider the intersections
among a given set of items, an orthogonal basis for prioritizing the items. It is
thought that approximation algorithms with a finite APR for this problem are
unlikely to exist, but a rigorous treatment of this question has yet to appear.

Dror (Dror, Private communication) points out that scheduling setups in a
manufacturing process is an application of set packing. As an example, he describes
a machine that produces many types of circuit boards, each requiring a given set of
components. The machine has a magazine (bin) that holds at most C components. At
any time, only the circuit boards with their component sets (items) in the magazine
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can be in production. The problem is to plan the overall production process so as to
minimize the number of setups.

Khanna (Khanna, Private communication) mentions that, in connection with
studies of multimedia communications, graph packing is an interesting special case.
Items are edges (pairs of vertices) in a given graph G. An edge is packed in a bin
if both of the vertices to which it is incident are in the bin, and so the problem is to
pack the edges of G into as few bins as possible subject to the constraint that there
can be at most C vertices in any bin. The approximability of this problem has yet to
be studied.

Katona [133] investigated a special case of graph packing. A graph is called
p-polyp if it consists of p simple paths of the same length and sharing a common
end vertex. Polyp Packing is the following generalization of bin packing: pack a
set of paths of different lengths into a minimum number of edge disjoint polyps.
He proved that the problem is NP-hard and gave bounds on the performance of a
modification of First-Fit.

8 Additional Conditions
8.1 Item-Size Restrictions

Perhaps the simplest (and most practical) restriction is simply to have a finite
number k of item sizes, say sy, ..., S, and thus a finite number N of feasible item
configurations in a bin. This class of problems arose in studies on approximation
schemes (see [84, 132]) and was considered in its own right by Blazewicz and Ecker
[26]. Let the i -th configuration be denoted by p; = (pi1. ..., pix) where p;; is the
number of items of size s; in p;. By the definition of feasibility, ZI;=1 pijs; <1
for all i. Let y; be the number of bins in a packing of a given list L that contain
configuration p;, and let n; be the number of items of size s; in L. Then a solution to
the bin packing problem for L is a solution to the integer programming formulation:

N
min Z Vi

szjyiznj (j=1....k)
y; >0andinteger i = 1,...,N).

Note that, if % lower bounds the item sizes, then N = O(k’~"), so the constraint
matrix above has k rows and O(k"~!') columns. This problem can be solved in time
polynomial in the number of constraints (see Lenstra [144]), which is a constant
independent of the number of items. The optimal overall packing can then be
constructed in linear time.
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If the exact solution is not needed, then one can use the classical approach
of Gilmore and Gomory [105, 106]) and compute LP relaxations (see Sect. 4.3);
this method gives solutions that are at most k off the optimal in significantly less
time.

Gutin et al. [113] investigated an on-line problem in which one only has two
different element sizes. They gave a % lower bound for this problem and provided
an asymptotically optimal algorithm for it. Epstein and Levin [77] focused on the
parametric case, where both item sizes are bounded from above by % for some
natural number k > 1.

Next consider the classical problem restricted to lists L of items whose sizes
form a divisible sequence, that is, the distinct sizes s; > s, > ... taken on by the
items are such that s; 4 divides s; for all i > 1. The number of items of each size
is arbitrary. Given the bin capacity C, the pair (L, C) is weakly divisible if L has
divisible item sizes and strongly divisible if in addition the largest item size s; in L
divides C.

This variant has practical applications in computer memory allocation, where
device capacities and memory block sizes are commonly restricted to powers of 2.
It is important to recognize such applications when they are encountered, because
approximation algorithms for many types of NP-hard bin packing problems
generate significantly better packings when items satisfy divisibility constraints. In
some cases, the restriction leads to algorithms that are asymptotically optimal. The
problem was studied by Coffman, Garey, and Johnson, who proved the following
result for classical off-line algorithms.

Theorem 57 (Coffman et al. [51]) If (L, C) is strongly divisible, then NFD and
FFD packings are optimal.

Indeed, the residual capacity in a bin is always either zero or at least as large as the
last (smallest) item packed in the bin. The last packed item is at least as large as
any remaining (unpacked) item, so either the bin is totally full or it has room for the
next item. Therefore, the FFD and NFD algorithms have the same behavior: they
initialize a new bin only when the previous one is totally full, so the packings they
produce are identical and perfect.

The optimality of FFD holds in the less restrictive case of the following theorem
as well.

Theorem 58 (Coffman et al. [51]) If (L, C) is weakly divisible, then an FFD
packing is always optimal.

For strongly divisible instances, optimal performance can also be obtained without
sorting the items.

Theorem 59 (Coffman et al. [51]) If (L,C) is strongly divisible, then an FF
packing is always optimal.
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In the Unit-Fractions Bin Packing Problem, n items are given, and the size of
each item i is wl, with w; a positive integer (1 < i < n). This problem was
initially studied by Bar-Noy et al. [18]. Let H = [> |_, %] be a lower bound
on the required number of bins. They presented an off-line algbrithm which uses at
most H + 1 bins. For the on-line version, they analyzed an algorithm which uses
H + O(~/H) bins. It is also proved that any on-line algorithm for the unit-fractions
bin packing problem uses at least H + Q(In H) bins.

Dynamic bin packing problems with unit-fractions items were considered by
Chan et al. [36]. They investigated the family of Any-Fit algorithms and proved
the following results:

R = R =3

2.45 < R < 2.4985.

In addition they proved the following lower bound result:

Theorem 60 (Chan et al. [36]) For a dynamic bin packing problem with unit-
fractions items, there is no on-line algorithm A with R < 2.428.

It would be interesting to examine how approximation algorithms behave with
other special size sequences (e.g., Fibonacci numbers), as mentioned by Chandra
et al. [39] in the context of memory allocation.

8.2 Cardinality Constrained Problems

The present section deals with the generalization in which the maximum number of
items packed into a bin is bounded by a positive integer p. The problem has practical
applications in multiprocessor scheduling with a single resource constraint, when
the number p of processors is fixed, or in multitasking operating systems where the
number of tasks is bounded. If the maximum number of items in a bin is bounded by
p, then the problem is called the p-Cardinality Constrained Bin Packing Problem.
Observe which is the difficulty when one tries to construct a good algorithm for
this problem. Without the cardinality constraint, a huge number of small elements
slightly affect the number of occupied bins: either they can be packed together into
few bins, or they can be packed into bins which are “almost full.” In the considered
case, having packed many small elements results in almost empty bins, because of
the cardinality constraint. Therefore, when a large item arrives, it has to be packed
into a new bin even if it would fit into an already open bin.

In the context of the above applications, Krause et al. [139] modified classical
algorithms so as to deal with the restricted number of items per bin. Their on-line
algorithm, pFF, is FF with an additional check on the number of items in open bins.
They proved that if p > 3, then
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27 37 27 24

o0

— — — <R < —— —.
10 10p = PF =10 10p

As p tends to oo, the bound is much worse than the corresponding APR of the
unrestricted problem (2.7 versus 1.7). Whether this upper bound can be improved
remains an open question.

On-line algorithms were also studied by Babel et al. [11] (see also [10]), who
investigated four algorithms, denoted as Ay, ..., As.

e Algorithm A; operates with the BF strategy while packing the subsequent
element. Different classes of blocked bins are defined according to the number of
items in a bin. The algorithm tries to pack the element first into all blocked bins
that satisfy a threshold condition, then into all formerly blocked and currently
unblocked bins, and finally into the remaining bins. It is proved that for every
p =3,

ky(k,—3 — 3-2
R(p) =24+ LR ®o =3 ek, = [H— VPP}
(p—kp+ Dk, p—2

so limy o0 A1 = 2.

e In algorithm A, a bin is closed if ¢(B) > % and it contains at least g items.
Furthermore, a pair of bins, By and B,, is also closed if ¢(By) + ¢(By) > 1
and |B1| + |B2| > k. The open bins are subdivided into three classes, and the
algorithm tries to pack the current item, in turn, into bins of such classes. If the
item does not fit in any of these bins, a new bin is open. It is proved that for every
p > 3, algorithm A, has an APR of 2.

e Algorithm A3 deals with the case p = 2. The basic idea of the algorithm is
that, when a small item is packed, a balance should be kept between the number
of bins with only one small item and the number of bins which have two such
items. It is proved that R4, = 1 + %

* For the 3-cardinality problem, a Harmonic-type algorithm is defined, with four
bin classes. The score intervals are as follows: I = (0; %], L, = (%, %], I; =
(3. 2], and I4 = (3, 1]. The resulting Algorithm Ay is a much more complicated
version of the classical HF algorithm and has an asymptotic competitive ratio
of 1.8.

Two lower bounds are also given:

Theorem 61 (Babel et al. [11]) There is no 2-cardinality on-line bin packing
algorithm A with APR R4 < V2.

Theorem 62 (Babel et al. [11]) There is no 3-cardinality on-line bin packing
algorithm A with APR R4 < %

For unbounded-space algorithms, some further cases were investigated by
Epstein [71]. She considered a Harmonic-type algorithm that defines five
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subintervals and packs the items into bins with a more sophisticated procedure.
Her algorithm for the case p = 3 improves the APR of [11] to % = 1.75. For
the cases p = 4, p = 5 and p = 6, she refined the basic algorithm, designing
three algorithms with APRs 2 = 1.86842, It = 1.93719, and 27 = 1.99306.
She proved that an algorithm with an APR strictly better than 2 cannot be bounded
space (unless p < 3).

For the bounded-space case, Epstein defined the Cardinality Constrained
Harmonic-p (CCHp) algorithm. She considered the Sylvester sequence, defined

the sum
g _2”: 11
P — ti—l’p ’

i=1

and proved the following theorems:

Theorem 63 (Epstein [71]) The value of S, is a strictly increasing function of
p > 2 such that% <8, <hoo(l)+landlim, oS, = hoo(l) + 1 & 2.69103.

Theorem 64 (Epstein [71]) For every p > 2, the APR of CCHp is S,, and no
on-line algorithm which uses bounded space can have a better competitive ratio.

In addition, Epstein extended her results to the variable-sized and the resource-
augmentation cases (see Sects. 5.1 and 5.2).

An off-line algorithm (Largest Memory First, LMF), based on an adaptation of
FFD, was studied by Krause et al. [139]. They proved that Rz =2 — % if p> 2.

Here the gap between the unrestricted and the restricted case is large (2 versus %).

The authors’ search for an algorithm with better worst-case behavior resulted in

the Iterated Worst-Fit Decreasing (IWFD) algorithm. IWFD starts by sorting the

items according to nonincreasing size, and by opening ¢ empty bins, where g :=

[max(%, Y i, s:)] is an obvious lower bound on OPT(L). Then (i) IWFD tries to

place the items into these ¢ bins using the Worst-Fit rule (an item is placed into the

open bin whose current number of items is less than p and whose current content

is minimum, breaking ties by highest bin index); (ii) whenever the current item a;

does not fit in any of the g bins, ¢ is increased by 1, all items are removed from the

bins and the processing is restarted from (i). If one implements this approach using a

binary search on ¢, the time complexity of IWFD is O (n log® n). Krause, Shen, and

Schwetman proved that the algorithm behaves very well in certain special cases:

— If p =2, then IWFD(L) = OPT(L) for any list L.

— If in the final schedule no capacity constraint is operative, that is, no open bin has
residual capacity smaller than the size of the smallest item, then IWFD(L) =
OPT(L).

— If in the final schedule no cardinality constraint is operative, that is, no open bin
containing p items has residual capacity at least equal to the size of the smallest
item, then RRyep < %.

For the general case, where the final packing contains both bins for which the

capacity constraint is operative and bins for which it is not, the constants are
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significantly worse but still small: 3 < RR9m, < 2. The authors conjecture that
_ 4
Riwrp = 3-

For a long time, it was an open question whether there exists a heuristic algorithm
with an APR better than 2. Kellerer and Pferschy [135] proposed a new algorithm
based on a method that proved to be fruitful in scheduling theory, namely, one that
performs a binary search on the possible OPT(L) values. At each search step, they
run a procedure that tries to pack all items into a number of bins equal to % times
the current search value. The procedure basically tries to solve a multiprocessor
scheduling problem using the classical LPT rule with a cardinality constraint. The
time complexity of this Binary Search (BS) algorithm is O(nlog®n), and the
improved bound is % < RE < % Although the gap has been reduced, the exact
bound is still not known.

8.3 Class Constrained Bin Packing

In the Class Constrained Bin Packing Problem (CLCP), each item a; has two
parameters: the size s; and the color ¢;, where s; € (0, 1] and a color is represented
by a positive integer, that is, ¢; € [1,¢]. A further parameter Q € N is associated
with the problem as a bound for the number of the different colors within a bin.
Different items may have the same color, and the items with the same color are
classified into color classes. The objective is to pack the items into the minimum
number of bins {By, Bs, ..., By}, such that Za/_EBi sj < lfori =1,...,mand
each such bin has items from at most Q color classes. Clearly, if ¢ = n, then
one gets the p-cardinality constrained problem (see Sect. 8.2), and if ¢ < Q, then
a classical bin packing problem arises. Shachnai and Tamir [165] proved that the
problem is A/P-hard even in the case of identical item sizes.

For the case of on-line bounded-space algorithms, Xavier and Miyazawa [176]
presented inapproximability results. More precisely, they proved that if s; €
[K1, K3], with 0 < Ky < K, < 1,foralli = 1,...,n, then any bounded-space
on-line algorithm has an APR of Q( ﬁ)

Shachnai and Tamir [166] studied unbounded-space algorithms for the case of
identically sized items. Suppose that s; € (% 'l] for each a;: they denoted by
So r(k, h) the set of those lists which have kQ < ¢ < (k+ 1)Q and hr < n <
(h + 1)n, where n is the number of elements in the list. They proved that for any
deterministic algorithm A4,

k41"

R,>1
azlt h+ 1

)

and that the lower bound can be reached by the FF algorithm.

Sachnai and Tamir also introduced the notion of Color-Set algorithm (CS). This
algorithm partitions the colors into [¢/ Q7] color sets and packs the items of each
color set in a greedy way. Note that only one bin is open for each color-set at a time.
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They proved that Rcs < 2. The set of Any-Fit algorithms was also investigated,
and it was shown that R4 < min(r/Q, Q + 1) for any such algorithm. They further
proved that the absolute worst-case ratio of the Next-Fit algorithm is Ryg = 1/ Q.

The idea of CS was used to develop new algorithms. Color classes are divided
on-line into sets of Q colors each, in order of appearance. Each open bin is assigned
one color set. As a new item arrives, the algorithm tries to pack it into a bin having
the color of the item. If the FF rule is used, then one gets the Color-Set First-Fit
(CSFF) algorithm, while the NF rule gives the Color-Set Next-Fit (CSNF) algorithm.
For the case of identical item sizes considered in [165], the authors proved that the
competitive ratio of both CSFF and CSNF is at most 2.

The case Q = 2 was exhaustively studied by Epstein et al. [82], who proved
that the upper bound for identical items is tight for algorithms FF and CSFF.
Furthermore, they showed that, for arbitrary item sizes, the competitive ratio is at
least 9/4. A 1.5652 lower bound was also given for any on-line algorithm with
arbitrary item sizes, thus showing that, even if Q = 2, the on-line algorithms for
CLCP behave worse than those for the classical bin packing. For what concerns
upper bounds, they proved that for arbitrary values of Q, Resproo <3 — L.

Xavier and Miyazawa [176] investigated the FF algorithm and proved that Rgp €
[2.7,3]. They defined algorithm Ag, which subdivides the items, in a harmonic
way, into three classes, and packs the next item, according to its size, into the class
it belongs to. The algorithm also considers the color constraint Q. It was proved
that Ri"g € (2.666,2.75]. Epstein et al. [82] developed an algorithm which has a
competitive ratio of 2.65492, valid for every Q.

For fixed values of ¢, there are approximability results for CLCP. Note that, if ¢
is fixed, then Q is also constant since Q < g. For equal item sizes, Shachnai and
Tamir [165] constructed a dual PTAS whose time complexity is polynomial in n.
The scheme uses the optimal number of bins, but the bin capacity is 1 + ¢. Xavier
and Miyazawa [176] developed an APTAS. They also gave an AFPTAS with time
complexity O(;_IZ)' Epstein et al. [82] proved that if g is considered as a parameter,
then there is no APTAS for CLCP for any value of Q. They also gave an AFPTAS
for the case of constant ¢, with time complexity O(%).

8.4 LIB Constraints

In certain applications, the positions of the items within a bin are restricted: a larger
item cannot be put on top of a smaller one. This leads to the variant with the LIB
(Larger Item on the Bottom) constraint. The problem was first discussed by Finlay
and Manyem [85] and Manyem et al. [151]. They studied the Next-Fit algorithm
and proved that it cannot achieve a finite APR. For the First-Fit algorithm, they
showed that 2 < RgE < 3. They also analyzed a variant of Harmonic-Fit (HARM)
which partitions the items into classes following the classical rule and packs them
by applying to each class of bins the FF rule (instead of NF, which performs
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very badly). They showed that 2 < R, ry- The parametric case of HARM was
considered in Epstein [72], who proved the following result:

Theorem 65 (Epstein [72]) Let r > 0 be a positive integer, and suppose that

r_:_l < max{s;} < % Let k denote the number of bin classes. Then Ryarm(r) =

Ok —r + 1) for any fixed value of k < oo.

This result has an interesting consequence: contrary to the standard problem, for
which the performance of the Harmonic-Fit algorithm improves when the number
of bin classes is increased, in this case, the competitive ratio worsens, and algorithm
HARM has an unbounded ratio as k — oo. Unfortunately, neither BF nor WF nor
AWF behave better than HARM, that is, their APRs are also unbounded. In the
same paper, Epstein analyzed the FF algorithm, proving that Rgp(1) = 2.5 and
Rep(r) =2+ % if 7 > 2. Very recently, her result was improved by Désa, Tuza, and
Ye (Désa et al., 2010, Private communication), who proved that Rpp(1) = 2 + é
and Rpp(r) =2 + (+L2) if r > 2.

As to lower bounds, very little is known. Clearly, the FFD algorithm auto-
matically fulfills the LIB constraint, so % is a lower bound for any semi-on-line
algorithm which packs preordered elements. The only nontrivial lower bound was
obtained by Epstein [72]:

Theorem 66 (Epstein [72]) The competitive ratio of any on-line algorithm for bin
packing with LIB constraints is at least 2. The result is valid for the parametric case
as well, for any value of r > 1.

8.5 Bin Packing with Conflicts

In this problem, a set of items L = ay,as,...,a, with sizes s1,s,,...,5, and a
conflict graph G(L, E) are given. The objective is to find the minimum number
of independent sets such that the sum of the sizes within each set is at most one.
The problem is a generalization of both the classical bin packing problem (when
E = 0) and the graph coloring problem (when s; = 0 for all i). In the on-line
version of the problem, when a new item arrives, one gets its size and the edges
of the conflict graph which connect it to previous items. Instead of examining the
APR, most investigations focused on the absolute worst-case ratio AR, since the
conflict graph that proves the worst case is valid both for small and large instances.
Therefore, the APR may not be better than the AR.

It is known that graph coloring is hard to approximate for general graphs (see,
e.g., Lovasz et al. [149]); the problem at hand has been studied for specific graphs.
The early studies on the bin packing with conflicts (BPC) dealt with perfect graphs,
since the coloring problem is polynomially solvable for them. Jansen and Ohring
[123] gave an algorithm with an APR of 2.7. Epstein and Levin [78] improved this
result with an algorithm having the performance guarantee hoo(1) + 1 = 2.690103.
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Jansen and Ohring also proposed an algorithm that uses the so-called Precoloring
Extension Problem (PEP) as a preprocessing stage to get a partition of the conflict
graph. In the PEP, one is given an undirected graph G = (V, E) and k distinct
vertices vy, Vs, ..., k. The aim is to find a minimum coloring f of G such that
f(vi) =i fori = 1,2,...,k. The minimum number of colors is denoted by
x1(G). The PEP is polynomially solvable for a number of graph classes (interval
graphs, forests, K-trees, etc.), whereas it is A/P-hard for bipartite graphs. Let C be
the class of those graphs for which the PEP is polynomially solvable for any induced
subgraph of G.

Let G € C be a conflict graph and let BIG = {a; € L :s; > %}. The
algorithm by Jansen and Ohring uses BIG as the set of pre-colored vertices and
then determines a feasible coloring of G using y;(G) colors: in this coloring, each
pair of items in B/ G has different colors. Finally, it uses a bin packing heuristic
for each color class. Denote this algorithm by A(H ), where H is the bin packing
heuristic. They proved the following theorem:

Theorem 67 (Jansen and Ohring [123]) For the BPC problem, the A(FFD) has
a performance ratio 2.4231 = hoo(2) + 1 < Rarrp) < 2.5.

Later, Epstein and Levin [78] revisited the algorithm, proving that the lower
bound of R 4(rrp) is tight. Instead of using the PEP for preprocessing, they used a
matching-based preprocessing (MP) algorithm, for which they proved that Ry;p =
2.5, and that the result remains valid for all classes of graphs for which there exists
a polynomial-time algorithm to find a coloring with a minimum number of colors.
They also suggested a greedy algorithm which tries to pack two or three independent
items into a single bin and then applies FFD to each color class. They proved that
the approximation ratio of this algorithm is %

As already mentioned, the PEP is A"P-hard for bipartite graphs. However, Jansen
and Ohring [123] proved that by defining a simple algorithm which finds a coloring
of the conflict graph with two colors, and packs each color class with NF, one gets
an AR of 2. They also pointed out that the AR does not change if NF is replaced by
FFD. Using a more complicated pairing technique, Epstein and Levin [78] presented
an algorithm with approximation ratio exactly equal to %.

For the on-line version, the BPC is hard to approximate for many classes
of graphs. Success depends on the on-line coloring phase. For interval graphs,
Kierstead and Trotter [137] presented an on-line coloring algorithm, which uses
3w — 2 colors in the worst case, where @ is the maximum clique size of the graph.
Epstein and Levin [78] pointed out that, using NF for each color class, one obtains a
5-competitive algorithm. They also proved a combination of FFD with the algorithm
in [137] produces an algorithm with competitive ratio 4.7. For interval graphs, there
exists a lower bound for any on-line algorithm:

Theorem 68 (Epstein and Levin [78]) The competitive ratio of any on-line algo-
rithm for BPC on interval graphs is at least 13%5 ~ 4.30556.
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The theorem is a direct consequence of two interesting lemmas:

Lemma 1 (Epstein and Levin [78]) Let ¢ be a lower bound on the APR of any
on-line algorithm for classical bin packing, which knows the value OPT in advance.
Then the AR of any on-line algorithm for BPC on interval graphs is at least 3 + c.

Lemma 2 (Epstein and Levin [78]) Any on-line algorithm for classical bin pack-
ing, which knows the value OPT in advance, has an AR of at least % ~ 1.30556.

The on-line problem for other graph classes is still open.

8.6 Partial Orders

In this generalization, precedence constraints among the elements are given, where
precedence refers to the relative ordering of bins. Let < denote the partial order
giving the precedence constraints. Then a; < a; means that, if a; and a; are packed
in B, and By, respectively, then r < s. Call the model strict if r < s replacesr < s
in this definition.

Two practical applications have been considered in the literature. The first one
is the assembly line balancing problem, in which the assembly line consists of
identical workstations (the bins) where the products stop for a period of time equal
to the bin capacity. The item sizes are the durations of tasks to be performed, and a
partial order is imposed: a; < a; means that the workstation to which a; is assigned
cannot be downstream of the one to which a; is assigned. The second application
arises in multiprocessing scheduling; here each item corresponds to a unit-duration
process having a memory (or other resource) requirement equal to the item size.
The bin capacity measures the total memory availability. In the given partial order,
a; < a; imposes the requirement that a; must be executed before a; finishes. The
objective is then to find a feasible schedule that finishes the set of processes in
minimum time (number of bins).

The first problem was studied by Wee and Magazine [174] and the second one
by Garey et al. [104]. In both cases, the Ordered First-Fit Decreasing (OFFD)
algorithm was applied. An item is called available if all its immediate predecessors
have already been packed. At each stage, the set of currently available items is sorted
according to nonincreasing size, and each item is packed into the lowest indexed bin
where it fits and no precedence constraint is violated. Note that, if no partial order
is given, this algorithm produces the same packing as FFD. In general, however, its
worst-case behavior is considerably worse. The APR is R3}r, = 2, except in the
strict model, where R3%p, = %.

Liu and Sidney [148] considered the case in which there is an ordinal assumption:
initially, the actual sizes of the items are unknown, but their ordering is known,
that is, sy > s, > --- > 5, > 0. Now assume that perfect knowledge of some
of the sizes can be “purchased” by specifying the ordinal position of the desired
sizes. It is shown that a worst-case performance ratio of p (where p > 2 is an
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integer) can be achieved if knowledge of [In (n(p — 1) 4+ 1)/ In p| weights can be
purchased.

8.7 Clustered Items

In this generalization, a function f(a;,a;) is given, measuring the “distance”
between items a; and a ;. A distance constraint D is also given; two items a; and a;
may be packed into the same bin only if f(a;,a;) < D. The problem has several
obvious practical applications in contexts where geographical location constraints
are present. Chandra et al. [39] studied different cases, their main result being for
the case where the items in a bin must all reside within the same unit square. They
proposed a geometric algorithm A and proved that 3.75 < R3° < 3.8.

8.8 Item Types

In studying the packing of advertisements on Web pages, Adler et al. [1] encoun-
tered a variant of bin packing in which items are classified into rypes; the set of
types is given, and there are no constraints on the number of items of any type. The
problem is to pack the items into as few bins as possible subject to the constraint
that no bin can have two items of the same type. They design optimal algorithms
for restricted cases and then bound the performance of these algorithms viewed as
approximations to the general problem.

9 Examples of Classification

In this section, the classification scheme proposed in Sect. 2.3 is resumed. The
following examples should help familiarize the reader with it:
1. The classification of [157] shows a bin-size extension of pack.

pack|off-line| FPTAS |{B;}

Results: An approximation algorithm for variable-sized bin packing is pre-
sented which for any given positive ¢ produces a scheme with approximation
ratio 1 4 . This algorithm has time complexity polynomial in the number of
items, the number of bins, and 1/¢.

2. The classification of [145] gives another such example:

pack|on-line, off-line, open-end| RY bound, FPTAS

Results: For this hybrid of pack and cover, it is shown that any open-
end version of on-line algorithms must have an asymptotic worst-case ratio
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of at least 2. Next-Fit achieves this ratio. There is a fully polynomial-time
approximation scheme for this problem.

3. The classification of [7] illustrates a capacity minimization problem with bin-
stretching analysis:

mincap|on-line|R gbound|stretching

Results: A combined algorithm achieves a worst-case bound of 1.625. The best
lower bound for any on-line algorithm is 4/3.
4. Reference [48] studies a subset-cardinality objective function:

maxcard(subset)|off-line| R 4

Results: RWFI = %, RFFI = %

5. Reference [61] is classified as a covering problem.
cover|on-line| RY bound

Results: Asymptotic bound: RS < 1/2 for any on-line algorithm A. There
exists an asymptotically optimal on-line algorithm.
6. The classification of [90] is

pack|off-line| R bound

Algorithm: Combined Best-Fit (CBF) which takes the better of the First-
Fit Decreasing solution and Best Two-Fit (B2F) solution, where the latter
algorithm is a grouping version of Best-Fit limiting the number of items per bin.
Results: R3S, = 5/4, %L < R, < ¢

Note that the word “variant” may be simplistic in that it occasionally hides
details of relatively complicated algorithms.

7. Reference [95] shows an example for the combination of two algorithm classes:
pack|bounded-space, repack| R bound

Algorithm: REP;, an adaptation of FFD using at most three open bins.
Result: RRp, ~ 1.69.. ..

8. The classification of [139] illustrates a case where one is allowed to constrain
the number of items per bin.

pack|on-line, off-line| R bound|card(B) < k

27 37 27 24
PR < R < | —_
(10 LOk—D = PR = (10 IOk)’

where FFy is the obvious adaptation of FF.

Result:
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9.

10.

11.

12.
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For [175], the classification mentions yet another constraint:
pack|bounded-space, on-line| R

Result: R3;, k) = R7; . where SHy is a simplified version of Hy that uses
only O(logk) open bins at any time.
Classification of [6] aggregates several results:

cover|on-line, off-line, open-end| R
Algorithms: Open-end variant of Next-Fit called DNF, of First-Fit Decreasing
with a parameter r (FFD,), and of an iterated version of Worst-Fit IWFD).
Results:

1 2 3
RBT\IF=—,FFD;)°=§f0raHK r=s, and Ryypp =

2

W

= 1
A more recent such publication is [29, 30]:
maxpack|on-line, off-line| RC|s; < 1/k
Results:
a. No off-line approximation algorithm can have an asymptotic bound larger
than 17/10, a bound achieved by FFD.
b. For the off-line case, Ry, = 6/5, REg(1/k) =1+ 1/k, k> 2
c. For the on on-line case, RER(1/k) = R%(1/k) =1+ 1/(k—1), k > 3.
d. No deterministic algorithm A has a finite asymptotic bound RS for
either the card(subset)_min orc(subset)_min problems, except for the latter
problem in the parametric case with k > 1, in which case the bound is again
1+ 1/(k—1).
An analysis with similarities to bin stretching is used in [31] to compare WF
and NE.
pack|on-line|RY |stretching

Results: A derivation of the asymptotic ratios for WF and NF under the
assumption that they use bins of capacity C while OPT uses unit-capacity bins
shows that WF and NF have the same asymptotic bound for all C > 1, except
when 1 < C < 2, in which case WF has the smaller bound.
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