
Advanced Techniques for Dynamic
Programming

Wolfgang Bein

Contents

1 Introduction. 42
2 A Few Standard Introductory Examples. 44

2.1 A Brief Introduction to Dynamic Programming: Fibonacci, Pascal, and
Making Change. 44

2.2 Chained Matrix Multiplication Problem. 46
2.3 Shortest Paths. 47
2.4 The Knapsack Problem. 50
2.5 Binary Search Tress. 52
2.6 Pyramidal Tours for the Traveling Salesman Problem. 54

3 Open-ended Dynamic Programming: Work Functions. 54
4 Intricate Dynamic Programming: Block Deletion in Quadratic Time. 58

4.1 Preliminaries. 58
4.2 A Dynamic Program for Complete Block Deletion. 59
4.3 Computing Block Deletion. 62

5 Total Monotonicity and Batch Scheduling. 63
5.1 The Problem 1js� batchjPwi Ci . 63
5.2 List Batching. 64
5.3 The Monge Property and Total Monotonicity. 66

6 The SMAWK and LARSCH Algorithm. 68
6.1 The Matrix Searching Problem. 68
6.2 The Online Matrix Searching Problem. 72
6.3 Algorithm LARSCH. 73
6.4 Standard Type Process: Pt for t Even (INTERPOLATE). 75
6.5 Standard Type Process: Pt for t Odd (REDUCE). 75

7 The Quadrangle Inequality and Binary Search Trees. 76
7.1 Background. 76
7.2 Decomposition Techniques. 78
7.3 Online Decomposition. 80

W. Bein
Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV, USA
e-mail: beinw@unlv.nevada.edu

P.M. Pardalos et al. (eds.), Handbook of Combinatorial Optimization,
DOI 10.1007/978-1-4419-7997-1 28, © Springer Science+Business Media New York 2013

41

mailto:beinw@unlv.nevada.edu

42 W. Bein

8 Conclusion. 85
Further Reading. 86
Cross-References. 88
Recommended Reading. 88

Abstract
This is an overview over dynamic programming with an emphasis on ad-
vanced methods. Problems discussed include path problems, construction of
search trees, scheduling problems, applications of dynamic programming for
sorting problems, server problems, as well as others. This chapter contains
an extensive discussion of dynamic programming speedup. There exist several
general techniques in the literature for speeding up naive implementations of
dynamic programming. Two of the best known are the Knuth-Yao quadrangle
inequality speedup and the SMAWK/LARSCH algorithm for finding the row
minima of totally monotone matrices. The chapter includes “ready to implement”
descriptions of the SMAWK and LARSCH algorithms. Another focus is on
dynamic programming, online algorithms, and work functions.

1 Introduction

Dynamic programming, formally introduced by Richard Bellman (August 26,
1920–March 19, 1984) at the Rand Corporation in Santa Monica in the 1940s, is
a versatile method to construct efficient algorithms for a broad range of problems.
As with many tools which evolved over time, the original paper sounds antiquated.
In his monograph “Dynamic Programming,” Bellman [25] describes the principle
of optimality, which is central to dynamic programming: “An optimal policy has
the property that whatever the initial state and initial decisions are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from
the first decision.” Not exactly what is found in textbooks today. But then in those
days the focus was more on stochastic processes and not so much on combinatorial
optimization. The term “programming” is outdated as well, as it does not refer to
programming in a modern programming language. Instead, programming means
planning by filling in tables. The term “linear programming” derives in the same
way. Over the decades, dynamic programming has evolved and is now one of the
“killer” techniques in algorithmic design. And, of course, the laptop computer on
which this chapter was written is more powerful than anyone in Bellman’s days
could have imagined.

Today, the emphasis is on how to organize dynamic programming in a way that
makes it possible to solve massive problems (which – again – would have never
been considered in Bellman’s days) in reasonable time. The focus is on dynamic
programming speedup. Such speedup comes from carefully observing what values
are essential and need to be computed and which might be unnecessary. Keeping

Advanced Techniques for Dynamic Programming 43

proper look-up tables on the side can accomplish this sometimes. But there are many
situations where there are inherent monotonicity properties which can be exploited
to only calculate a fraction of what is necessary in a simple-minded approach.

The goal of this chapter is to briefly introduce dynamic programming, show
some of the diversity of problems that can be tackled efficiently with dynamic
programming, and – centrally – focus on the issue of dynamic programming
speedup. Clearly, the chapter does not cover all of dynamic programming,
but there is a section on recommended reading, Sect. 8, which covers some
ground.

The chapter is organized as follows: Sect. 2 starts with a simple introduction
to dynamic programming using a few standard examples, described more tersely
than in a textbook and augmented with a general few themes. A reader altogether
unfamiliar with dynamic programming might utilize some of the resources given in
Sect. 8.

Section 3 contains “open-ended dynamic programming,” where a process is
updated continuously. This is closely related to the theory of online optimization.
In online computation, an algorithm must make decisions without knowledge of
future inputs. Online problems occur naturally across the entire field of discrete
optimization, with applications in areas such as robotics, resource allocation in
operating systems, and network routing. Dynamic programming plays an important
role in this kind of optimization. Notably, work functions replace tables or matrices
used in offline optimization.

Section 4 contains an example from sorting. The intent of this section is twofold:
First, lesser-known dynamic programming techniques for sorting are highlighted.
Second, here is an example where a straightforward simple-minded implementation
might give an algorithm of cubic complexity or worse, and a more intricate
setup solves the problem in quadratic time, thus achieving substantial dynamic
programming speedup.

Section 5 gives an example from scheduling (a batching problem) to illustrate
important properties for dynamic programming speedup: the Monge property and
total monotonicity. Techniques exploiting these techniques are now standard, and
the reader might consult Sect. 8 to see how prolific such techniques are.

Speedup is based on two important and intricate algorithms: SMAWK and
LARSCH. Use of these is essential for many fast dynamic programming algorithms.
However, these algorithms are currently only accessible through the original
publications. Section 6 contains “ready to implement” descriptions of the SMAWK
and LARSCH algorithms.

Another type of speedup is based in the Knuth-Yao quadrangle inequality; this
dynamic programming speedup works for a large class of problems. Even though
both the SMAWK algorithm and the Knuth-Yao (KY) speedup use an implicit
quadrangle inequality in their associated matrices, on second glance, they seem
quite different from each other. Section 7 discusses the relation between these kinds
of speedup in greater detail.

Finally, Sect. 8 is a cross-reference list with other chapters, and Sect. 8 gives
concluding remarks.

44 W. Bein

2 A Few Standard Introductory Examples

As mentioned earlier, this section has a few introductory examples.

2.1 A Brief Introduction to Dynamic Programming: Fibonacci,
Pascal, and Making Change

Many problems can be solved recursively by dividing an instance into subinstances.
But a direct implementation of a recursion is often inefficient because subproblems
overlap and are recomputed numerous times. The calculation of the Fibonacci
numbers provides a simple example:

fn D
8
<

:

fn�1 C fn�2 if n > 1

1 if n D 1

0 n D 0:

(1)

Recursively, the Fibonacci numbers can be calculated in the following way:

function f ib.n/

if n D 0 or n D 1 return n

else return f ib.n� 1/C f ib.n � 2/.

This is extremely inefficient; many values will be recalculated; see Fig.1. Instead,
one could use an array and would simply fill in values from “left to right,” starting
with F0 and F1 and the using Eq. 1 to continue. This way every value is only
calculated once.

The Pascal triangle for calculating binomial coefficients provides a good example
for the use of tables in dynamic programming. Recall the definition of the binomial
coefficient:

n

k

!

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

n � 1

k � 1

!

C

n � 1

k

!

if 0 < k < n

1 if k D 0 or k D n

0 else:

(2)

Clearly, the coefficients can be calculated using the following recursive program:

function c.n; k/

if k D 0 or k D n return 1

else return c.n � 1; k � 1/C c.n � 1; k/.

Advanced Techniques for Dynamic Programming 45

F(3)

F(2)

F(1) F(0)

F(2)

F(4)

F(5)

F(3)

F(2)

F(1) F(0)

F(0)

Fig. 1 Recursive calculation
of the fifth Fibonacci number

But again this is inefficient, as terms are recalculated over and over. Indeed, since
the solution is ultimately made up of terms of value 1. the run time of this algorithm
is �.

�
n

k

�
/. This problem consists of overlapping subproblems, which often makes

it inefficient to use recursions directly. Instead, one can calculate the coefficients
bottom up using a table to store intermediate results. In the case of the binomial
coefficient, this is the Pascal triangle Fig. 2. With it the run time is ‚.nk/ with
space requirement ‚.k/ (as only two rows at a time need to be stored).

Most often dynamic programming is used for optimization problems. As an
example consider the problem of making change with the minimum number of
coins. Given are n denominations of value fd1; : : : dng, an unlimited supply of
these coins, and the problem is to make change for amount A. For example, if the
denominations are 1; 5; 10; 12, and A D 21, then the minimum number of coins
is 3. Note that the greedy algorithm uses 6 coins. What is important here is that
the principle of optimality holds: If optimal change for amount C involves making
change into amounts A and B , C D A C B , then change for A and B is also
optimal. More generally, the principle states that in an optimal sequence of decisions
or choices, each subsequence must also be optimal.

Let

C Œi; j � D minimum number of coins required to make change for amount j

using only coins of denomination f1; : : : ; ig,

where i D 1; : : : n and j D 1; : : : A. The principle of optimality implies the
following recurrence:

C Œi; j � D minfC Œi � 1; j �; 1C C Œi; j � di �g; (3)

where out-of-bounds values are set to1.
Just as before with Fibonacci and Pascal, one uses a table to calculate values

“bottom-up.” The table is initialized by setting all C Œi; 0� to 0. Then the table is
filled row by row using Eq. 3. An example is in Table 1.

46 W. Bein

3

2

1

0

0 1 2 3 k−1 k

0

1 1

1 2 1

1 3 3 1

n−1

n

.

.

.

. ..

c(n−1,k−1) c(n−1,k)

c(n,k)
+

Fig. 2 The Pascal triangle

Table 1 An instance of the change-making problem: There are four types of coins with
denominations d1 D 1; d2 D 5; d3 D 10, and d4 D 12. The amount is A D 21. The last
entry in the table gives the minimum number of coins, which is 3. Note that the greedy algorithm
uses six coins

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

d1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
d2 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5
d3 0 1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4 5 6 2 3
d4 0 1 2 3 4 1 2 3 4 5 1 2 1 2 3 2 3 2 3 4 2 3

2.2 Chained Matrix Multiplication Problem

Given is a sequence of matrices M1; : : : ; Mn to be multiplied. The dimensions are
d0 � d1; : : : dn�1 � dn, denoted by .d0; d1; : : : ; dn/, for short. The question is what
parenthesization gives the minimum number of multiplications. For example, given
three matrices, A; B; C , with dimensions .12; 5; 90; 2/, the calculation A.BC /

requires 5 � 90 � 2 multiplications to produce BC and then 12 � 5 � 2 to multiply
the result by A, for a total of 1,020. The order .AB/C is much worse: 7500

multiplications. For general n, exhaustive search is prohibitive for the following
reason: Let

T .n/ D number of ways to parenthesize a product of n matrices;

then

T .n/ D
n�1X

iD1

T .i/T .n� i/ (4)

with T .2/ D T .1/ D 1. The solution to recurrence 4 is

T .n/ D 1

n

2n � 2

n � 1

!

; (5)

which is �.4n=n2/.

Advanced Techniques for Dynamic Programming 47

Clearly the principle of optimality applies. If the parenthesization is optimal
for M D M1; : : : ; Mn and there are two parts A D M1; : : : ; Mk and B D
MkC1; : : : ; Mn such that M D AB , then the parenthesizations for A and B are
optimal. Let

M Œi; j � D optimal number of multiplications to compute Mi � � �Mj .

Thus, the recurrence is

M Œi; j � D min
i�k<j

fM Œi; k�CM Œk C 1; j �C di�1dkdj g for 1 � i < j � n; (6)

with M Œi; i � D 0.
The dynamic program fills a table with entries for i � j , starting with the main

diagonal, which is set to M Œi; i � D 0. The computation then progresses to M Œi; iC1�

and so forth until the element in the north-east corner M Œ1; n� is reached. In order
to be able to recover the solution, the index k which gives the minimum in 6 is also
stored. When the algorithm reaches .1; n/, this index gives the index of the first cut.
One then proceeds recursively on both sides to construct the actual parenthesization.
Figure 3 gives an example.

2.3 Shortest Paths

Consider a directed graph on nodes VDf1; : : : ; ng with distance matrix DŒi; j � � 0,
where DŒi; j � D 1 if there is no edge between node i and node j . The object
is to calculate the shortest path between each pair of nodes. To use dynamic
programming, one defines

DkŒi; j � D length of a shortest path from i to j which only uses nodes f1; : : : ; kg:

Clearly D0 D D. Starting with D0 one calculates D1; D2; : : : Dn using the
following recursion:

DkŒi; j � D minfDk�1Œi; j �; Dk�1Œi; k�CDk�1Œk; j �g: (7)

The algorithm, which computes this series of tables, is called the Floyd algo-
rithm. The reader is invited to follow the calculations in Table 2, which gives an
example for the graph in Fig. 4. The principle of optimality is at work here: If a path
from node i to node j is optimal and passes through node k, then the path from
i to k, as well as the path from k to j , is optimal. This is not true for the longest
simple path problem. (A simple path is a path without repeated nodes.) In graph of
Fig. 4, the longest simple path from node 2 to node 4 is 2; 1; 3; 4, but the path 2; 1

is not a longest simple path from 2 to 1. Indeed the problem “longest simple path”
is NP-hard. This does not contradict the fact that the Floyd algorithm works for

48 W. Bein

k=2
0

0

0

0

k=3

k=3

k=3k=1k=1

j−i =0 j−i=1 j−i=2 j−i=3

i=4

i=3

i=2

i=1

j=2 j=3 j=4j=1

209010205400

900

6300

1250

M [1, 1] = M [2, 2] = M [3, 3] = 0
M [1, 2] = M[1,1] + M[2,2] + 12 × 5 × 90 = 5400, store k = 1
M [2, 3] = M[2,2] + M[3,3] + 5 × 90 × 2 = 900, store k = 2
M [3, 4] = M [3, 3] + M [4, 4] + 90 × 2 × 35 = 6300, store k = 3
M [1, 3] = min{M[1,1] + M[2,3] + 12 × 5 × 2, M [1, 2] + M [3, 3] + 12 × 90 × 2}

= 1020, store k = 1
M [2, 4] = min{M [2, 2] + M [3, 4] + 5 × 90 × 35,M[2,3] + M[4,4] + 5 × 2 × 35}

= 1250, store k = 3
M [1, 4] = min{M [1, 1] + M [2, 4] + 12 × 5 × 35, M [1, 2] + M [3, 4] + 12 × 90 × 35,

M[1,3] + M[4,4] + 12 × 2 × 35}
= 2090, store k = 3

Optimal Parenthesization: (M1(M2M3)M4)

Fig. 3 An example for the dynamic program for the problem “chained matrix multiplication.” In
the example, n D 4 and the dimensions are .12; 5; 90; 2; 35/. The calculation proceeds by first
filling the table for indices with j � i D 0 (i.e., initialization of M Œi; i �) and then continues along
the diagonals j � i D 1; 2; 3. Calculations which give the minima for each cell in Eq. 6 are shown
in bold type, and the corresponding index k is stored. Once the value of M Œ1; 4� is known, then
the solution can be recovered using these indices: .M1M2M3/M4 can be concluded from the index
k D 3 in cell .1; 4/. Next, look up cell .1; 3/ to find the parenthesization M1.M2M3/

negative distances if there are no negative cycles. (Longest simple path cannot be
reduced to shortest path with negative distances because of the cycle restriction.)
The Floyd algorithm can be used to detect negative cycles by checking for negative
elements in the main diagonal of Dn.

The time complexity of Floyd algorithm is O.n3/. The calculation can be
performed by keeping only Dk�1 and Dk at each iteration, and thus the space

Advanced Techniques for Dynamic Programming 49

Table 2 The Floyd algorithm for the example of Fig.4. One proceeds from matrix Dk�1 to matrix
Dk by applying the rule DkŒi; j � D minfDk�1Œi; j �; Dk�1Œi; k�C Dk�1Œk; j �g for all i and j .
In the lower right corner of the table, the matrix of pointers P is shown. For example, the length
of a shortest path from node 3 to node 2 is 4 since D4Œ3; 2� D 4. To construct the path look up
P Œ3; 2� D 4 to find that the path goes through node 4. Recursively, look up P Œ3; 4� D P Œ4; 2� D 0.
Thus the shortest path is 3; 4; 2

D0 0 2 4 3 D1 0 2 4 3
3 0 1 3 3 0 7 3
5 1 0 3 5 7 0 3
1 1 4 0 1 1 4 0

D2 0 2 4 3 D3 0 2 4 3
3 0 7 3 3 0 7 3
5 7 0 3 5 7 0 3
4 1 4 0 4 1 4 0

D4 0 2 4 3 P 0 0 0 0
3 0 7 3 0 0 1 0
5 4 0 3 0 4 0 0
4 1 4 0 2 0 0 0

54 3 3 1

21
3

4

3

3 4

2Fig. 4 A directed graph with
distances

requirement is O.n2/. In order to retrieve the actual path (and not only its length), a
matrix P of pointers is used, where P Œi; j � contains the number of the last iteration
k that causes a change in DkŒi; j � (P Œi; j � is initialized to 0). To construct the path
between node i and j , look up P Œi; j � at the end. If P Œi; j � D 0, then there was
never a change for any Dk and the shortest path is the edge .i; j /, else the shortest
path goes through k. Recursively examine P Œi; k� and P Œk; j �.

The resulting algorithm is named after Floyd (It appeared as a one-page note
in the Communications of the ACM – together with other algorithms of the time.
Therefore, the antiquated title is “Algorithm 97: Shortest Path,” Floyd [55]).

Another algorithm of the time is the matrix algorithm, originally given in the
context of the transitive closures by Warshall. The paper is a short two-pager; see
Warshall [92].

50 W. Bein

Define

D.k/Œi; j � D length of a shortest path from i to j containing at most k edges

and set

D.0/ DD
8
<

:

0 if i D j

1 else:

Clearly by the principle of optimality,

D.k/Œi; j � D minfD.k�1/Œi; j �; min
1�`�n;`¤j

fD.k�1/Œi; `�CDŒl; j �gg (8)

D min
1�`�n

fD.k�1/Œi; `�CDŒl; j �g: (9)

The previous equation defines a matrix multiplication where the usual multipli-
cation means “+” and the operation “+” means “min.” Table 3 gives an example. In
other words,

D.k/ D Dk:

The solution to the shortest path problem is therefore obtained by calculating Dk

with the operators properly replaced. The run time of this algorithm is at first glance
O.n4/, but it can be improved by “repeated squaring”: Calculate
• D2 D D �D
• then D4 D D2 �D2

• then D8 D D4 �D4, and so forth
If n � 1 is not a power of 2, then Dn�1 can be obtained by going up to the
highest power of 2 smaller than .n � 1/ and multiplying the powers of the binary
representation of .n � 1/. As a result the number of matrix multiplications is only
logarithmic, giving a run time of O.n3 log n/.

2.4 The Knapsack Problem

This is a classical problem in combinatorial optimization: Given are n items
f1; : : : ; ng with weights wi > 0 and profits pi > 0, and there is a knapsack of
weight capacity W > 0. One is to fill the knapsack in such a way that the profit of
the items chosen is maximized while obeying that the total weight be less than W .
Let

P Œi; j � D maximum profit, which can be obtained if the

weight limit is j and only items from f1; : : : ig may be included,

Advanced Techniques for Dynamic Programming 51

Table 3 Example of the progression of the matrix algorithm for the all shortest path problem
given in Fig. 4. The operations in the “matrix multiplication” are not the usual “C” and “�” but
rather “min” and “C”

I � D D

0

B
B
@

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1

C
C
A �

0

B
B
@

0 2 4 3

3 0 1 3

5 1 0 3

1 1 4 0

1

C
C
A D

0

B
B
@

0 2 4 3

3 0 1 3

5 1 0 3

1 1 4 0

1

C
C
A D D.1/

D.1/ �D D

0

B
B
@

0 2 4 3

3 0 1 3

5 1 0 3

1 1 4 0

1

C
C
A �

0

B
B
@

0 2 4 3

3 0 1 3

5 1 0 3

1 1 4 0

1

C
C
AD

0

B
B
@

0 2 4 3

3 0 7 3

5 4 0 3

4 1 4 0

1

C
C
A D D.2/

D.2/ �D D

0

B
B
@

0 2 4 3

3 0 7 3

5 4 0 3

4 1 4 0

1

C
C
A �

0

B
B
@

0 2 4 3

3 0 1 3

5 1 0 3

1 1 4 0

1

C
C
A D

0

B
B
@

0 2 4 3

3 0 7 3

5 4 0 3

4 1 4 0

1

C
C
A D D.3/

where 1 � i � n and 0 � j � W . The following recursion is valid:

P Œi; j � D maxfP Œi � 1; j �; P Œi � 1; j � wi C pig; (10)

where P Œ0; j � D 0 and P Œi; j � D �1 when j < 0. Equation 10 says that for a new
element i one does not include it (left of max) or one does include it (right of max).
If one includes the element, then by the principle of optimality the problem with
capacity reduced by the weight of element i on the earlier elements f1; : : : ; i � 1g
must be optimal.

The table P Œi; j � can be filled in either row by row or column by
column fashion. The run time of this algorithm is ‚.nW /. Note that this
is not a polynomial algorithm for the knapsack problem. The input size is
O.n log maxiD1;:::;n wi C log W /, which means that ‚.nW / is exponential in the
input size. This is, of course, to be expected as the knapsack problem is NP-hard.
The algorithm’s complexity is called pseudo-polynomial. Many dynamic programs
give pseudo-polynomial algorithms.

Pseudo-polynomial, Strongly Polynomial. Let s be the input to some decision
problem …. Let jsjlog be the length of the input – that is, the length of the binary
encoding – and let jsjmax be the magnitude of the largest number in s. A problem
… is pseudo-polynomially solvable if there is an algorithm for … with run time
bounded by a polynomial function in jsjmax and jsjlog. A decision problem is a
number problem if there exists no polynomial p such that jsjmax is bounded by
p.jsjlog/ for all input s. (For example, the decision version of the knapsack problem
is a number problem.) Note that by these definitions it immediately follows that
an NP-complete non-number problem (such as HAMILTONIAN CIRCUIT, for

52 W. Bein

Table 4 An example of the pseudo-polynomial dynamic programming algorithm for the knapsack
problem on nine items. The weights are wŒ1� D 1; wŒ2� D 2; wŒ3� D 3; wŒ4� D 4; wŒ5� D
5; wŒ6� D 6; wŒ7� D 7; wŒ8� D 8; wŒ9� D 9 and the profits are pŒ1� D 1; pŒ2� D 2; pŒ3� D
5; pŒ4� D 10; pŒ5� D 15; pŒ6� D 16; pŒ7� D 21; pŒ8� D 22; pŒ9� D 35. The size of the knapsack
is 15. The table shows in position .i; j / the maximum profit, which can be obtained if the weight
limit is j and only items from f1; : : : ig may be included. Bold entries indicate that in Eq. 10 the
second choice is the maximizer, i.e., the new item is considered for inclusion. From the regular-
bold information the actual solution can be reconstructed: The last entry in the table is 50. Because
of the bold type face item i D 9 is included. Thus one looks w9 D 9 many cells to the left in the
previous row. The regular type face of 16 in cell .7; 6/ means that item 8 is not included, looking
at the cells above neither are items 7 and 6. Item 5 is included, next look-up cell .4; 1/ to see that
no more items are included. The solution is f5; 9g with a profit of 50

W 0 1 2 3 4 5 6 7 8 9 11 12 13 14 15

i=1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i=2 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3
i=3 0 1 2 5 6 7 8 8 8 8 8 8 8 8 8
i=4 0 1 2 5 10 11 12 15 16 17 18 18 18 18 18
i=5 0 1 2 5 10 15 16 17 20 25 26 27 30 31 32
i=6 0 1 2 5 10 15 16 17 20 25 26 31 32 33 36
i=7 0 1 2 5 10 15 16 21 22 25 26 31 36 37 38
i=8 0 1 2 5 10 15 16 21 22 25 26 31 36 37 38
i=9 0 1 2 5 10 15 16 21 22 35 36 37 40 45 50

example) cannot be solved by a pseudo-polynomial algorithm (unless P D NP).
For polynomial p let …p denote the subproblem which is obtained by restricting …

to instances with jsjmax � p.jsjlog/. Problem … is called strongly NP-complete if P
is in NPand there exists a polynomial p for which …p is NP-complete. It is easy
to see (Table 4):

Theorem 1 A strongly NP-complete problem cannot have a pseudo-polynomial
algorithm unless P D NP .

2.5 Binary Search Tress

The construction of optimal binary search trees is a classic optimization problem.
One is interested in constructing a search tree, in which elements can be looked up
as quickly as possible. The first dynamic program for this problem was given by
Gilbert and Moore [59] in the 1950s. More formally, given are n search keys with
known order Key1 < Key2 < � � � < Keyn. The input consists of 2nC1 probabilities
p1; : : : ; pn and q0; q1; : : : ; qn. The value of pl is the probability that a search is
for the value of Keyl ; such a search is called successful. The value of ql is the
probability that a search is for a value between Keyl and KeylC1 (set Key0 D �1

Advanced Techniques for Dynamic Programming 53

(7,9) (9,+∞)

72

4

(−∞, 2) (2,4) (4,7) 9

Fig. 5 A binary search tree with successful (round) and unsuccessful (rectangular) nodes

and KeynC1 D 1); such a search is called unsuccessful. Note that in the literature
the problem is sometimes presented with weights instead of probabilities, in that
case the pl and ql are not required to add up to 1.

The binary search tree constructed will have n internal nodes corresponding to
the successful searches, and nC1 leaves corresponding to the unsuccessful searches.
The depth of a node is the number of edges from the node to the root. Denote d.pl/

the depth of the internal node corresponding to pl and d.ql / the depth of the leaf
corresponding to ql . A successful search requires 1 C d.pl/ comparisons, and an
unsuccessful search requires d.ql / comparisons. See Fig.5. So, the expected number
of comparisons is

X

1�l�n

pl .1C d.pl//C
X

0�l�n

ql d.ql /: (11)

The goal is to construct an optimal binary search tree that minimizes the expected
number of comparisons carried out, which is (11).

Let Bi;j be the expected number of comparisons carried out in a optimal subtree
containing the keys KeyiC1 < Key2 < � � � < Keyj . Observing that in a search

the probability to search in the region between KeyiC1 and Keyj is
Pj

lDiC1 pl C
Pj

lDi ql it is clear that the following recurrence holds:

Bi;j D

8
<̂

:̂

0; if i D j I
jX

lDiC1

pl C
jX

lDi

ql C min
i<t�j

�
Bi;t�1 CBt;j

�
; if i < j;

(12)

where the cost of the optimal binary search tree is B0;n. Calculating Bi;j requires
O.j � i/ time, thus calculating all of the Bi;j requires O.n3/ time.

54 W. Bein

2.6 Pyramidal Tours for the Traveling Salesman Problem

In the traveling salesman problem one is given a set of n “cities” V D f1; : : : ; ng as
well as a distance matrix dŒi; j �. Find a permutation t (“the tour”), such that

f .t/ D d.t.n/; t.1//C
n�1X

iD1

d.t.i/; t.i C 1//

is minimized. This problem is well studied and it is known to be NP-hard. (A good
resource on the Traveling Salesman Problem is the “guided tour book” by Lawler,
Lenstra, Rinnoy Kan, and Shmoys [79]). A tour t is said to be pyramidal if, t is of
the form 1; i1; i2; i3; : : : n; j1; : : : ; jn�r�2, where 1 < i1 < i2 < i3 < : : : n and j1 >

j2 > j3 > : : : > jn�r�2. A pyramidal tour can be found by dynamic programming
in ‚.n2/. To this end, let HŒi; j � be the length of a shortest Hamiltonian path from
i to j subject to the condition that the path goes from i to 1 in descending order
followed by the rest in ascending order from 1 to j . The reader is encouraged to
verify that by the principle of optimality the following recursion holds:

HŒi; j � D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

HŒi; j � 1�C dŒj � 1; j � for i < j � 1;

mink<i fHŒi; k�C dŒk; j �g for i D j � 1;

HŒi � 1; j �C dŒi; i � 1� for i < j C 1;

mink<j fHŒk; j �C dŒj; k�g for i D j C 1:

(13)

Then the cost of shortest pyramidal tour is

minfHŒn; n � 1�C dŒn � 1; n�; HŒn � 1; n�C dŒn; n � 1�g:

A matrix d is Monge if for all i < i 0 and j < j 0, dŒi; j �C dŒi 0; j 0� � dŒi 0; j �C
dŒi; j 0�. If the matrix d is a Monge matrix then it is easy to see that there exists an
optimal tour, which is pyramidal.

3 Open-ended Dynamic Programming: Work Functions

Dynamic programs are useful in decision making for problems where new request
are constantly added, and updates need to be performed. The k-server problem,
originally given by Manasse, McGeoch, and Sleator [82], is defined as follows: one
is given k � 2 mobile servers which reside in a metric space M . A sequence of

Advanced Techniques for Dynamic Programming 55

y

x

z

x

y

zy

z

y

x

z

1
2

2y

x
z

y

x

z

x

y

x

x

y

z

Fig. 6 The two points x and
y are at distance 1 and a point
z is at distance 2 from x and
y. The request sequence is
xyxyz. The solution, i.e., the
positions of the servers for
each request, are circled. The
solution has a cost of 7, which
is not optimal since it is better
to move the server at point z
for the first and last request

requests is issued, where each request is specified by a point r 2 M . To “satisfy”
this request, one of the servers must be moved to r , at a cost equal to the distance
from its current location to r . (If a request is to a point that already has a server the
cost is zero.) The goal is to minimize the total service cost. An algorithm A for the
k-server problem computes a solution which determines which server is moved at
each step. Figure 6 gives a very simple example for the 2-server problem, i.e., the
server problem for k D 2 in a metric space with only three points. Interestingly,
a very similar metric space is powerful enough to model the noted “ski rental
problem”, see Karlin, Manasse, Rudolph, and Sleator [68] for details.

This problem can be solved by dynamic programming calculating work func-
tions, when the length of the request sequence and all the requests are known in
advance. This standard version of the problem is also called the offline version of
the k-server problem. Credit for introducing work functions goes to Larmore and
Chrobak [42].

Work functions provide information about the optimal cost of serving the past
request sequence. For a request sequence %, by !%.X/ one denotes the minimum
cost of serving % and ending in configuration X – an unordered k-tuples of points.
The function !% is called the work function after request sequence %. The notation !

is used to denote any work function !%, for some request sequence %. Immediately
from the definition of work functions it can be concluded that the optimal cost to
service % is opt.%/ D minX !%.X/.

For given %, the work function !% can be computed using dynamic programming.
Initially, !�.X/ D S0X , for each configuration X (� is the empty request sequence).
For a non-empty request sequence %, if r is the last request in %, write % D �r .

56 W. Bein

Then !% can be computed recursively as !% D !�^r , where “^” is the update
operator defined as follows:

!^r.X/ D minY3r f!.Y /C dist.Y; X/g (14)

Here dist.Y; X/ denotes the minimum-matching distance between X and Y . Note
that j!.X/ � !.Y /j � XY for any work function ! and any configurations X

and Y . This inequality is called the Lipschitz property. A set of configurations
S D fX1; X2; : : : g is said to support a work function ! if, for any configuration
Y , there exists some X 2 S such that !.Y / D !.X/ C dist.X; Y /. If ! is
supported by a finite set (which it usually is), then there is a unique minimal set
S which supports !, which is called the work function support of !. Note the
following: If r 2 X , then !^r.X/ D !.X/. If r … X , let Y be the configuration
that contains r and minimizes !.Y / C YX , and let x be the point in X that is
matched to r in the minimum matching between X and Y . Then !.Y / C YX D
!.Y /C rxCY.X �xC r/ � !.X �xC r/C rx. Thus the update formula Eq. 14
can be rewritten as !^r.X/ D minx2X f!.X � x C r/C rxg. Also note that in
calculating the functions !% one need only keep track of the value of the function at
their support. This is important as the number of configurations in the domain of !%

grows as requests grows. Figure 7 shows how to calculate an optimal solution, the
progression of !% and support for the example in Fig. 6.

In practice, requests might be given one at a time and the algorithm then has to
make a decision about which server to move before future requests are known. An
algorithm A is said to be online if its decisions are made without the knowledge
of future requests. It is unlikely that such an algorithm would achieve optimality.
Similar to approximation algorithms, the quality of the algorithm is measured by
comparing against the offline cost: A is C -competitive if the cost incurred by A to
service each request sequence % is at most C times the optimal (offline) service cost
for %, plus possibly an additive constant independent of %. The competitive ratio of A
is the smallest C for which A is C -competitive. The competitive ratio is frequently
used to study the performance of online algorithms for the k-server Problem, as well
as other optimization problems. The reader is referred to the book of Borodin and
El-Yaniv [30] for a comprehensive discussion of competitive analysis.

It is interesting to note that the work functions !% play a central role in
the algorithm with current best competitiveness for the k-server problem: Work
Function Algorithm. The Work Function Algorithm chooses its service of the
request sequence % as follows: Suppose that WFA is in configuration S , and that
the current work function is !. On request r , WFA chooses some x 2 S which
minimizes xrC!^r.S �xC r/, and moves the server from x to r . If there is more
than one choice which minimizes that quantity, the choice is arbitrary. WFA can
be seen as a “linear combination” of two greedy strategies. The first one, a short-
sighted greedy, minimizes the cost xr in the given step. The second, a retrospective
greedy, chooses the optimal configuration after r , that is, the configuration S�xCr

that minimizes !^r.S�xCr/. The short-sighted greedy strategy is not competitive
for any k. The retrospective greedy strategy is not competitive for k � 3, and its

Advanced Techniques for Dynamic Programming 57

!%.fy; zg/ !%.fx; zg/ !%.fx; yg/
initial !�: 0 1 2

request x !x : 2 1 2
request y !xy : 2 3 2
request x !xyx : 4 3 2
request y !xyxy : 4 4 2
request z !xyxyz: 4 4 6

1

2

2

x

z

z

y

x

z
y

z

x

y
z

x

z

x
x

y

x

y

x

y

y

z

y

y

y

0

2

1

2

2

2

 3 2

4

4

4

2

 3

1

2

4

4
6

Fig. 7 Calculating the optimal solution using dynamic programming for the example in Fig.6. The
work functions !% are shown in the figure as values adjacent to the corresponding pairs of points.
Equivalently, the work functions can be written into the traditional dynamic programming table
(top). The support is marked by ovals in the figure and is underlined in the table. The minimum
value of the last row is 4 – the optimal value

competitive ratio for k D 2 is at least 3. The reader might verify that the service
sequence depicted in Fig. 6 shows the steps of WFA for that example.

Manasse, McGeoch, and Sleator [82], have proved the following:

Theorem 2 No online algorithm for k servers has competitive ratio smaller than k

if a metric space has at least k C 1 points.

They also give the k-server conjecture which states that, for each k, there exists
an online algorithm for k servers which is k-competitive in any metric space. For
k > 2, this conjecture has been settled only in a number of special cases, including
trees and spaces with at most kC2 points. (cf. the work of Chrobak, Karloff, Payne,
and Vishwanathan [44], the work of Chrobak and Larmore [41] and the work of
Koutsoupias and Papadimitriou [72].) Koutsoupias and Papadimitriou have shown:

58 W. Bein

Theorem 3 The Work Function Algorithm is .2k � 1/-competitive for k servers in
arbitrary metric spaces.

Thus a wide gap remains. Even some simple-looking special cases remain open,
for example the 3-server problem on the circle, in the plane, or in 6-point spaces.
Chrobak and Larmore [42] (see also [43]) prove:

Theorem 4 The Work Function Algorithm is 2-competitive for k D 2.

Bein, Chrobak, and Larmore [15] show:

Theorem 5 The Work Function Algorithm is 3-competitive for k D 3 if the metric
space M is the Manhattan plane.

4 Intricate Dynamic Programming: Block Deletion in
Quadratic Time

Sorting problems under various operations have been studied extensively, including
work on sorting with prefix reversals, transpositions and block moves. This section
contains an example from this realm and shows that intricate setup of dynamic
programming can speed up dynamic programming schemes.

4.1 Preliminaries

Define a permutation of length n to be a list x D .x1; : : : ; xn/ consisting of the
integers f1; : : : ; ng where each number occurs exactly once. For any 1 � i � j � n

denote the sublist of x that starts at position i and ends with position j by xi:::j .
A list y is a subsequence of x if y is obtained from x by deleting any number of
elements. For example, .2; 3/ is a subsequence of .2; 4; 3; 1/, but not a sublist. Since
x has no duplicate symbols, a subsequence of x is uniquely characterized by its set
of items. By a slight abuse of notation, one identifies a subsequence with the set of
its items. Define the closure of a subsequence of x to be the smallest sublist of x

which contains it. For example, the closure of the subsequence .2; 3/ of .2; 4; 3; 1/

is the sublist .2; 4; 3/. If A and A0 are subsequences of a list x, say that A and A0
are separated if the closures of A and A0 are disjoint.

A block deletion sequence for a subsequence y of x consists of a sequence
A1; : : : ; Am of disjoint non-empty subsequences of y such that
1. for all i D 2; : : : ; m, Ai is a block in y �Si�1

uD1 Au, and
2. y �Sm

uD1 Au is a monotone increasing list.
For example, a minimum length block deletion sequence for the list .1; 4; 2; 5; 3/

consists of two steps. First delete the block .2/, obtaining .1; 4; 5; 3/, then delete the
block .4; 5/, obtaining the sorted list .1; 3/. Figure 8 shows another example of a
block deletion sequence. A complete block deletion sequence for a subsequence y

Advanced Techniques for Dynamic Programming 59

85 17460 3 2 9

85 1760 3 2 9

8

A2

A1

A3

A4

A5

5760 3 2 9

850 3 2 9

850 2 9

850 9

Fig. 8 A block deletion
sequence. There are five
steps: A1; : : : ; A5

of x consists of a block deletion sequence A1; : : : ; Am of y such that y �Sm
uD1 Au

is the empty list.

4.2 A Dynamic Program for Complete Block Deletion

Consider first the complete block deletion problem for all sublists of x, which will
be solved in quadratic time by dynamic programming. Once the O.n2/ answers
to this problem are obtained, the original block deletion problem can be solved in
quadratic time. The following three lemmas are used:

Lemma 1 If A1; : : : ; Am is a block deletion sequence for a sublist y of x, and
1 � u < v � m, then either Au and Av are separated, or Au is a subsequence of the
closure of Av.

Proof The closure of Au cannot contain any item of Av, since otherwise Au could
not be deleted before Av. If all items of Av are before Au or all items of Av are after
Au, then Au and Av are separated. If some items of Av are before Au and some items
are after Au, then Au is a subsequence of the closure of Av. �

Lemma 2 If A1; : : : ; At ; AtC1; : : : ; Am is a block deletion sequence for a sublist y

of x, and At and AtC1 are separated, then At and AtC1 may be transposed, i.e.,
A1; : : : ; AtC1; At ; : : : ; Am is a block deletion sequence for y.

Proof For any u, let yu D x�Sv<u Av. By definition, At is a block of yt , and AtC1

is a block of ytC1 D yt �At . Since At and AtC1 are separated, AtC1 is also a block
of yt . Thus, AtC1 can be deleted before At . �

Lemma 3 For any 1 � i � j � n, if there is a complete block deletion sequence
for xi:::j of length m, then there is a complete block deletion sequence for xi:::j of
length m such that xi is deleted in the last step.

60 W. Bein

Proof Let A1; : : : ; Am be a complete block deletion sequence of xi:::j . Suppose that
xi 2 At for some t < m. Since xi is deleted in the t th move of the sequence, all
deletions after that must involve blocks whose first symbol occurs to the right of xi

in x. That is, for any v > t , xi cannot be an item of the closure of Av, hence, by
Lemma 1, At and Av must be separated. By Lemma 2, one can transpose At with
Av for each v > t in turn, moving At to the end of the deletion sequence. �

Next is given a recurrence to compute the minimum length of a complete block
deletion sequence. This recurrence will be used in Algorithm 1 .

Theorem 6 Given a permutation x, let ti;j denote the minimum length of any
complete block deletion sequence for the sublist xi:::j . The values of ti;j can be
computed inductively by the following: Set ti;i D 1, ti;j D 0 for i > j , and for
i < j set

ti;j D
(

minf1C tiC1;j ; tiC1;`�1 C t`;j g; if 9 ` 2 fi C 1; : : : ; j g such that x` D xi C 1;

1C tiC1;j ; otherwise.

(15)

Proof The proof is by induction on j � i to show that ti;j is computed correctly.
The base case is trivial, namely ti;i D 1, because it takes one block deletion to delete
a sublist of length 1.

For the inductive step, assume that ti;j is the length of a minimum block deletion
sequence for xi:::j when j � i < k. For j � i D k, let m D ti;j and let A1; : : : ; Am

be a corresponding minimum length complete block deletion sequence of xi:::j . By
Lemma 3, one can insist that xi D a is an item in Am. Consider now two cases
based on whether there is an ` with i < ` � j such that x` D a C 1 (The reader
might also consult Fig. 9).

If the element a C 1 does not occur in the interval fi C 1; : : : ; j g, then the
element a is not part of a block in this interval and must be deleted by itself. So,
A1; : : : ; Am�1 is a complete block deletion sequence of xiC1:::j . Note that it must
be of optimum length, for if B1; : : : ; Br were a shorter complete block deletion
sequence of xiC1:::j , then B1; : : : ; Br ; fag would be shorter than A1; : : : ; Am. Thus,
as j � .i C 1/ D k � 1, by the induction hypothesis tiC1;j D m � 1. So
ti;j D 1C tiC1;j , which is optimum.

Now for the case that the element x` D a C 1 does occur in the interval fi C
1; : : : ; j g. This means that a C 1 and possibly other larger values can be included
in Am when element a is deleted. If element a C 1 is not included in Am then the
same argument used in the previous paragraph shows that m D 1C tiC1;j . If on the
other hand aC 1 is included in Am, then by Lemma 1, for any t; .1 � t � m/, At is
either completely before or completely after the element aC 1, since Am is deleted
after At . By Lemma 2, one can permute the indices so that, for some u < m,
1. if t � u, then At is a subsequence of xiC1:::`�1, and
2. if u < t � m, then At is a subsequence of x`C1:::j .

Advanced Techniques for Dynamic Programming 61

Fig. 9 The recurrence for the ti;j values

Consequently, A1; : : : ; Au is a block deletion sequence for xiC1:::`�1 and
AuC1; : : : ; Am � fag is a block deletion sequence for x`C1:::j . Both of these
block deletion sequences must be optimum for their respective intervals. That
is, for example, if B1; : : : ; Br were a shorter complete block deletion sequence
for xiC1:::`�1, then B1; : : : Br ; AuC1; : : : Am would be a complete block deletion
sequence for xi:::j , contradicting the minimality of m. By the induction hypothesis,
as ` � 1 � .i C 1/ < j � i and j � ` < j � i , it follows that tiC1;`�1 D u and
t`;j D m � u, so ti;j D tiC1;`�1 C t`;j D uC .m � u/ D m. �

The resulting dynamic programming algorithm BLOCKDELETION, which is
derived from the recurrence of Theorem 6, is shown below.

Next the analysis of the run time of algorithm BLOCKDELETION is considered.
Let z D .z1; : : : ; zn/ be the inverse permutation of x, i.e., xi D k if and only if
zk D i . Note that z can be computed in O.n/ preprocessing time.

Theorem 7 Algorithm BLOCKDELETION has run time O.n2/.

62 W. Bein

Algorithm 1 BLOCKDELETION(X)
Let n be the number of elements in x

for i 1 to n do
t Œi; i � 1

for k 2 to n do
for i 1 to n� k C 1 do

Let x` xi C 1; j i C k � 1

if i < ` � j

then t Œi; j � minf.1C t Œi C 1; j �/; .t Œi C 1; `� 1�C t Œ`; j �/g
else t Œi; j � 1C t Œi C 1; j �

return

Proof To prove the theorem one shows that if tu;v are already known for all i < u �
v � j , then ti;j can be computed in O.1/ time. Let m D ti;j for i < j and let At

be the subsequence of xi:::j that is deleted at step t of the complete block deletion
sequence of xi:::j of length m. By Lemma 3, assume that xi 2 Am. If jAmj > 1,
the index ` D zxiC1, i.e., x` D 1 C xi , can be found in O.1/ time, since one has
already spent O.n/ preprocessing time to compute the array z. The recurrence thus
takes O.1/ time to execute for each i; j . �

Note that to obtain the actual sequence of steps in the optimum complete block
deletion sequence one can store appropriate pointers as the ti;j are computed.

4.3 Computing Block Deletion

The reader is reminded that for the block deletion problem one needs to find
the minimum length sequence of block deletions to transform a permutation into
a monotone increasing list. Next it is shown how one obtains a solution to the
block deletion problem for x in O.n2/-time given that all ti;j are known for
1 � i � j � n. Define a weighted acyclic directed graph G with one node for
each i 2 f0; : : : ; nC 1g. There is an edge from i to j if and only if i < j and
xi < xj , and the weight of that edge is tiC1;j�1. Simply observe that there is a path
h0; i1; i2; : : : ; ik; nC 1i in G exactly when xi1 ; : : : xik is a monotone increasing list.
Furthermore the weight of the edge hi`; i`C1i gives the minimum number of block
deletions necessary to delete elements between position i` and i`C1 in x. Thus if
there is a block deletion sequence of x of length m, there must be a path from 0 to
nC 1 in G of weight m, and vice-versa.

Using standard dynamic programming, a minimum weight path from 0 to nC 1

can be found in O.n2/ time. Let 0 D i0 < i1 < � � � < i` D nC1 be such a minimum
weight path, and let w D P`

uD1 tiu�1C1;iu�1 be the weight of that minimum path.
Since every deletion is a block deletion, the entire list can be deleted to a monotone
list in w block deletions. Thus it follows:

Advanced Techniques for Dynamic Programming 63

66

5 147

J 4J 5J 1J 2J 3

5 10 14

J 1 J 5 J 3 J 4 J 2 72

Fig. 10 A batching example. Shown are two feasible schedules for a 5-job problem where
processing times are p1 D 3; p2 D 1; p3 D 4; p4 D 2; p5 D 1 and the weights are
w1 D w4 D w5 D 1 and w2 D w3 D 2. The encircled values give the sum of weighted completion
times of the depicted schedules

Theorem 8 The block deletion problem can be solved in time O.n2/.

5 Total Monotonicity and Batch Scheduling

Although dynamic programming has been around for decades there have been
more recent techniques for making dynamic programming more efficient. This
section describes an example from scheduling, where such a technique is applied.
Before the technique is shown, the simple traditional dynamic programming for the
scheduling problem is given and then the dynamic programming speedup technique
is described.

5.1 The Problem 1js � batchj P
wi Ci

Consider the batching problem where a set of jobs J D fJi g with processing times
pi > 0 and weights wi � 0, i D 1; : : : ; n, must be scheduled on a single machine,
and where J must be partitioned into batches B1; : : : ;Br . All jobs in the same batch
are run jointly and each job’s completion time is defined to be the completion time of
its batch. One assumes that when a batch is scheduled it requires a setup time s D 1.
The goal is to find a schedule that minimizes the sum of completion times

P
wi Ci ,

where Ci denotes the completion time of Ji in a given schedule. Given a sequence
of jobs, a batching algorithm must assign every job Ji to a batch. More formally, a
feasible solution is an assignment of each job Ji to the mth

i batch, i 2 f1; : : : ; ng
(Fig. 10).

The problem considered has the jobs executed sequentially, thus the problem
is more precisely referred to as the s-batch problem. There is a different version
of the problem not studied here, where the jobs of a batch are executed in
parallel, known as the p-batch problem. In that case, the length of a batch is the
maximum of the processing times of its jobs. The s-batch is also denoted in ˛jˇj�
notation as the 1js-batchjPwi Ci problem. Brucker and Albers [6] showed that the

64 W. Bein

51J 1 J 2 J 3 J 4 J 5

4 6 11 14 16

60

12

J 5J 4J 3J 2J 1

48

5 10 14

J 1 J 2 J 3 J 4 J 5

Fig. 11 List batching. Shown are three schedules for a 5-job problem where all weights are 1 and
the processing requirements are p1 = 3, p2 = 1, p3 = 4, p4 = 2, p1 = 1. The encircled values give
the sum of weighted completion times of the depicted schedules

1js-batchjPwi Ci problem is NP-hard in the strong sense by giving a reduction
from 3-PARTITION.

There is a large body of work on dynamic programming and batching; see the
work of Baptiste [12], Baptiste and Jouglet [13], Brucker, Gladky, Hoogeveen,
Kovalyov, Potts Tautenhahn, and van de Velde [36], Brucker, Kovalyov, Shafransky,
and Werner [37], and Hoogeveen and Vestjens [64], as well as the scheduling
text book by Peter Brucker [33]. Batching has wide application in manufacturing
(see e.g., [34, 85, 98]), decision management (see, e.g., [74]), and scheduling in
information technology (see e.g., [46]). More recent work on online batching is
related to the TCP (Transmission Control Protocol) acknowledgment problem (see
[20, 49, 67]).

5.2 List Batching

A much easier version of the problem is the list version of the problem where the
order of the jobs is given, i.e., mi � mj if i < j . An example is given in Fig. 11.

Assume that the jobs are 1; : : : ; n and are given in this order. One can then
reduce the list batching problem to a shortest path problem in the following manner:
Construct a weighted directed acyclic graph G with nodes i D 1; : : : ; n (i.e., one
node for each job) and add a dummy node 0. There is an edge .i; j / if and only if
i < j . (See Fig. 12 for a schematic.) Let edge costs ci;j for i < j be defined as

ci;j D

nX

`DiC1

w`

!

s C
jX

`D1

p`

!

: (16)

Advanced Techniques for Dynamic Programming 65

Job 1 Job 3 Job 4

Job 1 Job 3 Job 4Job 2 Job 5

Job 2 Job 5

cij

Fig. 12 Reduction of the list batching problem to a path problem

It is easily seen (see [6] for details) that the cost of path < 0; i1; i2; : : : ; ik; n >

gives the
P

Ciwi value of the schedule which batches at each job i1; i2; : : : ; ik.
Conversely, any batching with cost A corresponds to a path in G with with path
length A.

A shortest path can be computed in time O.n2/ using the following dynamic
program:
Let

EŒ`� D cost of the shortest path from 0 to `;

then
EŒ`� D min

0�k<`
fEŒk�C ck;lg with EŒ0� D 0; (17)

which results in a table, in which elements can be computed row by row (see
Fig. 13).

In other words, the dynamic program computes the row minima of the n � n

matrix E , where

EŒ`; k� D
�

EŒk�C cŒk; `� if ` < k

1 else
(18)

with ` D 1; : : : n and k D 0; : : : ; n � 1.
As it turns out it is not necessary to calculate all entries of E to calculate the

optimal solution. Surprisingly, only O.n/ have to be looked up throughout the
entire calculation. The reason that this is possible is that E is a matrix with special
properties discussed next.

66 W. Bein

Row 1 c[0,1]+E[0]

c[0,2]+E[0] c[1,2]+E[1]Row 2

Row 3 c[0,3]+E[0] c[1,3]+E[1] c[2,3]+E[3]

Row 4 c[0,4]+E[0] c[1,4]+E[1] c[2,4]+E[2] c[3,4]+E[4]
E[4]

E[3]

E[2]

E[1]

min

min

min

min

Fig. 13 Dynamic programming tableau

5.3 The Monge Property and Total Monotonicity

Definition 1 A matrix A is Monge if for all i < i 0 and j < j 0,

AŒi; j �C AŒi 0; j 0� � AŒi 0; j �C AŒi; j 0�: (19)

Definition 2 A 2 � 2 matrix is monotone if the rightmost minimum of the upper
row is not to the right of the rightmost minimum of the lower row. More formally,�

a b

c d

�

is monotone if b � a implies that d � c.

Definition 3 A matrix A is called totally monotone if all 2 � 2 dimensional
submatrices are monotone.

Observation 1 Every Monge matrix is totally monotone.

The reader is referred to Fig. 14. Monge matrices occur routinely. For example
in the batching to shortest path reduction, the cost matrix C is a Monge matrix:

Lemma 4 The matrix C D .ci;j / defined in (16) is Monge for all choices
of pi ; wi � 0. Furthermore values can be queried in O.1/ time after linear
preprocessing.

Proof Let Wi DPi
�D1 w� and Pi DPi

�D1 p� be the partial sum of the pi and wi

values. Then
cŒi; j � D ci;j D .Wn �Wi/.s C Pj � Pi /

Advanced Techniques for Dynamic Programming 67

j�

i�

Aii� + Ajj� £ Ai�j + Aj�i

>

<=

j

i

Fig. 14 Monge and
monotonicity. Top left the
Monge property is shown,
which prohibits the situation
top right. Thus row minima
veer to the right (bottom
figure)

For i < i 0 and j < j 0

cŒi; j �C cŒi 0; j 0� � cŒi 0; j � � cŒi; j 0� (20)

D .Pj 0 � Pj /.Wi 0 �Wi/ (21)

� 0: (22)

Also, notice that these values can be queried in O.1/ time after linear preprocessing
by setting up arrays of partial sums for Wi and Pi in linear time. �

Furthermore, the matrix E is also a Monge matrix:

Lemma 5 The matrix E D .E`;k/ defined in (18) is Monge.

Proof Monge is preserved under addition and taking the minimum. �

Computing the row minima of a Monge (or totally monotone) matrix can be
done trivially in O.n log n/, cf. Fig.15. A complex recursive procedure by Agarwal,
Klawe, Moran, Shor, and Wilber [3] known as the SMAWK algorithm (the name
was derived using the initials of authors of the original paper in which the algorithm
was introduced), which has linear run time.

Note that the dynamic program of Fig. 13 is essentially used to calculate the
row minima of E – a Monge matrix. However, the trivial O.n log n/ cannot be
used here since that algorithm requires all elements of E to be available offline,

68 W. Bein

Row Minimum

min

n
2

n
2

Fig. 15 Calculating all row
minima of a Monge matrix.
The algorithm finds the
minimum of the middle row
in linear time and then
recurses on the upper left and
lower right parts of the matrix

i.e., before the computation begins. Instead, there is a protocol by which each
element can be queried: Once the minimum of row 1 is known, then any element
in column 1 can be generated in constant time; once the minimum of row 2 is
known then any element of row 1 and 2 are “knowable”; and so forth. (See also
Fig. 16.)

More formally the protocol is as follows:
1. For each row index ` of E , there is a column index �` such that for k > �`,

E`;k D1. Furthermore, �` � �`C1.
2. If k � �`, then EŒ`; k� can be evaluated in O.1/ time provided that the row

minima of the first ` rows are already known.
3. E is a totally monotone matrix.

Larmore and Schieber [77] have developed an algorithm that generalizes the
SMAWK to run in linear time in this case as well. Their algorithm is also known
as the LARSCH algorithm – again, as with the SMAWK algorithm, the name
was derived using initials of authors of the original paper in which the algorithm
was introduced in Larmore and Schieber [77]. Both SMAWK and LARSCH are
important in dynamic programming speedup and are explained in the next section.

6 The SMAWK and LARSCH Algorithm

This section gives “ready to implement” descriptions of the SMAWK and LARSCH
algorithms mentioned in the previous section.

6.1 The Matrix Searching Problem

The matrix searching problem is the problem of finding all row minima of a given
matrix M . If n; m are the number of rows columns, respectively, of M , the problem
clearly takes ‚.nm/ time in the worst case. However, if M is totally monotone the
problem can be solved in O.nCm/ time using the SMAWK algorithm [3].

Advanced Techniques for Dynamic Programming 69

Row 1 c[0,1]+E[0]

c[0,2]+E[0]Row 2

Row 3 c[0,3]+E[0] c[1,3]+E[1]

c[1,2]+E[1]

c[2,3]+E[3]

Row 4

Column 0 Column 1 Column 2

c[0,4]+E[0] c[1,4]+E[1] c[2,4]+E[2] c[3,4]+E[4]
E[4]

E[3]

E[2]

E[1]

Fig. 16 The “online” protocol of the tableau. Note that once the minimum of row 4 is known,
column 4 is “knowable”

SMAWK is recursive, but uses two kinds of recursion, called INTERPOLATE
and REDUCE, which are described in the following. Let 1 � J.i/ � m be the index
of the minimum element of the i th row.1 Since M is totally monotone, J.i/ � J.k/

for any i < k.
1. For small cases, SMAWK uses a trivial algorithm. If m D 1, the problem is

trivial. If n D 1, simply use linear search.
2. If n � 2, then INTERPOLATE can be used. Simply let M 0 be the bn=2c � m

submatrix of M consisting of all even indexed rows of M . Recursively, find all
row minima of M 0, and then use linear search to find the remaining minima of
M in O.nCm/ time.

3. If m > n, then REDUCE can be used. The set fJ.i/g clearly has cardinality at
most n. REDUCE selects a subset of the columns of M which has cardinality
at most n, and which includes Column J.i/ for all 1 � i � n. Let M 0 be
the submatrix of M consisting of all the columns selected by REDUCE. Then,
recursively, find all row minima of M 0. These will exactly be the row minima of
M . The time required to select the columns of M 0 is O.nCm/.

1Use the leftmost rule to break ties.

70 W. Bein

SMAWK then operates by alternating the two kinds of recursion. If the initial
matrix is n � n, then INTERPOLATE reduces to the problem on a matrix of size
roughly n=2 � n, and then REDUCE reduces to the problem on a matrix of size
roughly n=2 � n=2, and so forth.

Time Complexity
Let T .n/ be the time required by SMAWK to find all row minima of an n � n

totally monotone matrix. Applying both INTERPOLATE and REDUCE, obtain the
recurrence

T .n/ D O.n/C T .n=2/

and thus T .n/ D O.n/. By a slight generalization of the recurrence, one can show
that SMAWK solves the problem for an n �m matrix in O.nCm/ time.

INTERPOLATE is explained using the code below.
Code for INTERPOLATE

1: fM is an n �m totally monotone matrix, where m � n.g
2: if n D 1 then
3: J.1/ D 1

4: else
5: Let M 0 be the matrix consisting of the even indexed rows of M .
6: Obtain J.i/ for all even i by a recursive call to REDUCE on M 0.
7: for all odd i in the range 1 to n do
8: if i D n then
9: Find J.n/ 2 ŒJ.n � 1/; n� by linear search.

10: else
11: Find J.i/ 2 ŒJ.i � 1/; J.i C 1� by linear search.
12: end if
13: end for
14: end if
The total number of comparisons needed to find the minima of all odd rows is at
most n � 1, as illustrated in Fig. 17 below.

Now for REDUCE. The procedure REDUCE operates by maintaining a stack,
where each item on the stack is a column (actually, a column index). Initially the
stack is empty, and columns are pushed onto the stack one at a time, starting with
Column 1. The capacity of the stack is n, the number of rows.

But before any given column is pushed onto the stack, any number (zero or
more) of earlier columns are popped off the stack. A column is popped if it is
determined that it is dominated, which implies that none of its entries can be the
minimum of any row. In some cases, if the stack is full, a new column will not be
pushed.

At the end, those columns which remain on the stack form the matrix M 0.

Dominance
There is a loop invariant, namely that if the stack size is at least i , and if SŒi � D j ,
then all entries of Column j above Row i are known to be useless, i.e., will

Advanced Techniques for Dynamic Programming 71

Fig. 17 INTERPOLATE.
M 0 consists of the hatched
rows, and the minima of those
rows are indicated by black
dots. By the monotonicity
property of J , only search the
interval indicated in black to
find the minimum of any odd
numbered row

not be the minima of any row. Formally, M Œi 0; SŒi � 1�� � M Œi 0; j � for all
1 � i 0 < i .

Suppose that Column k is the next column to be possibly pushed onto the stack.
If the stack is empty, then SŒ1� k, and one is done. Otherwise, it must be checked
to see whether the top column in the stack is dominated. Let i be the current size of
the stack, and let SŒi � D k. Then, necessarily, i � j < k. Column j is dominated
if M Œi; k� < M Œi; j �. The reason is that M Œi 0; j � � M Œi 0; SŒi � 1�� for any i 0 < i

by the loop invariant, and that M Œi 0; j � < M Œi 0; k� for all i 0 � i by monotonicity.
If the stack is popped, then the new top is tested for being dominated. This

continues until the test fails. If the stack size is currently less than n, k is pushed
onto the stack; otherwise, Column k is useless and is discarded.

Code for REDUCE
1: fM is an n �m totally monotone matrix.g
2: top 0 fInitialize the stack to emptyg
3: for j from 1 to m do
4: while top > 0 and M Œtop; j � < M Œtop; SŒtop�� do
5: top top � 1 fPop the stack.g
6: end while
7: if top < n then
8: top topC 1 and then SŒtop� j fPush j onto the stack.g
9: end if

10: end for
11: Call INTERPOLATE on M 0, consisting of columns remaining on the stack.

The total number of comparisons needed to execute REDUCE (other than the
recursive call) is at most 2m. One see this using an amortization argument. Each
column is given two credits initially. When a column is pushed onto the stack, it
spends one credit, and when it is popped off the stack it spends one credit. Each
of those two events requires at most one comparison. Thus, the total number of
comparisons is at most 2m.

72 W. Bein

Fig. 18 REDUCE. M 0

consists of the hatched
columns. All row minima,
indicated by black dots, lie
within those columns,
although possibly not all
columns contain minima

Figure 18 shows an example of an 8 � 16 matrix M , where the shaded columns
survive to form M 0.

6.2 The Online Matrix Searching Problem

Define an almost lower triangular matrix to be matrix M of n rows, numbered
1 : : : n, and m columns such that the length of the rows increases as n increases.
More formally, let the columns be numbered 0 : : : m � 1. Then there must exist n

row lengths, 1 � `Œ1� � `Œ2� � � � � � `Œn� D m, such that M Œi; j � is defined if and
only if 1 � i � n and 0 � j < `Œi �. If `Œi � D i for all i , then M is a standard lower
triangular matrix.

Given an almost lower triangular matrix, let J.i/ be the column index of the
minimum entry in the i th row of M . (Ties are broken arbitrarily). The online matrix
search problem is the problem of finding all row minima of M , with the condition
that a given entry M Œi; j � is available if and only if J.k/ has been computed for
every k such that `Œk� < j . For example, if M is a standard lower triangular matrix,
M Œi; j � is available if and only if J Œk� has been computed for all k � j . Note that
M Œi; 0� is available initially.

Assume that the computation is done by a process B which is in communication
with a supervisor A. The online computation then proceeds as follows.
• A grants permission for B to see Column 0.
• B reports J Œ1� (which is certainly 0) to A.
• A grants permission for B to see Column 1.
• B reports J Œ2� to A.
• A grants permission for B to see Column 1.
• B reports J Œ3� to A.
• etc.

Note that B is unable to compute J.i/ until it has seen Columns 0 through i � 1,
since the minimum of Row i could be in any of those columns. Conversely, one must
have computed J.1/ through J.i � 1/ in order to be allowed to see those columns.
Thus, the order of the events in the above computation is strict.

Advanced Techniques for Dynamic Programming 73

6.3 Algorithm LARSCH

In general, it takes O.nm/ time to solve the online matrix search problem. However,
if M is totally monotone, the values of J are monotone increasing, and the online
matrix search problem can be solved in O.nCm/ time by using an online algorithm
LARSCH, which is the online version of SMAWK, with some adaptations.

Let M be the input matrix. LARSCH works using a chain of processes, each of
which is in communication with its supervisor, the process above it in the chain.
The supervisor of the top process is presumably an application program. Refer to
the process below a process as its child.

Each process in the chain works an instance of the online matrix searching
problem. The top process works the instance given by the application. Each process
reports results interleaved with messages received from its supervisor.

Each process P works the problem on a strictly monotone almost lower
triangular matrix MP , which is a submatrix of M . If Q is the child of P , then
P creates a submatrix MQ of MP and passes that submatrix to Q. Of course, P

never passes the entries of the matrix to Q; rather, it tells Q which entries of M it
is allowed to see. For clarity assume that each process uses its own local row and
column indices, but is aware of the global indices of each entry. For example, in
example calculation in Table 5, M5Œ3; 2� DM Œ15; 11�.

Alternating Types.
In the following detailed description of LARSCH, assume that the initial matrix M

is standard lower triangular. (The algorithm can easily be generalized to cover other
cases.)

Let P0; P1; : : : Ph, h D 2.blog2.nC 1/c � 1/, be the processes, where PtC1 is
the child of Pt . The processes are of alternating types. If t is even, say that Pt has
standard type, while if t is odd, say that Pt has stretched type.

Let Mt be the submatrix of M visible to Pt . M0 D M . If t is odd, then Mt has
nt D

�
2�t=2

�
n � 2t=2 � 1

�˘
rows and mt D 2nt columns, and the length of its i th

row is 2i . If t � 2 is even, the Mt has nt D nt�1 rows and mt D nt columns, and
the length of its i th row is i .

The choice of MtC1 as a submatrix of Mt is illustrated below. If t is even,
then the rows of MtC1 are rows 3; 5; 7; : : :

�
n�1

2

˘
of Mt , ie. all rows of odd

index other than 1. Row i of MtC1 consists of all but the last entry of Row
2i C 1 of Mt .

If t is odd, then MtC1 has the same number of rows as Mt , but only half the
columns. Since there are nt rows in Mt , the number of possible columns of Mt

which contain values of J cannot exceed nt . The REDUCE procedure of LARSCH
chooses exactly nt columns of Mt in a way that makes certain that all columns which
contain row minima of Mt are chosen. The figure below illustrates one possible
choice (Fig. 19). The shaded entries are passed to MtC1. Note that not every entry
of a selected column is part of MtC1.

74 W. Bein

Table 5 LARSCH algorithm example: INTERPOLATE and REDUCE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 32
2 31 48
3 10 15 21
4 5 9 14 16
5 19 23 27 27 40
6 35 39 42 42 52 60
7 27 31 33 33 41 47 51
8 22 26 27 26 34 39 41 39
9 33 37 37 36 44 48 47 44 54
10 18 22 21 20 28 31 30 27 36 41
11 41 45 43 42 50 52 51 47 55 57 46
12 30 33 30 28 35 37 36 32 40 42 34 34
13 48 50 46 43 49 51 50 46 53 55 44 42 47
14 60 62 58 55 61 62 61 54 60 62 53 49 53 48
15 54 56 52 48 53 53 52 46 52 53 42 38 42 37 41
16 40 41 36 32 37 36 34 28 33 34 23 19 22 14 18 19
17 69 69 64 60 64 62 59 53 57 58 47 43 45 39 43 38 35
18 90 89 84 79 81 77 83 76 73 72 61 57 59 53 56 51 45 48
19 78 77 71 66 68 64 60 52 54 53 42 38 39 33 35 30 22 24 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
3 10 15
5 19 23 27 27
7 27 31 33 33 41 47
9 33 37 37 36 44 48 47 44
11 41 45 43 42 50 52 51 47 55 57
13 48 50 46 43 49 51 50 46 53 55 44 42
15 54 56 52 48 53 53 52 46 52 53 42 38 42 37
17 69 69 64 60 64 62 59 53 57 58 47 43 45 39 43 38
19 78 77 71 66 68 64 60 52 54 53 42 38 39 33 35 30 22 24

0 1 2 3 7 11 13 15 16
3 10
5 19 23
7 27 31 33
9 33 37 37 36
11 41 45 43 42 47
13 48 50 46 43 46 42
15 54 56 52 48 46 38 37
17 69 69 64 60 53 43 39 38
19 78 77 71 66 52 38 33 30 22

Advanced Techniques for Dynamic Programming 75

Fig. 19 Shaded entries of Mt indicate the submatrix MtC1 passed to the child process. Left: odd t .
Right: even t

6.4 Standard Type Process: Pt for t Even (INTERPOLATE)

Code for a Process of Standard Type: Pt for t Even.
1: fMatrix Mt with nt rows and nt columnsg
2: for i from 1 to nt do
3: Receive permission to view Column i � 1 from supervisor.
4: if i D 1 then
5: J.1/ 0

6: else if i is even and i < nt then
7: Grant permission to child to view Columns i � 2 and i � 1.
8: Receive J Partial from child.
9: fMin of all entries but last of Row i C 1 is in Column J Partial.g

10: Find J.i/ 2 ŒJ.i � 1/; J Partial� by linear search.
11: else if i is even and i D nt then
12: Find J.nt / 2 ŒJ.i � 1/; nt � 1� by linear search.
13: else[i � 3 is odd]
14: if Mt Œi; i � 1� < MtŒi; J Partial� then
15: J.i/ i � 1

16: else
17: J.i/ J Partial
18: end if
19: end if
20: Send J.i/ to supervisor. fMin of Row i is in Column J.i/g
21: end for

6.5 Standard Type Process: Pt for t Odd (REDUCE)

A stack called the column stack is maintained. Let top be the number of items (which
are column indices) stored in the stack, and let SŒi � be the i th entry (counting from
the bottom) of the stack. That is, SŒi � is defined for all 1 � i � top.

76 W. Bein

Each time process Pt is able to view a new column, if the column stack is not
empty, it pops all columns which are dominated by the new column off the stack, and
then pushes the new column. The domination rule is that Column SŒi � is dominated
by the new column, say Column j , if MtŒi; j � < Mt Œi; SŒi ��. Of course, it is possible
that j � 2i , in which case Mt Œi; j � is taken to be infinity.

Code for a Process of Stretched Type: Pt for t Odd.
1: fMatrix Mt with nt rows and 2nt columnsg
2: top 0 fInitialize the column stack to emptyg
3: for i from 1 to nt do
4: Receive permission to view Columns 2i � 2 and 2i � 1 from supervisor.
5: Pop all columns dominated by Column 2i � 2 from column stack.
6: Push Column 2i � 2 onto column stack.
7: Pop all columns dominated by Column 2i � 1 from column stack.
8: Push Column 2i � 1 onto column stack.
9: Grant permission to child to view Column SŒi �.

10: fThe i th column on the stack, which will become Column i � 1 of MtC1g
11: Receive J.i/ from child. fMin of Row i is in Column J.i/g
12: Send J.i/ to supervisor.
13: end for

How may a new column possibly dominate existing columns on the column
stack? Lines 2, 3, and 4 of the code below are the detail of Line 5 and Line 7 of
the code above, while Lines 5 and 6 are the detail of Line 6 and Line 8 of the code
above.

Code for Popping and Pushing the Column Stack.
1: fColumn j is the new columng
2: while top > 0 and 2 � top > j and Mt Œtop; j � < Mt Œtop; SŒtop�� do
3: top top� 1 fPop off the dominated columng
4: end while
5: top topC 1

6: SŒtop� j fPush the new columng

7 The Quadrangle Inequality and Binary Search Trees

Another type of speedup is based in the Knuth-Yao quadrangle inequality. This
section discusses this kind of speedup and the relation with SMAWK/LARSCH
speedup.

7.1 Background

Recall construction of optimal binary search trees discussed in Sect. 2.5. Gilbert
and Moore [59] gave a O.n3/ time algorithm. More than a decade later, in 1971,

Advanced Techniques for Dynamic Programming 77

it was noticed by Knuth [71] that, using a complicated amortization argument,
the Bi;j can all be computed using only O.n2/ time. Around another decade
later, in the early 1980s, Yao (see [96, 97]) simplified Knuth’s proof and, in the
process, showed that this dynamic programming speedup worked for a large class
of problems satisfying a quadrangle inequality property. Many other authors then
used the Knuth-Yao technique, either implicitly or explicitly, to speed up different
dynamic programming problems. For this see for example the work of Wessner
[93], the work of Atallah, Kosaraju, Larmore, Miller, and Teng [9] and Bar-No and
Ladner [14].

Even though both the SMAWK algorithm and the Knuth-Yao (KY) speedup (best
described in [71, 96, 97]) use an implicit quadrangle inequality in their associated
matrices, on second glance, they seem quite different from each other. In the
SMAWK technique, the quadrangle inequality is on the entries of a given m � n

input matrix, which can be any totally monotone matrix. The KY technique, by
contrast, uses a quadrangle inequality in the upper-triangular n � n matrix B .
That is, it uses the QI property of its result matrix to speed up the evaluation,
via dynamic programming, of the entries in the same result matrix. Aggarwal and
Park [2] demonstrated a relationship between the KY problem and totally-monotone
matrices by building a 3-D monotone matrix based on the KY problem and then
using an algorithm due to Wilber [94] to find tube minima in that 3-D matrix. They
left as an open question the possibility of using SMAWK directly to solve the KY
problem.

Definition 4 A two dimensional upper triangular matrix A, 0 � i � j � n satisfies
the quadrangle inequality (QI) if for all i � i 0 � j � j 0,

A.i; j /C A.i 0; j 0/ � A.i 0; j /C A.i; j 0/: (23)

Observation 2 A Monge matrix satisfies a quadrangle inequality, but a totally
monotone matrix may not.

Yao’s result (of [96]) was formulated as follows: For 0 � i � j � n let w.i; j /

be a given function and

Bi;j D
(

0; if i D j I
w.i; j /C min

i<t�j

�
Bi;t�1 C Bt;j

�
; if i < j: (24)

Definition 5 w.i; j / is monotone in the lattice of intervals if Œi; j � � Œi 0; j 0� implies
w.i; j / � w.i 0; j 0/.

As an example, it is not difficult to see that the w.i; j / DPj

lDiC1 pl CPj

lDi ql of
the BST recurrence (12) satisfies the quadrangle inequality and is monotone in the
lattice of intervals.

78 W. Bein

Definition 6 Let

KB.i; j / D maxft W w.i; j /C Bi;t�1 C Bt;j D Bi;j g;

i.e., the largest index which achieves the minimum in (24).

Yao then proves two Lemmas (see Fig. 21 for an example):

Lemma 6 (Lemma 2.1 in [96]) If w.i; j / satisfies the quadrangle inequality as
defined in Definition 4, and is also monotone on the lattice of intervals, then the
Bi;j defined in (24) also satisfy the quadrangle inequality.

Lemma 7 (Lemma 2.2 in [96]) If the function Bi;j defined in (24) satisfies the
quadrangle inequality then

KB.i; j / � KB.i; j C 1/ � KB.i C 1; j C 1/ 8 i < j:

Lemma 6 proves that a QI in the w.i; j / implies a QI in the Bi;j . Suppose then
that one evaluates the values of the Bi;j in the order d D 1; 2; : : : ; n, where, for
each fixed d , one evaluates all of Bi;iCd , i D 0; 1; : : : ; n � d . Then Lemma 7 says
that Bi;iCd can be evaluated in time O.KB.i C 1; i C d/�KB.i; i C d � 1//. Note
that

n�dX

iD0

.KB.i C 1; i C d/ �KB.i; i C d � 1// � n;

and thus all entries for fixed d can be calculated in O.n/ time. Summing over all d ,
it follows that all Bi;j can be obtained in O.n2/ time.

As mentioned, Lemma 7 and the resultant O.n2/ running time have long been
viewed as unrelated to the SMAWK algorithm. While they seem somewhat similar
(a QI leading to an order of magnitude speedup) they appeared not to be directly
connected until very recently. In the next section it is shown how to solve the Knuth-
Yao problem directly using decompositions into total monotone matrices.

7.2 Decomposition Techniques

Definition 7 For 1 � d � n define the .n � d C 1/ � .nC 1/ matrix Dd by

Dd
i;t D

�
w.i; i C d/C Bi;t�1 CBt;iCd ; if 0 � i < t � i C d � nI
1 otherwise:

(25)

Figure 20 illustrates a first decomposition. Note that (24) immediately implies

Bi;iCd D min
0�t�n

Dd
i;t (26)

Advanced Techniques for Dynamic Programming 79

j

i
0 1 2 3 64 5 7 8 9 10

0

1

2

3

4

5

6

8

7

9

10

11

12

11 12

D10

D11

D12

D9

D8

D7

D6

D5

D4

D3

D2

D1

O O

O O

i

t

0

1

2

3

4

0 1 2 3 64 5 7 8 9 10 11 12
B0,8

B1,9

B2,10

B3,11

B4,12

Row−Min

Fig. 20 The top figure on
shows the Bi;j matrix for
n D 12. Each diagonal,
d D j � i , in the matrix will
correspond to a totally
monotone matrix Dd . The
minimal item of row i in Dd

will be the value Bi;iCd . The
other figure shows D8

so finding the row-minima of Dd yields Bi;iCd , i D 0; : : : ; n � d . Put another
way, the Bi;j entries on diagonal d D j � i are exactly the row-minima of
matrix Dd .

Lemma 8 If w.i; j / and the function Bi;j defined in (24) satisfies the QI then, for
each d .1 � d � n/, Dd is a totally monotone matrix.

Proof It suffices to prove that

Dd
i;t CDd

iC1;tC1 � Dd
iC1;t CDd

i;tC1 (27)

Note that if i C 1 < t < i C d , then from Lemma 6,

Bi;t�1 C BiC1;t � BiC1;t�1 C Bi;t (28)

and
Bt;iCd C BtC1;iC1Cd � BtC1;iCd CBt;iC1Cd : (29)

80 W. Bein

Thus,

Dd
i;t CDd

iC1;tC1

D Œw.i; i C d/C Bi;t�1 C Bt;iCd �C Œw.i C 1; i C 1C d/C BiC1;t C BtC1;iC1Cd �

D w.i; i C d/C w.i C 1; i C 1C d/C ŒBi;t�1 C BiC1;t �C ŒBt;iCd C BtC1;iC1Cd �

� w.i; i C d/C w.i C 1; i C 1C d/C ŒBiC1;t�1 C Bi;t �C ŒBtC1;iCd CBt;iC1Cd �

D Œw.i C 1; i C 1C d/CBiC1;t�1 C Bt;iC1Cd �C Œw.i; i C d/CBi;t C BtC1;iCd �

D Dd
iC1;t

CDd
i;tC1

and (27) is correct (where it is noted that the right hand side is1 if i C 1 6< t or
t 6< i C d). �

Lemma 9 Assuming that all of the row-minima of D1; D2; : : : ; Dd�1 have already
been calculated, all of the row-minima of Dd can be calculated using the SMAWK
algorithm in O.n/ time.

Proof From the previous lemma, Dd is a totally monotone matrix. Also, by
definition, its entries can be calculated in O.1/ time, using the previously calculated
row-minima of Dd 0

where d 0 < d . Thus SMAWK can be applied. �

Combined with (26) this immediately gives a new O.n2/ algorithm for solving the
KY problem; just run SMAWK on the Dd in the order d D 1; 2; : : : ; n and report
all of the row-minima.

7.3 Online Decomposition

The online problem restricted to the optimal binary search tree would be to construct
the OBST for items KeyLC1; : : : ; KeyR, and, at each step, add either KeyRC1, a new
key to the right, or KeyL, a new key to the left. Every time a new element is added,
it is desired to update the Bi;j (dynamic programming) table and thereby construct
the optimal binary search tree of the new full set of elements. (See Fig. 21.)

KY speedup cannot be used to do this. The reason that the speedup fails is that
the KY speedup is actually an amortization over the evaluation of all entries when
done in a particular order. In the online case, adding a new item n to previously
existing items 1; 2; : : : ; n� 1 requires using (24) to compute the n new entries Bi;n,
in the fixed order i D n; n�1; : : : ; 1; 0 and it is not difficult to construct an example
in which calculating these new entries in this order using (24) requires O.n2/ work.

Neither can the decomposition technique from the previous section solve the
online problem. To see why, suppose that items 1; : : : ; n have previously been given,
new item nC1 has just been added, and one needs to calculate the values Bi;nC1 for
i D 0; : : : ; nC 1. In this formulation it would correspond to adding a new bottom
row to every matrix Dd and creating a new matrix DnC1 and one would need to

Advanced Techniques for Dynamic Programming 81

69
p5

p5

69
q4

q4

p6

p6

p7 p7

p6

p5

p4
31
q5 q5

55
q6 q6 q6q5 q7

q4q3

q7

31 55 16

69 84

38

2

69

69 31 55 16

69 84

20

38

38

686

348

155

 0

0 91 282 499 821

0

0

0

386169

124

3

4

5

6

7

3 4 5 6 7 3 5 6 74

3

4

5

6

7

3 4 5 5

4 5 6

6

5

5 6 7

6 7

7

Fig. 21 An example of the online case for optimal binary search trees where .p4; p5; p6; p7/ D
.2; 69; 38; 84/ and .q3; q4; q5; q6; q7/ D .20; 69; 31; 55; 16/. The left table contains the Bi;j values;
the right one, the KB.i; j / values. The unshaded entries in the table are for the problem restricted
to only keys 5; 6. The dark gray cells are the entries added to the table when key 7 is added to the
right. The light gray cells are the entries added when key 4 is added to the left. The corresponding
optimal binary search trees are also given, where circles correspond to successful searches and
squares to unsuccessful ones. The values in the nodes are the weights of the nodes (not their keys)

find the row-minima of all of the n new bottom rows. Unfortunately, the SMAWK
algorithm only works on the rows of matrices all at once and cannot help to find the
row-minima of a single new row.

Note that for the online problem it is certainly possible to recompute the entire
table; however this comes at the price of O.n2/ time, where n D R � L is the
number of keys currently in the table, leading to a total running time of O.n3/ to
insert all of the keys. Of interest here is the question of whether one can maintain
the speedup while inserting the keys in an online fashion. The goal is an algorithm
in which a sequence of n online key insertions will result in a worst case O.n/ per
step to maintain an optimal tree, yielding an overall run time of O.n2/ (Fig. 22).

To this end now a second decomposition. It is indexed by the leftmost element
seen so far. See Fig. 23.

Definition 8 For 0 � i < n define the .n � i/ � .n � i/ matrix Li by

Li
j;t D

�
w.i; j /C Bi;t�1 C Bt;j ; if i < t � j � nI
1; otherwise.

(30)

82 W. Bein

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

j

i

0 1 2 3 6 9 10

0

1

2

3

4

5

6

8

7

9

10

11

12

11 12

R12

R11

B0,8

B1,8

B2,8

B3,8

B4,8

B5,8

B6,8

B7,8

O O

i

t

0

1

2

3

4

0 1 2 3

4 5 7 8

4 5 6 7 8

5

6

7

8

Row−Min

Fig. 22 The top figure shows
the Bi;j matrix for n D 12.
Each column in the Bi;j

matrix will correspond to a
totally monotone matrix Rj .
The minimal element of row i

in Rj will be the value Bi;j .
The other figure shows R8

(For convenience, set the row and column indices to run from .i C 1/ : : : n and not
0 : : : .n � i � 1/.) Note that (24) immediately implies

Bi;j D min
i<t�n

Li
j;t (31)

so finding the row-minima of Li yields Bi;j for j D i C 1; : : : ; n. Put another way,
the Bi;j entries in row i are exactly the row minima of matrix Li .

Lemma 10 If the function defined in (24) satisfies the QI then Rj (resp. Li) are
totally monotone matrices for each fixed j (resp. i).

Advanced Techniques for Dynamic Programming 83

j

i
0 1 2 3 64 5 7 8 9 10

0

1

2

3

4

5

6

8

7

9

10

11

12

11 12

L11

L10

L9

L8

L7

L6

L5

L4

L3

L2

L1

L0

O Oi

t
109 11 12

9

10

11

12

Row−Min

B8,12

B8,11

B8,10

B8,9

Fig. 23 The top figure on the
left shows the Bi;j matrix for
n D 12. Each row in the Bi;j

matrix will correspond to a
totally monotone matrix Li .
The minimal element of row
j in Li will be the value Bi;j .
The other figure shows L8

Proof The proofs are very similar to that of Lemma 8. To prove Rj is totally
monotone, note that if i C 1 < t < j , one can again use (28); writing the entries
from (28) in boldface gives

R
j
i;t CR

j
iC1;tC1

D �
w.i; j /C Bi;t�1 C Bt;j

	C �w.i C 1; j /C BiC1;t CBtC1;j

	

� �
w.i C 1; j /C BiC1;t�1 C Bt;j

	C �w.i; j /C Bi;t CBtC1;j

	

D R
j
iC1;t CR

j
i;tC1

and thus Rj is Monge (where the right hand side is1 if i C 1 6< t) and thus totally
monotone. To prove Li is totally monotone, if i < t < j then again use (28) (with
j replaced by j C 1) to get

Li
j;t C Li

jC1;tC1

D �
w.i; j /C Bi;t�1 C Bt;j

	C �w.i; j C 1/C Bi;t C BtC1;jC1
	

� �
w.i; j C 1/C Bi;t�1 C Bt;jC1

	C �w.i; j /CBi;t C BtC1;j
	

D Li
jC1;t CLi

j;tC1

84 W. Bein

and thus Li is Monge (where the right hand side is 1 if t 6< j) and thus totally
monotone. �

Note that this decomposition immediately imply a new proof of Lemma 7
(Lemma 2.2 in [96]) which states that

KB.i; j / � KB.i; j C 1/ � KB.i C 1; j C 1/: (32)

To see this note that KB.i; j C 1/ is the location of the rightmost row-minimum of
row i in matrix RjC1, while KB.i C 1; j C 1/ is the location of the rightmost row-
minimum of row i C 1 in matrix RjC1. Thus, the definition of total monotonicity
immediately gives

KB.i; j C 1/ � KB.i C 1; j C 1/: (33)

Similarly, KB.i; j / is the rightmost row-minimum of row j in Li while KB.i; jC1/

is the location of the rightmost row-minimum of row j C 1 in Li . Thus

KB.i; j / � KB.i; j C 1/: (34)

Combining (33) and (34) yields (32). Since the actual speedup in the KY technique
comes from an amortization argument based on (32), it follows that the original
KY-speedup itself is also a consequence of total monotonicity.

Up to this point it is not clear how to actually calculate the Bi;j using the Rj and
Li . Note first that even though the Rj are totally monotone, their row minima cannot
be calculated using the SMAWK algorithm. This is because, for 0 � i < t � j , the
value of entry R

j
i;t D w.i; j /C Bi;t�1 C Bt;j , which is dependent upon Bt;j which

is itself the row-minimum of row t in the same matrix Rj . Thus, the values of the
entries of Rj depend upon other entries in Rj which is something that SMAWK
does not allow. The same problem occurs with the Li .

But despite this dependence, the LARSCH algorithm can still be used to find the
row-minima of the Rj . Recall that to execute the LARSCH algorithm one needs
only that the matrix X satisfy the following conditions:
1. X is an n �m totally monotone matrix.
2. For each row index i of X , there is a column index Ci such that for j > Ci ,

Xi;j D1. Furthermore, Ci � CiC1.
3. If j � Ci , then Xi;j can be evaluated in O.1/ time provided that the row minima

of the first i � 1 rows are already known.
If these conditions are satisfied, the LARSCH algorithm then calculates all of the
row minima of X in O.nCm/ time. This algorithm can now be used to derive

Lemma 11
• Given that all values Bi 0;j , i < i 0 � j � n have already been calculated, all of

the row-minima of Li can be calculated in O.n � i/ time.
• Given that all values Bi;j 0 , 0 � i � j 0 < j have already been calculated, all of

the row-minima of Rj can be calculated in O.j / time.

Advanced Techniques for Dynamic Programming 85

Proof For the first part, it is easy to see that Li satisfies the first two conditions
required by the LARSCH algorithm with Cj D j . For the third condition, note that,
for i < t � j , Li

j;t D w.i; j / C Bi;t�1 C Bt;j . The values w.i; j / and Bt;j are
already known and can be retrieved in O.1/ time. Bi;t�1 is the minimum of row
t � 1 of Li but, since we are assuming t � j , this means that Bi;t�1 is the minimum
of an earlier row in Li , and the third LARSCH condition is satisfied. Thus, all of the
row-minima of the .n � i/ � .n � i/ matrix Li can be calculated in O.n� i/ time.

For the second part set X to be the .j C 1/ � .j C 1/ matrix defined by Xi;t D
R

j
j�i;j�t . Then X satisfies the first two LARSCH conditions with Ci D i � 1. For

the third condition note that Xi;t D R
j
j�i;j�t D w.j � i; j /CBj�i;j�t�1CBj�t;j .

The values w.j � i; j / and Bj�i;j�t�1 are already known and can be calculated in
O.1/ time. Bj�t;j is the row minima of row t of X ; but, since we are assuming
t � Ci D i � 1 this means that Bj�t;j is the row minima of an earlier row in X

so the third LARSCH condition is satisfied. Thus, all of the row-minima of X and
equivalently Rj can be calculated in O.j / time. �

Note that Lemma 11 immediately solves the “right-online” and “left-online”
problems. Given the new values w.i; R C 1/ for L � i � R C 1, simply find
the row minima of RRC1 in time O.R � L/. Given the new values w.L � 1; j / for
L � 1 � j � R, simply find the row minima of LL�1. Therefore it was just shown
that any dynamic programming problem for which the KY speedup can statically
improve run time from O.n3/ to O.n2/ time can be solved in an online fashion in
O.n/ time per step. That is, online processing incurs no penalty compared to static
processing. In particular, the optimum binary search tree can be maintained in O.n/

time per step as nodes are added to both its left and right.
At this point note that decompositions Li could also be derived by careful

cutting of the 3-D monotone matrices of Aggarwal and Park [2] along par-
ticular planes. Aggarwal and Park [2] used an algorithm of Wilber [94] (de-
rived for finding the maxima of certain concave-sequences) to find various tube
maxima of their matrices, leading to another O.n2/ algorithm for solving the
KY-problem. In fact, even though their algorithm was presented as a static algo-
rithm, careful decomposition of what they do permits using it to solve what is
called here the left-online KY-problem. A symmetry argument could then yield
a right-online algorithm. This never seems to have been noted in the literature,
though.

8 Conclusion

Too small an academic community is aware of the many advanced tools available
related to dynamic programming. Routinely, applications are solved by simple-
minded dynamic programs, where much faster solutions are possible. In fact,
for many massively large problems arising in Molecular Biology, for example,
a quadratic solution might be completely useless, equivalent to no solution at all.

86 W. Bein

It is the hope of the author that this book chapter will open up some these advanced
techniques to a larger community of scientists.

As well the use of dynamic programming in online optimization and by extension
the concept of work functions is not as widely embraced as is desirable. Many
online algorithms are ad-hoc and work functions make it possible to “de-adhocify”
the construction of competitive and efficient algorithms in this setting. The very
recent concept of knowledge states (see [23]), which has dynamic programming at
its core, makes it possible to derive online algorithms even in the randomized case
in a systematic way.

Readers are invited to go beyond the obvious when using dynamic programming
and to avail themselves of these powerful techniques.

Further Reading

Introductions to dynamic programming with numerous elementary examples can
be found in the textbooks by Brassard and Gilles [32], Cormen, Leiserson, Rivest,
and Stein [45], Baase and van Gelder [10] and Dasgupta, Papadimitriou, and
Vazarani [47].

The classical treatises by Bellmann [24] and [25] are still relevant today though
the language is somewhat antiquated and the applications outdated. Other general
reading is Dreyfus and Law [50], Stokey, Lucas, and Prescott [88], Bertsekas
[28], Denardo [48], Meyn [83], and more recently Sniedovich [87]. One classical
algorithm worth mentioning is the algorithm by Viterbi [90] for Hidden Markov
Model inference. Many problems in areas such as digital communications can
be cast in the Hidden Markov Model. Another classic is Hu and Tucker [65] on
alphabetic trees. Bellmore and Nemhauser [27] as well as Lawler, Lenstra, Rinnoy
Kan, and Shmoys [79] and Burkard, Deineko, Dal, van der Veen, and Woeginger
[39] contain material regarding the use of dynamic programming for the traveling
salesman problem. Gusfield [60] is good general resource on dynamic programming
for computational biology. Examples with regards to scheduling can be found in
Bellman, Esogbue, and Nabeshima [26] as well as in Brucker [33] and in Brucker
and Knust [35]. David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F.
Italiano [52, 53] give a two paper sequence in the Journal of the ACM for sparse
dynamic programming.

Regarding online algorithms (discussed in Sect. 3) the book by Borodin and
El-Yanif [30] is the standard text. Of note is also the monograph by Karlin [66].
The article Larmore and Chrobak [42], which introduced work functions, extends
the material in Sect. 3. For further immersion into the realm of work functions the
article by Bein, Chrobak, and Larmore [16] is recommended. Recent work by Bein,
Larmore, Noga, and Reischuk [23] on knowledge states has extended the use of
work functions to randomized online algorithms: such algorithms are “guided” in
their operation by work functions.

Some of the material presented in Sect. 4 can be found in greater detail in Bein,
Larmore, Morales, and Sudborough [22]. Further reading regarding this section:

Advanced Techniques for Dynamic Programming 87

Sorting problems under various operations have been studied extensively, including
work on sorting with prefix reversals Gates and Papadimitriou [58] (Gates of
Microsoft fame) as well as Heydari and Sudborough [62], transpositions [11] and
block moves ([17, 80] as well as Mahajan, Rama, and Vijayakumar [81]).

Some of the material presented in Sect. 5 can found in greater detail in Bein,
Noga, and Wiegley [19]. The paper by Brucker and Albers [6] contains an alternate
linear time algorithm for list batching. There is a large body of work on dynamic
programming and batching; see the work of Baptiste [12], Baptiste and Jouglet
[13], Brucker, Gladky, Hoogeveen, Kovalyov, Potts Tautenhahn, and van de Velde
[36], Brucker, Kovalyov, Shafransky, and Werner [37], Hoogeveen, and Vestjens
[64], as well as the scheduling text book by Peter Brucker [33]. Batching has wide
application in manufacturing (see, e.g., [34, 85, 98]), decision management (see,
e.g., [74]), and scheduling in information technology (see, e.g., [46]). More recent
work on online batching is related to the TCP (Transmission Control Protocol)
acknowledgment problem (see [20, 49, 67]).

Regarding Monge properties and total monotonicity the best resource is Park’s
thesis, [84]. Another excellent survey on Monge properties is Burkard, Klinz and
Rudolf [38]. A generalization of the Monge property to an algebraic property is in
Bein, Brucker, Larmore, and Park [18]. Interesting applications are in Woeginger
[95]. Burkard, Deineko, and Woeginger [40] survey the traveling salesman problem
on Monge matrices. Agarwal and Sen [1] give results for selection in monotone
matrices for computing kth nearest neighbors. Schieber [86] gives results on k-link
paths in graphs with Monge properties.

Section 6 is based on Agarwal, Klawe, Moran, Shor, and Wilber [3] and Larmore
and Schieber [78]. Generalizations of the matrix searching techniques are in Klawe
[69] and Klawe and Kleitman [70], as well as in Kravets and Park [73], Aggarwal
and Park [5] (Parallel Searching). and Wilber [94]. A good survey paper is Galil and
Park [57].

An extended version of the material of Sect. 7 can be found in Bein, Larmore,
Golin, and Zhang [21]. For Sect. 7 the papers of Knuth [71] followed by Yao [97]
are key. Aggarwal and Park used an algorithm of Wilber [94] to find various tube
maxima of their matrices, leading to another O.n2/ algorithm for solving the KY-
problem. There are two extensions of the Knuth-Yao quadrangle inequality: the first
is due to Wachs [91] and the second to Borchers and Gupta (BG) [29]. This is
discussed in detail in Bein, Larmore, Golin, and Zhang [21]. Belatedly, Aggarwal,
Bar-Noy, Khuller, Kravets, and Schieber [4] describe solutions for matching using
the quadrangle inequality.

The main gist of this chapter is dynamic programming speedup: Applications
abound. Classic examples include the work by Hirschberg and Larmore [63] on the
weight subsequence problem, Larmore and Przytycka [76] on parallel construction
of trees with optimal path length, and Larmore and Hirschberg [75] on length limited
coding. David Eppstein [51] considers sequence comparisons. Apostolico, Atallah,
Larmore, and McFaddin [7] give algorithms for string editing. Highly recommended
is the paper by Galil and Giancarlo [56] on speeding up dynamic programming in
Molecular Biology. Work by Arslan and Egecioglu [8] is on sequence alignment

88 W. Bein

Bradford, Golin, Larmore, and Rytter [31] give dynamic programs for optimal
prefix-free codes. Recent speedup work is for the online maintenance of k-medians
by Fleischer, Golin, and Zhang [54] (see also [61, 89]).

Acknowledgements This chapter is dedicated to Lawrence L. Larmore, a great mentor. A
sabbatical (academic year 2006/07) granted by the University of Nevada, Las Vegas, which
benefited this book chapter, is acknowledged.

Cross-References

�Advances in Scheduling Problems
�Computing Distances between Evolutionary Trees
�Efficient Algorithms for Geometric Shortest Path Query Problems
�Geometric Optimization in Wireless Networks
�Online and Semi-online Scheduling
�Resource Allocation Problems

Recommended Reading

1. P.K. Agarwal, S. Sen, Selection in monotone matrices and computing kth nearest neighbors. J.
Algorithms 20(3), 581–601 (1996); A preliminary version appeared, in Proceedings of the 4th
Scandinavian Workshop on Algorithm Theory (1994), pp. 13–24

2. A. Aggarwal, J.K. Park, Notes on searching in multidimensional monotone arrays, in Proceed-
ings of the 29th Annual Symposium on Foundations of Computer Science (IEEE Computer
Society, Washington, DC, 1988), pp. 497–512

3. A. Aggarwal, M.M. Klawe, S. Moran, P.W. Shor, R.E. Wilber, Geometric applications of
a matrix-searching algorithm. Algorithmica 2(1), 195–208 (1987); A preliminary version
appeared, in Proceedings of the 2nd Annual Symposium on Computational Geometry (1986),
pp. 285–292

4. A. Aggarwal, A. Bar-Noy, S. Khuller, D. Kravets, B. Schieber, Efficient minimum cost
matching and transportation using the quadrangle inequality. J. Algorithms 19(1), 116–143
(1995); A preliminary version appeared, in Proceedings of the 33rd Annual Symposium on
Foundations of Computer Science (1992), pp. 583–592

5. A. Aggarwal, D. Kravets, J.K. Park, S. Sen, Parallel searching in generalized Monge arrays.
Algorithmica 19(3), 291–317 (1997); A preliminary version appeared, in Proceedings of the
2nd Annual ACM Symposium on Parallel Algorithms and Architectures (1990), pp. 259–268

6. S. Albers, P. Brucker, The complexity of one-machine batching problems. Discret. Appl. Math.
47, 87–10 (1993)

7. A. Apostolico, M. Atallah, L. Larmore, S. McFaddin, Efficient parallel algorithms for string
editing and related problems. SIAM J. Comput. 19(5), 968–988 (1990)

8. A.N. Arslan, O. Egecioglu, Dynamic programming based approximation algorithms for
sequence alignment with constraints. INFORMS J. Comput. 16(4), 441–458 (2004)

9. M.J. Atallah, S. Rao Kosaraju, L.L. Larmore, G.L. Miller, S-H. Teng, Constructing trees
in parallel, in Proceedings of the 1st Annual ACM Symposium on Parallel Algorithms and
Architectures (ACM, New York, 1989) , pp. 421–431

10. S. Baase, A. van Gelder, Computer Algorithms (Addison Wesley, Reading, 2000)
11. V. Bafna, P.A. Pevzner, Sorting by transposition. SIAM J. Discret. Math. 11, 224–240 (1998)
12. P.Baptiste, Batching identical jobs. Math. Methods Oper. Res. 52, 355–367 (2000)

http://dx.doi.org/10.1007/978-1-4419-7997-1_77
http://dx.doi.org/10.1007/978-1-4419-7997-1_52
http://dx.doi.org/10.1007/978-1-4419-7997-1_47
http://dx.doi.org/10.1007/978-1-4419-7997-1_41
http://dx.doi.org/10.1007/978-1-4419-7997-1_2
http://dx.doi.org/10.1007/978-1-4419-7997-1_44

Advanced Techniques for Dynamic Programming 89

13. P. Baptiste, A. Jouglet, On minimizing total tardiness in a serial batching problem. Oper. Res.
35, 107–115 (2001)

14. A. Bar-Noy, R.E. Ladner, Efficient algorithms for optimal stream merging for media-on-
demand. SIAM J. Comput. 33(5), 1011–1034 (2004)

15. W. Bein, M. Chrobak, L.L. Larmore, The 3-server problem in the plane, in Proceedings of
7th European Symposium on Algorithms (ESA). Volume 1643 of Lecture Notes in Computer
Science (Springer, Berlin/New York, 1999), pp. 301–312

16. W. Bein, M. Chrobak, L.L. Larmore, The 3-server problem in the plane. Theoret. Comput. Sci.
287, 387–391 (2002)

17. W. Bein, L.L. Larmore, S. Latifi, I. Hal Sudborough, Block sorting is hard. Int. J. Found.
Comput. Sci. 14(3), 425–437 (2003)

18. W. Bein, P. Brucker, L.L. Larmore, J.K. Park, The algebraic Monge property and path
problems. Discret. Appl. Math. 145(3), 455–464 (2005)

19. W. Bein, J. Noga, J. Wiegley, Approximation for batching via priorities. Sci. Ann. Comput.
Sci. XVII, 1–18 (2007)

20. W. Bein, L. Epstein, L.L. Larmore, J. Noga, Optimally competitive list batching. Theoret.
Comput. Sci. 410(38–40), 3631–3639 (2009)

21. W. Bein, M. Golin, L. Larmore, Y. Zhang, The Knuth-Yao quadrangle-inequality speedup is a
consequence of total-monotonicity. Trans. Algorithms 6(1) (2009)

22. W. Bein, L.L. Larmore, L. Morales, I. Hal Sudborough, A quadratic time 2-approximation
algorithm for block sorting. Theor. Comput. Sci. 410, 711–717 (2009)

23. W. Bein, L.L. Larmore, J. Noga, R. Reischuk, Knowledge state algorithms. Algorithmica 60(3),
653–678 (2011)

24. R. Bellman, The theory of dynamic programming. Bull. Am. Math. Soc. 60:503–516 (1954)
25. R. Bellman, Dynamic Programming, Dover Paperback edition 2003 edn. (Princeton University

Press, Princeton, 1957)
26. R. Bellman, A.O. Esogbue, I. Nabeshima, Mathematical Aspects of Scheduling and Applica-

tions (Pergamon, Oxford/New York, 1982)
27. M. Bellmore, G.L. Nemhauser, The traveling salesman problem: A survey. Oper. Res. 16(3),

538–558 (1968)
28. D.P. Bertsekas, Dynamic Programming and Optimal Control, 2nd edn. (Athena Scientific,

Belmont, 2000)
29. A. Borchers, P. Gupta, Extending the quadrangle inequality to speed-up dynamic programming.

Inf. Process. Lett. 49(6), 287–290 (1994)
30. A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis (Cambridge Univer-

sity Press, Cambridge/New York , 1998)
31. P.G. Bradford, M.J. Golin, L.L. Larmore, W. Rytter, Optimal prefix-free codes for unequal

letter costs: Dynamic programming with the Monge property. J. Algorithms 42(2), 277–
303 (2002); A preliminary version appeared, in Proceedings of the 6th Annual European
Symposium on Algorithms (1998), pp. 43–54

32. G. Brassard, P. Bratley, Fundamentals of Algorithms (Prentice Hall, Englewood,
1996)

33. P. Brucker, Scheduling Algorithms 5th edn. (Springer, Berlin/New York, 2007)
34. P. Brucker, J. Hurink, Solving a chemical batch scheduling problem by local search. Ann. Oper.

Res. 96, 17–38 (2000)
35. P. Brucker, S. Knust, Complex Scheduling (Springer, Berlin, 2006)
36. P. Brucker, A. Gladky, H. Hoogeveen, M. Kovalyov, C. Potts, T. Tautenhahn, S. van de Velde,

Scheduling a batch processing machine. J. Sched. 1(1), 31–54 (1998)
37. P. Brucker, M. Kovalyov, Y. Shafransky, F. Werner, Batch scheduling with deadline on parallel

machines. Ann. Oper. Res. 83, 23–40 (1998)
38. R.E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge properties in optimization. Discret.

Appl. Math. 70(2), 95–161 (1996)
39. R.E. Burkard, V.G. Deineko, R. van Dal, J.A.A. van der Veen, G.J. Woeginger, Well-solvable

special cases of the TSP: A survey. SIAM Rev. 40(3), 496–546 (1998)

90 W. Bein

40. R.E. Burkard, V.G. Deineko, G.J. Woeginger, The travelling salesman problem on permuted
Monge matrices. J. Comb. Optim. 2(4), 333–350 (1999)

41. M. Chrobak, L.L. Larmore, An optimal online algorithm for k servers on trees. SIAM J.
Comput. 20, 144–148 (1991)

42. M. Chrobak, L.L. Larmore, The server problem and on-line games, in On-line Algorithms, ed.
by L.A. McGeoch, D.D. Sleator. Volume 7 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science (AMS/ACM, Providence, RI, 1992), pp. 11–64

43. M. Chrobak, L.L. Larmore, Metrical task systems, the server problem, and the work function
algorithm, in Online Algorithms: The State of the Art, ed. by A. Fiat, G.J. Woeginger (Springer,
Berlin/New York, 1998), pp. 74–94

44. M. Chrobak, H. Karloff, T.H. Payne, S. Vishwanathan, New results on server problems. SIAM
J. Discret. Math. 4, 172–181 (1991)

45. T. Corman, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (McGraw
Hill, New York, 2001)

46. A. Dan, D. Sitaram, P. Shahabuddin, Scheduling policies for an on-demand video server with
batching, in Proceedings of the second ACM international conference on Multimedia (ACM,
New York, 1994), pp. 15–23

47. S. Dasgupta, C. Papadimitriou, U. Vazirani, Algorithms (McGraw Hill, Boston, 2008)
48. E.V. Denardo, Dynamic Programming: Models and Applications (Dover, Mineola, 2003)
49. D.R. Dooly, S.A. Goldman, S.D. Scott, On-line analysis of the TCP acknowledgment delay

problem. J. ACM 48(2), 243–273 (2001)
50. S.E. Dreyfus, A.M. Law, The art and theory of dynamic programming (Academic, New York,

1977)
51. D. Eppstein, Sequence comparison with mixed convex and concave costs. J. Algorithms 11(1),

85–101 (1990)
52. D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming I: Linear cost

functions. J. ACM 39(3), 519–545 (1992); A preliminary version appeared, in Proceedings of
the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, (1990), pp. 513–522

53. D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming II: Convex
and concave cost functions. J. ACM 39(3), 546–567 (1992); A preliminary version appeared,
in Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (1990), pp.
513–522

54. R. Fleischer, M.J. Golin, Y. Zhang, Online maintenance of k-medians and k-covers on a line.
Algorithmica 45(4), 549–567 (2006); A preliminary version appeared, in Proceedings of the
9th Scandinavian Workshop on Algorithm Theory (2004), pp. 102–113

55. R.F. Floyd, Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)
56. Z. Galil, R. Giancarlo, Speeding up dynamic programming with applications to molecular

biology. Theor. Comput. Sci. 64(1), 107–118 (1989)
57. Z. Galil, K. Park, Dynamic programming with convexity, concavity and sparsity. Theor.

Comput. Sci. 92(1), 49–76 (1992)
58. W.H. Gates, C.H. Papadimitriou, Bounds for sorting by prefix reversal. Discret. Math. 27, 47–

57 (1979)
59. E.N. Gilbert, E.F. Moore, Variable length encodings. Bell Syst. Tech. J. 38, 933–967 (1959)
60. D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-

tional Biology (Cambridge University Press, Cambridge, 1997)
61. R. Hassin, A. Tamir, Improved complexity bounds for location problems on the real line. Oper.

Res. Lett. 10(7), 395–402 (1991)
62. H. Heydari, I. Hal Sudborough, On the diameter of the pancake network. J. Algorithms 25(1),

67–94 (1997)
63. D.S. Hirschberg, L.L. Larmore, The least weight subsequence problem. SIAM J. Comput.

16(4), 628–638 (1987)
64. H. Hoogeveen, A. Vestjens, Optimal on-line algorithms for single-machine scheduling, in

Proceedings of 5th Conference Integer Programming and Combinatorial Optimization (IPCO)
(Springer Verlag, London, 1996), pp. 404–414

Advanced Techniques for Dynamic Programming 91

65. T.C. Hu, A.C. Tucker, Optimal computer search trees and variable-length alphabetical codes.
SIAM J. Appl. Math. 21(4), 514–532 (1971)

66. A. Karlin, On the performance on competitive algorithms in practice, in Online Algorithms:
The State of the Art, ed. by A. Fiat, G.J. Woeginger (Springer, 1998), pp. 373–382

67. A. Karlin, C. Kenyon, D. Randall, Dynamic TCP acknowledgment and other stories about
e/(e-1). Algorithmica 36(3), 209–224 (2003)

68. A. Karlin, M. Manasse, L. Rudolph, D. Sleator, Competitive snoopy caching. Algorithmica 3,
79–119 (1988)

69. M.M. Klawe, Superlinear bounds for matrix searching problems. J. Algorithms 13(1), 55–
78 (1992); A preliminary version appeared; in Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (1990), pp. 485–493

70. M.M. Klawe, D.J. Kleitman, An almost linear time algorithm for generalized matrix searching.
SIAM J. Discret. Math. 3(1), 81–97 (1990)

71. D.E. Knuth, Optimum binary search trees. Acta Inf. 1, 14–25 (1971)
72. E. Koutsoupias, C. Papadimitriou, On the k-server conjecture. J. ACM 42, 971–983

(1995)
73. D. Kravets, J.K. Park, Selection and sorting in totally monotone arrays. Theory Comput. Syst.

24(3), 201–220, (1991); A preliminary version appeared, in Proceedings of the 1st Annual
ACM-SIAM Symposium on Discrete Algorithms (1990), pp. 494–502

74. R. Kuik, M. Salomon, L.N. van Wassenhove, Batching decisions: structure and models. Eur. J.
Oper. Res. 75, 243–263 (1994)

75. L.L. Larmore, D.S. Hirschberg, A fast algorithm for optimal length-limited Huffman codes.
J. ACM 37(3), 464–473 (1990); A preliminary version appeared, in Proceedings of the 1st
Annual ACM-SIAM Symposium on Discrete Algorithms (1990), pp. 310–318

76. L.L. Larmore, T.M. Przytycka, Parallel construction of trees with optimal weighted path length,
in Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures
(ACM Press, New York, 1991), pp. 71–80

77. L.L. Larmore, B. Schieber, On-line dynamic programming with applications to the prediction
of rna secondary structure. J. Algorithms 12, 490–515 (1991)

78. L.L. Larmore, B. Schieber, On-line dynamic programming with applications to the prediction
of RNA secondary structure. J. Algorithms 12(3), 490–515 (1991); A preliminary version
appeared, in Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms
(1990), pp. 503–512

79. E. Lawler, J. Lensta, A.H.G Rinooy Kan, D. Smoys (eds.), The Traveling Salesman: A Guided
Tour of Combinatorial Optimization (Wiley, New York, 1985)

80. M. Mahajan, R. Rama, V. Raman, S. Vijayakumar, Approximate block sorting. Int. J. Found.
Comput. Sci. 12(2), 337–356 (2006)

81. M. Mahajan, R. Rama, S. Vijayakumar, Block sorting: a characterization and some heuristics.
Nord. J. Comput. 14(1), 25 (2007)

82. M. Manasse, L.A. McGeoch, D. Sleator, Competitive algorithms for server problems. J.
Algorithms 11, 208–230 (1990)

83. S. Meyn, Control Techniques for Complex Networks (Cambridge University Press, Cambridge,
MA, 2007)

84. J.K. Park, The Monge array: an abstraction and its applications. PhD thesis, Massachusetts
Institute of Technology, 1991

85. C.N. Potts, L.N. van Wassenhove, Integrating scheduling with batching and lot-sizing: A
review of algorithms and complexity. J. Oper. Res. Soc. 43, 395–406 (1992)

86. B. Schieber, Computing a minimum weight k-link path in graphs with the concave Monge
property. J. Algorithms 29(2), 204–222 (1998); A preliminary version appeared, in Proceed-
ings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (1995), pp. 405–411

87. M. Sniedovich, Dynamic Programming: Foundations and Principles. (Taylor and Francis,
Boca Raton, FL, 2010)

88. N. Stokey, R.E. Lucas, E. Prescott, Recursive Methods in Economic Dynamics (Harvard
University Press, Cambridge, MA, 1989)

92 W. Bein

89. A. Tamir, An O.pn2/ algorithm for the p-median and related problems on tree graphs. Oper.
Res. Lett. 19(2), 59–64 (1996)

90. A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)

91. M.L. Wachs, On an efficient dynamic programming technique of F. F. Yao. J. Algorithms
10(4), 518–530 (1989)

92. S. Warshall, A theorem on boolean matrices. J. ACM 9(1) 11–12 (1962)
93. R.L. Wessner, Optimal alphabetic search trees with restricted maximal height. Inf. Process.

Lett. 4(4), 90–94 (1976)
94. R. Wilber, The concave least-weight subsequence problem revisited. J. Algorithms 9(3), 418–

425 (1988)
95. G.J. Woeginger, Monge strikes again: Optimal placement of web proxies in the Internet. Oper.

Res. Lett. 27(3), 93–96 (2000)
96. F.F. Yao, Efficient dynamic programming using quadrangle inequalities, in Proceedings of the

12th Annual ACM Symposium on Theory of Computing (ACM Press, New York, 1980), pp.
429–435

97. F.F. Yao, Speed-up in dynamic programming. SIAM J. Matrix Anal. Appl. 3(4), 532–540
(1982)

98. G. Zhang, X. Cai, C.Y. Lee, C.K. Wong, Minimizing makespan on a single batch processing
machine with nonidentical job sizes. Naval Res. Logist. 48, 226–240 (2001)

	Advanced Techniques for Dynamic Programming
	1 Introduction
	2 A Few Standard Introductory Examples
	2.1 A Brief Introduction to Dynamic Programming: Fibonacci, Pascal, and Making Change
	2.2 Chained Matrix Multiplication Problem
	2.3 Shortest Paths
	2.4 The Knapsack Problem
	2.5 Binary Search Tress
	2.6 Pyramidal Tours for the Traveling Salesman Problem

	3 Open-ended Dynamic Programming: Work Functions
	4 Intricate Dynamic Programming: Block Deletion in Quadratic Time
	4.1 Preliminaries
	4.2 A Dynamic Program for Complete Block Deletion
	4.3 Computing Block Deletion

	5 Total Monotonicity and Batch Scheduling
	5.1 The Problem 1|s-batch|Sigma wi Ci
	5.2 List Batching
	5.3 The Monge Property and Total Monotonicity

	6 The SMAWK and LARSCH Algorithm
	6.1 The Matrix Searching Problem
	6.2 The Online Matrix Searching Problem
	6.3 Algorithm LARSCH
	6.4 Standard Type Process: Pt for t Even (INTERPOLATE)
	6.5 Standard Type Process: Pt for t Odd (REDUCE)

	7 The Quadrangle Inequality and Binary Search Trees
	7.1 Background
	7.2 Decomposition Techniques
	7.3 Online Decomposition

	8 Conclusion
	Further Reading
	Cross-References
	Recommended Reading

