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Abstract
This chapter considers the following problem of computing a map of geometric
minimal cuts (called the MGMC problem): Given a graph G D .V; E/ and a
planar embedding of a subgraph H D .VH ; EH / of G, compute the map of
geometric minimal cuts induced by axis-aligned rectangles in the embedding
plane. The MGMC problem is motivated by the critical area extraction problem
in VLSI designs and finds applications in several other fields. This chapter
surveys two different approaches for the MGMC problem based on a mix of
geometric and graph algorithm techniques that can be regarded complementary.
It is first shown that unlike the classic min-cut problem on graphs, the number
of all rectilinear geometric minimal cuts is bounded by a low polynomial,
O.n3/. Based on this observation, the first approach enumerates all rectilinear
geometric minimal cuts and computes their L1 Hausdorff Voronoi diagram,
which is equivalent to the L1 Hausdorff Voronoi diagram of axis-aligned
rectangles. The second approach is based on higher-order Voronoi diagrams
and identifies necessary geometric minimal cuts and their Hausdorff Voronoi
diagram in an iterative manner. The embedding in the latter approach includes
arbitrary polygons. This chapter also presents the structural properties of the L1
Hausdorff Voronoi diagram of rectangles that provides the map of the MGMC
problem and plane sweep algorithms for its construction.

1 Introduction

This chapter considers the following problem called map of geometric minimal
cuts (MGMC): Given a graph G D .V; E/ and a planar embedding of a subgraph
H D .VH ; EH / of G, compute a map1 M of the embedding plane P of H so
that for every point p 2 P , the cell in M containing p is associated with the
“closest” geometric cut (in G) to p, where distance between a point p and a cut C

is defined as the maximum distance between p and any individual element of C .
A geometric cut C of G induced by a given geometric shape S is a set of edges
and vertices in H that overlaps S in P and whose removal from G disconnects G.
This chapter considers the case where geometric cuts are induced by axis-aligned
rectangles and distances are measured in the L1 metric. The main objective of the
MGMC problem is to compute the map M of all geometric minimal (or canonical)
cuts (the exact definition of geometric minimal cuts will be given in the next section)
of the planar embedding of H .

1A map means a partition of the embedding plane (as in a trapezoidal map) into cells so that all
points in the same cell share the same “closest” geometric minimal cut.
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The MGMC problem was formulated in [47]. It was introduced, as the geo-
metric min-cut problem, in [34], in order to model the critical area computation
problem for open faults in a VLSI design. Critical area is a measure reflecting the
sensitivity of a VLSI design to random defects occurring during the manufacturing
process. For a survey on VLSI yield analysis and optimization, see, for example,
[16]. The critical area computation problem in a VLSI design for various types of
fault mechanisms has been reduced to variants of generalized Voronoi diagrams; see,
for example, [5, 32, 34–36, 46]. The Voronoi framework for critical area extraction
asks for a subdivision of a layer A into regions that reveal, for every point p, the
size of the smallest defect centered at p causing a circuit failure. For open faults,
this results in the MGMC problem. In more detail, a VLSI net N can be modeled
as a graph G D .V; E/ having a subgraph H D .VH ; EH / embedded on any
conducting layer A; see, for example, [34]. The embedded subgraph H D .VH ; EH /

is vulnerable to random manufacturing defects that are associated with the layer of
the embedding and may create open faults. The MGMC problem computes, for
every point p on layer A, the disk of minimum radius, which is centered at p and
induces a cut on graph G resulting in an open fault. The subdivision of layer A that
solves the MGMC problem corresponds to the Hausdorff Voronoi diagram of the
geometric minimal cuts (see, e.g., [34,47]). The MGMC problem finds applications
in other networks, such as transportation networks, where critical area may need to
be extracted for the purpose of flow control and disaster avoidance.

This chapter surveys the literature on the MGMC problem and presents two
complimentary approaches. These approaches are based on a mix of geometric
and graph algorithm techniques, and they produce, by different means, the L1
Hausdorff Voronoi diagram of geometric minimal cuts on the embedding plane.
In addition, this chapter presents structural properties and algorithms for the L1
Hausdorff Voronoi diagram, which provides a solution to the MGMC problem, and
it is a geometric structure of independent interest.

The first approach to the MGMC problem presented in this chapter is based on
the results of [47] for a rectilinear embedding of the embedded subgraph H . This
approach first classifies geometric cuts into two classes – 1-D cuts and 2-D cuts –
and shows that the number of all possible geometric 1-D and 2-D minimal cuts,
given a rectilinear embedding of H , is O.n2/ and O.n3/, respectively, where n is
the size of H . The O.n3/ bound on the number of geometric minimal cuts makes the
enumeration of geometric cuts feasible. In contrast, the corresponding bound of the
classic min-cut problem in graphs is exponential. Based on interesting observations
and dynamic connectivity data structures, the approach in [47] directly computes all
geometric minimal cuts in O.n3 log n.log log n/3/ time. A special case in which the
inducing rectangle of a cut has a constantly bounded edge length is also considered,
in which case the time complexity of the algorithm can be significantly improved to
O.n log n.log log n/3/. Once all geometric minimal cuts are identified, the solution
to the MGMC problem is reduced to computing their Hausdorff Voronoi diagram.
The method in [47] revisits the plane sweep construction of the L1 Hausdorff
Voronoi diagram of rectangles and presents the first output-sensitive algorithm for
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its construction, which runs in O..N CK/ log2 N log log N / time and O.N log2 N /

space, where N is the number of rectangles and K is the complexity (or size) of the
Hausdorff Voronoi diagram. The algorithm is based on a plane sweep construction in
3-D and uses several interesting data structures that can achieve an output-sensitive
result.

The second approach is based on results in [34], and it is based on higher-
order Voronoi diagrams. The embedded subgraph needs not be rectilinear, it can be
arbitrary; moreover, it corresponds to polygonal shapes. Given a geometric graph
with a subgraph embedded in the plane, the method in [34] iteratively identifies
geometric minimal cuts and their generators,2 based on an iterative construction of
order-k Voronoi diagrams in increasing order of k. In the worst case, the method
requires time O.n3 log n/ to compute higher-order Voronoi diagrams, plus time
O.n3 log n.log log n/3/ to answer connectivity queries on the graph G, assuming
that the dynamic connectivity data structures of [20, 45] are used for this purpose.
The resulting map provides a solution to the MGMC problem and reveals the
Hausdorff Voronoi diagram of all geometric minimal cuts. In practice, typically, it is
not necessary to guarantee the identification of all possible geometric cuts, in which
case the iterative construction of [34] can be considerably sped up. Once a sufficient
set of cut generators are identified, their weighted Voronoi diagram can be computed
in a simple manner, providing a map that reliably approximates the solution to the
MGMC problem. In the case of rectilinear embeddings, generators are simple axis-
parallel line segments of constant weights. For arbitrary embeddings, generators
correspond to portions of farthest Voronoi diagrams of cuts in the final map, and
their weights correspond to farthest distance functions. Assuming that the number
of iterations is kept to a small constant, as experimental results in [34] suggest, this
results in an O.n log n.log log n/3/ algorithm for an approximate map solving the
MGMC problem.

The Hausdorff Voronoi diagram of a set S of point clusters in the plane is a
subdivision of the plane into regions, such that the Hausdorff Voronoi region of a
cluster P is the locus of points closer to P than to any other cluster in S, where
distance between a point t and a cluster P is measured as the farthest distance
between t and any point in P . The Hausdorff Voronoi diagram first appeared in
[11] as the cluster Voronoi diagram, where several combinatorial bounds were
derived by means of a powerful geometric transformation in three dimensions and
an O.n2/-time algorithm for its construction. A tight combinatorial bound on its
structural complexity in the Euclidean plane, as well as a plane sweep construction
were given in [33]. The L1 version of the problem was introduced in [32] for the
VLSI critical area extraction problem for a defect mechanism called a via-block. In
[32], the problem was reduced to an L1 Voronoi diagram of additively weighted
line segments, and it was computed by a plane sweep procedure. The plane sweep
construction was revisited in [47] and [39]. Additional work on Hausdorff Voronoi

2The generator of a cut is a portion of the farthest Voronoi diagram of the elements constituting
the cut.
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diagrams is included in [1,9,38]. In this chapter, we first present an output-sensitive
version of the plane sweep in three dimensions for the L1 Hausdorff Voronoi
diagram of rectangles as given in [47]. We also present the structural properties
of this diagram and a simple two-dimensional plane sweep as given in [32, 39],
which is not output sensitive; nevertheless, it achieves optimal O.n log n/-time and
O.n/-space in the case of non-crossing rectangles. In case of a large number of
crossings, the size of the Hausdorff Voronoi diagram may be �.n2/ [11], and the
O.n2/ algorithm of [11] may result in a better approach.

This chapter is organized as follows. Section 2 refers to [47], Section 3 refers to
[34], and Section 4 to [39]. The sections are presented independently and they can
be read in any order. In more detail, Sect. 2.1 introduces the concepts of 1-D and
2-D geometric minimal cuts; Sect. 2.2 presents the algorithms of [47] for computing
the geometric minimal cuts; and Sect. 2.3 presents the output-sensitive plane sweep
algorithm in 3-dimensions of [47]. Section 3 presents an iterative approach to
the MGMC problem via higher-order Voronoi diagrams based on [34]. Section 4
analyzes the structural complexity of the L1 Hausdorff Voronoi diagram and
summarizes the simple two-dimensional plane sweep algorithm for its construction
presented in [32, 39]. In Section 5 we provide concluding remarks.

2 On Geometric Minimal Cuts and Their Map

2.1 Geometric Cuts

Let G D .V; E/ be the undirected graph in an MGMC problem and H D .VH ; EH /

be its planar subgraph embedded in the plane P with jV j D N , jEj D M ,
jVH j D n, and jEH j D m. Due to the planarity of H , m D O.n/. In this
chapter, unless explicitly mentioned otherwise, all edges in H are either horizontal
or vertical straight-line segments. A pair of vertices u and v in a graph are connected
if there is a path in this graph from u to v. Otherwise, they are disconnected.
A graph is connected if every pair of its distinct vertices is connected. Without loss
of generality, G is assumed to be connected in this chapter. A cut C of G is a subset
of edges in G whose removal disconnects G. A cut C is minimal if removing any
edge from C no longer forms a cut.

Definition 1 Let R be a connected region in P , and C D R \ H be the set of
edges in H intersected by R. The cut C is called a geometric cut induced by R if
the removal of C from G disconnects G.

When there is no ambiguity of the region R, the cut induced by R is called
a “geometric cut” for simplicity. For a given cut C , its minimum inducing region
R.C / is the minimum axis-aligned rectangle which intersects every edge of C (i.e.,
if we shrink the width or length of R.C / by any arbitrarily small value �, some
edge in C will no longer be intersected by R.C /). For some geometric cut C , its
minimum inducing region R.C / could be degenerated into a horizontal or vertical



1820 E. Papadopoulou et al.

Cleft C1

C2 C3

Cright

a bFig. 1 (a) 1-D cuts
C1; C2; and C3 with C3

being the minimal cut. (b) A
2-D cut bounded by 4 edges

line segment, or even a single point. It is easy to see that if R.C / is not degenerate,
it is unique.

Definition 2 A geometric cut C is called a 1-D geometric cut (or a 1-D cut) if
R.C / is a line segment. If R.C / is an axis-aligned rectangle, then C is called a 2-D
geometric cut (or a 2-D cut).

Definition 3 A geometric cut C is a geometric minimal cut if the set of edges
intersected by any region obtained by shrinking R.C / no longer forms a geometric
cut.

The following lemma easily follows from the above definitions and the problem
setting.

Lemma 1 Let C be any geometric minimal cut. If C is a 1-D cut, then each
endpoint u of R.C / is incident to either an endpoint of an edge e in H with the
same orientation as R.C / and e \ R.C / D u or an edge in H with different
orientation as R.C / (see Fig. 1a). If C is a 2-D cut, each bounding edge s of R.C /

is incident to either an endpoint v of an edge e in H of different orientation with s

and R.C / \ e D v, or an edge in H with the same orientation as s (see Fig. 1b;
note that s could be incident to multiple edges).

From the above lemma, it is clear that each 1-D geometric minimal cut is
bounded by up to two edges in H and each 2-D geometric minimal cut is bounded
by up to 4 edges in H . For a cut C , let B.C / denote the set of edges bounding C .
Due to the minimality nature of C , removing any edge in B.C / will lead to a non-
cut. This means that any edge in B.C / is necessary for forming the cut. However,
this is not necessarily true for edges in C nB.C /. Thus, a geometric minimal cut
may not be a minimal cut. Note that for a given graph, the number of minimal cuts
could be exponential. However, as shown later, the number of geometric minimal
cuts is much less (i.e., bounded by a low degree polynomial).

For a 1-D geometric minimal cut C , it is possible that all edges in C have
different orientation with R.C /. In this case, there may exist an infinite number of
1-D geometric minimal cuts, all cutting the same set of edges C (in other words, the
minimum inducing region for such a 1-D geometric C is not unique). For example,
sliding R.C / along B.C / will obtain an infinite number of 1-D minimal cuts.
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Among these cuts, there are two extreme cuts, Clef t and Cright (or Ctop and Cbot tom

if R.C / is horizontal), incident with the left and right (or up and bottom) endpoints
of some edges in C , respectively. Since all these geometric cuts cut the same set of
edges, they are counted as one cut.

2.2 Identifying Geometric Minimal Cuts

To solve the MGMC problem, the main idea in [47] is to first identify all possible
geometric minimal cuts and then construct a Hausdorff Voronoi diagram of these
cuts as the map M. Thus, three major problems need to be solved:
1. Finding all 1-D minimal cuts;
2. Finding all 2-D minimal cuts; and
3. Efficiently constructing the Hausdorff Voronoi diagram for the geometric cuts.
This section discusses the main ideas for problems 1 and 2. The approach for
problem 3 will be discussed in the next section.

2.2.1 Computing 1-D Geometric Minimal Cuts
As discussed in the previous section, a 1-D geometric minimal cut can be induced
by either horizontal or vertical segments. The following lemma bounds from above
the total number of 1-D geometric minimal cuts.

Lemma 2 There are O.n2/ 1-D geometric minimal cuts in H .

Proof Only the 1-D cuts induced by vertical segments are considered. Cuts induced
by horizontal segments can be proved similarly. If we place a vertical line through
each vertex (or endpoint), then the plane P is partitioned into O.n/ vertical slabs,
with each slab containing no endpoint in its interior. For a particular slab S

containing k edges, say e1; e2; � � � ; ek , it could be shown that there are at most O.k/

1-D geometric minimal cuts. To see this, all 1-D minimal cuts formed by the k

edges are considered. A cut C is owned by an edge ei if ei 2 B.C /. Clearly, each
1-D minimal cut has at least one owner. Now consider each edge ei , it can only
be the owner of up to two 1-D minimal cuts, one bounded by ei from the bottom
and one bounded by ei from the top. Note that due to the fact that the cuts are all
minimal, it is impossible to have two cuts bounded by ei from the top (or bottom)
simultaneously. Thus, each edge in S owns at most two 1-D geometric minimal cuts.
Hence, the total number of 1-D geometric minimal cuts in S is O.k/. Summing over
all slabs, the total number of 1-D geometric minimal cuts is O.n2/. Thus, the lemma
follows. �

To compute the O.n2/ 1-D geometric minimal cuts, since each cut is a set
of edges C 2 H which appear consecutively in some slab and whose removal
disconnects G, it is necessary to first (a) Identify all possible cuts in H , and then
(b) For each possible cut, determine whether it is indeed a cut (such a test is called a
cut query). To overcome the two difficulties, a straightforward way is to enumerate
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all possible cuts, and for each possible cut C , use graph search algorithms (such as
depth first search (DFS) or breadth first search (BFS)) to check the connectivity
of GnC . As shown in the proof of Lemma 2, the embedding plane P can be
partitioned into O.n/ slabs, and for each slab with k edges, there are O.k2/ subsets
of consecutive edges. Thus, a total of O.n3/ possible subsets need to be checked,
and the connectivity checking for each subset takes O.N C M / time. Therefore,
this will lead to a total of O.n3.N C M // time.

To speed up the computation, the idea is to first simplify the graph G. Since the
cuts involve only the edges in H , the connectivity in GnEH will not be affected
no matter which subset of edges in H is removed. To make use of this invariant,
the connected components of GnEH are firstly computed. For each connected
component CC , it is contracted into a supernode vCC . For each vertex u 2 H \CC ,
an edge .u; vCC / is added. Let the resulting graph be G0 D .V 0; E 0/ (called
contracted graph). The following lemma gives some properties of this graph.

Lemma 3 The number of vertices in G0 is jV 0j D O.n/ and the number of edges in
G0 is jE 0j D O.n/. Furthermore, a subset of edges in H is a cut of G if and only if
it is a cut of G0.

Proof Follows from the construction of G0. �

The above lemma shows that the size of G0 could be much smaller than G. Thus,
the time needed for answering a cut query is significantly reduced from O.N C M /

to O.n/.

Converting Cut Queries to Connectivity Queries As discussed previously, to
compute all 1-D geometric minimal cuts, it is necessary to check O.n3/ possible
subsets of edges in H . Many of them are quite similar (i.e., differ only by one
or a small number of edges). Thus, it would be highly inefficient to handle them
independently and answer each cut query by searching the graph G0. To yield a
better solution, it is better to consider all these cut queries simultaneously and share
the connectivity information among similar cut queries.

To share information among slightly different cut queries, one possible way is
to use persistent data structure [10]. However, due to the fact that inserting (or
removing) an edge could cause a linear, instead of a constant, number of 1-D
geometric minimal cuts to be destroyed or generated, persistent data structures
require substantial amount of updating after each insertion or deletion, thus they
do not lead to a highly efficient solution.

To overcome this difficulty, the main idea is to further decompose each cut query
into a set of connectivity queries with each connectivity query involving only one
edge. The reduced granularity in query enables us to better share information among
related cut queries.

Connectivity Query Before continuing the discussion on connectivity queries,
some existing algorithms and data structures for the dynamic connectivity problem
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4

5

Fig. 2 An example for
1DSlab, where the dotted
lines are the edges in G0nH .
f2; 3g and f5g are the 1-D
geometric minimal cuts

are briefly reviewed. In the fully dynamic connectivity problem, the input is a
graph G whose vertex set is fixed and whose edges can be inserted and deleted.
The objective is to construct a data structure for G so that the connectivity of
any pair of vertices can be efficiently determined. Most fully dynamic connectivity
data structures support the following three operations: (1) Insert.e/, (2) Delete.e/,
and (3) Connectivity.u; v/, where the Insert.e/ operation inserts edge e into G, the
Delete.e/ operation removes edge e from G, and the Connectivity.u; v/ operation
determines whether u and v are connected in the current graph G. Extensive
research has been done on this problem, and a number of results were obtained
[12, 13, 17, 18, 20, 45]. In [20], Thorup et al. gave a simple and interesting solution
for this problem which answers each connectivity query in O.log n/ time and takes
O.log2 n/ time for each update. Later Thorup gave a near-optimal solution for this
problem [45] which answers each connectivity query in O.log n= log log log n/ time
and completes each insertion or deletion operation in O.log n.log log n/3/ expected
amortized time.

The approach described in this chapter uses the data structure in [45] for the
MGMC problem. In practice (e.g., critical area computation), the simpler algorithm
in [20] may be more practical. When the choice of the connectivity data structure is
unclear, MaxQU is used to represent the maximum of the connectivity query time
and the update operation time.

Enumerating 1-D Geometric Minimal Cuts in a Slab The problem of identifying
1-D geometric minimal cuts in a vertical slab S with k edges (see Fig. 2) is to
make use of the connectivity data structure. Clearly, there are O.k2/ possible 1-D
geometric cuts and O.k/ 1-D geometric minimal cuts. To find out the O.k/ minimal
cuts from O.k2/ possible locations, edges are sorted based on the y coordinates, and
let e1 D .u1; v1/; e2 D .u2; v2/; � � � ; ek D .uk; vk/ be the k edges. A fully dynamic
connectivity data structure FDC.G0/ for the contracted graph G0 is built, and then
the algorithm for a slab (called 1DSlab) is run on it. The main steps of 1DSlab are
the follows.
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1. Initialize a variable r D 1 to represent the index of the next to-be-deleted edge.
2. Starting from er , repeatedly delete edges of S from G0 according to their sorted

order and store them in a queue Q. For each deleted edge ei , query FDC.G0/
about the connectivity of ui and vi . Stop the deletion until encountering the first
edge ej whose two endpoints uj and vj are disconnected or the last edge. In the
latter case, insert all deleted edges back and stop.

3. Insert the deleted edges in Q back in the same order as they are deleted and
updating FDC.G0/. After inserting each edge ei , query the connectivity of the
two endpoints of ej , uj , and vj .

4. If uj and vj are disconnected, add a forward pointer from ei to ej and insert
edges in Q back to G0.

5. If uj and vj are connected, add a forward pointer from ei to ej , set r D j C 1,
and repeat Steps 2–5 until encountering the last edge ek. In this case, insert all
remaining edges in Q back to G0 and FDC.G0/.

6. Reverse the order of the k edges and repeat the above procedure. In this step the
added pointers are backward pointers.

7. For each edge ej , find the nearest edge ei which has a forward pointer to
ej and the nearest edge e0

i with a backward pointer to ej . Output the set of
edges between ei and ej (including ei and ej ) as a 1-D geometric minimal cut
and edges between ej and e0

i (including ej and e0
i ) as another 1-D geometric

minimal cut.
The correctness of the above algorithm is shown below.

Lemma 4 Assume G0 is originally a connected graph. In Step 2 of the 1DSlab
algorithm, if ui and vi (the endpoints of the last deleted edge ei ) are connected, the
set of deleted edges (i.e., er to ei ) does not form a cut in G0. On the other hand, if ui

and vi are disconnected, then the set of deleted edges does form a cut in G.

Proof Firstly, if ui and vi are disconnected, obviously the set of deleted edges forms
a cut. Thus, only the case that ui and vi are connected is considered. In this case, the
set of deleted edges does not form a cut.

This could be proved by induction on the number i of deleted edges. The base
case is i D 1. In this case, since G0 is originally a connected graph and ui and vi are
still connected in G0nfeig, obviously there exists no cut. Assume that after deleting
i � 1 edges, the set of edges Si�1 D fe1; e2; � � � ; ei�1g does not form a cut. Then
since G0nSi�1 is a connected graph, after deleting edge ei , the case becomes the
same as the base case. Thus, the lemma follows. �

Lemma 5 In the 1DSlab algorithm, the disconnectivity of uj and vj in Step 4 or
the connectivity of uj and vj in Step 5 implies that the set Si;j D fei ; eiC1; � � � ; ej g
forms a cut in G0.

Proof The first case (i.e., uj and vj are disconnected in Step 4) is obvious. For
the second case (i.e., uj and vj are connected in Step 5), since uj and vj are
disconnected before the insertion of ei , it follows that Si;j is a cut. �
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The above lemmas indicate that the cut query can be answered by a sequence of
connectivity queries.

Theorem 1 The 1DSlab algorithm generates all 1-D geometric minimal cuts in the
slab S in O.kMaxQU / time, where MaxQU is the maximum of the query time
and the updating time of the FDC.G0/ data structure.

Proof The reason that the 1DSlab algorithm generates all 1-D geometric minimal
cuts is shown below. By Lemmas 4 and 5, it is known that the forward pointers
to ej indicate all cuts whose edge set appears consecutively and ends at edge ej .
Similarly, the backward pointers to ej indicate all cuts whose edge set appears
consecutively and starts from ej . By finding the nearest edges with forward and/or
backward pointers to ej , the algorithm identifies the (up to) two 1-D geometric
minimal cuts starting from and ending at ej . Since the computation is for every
edge in S , it generates all 1-D geometric minimal cuts.

For the running time, it is clear that the sorting takes O.k log k/ time. After
sorting, in each of the forward and backward computations, every edge in S is
deleted and inserted once. As for the connectivity queries, the endpoints of each
edge can be queried multiple times (one in Step 2 and others in Step 3). To bound
the total query time, the query on uj and vj in Step 3 is charged to edge ei . Since
ei is inserted only once, it will be charged only once. Thus, each edge in S will
be responsible for at most two queries. Therefore, the total number of connectivity
queries is O.k/. Since the insertion, deletion, and query operations take no more
than O.MaxQU / time, the theorem follows. �

From the above theorem, it is known that even though there are O.k2/ consec-
utively appeared subsets of edges that could be 1-D geometric minimal cuts, the
connectivity data structure can reduce the time to near linear.

Generating 1-D Geometric Minimal Cuts The algorithm 1DSlab is combined
with a plane sweep algorithm to generate all possible 1-D geometric minimal cuts
in H .

A straightforward way of using 1DSlab is to partition the plane P into O.n/ slabs
and apply the 1DSlab algorithm in each slab. This will lead to a O.n2MaxQU /-
time solution. A more output-sensitive solution is to use the following plane sweep
algorithm.

In the plane sweep algorithm, a vertical sweeping line L is used to sweep
through all edges in H to generate those 1-D geometric minimal cuts induced
by vertical segments. Similarly, those 1-D geometric minimal cuts induced by
horizontal segments can be generated by sweeping a horizontal line. For the vertical
sweeping line algorithm, the event points are the set VH of endpoints in H . At each
event point, the set of edges intersecting the sweeping line L forms a slab. However,
instead of applying the 1DSlab algorithm to the whole set of intersecting edges, only
a subset of edges are considered.
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Let u be the event point. If u is the left endpoint of an edge e, then e is the new
edge just encountered by L. Thus, it is only needed to identify all 1-D geometric
minimal cuts which contain e. This means that the 1DSlab algorithm needs only
to consider the minimal cut C1 bounded by e from the bottom, the minimal cut C2

bounded by e from the top, and all minimal cuts between the top edge et of C1

and the bottom edge eb of C2. To deal with this case, the 1DSlab algorithm can
be easily modified. Particularly, the modified algorithm can start from e, have a
backward computation, and stop at the first edge et , whose removal disconnects its
two endpoints, to generate C1. Similarly, the algorithm can start from e and have a
forward computation to generate C2. In this way, dealing with possibly many edges
beyond et and eb is avoided.

If u is the right endpoint of e, it is necessary to check those cuts containing e to
see whether they are still geometric minimal cuts. It is also needed to check whether
new cuts can be generated. Clearly, it is only needed to consider the edges between
e0

t and e0
b , where e0

t is the top edge of the 1-D geometric minimal cut bounded by
e from the bottom and e0

b is the bottom edge of the 1-D geometric minimal cut
bounded by e from the top. Thus, such information from the previous step (i.e., the
step before encountering u) are first obtained and then the 1DSlab algorithm on the
subset of edges between e0

t and e0
b is applied directly.

Theorem 2 All 1-D geometric minimal cuts of H can be found in O.n � MaxC �
MaxQU / time, where MaxC is the maximum size of a 1-D geometric minimal cut.

Proof Follows from the above discussion. �

2.2.2 Computing 2-D Geometric Minimal Cuts
This section extends the algorithm in Sect. 2.2.1 to compute 2-D geometric minimal
cuts.

To compute 2-D geometric minimal cuts, it is easy to see that a 1-D geometric
minimal cut is a degenerate version of a 2-D geometric minimal cut. The only
difference is that the minimum inducing region of a 1-D cut has two opposite sides
degenerated to points. Thus, if two opposite sides of the minimum inducing region
R.C / of a 2-D cut C are conceptually “contracted” into “points,” the plane sweep
algorithm for 1-D cuts can be applied to generate 2-D cuts.

To implement this idea, two parallel sweeping lines L1 and L2 (called primary
and secondary sweeping lines) are used to bound the “contracted” sides of R.C /.
By Lemma 1, it is known that each 2-D geometric minimal cut is bounded by the
endpoints (or edges) of up to four edges. This suggests that the possible locations
of L1 and L2 are the endpoints of the input edges. Similarly to the plane sweep
algorithm for 1-D cuts, the edges in H are swept twice, one time vertically and the
other time horizontally. The discussion below is focused on horizontal sweeping
(i.e., using vertical sweeping lines).

The double plane sweep algorithm first sorts all edges in H based on the x

coordinates of their left endpoints (for vertical segments, their upper endpoints
are viewed as the left endpoints and their lower endpoints as the right endpoints).
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L1 L2

Fig. 3 An example for
illustrating the double plane
sweep algorithm for 2-D cuts

Let S1 D fe1; e2; � � � ; eng be the sorted order. The primary sweeping line L1 stops
at the left endpoint of each edge e in the order of S1. If the right endpoint of e is
to the left of the left endpoint of the next edge e0 2 S1, the sweep line L1 is moved
to the right endpoint of e (see Fig. 3). If e is a cut by itself, L1 is moved to the
next edge in S1. If e is not a cut, L1 is fixed and the secondary sweeping line L2 is
swept from the left endpoint of the next edge e0 in S1 to the last edge in S1. When
L2 stops, the plane sweep algorithm for 1-D cuts (in Sect. 2.2) is used to compute all
2-D geometric minimal cuts formed by the set S of edges intersecting the vertical
region VR bounded by L1 and L2.

For edges in S , there are two sorted orders SL and SU . SL is sorted based on
the y coordinates of the lower endpoints, and SU is based on the y coordinates
of the upper endpoints. (For horizontal edges, their left endpoints are viewed as
upper endpoints and right endpoints as the lower endpoints. It is not difficult to see
that the two sorted lists can be dynamically maintained in the double plane sweep
algorithm.) SL is used to generate cuts for edges above e and SU is used to generate
cuts for edges below e.

Each 2-D geometric minimal cut C in the vertical region VR is bounded by
L1 from left, L2 from right, an edge eu from above, and an edge ed from below.
Since all edges in S are in sorted order and R.C / intersects edges in the same order
in either SL or SU (depending on their relative locations to e), the 2-D geometric
minimal cuts in VR can be viewed as 1-D geometric minimal cuts induced by
vertical “segments” with a segment width equal to the horizontal distance of L1

and L2. Thus, they can be generated by using the plane sweep algorithm for 1-D
cuts. Furthermore, similar to the plane sweep algorithm for 1-D cuts, in VR it is
only needed to consider those 2-D geometric minimal cuts containing edge e (see
Fig. 4).

Once all the cuts in VR are identified, L2 is moved to the next edge in S1. After
sweeping L2, L1 is moved to the next edge in S1 and the above procedure is repeated
until L1 sweeps every edge.

The following lemma is used to analyze the double plane sweep algorithm.

Lemma 6 There are at most O.n3/ 2-D geometric minimal cuts in H .
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Fig. 4 Example of the
double plane sweep algorithm
for 2-D cuts. The region
bounded by the dotted lines is
the actual region where the
algorithm searches for all 2-D
geometric minimal cuts
bounded by the leftmost
segment from the left.

Proof By Lemma 1, it is known that the inducing region of each 2-D geometric
minimal cut is bounded by an edge on each side. There are O.n2/ pairs of edges
to bound the left and right sides of the inducing region. For each pair, the vertical
region is similar to a slab (according to the above discussion). By a similar argument
in the proof of Lemma 2, it is easy to see that in each vertical region, there at most
O.n/ 2-D geometric minimal cuts. Thus, the lemma follows. �

For the running time of the double plane sweep algorithm, the primary sweeping
line L1 stops at O.n/ location. For each fixed location of L1, L2 sweeps all edges
not yet encountered by L1, whose number can be O.n/. For each vertical region
bounded by L1 and L2, it takes O.MaxC �MaxQU / time (by Theorem 2). Thus,
the total time is O.n2 � MaxC � MaxQU /.

Theorem 3 All 2-D geometric minimal cuts in H can be found in O.n2 �MaxC �
MaxQU / time.

Proof Follows from the above discussion. �

Corollary 1 All geometric minimal cuts in the MGMC problem can be found in
O.n3 log n.log log n/3/ time in the worst case.

Proof Follows from Theorems 2 and 3, and article [45]. �

Corollary 2 If the maximum size of a cut is bounded by a constant, then all
geometric minimal cuts in H can be found in O.n log n.log log n/3/-time.

Proof If the maximum size of a defect is bounded by some constant, the size of
an inducing rectangle is bounded by a constant. Furthermore, since edges in VLSI
design are separated by some constant distance, thus the total number of edges in
an inducing rectangle is also a constant. In this case, the secondary sweeping line
L2 needs only to sweep a constant number of edges. Thus, the running time of both
plane sweep algorithms is O.n � MaxQU /. Also from Theorems 2 and 3, article
[45], the lemma follows. �
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2.3 Generating Map of Geometric Minimal Cuts

This section shows that Problem 3 can be solved by using the Hausdorff Voronoi
diagram.

2.3.1 From Geometric Minimal Cuts to Hausdorff Voronoi Diagram
Given two sets A and B , the directed Hausdorff distance from A to B is h.A; B/ D
fmaxa2A minb2B d.a; b/g; and the undirected Hausdorff distance between A and B

is dh.A; B/ D maxfh.A; B/; h.B; A/g; where d.a; b/ is the distance between the
points a and b. In this chapter, the L1 metric is used to measure the distance.

Given a set C of geometric minimal cuts of H , the Hausdorff Voronoi diagram
of C is a partition of the embedding plane P of H into regions (or cells) so that the
Hausdorff Voronoi cell of a cut C 2 C is the union of all points whose Hausdorff
distance to C is closer than to any other cut in C. This means that for any point
p 2 P , if an L1 ball is grown from p (i.e., an axis-aligned square centered at p),
the ball entirely contains R.C.p// earlier than the minimum inducing region of any
other cut, where C.p/ is the cut owning the Hausdorff Voronoi cell containing p.
Thus, if such a map M exists for the critical area extraction problem, then for each
point p, one can easily determine the minimum size of a defect centered at p and
disconnecting the circuit.

In the MGMC problem, two types of objects exist, the minimum inducing regions
of 1-D geometric minimal cuts and the minimum inducing regions of 2-D geometric
minimal cuts. For every 2-D cut C , the rectangle R.C / is fixed. However, for a 1-D
cut C , the location of R.C / is not fixed, since there may be an infinite number
of 1-D cuts cutting the same set of edges. In this case, the union of the infinite
number of inducing segments R.C / is used to represent the cut, which is a rectangle
(denoted by UR.C /) bounded by the two extreme 1-D cuts Clef t and Cright (or Ctop

and Cbot tom) and the two bounding edges B.C / of C . Thus, from thereafter, the
objects of the Hausdorff Voronoi diagram are a set of axis-aligned rectangles.

As it is well known, the Hausdorff Voronoi diagram construction can be viewed
as propagating a wave from each rectangle with unit speed. The Hausdorff distance
from an arbitrary point p to an axis-aligned rectangle R.C /, corresponding to the
minimum inducing region of a 2-D cut C , is considered to better illustrate the wave
propagation. The Hausdorff distance of dh.p; R.C // is achieved at one of the four
corner points, v1.C /; v2.C /; v3.C /; and v4.C /, of R.C /. Thus, dh.p; R.C // D
maxfd1.p; v1.C //; d1.p; v2.C //; d1.p; v3.C //, d1.p; v4.C ///g. To propagate a
wave W.C / from R.C /, the initial wavefront @W.C / is the set of points whose
Hausdorff distance to R.C / is the minimum. Notice that when R.C / has positive
size (i.e., R.C / is not a point), the minimum Hausdorff distance is positive (i.e.,
maxfa; bg=2, where a; b are the length and width of R.C / respectively) and it is
achieved when d1.p; v1.C //; d1.p; v2.C //; d1.p; v3.C // and d1.p; v4.C /// are
equal. The wavefront then expands to points having larger Hausdorff distance to
R.C /. Since the Hausdorff distance to R.C / is determined by the four corner points,
an equivalent view is to propagate four distinct waves from the four corner points
of R.C / with each being an L1 ball. Let B1.C /; B2.C /; B3.C /, and B4.C / be the
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Fig. 5 Wavefronts of
geometric minimal cuts

four L1 balls. The common intersections of the four balls constitute the wave of
R.C / (i.e., W.C / D \4

iD1Bi .C /). Initially, @W.C / is empty. Once the size of the
four balls Bi .C / reaches the minimum Hausdorff distance to R.C /, their common
intersection forms a segment sC located at the center of R.C / and parallel to the
shorter side of R.C /. As Bi .C / grows, @W.C / becomes a rectangle.

To visualize the whole growing process, the waves can be lifted to 3-D with time
being the third dimension. Thus, the wavefront of R.C / becomes a 4-sided facet
cone in the 3-D space and apexed at sC (i.e., the apex is not in the xy plane due to
its positive minimum Hausdorff distance; see Fig. 5). Each facet of @W.C / forms a
45ı angle with the xy plane.

For a 1-D cut C , its wavefront is slightly different. Let UR.C / be the rectangle
of C . Since UR.C / is the union of an infinite number of inducing segments
R.C /, the Hausdorff distance to an arbitrary point p is calculated differently. For
a fixed inducing segment R.C / 2 UR.C /, let u1.R.C // and u2.R.C // be its
two endpoints. The Hausdorff distance from R.C / to p is achieved at one of the two
endpoints (i.e., dh.p; R.C // D maxfd.p; u1.R.C ///; d.p; u2.R.C ///g). Thus, the
wavefront of R.C / is the common intersection of two L1 balls centered at the two
endpoints, respectively, which is also a facet cone in 3-D space.

The Hausdorff distance from p to UR.C / is the minimum distance from p to
one of the inducing segments in UR.C /, that is,

dh.p; UR.C // D min
R.C /2UR.C /

dh.p; R.C //:

Thus, the wavefront of UR.C / is the union of an infinite number of wavefronts,
which is still a facet cone with similar shape to the wavefront of a 2-D cut. The
difference between the wavefront of UR.C / and that of a 2-D cut with exactly
same-shaped R.C / is that their respective sC may orient differently and locate at
different heights.

Lemma 7 Let C be a 1-D or 2-D geometric minimal cut. At any moment, the
wavefront of C is either empty or an axis-aligned rectangle. Furthermore, the
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wavefront in 3-D is a facet cone apexed at a segment and with each facet forming a
45ı angle with the xy plane.

Proof Follows from the above discussion. �

With the 3-D wavefronts of all cuts, the Hausdorff Voronoi diagram can be
constructed by computing the vertical projection of the lower envelope of the set
of 3-D wavefronts.

Lemma 8 The Hausdorff Voronoi diagram can be obtained by projecting the lower
envelope of the 3-D facet cones to the xy plane.

Proof Follows from the definitions of the 3-D wavefronts and the Hausdorff
Voronoi diagram. �

2.3.2 Plane Sweep Approach and Properties of 3-D Cones and
Hausdorff Voronoi Diagram

To efficiently construct the Hausdorff Voronoi diagram HVD.C/, the approach
follows the spirit of Fortune’s plane sweep algorithm for points [15] and sweeps
along the x axis direction a tilted plane Q in 3-D which is parallel to the y axis and
forms a 45ı with the xy plane (see Fig. 6a). Q intersects the xy plane at a sweep
line L parallel to the y axis.

Since every facet of a 3-D facet cone forms a 45ı angle with the xy plane and
apexed at either a horizontal or vertical segment, the intersection of Q and a cone
@W.C / is either a V -shape curve (i.e., consisting of a 45ı ray and a 135ı ray on Q)
or a U -shape curve (i.e., consisting of a 45ı ray, a segment parallel to L, and a 135ı
ray; see Fig. 6b). When the cone is first encountered, it introduces either a V -shape
curve or a U -shape curve to Q. When L (or Q) moves, the curve grows and its
shape may change from a V -shape to a U -shape. Accordingly, the lower envelope
(or beach line) of all those V - or U -shape curves forms a monotone polygonal curve,
instead of parabolic arcs as in Fortune’s algorithm.

With the beach line, one might think of directly applying Fortune’s algorithm
to sweep the objects. However, due to the special properties of this problem, quite
a few significant differences exist between the MGMC problem and the ordinary
Voronoi diagram problem, which fail the Fortune’s algorithm. Below is a list of
major differences.
1. When a cone is first encountered by Q, its corresponding initial V - or U -shape

curve may not necessarily be part of the beach line.
2. The initial V - or U -shape curve may affect a number of curves in the beach line.
3. Once a V shape moves away from the beach line, it may re-appear in the beach

line in a later time.
The differences indicate that it is not sufficient to maintain only the beach line
in order to extract all possible event points and produce the Voronoi diagram.
More information of the arrangement of the V - and U -shape curves is needed.
This seemingly suggests that an algorithm with running time of the order of the
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Fig. 6 (a) The intersections of 3-D plane Q and cones. (b) The Voronoi diagram with sweep line
and beach line

complexity of the arrangement might be unavoidable. With several interesting ob-
servations and ideas, an output-sensitive plane sweep algorithm could be achieved.
First, some basic properties of the Hausdorff Voronoi diagram of C are presented
below.

Definition 4 A 3-D facet cone @W.C / is a U cone (or V cone) if its apex segment
sC is parallel to the y (or x) axis.

For U cones, let @W.C / be any U cone with apex segment sC , and v1 and v2

be the two endpoints of sC . When the sweep plane Q first encounters @W.C /, it
introduces a U -shape curve Cu to Q. Let rl , rr , and sm be the left and right rays and
the middle segment of Cu, respectively. Initially, sm is the apex segment sC , and rl

and rr are the two edges of facet cone. When Q (or L) moves, Cu grows and always
maintains its U -shape.

Lemma 9 Let @W.C /, Cu, rl , rr , and sm be defined as above. When Q moves in the
direction of the x axis, Cu is always a U -shape curve. The two supporting lines of
rl and rr remain the same on Q, and the two endpoints of sm (also the fixed points
of rl and rr ) move upwards in unit speed along the two supporting lines.

Proof Follows from the shape and orientation of a U cone. �

For an arbitrary V cone @W.C 0/, let sC 0 be its apex segment and v0
1 and v0

2 be
its two endpoints (or left and right endpoints). When Q first touches @W.C 0/ at v0

1,
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Fig. 7 (a) The V -shape curve changes to U -shape curve. (b) The V cone is hidden by another V

cone

it generates a V -shape curve C 0
v . C 0

v remains a V -shape curve before encountering
v0

2. After that, C 0
v becomes a U -shape curve (see Fig. 7a).

Lemma 10 Let rl and rr be the two rays of C 0
v , and sm be the middle segment of

the U -shape curve C 0
v after Q visits v0

2. During the whole sweeping process, the
supporting lines of rl and rr are fixed lines on Q. C 0

v remains the same V-shape
curve on Q before encountering v0

2. sm moves upwards in unit speed along the
supporting lines of rl and rr after Q encounters v0

2.

Proof Follows from the shape and orientation of a V cone. �

As mentioned earlier, the apex segment of each 3-D cone is located at different
height (i.e., its minimum Hausdorff distance). The heights and shapes of the 3-D
cones are the main reasons which cause the three differences in the MGMC problem.
For example, due to the existence of height in a 3-D cone, the initial curve created
by a newly encountered cone may be above the beach line (i.e., Difference (1)). In
addition due to the different size of the initial curve (unlike the ordinary Voronoi
diagram in which the initial curve is a vertical ray), it may intersect a number of
segments or rays of the beach line (i.e., Difference (2)). More importantly, due to
the existence of U - and V -shape curves, a V -shape curve which is not part of the
beach line could become part of the beach line in a later time (i.e., Difference (3)).
It is shown in the following lemma.

Lemma 11 Let @W.C1/ be either a U or V cone and @W.C2/ be a V cone with its
left endpoint v1 of sC2 being inside of @W.C1/ and its right endpoint v2 being outside
of @W.C1/. If @W.C2/ is not entirely contained by the union [Ci 2CICi ¤C2

@W.Ci /,
the V -shape curve C2 introduced by @W.C2/ will be hidden by the beach line at the
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beginning and will become part of the beach line later. This is the only case in which
a hidden U - or V -shape curve can appear in the beach line.

Proof To simplify the proof, @W.C1/ and @W.C2/ are assumed to be the only
two cones in C (see Fig. 7b). The multiple cones case can be proved similarly by
induction.

By the definition of the two 3-D cones, it is known that Q first encounters
@W.C1/ and generates a curve C1 on Q. C1 is the only curve in the beach line.
When v1 of @W.C2/ is first encountered by Q, it introduces a V -shape curve C2 on
Q. Since v1 is inside @W.C1/ and every facet of the two cones forms a 45ı angle
with the xy plane, the two rays of C2 will be inside the region defined by the two
rays of C1. This means C2 will not be part of the beach line (or lower envelope).
Since @W.C2/ is not entirely inside @W.C1/, v2 must be outside of @W.C1/. Let vi

be the intersection point of sC2 and the wall of @W.C1/. When Q sweeps through
vi , the apex point of the V -shape curve C2 will intersect the U -shape curve C1 (note
that at this moment C1 can only be a U -shape curve even if @W.C1/ is a V cone),
since C1 is the intersection of Q and @W.C1/ and vi is the intersection of @W.C1/

and sC2 . Thus, C2 becomes part of the beach line.
To show that this is the only case where a hidden curve could appear in the beach

line, first it is noted that the apex segment sC2 of @W.C2/ cannot be completely
outside of @W.C1/, otherwise the initial curve of C2 will be part of the beach line.
Second, @W.C1/ cannot be a U cone. If this is the case, then sC2 is either partially
or entirely inside @W.C1/. For the first case, the middle segment sm of the initial U -
shape curve C2 will intersect one of the two rays of C1, which makes C2 be part of
the beach line. For the second case, the initial U -shape curve C2 will be hidden by
C1. When Q moves, only the middle segment sm of C2 moves upwards in unit speed
along the two rays of C2 (by Lemma 9). If @W.C1/ is a U cone, then by Lemma 9,
the middle segment of C1 will also move upwards in unit speed. Thus, it will never
catch up sm. Therefore C2 will never be part of the beach line. Similarly the same
for the case @W.C1/ is a V cone can be proved. Thus, @W.C2/ has to be a V cone.
In this case, if sC2 is completely inside of @W.C1/, then by the same argument,
it can be shown that C2 will never be part of the beach line. Thus, the lemma
follows. �

In the above lemma, the point vi indicates that when Q sweeps it, the beach line
is having a topological structure change. Thus, vi needs to be an event point for
the plane sweep algorithm. However, since vi is the intersection point of an apex
segment and a 3-D cone, it has to be computed on the fly. This indicates that in the
MGMC problem there is a new type of event points.

The ideas for constructing the Hausdorff Voronoi diagram HVD.C/ are dis-
cussed below. First, the bisector of two rectangles (or cuts) is considered. Let C1 and
C2 be two axis-aligned rectangles in C. The bisector of C1 and C2 is a segment with
two rays as shown in Fig. 8. Each bisector contributes two vertices to the Hausdorff
Voronoi diagram. Hence, the Hausdorff Voronoi diagram consists of two types of
vertices: (a) The intersection points of the bisectors; and (b) The vertices of the
bisectors.



Map of Geometric Minimal Cuts with Applications 1835

Fig. 8 Bisector is composed by a segment with two half-lines

Lemma 12 Let C be a set of N rectangles. The edges of HVD.C/ are either
segments or rays, and the vertices of the HVD.C/ are either the vertices of bisectors
or the intersections of bisectors.

Proof Follows from the above discussion. �

To obtain a plane sweep algorithm, it is needed to design data structures to
maintain the beach line and the event points. In the MGMC problem, the beach
line is the lower envelope of the set of V - and U -shape curves and is a y-monotone
polygonal curve. For non-disjoint 3-D cones, the complexity of the beach line may
not be linear in the number of the rectangles in C. Figure 9b shows a newly generated
U -shape curve intersecting the beach line a number of times and contributing
multiple edges to it. Consequently, the complexity of HVD.C/ is not linear. The
following lemma is a straightforward adaptation of Theorem 1 in [33] for the L1
metric.

Lemma 13 The size of the L1 Hausdorff Voronoi diagram of N rectangles is
O.N C M 0/, where M 0 is the number of intersecting pairs of rectangles. In the
worst case, the bound is tight.

2.3.3 Events
For event points, it is needed to detect all events that cause the beach line to have
topological structure changes. More specifically, it is necessary to identify all the
moments when a U - or V -shape curve is inserted or deleted from the beach line.
There are two ways by which a curve could appear in the beach line:
(A) A newly generated U - or V -shape curve becomes part of the beach line.
(B) A hidden V -shape curve appears in the beach line.
There are also two ways for a curve or a portion of a curve to disappear from the
beach line:
(C) A curve (or part of the curve) becomes hidden by a newly generated curve.
(D) A U -shape curve (or part of the U -shape curve) moves out of the beach line.
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Fig. 10 (a) The bottom segment of U -shape curve C1 reached Vi . (b) The hidden V -shape curve
C2 appeared on the beach line L

For (A), it is known that this is caused by the sweep plane Q encountering a new
3-D cone @W.C /. Such events can be detected in advance and are called site events.
A site event, however, does not necessarily lead to a topological structure change to
the beach line, since the new curve C can be hidden by the beach line. If @W.C /

is a U cone, the two endpoints of sC are encountered by Q at the same time and
either of them can be treated as a site event. If the corresponding U -shape curve
C is not hidden, it may intersect the beach line multiple times as shown in Fig. 9.
In this case, it is necessary to update the beach line for each breakpoint introduced
by C . Consequently, the U -shape curve C will be partitioned into multiple pieces.
Each piece is either a part of the beach line (called unhidden portion of C ) or hidden
by other U - or V -shape curves in the beach line (called a hidden portion of C ). If
@W.C / is a V cone, then the left endpoint v1 of sC is encountered first and can be
viewed as a site event. When Q sweeps the right endpoint v2 of sC , the C changes
from a V -shape curve to a U -shape curve. To distinguish from the site event, v2 is
called as a U event. For unhidden V -shape curve C , it intersects the beach line at
most twice (see Fig. 9).

For (B), it occurs when an unhidden portion of the bottom segment sm of a
U -shape curve C1 moves upwards and encounters the apex point of a hidden V -
shape curve C2. This kind of events is called V events (see Figs. 10 and 7b). The
V events are not known in advance and need to be computed by using the saved
information in the data structures. Note that when sm moves upwards, its hidden
portions may also encounter the apex point of some hidden V -shape curve. In this
case, it is not viewed as an event since the beach line has no topological structure
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Fig. 11 Dominating regions of unhidden portions of U -shape curves

change, thus generating no new Voronoi vertex or edge. To distinguish the two
cases, each unhidden portion of a U -shape curve is associated with a region, called
dominating region (see Fig. 11), which is the region swept by the unhidden portion
when it moves upwards. The dominating regions could have a few different shapes
(see the shaded regions in Fig. 11), with each of them bounded by zero, one, or
two 45ı rays, zero, one, or two 135ı rays, and an unhidden portion of the bottom
segment sm of some U -shape curve. Clearly, for a hidden V -shape curve to cause a
V event, its apex point has to fall in a dominating region of an unhidden portion of
a U -shape curve. Thus, to capture all V events, it is only needed to focus on those
hidden V -shape curves whose apex points fall in the dominating regions.

For (C), it is obviously caused by a site event and thus can be detected in advance.
For (D), the disappearing U -shape curve C (or its unhidden portion) is caused by
the upward movement of the bottom segment of C . It involves three curves, C and
its immediate left and right neighbors C 0 and C 00 in the beach line. Since this event
is similar to the circle event in the computation of the standard Voronoi diagram, it
is also called here a circle event. The circle events cannot be detected in advance
and have to be computed on the fly.

Thus, there are in total four types of events, site events, circle events, U events,
and V events. The ideas on how to handle these events are discussed in the next
section.

2.3.4 Data Structures and Events Handling
To construct HVD.C/, doubly connected edge lists are used to store HVD.C/. Two
data structures for the plane sweep algorithm are also needed: an event queue and a
sweep plane status structure representing the beach line.

The status structure for the beach line consists of three balanced binary search
trees T , T�=4, and T3�=4. T stores the y-monotone polygonal curve of the beach line.
Each part of the curve corresponds to a V -shape curve or an unhidden portion of a
U -shape curve. The leaves of T correspond to the V -shape curves and the unhidden
portions of the U -shape curves on the beach line sorted by their y coordinates. Each
leaf also stores location information of the corresponding 3-D cone. The internal
nodes of T adjacent to the leaves represent the breakpoints (i.e., the intersection of
a pair of U or V curves) on the beach line. A breakpoint is stored at an internal
node by an ordered tuple of curves < Ci; Cj >, where Ci is the left curve of the
breakpoint and Cj is the right curve of the breakpoint. T�=4 is used to maintain the



1838 E. Papadopoulou et al.

orders (along the norm direction) of the 45ı rays of all U - or V -shape curves which
appear in the beach line. Similarly, T3�=4 maintains the orders of the 135ı rays of
U - or V -shape curves which appear in the beach line. Each leaf node in T�=4 or
T3�=4 represents a 45ı or 135ı ray, and each ray corresponds to a U - or V -shape
curve (represented by a leaf node in T ) in the beach line. For each leaf node of T�=4

and T3�=4, a pointer pointing to the corresponding leaf node in T is maintained. In
this case, by doing binary search on T�=4 and T3�=4 and the pointers between the
trees, the positions in the beach line for the apex points of each newly encountered
cone at a site event could be located in O.log N / time, and the beach line is updated
in O.k log N / time, where k is the number of breakpoints destroyed and created
after inserting the newly encountered U - or V -shape curve into the beach line.

The event queue Q is implemented by a priority queue, where the priority of an
event is the x coordinate of the corresponding event point. If two points have the
same x-coordinate, the one with larger y coordinate has the priority. All the site
events and U -events are known in advance and are stored in Q. The main challenge
is to detect the V events.

For a V event, it is known that it occurs when the apex point of a hidden V-shape
curve C2 appears in the beach line. To detect such events, it is necessary to store
in the data structure the information of all hidden V -shape curves. This could
potentially require us to maintain the whole arrangement of all curves on Q and
therefore results in unnecessarily high computational cost. To efficiently detect all
possible V events, the main idea is not to maintain the arrangement, but rather to
use the properties of V events to convert the problem into a query problem in 3-D.
To achieve this, first it is easy to see that a V event is always caused by the upward
movement of an unhidden portion of the bottom segment sm of some U -shape curve
C1 and occurs when sm coincides with the apex point v of a hidden V -shape curve
C2 (by Lemma 11). Thus, in order to detect all possible V events, it is needed to
solve the following two difficulties: (1) Identify the next V event associated with
each unhidden portion of a U -shape curve, and (2) for each newly encountered
hidden V -shape curve (in a site event), find the unhidden portion of a U -shape curve
which will later cause a V event involving this V -shape curve. There is another one
(Difficulty (3)) related to the two difficulties: How to find the exact boundary of
the dominating region for a given unhidden portion c of a U -shape curve.

First Difficulty (1) is considered. For this difficulty, it is known that the next
V event associated with an unhidden portion c of a U -shape curve C1 is the hidden
V-shape curve C2 whose apex point v lies inside the dominating region of c and
is the closest to the bottom segment sm of C1. However, as it is noticed in the
last section, the dominating region could have various shapes which seemingly
suggest that it is costly to find the next V event even if the dominating region
is known. To overcome this difficulty, first it is observed that the dominating
region is bounded by 45ı and 135ı rays and the bottom segment. From Lemmas 9
and 10, it is known that the rays of any U or V curve have fixed directions (e.g.,
forming 45ı and 135ı angles with the y axis) and their supporting lines remain
the same during the whole sweeping process. This suggests that the dominating
regions can be orthogonalized in 3-D space. The three dimensions of the new
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Fig. 12 A dominating region
is converted to a 3-D box in
the orthogonalized 3-D space
for MD

space are the orthogonal directions of the 45ı and 135ı lines in the sweep plane
Q and the orthogonal direction of the bottom segment (or the y axis). In this
way, each dominating region is converted into a (possibly unbounded) box in 3-D
(see Fig. 12).

To efficiently find the next V event in the orthogonalized dominating region, the
apex points of all V -shape curves are processed into a 3-D dynamic range search
tree data structure MD [29, 31]. In MD, the apex point of each hidden V -shape
curve is mapped into a 3-D point. Thus, for a particularly dominating region R, its
orthogonalized box can be used as the query range to find the closest apex point
(among all hidden V -shape curves whose apex points fall in R) to the unhidden
portion of the bottom segment of a U -shape curve in O.log2 N log log N / time [29].

To efficiently maintain the MD, it can be built in advance for all possible V -shape
curves. In each node p of the MD tree, a mark is stored to indicate whether there is
any active V -shape curve in the subtree rooted at p. A V -shape curve C is active
if its corresponding 3-D cone has already been encountered by the sweep plane Q,
and C has not yet changed to a U -shape curve due to a U event. In this way, it is
only needed to change the marks when the status of a V -shape curve changes and
therefore avoid complicate updating (such as tree rotation) to the MD.

To make use of MD, it is necessary to identify all scenarios in which it is needed
to either update MD or query MD for detecting potential V events. First, it is
noticed that a site event or a U event could introduce (a) a new U -shape curve
C to the beach line and generate a set of unhidden portions of C and (b) a hidden
V -shape curve C 0. Thus, for (a), in each such event, a 3-D range query in MD is
performed for each unhidden portion ci to find the closest hidden V -shape curve
to ci in its dominating region and insert a V event into the event queue Q. For (b),
it is necessary to find out the exact dominating region R which contains the apex
point of the newly encountered hidden V -shape curve C 0 (i.e., Difficulty (2)) and
then insert the hidden V event into MD, since the V event of C 0 might be the new
next V event of the unhidden portion c of R. (The idea for this challenging problem
will be discussed later.) Second, after a V event, it is also necessary to perform a
3-D range query in MD to find the closest hidden V -shape curve to the new U -
shape curve converted from the V -shape curve of the V event. Third, if an unhidden
portion c of a U -shape curve C disappears from the beach line (e.g., a circle event),
its associated V event is deleted from Q, since c will never appear in the beach line
again by Lemma 11.
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The ideas for Difficulty (2) (i.e., finding the unhidden portion of the dominating
region containing the apex point of a hidden V -shape curve in a site event) are
discussed below. Let p be the apex point of the hidden V -shape curve. As shown in
Fig. 13, finding the four rays (two 45ı rays and two 135ı rays) bounding p does not
necessarily give us the correct dominating region. This is because the rays bounding
p could be stopped by the rays bounding the actual dominating region. For example,
L is stopped by L00 at point q. Thus, a ray inside a dominating region may not be a
ray bounding that dominating region.

Definition 5 A ray (or a portion of a ray) is active if it bounds some dominating
region and inactive otherwise.

Let l be any ray in the beach line. If starting from the bottom (i.e., the endpoint)
of l and walking along it, l is active until it is stopped by some other ray and thus
becomes inactive. It is easy to see that once a ray becomes inactive, it will never
be active again. In Fig. 13, L is active until stopped by L00 and will no longer be
active. A ray has two sides and it may not be active on both sides simultaneously.
Also one side of a ray may bound more than one dominating region (L00 bounds the
dominating regions generated by U -shape curves with bottom segments a and c).
It is easy to see that for any ray, there is always one side bounding at most one
dominating region. Otherwise, there will be an intersection between two dominating
regions, thus contradicting the definition of dominating regions.

With these observations, to find out the actual dominating region of p, first the
four rays bounding it are found by searching the T�=4 and T3�=4 trees. Further, it is
needed to find out whether or not these rays are active on the sides containing p.
To determine this, it is needed to know whether each of the four rays has been
stopped by other rays. If the ray L which stops these rays can be found out, then it
means that p belongs to the dominating region bounded by L. This means that for
a given ray, it is needed to have a way to efficiently determine which ray stops it.

To achieve this, the T�=4 and T3�=4 trees are augmented. For each node of the
trees, the z-coordinate of the lowest bottom (segment) of all rays in the subtree
rooted at that node is stored. The z-coordinate of the bottom segment of a V -shape
curve is the z-coordinate of its apex point minus the length of bottom segment of the
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3-D V cone. With the augmented information, the ray L00 which stops a ray L can
be searched in the two trees in O.log N / time.

To better understand the idea, consider the example in Fig.13. Let L be a 45ı ray
with its endpoint v. A ray L00 which stops L is a 135ı ray if it exists. To find L00,
another 135ı ray L0 with endpoint v is created. First the position of L0 is searched
in T3�=4. Then it is only needed to find the ray between L0 and p (in the direction
of L) with (1) lower z-coordinate than v and (2) the closet z-coordinate. This can
be done by following the searching path of L0 in T3�=4 upwards until finding a node
satisfying the two conditions and then moving downwards to locate the ray L00.
In Fig. 13, the dominating region with bottom segment b dominates p.

Lemma 14 It takes O.log N / time to find out the exact dominating region of an
unhidden portion c for the apex point p of the hidden V -shape curve C 0 generated
by the site event.

Proof Follows from the above discussion. �

It is not difficult to see that the augmented information can be maintained
during the whole sweep process within the same time bound. With the augmented
information, the exact boundary of a dominating region R for an unhidden portion
c of a U -shape curve (i.e., Difficulty (3)) can also be found in O.log N / time
following the same idea (i.e., finding the rays stopping the bounding rays of R).

Circle events can be handled in a way similar to the standard Voronoi diagram.
More specifically, every new triple of consecutive U - or V -shape curves that appear
in the beach line is checked. If such a new triple has converging breakpoints, the
event is inserted into the event queue Q. Furthermore, for all disappearing triples,
the corresponding event is de-queued from Q if it has been inserted.

2.3.5 Algorithm and Analysis
The entire plane sweep algorithm is described below. The main steps of the
algorithm are as follows.

Algorithm HAUSDORFF-VORONOI-DIAGRAM.C/

Input. A set C of axis-aligned rectangles (or geometric minimal cuts) in the plane.
Output. The Hausdorff Voronoi diagram in a doubly connected edge list D.
1. Initialize the event queue Q with all site events and U events; initialize empty

sweep plane status structures T , T�=4, and T3�=4, and an empty doubly-connected
edge list D; initialize a 3-D range search tree MD for all possible V -shape curves
with all nodes marked as inactive.

2. while Q is not empty
3. do Remove an event with the smallest x-coordinate from Q.
4. if the event is a site event, then HANDLE-SITE-EVENT.
5. if the event is a circle event, then HANDLE-CIRCLE-EVENT.
6. if the event is a U -event, then HANDLE-U-EVENT.
7. else the event is a V event; HANDLE-V-EVENT.
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HANDLE-SITE-EVENT
1. Let C be the new curve. If the status structure is empty, insert C into it and mark

the apex point in MD as active if it is a V cone. Otherwise, continue with steps 2–8.
2. If C is a V -shape curve, mark its apex point in MD as active and continue with

steps 3–5.
3. Locate the position of the apex point of C in the beach line by searching T ,T�=4,

and T3�=4.
4. If C is not hidden, insert C to the beach line by updating T ,T�=4, and T3�=4. This

includes inserting C into the beach line, computing new breakpoints, inserting
possible circle events into Q, and removing all curves hidden by C from the
beach line. If an unhidden portion of a U -shape curve is removed, delete its
corresponding V event from Q. If an unhidden portion of a U -shape curve is
partially blocked by C , search for its closest hidden V -shape curve in the reduced
dominating region if necessary.

5. Else if (the apex of) C is inside the dominating region an unhidden portion c of
a U -shape curve C 0, update the associated V event of c if needed.

6. Else if C is a U -shape curve, continue with steps 7–8.
7. Locate the position of C in the beach line by searching T , T�=4, and T3�=4.
8. If C is not fully hidden, insert C into the beach line by updating T , T�=4,

and T3�=4. This includes computing possibly multiple breakpoints and the
corresponding circle events for all its unhidden portions, removing blocked
curves (similarly to Step 4), and finding the possible V event for each unhidden
portion of C and partially blocked unhidden portion.
HANDLE-CIRCLE-EVENT

1. Update the beach line by updating T , T�=4, and T3�=4. Delete unnecessary circle
events from Q involving the part disappearing from the beach line. If an unhidden
portion of a U -shape curve moves out of the beach line, delete its associated
V event.

2. Add the vertex to D. Two new breakpoints of the beach line will be traced out.
3. Check the new triples involving the left or right neighbor of the disappearing part

and insert the corresponding circle event into Q, if necessary.
HANDLE-U-EVENT

1. If the V -shape curve C introduced by the V cone appeared on the beach line,
the corresponding part of the beach line is changed from a V -shape curve to a
U -shape curve. Update T , T�=4, and T3�=4, and add vertex to D. Also find the
possible V event for C by querying MD, and insert it into Q.

2. Mark the node in MD containing C as inactive, and update its ancestors if
needed.

3. Detect the circle events and insert them into Q if necessary.
HANDLE-V-EVENT

1. Update T , T�=4, and T3�=4 by inserting the V -shape curve C into the beach line.
Create new breakpoints, detect the possible circle event, and insert them into Q.

2. For the corresponding unhidden portion c of a U -shape curve C 0, break it into
two unhidden portions, c0 and c00, and find possible new V event for c0 and c00,
respectively by querying MD.
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Theorem 4 The L1 Hausdorff Voronoi diagram HVD.C/ of a set C of geometric
minimal cuts (or axis-aligned rectangles) can be constructed by a plane sweep
algorithm in O..N C K/ log2 N log log N / time, where N D jCj and K is the
complexity of the Hausdorff Voronoi diagram.

Proof The discussion of the algorithm shows that HVD.C / can be constructed by
a plane sweep algorithm. Thus, the proof focuses on the time complexity.

First, site events are considered. Let C be a newly encountered U - or V -shape
curve. If C is a V -shape curve, it is either part of the wavefront or a hidden V -shape
curve. For the former case, the computation cost includes inserting C into the beach
line and updating MD and D. The cost for these is O.log2 N log log N C k log N /,
where k is the total number of breakpoints hidden by C . Since each breakpoint
corresponds to a Voronoi vertex in HVD.C /, the cost of O.k log N / can be charged
to the breakpoints (and their corresponding Voronoi edges). Thus, each will be
charged a cost of O.log N /. The cost of .log2 N log log N / can be charged to each
V -shape curve. For the latter case, if C is not in the dominating region of any
unhidden portion of a U -shape curve, the only cost is O.log2 N log log N /, which
can be charged to C . If C is inside the dominating region of some unhidden portion
c of a U -shape curve which can be checked in O.log N / time, it is also needed to
check whether C is the closest V -shape curve to c, and this can be done in O.1/

time. Thus, in the latter case, C is charged a cost of O.log2 N log log N /. If C

is a U -shape curve, it could be fully hidden by the beach line, and thus, will never
appear in the beach line in a later time. In this case, the total cost is O.log N /, which
can be charged to C . If C appears in the beach line and contributes some unhidden
portions, then it is needed to update the sweep plane status structure, which takes
O.k log N / time, and find the closest V -shape curve for each unhidden portion
c. The cost of O.k log N / can be evenly charged to all hidden and newly created
breakpoints. Thus, each of them will be charged a cost of O.log N /. The closest
V -shape curve to each unhidden portion c can be found by a query to MD, which
takes O.log2 N log log N / time and can be charged to the breakpoint bounding c.
In a site event, up to two unhidden portions can be partially hidden by the newly
encountered U - or V -shape curve C . In this case, each of them may need to find
a new closest hidden V -shape curve in its reduced dominating region. For this, the
cost of O.log2 N log log N / is charged to the new breakpoint created by the two
rays of C and the two unhidden portions. Thus, after processing all site events,
each V -shape curve will be charged a cost of .log2 N log log N /, and each U -shape
curve will be charged a cost of O.log N /. Some breakpoints will be charged a cost
of O.log2 N log log N /.

Clearly, each circle event can be handled in O.log N /-time, and the total number
of such events is bounded by O.K/. Thus, the total cost for all circle events is
O.K log N /.

For U events, there are only O.N / such events. Each event takes O.log2 N

log log N / time to update MD, and find the closest hidden V -shape curve to the
new U -shape curve. Again, all the cost is charged to the V -shape curve.
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For V events, it is clear from the algorithm, that each such event takes O.log2 N

log log N / time. To bound the total cost of all V events, it is needed to bound their
total number. For this, it is noticed that at any moment, (1) Each unhidden portion
of a U -shape curve is associated with only one hidden V -shape curve; and (2) The
association of a hidden V -shape curve C and an unhidden portion c of a U -shape
curve can change for only two reasons: (a) The dominating region of c changes (in
a site event), and (b) a new hidden V -shape curve C 0 is activated and C 0 is closer
to c than C . For (a), it means that part of c is hidden by other U - or V -shape curve
C 00 and the cost of de-association can be charged to the edges or vertices introduced
by C 00. For (b), the cost of de-association can be charged to C 0. Each V -shape will
be charged no more than once. This means that computation cost of each V event
can be charged to the Voronoi edge or vertex corresponding to the two breakpoints
bounding the unhidden portion. Each Voronoi vertex and edge is charged a constant
times with a total cost of O.log2 N log log N /. Thus, the total cost for all V events
is O.K log2 N log log N /.

Putting all together, the total cost is O..N C K/ log2 N log log N /. Thus, the
theorem follows. �

3 The MGMC Problem via Higher-Order Voronoi Diagrams

In this section, we present the iterative approach of [34] to the MGMC problem via
higher-order Voronoi diagrams. A more general version of the MGMC problem
is addressed in this section, where the embedded subgraph H corresponds to
arbitrary polygonal shapes. The polygonal shapes are not assumed rectilinear, but
they may consist of edges in arbitrary orientation. A polygonal shape is reduced
to a collection of (additively) weighted line segments by means of its L1 medial
axis. The approach is complementary to the one presented in Sect. 2 and it does not
precompute any minimal cuts. On the contrary, it discovers those geometric minimal
cuts that are guaranteed to participate in the final map, on the fly, by iteratively
constructing variants of higher-order Voronoi diagrams. At the end of the iteration,
the derived subdivision is the Hausdorff Voronoi diagram of all geometric cuts, that
is, the solution to the MGMC problem. Definitions, results, and most figures in this
section are reproduced from [34].

3.1 The MGMC Problem in a VLSI Layout

In a VLSI setting, the geometric min-cut problem is as follows [34]: We are given
a collection of geometric graphs that have portions embedded on a plane (a VLSI
layer) A. The embedded portions on plane A are vulnerable to random defects that
may form cuts on the given graphs. A defect of size r is a disk of radius r . The size
of a geometric cut C at a given point t is the size of the smallest defect centered
at t that overlaps all elements in C , as opposed to the number of edges in C in the
classic min-cut problem. Compute, for every point t on the vulnerable plane A, the
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Fig. 14 (a) A net N spanning over two layers. (b) Dark defects create opens while transparent
defects cause no faults

size of the minimum defect causing a geometric cut at t . The size of the minimum
geometric cut at a point t is the critical radius for open faults at t . The resulting
subdivision is referred to as the opens Voronoi diagram, and it corresponds to the
map of the MGMC problem.

Figure 14a, reproduced from [34], illustrates an example of a simple VLSI net N

spanning over two metal layers, say M1 and M2, where M2 is illustrated shaded. The
two contacts illustrated as black squares are designated as terminal shapes. A VLSI
net remains functional as long as terminal shapes remain interconnected. In Fig.14b,
defects that create open faults are illustrated as dark squares, and defects that cause
no fault are illustrated hollow in dashed lines. Hollow defects do break wires of
layer M1; however, they do not create opens as no terminals get disconnected.

A compact graph representation for a VLSI net N , denoted G.N /, can be
obtained as follows: Each graph node of G.N / represents a connected component
of a net N on a conducting layer, and two nodes are connected by an edge if there
exists at least one contact or via connecting the respective components of N . Some
of the shapes constituting net N are designated as terminal representing the entities
that the net must interconnect. A node containing terminal shapes is designated as a
terminal node.

Given a layer A of interest, the extended graph of N on A, G.N; A/, is derived
from G.N / by expanding the components of N on layer A by their medial axis.
Contact points between neighboring layers are approximated as points on the medial
axis of the corresponding shape, called via points. Any via point or any portion of
the medial axis corresponding to terminal shapes is identified as terminal. Figure 15a
illustrates G.N; A/, where A D M1, for the net of Fig. 14; terminal points are
indicated by hollow circles; dashed lines represent the original M1 polygon and
they are not part of G.N; A/. G.N; A/ can be cleaned up from any trivial parts
[34] by computing biconnected components, bridges, and articulation points. In
the following, we assume that G.N; A/ is free from any trivial parts, as shown in
Fig.15b. The collection of G.N; A/ for all nets N involved on a layer A is the graph
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ba

Fig. 15 The net graph of Fig. 14 before (a) and after (b) clean-up of trivial parts

of the MGMC problem, and its portion on layer A is the planar embedded subgraph
H . For more details on the derivation of G.N; A/, see [34].

3.2 Review of Concepts on L1 Voronoi Diagrams

The Voronoi diagram of a set of polygonal sites in the plane is a partitioning of the
plane into regions, one for each site, called Voronoi regions, such that the Voronoi
region of a site s is the locus of points closer to s than to any other site. The Voronoi
region of s is denoted as reg.s/ and s is called the owner of reg.s/. In the interior of
a simple polygon, the Voronoi diagram is known as the medial axis of the polygon
(a minor difference in the definition is ignored (see [26])). The boundary between
two Voronoi regions is called a Voronoi edge and it consists of portions of bisectors
between the owners of the neighboring regions. The bisector of two polygonal
objects (such as points, segments, polygons) is the locus of points equidistant from
the two objects. A point where three or more Voronoi edges meet is called a Voronoi
vertex.

The L1 distance between two points p D .xp; yp/ and q D .xq; yq/ is
d.p; q/ D max fjxp � xq j; jyp � yqjg. In the presence of additive weights, the
(weighted) distance between p and q is dw.p; q/ D d.p; q/ C w.p/ C w.q/, where
w.p/ and w.q/ denote the weights of points p and q, respectively. In case of a
weighted line l , the (weighted) distance between a point t and l is dw.t; l/ D
minfd.t; q/ C w.q/; 8q 2 lg. The (weighted) bisector between two polygonal
elements si and sj is b.si ; sj / D fy j dw.si ; y/ D dw.sj ; y/g.

In L1, any Voronoi edge or vertex can be treated as an additively weighted
line segment. For brevity and in order to differentiate from ordinary line segments,
the term core segment, more generally core element, is used to denote any portion
of interest along an L1 Voronoi edge or vertex. The term standard-45ıs is used
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Fig. 16 The regions of influence of the core elements of a core segment: two endpoints and an
open line segment. (a) an axis-parallel core segment, (b) a non-axis-parallel core segment

to refer to Voronoi edges of slope ˙1 that correspond to bisectors of axis-parallel
lines. Figure 16 illustrates examples of core segments.

Let s be a core segment induced by the polygonal elements el ; er . Every point p

along a core segment s is weighted with w.p/ D d.p; el/ D d.p; er/, where el ; er

are the polygonal elements inducing s. The 45ı rays3 emanating from the endpoints
of s partition the plane into the regions of influence of either the open core segment
portion or the core endpoints. In Fig.16, the L1 distance is indicated by straight-line
arrows emanating from various points t . In the north and south (resp. east and west)
regions, the L1 distance simplifies to a vertical (resp. horizontal) distance. In the
region of influence of a non-axis-parallel core segment, it is measured by the side
of a square touching ei as shown in Fig. 16b. In the region of influence of a core
point p, distance is measured in the ordinary weighted sense, that is, for any point t ,
dw.t; p/ D d.t; p/Cw.p/. In the region of influence of an open core segment s, dis-
tance, in essence, is measured according to the farthest polygonal element defining
s, that is, dw.t; s/ D d.t; ei /, where ei is the polygonal element at the opposite side
of s than t ; see, for example, the small arrows in Fig. 16. In L1, this is equivalent
to the ordinary weighted distance between t and s. For more details see [34].

The (weighted) bisector between two core elements is defined in the ordinary
way, always taking the weights of the core elements into consideration. Similarly,
the (weighted) Voronoi diagram of a set of core elements is defined as above,

3A 45ı ray is a ray of slope ˙1.
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Fig. 17 The L1 farthest
Voronoi diagram of axis
parallel segments

with the difference that distance between a point t and a core element s is always
measured in an additive weighted sense, dw.t; s/. The (weighted) Voronoi diagram
of core medial axis segments was first introduced in [32] as a solution to the critical
area computation problem for a simpler notion of an open, called break, that was
based solely on geometric information. For Manhattan geometries, core segments
are simple (additively weighted) axis-parallel line segments and points.

The farthest Voronoi diagram of a set of polygonal sites is a partitioning of the
plane into regions, such that the farthest Voronoi region of a site s is the locus of
points farther away from s than from any other site. For typical cases (e.g., points,
line segments), it is a tree-like structure consisting only of unbounded regions
(see, e.g., [4, 6]). In the L1 metric, when sites are points or axis-parallel segments,
its structure is particularly simple, consisting of exactly four regions as shown in
Fig. 17. In each region, the L1 distance to the farthest element is measured as the
vertical or horizontal distance to an axis-parallel line marked by t; b; l; r , where t

(resp. b) is the horizontal line through the topmost (resp. bottommost) lower (resp.
upper) endpoint of all core segments and l (resp. r) is the vertical line through the
leftmost (resp. rightmost) right (resp. left) endpoint of all core segments. In Fig. 17,
the thin arrows indicate the farthest L1 distance of selected points.

3.3 Definitions and Problem Formulation

Let core.N; A/ denote the collection of all core elements of a net N on a layer A,
that is, the collection of all medial axis vertices and edges of G.N; A/ on A that are
of interest. For simplicity, all standard 45ı edges are excluded from core.N; A/.
The union of core.N; A/ for all nets N on layer A is denoted as core.A/. Core
segments and points in core.A/ represent all wire segments vulnerable to defects
on layer A and correspond to weighted line segments. Core segments are assumed
to consist of three distinct core elements: two endpoints and an open line segment.
Open faults are determined based on the connectivity information of G.N; A/ and
the geometry information of core.N; A/.
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Fig. 18 Generators for
strictly minimal opens

Definition 6 A minimal open is a defect D of minimal size that breaks a net N ,
that is, if D is shrunk by � > 0, then D no longer breaks N . An open is any defect
that entirely overlaps a minimal open. A minimal open is called strictly minimal if
it contains no other open in its interior.

Definition 7 The center point of an open D, is called a generator point for D and it
is weighted with the radius of D. The generator of a strictly minimal open is called
critical. A segment formed as the union of generator points is called a generator
segment or simply a generator.

In Fig. 14, strictly minimal opens are illustrated by dark shaded disks, other than
the original via and contact shapes. Figure 18 illustrates the generators for strictly
minimal opens for the net of Fig. 14, thickened; the shaded squares indicate strictly
minimal opens. For brevity, we say that a defect D overlaps a core element c 2
core.A/, but we mean that D overlaps the entire width of the wire segment induced
by c.

Definition 8 A cut for a net N is a collection C of core elements, C � core.N; A/,
such that G.N; A/nC is disconnected leaving nontrivial articulation or terminal
points in at least two different sides. A cut C is called minimal if C nfcg is not a
cut for any element c 2 C . A defect of minimal size that overlaps all elements of
cut C is called a cut-inducing defect. The centerpoint p of a cut-inducing defect
that encloses no other defect in its interior is called a generator point for cut C .
If, in addition, the cut-inducing defect is a strictly minimal open, then p is called
critical. The collection of all generator points of a cut C is referred to as the
generator(s) of C .
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The generator of a cut C can consist of critical and noncritical portions.
Critical portions correspond to generators of strictly minimal opens. Noncritical
portions correspond to centers of cut-inducing disks that, in addition to
overlapping C , may also overlap some additional cut on a layer A, and
thus, although they break C , they do not correspond to strictly minimal
opens.

Definition 9 Generators of minimal cuts that consist of a single core element
are called first-order generators. Generators of minimal cuts that consist of more
than one core element are called higher-order generators. The set of all critical
generators on layer A is denoted as G.A/.

In Fig. 18 first-order generators are illustrated as the thickened core segments in
the interior of polygons; the vertical thick segment in the exterior of polygons is
a higher-order generator that involves a pair of core elements. Given G.N; A/, we
can detect biconnected components,4 bridges, and articulation points5 using depth-
first search (DFS) as described in [21, 42]. By definition, we have the following
property.

Lemma 15 The set of first-order generators on a layer A, denoted as G1.A/,
consists of all the bridges, terminal edges, articulation points, and terminal points
of G.N; A/ \ core.N; A/, for all nets N . All first-order generators are critical.

The generator of a minimal cut C that consists of more than one core element
must be a subset of the L1 farthest Voronoi diagram of C , derived by ignoring the
standard-45ı edges of the diagram. For Manhattan geometries, the generator of any
cut is always a single axis-parallel segment (that can degenerate to a point); see,
for example, Fig. 17. Any generator point p of a cut C is weighted with w.p/ D
maxfdw.p; c/; 8c 2 C g. The disk D centered at p of radius w.p/ is clearly an open.
If in addition D is strictly minimal, then p is a critical generator.

Definition 10 The Voronoi diagram for opens on a layer A is a subdivision of A into
regions, such that the critical radius of any point t in a Voronoi region is determined
by the owner of the region. The critical radius of a point t , rc.t/, is the size (radius)
of the smallest defect centered at t and causing an open.

The following theorem is easy to see by properties of Voronoi diagrams. For a
proof, see [34].

4A biconnected component of a graph G is a maximal set of edges, such that any two edges in the
set lie on a common simple cycle.
5An articulation point (resp. bridge) of a graph G is a vertex (resp. edge) whose removal
disconnects G.
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Fig. 19 The Voronoi
diagram for open faults on
layer A. The shaded region
illustrates the Voronoi region
of the higher-order
generator g

Theorem 5 The Voronoi diagram for open faults on a layer A corresponds to the
(weighted) Voronoi diagram of the set G.A/ of all critical generators for strictly
minimal opens on A, denoted as V.G.A//.

Figure 19 illustrates the opens Voronoi diagram for the net of Fig. 14. The
shaded region illustrates the Voronoi region of a higher-order generator g, reg.g/.
Generator g is the critical generator of a cut consisting of two core segments as
indicated by two small arrows. The critical radius of a sample point t in reg.g/ is
indicated by the arrow emanating from t .

Corollary 3 Given the opens Voronoi diagram, the critical radius of any point t in
the region of a generator g is rc.t/ D dw.t; g/. If g is a higher-order generator of
cut C , then rc.t/ D dw.t; g/ D maxfdw.t; c/; 8c 2 C g.

In the following section, the Voronoi diagram for opens is formulated as a special
higher-order Voronoi diagram of elements in core.A/.

3.4 A Higher-Order Voronoi Diagram Modeling Open Faults and
the MGMC Problem

Let V.A/ denote the (weighted) Voronoi diagram of the set core.A/ of all core
elements on a plane (layer) A. If there were no loops associated with A, then V.A/

would provide the opens Voronoi diagram on A, and core.A/ would be the set of all
critical generators. V.A/ for Manhattan layouts has been defined in detail in [32].
Figure 20 illustrates V.A/ for the net graph of Fig.14. The arrows in Fig.20 illustrate
several minimal radii of defects that break a wire segment. Given a point t in the
region of generator s, dw.t; s/ gives the radius of the smallest defect centered at t
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Fig. 20 The L1 Voronoi
diagram of core.A/ on layer
A, V.A/

that overlaps the wire segment induced by s. Assuming no loops, dw.t; s/ would be
the critical radius of t .

Once loops are taken into consideration, only bridges, articulation, and terminal
points, among the elements of core.A/, correspond to critical generators. Let us
augment V.A/ with information reflecting critical generators. In particular, the
regions of first-order generators get colored red reflecting the regions of critical
generators. The critical radius of point t in a red region of owner s is rc.t/ D
dw.t; s/. In Fig. 21, red regions are shown shaded and critical generators are shown
thickened.

Let us now define the order-k Voronoi diagram on the plane A, denoted as
Vk.A/. For k D 1, Vk.A/ D V.A/. Following the standard definition of higher-
order Voronoi diagrams, a region of Vk.A/ corresponds to a maximal locus of
points with the same k nearest neighbors among the core elements in core.A/.
The open portion of a core segment and its two endpoints count as different entities.
A kth-order Voronoi region, k > 1, belongs to a k-tuple C representing the k nearest
neighbors of any point in the region of C . The region of C is denoted reg.C /, and
it is further subdivided into finer subregions by the farthest Voronoi diagram of C .
For any point t 2 reg.C /, d.t; C / D maxfd.t; c/; 8c 2 C g. If C constitutes a cut
of a net N , then the region of C is colored red.

In order to appropriately model open faults, the above standard definition is
slightly modified, and in certain cases fewer than k elements are allowed to own
a Voronoi region of order k. In the following, the term k-th order Voronoi diagram
implies the modified version of the diagram as follows:
– A red region corresponds to a maximal locus of points with the same r , 1 �

r � k, nearest neighbors, C , among the core elements in core.A/, such that C

constitutes a minimal cut for some net N .
– Any time a core segment s and one of its endpoints p participate in the same set

C of nearest neighbors, s is discarded from C ; this is because d.t; p/ � d.t; s/
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Fig. 21 The first-order opens
Voronoi diagram on layer A,
V1.A/. Shaded regions
belong to first-order
generators and the critical
radius of any point within is
determined by the region
owner

8t 2 reg.C /. Intuitively, a defect that destroys a core endpoint automatically
also destroys all incident core segments, but not vice versa.
Figures 22 and 23 illustrate V2.A/ and V3.A/, respectively, for the net of our

example. kth-order Voronoi regions are illustrated in solid lines; red regions are
illustrated shaded. The darker shaded region in V2.A/ shows the 2nd-order red
region of a pair of core segments that constitute a cut. The thick dashed lines
indicate the farthest Voronoi diagram subdividing a kth-order region. In a red region,
the thick dashed lines (excluding standard 45ıs) correspond to critical generators.
All critical generators are indicated thickened; solid ones are first-order generators
and dashed ones in red regions are higher-order generators. All thin dashed lines in
Figs. 21–23 can be ignored. Due to our conventions, the Voronoi region of any core
endpoint p in V1.A/ remains present in V2.A/ and expands into the regions of the
core segments incident to p.

Theorem 6 The Voronoi diagram for opens on a layer A is the minimum-order m

Voronoi diagram of core.A/, Vm.A/; m � 1, such that all regions of Vm.A/ are
colored red. Any region reg.H/, where jH j > 1, is subdivided into finer regions by
the farthest Voronoi diagram of H . The critical radius for any point t in reg.H/ is
rc.t/ D dw.t; H/ D maxfdw.t; h/; h 2 H g.

For a proof of Theorem 6, see [34]. Figure 24 illustrates the opens Voronoi
diagram, for our example; arrows indicate the critical radius of several points; all
critical generators are indicated in thick solid lines. Note that in L1, the Voronoi
subdivision is not unique but depends on the conventions used on how to distribute
regions that are equidistant from collinear elements on axis-parallel lines. Critical
area calculations are immune to such differences, however, they may have an effect
on the number of iterations needed to compute the opens Voronoi diagram. The
adapted convention is that critical generators have priority over non-critical ones
and regions equidistant from a critical and a noncritical generator are assigned to
the critical one and get colored red.
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Fig. 22 The second-order
opens Voronoi diagram,
V2.A/. The darker shaded
region belongs to a pair of
core segments forming a cut

Fig. 23 The third-order
opens Voronoi diagram,
V3.A/

Corollary 4 The higher-order critical generators on a layer A are exactly the
farthest Voronoi edges and vertices, excluding the standard-45ı Voronoi edges,
constituting the farthest Voronoi subdivisions in the interior of each region in
Vm.A/. All higher-order critical generators are encoded in the graph structure of
Vk.A/, for some k, 1 � k < m.

Let G.A/ denote the set of all critical generators on layer A, including first-order
and higher-order generators. Let us classify higher-order critical generators accord-
ing to the minimum-order-k Voronoi diagram they first appear in. In particular,
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Fig. 24 The Voronoi
diagram for open faults on a
layer A. Arrows illustrate the
critical radius of several
points

higher-order generators encoded in Vk.A/ are classified as .k C1/-order generators
and they are denoted as GkC1.A/; 1 � k < m. Let G.A/ D [1�i�mGi .A/. By
Theorems 5 and 6, V.G.A// and Vm.A/ are identical.

3.4.1 An Approximate Opens Voronoi Diagram
Given any subset G0.A/ of the set of critical generators G.A/, the (weighted)
Voronoi diagram of G0.A/ can be used as an approximation to V.G.A//. Clearly,
the more critical generators are included in G0.A/, the more accurate the result is. In
practice, we can derive G0.A/ as [1�i�kGi .A/, including all i th-order generators up
to a small constant k. Since the significance of critical generators reduces drastically
with the increase in their order, V.G0.A// should be sufficient for critical area
computation for all practical purposes.

Corollary 5 Let G0.A/ D [1�i�kGi .A/ be a subset of critical generators
including all generators up to order k for a given constant k. The (weighted)
Voronoi diagram of G0.A/, V.G0.A//, can serve as an approximation to the opens
Voronoi diagram. If G0.A/ D G.A/, then the two diagrams are equivalent.

Figure 25 illustrates the (weighted) Voronoi diagram of G1.A/. V.G1.A// reveals
critical radii for opens under the (false) assumption that all loops are immune to
open faults. In Fig. 25, solid arrows indicate selected critical radii as derived by
V.G1.A//, while dashed arrows indicate true critical radii. Several critical radii can
be overestimated in V.G1.A//, resulting in underestimating the total critical area for
open faults. As k increases, however, V.[1�i�kGi .A// converges fast to V.G.A//

(see, e.g., Sect. 8 of [34] for experimental results).
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Fig. 25 V.G1.A// as an
approximate opens Voronoi
diagram

3.5 Computing the Opens Voronoi Diagram

In this section, we give algorithmic details on how to compute GkC1.A/ and
VkC1.A/, given Vk.A/, for 1 � k < m. We also discuss how to compute
V.[1�i�mGi .A// and V.G.A//.

The iterative process to compute higher-order generators and higher-order
opens Voronoi diagrams. Let’s first discuss how to identify the set GkC1.A/ of
.k C 1/-order generators, given Vk.A/, for k � 1. The following property is shown
in [34].

Lemma 16 A Voronoi edge g that bounds two non-red Voronoi regions reg.H/

and reg.J / in Vk.A/ corresponds to a critical generator if and only if both the
core elements h 2 H and j 2 J that induce g (g 2 b.h; j /) are part of the same
biconnected component B , and in addition, H [ J corresponds to a cut of B , that
is, removing H [ J from B disconnects B , leaving articulation points in at least
two sides. No Voronoi edge bounding a red region can be a critical generator.

To determine if Voronoi edge g is a critical generator, we need to pose a
connectivity query to biconnected component B after removing H [ J . To perform
connectivity queries efficiently, we can use the fully dynamic connectivity data
structures of [20], which support edge insertion and deletions in O.log2 n/-time,
while they can answer connectivity queries fast. For simplicity in the implemen-
tation, instead of employing dynamic connectivity data structures, reference [34]
gives a simple (almost brute force) algorithm as follows: Remove the elements of H

from B and determine new nontrivial bridges, articulation points, and biconnected
components of BnH . For any Voronoi edge g bounding reg.H/, where g is portion
of b.h; j /; h 2 H; j 2 J , g is a critical generator if and only if j is a new non-trivial
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bridge or articulation point of BnH . Generator g gets associated with the tuple of
core elements H [ J , simplified, in case j or h are core endpoints, by removing
any core segment incident to j; h.

The above process can be considerably simplified in the special case where the
biconnected component B is a simple cycle. In this case, a simple coloring scheme
in the DFS tree of B can efficiently identify all cuts of B that may be associated
with a second-order generator. The time complexity of determining GkC1.A/, given
Vk.A/, is summarized in the following lemma. Note that the size of Vk.A/ is
O.k.n � k// (see [26]).

Lemma 17 The .k C 1/-order generators can be determined from Vk.A/ in
time O.kn log2 n/ using the dynamic connectivity data structures of [20] or in
time O.kn2/ using the simple algorithm presented above. In case of biconnected
components forming simple cycles, second-order generators can be determined from
V.A/ in O.n/ time.

Let us now discuss how to obtain VkC1.A/ from Vk.A/, k � 1. The following
is an adaptation of the iterative process to compute higher-order Voronoi diagrams
of points [26], to the case of (weighted) segments. Let reg.H/ be a non-red region
of Vk.A/. Let N.H/ denote the set of all core elements that induce a Voronoi edge
bounding reg.H/ in Vk.A/.
1. Compute the (weighted) L1 Voronoi diagram of N.H/ and truncate it within

the interior of reg.H/; this gives the .k C 1/-order subdivision within reg.H/.
Each .k C 1/-order subregion of reg.H/ is attributed to a tuple J D H [ fcg,
c 2 N.H/. In case c is a core endpoint incident to a core segment s in H , J

simplifies to J D H nfsg[fcg. In case c is part of a cut C owning a neighboring
red region of Vk.A/, the subregion of J gets colored red and gets as owner the
cut C .

2. Once the .k C 1/-order subdivision within all non-red regions neighboring
reg.H/ has been performed, merge any incident .k C 1/-order subregions
that belong to the same tuple of owners J into a maximal .k C 1/-order
region, reg.J /. The edges of Vk.A/ included within reg.J / constitute the finer
subdivision of reg.J / by its farthest Voronoi diagram. All .k C 1/-order red
subregions are merged into the neighboring red regions of Vk.A/ forming the
maximal red regions of VkC1.A/.
Using established bounds for higher-order Voronoi diagrams of points (see, e.g.,

[26]) we conclude the following.

Lemma 18 VkC1.A/ can be computed from Vk.A/ in time O.k.n � k/ log n/, plus
the time T .k; n/ to determine the .k C 1/-order generators, where T .k; n/ is as
given in Lemma 17.

3.5.1 Computing the Opens Voronoi Diagram from Critical Generators
The iterative process of Sect. 3.5 can continue until all regions are colored
red and the complete opens Voronoi diagram (i.e., the map of the MGMC
problem) is guaranteed to be available. By Lemmas 17 and 18, this results in
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an O.n3 log n.log log n/3/-time algorithm. In practice, however, this would be
unnecessarily inefficient. Note that the iterative process may continue for several
rounds without any new critical generators being identified, only the regions of
existing critical generators keep enlarging into neighboring non-red regions. Note
also that as the number of iterations k increases, the weight of order-k critical
generators (if any) increases as well, and their contribution to the total critical area
drastically reduces. In practice, we can restrict the number of iterations to a small
predetermined constant k, or to a small number determined adaptively, and compute
only a sufficient set of critical generators G0.A/ D [1�i�kGi .A/. We can then use
Theorem 5 to report V.G0.A// as an approximate opens Voronoi diagram. The
overall algorithm can be broken into two independent parts:
– Part I: Compute the set of critical generators G0.A/ D [1�i�kGi .A/, up to a

given (or adaptively determined) order k.
– Part II: Compute the (weighted) Voronoi diagram of G0.A/, V.G0.A//, as the

opens Voronoi diagram.
Part I can be performed using the iterative process of Sect. 3.5. Experimental

results in [34] suggest that k D 2 is often adequate and no k > 4 is ever needed.
Alternatively, k can be determined adaptively, for example, to the first round such
that no new critical generators are determined. Part II can be performed using
a plane sweep algorithm for computing V.A/. Critical generators have similar
properties to the core elements of core.A/, and the same plane sweep algorithm
can be used to compute either (see [32, 36]). The computations of Parts I and II
can be synchronized: once a generator is discovered in Part I, it can be immediately
scheduled for processing in Part II. For more details on the plane sweep construction
and the synchronization of Parts I and II that is important in maintaining the locality
of the computation see [34]. We thus conclude:

Theorem 7 Assuming that G.N / is available for all nets under consideration
and given a small constant k, the approximate opens Voronoi diagram V.G0.A//,
G0.A/ D [1�i�kGi .A/ can be computed in time O.n log n/ plus the time needed
to answer connectivity queries. The latter can be done in time O.n log2 n/.

The original implementation of this method, whose experimental results are
reported in [34], used a slightly different approach in order to guarantee accuracy
while the locality property was preserved. Namely, the iterative process of Sect. 3.5
was applied to each biconnected component independently. The advantages of
considering each biconnected component independently were locality as well as the
ability to run the process on each individual component to completion and guarantee
the accuracy. The disadvantage was that generators produced in this manner, G00.A/,
did not need all be critical. Including noncritical generators in the set G00.A/

complicates the algorithm of Part II because it amounts to computing the Hausdorff
Voronoi diagram of corresponding geometric minimal cuts on layer A. Note that
critical generators can be treated as simple additively weighted segments, having
special weights, such that Voronoi regions remain connected and the entire generator
is always enclosed in its Voronoi cell. This property considerably simplifies the
construction of their (weighted) Voronoi diagram, which is, the Hausdorff Voronoi
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diagram, which remains similar to the construction of ordinary Voronoi diagrams of
line segments. Once non-critical generators are present, however, this property no
longer holds and the algorithms is equivalent to constructing the Hausdorff Voronoi
diagram of the corresponding cuts as presented in Sects. 2.3 and 4.

For information on critical area computation once the solution to the MGMC
problem is available, see, for example, [32, 34, 36].

4 The L1 Hausdorff Voronoi Diagram

In this section, we review structural properties of the L1 Hausdorff Voronoi
diagram of clusters of points, or equivalently, the L1 Hausdorff Voronoi diagram
of rectangles, presented in [39]. The L1 Hausdorff Voronoi diagram of rectangles
provides a solution to the MGMC problem after geometric minimal cuts have been
identified. Results in this section are reproduced from [39].

Given a set S of point clusters in the plane, the Hausdorff Voronoi diagram of S ,
denoted HVD(S), is a subdivision of the plane into regions, such that the Hausdorff
Voronoi region of a cluster P , denoted hreg(P), is the locus of points closer to P

than to any other cluster in S , where distance between a point t and a cluster P

is measured as the farthest distance between t and any point in P , df .t; P / D
maxfd.t; p/; p 2 P g, hreg.P / D fx j df .x; P / < df .x; Q/; 8Q 2 Sg. It is
subdivided into finer regions by the farthest Voronoi diagram of P , FVD(P). The
farthest distance df .t; P / is equivalent to the Hausdorff distance6 dh.t; P / between
t and P . In the L1 metric, df .t; P / (equiv. dh.t; P /) is equivalent to df .t; P 0/
(equiv. dh.t; P 0/), where P 0 is the minimum enclosing axis-aligned rectangle of P .
Thus, the L1 Hausdorff Voronoi diagram of S is equivalent to the L1 Hausdorff
Voronoi diagram of the set S 0 of the minimum enclosing rectangles of all clusters in
S . In the following, the terms cluster and rectangle are used interchangeably.

In this section, we review the tight bound on the structural complexity of the L1
Hausdorff Voronoi diagram given in [39]. It is shown that the structural complexity
of the L1 Hausdorff Voronoi diagram is ‚.n C m/, where n is the number of
input clusters (equiv. rectangles) and m is the number of essential pairs of crossing
clusters (see Definition 11). We also review a simple plane sweep construction in
two dimensions given initially in [32] and improved in [39]. The improved algorithm
consists of an O..nCM / log n/-time preprocessing step, based on point dominance
in R

3, followed by the main plain sweep algorithm that runs in O..n C M / log n/-
time and O.n C M /-space, where M reflects special crossings that are potentially
essential (see Definition 12); m; M are O.n2/, m � M , but m D M , in the worst
case. In practice, typically, m; M << n2. For non-crossing rectangles the algorithm
simplifies to optimal O.n log n/-time and O.n/-space.

6The (directed) Hausdorff distance from a set A to a set B is h.A; B/ D maxa2A minb2Bfd.a; b/g.
The (undirected) Hausdorff distance between A and B is dh.A; B/ D maxfh.A; B/; h.B; A/g.
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An O.n log n/-expected time algorithm can be derived in the case of non-
crossing rectangles using the randomized incremental construction for abstract
Voronoi diagrams [24] (see [1]). For arbitrary rectangles, however, the L1
Hausdorff Voronoi diagram does not fall under the umbrella of abstract Voronoi
diagrams [23] (see, e.g., [38]). This algorithm is efficient for a relatively small
number of crossing rectangles as motivated by the critical area application. For
a large number of crossings, the O.n2/-time approach of [11] can be preferable.
Section 2.3 presented an output-sensitive version of the plane sweep construction in
three dimensions of increased space complexity.

4.1 Definitions and Structural Complexity

Let S be a set of n rectangles, or a set of n point clusters in the plane, where each
cluster has been substituted by its minimum enclosing axis aligned rectangle. A
pair of rectangles .P; Q/ is called crossing if P and Q intersect in the shape of
a cross. Given a crossing pair .P; Q/, P is assumed to be at least as long as Q.
For a rectangle P , let P n; P s; P e , and P w denote the north, south, east, and west
edges of P , respectively. P is called horizontal (resp. vertical) if P n is longer (resp.
shorter) than P e . The axis-parallel line through edge P i , i D n; s; e; w, is denoted as
l.P i /. The term P i is also used to denote the main coordinate of edge P i . The core
segment of P is the locus of centers of all minimum enclosing squares of P , and
it is given by the axis-parallel line segment of the L1 farthest Voronoi diagram of
P . It can be viewed as an ordinary line segment s additively weighted with w.s/ D
df .s; P /. In Fig. 26, FVD(P) is illustrated in dashed lines and the core segment
is indicated by s. The L1 Hausdorff Voronoi diagram of S is equivalent to the
(weighted) Voronoi diagram of the set of core segments of all clusters in S (see [32]).

The Hausdorff bisector between two clusters P; Q is bh.P; Q/ D fy j
df .y; P / D df .y; Q/g. As shown in [38], bh.P; Q/ is a subgraph of FVD.P [Q/.
For a rectangle Q strictly enclosed in the interior of a minimum enclosing square
of P , bh.P; Q/ consists of either one (if P and Q are non-crossing) or two (if
P and Q are crossing) chains, each one forming a V -shape out of the ˙1-slope
rays of FVD.P [ Q/; the apex of each chain is called a V-vertex. A V-vertex v is
incident to the core segment of P and its 90ı-angle faces the portion of the plane
closer to P . It is characterized as up, down, right, or left, depending on whether
its 90ı-angle is facing north, south, east, or west, respectively. In addition, it is
characterized as crossing, if Q is crossing P , and non-crossing, otherwise. The
minimum enclosing square of P centered at V-vertex v is also enclosing Q and it
is denoted as square.P; v/. It is also denoted as square.P; Qi/, where Qi is the
non-crossing edge of Q that delimits one of its edges. Figure 26 illustrates bh.P; Q/

consisting of two crossing V-vertices, one right and one left; square.P; Qw/ is
illustrated dashed. square.P; Qi / is referred to as an extremal minimum enclos-
ing square of P and Q. The V-vertices of HVD(S) are referred to as Voronoi
V-vertices.
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Definition 11 A pair of crossing rectangles .P; Q/ is called essential if there is an
extremal minimum enclosing square of P and Q, square.P; Qi /, that is empty of
any other rectangle.

The following lemma is easy to see.

Lemma 19 A pair of crossing rectangles .P; Q/ induces a Voronoi V-vertex v in
HVD(S) if and only if .P; Q/ is an essential crossing. Assuming that P is a vertical
rectangle, v is a right (resp. left) V-vertex if and only if square.P; Qw

i / (resp.
square.P; Qe

i /) is empty of other rectangles. Similarly for a horizontal rectangle.

Combining Lemma 19 with the structural complexity results of [38], the
following bound can be derived (see [39] for details).

Theorem 8 The structural complexity of the L1 Hausdorff Voronoi diagram of a
set S of n point clusters, equivalently n rectangles, is ‚.n C m/, where m is the
total number of essential crossings.

Definition 12 A collection of crossings for a vertical rectangle P , .P; Qi /, i D
1; : : : ; k, is called a staircase, if Qw

i < Qw
iC1 and Qe

i < Qe
iC1, i D 1; : : : ; k. If in

addition, square.P; Qw
i / is empty of Qj ¤ Qi , the staircase and its crossings are

called potentially essential. The maximum size of a potentially essential staircase
for P is the number of potentially essential crossings for P . Let M denote the total
number of potentially essential crossings for all vertical rectangles in S , plus the
number of essential crossings for all horizontal rectangles in S .

Figure 27 shows a potentially essential staircase for a vertical rectangle P . In the
absence of additional rectangles, all crossings are essential, that is, they all induce
Voronoi V-vertices in the Hausdorff Voronoi diagram. The shaded regions in Fig. 27
belong to hreg.P/.
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Fig. 27 Collection of essential crossings. Shaded regions belong to P

4.2 A Refined Plane Sweep Construction

In this section we present the plane sweep construction of [32, 39]. It is based on
the standard plane sweep paradigm for Voronoi diagrams [8, 15], its adaptation for
line segments in L1 [36], and the generalization to handle the special features
of Hausdorff Voronoi diagrams introduced in [32, 33]. In the Hausdorff Voronoi
diagram, sites need not be enclosed in their Voronoi regions and Voronoi regions
may be disconnected, which are features not addressed by the standard plane sweep
paradigm for Voronoi diagrams.

Assume a vertical sweep-line lt sweeping the entire plane from left to right. At
any instant t of the sweeping process, HVD.St [ lt / is computed, for St D fP 2
S j l.P e/ < tg. The boundary of the Voronoi region of lt is the wavefront at
time t . Voronoi edges and core segments incident to the wavefront are called spike
bisectors and spike core segments, respectively. The combinatorial structure of the
wavefront changes at specific events organized in a priority queue. We have four
types of site events: start-vertical-rectangle, end-vertical-rectangle, V-vertex events
(for brevity V events), and horizontal-rectangle events. Site events are partially
similar to those for ordinary line segments [36] enhanced with additional functions
to handle V-vertices and disconnected Voronoi regions. Spike events are caused by
the intersection of incident spike bisectors, and they remain the same as in the
ordinary plane sweep paradigm.

The wave-curve of a rectangle R is the bisector between R and the sweep line
lt , at time t , b.R; lt / D fy j df .y; R/ D d.y; lt /g, where d.y; lt / is the ordinary
distance between y and lt . In L1, it consists of two or three waves: a ray of slope
�1, corresponding to b.Rs; lt /, a ray of slope C1, corresponding to b.Rn; lt /, and
possibly a vertical line segment corresponding to b.Rw; lt /, if appropriate. The
wave-curve of R can be seen equivalently as the (weighted) bisector between the
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Fig. 28 The wave-curve of a rectangle R

core segment s of R and lt , that is, b.R; lt / D fy j dw.y; s/ D d.y; s/ C w.s/ D
d.y; lt /g. In Fig. 28, the wave-curve of several instances of rectangles is illustrated.
The bold axis-aligned segment illustrates the core segment of R. The wavefront
(equiv. the beach line) at time t is the lower envelope with respect to the sweep-line,
of the wave-curves of all rectangles in St . Note that the term beach line of Sect. 2.3
is equivalent to the term wavefront of this section, which follows the terminology of
[39]. In L1, the wavefront is monotone with respect to any line of slope ˙1. The
wavefront is typically maintained as a height balanced binary tree, T , ordered from
bottom to top. Leaf nodes correspond to waves, while internal nodes correspond
to spike bisectors and spike core segments revealing breakpoints between incident
waves.

In [39], T gets augmented with nonstandard additional information in order
to efficiently answer queries regarding V-vertices. This augmentation is essential
for the time complexity bound of the main plane sweep algorithm. Each node
x is augmented with a w-max value representing the rightmost west edge of all
rectangles contributing a wave to the portion of the wavefront rooted at x, and two
x-min values (x-min-I and x-min-II) that in combination represent the minimum
x-coordinate of the portion of the wavefront rooted at x. In particular, for a leaf node
representing a wave of rectangle R, the w-max value is Rw and both x-min values
are C1. For an internal node x, w-max is the maximum between the w-max values
of its children. If node x corresponds to a horizontal (resp. ˙1-slope) bisector, then
x-min-I (resp. x-min-II) points to the breakpoint of minimum x-coordinate among
its own breakpoint and the x-min-I (resp. x-min-II) values of its children; otherwise
x-min-I (resp. x-min-II) points to the breakpoint of minimum x-coordinate among its
children only. The minimum x-coordinate of the portion of the wavefront rooted at
node x is x-min D minfx-min-I; x-min-IIg. The augmentation values w-max, x-min-I,
x-min-II remain the same unless a combinatorial change in the wavefront (i.e., an
event) takes place.
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Fig. 29 (a) At t D priority.P / the wavefront has not reached s. (b) An invalid event at time
t D priority.v/. (c) A horizontal rectangle event

Any Voronoi point in HVD(S) enters the wavefront at the time of its priority. The
priority of a point v is the rightmost x-coordinate of the smallest square centered at
v that is entirely enclosing the rectangle P that induces v. The priority of a rectangle
P is denoted as priority(P) and corresponds to the x-coordinate of P e .

Let us now discuss the handling of various types of events of a rectangle P of
core segment s (see Fig. 29). At time t , let r1.t/ and r2.t/ be the rays of slope
C1 and �1, respectively, emanating from l.P n/ \ lt , and l.P s/ \ lt , respectively,
extending towards the left of lt . Let a.t/ and b.t/ be the intersection points of
r1.t/ and r2.t/ with the wavefront, respectively, at time t . Since the wavefront is
˙1 monotone, a.t/ and b.t/ can be determined by binary search in O.log n/ time.
In case of a wave collinear with r1.t/ or r2.t/, the rightmost endpoint is assigned
to a.t/; b.t/, adopting the convention that an equidistant region is assigned to the
rectangle preceding P . Because the wavefront is monotone with respect to any line
of slope ˙1, in case of a vertical rectangle, the entire portion of the wavefront
between a.t/ and b.t/ must be either to the left (Fig. 29a) or the right (Fig. 29b)
of the intersection point of r1.t/ and r2.t/, and thus, it may intersect r1.t/; r2.t/,
or the core segment of s at most once. For a horizontal rectangle (Fig. 29c), the
wavefront can intersect the vertical core segment of P a number of times.

Consider time t D priority.P /. There are three cases: (1) The wavefront has
not reached core segment s yet (either at a start-vertical-rectangle or a horizontal-
rectangle event); (2) The wavefront has already covered portion of s, where s

is horizontal (start-vertical-rectangle event); and (3) The wavefront has already
covered a portion of s but s is not horizontal (horizontal-rectangle event).

In case 1, the handling of the corresponding event (a start-vertical-rectangle
or a horizontal-rectangle event) is similar to processing an ordinary line-segment
event [32, 36]: The portion of the wavefront between a.t/ and b.t/ is finalized and
gets substituted by the wave-curve of P . There is one new action to take: For any
crossing V-vertex on the finalized portion of the wavefront, induced by a rectangle
Q, generate a V event for the right V-vertex of bh.P; Q/ and insert it to the event
queue.
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In case 2 (start-vertical rectangle event), a V event is generated to predict the
first right V-vertex along s (if any). Given the wavefront, perform a binary search
in the augmented wavefront to determine the wave between a.t/ and b.t/ with the
rightmost w-max value as induced by a rectangle Q. If no other information is
available, generate a V event for the right V-vertex of bh.P; Q/. Note that at a start-
rectangle event, Q must be non-crossing with P . Case 3 will be discussed later at a
horizontal-rectangle event.

A V event v is processed similarly. If at time t D priority.v/ the event is
invalid, i.e., the wavefront has already covered v, generate a new V event, given
the wavefront, as described above. In particular, let Q be the rectangle inducing the
wave with the rightmost w-max value among the waves between a.t/ and b.t/. If
no additional information is available and assuming that Q is crossing P , generate
a V event for the right V-vertex of bh.P; Q/.

End-rectangle events are similar to right events of [32]. For a proof of correctness
in handling vertical-rectangle events, see Lemma 2 in [39].

A horizontal-rectangle event is processed at time t D priority.P /. The problem
is to identify the intersections (V-vertices) of the wavefront with the vertical core
segment s (if any). Note that at time t , the wavefront may intersect s a number of
times, each intersection corresponding to a V-vertex, where only the first and the last
may be non-crossing V-vertices. If there are no intersections because the wavefront
has not reached any portion of s yet, then we have Case 1 of t D priority.P /

discussed earlier. Otherwise, this is Case 3. Any portion of the wavefront to the left
of s is finalized and gets substituted by the wave-curve of P as fragmented by the
V-vertices and their incident spike bisectors.

To identify V-vertices efficiently, the x-min value of the augmentation is used.
Let r be the breakpoint of minimum x-min value between a.t/ and b.t/. If r is to
the right of s, then s must be entirely covered by the wavefront and there can be
no intersections, that is, hreg.P / D ;. Otherwise, trace the wavefront sequentially,
starting at r , until the first intersections above and below r are determined. The
intersection above (resp. below) corresponds to a down (resp. up) V-vertex v
(resp. u). Repeat the process for the portions of the wavefront above v and below
u until all intersections are determined. Any time the x-min value of a portion of
the wavefront is to the right of s, this portion can be eliminated as it contains no
intersections with s. The correctness of handling of a horizontal-rectangle event
follows easily. A horizontal rectangle event covers also squares.

The time complexity of the plane sweep algorithm, as presented, is O..n C m C
E/ log n/, where E is the number of invalid V events. There are two reasons for
invalid V events: (1) Potentially essential staircases of vertical rectangles whose
crossings are not all essential; and (2) Sequences of strongly dominated vertical
rectangles, even in the case of non-crossing rectangles. Given a pair of vertical
rectangles .P; Q/, P is said to dominate Q if Qw < P w and Qn < P n, Qs > P s .
If, in addition, there is a minimum enclosing square of Q that is crossing P , P is
said to strongly dominate Q.

To eliminate source-2 of invalid V-vertex events, a preprocessing step can
be added to the algorithm that precomputes dominating sequences of vertical
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rectangles, which is described in [39]. Given the preprocessing information, the
number of all V events generated is bounded by O.n C M / as shown in [39].

Definition 13 The dominating sequence of a vertical rectangle P , denoted ds(P),
is a maximal collection of vertical rectangles Ri; i D 1; : : : ; k, such that every Ri is
entirely enclosed in a minimum enclosing square of P , R1 is the rectangle with the
rightmost west edge among all rectangles dominated by P , and if Ri is crossing P ,
i � 1, then RiC1 is the vertical rectangle with the rightmost west edge dominated
by square.P; Re

i�1/.

Every Ri in the dominating sequence of P , except possibly the last rectangle
Rk , is crossing P . Rectangle R1 in the dominating sequence of P is referred
to as the rightmost rectangle dominated by P . In the case of non-crossing
rectangles, the dominating sequence of P is R1 (if not empty). Figure 30 shows
the dominating sequence of a vertical rectangle P consisting of three rectangles
R1; R2; R3. Considering only those four rectangles, the region of P is alternating
with regions of Ri on the core segment of P , as shown in Fig. 30. Lemma 3 in [39]
shows that the dominating sequence of P (except the last rectangle Rk , if Rk is
non-crossing with P ) forms a maximal staircase of vertical rectangles crossing
P that is potentially essential. No vertical rectangle, other than the dominating
sequence of P , may induce a right Voronoi V-vertex on the core segment of P ,
even when only ds.P / is considered. Given the dominating sequences of vertical
rectangles, every time a V event is generated, source-2 of invalid V events can be
completely eliminated. The exact algorithmic details are given in [39].

Using the information of dominating sequences of vertical rectangles, the total
number of V events that may be produced throughout the algorithm is shown in
[39] to be O.n C M /. The problem of computing the dominating sequence of every
vertical rectangle can be transformed into a point dominance problem in R

3 which
can be solved by plane sweep in O..n C M / log n/-time, as described in Sect. 4 of
[39]. Combining with Lemma 3 of [39] we conclude.
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Theorem 9 HVD(S) can be computed by plane sweep in O..n C M / log n/-time
and O.nCM /-space. In the case of non-crossing rectangles, this results in optimal
O.n log n/-time and O.n/-space.

For the plane-sweep algorithm to compute dominating sequences of vertical
rectangles, see [39] (Sect. 4). It is based on a simple transformation to a variant
of the standard point dominance problem in R3 (see, e.g., [40]) and the use of an
auxiliary standard priority search tree [28].

5 Conclusion

Given a graph G D .V; E/ with a subgraph H embedded in the plane, this chapter
presented the problem of computing the map of geometric minimal cuts (MGMC)
of H , as induced by axis-aligned rectangles in the embedding plane. It surveyed
two different approaches for the solution of the MGMC problem [34, 47], that
were based on a mix of geometric and graph-algorithm techniques. The chapter
also surveyed results on the related Hausdorff Voronoi diagram, which provides a
solution to the MGMC problem.

Recommended Reading

1. M. Abellanas, G. Hernandez, R. Klein, V. Neumann-Lara, J. Urrutia, A combinatorial property
of convex sets. Discret. Comput. Geom. 17, 307–318 (1997)

2. E. Aurenhammer, Voronoi diagrams – a survey of a fundamental data structure. ACM Comput.
Surv. 23(3), 345–405 (1991)

3. F. Aurenhammer, R. Klein, Voronoi diagrams, in Handbook of Computational Geometry, ed.
by J. Sack, G. Urrutia (Elsevier, Amsterdam, 2000), pp. 201–290

4. F. Aurenhammer, R. Drysdale, H. Krasser, Farthest line segment Voronoi diagrams. Inf.
Process. Lett. 100, 220–225 (2006)

5. S.C. Braasch, J. Hibbeler, D. Maynard, M. Koshy, R. Ruehl, D. White, Model-based verifica-
tion and analysis for 65/45nm physical design, CDNLive! September 2007

6. M. de Berg, O. Schwarzkopf, M. van Kreveld, M. Overmars, Computational Geometry:
Algorithms and Applications, 2nd edn. (Springer, Berlin/New York, 2000)

7. J.P. de Gyvez, C. Di, IC defect sensitivity for footprint-type spot defects. IEEE Trans. Comput.
Aided Des. 11, 638–658 (1992)

8. F. Dehne, R. Klein, “The big sweep”: on the power of the wavefront approach to Voronoi
diagrams. Algorithmica 17, 19–32 (1997)

9. F. Dehne, A. Maheshwari, R. Taylor, A coarse grained parallel algorithm for Hausdorff Voronoi
diagrams, in Proceedings of the 2006 International Conference on Parallel Processing,
Columbus (2006), pp. 497–504

10. J.R. Driscoll, N. Sarnak, D. Sleator, R. Tarjan, Making data structures persistent, in STOC,
Berkeley, CA (1986), pp. 109–121

11. H. Edelsbrunner, L.J. Guibas, M. Sharir, The upper envelope of piecewise linear functions:
algorithms and applications. Discret. Comput. Geom. 4, 311–336 (1989)

12. D. Eppstein, Z. Galil, G.F. Italiano, A. Nissenzweig, Sparsification – a technique for speeding
up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)

13. G.N. Frederickson, Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput. 14(4), 781–798 (1985)



1868 E. Papadopoulou et al.

14. M. Fredman, M. Henzinger, Lower bounds for fully dynamic connectivity problems in graphs.
Algorithmica 22(3), 351–362 (1998)

15. S. Fortune, A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)
16. P. Gupta, E. Papadopoulou, Yield analysis and optimization, in The Handbook of Algorithms

for VLSI Physical Design Automation, ed. by C.J. Alpert, D.P. Mehta, S.S. Sapatnekar (Taylor
& Francis/CRC, London, 2008)

17. M.R. Henzinger, M. Thorup, Sampling to provide or to bound: with applications to fully
dynamic graph algorithms. Random Struct. Algorithm 11, 369–379 (1997)

18. M.R. Henzinger, V. King, Randomized dynamic graph algorithms with polylogarithmic time
per operation, in Proceedings of the 27th STOC, Las Vegas (1995), pp. 519–527

19. J. Holm, K. de Lichtenberg, M. Thorup, Polylogarithmic deterministic fully-dynamic algo-
rithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, in Proceedings of
the 30th STOC, Dallas, TX (1998), pp. 79–89

20. J. Holm, K. Lichtenberg, M. Thorup, Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760
(2001)

21. J. Hopcroft, R. Tarjan, Efficient algorithms for graph manipulation. Commun. ACM 16(6),
372–378 (1973)

22. A.B. Kahng, B. Liu, I.I. Mandoiu, Non-tree routing for reliability and yield improvement. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 23(1), 148–156 (2004)

23. R. Klein, Concrete and Abstract Voronoi Diagrams. Lecture Notes in Computer Science,
vol. 400 (Springer, Berlin/New York, 1989)

24. R. Klein, K. Mehlhorn, S. Meiser, Randomized incremental construction of abstract Voronoi
diagram. Comput. Geom. 3, 157–184 (1993)

25. R. Klein, E. Langetepe, Z. Nilforoushan, Abstract Voronoi diagrams revisited. Comput. Geom.
42(9), 885–902 (2009)

26. D.T. Lee, On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. C-31,
478–487 (1982)

27. W. Maly, J. Deszczka, Yield estimation model for VLSI artwork evaluation. Electron Lett.
19(6), 226–227 (1983)

28. E.M. McCreight, Priority search trees. SIAM J. Comput. 14, 257–276 (1985)
29. K. Mehlhorn, S. N Raher, Dynamic fractional cascading. Algorithmica 5, 215–241 (1990)
30. P.B. Miltersen, S. Subramanian, J.S. Vitter, R. Tamassia, Complexity models for incremental

computation. Theor. Comput. Sci. 130(1), 203–236 (1994)
31. Y. Nakamura, S. ABE, Y. Ohsawa, M. Sakauchi, MD-tree: a balanced hierarchical data

structure for multi-dimensional data with highly efficient dynamic characteristics. IEEE Trans.
Knowl. Data Eng. 5(4), 682–694 (1993)

32. E. Papadopoulou, Critical area computation for missing material defects in VLSI circuits. IEEE
Trans. Comput. Aided Des. 20(5), 583–597 (2001)

33. E. Papadopoulou, The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica
40, 63–82 (2004)

34. E. Papadopoulou, Net-aware critical area extraction for opens in VLSI circuits via higher-
order Voronoi diagrams. IEEE Trans. Comput. Aided Des. 30(5), 704–716 (2011). Preliminary
version in ISAAC’07. Lecture Notes in Computer Science, vol. 4835 (2007), pp. 716–727

35. E. Papadopoulou, D.T. Lee, Critical area computation via Voronoi diagrams. IEEE Trans.
Comput. Aided Des. 18(4), 463–474 (1999)

36. E. Papadopoulou, D.T. Lee, The L1 Voronoi diagram of segments and VLSI applications. Int.
J. Comput. Geom. Appl. 11, 503–528 (2001)

37. E. Papadopoulou, D.T. Lee, The min-max Voronoi diagram of polygonal objects and ap-
plications in VLSI manufacturing, in Proceedings of the 13th International Symposium on
Algorithms and Computation, Vancouver, BC. Lecture Notes in Computer Science, vol. 2518,
(2002), pp. 511–522

38. E. Papadopoulou, D.T. Lee, The Hausdorff Voronoi diagram of polygonal objects: a divide and
conquer approach. Int. J. Comput. Geom. Appl. 14(6), 421–452 (2004)



Map of Geometric Minimal Cuts with Applications 1869

39. E. Papadopoulou, J. Xu, The L1 Hausdorff Voronoi diagram revisited, in IEEE-CS Proceed-
ings, ISVD 2011, International Symposium on Voronoi Diagrams in Science and Engineering,
Qingdao (2011)

40. F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction (Springer, New York,
1985)

41. D. Sleator, R. Tarjan, A data structure for dynamic trees. J. Comput. Syst. Sce. 26(3), 362–391
(1983)

42. R. Tarjan, Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)
43. R.E. Tarjan, Efficiency of a good but not linear set union algorithms. J. ACM 22, 215–225

(1975)
44. M. Thorup, Decremental dynamic connectivity, in Proceedings of the 8th SODA, New Orleans

(1997), pp. 305–313
45. M. Thorup, Near-optimal fully-dynamic graph connectivity, in STOC, Portland (2000),

pp. 343–350
46. “Voronoi CAA: Voronoi Critical Area Analysis”, IBM CAD Tool, Department of Electronic

Design Automation, IBM Microelectronics, Burlington, VT. Initial patents: US6178539,
US6317859. Distributed by Cadence

47. J. Xu, L. Xu, E. Papadopoulou, Computing the map of geometric minimal cuts, in Proceedings
of the 20th International Symposium on Algorithms and Computation (ISAAC 2009), Hawaii,
USA. Lecture Notes in Computer Science, vol. 5878, 16–18 Dec 2009, pp. 244–254


	Map of Geometric Minimal Cuts with ApplicationsThe work of the first author was supported in part by the Swiss National Science Foundation SNSF project 200021-127137. The work of the last two authors was supported in part by NSF through a CAREER Award CCF-0546509 and two grants IIS-0713489 and IIS-1115220.
	1 Introduction
	2 On Geometric Minimal Cuts and Their Map
	2.1 Geometric Cuts
	2.2 Identifying Geometric Minimal Cuts
	2.2.1 Computing 1-D Geometric Minimal Cuts
	2.2.2 Computing 2-D Geometric Minimal Cuts

	2.3 Generating Map of Geometric Minimal Cuts
	2.3.1 From Geometric Minimal Cuts to Hausdorff Voronoi Diagram
	2.3.2 Plane Sweep Approach and Properties of 3-D Cones and Hausdorff Voronoi Diagram
	2.3.3 Events
	2.3.4 Data Structures and Events Handling 
	2.3.5 Algorithm and Analysis


	3 The MGMC Problem via Higher-Order Voronoi Diagrams
	3.1 The MGMC Problem in a VLSI Layout
	3.2 Review of Concepts on L∞ Voronoi Diagrams
	3.3 Definitions and Problem Formulation
	3.4 A Higher-Order Voronoi Diagram Modeling Open Faults and theMGMC Problem
	3.4.1 An Approximate Opens Voronoi Diagram

	3.5 Computing the Opens Voronoi Diagram
	3.5.1 Computing the Opens Voronoi Diagram from Critical Generators


	4 The L∞ Hausdorff Voronoi Diagram
	4.1 Definitions and Structural Complexity
	4.2 A Refined Plane Sweep Construction

	5 Conclusion
	Recommended Reading




