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Abstract
If the vertices of a graph G are colored with k colors such that no adjacent
vertices receive the same color and the sizes of any two color classes differ
by at most one, then G is said to be equitably k-colorable. The equitable
chromatic number �

D

.G/ is the smallest integer k such that G is equitably
k-colorable. In the first introduction section, results obtained about the equitable
chromatic number before 1990 are surveyed. The research on equitable coloring
has attracted enough attention only since the early 1990s. In the subsequent
sections, positive evidence for the important equitable �-coloring conjecture is
supplied from graph classes such as forests, split graphs, outerplanar graphs,
series-parallel graphs, planar graphs, graphs with low degeneracy, graphs with
bounded treewidth, Kneser graphs, and interval graphs. Then three kinds of
graph products are investigated. A list version of equitable coloring is introduced.
The equitable coloring is further examined in the wider context of graph packing.
Appropriate conjectures for equitable �-coloring of disconnected graphs are
then studied. Variants of the well-known and significant Hajnal and Szemerédi
Theorem are discussed. A brief summary of applications of equitable coloring is
given. Related notions, such as equitable edge coloring, equitable total coloring,
equitable defective coloring, and equitable coloring of uniform hypergraphs, are
touched upon. This chapter ends with a short conclusion section. This survey is
an updated version of Lih [102].

1 Introduction

A graph G consists of a vertex set V.G/ and an edge set E.G/. All graphs
considered in this chapter are finite, loopless, and without multiple edges. Let jGj
and kGk denote the number of vertices, also known as the order, and the number of
edges of the graph G, respectively. If the vertices of a graph G can be partitioned into
k sets V1; V2; : : : ; Vk such that each Vi is an independent set (none of its vertices are
adjacent), then G is said to be k-colorable and the k sets are called its color classes.
Equivalently, a coloring can be viewed as a function � W V.G/ ! f1; 2; : : : ; kg
such that adjacent vertices are mapped to distinct numbers. The mapping � is said
to be a (proper) k-coloring. All pre-images of a fixed i , 1 6 i 6 k, form a color
class. The smallest number k, denoted by �.G/, such that G is k-colorable is called
the chromatic number of G. The graph G is said to be equitably colored with k

colors, or equitably k-colorable, if there is a k-coloring whose color classes satisfy
the condition jjVi j � jVj jj 6 1 for every pair Vi and Vj . The smallest integer k

for which G is equitably k-colorable, denoted by �
D

.G/, is called the equitable
chromatic number of G. Suppose that the graph G of order n is equitably colored
with k colors. If n D qkCr , where 0 6 r < k, then there are exactly r color classes
of size q C 1 and exactly k � r color classes of size q. The sizes of the color classes
can be enumerated as bn=kc; b.nC1/=kc; � � � ; b.nCk �1/=kc in a nondecreasing
order. Note that b.n C t � 1/=kc D d.n C t � k/=ke for 1 6 t 6 k.
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The notion of an equitable coloring was first introduced in [115] by W. Meyer.
His motivation came from Tucker’s paper [138], in which vertices represent garbage
collection routes and two such vertices are adjacent when the corresponding routes
should not be run on the same day. Meyer thought that it would be desirable
to have an approximately equal number of routes run on each of the 6 days in
a week.

Let degG.v/, or deg.v/ for short, denote the degree of the vertex v in the graph
G and �.G/ D maxfdeg.v/ j v 2 V.G/g. Let dxe and bxc denote, respectively,
the smallest integer not less than x and the largest integer not greater than x. The
main result obtained by Meyer was that a tree T can be equitably colored with
d�.T /=2e C 1 colors. However, there were gaps in his proof. According to Guy’s
report [63], Eggleton could extend Meyer’s result to show that a tree T can be
equitably colored with k colors, provided k > d�.T /=2e C 1. A finer result about
trees is the following theorem by Bollobás and Guy [16].

Theorem 1 A tree T is equitably 3-colorable if jT j > 3�.T / � 8 or jT j D
3�.T / � 10.

The most interesting contribution made in Meyer’s paper is to propose the
following conjecture. It is also called the Equitable Coloring Conjecture (ECC).
Let Kn and Cn denote, respectively, a complete graph and a cycle on n vertices.

Conjecture 1 Let G be a connected graph. If G is neither a complete graph Kn

nor an odd cycle C2nC1, then �
D

.G/ 6 �.G/.

Meyer was successful in verifying the ECC only for graphs with six or fewer ver-
tices. Apparently the motivation of the ECC came from the following fundamental
Brooks’ Theorem [19].

Theorem 2 Let G be a connected graph. If G is neither a complete graph Kn nor
an odd cycle C2nC1, then �.G/ 6 �.G/.

The well-known Hajnal and Szemerédi Theorem [64], when rephrased in terms
of equitable colorings, had already shown the following before Meyer’s paper.

Theorem 3 A graph G (not necessarily connected) is equitably k-colorable if k >
�.G/ C 1.

Let ��
D

.G/ denote the smallest integer n such that G is equitably k-colorable for
all k > n. Then an equivalent formulation of Theorem 3 is that ��

D

.G/ 6 �.G/C1

holds for any graph G. There is a notable contrast between the equitable colorability
and the ordinary colorability: ��

D

.G/ may in fact be greater than �
D

.G/. This will
be demonstrated later. Therefore, it makes sense to introduce the notion ��

D

.G/, and
it shall be called the equitable chromatic threshold of G.
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In an entirely different context, de Werra [39] treated color sequences and
the majorization order among them. His results have consequences in equitable
colorability. A sequence of nonnegative integers h D .h1; h2; : : : ; hk/ is called a
color sequence for a given graph G if the following conditions hold:
1. h1 > h2 > � � � > hk > 0.
2. There is a k-coloring of G such that the color classes V1; V2; : : : ; Vk satisfy

jVi j D hi for 1 6 i 6 k.
The majorization order, also known as the dominance order, is a widely used

notion in measuring the evenness of distributions. Marshall and Olkin [110] offer
a comprehensive treatment of majorization. Let ˛ W a1 > a2 > � � � > ak > 0

and ˇ W b1 > b2 > � � � > bk > 0 be two sequences of nonnegative integers. The
sequence ˛ is said to be majorized by the sequence ˇ if the following two conditions
hold:
1.
Pj

iD1 ai 6
Pj

iD1 bi for any j , 1 6 j < k.
2.
Pk

iD1 ai D Pk
iD1 bi .

Let Km;n denote the complete bipartite graph whose parts are of size m and
size n, respectively. A claw-free graph is a graph containing no K1;3 as an induced
subgraph. One of de Werra’s results is the following:

Theorem 4 Let G be a claw-free graph and h D .h1; h2; : : : ; hk/ be a color
sequence of G. Then any sequence of nonnegative integers h0 D .h0

1; h0
2; : : : ; h0

k/

is also a color sequence if h0 is majorized by h.

Combining Theorems 2 and 4, it follows that, for a claw-free graph G, G is
equitably k-colorable for all k > �.G/, or equivalently ��

D

.G/ D �
D

.G/ D �.G/.
Although this fact can be shown directly, it was first implicitly implied in de Werra’s
paper. It follows immediately that the ECC holds for claw-free graphs. Since every
line graph is claw-free, the ECC holds for line graphs in particular. This was also
obtained in Wang and Zhang [149].

This ends the history of pre-1990 activities on the equitable coloring of graphs.

2 Bipartite Graphs

A graph is called r-partite if its vertex set can be partitioned into r-independent sets
V1; V2; : : : ; Vr and complete r-partite, denoted by Kn1;n2;:::;nr , if every vertex in Vi

is adjacent to every vertex in Vj whenever i ¤ j and jVi j D ni > 1 for every 1 6
i 6 r . By convention it is always assumed that r > 2 and 1 6 n1 6 n2 6 � � � 6 nr .
A graph is said to be complete multipartite if it is complete r-partite for some r .
A bipartite graph is synonymous with a 2-partite graph. Let In denote the graph
consisting of n isolated vertices. Then In is equitably k-colorable with color classes
of size bxc or dxe if and only if bxc 6 bn=kc 6 dn=ke 6 dxe or, equivalently, if
and only if dn=dxee 6 k 6 bn=bxcc.

Lih and Wu [102] first settled the ECC for bipartite graphs.
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Theorem 5 If a connected bipartite graph G is different from any complete
bipartite graph Kn;n, then G can be equitably colored with �.G/ colors.

Theorem 6 The complete bipartite graph Kn;n can be equitably colored with k

colors if and only if dn=bk=2ce � bn=dk=2ec 6 1.

The proof for the complete bipartite case is straightforward by considering the
appropriate sizes of the color classes. One interesting point to note is that, for
k D n D �.Kn;n/, the difference involved in Theorem 6 is 0 when n is even and is
2 when n is odd. In view of Theorem 5, one can conclude that, except the complete
bipartite graphs K2mC1;2mC1, every connected bipartite graph G can be equitably
colored with �.G/ colors. Clearly, �.K2mC1;2mC1/ D �

D

.K2mC1;2mC1/ D 2, yet
��

D

.K2mC1;2mC1/ D 2mC2. There is a gap between the equitable chromatic number
and the equitable chromatic threshold. Nevertheless, ECC holds for connected
bipartite graphs.

In many cases, the equitable chromatic number is below the maximum degree. If
additional constraints are imposed upon the graph, a better bound for the equitable
chromatic number could be obtained. The following is a result of this type:

Theorem 7 Let G D G.X; Y / be a connected bipartite graph with two parts X

and Y such that kGk D e. Suppose jX j D m > n D jY j and e < bm=.n C 1/c
.m � n/ C 2m. Then �

D

.G/ 6 dm=.n C 1/e C 1.

The bound for the equitable chromatic number in the above theorem is indeed
better than �.G/ when there are at least two edges. The following conjecture was
made by B.-L. Chen in a personal communication:

Conjecture 2 Let G be a connected bipartite graph. Then �
D

.G/ 6 d�.G/=2eC1.

Chen proved its validity when the maximum degree is at least 53. It is also trivial
to see that the conjecture holds for complete bipartite graphs. The Meyer-Eggleton
result about trees gives another positive evidence.

Wang and Zhang [149] established the validity of ECC for complete multipartite
graphs. The exact value of the equitable chromatic number of a complete multipar-
tite graph Kn1;n2;:::;nr was determined by Lam et al. [99].

Theorem 8 Let M be the largest natural number such that ni .mod M / < dni =M e
for 1 6 i 6 r . Then �

D

.Kn1;n2;:::;nr / D Pr
iD1 dni =.M C 1/e.

Blum et al. [12] also obtained a formula for �
D

.Kn1;n2;:::;nr /. For r > 2, let Kr.n/

denote the complete multipartite graph K n;n:::;n
„ƒ‚…

r

. Theorem 6 has been generalized

to Kr.n/ in [104].
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Theorem 9 Let integers n > 1 and k > r > 2. Then Kr.n/ is equitably k-colorable

if and only if
l

n
bk=rc

m
�
j

n
dk=re

k
6 1.

Complete multipartite graphs also furnish us with examples to show that the
inequalities �.G/ 6 �

D

.G/ 6 ��
D

.G/ can be strict. For instance [103], let G1 D
K 1;1;:::;1
„ƒ‚…

m

;2nC1, G2 D K2nC1;2nC1;:::;2nC1
„ ƒ‚ …

m

, and G3 D K2nC1;2nC1;4nC2;4nC2;:::;4nC2
„ ƒ‚ …

m

.

Then
1. �.G1/ D m C 1 < �

D

.G1/ D ��
D

.G1/ D m C n C 1.
2. �.G2/ D �

D

.G2/ D m < ��
D

.G2/ D m.n C 1/.
3. �.G3/ D m C 2 < �

D

.G3/ D 2.m C 1/ < ��
D

.G3/ D .m C 1/.2n C 1/ C 1.
As to the gap between the chromatic number and the equitable chromatic number,

Wang and Zhang [149] proposed the following:

Conjecture 3 For any graph G, �
D

.G/ � �.G/ 6 b�.G/=2c.

The upper bound is sharp in the sense that it can be attained by a star K1;2nC1.

3 Trees

A graph is said to be nontrivial if it contains at least one edge. There is a natural
way to regard a nontrivial tree T as a bipartite graph T .X; Y /. The technique used
to prove the ECC for connected bipartite graphs can be applied to find the equitable
chromatic number of a nontrivial tree when the sizes of the two parts differ by
at most one. First try to cut the parts into classes of nearly equal size. If there are
vertices remaining, then one can manage to find nonadjacent vertices in the opposite
part to form a class of the right size. The following was established in Chen and
Lih [26].

Theorem 10 Let T D T .X; Y / be a nontrivial tree satisfying jjX j � jY jj 6 1.
Then �

D

.T / D ��
D

.T / D 2.

When the sizes of the two parts differ by more than one, the determination in [26]
for the equitable chromatic number of a tree needs extra notation. For any vertex u
of a graph G, an independent set containing u is called a u-independent set. Let
˛u.G/ denote the maximum size of a u-independent set in G.

Now suppose that G is partitioned into �
D

.G/ parts of independent sets. Let v
be an arbitrary vertex of G. Then the part containing v has size at most ˛v.G/, and
other parts have size at most ˛v.G/ C1. It follows that jGj 6 ˛v.G/ C .�

D

.G/ � 1/

.˛v.G/ C 1/ D �
D

.G/.˛v.G/ C 1/ � 1.

Lemma 1 Let v be an arbitrary vertex of G, then �
D

.G/ > d.jGj C 1/=

.˛v.G/ C 1/e.
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An induction based on Theorem 1 leads to the following:

Theorem 11 Let T D T .X; Y / be a tree satisfying jjX j�jY jj > 1. Then �
D

.T / D
��

D

.T / D maxf3; d.jT j C 1/=.˛u.T / C 1/eg, where u is an arbitrary vertex of
maximum degree in T .

The following result was proved by Miyata et al. in an unpublished manuscript
[116] without using Theorem 1:

Theorem 12 Let T be a tree and k > 3 be an integer. Then T is equitably
k-colorable if and only if k > maxv2V.T / d.jT j C 1/=.˛v.T / C 1/e.

The inequality in the above theorem can be equivalently described as ˛v.T / >
bjT j=kc for any vertex v of T . This can be seen from the following equivalences
which hold for any integer k and graph G:

k >
� jGj C 1

˛v.G/ C 1

�

, k > jGj C 1

˛v.G/ C 1
, ˛v.G/ > jGj � k C 1

k
, ˛v.G/

>
� jGj

k

�

:

Actually, the difference between characterizations in [26] and [116] is only
apparent. In view of the following lemma, Chang [22] gave a simplified and unified
proof for the more general case of a forest:

Lemma 2 Let u be a vertex of a forest F . If d.jF j C 1/=.˛u.F / C 1/e > 3, then u
is the unique vertex of maximum degree in F .

Theorem 13 Let F be a forest and k > 3 be an integer. Then F is equitably
k-colorable if and only is ˛v.F / > bjF j=kc for any vertex v of F .

To determine when a forest F is equitably 2-colorable needs a bit more work than
that of a tree. Without loss of generality, suppose that F has r components such that
each component tree Ti consists of two parts Xi and Yi . The objective is to look for a
partition of f1; 2; : : : ; rg into two parts A and B such that

P
i2A jXi jCPj 2B jYj j D

bjF j=2c.
Hansen et al. [66] introduced the notion of an m-bounded coloring of a

graph G, i.e., a proper coloring of G such that each color class is of size
at most m. The m-bounded chromatic number of G, denoted by �m.G/, is
the smallest number of colors required for an m-bounded coloring of G. This
notion of colorability is closely related to equitable colorability via the following
observation:
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Observation. The graph G has an m-bounded coloring using k colors if and only
if the graph G0 obtained from G by adding mk � jGj isolated vertices is equitably
k-colorable.

The problem of determining the m-bounded chromatic number of a tree was left
open in [66]. By modifying the techniques used in [26], Chen and Lih [25] were
able to determine the m-bounded chromatic number of a tree.

Theorem 14 Let T D T .X; Y / be a nontrivial tree and let u be a vertex of
maximum degree. Then one of the following holds:
1. �m.T / D 2 when m > maxfjX j; jY jg.
2. �m.T / D maxf3; djT j=me; d.jT j � ˛u.T //=me C 1g when m < maxfjX j; jY jg.

For a nontrivial tree T D T .X; Y /, suppose that jX j D q1m C r1 and jY j D
q2m C r2, where 0 6 r1; r2 < m. One can color the part X with q1 C 1 colors and
the part Y with q2 C 1 colors. Hence, �m.T / 6 q1 C q2 C 2 6 djT j=me C 1 colors.
On the other hand, it is obvious that djT j=me 6 �m.T /. A tree T is said to be class
A if �m.T / D djT j=me and class B if �m.T / D djT j=me C 1. Jarvis and Zhou [73]
gave an explicit characterization when a tree belongs to class B. Their proof can be
used to determine �m.T / in O.jT j3/ time and produce an optimal coloring even if
m is part of the input. To make a comparison, it is known [14] that the problem of
determining whether a bipartite graph can be m-bounded colored with three colors
is NP-complete when m is part of the input. Bentz and Picouleau [10] studied a
variation of m-bounded coloring of trees.

4 The Equitable �-Coloring Conjecture

Unlike the ordinary colorability of a graph, the equitable colorability does not satisfy
monotonicity, namely, a graph can be equitably k-colorable without being equitably
.k C 1/-colorable. Therefore, the ECC does not fully reveal the true nature of
the equitable colorability. It seems that the maximum degree plays a crucial role
here. For instance, by Theorems 5 and 6 the following conjecture proposed by
Chen et al. [28] holds for bipartite graphs. This conjecture is called the equitable
�-coloring conjecture (E�CC).

Conjecture 4 Let G be a connected graph. If G is not a complete graph Kn, or
an odd cycle C2nC1, or a complete bipartite graph K2nC1;2nC1, then G is equitably
�.G/-colorable.

The conclusion of the E�CC can be equivalently stated as ��
D

.G/ 6 �.G/. It
is also immediate to see that the E�CC implies the ECC. In Chen, Lih, and Wu
[28], E�CC was settled for graphs whose maximum degree is at least one-half of
the order. The following two lemmas supplied the basic tools for the solution. Let
Gc denote the complement graph of G. Let ı.G/ and ˛0.G/ denote the minimum
degree and the edge-independence number of G, respectively.
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Lemma 3 Let G be a disconnected graph. If G is different from Kc
n and Kc

2nC1;2nC1

for all n > 1, then ˛0.G/ > ı.G/.

Lemma 4 Let G be a connected graph such that jGj > 2ı.G/ C 1. Suppose the
vertex set of G cannot be partitioned into a set H of size ı.G/ and an independent
set I of size jGj � ı.G/ such that each vertex of I is adjacent to all vertices of H .
Then ˛0.G/ > ı.G/.

Theorem 15 Let G be a connected graph with �.G/ > jGj=2. If G is different
from Kn and K2nC1;2nC1 for all n > 1, then G is equitably �.G/-colorable.

As pointed out by Yap, a close examination of the proof of Theorem 15 in [28]
reveals that a stronger result was obtained, namely, ��

D

.G/ 6 jGj�˛0.Gc/ 6 �.G/.
In a similar vein, Yap and Zhang [155] made an analysis of the complement graph
and succeeded in verifying the ECC for connected graphs G such that jGj=3 C 1 6
�.G/ < jGj=2. By combining Theorem 15, their proof can be modified to establish
the following stronger result:

Theorem 16 The E�CC holds for all connected graphs G such that �.G/ >
.jGj C 1/=3.

Along a different direction, one may try to tackle the E�CC for special classes
of graphs. By attaching appropriately chosen auxiliary graphs to a nonregular graph,
attention may be restricted to regular graphs due to the following lemma [28]:

Lemma 5 The E�CC holds if it does so for all regular graphs.

If the chromatic number of a connected cubic graph G is 2, then the E�CC has
already been established. It only needs to handle cubic graphs having chromatic
number 3 to obtain the following [28]:

Theorem 17 The E�CC holds for all connected graphs G such that �.G/ 6 3.

In [85], Kierstead and Kostochka extended the above to �.G/ 6 4.

5 Split Graphs

There are interesting results dealing with special families of graphs that provide
positive evidence for the E�CC. A connected graph G is called a split graph if
its vertex set can be partitioned into two nonempty subsets U D fu1; u2; : : : ; ung
and V D fv1; v2; : : : ; vrg such that U induces a complete graph and V induces an
independent set. Denote the split graph G as GŒU I V �, and always assume that no
vertex in V is adjacent to all vertices in U . A family of bipartite graphs BG.k/,
k > 1, can be assigned to the given split graph GŒU I V � in the following way.
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The vertex set of BG.k/ is fuij j 1 6 i 6 n and 1 6 j 6 kg [ V , and fuij ; vt g is
defined to be an edge of BG.k/ if and only if ui and vt are nonadjacent in G. Note
that BG.k/ is a subgraph of BG.k C 1/. The coloring of a split graph GŒU I V � is
closely related to independent edges of the graphs BG.k/. For instance, any given
set of independent edges in BG.k/ induces a partial coloring of G in the following
standard way. The i-th color is used to color ui and all those vertices in V that are
matched by the edges to some uij , 1 6 j 6 k. Chen, Ko, and Lih [29] proved the
following:

Theorem 18 Let GŒU I V � be a split graph such that jU j D n and jV j D r . Let
m D maxfk j ˛0.BG.k// D kng if the set in question is nonempty; otherwise let m

be zero. Then ��
D

.GŒU I V �/ D n C d.r � ˛0.BG.m C 1///=.m C 2/e.

Once ��
D

.GŒU I V �/ is known, it is straightforward to verify that split graphs
satisfy the E�CC.

In [29], the m-bounded chromatic number of a split graph was obtained in
addition to its equitable chromatic number.

Theorem 19 Let G D GŒU I V � be a split graph such that jU j D n and jV j D r .
Let m > 1 be a given integer. Then �m.GŒU I V �/ D nCd.r �˛0.BG.m�1///=me.

6 Outerplanar Graphs

A graph is planar if it can be drawn on the Euclidean plane such that edges only
meet each other at points representing the vertices of the graph. An outerplanar
graph is a planar graph that has a drawing on the plane such that every vertex lies on
the unbounded face. An edge subdivision is the operation of replacing an edge uv by
a path uwv of length 2 in which w is a newly added vertex. A subdivision of a graph
G is a graph obtained from G by a sequence of edge subdivisions. It is well known
[18] that a graph is an outerplanar graph if and only if it has no subgraph that is a
subdivision of K4 or K2;3. Yap and Zhang [156] settled the E�CC for outerplanar
graphs.

Theorem 20 If G is an outerplanar graph with �.G/ > 3, then G is equitably
�.G/-colorable.

Kostochka [91] proved the following result which answers a question posed at
the end of [156]:

Theorem 21 If G is an outerplanar graph with �.G/ > 3, then ��
D

.G/ 6
�.G/=2 C 1.

Note that the bound cannot be weakened even for trees because the star K1;2k�1

has no equitable k-coloring. An efficient algorithm for equitable k-coloring of
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outerplanar graphs G with maximum degree at least 3 can be extracted from
Kostochka’s proof whenever k > �.G/=2 C 1.

A fundamental phenomenon in equitable colorings can be noticed when one
examines the equitable chromatic numbers of trees. Apart from K1;n, “most”
trees admit equitable colorings with few colors. This phenomenon happens for
outerplanar graphs, too. Pemmaraju [125] showed the following:

Theorem 22 An outerplanar graph G is equitably 6-colorable if �.G/ 6 jGj=6.

The main stepping stone to Pemmaraju’s result involves a special partition of
a graph. A partition V.G/ D V1 [ V2 is called an equitable 2-forest partition if
jjV1j�jV2jj 6 1 and each induced subgraph GŒVi � is a forest. The following theorem
and conjecture in [125] may have independent interest:

Theorem 23 Any outerplanar graph has an equitable 2-forest partition.

Conjecture 5 The vertex set of any planar graph can be partitioned into two parts
V1 and V2 such that jjV1j�jV2jj 6 1 and each part induces an outerplanar subgraph.

Note that Chartrand et al. [23] have proved that the vertex set of a planar
graph can be partitioned into two parts such that each part induces an outerplanar
subgraph. They also conjectured that the edge set of a planar graph can be
partitioned into two sets such that the subgraph induced by each of the sets is
outerplanar. Recently, Gonçalves [60] has proved the validity of this conjecture.

A graph is called series-parallel if it contains no subgraph that is a subdivision
of K4. This class of graphs can be characterized in a number of equivalent ways
[18]. Clearly, outerplanar graphs are series-parallel graphs. Zhang and Wu [159]
established the E�CC for series-parallel graphs.

Theorem 24 If G is a series-parallel graph with �.G/ > 3, then G is equitably
�.G/-colorable.

Zhang and Wu also conjectured the following which generalizes Theorem 21:

Conjecture 6 If G is a series-parallel graph with �.G/ > 3, then ��
D

.G/ 6
�.G/=2 C 1.

7 Planar Graphs

To determine whether a planar graph with maximum degree 4 is 3-colorable is
NP-complete [58]. For a given planar graph G with maximum degree 4, let G0 be
obtained from G by adding 2jGj isolated vertices. Then G is 3-colorable if and only
if G0 is equitably 3-colorable. Therefore, it is NP-complete to determine if a given
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planar graph with maximum vertex degree 4 has an equitable coloring using at most
3 colors.

Zhang and Yap [160] proved the following:

Theorem 25 A planar graph G is equitably �.G/-colorable if �.G/ > 13.

Nakprasit [117] extended the above result to planar graphs with maximum degree
at least 9. Thus, the E�CC holds for planar graphs with maximum degree at least 9.
One can go further if extra conditions are imposed on the graph.

Theorem 26 ([118, 137]) Let G be a C4-free planar graph. If �.G/ > 7, then the
E�CC holds for G.

Zhu and Bu [162] established the following results. Consequently, the E�CC
holds for planar graphs G that are (i) C3-free and �.G/ > 8 or (ii) C4-free, C5-free,
and �.G/ > 7.

Theorem 27 Let G be a C3-free planar graph. Then ��
D

.G/ 6 maxf�.G/; 8g.

Theorem 28 Let G be a C4-free and C5-free planar graph. Then ��
D

.G/ 6
maxf�.G/; 7g.

The girth of a graph G, denoted by g.G/, is defined to be the length of a shortest
cycle in G. The girth of a forest is 1 by convention. One may impose conditions on
the girth of a planar graph to get tight bound for the equitable chromatic threshold.
Wu and Wang [153] first established the following:

Theorem 29 Let G be a planar graph with ı.G/ > 2.
1. If g.G/ > 14, then ��

D

.G/ 6 4.
2. If g.G/ > 26, then ��

D

.G/ 6 3.

Luo et al. [108] improved these results further.

Theorem 30 Let G be a planar graph with ı.G/ > 2.
1. If g.G/ > 10, then ��

D

.G/ 6 4.
2. If g.G/ > 14, then ��

D

.G/ 6 3.

It remains an open problem to find the best possible girth conditions for 3- or
4-equitable colorability when the planar graph G satisfies ı.G/ > 2.

A well-known theorem of Grötzsch [61] states that the chromatic number of
any planar graph of girth at least 4 is at most 3. Hence, the above theorem has an
immediate consequence.

Corollary 1 Let G be a non-bipartite planar graph with ı.G/ > 2. Then �.G/ D
��

D

.G/ if g.G/ > 14.
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8 Graphs with Low Degeneracy

A graph with small degeneracy can be regarded as “sparse.” A graph G is said to
be d -degenerate if every subgraph H of G has a vertex of degree at most d in
H . It is well known that graphs without edges are 0-degenerate, forests are exactly
the 1-degenerate graphs, outerplanar graphs are 2-degenerate, and planar graphs are
5-degenerate. It follows from the definition that the vertices of every d -degenerate
graph can be ordered as v1; v2; : : : ; vn so that for every i < n, vertex vi has at most
d neighbors vj with j > i .

The following results were obtained by Zhu and Bu [163]:

Theorem 31 Let G be a 2-degenerate graph. Then G is equitably 3-colorable if
kGk 6 2

3
jGj.

Theorem 32 Let G be a 2-degenerate graph. Then G is equitably 4-colorable if
kGk 6 3

4
jGj.

Kostochka and Nakprasit [92] tried to find bounds on the equitable chromatic
thresholds for d -degenerate graphs with a given maximum degree. However, the
bound in Theorem 21 on outerplanar graphs does not extend to all 2-degenerate
graphs. To see this, consider the graph G.d; �/ D Kd _ I��dC1, where the join
operation _ connects each vertex in one graph to all vertices of the other graph.
This graph is d -degenerate and of maximum degree �. In every proper coloring
of G.d; �/, each vertex in Kd forms a single color class. Hence, every equitable
coloring of G.d; �/ uses at least d C d.� � d C 1/=2e D d.� C d C 1/=2e colors.
In particular, G.2; �/ uses at least d.� C 3/=2e colors for an equitable coloring,
which is greater than d�=2e C 1 for even �. Kostochka and Nakprasit showed that
d.� C d C 1/=2e colors is enough to equitably color a d -degenerate graph G with
maximum degree � provided �=d is large.

Theorem 33 Let 2 6 d 6 �=27 and G be a d -degenerate graph with maximum
degree at most �. Then G is equitably k-colorable if k > .� C d C 1/=2.

The example G.d; �/ shows that the bound on k cannot be decreased. The next
corollary follows from this theorem since every planar graph is 5-degenerate.

Corollary 2 Let � > 135 and the maximum degree of the planar graph G be at
most �. Then G is equitably k-colorable if k > �=2 C 3.

Let k > 14d C 1 and the d -degenerate graph G have maximum degree at most
k. Then, for � D 2k � 1 � d , G satisfies the condition of Theorem 33.

Corollary 3 Let d > 2. Then every d -degenerate graph with maximum degree at
most k is equitably k-colorable if k > 14d C 1.
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In view of Theorem 33, which is also true if d D � by the Hajnal and Szemerédi
Theorem, the following was proposed in [92]:

Conjecture 7 Let 2 6 d 6 � and G be a d -degenerate graph with maximum
degree at most �. Then G is equitably k-colorable if k > .� C d C 1/=2.

A graph with “low degeneracy” is intuitively rather similar to a graph whose
every subgraph has a “small average degree.” Kostochka and Nakprasit [93] proved
the E�CC for graphs that have “small average degree” without restrictions on their
subgraphs. The average degree of a graph G is defined to be Ad.G/ D 2kGk=jGj.

Theorem 34 Let � > 46 and G be a graph of order at least 46 and maximum
degree at most �. If Ad.G/ 6 �=5 and K�C1 is not a subgraph of G, then G is
equitably �-colorable.

An immediate consequence of this result is that the E�CC holds for
d -degenerate graphs with maximum degree � if d 6 �=10.

In Kostochka et al. [95], a result similar to Theorem 22 was established for
d -degenerate graphs.

Theorem 35 Every d -degenerate graph G with maximum degree at most � is
equitably k-colorable when k > 16d and � 6 jGj=15.

If the restriction on � is removed, they proved the following:

Theorem 36 Every d -degenerate graph G with maximum degree at most � is
equitably k-colorable for any k, k > maxf62d; 31d jGj=.jGj � � C 1/g.

Corollary 4 Every d -degenerate graph G with maximum degree at most jGj=2C1

is equitably k-colorable for any k > 62d .

The proof of Theorem 36 is constructive, and by extending their proof method,
the following result of algorithmic nature was obtained:

Theorem 37 There exists a polynomial time algorithm that produces an equi-
table k-coloring of G for every equitably m-colorable d -degenerate graph G if
k > 31dm.

A concept generalizing Pemmaraju’s “equitable 2-forest partition” was also in-
troduced in [95]. An equitable k-partition of a graph G is a collection of subgraphs
fGŒV1�; GŒV2�; : : : ; GŒVk�g of G induced by the vertex partition fV1; V2; : : : ; Vkg of
V.G/ such that jjVi j � jVj jj 6 1 for every pair Vi and Vj . The following provides a
tool for obtaining equitable colorings with few colors:
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Theorem 38 Let k > 3 and d > 2. Then every d -degenerate graph has an
equitable k-partition into .d � 1/-degenerate graphs.

This is an extension of Theorem 1 proved by Bollobás and Guy, which can
be restated as follows: Any 1-degenerate graph G with �.G/ 6 jGj=3 can be
equitably 3-partitioned into 0-degenerate graphs. Pemmaraju et al. [126] gave a
direct generalization.

Theorem 39 For d > 1, every d -degenerate graph G with �.G/ 6 jGj=3 can be
equitably 3-partitioned into .d � 1/-degenerate graphs.

Repeated applications of this theorem can get the following:

Theorem 40 For d > 1, every d -degenerate graph G with �.G/ 6 jGj=3d can be
equitably 3d -colored.

In the same paper, the following conjecture was proposed:

Conjecture 8 There are functions f .d/ D O.d/ and g.d/ D O.d/ such that if
G is a d -degenerate graph with �.G/ 6 jGj=f .d/, then G can be equitably g.d/-
colored.

9 Graphs of Bounded Treewidth

A tree decomposition of a graph G is a pair .T;F/, with T a tree and F D fXi �
V.G/ j i 2 V.T /g, that satisfies the following conditions:
1.
S

i2V.T / Xi D V.G/.
2. For every edge uv of G, there exists an i 2 V.T / such that Xi contains both u

and v.
3. For all i1; i2; i3 2 V.T /, Xi1 \ Xi3 � Xi2 if i2 is on the path from i1 to i3 in T .

The width of the tree decomposition .T;F/ is defined to be maxi2V.T / jXi j � 1;
the treewidth of a graph G denoted by tw.G/ is the minimum width among all tree
decompositions of G. It is a folklore result that every graph G of treewidth at most
k has a vertex of degree at most k and has at most kjGj edges. Hence, every graph
of treewidth at most k is k-degenerate.

The class of graphs with treewidth at most k can be characterized in terms of
partial k-trees. The class of k-trees is defined recursively as follows:
1. The complete graph Kk is a k-tree.
2. A k-tree G with n C 1 vertices (n > k) is constructed from a k-tree H with n

vertices by adding a new vertex adjacent to and only to all vertices of a subgraph
of H that is a Kk.
There are a number of alternative characterizations of k-trees [129]. A graph is

called a partial k-tree if it is a subgraph of a k-tree. Forests are partial 1-trees and
series-parallel graphs are partial 2-trees.
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Theorem 41 ([139]) A graph G is a partial k-tree if and only if G has treewidth at
most k.

A corollary of Theorem 36 is the following:

Corollary 5 Every graph G with treewidth w and maximum degree at most � is
equitably k-colorable for any k, k > maxf62w; 31wjGj=.jGj � � C 1/g.

The equitable k-coloring problem can be stated as follows. A graph G and an
integer k are given, and one asks whether G has an equitable k-coloring. For graphs
of bounded treewidth, Bodlaender and Fomin [13] used the above result to establish
the threshold for telling when the EQUITABLE k-COLORING problem is trivially
solved and when it becomes to be solvable in polynomial time by their dynamic
programming approach. It amounts to the following.

Theorem 42 The equitable k-coloring problem can be solved in polynomial time
on graphs of bounded treewidth.

They also showed that such an approach cannot be extended to the equitable
k-coloring with precoloring problem: A graph G, an integer k, and a precoloring
� of G are given, and one asks whether there exists an equitable k-coloring of G

extending � . For a graph G, a precoloring � of a subset U of vertices of G in k

colors is a mapping � W U ! f1; 2; : : : ; kg. A coloring of G with color classes
V1; V2; : : : ; Vk is said to extend the precoloring � if u 2 V�.u/ for every u 2 U . The
following was proved in [13]:

Theorem 43 The equitable k-coloring with precoloring problem is NP-complete
on trees.

In the framework of parameterized complexity, e.g., [41, 51], and [119], a
parameterized problem with the input size n and a parameter k is called fixed
parameter tractable (FPT) if it can be solved in time f .k/ � nc , where f is a
function only depending on k and c is a constant. The basic complexity class for
fixed parameter intractability is W Œ1�. The equitable coloring problem was shown by
Fellow et al. [47] to be W Œ1�-hard, parameterized by the treewidth plus the number
of colors. However, the equitable coloring problem is FPT when parameterized by
the vertex cover number as shown by Fiala et al. [48]. The vertex cover number
of a graph G is the minimum size of a set X � V.G/ such that V.G/ n X is an
independent set.

10 Kneser Graphs

For integers i 6 j , let Œi; j � D fi; i C 1; : : : ; j g and Œn� D Œ1; n�. If X is a set, then
the collection of all k-subsets of X is denoted by

�
X
k

�
. The Kneser graph KG.n; k/

has
�

Œn�
k

�
as its vertex set. Two distinct vertices are adjacent in KG.n; k/ if they
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have empty intersection as subsets. To exclude trivialities, it is always assumed that
n > 2k in KG.n; k/. The order of KG.n; k/ is clearly

�
n
k

�
. The odd graph Ok is

the Kneser graph KG.2k C 1; k/. Since it is easy to see that KG.n; 1/ D Kn and
�.KG.n; 1// D �

D

.KG.n; 1// D ��
D

.KG.n; 1// D n, it is assumed that k > 2

throughout this section.
The following is a much celebrated result of Lovász [107] proved by topological

method:

Theorem 44 The chromatic number of KG.n; k/ is equal to n � 2k C 2.

For i 2 Œn�, an i -flower F of
�

Œn�
k

�
is a subcollection of

�
Œn�
k

�
such that all k-subsets

in F have i as a common element. It is clear that every i -flower is an independent
set of KG.n; k/. Any independent set F of KG.n; k/, also called an intersecting
family of

�
Œn�
k

�
, satisfies A \ B ¤ ; for all A and B in F . The independence number

˛.KG.n; k// of KG.n; k/ was obtained by Erdős et al. [44].

Theorem 45 Suppose F is an intersecting family of
�

Œn�
k

�
. Then

jF j 6
 

n � 1

k � 1

!

:

Moreover, the equality holds if and only if F is an i -flower for some i 2 Œn�. Hence,
˛.KG.n; k// D �

n�1
k�1

�
.

There are independent sets of KG.n; k/ which are not flowers. Denote by
˛2.KG.n; k//, or simply ˛2.n; k/, the maximum size of independent sets H of
KG.n; k/ satisfying

T
A2H A D ; and ˛2.n; k/ was obtained by Hilton and Milner

[69].

Theorem 46 Suppose H is an intersecting family of
�

Œn�
k

�
with

T
A2H A D ;. Then

jHj 6
 

n � 1

k � 1

!

�
 

n � k � 1

k � 1

!

C 1:

Moreover, the equality holds if H is the family fA 2 �
Œn�
3

� j jA \ Œ1; 3�j > 2g when

k=3 or H is the family fA 2 �
Œn�
k

� j 1 2 A; jA \ Œ2; k C 1�j > 1g [ fŒ2; k C 1�g.

Hence, ˛2.n; k/ D �
n�1

k�1

� � �
n�k�1

k�1

�C 1.

Since every flower of
�

Œn�
k

�
is an independent set of KG.n; k/, it is natural to

partition flowers to form an equitable coloring of KG.n; k/. If this is successful,
then every k-subset of Œn� is in some flower. Hence, if f is an equitable m-coloring
of KG.n; k/ such that every color class of f is contained in some flower, then m >
n � k C 1. Otherwise, suppose m 6 n � k and each color class f �1.i/ is contained
in some ti -flower for 1 6 i 6 m. Since jŒn�nft1; t2; : : : ; tmgj > n�m > k, one may
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choose a k-subset A � Œn� n ft1; t2; : : : ; tmg. Since f is an equitable m-coloring,
A 2 f �1.i/ for some i , i.e., ti 2 A. Thus, a contradiction is obtained.

In [24], Chen and Huang tried to show that KG.n; k/ is equitably m-colorable
for all m � n � k C 1 by partitioning flowers of

�
Œn�

k

�
into m-independent sets whose

sizes are as even as possible. They succeeded in establishing the following:

Theorem 47 Suppose that m > n�kC1. Then KG.n; k/ is equitably m-colorable,
i.e., �

D

.KG.n; k// 6 ��
D

.KG.n; k// 6 n � k C 1.

Lemma 6 Suppose that m 6 n�k and
��

n
k

�
=m
˘

> ˛2.n; k/. Then KG.n; k/ is not
equitably r-colorable for all r 6 m, i.e., ��

D

.KG.n; k// > �
D

.KG.n; k// > m C 1.

Theorem 48 If
��

n

k

�
=.n � k/

˘
> ˛2.n; k/, then �

D

.KG.n; k// D ��
D

.KG.n; k// D
n � k C 1.

Observe that
�

n
k

�
=.n � k/ D O.nk�1/ and ˛2.n; k/ D O.nk�2/. Hence, the

following is true.

Corollary 6 Let k be fixed. Then �
D

.KG.n; k// D ��
D

.KG.n; k// D n � k C 1

when n is sufficiently large.

Finally, �
D

.KG.n; 2//, �
D

.KG.n; 3//, and �.Ok/ were completely determined
in [24].

Theorem 49 Assume n > 5. Then

�
D

.KG.n; 2// D ��
D

.KG.n; 2// D
	

n � 2 if n D 5 or 6,
n � 1 if n > 7.

Theorem 50 Assume n > 7. Then

�
D

.KG.n; 3// D ��
D

.KG.n; 3// D
8
<

:

n � 4 if 7 6 n 6 13,
n � 3 if 14 6 n 6 15,
n � 2 if n > 16.

Theorem 51 For k > 1, the odd graph Ok satisfies �.Ok/ D �
D

.Ok/ D
��

D

.Ok/ D 3.

Chen and Huang concluded their paper [24] by proposing the following:

Conjecture 9 If n > 2k > 4, then �
D

.KG.n; k// D ��
D

.KG.n; k//.

All results about Kneser graphs in this section were also independently obtained
by Fidytek et al. [49].
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11 Interval Graphs and Others

A graph G is called an interval graph if there exists a family I D fIv j v 2 V.G/g
of intervals on the real line such that u and v are adjacent vertices if and only if
Iu \ Iv ¤ ;. Such a family I is commonly referred to as an interval representation
of G. Instead of intervals of real numbers, these intervals may be replaced by finite
intervals on a linearly ordered set.

A clique of a graph G is a complete subgraph Q of G. A clique is called
maximal if it is maximal in the set-inclusion order. For an interval graph G, Gillmore
and Hoffman [59] showed that its maximal cliques can be linearly ordered as
Q0 < Q1 < � � � < Qm so that for every vertex v of G, the maximal cliques
containing v occur consecutively. The finite interval Iv D ŒQi ; Qj � in this linear
order is assigned to the vertex v if all the maximal cliques containing v are precisely
Qi ; QiC1; : : : ; Qj . Again u and v are adjacent if and only if Iu \ Iv ¤ ;. This
representation of G is called a clique path representation of G. Conversely, the
existence of a clique path representation implies that the graph is an interval graph.

Once a clique path representation is given, let left.v/ and right.v/ stand for the
left and right endpoint, respectively, of the interval Iv. Then the following linear
order on the vertices of G can be defined. Let u < v if (left.u/ < left.v/) or (left.u/

= left.v/ and right.u/ < right.v/). If u and v have the same left and right endpoints,
choose u < v arbitrarily. For any three vertices u, v, and w of G, this linear order
satisfies the following condition. If u < v < w and uw 2 E.G/, then uv 2 E.G/.
The existence of a linear order satisfying this condition characterizes interval graphs
[120]. Chen et al. [31] utilized this linear order to obtain the following:

Theorem 52 Let G be a connected interval graph. If G is not a complete graph,
then G is equitably �.G/-colorable.

And they proceeded further to show the following:

Theorem 53 Let G be an interval graph. Then �
D

.G/ D ��
D

.G/.

A few other classes of special graphs have been investigated for their equi-
table colorability. For instance, central graphs and total graphs were studied in
[2, 140]. Thorny graphs were studied in [56]. Additional examples can be found in
[57, 76–78].

For a given graph G, the so-called central graph C.G/ of G is obtained from G

by inserting a new vertex to each edge of G and then joining each pair of vertices of
G which were nonadjacent in G. The total graph T .G/ of G has vertex set V.G/ [
E.G/ and edges joining all elements of this vertex set which are adjacent or incident
in G. The notation Pn represents a path on n vertices.

Results obtained in [2, 140] are listed as follows:
1. �

D

.C.K1;n// D n.
2. �

D

.C.Kn;n// > n if n > 3.
3. �

D

.C.Kn// D 3.
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4. �
D

.C.Pn// D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

1 if n D 1;

2 if n D 2;

3 if n D 3;

3 if n D 4;

n=2 if n > 5 is even;

.n C 1/=2 if n > 5 is odd:

5. �
D

.C.Cn// D

8
ˆ̂
<

ˆ̂
:

2 if n D 3;

3 if n D 4;

n=2 if n > 5 is even;

.n C 1/=2 if n > 5 is odd:

6. �
D

.T .Km;n// D
	

n C 1 if m < n;

n C 2 if m D n;

7. �
D

.T .Pn// D 3.
8. �

D

.T .Cn// D 3 if n is a multiple of 3.
An edge in a graph is called an pendant edge if it is incident with a leaf, i.e., a

vertex of degree 1. Trees are the smallest set of graphs that contains single vertex and
is closed under the operation of attaching a pendant edge to a vertex. By analogy to
this recursive definition of trees, graphs called edge-cacti, cacti, and thorny graphs
can be defined as follows.

Edge-cacti constitute the smallest set of graphs that includes all cycles and is
closed under the operation of attaching a cycle to a single edge, i.e., identifying this
edge with some edge of the attached cycle. Cacti constitute the smallest set of graphs
that contains single vertex and is closed under the operation of attaching a pendant
edge or cycle to a vertex. Thorny graphs constitute the smallest set of graphs that
includes single vertex and is closed under the following operations:
1. Attaching a pendant edge to a vertex
2. Attaching a cycle to a vertex
3. Attaching a cycle to an edge

Every thorny graph is connected, planar, and tripartite. All cacti, edge-cacti,
and connected outerplanar graphs are thorny graphs. The following results were
established in [56]:

Theorem 54 Any thorny graph without leaves and C3 or C5 is equitably
3-colorable.

Theorem 55 Any thorny graph without leaves and C3 is equitably k-colorable for
all k > 4.

Corollary 7 The following statements are true:
1. Any edge-cactus without C3 is equitably k-colorable for all k > 3. Furthermore,

if an edge-cactus G is bipartite, then �
D

.G/ D 2.
2. Any cactus without leaves and C3 or C5 is equitably k-colorable for all k > 3.
3. Any bipartite cactus without leaves is equitably k-colorable for all k > 3.
4. Any cactus without leaves and C3 is equitably k-colorable for all k > 4.
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12 Random Graphs

Let G.n; p/ denote the probability space of all labeled graphs of order n such that
every edge appears randomly and independently with probability p D p.n/. The
space G.n; p/ is said to possess a property P almost surely if the probability that
G.n; p/ satisfies P tends to 1 as n tends to infinity. In [98], Krivelevich and Patkós
conjectured the following:

Conjecture 10 There exists a constant C such that if C=n < p < 0:99, then almost
surely ��

D

.G.n; p// D .1 C o.1//�.G.n; p// holds.

Partial results proved by them included the following:
1. If n�1=5C� < p < 0:99 for some positive �, then almost surely �

D

.G.n; p// 6
.1 C o.1//�.G.n; p// holds.

2. There exists a constant C such that if C=n < p < 0:99, then almost surely
�

D

.G.n; p// 6 .2 C o.1//�.G.n; p// holds.
3. If n�.1��/ < p < 0:99 for some positive �, then almost surely ��

D

.G.n; p// 6
.2 C o.1//�.G.n; p// holds.

4. If .log1C� n/=n < p < 0:99 for some positive �, then almost surely
��

D

.G.n; p// D O�.�.G.n; p/// holds.

13 Graph Products

Given two graphs G1 and G2, it is natural to use the Cartesian product V.G1/ �
V.G2/ of the two vertex sets to be the vertex set of a new graph. There are several
ways to define the edge set of such a product graph. Results on three different
products will be surveyed. Their edge sets are defined as follows:
1. The square product G1�G2, also known as the Cartesian product:

E.G1�G2/ D f.u; x/.v; y/ j .u D v and xy 2 E.G2// or .x D y and uv 2
E.G1//g.

2. The cross product G1 � G2, also known as the Kronecker, direct, tensor, weak
tensor, or categorical product:
E.G1 � G2/ D f.u; x/.v; y/ j uv 2 E.G1/ and xy 2 E.G2/g.

3. The strong product G1 � G2, also known as the strong tensor product:
E.G1 � G2/ D f.u; x/.v; y/ j .u D v and xy 2 E.G2// or .uv 2
E.G1/ and x D y/ or .uv 2 E.G1/ and xy 2 E.G2//g.
Note that square and cross products are so named because the products of two

single edges are a square and a cross, respectively, and G1 � G2 D .G1�G2/ [
.G1 � G2/.

13.1 Square Product

For the ordinary chromatic number, Sabidussi [130] proved a product theorem.
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Theorem 56 For graphs G1 and G2, �.G1�G2/ D maxf�.G1/; �.G2/g.

In Chen et al. [31], the following results were obtained:

Theorem 57 If G1 and G2 are equitably k-colorable, so is G1�G2.

Corollary 8 For graphs G1 and G2, ��
D

.G1�G2/ 6 maxf��
D

.G1/; ��
D

.G2/g.

Corollary 9 If �.G1/ D ��
D

.G1/ and �.G2/ D ��
D

.G2/, then �.G1�G2/ D
�

D

.G1�G2/ D ��
D

.G1�G2/ D maxf�.G1/; �.G2/g.

Corollary 10 Let G D G1�G2� � � � �Gn, where each Gi is a path, a cycle, or a
complete graph. Then �.G/ D �

D

.G/ D ��
D

.G/ D maxf�.Gi / j 1 6 i 6 ng.

Corollary 11 Suppose that G1 and G2 are nontrivial graphs. Then G1�G2 is
equitably �.G1�G2/-colorable, i.e., the E�CC holds for the square product of two
graphs.

Even if �.G1/ D �
D

.G2/ D k, the product G1�G2 may not be equitably
k-colorable. An example is the product K1;5�P3. If it is assumed that �

D

.G1/ D
�

D

.G2/ D k, it may not lead to the conclusion �
D

.G1�G2/ D k. An ex-
ample is K1;2n�K1;2n. If G1 D K3;3 and G2 D K1;1;2, then �

D

.G1�G2/ 6
maxf�

D

.G1/; �
D

.G2/g is false.
Exact values for paths, cycles, and complete graphs are also determined in [31].

Theorem 58 The following hold for positive integers m and n:
�.Pm�Pn/ D �

D

.Pm�Pn/ D ��
D

.Pm�Pn/ D 2.

�.Cm�Cn/ D �
D

.Cm�Cn/ D ��
D

.Cm�Cn/ D
	

2 if m and n are even,
3 otherwise.

�.Km�Kn/ D �
D

.Km�Kn/ D ��
D

.Km�Kn/ D maxfm; ng.

Furmańczyk [54] also obtained a number of exact values of square products
between cycles, paths, and hypercubes Qn D K2�K2 � � � �K2„ ƒ‚ …

n

.

Theorem 59 Let k; m; n, and r be positive integers. Then the following graphs have
their equitable chromatic numbers all equal 2: Qr�P2n, Qr�C2n, and Qr�Qr .

Besides �
D

.Km1;n1�Km2;n2/ 6 4, Lin in his Ph.D. dissertation [103] (also
in [105]) determined more exact values. They are listed as follows, in which
m; n; and r are assumed to be positive integers.
1. �

D

.P2r�Km;n/ D ��
D

.P2r �Km;n/ D 2 except ��
D

.P2�Km;n/ D 4 when m C
n C 2 < 3 minfm; ng.

2. �
D

.P2rC1�Km;n/ D ��
D

.P2rC1�Km;n/ D
	

2 if jm � nj 6 1,
3 otherwise.
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3. �
D

.C2r�Km;n/ D ��
D

.C2r�Km;n/ D 2 except ��
D

.C4�Km;n/ D 4 when m C
n C 2 < 3 minfm; ng.

4. �
D

.C2rC1�Km;n/ D ��
D

.C2rC1�Km;n/ D 3.

5. �
D

.K1;m�K1;n/ D ��
D

.K1;m�K1;n/ D
	

4 if .m � 2/.n � 2/ > 5;

3 otherwise.
Lin also proposed some interesting conjectures:

Conjecture 11 If G1 and G2 are bipartite graphs, then ��
D

.G1�G2/ 6 4.

Conjecture 12 If G1 and G2 are connected graphs, then �
D

.G1�G2/ 6
�.G1/�.G2/.

The connectedness is essential in the above conjecture because �
D

.K1;3�3K1/ D
��

D

.K1;3�3K1/ D 3 > 2 D �.K1;3/�.3K1/.

13.2 Cross Product

The most well-known conjecture for cross product is the one proposed by
Hedetniemi [67].

Conjecture 13 For graphs G1 and G2, �.G1 � G2/ D minfjG1j; jG2jg.

This has been established for complete graphs in [42]. For two recent surveys
on Hedetniemi’s conjecture, the reader is referred to Sauer [131] and Zhu [161].
Furmańczyk [54] showed that �

D

.P3�P3/ D 3 > 2 D �
D

.P3/. Thus, �
D

.G1�G2/

6 minf�
D

.G1/; �
D

.G2/g does not hold in general. However, Chen et al. [31] gave
the following upper bound.

Theorem 60 For graphs G1 and G2, �
D

.G1 � G2/ 6 minfjG1j; jG2jg.

The upper bound is sharp in the case �
D

.Km � Kn/ D minfm; ng. In general,
minfjG1j; jG2jg is not an upper bound for ��

D

.G1 � G2/. An example was given in
[31] to show that K2 � Kn is not equitably .n C 1/=2-colorable when n > 1 and
n � 1 .mod 4/. Even ��

D

.G1 � G2/ 6 maxf��
D

.G1/; ��
D

.G2/g fails in general.
Examples are ��

D

.K2;3 � K2;3/ D 3 > 2 D ��
D

.K2;3/ [31] and ��
D

.P3 � P3/ D 3 >

2 D ��
D

.P3/ [54]. The following result was conjectured in [31] and later proved to
be true in [103]:

Theorem 61 For graphs G1 and G2, ��
D

.G1 � G2/ 6 maxfjG1j; jG2jg.

It suffices to prove the above theorem for the case Km � Kn. A slightly better
upper bound was actually established in [103].
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Theorem 62 For positive integers m and n,

��
D

.Km � Kn/ 6
�

mn

minfm; ng C 1

�

:

As to exact values, the following were established in [31] and [54], respec-
tively:

1. �
D

.Cm � Cn/ D ��
D

.Cm � Cn/ D
	

2 if mn is even,
3 otherwise.

2. �
D

.Pm � K1;n/ D
	

2 if m is even or n D 1,
3 otherwise.

Lin in his Ph.D. dissertation [103] determined more exact values. They are listed
as follows. Also see [104].

1. �.Pm � K2/ D �
D

.Pm � K2/ D ��
D

.Pm � K2/ D 2, where m > 2.
2. �.P2mC1�Kn/ D 2 < �

D

.P2mC1�Kn/ D ��
D

.P2mC1�Kn/ D 3, where n > 3,
except ��

D

.P3 � Kn/ D max
˚˙

3
2

˙
2n
s



 j s − 2n and
˙

3
2

˙
2n
s




6
˙

3n
4


�
.

3. �.P2m � Kn/ D �
D

.P2m � Kn/ D ��
D

.P2m � Kn/ D 2, where m > 1 and
n > 3.

4. ��
D

.P2 � Kn/ D max
˚
2
˙

n
s


 j s − n and 2
˙

n
2



6
˙

2n
3


�
, where n > 3.

5. �.Cm � K2/ D �
D

.Cm � K2/ D ��
D

.Cm � K2/ D 2, where m > 3.
6. �.C2mC1 � Kn/ D �

D

.C2mC1 � Kn/ D ��
D

.C2mC1 � Kn/ D 3, where m > 1

and n > 3, except �
D

.C5 � Kn/ D ��
D

.C5 � Kn/ D 4, when n > 5.

7. ��
D

.C3 � Kn/ D
	 ˙

3n
4



if n � 2 .mod 4/;

maxf3 ˙n
s


 j s − n and 3
˙

n
s



6
˙

3n
4


g otherwise,

�

where n > 3.
8. �.C2m � Kn/ D �

D

.C2m � Kn/ D ��
D

.C2m � Kn/ D 2, where m > 1 and
n > 3.

9. ��
D

.C4 � Kn/ D max
˚
2
˙

2n
s


 j s − 2n and 2
˙

2n
s



6
˙

4n
5


�
, where n > 3.

10. �
D

.Km1;n1 ; Km2;n2/ D ��
D

.Km1;n1 ; Km2;n2/ D min
nl

n1

m1

m
;
l

n2

m2

mo
C 1, where

m1 6 n1 and m2 6 n2.

13.3 Strong Product

The upper bound for the inequality �.G1 � G2/ 6 �.G1/�.G2/ is exact when both
factors are complete graphs. As to lower bounds, there are those established by
Vesztergombi [141] and Jha [74], respectively.

Theorem 63 For nontrivial graphs G1 and G2, �.G1 � G2/ > maxf�.G1/;

�.G2/g C 2.
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Theorem 64 For nontrivial graphs G1 and G2, �.G1 � G2/ > �.G1/ C !.G2/,
where !.G/ denotes the clique number of the graph G, i.e., the largest order of a
complete subgraph in G.

Furmańczyk [54] first investigated the equitable chromatic number of a strong
product. Her results have been subsumed by those in [103]. Again, Lin’s results are
listed as follows:
1. �.Cm � Kn/ D �

D

.Cm � Kn/ D ��
D

.Cm � Kn/ D
l

mn
bm=2c

m
, where m > 3 and

n > 2.
2. �.Pm � Kn/ D �

D

.Pm � Kn/ D ��
D

.Pm � Kn/ D 2n, where m > 2 and n > 2.

3. �.Cm � Cn/ D �
D

.Cm � Cn/ D ��
D

.Cm � Cn/ D
	

4 if m and n are even,
5 otherwise,

�

where m; n > 4.

4. �.Cm � Pn/ D �
D

.Cm � Pn/ D ��
D

.Cm � Pn/ D
	

4 if m is even,
5 otherwise,

�

where

m > 4 and n > 3.

5. �.Pm � Pn/ D �
D

.Pm � Pn/ D ��
D

.Pm � Pn/ D
	

4 if mn is even,
5 otherwise,

�

where

m > 3 and n > 3.

Conjecture 14 Suppose that G1 has at least one edge. Then �
D

.G1 � G2/ >
�

D

.G1/ C 2!.G2/ � 2 and ��
D

.G1 � G2/ > ��
D

.G1/ C 2!.G2/ � 2.

The conclusions of the above conjecture hold if the equitable chromatic number
of threshold is replaced by the ordinary chromatic number [103].

14 List Equitable Coloring

A mapping L is said to be a list assignment for the graph G if it assigns a finite
list L.v/ of possible colors, usually regarded as positive integers, to each vertex v
of G. A list assignment L for G is k-uniform if jL.v/j D k for all v 2 V.G/. If G

has a proper coloring � such that �.v/ 2 L.v/ for all vertices v, then G is said to be
L-colorable or � is an L-coloring of G. The graph G is said to be k-choosable if it is
L-colorable for every k-uniform list assignment L, equitably L-colorable if it has
a djGj=ke-bounded L-coloring for a k-uniform list assignment L, and equitably
list k-colorable or equitably k-choosable if it is equitably L-colorable for every
k-uniform list assignment L.

The concept of list-coloring was introduced by Vizing [144] and independently
by Erdős et al. [45]. However, it is not appropriate to generalize the ordinary
equitable coloring to this list context. To see this, let every vertex except one of a
graph G be assigned the list Œk� and the remaining vertex v be assigned the list Œk C
1; 2k�. Unless jGj 6 k C 1, in every proper coloring, some colors are not used, the
color on v appears once, and some other color appears at least d.jGj � 1/=ke times.



1224 K.-W. Lih

This explains why the list version of an equitable coloring is defined in terms
of boundedness of color classes. This notion was first introduced by Kostochka
et al. [94], and they proposed two conjectures that are analogue to the Hajnál-
Szemerédi Theorem and the E�CC.

Conjecture 15 Every graph G is equitably k-choosable whenever k > �.G/.

Conjecture 16 If G is a connected graph with maximum degree at least 3, then
G is equitably �.G/-choosable, unless G is a complete graph or is Kr;r for some
odd r .

When �.G/ D 2, it is easy to see the validity of Conjecture 16. Conjecture 15
has been proved for �.G/ 6 3 independently by Pelsmajer [122] and Wang and
Lih [146]. In [122], a graph G was shown to be equitably k-choosable when k >
2 C �.G/.�.G/ � 1/=2. In [94], Kostochka et al. gave the following partial results
to Conjecture 15 and 16:

Theorem 65 If k > maxf�.G/; jGj=2g, then G is equitably k-choosable unless G

contains KkC1 or Kk;k (with k odd in the latter case).

Theorem 66 If G is a forest and k > �.G/=2C1, then G is equitably k-choosable.
Moreover, for all m there is a tree with maximum degree at most m that is not
equitable dm=2e-choosable.

Theorem 67 If G is a connected interval graph and k > �.G/, then G is equitably
k-choosable unless G D KkC1.

Theorem 68 If G is a 2-degenerate graph and k > maxf�.G/; 5g, then G is
equitably k-choosable.

Pelsmajer [123] provided more partial results.

Theorem 69 Let G be a graph with treewidth w and k > 3w � 1. Then G is
equitably k-choosable if:
1. w 6 5 and k > �.G/ C 1, or
2. w > 5 and k > �.G/ C w � 4.

A graph is said to be chordal if it has no induced cycle of length greater than
three.

Corollary 12 Let G be a chordal graph with maximum degree at most �. Then G

is equitably k-choosable for k > maxf3� � 4; � C 1g.

If vertices of degree 1 are removed recursively from a graph G, then the final
graph has no vertices of degree 1 and is called the core of G. A graph is called a
�2;2;p-graph if it consists of two vertices x and y and three internally disjoint paths
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of lengths 2; 2; and p joining x and y. Erdős et al. [45] characterized 2-choosable
graphs in terms of these concepts. Analogous to their result, Wang and Lih [146]
gave the following characterization:

Theorem 70 A connected graph G is equitably 2-choosable if and only if G is a
bipartite graph satisfying the following two conditions:
1. The core of G is either a K1, an even cycle, or a �2;2;2r -graph, where r > 1.
2. G has two parts X and Y such that jjX j � jY jj 6 1.

Bu and his collaborators have established a series of partial results for
Conjecture 15 and 16 in the class of planar graphs as follows [100, 162, 163]:

Theorem 71 Let G be a C4-free and C6-free planar graph. Then G is equitably
k-choosable when k > maxf�.G/; 6g.

Theorem 72 Let G be a C3-free planar graph. Then G is equitably k-choosable
when k > maxf�.G/; 8g.

Theorem 73 Let G be a C4-free and C5-free planar graph. Then G is equitably
k-choosable when k > maxf�.G/; 7g.

Theorem 74 Let G be an outerplanar graph. Then G is equitably k-choosable
when k > maxf�.G/; 4g.

Theorem 75 Let G be an outerplanar graph of maximum degree 3. Then G is
equitably 3-choosable.

Recently, Theorems 74 and 75 have been generalized to series-parallel graphs
by Zhang and Wu [159]. The following result confirms Conjecture 15 and 16 for
series-parallel graphs:

Theorem 76 If G is a series-parallel graph with �.G/ > 3, then G is equitably
k-choosable if k > �.G/.

In the framework of parameterized complexity, the list equitable coloring prob-
lem was shown by Fellow et al. [47] to be W Œ1�-hard even for forests, parameterized
by the number of colors on the lists.

15 Graph Packing

The equitable coloring problem can be stated in the language of graph packing;
hence it can be studied in a wider context. Two graphs G1 and G2 of the same
order are said to pack if G1 is isomorphic to a subgraph of the complement Gc

2 of
G2, or, equivalently, G2 is isomorphic to a subgraph of the complement Gc

1 of G1.
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This definition may be extended to n graphs G1; G2; : : : ; Gn of the same order so
that they pack if every pair of them pack:

Because the problem of whether Gc packs with the cycle CjGj is equivalent to
the existence of a Hamiltonian cycle in G, two well-known sufficient conditions for
the existence of a Hamiltonian cycle, due to Dirac [40] and Ore [121], can be cast
in terms of graph packings.

Theorem 77 If �.G/ 6 jGj=2 � 1, then G packs with CjGj.

Theorem 78 If deg.u/ C deg.v/ 6 jGj � 2 for every edge uv in G, then G packs
with CjGj.

A graph G is k-colorable if and only if G packs with a graph of the same order
that is the union of k-cliques. Let H.n; k/ denote the graph of order n such that it
has k components each of which is a clique of order bn=kc or dn=ke. This graph is
the complement of the well-known Turán graph in extremal graph theory. A graph
G is equitably k-colorable if and only if G packs with H.jGj; k/. The Brooks’
Theorem and the Hajnal and Szemerédi Theorem can now be stated as follows:

Theorem 79 If r > 3, G is a connected graph with �.G/ 6 r and G does not pack
with the complement of any r-partite graph, then G D KrC1.

Theorem 80 Let G satisfy �.G/ 6 r . Then G packs with H.jGj; r C 1/.

In view of Ore’s theorem, the Ore degree of an edge uv, denoted by �.uv/,
is defined to be deg.u/ C deg.v/, and the Ore degree of a graph G is �.G/ D
maxf�.uv/ j uv 2 E.G/g. Following [81], those upper bounds in terms of Ore
degree giving sufficient conditions for packing graphs are called Ore-type bounds.
Those in terms of maximum degree are called Dirac type.

An obvious Dirac-type bound on the chromatic number of a graph G is �.G/ 6
�.G/ C 1. The Brooks’ Theorem characterizes the conditions for equality to hold:
either G contains K�.G/C1 or �.G/ D 2 and G contains an odd cycle. An Ore-type
bound on �.G/ can be obtained easily such that �.G/ 6 b�.G/=2c C 1. The bound
is also attained at complete graphs. However, for small odd �.G/, there are more
connected extremal graphs.

Theorem 81 If 6 6 k D �.G/ D b�.G/=2c C 1, then G contains Kk.

Kierstead and Kostochka [83] proposed the above as a conjecture and proved
the statement when the lower bound 6 was replaced by 7. The theorem has been
established recently by Rabern [127]. See [96] for further generalizations. The
above theorem can be equivalently stated as follows: for k > 6, Kk is the only
k-critical graph with maximum degree at most k whose vertices of degree k form
an independent set. A k-critical graph is one that has chromatic number k, and any
of its proper subgraphs has chromatic number less than k.
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yx

Fig. 1 The graph G with
�.G/ D 9 and �.G/ D 5

The bound 6 is sharp as Fig. 1 gives a graph G with �.G/ D 9 and �.G/ D 5.
This graph is adapted from [83]. Note that every 4-coloring of the subgraph induced
by x and y and the upper three vertices assigns x and y the same color since the
upper three vertices form a K3. On the other hand, every 4-coloring of the subgraph
induced by x and y and the lower four vertices assigns x and y different colors since
the lower four vertices form a K4. It follows that �.G/ > 4.

Kierstead and Kostochka also constructed infinite families of connected graphs
H with �.H/ 6 7 and �.H/ D 4. Let G be a graph with �.G/ 6 7 and �.G/ D 4.
An example for such a graph G is illustrated in Fig. 2a. A graph G0 with �.G0/ 6 7

and �.G0/ D 4 can be constructed as follows. Choose a vertex v of G that has no
neighbor of degree 4. Split v into two vertices v1 and v2 of degree at most two. Add
two new adjacent vertices xv and yv, each of which is joined to both v1 and v2. In this
example, G0 is depicted in Fig. 2b. By construction, �.G0/ D 7. Since v1 and v2 are
adjacent to xv and yv, any 3-coloring of G0 will assign the same color to v1 and v2.
But then a 3-coloring of G can be produced, contrary to the assumption �.G/ D 4.

Kierstead and Kostochka [81] proved a generalization of the Hajnal and
Szemerédi Theorem involving the Ore degree.

Theorem 82 For every r > 3, each graph G with �.G/ 6 2r C 1 has an equitable
.r C 1/-coloring.

This implies that the E�CC holds for graphs in which vertices of maximum
degree form an independent set. In addition to KrC1, the extremal graphs for the
above theorem are Km;2r�m for every odd 0 < m 6 r . The following Ore-type
analogue of the E�CC was also proposed in [81] and, its truth for r D 3 was
established.

Conjecture 17 Let r > 3 and G be a connected graph with �.G/ 6 2r . If G differs
from KrC1 and Km;2r�m for all odd m, then G is equitably r-colorable.

A conjecture in the flavor of Conjecture 15 was proposed in [86], and positive
evidence was provided for small � .
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a b

G G

Fig. 2 A transformation from G to G0

Conjecture 18 Every graph G is equitably .d�.G/=2e C 1/-choosable.

Theorem 83 If �.G/ 6 6, then G is equitably 4-choosable.

In the graph packing area, a major outstanding conjecture was made indepen-
dently by Bollobás and Eldridge [15] and Catlin [20, 21].

Conjecture 19 Let G1 and G2 be two graphs of the same order n. If .�.G1/ C 1/

.�.G2/ C 1/ 6 n C 1, then G1 and G2 pack.

The Hajnal-Szemerédi Theorem verifies the conjecture in the case when G2 is the
disjoint union of copies of a clique. Aigner and Brandt [1] and independently (for
huge n) Alon and Fischer [4] settled the case �.G1/ 6 2. Csaba et al. [36] proved
the case for �.G1/ D 3 and huge n. Bollobas et al. [17] proved it in case that for
d > 2, G1 is d -degenerate, �.G1/ > 40d , and �.G2/ > 215. Kaul et al. [86]
showed that for �.G1/; �.G2/ > 300, if .�.G1/ C 1/.�.G2/ C 1/ < 3n=5, then
G1 and G2 pack. Recently, Kun has announced a proof of the conjecture for graphs
with at least 108 vertices.

The reader is referred to Wozniak [151] for a general survey on the graph packing
area and to Kierstead et al. [79] for recent progress in Ore-type and Dirac-type
bounds for graph packing problems.

16 Equitable �-Colorability of Disconnected Graphs

If a disconnected graph G is �.G/-colorable, then the conditions for G to be
equitably �.G/-colorable are quite different. For an odd integer r > 3, G is
equitably �.G/-colorable if G D Kr;r [ Kr;r . However, G is not equitably
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�.G/-colorable if G D Kr;r [ Kr . The latter example can be generalized. A graph
H is said to be r-equitable if r divides jH j, H is r-colorable, and every r-coloring
of H is equitable. For an odd integer r > 3, if H D Kr;r is a subgraph of G and
G � H is r-equitable, then G is not equitably r-colorable. Kierstead and Kostochka
[84] gave a good description of the family of all r-equitable graphs so that all of
them can be built up from simple examples in a straightforward way. Their approach
to deal with disconnected graphs led them to propose the following conjecture.

Conjecture 20 Suppose that �.G/ D r > 3 and G is an r-colorable graph. Then
G is not equitably r-colorable if and only if the following conditions hold:
1. r is odd.
2. G has a subgraph H D Kr;r .
3. G � H is r-equitable.

Chen and Yen [27] have also found sufficient conditions for the nonexistence of
equitable �-colorings for graphs that are not necessarily connected.

Theorem 84 Suppose that �.G/ D r > 3 and G is an r-colorable graph. Then G

is not equitably r-colorable if the following conditions hold:
1. r is odd.
2. G has exactly one component H D Kr;r .
3. ˛.G � H/ 6 jG � H j=r .

Suppose that �.G/ D r and G is an r-colorable graph such that G has exactly
one Kr;r component. If G D Kr;r , then ˛.G�Kr;r / D 0 D jG�Kr;r j=r . Otherwise,
˛.G � Kr;r/ > jG � Kr;r j=�.G � Kr;r/ > jG � Kr;r j=�.G/ > jG � Kr;r j=r .
Hence, Condition 3 can be replaced by an equality. Chen and Yen conjectured
that those sufficient conditions are also necessary and established some positive
evidence.

Conjecture 21 Suppose that �.G/ D r > 3 and G is an r-colorable graph. Then
G is not equitably r-colorable if and only if the following conditions hold:
1. r is odd.
2. G has exactly one component H D Kr;r .
3. ˛.G � H/ D jG � H j=r .

Theorem 85 A bipartite graph G satisfying �.G/ > 2 is equitably �.G/-
colorable if and only if G is different from Kr;r for all odd r > 3.

Theorem 86 A graph G that is �.G/-colorable and satisfies �.G/ > 1 C jGj=3

is equitably �.G/-colorable if and only if G is different from Kr;r for all odd r > 3.

Theorem 87 Conjecture 21 holds for �.G/ D 3.

It was shown in Chen et al. [32] that Conjecture 20 and 21 are in fact equivalent.
The proof utilizes the following result that was established in Chen et al. [30].
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Theorem 88 Let r > �.G/ > �.G/. Then there exists a proper coloring of G

using r colors such that some color class has size ˛.G/.

Further lemmas are needed in the equivalence proof.

Lemma 7 If G is r-colorable and ˛.G/ D jGj=r , then G is r-equitable.

Lemma 8 If G is r-equitable, then r D �.G/.

Lemma 9 Let r > �.G/. If G is r-equitable, then ˛.G/ D jGj=r .

By Lemma 8, �.G/ D r > �.G/. By Theorem 88, there exists an r-coloring
� of G such that a color class of � is of size ˛.G/. Since G is r-equitable, � is an
equitable r-coloring and r divides jGj. Hence ˛.G/ D jGj=r .

Lemma 10 Let a graph G satisfy �.G/ D r > 3. If G is r-equitable, then G does
not have Kr;r as a subgraph.

Suppose on the contrary that G has a subgraph H D Kr;r . The subgraph H

is a component of G since r D �.G/. Hence, jGj D jG � H j C jH j D jG �
H j C 2r and ˛.G/ D ˛.G � H/ C ˛.H/ D ˛.G � H/ C r . By Lemma 9,
˛.G/ D jGj=r D jG � H j=r C 2. Therefore, ˛.G � H/ D jG � H j=r C 2 � r 6
jG �H j=r �1. On the other hand, Lemma 8 implies r D �.G/ > �.G �H/. Then
˛.G�H/ > djG�H j=�.G�H/e > djG�H j=re > jG�H j=r . A contradiction is
obtained.

Lemma 11 Let a graph G satisfy �.G/ D r > �.G/. If r > 3, G has a subgraph
H D Kr;r , and G � H is r-equitable, then G has exactly one Kr;r component.

If G D Kr;r or �.G �H/ < r , then G has exactly one Kr;r component H . Now,
suppose that G ¤ Kr;r and �.G � H/ D r . Since r > 3 and G � H is r-equitable,
G � H does not have Kr;r as a subgraph by Lemma 10. Therefore, G has exactly
one Kr;r component H .

Using Lemmas 7, 9, and 11, the equivalence of two conjectures follows.

Theorem 89 Conjecture 20 and 21 are equivalent.

In [84], Kierstead and Kostochka described their conjecture in terms of other
equivalent conditions. An r-equitable graph G is said to be r-reducible if V.G/

has a partition fV1; : : : ; Vt g into at least two parts such that all induced sub-
graphs GŒVi � are r-equitable. If such a partition fails to exist, then G is called
r-irreducible. Obviously, Kr is r-irreducible. It can be identified that there is one
other 5-irreducible graph F1 (Fig. 3), three other 4-irreducible graphs F2; F3; F4

(Fig. 4), and six other 3-irreducible graphs F5; : : : ; F10 (Figs. 5 and 6). Together
with Kr , the r-irreducible graphs in the list F1; : : : ; F10 are called r-basic graphs.
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Fig. 3 The 5-irreducible
graph F1

F2 F3 F4

a b

c

Fig. 4 The 4-irreducible graphs F2, F3, and F4

F5 F6 F7

a b
c

Fig. 5 The 3-irreducible graphs F5, F6, and F7

An r-decomposition of G is a partition fV1; : : : ; Vt g of V.G/ such that every
induced subgraph GŒVi � is r-basic. The graph G is called r-decomposable if it has
an r-decomposition. A nearly equitable r-coloring of a graph G is an r-coloring of
G such that exactly one color class has size s � 1, exactly one color class has size
s C 1, and all other color classes have size s.
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F9F8

a b

F10

c

Fig. 6 The 3-irreducible graphs F8, F9, and F10

Let G.r/ be the class of all graphs whose maximum degree and chromatic number
are less than or equal to r . Let G.r; n/ denote the subclass of G.r/ consisting of all
graphs of order at most n.

Theorem 90 ([84]) Let G 2 G.r/ and r divide jGj. Then the following are
equivalent.
1. G is r-equitable.
2. G is r-decomposable.
3. G has an equitable r-coloring, but does not have a nearly equitable r-coloring.

Conjecture 20 can now be re-stated as follows.

Conjecture 22 Suppose that �.G/ D r > 3 and G is an r-colorable graph. Then
G is not equitably r-colorable if and only if the following conditions hold.
1. r is odd.
2. G has a subgraph H D Kr;r .
3. G � H is r-decomposable.

For r > 6, this conjecture means that, if an r-colorable graph G with �.G/ D r

has no equitable r-coloring, then r is odd and there exists a partition V.G/ D V0 [
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V1 [ � � � [ Vt such that GŒV0� D Kr;r and GŒVi � D Kr for 1 6 i 6 t . Theorem 90
can be used to derive the corollaries below.

Corollary 13 For all positive integers r and n > r , the E�CC holds for all graphs
in G.r; n/ if and only if Conjecture 22 holds for all graphs in G.r; n/.

Corollary 14 Let G 2 G.r/ be r-equitable. Then G has a unique r-decomposition.

Corollary 15 There exists a polynomial time algorithm for deciding whether a
graph G 2 G.r/ is r-equitable.

The following conjecture proposed in [83] is a common extension of
Conjecture 17 and 22.

Conjecture 23 Let r > 3. An r-colorable graph G with �.G/ 6 2r has no
equitable r-coloring if and only if r divides jGj, G has a subgraph H D Km;2r�m

for some odd m, and G � H is r-decomposable.

This conjecture is proved to be equivalent to Conjecture 17 for graphs with
restricted order and Ore-degree.

Theorem 91 Let r > 3. Assume that Conjecture 17 holds for all graphs of order at
most n and Ore-degree at most 2r . Let G be an r-colorable graph of order n with
�.G/ 6 2r . Then G has no equitable r-coloring if and only if r divides n, G has a
subgraph H D Km;2r�m for some odd m, and G � H is r-decomposable.

It follows that Conjecture 23 holds for r D 3.

17 More on the Hajnal-Szemerédi Theorem

The Hajnal-Szemerédi Theorem settled a conjecture raised by Erdős in 1964. The
complete proof given in [64] was long and complicate, and did not produce a
polynomial time algorithm. A simplification came when Kierstead and Kostochka
[82] used a discharging argument in an approach similar to the original one. An
analysis of their proof leads to a complexity results.

Theorem 92 There is an algorithm of time complexity O.n5/ that constructs an
equitable .r C 1/-coloring of any graph G with jGj D n and �.G/ 6 r .

An even shorter proof of the Hajnal-Szemerédi Theorem was included in the
survey paper [86]. Independent of Kierstead and Kostochka, Mydlarz and Szemerédi
also found polynomial time algorithm proof for the Hajnal-Szemerédi Theorem.
These two groups finally worked together to refine their old methods and arrived at
a faster algorithm [87].
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Theorem 93 There is an algorithm of time complexity O.rn2/ that constructs an
equitable .r C 1/-coloring of any graph G with jGj D n and �.G/ 6 r .

However, the existence of an algorithmic version of Theorem 82 is still open.

Conjecture 24 There is a polynomial time algorithm that constructs an equitable
.r C 1/-coloring of any graph G with �.G/ 6 2r C 1.

When one pays attention to the complement of the graph given in the Hajnal-
Szemerédi Theorem, the theorem can be stated in the following form of which the
first non-trivial case r D 3 had previously been solved by Corrádi and Hajnal [34].

Theorem 94 Let G be a graph of order n with the minimum degree ı.G/ > r�1
r

n.
If r divides n, then G contains n=r vertex-disjoint cliques of size r .

In order to extend the above to a multipartite version, the next conjecture was
proposed in Csaba and Mydlarz [35]. If all parts of an r-partite graph G have
the same size, then G is called a balanced r-partite graph. Let V1; V2; : : : ; Vr be
the parts of such a graph G. The proportional minimum degree of G is defined as
follows.

Qı.G/ D min
16i6r

min
v2Vi

	
deg.v; Vj /

jVj j j j ¤ i

�

:

Conjecture 25 Let G be a balanced r-partite graph of order rn. There exists a
constant M > 0 such that, if Qı.G/n > r�1

r
nCM , then G contains n vertex-disjoint

cliques of size r .

The extra additive constant M is necessary for the case of odd r . Partial results
have been obtained by Fischer [50] and Johansson [75]. The conjecture has been
confirmed for r D 3 [109] and r D 4 [111]. In [35], Csaba and Mydlarz
proved a relaxed version of this conjecture. The proofs commonly used Szemerédi’s
Regularity Lemma [136] and the Blow-up Lemma [88] and are complicate. The
cases for r D 3 and r D 4 have been reproved by Han and Zhao [65] using their
absorbing method. The paper [80] by Keevash and Mycroft contains results about
multipartite graphs with sufficiently large girth. Recently, Conjecture 25 has been
verified asymptotically by Lo and Markström [106]. Balogh et al. [8] extended the
result of Corrádi and Hajnal into the setting of sparse random graphs.

In order to find a understandable proof of the Hajnal-Szemerédi Theorem,
Seymour [132] was motivated to pose the following conjecture. The r-th power
of a graph is obtained by adding new edges joining vertices with distance at most r .

Conjecture 26 Let G be a graph of order n with ı.G/ > r
rC1

n. Then G contains
the r-th power of Cn.

Theorem 77 is the case r D 1. The well-known Posa’s conjecture (cf. [43]) is
the case r D 2. Seymour’s conjecture implies the Hajnal-Szemerédi Theorem since
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any r C 1 consecutive vertices of the r-th power of a cycle induce KrC1. Seymour’s
conjecture has been proved by Komolós et al. [89, 90] when the order of the graph
is extremely large using Szemerédi’s Regularity Lemma and the Blow-up Lemma.

Theorem 95 For every positive integer r , there exists an integer N such that for
every n > N every graph G of order n with ı.G/ > r

rC1
n contains the r-th power

of a hamiltonian cycle.

18 Applications

Graph coloring can be regarded as a partition of resources problem. It is convenient
in some situations to require color classes be of approximately the same size. Graph
coloring is also a natural model for scheduling problems. Suppose that a number of
jobs are given to be completed. A conflict graph can be constructed so that vertices
represent jobs and two vertices are adjacent if there is a scheduling conflict between
the jobs associated with these vertices. A proper coloring of the conflict graph
corresponds to a conflict-free schedule. Some other examples are listed below.
1. The mutual exclusion scheduling problem [7, 134].
2. Scheduling in communication systems [70].
3. Round-the-clock scheduling [138].
4. Parallel memory systems [11, 37].
5. Load balancing in task scheduling [11, 97].
6. Constructing university timetables [55].

In applications, only algorithms with low time complexity could be utilized.
Although checking �

D

.G/ 6 2 can be achieved in polynomial time, the problem
of deciding if �

D

.G/ 6 3 is NP-complete even for line graphs of cubic graphs.
The majority of known polynomial time results about equitable coloring are listed
in [53] and [55]. Two competitive algorithms for approximate equitable coloring
were also supplied. In [112, 113], and [114], Méndez-Dı́az et al. gave a linear
integer programming formulation for the equitable coloring problem. They studied
its polyhedral structure and developed a cutting plane algorithm. Experiments on
randomly generated graphs have been performed to make behavior comparisons
with other algorithms of similar nature. Bahiense et al. [6] also gave two integer
programming formulations based on representatives for the equitable coloring
problem. They proposed a primal constructive heuristic, branching strategies, and
branch-and-cut algorithms based on these formulations. Computational experiments
were carried out on randomly generated graphs.

Applications of equitable colorings to other mathematical problems include the
following.

Alon and Füredi [5] used equitable colorings to the determination of the threshold
function for the edge probability that guarantees, almost surely, the existence of
various sparse spanning subgraphs in random graphs.

Rödl and Ruciński [128] used equitable colorings to give a new proof of the
Blow-Up Lemma.
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Let X D fX1; X2; : : : ; Xng be a collection of random variables with S DP
i2Œn� Xi and 	 D EŒS�. The upper tail probability Prob[S > .1 C �/	] and

the lower tail probability Prob[S 6 .1 � �/	] for 0 < � 6 1 are subjects of interest.
A dependency graph for X has vertex set Œn� and an edge set such that for each
i 2 Œn�, Xi is mutually independent of all other Xj with j non-adjacent to i .
In Pemmaraju [124], it is shown that a small equitable chromatic number for
a dependency graph leads to sharp tail probability bounds that are roughly as
good as those would have been obtained had the random variables been mutually
independent. An example is an outerplanar dependency graph and Theorem 23
plays an important role in the proof.

Pemmaraju also introduced an interesting notion of proportional coloring. For
non-negative integer c and integer ˛ > 1, a proper coloring of G is said to be a
.c; ˛/-coloring if all except at most c vertices are colored and jVi j 6 ˛jVj j for
any pair of color classes Vi and Vj . Theorem 1 can be extended to show that every
tree has a .1; 5/-coloring with two colors and every outerplanar graph has a .2; 5/-
coloring with four colors. Sharp tail probability bounds can be established if the
dependency graph can be .c; ˛/-colored [124].

Pemmaraju believed that �
D

.G/ should depend on the average degree rather than
on the maximum degree and he proposed the conjecture below.

Conjecture 27 There is a positive constant c such that, if a graph G has maximum
degree at most jGj=c and average degree d , then �

D

.G/ D O.�.G/ C d/.

The truth of this conjecture will immediately imply an O.1/ equitable chromatic
number for most planar graphs and that will translate into extremely sharp tail
probability bounds for the sum of random variables that have a planar dependency
graph.

Janson et al. [71] and Janson and Ruciński [72] also used equitable colorings to
get new bounds on tails of distributions of sums of random variables.

19 Related Notions of Coloring

In this section, some coloring notions related to equitable coloring will be discussed.

19.1 Equitable Edge-Coloring

An edge-coloring of a graph G is simply an assignment of colors to the edges of G.
An edge-k-coloring of G assigns the k colors f1; 2; : : : ; kg to the edges of G. For a
vertex v of G, let ci .v/ denote the number of edges incident with v colored i . This
edge-k-coloring is said to be equitable if, for each vertex v,

jci .v/ � cj .v/j 6 1 .1 6 i < j 6 k/

and nearly equitable if, for each vertex v,
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jci .v/ � cj .v/j 6 2 .1 6 i < j 6 k/:

The following was proved in [68].

Theorem 96 If k > 2 does not divide the degree of any vertex, then the graph has
an equitable edge-k-coloring.

Hilton and de Werra made the observation at the end of their paper that the
colorings can be so constructed that all color classes have equitable sizes.

An edge-coloring is said to be proper if any two edges are colored differently
whenever they are incident to a common vertex. The smallest number of colors
needed in a proper edge-coloring of G is called the chromatic index of G and
denoted by �0.G/. Obviously, �.G/ 6 �0.G/. The above theorem reduces to the
following well-known theorem of Vizing [142] when k D �.G/ C 1.

Theorem 97 For any graph G, �0.G/ 6 �.G/ C 1.

An edge cover coloring of a graph G is a coloring of the edges of G so that,
for every vertex v, each color appears at least once on some edge incident to v.
The maximum number of colors needed for such a coloring is called the edge
cover chromatic index of G and denoted by �0

c.G/. Let k D ı.G/ C 1. Applying
Theorem 96 to the graph obtained from G by adjoining a pendant edge to each
vertex v whose degree is a multiple of k, the following result of Gupta [62] is
deduced.

Theorem 98 For any graph G, ı.G/ � 1 6 �0
c.G/ 6 ı.G/.

Given k > 2, the k-core of a graph G is the subgraph of G induced by all vertices
v whose degree is a multiple of k. A stronger form for Theorem 96 also appeared
in [68].

Theorem 99 Given k > 2, if the k-core of G contains no edges, then G has an
equitable edge-k-coloring.

The following recent result of Zhang and Liu [158] was first conjectured by
Hilton and de Werra [68].

Theorem 100 Given k > 2, if the k-core of G is a forest, then G has an equitable
edge-k-coloring.

A graph G is called edge-equitable if G has an equitable edge-k-coloring for
any integer k > 2. If a graph is edge-equitable, then its chromatic index is equal
to its maximum degree and its edge cover chromatic index is equal to its minimum
degree. All bipartite graphs were shown to be edge-equitable in de Werra [38].
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A circuit is a connected graph without any vertex of odd degree. A circuit is said
to be odd, or even, according to its number of edges is odd, or even. It was stated in
[38] that a connected graph has an equitable edge-2-coloring if and only if it is not an
odd circuit. Wu [152] showed that a connected outerplanar graph is edge-equitable if
and only if it is not an odd circuit. This can be generalized to series-parallel graphs.
The following result was established by Song et al. [135].

Theorem 101 Any connected series-parallel graph is edge-equitable if and only if
it is not an odd circuit.

Theorem 96 also has the following corollary.

Corollary 16 Let k > 2. Then, for any graph G, there exists an edge-k-coloring of
G such that, for each vertex v,
1. jci .v/ � cj .v/j D 2 for at most one pair fi; j g of colors, and
2. jcs.v/ � ct .v/j 6 1 for all pairs fs; tg ¤ fi; j g of colors.

This can be proved by adjoining a pendant edge to each vertex of G whose
degree is a multiple of k. Then apply Theorem 96 to this extended graph. The
corresponding edge-coloring of G satisfies the above conditions. Thus, every graph
has a nearly equitable edge-k-coloring for any given k > 2. In fact, Corollary 16 is
equivalent to Theorem 96. To see this, suppose that k does not divide the degree of
any vertex of G and the conditions of Corollary 16 are satisfied. For each vertex v of
G, since deg.v/ is not a multiple of k, it is not possible to have jci .v/�cj .v/j D 2 for
one pair fi; j g of colors unless some second pair fs; tg ¤ fi; j g of colors satisfies
jcs.v/ � ct .v/j D 2 also. Thereby, an equitable edge-coloring with k colors can be
produced.

For efficient algorithms for nearly equitable edge-coloring problem, the reader is
referred to Shioura and Yagiura [133], Xie et al. [154], and references therein. These
algorithms can produce color classes that have equitable sizes.

19.2 Equitable Total-Coloring

A total-k-coloring of a graph G D .V; E/ is a mapping f W V.G/ [ E.G/ !
f1; 2; : : : ; kg such that any two adjacent or incident elements have distinct images.
The total chromatic number �00.G/ is the smallest integer k such that G has a total-
k-coloring. A total-k-coloring is said to be equitable if jjf �1.i/j � jf �1.j /jj 6 1

when 1 6 i < j 6 k. Fu [52] first studied equitable total-coloring un-
der the name equalized total coloring and put forward the following tentative
conjecture.

Conjecture 28 For each k > �00.G/, there exists an equitable total-k-coloring
of G.



Equitable Coloring of Graphs 1239

Fu proved this conjecture for complete graphs, complete bipartite graphs, trees,
and complete split graph Km _ In. However, the tentative conjecture does not hold
in general. Fu gave a family of counterexamples.

Theorem 102 For any n > 3, let G D nK2 _ I2n�1. Then �00.G/ D 2n C 1, yet
G has no equitable total-.2n C 1/-coloring. However, G has an equitable total-k-
coloring for any k > 2n C 2 D �.G/ C 2.

This theorem prompted Fu to make the following refined conjecture.

Conjecture 29 For each k > maxf�00.G/; �.G/ C 2g, G has an equitable total-k-
coloring.

Fu also proved that G satisfies the above conjecture if �.G/ D jGj � 2, or G is
a complete multipartite graph of odd order. When G is a multipartite graph of even
order, the best Fu could prove was that G has an equitable total-k-coloring for any
k > �.G/ C 3. Wang [145] proposed the following weaker conjecture in which the
equitable total chromatic index �00

D

.G/ of a graph G is defined to be the least integer
k such that G has an equitable total-k-coloring. Wang proved the conjecture holds
for graphs G with �.G/ 6 3.

Conjecture 30 For any graph G, �00
D

.G/ 6 �.G/ C 2.

This weaker conjecture is powerful enough to imply the outstanding Total
Coloring Conjecture, proposed independently by Behzad [9] and Vizing [143],
which asserts �00.G/ 6 �.G/ C 2 for any graph G.

For some classes of graphs, the upper bound in the above conjecture can be
lowered to �.G/ C 1. Chungling et al. [33] proved the following for the square
product of cycles.

Theorem 103 Let G D Cm�Cn. Then, for m > 3 and n > 3, �00
D

.G/ D �.G/ C
1 D 5.

The wheel Wn is defined to be the join of a cycle Cn with a center vertex u.
The Mycielskian M.Wn/ of Wn is constructed as follows. For each vertex x of Wn,
a new vertex x0 is added. Join xi and x0

j with an edge whenever xi and xj are
adjacent in Wn. Finally, add one more new vertex w and make it adjacent to every
new vertices x0. The hypo-Mycielskian HM.Wn/ of Wn has the same vertex set as
M.Wn/ and all edges of M.Wn/ except those of the form ux0, x ¤ u. Note that
�.HM.Wn// is equal to 6 when n D 3 or 4 and is equal to n C 1 when n > 5.

Theorem 104 ([147]) For n > 3, �00
D

.M.Wn// D �.G/ C 1.

Theorem 105 ([148]) For n > 3, �00
D

.HM.Wn// D �.G/ C 1.
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One question left open in [52] asks whether the existence of an equitable total-
k-coloring implies that of an equitable total-.k C 1/-coloring.

19.3 Equitable Defective Coloring

A reasonable relaxation of scheduling problem allows conflicts to happen to a
certain level. The graph coloring model corresponds to this type of relaxation can
be formulated as follows. A d -defective coloring is a coloring of the vertices of
a graph in which monochromatic subgraphs have maximum degree at most d . An
ordinary proper coloring is precisely a 0-defective coloring. A defective coloring
simply means a 1-defective coloring, in which a vertex may share a color with at
most one neighbor. The smallest number k such that the graph G has a 1-defective
coloring is denoted by df1.G/.

A graph G has an equitable defective k-coloring, or an ED-k-coloring, if G has a
coloring using k colors that is both equitable and defective. This notion of coloring
was introduced by Williams et al. [150]. Let �ED .G/ denote the smallest integer k

such that G has an ED-k-coloring, and ��
ED

.G/ the smallest integer k such that G has
an ED-m-coloring for all m > k. It is clear that df1.G/ 6 ��

ED
.G/ 6 �ED .G/. These

parameters may differ from each other by an arbitrarily large amount. The following
example was provided in [150]. Consider X D Kdn=2e and Y D Ibn=2c. Let G be
the graph obtained from X _ Y by removing a matching between X and Y of size
bn=2c. Note that �.G/ D ��

D

.G/ D dn=2e. If X is colored with jX j=2 D dn=4e
colors and Y is colored with one extra color, then df1.G/ 6 dn=4e C 1. If a color
class in an ED-coloring contains two vertices of X , then it cannot contain any other
vertices. This forces every color class has at most three vertices. However, color
classes of size three must contain at least two vertices of Y . Therefore, there are
at most jY j=2 color classes of size three. It follows that �ED.G/ > d3n=8e. It is
easy to see that an ED-coloring with k colors exists for any k > d3n=8e, and hence
��

ED
.G/ D d3n=8e.
Extending results in [108], Williams et al. proved the following.

Theorem 106 If G is a planar graph with minimum degree ı.G/ > 2 and girth
g.G/ > 10, then ��

ED
.G/ 6 3.

The condition ı.G/ > 2 is indispensable since K1;n has no ED-k-coloring when
n is sufficiently large for any fixed k. The girth condition cannot be lower than 5
since K2;n has girth 4 but ��

ED
.K2;n/ is not bounded by any constant. Whether 5 is

the smallest girth that a planar graph G can have so that ��
ED

.G/ can be bounded by
a constant is an open question.

Recently, Fan et al. [46] have shown that a graph with maximum degree at most
r admits an equitable ED-r-coloring and provided a polynomial-time algorithm for
constructing such a coloring.
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19.4 Equitable Coloring of Hypergraphs

A hypergraph H, is an ordered pair .V;F/, where F is a family of subsets of
the finite set V . Elements of V and F are called vertices and hyperedges of H,
respectively. The number of hyperedges incident with a vertex of H is called
its degree. A hypergraph is said to be k-uniform if each hyperedge has precisely
k-elements.

Let H be a k-uniform hypergraph on n vertices. A strong r-coloring of H is a
partititon of the vertices into r parts, called color classes, such that each hyperedge
intersects each part. A strong r-coloring is called equitable if the size of each
color class is either dn=re of bn=rc. Let c.H/ and ec.H/ denote the maximum
possible number of color classes in a strong coloring and an equitable coloring
of H, respectively. Clearly, 1 6 ec.H/ 6 c.H/ 6 k. If no upper bounds are
imposed on the maximum degree, then ec.H/ D c.H/ D 1 could happen even
k is large. An example is the complete k-uniform hypergraph on 2k vertices that
satisfies c.H/ D 1 and maximum degree less than 4k .

Let a > 1 be any real number, and let � > 0 be small. Let k be sufficiently
large such that there exists an integer in the interval Œk=.1 C �2=4/a ln k; k=.1 C
�2=8/a ln k�. For some 
 in the interval Œ�2=8; �2=4�, the number k=.1 C 
/a ln k

is an integer. Let H be a k-uniform hypergraph with maximum degree at
most ka. Yuster [157] proved that there exists an equitable coloring of H with
k=.1 C 
/a ln k � ˙

k
p


=a ln k



> .1 � �/k=a ln k colors and the following was
established.

Theorem 107 If a > 1 and H is a k-uniform hypergraph with maximum degree at
most ka, then ec.H/ > k

a ln k
.1 � ok.1//. The lower bound is asymptotically tight.

For all a > 1, there exists k-uniform hypergraphs H with maximum degree at most
ka and c.H/ 6 k

a ln k
.1 C ok.1//.

Note that results in Alon [3] have already implied that no equitable coloring of
a k-uniform hypergraph could have more than .k= ln k/.1 C ok.1// color classes.
Yuster made the following remarks at the end of his paper [157].

Using more involved computations, Theorem 107 can be proved when a is not a
constant but satisfies a D a.k/ D o.k= ln k/, i.e., the degree of H is allowed to be
any subexponential function of k.

It is possible to convert the proof of Theorem 107 into an algorithmic one.
In terms of the number of vertices of the hypergraph, but not in its uniformity,
a polynomial time algorithm can be found to produce an equitable partition with
.1 � ok.1//ck=.a ln k/ color classes, where c is a fixed small constant depending
only on a.

A special case of Theorem 107 gives the following interesting result about
graphs. Let G be a k-regular graph. If k is sufficiently large, then G has an equitable
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coloring with .1 � ok.1//.k= ln k/ colors such that each color class is a so-called
total dominating set, that is a subset of the vertices such that each vertex of G has a
neighbor in that subset.

20 Conclusion

The subject of graph coloring occupies a central position in graph theory. Histori-
cally speaking, much of the early development of graph theory was motivated by the
attempts at solving the four-color conjecture. Later on, a large number of variants or
generalizations of graph coloring problem have emerged. Graph coloring involves
deep mathematical and computational issues. The possibilities for applications are
also wide. When resources are allocated, a certain kind of graph coloring model
may be lurking around. The requirement for even distribution is rather natural. The
equitable coloring goes to the extreme to make color classes differ in size by at
most one. This may be too stringent for applications in the real world. Yet it brings
up hard questions to be addressed.

Although the concept of an equitable coloring of a graph was introduced in
early 1970s, substantial research results have only been accumulated in the last
20 years. The importance of the equitable �-coloring conjecture has gradually been
recognized. Positive evidence has been collected in this chapter.

Another fundamental phenomenon in equitable graph coloring is that in many
graph classes “most” members admit equitable colorings with colors not extremely
larger than their ordinary chromatic numbers. This phenomenon needs further
investigated.

Equitable coloring of graphs can be formulated in terms of graph packings. This
places equitable coloring in a wider context and gives it some previously unexpected
connections and it may provide motivations to generate graph packing problems.
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5. N. Alon, Z. Füredi, Spanning subgraphs of random graphs. Graphs Combin. 8, 91–94 (1992)
6. L. Bahiense, Y. Frota, T.F. Noronha, C.C. Ribeiro, A branch-and-cut algorithm for the

equitable coloring problem using a formulation by representatives. Discret. Appl. Math.
doi:10.1016/j.dam.2011.10.008

7. B. Baker, E. Coffman, Mutual exclusion scheduling. Theor. Comput. Sci. 162, 225–243
(1996)
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55. H. Furmańczyk, M. Kubale, The complexity of equitable vertex coloring of graphs. J. Appl.

Comput. Sci. 13, 97–107 (2005)
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61. H. Grötzsch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie
Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 8,
109–120 (1958/1959)

62. R.P. Gupta, On decompositions of a multigraph into spanning subgraphs. Bull. Am. Math.
Soc. 80, 500–502 (1974)

63. R.K. Guy, Monthly research problems, 1969–1975. Am. Math. Mon. 82, 995–1004 (1975)
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