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Abstract
During the last two decades, online and semi-online scheduling problems have
received considerable research interest. This chapter provides definitions of
several online paradigms, including online over list, online over time, and
semi-online. This chapter presents details of the basic online algorithms and
referencing other significant results.

1 Introduction

1.1 Scheduling

Scheduling is the earliest studied branch in combinatorial optimization and also one
of the problems with the most fruitful results achieved. Early scheduling problems
are motivated from manufacturing systems. Later, more and more scheduling prob-
lems are formalized in the areas of information science, supply chain management,
public management, and so on. In the following, we summarize the basic concepts
and notations which will be used later. For more detailed introduction on scheduling
theory, please refer to [21, 36, 117, 143].

Scheduling problems can be generally described as follows. There is a sequence
J of n jobs J1; J2; � � � ; Jn, which need to be processed on a set M of m machines
M1; M2; � � � ; Mm. A schedule is an assignment for each job to one or more time
intervals of one or more machines. Schedules that satisfy various requirements of
the problem are called feasible. Scheduling problems are specified by the machine
environment, the job characteristics, and an optimality criterion.

There are two basic types of machine systems: single-stage system and multi-
stage system. In a single-stage system, each job requires one operation, while in
multiple-stage system the jobs may require several operations at different stages.
There are also two classical single-stage systems: single machine and parallel
machines. In a single machine system, job Jj must be processed on the unique
machine M1 with a processing time pj ; j D 1; 2; � � � ; n. In a parallel machines
system, each job can be processed by one of the m machines. The time needed for
job Jj to be processed on Mi is pj i ; j D 1; � � � ; n; i D 1; � � � ; m. If pj i D pj for
any i D 1; � � � ; m and j D 1; � � � ; n, then the machine system is called identical.
If there exist si , i D 1; � � � ; m such that

pji1

pj i2
D si2

si1
for any j D 1; � � � ; n, then the

machine system is called uniform, and si is called the speed of Mi , i D 1; � � � ; m.
W.l.o.g., we assume s1 � s2 � � � � � sm D 1 and let pj D pj m, which is the
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normalized processing time of job Jj . In the case of two uniform machines, it is
of more convenience for discussion to replace the speed parameters s1 and s2.D 1/

by the speed ratio s D s1

s2
, and both are equivalent. Parallel machines system that

does not fall into above categories is called unrelated. In a multi-stage system, each
operation of a job has a separate processing time, and different operations of the
same job cannot be scheduled at the same time. The multi-stage system is usually
distinguished into open shop, when different operations of the same job may be
scheduled in any order; flow shop, if the order of the operations is fixed and same
for all the jobs; and job shop, if the order of the operations is fixed and possibly
different for each job.

Apart from the processing time of the jobs, the processing mode can also be
classified into the job characteristics. Some scheduling models allow preemption of
jobs, that is, the processing of a job may be interrupted and resumed later on possibly
a different machine. If each job can be arbitrarily split between the machines and
parts of the same job can run on different machines in parallel, this model is called
fractional assignment. There is another possibility allowing jobs to restart, which
means that a processing job can be stopped and restarted later to finish the full
processing time.

Given a schedule � , let Cj .�/ (or Cj if there is no confusing) be the completion
time of Jj , j D 1; 2; � � � ; n. Some commonly used objective functions include:
The makespan: max1�j �n Cj .�/.
The total completion time:

Pn
j D1 Cj .�/,

The total weighted completion time:
Pn

j D1 wj Cj .�/, where wj is the weight of Jj .
All these objectives are for minimization problems. There is another criteria
which maximizes the continuous period of time when all machines are
busy. Such criteria have applications in the sequencing of maintenance
actions for modular gas turbine aircraft engines [49] and fairly allocation of
indivisible goods [15]. Problems with this objective are often called machine
covering.

The period when one machine is not assigned to any job during the scheduling
process is called idle time. For most non-preemptive problems, there is no benefit
to introduce idle times. But idle time is of great help if preemption is allowed,
especially for uniform machines scheduling. Let Li be the completion time of
machine Mi in schedule � . The makespan of � equals to maxi D 1;��� ;m Li . However,
mini D 1;��� ;m Li is not always identical with the objective value of the machine
covering problem if idle times exist (Fig. 1).

In general, scheduling problems are specified in terms of a three-field notation
[88]. Here, we adopt the notation from it. In this chapter, we will use 1; P; Q; R

to denote single, identical, uniform, unrelated machine system and F; O; J to
denote flow shop, open shop, and job shop system. Problems allowing preemption,
fractional assignment, and restart will be denoted by pmtn, frac, and res, respec-
tively. The objectives of minimizing makespan, minimizing the total completion
time, and minimizing the total weighted completion time will be shortly denoted
by Cmax;

P
Cj , and

P
wj Cj , respectively. The objective of machine covering is

denoted Cmin.
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Cmin Cmax

L1 L2

idle

M1

M2

Fig. 1 Machine completion
times and objective value of a
schedule

1.2 Online Problems and Competitive Analysis

Online problems began to draw attention in the middle period of the eighties of the
twentieth century. The basic character of online models is “lack of information,”
while the previously studied problems having the access to full information are
called offline. For more detailed introduction of online theories and variants, please
refer to [20, 75].

For scheduling problems, there are a variety of online models, among which the
following two are the most common.

Online over list: Jobs are ordered in a list and arrived one by one (at time 0). The
information of a job is known to the scheduler only when all the jobs before it have
been assigned. And the assignment of jobs is irrevocable.

Online over time: Each job has a release time after which the information of
the job is known and can be processed. The release time of Jj is denoted by rj ,
j D 1; 2; � � � ; n.

Since almost all problems considered in this chapter are online, we will ignore
online over list in the second field of the three-field notation. On the other hand, rj

will be included in the second field of the three-field notation for the online over
time model.

The competitive analysis is the most common method in analysis of online
algorithms, which is formally introduced by Sleator and Tarjan [161]. The perfor-
mance of an online algorithm is measured by its competitive ratio, which has some
similarity as worst-case ratio for offline problems. For a job sequence J and an
online algorithm A, if A produces a schedule with objective value C A.J / for the
minimization (or maximization) problem and the optimal offline objective value is
C �.J /, then the competitive ratio of A is defined as

rA D inf
J

fr jC A.J / � rC �.J /g .or rA D inf
J

fr jC �.J / � rC A.J /g/:

If there is an online algorithm A for the problem with a competitive ratio r , then
A is called an r-competitive algorithm. On the contrary, if no online algorithm has
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a competitive ratio smaller than �, then the problem must have a lower bound �.
Therefore, an online algorithm is called optimal or best possible for the problem
if its competitive ratio just matches the lower bound. Here, optimal does not mean
that it always produces an optimal schedule. It only indicates the fact that no online
algorithm can be better. An online algorithm is stated to possess competitive ratio
1 if it always produces an optimal schedule, but such algorithm seldom exists. In
this chapter, we use optimal bound to denote the competitive ratio of the optimal
algorithm of the problem for simplicity. Symmetrically, a problem has upper bound
r if there exists an online algorithm for the problem with competitive ratio r .

A randomized algorithm is one which somehow bases its decision making on
the outcome of random coin flips. For a randomized algorithm, the objective value
C A.J / is a random variable. Thus, the competitive ratio of a randomized algorithm
(for a minimization problem) is defined as

rA D inf
J

fr jE.C A/.J / � rC �.J /g;

where the expectation is taken over the random choices of the algorithm. In addition,
concepts of randomized upper and lower bound can also be defined accordingly.
Algorithms which do not use randomization are called deterministic algorithm.
Since deterministic algorithm can be viewed as a special randomized algorithm, the
randomized lower bound cannot be larger than deterministic lower bound. In this
chapter, without special mention, all algorithms (competitive ratio, lower bound)
are deterministic. For a general introduction on randomized algorithms, please refer
to [134].

1.3 Structure and Notation

Online scheduling boasts of extensive results; thus, it is impossible to cover
all the problems in one chapter, and only part of paradigms together with the
according main results is included. There have been two excellent surveys [144,156]
concerning online scheduling, and some paradigms discussed elaborately there will
be omitted. We will mainly introduce paradigms approaching classical scheduling
problems and withal active in recent research. There are several interesting and
important problems not covered due to limited space and number of references,
and we will sketch some of them in the following. Firstly, scheduling problems
with deadline constraints, including interval scheduling, are not included in this
chapter. Secondly, it does not cover problems concerning other objective functions,
for example, the (weighted) total flow time and the Lp norm of machine completion
times, together with objectives deriving from bicriteria situations, for example,
scheduling with rejection and scheduling with machine cost. Thirdly, performance
measures other than competitive analysis, including resource argumentation, will
not be contained in this chapter. Finally, we skip problems which have specific
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applications, such as scheduling problems in power management, broadcasting, and
supply chain management.

The chapter is organized as follows. In Sect. 2, we survey main results for the
online over list model. Section 3 is devoted to semi-online variants of online over
list model. In Sect. 4, we introduce online and semi-online problems of the online
over time model. Other variants of online scheduling are contained in Sect. 5.

The following notations as well as those defined above will be used frequently
in the reminder of this chapter. For any i D 1; � � � ; m, let Si D Pi

lD1 sl be the total
speeds of the first i machines in uniform machine system, and we simplify Sm as
S . For any j D 1; � � � ; n, let Jj be the subset of J containing the first j jobs and
Pj be the total processing times of the first j jobs. We simplify Pn as P . Let p.j /

be the processing time of the job which has the j th largest processing time, that is,
p.1/ � p.2/ � � � � � p.n/. For any i D 1; � � � ; m and j D 1; � � � ; n, let L

j
i be the

completion time of machine Mi after the job Jj is assigned. L
j
i is also called the

load of Mi if no idle time exists. Clearly, Ln
i equals to Li .

2 Online Over List

This section summarizes main results for online over list model on parallel
machines. In this paradigm, the makespan, which is the most common objective
function with no doubt, will be considered throughout this section except the last
subsection.

2.1 Non-preemptive Scheduling

2.1.1 Identical Machines
P mjjCmax is the most studied and historical problem for online scheduling. In his
epoch making paper, Graham [86] designed the first approximation algorithm in
combinatorial optimization called List Scheduling (LS for short). LS uses greedy
idea and has a very simple structure. It always assigns the current job to the machine
where it can be started to process the earliest, that is, the machine with the smallest
current load, ties are broken arbitrary. Such principle of assigning jobs is sometimes
called LS rule in the literature. Graham proved the following result.

Theorem 1 ([86]) The competitive ratio of LS for P mjjCmax is 2 � 1
m

.

Proof (Sketch) Without loss of generalization, the last job Jn determines the
makespan. Let sn be the start time of Jn. By LS rule, no machine will idle during
Œ0; sn�. Hence, sn � P �pn

m
. Clearly,

C � � P

m
(1)
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and
C � � max

1�j �n
pj : (2)

Hence,

C LS DsnCpn � P � pn

m
Cpn D P

m
Cm � 1

m
pn � C �Cm � 1

m
C � D

�

2 � 1

m

�

C �:

ut

LS is a typical online algorithm. When assigning a new job, it does not use
any information of jobs that have not arrived yet. Not only the rule of LS but
also the ideas behind the proof are frequently used in design and analysis of other
online algorithms. Twenty years have passed since the appearance of LS , and online
problems are drawing more and more attentions. Feigle et al. [74] proved that LS is
the optimal algorithm for P mjjCmax when m D 2; 3. It should be emphasized that
no other algorithm has been proved to be optimal for any m � 4 up till now.

Though LS is irreplaceable in online scheduling, it is gradually recognized that
LS cannot be the optimal algorithm for P mjjCmax when m � 4. Hence, algorithms
and lower bounds have been refined bit by bit, and brief results and history are
summarized in Table 1. In these new algorithms, jobs are not always assigned to
the least loaded machine. Sometimes, the current job may be assigned to the second
smallest or the machine whose load lies approximately in middle of all machines.
Almost all these algorithms contain some parameters which have been carefully
selected, and the analysis of the algorithm is much more involved. The instances
used to prove the lower bound are likewise very sophisticated. The current best
lower bound is obtained even by exhaustive search using computers.

It seems that improvement of the algorithm could be carried on since there is
still a gap 0:066 between the current best upper and lower bounds. However, there
is a turning point when Albers [2] proposed her important results. When proving
the competitive ratio of an online algorithm, it is in fact that some lower bounds
instead of the exact value of the optimum itself are used. For example, lower bounds

Table 1 Improvement of lower and upper bounds of P mjjCmax

Reference Competitive ratio Reference Lower bound

Graham [86] 2 � 1
m

Falgle et al. [74] 1C
p

2

2
.m � 4/

Galambos and Woeginger [82] 2 � 1
m

� �m
a Bartal et al. [17] 1:837.m � 3454/

Bartal et al. [18] 2 � 1
70

� 1:986b Albers [1] 1:852.m � 80/

Karger et al. [110] 1:945 Gormley et al. [85] 1:85358d

Albers [1] 1:923

Fleischer and Wahl [77] 1:9201c

a�m ! 0.m ! 1/, the first algorithm which beats LS for m � 4
bThe first algorithm with competitive ratio strictly less than 2 for any m
cThe best current known algorithm
dThe best current known lower bound
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(1) and (2) are used in the proof of Theorem 1. Another useful lower bound on the
optimum is

C � � 2p.mC1/: (3)

Theorem 2 ([2]) If only using (1), (2) and (3) as lower bounds on the optimum, it
is impossible to prove an online algorithm A has a competitive ratio less than 1:919.

Note that the competitive ratio of the algorithm could be smaller than 1:919, but
it cannot be proved using existing techniques. The bound 1:919 in Theorem 2 is
very close to the current best upper bound 1:9201. Hence, it seems more urgent to
find new lower bounds on the optimum than to designing more delicate algorithms.
Though Theorem 2 does not give new lower bounds, it does point out the direction of
future research. Such ideas can be adopted to other hard online scheduling problems
as well.

When the number of machines is small, better lower bounds and algorithms can
be obtained. For example, Chen et al. [31] presented an algorithm with competitive
ratio at most

max

(
4m2 � 3m

2m2 � 2
;

2.m � 1/2 C p
1 C 2m.m � 1/ � 1

.m � 1/2 C p
1 C 2m.m � 1/ � 1

)

for P mjjCmax, m � 4. Rudin III and Chandrasekaran [147] proved the lower bound
of P 4jjCmax is at least

p
3, which is in line with the conjecture that the optimal

bound of P 4jjCmax is
p

3. Numerical bounds are summarized in Table 2.

2.1.2 Uniform and Unrelated Machines
The competitive analysis for QmjjCmax is even more difficult than that for
P mjjCmax. Both the competitive ratios of online algorithms and lower bounds of
the problems are functions of machine speeds si , i D 1; � � � ; m. This might be the
reason why optimal or tight bounds can only obtained for small values of m. For
larger m or arbitrary number of machines, it is of more significance and practical
that either to consider some special combinations of si or to obtain overall upper
and lower bounds, that is, the maximal value among all possible choice of si ,
i D 1; � � � ; m for both.

Since the machines have different speeds, the machine where a job can be started
to process the earliest may not be the machine where it can be completed the earliest.
Therefore, it is necessary to distinguish two variants of LS , namely, LSc and LSs.
LSc and LSs assign the arriving job to the machine which the job can be completed
or started the earliest, respectively. It is evident to see that for QmjjCmax, LSc is
better than LSs.

The competitive ratio of LSc for QmjjCmax is at most

min
1�k�m

( Pm
iD1 si C .k � 1/s1

Pk
iD1 si

)
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[90]. The overall competitive ratio is at most

(
1Cp

5
2

; m D 2,
2Cp

2m�2
2

; m � 3,

and the bound is tight in the overall sense when m � 6 [44]. For large m, the bound
O.log m/ obtained by using an alternative method different from those in Theorem 1
is better [10]. Specifically, for m D 2, the bound is

(
2sC1
sC1

; 1 � s � 1Cp
5

2
;

sC1
s

; s > 1Cp
5

2
;

and LSc is the optimal algorithm [72]. For m D 3, the bound is

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

s1 C s2 C s3

s1

; s2
1 � s2

2 C s1s2 C s2s3;

2s1 C s2 C s3

s1 C s2

; s2
1 < s2

2 C s1s2 C s2s3 and s2
1 C s1s2 � s2

3 C s1s3 C 2s2s3;

3s1 C s2 C s3

s1 C s2 C s3

; s2
1 C s1s2 < s2

3 C s1s3 C 2s2s3;

and it is tight for any combinations of machine speeds [90]. However, it has been
shown that LSc is optimal only for the case when s1 D s2 D 1 � .

p
2 � 1/s3 and

s2
1 � s2

2 C s1s2 C s2 [90, 136], and there does exist another online algorithm which

beats LSc when 1Cp
97

8
< s1

s2
D s1

s3
< 2 [90]. It implies that the optimality of LS

for P 3jjCmax cannot be generalized to the problem with different machine speeds.
Since the competitive ratio of LSc tends to infinite when m becomes very

large [44], it is natural to raise the question that whether an algorithm with finite
competitive ratio exists. The first such algorithm with competitive ratio 8 was
obtained by using a so-called doubling strategy [10]. Their results were later
improved by Berman [19], where a new algorithm with overall competitive ratio
3 C p

8 � 5:828 and a overall lower bound 2:4380 are given. The lower bound
was recently improved to � by Ebenlendr and Sgall [60], where � � 2:564 is the
solution of the equation

R 1

0
ln �

ln.1���x/
dx D �1.

For the most studied special case of s1 > s2 D s3 D � � � D sm D 1, the overall
competitive ratio of LSc for QmjjCmax is at most 3m�1

mC1
, where the maximum value

achieves at s1 D 2 [44]. The bound matches the overall lower bound 2 when m D 3

[118]. For m � 4, Li and Shi [118] designed a new algorithm which has a smaller
competitive ratio around s1 D 2. Thus, the overall competitive ratio can be decrease
to 2:8795. Cheng et al. [42] further raised an algorithm which has a competitive
ratio of 2:45 if the speed of the fastest machine is restricted to 1 � s1 � 2.

For RmjjCmax, Aspnes et al. [10] proved that the competitive ratio of LSc is at
most m, and thus, LSc is optimal when m D 2. They also designed a new algorithm
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with competitive ratio O.log m/. Since the lower bound of the problem is at least
dlog2.m C 1/e [13], their algorithm is optimal up to a constant factor.

2.2 Preemptive Scheduling

Results of preemptive online scheduling are more complete than those of non-
preemptive problems. The main reason may be that the optimal offline makespan
can be obtained in polynomial time. The following lemma plays an important role
in designing online algorithms for PmjpmtnjCmax and QmjpmtnjCmax.

Lemma 1 ([84, 101]) For QmjpmtnjCmax,

C � D min

( Pn
j D1 pj

Pm
iD1 si

; max
1�l�m�1

Pl
iD1 p.i/

Pl
iD1 si

)

:

Chen et al. [33] designed an optimal algorithm preemptive for PmjpmtnjCmax.
Let �m D mm

mm�.m�1/m . Note that limm!1 �m D e�1
e

� 1:582. Recall that for any j ,
C �.Jj / can be calculated by Lemma 1.

Algorithm Preemptive
Let the current job be Jj . Reindex the machines such that L

j �1
1 � L

j �1
2

� � � � � L
j �1
m . If L

j �1
m C pj � �mC �.Jj /, then assign Jj to Mm. Otherwise,

let l D minfi jLj �1
i C pj � �mC �.Jj /g. Assign part of Jj of processing

time �mC �.Jj / � L
j �1

l to Ml and the remaining part of Jj of processing time

L
j �1

l C pj � �mC �.Jj / to Ml�1.

Theorem 3 ([33]) The competitive ratio of Preemptive for P mjP mtnjCmax is �m.

Proof (Sketch) Prove by induction that for any j , the following two inequalities
hold

Lj
m � �mC �.Jj /;

kX

iD1

L
j
i � . m

m�1
/k � 1

. m
m�1

/m � 1
Pj ; k D 1; � � � ; m:

Then, it can be confirmed that the schedule produced by Preemptive is feasible, and
the competitive ratio holds. �

Several attempts have been made to modify and generalize Preemptive
to handle uniform machines, which resulted in an optimal algorithm for
Q2jpmtnjCmax with competitive ratio s2C2sC1

s2CsC1
[72, 180] and an optimal algorithm

for QmjpmtnjCmax with nondecreasing speed ratios, that is, si�1

si
� si

siC1
;

2 � i � m � 1 [64]. But it seems difficult to make further generalizations using
similar ideas.
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Recently, Ebenlendr et al. [62] introduced a novel technique which leads to an
optimal algorithm of QmjpmtnjCmax for any combinations of machine speeds.
The competitive ratio �.s1; � � � ; sm/ of the algorithm is the optimal value of the
following linear programming with decision variables q1; � � � ; qm; O1; � � � ; Om and
parameters s1; � � � ; sm.

max q1 C q2 C � � � C qm

s:t: q1 C � � � C qk � .s1 C s2 C � � � C sm/Ok; k D 1; � � � ; m;

qj C qj C1 C � � � C qk � .s1 C s2 C � � � C sk�j C1/Ok; 2 � j � k � m;

1 D s1Om C s2Om�1 C � � � C smO1;

qj � qj C1; j D 2; � � � ; m � 1;

q1 � 0; q2 � 0:

(4)

However, it can only be proved that the algorithm is optimal for any m and
any combinations of machine speeds, but the concrete expression of the optimal
bound �.s1; � � � ; sm/ is not known yet, even the overall bounds are hard to get. The
currently known best lower and upper bound for arbitrary m is 2:054 (achieves at
m D 100 and is obtained by numerical calculation) and e � 2:718, respectively
[62]. When the number of machines is small or some assumptions are made on the
values of si , (4) can be solved theoretically [62]. For example, the optimal bounds
for Q3jpmtnjCmax are

�.s1; s2; s3/ D
(

. s1

S
C .1 � s1

S
/ s2

S
C .1 � s1

S
/2 s3

S
/�1; if s1

s2
� s2

s3
C 1;

S2

s2
1Cs2

2Cs2
3Cs1s2Cs1s3Cs2s3

; if s1

s2
� s2

s3
C 1.

Another question requiring answer is that whether the optimal bounds will
increase if idle time is prohibited. Note that algorithms in [33, 64, 72, 180]
all do not introduce idle time, but no algorithm which allows idle time can
have a smaller competitive ratio under certain machine environment mentioned
there. However, the algorithm given in [62] does use idle time. It is not
known yet that whether an algorithm which does not use idle time will
necessarily have a strict larger competitive ratio than �.s1; � � � ; sm/ for general
QmjpmtnjCmax.

2.3 Randomized Algorithm

As far as ever known results are concerned, for case on parallel machine scheduling
problem with objective to minimize makespan, any lower bound for determinis-
tic preemptive online algorithm (allowing idle time) is also a lower bound for
randomized preemptive or non-preemptive online algorithms. For example, the
randomized lower bound for P mjjCmax and QmjjCmax is .m�1/m

mm�.m�1/m [32, 155] and
�.s1; � � � ; sm/ [62], respectively. But the converse is not true. Tichý [174] showed
that there does not exist a randomized algorithm for P 3jjCmax with competitive



Online and Semi-online Scheduling 2203

ratio 27
19

. However, his proof does not yield a new randomized lower bound with a
strict larger value.

The first randomized algorithm for parallel machine scheduling is due to [18],
where an optimal randomized algorithm for P 2jjCmax is given. The algorithm was
restated in a simpler version in [155] as follows.

Algorithm Random
1. If possible, assign the current job Jj randomly so that afterwards the expected

makespan equals 2
3
Pj .

2. Otherwise, assign job Jj always on the less loaded machine.

Theorem 4 ([18, 155]) The competitive ratio of Random for P 2jjCmax is 4
3
.

Proof (Sketch) Prove by induction that for any j , the following two invariants hold

E.C Random.Jj // � 2
3
Pj ;

If E.C Random.Jj // > 2
3
Pj ; then max1�l�j pl � 3

4
E.C Random.Jj //:

(5)

Clearly, (5) is also valid for j D n. Then, by (1) and (2), the theorem is thus
proved. �

Design effective randomized algorithm for P mjjCmax is rather a challenging
work. When the number of machines is small, the competitive ratios of algorithms
proposed by Seiden [151, 153] can be less than the best known deterministic
algorithms (See Table 2). For arbitrary m, Albers [2] designed a randomized
algorithm with competitive ratio 1:916, which is a combination of two deterministic
algorithms with equal probability, and it is better than any known deterministic
algorithm.

There is even less study on randomized algorithm for uniform machines. For
Q2jjCmax, Epstein et al. [72] showed that randomization does not help when s � 2.
They also presented numerical randomized lower bounds for 1 � s � 2 by solving

linear programmings and a smaller analytical randomized lower bound .sC1/2.sC2/

3s2C5sC1

for 1 � s � p
2. Three randomized algorithms are proposed, and thus, an overall

upper bound 1:52778 can be achieved, but the gap between the lower and upper
bounds for any s � 1 is still relatively large. For Q3jjCmax with restricted machine
speeds s1 D s2 � s3 D 1, Musitelli and Nicoletti [136] presented a randomized
algorithm with competitive ratio

8
<̂

:̂

4s2 C 2

3s2

; 1 � s2 <
p

10C2
3

;

6s2 C 2

3s2 C 2
; s2 �

p
10C2
3

:

It is only a little smaller than the competitive ratio of LSc, and no randomized lower
bound has been reported.
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2.4 Other Objectives

2.4.1 Total Completion Time
The property of the objective of minimizing the total completion time is different
from that of minimizing makespan. The objective value of the schedule will be
affected by not only the set of jobs assigned to each machine but also the process
sequence of it. As a result, there exists no algorithm with constant competitive ratio,
even for the single machine case.

Theorem 5 ([76]) For every function f W N ! RC that fulfills conditions:
1. f .n/ is nondecreasing,
2.

P1
nD1

1
nf .n/

converges,
there exists an online algorithm for 1jj P

Cj with competitive ratio at most
O.f .n//, where n is the number of jobs. On the other hand, let g W N ! RC
be a function that fulfills condition:
1. g.n/ is nondecreasing,
2.

P1
nD1

1
ng.n/

diverges,

3. g.n/ D O.log2 n/,

4. g
�

n

log2 n

�
D �.g.n//,

then there does not exist an online algorithm for 1jj P
Cj with competitive ratio

o.f .n//.

By selecting specific functions which satisfy the respective conditions, it can be
found that the gap between the lower and upper bounds is rather small.

Corollary 1 ([76]) For every � > 0, there exists an online algorithm with
competitive ratio at most .log n/1C� , but no online algorithm with competitive ratio
log n can exist.

2.4.2 Machine Covering
The online version of non-preemptive machine covering problem is relatively
easy. It should be mentioned that for machine covering problems, LSs is better
than LSc in most cases. Woeginger [181] and Epstein [66] proved that LSs is
the optimal algorithm for P mjjCmin and Q2jjCmin, respectively. In fact, their
analysis can be generalized to QmjjCmin. LSs remains the optimal algorithm with
competitive ratio

Pm
iD1 si . Azar and Epstein [12] designed a randomized algorithm

for P mjjCmin with an overall competitive ratio O.
p

m log m/ and proved an overall

randomized lower bound
p

m

4
.

Surprisingly, machine covering problem becomes much more difficult if preemp-
tion is allowed, even though the optimal offline objective value

min
0�j �m�1

Pn
lDj C1 p.l/

Pm
lDj C1 sl
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for QmjpmtnjCmin can be calculated similarly as QmjpmtnjCmax [108]. Jiang
et al. [108] proved that

Pm
iD1

1
i

is a lower bound of P mjpmtnjCmin and m is an
overall lower bound of QmjpmtnjCmin, but no algorithm with matched competitive
ratio has been given. For Q2jpmtnjCmin, they designed an optimal algorithm with
competitive ratio 2sC1

sC1
. However, their algorithm may introduce idle time, even

when it assigns the first job. If idle time is not allowed, then no deterministic
algorithm can have a smaller competitive ratio than

8
<̂

:̂

2s C 1

s C 1
; 1 � s < 1Cp

5
2

;

s; s � 1 C p
5

2
:

A corresponding algorithm prohibiting idle time with matched competitive ratio was
also given in [108]. Therefore, whether idle time is allowed or not does affect the
optimal bounds for machine covering problems. It should be noted that different
from algorithms allowing idle time, for non-idle time situation, there is no evidence
yet that the lower bound also holds for randomized algorithm. Such phenomenon
also appears in similar situations in the following.

3 Semi-online Scheduling

3.1 Motivation and Taxonomy

There are two basic characteristics for the online over list model. The first is that
jobs arrive one by one and it is required to assign each job without any knowledge
of the jobs that arrive later. The second is that the assignment of the job should be
determined immediately upon its arrival and cannot be changed later. The reason
of the first characteristic is “lack of information,” while the essence of the second
is “restriction of scheduling.” There are often voices of criticism on the model
for the sake of both theoretical study and practical application. In practice, most
problems are not pure offline or online but somehow in between. Theoretically, the
competitive ratio of an online algorithm tends to be over large in contract with
the actual performance, since offline algorithms are more powerful than online
algorithms. Moreover, the lower bound of the problem can also be ineffective,
namely, too large, as the adversary can arbitrarily determine the instances without
any restriction.

The reasons aforementioned bring semi-online scheduling about an active
research area. Semi-online can be looked upon as relaxation of online or an
intermediate state of offline and online. The primary significance of study on semi-
online settings is as follows. First and foremost, without reasonable understanding
of semi-online problems, there will be no more than online algorithm to implement
faced with semi-online cases, which will give rise to inevitable loss definitely, just
as LS algorithm performs not satisfactorily on offline problems. Furthermore, deep
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study on semi-online problems will lead to initiative search for crucial factors in
algorithm design and improving, which will certainly save the cost and energy on
many pointless factors. In theory, research on semi-online scheduling is of help
to clarify influence of various restrictions of both information accessed to and
algorithm design, and to reveal some deep and dominant properties. For example,
it is interesting to consider the question that whether it is possible or under what
kind of circumstance that an online approximation scheme, that is, a class of semi-
online algorithms with competitive ratio arbitrarily close to 1 can exist. In contrast to
P TAS of offline problems, whose time complexity increases as the worst-case ratio
of the algorithm decreases, more partial information or more freedom of scheduling
is required in online cases when pursuing a better competitive ratio. In fact, one such
approximation scheme has already been obtained [160]. Last but not least, it will be
meaningful for algorithm design and analysis on online problems when researching
on semi-online models, as will see later.

Though semi-online model can be viewed as an intermediate state between online
and offline, its properties and research approach are almost the same as the online
model. Competitive analysis is still the primary technique adopted, and lower bound
of the problem, together with competitive ratio of the algorithm, can be defined
accordingly.

The value of a semi-online model, denoted by …s, is evaluated by comparing
its upper (or lower) bound with that of a corresponding online model reacting to
the same machine environment and objective function, which is represented by …o.
The semi-online model is called valuable if there exists an online algorithm for
…s whose competitive ratio is smaller than the optimal bound (or lower bound)
of the …o. On the other hand, if the lower bound of …s is no smaller than
the competitive ratio of an algorithm for …o, it is called valueless. Of course,
a semionline model is valuable or may not be determined by certain machine
environment or objective functions. In this section, mainly identical and uniform
machines, as well as minimizing makespan and maximizing minimum machine
load, are considered. It is also possible to compare variants of semi-online models
qualitatively, according to the extent to which the optimal bound of pure online
problem can be improved. However, the outcomes may be quite sensitive to the
machine environment or objective function.

Various semi-online paradigms have been studied in the literature, which can
be divided into several categories. The taxonomy and their notations, which will
be included in the middle field of the three-field notation, are summarized in the
Table 3. Their specific implications will be introduced in the rest of the subsection.

3.1.1 Basic Semi-online Models of Type I
Basic semi-online models of Type I modify the first assumption of the online over
list model, that is, some partial information about the future jobs are known in
advance. The following four kinds of partial information are the most heated.

decr [154]: The jobs are arriving in nonincreasing order of their processing times,
that is, p1 � p2 � � � � � pn.
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Table 3 Semi-online models

Basic Type I Valuable: sum, opt, max, decr

Valueless: num, LB, UB, min, incr, lookahead

Type II buffer, parallel, reassignment
Combined Type I and Type I UB & LB, UB & sum, LB & max, max & sum, max & opt,

decr & sum, decr & opt, end of sequence

Type I and Type II sum & buffer, sum & parallel, sum & reassignment
Disturbed inexact information inexact sum, inexact opt, inexact max

sum [111]: The total processing time of all jobs P D Pn
j D1 pj is known before

the first job is arrived.
opt [14]: The optimal offline makespan C � is known before the first job is arrived.
max [111]: The maximal processing time of all jobs pmax D maxj D1;��� ;n pj is

known before the first job is arrived.
The motivation of decr , sum, and max is obvious, whereas it may seem to be

strange at first glance that the optimal offline makespan can be known in advance.
In fact, it can be interpreted from the realistic scenario of remote file transfer [14].
Besides, online problems with C � is known in advance have already been studied
before semi-online began to draw attention, since the following lemma is useful in
competitive analysis of difficult online problems [10].

Lemma 2 For some scheduling problem of online over list model with objective to
minimize makespan, if there exists an algorithm for the opt variant with competitive
ratio r , then there exists an algorithm for the pure online model with competitive
ratio at most 4r .

Some variants reacting to other partial knowledge of input are also reasonable,
which is quite common in practice. For example,

num: The number of all jobs n is known before the first job is arrived.
incr: The jobs are arriving in nondecreasing order of their processing times, that
is, p1 � p2 � � � � � pn.
UB(LB): The upper (lower) bound on the processing time of all jobs pUB �
maxj D1;��� ;n pj (pLB � minj D1;��� ;n pj ) is known before the first job is arrived.
min: The minimal processing time of all jobs pmin D minj D1;��� ;n pj is known
before the first job is arrived.

However, such paradigms, which seem worthless under certain machine environ-
ment and objective functions discussed so far, have not drawn much attention.

Another kind of partial information which is common in practice is called
lookahead [111]. When assigning the current job, the information of the next k

jobs is known, where k is a constant number. Lookahead tends to be of benefit
for scheduling according to practical experience, whereas it turns out to be still
valueless as far as competitive ratio is concerned.
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3.1.2 Basic Semi-online Models of Type II
There are other variants which lie between online and offline. However, they have
nothing to do with the partial information of the input but more freedom acquired in
scheduling. These variants belong to Type II semi-online models. It is a much more
potential research area compared with Type I semi-online models, which is fruitful
of results.

In the buffer [111] paradigm, there is a buffer of size K which can store at most
K jobs. The incoming job can either be scheduled immediately or be stored in
the buffer, which enables it to be scheduled later. The root cause of the improved
performance attributed to buffer lies in the fact that it can reorder the job sequence.
Pure online and offline models are equivalent to problems with buffer size 0 and
1, respectively. In another related class of models reassignment [160, 167], it is
allowed to reassign some of the jobs during or after the process. Recall that in the
pure online model, no job can be reassigned.

A technique frequently used in designing algorithm for the offline problems is to
run several procedures in parallel and then select the best result as output. However,
it does not fit pure online setting. Semi-online variant which allows to use such
technique is called parallel. A real-world system which resembles such situation
was claimed to exist in [111]. Kellerer et al. [111] proved that the optimal bound of
P 2jparal lel.2/jCmax is 4

3
; here, paral lel.2/ means that two procedures are run

in parallel.

3.1.3 Combined Semi-online Models
Since some semi-online variants are indeed of value, it is natural to raise the question
whether a more efficient algorithm can be designed for a problem possessing
characteristics of several semionline variants in the meantime. A combination is
useful, if there exists an online algorithm for the combined semi-online problem
whose competitive ratio is smaller than the optimal bound (or lower bound) of any
one of the basic semi-online model. Otherwise, the combination is useless. The
combination could be of two basic semi-online variants of Type I, as well as that of
Type I and II, respectively. In spite of the fact that combination consisting of more
than three variants can certainly be concerned with, such cases are always quite
complicated and seldom studied.

3.1.4 Disturbed Semi-online Models
The disturbed semi-online models were first studied in [165]. In some cases, it is
allowed to use some additional information or slightly more resources than the
offline algorithm, whereas the information or resources might be unreliable. For
example, it is known in advance that the total processing time lies in the interval
ŒP0; ˛P0�, but the exact value of P is still unknown. It can be believed that the
value of inexact partial information lies largely on the value of ˛, which is called
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disturbance parameter. For problem with inexact partial information, special stress
is laid on determining the value of ˛ which insures the information to be useful and
further designing algorithm making use of the beneficial information acquired.

3.2 Results on Basic Semi-online Models of Type I

3.2.1 Identical Machines
It has been widely known for a long time that in combinatorial optimization, the
performance of an algorithm can be improved after appropriate preprocessing for the
input. Graham [87] proved that the worst-case ratio of algorithm Longest Processing
Time first (LP T for short), where LS is implemented after a preprocessing step,
namely, reordering the jobs in a nonincreasing sequence of their processing time,
is 4

3
� 1

3m
. However, it is not allowed to reorder the sequence in the pure online

setting. But if the jobs are arrived in nonincreasing order of their processing times,
the performance of LS will be just the same as that of LP T . Above situation was
reformulated as a semi-online variant by Seiden et al. [154]. They proved that LS is
the optimal algorithm for P 2jdecr jCmax. However, LS is no longer optimal when
m � 3, since there exists an algorithm with competitive ratio 5

4
for m � 4 and an

optimal algorithm with competitive ratio 1Cp
37

6
for m D 3 [43].

If the total processing time of all jobs P is known in advance, a lower bound P
m

on
the optimal makespan is readily available, which will be of great help in designing
algorithm with a better competitive ratio. Take the optimal algorithm reacting to two
machines [111] for example. Jobs are successively assigned to M1 until there exists
a crucial job, such that the load of M1 would exceed a threshold 4

3
� P

2
if the crucial

job is still assigned to M1; here, 4
3

is the expected competitive ratio of the algorithm.
Then, the crucial job is assigned to M2, and the remaining jobs will no longer have
any negative effect on the competitive ratio. The core idea of the algorithm is to
keep one machine lightly loaded so as to serve the long jobs which might present
later. The significance of sum lies in the fact that it is impossible to determine the
threshold without access to P .

For P mjsumjCmax, Angelelli et al. [6] proposed an algorithm with competitive

ratio
p

6C1
2

� 1:725 and proved that the lower bound of the problem is 1:565 for
sufficiently large m. The lower bound was recently improved to 1:585 by Albers
and Hellwig [3]. By more careful classification according to the processing time of
the jobs as well as the current load of the machines, Cheng et al. [41] designed an
improved algorithm with competitive ratio 8

5
. They also showed that 3

2
is a lower

bound of the problem for any m � 6. For the case of m D 3, the current best lower

and upper bounds are
p

129�3
6

� 1:393 and 27
19

� 1:421, respectively [9].
The semi-online variant opt is closely associated with the variant sum. In

fact, many instances used to show the tightness of the competitive ratio of some
algorithms satisfy C � D P

m
. However, the instance with C � > P

m
does exist.

Therefore, it is not easy to answer whether corresponding two problems regarding
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sum and opt variants have the same optimal bound. Nevertheless, Dósa et al. [54]
proved the following result.

Lemma 3 ([54])
(i) If � is a lower bound of Qmjopt jCmax, then the lower bound of QmjsumjCmax

is at least �.
(ii) If there is an algorithm for QmjsumjCmax with competitive ratio r , then there

also exists an algorithm for QmjsumjCopt with competitive ratio at most r .

By Lemma 3, the algorithm for P mjsumjCmax given in [41] can be modified
to solve P mjopt jCmax with at most the same competitive ratio 8

5
, which improves

the former algorithm for P mjopt jCmax with a competitive ratio of 13
8

[14]. When
the number of machines is small, another algorithm also given in [14] has a smaller
competitive ratio of 5m�1

3mC1
. On the other hand, the lower bound of P mjsumjCmax

is no longer valid for P mjopt jCmax. Though 4
3

is clearly a lower bound of
P mjopt jCmax for any m � 2 [14], no larger lower bound has been reported for
m � 3.

There are fewer results on the max variant. He and Zhang [97] presented an
optimal algorithm for P 2jmaxjCmax with competitive ratio 4

3
. Note that for the

max variant, not only the processing times of all jobs are no more than pmax, but
also at least one job with processing time pmax will arrive sooner or later. Hence,
the first job with processing time pmax , which is denoted as Jmax , can be shifted to
the beginning of the job sequence by assumption. Thus, the optimal algorithm given
in [97] can be simplified by using above idea.

Algorithm PLS
1. Let Jmax be scheduled on M1 from time 0 to pmax.
2. Assign the remaining jobs by LS rule.

Theorem 6 The competitive ratio of PLS is 4
3

for P 2jmaxjCmax.

Proof If maxfL1; L2g � 2
3
P , then C PLS

C � � maxfL1;L2g
P
2

� 4
3

by (1). Otherwise,

maxfL1; L2g C .L1 C L2/ C jL1 � L2j D 3 maxfL1; L2g > 2P D .L1 C L2/

C maxfL1; L2g C minfL1; L2g: (6)

Since the remaining jobs are assigned by LS rule, jL1 � L2j � pmax . Combining
it with (6), minfL1; L2g < jL1 � L2j � pmax . Recall that Jmax is assigned to M1,
L1 � pmax . Hence, L2 < pmax and thus no job other than Jmax will be assigned to
M1, which implies that PLS produces an optimal schedule. �

However, for general m, no algorithm performing better than the best known
algorithm for pure online model has been obtained. It is also unknown that whether
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Table 4 Results of semi-online variants on arbitrary m identical machines

Preemptive
Non-preemptive Makespan
Makespan minimization Machine covering minimization

Variant Lower bound Upper bound Lower bound Upper bound Optimal bound

decr 1C
p

37
6 [154] 5

4 [43] Open 4m�2
3m�1 [47] max0�k�m

2m2C2mk

2m2Ck2Ck
[154]

sum 1:585 [3] 8
5 D 1:6000 [41] m � 1 [22, 166] 1 [98]

opt 4
3 � 1:333 [14] 8

5 D 1:6000 [41] 43
24 � 1:791 [61] 11

6 � 1:834 [61] 1 [58]

max Open Open m � 1 [22, 166] max0�k�m

2m2C2mk

2m2Ck2Ck
[154]

the partial information is still valuable for sufficiently large m, since the effect of
the information about the single job Jmax tend to reduce as m increases.

As far as the problem of machine covering is concerned, the four semi-online
variants differ hugely both in property and difficulty. Optimal algorithms for
P mjsumjCmin and P mjmaxjCmin can be obtained, both having a competitive ratio
m � 1 for m � 3 [22, 166]. However, the research on P mjopt jCmin seems to be
much more difficult than that of P mjsumjCmin. Azar and Epstein [12] proposed
an algorithm with competitive ratio 2 � 1

m
, which is optimal for m D 2; 3; 4. A

more involved algorithm with competitive ratio 11
6

� 1:834 was given in [61]. The
current best lower bound is 7

4
for m > 4 [12] and 43

24
� 1:791 for sufficiently

large m [61]. These bounds are far smaller than those for P mjsumjCmin. For the
problem P mjdecr jCmin, LS has a competitive ratio of 4m�2

3m�1
[47] and is optimal

for m D 2; 3 [96].
Tables 4 and 5 summarize the current best results of different semi-online variants

on identical machines for arbitrary m and small number of m, respectively. As is
shown in the table, different semi-online variants are diverse in value. In addition,
optimal algorithm for two machines has almost all been found, whereas for three
or more machines, nearly all problems are waiting to be answered, which is quite
thought-provoking.

3.2.2 Two Uniform Machines
Similarly as pure online problems, the upper and lower bounds for most semi-online
problems on two uniform machines are piece-wise rational or irrational functions
of s. But the number of the pieces could be considerably large, often exceeding 10.
There may be large difference among optimal algorithms for the same problem with
different value of s, which make the analysis of these problems extremely difficult.
Most results are obtained mainly by case by case analysis. Up till now, no universal
or revolutionary method has been developed to handle these problems efficiently.
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Fig. 2 The optimal bounds (thick) and competitive ratios of LS (dash) for Q2jdecr jCmax (left)
and Q2jdecr jCmin (right)

Among the four basic semi-online variants of Type I, decr is the only one which
optimal bounds for all values of s � 1 are obtained for both minimization and
maximization problems. Based on the worst-case ratio of LP T for the offline
version [133], Epstein and Favrholdt proved that LSc is optimal for the majority
value of s. For the remaining two intervals which is close to 1 and nearby 2:5

where LSc is not optimal, they designed three new algorithms and proved their
optimality. Symmetrically, for Q2jdecr jCmin, LSs is also optimal except for two
similar intervals of s, and new optimal algorithms have been proposed for these
intervals [39]. The figures depicting two optimal bounds (as functions of s) bear
some similarities (Fig. 2).

The other two problems which optimal algorithms for any s � 1 have been
obtained are Q2jsumjCmin and Q2jopt jCmin. The optimal bound of Q2jsumjCmin

[163] is 8
<̂

:̂

sC2
sC1

; s 2 Œ1;
p

2�,

s; s 2 Œ
p

2; 1Cp
5

2
�;

s2CsC1Cp
5s4C6s3C3s2C2sC1
2s.sC1/

; s 2 . 1Cp
5

2
; 1/;

while the optimal bound of Q2jopt jCmin [66] is

8
<̂

:̂

sC2
sC1

; s 2 Œ1;
p

2�,

s; s 2 Œ
p

2; 1Cp
5

2
�;

2sC1
sC1

; s 2 . 1Cp
5

2
; 1/:

Note that the optimal bound of Q2jsumjCmin is strict smaller than that of

Q2jopt jCmin for s > 1Cp
5

2
. The overall optimal bound of Q2jsumjCmin is also

strict less than that of Q2jopt jCmin (See Fig. 3). These conclusions turn out to
be opposite to both the results of Lemma 3 concerning problems with objective
to minimize makespan and that of machine covering problems on m identical
machines.
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Fig. 3 Left: the optimal bound of Q2jjCmax (thick) and the upper bounds (solid) and lower bounds
(dash) of Q2jmaxjCmax (bottom) and Q2jeosjCmax (top). Right: the upper bounds (solid) and
lower bounds (dash) of Q2jsumjCmax (top) and Q2jopt jCmax (bottom)

Fig. 4 The optimal bounds
(thick) of Q2jsumjCmin

(bottom) and Q2jopt jCmin

(top) and the upper bounds
(solid) and lower bounds
(dash) of Q2jmaxjCmin

(bottom) and Q2jeosjCmin

(top) 1 2 3 4 5 6 7 8
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For the remaining four problems, there are still gaps between upper and lower
bounds for some values of s, though ceaseless efforts have been put into narrowing
the gap. The gaps of some problems seem to be small, but it is usually the
case that the gap might appear exactly be the place where the analysis becomes
toughest. For the sake of conciseness, only best known bounds will be listed in
the following. General information of these bounds is summarized in Table 6
(also see Figs. 4 and 3). It can be seen that Q2jsumjCmax and Q2jopt jCmax are
much more complicated than the corresponding machine covering problems. For
Q2jmaxjCmax, the effect of the information about the single job Jmax declines
when s is sufficiently large. There is a noteworthy fact that for majority makespan
minimization problems, the overall bound is achieved at the point where the
argument s values exactly the overall bound itself and lies in the interval Œ1:2; 1:5�.
For machine covering problems, the overall bounds all achieve at s D 1 except
Q2jsumjCmax.
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The lower and upper bounds of Q2jsumjCmax [54, 65, 137] are
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respectively, where c.s/ D
p

s2x2 C 4s.s C 1 � x/ C sx

2s
, x is a root of the

equation

p
s2x2 C 4s.s C 1 � x/ C sx

2s
D s.2s C 2 � x/

.s C 1/.x C 2/
, x1; x2; x3; x4 are the

positive roots of

3s2.9s2 � s � 5/ D .3s C 1/.5s C 5 � 6s2/;
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D s C p
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The lower and upper bounds of Q2jopt jCmax [54, 65, 137] are
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respectively.
The lower and upper bounds of Q2jmaxjCmax [23, 24, 128] are
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respectively, where x5, x6, x7 are the roots of

2s4 C 2s3 � 6s2 � 5s C 3 D 0;
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The lower and upper bounds of Q2jmaxjCmin [27, 129] are
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respectively, where x8; x9 are the positive roots of

s C 1

s
D s C 1 C p

5s2 C 6s C 1

2.s C 1/

and
s C 1 C p

5s2 C 6s C 1

2.s C 1/
D s2 C s C 1 C p

s4 � s2 C 2s C 1

s2 C 2s
;

respectively.

3.2.3 Preemption
In regard to preemptive semi-online scheduling problems, there were some results
on optimal algorithms [56, 67, 93, 94]. But breakthrough was not made until Eben-
lendr and Sgall introduced the general framework for preemptive online scheduling,
through which for the majority of semi-online variants, preemptive scheduling
problems with the objective function of makespan can be solved. The optimal
algorithm for these semi-online problems is identical with the optimal algorithm
for the pure online problem; only the optimal bound needs to be recalculated by
using the reformed linear programming (Eq. 4). However, as in the pure online case,
there are still two points at issue. The first is that the analytically optimal bounds
can hardly be obtained when m is large, even for the identical machines case. The
second is that it is necessary for the algorithm to use idle times, and whether it is
inevitable still remains unknown.

For Qmjpmtn; opt jCmax, there exists an algorithm which always produces an
optimal schedule [58]. Similar result for two uniform machines was obtained by
Epstein [65] before. P mjpmtn; sumjCmax also has an algorithm with competitive
ratio 1 [98], but it does not hold for Qmjpmtn; sumjCmax [59].

For P mjpmtn; decr jCmax, Seiden et al. designed an optimal algorithm with

competitive ratio max0�k�m
2m2C2mk

2m2Ck2Ck
[154]. The bound tends to 1Cp

3
2

when
m ! 1, and the algorithm does not introduce idle times. Interestingly, it is also
the optimal algorithm for P mjpmtn; maxjCmax. However, above two variants
do not share optimal algorithm for uniform machines. The optimal bounds for
Q2jpmtn; decr jCmax [67] and Q2jpmtn; maxjCmax [94] are

8
<̂

:̂

3s C 3

3s C 2
; 1 � s � 3;

2s2 C 2s

2s2 C s C 1
; s > 3

and 2s2C3sC1
2s2C2sC1

, respectively (Fig. 5). Moreover, no deterministic algorithm that never
uses idle time can have the same competitive ratio as those use idle time when s > 2

for the former problem and s > 1Cp
5

2
for the latter. But the corresponding lower

and upper bounds are still unknown. More optimal bounds for different semi-online
variants on m D 2; 3; 4 uniform machines can be found in [57, 59].
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Preemptive machine covering problems are much more complicated than cor-
responding makespan minimization problems. Due to the particularity of the
definition of the objective, whether idle time is allowed should be taken into
special consideration. The lower bound of P mjpmtn; sumjCmin is 2m�3

m�1
, and there

exists optimal algorithm with matched competitive ratio when m D 2; 3 [98]. For
Q2jpmtn; maxjCmin, the optimal bound is s2C3sC1

s2C2sC1
[99]. However, the algorithm

may introduce idle time before Jmax arrives when s > s0 � 1:247. Here, s0 is the
positive root of s3Cs2�2s�1 D 0. For Q2jpmtn; decr jCmin, the optimal bound is

8
<̂

:̂

2s C 3

2s C 2
; 1 � s � 3;

s2 C 3s

s2 C 2s C 1
; s > 3:

The optimal algorithm also needs to introduce idle time when assigning the first

job if s >
p

6
2

. Whether there exist algorithms for Q2jpmtn; sumjCmin and
Q2jpmtn; opt jCmin that can always obtain the optimal schedule remains open
(Fig. 5).

3.2.4 Other Results
Due to the difficulty in competitive analysis with multiple parameters, there is
little study on non-preemptive semi-online problems on more than two uniform
machines. Azar and Epstein [11] proposed algorithms with competitive ratio both m

for Qmjopt jCmin and Qmjdecr jCmin, respectively. These algorithms are optimal
in the overall sense.

Even less is known about randomized algorithms for semi-online problems.
Seiden et al. [154] proposed a barely random algorithm for P 2jdecr jCmax

with competitive ratio 8
7
, and no randomized algorithm can achieve a better

competitive ratio.
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Fig. 5 Left: the optimal bounds of Q2jpmtnjCmax (top), Q2jmax; pmtnjCmax (middle),
and Q2jdecr; pmtnjCmax (bottom). Right: the optimal bounds of Q2jpmtnjCmin (top),
Q2jmax; pmtnjCmin (middle), and Q2jdecr; pmtnjCmin (bottom). Thick segments represent
the intervals of s where idle time is necessary
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3.3 Results on Basic Semi-online Models of Type II

3.3.1 Buffer
Evidently, it is more likely to design algorithm with a better performance if larger
buffer is allowed. However, a buffer of size more than 1 is dispensable for two
identical machines. That is to say, the lower bound of the problem with a buffer of
size arbitrary large equals to the competitive ratio of an algorithm using a buffer of
size only 1, which is 4

3
[111,187]. However, such phenomenon does not occur in the

case where there are more than two machines or machines have different speeds.
Therefore, the algorithm, as well as its corresponding competitive ratios, may be
relevant to the size of the buffer. However, it seems impossible and also redundant
to obtain optimal algorithms for any values of K . An alternate way is to find an
algorithm satisfying super optimality. An algorithm with competitive ratio r which
uses a buffer of size K is super optimal if no algorithm which uses a buffer of size
arbitrary large can have a competitive ratio smaller than r , where K is a constant
number. Clearly, if two algorithms are both super optimal, then the algorithm which
uses a smaller buffer is better. However, research on the problem with a buffer of
limited size is also of significance, since in practical application, the buffer size is
limited by the cost, space, or other additional restrictions.

Main results on the buffer variant on arbitrary number of machines are sum-
marized in Table 7. For PmjbufferjCmax [63], Pmjpmtn, bufferjCmax [51], and
QmjbufferjCmin [73], super optimal algorithms have been obtained (in the overall
sense for the last problem on uniform machines). Note that the super optimal bound
for Pmjpmtn, bufferjCmax is not an increasing function of m, and the problem cannot
be solved by using the general framework included in [59].

For Q2jbufferjCmax, it is possible to obtain lower and upper bounds as functions
of s [52]. A buffer of size 2 is enough to achieve the super optimal bound

8
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s2 C 2s C 1

s2 C s C 1
; 1 � s � 1Cp

5
2

;

s2

s2 � s C 1
; 1Cp

5
2

� s � 2;

s C 2

s C 1
; s � 2:

Moreover, the optimal algorithm only needs a buffer of size 1 when s � 2. However,

when the buffer size reduces to 1, the optimal bound increases to
s C 2

s C 1
for

p
2 <

s < 2, and there exists an algorithm with competitive ratio
2.s C 1/

s C 2
while the lower

bound is max

�

s;
s2 C 2s C 1

s2 C s C 1

�

1 � s � p
2.
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3.3.2 Reassignment
Recall that the online over list model is typically characterized by the disallowance
of reassignment. Since semi-online can be viewed as relaxation of online, it is
natural to consider the situation where some jobs can be actually reassigned, which
is also of realistic interest from an application perspective.

Variants in this category can be classified into two main types: sequential
reassignment and final one-off reassignment. For the first type, reassignment can be
done when every new job arrives, while for the second one, reassignment can only
be done after all jobs have been assigned. For both cases, however, there should
be some constraints on the reassignment; otherwise, the problem will reduce to an
offline fashion.

In [160], Sanders et al. considered the proportional sequential reassignment
model. When a job with processing time pj arrives, some jobs with total processing
time at most ıpj can be reassigned, where ı is the migration factor. Obviously, the
competitive ratio r of an algorithm will decrease when ı increases. For identical ma-
chines with objective to minimize makespan, they designed algorithms for different
value of ı. Some combinations of r and ı are .r; ı/ D 


3
2
; 4

3

�
, .r; ı/ D 


3
2

� 1
2m

; 2
�
,

and .r; ı/ D 

4
3
; 5

2

�
, respectively. They even obtained a family of online algorithms

with competitive ratio 1 C ", where " > 0 can be arbitrarily close to 0, while ı only
depends exponentially on 1

"
. However, only for the case of m D 2 and ı D 1, an

algorithm with competitive ratio 7
6

has been proved to be optimal. For the machine
covering problem, they obtained an algorithm with competitive ratio 2 for ı D 1.

Epstein and Levin [71] studied the above variants in a preemptive setting. Since a
job can be split, the scheduler is allowed to reassign only part of the job. As a result,
the migration factor does not reckon in the entire processing time but rather only
the reassigned fraction of that. They presented a .r; ı/ D .1; 1 � 1

m
/ algorithms for

m identical machines, and the migration factor cannot be improved. For m uniform
machines, a migration factor at least m � 1 is needed to obtain an algorithm with
competitive ratio 1.

The restriction of reassigned job can be made through numbers of jobs instead
of total processing times. That is at most G already assigned jobs can be reassigned
when a new job arrives. Such variant can be called as sequential reassignment with
quantitative restriction and is denoted reassignSQ. It is stronger than buffer since
the former can simulate the latter by the following steps: First, temporarily set the
jobs on any one of the machines as if they were stored in a buffer. And then reassign
them on the machine as if jobs in the buffer were assigned. Contrariwise, a job can
no longer be reassigned unless it is in the buffer. In brief, reassignSQ can do what
buffer can, but not vice versa.

For Q2jreassignSQjCmax, Dósa et al. [55] proved that the optimal bound when
G � 2 coincides with the optimal bound of Q2jbufferjCmax with buffer size K � 2.
However, when G D 1, the lower bound is
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while the upper bound is

8
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s2 C 2s C 1

s2 C s C 1
; 1 � s � s00;

s C p
5s2 C 8s C 4

2.s C 1/
; s00 � s � p

3;

s C 2

s C 1
; s � p

3;

where s00 is the root of equation s3 � s � 1 D 0. The algorithm is not optimal when
s 2 Œs00;

p
3�, and it is not identical with the bound of Q2jbufferjCmax with buffer

size K D 1 (Fig. 6).
Several final one-off reassignment models were first proposed by Tan and

Yu [167]. One is that when all jobs have been assigned, at most H arbitrary jobs
can be reassigned. The model is denoted as reassignFA. Tan and Yu proved that
optimal bound for two identical machines with objective to minimize makespan
is 4

3
, and the optimal algorithm only needs to reassign at most one job. Albers

and Hellwig [4] generalized the model to m identical machines. Interestingly,
the competitive ratio 	m of the given algorithm is the same as that of the
optimal algorithm for PmjbufferjCmax, and the algorithm only reassigns at most�
d 2�	m

.	m�1/2 e C 4
�

m jobs. Moreover, no algorithm can achieve a better competitive

ratio if H D o.n/. They also obtained algorithms with different value of r and H ,
such as .r; H/ D 


5
3
; 4m

�
and .r; H/ D 


7
4
; 5

2
m

�
. For two uniform machines, the

optimal bound of Q2jreassignFAjCmax when H � 2 is again the same as that of
Q2jbufferjCmax when K � 2. Also, the optimal algorithm reassigns at most one
job when s > 2. However, if only one job can be reassigned, the competitive ratio
of the best known algorithm is also the same as that of Q2jbufferjCmax with buffer
size K D 1, but it is larger than that of Q2jreassignSQjCmax with G D 1 (Fig. 6).

Another final one-off reassignment model is denoted reassignFE. After all jobs
have been arrived, the last job assigned to each machine can be reassigned. For two
identical machines with objective to minimize makespan, the optimal bound is

p
2

[167]. In fact, in such situation at most one job is needed to be reassigned [132].
Cao and Liu [25] generalized the result to two uniform machines and obtain the
optimal bound
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Fig. 6 The optimal bounds (thick) of Q2jjCmax (top), Q2jreassignFEjCmax (middle),
and Q2jbufferjCmax with K � 2 (also Q2jreassignSQjCmax with G � 2 and
Q2jreassignFAjCmax with H � 2) (bottom), the upper bounds (solid) and lower bounds
(dash) of Q2jbufferjCmax with K D 1 (also Q2jreassignFAjCmax with H D 1) (top) and
Q2jreassignSQjCmax with G D 1 (bottom)

8
<

:

p
s C 1; 1 � s � 1Cp

5
2

;

sC1
s

; s > 1Cp
5

2
:

Comparing it with the optimal bound of the pure online problem [72], reassignment

is useless when s > 1Cp
5

2
(Fig. 6).

3.4 Results on Combined Semi-online Models

3.4.1 UB and LB

Though UB and LB are both valueless, their combination can be valuable. Such sit-
uation is very common in practice, since schedulers tend to estimate the processing
time of jobs. However, it would be of little significance if the estimation is too rough
to neglect the error. Hence, it is necessary to take influence of a parameter ˇ, defined
as ˇ D UB

LB
� 1, into consideration when dealing with competitive analysis. Main

results of this variant are summarized in Table 8.
Note that LS remains optimal for any value of ˇ for P 2jUB&LBjCmax and

P mjUB&LBjCmin. It is not true for P 3jUB&LBjCmax, though LS is also the
optimal algorithm for P 3jjCmax. He and Dósa [92] proved the competitive ratio of
LS is
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p
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2 � 1
ˇ

; ˇ 2 Œ2; 3�;

5
3
; ˇ 2 Œ3; C1/,

and LS is optimal only when ˇ 2 Œ1; 3
2
� [ Œ

p
3; 2� [ Œ6; C1/. When ˇ 2 Œ2; 6�,

there exists an improved algorithm with competitive ratio8
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5
2
; 3



;

5

3
� 1

18
min

�
6 � ˇ

18
;

3

103

�

; ˇ 2 Œ3; 6�:

Nevertheless, the new upper bound matches the lower bound of the problem only
when ˇ 2 Œ2; 5

2
�. By the definition of the paradigm, the lower bound of the problem

is obviously a nondecreasing function of ˇ. For the remaining intervals of ˇ where
optimal algorithm has not been obtained, nonconstant lower bound of the problem,

equaling to
7ˇC4C

p
ˇ2C8ˇC4

2ˇC2C2
p

ˇ2C8ˇC4
, can be found only in the situation where ˇ 2 Œ 5

2
; 3�.

It is implied again from the results stated above that scheduling for two machines
is of enormous difference in essence from that of three machines, while the latter is
much more complicated.

A similar model of LB and max is proposed by Cao et al. [26]. It is assumed
that pmax

ˇ
� pj � pmax for any j , and there always exists a job of processing time

pmax . They proved that the optimal bound of P 2jLB&maxjCmax is

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

ˇC1

2
; ˇ 2 Œ1; 4

3
�;

4ˇC4

3ˇC4
; ˇ 2 Œ 4

3
;
p

2�;

2ˇ

ˇC1
; ˇ 2 Œ

p
2; 2�;

4
3
; ˇ 2 Œ2; C1/.

It is smaller than that of P 2jLB&UBjCmax for some value of ˇ (Fig. 7).

3.4.2 sum=opt and max=UB

Angelelli et al. [7, 8] studied the problem P 2jsum&UBjCmax. Lower bounds as
functions of 	 D 2UB

P
and several algorithms are proposed. Optimal bounds are

achieved for majority value of 	 (see Figs. 4–6 of [8]).
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Table 8 Main results for the UB&LB variant

Problem

Interval of ˇ where the
partial information is
valuable and the optimal
bound

Interval of ˇ where the
partial information is
valuelessa

P 2jUB&LBjCmax [97] ˇ 2 Œ1; 2�, 1Cˇ

2
ˇ 2 Œ2; C1�

PmjUB&LBjCmax , m � 3 [92]b ˇ 2 Œ1; m
m�1

�, 1 C .m�1/.r�1/

m

PmjUB&LBjCmin [91] ˇ 2 Œ1; m�, ˇ ˇ 2 Œm; C1/

Pmjpmtn, UB&LBjCmax [94] c ˇ 2 Œ. m
m�1

/m�1; C1/

Q2jpmtn, UB&LBjCmax [56, 93] ˇ 2 Œ1; 2s�,d ˇ 2 Œ2s; C1/

Q2jpmtn, UB&LBjCmin [105] ˇ 2 Œ1; 2s�, 2sC2Cˇ

2sC2
ˇ 2 Œ2s; C1/

aValueless implies that the optimal bound is the same as the optimal bound of the corresponding
pure online problem

bOnly partial results about this problem have been obtained
cOptimal algorithm can be obtained by using the general framework included in [59]. The

analytical lower bound for ˇ 2
�

1;
� m

m � 1

�m�1
�

is at least

m
� m

m � 1

�k C .m � k � 1/ˇ

.2m � k � 1/

�� m

m � 1

�k � 1

�

C .m � k/ C .m � k/.m � k � 1/ˇ

2m

;

� m

m � 1

�k � ˇ �
� m

m � 1

�kC1

; k D 0; 1; : : : ; m � 2:

Whether it is the optimal bounds remains open except for m D 2; 3.
dThe optimal bound is

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

1 C s C ˇ

2
C ˇs

2

1 C s C ˇs

2

; 1 � s � 2 and ˇ 2 Œ1; 2s�, s > 2 and ˇ 2
�

1;
2

s � 1

�

[ Œ2s � 2; 2s�

.1 C ˇ/.1 C s/s

1 C s C s2 C sˇ2
; s � 2 and ˇ 2

�
2

s � 1
; s

�

s2 C s

s2 C 1
; s � 2 and ˇ 2 Œs; 2s � 2�:

If idle time is not allowed, then the (deterministic) lower bound will be larger, but no online
algorithm with matched competitive ratio has been obtained [93]

There are other papers considering the combination of sum.opt/ and max.
However, only overall bounds (the maximum bound among all combinations
of P (or C �) and pmax) are obtained. For example, the optimal bound for
P mjsum&maxjCmin [166] is



Online and Semi-online Scheduling 2229

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.2

1.4

1.6

1.8Fig. 7 The optimal bounds of
P 2jMj .GoS/; LB&UBjCmax

(top), P 2jLB&UBjCmax

(middle), and
P 2jLB&maxjCmax (bottom)
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; m D 3;

m � 2; m � 4:

For the makespan minimization problem, optimal bounds are obtained only on a
small number of machines (See Table 5). If preemption is allowed, optimal bound
of Q3jpmtn; sum&maxjCmax for any combinations of P and pmax and any values
of si , i D 1; 2; 3, can be obtained by using the general framework included in [59].

3.4.3 End of Sequence
Zhang and Ye [190] proposed an interesting semi-online variant, which was called
“end of sequence” (eos for short) later [70]. It is known that the last job has the
largest processing time, and the scheduler will be informed whether the current
arrived job is the last one. Such variant can be viewed as a weaker version of
the combined semi-online variant num&incr . Recall that both num and incr are
valueless if they are considered solely. Thus, it is likely that eos is adjacent to the
boundary between valuable semi-online variants and valueless ones.

Zhang and Ye [190] proved the optimal bounds of P 2jeosjCmax and
P 3jeosjCmax are

p
2 and 3

2
, respectively. Note that the lower bound of

P 2jeosjCmax does not hold for P 2jnum&incr jCmax, the optimal bound for the
latter problem remains open. Epstein and Ye considered the problems Q2jeosjCmax

and Q2jeosjCmin. Optimal algorithms for almost all values of s are given [70]
(Table 6, Figs. 3 and 4).
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Table 9 Results for the non-preemptive problems with inexact partial information

Problem

The interval
of ˛ where
the inexact
information
is valuable

The interval
of ˛ where
the obtained
algorithm
is optimal

The gap
between the
upper and
lower bound

The total length
of non-optimal
intervals

The interval
of ˛ where the
inexact
information is
valueless

P 2jinexact
sumjCmax

Œ1; 3
2 / Œ

3C
p

21
6 ; 3

2 / �0:0303 �0:2635 Œ 3
2 ; 1/

P 2jinexact
opt jCmax

Œ1; 3
2
/ Œ

3C
p

21
6

;
1C

p
10

3
� [

Œ
6�

p
10

2 ; 3
2 /

�0:0303 �0:2957 Œ 3
2
; 1/

P 2jinexact
maxjCmax

Œ1; 2/ Œ1;
p

5 � 1� �0:0445 �0:7640 Œ2; 1/

Table 10 Results for the preemptive problems with inexact partial information

Problem

The interval of ˛ where the
inexact information is valuable
and the optimal bound

The interval of ˛ where
the inexact information is
valueless

Q2jpmtn, inexact optjCmax ˛ 2
h


m
m�1

�k
;



m
m�1

�kC1
i
,

h

m

m�1

�m�1
; 1

�

1

1�. m
m�1 /

kC.m�k/C m�k
m˛

;

k D 0; 1; � � � ; m � 2

Pmjpmtn, inexact optjCmax Œ1; s C 1/,
˛.s C 1/

˛s C 1
Œs C 1; 1/

Q2jpmtn, inexact maxjCmax Œ1; s C 1/,
.s C 1/.1 C s C ˛s/

1 C 2s C s2 C rs2
Œs C 1; 1/

3.4.4 Miscellanies
The optimal bounds of P 2jdecr&sumjCmax and P 2jdecr&opt jCmax are both 10

9

[65, 164]. Azar and Epstein [11] designed an algorithm for Qmjdecr&opt jCmin

with an overall competitive ratio 2, which is optimal in the overall sense.
By using the general framework included in [59], it can be proved that the overall

optimal bound of Qmjpmtn; decr&sumjCmax is 12
11

when m D 3 and 10
9

when
m D 4. For the problem P mjpmtn; decr&buffer jCmax, Dósa and Epstein [51]
proved that a buffer of size m � 1 is enough for an online algorithm to produce
the optimal schedule, and the optimal bounds for any buffer size K < m � 1 is
max0�
�m�K�1

2m.mC
/

2m2C2K
C
2C

.

Dósa and He [53] studied two problems P 2jsum&bufferjCmax and P 2jsum

&paral lel.2/jCmax. They designed two optimal algorithms with compet-
itive ratio 5

4
and 6

5
, respectively. Min et al. [132] studied the problem

P 2jsum&reassignFEjCmax and proposed an optimal algorithm with competitive
ratio 5

4
.
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3.5 Results on Disturbed Semi-online Models

In regard to disturbed semi-online model, there are fewer variants brought for-
ward and results achieved. Study on problems with inexact partial information
is much more difficult than the problem with exact partial information. One
reason is that it is expected to find the upper and lower bound as functions of
disturbance parameter ˛. If preemption is not allowed, only problems on two
identical machines have been studied [165]. Related results are summarized in
Table 9, and the detailed bounds are omitted here. If preemption is allowed, some
research approaches and techniques of previous variants can be generalized to m

identical machines or two uniform machines [106]. These results are summarized
in Table 10. By using the general framework included in [59], even the optimal
bound of Q3jpmtn; inexact sumjCmax for any ˛ and any values of si , i D
1; 2; 3 can be obtained. However, the known algorithms for the non-preemptive
problem are not optimal for all values of ˛, and also there is no study on
the problems of P mjpmtn; inexact maxjCmax, P mjpmtn; inexact sumjCmax,
Q2jpmtn; inexact sumjCmax.

4 Online Over Time

Scheduling jobs that arrive over time is usually called online over time model.
A number of researches are done with respect to the minimization problems for
the three following classical objective functions: the makespan Cmax , the total
completion time

Pn
j D1 Cj , and the total weighted completion time

Pn
j D1 wj Cj .

For these objective functions, and some special cases, deterministic and randomized
online algorithms are analyzed deriving different approximation guarantees. Results
on online over time model are summarized in Table 11.

4.1 Single Machine Scheduling

4.1.1 Minimize the Total Completion Time
Problems of minimizing the total completion time on a single machine are ex-
tensively studied. Phillips et al. [142] presented a 2-competitive algorithm based
on the optimal preemptive schedule, which can be found by the SRP T (Shortest
Remaining Processing Time first) rule in polynomial time [148]. There is another
2-competitive algorithm, namely, delayed SPT (D �SP T ), provided by Hoogeveen
and Vestjens [100].

Algorithm D-SPT
At any time t a machine is idle and a job is available, choose a job with shortest

processing time, say Ji . If there are more than one job with the same processing
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time, choose the one with the smallest release time. If pi � t , then process Ji ;
otherwise, wait until time pi or until a new job arrives, whichever happens first.

A very important idea in D � SP T algorithm is to shift the release time of
jobs before scheduling, which was adopted by Stougie as well (cited in [176]).
Lu et al. [127] generalized this idea and proposed a class of online algorithms
that have the same competitive ratio of 2. Note that for this problem, it is
shown by Hoogeveen and Vestjens [100] that any online algorithm must have
a competitive ratio no smaller than 2, and hence, all above algorithms are best
possible.

In online over time problems, it is commonly interesting to know whether or how
much the competitive ratio would decrease if restarts are allowed. Vestjens [176]
first showed a lower bound for the competitive ratio of any online algorithm. Later,
Epstein and van Stee [69] improved the bound from 1:112 to 1:2108. The algorithm
provided by van Stee and Poutré [175] indicates that the upper bound of the problem
allowing restarts is at most 3

2
.

In contrast with online over list, only a few researches are found involving in
semi-online variants, even though there are actually more semi-online models than
those in online over list model. Tao et al. [170] investigated the problem with the
knowledge of the upper and lower bounds of the processing times, UB&LB . A

semi-online algorithm with competitive ratio
p

1Cˇ.ˇ�1/Cˇ�1

ˇ
, as well as a lower

bound

ˆ D min
s�0

max

�

1 C s; max
k2ZC

�

1 C 2k.ˇ � 1/

2ˇ.k C 1/s C 2ˇ C k2 C 3k

��

;

is proposed, where ˇ D UB
LB

� 1.

4.1.2 Minimize the Total Weighted Completion Time
Indeed, the weighted problem is more general and hence more difficult. Anderson
and Potts [5] considered the delayed weighted shortest processing time rule
(D � W SP T ), which is a direct generalization of the D � SP T algorithm. By
introducing a new proof technique, they showed that D � W SP T has a competitive
ratio of 2 and therefore matches the known lower bound [100]. If restarts are
allowed, the lower and upper bounds of this problem are 1:2232 and 2, respectively
[5, 69].

If preemption is allowed, unlike the unweighted version, Vestjens [176] showed
that any preemptive algorithm must have a competitive ratio no smaller than 1:0333.
The lower bound is later improved to 1:0730 by Epstein and van Stee [69]. Several
algorithms are proved to be 2-competitive, including D � W SP T , P � W SP T ,
and W SRP T [130,146]. Here, P � W SP T (preemptive W SP T ) schedules at any
time the job with the largest ratio of weight over processing time, while W SRP T

(weighted shortest remaining processing time first) schedules at any time the job
with the largest ratio of weight over remaining processing time. The instance
given by Xiong and Chung [184] recently showed that the competitive ratio of



2234 Z. Tan and A. Zhang

W SRP T cannot be smaller than 1:215. Though there is a big gap between the
lower and upper bounds, developing an online algorithm with a competitive ratio
better than 2 is a hard work. Breakthrough on this problem is finally made by
Sitters [158]. By using a parameter c � 1 and applying the P � W SP T rule
with a restriction that a job cannot be preempted at time t if it can be completed
before time ct , a class of online algorithms, namely, ONLINE.c/, are obtained
and shown to be c-competitive for any c � �, where � � 1:57 is the real root of
2�3 � 4�2 C 2� � 1 D 0. Hence, there exists a �-competitive algorithm for the
preemptive problem.

If the release times of all jobs are known in advance, Hall et al. [89] showed that
the problem has a lower bound of

‰ D max
1�j �n

min
0�l�j �1

rlC1 C rl C p
.rlC1 � rl /2 C 4rj rlC1

2rlC1

where r1 � r2 � � � � rn are the release times of all jobs. It can be proved that ‰

is in between
p

5C1
2

and 2. An online algorithm with matched competitive ratio is
provided as well. Clearly, this variant will never be classified into online over list
model. The semi-online problem UB&LB is considered by Tao et al. [171], where

they presented an optimal algorithm with competitive ratio 1 C
p

4ˇ2C1�1

2ˇ
.

4.1.3 Randomized Algorithm and Lower Bound
Chekuri et al. [29] designed a randomized algorithm to minimize the total com-
pletion time with competitive ratio e

e�1
. Their algorithm is intriguing as it beats

the lower bound 2 for deterministic online algorithms [100]. Moreover, it is
also optimal since its competitive ratio matches the randomized lower bound
given by Stougie and Vestjens [162]. If restarts are permitted, Epstein and van
Stee [69] proved that any randomized algorithm must have a competitive ratio
at least 1:1068. In the same paper, they also considered problems aiming at
minimizing the total weighted completion time, where a lower bound 1:0389

and a lower bound 1:1161 for the preemptive problem and the problem allow-
ing restarts are proposed, respectively. Regarding the upper bounds, Schulz and
Skutella [149] provided a 4

3
-competitive randomized algorithm for the preemptive

problem. Goemans et al. [83] presented a randomized algorithm with competitive
ratio 1:6853 for the problem allowing restarts.

4.2 Results on Parallel Machine Scheduling

4.2.1 Minimize the Makespan
For the makespan minimization problems, it should be emphasized that Shmoys
et al. [157] have described a general method to use offline algorithms to obtain
online algorithms for problems of online over time model. However, the method
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always produces a competitive ratio at least 2, even if the corresponding offline
problem can be solved to optimality. In the same paper [157], Shmoys et al. proved a
lower bound of 10

9
for the problem on m identical machines. Chen and Vestjens [30]

improved the lower bound to 1 C ˛ for m � 3 and to 5�p
5

2
for m D 2, where

˛ � 0:3473 is the solution of ˛3 � 3˛ C 1 D 0. Moreover, they proposed a simple
algorithm, namely, online Longest Processing Time first (online LP T ).

Algorithm Online LP T

At any time a machine becomes idle for processing, schedule an available job
with the longest processing time.

The competitive ratio of online LP T is shown to be 3
2
. As far as we know, this

is the best result on this problem except that in [138], where Noga and Seiden
presented an improved algorithm SLEEP for m D 2. The difference between
SLEEP and online LP T is that it might wait for some time even when there is an
idle machine and an available job. The idea makes the algorithm optimal for m D 2

and, hence, beat online LP T . For further study, one may ask how to extend the
algorithm and whether it can beat online LP T for a general number of machines.
Nevertheless, there are still no such study by now. The randomized lower bounds
on makespan minimization problem are studied in [162] and [138], where a lower
bound of 4 � 2

p
2 for a general number of machines and a lower bound of 1:21207

for m D 2 are provided, respectively.

4.2.2 Minimize the Total (Weighted) Completion Time
For the problem of minimizing the total completion time, any deterministic
algorithm is at least 21

19
� 1:105-competitive for the preemptive version and is at

least 1:309-competitive for the non-preemptive version [176, 184]. Moreover, any
randomized algorithm is at least 1:047-competitive for the preemptive version and
is at least 1:157-competitive for the non-preemptive version [176].

The simple and well-known SRP T algorithm plays a significant rule in preemp-
tive scheduling of minimizing the total completion time. As we have seen before, it
produces an optimal schedule for the single machine case [148]. The upper bound
of SRP T for m identical machines was known to be 2 [142] for a long time
until recently, Chung et al. [45] claimed that it is at most 1:86. Shortly after that,
Sitters [159] improved it to 5

4
.

For the preemptive problem of minimizing the total weighted completion time,
2-competitive online algorithm is found in [131]. The lower bound of the problem

is proved to be 16�p
14

11
� 1:114 [184]. For the non-preemptive version, a

randomized algorithm with competitive ratio 2 as well as a deterministic algorithm
with competitive ratio 2:62 are obtained by Schulz and Skutellathe [150] and
Correa and Wagner [46], respectively. The best known result for this objective
is due to Sitters [159], who gave a deterministic algorithm with competitive
ratio of 1:791 C o.m/ for both versions. Even applying the algorithm to un-
weighted problem, the competitive ratio remains the same, and the algorithm
beats the previously best one with competitive ratio 2 [121]. If the number of
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machines is small, randomized algorithms with smaller competitive ratios are
found in [46].

With respect to machines with different speeds, Liu and Lu [122] studied the

two machine case. They presented a
p

5C3
2

-competitive algorithm for the non-
preemptive problem of minimizing the total completion time. If preemption is
allowed, they gave an algorithm with competitive ratio of 2 to minimize the total
weighted completion time. The non-preemptive algorithm in [122] for two uniform
machines was extended to m uniform machines by Liu et al. [124], who established

a competitive ratio of
p

4m�3C3
2

.

5 Other Variants of Online Scheduling

5.1 Online Shop Scheduling

Researches on online shop scheduling are mainly focused on two or three machines.
Chen and Woeginger [34] considered the two-machine open shop scheduling
of online over list model. A 1:875-competitive algorithm, as well as a lower

bound 1Cp
5

2
� 1:618, was given. By restricting to permutation algorithms that

always produce schedules with the same job sequence on both machines, the

upper and lower bound can be further improved to 1:848 and 23�2
p

13
9

� 1:754

[37], respectively. If preemption is allowed, Chen and Woeginger [34] presented
a 4

3
-competitive algorithm for two machines, and a 27

19
-competitive algorithm for

three machines was provided by Chen et al. [37]. Since the lower bound �m of
P mjpmtnjCmax is also a lower bound of OmjpmtnjCmax [155], both algorithms
are optimal. For two-machine flow shop and job shop problems, optimal algorithms
were proven to have a competitive ratio of 2 by Chen and Woeginger [34].

If jobs arrive over time, Chen et al. [35] considered the two-machine open shop
scheduling and proved that greedy-like algorithm has a competitive ratio 3

2
and

is optimal for non-preemptive version. Another algorithm, namely, SLICE, was
shown to have a competitive ratio of 5

4
and best possible for preemptive version. Liu

et al. [125] further extended SLICE to the semi-online problem UB & LB . They
proved the corresponding algorithm is 5ˇ�1

4ˇ
-competitive and matches the lower

bound of the considered problem with ˇ D UB
LB

. Stougie and Vestjens [162] proved
that 1:25 is a randomized lower bound of O2jrj jCmax.

Recently, Zhang and Velde [188, 189] investigated problems with time lags,
where the time lag of a job is defined as the maximum allowable delay between
the completion time of the first and the start time of the second operation of the job.
For these problems, it might benefit from allowing a machine to be idle while an
operation is available for assignment. Such algorithms are called delay algorithms.
The greedy-like algorithm has a competitive ratio 2 for two-machine open shop,
job shop, and flow shop problems [188, 189]. However, the lower bound of delay

algorithms is only proved to be
p

2 for open shop [189] and 1Cp
5

2
for job shop or
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flow shop [188]. It is hopeful that a delay algorithm might beat the greedy algorithm
in this model. Nevertheless, it is still an open question so far.

5.2 Batch Scheduling

In this problem, jobs arrive over time and can be processed together by a batch
processing machine which can handle up to B jobs simultaneously. All jobs in a
batch start and complete at the same time. The processing time of a batch is given by
the longest processing time of any job in the batch. There are two models considered
in the literature: the unbounded model where B D 1 and the bounded model where
B is bounded. For both models, problems of minimizing makespan on single or
parallel identical machines are widely studied.

5.2.1 Unbounded and Bounded Model on a Single Machine
Suppose that there is a single batch processing machine, Deng et al. [48] and Zhang
et al. [191] independently provided an optimal online algorithm (denoted as H 1)

with competitive ratio
p

5C1
2

.
Algorithm H 1

0. Set t D 0.
1. Let U.t/ be the set of all unscheduled jobs available at time t and Jk be the job

with the longest processing time in U.t/, compute ˛k D
p

5C1
2

rk C
p

5�1
2

pk and
s D maxft; ˛kg.

2. In the time interval Œt; s�, whenever a new job Jh arrives (at time t 0) with ph > pk,
then reset k D h and reset ˛k and s accordingly. Let U.t 0/ D U.t/ [ fJhg. Reset
t D t 0.

3. At time s, schedule all jobs in U.s/ as a single batch. If some new jobs arrives
by s C pk , let t D s C pk ; otherwise, wait until a new job arrives and let t be the
arrival time of such a job. Go to Step 1.

In fact, the lower bound
p

5C1
2

even holds when B D 2, and all jobs have only
two distinct arrival times [191]. It seems much more challenging to derive optimal
algorithms for the bounded model. When all jobs have exactly two distinct arrival

time, Zhang et al. [191] gave an optimal one with competitive ratio
p

5C1
2

. When jobs
have arbitrary arrival times, Poon and Yu [145] obtained a 7

4
-competitive algorithm

for B D 2. For the general B , we note there exist several 2-competitive algorithms.
The first one is the greedy-like algorithm GRLPT, which was proposed by Lee and
Uzsoy [113], and was shown to be 2-competitive by Liu and Yu [123]. Another two
are due to Zhang et al. [191], which can be seen as a generalization of H 1. Finally,
Poon and Yu [145] claimed all the FBLPT-based (full-batch longest processing time)
algorithms, including the above three, can achieve the same competitive ratio of 2.

5.2.2 Unbounded and Bounded Model on Identical Machines
For batch scheduling on m parallel identical machines, researches are mostly
focused on the unbounded model. Zhang et al. [191] gave a lower bound mC2

p
2 and
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an online algorithm PH.ˇm/ with a competitive ratio 1 C ˇm, where 0 < ˇm < 1

is a solution to the equation ˇm D .1 � ˇm/m�1. In the same paper, the dense
algorithms, which always immediately assign the currently available job to one idle
machine as long as there are two or more idle machines, are proposed. Zhang et al.
proved that the competitive ratio of any dense algorithm is no smaller than

p
2 and

there exists one dense algorithm with competitive ratio
p

5C1
2

. In a later paper [192],
Zhang et al. gave an optimal algorithm with competitive ratio 1 C �m for the special
case that all jobs have unit processing time, where �m is the positive solution of the
equation .1 C �m/mC1 D �m C 2.

When jobs have arbitrary processing times, the optimal algorithm for two-
machine case has a competitive ratio of

p
2 [139, 173]. The optimal algorithm for

the general case is due to Liu et al. [126] and Tian et al. [172] independently, who

both proved the competitive ratio to be 1 C
p

m2C4�m
2

. In addition, Tian et al. [172]
provided a dense algorithm with competitive ratio 3

2
and showed it is best possible.

For the bounded model, Zhang et al. [192] observed that the optimal algorithm isp
5C1
2

-competitive if all jobs have equal processing times. Apart from this, neither
algorithm results nor lower bounds are found in the literature.

5.2.3 Other Variants
There are some other discussions with respect to the online batch scheduling
problems. One interesting variant is allowing to restart a batch, which means a
running batch may be interrupted, losing all the work done on it, and the jobs in the
interrupted batch are released and become independently unscheduled. Allowing
restarts reduces the impact of a wrong decision. For the unbounded model on single
machine, Fu et al. [78] showed the competitive ratio of any online algorithm is

no less than 5�p
5

2
and gave a 3

2
-competitive algorithm. Shortly after that, Yuan

et al. [185] gave a 5�p
5

2
-competitive algorithm for the problem, and thus it is

optimal. Fu et al. [79] studied the same problem with an additional assumption
that any job cannot be restarted twice. Optimal algorithm with competitive ratio 3

2
is

obtained. In another paper [81], Fu et al. extended the result to identical machines,

where a lower bound of 1:298, as well as a 1Cp
3

2
-competitive online algorithm,

was given.
Nong et al. [140] introduced job families to the batch scheduling problem, which

means jobs from different families cannot be processed in the same batch. Online
algorithms with competitive ratio 2 are presented for both bounded and unbounded
models on single machine. Besides, they showed that the algorithm is best possible
for the unbounded model in the sense that jobs consist of an infinite number of
families. For the bounded model, there is no online algorithm with competitive ratio

smaller than maxf 2B
BC1

; 1Cp
5

2
g. Fu et al. [80] revisited the unbounded model and

gave a best possible algorithm with competitive ratio
p

17C3
4

for the special case of
two families of jobs.

Yuan et al. [186] and Li et al. [119] studied a lookahead semi-online model.
Yuan et al. [186] considered the unbounded problem on a single batch machine.
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With the information of the next longest job at any time t , they presented a best

possible online algorithm with competitive ratio 5�p
5

2
. If jobs are of unit length

and an online algorithm can foresee all the jobs that will arrive in the time segment
.t; t C ˇ� at any time t , Li et al. [119] presented a best possible online algorithm for
the unbounded problem on m parallel-batch machines.

Chen et al. [38] considered a batch scheduling problem on single machine to
minimize the total weighted completion times of jobs. They developed a linear
time online algorithm with competitive ratio of 10

3
for the unbounded model and an

efficient algorithm with competitive ratio 4C� for any � > 0 for the bounded model.
Also, they observed that there exists a 2:89-competitive and a .2:89C�/-competitive
randomized algorithm for unbounded and bounded models, respectively.

5.3 Online Scheduling with Machine Eligibility

Online scheduling with machine eligibility constraints has received much attention
in recent years. Unlike the classical parallel machine scheduling, job Jj cannot be
processed on any one among the machine set M in this model. Instead, it has a
specific set Mj � M that can be assigned to. Set Mj is so-called the eligible
processing set of job Jj . Depending on the structure of Mj , j D 1; � � � ; n, there
are five classes of eligibility constraints that have been studied extensively [116]:
1. Arbitrary eligible processing sets
2. Tree-hierarchical processing sets
3. Grade of Service (GoS) processing sets
4. Interval processing sets
5. Nested processing sets.

With tree-hierarchical processing sets, each machine is represented by a node,
and the nodes are connected in the form of a rooted tree. Any job assignable to
a node is also assignable to the node’s ancestors in the tree. The GoS processing
set structure can be seen as a special case of the tree-hierarchical processing
set structure where the rooted tree actually forms a chain. Problems with a GoS
processing set are also called online hierarchical scheduling in the literature. With
regard to interval processing sets, job Jj is associated with two integers aj and
bj � aj such that Mj D fMaj ; Maj C1; � � � ; Mbj g. A special case of interval
processing set structure is a nested processing set structure, where, for any pair
of jobs Jj and Jk , we either have Mj � Mk or Mk � Mj or Mj \ Mk D ;.
Clearly, the GoS processing set structure is also a special case of nested processing
set structure.

Problems with one of the above classes of eligibility constraints will be denoted
as “Mj ,” “Mj .t ree/,” “Mj .GoS/,” “Mj .interval/” and “Mj .nested/” in
the middle field of the three-field notation, respectively. It is clear that P jjCmax

(QjjCmax) is a special case of P jMj jCmax (QjMj jCmax) with Mj D M for
all Jj , while RjMj jCmax is a special case of RjjCmax. However, in the rest of
this subsection, we will mostly consider the identical machine environment, unless
stated otherwise.
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5.3.1 Online Over List
For arbitrary eligibility, Azar et al. [13] contributed the first result. They consider
a greedy algorithm, namely, AW , as follows: When a job arrives the algorithm
assigns it to an eligible machine that has the smallest current load among all eligible
machines. The competitive ratio of AW is shown to be at most dlog2 me C 1,
and the lower bound is proved to be at least dlog2.m C 1/e. Hwang et al. [102]
improved the analysis of AW and obtained a slightly smaller competitive ratio of
log2 m C 1. The best known upper and lower bounds for this problem are found by
Lim et al. [120] recently. They showed that AW has a competitive ratio no greater
than EUm D blog2 mcC m

2blog2 mc
, and the lower bound of the problem is ELm, where

EL1 D 1 and

ELm D EL�m C 1

b �m

m��m
c ; �m D argmaxb m

2 c�i�m�1

(

ELi C 1

b i
m�i

c

)

:

The gap between the two bounds does not exceed 0:1967 and AW is optimal
when the number of machines can be written as a sum of two powers of 2. Lee
et al. [114] proved the optimal bound of Q2jMj jCmax is 1 C minfs; 1

s
g. Note that

for Q2jMj jCmax, the index of M1 and M2 cannot be reordered, and thus the speed
ratio s can be an arbitrary positive number.

Bar-Noy et al. [16] analyzed online scheduling problem subject to tree-
hierarchical eligibility. A 5-competitive online algorithm is proposed. Furthermore,
if jobs are of unit size, then the competitive ratio can be improved to 4. Randomized
algorithms are also proposed, where the competitive ratios are shown to be e C 1

and e, respectively. A lower bound of 1 C 1
2
blog2 mc for P mjMj .nested/jCmax

was given in [120].
There is a large number of researches discussing problems with a GoS eligibility,

since it is very natural and has application in the service industry [103]. In [16], Bar-
Noy et al. gave an algorithm with competitive ratio e C 1 for the general problem
P jMj .GoS/jCmax and showed that it is e-competitive if either jobs have unit size
or can be fractionally processed. Moreover, they proved a lower bound of e for
the fractional assignment case. However, the lower bound is valid only in the case
when the number of machines tends to infinity. If the number of machines is fixed,
Tan and Zhang [169] proposed an improved algorithm with competitive ratio GUm

and lower bound GLm for the fractional assignment case; both are based on the
solutions of mathematical programming. The algorithm can be modified to solve
the general problem P mjMj .GoS/jCmax by using the same technique included in
[16]. When the number of machines is small, algorithms for the general problem
can be further improved. For m D 5 and 4, Tan and Zhang [169] proposed two
algorithms with competitive ratios of 2:610 and 7

3
, respectively. Lim et al. [120]

improved the two results to 2:501 and 2:294. For m D 3, Zhang et al. [193]
showed that there exists an optimal algorithm with competitive ratio 2. For m D
2, Park et al. [141] and Jiang et al. [109] independently proposed an optimal
algorithm with competitive ratio 5

3
. If machines have different speeds, the optimal
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bound

h1.s/ D
(

minf1 C s; 2C2sCs2

1CsCs2 g; 0 < s � 1,

minf 1Cs
s

; 1C3sCs2

1CsCs2 g; 1 � s < 1,

of Q2jMj .GoS/jCmax was given by Tan and Zhang [169] (Fig. 8).
If preemption is allowed, Jiang et al. [109] designed a 3

2
-competitive algorithm

for the problem P 2jMj .GoS/, pmtnjCmax and showed that it is optimal if idle
time is not allowed. For general m, Dósa and Epstein [50] proved that 2m

mC1
is a lower

bound even if idle time is allowed. An algorithm for three machines with matched
competitive ratio was also given. In the same paper, they also studied the problem
Q2jMj .GoS/; pmtnjCmax. An online algorithm with competitive ratio

h2.s/ D max

�
.1 C s/2

1 C s C s2
;

s.1 C s/2

1 C s2 C s3

�

is proposed and is shown to be optimal. Both algorithms need to introduce idle time.
For Q2jMj .GoS/; f racjCmax, Chassid and Epstein [28] designed an optimal

algorithm with competitive ratio .1Cs/2

1CsCs2 (Fig. 8).
For semi-online scheduling, Park et al. [141] studied the problem on two

machines with the knowledge of the total processing time of jobs, where an optimal
algorithm with competitive ratio 3

2
is presented. Wu et al. [183] considered two semi-

online problems on two machines. The first one is known the optimal makespan,
for which they showed an optimal algorithm with competitive ratio 3

2
. The second

is known the maximum processing time, for which an algorithm with competitive

ratio
p

5C1
2

, as well as a matched lower bound, is given. Liu et al. [125] considered
the semi-online problem on two machines where upper and lower bounds on the
processing time of jobs are known in advance. An online algorithm, as well as a
lower bound of the problem, was presented. Optimal bound of the problem

h3.ˇ/ D

8
ˆ̂
<̂

ˆ̂
:̂

2ˇC1

ˇC1
; 1 � ˇ <

p
5�1
2

,p
5C1
2

;
p

5C1
2

� ˇ < 3
p

5�1
2

,
ˇC2

3
; 3

p
5�1
2

� ˇ < 3,
5
3
; r � 3,

is given by Jiang and Zhang [107], where ˇ D UB
LB

(Fig. 7).
There are several researches considering problems with two GoS levels (denoted

as 2GoS ). In this problem, jobs that can be processed on first k machines are called
high level and the other jobs which can run on all m machines are called low level.
Jiang [104] first showed that the AW algorithm is at least .4 � 1

m
/-competitive and

then provided an online algorithm with a competitive ratio of 12C4
p

2
7

� 2:522.

Later, Zhang et al. [194] improved the result to 1 C m2�m
m2�kmCk2 < 7

3
.

For machine covering problems, Chassid and Epstein [28] proved that no
algorithm can have a constant competitive ratio even for the most special
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2.0Fig. 8 The optimal bounds
of Q2jMj jCmax ,
Q2jMj .GoS/jCmax ,
Q2jMj .GoS/, pmtnjCmax ,
and Q2jMj .GoS/,
fracjCmax (from top to
bottom)

problem Q2jMj .GoS/jCmin. For problems Q2jMj .GoS/; f racjCmin and
Q2jMj .GoS/; sumjCmin, they gave optimal bounds of 2sC1

sC1
and maxf1; sg C 1

s
,

respectively. Main results on online over list scheduling with machine eligibility are
summarized in Tables 12–14.

5.3.2 Online Over Time
In contrast with problems of online over list, there are very few results concerning
problems of online over time. Lee et al. [115,116] considered the problems allowing
restart or preemption of jobs. Various lower bounds, as well as a full study on
two machines, are given. They also observed that the general method introduced
by Shmoys et al. [157] that uses offline algorithms to obtain online algorithms for
problems with job release times can work for scheduling with machine eligibility
as well [116], although it produces algorithms with competitive ratio at least 2. All
related results are summarized in Table 15.

Wang et al. [178] introduced another interesting problem with respect to
scheduling with GoS eligibility, which is so-called online service scheduling. The
problem arises from the service industry where customers (jobs) are classified as
either “ordinary” or “special.” Ordinary customers can be served on any service
facility (machines), while special customers can be served only on a flexible service
facility. The difference between their model and the problem with two GoS levels is
that customers arrive over time and the order of the assignment should be consistent
with the order of arrival time of jobs in the same class. For several service policies
used in practice, Wang et al. [178] and Wang and Xing [177] analyzed and compared
their performance in the sense of competitive ratios.

6 Conclusion

This chapter surveyed different paradigms of online scheduling, including online
over list and online over time, and gave a relatively complete picture to the semi-
online scheduling problem. Most of detailed algorithms and proofs are not given in
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Table 12 Results of online over list scheduling with machine eligibility on two identical and
uniform machines

Problems Optimal
bounds

Problems Optimal bounds

P 2jMj jCmax 2 [13] Q2jMj jCmax 1 C minfs;
1

s
g [114]

P 2jMj .GoS/jCmax
5

3
[109, 141] Q2jMj .GoS/jCmax h1.s/ [168]

P 2jMj .GoS/; fracjCmax
4

3
[169] Q2jMj .GoS/, fracjCmax

.1 C s/2

1 C s C s2
[28]

P 2jMj .GoS/; pmtnjCmax
a 4

3
[50] Q2jMj .GoS/, pmtnjCmax h2.s/ [50]

P 2jMj .GoS/; sumjCmax
3

2
[141] Q2jMj .GoS/jCmin 1 [28]

P 2jMj .GoS/; optjCmax
3

2
[183] Q2jMj .GoS/; f racjCmin

2s C 1

s C 1
[28]

P 2jMj .GoS/; maxjCmax

p
5 C 1

2
[183] Q2jMj .GoS/; sumjCmin maxf1; sg C 1

s
[28]

P 2jMj .GoS/;UB&LBjCmax h3.ˇ/ [107]

aIf idle time is not allowed, the optimal bound increases to 3
2

[109]

Table 13 Results of online over list scheduling with machine eligibility on a small number of
identical machines

m D 3 m D 4 m D 5 m D 6 m D 7

Problem LB UB LB UB LB UB LB UB LB UB

P mjMj jCmax

[13, 120]
2:5 2:5 3 3 3:25 3:25 3:5 3:5 3:667 3:75

P mjMj

(interval)jCmax

[120]

1 C p
2

3C
p

5

2
3

P mjMj

(nested)jCmax

[120]

7

3
1 C p

2
5

2
3

P mjMj .GoS/j
Cmax

[120, 169, 193]

2 2 2 2:294 2 2:501 2 2:778 2 2:828

P mjMj .GoS/;

fracjCmax [169]

3

2

3

2

44

27

44

27

245

143

245

143

16

9

16

9

1;071

586

1;071

586

P mjMj .GoS/;

pmtnjCmax [50]

3

2

3

2

8

5

5

3

12

7

7

4
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Table 14 Main results on online over list scheduling with machine eligibility on general number
of machines

Lower Upper
Problems Jobs bound bound Gap

P mjMj jCmax None ELm [120] EUm [120] �0:1967

P jMj .t ree/jCmax None e [16] 5 [16] 5 � e

pj � 1 e [16] 4 [16] 4 � e

P jMj .GoS/jCmax None e [16] e C 1 [16] 1

pj � 1 e [16] e [16] 0

frac e [16] e [16] 0
P mjMj .GoS/jCmax None GLm [169] GUm C 1 [169] 1

frac GLm [169] GUm [169] 0

2 GoS 2 [104, 194] 1 C m2�m
m2�kmCk2 [194] �1=3

2 GoS, pj � 1 3=2 [193] 3=2 [193] 0

Table 15 Main results on online over time scheduling with machine eligibility

Problem Jobs Lower bound Upper bound

P jrj ;Mj jCmax None 2 4 � 2=m

res 1:5687 3 � 1=m

pmtn 1 C .m�1/.m�2/

2m.2m�3/
2

P 2jrj ;Mj jCmax None 2 2

res 1:5687 2

pmtn 1:125 2

pj D p
p

5C1

2

p
5C1

2

P jrj ;Mj .GoS/jCmax None 1:5550 2 C �

res 4=3 2 C �

pmtn 1:0917 2

P 2jrj ;Mj .GoS/jCmax None 1:5550 2

res 4=3 2

pmtn 1 1

pj D p
p

2
p

2

P jrj ;Mj (nested)jCmax None 1:5550 2 C �

res 4=3 2 C �

pmtn 1:148 2

P jrj ;Mj (tree)jCmax None 1:5550 8=3

res 4=3 7=3

the chapter; please refer to the reference for more details. Online and semi-online
scheduling is relatively young when compared to offline scheduling. Yet they have
generated tremendous interest and promise to have more results in the future.
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53. G. Dósa, Y. He, Semi-online algorithms for parallel machine scheduling problems. Comput-
ing 72, 355–363 (2004)

54. G. Dósa, M.G. Speranza, Z. Tuza, Two uniform machines with nearly equal speeds: unified
approach to known sum and known optimum in semi on-line scheduling. J. Comb. Optim. 21,
458–480 (2011)
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