
Tabu Search�

Fred Glover and Manuel Laguna

Contents

1 Introduction. 3263
2 Tabu Search Features and Relevance. 3263

2.1 General Tenets. 3265
2.2 Use of Memory. 3266
2.3 Intensification and Diversification. 3267

3 Tabu Search Foundations and Short-Term Memory. 3268
3.1 Memory and Tabu Classifications. 3269
3.2 Recency-Based Memory. 3270
3.3 A First-Level Tabu Search Approach. 3275
3.4 Recency-Based Memory for Add/Drop Moves. 3279
3.5 Tabu Tenure. 3283
3.6 Aspiration Criteria and Regional Dependencies. 3287
3.7 Concluding Observations for the Min k-Tree Example. 3290

4 Additional Aspects of Short-Term Memory. 3291
4.1 Tabu Search and Candidate List Strategies. 3291
4.2 Some General Classes of Candidate List Strategies. 3292
4.3 Connections Between Candidate Lists, Tabu Status, and Aspiration Criteria. 3297
4.4 Logical Restructuring. 3297

5 Longer-Term Memory. 3302
5.1 Frequency-Based Approach. 3303
5.2 Intensification Strategies. 3306
5.3 Diversification Strategies. 3307

�The material of this chapter is in part adapted from the book Tabu Search, by Fred Glover and
Manuel Laguna, Kluwer Academic Publishers, 1997.

F. Glover (�)
OptTek Systems, Inc, Boulder, CO, USA
e-mail: glover@opttek.com

M. Laguna
Leeds School of Business, University of Colorado, Boulder, CO, USA
e-mail: laguna@colorado.edu

P.M. Pardalos et al. (eds.), Handbook of Combinatorial Optimization,
DOI 10.1007/978-1-4419-7997-1 17, © Springer Science+Business Media New York 2013

3261

mailto:glover@opttek.com
mailto:laguna@colorado.edu

3262 F. Glover and M. Laguna

5.4 Strategic Oscillation. 3310
5.5 Path Relinking. 3313
5.6 The Intensification/Diversification Distinction. 3317
5.7 Some Basic Memory Structures for Longer-Term Strategies. 3319

6 Connections, Hybrid Approaches, and Learning. 3323
6.1 Simulated Annealing. 3323
6.2 Genetic Algorithms. 3324
6.3 Scatter Search. 3327
6.4 Greedy Randomized Adaptive Search Procedures (GRASP). 3333
6.5 Neural Networks. 3335
6.6 Target Analysis. 3336

7 Neglected Tabu Search Strategies. 3346
7.1 Candidate List Strategies. 3346
7.2 Intensification Approaches. 3347
7.3 Diversification Approaches. 3349
7.4 Strategic Oscillation. 3352
7.5 Clustering and Conditional Analysis. 3353
7.6 Referent-Domain Optimization. 3355

8 Conclusion. 3357
Cross-References. 3359
Recommended Reading. 3359

Abstract
Tabu search, also called adaptive memory programming, is a method for solving
challenging problems in the field of optimization. The goal is to identify the
best decisions or actions in order to maximize some measure of merit (such
as maximizing profit, effectiveness, quality, and social or scientific benefit) or
to minimize some measure of demerit (cost, inefficiency, waste, and social or
scientific loss).

Practical applications in optimization addressed by tabu search are exceed-
ingly challenging and pervade the fields of business, engineering, economics, and
science. Everyday examples include problems in resource management, financial
and investment planning, healthcare systems, energy and environmental policy,
pattern classification, biotechnology, and a host of other areas. The complexity
and importance of such problems has motivated a wealth of academic and
practical research throughout the past several decades, in an effort to discover
methods that are able to find solutions of higher quality than many found in the
past and capable of producing such solutions within feasible time limits or at
reduced computational cost.

Tabu search has emerged as one of the leading technologies for handling
optimization problems that have proved difficult or impossible to solve with
classical procedures that dominated the attention of textbooks and were con-
sidered the mainstays of available alternatives until recent times. A key feature
of tabu search, underscored by its adaptive memory programming alias, is
the use of special strategies designed to exploit adaptive memory. The idea
is that an effective search for optimal solutions should involve a process of
flexibly responding to the solution landscape in a manner that permits it to learn

Tabu Search 3263

appropriate directions to take along with appropriate departures to explore new
terrain. The adaptive memory feature of tabu search allows the implementation
of procedures that are capable of searching this terrain economically and
effectively.

1 Introduction

Faced with the challenge of solving hard optimization problems that abound in
the real world, classical methods often encounter great difficulty. Vitally important
applications in business, engineering, economics, and science cannot be tackled
with any reasonable hope of success, within practical time horizons, by solution
methods that have been the predominant focus of academic research throughout the
past three decades (and which are still the focus of many textbooks).

The meta-heuristic approach called tabu search (TS) is dramatically changing
our ability to solve problems of practical significance. Current applications of TS
span the realms of resource planning, telecommunications, VLSI design, financial
analysis, scheduling, space planning, energy distribution, molecular engineering,
logistics, pattern classification, flexible manufacturing, waste management, mineral
exploration, biomedical analysis, environmental conservation, and scores of others.
In recent years, journals in a wide variety of fields have published tutorial articles
and computational studies documenting successes by tabu search in extending the
frontier of problems that can be handled effectively – yielding solutions whose
quality often significantly surpasses that obtained by methods previously applied.
Table 1 gives a partial catalog of example applications. A more comprehensive list,
including summary descriptions of gains achieved from practical implementations,
can be found in Glover and Laguna [31]. Recent TS developments and applications
can also be found in the Tabu Search Vignettes section of the web page http://spot.
colorado.edu/�glover.

2 Tabu Search Features and Relevance

A distinguishing feature of tabu search is embodied in its exploitation of adaptive
forms of memory, which equips it to penetrate complexities that often confound
alternative approaches. Yet we are only beginning to tap the rich potential of
adaptive memory strategies, and the discoveries that lie ahead promise to be as
important and exciting as those made to date. The knowledge and principles that
have emerged from the TS framework give a foundation to create practical systems
whose capabilities markedly exceed those available earlier. At the same time, there
are many untried variations that may lead to further advances. A conspicuous feature
of tabu search is that it is dynamically growing and evolving, drawing on important
contributions by many researchers.

http://spot.colorado.edu/~glover
http://spot.colorado.edu/~glover

3264 F. Glover and M. Laguna

Table 1 Illustrative tabu search applications

Scheduling Telecommunications
Flow-time cell manufacturing Call routing
Heterogeneous processor scheduling Bandwidth packing
Workforce planning Hub facility location
Classroom scheduling Path assignment
Machine scheduling Network design for services
Flow shop scheduling Customer discount planning
Job shop scheduling Failure immune architecture
Sequencing and batching Synchronous optical networks
Design Production, inventory and investment

Computer-aided design Flexible manufacturing
Fault tolerant networks Just-in-time production
Transport network design Capacitated MRP
Architectural space planning Part selection
Diagram coherency Multi-item inventory planning
Fixed charge network design Volume discount acquisition
Irregular cutting problems Fixed mix investment
Location and allocation Routing
Supply chain analysis Vehicle routing
Multicommodity location/allocation Capacitated routing
Quadratic assignment Time window routing
Quadratic semi-assignment Multi-mode routing
Multilevel generalized assignment Mixed fleet routing
Lay-out planning Traveling salesman
Off-shore oil exploration Traveling purchaser
Logic and artificial intelligence Graph optimization
Maximum satisfiability Graph partitioning
Probabilistic logic Graph coloring
Clustering Clique partitioning
Pattern recognition/classification Maximum clique problems
Data integrity Maximum planner graphs
Neural network jTraining and design P-median problems
Technology General combinational optimization
Seismic inversion Zero-one programming
Electrical power distribution Fixed charge optimization
Engineering structural design Nonconvex nonlinear programming
Coordination of energy resources All-or-none networks
Space station construction Bilevel programming
DNA sequencing Multi-objective discrete optimization
Circuit cell placement Hyperplane splitting
Computer aided molecular design General mixed integer optimization

Tabu Search 3265

2.1 General Tenets

The word tabu (or taboo) comes from Tongan, a language of Polynesia, where
it was used by the aborigines of Tonga island to indicate things that cannot be
touched because they are sacred. According to Webster’s Dictionary, the word now
also means “a prohibition imposed by social custom as a protective measure” or of
something “banned as constituting a risk.” These current more pragmatic senses of
the word accord well with the theme of tabu search. The risk to be avoided in this
case is that of following a counterproductive course, including one which may lead
to entrapment without hope of escape. On the other hand, as in the broader social
context where “protective prohibitions” are capable of being superseded when the
occasion demands, the “tabus” of tabu search are to be overruled when evidence of
a preferred alternative becomes compelling.

The most important association with traditional usage, however, stems from the
fact that tabus as normally conceived are transmitted by means of a social memory
which is subject to modification over time. This creates the fundamental link to the
meaning of “tabu” in tabu search. The forbidden elements of tabu search receive
their status by reliance on an evolving memory, which allows this status to shift
according to time and circumstance.

More particularly, tabu search is based on the premise that problem solving, in
order to qualify as intelligent, must incorporate adaptive memory and responsive
exploration. The adaptive memory feature of TS allows the implementation of
procedures that are capable of searching the solution space economically and ef-
fectively. Since local choices are guided by information collected during the search,
TS contrasts with memoryless designs that heavily rely on semirandom processes
that implement a form of sampling. Examples of memoryless methods include
semi-greedy heuristics and the prominent “genetic” and “annealing” approaches
inspired by metaphors of physics and biology. Adaptive memory also contrasts
with rigid memory designs typical of branch and bound strategies (It can be argued
that some types of evolutionary procedures that operate by combining solutions,
such as genetic algorithms, embody a form of implicit memory. Special links with
evolutionary methods, and implications for establishing more effective variants of
them, are discussed in Sect. 6).

The emphasis on responsive exploration in tabu search, whether in a determinis-
tic or probabilistic implementation, derives from the supposition that a bad strategic
choice can yield more information than a good random choice. In a system that uses
memory, a bad choice based on strategy can provide useful clues about how the
strategy may profitably be changed (Even in a space with significant randomness, a
purposeful design can be more adept at uncovering the imprint of structure).

Responsive exploration integrates the basic principles of intelligent search, that
is, exploiting good solution features while exploring new promising regions. Tabu
search is concerned with finding new and more effective ways of taking advantage of

3266 F. Glover and M. Laguna

the mechanisms associated with both adaptive memory and responsive exploration.
The development of new designs and strategic mixes makes TS a fertile area for
research and empirical study.

2.2 Use of Memory

The memory structures in tabu search operate by reference to four principal
dimensions, consisting of recency, frequency, quality, and influence (Fig. 1).
Recency-based and frequency-based memory complement each other and have
important characteristics we amplify in later sections. The quality dimension refers
to the ability to differentiate the merit of solutions visited during the search. In this
context, memory can be used to identify elements that are common to good solutions
or to paths that lead to such solutions. Operationally, quality becomes a foundation
for incentive-based learning, where inducements are provided to reinforce actions
that lead to good solutions and penalties are provided to discourage actions that lead
to poor solutions. The flexibility of these memory structures allows the search to be
guided in a multi-objective environment, where the goodness of a particular search
direction may be determined by more than one function. The tabu search concept of
quality is broader than the one implicitly used by standard optimization methods.

The fourth dimension, influence, considers the impact of the choices made
during the search, not only on quality but also on structure (In a sense, quality
may be regarded as a special form of influence). Recording information about the
influence of choices on particular solution elements incorporates an additional level
of learning. By contrast, in branch and bound, for example, the separation rules
are prespecified and the branching directions remain fixed, once selected, at a given
node of a decision tree. It is clear however that certain decisions have more influence
than others as a function of the neighborhood of moves employed and the way that
this neighborhood is negotiated (e.g., choices near the root of a branch and bound
tree are quite influential when using a depth-first strategy). The assessment and
exploitation of influence by a memory more flexible than embodied in such tree
searches is an important feature of the TS framework.

The memory used in tabu search is both explicit and attributive. Explicit memory
records complete solutions, typically consisting of elite solutions visited during
the search. An extension of this memory records highly attractive but unexplored
neighbors of elite solutions. The memorized elite solutions (or their attractive
neighbors) are used to expand the local search, as indicated in Sect. 4. In some
cases, explicit memory has been used to guide the search and avoid visiting solutions
more than once. This application is limited, because clever data structures must be
designed to avoid excessive memory requirements.

Alternatively, TS uses attributive memory for guiding purposes. This type of
memory records information about solution attributes that change in moving from
one solution to another. For example, in a graph or network setting, attributes can
consist of nodes or arcs that are added, dropped, or repositioned by the moving
mechanism. In production scheduling, the index of jobs may be used as attributes to
inhibit or encourage the method to follow certain search directions.

Tabu Search 3267

Quality Influence

Recency Frequency

MEMORY STRUCTURES

Fig. 1 Four TS dimensions

2.3 Intensification and Diversification

Two highly important components of tabu search are intensification and diversifi-
cation strategies. Intensification strategies are based on modifying choice rules to
encourage move combinations and solution features historically found good. They
may also initiate a return to attractive regions to search them more thoroughly. Since
elite solutions must be recorded in order to examine their immediate neighborhoods,
explicit memory is closely related to the implementation of intensification strategies.
As Fig. 2 illustrates, the main difference between intensification and diversification
is that during an intensification stage, the search focuses on examining neighbors of
elite solutions.

Here the term “neighbors” has a broader meaning than in the usual context of
“neighborhood search.” That is, in addition to considering solutions that are adjacent
or close to elite solutions by means of standard move mechanisms, intensification
strategies generate “neighbors” by either grafting together components of good
solution or by using modified evaluation strategies that favor the introduction of such
components into a current (evolving) solution. The diversification stage on the other
hand encourages the search process to examine unvisited regions and to generate
solutions that differ in various significant ways from those seen before. Again, such
an approach can be based on generating subassemblies of solution components that
are then “fleshed out” to produce full solutions or can rely on modified evaluations
as embodied, for example, in the use of penalty/incentive functions.

Intensification strategies require a means for identifying a set of elite solutions
as basis for incorporating good attributes into newly created solutions. Membership
in the elite set is often determined by setting a threshold which is connected to
the objective function value of the best solution found during the search. However,
considerations of clustering and “anti-clustering” are also relevant for generating
such a set and more particularly for generating subsets of solutions that may be used
for specific phases of intensification and diversification. In the following sections,
we show how the treatment of such concerns can be enhanced by making use of

3268 F. Glover and M. Laguna

Unvisited solutions Neighbors of
elite solutions

Fig. 2 Intensification and
diversification

special memory structures. The TS notions of intensification and diversification are
beginning to find their way into other meta-heuristics, and it is important to keep
in mind (as we subsequently demonstrate) that these ideas are somewhat different
than the old control theory concepts of “exploitation” and “exploration,” especially
in their implications for developing effective problem-solving strategies.

3 Tabu Search Foundations and Short-Term Memory

Tabu search can be applied directly to verbal or symbolic statements of many
kinds of decision problems, without the need to transform them into mathematical
formulations. Nevertheless, it is useful to introduce mathematical notation to express
a broad class of these problems, as a basis for describing certain features of tabu
search. We characterize this class of problems as that of optimizing (minimizing or
maximizing) a function f .x/ subject to x 2 X , where f .x/ may be linear or nonlin-
ear, and the set X summarizes constraints on the vector of decision variables x. The
constraints may include linear or nonlinear inequalities and may compel all or some
components of x to receive discrete values. While this representation is useful for
discussing a number of problem-solving considerations, we emphasize again that
in many applications of combinatorial optimization, the problem of interest may
not be easily formulated as an objective function subject to a set of constraints. The
requirement x 2 X , for example, may specify logical conditions or interconnections
that would be cumbersome to formulate mathematically but may be better left as
verbal stipulations that can be then coded as rules.

Tabu search begins in the same way as ordinary local or neighborhood search,
proceeding iteratively from one point (solution) to another until a chosen termina-
tion criterion is satisfied. Each x 2 X has an associated neighborhood N .x/ � X ,
and each solution x0 2 N .x/ is reached from x by an operation called a move.

As an initial point of departure, we may contrast TS with a simple descent method
where the goal is to minimize f .x/ (or a corresponding ascent method where the
goal is to maximize f .x/). Such a method only permits moves to neighbor solutions
that improve the current objective function value and ends when no improving
solutions can be found. A pseudo-code of a generic descent method is presented
in Fig. 3. The final x obtained by a descent method is called a local optimum, since

Tabu Search 3269

1) Choose x ∈X to start the process.
2) Find x� ∈N(x) such that f (x�) < f (x).

3) If no such x� can be found, x is the local
optimum and the method stops.

4) Otherwise, designate x� to be the new x and
go to 2).

Fig. 3 Descent method

it is at least as good or better than all solutions in its neighborhood. The evident
shortcoming of a descent method is that such a local optimum in most cases will not
be a global optimum, that is, it usually will not minimize f .x/ over all x 2 X .

The version of a descent method called steepest descent scans the entire
neighborhood of x in search of a neighbor solution x0 that gives a smallest f .x0/
value over x0 2 N .x/. Steepest descent implementations of some types of solution
approaches (such as certain path augmentation algorithms in networks and matroids)
are guaranteed to yield globally optimal solutions for the problems they are designed
to handle, while other forms of descent may terminate with local optima that are not
global optima. In spite of this attractive feature, in certain settings, steepest descent
is sometimes impractical because it is computationally too expensive, as where N(x)
contains many elements or each element is costly to retrieve or evaluate. Still, it is
often valuable to choose an x0 at each iteration that yields a “good” if not smallest
f .x0/ value.

The relevance of choosing good solutions from current neighborhoods is magni-
fied when the guidance mechanisms of tabu search are introduced to go beyond the
locally optimal termination point of a descent method. Thus, an important first-level
consideration for tabu search is to determine an appropriate candidate list strategy
for narrowing the examination of elements of N(x), in order to achieve an effective
trade-off between the quality of x0 and the effort expended to find it. Here quality
may involve considerations beyond those narrowly reflected by the value of f .x0/.
If a neighborhood space is totally random, then of course nothing will work better
than a totally random choice (In such a case, there is no merit in trying to devise an
effective solution procedure). Assuming that neighborhoods can be identified that
are reasonably meaningful for a given class of problems, the challenge is to define
solution quality appropriately so that evaluations likewise will have meaning. By the
TS orientation, the ability to use history in creating such evaluations then becomes
important for devising effective methods

To give a foundation for understanding the basic issues involved, we turn our
attention to the following illustrative example, which will also be used as a basis for
illustrating various aspects of tabu search in later sections.

3.1 Memory and Tabu Classifications

An important distinction in TS arises by differentiating between short-term memory
and longer-term memory. Each type of memory is accompanied by its own special

3270 F. Glover and M. Laguna

strategies. However, the effect of both types of memory may be viewed as modifying
the neighborhood N(x) of the current solution x. The modified neighborhood, which
we denote by N�.x/, is the result of maintaining a selective history of the states
encountered during the search.

In the TS strategies based on short-term considerations, N�.x/ characteristically
is a subset of N(x), and the tabu classification serves to identify elements of N(x)
excluded from N�.x/. In TS strategies that include longer-term considerations,
N�.x/ may also be expanded to include solutions not ordinarily found in N(x).
Characterized in this way, TS may be viewed as a dynamic neighborhood method.
This means that the neighborhood of x is not a static set, but rather a set that
can change according to the history of the search. This feature of a dynamically
changing neighborhood also applies to the consideration of selecting different com-
ponent neighborhoods from a compound neighborhood that encompasses multiple
types or levels of moves and provides an important basis for parallel processing.
Characteristically, a TS process based strictly on short-term strategies may allow
a solution x to be visited more than once, but it is likely that the corresponding
reduced neighborhood N�.x/ will be different each time. With the inclusion of
longer-term considerations, the likelihood of duplicating a previous neighborhood
upon revisiting a solution, and more generally of making choices that repeatedly
visit only a limited subset of X, is all but nonexistent. From a practical standpoint,
the method will characteristically identify an optimal or near-optimal solution long
before a substantial portion of X is examined.

A crucial aspect of TS involves the choice of an appropriate definition of N�.x/.
Due to the exploitation of memory, N�.x/ depends upon the trajectory followed in
moving from one solution to the next (or upon a collection of such trajectories in a
parallel processing environment).

The approach of storing complete solutions (explicit memory) generally con-
sumes an enormous amount of space and time when applied to each solution
generated. A scheme that emulates this approach with limited memory requirements
is given by the use of hash functions (Also, as will be seen, explicit memory has a
valuable role when selectively applied in strategies that record and analyze certain
“special” solutions). Regardless of the implementation details, short-term memory
functions provide one of the important cornerstones of the TS methodology. These
functions give the search the opportunity to continue beyond local optima, by
allowing the execution of nonimproving moves coupled with the modification of
the neighborhood structure of subsequent solutions. However, instead of recording
full solutions, these memory structures are generally based on recording attributes
(attributive memory). In addition, short-term memory is often based on the most
recent history of the search trajectory.

3.2 Recency-Based Memory

The most commonly used short-term memory keeps track of solutions attributes
that have changed during the recent past and is called recency-based memory. This

Tabu Search 3271

1 4 6 9 11

2 3 5 12

7 8 10

1

26

25

6

2017

15

8 6

20

16

16

18 16

23

9 16

24

7 9

9

Fig. 4 Weighted undirected
graph

is the kind of memory that is included in most short descriptions of tabu search in the
literature (although a number of its aspects are often left out by popular summaries).

To exploit this memory, selected attributes that occur in solutions recently
visited are labeled tabu-active, and solutions that contain tabu-active elements,
or particular combinations of these attributes, are those that become tabu. This
prevents certain solutions from the recent past from belonging to N�.x/ and hence
from being revisited. Other solutions that share such tabu-active attributes are also
similarly prevented from being visited. Note that while the tabu classification strictly
refers to solutions that are forbidden to be visited, by virtue of containing tabu-
active attributes (or more generally by violating certain restriction based on these
attributes), we also often refer to moves that lead to such solutions as being tabu.
We illustrate these points with the following example.
Minimum k-Tree Problem Example

The Minimum k-Tree problem seeks a tree consisting of k edges in a graph so that
the sum of the weights of these edges is minimum [49]. An instance of this problem
is given in Fig. 4, where nodes are shown as numbered circles and edges are shown
as lines that join pairs of nodes (the two “endpoint” nodes that determine the edge).
Edge weights are shown as the numbers attached to these lines. A tree is a set of
edges that contains no cycles, that is, that contains no paths that start and end at the
same node (without retracing any edges).

Assume that the move mechanism is defined by edge swapping, as subsequently
described, and that a greedy procedure is used to find an initial solution. The greedy
construction starts by choosing the edge (i , j) with the smallest weight in the graph,
where i and j are the indexes of the nodes that are the endpoints of the edge.
The remaining k-1 edges are chosen successively to minimize the increase in total
weight at each step, where the edges considered meet exactly one node from those
that are endpoints of edges previously chosen. For k D 4, the greedy construction
performs the steps in Table 2.

The construction starts by choosing edge (1, 2) with a weight of 1 (the smallest
weight of any edge in the graph). After this selection, the candidate edges are those
that connect the nodes in the current partial tree with those nodes not in the tree
(i.e., edges (1, 4) and (2, 3)). Since edge (1, 4) minimizes the weight increase, it is

3272 F. Glover and M. Laguna

Table 2 Greedy
construction. Step Candidates Selection Total weight

1 (1,2) (1,2) 1
2 (1,4), (2,3) (1,4) 26
3 (2,3), (3,4), (4,6), (4,7) (4,7) 34
4 (2,3), (3,4), (4,6), (6,7), (7,8) (6,7) 40

chosen to be part of the partial solution. The rest of the selections follow the same
logic, and the construction ends when the tree consists of 4 edges (i.e., the value of
k). The initial solution in this particular case has a total weight of 40.

The swap move mechanism, which is used from this point onward, replaces
a selected edge in the tree by another selected edge outside the tree, subject to
requiring that the resulting subgraph is also a tree. There are actually two types
of such edge swaps, one that maintains the current nodes of the tree unchanged
(static) and one that results in replacing a node of the tree by a new node (dynamic).
Figure 5 illustrates the best swap of each type that can be made starting from the
greedy solution. The added edge in each case is shown by a heavy line, and the
dropped edge is shown by a dotted line.

The best move of both types is the static swap of Fig. 5, where for our present
illustration, we are defining best solely in terms of the change on the objective
function value. Since this best move results in an increase of the total weight of
the current solution, the execution of such move abandons the rules of a descent
approach and sets the stage for a tabu search process. (The feasibility restriction
that requires a tree to be produced at each step is particular to this illustration, since
in general the TS methodology may include search trajectories that violate various
types of feasibility conditions.)

Given a move mechanism, such as the swap mechanism we have selected for
our example, the next step is to choose the key attributes that will be used for the
tabu classification. Tabu search is very flexible at this stage of the design. Problem-
specific knowledge can be used as guidance to settle on a particular design. In
problems where the moves are defined by adding and deleting elements, the labels
of these elements can be used as the attributes for enforcing tabu status. Here, in the
present example, we can simply refer to the edges as attributes of the move, since
the condition of being in or out of the tree (which is a distinguishing property of the
current solution) may be assumed to always be automatically known by a reasonable
solution representation.
Choosing Tabu Classifications

Tabu classifications do not have to be symmetric, that is, the tabu structure can be
designed to treat added and dropped elements differently. Suppose, for example, that
after choosing the static swap of Fig. 5, which adds edge (4,6) and drops edge (4,7),
a tabu status is assigned to both of these edges. Then one possibility is to classify
both of these edges tabu-active for the same number of iterations. The tabu-active
status has different meanings depending on whether the edge is added or dropped.
For an added edge, tabu-active means that this edge is not allowed to be dropped

Tabu Search 3273

3
17

2

1 4 6

7

1
25

8

Greedy solution
Total weight: 40

2

1 4 6

7

1
25 15

6

Best static swap
Total weight: 47

2

1 4

7

1
25

8

Best dynamic swap
Total weight: 51

6

68

6

Fig. 5 Swap move types

from the current tree for the number of iterations that defines its tabu tenure. For a
dropped edge, on the other hand, tabu-active means the edge is not allowed to be
included in the current solution during its tabu tenure. Since there are many more
edges outside the tree than in the tree, it seems reasonable to implement a tabu
structure that keeps a recently dropped edge tabu-active for a longer period of time
than a recently added edge. Notice also that for this problem, the tabu-active period
for added edges is bounded by k, since if no added edge is allowed to be dropped
for k iterations, then within k steps, all available moves will be classified tabu.

The concept of creating asymmetric tabu classifications can be readily applied to
settings where add/drop moves are not used.
Illustrative Tabu Classifications for the Min k-Tree Problem

As previously remarked, the tabu-active classification may in fact prevent the
search from visiting solutions that have not been examined yet. We illustrate this
phenomenon as follows. Suppose that in the Min k-Tree problem instance of Fig. 4,
dropped edges are kept tabu-active for two iterations, while added edges are kept
tabu-active for only one iteration (The number of iterations an edge is kept tabu-
active is called the tabu tenure of the edge). Also assume that we define a swap
move to be tabu if either its added or dropped edge is tabu-active. If we examine
the full neighborhood of available edge swaps at each iteration, and always choose
the best that is not tabu, then the first three moves are as shown in Table 3 below
(starting from the initial solution found by the greedy construction heuristic). The
move of iteration 1 is the static swap move previously identified in Fig. 5. Diagrams
showing the successive trees generated by these moves, starting with the initial
greedy solution, are given in Fig. 6.

The net tenure values of 1 and 2 in Table 3 for the currently tabu-active edges
indicate the number of iterations that these edges will remain tabu-active (including
the current iteration).

At iteration 2, the reversal of the move of iteration 1 (i.e., the move that now
adds (4,7) and drops (4,6)) is clearly tabu, since both of its edges are tabu-active at
iteration 2. In addition, the move that adds (4,7) and drops (6,7) is also classified
tabu, because it contains the tabu-active edge (4,7) (with a net tenure of 2).

3274 F. Glover and M. Laguna

Table 3 TS iterations Tabu-active net tenure

Iteration 1 2 Add Drop Weight

1 (4,6) (4,7) 47
2 (4,6) (4,7) (6,8) (6,7) 57
3 (6,8), (4,7) (6,7) (8,9) (1,2) 63

2

1 4 6

87

9

2

1 4 6

87

9

2

1 4 6

87

9

2

1 4 6

87

9

2

1 4 6

87

9

Iteration: 0 Weight: 40 Iteration: 1 Weight: 47 Iteration: 2 Weight: 57

Iteration: 3 Weight: 63Tabu Move Weight: 49

TABU

Fig. 6 Effects of attributive short-term memory

This move leads to a solution with a total weight of 49, a solution that clearly has not
been visited before (see Fig. 6). The tabu-active classification of (4,7) has modified
the original neighborhood of the solution at iteration 2 and has forced the search to
choose a move with an inferior objective function value (i.e., the one with a total
weight of 57). In this case, excluding the solution with a total weight of 49 has little
effect on the quality of the best solution found (since we have already obtained one
with a weight of 40).

In other situations, however, additional precautions must be taken to avoid
missing good solutions. These strategies are known as aspiration criteria and are
the subject of Sect. 3.6. For the moment, we observe simply that if the tabu solution
encountered at the current step instead had a weight of 39, which is better than the
best weight of 40 so far seen, then we would allow the tabu classification of this
solution to be overridden and consider the solution admissible to be visited. The
aspiration criterion that applies in this case is called the improved-best aspiration
criterion (It is important to keep in mind that aspiration criteria do not compel
particular moves to be selected, but simply make them available, or alternately
rescind evaluation penalties attached to certain tabu classifications).

One other comment about tabu classification deserves to be made at this point.
In our preceding discussion of the Min k-Tree problem, we consider a swap move

Tabu Search 3275

tabu if either its added edge or its dropped edge is tabu-active. However, we could
instead stipulate that a swap move is tabu only if both its added and dropped edges
are tabu-active. In general, the tabu status of a move is a function of the tabu-active
attributes of the move (i.e., of the new solution produced by the move).

3.3 A First-Level Tabu Search Approach

We now have on hand enough ingredients for a first-level tabu search procedure.
Such a procedure is sometimes implemented in an initial phase of a TS development
to obtain a preliminary idea of performance and calibration features or simply
to provide a convenient staged approach for the purpose of debugging solution
software. While this naive form of a TS method omits a number of important short-
term memory considerations and does not yet incorporate longer-term concerns, it
nevertheless gives a useful starting point for demonstrating several basic aspects of
tabu search.

We start from the solution with a weight of 63 as shown previously in Fig. 6
which was obtained at iteration 3. At each step, we select the least-weight non-
tabu move from those available and use the improved-best aspiration criterion to
allow a move to be considered admissible in spite of leading to a tabu solution. The
reader may verify that the outcome leads to the series of solutions shown in Table 4,
which continues from iteration 3, just executed. For simplicity, we select an arbitrary
stopping rule that ends the search at iteration 10.

The successive solutions identified in Table 4 are shown graphically in Fig. 7
below. In addition to identifying the dropped edge at each step as a dotted line, we
also identify the dropped edge from the immediately preceding step as a dotted line
which is labeled 2� to indicate its current net tabu tenure of 2. Similarly, we identify
the dropped edge from one further step back by a dotted line which is labeled 1�
to indicate its current net tabu tenure of 1. Finally, the edge that was added on
the immediately preceding step is also labeled 1� to indicate that it likewise has
a current net tabu tenure of 1. Thus, the edges that are labeled with tabu tenures are
those which are currently tabu-active and which are excluded from being chosen
by a move of the current iteration (unless permitted to be chosen by the aspiration
criterion).

As illustrated in Table 4 and Fig. 7, the method continues to generate different
solutions, and over time, the best-known solution (denoted by an asterisk) progres-
sively improves. In fact, it can be verified for this simple example that the solution
obtained at iteration 9 is optimal (In general, of course, there is no known way to
verify optimality in polynomial time for difficult discrete optimization problems,
i.e., those that fall in the class called NP-hard. The Min k-Tree problem is one of
these).

It may be noted that at iteration 6, the method selected a move with a move value
of zero. Nevertheless, the configuration of the current solution changes after the
execution of this move, as illustrated in Fig. 7.

3276 F. Glover and M. Laguna

Table 4 Iterations of a first-level TS procedure

Tabu-active net tenure

Iteration 1 2 Add Drop Move value Weight

3 (6,8), (4,7) (6,7) (8,9) (1,2) 6 63
4 (6,7), (8,9) (1,2) (4,7) (1,4) �17 46
5 (1,2), (4,7) (1,4) (6,7) (4,6) �9 37�

6 (1,4), (6,7) (4,6) (6,9) (6,8) 0 37
7 (4,6), (6,9) (6,8) (8,10) (4,7) 1 38
8 (6,8), (8,10) (4,7) (9,12) (6,7) 3 41
9 (4,7), (9,12) (6,7) (10,11) (6,9) �7 34�

10 (6,7), (10,11) (6,9) (5,9) (9,12) 7 41

2

1 4 6

87

9

2

1 4 6

87

9
1*

1* 2*

2*

1* 1*

2

1 4 6

87

9
1*

1*

2*

1 4 6

87

9

1*

2*1*

10

4 6

87

91*

2*

1*

10

4 6

87

9

2* 1*

12

1*

10

4 6

87

9

1*

1*
12

2*

11

10

4 6

87

9

Iteration: 4 Weight: 46Iteration: 3 Weight: 63 Iteration: 5 Weight: 37

Iteration: 6 Weight: 37 Iteration: 7 Weight: 38 Iteration: 8 Weight: 41

Iteration: 9 Weight: 34 Iteration: 10 Weight: 41

1* 1*

12

2*
11

5

Fig. 7 Graphical representation of TS iterations

The selection of moves with certain move values, such as zero move values, may
be strategically controlled to limit their selection as added insurance against cycling
in special settings. We will soon see how considerations beyond this first-level
implementation can lead to an improved search trajectory, but the non-monotonic,

Tabu Search 3277

30

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10
Iterations

W
ei

gh
t

Current Weight
Best Weight

Fig. 8 TS search trajectory

gradually improving, behavior is characteristic of TS in general. Figure 8 provides
a graphic illustration of this behavior for the current example.

We have purposely chosen the stopping iteration to be small to illustrate an
additional relevant feature and to give a foundation for considering certain types
of longer-term considerations. One natural way to apply TS is to periodically
discontinue its progress, particularly if its rate of finding new best solutions falls
below a preferred level, and to restart the method by a process designated to generate
a new sequence of solutions.

Classical restarting procedures based on randomization evidently can be used for
this purpose, but TS often derives an advantage by employing more strategic forms
of restarting. We illustrate a simple instance of such a restarting procedure, which
also serves to introduce a useful memory concept.

3.3.1 Critical Event Memory
Critical event memory in tabu search, as its name implies, monitors the occurrence
of certain critical events during the search and establishes a memory that constitutes
an aggregate summary of these events. For our current example, where we seek
to generate a new starting solution, a critical event that is clearly relevant is
the generation of the previous starting solution. Correspondingly, if we apply a
restarting procedure multiple times, the steps of generating all preceding starting
solutions naturally qualify as critical events. That is, we would prefer to depart from
these solutions in some significant manner as we generate other starting solutions.

Different degrees of departure, representing different levels of diversification, can
be achieved by defining solutions that correspond to critical events in different ways
(and by activating critical event memory by different rules). In the present setting,
we consider it important that new starting solutions not only differ from preceding
starting solutions but that they also differ from other solutions generated during
previous passes. One possibility is to use a blanket approach that considers each

3278 F. Glover and M. Laguna

complete solution previously generated to represent a critical event. The aggregation
of such events by means of critical event memory makes this entirely practicable,
but often, it is quite sufficient (and, sometimes preferable) to isolate a smaller set of
solutions.

For the current example, therefore, we will specify that the critical events of
interest consist of generating not only the starting solution of the previous pass(es)
but also each subsequent solution that represents a “local TS optimum,” that is
whose objective function value is better (or no worse) than that of the solution
immediately before and after it. Using this simple definition, we see that four
solutions qualify as critical (i.e., are generated by the indicated critical events) in
the first solution pass of our example: the initial solution and the solutions found at
iterations 5, 6, and 9 (with weights of 40, 37, 37, and 34, respectively).

Since the solution at iteration 9 happens to be optimal, we are interested in the
effect of restarting before this solution is found. Assume we had chosen to restart
after iteration 7, without yet reaching an optimal solution. Then the solutions that
correspond to critical events are the initial solution and the solutions of iterations
5 and 6. We treat these three solutions in aggregate by combining their edges to
create a subgraph that consists of the edges (1,2), (1,4), (4,7), (6,7), (6,8), (8,9), and
(6,9) (Frequency-based memory, as discussed in Sect. 5, refines this representation
by accounting for the number of times each edge appears in the critical solutions
and allows the inclusion of additional weighting factors).

To execute a restarting procedure, we penalize the inclusion of the edges of this
subgraph at various steps of constructing the new solution. It is usually preferable to
apply this penalty process at early steps, implicitly allowing the penalty function to
decay rapidly as the number of steps increases. It is also sometimes useful to allow
one or more intervening steps after applying such penalties before applying them
again.

For our illustration, we will use the memory embodied in the subgraph of
penalized edges by introducing a large penalty that effectively excludes all these
edges from consideration on the first two steps of constructing the new solution.
Then, because the construction involves four steps in total, we will not activate the
critical event memory on subsequent construction steps but will allow the method
to proceed in its initial form.

Applying this approach, we restart the method by first choosing edge (3,5), which
is the minimum weight edge not in the penalized subgraph. This choice and the
remaining choices that generate the new starting solution are shown in Table 5.

Beginning from the solution constructed in Table 5, and applying the first-level
TS procedure exactly as it was applied on the first pass, generates the sequence
of solutions shown in Table 6 and depicted in Fig. 10 (Again, we have arbitrarily
limited the total number of iterations, in this case to 5).

It is interesting to note that the restarting procedure generates a better solution
(with a total weight of 38) than the initial solution generated during the first
construction (with a total weight of 40). Also, the restarting solution contains 2
“optimal edges” (i.e., edges that appear in the optimal tree). This starting solution
allows the search trajectory to find the optimal solution in only two iterations,

Tabu Search 3279

Table 5 Restarting procedure

Step Candidates Selection Total weight

1 (3,5) (3, 5) 6
2 (2,3), (3,4), (3,6), (5,6), (5,9), (5,12) (5, 9) 22
3 (2,3), (3,4), (3,6), (5,6), (5,12), (6,9), (8,9), (9,12) (8, 9) 29
4 (2,3), (3,4), (3,6), (5,6), (5,12), (6,8), (6,9), (7,8), (8,10), (9,12) (8, 10) 38

Table 6 TS iterations following restarting

Tabu-active net tenure

Iteration 1 2 Add Drop Move value Weight

1 (9,12) (3,5) 3 41
2 (9,12) (3,5) (10,11) (5,9) �7 34�

3 (3,5), (10,11) (5,9) (6,8) (9,12) 7 41
4 (5,9), (6,8) (9,12) (6,7) (10,11) �3 38
5 (9,12), (6,7) (10,11) (4,7) (8,10) �1 37

illustrating the benefits of applying a critical event memory within a restarting
strategy. As will be seen in Sect. 5, related memory structures can also be valuable
for strategies that drive the search into new regions by “partial restarting” or by
directly continuing a current trajectory (with modified decision rules).

Now we return from our example to examine elements of TS that take us beyond
these first-level concerns and open up possibilities for creating more powerful
solution approaches. We continue to focus primarily on short-term aspects and
begin by discussing how to generalize the use of recency-based memory when
neighborhood exploration is based on add/drop moves. From these foundations,
we then discuss issues of logical restructuring, tabu-activation rules, and ways of
determining tabu tenure. We then examine the important area of aspiration criteria,
together with the role of influence.

3.4 Recency-Based Memory for Add/Drop Moves

To understand procedurally how various forms of recency-based memory work,
and to see their interconnections, it is useful to examine a convenient design for
implementing the ideas illustrated so far. Such a design for the Min k-Tree problem
creates a natural basis for handling a variety of other problems for which add/drop
moves are relevant. In addition, the ideas can be adapted to settings that are quite
different from those where add/drop moves are used.

As a step toward fuller generality, we will refer to items added and dropped as
elements, though we will continue to make explicit reference to edges (as particular
types of elements) within the context of the Min k-Tree problem example (Elements

3280 F. Glover and M. Laguna

are related to, but not quite the same as, solution attributes. The difference will be
made apparent shortly). There are many settings where operations of adding and
dropping paired elements are the cornerstone of useful neighborhood definitions.
For example, many types of exchange or swap moves can be characterized by
such operations. Add/drop moves also apply to the omnipresent class of multiple
choice problems, which require that exactly one element must be chosen from each
member set from a specified disjoint collection. Add/drop moves are quite natural
in this setting, since whenever a new element is chosen from a given set (and hence
is “added” to the current solution), the element previously chosen from that set
must be replaced (and hence “dropped”). Such problems are represented by discrete
generalized upper bound (GUB) formulations in mathematical optimization, where
various disjoint sets of 0-1 variables must sum to 1 (hence exactly one variable
from each set must equal 1, and the others must equal 0). An add/drop move in this
formulation consists of choosing a new variable to equal 1 (the “add move”) and
setting the associated (previously selected) variable equal to 0 (the “drop move”).

Add/drop moves further apply to many types of problems that are not strictly
discrete, that is, which contain variables whose values can vary continuously across
specified ranges. Such applications arise by taking advantage of basis exchange
(pivoting) procedures, such as the simplex method of linear programming. In this
case, an add/drop move consists of selecting a new variable to enter (add to) the
basis and identifying an associated variable to leave (drop from) the basis. A variety
of procedures for nonlinear and mixed-integer optimization rely on such moves
and have provided a useful foundation for a number of tabu search applications.
Additional related examples will be encountered throughout the course of this book.

3.4.1 Some Useful Notation
The approach used in the Min k-Tree problem can be conveniently described by
means of the following notation. For a pair of elements that is selected to perform an
add/drop move, let Added denote the element that is added and Dropped the element
that is dropped. Also denote the current iteration at which this pair is selected by
Iter. We maintain a record of Iter to identify when Added and Dropped start to be
tabu-active. Specifically, at this step we set

TabuDropStart .Added/ D Iter

TabuAddStart .Dropped/ D Iter:

Thus, TabuDropStart records the iteration where Added becomes tabu-active
(to prevent this element from later being dropped), and TabuAddStart records the
iteration where Dropped becomes tabu-active (to prevent this element from later
being added).

For example, in the Min k-Tree problem illustration of Table 4, where the edge
(4,6) was added and the edge (4,7) was dropped on the first iteration, we would
establish the record (for Iter = 1)

Tabu Search 3281

TabuDropStart .4; 6/ D 1

TabuAddStart .4; 7/ D 1:

To identify whether or not an element is currently tabu-active, let Tabu-
DropTenure denote the tabu tenure (number of iterations) to forbid an element
to be dropped (once added), and let TabuAddTenure denote the tabu tenure to forbid
an element from being added (once dropped) (In our Min k-Tree problem example
of Sect. 3.2, we selected TabuAddTenure = 2 and TabuDropTenure = 1).

As a point of clarification, when we speak of an element as being tabu-active,
our terminology implicitly treats elements and attributes as if they are the same.
However, to be precise, each element is associated with two different attributes,
one where the element belongs to the current solution and one where the element
does not. Elements may be viewed as corresponding to variables and attributes as
corresponding to specific value assignments for such variables. There is no danger
of confusion in the add/drop setting, because we always know when an element
belongs or does not belong to the current solution, and hence, we know which of the
two associated attributes is currently being considered.

We can now identify precisely the set of iterations during which an element
(i.e., its associated attribute) will be tabu-active. Let TestAdd and TestDrop denote a
candidate pair of elements, whose members are respectively under consideration to
be added and dropped from the current solution. If TestAdd previously corresponded
to an element Dropped that was dropped from the solution and TestDrop previously
corresponded to an element Added that was added to the solution (not necessarily
on the same step), then it is possible that one or both may be tabu-active and
we can check their status as follows. By means of the records established on
earlier iterations, where TestAdd began to be tabu-active at iteration TabuAddStart
(TestAdd) and TestDrop began to be tabu-active at iteration TabuDropStart (Test-
Drop), we conclude that as Iter grows, the status of these elements will be given by

TestAdd is tabu-active when:

Iter � TabuAddStart .TestAdd/ C TabuAddTenure

TestDrop is tabu-active when:

Iter � TabuDropStart .TestDrop/ C TabuDropTenure:

Consider again the Min k-Tree problem illustration of Table 4. As previously
noted, the move of Iteration 1 that added edge (4.6) and dropped edge (4,7) was
accompanied by setting the TabuDropStart (4,6) = 1 and TabuAddStart (4,7) = 1 to
record the iteration where these two edges start to be tabu-active (to prevent (4,6)
from being dropped and (4,7) from being added). The edge (4,6) will then remain
tabu-active on subsequent iterations, in the role of TestDrop (as a candidate to be
dropped), as long as

3282 F. Glover and M. Laguna

Iter � TabuDropStart .4; 6/ C TabuDropTenure:

Hence, since we selected TabuDropTenure = 1 (to prevent an added edge from
being dropped for 1 iteration), it follows that (4,6) remains tabu-active as long as

Iter � 2:

Similarly, having selected TabuAddTenure = 2, we see that the edge (4,7) remains
tabu-active, to forbid it from being added back, as long as

Iter � 3:

An initialization step is needed to be sure that elements that have never been
previously added or dropped from the solutions successively generated will not
be considered tabu-active. This can be done by initially setting TabuAddStart and
TabuDropStart equal to a large negative number for all elements. Then, as Iter
begins at 1 and successively increases, the inequalities that determine the tabu-active
status will not be satisfied, and hence will correctly disclose that an element is not
tabu-active, until it becomes one of the elements Added or Dropped (Alternately,
TabuAddStart and TabuDropStart can be initialized at 0, and the test of whether an
element is tabu-active can be skipped when it has a 0 value in the associated array).

3.4.2 Streamlining
The preceding ideas can be streamlined to allow a more convenient implementation.
First, we observe that the two arrays, TabuAddStart and TabuDropStart, which we
have maintained separately from each other to emphasize their different functions,
can be combined into a single array TabuStart. The reason is simply that we can
interpret TabuStart(E) to be the same as TabuDropStart (E) when the element E

is in the current solution and to be the same as TabuAddStart (E) when E is not
in the current solution (There is no possible overlap between these two states of E

and hence no danger of using the TabuStart array incorrectly). Consequently, from
now on, we will let the single array TabuStart take the role of both TabuAddStart
and TabuDropStart. For example, when the move is executed that (respectively)
adds and drops the elements Added and Dropped, the appropriate record consists of
setting

TabuStart .Added/ D Iter

TabuStart .Dropped/ D Iter:

The TabuStart array has an additional function beyond that of monitoring the
status of tabu-active elements (As shown in Sect. 5, this array is also useful for
determining a type of frequency measure called a residence frequency). However,
sometimes it is convenient to use a different array, TabuEnd, to keep track of tabu-
active status for recency-based memory, as we are treating here. Instead of recording

Tabu Search 3283

when the tabu-active status starts, TabuEnd records when it ends. Thus, in place of
the two assignments to TabuStart shown above, the record would consist of setting

TabuEnd .Added/ D Iter C TabuDropTenure

TabuEnd .Dropped/ D Iter C TabuAddTenure:

(The element Added is now available to be dropped, and the element Dropped
is now available to be added). In conjunction with this, the step that checks for
whether a candidate pair of elements TestAdd and TestDrop are currently tabu-active
becomes:

TestAdd is tabu-active when

Iter � TabuEnd .TestAdd/:

TestDrop is tabu-active when

Iter � TabuEnd .TestDrop/:

This is a simpler representation than the one using TabuStart, and so, it is
appealing when TabuStart is not also used for additional purposes (Also, TabuEnd
can simply be initialized at 0 rather than at a large negative number).

As will be discussed more fully in the next section, the values of TabuAddTenure
and TabuDropTenure (which are explicitly referenced in testing tabu-active status
with TabuStart and implicitly referenced in testing this status with TabuEnd) are
often preferably made variable rather than fixed. The fact that we use different
tenures for added and dropped elements discloses that it can be useful to differentiate
the tenures applied to elements of different classes. This type of differentiation can
also be based on historical performance, as tracked by frequency-based measures.
Consequently, tenures may be individually adjusted for different elements (as well
as modified over time). Such adjustment can be quite effective in some settings.
These basic considerations can be refined to create effective implementations and
also can be extended to handle additional move structures, as shown in Glover and
Laguna [31].

3.5 Tabu Tenure

In general, recency-based memory is managed by creating one or several tabu lists,
which record the tabu-active attributes and implicitly or explicitly identify their
current status. Tabu tenure can vary for different types or combinations of attributes
and can also vary over different intervals of time or stages of the search. This varying
tenure makes it possible to create different kinds of trade-offs between short-term
and longer-term strategies. It also provides a dynamic and robust form of search.

3284 F. Glover and M. Laguna

The choice of appropriate types of tabu lists depends on the context. Although
no single type of list is uniformly best for all applications, some guidelines can
be formulated. If memory space is sufficient (as it often is) to store one piece of
information (e.g., a single integer) for each solution attribute used to define the
tabu-activation rule, it is usually advantageous to record the iteration number that
identifies when the tabu-active status of an attribute starts or ends as illustrated by
the add/drop data structure described in Sects. 3.3 and 3.4. This typically makes it
possible to test the tabu status of a move in constant time. The necessary memory
space depends on the attributes and neighborhood size, but it does not depend on
the tabu tenure.

Depending on the size of the problem, it may not be feasible to implement
the preceding memory structure in combination with certain types of attributes. In
general, storing one piece of information for each attribute becomes unattractive
when the problem size increases or attribute definition is complex. Sequential and
circular tabu lists are used in this case, which store the identities of each tabu-active
attribute and explicitly (or implicitly, by list position) record associated tabu tenures.

Effective tabu tenures have been empirically shown to depend on the size of
the problem instance. However, no single rule has been designed to yield an
effective tenure for all classes of problems. This is partly because an appropriate
tabu tenure depends on the strength of the tabu-activation rule employed (where
more restrictive rules are generally coupled with shorter tenures). Effective tabu
tenures and tabu-activation rules can usually be determined quite easily for a
given class of problems by a little experimentation. Tabu tenures that are too
small can be recognized by periodically repeated objective function values or
other function indicators, including those generated by hashing, that suggest the
occurrence of cycling. Tenures that are too large can be recognized by a resulting
deterioration in the quality of the solutions found (within reasonable time periods).
Somewhere in between typically exists a robust range of tenures that provide good
performance.

Once a good range of tenure values is located, first-level improvements generally
result by selecting different values from this range on different iterations (A smaller
subrange, or even more than one subrange, may be chosen for this purpose). Problem
structures are sometimes encountered where performance for some individual fixed
tenure values within a range can be unpredictably worse than for other values in
the range, and the identity of the isolated poorer values can change from problem
to problem. However, if the range is selected to be good overall, then a strategy
that selects different tenure values from the range on different iterations typically
performs at a level comparable to selecting one of the best values in the range,
regardless of the problem instance.

Short-term memory refinements subsequently discussed, and longer-term con-
siderations introduced in later sections, transform the method based on these
constructions into one with considerable power. Still, it occasionally happens that
even the initial short-term approach by itself leads to exceptionally high-quality
solutions. Consequently, some of the TS literature has restricted itself only to this
initial part of the method.

Tabu Search 3285

In general, short tabu tenures allow the exploration of solutions “close” to a
local optimum, while long tenures can help to break free from the vicinity of
a local optimum. These functions illustrate a special instance of the notions of
intensification and diversification that will be explored in more detail later. Varying
the tabu tenure during the search provides one way to induce a balance between
closely examining one region and moving to different parts of the solution space.

In situations where a neighborhood may (periodically) become fairly small, or
where a tabu tenure is chosen to be fairly large, it is entirely possible that iterations
can occur when all available moves are classified tabu. In this case, an aspiration-
by-default is used to allow a move with a “least tabu” status to be considered
admissible. Such situations rarely occur for most problems, and even random
selection is often an acceptable form of aspiration-by-default. When tabu status is
translated into a modified evaluation criterion, by penalties and inducements, then
of course aspiration-by-default is handled automatically, with no need to monitor
the possibility that all moves are tabu.

There are several ways in which a dynamic tabu tenure can be implemented.
These implementations may be classified into random and systematic dynamic tabu
tenures.

3.5.1 Random Dynamic Tenure
Random dynamic tabu tenures are often given one of two forms. Both of these forms
use a tenure range defined by parameters tmin and tmax. The tabu tenure t is randomly
selected within this range, usually following a uniform distribution. In the first case,
the chosen tenure is maintained constant for ˛tmax iterations, and then a new tenure
is selected by the same process. The second form draws a new t for every attribute
that becomes tabu at a given iteration. The first form requires more bookkeeping
than the second one, because one must remember the last time that the tabu tenure
was modified.

Either of the two arrays TabuStart or TabuEnd discussed in Sect. 3.4 can be used
to implement these forms of dynamic tabu tenure. For example, a 2-dimensional
array TabuEnd can be created to control a dynamic recency-based memory for the
sequencing problem introduced at the beginning of this section. As in the case of the
Min k-Tree problem, such an array can be used to record the time (iteration number)
at which a particular attribute will be released from its tabu status. Suppose, for
example, that tmin D 5 and tmax D 10 and that swaps of jobs are used to move from
one solution to another in the sequencing problem. Also, assume that TabuEnd (j; p)
refers to the iteration that job j will be released from a tabu restriction that prevents
it from being assigned to position p. Then, if at iteration 30, job 8 in position 2 is
swapped with job 12 in position 25, we will want to make the attribute (8,2) and
(12,25) tabu-active for some number of iterations to prevent a move that will return
one or both of jobs 8 and 12 from reoccupying their preceding positions. If t is
assigned a value of 7 from the range tmin D 5 and tmax D 10, then upon making the
swap at iteration 30, we may set TabuEnd (8,2) = 37 and TabuEnd (12,25) = 37.

This is not the only kind of TabuEnd array that can be used for the sequencing
problem, and we examine other alternatives and their implications in Sect. 4.

3286 F. Glover and M. Laguna

Nevertheless, we warn against a potential danger. An array TabuEnd (i; j) that seeks
to prevent jobs i and j from exchanging positions, without specifying what these
positions are, does not truly refer to attributes of a sequencing solution and hence
entails a risk if used to determine tabu status (The pair (i; j) here constitutes an
attribute of a move, in a lose sense, but does not serve to distinguish one solution
from another). Thus, if at iteration 30, we were to set TabuEnd (8,12) = 37, in order
to prevent jobs 8 and 12 from exchanging positions until after iteration 37, this still
might not prevent job 8 from returning to position 2 and job 12 from returning to
position 25. In fact, a sequence of swaps could be executed that could return to
precisely the same solution visited before swapping jobs 8 and 12.

Evidently, the TabuEnd array can be used by selecting a different t from the
interval (tmin; tmax) at every iteration. As remarked in the case of the Min k-Tree
problem, it is also possible to select t differently for different solution attributes.

3.5.2 Systematic Dynamic Tenure
Dynamic tabu tenures based on a random scheme are attractive for their ease of
implementation. However, relying on randomization may not be the best strategy
when specific information about the context is available. In addition, certain
diversity-inducing patterns can be achieved more effectively by not restricting
consideration to random designs. A simple form of systematic dynamic tabu tenure
consists of creating a sequence of tabu search tenure values in the range defined
by tmin and tmax. This sequence is then used, instead of the uniform distribution, to
assign the current tabu tenure value. Suppose it is desired to vary t so that its value
alternately increases and decreases (Such a pattern induces a form of diversity that
will rarely be achieved randomly). Then the following sequence can be used for the
range defined above:

f5; 8; 6; 9; 7; 10g:
The sequence may be repeated as many times as necessary until the end of the

search, where additional variation is introduced by progressively shifting and/or
reversing the sequence before repeating it (In a combined random/systematic
approach, the decision of the shift value and the forward or backward direction can
itself be made random). Another variation is to retain a selected tenure value from
the sequence for a variable number of iterations before selecting the next value.
Different sequences can be created and identified as effective for particular classes
of problems.

The foregoing range of values (from 5 to 10) may seem relatively small.
However, some applications use even smaller ranges but adaptively increase and
decrease the midpoint of the range for diversification and intensification purposes.
Well-designed adaptive systems can significantly reduce or even eliminate the need
to discover a best range of tenures by preliminary calibration. This is an important
area of study.

These basic alternatives typically provide good starting tabu search implementa-
tions. In fact, most initial implementations apply only the simplest versions of these
ideas.

Tabu Search 3287

3.6 Aspiration Criteria and Regional Dependencies

Aspiration criteria are introduced in tabu search to determine when tabu-activation
rules can be overridden, thus removing a tabu classification otherwise applied
to a move (The improved-best and aspiration-by-default criteria, as previously
mentioned, are obvious simple instances). The appropriate use of such criteria can
be very important for enabling a TS method to achieve its best performance levels.
Early applications employed only a simple type of aspiration criterion, consisting
of removing a tabu classification from a trial move when the move yields a solution
better than the best obtained so far. This criterion remains widely used. However,
other aspiration criteria can prove effective for improving the search.

A basis for one of these criteria arises by introducing the concept of influence,
which measures the degree of change induced in solution structure or feasibility.
This notion can be illustrated for the Min k-Tree problem as follows. Suppose that
the current solution includes edges (1,2), (1,4), (4,7), and (6,7), as illustrated in
Fig. 9, following. A high-influence move, which significantly changes the structure
of the current solution, is exemplified by dropping edge (1,2) and replacing it by
edge (6,9). A low-influence move, on the other hand, is exemplified by dropping
edge (6,7) and adding edge (4,6). The weight difference of the edges in the high-
influence move is 15, while the difference is 9 for the low-influence move. However,
it is important to point out that differences on weight or cost are not the only –
or even the primary – basis for distinguishing between moves of high and low
influence. In the present example, the move we identify as a low-influence move
creates a solution that consists of the same set of nodes included in the current
solution, while the move we identified as a high-influence move includes a new

10

4 6

87

9

12

11

5
1*

2*3

10

4 6

87

9

12

11

53

10

4 6

87

9

12

11

53

2*
1*

10

4 6

87

9

12

11

53

1*

1*

1*
10

4 6

87

9

12

11

53

2*

2*1*

Restarting Point Weight: 38 Iteration: 1 Weight: 41 Iteration: 2 Weight: 34

Iteration: 3 Weight: 41 Iteration: 4 Weight: 38 Iteration: 5 Weight: 37

10

4 6

87

9

12

11

53

1*

Fig. 9 Graphical representation of TS iterations after restarting

3288 F. Glover and M. Laguna

2

1 4

7

6

8

9

12

11

10

3 5

2

1 4

7

6

8

9

12

11

10

3 5 2

1 4

7

6

8

9

12

11

10

3 5

1

25

1

25
8

5251

8 6

8 6
16

High InfluenceLow Influence

Fig. 10 Influence level of two moves

node (number 9) from which new edges can be examined (These moves correspond
to those labeled static and dynamic in Fig. 5).

As illustrated here, high-influence moves may or may not improve the current
solution, though they are less likely to yield an improvement when the current
solution is relatively good. But high-influence moves are important, especially
during intervals of breaking away from local optimality, because a series of moves
that is confined to making only small structural change is unlikely to uncover a
chance for significant improvement. Executing the high-influence move in Fig. 10,
for example, allows the search to reach the optimal edges (8,9) and (9,12) in
subsequent iterations. Of course, moves of much greater influence than those shown
can be constructed by considering compound moves. Such considerations are treated
in later sections.

Influence often is associated with the idea of move distance. Although important,
move influence is only one of several elements that commonly underlie the
determination of aspiration criteria. We illustrate a few of these elements in Table 7.

Aspirations such as those shown in Table 7 can be applied according to two
implementation categories: aspiration by move and aspirations by attribute. A move
aspiration, when satisfied, revokes the move’s tabu classification. An attribute
aspiration, when satisfied, revokes the attribute’s tabu-active status. In the latter
case, the move may or may not change its tabu classification, depending on whether
the tabu-activation rule is triggered by more than one attribute. For example,
in our sequencing problem, if the swap of jobs 3 and 6 is forbidden because a

Tabu Search 3289

Table 7 Illustrative aspiration criteria

Aspiration by Description Example

Default If all available moves are classified
tabu and are not rendered
admissible by some other
aspiration criteria, then a “least
tabu” move is selected

Revoke the tabu status of all moves
with minimum TabuEnd value

Objective Global: A move aspiration is
satisfied if the move yields a
solution better than the best
obtained so far
Regional: A move aspiration is
satisfied if the move yields a
solution better than the best found
in the region where the solution
lies

Global: The best total tardiness
found so far is 29. The current se-
quence is (4, 1, 5, 3, 6, 2) with
T D 39. The move value of the
tabu swap (5,2) is �20. Then, the
tabu status of the swap is revoked
and the search moves to the new
best sequence (4, 1, 2, 3, 6, 5) with
T D 19

Regional: The best sequence found
in the region defined by all
sequences (1, 2, 3, *, *, *) is (1, 2,
3, 6, 4, 5) with T D 31. The
current solution is (1, 4, 3, 2, 6, 5)
with T D 23. The swap (4, 2) with
move value of 6 is tabu. The tabu
status is revoked because a new
regional best (1, 2, 3, 4, 6, 5) with
T D 29 can be found

Search direction An attribute can be added and
dropped from a solution
(regardless of its tabu status) if the
direction of the search (improving
or nonimproving) has not changed

For the Min k-Tree problem, the
edge (11,12) has been recently
dropped in the current improving
phase making its addition a
tabu-active attribute. The
improving phase can continue if
edge (11,12) is now added;
therefore its tabu status may be
revoked

Influence The tabu status of a low-influence
move may be revoked if a
high-influence move has been
performed since establishing the
tabu status for the low-influence
move

If the low-influence swap (1,4)
described in Table 2.7 is classified
tabu, its tabu status can be revoked
after the high-influence swap (4,5)
is performed

tabu-activation rule prevents job 3 from moving at all, then an attribute aspiration
that revokes job 3s tabu-active status also revokes the move’s tabu classification.
However, if the swap (3,6) is classified tabu because both job 3 and job 6 are not
allowed to move, then revoking job 3s tabu-active status does not result in overriding
the tabu status of the entire move.

Different variants of the aspiration criteria presented in Table 7 are possible. For
example, the regional aspiration by objective can be defined in terms of bounds on

3290 F. Glover and M. Laguna

the objective function value. These bounds determine the region being explored,
and they are modified to reflect the discovery of better (or worse) regions. Another
possibility is to define regions with respect to time. For example, one may record
the best solution found during the recent past (defined as a number of iterations) and
use this value as the aspiration level.

3.7 Concluding Observations for the Min k-Tree Example

Influence of Tabu Tenures
The tabu tenures used to illustrate the first-level TS approach for the Min

k-Tree problem of course are very small. The risk of using such tenures can be
demonstrated in this example from the fact that changing the weight of edge (3,6) in
Fig. 4 from 20 to 17 will cause the illustrated TS approach with TabuAddTenure = 2
and TabuDropTenure = 1 to go into a cycle that will prevent the optimal solution
from being found. The intuition that TabuDropTenure has a stronger influence than
the TabuAddTenure for this problem is supported by the fact that the use of tenures
of TabuAddTenure = 1 and TabuDropTenure = 2 in this case will avoid the cycling
problem and allow an optimal solution to be found.
Alternative Neighborhoods

The relevance of considering alternative neighborhoods can be illustrated by
reference to the following observation. For any given set of k C 1 nodes, an
optimal (min weight) k-tree over these nodes can always be found by using the
greedy constructive procedure illustrated in Table 2 to generate a starting solution
(restricted to these nodes) or by beginning with an arbitrary tree on these nodes and
performing a succession of static improving moves (which do not change the node
set). The absence of a static-improving move signals that no better solution can be
found on this set.

This suggests that tabu search might advantageously be used to guide the search
over a “node-swap” neighborhood instead of an “edge-swap” neighborhood, where
each move consists of adding a non-tree node i and dropping a tree node j , followed
by finding a min weight solution on the resulting node set (Since the tree node j may
not be a leaf node, and the reconnections may also not make node i a leaf node in
the new tree, the possibilities are somewhat different than making a dynamic move
in the edge-swap neighborhood). The tabu tenures may reasonably be defined over
nodes added and dropped, rather than over edges added and dropped.
Critical Event Memory

The type of critical event memory used in the illustration of restarting the TS
approach in Sect. 3.3.1 may not be best. Generally, it is reasonable to expect that the
type of critical event memory used for restarting should be different from that used
to continue the search from the current solution (when both are applied to drive
the search into new regions). Nevertheless, a form that is popularly used in both
situations consists of remembering all elements contained in solutions previously
examined. One reason is that it is actually easier to maintain such memory than
to keep track of elements that only occur in selected solutions. Also, instead of

Tabu Search 3291

keeping track only of which elements occur in past solution, critical event memory
is more usually designed to monitor the frequency that elements have appeared in
past solutions. Such considerations are amplified in Sect. 5.

4 Additional Aspects of Short-Term Memory

We began the discussion of short-term memory for tabu search by contrasting the TS
designs with those of memoryless strategies such as simple or iterated descent and
by pointing out how candidate list strategies are especially important for applying
TS in the most effective ways. We now describe types of candidate list strategies
that often prove valuable in tabu search implementations. Then we examine the
issues of logical restructuring, which provide important bridges to longer-term
considerations.

4.1 Tabu Search and Candidate List Strategies

The aggressive aspect of TS is manifest in choice rules that seek the best available
move that can be determined with an appropriate amount of effort. As addressed
in Sect. 3, the meaning of best in TS applications is customarily not limited to an
objective function evaluation. Even where the objective function evaluation may
appear on the surface to be the only reasonable criterion to determine the best move,
the non-tabu move that yields a maximum improvement or least deterioration is
not always the one that should be chosen. Rather, as we have noted, the definition
of best should consider factors such as move influence, determined by the search
history and the problem context.

For situations where N�.x/ is large or its elements are expensive to evaluate,
candidate list strategies are essential to restrict the number of solutions examined on
a given iteration. In many practical settings, TS is used to control a search process
that may involve the solution of relatively complex subproblems by way of linear
programming or simulation. Because of the importance TS attaches to selecting
elements judiciously, efficient rules for generating and evaluating good candidates
are critical to the search process. The purpose of these values is to isolate regions of
the neighborhood containing moves with desirable features and to put these moves
on a list of candidates for current examination.

Before describing the kinds of candidate list strategies that are particularly
useful in tabu search implementations, we note that the efficiency of implementing
such strategies often can be enhanced by using relatively straightforward memory
structures to give efficient updates of move evaluations from one iteration to another.
Appropriately coordinated, such updates can appreciably reduce the effort of finding
best or near-best moves.

In sequencing, for example, the move values often can be calculated without a
full evaluation of the objective function. Intelligent updating can be useful even
where candidate list strategies are not used. However, the inclusion of explicit

3292 F. Glover and M. Laguna

candidate list strategies, for problems that are large, can significantly magnify
the resulting benefits. Not only search speed but also solution quality can be
influenced by the use of appropriate candidate list strategies. Perhaps surprisingly,
the importance of such approaches is often overlooked.

4.2 Some General Classes of Candidate List Strategies

Candidate lists can be constructed from context-related rules and from general
strategies. In this section, we focus on rules for constructing candidate lists that
are context-independent. We emphasize that the effectiveness of a candidate list
strategy should not be measured in terms of the reduction of the computational
effort in a single iteration. Instead, a preferable measure of performance for a given
candidate list is the quality of the best solution found given a specified amount
of computer time. For example, a candidate list strategy intended to replace an
exhaustive neighborhood examination may result in more iterations per unit of time
but may require many more iterations to match the solution quality of the original
method. If the quality of the best solution found within a desirable time limit (or
across a graduated series of such limits) does not improve, we conclude that the
candidate list strategy is not effective.

4.2.1 Aspiration Plus
The Aspiration Plus strategy establishes a threshold for the quality of a move, based
on the history of the search pattern. The procedure operates by examining moves
until finding one that satisfies this threshold. Upon reaching this point, additional
moves are examined, equal in number to the selected value Plus, and the best move
overall is selected.

To assure that neither too few nor too many moves are considered, this rule is
qualified to require that at least Min moves and at most Max moves are examined,
for chosen values of Min and Max. The interpretation of Min and Max is as follows.
Let First denote the number of moves examined when the aspiration threshold is
first satisfied. Then if Min and Max were not specified, the total number of moves
examined would be First + Plus. However, if First + Plus < Min, then Min moves
are examined while if First + Plus > Max, then Max moves are examined (This
conditions may be viewed as imposing limits on the move that is “effectively”
treated as the First move. For example, if as many as Max � Plus moves are
examined without finding one that satisfies the aspiration threshold, then First
effectively becomes the same as Max � Plus).

This strategy is graphically represented in Fig. 11. In this illustration, the fourth
move examined satisfies the aspiration threshold and qualifies as First. The value of
Plus has been selected to be 5, and so 9 moves are examined in total, selecting the
best over this interval. The value of Min, set at 7, indicates that at least 7 moves will
be examined even if First is so small that First + Plus < 7 (In this case, Min is not
very restrictive, because it only applies if First < 2). Similarly, the value of Max,
set at 11, indicates that at most 11 moves will be examined even if First is so large

Tabu Search 3293

1 2 3 4 5 6 7 8 9 10 11 12

Number of moves examined

M
ov

e
qu

al
ity Aspiration

Plus

First Min Max

Fig. 11 Aspiration Plus
strategy

that First + Plus > 11 (Here, Max is strongly restrictive). The sixth move examined
is the best found in this illustration.

The “Aspiration” line in this approach is an established threshold that can
be dynamically adjusted during the search. For example, during a sequence of
improving moves, the aspiration may specify that the next move chosen should
likewise be improving, at a level based on other recent moves and the current
objective function value. Similarly, the values of Min and Max can be modified
as a function of the number of moves required to meet the threshold.

During a nonimproving sequence, the aspiration of the Aspiration Plus rule will
typically be lower than during an improving phase but rise toward the improving
level as the sequence lengthens. The quality of currently examined moves can shift
the threshold, as by encountering moves that significantly surpass or that uniformly
fall below the threshold. As an elementary option, the threshold can simply be a
function of the quality of the initial Min moves examined on the current iteration.

The Aspiration Plus strategy includes several other strategies as special cases.
For example, a first-improving strategy results by setting Plus = 0 and directing the
aspiration threshold to accept moves that qualify as improving, while ignoring the
values of Min and Max. Then First corresponds to the first move that improves the
current value of the objective, if such a move can be found. A slightly more advanced
strategy can allow Plus to be increased or decreased according to the variance in
the quality of moves encountered from among some initial number examined. In
general, in applying the Aspiration Plus strategy, it is important to assure on each
iteration that new moves are examined which differ from those just reviewed. One
way of achieving this is to create a circular list and start each new iteration where
the previous examination left off.

4.2.2 Elite Candidate List
The elite candidate list approach first builds a Master List by examining all (or a
relatively large number of) moves, selecting the k best moves encountered, where
k is a parameter of the process. Then at each subsequent iteration, the current best
move from the Master List is chosen to be executed, continuing until such a move

3294 F. Glover and M. Laguna

Iterations1 2 3
So

lu
tio

n
qu

al
ity

Threshold

Master List RebuildFig. 12 Elite candidate list
strategy

falls below a given quality threshold or until a given number of iterations have
elapsed. Then a new Master List is constructed and the process repeats. This strategy
is depicted in Fig. 12 below.

This technique is motivated by the assumption that a good move, if not performed
at the present iteration, will still be a good move for some number of iterations. More
precisely, after an iteration is performed, the nature of a recorded move implicitly
may be transformed. The assumption is that a useful proportion of these transformed
moves will inherit attractive properties from their antecedents.

The evaluation and precise identity of a given move on the list must be
appropriately monitored, since one or both may change as result of executing other
moves from the list. For example, in the Min k-Tree problem, the evaluations of
many moves can remain unchanged from one iteration to the next. However, the
identity and evaluation of specific moves will change as a result of deleting and
adding particular edges, and these changes should be accounted for by appropriate
updating (applied periodically if not at each iteration). An elite candidate list
strategy can be advantageously extended by a variant of the Aspiration Plus strategy,
allowing some additional number of moves outside the Master List to be examined
at each iteration, where those of sufficiently high quality may replace elements of
the Master List.

4.2.3 Successive Filter Strategy
Moves can often be broken into component operations, and the set of moves
examined can be reduced by restricting consideration to those that yield high-
quality outcomes for each operation separately. For example, the choice of an
exchange move that includes an “add component” and a “drop component” may
restrict attention only to exchanges created from a relatively small subset of “best
add” and “best drop” components. The gain in efficiency can be considerable. If
there are 100 add possibilities and 100 drop possibilities, the number of add/drop
combinations is 10,000. However, by restricting attention to the 8 best add and
drop moves, considered independently, the number of combinations to examine is
only 64 (Values of 8 and even smaller have been found effective in some practical
applications).

Tabu Search 3295

The evaluations of the separate components often will give only approximate
information about their combined evaluation. Nevertheless, if this information is
good enough to insure a significant number of the best complete moves will
result by combining these apparently best components, then the approach can
yield quite good outcomes. Improved information may be obtained by sequential
evaluations, as where the evaluation of one component is conditional upon the
prior (restricted) choices of another. Such strategies of subdividing compound
moves into components, and then restricting consideration of complete compound
moves only to those assembled from components that pass selected thresholds of
quality, have proved quite effective in TS methods for partitioning problems and for
telecommunication channel-balancing problems.

Conditional uses of component evaluations are also relevant for sequencing
problems, where a measure can be defined to identify preferred attributes using
information such as due dates, processing times, and delay penalties. If swap moves
are being used, then some jobs are generally better candidates than others to move
early or later in the sequence. The candidate list considers those swaps whose
composition includes at least one of these preferred attributes.

In the context of the traveling salesman problem, good solutions are often
primarily composed of edges that are among the 20–40 shortest edges meeting one
of their endpoints (depending on various factors). Some studies have attempted to
limit consideration entirely to tours constructed from such a collection of edges. The
successive filter strategy, by contrast, offers greater flexibility by organizing moves
that do not have to be entirely composed of such special elements, provided one or
more of these elements is incorporated as part of the move. This approach can be
frequently controlled to require little more time than the more restricted standard
approach, while affording a more desirable set of alternatives to consider.

4.2.4 Sequential Fan Candidate List
A type of candidate list that is highly exploitable by parallel processing is the
sequential fan candidate list. The basic idea is to generate some p best alternative
moves at a given step and then to create a fan of solution streams, one for each
alternative. The several best available moves for each stream are again examined,
and only the p best moves overall (where many or no moves may be contributed by
a given stream) provide the p new streams at the next step.

In the setting of tree search methods, such a sequential fanning process is
sometimes called beam search. For use in the tabu search framework, TS memory
and activation rules can be carried forward with each stream and hence inherited in
the selected continuations. Since a chosen solution can be assigned to more than one
stream, different streams can embody different missions in TS. Alternatively, when
two streams merge into the same solution, other streams may be started by selecting
a neighbor adjacent to one of the current streams.

The process is graphically represented in Fig. 13. Iteration 0 constructs an initial
solution or alternatively may be viewed as the starting point for constructing a
solution. That is, the sequential fan approach can be applied using one type of
move to create a set of initial solutions and then can continue using another type

3296 F. Glover and M. Laguna

Iterations
1 2 3

So
lu

tio
n

qu
al

ity

p streams

0

Fig. 13 Sequential fan
candidate lis

of move to generate additional solutions (We thus allow a “solution” to be a partial
solution as well as a complete solution). The best moves from this solution are used
to generate p streams. Then at every subsequent iteration, the overall best moves
are selected to lead the search to p different solutions. Note that since more than
one move may lead the search to the same solution, more than p moves may be
necessary to continue the exploration of p distinct streams.

A more intensive form of the sequential fan candidate list approach, which is
potentially more powerful but requires more work, is to use the process illustrated
in Fig. 13 as a “look-ahead” strategy. In this case, a limit is placed on the number of
iterations that the streams are generated beyond iteration 0. Then the best outcome at
this limiting iteration is used to identify a “best current move” (a single first branch)
from iteration 0. Upon executing this move, the step shown as iteration 1 in Fig. 13
becomes the new iteration 0, that is, iteration 0 always corresponds to the current
iteration. Then this solution becomes the source of p new streams, and the process
repeats.

There are a number of possible variants of this sequential fan strategy. For
example, instead of selecting a single best branch at the limiting iteration, the
method can select a small number of best branches and thus give the method a
handful of candidates from which to generate p streams at the new iteration 0.

The iteration limit that determines depth of the look ahead can be variable,
and the value of p can change at various depths. Also the number of successors
of a given solution that are examined to determine candidates for the p best
continuations can be varied as by progressively reducing this number at greater
depths.

The type of staging involved in successive solution runs of each stream may be
viewed as a means of defining levels in the context of the Proximate Optimality
Principle commonly associated with the strategic oscillation component of tabu
search. Although we will study this principle in more detail later, we remark that
the sequential fan candidate list has a form that is conveniently suited to exploit it.

4.2.5 Bounded Change Candidate List
A bounded change candidate list strategy is relevant in situations where an improved
solution can be found by restricting the domain of choices so that no solution

Tabu Search 3297

component changes by more than a limited degree on any step. A bound on this
degree, expressed by a distance metric appropriate to the context, is selected large
enough to encompass possibilities considered strategically relevant. The metric may
allow large changes along one dimension but limit the changes along another so
that choices can be reduced and evaluated more quickly. Such an approach offers
particular benefits as part of an intensification strategy based on decomposition,
where the decomposition itself suggests the limits for bounding the changes
considered.

4.3 Connections Between Candidate Lists, Tabu Status, and
Aspiration Criteria

It is useful to summarize the short-term memory considerations embodied in
the interaction between candidate lists, tabu status, and aspiration criteria. The
operations of these TS short-term elements are shown in Fig. 14. The representation
of penalties in Fig. 14 either as “large” or “very small” expresses a thresholding
effect: Either the tabu status yields a greatly deteriorated evaluation or else it chiefly
serves to break ties among solutions with highest evaluations. Such an effect of
course can be modulated to shift evaluations across levels other than these extremes.
If all moves currently available lead to solutions that are tabu (with evaluations that
normally would exclude them from being selected), the penalties result in choosing
a “least tabu” solution.

The sequence of the tabu test and the aspiration test in Fig. 14 evidently can
be reversed (i.e., by employing the tabu test only if the aspiration threshold is not
satisfied). Also, the tabu evaluation can be modified by creating inducements based
on the aspiration level, just as it is modified by creating penalties based on tabu
status. In this sense, aspiration conditions and tabu conditions can be conceived
roughly as “mirror images” of each other.

For convenience, Fig. 14 expresses tabu restrictions solely in terms of penalized
evaluations, although we have seen that tabu status is often permitted to serve as
an all-or-none threshold, without explicit reference to penalties and inducements
(by directly excluding tabu options from being selected, subject to the outcome
of aspiration tests). Whether or not modified evaluations are explicitly used, the
selected move may not be the one with the best objective function value, and
consequently, the solution with the best objective function value encountered
throughout the search history is recorded separately.

4.4 Logical Restructuring

Logical restructuring is an important element of adaptive memory solution ap-
proaches, which gives a connection between short- and long-term strategies. Logical
restructuring is implicit in strategic oscillation and path relinking, which we
examine in subsequent sections, but its role and significance in these strategies is

3298 F. Glover and M. Laguna

Candidate List Examination
Generate a move from the candidate
list, to create a trial solution x� from

the current solution x.

Tabu Test
Identify attributes of x that are changed

to create x�. Do these attributes include a
critical set of tabu-active attributes?

Aspiration Test
Does x� satisfy an

aspiration threshold?

Create Unpenalized
Tabu Evaluation

Attach no penalty (or very small
penalty based on tabu-active attributes).

Choice Update
If tabu evaluation of x� is the best for

any candidate examined, record this by
an appropriate update.

Create Penalized Tabu Evaluation
Attach a large penalty based on
status of tabu-active attributes

Completion Check
Enough moves

examined?

Execute Chosen Move
Move from x to a best recorded x�.

YesNo

Yes

No

No Yes

Fig. 14 Short-term memory operation

often overlooked. By extension, the general usefulness of logical restructuring is
also often not clearly understood. We examine some of its principal features before
delving into longer-term considerations and show how it can also be relevant for
improving the designs of short-term strategies.

Logical restructuring emerges as a way to meet the combined concerns of
quality and influence. Its goal is to exploit the ways in which influence (structural,
local, and global) can uncover improved routes to high-quality solutions. For this
purpose, a critical step is to redesign standard strategies to endow them with the

Tabu Search 3299

1 2 3 4

5 6 7 8

9 10 11 12

31 7 11

25

35

30

12

35

8

22

27

13

15

29

11

11

8

9

30

10

Fig. 15 Illustrative Min
k-Tree problem

power to ferret out opportunities otherwise missed. This step particularly relies on
integrating two elements: (1) the identification of changes that satisfy properties
that are essential (and limiting) in order to achieve improvement, in contrast to
changes that simply depart from what has previously been seen and (2) the use
of anticipatory (“means-ends”) analysis to bring about such essential changes.
Within the context of anticipatory analysis, logical restructuring seeks to answer
the following questions: “What conditions assure the existence of a trajectory that
will lead to an improved solution?” and “What intermediate moves can create such
conditions?” The “intermediate moves” of the second question may be generated
either by modifying the evaluations used to select transitions between solutions or
by modifying the neighborhood structure that determines these transitions.

To illustrate the relevant considerations, we return again to the example of the
Min k-Tree problem discussed in previous sections. We replace the previous graph
by the one shown in Fig. 15 but continue to consider the case of k D 4.

The same rules to execute a first-level tabu search approach as in our earlier
illustrations (including the rules for generating a starting solution) produce a
sequence of steps that quickly reaches the vicinity of the optimal solution but require
some effort actually find this solution. In fact, it is readily verified that applying
these rules will cause all edges of the optimal solution except one, edge (10,11), to
be contained in the union of the two solutions obtained on iterations 4 and 5. Yet an
optimal solution will not be found until iteration 11.

This delayed process of finding a route to an optimal solution (which can
be greatly magnified for larger or more complex problems) can be substantially
accelerated by means of logical restructuring. More generally, such restructuring
can make it possible to uncover fertile options that can otherwise be missed entirely.

4.4.1 Restructuring by Changing Evaluations and Neighborhoods
The first type of logical restructuring we illustrate makes use both of modified
evaluations and an amended neighborhood structure. As pointed out in Sect. 3.2
earlier, the swap moves we have employed for the Min k-Tree problem may be
subdivided into two types: static swaps, which leave the nodes of the current tree
unchanged, and dynamic swaps, which replace one of the nodes currently in the tree
with another that is not in the tree. This terminology was chosen to reflect the effect
that each swap type has on the nodes of the tree. Since dynamic swaps in a sense

3300 F. Glover and M. Laguna

5 6 7 8

9 10 11 12

35 27

35 12 11 10

8 15 8

13

9

Fig. 16 Solution and
candidate edges to add to
iteration 4 tree

are more influential, we give them special consideration. We observe that a dynamic
swap can select an edge to be dropped only if it is a terminal edge, that is, one that
meets a leaf node of the tree, which is a node that is met by only a single tree edge
(the terminal edge).

Although it is usually advantageous to drop an edge with a relatively large
weight, this may not be possible. Thus, we are prompted to consider an “anticipatory
goal” of making moves that cause more heavily weighted edges to become terminal
edges and hence eligible to be dropped. By this means, static swaps can be used to
set up desirable conditions for dynamic swaps.

The solution obtained at iteration 4 of the process for solving the example prob-
lem of Fig.15 gives a basis for showing what is involved. We clarify the situation by
showing the current solution at this iteration in Fig.16 (without bothering to identify
the solutions obtained at other iterations), where edges contained in the current tree
are shown as heavy edges and the candidate edges to add to the tree are shown as
light edges.

The move that changes the tree at iteration 4 to that of iteration 5 – if the rules
illustrated in Sect.3 are used – is a dynamic swap that adds edge (8,11) with a weight
of 9 and drops edge (9,10) with a weight of 8. We make use of information contained
in this choice to construct a more powerful move using logical restructuring, as
follows.

Having identified (8,11) as a candidate to be added, the associated anticipatory
goal is to identify a static swap that will change a larger weight edge into a terminal
edge. Specifically, the static swap that adds edge (10,11) and drops edge (6,10), with
a move value of 3, produces a terminal edge from the relatively high weight edge
(6,11) (which has a weight of 13). Since the candidate edge (8,11) to be added has
a weight of 9, the result of joining the indicated static swap with the subsequent
dynamic swap (that respectively adds and drops (8,11) and (6,11)) will be a net gain
(The static move value of 3 is joined with the dynamic move value of �4, yielding
a result of �1).

Effectively, such anticipatory analysis leads to a way to extract a fruitful outcome
from a relatively complex set of options by focusing on a simple set of features. It
would be possible to find the same outcome by a more ponderous approach that
checks all sequences in which a dynamic move follows a static move. This requires
a great deal of computational effort, in fact, considerably more than involved in the
approach without logical restructuring that succeeded in finding an optimal solution
at iteration 11 (considering the trade-off between number of iterations and work per
iteration).

Tabu Search 3301

9 10 11 12

13

9

35 27

35 12 11 10

8 15 8

31 7

25 30 29 30
22

11

11
5 7 8

1 2 43

6

Fig. 17 Threshold generated
components

By contrast, the use of logical restructuring allows the anticipatory analysis to
achieve the benefits of a more massive exploration of alternatives but without incur-
ring the burden of undue computational effort. In this example, the restructuring is
accomplished directly as follows. First, it is only necessary to identify the two best
edges to add for a dynamic swap (independent of matching them with an edge to
drop), subject to requiring that these edges meet different nodes of the tree (In the
tree of iteration 4, seen in Fig. 17, these two edges are (8,11) and (8,12)). Then at
the next step, during the process of looking at candidate static swaps, a modified
“anticipatory move value” is created for each swap that creates a terminal edge, by
subtracting the weight of this edge from the standard move value.

This gives all that is needed to find (and evaluate) a best “combined move
sequence” of the type we are looking for. In particular, every static move that
generates a terminal edge can be combined with a dynamic move that drops this
edge and then adds one of the two “best edges” identified in first of the two
preceding steps. Hence, the restructuring is completed by adding the anticipatory
move value to the weight of one of these two edges (appropriately identified) thereby
determining a best combined move. The illustrated process therefore achieves
restructuring in two ways: by modifying customary move values and by fusing
certain sequences of moves into a single compound move.

Although this example appears on the surface to be highly problem specific, its
basic features are shared by applications that arise in a variety of problem settings.
Later, the reader will see how variants of logical restructuring embodied in this
illustration are natural components of the strategies of path relinking and ejection
chain constructions.

4.4.2 Threshold-Based Restructuring and Induced Decomposition
The second mode of logical restructuring that we illustrate by reference to the Min
k-Tree problem example is more complex (in the sense of inducing a more radical
restructuring) but relatively easy to sketch and also potentially more powerful.

Consider again the solution produced at iteration 4. This is a local optimum
and also the best solution found up to the current stage of search. We seek to
identify a property that will be satisfied by at least one solution that has a smaller
weight than the weight of this solution (41) and which will impose useful limits

3302 F. Glover and M. Laguna

on the composition of such a solution. A property that in fact must be shared by
all “better” solutions can be expressed as a threshold involving the average weight
of the tree edges. This average weight must be less than the threshold value of
41/4 (i.e., 10 1/4). Since some of the edges in any improved solution must have
weights less than this threshold, we are motivated to identify such “preferred” edges
as a foundation for a restructured form of the solution approach. In this type of
restructuring, we no longer confine attention to swap moves but look for ways to
link the preferred edges to produce an improved solution (Such a restructuring can
be based on threshold values derived from multiple criteria).

When the indicated strategy is applied to the present example, a large part of
the graph is eliminated, leaving only 3 separate connected components: (a) the edge
(2,3), (b) the edge (9,10), and (c) the three edges (8,11), (8,12), and (11,12). The
graph that highlights these components is shown in Fig. 17. At this point, a natural
approach is to link such components by shortest paths and then shave off terminal
edges if the trees are too large, before returning to the swapping process. Such an
approach will immediately find the optimal solution that previously was not found
until iteration 11.

This second illustrated form of restructuring is a fundamental component of the
strategic oscillation approach which we describe in more detail in the next section.
A salient feature of this type of restructuring is its ability to create an induced
decomposition of either the solution space or the problem space. This outcome,
coupled with the goal of effectively joining the decomposed components to generate
additional solution alternatives, is also a basic characteristic of path relinking, which
is also examined in the next section. More particularly, the special instance of path
relinking known as vocabulary building, which focuses on assembling fragments
of solutions into larger units, offers a direct model for generalizing the “threshold
decomposition” strategy illustrated here.

In some applications, specific theorems can be developed about the nature of
optimal solutions and can be used to provide relevant designs for restructuring.
The Min k-Tree problem is one for which such a theorem is available (Glover and
Laguna, [31]). Interestingly, the second form of restructuring we have illustrated,
which is quite basic, exploits several aspects of this theorem, although without
“knowing” what the theorem is. In general, logical restructuring and the TS
strategies such as path relinking and strategic oscillation which embody it appear
to behave as if they similarly have a capacity to exploit underlying properties of
optimal solutions in broader contexts, contexts whose features are not sufficiently
uniform or easily characterized to permit the nature of optimal solutions to be
expressed in the form of a theorem.

5 Longer-Term Memory

In some applications, the short-term TS memory components are sufficient to
produce very high-quality solutions. However, in general, TS becomes significantly
stronger by including longer-term memory and its associated strategies. In the
longer-term TS strategies, the modified neighborhood produced by tabu search

Tabu Search 3303

may contain solutions not in the original one, generally consisting of selected
elite solutions (high-quality local optima) encountered at various points in the
solution process. Such elite solutions typically are identified as elements of a
regional cluster in intensification strategies and as elements of different clusters
in diversification strategies. In addition, elite solution components, in contrast to
the solutions themselves, are included among the elements that can be retained and
integrated to provide inputs to the search process.

Perhaps surprisingly, the use of longer-term memory does not require long
solution runs before its benefits become visible. Often, its improvements begin to
be manifest in a relatively modest length of time and can allow solution efforts to
be terminated somewhat earlier than otherwise possible, due to finding very high-
quality solutions within an economical time span. The fastest methods for some
types of routing and scheduling problems, for example, are based on including
longer-term TS memory. On the other hand, it is also true that the chance of finding
still better solutions as time grows, in the case where an optimal solution is not
already found, is enhanced by using longer-term TS memory in addition to short-
term memory.

5.1 Frequency-Based Approach

Frequency-based memory provides a type of information that complements the
information provided by recency-based memory, broadening the foundation for
selecting preferred moves. Like recency, frequency often is weighted or decomposed
into subclasses by taking account of the dimensions of solution quality and move
influence. Also, frequency can be integrated with recency to provide a composite
structure for creating penalties and inducements that modify move evaluations
(Although recency-based memory is often used in the context of short-term memory,
it can also be a foundation of longer-term forms of memory).

For our present purposes, we conceive frequencies to consist of ratios, whose
numerators represent counts expressed in two different measures: a transition
measure, the number of iterations where an attribute changes (enters or leaves) the
solutions visited on a particular trajectory, and a residence measure, the number of
iterations where an attribute belongs to solutions visited on a particular trajectory or
the number of instances where an attribute belongs to solutions from a particular
subset. The denominators generally represent one of three types of quantities:
(1) the total number of occurrences of all events represented by the numerators
(such as the total number of associated iterations), (2) the sum (or average) of the
numerators, and (3) the maximum numerator value. In cases where the numerators
represent weighted counts, some of which may be negative, denominator (3) is
expressed as an absolute value and denominator (2) is expressed as a sum of absolute
values (possibly shifted by a small constant to avoid a zero denominator). The
ratios produce transition frequencies that keep track of how often attributes change
and residence frequencies that keep track of how often attributes are members
of solutions generated. In addition to referring to such frequencies, thresholds
based on the numerators alone can be useful for indicating when phases of greater

3304 F. Glover and M. Laguna

diversification are appropriate (The thresholds for particular attributes can shift after
a diversification phase is executed).

Residence frequencies and transition frequencies sometimes convey related
information but in general carry different implications. They are sometimes con-
fused (or treated identically) in the literature. A noteworthy distinction is that
residence measures, by contrast to transition measures, are not concerned with the
characteristics of a particular solution attribute or whether it is an attribute that
changes in moving from one solution to another. For example, in the Min k-Tree
problem, a residence measure may count the number of times edge (i; j) was part
of the solution, while a transition measure may count the number of times edge
(i; j) was added to the solution (More complex joint measures, such as the number
of times edge (i; j) was accompanied in the solution by edge (k; l) or was deleted
from the solution in favor of edge (k; l), can also selectively be generated. Such
frequencies relate to the issues of creating more complex attributes out of simpler
ones and to the strategies of vocabulary building).

A high residence frequency may indicate that an attribute is highly attractive if
the domain consists of high-quality solutions or may indicate the opposite if the
domain consists of low quality solutions. On the other hand, a residence frequency
that is high (or low) when the domain is chosen to include both high- and low-
quality solutions may point to an entrenched (or excluded) attribute that causes the
search space to be restricted and that needs to be jettisoned (or incorporated) to
allow increased diversity. For example, an entrenched attribute may be a job that
is scheduled in the same position during a sequence of iterations that include both
low- and high quality-objective function evaluations.

As a further useful distinction, a high transition frequency, in contrast to a high
residence frequency, may indicate an associated attribute and is a “crack filler” that
shifts in and out of solutions to perform a fine-tuning function. In this context, a
transition frequency may be interpreted as a measure of volatility. For example,
the Min k-Tree problem instance in Fig. 4 of Sect. 3 contains a number of edges
whose weight may give them the role of crack fillers. Specifically, edges (3,5) and
(6,7) both have a weight of 6, which makes them attractive relative to other edges
in the graph. Since these edges are not contained in an optimal solution, there is
some likelihood that they may repeatedly enter and leave the current solution in a
manner to lure the search away from the optimal region. In general, crack fillers
are determined not simply by cost or quality but by structure, as in certain forms
of connectivity (Hence, e.g., the edge (3,5) of Fig. 4 does not repeatedly enter and
leave solutions in spite of its cost). Some subset of such elements is also likely to
be a part of an optimal solution. This subset can typically be identified with much
less difficulty once other elements are in place. On the other hand, a solution (full
or partial) may contain the “right” crack fillers but offer little clue as to the identity
of the other attributes that will transform the solution into one that is optimal.

We use a sequencing problem and the Min k-Tree problem as contexts to further
illustrate both residence and transition frequencies. Only numerators are indicated,
understanding that denominators are provided by the conditions (1)–(3) previously
defined. The measures are given in Table 8.

Tabu Search 3305

Table 8 Example of frequency measures

Problem Residence measure Transition measure

Sequencing Number of times job j has
occupied position �.j /

Number of times job i has
exchanged positions with job j

Sum of tardiness of job j when
this job occupies position �.j /

Number of times job j has been
moved to an earlier position in the
sequence

Min k-Tree problem Number of times edge (i; j) has
been part of the current solution

Number of times edge (i; j) has
been deleted from the current
solution when edge (k; l) has been
added

Sum of total solution weight when
edge (i; j) is part of the solution

Number of times edge (i; j) has
been added during improving
moves

Attributes that have greater frequency measures, just as those that have greater
recency measures (i.e., that occur in solutions or moves closer to the present),
can trigger a tabu-activation rule if they are based on consecutive solutions that
end with the current solution. However, frequency-based memory often finds its
most productive use as part of a longer-term strategy, which employs incentives
as well as restrictions to determine which moves are selected. In such a strategy,
tabu-activation rules are translated into evaluation penalties, and incentives become
evaluation enhancements, to alter the basis for qualifying moves as attractive or
unattractive.

To illustrate, in a scheduling setting where a swap neighborhood is used, an
attribute such as a job j with a high residence frequency in position �.j / may
be assigned a strong incentive (“profit”) to serve as a swap attribute, thus resulting
in the choice of a move that yields a new sequence � 0 with � 0.j / ¤ �.j /. Such
an incentive is particularly relevant in the case where the TabuEnd value of job j is
small compared to the current iteration, since this value (minus the corresponding
tabu tenure) identifies the latest iteration that job j was a swap attribute, and hence
discloses that job j has occupied position �.j / in every solution since.

Frequency-based memory therefore is usually applied by introducing graduated
tabu states, as a foundation for defining penalty and incentive values to modify the
evaluation of moves. A natural connection exists between this approach and the
recency-based memory approach that creates tabu status as an all-or-none condition.
If the tenure of an attribute in recency-based memory is conceived as a conditional
threshold for applying a very large penalty, then the tabu classifications produced by
such memory can be interpreted as the result of an evaluation that becomes strongly
inferior when the penalties are activated. Conditional thresholds are also relevant
to determining the values of penalties and incentives in longer-term strategies. Most
applications at present, however, use a simple linear multiple of a frequency measure
to create a penalty or incentive term. The multiplier is adjusted to create the right
balance between the incentive or penalty and the cost (or profit) coefficients of the
objective function.

3306 F. Glover and M. Laguna

5.2 Intensification Strategies

Intensification strategies are based on modifying choice rules to encourage move
combinations and solution features historically found good. They may also initiate
a return to attractive regions to search them more thoroughly. A simple instance
of this second type of intensification strategy is shown in Fig. 18. The strategy for
selecting elite solutions is italicized in Fig. 18 due to its importance. Two variants
have proved quite successful. One introduces a diversification measure to assure
the solutions recorded differ from each other by a desired degree and then erases
all short-term memory before resuming from the best of the recorded solutions. A
diversification measure may be related to the number of moves that are necessary to
transform one solution into another. Or the measure may be defined independently
from the move mechanism. For example, in sequencing, two solutions may be
considered diverse if the number of swaps needed to move from one to the other
is “large.” On the other hand, the diversification measure may be the number of jobs
that occupy a different position in the two sequences being compared (This shows
that intensification and diversification often work together, as elaborated in the next
section).

The second variant that has also proved successful keeps a bounded length
sequential list that adds a new solution at the end only if it is better than any
previously seen. The current last member of the list is always the one chosen (and
removed) as a basis for resuming search. However, TS short-term memory that
accompanied this solution is also saved, and the first move also forbids the move
previously taken from this solution, so that a new solution path will be launched.

A third variant of the approach of Fig. 18 is related to a strategy that resumes
the search from unvisited neighbors of solutions previously generated. Such a
strategy keeps track of the quality of these neighbors to select an elite set and
restricts attention to specific types of solutions, such as neighbors of local optima
or neighbors of solutions visited on steps immediately before reaching such local
optima. This type of “unvisited neighbor” strategy has been little examined. It
is noteworthy, however, that the two variants previously indicated have provided
solutions of remarkably high quality.

Another type of intensification approach is intensification by decomposition,
where restrictions may be imposed on parts of the problem or solution structure
in order to generate a form of decomposition that allows a more concentrated
focus on other parts of the structure. A classical example is provided by the
traveling salesman problem, where edges that belong to the intersection of elite
tours may be “locked into” the solution, in order to focus on manipulating other
parts of the tour. The use of intersections is an extreme instance of a more general
strategy for exploiting frequency information, by a process that seeks to identify and
constrain the values of strongly determined and consistent variables. We discuss the
identification and use of such variables in Sect. 4.4.1.

Intensification by decomposition also encompasses other types of strategic
considerations, basing the decomposition not only on indicators of strength and
consistency but also on opportunities for particular elements to interact productively.

Tabu Search 3307

Apply TS short term memory.
Apply an elite selection strategy.
do {
 Choose one of the elite solutions.
 Resume short term memory TS from chosen solution.
 Add new solutions to elite list when applicable.
} while (iterations < limit and list not empty)

Fig. 18 Simple TS
intensification approach

Within the context of a permutation problem as in scheduling or routing, for
example, where solutions may be depicted as selecting one or more sequences
of edges in a graph, a decomposition may be based on identifying subchains of
elite solution, where two or more subchains may be assigned to a common set if
they contain nodes that are “strongly attracted” to be linked with nodes of other
subchains in the set. An edge disjoint collection of subchains can be treated by an
intensification process that operates in parallel on each set, subject to the restriction
that the identity of the endpoints of the subchains will not be altered. As a result of
the decomposition, the best new sets of subchains can be reassembled to create new
solutions. Such a process can be applied to multiple alternative decompositions in
broader forms of intensification by decomposition.

These ideas are lately finding favor in other procedures and may provide a bridge
for interesting components of tabu search with components of other methodologies.
We address the connections with these methodologies in Sect. 6.

5.3 Diversification Strategies

Search methods based on local optimization often rely on diversification strategies
to increase their effectiveness in exploring the solution space defined by a combina-
torial optimization problem. Some of these strategies are designed with the chief
purpose of preventing searching processes from cycling, that is, from endlessly
executing the same sequence of moves (or more generally, from endlessly and
exclusively revisiting the same set of solutions). Others are introduced to impart
additional robustness or vigor to the search. Genetic algorithms use randomization
in component processes such as combining population elements and applying
crossover (as well as occasional mutation), thus providing an approximate diver-
sifying effect. Simulated annealing likewise incorporates randomization to make
diversification a function of temperature, whose gradual reduction correspondingly
diminishes the directional variation in the objective function trajectory of solutions
generated. Diversification in GRASP (greedy randomized adaptive search proce-
dures) is achieved in a certain sense within repeated construction phases by means
of a random sampling over elements that pass a threshold of attractiveness by a
greedy criterion.

In tabu search, diversification is created to some extent by short-term memory
functions but is particularly reinforced by certain forms of longer-term memory. TS
diversification strategies, as their name suggests, are designed to drive the search

3308 F. Glover and M. Laguna

into new regions. Often, they are based on modifying choice rules to bring attributes
into the solution that are infrequently used. Alternatively, they may introduce such
attributes by periodically applying methods that assemble subsets of these attributes
into candidate solutions for continuing the search or by partially or fully restarting
the solution process. Diversification strategies are particularly helpful when better
solutions can be reached only by crossing barriers or “humps” in the solution space
topology.

5.3.1 Modifying Choice Rules
Consider a TS method designed to solve a graph-partitioning problem which uses
full and partial swap moves to explore the local neighborhood. The goal of this
problem is to partition the nodes of the graph into two equal subsets so that the
sum of the weights of the edges that join nodes in one subset to nodes in the other
subset is minimized. Full swaps exchange two nodes that lie in two different sets
of the partition. Partial swaps transfer a single node from one set to the other set.
Since full swaps do not modify the number of nodes in the two sets of the partition,
they maintain feasibility, while partial swaps do not. Therefore, under appropriate
guidance, one approach to generate diversity is to periodically disallow the use of
nonimproving full swaps for a chosen duration (after an initial period where the
search “settles down”). The partial swaps must of course be coordinated to allow
feasibility to be recovered after achieving various degrees of infeasibility (This
relates to the approach of strategic oscillation, described in Sect. 5.4). Implemented
appropriately, this strategy has the effect of intelligently perturbing the current
solution, while escaping from a local optimum, to an extent that the search is
directed to a region that is different than the one being currently explored. The
implementation of this strategy as applied to experimental problems has resulted
in significant improvements in problem-solving efficacy.

The incorporation of partial swaps in place of full swaps in the previous example
can be moderated by using the following penalty function:

MoveValue0 D MoveValue C d � Penalty:

This type of penalty approach is commonly used in TS, where the Penalty value
is often a function of frequency measures such as those indicated in Table 8 and
d is an adjustable diversification parameter. Larger d values correspond to a desire
for more diversification (For example, nodes that change sets more frequently are
penalized more heavily to encourage the choice of moves that incorporate other
nodes. Negative penalties, or “inducements,” may also be used to encourage low-
frequency elements). The penalty can be applied to classes of moves as well as to
attributes of moves. Thus, during a phase where full swaps moves are excluded, all
such moves receive a large penalty (with a value of d that is effectively infinite).

In some applications where d is used to inhibit the selection of “feasibility
preserving” moves, the parameter can be viewed as the reciprocal of a Lagrangian
multiplier in that “low” values result in nearly infinite costs for constraint violation,
while “high” values allow searching through infeasible regions. The adjustment of

Tabu Search 3309

such a parameter can be done in a way to provide a strategic oscillation around the
feasibility boundary, again as discussed in Sect. 5.4. The parameter can also be used
to control the amount of randomization in probabilistic versions of tabu search.

In TS methods that incorporate the simplex method of linear programming, as
in “adjacent extreme point approaches” for solving certain nonlinear and mixed-
integer programming problems, a diversification phase can be designed based on
the number of times variables become basic. For example, a diversification step
can give preference to bringing a nonbasic variable into the basis that has remained
out of the basis for a relatively long period (cumulatively, or since its most recent
inclusion, or a combination of the two). The number of successive iterations such
steps are performed, and the frequency with which they are initiated, are design
considerations of the type that can be addressed, for example, by the approach of
target analysis (see Sect. 6).

5.3.2 Restarting
Frequency information can be used in different ways to design restarting mech-
anisms within tabu search. In a sequencing problem, for example, the overall
frequency of jobs occupying certain positions can be used to bias a construction
procedure and generate new restarting points.

In a TS method for a location/allocation problem, a diversification phase can be
developed using frequency counts on the number of times a depot has changed its
status (from open to closed or vice versa). The diversification phase can be started
from the best solution found during the search. Based on the frequency information,
d depots with the lowest counts are selected and their status is changed. The search
starts from the new solution which differs from the best by exactly d components. To
prevent a quick return to the best solution, the status of the d depots is also recorded
in short-term memory (This is another case where residence frequency measures
may provide useful alternatives or supplements to transition frequency measures).

Additional forms of memory functions are possible when a restarting mechanism
is implemented. For example, in the location/allocation problem, it is possible to
keep track of recent sets of depots that were selected for diversification and avoid
the same selection in the next diversification phase. Similarly, in a sequencing
problem, the positions occupied by jobs in recent starting points can be recorded
to avoid future repetition. This may be viewed as a very simple form of the critical
event memory discussed in Sect. 3, and more elaborate forms will often yield
greater benefits. The exploitation of such memory is very important in TS designs
that are completely deterministic, since in these cases, a given starting point will
always produce the same search path. Experience also shows, however, that uses
of TS memory to guide probabilistic forms of restarting can likewise yield benefits
[14, 50, 64].

Before concluding this section, it is appropriate to provide a word of background
about the orientation underlying diversification strategies within the tabu search
framework. Often there appears to be a hidden assumption that diversification is
somehow tantamount to randomization. Certainly, the introduction of a random
element to achieve a diversifying effect is a widespread theme among search

3310 F. Glover and M. Laguna

procedures and is fundamental to the operation of simulated annealing and genetic
algorithms. From an abstract standpoint, there is clearly nothing wrong with
equating randomization and diversification, but to the extent that diversity connotes
differences among elements of a set and to the extent that establishing such
differences is relevant to an effective search strategy, then the popular use of
randomization is at best a convenient proxy (and at worst a haphazard substitute)
for something quite different.

When randomization is used as part of a restarting mechanism, for example,
frequency information can be employed to approximate probability distributions
that bias the construction process. In this way, randomization is not a “blind” mech-
anism, but instead, it is guided by search history. We examine inappropriate roles of
randomization in Sect. 5.6, where we also explore the intensification/diversification
distinction more thoroughly.

5.4 Strategic Oscillation

Strategic oscillation is closely linked to the origins of tabu search and provides a
means to achieve an effective interplay between intensification and diversification
over the intermediate to long term. The recurring usefulness of this approach
documented in a variety of studies warrants a more detailed examination of its
characteristics.

Strategic oscillation operates by orienting moves in relation to a critical level, as
identified by a stage of construction or a chosen interval of functional values. Such
a critical level or oscillation boundary often represents a point where the method
would normally stop. Instead of stopping when this boundary is reached, however,
the rules for selecting moves are modified to permit the region defined by the critical
level to be crossed. The approach then proceeds for a specified depth beyond the
oscillation boundary and turns around. The oscillation boundary again is approached
and crossed, this time from the opposite direction, and the method proceeds to a new
turning point (see Fig. 19).

The process of repeatedly approaching and crossing the critical level from
different directions creates an oscillatory behavior, which gives the method its name.
Control over this behavior is established by generating modified evaluations and
rules of movement, depending on the region navigated and the direction of search.
The possibility of retracing a prior trajectory is avoided by standard tabu search
mechanisms, like those established by recency-based and frequency-based memory
functions.

A simple example of this approach occurs for the multidimensional knapsack
problem, where values of zero-one variables are changed from 0 to 1 until reaching
the boundary of feasibility. The method then continues into the infeasible region
using the same type of changes but with a modified evaluator. After a selected
number of steps, the direction is reversed by choosing moves that change variables
from 1 to 0. Evaluation criteria to drive toward improvement vary according to
whether the movement occurs inside or outside the feasible region (and whether it is

Tabu Search 3311

Iterations1 2 30

Oscillation Boundary

Depth

Le
ve

l o
r F

un
ct

io
na

l V
al

ueFig. 19 Strategic oscillation

directed toward or away from the boundary), accompanied by associated restrictions
on admissible changes to values of variables. The turnaround toward feasibility can
also be triggered by a maximum infeasibility value, which defines the depth of the
oscillation beyond the critical level (i.e., the feasibility boundary).

A somewhat different type of application occurs for graph theory problems where
the critical level represents a desired form of graph structure, capable of being
generated by progressive additions (or insertions) of basic elements such as nodes,
edges, or subgraphs. One type of strategic oscillation approach for this problem
results by a constructive process of introducing elements until the critical level is
reached and then introducing further elements to cross the boundary defined by the
critical level. The current solution may change its structure once this boundary is
crossed (as where a forest becomes transformed into a graph that contains loops),
and hence, a different neighborhood may be required, yielding modified rules
for selecting moves. The rules again change in order to proceed in the opposite
direction, removing elements until again recovering the structure that defines the
critical level.

In the Min k-Tree problem, for example, edges can be added beyond the critical
level defined by k. Then a rule to delete edges must be applied. The rule to delete
edges will typically be different in character from the one used for adding (i.e., will
not simply be its “inverse”). In this case, all feasible solutions lie on the oscillation
boundary, since any deviation from this level results in solutions with more or less
than k edges.

Such rule changes are typical features of strategic oscillation and provide an
enhanced heuristic vitality. The application of different rules may be accompanied
by crossing a boundary to different depths on different sides. An option is to
approach and retreat from the boundary while remaining on a single side, without
crossing (i.e., electing a crossing of “zero depth”).

These examples constitute a constructive/destructive type of strategic oscillation,
where constructive steps “add” elements (or set variables to 1) and destructive
steps “drop” elements (or set variables to 0) (Types of TS memory structures for
add/drop moves discussed in Sect. 3 are relevant for such procedures). One-sided
oscillations (that remain on a single side of a critical boundary) are appropriate
in a variety of scheduling and graph-related applications, where constructive
processes are traditionally applied. The alternation with destructive processes that

3312 F. Glover and M. Laguna

strategically dismantle and then rebuild successive trial solutions affords a potent
enhancement of more traditional procedures. In both one-sided and two-sided
oscillation approaches, it is frequently important to spend additional search time
in regions close to the critical level and especially to spend time at the critical
level itself. This may be done by inducing a sequence of tight oscillations about the
critical level, as a prelude to each larger oscillation that proceeds to a greater depth.
Alternately, if greater effort is permitted for evaluating and executing each move,
the method may use “exchange moves” (broadly interpreted) to stay at the critical
level for longer periods. In the case of the Min k-Tree problem, for example, once
the oscillation boundary has been reached, the search can stay on it by performing
swap moves (either of nodes or edges). An option is to use such exchange moves to
proceed to a local optimum each time the critical level is reached.

When the level or functional values in Fig. 19 refer to degrees of feasibility and
infeasibility, a vector-valued function associated with a set of problem constraints
can be used to control the oscillation. In this case, controlling the search by bounding
this function can be viewed as manipulating a parameterization of the selected
constraint set. A preferred alternative is often to make the function a Lagrangian or
surrogate constraint penalty function, avoiding vector-valued functions and allowing
trade-offs between degrees of violation of different component constraints.

Intensification processes can readily be embedded in strategic oscillation by
altering choice rules to encourage the incorporation of particular attributes, or at the
extreme, by locking such attributes into the solution for a period. Such processes can
be viewed as designs for exploiting strongly determined and consistent variables.
A strongly determined variable is one that cannot change its value in a given high-
quality solution without seriously degrading quality or feasibility, while a consistent
variable is one that frequently takes on a specific value (or a highly restricted range
of values) in good solutions. The development of useful measures of “strength”
and “consistency” is critical to exploiting these notions, particularly by accounting
for trade-offs determined by context. However, straightforward uses of frequency-
based memory for keeping track of consistency, sometimes weighted by elements
of quality and influence, have produced methods with very good performance
outcomes.

An example of where these kinds of approaches are also beginning to find favor
in other settings occurs in recently developed variants of genetic algorithms for
sequencing problems. The more venturesome of these approaches are coming to
use special forms of “crossover” to assure offspring will receive attributes shared
by good parents, thus incorporating a type of intensification based on consistency.
Extensions of such procedures using TS ideas of identifying elements that qualify as
consistent and strongly determined according to broader criteria, and making direct
use of memory functions to establish this identification, provide an interesting area
for investigation (Additional links to GA methods, and ways to go beyond current
explorations of such methods, are discussed in Sect. 6).

Longer-term processes, following the type of progression customarily found
beneficial in tabu search, may explicitly introduce supplemental diversification
strategies into the oscillation pattern. When oscillation is based on constructive

Tabu Search 3313

and destructive processes, the repeated application of constructive phases (rather
than moving to intermediate levels using destructive moves) embodies an extreme
type of oscillation that is analogous to a restart method. In this instance, the
restart point is always the same (i.e., a null state) instead of consisting of different
initial solutions, and hence, it is important to use choice rule variations to assure
appropriate diversification.

A connection can also be observed between an extreme version of strategic
oscillation, in this case a relaxed version, and the class of procedures known
as perturbation approaches. An example is the subclass known as “large-step
simulated annealing” or “large-step Markov chain” methods [39, 52–54]. Such
methods try to drive an SA procedure (or an iterated descent procedure) out of local
optimality by propelling the solution a greater distance than usual from its current
location.

Perturbation methods may be viewed as loosely structured procedures for
inducing oscillation, without reference to intensification and diversification and
their associated implementation strategies. Similarly, perturbation methods are not
designed to exploit trade-offs created by parametric variations in elements such as
different types of infeasibility and measures of displacement from different sides
of boundaries. Nevertheless, at a first level of approximation, perturbation methods
seek goals similar to those pursued by strategic oscillation.

5.5 Path Relinking

A useful integration of intensification and diversification strategies occurs in the
approach called path relinking. This approach generates new solutions by exploring
trajectories that connect elite solutions by starting from one of these solutions,
called an initiating solution, and generating a path in the neighborhood space that
leads toward the other solutions, called guiding solutions. This is accomplished by
selecting moves that introduce attributes contained in the guiding solutions.

The approach may be viewed as an extreme (highly focused) instance of a
strategy that seeks to incorporate attributes of high-quality solutions, by creating
inducements to favor these attributes in the moves selected. However, instead of
using an inducement that merely encourages the inclusion of such attributes, the
path-relinking approach subordinates all other considerations to the goal of choosing
moves that introduce the attributes of the guiding solutions, in order to create a
“good attribute composition” in the current solution. The composition at each step
is determined by choosing the best move, using customary choice criteria, from
the restricted set of moves that incorporate a maximum number (or a maximum
weighted value) of the attributes of the guiding solutions. As in other applications
of TS, aspiration criteria can override this restriction to allow other moves of
particularly high quality to be considered.

Specifically, upon identifying a collection of one or more elite solutions to guide
the path of a given solution, the attributes of these guiding solutions are assigned
preemptive weights as inducements to be selected. Larger weights are assigned to

3314 F. Glover and M. Laguna

attributes that occur in greater numbers of the guiding solutions, allowing bias to
give increased emphasis to solutions with higher quality or with special features
(e.g., complementing those of the solution that initiated the new trajectory).

More generally, it is not necessary for an attribute to occur in a guiding solution
in order to have a favored status. In some settings, attributes can share degrees of
similarity, and in this case, it can be useful to view a solution vector as providing
“votes” to favor or discourage particular attributes. Usually, the strongest forms of
aspiration criteria are relied upon to overcome this type of choice rule.

In a given collection of elite solutions, the role of initiating solution and
guiding solutions can be alternated. The distinction between initiating solutions and
guiding solutions effectively vanishes in such cases. For example, a set of current
solutions may be generated simultaneously, extending different paths and allowing
an initiating solution to be replaced (as a guiding solution for others) whenever its
associated current solution satisfies a sufficiently strong aspiration criterion.

Because their roles are interchangeable, the initiating and guiding solutions are
collectively called reference solutions. These reference solutions can have different
interpretations depending on the solution framework under consideration. Reference
points can be created by any of a number of different heuristics that result in high-
quality solutions.

An idealized form of such a process is shown in Fig. 20. The chosen collection
of reference solutions consists of the three members, A, B, and C. Paths are
generated by allowing each to serve as initiating solution and by allowing either
one or both of the other two solutions to operate as guiding solutions. Intermediate
solutions encountered along the paths are not shown. The representation of the
paths as straight lines of course is oversimplified, since choosing among available
moves in a current neighborhood will generally produce a considerably more
complex trajectory. Intensification can be achieved by generating paths from similar
solutions, while diversification is obtained creating paths from dissimilar solutions.
Appropriate aspiration criteria allow deviation from the paths at attractive neighbors.

As Fig. 20 indicates, at least one path continuation is allowed beyond each
initiating/guiding solution. Such a continuation can be accomplished by penalizing
the inclusion of attributes dropped during a trajectory, including attributes of guiding
solutions that may be compelled to be dropped in order to continue the path (An
initiating solution may also be repelled from the guiding solutions by penalizing
the inclusion of their attributes from the outset). Probabilistic TS variants operate
in the path-relinking setting, as they do in others, by translating evaluations for
deterministic rules into probabilities of selection, strongly biased to favor higher
evaluations.

Promising regions are searched more thoroughly in path relinking by modifying
the weights attached to attributes of the guiding solutions and by altering the bias
associated with solution quality and selected solution features. Figure 21 depicts the
type of variation that can result, where the point X represents an initiating solution,
the points A, B, and C represent guiding solutions, and the dashed, dotted, and solid
lines are different searching paths. For appropriate choices of the reference points
(and neighborhoods for generating paths from them), the notion called the Principle

Tabu Search 3315

A

B C

Fig. 20 Paths relinking in neighborhood space

X

C

B

A

Fig. 21 Path relinking by attribute bias

of Proximate Optimality [31] suggests that additional elite points are likely to be
found in the regions traversed by the paths, upon launching new searches from high
quality points on these paths.

5.5.1 Roles in Intensification and Diversification
Path relinking, in common with strategic oscillation, gives a natural foundation for
developing intensification and diversification strategies. Intensification strategies in
this setting typically choose reference solutions to be elite solutions that lie in a
common region or that share common features. Similarly, diversification strategies

3316 F. Glover and M. Laguna

based on path relinking characteristically select reference solutions that come from
different regions or that exhibit contrasting features. Diversification strategies may
also place more emphasis on paths that go beyond the reference points. Collections
of reference points that embody such conditions can be usefully determined by
clustering and conditional analysis methods.

These alternative forms of path relinking also offer a convenient basis for parallel
processing, contributing to the approaches for incorporating intensification and
diversification trade-offs into the design of parallel solution processes generally.

5.5.2 Incorporating Alternative Neighborhoods
Path-relinking strategies in tabu search can occasionally profit by employing
different neighborhoods and attribute definitions than those used by the heuristics
for generating the reference solutions. For example, it is sometimes convenient
to use a constructive neighborhood for path relinking, that is, one that permits a
solution to be built in a sequence of constructive steps (as in generating a sequence
of jobs to be processed on specified machines using dispatching rules). In this
case, the initiating solution can be used to give a beginning partial construction,
by specifying particular attributes (such as jobs in particular relative or absolute
sequence positions) as a basis for remaining constructive steps. Similarly, path
relinking can make use of destructive neighborhoods, where an initial solution is
“overloaded” with attributes donated by the guiding solutions, and such attributes
are progressively stripped away or modified until reaching a set with an appropriate
composition.

When path relinking is based on constructive neighborhoods, the guiding
solution(s) provides the attribute relationships that give options for subsequent
stages of construction. At an extreme, a full construction can be produced, by
making the initiating solution a null solution. The destructive extreme starts from a
“complete set” of solution elements. Constructive and destructive approaches differ
from transition approaches by typically producing only a single new solution, rather
than a sequence of solutions, on each path that leads from the initiating solution
toward the others. In this case, the path will never reach the additional solutions
unless a transition neighborhood is used to extend the constructive neighborhood.

Constructive neighborhoods can often be viewed as a special case of feasibility
restoring neighborhoods, since a null or partially constructed solution does not
satisfy all conditions to qualify as feasible. Similarly, destructive neighborhoods can
also represent an instance of a feasibility restoring function, as where an excess of
elements may violate explicit problem constraints. A variety of methods have been
devised to restore infeasible solutions to feasibility, as exemplified by flow aug-
mentation methods in network problems, subtour elimination methods in traveling
salesman and vehicle routing problems, alternating chain processes in degree-
constrained subgraph problems, and value incrementing and decrementing methods
in covering and multidimensional knapsack problems. Using neighborhoods that
permit restricted forms of infeasibilities to be generated, and then using associated
neighborhoods to remove these infeasibilities, provides a form of path relinking with
useful diversification features. Upon further introducing transition neighborhoods,

Tabu Search 3317

with the ability to generate successive solutions with changed attribute mixes, the
mechanism of path relinking also gives a way to tunnel through infeasible regions.
The following is a summary of the components of path relinking:
Step 1. Identify the neighborhood structure and associated solution attributes for

path relinking (possibly different from those of other TS strategies applied
to the problem).

Step 2. Select a collection of two or more reference solutions, and identify
which members will serve as the initiating solution and the guiding
solution(s) (Reference solutions can be infeasible, such as “incomplete” or
“overloaded” solution components treated by constructive or destructive
neighborhoods).

Step 3. Move from the initiating solution toward (or beyond) the guiding solu-
tion(s), generating one or more intermediate solutions as candidates to
initiate subsequent problem-solving efforts (If the first phase of this step
creates an infeasible solution, apply an associated second phase with a
feasibility restoring neighborhood).

In Sect. 6, we will see how the path-relinking strategy relates to a strategy called
scatter search, which provides additional insights into the nature of both approaches.

5.6 The Intensification/Diversification Distinction

The relevance of the intensification/diversification distinction is supported by the
usefulness of TS strategies that embody these notions. Although both operate in the
short term as well as the long term, we have seen that longer-term strategies are
generally the ones where these notions find their greatest application.

In some instances, we may conceive of intensification as having the function of
an intermediate term strategy, while diversification applies to considerations that
emerge in the longer run. This view comes from the observation that in human
problem solving, once a short-term strategy has exhausted its efficacy, the first
(intermediate term) response is often to focus on the events where the short-term
approach produced the best outcomes and to try to capitalize on elements that may
be common to those events. When this intensified focus on such events likewise
begins to lose its power to uncover further improvement, more dramatic departures
from a short-term strategy are undertaken (Psychologists do not usually differentiate
between intermediate and longer-term memory, but the fact that memory for
intensification and diversification can benefit from such differentiation suggests
that there may be analogous physical or functional differences in human memory
structures). Over the truly long term, however, intensification and diversification
repeatedly come into play in ways where each depends on the other, not merely
sequentially, but also simultaneously.

There has been some confusion between the terms intensification and diversi-
fication, as applied in tabu search, and the terms exploitation and exploration, as
popularized in the literature of genetic algorithms. The differences between these

3318 F. Glover and M. Laguna

two sets of notions deserve to be clarified, because they have substantially different
consequences for problem solving.

The exploitation/exploration distinction comes from control theory, where ex-
ploitation refers to following a particular recipe (traditionally memoryless) until it
fails to be effective, and exploration then refers to instituting a series of random
changes – typically via multiarmed bandit schemes – before reverting to the tactical
recipe (The issue of exploitation versus exploration concerns how often and under
what circumstances the randomized departures are launched).

By contrast, intensification and diversification in tabu search are both processes
that take place when simpler exploitation designs play out and lose their effective-
ness – although as we have noted, the incorporation of memory into search causes
intensification and diversification also to be manifest in varying degrees even in the
short range (Similarly, as we have noted, intensification and diversification are not
opposed notions, for the best form of each contains aspects of the other, along a
spectrum of alternatives).

Intensification and diversification are likewise different from the control theory
notion of exploration. Diversification, which is sometimes confused with explo-
ration, is not a recourse to a game of chance for shaking up the options invoked
but is a collection of strategies – again taking advantage of memory – designed to
move purposefully rather than randomly into uncharted territory.

The source of these differences is not hard to understand. Researchers and
practitioners in the area of search methods have had an enduring love affair with
randomization, perhaps influenced by the much publicized Heisenberg Uncertainty
Principle in Quantum Mechanics. Einstein’s belief that God does not roll dice is
out of favor, and many find a special enchantment in miraculous events where blind
purposelessness creates useful order (We are less often disposed to notice that this
way of producing order requires an extravagant use of time and that order, once
created, is considerably more effective than randomization in creating still higher
order).

Our “scientific” reports of experiments with nature reflect our fascination with
the role of chance. When apparently chaotic fluctuations are brought under control
by random perturbations, we seize upon the random element as the key, while
downplaying the importance of attendant restrictions on the setting in which
randomization operates. The diligently concealed message is that under appropriate
controls, perturbation is effective for creating desired patterned outcomes – and in
fact, if the system and attendant controls are sufficiently constrained, perturbation
works even when random (Instead of accentuating differences between workable
and unworkable kinds of perturbation, in our quest to mold the universe to match
our mystique, we portray the central consideration to be randomization versus
nonrandomization).

The tabu search orientation evidently contrasts with this perspective. As man-
ifest in the probabilistic TS variant, elements subjected to random influence are
preferably to be strongly confined, and uses of randomization are preferably to be
modulated through well differentiated probabilities. In short, the situations where
randomization finds a place are very highly structured. From this point of view, God
may play with dice, but beyond any question, the dice are loaded.

Tabu Search 3319

5.7 Some Basic Memory Structures for Longer-Term Strategies

To give a foundation for describing fundamental types of memory structures for
longer-term strategies, we first briefly review the form of the recency-based memory
structure introduced in Sect. 3 for handling add/drop moves. However, we slightly
change the notation to provide a convenient way to refer to a variety of other types
of moves.

5.7.1 Conventions
Let S = f1, 2,. . . , sg denote an index set for a collection of solution attributes. For
example, the indexes i 2 S may correspond to indexes of zero-one variables xi ,
or they may be indexes of edges that may be added to or deleted from a graph,
or the job indexes in a production scheduling problem. More precisely, by the
attribute/element distinction discussed in Sect. 3, the attributes referenced by S

in these cases consist of the specific values assigned to the variables, the specific
add/drop states adopted by the edges, or positions occupied by the jobs. In general,
to give a correspondence with developments of Sect. 4, an index i 2 S can
summarize more detailed information, for example, by referring to an ordered pair
(j; k) that summarizes a value assignment xj D k or the assignment of job j to
position k. Hence, broadly speaking, the index i may be viewed as a notational
convenience for representing a pair or a vector.

To keep our description at the simplest level, suppose that each i 2 S

corresponds to a 0–1 variable xi . As before, we let Iter denote the counter that
identifies the current iteration, which starts at 0 and increases by 1 each time a move
is made.

For recency-based memory, following the approach indicated in Sect. 3, when
a move is executed that causes a variable xi to change its value, we record
TabuStart(i) = Iter immediately after updating the iteration counter (This means
that if the move has resulted in xi D 1, then the attribute xi D 0 becomes tabu-
active at the iteration TabuStart(i)). Further, we let TabuTenure(i) denote the number
of iterations this attribute will remain tabu-active. Thus, by our previous design,
the recency-based tabu criterion says that the previous value of xi is tabu-active
throughout all iterations such that

TabuStart.i/ C TabuTenure.i/ � Iter:

Similarly, in correspondence with earlier remarks, the value TabuStart(i) can be
set to 0 before initiating the method, as a convention to indicate no prior history
exists. Then, we automatically avoid assigning a tabu-active status to any variable
with TabuStart.i/ D 0 (since the starting value for variable xi has not yet been
changed).

5.7.2 Frequency-Based Memory
By our foregoing conventions, allowing the set S = f1, . . . , sg for illustration
purposes to refer to indexes of 0–1 variables xi , we may indicate structures to handle
frequency-based memory as follows.

3320 F. Glover and M. Laguna

Transition frequency-based memory is by far the simplest to handle. A transition
memory, Transition(i), to record the number of times xi changes its value, can
be maintained simply in the form of a counter for xi that is incremented at each
move where such a change occurs. Since xi is a zero-one variable, Transition(i)
also discloses the number of times xi changes to and from each of its possible
assigned values. In more complex situations, by the conventions already noted, a
matrix memory Transition(j; k) can be used to determine numbers of transitions
involving assignments such as xj D k. Similarly, a matrix memory may be used in
the case of the sequencing problem where both the index of job j and position k

may be of interest. In the context of the Min k-Tree problem, an array dimensioned
by the number of edges can maintain a transition memory to keep track of the
number of times that specific edges have been brought in and out of the solution. A
matrix based on the edges can also identify conditional frequencies. For example,
the matrix Transition(j; k) can be used to count the number of times edge j replaced
edge k. It should be kept in mind in using transition frequency memory that penalties
and inducements are often based on relative numbers (rather than absolute numbers)
of transitions, hence requiring that recorded transition values are divided by the
total number of iterations (or the total number of transitions). As noted earlier, other
options include dividing by the current maximum transition value. Raising transition
values to a power, as by squaring, is often useful to accentuate the differences in
relative frequencies.

Residence memory requires only slightly more effort to maintain than transition
memory, by taking advantage of the recency-based memory stored in TabuStart(i).
The following approach can be used to track the number of solutions in which
xi D 1, thereby allowing the number of solutions in which xi D 0 to be inferred
from this. Start with Residence .i/ D 0 for all i . Then, whenever xi changes from 1
to 0, after updating Iter but before updating TabuStart(i), set

Residence .i/ D Residence .i/ C Iter � TabuStart .i/:

Then, during iterations when xi D 0, Residence(i) correctly stores the number of
earlier solutions in which xi D 1. During iterations when xi D 1, the true value of
Residence(i) is the right-hand side of the preceding assignment; however, the update
only has to be made at the indicated points when xi changes from 1 to 0. Table 9
illustrates how this memory structure works when used to track the assignments of
a variable x during 100 iterations. The variable is originally assigned to a value
of zero by a construction procedure that generates an initial solution. In iteration
10, a move is made that changes the assignment of x from zero to one; however,
the Residence value remains at zero. Residence is updated at iterations 22 and 73,
when moves are made that change the assignment of x from 1 to 0. At iteration 65,
for example, x has received a value of 1 for 27 iterations (i.e., Residence + Iter -
TabuStart = 12 + 65 - 50 = 27), while at iteration 90, the count is 35 (i.e., the value
of Residence).

As with transition memory, residence memory should be translated into a relative
as a basis for creating penalties and inducements.

Tabu Search 3321

Table 9 Illustrative
residence memory

Iter Assignment Residence

0 x D 0 0
10 x D 1 0
22 x D 0 22 � 10 D 12

50 x D 1 12
73 x D 0 12 C 73 � 50 D 35

The indicated memory structures can readily be applied to multivalued variables
(or multistate attributes) by the extended designs illustrated in Sect. 4. In addition,
the 0–1 format can be adapted to reference the number of times (and last time) a
more general variable changed its value, which leads to more restrictive tabu condi-
tions and more limiting (“stronger”) uses of frequency-based memory than by refer-
ring separately to each value the variable receives. As in the case of recency-based
memory, the ability to affect larger numbers of alternative moves by these more ag-
gregated forms of memory can be useful for larger problems, not only for conserving
memory space but also for providing additional control over solutions generated.

5.7.3 Critical Event Memory
Strategic oscillation offers an opportunity to make particular use of both short-term
and long-term frequency-based memory. To illustrate, let A(Iter) denote a zero-one
vector whose j th component has the value 1 if attribute j is present in the current
solution and has the value 0 otherwise. The vector A can be treated “as if” it is the
same as the solution vector for zero-one problems, though implicitly it is twice as
large, since xj D 0 is a different attribute from xj D 1. This means that rules for
operating on the full A must be reinterpreted for operating on the condensed form of
A. The sum of the A vectors over the most recent t critical events provides a simple
memory that combines recency and frequency considerations. To maintain the sum
requires remembering A.k/, for k ranging over the last t iterations. Then the sum
vector A� can be updated quite easily by the incremental calculation:

A� D A� C A.Iter/ � A.Iter � t C 1/:

Associated frequency measures, as noted earlier, may be normalized, in this case,
for example, by dividing A� by the value of t . A long-term form of A� does not
require storing the A.k/ vectors but simply keeps a running sum. A� can also be
maintained by exponential smoothing.

Such frequency-based memory is useful in strategic oscillation where critical
events are chosen to be those of generating a complete (feasible) construction or
in general of reaching the targeted boundary (or a best point within a boundary
region). Instead of using a customary recency-based TS memory at each step of an
oscillating pattern, greater flexibility results by disregarding tabu restrictions until
reaching the turning point, where the oscillation process alters its course to follow a
path toward the boundary. At this point, assume a choice rule is applied to introduce
an attribute that was not contained in any recent solution at the critical level. If this

3322 F. Glover and M. Laguna

Critical Level

Update critical attribute frequencies *
(short and long term)

Maintain level for s iterations

Turn Around Point

Favor (the inclusion of) low frequency
critical attributes for first “small r ” steps of

the following “Advance.”

Advance

Low frequency attributes
added during first “small r ”

steps are Tabu to drop.

Retreat

(In chosen direction)
Constructive or
Destructive, etc.

* For selected part of critical level iterations: e.g., for first and best solutions of current block

Fig. 22 Strategic oscillation illustrative memory

attribute is maintained in the solution by making it tabu to be dropped, then upon
eventually reaching the critical level, the solution will be different from any seen
over the horizon of the last t critical events. Thus, instead of updating A� at each
step, the updating is done only for critical level solutions, while simultaneously
enhancing the flexibility of making choices.

In general, the possibility occurs that no attribute exists that allows this process
to be implemented in the form stated. That is, every attribute may already have a
positive associated entry in A�. Thus, at the turn-around point, the rule instead is to
choose a move that introduces attributes which are least frequently used (Note that
“infrequently used” can mean either “infrequently present” or “infrequently absent,”
depending upon the current direction of oscillation). This again can be managed
conveniently by using penalties and inducements. Such an approach has been
found very effective for multidimensional knapsack problems and 0–1 quadratic
optimization problems in [30, 33].

For greater diversification, this rule can be applied for r steps after reaching
the turnaround point. Normally, r should be a small number, for example, with a
baseline value of 1 or 2, which is periodically increased in a standard diversification
pattern. Shifting from a short-term A� to a long-term A� creates a global diversifi-
cation effect. A template for this approach is given in Fig. 22.

The approach of Fig.22 is not symmetric. An alternative form of control is to seek
immediately to introduce a low-frequency attribute upon leaving the critical level,
to increase the likelihood that the solution at the next turn around will not duplicate
a solution previously visited at that point. Such a control enhances diversity, though
duplication at the turn around will already be inhibited by starting from different
solutions at the critical level.

Tabu Search 3323

6 Connections, Hybrid Approaches, and Learning

Relationships between tabu search and other procedures like simulated annealing
and genetic algorithms provide a basis for understanding similarities and contrasts
in their philosophies and for creating potentially useful hybrid combinations of these
approaches. We offer some speculation on preferable directions in this regard and
also suggest how elements of tabu search can add a useful dimension to neural
network approaches.

From the standpoint of evolutionary strategies, we trace connections between
population-based models for combining solutions, as in genetic algorithms, and
ideas that emerged from surrogate constraint approaches for exploiting optimization
problems by combining constraints. We show how this provides the foundation for
methods that give additional alternatives to genetic-based frameworks, specifically
as embodied in the scatter search approach, which is the “primal complement” to
the dual strategy of surrogate constraint approaches. Recent successes by integrating
scatter search (and its path-relinking extensions) with tabu search disclose potential
advantages for evolutionary strategies that incorporate adaptive memory.

Finally, we describe the learning approach called target analysis, which provides
a way to determine decision parameters for deterministic and probabilistic strate-
gies – and thus affords an opportunity to create enhanced solution methods.

6.1 Simulated Annealing

The contrasts between simulated annealing and tabu search are fairly conspicuous,
though undoubtedly, the most prominent is the focus on exploiting memory in
tabu search that is absent from simulated annealing. The introduction of this focus
entails associated differences in search mechanisms and in the elements on which
they operate. Accompanying the differences directly attributable to the focus on
memory, and also magnifying them, several additional elements are fundamental
for understanding the relationship between the methods. We consider three such
elements in order of increasing importance.

First, tabu search emphasizes scouting successive neighborhoods to identify
moves of high quality, as by candidate list approaches of the form described in
Sect. 4. This contrasts with the simulated annealing approach of randomly sampling
among these moves to apply an acceptance criterion that disregards the quality of
other moves available (Such an acceptance criterion provides the sole basis for
sorting the moves selected in the SA method). The relevance of this difference in
orientation is accentuated for tabu search, since its neighborhoods include linkages
based on history and therefore yield access to information for selecting moves that
is not available in neighborhoods of the type used in simulated annealing.

Next, tabu search evaluates the relative attractiveness of moves not only in
relation to objective function change but in relation to additional factors that
represent quality, which are balanced over time with factors that represent influence.
Both types of measures are affected by the differentiation among move attributes, as

3324 F. Glover and M. Laguna

embodied in tabu-activation rules and aspiration criteria, and in turn by relationships
manifested in recency, frequency, and sequential interdependence (hence, again,
involving recourse to memory). Other aspects of the state of search also affect
these measures, as reflected in the altered evaluations of strategic oscillation, which
depend on the direction of the current trajectory and the region visited.

Finally TS emphasizes guiding the search by reference to multiple thresholds,
reflected in the tenures for tabu-active attributes and in the conditional stipulations
of aspiration criteria. This may be contrasted to the simulated annealing reliance
on guiding the search by reference to the single threshold implicit in the tem-
perature parameter. The treatment of thresholds by the two methods compounds
this difference between them. Tabu search varies its thresholds nonmonotonically,
reflecting the conception that multidirectional parameter changes are essential to
adapt to different conditions and to provide a basis for locating alternatives that
might otherwise be missed. This contrasts with the simulated annealing philosophy
of adhering to a temperature parameter that only changes monotonically.

Hybrids are now emerging that are taking preliminary steps to bridge some of
these differences, particularly in the realm of transcending the simulated annealing
reliance on a monotonic temperature parameter. A hybrid method that allows
temperature to be strategically manipulated, rather than progressively diminished,
has been shown to yield improved performance over standard SA approaches. A
hybrid method that expands the SA basis for move evaluations also has been found
to perform better than standard simulated annealing. Consideration of these findings
invites the question of whether removing the memory scaffolding of tabu search
and retaining its other features may yield a viable method in its own right. For
example, experience cited in some of the studies reported in Glover and Laguna [31]
suggests that, while a memoryless version of tabu search called tabu thresholding
can outperform a variety of alternative heuristics, it generally does not match the
performance of TS methods that appropriately exploit memory.

6.2 Genetic Algorithms

Genetic algorithms offer a somewhat different set of comparisons and contrasts
with tabu search. GAs are based on selecting subsets (traditionally pairs) of
solutions from a population, called parents, and combining them to produce new
solutions called children. Rules of combination to yield children are based on the
genetic notion of crossover, which in the classical form consists of interchanging
solution values of particular variables, together with occasional operations such
as random value changes. Children that pass a survivability test, probabilistically
biased to favor those of superior quality, are then available to be chosen as
parents of the next generation. The choice of parents to be matched in each
generation is based on random or biased random sampling from the population (in
some parallel versions executed over separate subpopulations whose best members
are periodically exchanged or shared). Genetic terminology customarily refers to
solutions as chromosomes, variables as genes, and values of variables as alleles.

Tabu Search 3325

By means of coding conventions, the genes of genetic algorithms may be
compared to attributes in tabu search. Introducing memory in GAs to track the
history of genes and their alleles over subpopulations would provide an immediate
and natural way to create a hybrid with TS.

Some important differences between genes and attributes are worth noting,
however. The implicit differentiation of attributes into from and to components,
each having different memory functions, does not have a counterpart in genetic
algorithms. A from attribute is one that is part of the current solution but is not
included in the next solution once a move is made. A to attribute is one that
is not part of the current solution but becomes part of the next solution once a
move is made. The lack of this type of differentiation in GAs results because these
approaches are organized to operate without reference to moves (although, strictly
speaking, combination by crossover can be viewed as a special type of move).

A contrast to be noted between genetic algorithms and tabu search arises in
the treatment of context, that is, in the consideration given to structure inherent
in different problem classes. For tabu search, context is fundamental, embodied in
the interplay of attribute definitions and the determination of move neighborhoods
and in the choice of conditions to define tabu restrictions. Context is also implicit
in the identification of amended evaluations created in association with longer-term
memory and in the regionally dependent neighborhoods and evaluations of strategic
oscillation.

At the opposite end of the spectrum, GA literature has traditionally stressed
the freedom of its rules from the influence of context. Crossover, in particular, is
supposedly a context neutral operation, which assumes no reliance on conditions
that solutions must obey in a particular problem setting, just as genes make no
reference to the environment as they follow their instructions for recombination
(except, perhaps, in the case of mutation). Practical application, however, generally
renders this an inconvenient assumption, making solutions of interest difficult
to find. Consequently, a good deal of effort in GA implementation is devoted
to developing “special crossover” operations that compensate for the difficulties
created by context, effectively reintroducing it on a case-by-case basis.

The chief method by which modern genetic algorithms handle structure is by
relegating its treatment to some other method. For example, genetic algorithms
combine solutions by their parent-children processes at one level, and then a descent
method may be introduced to operate on the resulting solutions to produce new
solutions. These new solutions in turn are submitted to be recombined by the GA
processes. In these versions, genetic algorithms already take the form of hybrid
methods. Hence, there is a natural basis for marrying GA and TS procedures in
such approaches. But genetic algorithms and tabu search also can be joined in a
more fundamental way.

Specifically, tabu search strategies for intensification and diversification are
based on the following question: How can information be extracted from a set of
good solutions to help uncover additional (and better) solutions? From one point of
view, GAs provide an approach for answering this question, consisting of putting
solutions together and interchanging components (in some loosely defined sense,

3326 F. Glover and M. Laguna

if traditional crossover is not strictly enforced). Tabu search, by contrast, seeks an
answer by utilizing processes that specifically incorporate neighborhood structures
into their design.

Augmented by historical information, neighborhood structures are used as a
basis for applying penalties and incentives to induce attributes of good solutions
to become incorporated into current solutions. Consequently, although it may be
meaningless to interchange or otherwise incorporate a set of attributes from one
solution into another in a wholesale fashion, as attempted in traditional GA recombi-
nation operations, a stepwise approach to this goal through the use of neighborhood
structures is entirely practicable. This observation provides a motive for creating
structured combinations of solutions that embody desired characteristics such as
feasibility – as is automatically achieved by the TS approach of path relinking
discussed in Sect. 5. Instead of being compelled to create new types of crossover
to remove deficiencies of standard operators upon being confronted by changing
contexts, this approach addresses context directly and makes it an essential part of
the design for generating combinations.

The current trend of genetic algorithms seems to be increasingly compatible with
this perspective and could provide a basis for a useful hybrid combination of genetic
algorithm and tabu search ideas. However, a fundamental question emerges, as
posed in the development of the next sections, about whether there is any advantage
to introducing genetic crossover-based ideas over introducing the apparently more
flexible and exploitable path-relinking ideas.

6.2.1 Models of Nature: Beyond “Genetic Metaphors”
An aspect of tabu search that is often misunderstood concerns the relation between
a subset of its strategies and certain approaches embodied in genetic algorithms.
TS researchers have tended sometimes to overlook the part of the adaptive memory
focus that is associated with strategies for combining sets of elite solutions. Com-
plementing this, GA researchers have been largely unaware that such a collection
of strategies outside their domain exists. This has quite possibly been due to the
influence of the genetic metaphor, which on the one hand has helped to launch a
number of useful problem-solving ideas and on the other hand has also sometimes
obscured fertile connections to ideas that come from different foundations.

To understand the relevant ties, it is useful to go back in time to examine the
origins of the GA framework and of an associated set of notions that became
embodied in TS strategies. We will first sketch the original genetic algorithm
design (see Fig. 23), as characterized in Holland [38]. Our description is purposely
somewhat loose to be able to include approaches more general than the specific
proposals that accompanied the introduction of GAs. Many variations and changes
have come about over the years, as we subsequently observe.

A somewhat different model for combining elements of a population comes
from a class of relaxation strategies in mathematical optimization known as
surrogate constraint methods [19]. The goal of these approaches is to generate
new constraints that capture information not contained in the original problem
constraints taken independently, but which is implied by their union. We will see

Tabu Search 3327

1) Begin with a population of binary vectors.

2) Operate repeatedly on the current generation of vectors,
for a selected number of steps, choosing two “parent
vectors” at random. Then mate the parents by exchanging
certain of their components to produce offspring. (The
exchange, called “crossover,” was originally designed to
reflect the process by which chromosomes exchange
components in genetic mating and, in common with the
step of selecting parents themselves, was organized to rely
heavily on randomization. In addition, a “mutation”
operation is occasionally allowed to flip bits at random.)

3) Apply a measure of fitness to decide which offspring
survive to become parents for the next generation. When
the selected number of matings has been performed for
the current generation, return to the start of Step 2 to
initiate the mating of the resulting new set of parents.

4) Carry out the mating-and-survival operation of Steps 2
and 3 until the population becomes stable or until a
chosen number of iterations has elapsed.

Fig. 23 Genetic algorithm
template

that some unexpected connections emerge between this development and that of
genetic algorithms.

The information-capturing focus of the surrogate constraint framework has the
aim of developing improved methods for solving difficult optimization problems by
means of (a) providing better criteria for choice rules to guide a search for improved
solutions and (b) inferring new bounds (constraints with special structures) to limit
the space of solutions examined (The basic framework and strategies for exploiting
it are given in Glover [19–21], Greenberg and Pierskalla [36,37], Karwan and Rardin
[40,41], and Freville and Plateau [15,16]). Based on these objectives, the generation
of new constraints proceeds as indicated in Fig. 24.

A natural first impression is that the surrogate constraint design is quite unrelated
to the GA design, stemming from the fact that the concept of combining constraints
seems inherently different from the concept of combining vectors. However, in
many types of problem formulations, including those where surrogate constraints
were first introduced, constraints are summarized by vectors. More particularly,
over time, as the surrogate constraint approach became embedded in both exact and
heuristic methods, variations led to the creation of a “primal counterpart” called
scatter search. The scatter search approach combines solution vectors by rules
patterned after those that govern the generation of new constraints and specifically
inherits the strategy of exploiting linear combinations and inference [22].

6.3 Scatter Search

The scatter search process, building on the principles that underlie the surrogate
constraint design, is organized to (1) capture information not contained separately

3328 F. Glover and M. Laguna

1) Begin with an initial set of problem constraints (chosen to
characterize all or a special part of the feasible region for the
problem considered).

2) Create a measure of the relative influence of the constraints
as basis for combining subsets to generate new constraints.
The new (surrogate) constraints, are created from
nonnegative linear combinations of other constraints,
together with cutting planes inferred from such
combinations. (The goal is to determine surrogate
constraints that are most effective for guiding the solution
process.)

3) Change the way the constraints are combined, based on the
problem constraints that are not satisfied by trial solutions
generated relative to the surrogate constraints, accounting
for the degree to which different source constraints are
violated. Then process the resulting new surrogate
constraints to introduce additional inferred constraints
obtained from bounds and cutting planes. (Weaker
surrogate constraints and source constraints that are
determined to be redundant are discarded.)

4) Change the way the constraints are combined, based on the
problem constraints that are not satisfied by trial solutions
generated relative to the surrogate constraints, accounting
for the degree to which different source constraints are
violated. Then process the resulting new surrogate
constraints to introduce additional inferred constraints
obtained from bounds and cutting planes. (Weaker
surrogate constraints and source constraints that are
determined to be redundant are discarded.)

Fig. 24 Surrogate constraint
template

in the original vectors and (2) take advantage of auxiliary heuristic solution methods
to evaluate the combinations produced and to generate new vectors.

The original form of scatter search may be sketched as in Fig. 25.
Three particular features of scatter search deserve mention. First, the linear

combinations are structured according to the goal of generating weighted centers of
selected subregions, allowing for nonconvex combinations that project these centers
into regions external to the original reference solutions. The dispersion pattern
created by such centers and their external projections is particularly useful for
mixed-integer optimization. Second, the strategies for selecting particular subsets of
solutions to combine in Step 2 are designed to make use of clustering, which allows
different types of strategic variation by generating new solutions “within clusters”
and “across clusters.” Third, the method is organized to use supporting heuristics
that are able to start from infeasible solutions and hence which remove the restriction
that solutions selected as starting points for reapplying the heuristic processes must
be feasible. In sum, scatter search is founded on the following premises.

(P1) Useful information about the form (or location) of optimal solutions is
typically contained in a suitably diverse collection of elite solutions.

Tabu Search 3329

1) Generate a starting set of solution vectors by heuristic
processes designed for the problem considered, and
designate a subset of the best vectors to be reference
solutions. (Subsequent iterations of this step, transferring
from Step 3 below, incorporate advanced starting
solutions and best solutions from previous history as
candidates for the reference solutions.)

2) Create new points consisting of linear combinations of
subsets of the current reference solutions. The linear
combinations are:
(a) chosen to produce points both inside and outside the
 convex regions spanned by the reference solutions.
(b) modified by generalized rounding processes to yield
 integer values for integer-constrained vector
 components.

3) Extract a collection of the best solutions generated in
Step 2 to be used as starting points for a new application
of the heuristic processes of Step 1. Repeat these steps
until reaching a specified iteration limit.

Fig. 25 Scatter search
procedure

(P2) When solutions are combined as a strategy for exploiting such information,
it is important to provide for combinations that can extrapolate beyond
the regions spanned by the solutions considered and further to incorporate
heuristic processes to map combined solutions into new points (This serves
to provide both diversity and quality).

(P3) Taking account of multiple solutions simultaneously, as a foundation for
creating combinations, enhances the opportunity to exploit information
contained in the union of elite solutions.

The fact that the heuristic processes of scatter search are not restricted to a single
uniform design, but represent a varied collection of procedures, affords additional
strategic possibilities. This theme also shares a link with the original surrogate
constraint proposal, where heuristics for surrogate relaxations are introduced to
improve the application of exact solution methods. In combination, the heuristics
are used to generate strengthened surrogate constraints and, iteratively applied, to
generate trial solutions for integer programming problems.

The catalog in Fig.26 traces the links between the conceptions underlying scatter
search and conceptions that have been introduced over time as amendments to the
GA framework.

These innovations in the GA domain, which have subsequently been incorporated
in a wide range of studies, are variously considered to be advances or heresies
according to whether they are viewed from liberal or traditional perspectives.
Significantly, their origins are somewhat diffuse, rather than integrated within a
single framework.

It is clear that a number of the elements of the scatter search approach remain
outside of the changes brought about by these proposals. A simple example is
the approach of introducing adaptive rounding processes for mapping fractional

3330 F. Glover and M. Laguna

• Introduction of “flexible crossover operations.” (Scatter
search combinations include all possibilities generated by
the early GA crossover operations, and also include all
possibilities embedded in the more advanced “uniform” and
“Bernoulli” crossovers (Ackley (1987), Spears and DeJong
(1991)). Path relinking descendants of scatter search
provide further possibilities, noted subsequently.)

• Use of heuristic methods to improve solutions generated
from processes for combining vectors (Muhlenbein et al.
(1988), Ulder et al. (1991)), (Whitley, Gordon and Mathias
(1994)).

• Exploitation of vector representations that are not restricted
to binary representations (Davis (1989), Eschelman and
Schaffer (1992)).

• Introduction of special cases of linear combinations for
operating on continuous vectors (Davis (1989), Wright
(1990), Bäck et al. (1991), Michalewicz and Janikow (1991)).

• Use of combinations of more than two parents
simultaneously to produce offspring (Eiben et al. (1994),
Mühlenbein and Voight (1996)).

• Introduction of strategies that subdivide the population into
different groupings (Mühlenbein and Schlierkamp-Voosen
(1994)).

Fig. 26 Scatter search
features (1977) incorporated
into non-traditional GA
approaches

components into integers. There also has conspicuously been no GA counterpart
to the use of clustering to create strategic groupings of points, nor (as a result)
to the notion of combining points according to distinctions between membership
in different clusters (The closest approximation to this has been the use of “island
populations” that evolve separately but without concern for analyzing or subdividing
populations based on inference and clustering).

The most important distinction, however, is the link between scatter search and
the theme of exploiting history. The prescriptions for combining solutions within
scatter search are part of a larger design for taking advantage of information
about characteristics of previously generated solutions to guide current search.
In retrospect, it is perhaps not surprising that such a design should share an
intimate association with the surrogate constraint framework, with its emphasis
on extracting and coordinating information across different solution phases. This
orientation, which takes account of elements such as the recency, frequency, and
quality of particular value assignments, clearly shares a common foundation with
notions incorporated within tabu search (The same reference on surrogate constraint
strategies that is the starting point for scatter search is also often cited as a source
of early TS conceptions). By this means, the link between tabu search and so-
called “evolutionary” approaches also becomes apparent. The term evolutionary
has undergone an interesting evolution of its own. By a novel turn, the term

Tabu Search 3331

“mutation” in the GA terminology has become reinterpreted to refer to any form
of change, including the purposeful change produced by a heuristic process. As
a result, all methods that apply heuristics to multiple solutions, whether or not
they incorporate strategies for combining solutions, are now considered kindred to
genetic algorithms, and the enlarged collection is labeled “evolutionary methods”
(This terminology accordingly has acquired the distinction of embracing nearly
every kind of method conceivable).

6.3.1 Modern Forms and Applications of Scatter Search
Recent implementations of scatter search (cited below) have taken advantage of
the implicit learning capabilities provided by the tabu search framework, leading
to refined methods for determining reference points and for generating new points.
Current scatter search versions have also introduced more sophisticated mechanisms
to map fractional values into integer values. This work is reinforced by new
theorems about searches over spaces of zero-one integer variables. Special models
have also been developed to allow both heuristic and exact methods to transform
infeasible trial points into feasible points. Finally, scatter search is the source of the
broader class of path-relinking methods, as described in Sect. 5, which offer a wide
range of mechanisms for creating productive combinations of reference solutions.
A brief summary of some of these developments appears in Fig. 27.

Implementation of various components of these extensions has provided ad-
vances for solving general nonlinear mixed discrete optimization problems with
both linear and nonlinear constraints, as noted in the references cited under
Recommended Reading.

• Tabu search memory is used to select current reference points from a historical pool
(Glover, 1989, 1994a).

• Tabu search intensification and diversification strategies guide the generation of
new points (Fleurent et al. 1996; Glover, Laguna and Marti, 2000).

• Solutions generated as “vector combinations” are further improved by explicit tabu
search guidance (Trafalis and Al-Harkan, 1995; Glover, Kelly and Laguna, 1996;
Fleurent et al., 1996; Cung, et al. 1997).

• Directional rounding processes focus the search for feasible zero-one solutions
allowing them to be mapped into convex subregions of hyperplanes produced by
valid cutting plane inequalities (Glover, 1995a).

• Neural network learning is applied to filter out promising and unpromising points
for further examination, and pattern analysis is used to predict the location of
promising new solutions (Glover, Kelly and Laguna, 1996).

• Mixed integer programming models generate sets of diversified points, and yield
refined procedures for mapping infeasible points into feasible points (Glover, Kelly
and Laguna, 1996).

• Structured combinations of points take the role of linear combinations, to expand
the range of alternatives generated (Glover, 1994a).

Fig. 27 Scatter search extensions

3332 F. Glover and M. Laguna

6.3.2 Scatter Search and Path-Relinking Interconnections
The relation between scatter search and path relinking sheds additional light on
the character of these approaches. As already remarked, path relinking is a direct
extension of scatter search. The way this extension comes about is as follows.

From a spatial orientation, the process of generating linear combinations of a set
of reference points may be characterized as generating paths between and beyond
these points (where points on such paths also serve as sources for generating addi-
tional points). This leads to a broader conception of the meaning of combinations of
points. That is, by natural extension, we may conceive such combinations to arise by
generating paths between and beyond selected points in neighborhood space, rather
than in Euclidean space.

The form of these paths in neighborhood space is easily specified by reference
to attribute-based memory, as used in tabu search. The path-relinking strategy thus
emerges as a direct consequence. Just as scatter search encompasses the possibility
to generate new solutions by weighting and combining more than two reference
solutions at a time, path relinking includes the possibility to generate new solutions
by multi-parent path constructions that incorporate attributes from a set of guiding
solutions, where these attributes are weighted to determine which moves are given
higher priority, as we have seen in Sect. 5. The name path relinking comes from
the fact that the generation of such paths in neighborhood space characteristically
“relinks” previous points in ways not achieved in the previous search history.

The relevance of these concepts as a foundation for evolutionary procedures is
illustrated by recent applications of scatter search and path relinking which have
disclosed the promise of these approaches for solving a variety of optimization
problems. A sampling of such applications includes:
• Vehicle routing – Rochat and Taillard [64]; Taillard [66]
• Quadratic assignment – Cung et al. [7]
• Financial product design – Consiglio and Zenios [6]
• Neural network training – Kelly et al. [42]
• Job shop scheduling – Yamada and Nakano [71]
• Flow shop scheduling – Yamada and Reeves [72]
• Graph drawing – Laguna and Marti [46]
• Linear ordering – Laguna et al. [48]
• Unconstrained continuous optimization – Fleurent et al. [14]
• Bit representation – Rana and Whitley [62]
• Optimizing simulation – Glover et al. [32]
• Complex system optimization – Laguna [43]

It is additionally useful to note that reexpressing scatter search relative to
neighborhood space – as done in path relinking – also leads to more general forms of
scatter search in Euclidean space. The form of path relinking manifested in vocabu-
lary building (which results by using constructive and destructive neighborhoods to
create and reassemble components of solutions) also suggests the relevance of com-
bining solutions in Euclidean space by allowing different linear combinations to be
created for different solution components. The design considerations that underlie
vocabulary building generally carry over to this particular instance (see [31]).

Tabu Search 3333

The broader conception of solution combinations provided by path relinking
has useful implications for evolutionary procedures. The exploitation of neigh-
borhood space and attribute-based memory gives specific, versatile mechanisms
for achieving such combinations and provides a further interesting connection
between tabu search proposals and genetic algorithm proposals. In particular, many
recently developed “crossover operators,” which have no apparent relation between
each other in the GA setting, can be shown to arise as special instances of path
relinking, by restricting attention to two reference points (taken as parents in GAs)
and by replacing the strategic neighborhood guidance of path relinking with a
reliance on randomization. In short, the options afforded by path relinking for
combining solutions are more unified, more systematic, and more encompassing
than those provided by the “crossover” concept, which changes from instance
to instance and offers no guidance for how to take advantage of any given
context.

6.4 Greedy Randomized Adaptive Search Procedures (GRASP)

The GRASP methodology was developed in the late 1980s, and the acronym was
coined by Tom Feo [13]. It was first used to solve computationally difficult set-
covering problems [12]. Each GRASP iteration consists of constructing a trial
solution and then applying an exchange procedure to find a local optimum (i.e.,
the final solution for that iteration). The construction phase is iterative, greedy, and
adaptive. It is iterative because the initial solution is built considering one element
at a time. It is greedy because the addition of each element is guided by a greedy
function. It is adaptive because the element chosen at any iteration in a construction
is a function of those previously chosen (That is, the method is adaptive in the sense
of updating relevant information from iteration to iteration, as in most constructive
procedures). The improvement phase typically consists of a local search procedure.

For illustration purposes, consider the design of a GRASP for the 2-partition
problem (see, e.g., [44]). This problem consists of clustering the nodes of a weighted
graph into two equal-sized sets such that the weight of the edges between the two
sets is minimized. In this context, the iterative, greedy, and adaptive elements of
the GRASP construction phase may be interpreted as follows. The initial solution is
built considering one node at a time. The addition of each node is guided by a greedy
function that minimizes the augmented weight of the partition. The node chosen
at any iteration in the construction is a function of the adjacencies of previously
chosen nodes. There is also a probabilistic component in GRASP that is applied
to the selection of elements during the construction phase. After choosing the
first node for one set, all nonadjacent nodes are of equal quality with respect to
the given greedy function. If one of those nodes is chosen by some deterministic
rule, then every GRASP iteration will repeat this selection. In such stages within
a construction where there are multiple greedy choices, choosing any one of them
will not compromise the greedy approach, yet each will often lead to a very different
solution.

3334 F. Glover and M. Laguna

To generalize this strategy, consider forming a candidate list (at each stage of the
construction) consisting of high-quality elements according to an adaptive greedy
function. Then, the next element to be included in the initial solution is randomly
selected from this list. A similar strategy has been categorized as a cardinality-based
semi-greedy heuristic.

The solution generated by a greedy randomized adaptive construction can
generally be improved by the application of an improvement phase following
selected construction phases, as by using a descent method based on an exchange
mechanism, since usually the result of the construction phase is not a local minimum
with respect to simple exchange neighborhoods. There is an obvious computational
trade-off between the construction and improving phases. An intelligent construc-
tion requires fewer improving exchanges to reach a local optimum, and therefore,
it results in a reduction of the total CPU time required per GRASP iteration.
The exchange mechanism can also be used as a basis for a hybrid method, as
by incorporating elements of other methodologies such as simulated annealing
or tabu search. In particular, given that the GRASP constructions inject a degree
of diversification to the search process, the improvement phase may consist of
a short-term memory tabu search that is fine-tuned for intensification purposes.
Other connections may be established with methods such as scatter search or the
path-relinking strategy of tabu search, by using the GRASP constructions (or their
associated local optima) as reference points.

Performing multiple GRASP iterations may be interpreted as a means of
strategically sampling the solution space. Based on empirical observations, it has
been found that the sampling distribution generally has a mean value that is
inferior to the one obtained by a deterministic construction, but the best over all
trials dominates the deterministic solution with a high probability. The intuitive
justification of this phenomenon is based on the ordering statistics of sampling.
GRASP implementations are generally robust in the sense that it is difficult to
find or devise pathological instances for which the method will perform arbitrarily
bad. The robustness of this method has been well documented in applications to
production, flight scheduling, equipment and tool selection, location, and maximum
independent sets.

An interesting connection exists between GRASP and probabilistic tabu search
(PTS). If PTS is implemented in a memoryless form and restricted to operate only
in the constructive phase of a multistart procedure (stripping away memory, and
even probabilistic choice, from the improving phase), then a procedure resembling
GRASP results. The chief difference is that the probabilities used in PTS are rarely
chosen to be uniform over members of the candidate list, but generally seek to
capture variations in the evaluations, whenever these variations reflect anticipated
differences in the effective quality of the moves considered.

This connection raises the question of whether a multistart variant of probabilistic
tabu search may offer a useful alternative to memoryless multistart approaches like
GRASP. A study of this issue for the quadratic assignment problem, where GRASP
has been reported to perform well, was conducted by Fleurent and Glover [14].
To provide a basis for comparison, the improving phases of the PTS multistart

Tabu Search 3335

method excluded the use of TS memory and guidance strategies and were restricted
to employ a standard descent procedure. Probabilistic tabu search mechanisms
were used in the constructive phases, incorporating frequency-based intensification
to improve the effectiveness of successive constructions. The resulting multistart
method proved significantly superior to other multistart approaches previously
reported for the quadratic assignment problem. However, it also turned out to be not
as effective as the leading tabu search methods that use memory in the improving
phases as well as (or instead of) in the constructive phases. Nevertheless, it seems
reasonable to conjecture that classes of problems exist where increased reliance on
restarting will prove advantageous and where the best results may be obtained from
appropriately designed multistart strategies such as based on greedy randomized
search and multistart variants of PTS.

6.5 Neural Networks

Neural networks have a somewhat different set of goals than tabu search, although
some overlaps exist. We indicate how tabu search can be used to extend certain
neural net conceptions, yielding a hybrid that may have both hardware and software
implications. The basic transferable insight from tabu search is that memory
components with dimensions such as recency and frequency can increase the
efficacy of a system designed to evolve toward a desired state. We suggest the
merit of fusing neural network memory with tabu search memory as follows
(A rudimentary acquaintance with neural network ideas is assumed).

Recency-based considerations can be introduced from tabu search into neural
networks by a time-delay feedback loop from a given neuron back to itself (or from
a given synapse back to itself, by the device of interposing additional neurons). This
permits firing rules and synapse weights to be changed only after a certain time
threshold, determined by the length of the feedback loop. Aspiration thresholds
of the form conceived in tabu search can be embodied in inputs transmitted on
a secondary level, giving the ability to override the time delay for altering firing
thresholds and synaptic weights. Frequency-based effects employed in tabu search
similarly may be incorporated by introducing a form of cumulative averaged
feedback.

Time-delay feedback mechanisms for creating recency and frequency effects also
can have other functions. In a problem-solving context, for example, it may be
convenient to disregard one set of options to concentrate on another, while retaining
the ability to recover the suppressed options after an interval. This familiar type
of human activity is not a customary part of neural network design, but can be
introduced by the time-dependent functions previously indicated. In addition, a
threshold can be created to allow a suppressed option to “go unnoticed” if current
activity levels fall in a certain range, effectively altering the interval before the
option reemerges for consideration. Neural network designs to incorporate those
features may directly make use of the TS ideas that have made these elements
effective in the problem-solving domain.

3336 F. Glover and M. Laguna

Tabu search strategies that introduce longer-term intensification and diversifica-
tion concerns are also relevant to neural network processes. As a foundation for
blending these approaches, it is useful to adopt an orientation where a collection
of neurons linked by synapses with various activation weights is treated as a set
of attribute variables which can be assigned alternative values. Then the condition
that synapse j (from a specified origin neuron to a specified destination neuron) is
assigned an activation weight in interval p can be coded by the assignment yj D p,
where yj is a component of an attribute vector y as identified in the discussion
of attribute creation processes in connection with vocabulary building. A similar
coding identifies the condition under which a neuron fires (or does not fire) to
activate its associated synapses. As a neural network process evolves, a sequence of
these attribute vectors is produced over time. The association between successive
vectors may be imagined to operate by reference to a neighborhood structure
implicit in the neural architecture and associated connection weights. There also
may be an implicit association with some (unknown) optimization problem or a
more explicit association with a known problem and set of constraints. In the latter
case, attribute assignments (neuron firings and synapse activation) can be evaluated
for efficacy by transformation into a vector x, to be checked for feasibility by x 2 X
(We maintain a distinction between y and x since there may not be a one-one
association between them).

Time records identifying the quality of outcomes produced by recent firings,
and identifying the frequency particular attribute assignments produce the highest
quality firing outcomes, yield a basis for delaying changes in certain weight
assignments and for encouraging changes in others. The concept of influence, in
the form introduced in tabu search, should be considered in parallel with quality of
outcomes.

Early designs to incorporate tabu search into neural networks are provided in
the work of de Werra and Hertz [9] and Beyer and Ogier [5]. These applications,
which respectively treat visual pattern identification and nonconvex optimization,
are reported to significantly reduce training times and increase the reliability of
outcomes generated. More recent uses of tabu search to enhance the function of
neural networks are provided by the studies reported in Glover and Laguna [31].

6.6 Target Analysis

Target analysis [29] links artificial intelligence and operation research perspectives
to give heuristic or exact solution procedures the ability to learn what rules are best
to solve a particular class of problems. Many existing solution methods have evolved
by adopting, a priori, a somewhat limited characterization of appropriate rules for
evaluating decisions. An illustration is provided by restricting the definition of a
“best” move to be one that produces the most attractive objective function change.
However, this strategy does not guarantee that the selected move will lead the search
in the direction of the optimal solution. In fact, in some settings, it has been shown

Tabu Search 3337

that the merit of such a decision rule diminishes as the number of iterations increases
during a solution attempt.

As seen earlier, the tabu search philosophy is to select a best admissible move
(from a strategically controlled candidate list) at each iteration, interpreting best in
a broad sense that goes beyond the use of objective function measures, and relies
upon historical parameters to aid in composing an appropriate evaluation. Target
analysis provides a means to exploit this broader view. For example, target analysis
can be used to create a dynamic evaluation function that incorporates a systematic
process for diversifying the search over the longer term.

A few examples of the types of questions that target analysis can be used to
answer are:
1. Which decision rule from a collection of proposed alternatives should be selected

to guide the search? (In an expanded setting, how should the rules from the col-
lection be combined? By interpreting “decision rule” broadly, this encompasses
the issue of selecting a neighborhood, or a combination of neighborhoods, as the
source of a move at a given stage). Similarly, which parameter values should be
chosen to provide effective instances of the decision rules?

2. What attributes are most relevant for determining tabu status, and what associated
tabu restrictions, tabu tenures, and aspiration criteria should be used?

3. What weights should be assigned to create penalties or inducements (e.g., as a
function of frequency-based memory), and what thresholds should govern their
application?

4. Which measures of quality and influence are most appropriate, and which
combinations of these lead to the best results in different search phases?

5. What features of the search trajectory disclose when to focus more strongly on
intensification and when to focus more strongly on diversification? (In general,
what is the best relative emphasis between intensification and diversification, and
under what conditions should this emphasis change?)
Motivation for using target analysis to answer such questions is provided by

contrasting target analysis with the way answers are normally determined. Typically,
an experimenter begins with a set of alternative rules and decision criteria which are
intended to capture the principal elements of a given method, often accompanied
by ranges of associated parameters for implementing the rules. Then various
combinations of options are tried to see how each one works for a preliminary set of
test problems. However, even a modest number of rules and parameters may create
a large number of possibilities in combination, and there is usually little hope of
testing these with any degree of thoroughness. As a result, such testing for preferred
alternatives generally amounts to a process of blind groping. Where methods boast
the lack of optional parameters and rules, typically it is because the experimenter
has already done the advance work to settle upon a particular combination that has
been hardwired for the user, at best with some degree of adaptiveness built in, but
the process that led to this hardwiring still raises the prospect that another set of
options may be preferable.

More importantly, in an adaptive memory approach, where information from
the history of the search is included among the inputs that determine current

3338 F. Glover and M. Laguna

choices, a trial-and-error testing of parameters may overlook key elements of
timing and yield no insights about relationships to be exploited. Such a process
affords no way to uncover or characterize the circumstances encountered during
the search that may cause a given rule to perform well or badly and consequently
gives no way to anticipate the nature of rules that may perform better than those
originally envisioned. Target analysis replaces this by a systematic approach to
create hindsight before the fact and then undertakes to “reverse engineer” the types
of rules that will lead to good solutions.

6.6.1 Target Analysis Features
The main features of target analysis may briefly be sketched by viewing the
approach as a five-phase procedure (see Fig. 28). Phase 1 of target analysis is
devoted to applying existing methods to determine optimal or exceptionally high-
quality solutions to representative problems of a given class. In order to allow
subsequent analysis to be carried out more conveniently, the problems are often
selected to be relatively small, provided this can be done in a way to assure these
problems will exhibit features expected to be encountered in hard problems from
the class examined.

Although this phase is straightforward, the effort allotted to obtaining solutions
of the specified quality will generally be somewhat greater than would be allotted
during the normal operation of the existing solution procedures, in order to assure
that the solutions have the quality sought (Such an effort may be circumvented
in cases where optimal solutions to a particular testbed of problems are known in
advance).

Phase 2 uses the solutions produced by Phase 1 as targets, which become the
focus of a new set of solution passes. During these passes, each problem is solved
again, this time scoring all available moves (or a high-ranking subset) on the basis
of their ability to progress effectively toward the target solution. The scoring can
be a simple classification, such as “good” or “bad,” or it may capture more refined
gradations. In the case where multiple best or near-best solutions may reasonably
qualify as targets, the scores may be based on the target that is “closest to” the
current solution.

In some implementations, choices during Phase 2 are biased to select moves
that have high scores, thereby leading to a target solution more quickly than the
customary choice rules. In other implementations, the method is simply allowed to
make its regular moves. In either case, the goal is to generate information during
this solution effort which may be useful in inferring the solution scores. That is, the
scores provide a basis for creating modified evaluations – and more generally, for
creating new rules to generate such evaluations in order to more closely match them
with the measures that represent “true goodness” (for reaching the targets).

In the case of tabu search intensification strategies such as elite solution recovery
approaches, scores can be assigned to parameterized rules for determining the types
of solutions to be saved. For example, such rules may take account of characteristics
of clustering and dispersion among elite solutions. In environments where data bases
can be maintained of solutions to related problems previously encountered, the

Tabu Search 3339

Selected Class of Problems

Representative Sample

Phase 1 (a)
Existing Solution Methods

High Quality Solutions

Phase 1 (b)

Scoring Procedure

Re-solution of Sample

Phase 2

Master Decision Rule

Phase 3

New Evaluation Functions

Effective Parameter Values

Phase 4

Math or Statistical Models

Measure of Effectiveness

Phase 5

Application of Improved Method

Fig. 28 Overview of the target analysis methodology

scores may be assigned to rules for recovering and exploiting particular instances
of these past solutions and for determining which new solutions will be added to
the data bases as additional problems are solved (The latter step, which is part of
the target analysis and not part of the solution effort, can be performed “off line.”)
An integration of target analysis with a generalized form of sensitivity analysis
for these types of applications has been developed and implemented in financial
planning and industrial engineering by Glover et al. [34]. Such designs are also
relevant, for example, in applications of linear and nonlinear optimization based
on simplex method subroutines, to identify sets of variables to provide crash-basis
starting solution.

In path-relinking strategies, scores can be applied to rules for matching initiating
solutions with guiding solutions. As with other types of decision rules produced by
target analysis, these will preferably include reference to parameters that distinguish
different problem instances. The parameter-based rules similarly can be used to
select initiating and guiding solutions from preexisting solutions pools. Tunneling
applications of path relinking, which allow traversal of infeasible regions, and
strategic oscillation designs that purposely drive the search into and out of such
regions, are natural accompaniments for handling recovered solutions that may be
infeasible.

Phase 3 constructs parameterized functions of the information generated in
Phase 2, with the goal of finding values of the parameters to create a master decision
rule. This rule is designed to choose moves that score highly, in order to achieve the
goal that underlies Phase 2. It should be noted that the parameters available for
constructing a master decision rule depend on the search method employed. Thus,
for example, tabu search may include parameters that embody various elements of
recency-based and frequency-based memory, together with measures of influence

3340 F. Glover and M. Laguna

linked to different classes of attributes or to different regions from which elite
solutions have been derived.

Phase 4 transforms the general design of the master decision rule into a specific
design by applying a model to determine effective values for its parameters.
This model can be a simple set of relationships based on intuition or can be
a more rigorous formulation based on mathematics or statistics (such as a goal
programming or discriminant analysis model, or even a “connectionist” model based
on neural networks).

The components of phases 2, 3, and 4 are not entirely distinct and may be
iterative. On the basis of the outcomes of these phases, the master decision rule
becomes the rule that drives the solution method. In the case of tabu search, this rule
may use feedback of outcomes obtained during the solution process to modify its
parameters for the problem being solved.

Phase 5 concludes the process by applying the master decision rule to the
original representative problems and to other problems from the chosen solution
class to confirm its merit. The process can be repeated and nested to achieve further
refinement.

Target analysis has an additional important function. On the basis of the informa-
tion generated during its application, and particularly during its final confirmation
phase, the method produces empirical frequency measures for the probabilities that
choices with high evaluations will lead to an optimal (or near-optimal) solution
within a certain number of steps. These decisions are not only at tactical levels but
also at strategic levels, such as when to initiate alternative solution phases and which
sources of information to use for guiding these phases (e.g., whether from processes
for tracking solution trajectories or for recovering and analyzing solutions). By
this means, target analysis can provide inferences concerning expected solution
behavior, as a supplement to classical “worst case” complexity analysis. These
inferences can aid the practitioner by indicating how long to run a solution method
to achieve a solution desired quality, according to specified empirical probability.

One of the useful features of target analysis is its capacity for taking advantage
of human interaction. The determination of key parameters, and the rules for
connecting them, can draw directly on the insight of the observer as well as on
supplementary analytical techniques. The ability to derive inferences from preestab-
lished knowledge of optimal or near-optimal solutions, instead of manipulating
parameters blindly (without information about the relation of decisions to targeted
outcomes), can save significant investment in time and energy. The key, of course,
is to coordinate the phases of solution and guided re-solution to obtain knowledge
that has the greatest utility. Many potential applications of target analysis exist, and
recent applications suggest the approach holds considerable promise for developing
improved decision rules for difficult optimization problems.

6.6.2 Illustrative Application and Implications
An application of target analysis to a production scheduling problem [45] provides
a basis for illustrating some of the relevant considerations of the approach. In this
study, the moves consisted of a combination of swap and insert moves, and scores

Tabu Search 3341

were generated to identify the degree to which a move brought a solution closer to
the target solution (which consisted of the best-known solution before improving
the method by means of target analysis). In the case of a swap move, for example,
a move might improve or worsen (or, by the measure used, leave unchanged) the
“positional value” of each component of the swap, and by the simplification of
assigning scores of 1, 0, or �1 to each component, a move could accordingly receive
a score ranging from 2 to �2. The application of target analysis then proceeded by
tracking the scores of the 10 highest evaluation moves at each iteration, to determine
the circumstances under which the highest evaluations tended to correspond to the
highest scores. Both tabu and non-tabu moves were included in the analysis, to see
whether tabu status was also appropriately defined.

At an early stage of the analysis, a surprising relationship emerged. Although
the scores of the highest evaluation non-tabu moves ranged across both positive
and negative values, the positive values were largely associated with moves that
improved the schedule while the negative values were largely associated with moves
that worsened the schedule. In short, the highest evaluations were significantly
more “accurate” (corresponded more closely to high scores) during phases where
the objective function value of the schedule improved than during phases when it
deteriorated.

A simple diversification strategy was devised to exploit this discovery. Instead
of relying on the original evaluations during “disimproving phases,” the strategy
supplemented the evaluations over these intervals by assigning penalties to moves
whose component jobs had been moved frequently in the past. The approach was
initiated at a local optimum after the progress of the search began to slow (as
measured by how often a new best solution was found) and was de-activated as soon
as a move was executed that also was an improving move (to become reactivated
the next time that all available moves were disimproving moves). The outcome
was highly effective, producing new solutions that were often superior to the best
previously found, especially for larger problems, and also finding the highest quality
solutions more quickly.

The success of this application, in view of its clearly limited scope, provides an
incentive for more thorough applications. For example, a more complete analysis
would reasonably proceed by first seeking to isolate the high-scoring moves during
the disimproving phases and to determine how frequency-based memory and other
factors could be used to identify these moves more effectively. Comparisons be-
tween evaluations proposed in this manner and their associated move scores would
then offer a foundation for identifying more intelligent choices. Classifications to
segregate the moves based on criteria other than “improving” and “disimproving”
could also be investigated. Additional relevant factors that may profitably be taken
into account are examined in the illustration of the next subsection.

A Hypothetical Illustration. The following hypothetical example embodies a
pattern related to the one uncovered in the scheduling application cited above.
However, the pattern in this case is slightly more ambiguous and less clearly points
to options that it may be exploited.

3342 F. Glover and M. Laguna

Table 10 Moves throughout
the search history

Move rank 1 2 3 4 5

Percent of moves with “good” scores 22 14 10 20 16

Table 11 Moves during
improving phases

Move rank 1 2 3 4 5

Percent of moves with “good” scores 34 21 9 14 7

Table 12 Moves during
disimproving phases

Move rank 1 2 3 4 5

Percent of moves with “good” scores 8 7 11 26 25

For simplicity in this illustration, suppose that moves are scored to be either
“good” or “bad” (If each move changes the value of a single 0-1 variable, for
instance, a move may be judged good or bad depending on whether the assigned
value is the same as in the target solution. More generally, a threshold can be used
to differentiate the two classifications).

Table 10 indicates the percent of time each of the five highest evaluation moves,
restricting attention in this case to those that are non-tabu, receives a good score
during the search history (At a first stage of conducting the target analysis, this
history could be for a single hard problem or for a small collection of such
problems). The move rank in the table ranges from 1 to 5, corresponding to the
highest evaluation move, the 2nd highest evaluation move, and so on to the fifth
highest evaluation move.

The indicated percent values do not total 100 because good scores may also be
assigned to moves with lower evaluations, whose ranks are not included among
those shown. Also, it may be expected that some non-tabu moves will also receive
good scores (A fuller analysis would similarly show ranks and scores for these
moves).

At first glance, the table appears to suggest that the fourth- and fifth-ranked
moves are almost as good as the first-ranked move, although the percent of moves
that receives good scores is not particularly impressive for any of the ranks.
Without further information, a strategy might be contemplated that allocates choices
probabilistically among the first-, fourth-, and fifth-ranked moves (though such an
approach would not be assured to do better than choosing the first ranked move
at each step). Tables 11 and 12 below provide more useful information about
choices that are potentially favorable, by dividing the iterations into improving and
disimproving phases as in the scheduling study previously discussed.

These tables are based on a hypothetical situation where improving and dis-
improving moves are roughly equal in number, so that the percent values shown
in Table 9.1 are the average of the corresponding values in Tables 9.2 and 9.3
(For definiteness, moves that do not change the problem objective function may
be assumed to be included in the improving phase, though a better analysis might
treat them separately).

The foregoing outcomes to an extent resemble those found in the scheduling
study, though with a lower success rate for the highest evaluation improving moves.

Tabu Search 3343

Clearly, Tables 11 and 12 give information that is more exploitable than the
information in Table 10. According to these latter tables, it would be preferable
to focus more strongly on choosing one of the two highest evaluation moves during
an improving phase and one of the fourth or fifth highest evaluation moves during a
disimproving phase. This conclusion is still weak in several respects, however, and
we examine considerations that may lead to doing better.

Refining the Analysis. The approach of assigning scores to moves, as illustrated in
Tables 10–12, disregards the fact that some solution attributes (such as assignments
of values to particular 0–1 variables) may be fairly easy to choose “correctly,”
while others may be somewhat harder. Separate tables of the type illustrated should
therefore be created for easy and hard attributes (as determined by how readily
their evaluations lead to choices that would generate the target solution), since
the preferred rules for evaluating moves may well differ depending on the types
of attributes the moves contain. Likewise, an effective strategy may require that
easy and hard attributes become the focus of different search phases. The question
therefore arises as to how to identify such attributes.

As a first approximation, we may consider an easy attribute to be one that often
generates an evaluation that keeps it out of the solution if it belongs out or that
brings it into the solution if it belongs in. A hard attribute behaves oppositely.
Thus, a comparison between frequency-based memory and move scores gives a
straightforward way to differentiate these types of attributes. Both residence and
transition frequencies are relevant, though residence measures are probably more
usually appropriate. For example, an attribute that belongs to the current solution
a high percentage of the time, and that also belongs to the target solution, would
evidently qualify as easy. On the other hand, the number of times the attribute is
accepted or rejected from the current solution may sometimes be less meaningful
than how long it stays in or out. The fact that residence and transition frequencies are
characteristically used in tabu search makes them conveniently available to assist in
differentiations that can improve the effectiveness of target analysis.

6.6.3 Conditional Dependencies Among Attributes
Tables 10–12 suggest that the search process that produced them is relatively
unlikely to find the target solution. Even during improving phases, the highest
evaluation move is almost twice as likely to be bad as good. However, this analysis
is limited and discloses a limitation of the tables themselves. In spite of first
appearances, it is entirely possible that these tables could be produced by a search
process that successfully obtains the target solution (by a rule that chooses a highest
evaluation move at each step). The reason is that the relation between scores and
evaluations may change over time. While there may be fairly long intervals where
choices are made poorly, there may be other shorter intervals where the choices are
made more effectively – until eventually one of these shorter intervals succeeds in
bringing all of the proper attributes into the solution.

Such behavior is likely to occur in situations where correctly choosing some
attributes may pave the way for correctly choosing others. The interdependence

3344 F. Glover and M. Laguna

of easy and hard attributes previously discussed is carried a step farther by
these conditional relationships, because an attribute that at one point deserves to
be classified hard may later deserve to be classified easy, once the appropriate
foundations are laid.

Instead of simply generating tables that summarize results over long periods of
the search history, therefore, it can be important to look for blocks of iterations
where the success rate of choosing good moves may differ appreciably from the
success rate overall. These blocks provide clues about intermediate solution com-
positions that may transform hard attributes into easy ones and thus about preferred
sequences for introducing attributes that may exploit conditional dependencies. The
natural step then is to see which additional types of evaluation information may
independently lead to identifying such sequences.

A simple instance of this type of effect occurs where the likelihood that a given
attribute will correctly be selected (to enter or leave the solution) depends roughly
on the number of attributes that already correctly belong to the solution. In such
situations, the appropriate way to determine a “best choice” is therefore also likely
to depend on this number of attributes correctly in solution. Even though such
information will not generally be known during the search, it may be possible to
estimate it and adjust the move evaluations accordingly. Such relationships, as well
as the more general ones previously indicated, are therefore worth ferreting out by
target analysis.

6.6.4 Differentiating Among Targets
In describing the steps of target analysis, it has already been noted that scores
should not always be rigidly determined by only one specific target, but may
account for alternative targets, and in general may be determined by the target
that is closest to the current solution (by a metric that depends on the context).
Acknowledging that there may be more than one good solution that is worth finding,
such a differentiation among targets can prove useful. Yet even in the case where
a particular solution is uniquely the one to be sought (as where its quality may
be significantly better than that of all others known), alternative targets may still
be valuable to consider in the role of intermediate solutions and may provide a
springboard to finding additional solutions that are better. Making reference to
intermediate targets is another way of accounting for the fact that conditional
dependencies may exist among the attributes, as previously discussed. However,
such dependencies in some cases may be more easily exploited by explicitly seeking
constructions at particular stages that may progressively lead to a final destination.

Some elite solutions may provide better targets than others because they are
easier to obtain – completely apart from developing strategies to reach ultimate
targets by means of intermediate ones. However, some care is needed in making
the decision to focus on such easier targets as a basis for developing choice rules.
As in the study of Lokketangen and Glover [51], it may be that focusing instead on
the harder targets will yield rules that likewise cause the easier targets to be found
more readily, and these rules may apply to a wider spectrum of problems than those
derived by focusing on easier targets.

Tabu Search 3345

6.6.5 Generating Rules by Optimization Models
Target analysis can use optimization models to generate decision rules by finding
weights for various decision criteria to create a composite (master) rule. To illustrate,
let G and B , respectively, denote index sets for good moves and bad moves, as
determined from move scores, as in the classification embodied in Tables 10–12.
Incorporate the values of the different decision criteria in a vector Ai for i 2 G

and i 2 B; that is, the j th component aij of Ai is the value assigned to move
i by the decision criterion j . These components need not be the result of rules,
but can simply correspond to data considered relevant to constructing rules. In the
tabu search setting, such data can include elements of recency-based and frequency-
based memory. Then we may consider a master rule which is created by applying
a weight vector w to each vector Ai to produce a composite decision value Ai w DP

j

aij wj . An ambitious objective is to find a vector w that yields

Ai w > 0 for i 2 G

Ai w � 0 for i 2 B:

If such a weight vector w could be found, then all good moves would have
higher evaluations by the composite criterion than all bad moves, which of course is
normally too much to ask. A step toward formulating a more reasonable goal is as
follows. Let G(iter) and B(iter) identify the sets G and B for a given iteration iter.
Then an alternative objective is to find a w so that, at each such iteration, at least one
i 2 G.iter/ would yield

Ai w > Akw for all k 2 B.iter/

or equivalently

MaxfAi w W i 2 G.iter/g > MaxfAkw W k 2 B.iter/g:

This outcome would insure that a highest evaluation move by the composite
criterion will always be a good move. Naturally, this latter goal is still too optimistic.
Nevertheless, it is possible to devise goal programming models (related to LP
discriminant analysis models) that can be used to approximate this goal. A model of
this type has proved to be effective for devising branching rules to solve a problem
of refueling nuclear reactors [17].

A variety of opportunities exist for going farther in such strategies. For ex-
ample, issues of creating nonlinear and discontinuous functions to achieve better
master rules can be addressed by using trial functions to transform components
of Ai vectors into new components, guided by LP sensitivity and postoptimality
analysis. Target analysis ideas previously indicated can also be useful in this
quest.

3346 F. Glover and M. Laguna

The range of possibilities for taking advantage of target analysis is considerable,
and for the most part, only the most rudimentary applications of this learning
approach have been initiated. The successes of these applications make further
exploration of this approach attractive.

7 Neglected Tabu Search Strategies

We briefly review several key strategies in tabu search that are often neglected
(especially in beginning studies) but which are important for producing the best
results.

Our purpose is to call attention to the relevance of particular elements that are
mutually reinforcing but which are not always discussed “side by side” in the
literature and which deserve special emphasis. In addition, observations about useful
directions for future research are included.

A comment regarding implementation is as follows: First steps do not have
to include the most sophisticated variants of the ideas discussed in the following
sections, but the difference between “some inclusion” and “no inclusion” can be
significant. Implementations that incorporate simple instances of these ideas will
often disclose the manner in which refined implementations can lead to improved
performance.

The material that follows brings together ideas described in preceding sections to
provide a perspective on how they interrelate. In the process, a number of additional
observations are introduced.

7.1 Candidate List Strategies

Efficiency and quality can be greatly affected by using intelligent procedures for
isolating effective candidate moves, rather than trying to evaluate every possible
move in a current neighborhood of alternatives. This is particularly true when such
a neighborhood is large or expensive to examine. The gains to be achieved by using
candidate lists have been widely documented, yet many TS studies overlook their
relevance.

Careful organization in applying candidate lists, as by saving evaluations from
previous iterations and updating them efficiently, can also be valuable for reducing
overall effort. Time saved in these ways allows a chance to devote more time to
higher-level features of the search.

While the basic theme of candidate lists is straightforward, there are some
subtleties in the ways candidate list strategies may be used. Considerable benefit
can result by being aware of fundamental candidate list approaches, such as the
subdivision strategy, the Aspiration Plus strategy, the elite candidate list strategy,
the bounded change strategy and the sequential fan strategy (as discussed in Sect.4).

An effective integration of a candidate list strategy with the rest of a tabu search
method will typically benefit by using TS memory designs to facilitate functions to

Tabu Search 3347

be performed by the candidate lists. This applies especially to the use of frequency-
based memory. A major mistake of some TS implementations, whether or not they
make use of candidate lists, is to consider only the use of recency-based memory.
Frequency-based memory – which itself takes different forms in intensification
phases and diversification phases – cannot only have a dramatic impact on the
performance of the search in general but also can often yield gains in the design of
candidate list procedures. A useful way to meld different candidate list procedures
is described in Glover [27].

7.2 Intensification Approaches

Intensification strategies, which are based on recording and exploiting elite solutions
or, characteristically, specific features of these solutions, have proved very useful
in a variety of applications. Some of the relevant forms of such strategies and
considerations for implementing them are as follows.

7.2.1 Restarting with Elite Solutions
The simplest intensification approach is the strategy of recovering elite solutions
in some order, each time the search progress slows, and then using these solutions
as a basis for reinitiating the search. The list of solutions that are candidates to
be recovered is generally limited in size, often in the range of 20–40 (although in
parallel processing applications, the number is characteristically somewhat larger).
The size chosen for the list in serial TS applications also corresponds roughly
to the number of solution recoveries anticipated to be done during the search
and so may be less or more depending on the setting. When an elite solution is
recovered from the list, it is removed, and new elite solutions are allowed to replace
less attractive previous solutions – usually dropping the worst of the current list
members. However, if a new elite solution is highly similar to a solution presently
recorded, instead of replacing the current worst solution, the new solution will
compete directly with its similar counterpart to determine which solution is saved.

This approach has been applied very effectively in job shop and flow shop
scheduling, in vehicle routing, and in telecommunication design problems. One of
the best approaches for scheduling applications keeps the old TS memory associated
with the solution but makes sure the first new move away from this solution goes
to a different neighbor than the one visited after encountering this solution the first
time. Another effective variant does not bother to save the old TS memory but uses
a probabilistic TS choice design.

The most common strategy is to go through the list from best to worst, but in
some cases, it has worked even better to go through the list in the other direction.
In this approach, it appears effective to allow two passes of the list. On the first
pass, when a new elite solution is found that falls below the quality of the solution
currently recovered, but which is still better than the worst already examined on
the list, the method still adds the new solution to the list and displaces the worst
solution. Then a second pass, after reaching the top of the list, recovers any added
solutions not previously recovered.

3348 F. Glover and M. Laguna

7.2.2 Frequency of Elite Solutions
Another primary intensification strategy is to examine elite solutions to determine
the frequency in which particular solution attributes occur (where the frequency is
typically weighted by the quality of the solutions in which the attributes are found).

This strategy was originally formulated in the context of identifying “consistent”
and “strongly determined” variables – where, loosely speaking, consistent variables
are those more frequently found in elite solutions, while strongly determined
variables are those that would cause the greatest disruption by changing their values
(as sometimes approximately measured by weighting the frequencies based on
solution quality). The idea is to isolate the variables that qualify as more consistent
and strongly determined (according to varying thresholds) and then to generate new
solutions that give these variables their “preferred values.” This can be done either
by rebuilding new solutions in a multistart approach or by modifying the choice
rules of an ongoing solution effort to favor the inclusion of these value assignments.

Keeping track of the frequency that elite solutions include particular attributes
(such as edges of tours, assignments of elements to positions, and narrow ranges
of values taken on by variables). and then favoring the inclusion of the highest
frequency elements effectively allows the search to concentrate on finding the best
supporting uses and values of other elements. A simple variant is to “lock in” a small
subset of the most attractive attributes (value assignments) – allowing this subset to
change over time or on different passes.

A Relevant Concern: In the approach that starts from a current (good) solution
and tries to bring in favored elements, it is important to introduce an element that
yields a best outcome from among the current contenders (where, as always, best
is defined to encompass considerations that are not solely restricted to objective
function changes). If an attractive alternative move shows up during this process,
which does not involve bringing in one of these elements, aspiration criteria may
determine whether such a move should be taken instead. Under circumstances where
the outcome of such a move appears sufficiently promising, the approach may be
discontinued and allowed to enter an improving phase (reflecting a decision that
enough intensification has been applied and it is time to return to searching by
customary means).

Intensification of this form makes it possible to determine what percent of
“good attributes” from prior solutions should be included in the solution currently
generated. It also gives information about which subsets of these attributes should go
together, since it is preferable not to choose attributes during this process that cause
the solution to deteriorate compared to other choices. This type of intensification
strategy has proved highly effective in the settings of vehicle routing and zero-one
mixed-integer optimization.

7.2.3 Memory and Intensification
It is clearly somewhat more dangerous to hold elements “in” solution than to hold
them “out” (considering that a solution normally is composed of a small fraction
of available elements – as where a tree contains only a fraction of the edges of

Tabu Search 3349

a graph). However, there is an important exception, previously intimated. As part
of a longer-term intensification strategy, elements may be selected very judiciously
to be “locked in” on the basis of having occurred with high frequency in the best
solutions found. In that case, choosing different mutually compatible (and mutually
reinforcing) sets to lock in can be quite helpful. This creates a combinatorial
implosion effect (opposite to a combinatorial explosion effect) that shrinks the
solution space to a point where best solutions over the reduced space are likely
to be found more readily.

The key to this type of intensification strategy naturally is to select an appropriate
set of elements to lock in, but the chances appear empirically to be quite high that
some subset of those with high frequencies in earlier best solutions will be correct.
Varying the subsets selected gives a significant likelihood of picking a good one
(More than one subset can be correct, because different subsets can still be part of
the same complete set). Aspiration criteria make it possible to drop elements that
are supposedly locked in, to give this approach more flexibility.

7.2.4 Relevance of Clustering for Intensification
A search process over a complex space is likely to produce clusters of elite solutions,
where one group of solutions gives high frequencies for one set of attributes and
another group gives high frequencies for a different set. It is important to recognize
this situation when it arises. Otherwise, there is a danger that an intensification
strategy may try to compel a solution to include attributes that work against each
other. This is particularly true in a strategy that seeks to generate a solution by
incorporating a collection of attributes “all at once,” rather than using a step-by-
step evaluation process that is reapplied at each move through a neighborhood
space (Stepping through a neighborhood has the disadvantage of being slower
but may compensate by being more selective. Experimentation to determine the
circumstances under which each of these alternative intensification approaches may
be preferable would be quite valuable).

A strategy that incorporates a block of attributes together may yield benefits by
varying both the size and composition of the subsets of high-frequency “attractive”
attributes, even if these attributes are derived from solutions that lie in a common
cluster, since the truly best solutions may not include them all. Threshold-based
forms of logical restructuring, as discussed in Sect. 4, may additionally lead to
identifying elements to integrate into solutions that may not necessarily belong to
solutions previously encountered. The vocabulary building theme becomes impor-
tant in this connection. The relevance of clustering analysis for logical restructuring
and vocabulary building is reinforced by the use of a related conditional analysis,
which is examined subsequently in Sect. 7.5.

7.3 Diversification Approaches

Diversification processes in tabu search are sometimes applied in ways that limit
their effectiveness, due to overlooking the fact that diversification is not just

3350 F. Glover and M. Laguna

“random” or “impulsive” but depends on a purposeful blend of memory and strategy.
As noted in Sect. 4, recency- and frequency-based memory are both relevant for
diversification. Historically, these ideas stem in part from proposals for exploiting
surrogate constraint methods. In this setting, the impetus is not simply to achieve
diversification but to derive appropriate weights in order to assure that evaluations
will lead to solutions that satisfy required conditions (see Sect. 6). Accordingly,
it is important to account for elements such as how often, to what extent, and how
recently particular constraints have been violated, in order to determine weights that
produce more effective valuations.

The implicit learning effects that underlie such uses of recency, frequency, and
influence are analogous to those that motivate the procedures used for diversification
(and intensification) in tabu search. Early strategic oscillation approaches exploited
this principle by driving the search to various depths outside (and inside) feasibility
boundaries and then employing evaluations and directional search to move toward
preferred regions.

In the same way that these early strategies bring diversification and intensification
together as part of a continuously modulated process, it is important to stress that
these two elements should be interwoven in general. A common mistake in many
TS implementations is to apply diversification without regard for intensification.
“Pure” diversification strategies are appropriate for truly long-term strategies, but
over the intermediate term, diversification is generally more effective if it is applied
by heeding information that is also incorporated in intensification strategies. In
fact, intensification by itself can sometimes cause a form of diversification, because
intensifying over part of the space allows a broader search of the rest of the space.
A few relevant concerns are as follows.

7.3.1 Diversification and Intensification Links
A simple and natural diversification approach is to keep track of the frequency that
attributes occur in nonelite solutions, as opposed to solutions encountered in general,
and then to periodically discourage the incorporation of attributes that have modest
to high frequencies (giving greater penalties to larger frequencies). The reference to
nonelite solutions tends to avoid penalizing attributes that would be encouraged by
an intensification strategy.

More generally, for a “first-level” balance, an intermediate-term memory matrix
may be used, where the high-frequency items in elite solutions are not penalized
by the long-term values, but may even be encouraged. The trade-offs involved in
establishing the degree of encouragement, or the degree of reducing the penalties,
represent an area where a small amount of preliminary testing can be valuable.
This applies as well to picking thresholds to identify high-frequency items (Simple
guesses about appropriate parameter values can often yield benefits, and tests of
such initial guesses can build an understanding that leads to increasingly effective
strategies).

By extension, if an element has never or rarely been in a solution generated, then
it should be given a higher evaluation for being incorporated in a diversification
approach if it was “almost chosen” in the past but did not make the grade.

Tabu Search 3351

This observation has not been widely heeded, but is not difficult to implement, and
is relevant to intensification strategies as well. The relevant concerns are illustrated
in the discussion of “Persistent Attractiveness” and “Persistent Voting” in Chap. 7
of Glover and Laguna [31].

7.3.2 Implicit Conflict and the Importance of Interactions
Current evaluations also should not be disregarded while diversification influences
are activated. Otherwise, a diversification process may bring elements together that
conflict with each other and make it harder rather than easier to find improved
solutions.

For example, a design that gives high penalties to a wide range of elements,
without considering interactions, may drive the solution to avoid good combinations
of elements. Consequently, diversification – especially in intermediate term phases –
should be carried out for a limited number of steps, accompanied by watching for
and sidestepping situations where indiscriminately applying penalties would create
incompatibilities or severe deterioration of quality. To repeat the theme, even in
diversification, attention to quality is important. And as in “medical remedies,”
sometimes small doses are better than large ones. Larger doses (i.e., more radical
departures from previous solutions), which are normally applied less frequently, can
still benefit by coordinating the elements of quality and change.

7.3.3 Reactive Tabu Search
An approach called reactive tabu search (RTS) developed by Battiti and Tecchiolli
[3, 4] deserves additional consideration as a way to achieve a useful blend of
intensification and diversification. RTS incorporates hashing in a highly effective
manner to generate attributes that are very nearly able to differentiate among distinct
solutions. That is, very few solutions contain the same hashed attribute, applying
standard hash function techniques. Accompanying this, Battiti and Tecchiolli
use an automated tabu tenure, which begins with the value of 1 (preventing a
hashed attribute from being reinstated if this attribute gives the “signature” of the
solution visited on the immediately preceding step). This tenure is then increased
if examination shows the method is possibly cycling, as indicated by periodically
generating solutions that produce the same hashed attribute.

The tabu tenure, which is the same for all attributes, is increased exponentially
when repetitions are encountered and decreased gradually when repetitions disap-
pear. Under circumstances where the search nevertheless encounters an excessive
number of repetitions within a given span (i.e., where a moving frequency measure
exceeds a certain threshold), a diversification step is activated, which consists of
making a number of random moves proportional to a moving average of the cycle
length.

The reported successes of this approach invite further investigations of its un-
derlying ideas and related variants. As potential bases for generating such variants,
attributes created by hashing may be viewed as fine grain attributes, which give them
the ability to distinguish among different solutions. By contrast, “standard” solution
attributes, which are the raw material for hashing, may be viewed as coarse grain

3352 F. Glover and M. Laguna

attributes, since each may be contained in (and hence provide a signature for) many
different solutions. Experience has shown that tabu restrictions based on coarse
grain attributes are often advantageous for giving increased vigor to the search
(There can exist a variety of ways of defining and exploiting attributes, particularly
at coarser levels, which complicates the issue somewhat). This raises the question
of when particular degrees of granularity are more effective than others.

It seems reasonable to suspect that fine grain attributes may yield greater benefits
if they are activated in the vicinity of elite solutions, thereby allowing the search
to scour “high-quality terrain” more minutely. This effect may also be achieved
by reducing tabu tenures for coarse grain attributes – or basing tabu restrictions
on attribute conjunctions – and using more specialized aspiration criteria. Closer
scouring of critical regions can also be brought about by using strongly focused
candidate list strategies, such as a sequential fan candidate list strategy (Empirical
comparisons of such alternatives to hashing clearly would be of interest). On the
other hand, as documented by Nonobe and Ibaraki [59,60], the use of “extra coarse
grain” attributes (those that prohibit larger numbers of moves when embodied in
tabu restrictions) can prove advantageous for solving large problems over a broadly
defined problem domain.

Another type of alternative to hashing also exists, which is to create new
attributes by processes that are not so uniform as hashing. A potential drawback
of hashing is its inability to distinguish the relative importance (and appropriate
influence) of the attributes that it seeks to map into others that are fine grained. A
potential way to overcome this drawback is to make use of vocabulary building [31]
and of conditional analysis (Sect. 7.5).

7.4 Strategic Oscillation

A considerable amount has been written on strategic oscillation and its advantages.
However, one of the uses of this approach that is frequently overlooked involves
the idea of oscillating among alternative choice rules and neighborhoods. As
stressed in Sect. 5, an important aspect of strategic oscillation is the fact that there
naturally arise different types of moves and choice rules that are appropriate for
negotiating different regions and different directions of search. Thus, for example,
there are many constructive methods in graph and scheduling problems, but strategic
oscillation further leads to the creation of complementary “destructive methods”
which can operate together with their constructive counterparts. Different criteria
emerge as relevant for selecting a move to take on a constructive step versus one to
take on a destructive step. Similarly, different criteria apply according to whether
moves are chosen within a feasible region or outside a feasible region (and whether
the search is moving toward or away from a feasibility boundary).

The variation among moves and evaluations introduces an inherent vitality into
the search that provides one of the sources underlying the success of strategic
oscillation approaches. This reinforces the motivation to apply strategic oscillation
to the choice of moves and evaluation criteria themselves, selecting moves from a

Tabu Search 3353

pool of possibilities according to rules for transitioning from one choice to another.
In general, instead of picking a single rule, a process of invoking multiple rules
provides a range of alternatives that run all the way from “strong diversification” to
“strong intensification.”

This form of oscillation has much greater scope than may at first be apparent,
because it invokes the possibility of simultaneously integrating decision rules
and neighborhoods, rather than only visiting them in a strategically determined
sequence.

Such concepts are beginning to find counterparts in investigations being launched
by the computer science community. The “agent” terminology is being invoked in
such applications to characterize different choice mechanisms and neighborhoods as
representing different agents. Relying on this representation, different agents then
are assigned to work on (or “attack”) the problem serially or in parallel. The CS
community has begun to look upon this as a significant innovation – unaware of the
literature where such ideas were introduced a decade or more ago – and the potential
richness and variation of these ideas still seems not to be fully recognized. For
example, there have not yet been any studies that consider the idea of “strategically
sequencing” rules and neighborhoods, let alone those that envision the notion of
parametric integration. The further incorporation of adaptive memory structures to
enhance the application of such concepts also lies somewhat outside the purview
of most current CS proposals. At the same time, however, TS research has also
neglected to conduct empirical investigations of the broader possibilities. This is
clearly an area that deserves fuller study.

7.5 Clustering and Conditional Analysis

To reinforce the theme of identifying opportunities for future research, we provide
an illustration to clarify the relevance of clustering and conditional analysis,
particularly as a basis for intensification and diversification strategies in tabu
research.

An Example: Suppose 40 elite solutions have been saved during the search and
each solution is characterized as a vector x of zero-one variables xj , for j 2 N D
f1; : : : ; ng. Assume the variables that receive positive values in at least one of the
elite solutions are indexed x1 to x30 (Commonly in such circumstances, n may be
expected to be somewhat larger than the number of positive valued variables, e.g.,
in this case, reasonable values may be n D 100 or 1,000).

For simplicity, we restrict attention to a simple weighted measure of consistency
which is given by the frequency that the variables x1 to x30 receive the value 1 in
these elite solutions (We temporarily disregard weightings based on solution quality
and other aspects of “strongly determined” assignments). Specifically, assume the
frequency measures are as shown in Table 13.

Since each of x1 to x15 receives a value of 1 in 24 of the 40 solutions, these
variables tie for giving “most frequent” assignments. An intensification strategy
that favors the inclusion of some number of such assignments would give equal

3354 F. Glover and M. Laguna

Table 13 Frequency
measures Variables xj D 1 Number of solutions

x1 to x15 24
x16 to x20 21
x21 to x25 17
x26 to x30 12

Table 14 Frequency measures for two subsets

Subset 1 (20 solutions) Subset 2 (20 solutions)

Variables xj D 1 No. of solutions Variables xj D 1 No. of solutions
x11 to x15 20 x16 to x20 20
x21 to x25 16 x6 to x10 16
x1 to x5 12 x1 to x5 12
x6 to x10 8 x26 to x30 8
x26 to x30 4 x11 to x15 4
x16 to x20 1 x21 to x25 1

bias to introducing each of x1 to x15 at the value 1 (Such a bias would typically
be administrated either by creating modified evaluations or by incorporating
probabilities based on such evaluations).

To illustrate the relevance of clustering, suppose the collection of 40 elite solu-
tions can be partitioned into two subsets of 20 solutions each, whose characteristics
are summarized in Table 14.

A very different picture now emerges. The variables x1 to x15 no longer appear
to deserve equal status as “most favored” variables. Treating them with equal status
may be a useful source of diversification, as opposed to intensification, but the
clustered data provide more useful information for diversification concerns as well.
In short, clustering gives a relevant contextual basis for determining the variables
(and combinations of variables) that should be given special treatment.

7.5.1 Conditional Relationships
To go a step beyond the level of differentiation provided by cluster analysis, it is
useful to sharpen the focus by referring explicitly to interactions among variables.
Such interactions can often be identified in a very straightforward way and can form
a basis for more effective clustering. In many types of problems, the number of value
assignments (or the number of “critical attributes”) needed to specify a solution is
relatively small compared to the total number of problem variables (For example,
in routing, distribution, and telecommunication applications, the number of links
contained in feasible constructions is typically a small fraction of those contained
in the underlying graph). Using a 0–1 variable representation of possibilities, it is
not unreasonable in such cases to create a cross-reference matrix, which identifies
variables (or coded attributes) that simultaneously receive a value of 1 in a specific
collection of elite solutions.

Tabu Search 3355

To illustrate, suppose the index set P = f1,. . . ,pg identifies the variables xj that
receive a value of 1 in at least r solutions from the collection of elite solutions under
consideration (Apart from other strategic considerations, the parameter r can also be
used to control the size of p, since larger values of r result in smaller values of p).

Then create a p � p symmetric matrix M whose entries mij identify the number
of solutions in which xi and xj are both 1 (Thus, row Mi of M represents the sum
of the solution vectors in which xi D 1, restricted to components xj for j 2 P).
The value mii identifies the total number of elite solutions in which xi D 1, and the
value mij /mii represents the “conditional probability” that xj D 1 in this subset of
solutions. Because p can be controlled to be of modest size, as by the choice of r

and the number of solutions admitted to the elite set, the matrix M is not generally
highly expensive to create or maintain.

By means of the conditional probability interpretation, the entries of M give a
basis for a variety of analyses and choice rules for incorporating preferred attributes
into new solutions. Once an assignment xj D 1 is made in a solution currently under
consideration (which may be either partly or completely constructed), an updated
conditional matrix M can be created by restricting attention to elite solution vectors
for which xj D 1 (Restricted updates of this form can also be used for look-ahead
purposes). Weighted versions of M, whose entries additionally reflect the quality of
solutions in which specific assignments occur, likewise can be used.

Critical event memory provides a convenient mechanism to maintain appropriate
variation when conditional influences are taken into account. The “critical solutions”
associated with such memory in the present case are simply those constituting a
selected subset of elite solutions. Frequency measures for value assignments can be
obtained by summing these solution vectors for problems with 0–1 representations,
and the critical event control mechanisms can then assure assignments are chosen
to generate solutions that differ from those of previous elite solutions.

Conditional analysis, independent of such memory structures, can also be a
useful foundation for generating solution fragments to be exploited by vocabulary-
building processes.

7.6 Referent-Domain Optimization

Referent-domain optimization is based on introducing one or more optimization
models to strategically restructure the problem or neighborhood, accompanied by
auxiliary heuristic or algorithmic process to map the solutions back to the original
problem space. The optimization models are characteristically devised to embody
selected heuristic goals (e.g., of intensification, diversification, or both), within the
context of particular classes of problems.

There are several ways to control the problem environment as a basis for applying
referent-domain optimization. A natural control method is to limit the structure
and range of parameters that define a neighborhood (or the rules used to navigate
through a neighborhood) and to create an optimization model that operates under
these restricted conditions.

3356 F. Glover and M. Laguna

The examples that follow assume the approach starts from a current trial solution,
which may or may not be feasible. The steps described yield a new solution, and then
the step is repeated, using tabu search as a master guiding strategy to avoid cycling
and to incorporate intensification and diversification.

Example 1 A heuristic selects k variables to change values, holding other variables
constant. An exact method determines the (conditionally) optimal new values of the
k-selected variables.

Example 2 A heuristic identifies a set of restrictive bounds that bracket the values
of the variables in the current trial solution (where the bounds may compel some
variables to take on a single value). An exact method determines an optimal solution
to the problem as modified to include these bounds.

Example 3 A heuristic selects a restructured and exploitable region around the
current solution to search for an alternative solution. An exact method finds the
best solution in this region.

Example 4 For add/drop neighborhoods, a heuristic chooses k elements to add (or
to drop). For example, the heuristic may operate by both adding and dropping
k-specific elements, as in k-opt moves for the TSP or k-swap moves for graph
bipartitioning that add and drop k nodes. Then, attention is restricted to consider
only the subset of elements added or the subset of elements dropped (and further
restricted in the case of a bipartitioning problem to just one of the two sets). Then
an exact method identifies the remaining k elements to drop (or to add) that will
complete the move optimally.

Example 5 A heuristic chooses a modified problem formulation that also admits
the current trial solution as a trial solution (For example, the heuristic may relax
some part of the formulation and/or restrict another part). An exact method then
finds an optimal solution to the modified formulation. An illustration occurs where
a two-phase exact algorithm first finds an optimal solution to a relaxed portion of the
problem and then finds an optimal solution to a restricted portion. Finally, a small
part of the feasible region of the original problem close to or encompassing this
latter solution is identified, and an exact solution method finds an optimal solution
in this region.

Example 6 The use of specially constructed neighborhoods (and aggregations or
partitions of integer variables) permits the application of mixed-integer program-
ming (MIP) models to identify the best options from all moves of depth at most
k (or from associated collections of at most k variables). When k is sufficiently
small, such MIP models can be quite tractable and produce moves considerably
more powerful than those provided by lower level heuristics.

Example 7 In problems with graph-related structures, the imposition of directional-
ity or nonlooping conditions gives a basis for devising generalized shortest path (or

Tabu Search 3357

dynamic programming) models to generate moves that are optimal over a significant
subclass of possibilities. This type of approach gives rise to a combinatorial leverage
phenomenon, where a low-order effort (e.g., linear or quadratic) can yield solutions
that dominate exponential numbers of alternatives (See, e.g., [24, 61, 63]).

Example 8 A broadly applicable control strategy, similar to that of a relaxation
procedure but more flexible, is to create a proxy model that resembles the original
problem of interest and which is easier to solve. Such an approach must be
accompanied with a method to transform the solution to the proxy model into
a trial solution for the original problem. A version of such an approach, which
also induces special structure into the proxy model, can be patterned after layered
surrogate/Lagrangian decomposition strategies for mixed-integer optimization.

Referent-domain optimization can also be applied in conjunction with target
analysis to create more effective solution strategies. In this case, a first-stage
learning model, based on controlled solution attempts, identifies a set of desired
properties of good solutions, together with target solutions (or target regions)
that embody these properties. Then a second-stage model is devised to generate
neighborhoods and choice rules to take advantage of the outcomes of the learning
model. Useful strategic possibilities are created by basing these two models on a
proxy model for referent-domain optimization, to structure the outcomes so that
they may be treated by one of the control methods indicated in the foregoing
examples.

8 Conclusion

It is natural to be tempted to implement the most rudimentary forms of a method.
More than a few papers on tabu search examine only a small portion of the elements
of short-term memory and examine little or nothing at all of longer-term memory.
Unfortunately, in some cases, these papers also present themselves as embodying
the essence of tabu search.

A factor that has reinforced the tendency to examine a limited part of tabu search
(aside from convenience, which can be sensible in early stages of an investigation) is
that such a focus has sometimes produced very appealing results. When reasonably
decent outcomes can be found without great effort, the motive to look further is
diminished. The danger, of course, lies in failing to discover significant gains that
are likely to be achieved by a more complete approach.

It is appropriate to acknowledge that attention may be given to a limited subset
of ideas from an overall search framework for the following reasons:
1. Such a focus may help to uncover a better form for the strategies associated with

this subset.
2. Weaknesses of this subset, when studied in isolation from other ideas, may stand

out more clearly, thus yielding insights into the features of a more complete
approach that are required to produce a better method.

3358 F. Glover and M. Laguna

3. For methods which are susceptible to highly “modular” implementations, as
typically occurs for tabu search, simpler designs can readily be made a part of
more complex designs.
Nevertheless, in many settings, tabu search implementations that incorporate a

more comprehensive set of its basic strategies typically perform appreciably better
than implementations that restrict consideration to a narrow set of such strategies.

A great deal remains to be learned about tabu search. Evidently, we also still
know very little about how we ourselves use memory in our problem solving. It is
not inconceivable that discoveries about effective uses of memory within our search
methods will provide clues about strategies that humans are adept at employing – or
may advantageously be taught to employ. The potential links between the areas of
heuristic search and psychology have scarcely been examined. Unquestionably, in
the realm of optimization, we have not yet investigated the strategic possibilities at
a level that comes close to disclosing their full potential. The numerous successes of
tabu search implementations provide encouragement that such issues are profitable
to probe more fully. Some of the opportunities and challenges involved are discussed
in Glover [28].

Recent fundamental advances in applications of tabu search have been assembled
in a collection of “Tabu Search Vignettes” which can be accessed via the internet at
http://spot.colorado.edu/�glover. These include summaries of key developments in
a variety of areas, including:

Constraint Solving and Its Applications (Resource Assignment, Planning and
Timetabling, Integer Programming Feasibility, Satisfiability, Mobile Net-
work Frequency Assignment)

Chemical Industry Applications (Computer Aided Molecular Design (CAMD),
Heat Exchanger Network (HEN) Synthesis, Phase Equilibrium Calculations,
Gibbs Free Energy Minimization, Optimal Component Lumping Problems)

Classification
Feature Selection
Satellite Range Scheduling
Maritime Transportation for International Trade
Conservation Area Network Design
High Level Synthesis
Graph Coloring
Delivery
Routing with Loading and Inventory Constraints
Heterogeneous Routing and Scheduling
Capacitated Facility Location
Multi-period Forest Harvesting
Manpower Scheduling
DNA Sequencing
Airline Disruption Management
Internet Traffic Engineering
Matrix Bandwidth Minimization
Generalized Assignment

http://spot.colorado.edu/~glover

Tabu Search 3359

Constraint Satisfaction (Work Shift Scheduling, Set-Covering and Nurse
Scheduling)

Resource-Constrained Project Scheduling
Dynamic Optimization (Trade Market Prediction, Meteorological Forecast,

Robotics Motion Control)
Additional topics and references related to tabu search, including these vignettes,

will also be featured in the website http://www.tabusearch.info/ which is scheduled
to debut in November 2012.

Cross-References

�Algorithms and Metaheuristics for Combinatorial Matrices
�Binary Unconstrained Quadratic Optimization Problem
�Fuzzy Combinatorial Optimization Problems
�Neural Network Models in Combinatorial Optimization

Recommended Reading

1. D. Ackley, A Connectionist Model for Genetic Hillclimbing (Kluwer Academic Publishers,
Dordrecht, 1987)

2. T. Bäck, F. Hoffmeister, H. Schwefel, A survey of evolution strategies, in Proceedings of the
Fourth International Conference on Genetic Algorithms, San Diego, ed. by R. Belew, L. Booker
(1991), pp. 2–9

3. R. Battiti, G. Tecchiolli, Parallel based search for combinatorial optimization: genetic algo-
rithms and tabu search. Microprocess. Microsyst. 16, 351–367 (1992)

4. R. Battiti, G. Tecchiolli, The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)
5. D. Beyer, R. Ogier, Tabu learning: a neural network search method for solving nonconvex

optimization problems, in Proceedings of the International Conference in Neural Networks
(IEEE/INNS, Singapore, 1991)

6. A. Consiglio, S.A. Zenios, Designing portfolios of financial products via integrated simulation
and optimization models. Oper. Res. 47(2), 195–208 (1999)

7. V.-D. Cung, T. Mautor, P. Michelon, A. Tavares, Scatter search for the Quadratic assignment
problem, Laboratoire PRiSM-CNRS URA 1525, 1996

8. L. Davis, Adapting operator probabilities in genetic algorithms, in Proceedings of the Third
International Conference on Genetic Algorithms (Morgan Kaufmann, San Mateo, 1989),
pp. 61–69

9. D. De Werra, A. Hertz, Tabu search techniques: a tutorial and applications to neural networks.
OR Spectrum 11, 131–141 (1989)

10. A.E. Eiben, P.-E. Raue, Z. Ruttkay, Genetic algorithms with multi-parent recombination, in
Proceedings of the third international conference on parallel problem solving from nature
(PPSN), ed. by Y. Davidor, H.-P. Schwefel, R. Manner (Springer, New York, 1994), pp. 78–87

11. L.J. Eschelman, J.D. Schaffer, Real-coded genetic algorithms and interval-schemata, Technical
report, Phillips Laboratories, 1992

12. T. Feo, M.G.C. Resende, A probabilistic Heuristic for a computationally difficult set covering
problem Oper. Res. Lett. 8, 67–71 (1989)

13. T. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Global Opt. 2,
1–27 (1995)

http://www.tabusearch.info/
http://dx.doi.org/10.1007/978-1-4419-7997-1_13
http://dx.doi.org/10.1007/978-1-4419-7997-1_15
http://dx.doi.org/10.1007/978-1-4419-7997-1_68
http://dx.doi.org/10.1007/978-1-4419-7997-1_65

3360 F. Glover and M. Laguna

14. C. Fleurent, F. Glover, P. Michelon, Z. Valli, A scatter search approach for unconstrained
continuous optimization, in Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation (1996), pp. 643–648

15. A. Freville, G. Plateau, Heuristics and reduction methods for multiple constraint 0-1 linear
programming problems. Eur. J. Oper. Res. 24, 206–215 (1986)

16. A. Freville, G. Plateau, An exact search for the solution of the surrogate dual of the 0-1
bidimensional Knapsack problem. Eur. J. Oper. Res. 68, 413–421 (1993)

17. F. Glover, D. Klingman, N Phillips, Netform modeling and applications, Special issue on the
practice of mathematical programming. Interfaces 20(1), 7–27 (1990)

18. F. Glover, Parametric combinations of local job shop rules. Chapter IV, ONR Research
Memorandum no. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA, 1963

19. F. Glover, A multiphase-dual algorithm for the zero-one integer programming problem. Oper.
Res. 13(6), 879–919 (1965)

20. F. Glover, Surrogate constraints. Oper. Res. 16, 741–749 (1968)
21. F. Glover, Surrogate constraint duality in mathematical programming. Oper. Res. 23, 434–451

(1975)
22. F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1),

156–166 (1977)
23. F. Glover, Tabu search—part I. ORSA J. Comput. 1, 190–206 (1989)
24. F. Glover, Ejection chains, reference structures and alternating path methods for traveling

salesman problems. University of Colorado. Shortened version published in Discret. Appl.
Math. 65(1996), 223–253 (1992)

25. F. Glover, Genetic algorithms and scatter search: unsuspected potentials. Stat. Comput. 4,
131–140 (1994)

26. F. Glover, Scatter search and star-paths: beyond the genetic metaphor. OR Spektrum 17,
125–137 (1995)

27. F. Glover, A template for scatter search and path relinking, in Artificial Evolution, ed. by J.K.
Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers. Lecture Notes in Computer Science,
vol. 1363 (Springer, Berlin, 1997), pp. 13–54

28. F. Glover, Tabu search—uncharted domains. Ann. Oper. Res. 149(1), 89–98 (2007)
29. F. Glover, H. Greenberg, New approaches for Heuristic search: a bilateral linkage with artificial

intelligence. Eur. J. Oper. Res. 39(2), 119–130 (1989)
30. F. Glover, G. Kochenberger, Critical event Tabu search for multidimensional Knapsack

problems, in Meta-Heuristics: Theory and Applications, ed. by I.H. Osman, J.P. Kelly (Kluwer
Academic Publishers, Boston, 1996), pp. 407–427

31. F. Glover, M. Laguna, Tabu Search (Kluwer Academic Publishers, Boston, 1997)
32. F. Glover, J.P. Kelly, M. Laguna, New advances and applications of combining simulation and

optimization, in Proceedings of the 1996 Winter Simulation Conference, Coronado, ed. by J.M.
Charnes, D.J. Morrice, D.T. Brunner, J.J. Swain (1996), pp. 144–152

33. F. Glover, G. Kochenberger, B. Alidaee, Adaptive memory Tabu search for binary quadratic
programs. Manag. Sci. 44(3), 336–345 (1998)

34. F. Glover, J. Mulvey, D. Bai, M. Tapia, Integrative population analysis for better solutions
to large-scale mathematical programs, Industrial Applications of Combinatorial Optimization,
ed. by G. Yu (Kluwer Academic Publishers, Boston, 1998), pp. 212–237

35. F. Glover, M. Laguna, R. Marti, Fundamentals of scatter search and path relinking. Control
Cybern. 29(3), 653–684 (2000)

36. H.J. Greenberg, W.P. Pierskalla, Surrogate mathematical programs. Oper. Res. 18, 924–939
(1970)

37. H.J. Greenberg, W.P. Pierskalla, Quasi-conjugate functions and surrogate duality. Cahiers du
Centre d’Etudes de Recherche Operationelle 15, 437–448 (1973)

38. J.H. Holland, Adaptation in natural and artificial systems (University of Michigan Press, Ann
Arbor, 1975)

39. D.S. Johnson, Local optimization and the traveling salesman problem, in Proceedings of
the 17th International Colloquium on Automata, Languages and Programming (1990),
pp. 446–460

Tabu Search 3361

40. M.H. Karwan, R.L. Rardin, Surrogate dual multiplier search procedures in integer program-
ming. School of Industrial Systems Engineering, Report series no. J-77-13, Georgia Institute
of Technology, 1976

41. M.H. Karwan, R.L. Rardin, Some relationships between lagrangian and surrogate duality in
integer programming. Math. Program. 17, 230–334 (1979)

42. J. Kelly, B. Rangaswamy, J. Xu, A scatter search-based learning algorithm for neural network
training. J. Heuristics 2, 129–146 (1996)

43. M. Laguna, Optimizing complex systems with OptQuest. Research report, University of
Colorado, 1997

44. M. Laguna, T. Feo, H. Elrod, A greedy randomized adaptive search procedure for the
2-partition problem. Oper. Res. 42(4), 677–687 (1994)

45. M. Laguna, F. Glover, Integrating target analysis and Tabu search for improved scheduling
systems. Expert Syst. Appl. 6, 287–297 (1993)

46. M. Laguna, R. Marti, GRASP and Path Relinking for 2-Layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11(1), 44–52 (1999)

47. M. Laguna, R. Martı́, V. Campos, Tabu search with path relinking for the linear ordering
problem. Research report, University of Colorado, 1997

48. M. Laguna, R. Marti, V. Valls, Arc crossing minimization in hierarchical digraphs with Tabu
search. Comput. Oper. Res. 24(12), 1175–1186 (1997)

49. A. Lokketangen, K. Jornsten, S. Storoy, Tabu search within a pivot and complement framework.
Int. Trans. Oper. Res. 1(3), 305–316 (1994)

50. A. Lokketangen, F. Glover, Probabilistic move selection in Tabu search for 0/1 mixed integer
programming problems, in Meta-Heuristics: Theory and Applications, ed. by I.H. Osman,
J.P. Kelly (Kluwer Academic Publishers, Boston, 1996), pp. 467–488

51. A. Lokketangen, F. Glover, Surrogate constraint analysis—new heuristics and learning
schemes for satisfiability problems, in Proceedings of the DIMACS workshop on Satisfiability
Problems: Theory and Applications, Providence, ed. by D.-Z. Du, J. Gu, P. Pardalos (1997)

52. H.R. Lourenco, M. Zwijnenburg, Combining the large-step optimization with Tabu search:
application to the job shop scheduling problem, in Meta-Heuristics: Theory and Applications,
ed. by I.H. Osman, J.P. Kelly (Kluwer Academic Publishers, Boston, 1996), pp. 219–236

53. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman
problem. Complex Syst. 5(3), 299–326 (1991)

54. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for TSP incorporating local
search heuristics. Oper. Res. Lett. 11(4), 219–224 (1992)

55. Z. Michalewicz, C. Janikow, Genetic algorithms for numerical optimization. Stat. Comput. 1,
75–91 (1991)

56. H. Mühlenbein, D. Schlierkamp-Voosen, The science of breeding and its application to the
Breeder genetic algorithm. Evolut. Computat. 1, 335–360 (1994)

57. H. Mühlenbein, H.-M. Voigt, Gene pool recombination in genetic algorithms, Meta-
Heurisitics: Theory and Applications, ed. by I.H. Osman, J.P. Kelly (Kluwer Academic
Publishers, Boston, 1996), 53–62

58. H. Mühlenbein, M. Gorges-Schleuter, O. Krämer, Evolution algorithms in combinatorial
optimization. Parallel Comput. 7, 65–88 (1988)

59. K. Nonobe, T. Ibaraki, A Tabu search approach for the constraint satisfaction problem as a
general problem solver. Eur. J. Oper. Res. 106, 599–623 (1998)

60. K. Nonobe, T. Ibaraki, An improved tabu search method for the weighted constraint satisfaction
problem. INFOR 39, 131–151 (2001)

61. A.P. Punnen, F. Glover, Ejection chains with combinatorial leverage for the traveling salesman
problem, Graduate School of Business, University of Colorado at Boulder, 1997

62. S. Rana, D. Whitley, Bit representations with a twist, in Proceedings of the 7th International
Conference on Genetic Algorithms, ed. by T. Baeck (Morgan Kaufman, San Francisco, 1997),
pp. 188–196

63. C. Rego, F. Glover, Ejection chain and filter-and-fan methods in combinatorial optimization.
Ann. Oper. Res. (2009). Springer Science+Business Media, LLC, doi:10.1007/s10479-009-
0656-7

3362 F. Glover and M. Laguna

64. Y. Rochat, É.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1, 147–167 (1995)

65. W.M. Spears, K.A. DeJong, On the virtues of uniform crossover, in Proceedings of the 4th
International Conference on Genetic Algorithms, La Jolla, CA, 1991

66. É.D. Taillard, A heuristic column generation method for the heterogeneous VRP. Publication
CRT-96-03, Centre de recherche sur les transports, Université de Montréal. To appear in
RAIRO-OR, 1996

67. T. Trafalis, I. Al-Harkan, A continuous scatter search approach for Global optimization.
Extended abstract in Conference in Applied Mathematical Programming and Modeling
(APMOD’95), London, UK, 1995

68. N.L.J. Ulder, E. Pech, P.J.M. van Laarhoven, H.J. Bandelt, E.H.L. Aarts, Genetic local search
algorithm for the traveling salesman problem, in Parallel Problem Solving from Nature, ed. by
R. Maenner, H.P. Schwefel (Springer, Berlin, 1991), pp. 109–116

69. D. Whitley, V.S. Gordon, K. Mathias, Lamarckian evolution, the Baldwin effect and function
optimization, in Proceedings of the Parallel Problem Solving from Nature, vol. 3 (Springer,
New York, 1994) pp. 6–15

70. A.H. Wright, Genetic algorithms for real parameter optimization, Foundations of Genetic
Algorithms, ed. by G. Rawlins, (Morgan Kaufmann, Los Altos, CA, 1990) pp. 205–218

71. T. Yamada, R. Nakano, Scheduling by Genetic local search with multi-step crossover, in
Proceedings of the 4th International Conference on Parallel Problem Solving from Nature,
Berlin (1996), pp. 960–969

72. T. Yamada, C. Reeves, Permutation flowshop scheduling by genetic local search, in Proceed-
ings of the 2nd IEE/IEEE International Conference on Genetic Algorithms in Engineering
Systems (GALESIA ’97), Glasglow, UK (1997), pp. 232–238

73. S. Zenios, Dynamic financial modeling and optimizing the design of financial products,
Presented at the National INFORMS Meeting, Washington, DC, 1996

	Tabu SearchThe material of this chapter is in part adapted from the book Tabu Search, by Fred Glover and Manuel Laguna, Kluwer Academic Publishers, 1997.
	1 Introduction
	2 Tabu Search Features and Relevance
	2.1 General Tenets
	2.2 Use of Memory
	2.3 Intensification and Diversification

	3 Tabu Search Foundations and Short-Term Memory
	3.1 Memory and Tabu Classifications
	3.2 Recency-Based Memory
	3.3 A First-Level Tabu Search Approach
	3.3.1 Critical Event Memory

	3.4 Recency-Based Memory for Add/Drop Moves
	3.4.1 Some Useful Notation
	3.4.2 Streamlining

	3.5 Tabu Tenure
	3.5.1 Random Dynamic Tenure
	3.5.2 Systematic Dynamic Tenure

	3.6 Aspiration Criteria and Regional Dependencies
	3.7 Concluding Observations for the Min k-Tree Example

	4 Additional Aspects of Short-Term Memory
	4.1 Tabu Search and Candidate List Strategies
	4.2 Some General Classes of Candidate List Strategies
	4.2.1 Aspiration Plus
	4.2.2 Elite Candidate List
	4.2.3 Successive Filter Strategy
	4.2.4 Sequential Fan Candidate List
	4.2.5 Bounded Change Candidate List

	4.3 Connections Between Candidate Lists, Tabu Status, and Aspiration Criteria
	4.4 Logical Restructuring
	4.4.1 Restructuring by Changing Evaluations and Neighborhoods
	4.4.2 Threshold-Based Restructuring and Induced Decomposition

	5 Longer-Term Memory
	5.1 Frequency-Based Approach
	5.2 Intensification Strategies
	5.3 Diversification Strategies
	5.3.1 Modifying Choice Rules
	5.3.2 Restarting

	5.4 Strategic Oscillation
	5.5 Path Relinking
	5.5.1 Roles in Intensification and Diversification
	5.5.2 Incorporating Alternative Neighborhoods

	5.6 The Intensification/Diversification Distinction
	5.7 Some Basic Memory Structures for Longer-Term Strategies
	5.7.1 Conventions
	5.7.2 Frequency-Based Memory
	5.7.3 Critical Event Memory

	6 Connections, Hybrid Approaches, and Learning
	6.1 Simulated Annealing
	6.2 Genetic Algorithms
	6.2.1 Models of Nature: Beyond ``Genetic Metaphors''

	6.3 Scatter Search
	6.3.1 Modern Forms and Applications of Scatter Search
	6.3.2 Scatter Search and Path-Relinking Interconnections

	6.4 Greedy Randomized Adaptive Search Procedures (GRASP)
	6.5 Neural Networks
	6.6 Target Analysis
	6.6.1 Target Analysis Features
	6.6.2 Illustrative Application and Implications
	6.6.3 Conditional Dependencies Among Attributes
	6.6.4 Differentiating Among Targets
	6.6.5 Generating Rules by Optimization Models

	7 Neglected Tabu Search Strategies
	7.1 Candidate List Strategies
	7.2 Intensification Approaches
	7.2.1 Restarting with Elite Solutions
	7.2.2 Frequency of Elite Solutions
	7.2.3 Memory and Intensification
	7.2.4 Relevance of Clustering for Intensification

	7.3 Diversification Approaches
	7.3.1 Diversification and Intensification Links
	7.3.2 Implicit Conflict and the Importance of Interactions
	7.3.3 Reactive Tabu Search

	7.4 Strategic Oscillation
	7.5 Clustering and Conditional Analysis
	7.5.1 Conditional Relationships

	7.6 Referent-Domain Optimization

	8 Conclusion
	Cross-References
	Recommended Reading

