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Abstract
In recent years the unconstrained quadratic binary program (UQP) has emerged
as a unified framework for modeling and solving a wide variety of combinatorial
optimization problems. The unexpected versatility of the UQP model is opening
doors to the solution of a diverse array of important and challenging applications.
Developments in this evolving area are illustrated by describing its methodology
with examples and by reporting substantial computational experience demon-
strating the viability and robustness of latest methods for solving the UQP
model, showing that they obtain solutions to wide-ranging instances of the model
that rival or surpass the best solutions obtained by today’s best special-purpose
algorithms.

1 Introduction

The unconstrained quadratic binary program (UQP) has a lengthy history as an
interesting and challenging combinatorial problem. Simple in its appearance, the
model is given by

UQP W Opt x0Qx

where x is an n-vector of binary variables and Q is an n-by-n symmetric matrix
of constants. Published accounts of this model go back at least as far as the 1960s
in the work of Hammer and Rudeanu [31] and have applications in such diverse
areas as spin glasses [18, 30], machine scheduling [1], the prediction of epileptic
seizures [35], solving satisfiability problems [12, 13, 31, 33], and determining
maximum cliques [13, 55, 56]. The application potential of UQP is much greater
than might be imagined, due to the reformulation possibilities afforded by the use
of quadratic infeasibility penalties as an alternative to imposing constraints in an
explicit manner. In fact, any linear or quadratic discrete (deterministic) problem
with linear constraints in bounded integer variables can in principle be recast in the
form of UQP via the use of such penalties.

As will be shown, this outcome has more than theoretical significance. A broad
range of challenging problems in combinatorial optimization can not only be
reexpressed as UQP problems but can be solved in a highly effective manner when
expressed this way. The process of reformulating a given combinatorial problem
into an instance of UQP is easy to carry out. The common modeling framework
that results, coupled with recently reported advances in solution methods for UQP,
serve to make the model a viable alternative to more traditional combinatorial
optimization models as illustrated in the sections that follow.

1.1 Recasting into the Unified Framework

For certain types of constraints, equivalent quadratic penalty representations are
known in advance making it easy to embody the constraints within the UQP
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objective function. For instance, let xi and xj be binary variables and consider the
constraint

xi C xj � 1 (1)

which precludes setting both variables to one simultaneously. A quadratic infeasi-
bility penalty that imposes the same condition on xi and xj is

Pxixj (2)

where P is a large positive scalar. This penalty function is positive when both
variables are set to one (i.e., when (1) is violated), and otherwise the function is
equal to zero. For a minimization problem then, adding the penalty function to the
objective function is an alternative equivalent to imposing the constraint of (1) in
the traditional manner.

In the context of transformations involving UQP, a penalty function is said to
be a valid infeasible penalty (VIP) if it is zero for feasible solutions and otherwise
positive. Including quadratic VIPs in the objective function for each constraint in
the original model yields a transformed model in the form of UQP. VIPs for several
commonly encountered constraints are given below (where x and y are binary
variables and P is a large positive scalar):

Note that the penalty term in each case is zero if the associated constraint is
satisfied, and otherwise the penalty is positive. These penalties, then, can be directly
employed as an alternative to explicitly introducing the original constraints. For
other more general constraints, however, VIPs are not known in advance and need
to be “discovered.” A simple procedure for finding an appropriate VIP for any linear
constraint is given in the next section.

1.2 Accommodating General Linear Constraints

To recast a constrained problem in the form of UQP when the VIPs are not known
in advance, consider as a starting point the general constrained problem

min x0 D xQx
subject to

Ax D b; x binary
(3)

This model accommodates both quadratic and linear objective functions since the
linear case results when Q is a diagonal matrix (observing that x2

j D xj when xj is a
0-1 variable). Under the assumption that A and b have integer components, problems
with inequality constraints can also be put in this form by representing their bounded
slack variables by a binary expansion. These constrained quadratic optimization
models are converted into equivalent UQP models by adding a quadratic infeasi-
bility penalty function to the objective function in place of explicitly imposing the
constraints Ax D b.
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Specifically, for a positive scalar P,

x0 D xQx C P .Ax � b/t .Ax � b/

D xQx C xDx C c (4)

D x OQx C c

where the matrix D and the additive constant c result directly from the matrix mul-
tiplication indicated. Dropping the additive constant, the equivalent unconstrained
version of the constrained problem becomes

UQP W min x OQx; x binary (5)

From a theoretical standpoint, a suitable choice of the penalty scalar P can always
be chosen so that the optimal solution to UQP is the optimal solution to the original
constrained problem. Remarkably, as demonstrated later, it is often easy to find such
a suitable value in practice as well.

The preceding general transformation that transforms (3) and (4) into (5) will
be called Transformation 1. A fuller discussion of this transformation along with
related material can be found in [13, 32, 34]. Transformation 1 provides the general
procedure alluded to earlier that can in principle be employed to transform any
problem in the form of (3) into an equivalent instance of UQP.

For problems where VIPs are known in advance, as by the penalty transforma-
tions given in Table 1, it is usually preferable to use the known VIP directly rather
than applying Transformation 1. One special constraint in particular

xj C xk � 1

where the VIP takes the simple form Pxjxk appears in many important applications.
Due to the broad applicability of this constraint, it is convenient to refer to this
special case as Transformation 2.

This process of transforming a given problem into the unified framework of xQx
is illustrated by the following three examples.

Example 1 Set Packing
Set packing problems have the form Max cx: Ax � e and x binary where A is a

matrix of 0s and 1s and c and e are both vectors of 1s. These problems are important
in the field of combinatorial optimization due to their application potential and their
computational challenge. Consider the following example:

max x0 D x1 C x2 C x3 C x4

st
x1 C x3 C x4 � 1
x1 C x2 � 1
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Table 1 Known penalties Classical Equivalent
constraint penalty (VIP)

x C y � 1 P.xy/

x C y � 1 P.1 � x � y C xy/

x C y D 1 P.1 � x � y C 2xy/

x � y P.x � xy/

x1 C x2 C x3 � 1 P.x1x2 C x1x3 C x2x3/

The VIPs in Table 1 make it possible to immediately recast this classical model into
the UQP unified framework. Representing the positive scalar penalty P by 2M, the
equivalent unconstrained problem is

max x0 D x1 C x2 C x3 C x4 � 2Mx1x3 � 2Mx1x4 � 2Mx3x4 � 2Mx1x2

which can be rewritten as

max .x1 x2 x3 x4/

2
664

1 �M �M �M
�M 1 0 0

�M 0 1 �M
�M 0 �M 1

3
775

0
BB@

x1

x2

x3

x4

1
CCA

This model has the form max x0Qx where Q, as shown above, is a square, symmetric
matrix. The procedure illustrated here can be used with any set packing problem
and has proven to be an effective approach for solving problems with thousands of
variables and constraints (see [4]).

Example 2 Set Partitioning
The classical set partitioning problem has the form Min dx: Ax = e, x binary

where again A is a matrix of 0s and 1s, e is a vector of 1s, and (in contrast to the
vector c of set packing problems) d is a vector of integers, typically nonnegative. The
set partitioning problem is found in applications that range from vehicle routing to
crew scheduling [36, 51]. As an illustration, consider the following small example:

min x0 D 3x1 C 2x2 C x3 C x4 C 3x5 C 2x6

subject to
x1 C x3 C x6 D 1
x2 C x3 C x5 C x6 D 1
x3 C x4 C x5 D 1
x1 C x2 C x4 C x6 D 1
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and x binary. Applying Transformation 1 with P = 10 gives the equivalent UQP
model:

min x OQx; x binary

where the additive constant, c, is 40 and the symmetric
_

Q matrix is

OQ D

2
66666664

�17 10 10 10 0 20

10 �18 10 10 10 20

10 10 �29 10 20 20

10 10 10 �19 10 10

0 10 20 10 �17 10

20 20 20 10 10 �28

3
77777775

Solving this UQP formulation provides an optimal solution x1 D x5 D 1 (with
all other variables equal to 0) to yield x0 D 6. In the straightforward application
of Transformation 1 to this example, the replacement of the original problem
formulation by the UQP model does not require any new variables to be introduced.
Set partitioning problems with thousands of variables have been successfully solved
by reformulating them in this manner, as reported in [47].

In many applications, Transformations 1 and 2 can be used in concert to produce
an equivalent UQP model, as demonstrated next.

Example 3 The K-Coloring Problem
Vertex coloring problems seek to assign colors to nodes of a graph in such a way

that adjacent nodes receive different colors. The K-coloring problem attempts to
find such a coloring using exactly K colors. A wide range of applications, ranging
from frequency assignment problems to printed circuit board design problems, can
be represented by the K-coloring model.

These problems can be modeled as satisfiability problems using the assignment
variables as follows:

Let xij be 1 if node i is assigned color j, and 0 otherwise.
Since each node must be colored,

KX
jD1

xij D 1 i D 1; : : : ; n (6)

where n is the number of nodes in the graph. A feasible coloring, in which adjacent
nodes are assigned different colors, is assured by imposing the constraints

xip C xjp � 1 p D 1; : : : ; K (7)

for all adjacent nodes (i, j) in the graph.
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This problem can be recast in the form of UQP by using Transformation 1 on
the assignment constraints of (6) and Transformation 2 on the adjacency constraints
of (7). No new variables are required. Since the resulting model has no explicit
objective function, any positive value for the penalty P will do. The following
example gives a concrete illustration of the reformulation process.

Find a feasible coloring of the following graph using three colors.
Thus, the goal is to find a solution to the system:

5 2

4 3

1

xi1 C xi2 C xi3 D 1 i D 1; 5 (8)

xip C xjp � 1 p D 1; 3 (9)

(for all adjacent nodes i and j)

In this traditional form, the model has 15 variables and 26 constraints. To recast this
problem in the form of UQP, it suffices to use Transformation 1 on the equations of
(8) and Transformation 2 on the inequalities of (9). Arbitrarily choosing the penalty
P to be 4, the equivalent problem in unified form is given by

UQP.Pen/ W min x OQx

where the OQ matrix is
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OQ D

2
666666666666666666666666664

�4 4 4 4 0 0 0 0 0 0 0 0 4 0 0

4 �4 4 0 4 0 0 0 0 0 0 0 0 4 0

4 4 �4 0 0 4 0 0 0 0 0 0 0 0 4

4 0 0 �4 4 4 4 0 0 4 0 0 4 0 0

0 4 0 4 �4 4 0 4 0 0 4 0 0 4 0

0 0 4 4 4 �4 0 0 4 0 0 4 0 0 4

0 0 0 4 0 0 �4 4 4 4 0 0 0 0 0

0 0 0 0 4 0 4 �4 4 0 4 0 0 0 0

0 0 0 0 0 4 4 4 �4 0 0 4 0 0 0

0 0 0 4 0 0 4 0 0 �4 4 4 4 0 0

0 0 0 0 4 0 0 4 0 4 �4 4 0 4 0

0 0 0 0 0 4 0 0 4 4 4 �4 0 0 4

4 0 0 4 0 0 0 0 0 4 0 0 �4 4 4

0 4 0 0 4 0 0 0 0 0 4 0 4 �4 4

0 0 4 0 0 4 0 0 0 0 0 4 4 4 �4

3
777777777777777777777777775

Solving this unconstrained model, x OQx, yields the feasible coloring:

x11; x22; x33; x41; x53; D 1 all other xij D 0

This approach to coloring problems has proven to be very effective for a wide variety
of coloring instances from the literature as disclosed in [41].

2 Solving UQP

Employing the UQP unified framework to solve combinatorial problems requires
the availability of a solution method for xQx. The recent literature reports major
advances in such methods involving modern metaheuristic methodologies. The
reader is referred to references [6–9, 14, 16, 24–26, 37, 45, 49, 50, 53, 54] for a
description of some of the methods that have provided valuable contributions to
the area. The pursuit of further advances in solution methods for xQx remains an
active research arena.

The computational work reported later in this chapter derives from previous
studies of three methods: a basic tabu search method due to Glover, Kochenberger,
and Alidaee [23–25], a tabu search method due to Lewis [47], and the more recent
tabu search method of Glover, Jin-Kao, and Lu [29]. For convenience these methods
will be referred to as methods 1, 2, and 3 respectively. A brief overview of each
approach is given below. Complete details are provided in the aforementioned
references.
Method 1 Overview: This tabu search metaheuristic for UQP is centered around
the use of strategic oscillation, which constitutes one of the primary strategies of
tabu search. The method alternates between constructive phases that progressively
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set variables to 1 (whose steps are called “add moves”) and destructive phases that
progressively set variables to 0 (whose steps are called “drop moves”). To control
the underlying search process, the method uses a memory structure that is updated
at critical events, identified by conditions that generate a subclass of locally optimal
solutions. Solutions corresponding to critical events are called critical solutions.

A parameter SPAN is used to indicate the amplitude of oscillation about a critical
event. To begin span is set equal to 1 and then is gradually increased until reaching
some limiting value. For each value of span, a series of alternating constructive
and destructive phases is executed before progressing to the next value. At the
limiting point, span is gradually decreased, allowing again for a series of alternating
constructive and destructive phases. When span reaches a value of 1, a complete
span cycle has been completed and the next cycle is launched. The search process
is typically allowed to run for a preset number of SPAN cycles.

Information stored at critical events is used to influence the search process
by penalizing potentially attractive add moves (during a constructive phase) and
inducing drop moves (during a destructive phase) associated with assignments of
values to variables in recent critical solutions. Cumulative critical event information
is used to introduce a subtle long-term bias into the search process by means
of additional penalties and inducements similar to those discussed above. Other
standard elements of tabu search such as short- and long-term memory structures
are also included.
Method 2 Overview: This method is a modification of the previous method that
implements a basic multi-start, tabu search procedure with path-relinking. A local
search is performed using a 1-opt mechanism. When no improvements to the
current solution can be found using 1-opt local search, including tabu aspiration
possibilities, a path-relinking procedure is initiated between the current solution and
an elite set of diverse solutions saved during the search process. After relinking, a
random portion of the current solution is perturbed and testing continues. If after a
number of iterations (specified by the restart limit) no improvements are found, then
a larger perturbation is invoked based on long-term memory.
Method 3 Overview: The DDTS method repeatedly alternates between a simple
version of tabu search (TS) and a diversification phase founded on a memory-based
perturbation operator. Starting from an initial random solution, DDTS uses the TS
procedure to reach a local optimum. Then, the perturbation operator is applied to
displace the solution to a new region, whereupon a new round of TS is launched. To
facilitate achieving effective diversification, the perturbation operator is guided by
information from a special memory structure.

This tabu search procedure uses a neighborhood defined by the single 1-flip
moves, which consists of changing (flipping) the value of a single variable xj to
its complement value 1 � xj. The implementation of this neighborhood uses a fast
incremental evaluation technique to calculate the cost of candidate moves. The
diversification strategy utilizes a memory-based perturbation operator composed of
three parts: a flip frequency memory, an elite solution memory, and an elite value
frequency memory. These memory structures are used jointly by the perturbation
operator to enhance the diversification of the search process. This method has proven
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to be highly effective for solving large instances of UQP. Complete details of this
method are given in Glover, Lu, and Hao [29].

3 Applications

To date several important classes of combinatorial problems have been successfully
modeled and solved by employing the unified framework. Results with the unified
framework applied to these problems have been uniformly attractive in terms of
both solution quality and computation times. While the three solution methods
described above are designed for the completely general form of UQP, without
any specialization to take advantage of particular types of problems reformulated in
this general representation, the outcomes typically prove competitive with or even
superior to those of specialized methods designed for the specific problem structure
at hand. The broad base of experience with UQP as a modeling and solution
framework obtained by applying the three methods above includes a substantial
range of problem classes including quadratic assignment problems, capital budget-
ing problems, multiple knapsack problems, task allocation problems (distributed
computer systems), maximum diversity problems, p-median problems, asymmetric
assignment problems, symmetric assignment problems, side constrained assignment
problems, quadratic knapsack problems, constraint satisfaction problems (CSPs),
set partitioning problems, fixed charge warehouse location problems, maximum
clique problems, maximum independent set problems, maximum cut problems,
graph coloring problems, graph partitioning problems, number partitioning prob-
lems, and-linear ordering problems.

Additional test problems representing a variety of other applications have also
been reformulated and solved via UQP. The section below reports specific com-
putational experience with some large-scale applications. Section 5 then suggests
promising new applications areas for UQP.

4 Illustrative Computational Experience

The following summarizes results obtained on large-scale test problems of a
variety of well-known problem classes from combinatorial optimization. Because
methods 1, 2, and 3 were developed at different points in time, and each has
been applied to classes of problems different from those treated by the other two,
outcomes for these classes of problems are reported by describing the findings for
the three methods in the sequence in which they have been applied.

4.1 The Task Allocation Problem

The task allocation problem, which consists of assigning tasks to processors, can
be described as follows: Let P D fP1; P2; : : : ; Pmg be a set of distributed processors
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and T D fT1; T2; : : : Tng be a set of tasks to be run on the processors. Let cij be the
communications cost between tasks Ti and Tj and qtp be the execution cost of task t
on processor p. Then stipulating that xtp equals 1 if task Tt is assigned to processor
Pp and is otherwise equal to 0, the model becomes

min
nP

tD1

mP
pD1

qtp xtpC
nP

i<j

mP
pD1

cij xip.1 � xjp/

st
mP

pD1
xtp D 1 for t D 1; : : : ; n

which is of the form
min x0Qx
st
Ax D b

Applying Transformation 1 of Sect. 1.2 yields a model in the form of UQP. In a
study [46] comparing CPLEX 8.1 and method 1 on 16 large test problems ranging
in size from 1,000 to 3,000 variables, CPLEX was unable to prove optimality on any
of the problems (within a 48-h limit). Running method 1 for a total of 300 SPAN
cycles took less than 12 min on the largest of the problems. Across all 16 problems,
the best solutions produced by CPLEX had objective function values that were, on
average, 52 % inferior to those produced by method 1, in spite of being allowed to
run 240 times longer.

4.2 The Max 2-Sat Problem

It is well known (see for instance [13] and [33]) that the Max 2-Sat problem can
be formulated as an unconstrained binary quadratic program of the form min x0Qx.
Yet little computational experience treating the Max 2-Sat problem as an instance
of UQP has appeared in the literature prior to the computational study of [42] which
reports on the successful application of the tabu search Method 1 to a variety of old
and new test problems from this class. In all cases, method 1 was run for 50 SPAN
cycles. Applied to a public data set with 16 problems ranging from 50 variables and
100 clauses to 150 variables and 600 clauses, method 1 found best known solutions
in less than 3 s while more than half of these problem instances could not be solved
within a 12-h limit by the well-known Maxsat [10] procedure.

On another publicly available set of 20 problems with 200 variables and 1,000–
2,000 clauses, method 1 again found best known solutions in less than 3 s. On a
third data set of 17 problem instances ranging in size from 100 to 1,000 variables
and 626 to 22,883 clauses, method 1 was tested against CPLEX 8.0 by applying
the latter to the classical MIP formulation of Max 2-Sat. CPLEX was only able to
solve and terminate naturally on the smallest of these problems, requiring 147 s in
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this case. Method 1 by contrast found the optimal solution for this problem in less
than 1 s. On the other 16 problems, CPLEX was unable to terminate naturally within
a 10-h time limit while the UQP approach of method 1 obtained solutions within 50
SPAN cycles in an average of less than 9 s. For these problems, the best solutions
found in the 10-h time limit by CPLEX had objective function values on average
20 % inferior to those produced by the method 1 tabu search approach. Full details
of these results are given in [42].

4.3 The Group Technology Problem

The group technology (GT) problem is concerned with clustering machines and
parts together in a manner that facilitates economies in time and cost. From a graph
theoretic point of view, nodes in a graph can be taken to represent machines and
parts, which are connected by edges denoting the association of each pair of nodes
in the network. The GT problem then becomes one of partitioning the nodes into
cliques with similar characteristics. Thus, the GT problem can be modeled by the
standard IP formulation for clique partitioning:

max
X

.i;j/2E

wij xij

st
xij C xir � xjr � 1 8 all distinct i; j:r 2 V
xij 2 f0; 1g for all fi; jg 2 E

The variable xij is equal to 1 if machine (or part) i and machine (or part) j are
assigned in a cell and is equal to 0 otherwise. The coefficient wij is the weight of the
edge (i; j) in the graph.

Since the variables are associated with edges in the graph, the model has many
variables and constraints. In practice even modest-sized GT problems give rise to
extraordinarily large IP models and often are beyond the capability of modern MIP
solvers to handle. As an alternative to the standard IP model for clique partitioning,
it is shown in [6] that the GT problem can be solved by employing the following
quadratic model for clique partitioning:

max
n�1P
iD1

nP
jDiC1

wij

K maxP
kD1

xik xjk

st
k maxP
kD1

xik D 1 for i D 1; n

In this formulation n is the number of nodes, wij again denotes the weight of edge
(i, j), Kmax is an upper bound on the number of groups to be formed, and xik D 1
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if node i is assigned to clique k and otherwise equals zero. It is to be noted that
variables are associated with nodes rather than edges in this model. Thus, in spite of
being nonlinear, the model is much smaller than the standard IP model and is readily
approached via the unified framework. Specifically, the problem has the form

max x0Qx
st
Ax D b

and thus can be recast in the form of UQP using Transformation 1 of Sect. 1.2.
To test the effectiveness of the UQP approach for modeling GT, experiments

were conducted on 36 standard test problems of modest size ranging from graphs
with 46 nodes and 1,035 edges to 71 nodes and 2,485 edges. Each problem was
solved with method 1 running for 100 SPAN cycles, with the largest problem taking
slightly more than 1 min. To provide a benchmark for comparison, each problem was
solved in its standard MIP formulation by CPLEX 6.5. CPLEX’s time performance
on these problems was very erratic. The average solution time was 1.2 days, and
4 problems required more than 4 days. Nonetheless, CPLEX terminated naturally
on all 36 problems and thus confirmed the optimality of the solutions obtained by
the UQP approach although requiring running times that were 1,500–6,000 times
longer. Complete details are given in Wang et al. [61].

4.4 The Set Packing Problem

Example 1 of Sect. 1 of this chapter presented a small example of a set packing
problem, illustrating how this class of problems can easily be reformulated as
an unconstrained quadratic binary program. In general, this class of problems is
given by

max
nP

jD1
wj xj

st
nP

jD1
aij xj � 1 for i D 1; : : : m

where the aij are 0/1 coefficients, the wj are weights, and the xj variables are binary.
Each constraint can alternatively be enforced by subtracting one or more quadratic
penalties from the objective function, thus producing an equivalent problem in the
form of an unconstrained quadratic binary program. Note that this recasting takes
place without the introduction of new variables. Moreover, the size of the equivalent
UQP model depends only on the number of original variables and is independent of
the number of constraints in the original set packing problem.

Computational results are given in [4] for applying method 1 to a set of publicly
available set of 16 test problems containing 1,000–2,000 variables and 2,000–
10,000 constraints. Best known results for these problems reported in the literature
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are obtained by a leading heuristic (see [19]) specially designed for set packing
problems. This special procedure was allowed to run for 5 h on each problem. For
each problem,method 1 was run for 1,000 SPAN cycles, taking 20 min for the largest
instance and 7 min on average. For the 16 test problems, method 1 quickly found
the best known solutions for 13 of the 16 problems and produced solutions whose
objective function values were more than 99 % of the best known values for the other
3 problems. To provide additional comparison, these problems were also solved
using CPLEX 8.1 which consumed on average 38 h of computer run time before
terminating due to reaching memory limitations. The reader is referred to [4] for
complete details of these runs as well as additional computational experience.

4.5 The Set Partitioning Problem

As noted in Example 2 of Sect. 1, the set partitioning problem can be formulated as

max
nP

jD1
cj xj

st
nP

jD1
aij xj D 1 for i D 1; : : : m

where the aij are 0/1 coefficients, the cj are objective function coefficients, and
the xj variables are binary. Computational experience with a wide variety of
solution methods has shown that even modest-sized instances of these problems are
extraordinarily difficult to solve and become increasingly difficult as density grows.
Applying Transformation 1, the set partitioning problem becomes a UQP problem
without introducing new variables and whose size is independent of the number of
constraints in the original problem.

An equivalent but simpler alternative to Transformation 1 is presented in [47] for
re-expressing set partitioning problems as UQP models. Computational experience
is reported with a set of 31 test problems ranging in size from 600 to 15,000 variables
and 100 to 5,000 constraints. CPLEX 8.1, applied to the classical formulation given
above, was used to provide a benchmark for comparison with the basic tabu search
and path relinking approach of method 2. For each problem, CPLEX was run until
optimality was proven or until reaching 12 h of processing time (or until the run
was terminated by an “out of memory” error). For the first 21 problems, CPLEX
terminated naturally with an optimal solution. Method 2 quickly found an optimal
solution to these problems as well with a time performance that was on average
270 times faster than CPLEX. (This excludes the time it took CPLEX to prove the
optimality of the solutions it found).

For the largest problem (15,000 variables and 5,000 constraints), CPLEX
terminated with a memory fault and no solution while method 2 found a feasible
solution in less than 20 min. For the other problems, CPLEX terminated due to the
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12-h time limit, giving a “best solution found so far.” On these problems, method 2
obtained solutions with objective functions approximately 2 % superior to those
obtained by CPLEX while running more than 100 times faster.

4.6 The Linear Ordering Problem

The linear ordering problem (LOP) is a particularly hard problem defined by an
n-by-n matrix of weights C D ˚

cij
�

where the goal is to find a permutation, p, of
columns (and rows) that maximizes the sum of the weights in the upper triangular
matrix. Such problems arise in a variety of settings (such as finding an acyclic
tournament of maximum weight, or the aggregate ordering of paired observations)
but are most often associated with the triangulation of input-output matrices in
economics where the data in question often refer to sectors. The problem can be
modeled utilizing the decision variable: xij D 1 if sector i goes before sector j in the
permutation; and xij D 0 otherwise. Taking advantage of the fact that xij C xji D 1
for all i and j, a standard integer programming formulation for the problem is
given by

Max
P
i<j

cij xij C P
j<i

cij
�
1 � xji

�

st
xij C xjk � xik � 1 8 .i; j; k/ W i < j < k
xij C xjk � xik � 0 8 .i; j; k/ W i < j < k
xij 2 f0; 1g 8 .i; j/ W i < j

This model can be recast into the form of UQP by employing a specially crafted
quadratic penalty, a penalty that is unique to the structure of the linear ordering
problem. To see how this special penalty arises, note that for a particular set
i < j < k, the pair of constraints shown above allows 6 of the 8 possible solutions,
excluding only xij D 1; xjk D 1, and xik D 0 and xij D 0; xjk D 0, and xik D 1. It is
easy to see that an exact quadratic penalty that precludes these same two solutions,
while allowing the others, is given by

P
˚
xik C xijxjk � xijxik � xjkxik

�

Thus, without introducing additional variables, this special penalty can be used to
easily transform the linear ordering problem into an equivalent UQP. For a problem
with n sectors, both the IP formulation and the equivalent UQP model will have
n.n � 1/=2 variables. Again the size of the UQP model is independent of the number
of constraints in the original IP model.

An application of this UQP approach is reported in [48] for a set of 11 test
problems ranging in size from 190 variable and 2,280 constraints (a LOP instance
with n = 20) to 19,900 variables and 2,626,800 constraints (a LOP instance with
n = 200). As before, experience with CPLEX was reported on these problems to
provide a benchmark of comparison. Both CPLEX and method 2 were given a time
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limit of 1 h. Best known solutions, obtained from a specially crafted Scatter Search
method for LOP problems, are also available for purposes of benchmarking.

Due to the large size of the IP models, CPLEX was able to find and prove
optimality for only the two smallest problems. Method 2 found these same optimal
solutions within the 1-h time limit. For the four largest problems (more than 4,000
variables and 234,960 constraints), CPLEX was unable to find a feasible solution
within the 1-h time limit while the UQP approach readily found feasible solutions.
For the other problems, CPLEX reported solutions that were inferior to those
produced by the tabu search/path-relinking approach of method 2. Across the entire
set of test problems, solutions were produced using the UQP model whose objective
function values were at least 95 % of the best known values obtained by any method
in the literature specialized for solving LOP problems. See [48] for a complete
discussion of these results.

4.7 The Max-Cut Problem

Given an undirected graph G(V,E) with edge weights wij, the Max-Cut (MC)
problem seeks a partition S1 � V and S2 D VjS1 such that the weight of the
cut, defined as the sum of the weights on the edges connecting the two sets, is
maximized. MC is another classic problem in combinatorial optimization. This
problem has a natural quadratic structure and with a simple change of variables,
it can be readily put into the form of UQP. The common formulation from the
literature is

max 1
2

P
1�i<j�n

wij.1 � yiyj/

subject to
yi 2 f�1; 1g 8 i 2 V

The change of variables yi D 2xi � 1 yields the unconstrained quadratic binary
program

max
X
i<j

wij.xi C xj � 2xixj/I xj 2 f0; 1g

which is of the form max x0Qx This class of problems is described in detail in
[28] together with reporting computational experience for 69 test problems from
the literature ranging in size from 800 variables to 10,000 variables. Most articles
in the literature addressing MC only consider problems with up to a few thousand
variables.

This study employed the tabu search approach of method 3. Depending on the
problem size, run time limits ranged from one half hour for small problems to
24 h for the 10,000 variable problems. The results obtained were highly attractive
compared to previously published results in the literature, as evidenced by the fact
that, over the entire test bed of 69 problems, method 3 matched best known solutions
on 19 problems, found new best known solutions on 46 problems, and failed to find
best known solutions on just 4 problems.
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4.8 Comments on Computational Experience

The computational experience reported above is intended to demonstrate the
viability and breadth of applicability of the unified framework. This framework has
been successfully applied to many other problem classes as well. While the intention
of the present chapter is to disclose the general applicability of the unified modeling
and solution methodology, and not to provide a comprehensive comparison of this
approach with the best-performing specialized methods for each class of problems
at this time, it should nonetheless be emphasized that the results presented clearly
establish that the reformulation approach not only works across a wide array of
problem classes but works very well. The approach finds best known solutions for
many problems, regardless of problem class, in modest computer times. As future
studies take advantage of the opportunity to apply more advanced UQP algorithms
such as method 3 across a wider range of applications, additional records will
undoubtedly be set for finding best known solutions to test problems from a variety
of sources.

4.9 Important Alternative Model for Assignment Problems

Many important classes of problems have assignment constraints where, generally,
agents of some kind are assigned to tasks. For such problems, Transformation 1 can
be used to enforce the assignment constraints via quadratic penalties as illustrated
earlier in this chapter. For such problems, however, a slightly different manner
of constructing the quadratic penalty matrix, Q, has proven to be attractive in
certain cases provided that resulting quadratic optimization problem is carried
out subject to a cardinality constraint rather than being unconstrained. Recall
that Transformation 1 results in an additive constant and a modification of the
elements on the main diagonal of the Q matrix. With the alternative method, neither
the additive constant nor modified diagonal elements are employed. The idea is
illustrated by the following example:

Suppose the goal is to obtain solutions that satisfy

x11 C x12 C x13 D 1
x21 C x22 C x23 D 1
x31 C x32 C x33 D 1

Clearly exactly three variables will be equal to one and the other six variables will
be zero. Finding solutions that satisfy the above assignment constraints is equivalent
to solving the problem

min x0 D x0Qx
st

3P
iD1

3P
jD1

xij D 3
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where
x D .x11;x12; x13; x21; : : : x33/

and the Q matrix is given by

Q D

2
66666666666664

0 P P 0 0 0 0 0 0

P 0 P 0 0 0 0 0 0

P P 0 0 0 0 0 0 0

0 0 0 0 P P 0 0 0

0 0 0 P 0 P 0 0 0

0 0 0 P P 0 0 0 0

0 0 0 0 0 0 0 P P
0 0 0 0 0 0 P 0 P
0 0 0 0 0 0 P P 0

3
77777777777775

where P is a positive scalar penalty. Note that the block diagram structure along the
main diagonal makes this penalty matrix particularly easy to construct.

The cardinality constraint requires exactly three of the nine variables to be equal
to 1. The penalty structure of Q, given the goal of forcing x0 to zero, will not allow,
say, x12 or x13 to be 1 in the event that x11 is equal to one. In this manner, all three
assignment constraints are enforced via the penalties.

In applications involving assignment constraints, there are typically additional
constraints (besides the assignment constraints), and these need to be “folded”
into the Q matrix as well. This approach is particularly well suited for quadratic
assignment problems where facilities are assigned to locations, clustering problems
where data are assigned to clusters, coloring problems where colors are assigned
to nodes, clique partitioning problems where nodes are assigned to cliques, and so
forth.

5 Promising New Application Areas

This combined modeling/solution approach provides a unifying theme that can be
applied in principle to all linearly constrained quadratic and linear programs in
bounded integer variables, and the computational findings for a broad spectrum
of problem classes raises the possibility that similarly successful results may
be obtained for even wider ranges of problems. The generality of the approach
of modeling and solving problems using the UQP formulation invites additional
applications to be pursued via this unified framework. Promising applications that
are part of current work in progress include:
1. The variable (feature) selection problem: This important problem in linear

regression concerns choosing a set of independent variables that are strongly
correlated with the independent variable and weakly correlated with one
another. One model for this, given by Eksioglu et al. [20], takes the form of a
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two-objective IP model that can be easily recast into the unified x0Qx
framework. Tests are currently underway applying this alternative approach
to a variety of data sets and making comparisons with standard statistical
approaches.

2. Clustering: Clustering is an important data mining tool with applications in
many important areas from medicine to marketing. Taking a graph-theoretical
perspective, clustering can be viewed as a clique partitioning problem, and thus
the quadratic model presented in Sect. 4.3 can be used to cluster data. In this
setting too, tests are in process to extend the encouraging early results from this
approach reported in Kochenberger et al. [43] and in Wang et al. [62].

3. Computational biology: Several important problems arising in biology can be
modeled and solved as combinatorial optimization problems. Of particular
interest are the multiple sequence alignment problem, the lattice protein folding
problem, the rotamer assignment problem and the contact map optimization
problem. Each of these problems, as explained in Forrester and Greenberg [21],
can be modeled as a constrained quadratic optimization problem in zero-one
variables, thus permitting them to be transformed into the x0Qx framework and
solved by solution methods designed for the unified framework. Early testing of
this approach is underway.

4. General linear 0/1 programming: The general 0/1 linear programming problem
can be represented by

max cx
st
Ax D b

x binary

By using Transformation 1 it is possible to recast the problem in the form of

max x0 D xtQx
st x binary

For problems with inequality constraints, slack variables, via a binary expansion,
can always be introduced to create the system of constraints Ax D b. This
procedure is illustrated by the following example:

max 6xx C 4x2 C 8x3 C 5x4 C 5x5

st
2x1 C 2x2 C 4x3 C 3x4 C 2x5 � 7
1x1 C 2x2 C 2x3 C 1x4 C 2x5 D 4
3x1 C 3x2 C 2x3 C 4x4 C 4x5 � 5

x 2 f0; 1g
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Adding slack variables for the 1st and 3rd constraints

0 � s1 � 3 ) s1 D 1x6 C 2x7

0 � s3 � 6 ) s3 D 1x8 C 2x9 C 4x10

gives the system Ax D b with A given by

A D
2
4

2 2 4 3 2 1 2 0 0 0

1 2 2 1 2 0 0 0 0 0

3 3 2 4 4 0 0 �1 �2 �4

3
5

For a scalar penalty P = 10, applying Transformation 1 gives the equivalent
problem

max x0 D x0Qx

with an additive constant of �900 and a Q matrix

Q D

2
6666666666666664

526 �150 �160 �190 �180 �20 �40 30 60 120

�150 574 �180 �200 �200 �20 �40 30 60 120

�160 �180 688 �220 �200 �40 �80 20 40 80

�190 �200 �220 645 �240 �30 �60 40 80 160

�180 �200 �200 �240 605 �20 �40 40 80 160

�20 �20 �40 �30 �20 130 �20 0 0 0

�40 �40 �80 �60 �40 �20 240 0 0 0

30 30 20 40 40 0 0 �110 �20 �40

60 60 40 80 80 0 0 �20 �240 �80

120 120 80 160 160 0 0 �40 �80 �560

3
7777777777777775

Solving max x0 D x0Qx gives the nonzero values

x1 D x4 D x5 D x9 D x10 D 1

for which xo D 916: Adjusting for the additive constant gives an objective func-
tion value of 16 which is optimal. Note that any linear problem in bounded integer
variables, through a binary expansion, could be converted into max x0 D x0Qx
as illustrated here. Note also, though, that the elements of the Q matrix can,
for some problems, get unacceptably large and may require suitable scaling to
mitigate this problem.

5. The Max 3-Sat Problem: Section 4.2 discusses the Max 2-Sat problem, showing
how it can be reformulated and solved as min xtQx. The penalty approach
adopted for the Max 2-Sat problem can be expanded to address the Max
3-Sat problem. In this case, however, the penalty function that results is a cubic
rather than a quadratic function. Nonetheless, by a simple transformation, the
cubic function can be recast as a quadratic and thus the Max 3-Sat problem, like
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the Max 2-Sat problem, can also be modeled and solved using the min xtQx
formulation.
In particular, the Max 3-Sat problem gives rise to four possible clause types.

A linear constraint is associated with each which can be carried into the problem
objective by a cubic penalty function which is equal to zero when the constraint is
satisfied and otherwise equal to one. Finding solutions that maximize the number of
clauses satisfied then corresponds to minimizing the penalty function that results by
summing the individual penalties. The procedure is illustrated below.

The four clause types together with their associated constraint and penalty are:
1. No negations:

Linear constraint: xi C xj C xk � 1
Cubic penalty: .1 � xixjxk � xi � xj � xk C xixj C xixk C xjxk/

2. One negation:
Linear constraint: xi C xj C Nxk � 1
Cubic penalty: .xk � xixk � xjxk C xixjxk/

3. Two negations:
Linear constraint: xi C Nxj C Nxk � 1
Cubic penalty: .xjxk � xixjxk/

4. Three negations:
Linear constraint: Nxi C Nxj C Nxk � 1
Cubic penalty: .xixjxk/

The conversion of the cubic penalty function to an equivalent quadratic function is
carried out by the reduction procedure of Boros and Hammer [11] by replacing
a product term xy by a new binary variable z and adding the penalty term
P.xy � 2xz � 2yz C 3z/ to the objective function as illustrated in the following
example with n = 5 variables and 12 clauses.

Clause # Clause

1 x1 _ x2 _ x3

2 x1 _ Nx2 _ x3

3 Nx1 _ x2 _ Nx3

4 x2 _ Nx3 _ x4

5 Nx2 _ x3 _ x4

6 Nx2 _ Nx3 _ Nx4

7 x2 _ x4 _ x5

8 Nx2 _ x3 _ x5

9 x2 _ Nx3 _ x5

10 x3 _ x4 _ x5

11 x3 _ Nx4 _ Nx5

12 Nx3 _ Nx4 _ Nx5

Introducing the penalty functions for these clauses gives the following cubic penalty
function to minimize:

x0 D 3 � x1 C x2 � 2x4 � 2x5 C 2x1x3 � 4x2x3 C 3x4x5

�x1x2x3 C 3x2x3x4 � x2x4x5 � x3x4x5 C 2x2x3x5
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Note that this function has five cubic terms. Introducing two new binary variables,
x6 D x2x3 and x7 D x4x5 along with the associated quadratic penalties yield the
equivalent quadratic penalty function:

x0 D 3 � x1 C x2 � 2x4 � 2x5 C 2x1x3 � 4x2x3 C 3x4x5

�x1x6 C 3x4x6 � x2x7 � x3x7 C 2x5x6

CP.x2x3 � 2x2x6 � 2x3x6 C 3x6/

CP.x4x5 � 2x4x7 � 2x5x7 C 3x7/

which is of the form
x0 D 3 C .xQx/=2

Taking (arbitrarily) the penalty P to be 10, the 7-by-7 Q matrix is

Q D

2
6666666664

�2 0 2 0 0 �1 0

0 2 6 0 0 �20 �1

2 6 0 0 0 �20 �1

0 0 0 �4 13 3 �20

0 0 0 13 �4 2 �20

�1 �20 �20 3 2 60 0

0 �1 �1 �20 �20 0 60

3
7777777775

Minimizing xQx yields x1 D x2 D x3 D x6 D 1, x4 D x5 D x7 D 0 for which
xQx D �6. Thus, x0 D 0 implying that all 12 clauses are satisfied at this solution.
Note that in carrying out the reduction from the cubic penalty function to the
quadratic several choices for variable substitutions were available. In general it is
desirable to make these choices in a manner that minimizes the number of new
variables that are introduced.

The preceding discussion and illustrations disclose that the unified unconstrained
approach offers a fresh and promising alternative method of attack for these
important problems. As additional research is conducted to provide enhanced
methods for solving the UQP model, the benefits of recasting diverse problems into
this general framework will become even greater.

6 Conclusion

A variety of disparate combinatorial optimization problems can be treated by first
reexpressing them within the common modeling framework of the unconstrained
quadratic binary program. Once in this unified form, the problems can be solved
effectively by recently developed solution approaches for UQP.

The empirical findings from extensive testing challenge the conventional wisdom
that places high priority on preserving linearity and exploiting specific structure.
Although the merits of such a priority are well-founded in many cases, experience
with a large variety of problem classes suggests that an unflinching adoption of
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the conventional linear approach may preclude obtaining the best outcomes in a
number of cases. In making use of the UQP model, any linearity that the original
problem may have exhibited is destroyed. Moreover, any exploitable structure that
may have existed originally is “folded into” the OQ matrix, and a general UQP
solution procedure takes no advantage of it. Nonetheless, the use of such procedures
has been remarkably successful, yielding results that rival the effectiveness of the
best specialized methods.
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