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Abstract
This chapter describes some of the highlights of the theory of Probabilistically
Checkable Proofs, from the milestone discovery of Feige et. al. through Dinur’s
proof of the PCP theorem to the lately discovered consequences of the Unique
Games Conjecture.

Our goal is to illuminate the major themes that run through the entire
theory: probabilistic verification, proof recursion, gap enlarging reductions, code
checking, constraint satisfaction problems. We have also discussed specific
problems: set cover, independent set, graph coloring, etc. Since a completely
comprehensive picture of this vast subject is not possible, we give pointers to a
generous amount of literature.

1 Introduction

In 1991, Feige, Goldwasser, Lovász, Safra, and Szegedy [38] showed that results
about multi-prover systems or equivalently PCPs imply the relative hardness of
approximating the maximum clique number of a graph. Their discovery has joined
the subjects of probabilistic verification and the theory of NP optimization, and
a new subject emerged, called PCP theory. The goal of this chapter is to give an
introduction and an overview of this theory. Since the key results alone would span
several hundred pages, we have restricted ourselves to a representative selection.

Undoubtedly, the most fundamental part of the theory, with its numerous
consequences, is the PCP theorem, which asserts that MAX3SAT is NP hard to
approximate within a factor of 1C � (for some � > 0). In Sect. 3 we sketch the short
proof of it by Irit Dinur [33].

Reductions play a key part in proving hardness of approximation. They fall
roughly into two types. Originally and traditionally relative hardness of approxi-
mating optimal values of NP optimization problems (NPO) was proven by gap-
preserving reductions. In the more modern theory, we almost exclusively use
Karp reduction between gap problems. We explain both types, as well as various
amplification techniques, such as the parallel repetition.

We introduce the reader to probabilistic verification. The prover-verifier intuition
has been the powerful force that exponentially accelerated the theory’s development
and even today, when alternative interpretations are available, still proves to be
indispensable when trying to obtain stronger results.

We shall talk about the non-approximability of classic NPO such as Max Clique,
graph coloring, and set cover.

We shall explain the long code of Bellare, Goldreich, and Sudan, as it receives
multiple applications throughout the theory.

A well-studied class of optimization problems is the class of Constraint Sat-
isfaction Problems (CSP), which also happens to be the class, for which our
non-approximability theory is the most successful. We devote a lot of attention to
this class and sketch optimal non-approximability for its members.

Many of the optimal non-approximability results come from unique games,
in particular, a beautiful and general result due to Raghavendra [83]. Unique
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games-based hardness assumptions, initiated by Khot [61], might transform our
views on complexity, by providing an alternative to the P versus NP paradigm.
We devote two sections to unique games.

As we have indicated, we have made several omissions. We do not discuss several
known non-approximability results. We do not mention efforts and techniques to
optimize parameters of PCPs, such as proof size. Our chapter is concerned only with
NPO. Probabilistic debate systems [26] and non-approximability of #P problems are
out of the scope of this survey.

1.1 Probabilistically Checkable Proofs

The idea of probabilistic verification builds on the idea of deterministic verification.
Recall that every language L 2 NP is deterministically verifiable in polynomial
time, meaning that for every L 2 NP , there is a polynomial-time machine V such
that if x 2 L then there exists a polynomial size membership such that V.x; P / D 1

and if x 62 L then for every P , V.x; P / D 0 (Fig. 1). The concept of probabilistic
verification is analogous.

Definition 1 (Probabilistic Verification) For functions f; g W N ! N, a proba-
bilistic polynomial-time verifier V.x; P; r/ is .f; g/-restricted if, for every input x
of size n, it uses at most f .n/ random bits and examines at most g.n/ bits in the
membership proof while checking it. Let † be an alphabet and L � †�. V is an
.f; g/-restricted polynomial-time probabilistic verifier for L with completeness q
and soundness p if for every input x:
• If x 2 L, then there exists a membership proof P such that

P robr.V .x; P; r/ D 1/ � q

• If x 62 L, then for any membership proof P ,

P robr.V .x; P; r/ D 1/ � p

If q and p are not stated explicitly, then, by definition, q D 1, and p D 1 � � for
some fixed � > 0.

Here we have to make some comments. First, it is best to think of V as a
random access machine. Since Turing machines and random access machines are
polynomial-time equivalent, we may also view V as a Turing machine, but even
in the latter case, we need to assume that V has random access to the bits of P .
Another issue is the adaptivity of V . Are the bits of P which V accesses determined
in advance from x and r , or the location of the second bit read from P may depend
on value of the first bit read from P , etc.? In the first case, we call the verifier
nonadaptive, and in the second case, we call the verifier adaptive. Most verifier
constructions in the PCP theory are nonadaptive.
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Checked bits of the proof

Proof

Random string

Input

Machine

Fig. 1 A schematic picture of a probabilistic verifier. Only the black bits are read for a fixed
random choice r

Definition 2 (PCP Classes[5]) A language L is in the class PCP.f; g/ iff there
exists a constant C > 0 and an .f .jxjC /; g.jxjC //-restricted polynomial-time
probabilistic verifier for L. For completeness and soundness values other than 1
and 1 � �, we denote the corresponding PCP class by PCPq;p.f; g/.

Clearly, NP D PCP.0; jxj/.

Lemma 1 If L 2 PCPq;p.f; g/ and L1 polynomial time many–one reduces to L,
then L1 2 PCPq;p.f; g/.

Proof Since L1 many–one reduces to L, there is a polynomially computable T
such that for every x 2 †�, T .x/ 2 L iff x 2 L1. Let V.x; P; r/ be a probabilistic
verifier forL. Then V.T .x/; P; r/ is a probabilistic verifier for L1 with the required
parameters. �

The PCP notation allows for a compact description of many known results:

Arora=A, Babai=B, Feige=Fe, Fortnow=F, Goldwasser=G Levin=Le, Lovasz=Lo, Lund=Lu,
Motwani=M, Safra=Sa Sudan=Su, Szegedy=Sz

NEXP D PCP.n; n/ BFLu[11]
NP � PCP.logn log logn; logn log logn/ BFLeSz [12]
NP � PCP.logn loglogn; logn loglogn/ FeGLoSaSz [38]
NP D PCP.log n;

p
logn/ ASa [5]

NP D PCP.log n; 3/ ALuMSuSz [4]

In Sect. 1.4 we are going to prove the last one [4] which we also call the basic PCP
theorem because it is the basis of many further improvements. To describe these
improvements we need to introduce new parameters such as free bit complexity,
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amortized complexity, and their combinations. The various parameters will be
discussed in details in Sect. 2.4.

1.1.1 Alphabet Size
Besides the four parameters of a probabilistic verifier (randomness, query size,
completeness, soundness), sometimes its alphabet size may be an issue. Actually,
for a machine V.x; P; r/, we have two different alphabets we may care about: that
of input x and that of proof y. We will see cases, when the alphabet size of P is
particularly important. We assume that alphabet of the input is either binary or it is
understood from the context.

Definition 3 A language L is in the class Œ†�PCP.f; g/ iff there exists a constant
C > 0 and an .f .jxjC /; g.jxjC //-restricted polynomial-time probabilistic verifier
V.x; P; r/ for L, where P 2 †�.

Perhaps interestingly, Œf0; 1g�PCP1;p.logn; 2/ D P for any p < 1.

1.2 A Brief History of Probabilistic Verification

The usual definition of NP uses the notion of a deterministic verifier that checks
membership proofs of languages in polynomial time. Goldwasser, Micali, and
Rackoff [49] and Babai [9, 13] were the first who allowed the verifier to be a
probabilistic polynomial-time Turing machine that interacts with a “prover,” which
is an infinitely powerful Turing machine trying to convince the verifier that the input
x is in the language. A surprising result due to Lund, Fortnow, Karloff, and Nisan
[10, 73] and Shamir [90] has shown that every language in PSPACE—which is
suspected to be a much larger class than NP—admits such “interactive” membership
proofs. Another variant of proof verification, due to Ben-Or, Goldwasser, Kilian,
and Wigderson [17], involves a probabilistic polynomial-time verifier interacting
with more than one mutually noninteracting provers. The class of languages with
such interactive proofs is called MIP (for multi-prover interactive proofs). Fortnow,
Rompel, and Sipser [43] gave an equivalent definition of MIP as languages that
have a probabilistic polynomial-time oracle verifier that checks membership proofs
(possibly of exponential length) using oracle access to the proof.

Babai, Fortnow, and Lund [11] showed that MIP is exactly NEXP, the class
of languages for which membership proofs can be checked deterministically in
exponential time. This result is surprising because NEXP is just the exponential
analogue of NP, and its usual definition involves no notion of randomness or
interaction. Therefore, researchers tried to discover if the MIP D NEXP result can
be “scaled down” to say something interesting about NP. Babai, Fortnow, Levin,
and Szegedy [12] introduced the notion of transparent membership proofs, namely,
membership proofs that can be checked in polylogarithmic time, provided the input
is encoded with some error-correcting code. They showed that NP languages have
such proofs. Feige et al. [38] showed a similar result, but with a somewhat more
efficient verifier. Arora and Safra [5] further improved the efficiency of checking
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membership proofs for NP languages up to the point that they were able to give a
new definition for NP this way.

They define a parameterized hierarchy of complexity classes called PCP (for
probabilistically checkable proofs). This definition uses the notion of a “probabilis-
tic oracle verifier” of Fortnow et al. [43] and classifies languages based on how
efficiently such a verifier can check membership proofs for them. The notion of
“efficiency” refers to the number of random bits used by the verifier as well as the
number of bits it reads in the membership proof. Note that we count only the bits
of the proof that are read—not the bits of the input which the verifier is allowed to
read fully. The definition of a class very similar to PCP was implicit in the work of
Feige et al. [38].

The paper of Arora, Lund, Motwani, Sudan, and Szegedy [4] in 1992 building
on [5] was the first to decrease the number of check bits to constant. It is not just
philosophically important that every transparently written proof can be checked with
high accuracy by looking only at a constant number of places in the proof, but the
construct of ALMSS also serves as a building block for nearly every construct that
comes after it.

1.3 The Language of Cryptography

Articles in cryptography often describe mathematical objects such as information,
knowledge, and secret through interactions between human characters. While the
framework originally was used almost exclusively by cryptographers, it has become
an integral part of the entire computer science culture.

In the remaining part of the text, we are going to need expressions such as “true
prover,” “verifier,” and “cheating prover.” But what do they mean exactly? When we
prove that a probabilistic verifier V recognizes a languageL, our argument consists
of two parts. In the first part we show that if x 2 L, the verifier accepts some proof
P with probability 1. In the second part we show that if x 62 L then the verifier
rejects every proof with probability at least �.

The first part of the argument features the true prover who is responsible to
provide a string P which is accepted by the verifier with probability one. In this
formula, Probr .V .x; P; r/ D 1/ D 1. The presumed structure of P is expressed in
terms of the actions of the true prover. For instance, when we say that “the good
prover encodes string a using an encodingE ,” it means that the presumed structure
of the proof is a code word E.a/.

When we investigate the x 62 L case, the main character of the story is the
cheating prover. By assumption he is an ultimately devious creature whose proof
does not adhere to the structure of the true prover. He has to cheat somewhere,
since no correct proof exists when x 62 L. This property is required by the axioms
of a proof system for L. The goal of the cheating prover is to maximize the
probability with which the verifier acceptsP , the “proof” he presents. It is important
to emphasize that the proof of the cheating prover is an arbitrary string formed from
the letters of the given alphabet, typically † D f0; 1g. When we argue about the
x 2 L case, we never need to talk about the cheating prover.
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Like in the case of other formal proof systems in the case of PCPs, the proof itself
is just a vehicle to indicate that a statement holds and itself is not interesting for the
verifier at all. Only the mere existence or non-existence of its corrected version
matters. The verifier does not want to learn the entire proof or to verify that the
proof adheres to the structure of the good prover everywhere. It is sufficient for
us to show that if x 62 L, no matter what string the cheating prover may write
down, it is so far from being consistent either with the structure of the true prover
or with other constraints defined by input x that the verifier is able to catch the error
with probability �.

1.4 The PCP Theorem

Theorem 1 (PCP Theorem) NP � PCP.log n; 3/. Moreover, we can also
assume that the verifier is nonadaptive and his accepting criterion is a disjunct
(i.e., “OR”) of the literals made from the three bits he looks at.

Notice that by Definition 2, the factor logn scales by a constant, but not the
second argument. The following seemingly weaker variant of the above theorem is
also often called the PCP theorem:

Theorem 2 NP � Œ†�PCP.log n; c/ for some fixed constant c and for some fixed
alphabet†.

This statement was first proven by Arora, Lund, Motwani, Sudan, and Szegedy
[4], based on several previous works [11, 12, 38], in particular on a simultaneous
work of Arora and Safra [5]. The original proof was based on several algebraic and
combinatorial techniques. The proof had several variations, but they all had the basic
design. We call this the classic PCP proof design. A new type of proof was given by
Irit Dinur in 2005 [33]. She has proved he following:

Theorem 3 NP � Œf0; 1g3�PCP.log n; 2/.

We give a sketch of her proof in Sect. 3. In the rest of this section, we show that
Theorem 2 implies Theorem 1 (the converse is straightforward).

Lemma 2 Let ` > 3 be a constant and f .n/ be an arbitrary function from
the positive integers to the positive integers. If there is a nonadaptive .f .n/; `/-
restricted verifier V that checks a proof P with alphabet † and recognizes a
language L with completeness 1 and soundness 1 � �, then there is a non-adaptive
.f .n/ C O.1/; 3/-restricted verifier V 0 that checks a proof P 0 with alphabet f0; 1g
and recognizes L such that its checking criterion is always a disjunct of three
literals made from the three bits it reads. Furthermore, V 0 has completeness 1 and
soundness �=K , where K > 0 is some constant dependent only on ` and †.
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Proof We prove this lemma with a technique called proof composition. Proof
composition is a very general principle stating that if we prove the existence of a
proof for x 2 L, then x 2 L follows (thus, instead of a proof, it suffices to have
a proof that a proof exists). A proof composition technique in the PCP context was
developed in [5]. Here we need a very simple version of it.

Let us fix x. For every fixed random choice r , the accepting criterion of V is a
Boolean-valued function 'r of the ` places of P examined by V . The composed
proof contains the original proof and some extra information that helps the verifier.
Since we want the composed proof to have a binary alphabet, we also encode
the alphabet of the original proof in binary via some (arbitrary) injection † !
f0; 1gdlog j†je. The part of the new proof that is identical to P , with its letters encoded
in binary is called the core. For every r 2 f0; 1gf .n/, we then create a constant size
proof ˇr that helps to convince the verifier that 'r holds. The entire new proof is
now the union of the core and

S
r ˇr . The details are as follows:

First recall from logic that every Boolean function '.˛/ on � variables can be
written in the form .9ˇ/  .˛; ˇ/, where  is a 3CNF formula. ˇ is a sequence of
at most .� � 1/2� auxiliary variables, and  has at most 2� C .� � 1/2�C1 clauses,
but for our purposes, we only care that these quantities are constants in terms of �.

Let .9ˇr/  r.˛r ; ˇr / be the 3CNF -equivalent of 'r . Here ˛r is the `dlog j†je
bits of information that machine V reads from P under random bit r . The help
ˇr (of the true prover) is any evaluation of the auxiliary variables for which
 r.˛r ; ˇr / D 1.

The new verifier, V 0, picks a random r and a random clause of  r and accepts
if the selected clause evaluates to 1 under ˛r and ˇr of the composed proof (˛r is
part of the core, ˇr is the sequence of auxiliary bits that the prover provides for
query r). Since  r has constant number of clauses, the composed verifier needs at
most constant number of additional random bits to perform its query.

If V accepts a proof P with probability 1, then for every r there exists a ˇr
such that gr.˛r ; ˇr / D 1, so there exists a composed proof which V 0 accepts with
probability 1.

Assume now that x 62 L. We claim that no composed proof will be accepted
with probability greater than 1 � �

K
by V 0, where K is the uniform upper bound on

the number of clauses in  r.˛r ; ˇr / D 1 for all rs.
To see this, assume that a composed proof with core P is accepted with

probability greater than 1 � �
K

. Then the fraction of rs for which the predicate
.9ˇr /  r.˛r ; ˇr / is false is less thanK� �

K
D �. Then V accepts P with probability

greater than 1 � �, a contradiction. �

2 Non-approximability Results

NPO (see [29, 30, 56]) have one of the following forms:
• Find maxjyj�q.jxj/ P.x; y/ given input x. [maximization]
• Find minjyj�q.jxj/ P.x; y/ given input x. [minimization]
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Here P.x; y/ is a polynomially computable function that assigns non-negative
rationals to pairs of strings, and q is a polynomial. (In the literature witness y is
selected from an arbitrary polynomial-time computable set of strings not necessarily
only of the form fy j jyj � q.jxj/g. Our definition is sufficient to describe all
relevant problems and enables us to avoid anomalies that arise from the more general
definition.)

While one can construct optimization problems that are not in NPO, the class
plays a primary role in optimization theory with such well-known problems as
coloring, allocation, scheduling, Steiner tree problems, TSP, linear and quadratic
programming, knapsack, and vertex cover. The consequences of the PCP theory
almost solely concern NPO problems. There are exceptions [26, 27], but we do not
discuss them here.

Most NPO problems are NP-hard to compute exactly. A polynomial-time
algorithm A is said to approximate an NP maximization problem P to within a
factor r.x/ � 1, if A outputs a witness y such that the optimal solution for input x
lies within maxjyj�q.jxj/ P.x; y/=r.x/ and maxjyj�q.jxj/ P.x; y/. Here r.x/ is called
approximation ratio and can be generalized also to minimization problems in an
obvious way.

Below we give three examples to NPO problems:

MAX3SAT: Let x represent a 3CNF formula, y represent an assignment, and
P.x; y/ be the number of clauses in x satisfied by y. [Maximization]

Set cover: Let x represent a polynomial size set system, y represent a selection
of sets, and P.x; y/ be the function, which equals to the number of selected sets
if the selected sets cover the universe, otherwise, the size of the entire set system.
[Minimization]

PCP: Let V be an .logn; g.n//-restricted probabilistic verifier for a language
L. x represents an input, y represents a proof, and P.x; y/ is the acceptance
probability of proof y for input x. Since the verifier uses logn randomness, we
can run V on all random strings and compute this probability in polynomial time.
[Maximization]

If in the latest example, we take L to be an NP-complete language and
V to be the verifier of Theorem 1, then it is easy to see that if we could
efficiently approximate the acceptance probability of V to within a factor better
than 1 � � (for the � of the theorem), then we could also solve the membership
problem for L. This is an example to an argument about non-approximability.
What is special about the optimization problem coming from Theorem 1 is that
the value of P.x; y/ is proportional to a number of very simple predicates
that y satisfies, namely, each predicate depends only on three bits of y. This
makes this NPO problem a CSP. Before the PCP theorem there were no non-
approximability results for any CSP. The theory of PCP exploits the fact that
probabilistic verifiers for NP-complete languages translate to provably hard approx-
imation problems.
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2.1 A Brief History of Approximating NPO Problems

The NP-completeness theory of Cook [28] and Levin [70] puts NPO problems into
two categories: NP-hard or not NP-hard. The first alarm that this characterization is
too coarse was sent off in an early paper of D. Johnson [56] entitled “Approximation
Algorithms for Combinatorial Problems.”

Motivated by exact bounds on the performance of various bin packing heuristics
of [45], Johnson gave algorithms for the subset sum, the set cover, and the MAX
k-SAT problems with guarantees on their performances (1 C o.1/, O.log jS j/,
2k=.2k � 1/, respectively). He also gave non-approximability results, but unfortu-
nately they referred only to specific algorithms. Nevertheless, he has brought up the
issue of classifying NPO problems by the best approximation ratio achievable for
them in polynomial time.

For years advances were very slow. Sahni and Gonzales [88] proved the non-
approximability of the nonmetric traveling salesman and other problems, but their
proofs were very similar to standard NP-completeness proofs, and they effected only
problems where approximation algorithms were not explicitly sought for. A more
promising approach was found by Garey and Johnson [46] who used graph products
to show that the chromatic number of a graph cannot be approximated to within a
factor of 2� � unless P D NP and an approximation algorithm for the Max Clique
within some constant factor could be turned into an algorithm which approximates
Max Clique within any constant factor.

The old landscape of approximation theory of NPO radically changed when in
1991 Feige, Goldvasser, Lovász, Safra, and Szegedy [38] for the first time used
Babai, Fortnow, and Lund’s characterization of NEXP in terms of multi-prover inter-
active proof systems [11] to show that approximating the clique within any constant
factor is hard to NTIME.n1= log log n/. Simultaneously Papadimitriou and Yannakakis
defined a subclass of NPO what they called MAXSNP, in which problems have an
elegant logical description and can be approximated within a constant factor. They
also showed that if MAX3SAT,vertex cover, Max Cut, and some other problems in
the class could be approximated with an arbitrary precision, then the same would
hold for all problems in MAXSNP. They established this fact by reducing MAXSNP
to these problems in an approximation preserving manner. Their original intention
was most likely to build a theory of non-approximability via defining suitable
reductions, analogous to those in the theory of NP, but new non-approximability
results in [4] let them achieve much more. The theory of NP and the theory of non-
approximability met, and research developed rapidly in three directions:
1. Non-approximability results for NPO problems
2. Construction of approximation algorithms achieving optimal or near-optimal

ratios
3. Development of approximation preserving reductions and discovery of new

(non)-approximability classes
Today, we have a precise idea about the non-approximability status of many NPO

problems. The on-line compendium of Pierluigi Crescenzi and Viggo Kann [29]
keeps track of the growing number of results and continuously updates data about
most known NPO problems.
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2.2 The FGLSS Graph

The first paper to construct a combinatorial object from a PCP was that of Feige et al.
[38]. For deterministic verifiers an analogous construction cannot be meaningfully
made (Fig. 2). The combinatorial object was simply a graphG, and the construction
implied hardness of approximating the optimization problem

MaxC lique.G/ D max
S�V.G/fjS j j for all v;w 2 S we have .v;w/ 2 E.G/g

Let V be an .f; g/-restricted verifier. The evaluation of the entries of the proof
the verifier sees is called a view. An accepting view is a view the verifier accepts for
some input x and random coin flip r .

By definition, an accepting view contains stars at positions where the verifier
never looks at (for a particular random run) and exactly at these positions. Thus, an
accepting view can be thought of as a partial proof that causes the verifier to accept.
When the verifier is adaptive, the first bit read by him determines the location of
the second bit, etc., so even for a fixed r , the locations of the non-stars may vary
from view to view. Since the query size is upper bounded by g.n/, every accepting
view contains at most g.n/ entries which are not stars. We call two accepting views
consistent if they agree in locations where both are non-stars.

Let ACCV .x; r/ be the set of all accepting views for a verifier V for input x and
random string r , and let

ACCV .x/ D f.r;W / j jr j D f .n/;W 2 ACCV .x; r/g:

Definition 4 (FGLSS Graph GV .x/) Feige et al. [38] define a graph GV .x/ on
vertex set ACCV .x/ such that .r;W / and .r 0;W 0/ are connected if and only if
r ¤ r 0 and W andW 0 are consistent.

Lemma 3 Let V be an .f; g/-restricted verifier. Then:
1. GV .x/ has at most 2f.n/Cg.n/ vertices.
2. GV .x/ can be constructed in time polynomial in maxfn; 2f .n/Cg.n/g.
3. MaxC lique.GV .x// is equal to maxP jfr j V.r; P; x/ D 1gj.

Proof One can easily check that even for an adaptive V , there are at most 2g.n/

different accepting views for a fixed r . Thus, the total number of accepting views is
at most 2f.n/2g.n/. In order to check whether a pair .r;W / is an accepting view or
not, we can run V , which is by definition a polynomial-time machine. By comparing
two views bit-wise, we can check in linear time if they form an edge in GV .x/. As
a result GV .x/ can be constructed in time polynomial in maxfn; 2f .n/Cg.n/g.

The main observation of FGLSS is that there is a natural many–one map from
the set of proofs (or proof candidates) to the set of cliques of GV .x/ such that all
maximal clique has at least one inverse image. Indeed, if we map a proof P to the
set of all .r;W / pairs, with the property that V.x; P; r/ D 1 and W is the verifier’s
view of P when reads r , then these pairs form a clique in GV .x/, since their view
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Fig. 2 Construction of the FGLSS graph. The set of all accepted views of a proof map to the set
of vertices of a clique (the map is represented by the arrows). The reverse also holds as follows:
every maximal clique of the graph corresponds to some proof

components are consistent with each other. Conversely, let C be a maximal clique
of GV .x/. There is a string (i.e., a proof) which is consistent with all elements of
C . This can be easily seen, since a location is either star in all elements of C or
uniquely defined by some elements of C . This string cannot be consistent with any
view that is not in C , since C was maximal. Notice that in this correspondence,
the size of C is exactly the number of those rs for which there is a W such that
.r;W / 2 C , sinceW , if exists, is unique for a fixed r . This number further equals to
the number of different coin flips for which the verifier accepts any proof that maps
to C . Point 3 of the lemma follows. �

We shall apply Lemma 3 in Sect. 2.8.

2.3 The Gap-3SAT Instance

The gap-3SAT instance is a 3SAT formula, which is either satisfiable or at most 1��
of its clauses are satisfiable.

Theorem 4 ([4]) There exists an � > 0 such that for every L 2 NP , there is
polynomial-time computable map from †� to 3SAT instances (mapping x 2 †� to
�x) such that:
1. If x 2 L, then �x is satisfiable.
2. If x 62 L, then every assignment leaves at least � clauses of �x unsatisfied.

Indeed, build a PCP for L as in Theorem 1, and define
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�x D ^r cr ;

where cr is the verifier’s accepting criterion for random string r and which by the
assumption of Theorem 1 is a disjunct of three literals. The variables are the bits
of the proof. If x 2 L then all ci s evaluate to 1, but if x 62 L then � fraction of
the clauses must remain unsatisfied for every assignment, i.e., for every proof of the
prover.

The theorem has the immediate consequence that MAX3SAT cannot be
approximated in polynomial time to within a factor better than 1=.1��/; otherwise,
we could use this algorithm to efficiently compute if x 2 L. Since MAX3SAT is in
MAXSNP (Papadimitriou and Yannakakis [80]), we get

Theorem 5 ([4]) No MAXSNP-complete problem can be efficiently approximated
to within a factor arbitrarily close to 1 unless P=NP.

Theorem 5 does not give explicit non-approximability gaps. For explicit gaps see
Sect. 2.7.

2.4 Refined Parameters of PCPs

In Sect. 1.1 we parameterized probabilistic verifiers with the number of random
bits, f .n/, and the number of check bits g.n/ (see Definition 1). When we make
a reduction from a PCP to an NPO problem, the exact non-approximability gap of
the latter may depend on several other parameters of the PCP. Here we list some,
starting with the most important ones:
1. The completeness probability, q.n/, which is the least probability of acceptance,

when x 2 L. Originally q.n/ D 1, but Håstad [53, 54] proved that we can
improve on other parameters if we allow q.n/ to be slightly less than 1.

2. The soundness probability, p.n/, which is the greatest probability of acceptance,
when x 62 L.

3. The free bit complexity. In Sect. 2.2 we definedACCV .x; r/. Using this notation,

f ree.n/ D max
jxjDn

log2 max
r

jACCV .x; r/j:

4. The average free bit complexity:

f reeav.n/ D max
jxjDn

log2

 
1

2f.n/

X

r

jACCV .x; r/j
!

:

Note that
P

r jACCV .x; r/j is the size of the FGLSS graph.
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5. The alphabet size j†j. In most cases we assume that the witness w is a string
over the binary alphabet f0; 1g. Raz and Safra [87] showed the relevance of using
alphabets which may contain up to n symbols.

The parameters we have discussed so far were defined from the model of PCP. We
also consider derived parameters that can be expressed in terms of the parameters
we have defined so far:
1. The gap function gap.n/ D q.n/=p.n/.
2. The amortized query bit complexity defined as g.n/

log2 gap.n/
.

3. The amortized free bit complexity defined as f ree.n/

log2 gap.n/
, sometimes as f reeav.n/

log2 gap.n/
D

maxjxjDn logq=p
�

1

2f.n/

P
r jACCV .x; r/j

�
[40].

The following notations for PCP classes with refined parameters are more or less
standard in the literature:
FPCPq;p.f; f ree/ denotes the class, where the query complexity is replaced

with the free bit complexity. FPCP .f; f ree/ is [FPCPq;p.f; f ree/, where the
union runs through for all choices of q.n/, p.n/, and f ree.n/ such that the
amortized free bit complexity is at most f ree.n/.

2.5 Amplification Techniques

Amplification techniques are transformations on probabilistically checkable proofs
or on the FGLSS graph that improve on their parameters. An ancestor of these
techniques was used in [46] to prove that the chromatic number cannot be
approximated to within a factor of 2 � �. In this section we review the naive
repetition, the parallel repetition, the proof composition, and the randomized graph
product (see also in Fig. 3). All of them are playing important roles in the theory of
non-approximability.

2.5.1 Naive Repetition
In the case of naive repetition, the new verifier’s query is the conjunct of k
independently chosen queries of the original verifier. It increases the gap in between
the completeness and the soundness probabilities as shown in the table below:

Naive repetition Original verifier Repeated verifier

Number of random bits f .n/ kf .n/

Number of check-bits g.n/ kg.n/

Completeness probability q.n/ q.n/k

Soundness probability p.n/ p.n/k

Perhaps the most troublesome aspect of the naive repetition is that it increases the
number of random bits the verifier needs to use. Zuckerman [98] suggests a “less
naive” repetition, where the verifier chooses its k-tuple from a set S of polynomially
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Fig. 3 Various types of amplifications

many k-tuples. Unfortunately, Zuckerman constructs S randomly. A PCPS verifier
is a PCP verifier that works with a (random) advise S . With high probability over
a random S with jS j D 2F.n/, the following holds for Zuckerman’s verifier:

Original verifier Zuckerman’s verifier

Number of random bits f .n/ F.n/

Number of check bits g.n/ g.n/.F.n/C 2/

Completeness probability 1 1

Soundness probability 1=2 2f .n/�F.n/

Lars Engebretsen and Jonas Holmerin [36, Lemma 14] have computed the
performance of the Zuckerman’s verifier for all values of the completeness and
soundness probabilities. This is what they got:

Original verifier EH-verifier

Number of random bits f .n/ F.n/

Number of check bits g.n/ g.n/
F.n/C2

� logp.n/ D g.n/D

Completeness probability q.n/ qD.n/=2

Soundness probability p.n/ 2f .n/�F.n/

In the case of perfect completeness, the EH verifier also has perfect completeness.
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2.5.2 Parallel Repetition
Parallel repetition of PCPs, as opposed to naive repetition, requires to change not
only the verifier’s behavior but also the encoding. It increases the alphabet size in
order to keep the query size only two and works as follows.

Assume that an .f; g/-restricted verifier V expects P to be segmented, i.e., P
consists of blocks (usually of some fixed block size). Note that the segmentation is
something that is only in the verifier’s mind, so a cheating prover has no influence
on this: segmented proof simply refers to the verifier’s reading behavior. Assume
that the verifier always accesses data only from two different blocks of the proof.
A further restriction is that P consists of two sets of blocks, P1 and P2, such that
for every random string, V accesses one block from each set. A PCP with this
structural restriction is called a two-prover system, since P is being thought to be
provided by two different provers whose answers the verifier compares one with
another.

Any naive repetition with k > 1 would alter the two-prover nature of the system,
but parallel repetition keeps it. We shall denote a verifier V repeated k times in
parallel by V k . The true prover for V k writes down all possible ordered k-tuples
of segments from P1 and all possible ordered k-tuples of segments from P2, and
these k-tuples are the segments of the repeated provers. The verifier uses kf .n/
randomness to simulate k independent checks .c1;1; c2;1/, : : : .c1;k; c2;k/ of V by
querying segments .c1;1; : : : ; c1;k/ 2 Pk

1 and .c2;1; : : : ; c2;k/ 2 Pk
2 . V k accepts iff

V would accept all pairs .c1;i ; c2;i / for 1 � i � k.
It is easy to compute the acceptance probabilities if the proof has the Pk

1 ; P
k
2

structure, but there is no guarantee that cheating provers adhere to this structure.
Surprisingly we can still say something about the maximum acceptance probability
for V k .

Theorem 6 (Raz’s Parallel Repetition Theorem [86]) For every verifier V of a
2-prover PCP, there is a constant 0 � c � 1:

max
P 0

P robr1;:::;rk .V
k.x; P 0; r1; : : : ; rk/ D 1/ � ck; (1)

where c depends only on p.V; x/ D maxP P robr.V .x; P; r/ D 1/ and the
maximum segment size for V and is strictly less than 1 if p.V; x/ < 1. (In Eq. (1)
P 0 ranges through all (possibly cheating) proofs for V k .)

The properties of the repeated proof are summarized in the table below:

Original verifier With k repetitions

Number of random bits f .n/ kf .n/

Number of check bits g.n/ kg.n/

Completeness probability q.n/ q.n/k

Soundness probability p.n/ ck (see Theorem 6)
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The price we pay for keeping the two-prover structure is a weaker bound on the
soundness probability than in the case of naive repetition.

Two-prover systems were introduced by Ben-Or, Goldwasser, Kilian, and
Wigderson [17] and have been studied by Rompel and Sipser [43], Feige and
Lovász [41], and by many others.

In many PCP constructions, we use a certain folklore two-prover protocol. The
verifier of this protocol, which we call V3SAT, comes from the gap-3SAT instance of
Sect. 2.3 and works as below.

Let �x (associated with x 2 †�) be a 3SAT instance, which is either completely
satisfiable or at most 1 � � fraction of its clauses are satisfiable for some � > 0.
By Theorem 4 we can assume that the language L D fx j �x is satisfiableg is
NP-complete and that �x is polynomial-time computable from x. The verifier V3SAT

computes �x , picks a random clause in it, and asks the first prover to evaluate the
three literals in the clause. If all the three literals evaluate to false, V3SAT rejects
outright. Otherwise, he picks a random variable in the clause and asks the second
prover to evaluate this variable (the two provers do not hear each other’s answers,
but they can agree in a strategy in advance, and they also know x). If the two provers
evaluate the variable differently, the verifier rejects, otherwise accepts.

In order to see that the above informal description indeed defines a two-prover
system in our former sense, identify Pi with the concatenation of all answers to all
possible questions of the verifier to prover i . Each answer is one segment, and the
number of segments in Pi equals to the number of different questions the verifier
may ask from prover i . The segment size of P1 is three bits, and the segment size of
P2 is one bit.

Next we show that the above protocol has a gap at least �=3. Clearly, when x 2 L,
i.e., when �x is satisfiable, both provers play consistently with the lexicographically
first satisfying assignment of �x , and V3SAT accepts with probability 1. If x 62 L,
every assignment fails to satisfy at least � fraction of the clauses of �x . Observe
that the strategy of P2 corresponds to an assignment to the variables of �x . For the
sake of simplicity, we call this assignment P2. This assignment must fail to satisfy
at least � fraction of the clauses of �x , and the verifier has probability � that he finds
one of these clauses. The first prover of course will lie and will not give the same
evaluation to one of the variables in that clause as P2 (to avoid sure rejection), but
then, conditioned on the event thatP2 gets the clause in question, the verifier notices
this inconsistency with probability at least 1=3. Thus, in case x 62 L, V3SAT accepts
with probability at most 1 � �=3.

Feige [37] shows that we may also assume that in �x each variable appears
exactly in 5 clauses and that each clause contains exactly 3 variables. By Feige’s
restriction, we may assume that V3SAT first selects a random variable and then
chooses a clause randomly out of the five that contains this variable. Observe that the
sequence in which the verifier asks the provers does not matter, and in the sequel we
call the prover who provides the clauses the “second prover.” We may also assume
that the verifier decides at his output after he has heard both provers.

In all applications V3SAT is going to be repeated in parallel ` times, where `
depends on the application and ranges from a large constant to logn. The lemma
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below, which is a consequence of the PCP theorem and the parallel repetition
theorem, summarizes the properties of V `

3SAT.

Lemma 4 Let ` D `.jxj/ be an arbitrary function of jxj (but most often a
constant), and let b D fb1; : : : ; bN g be the set of variables of Feige’s �x and
c D fc1; : : : ; c5N=3g be the clauses of �x. (We say bi 2 cj if bi or bi appears in
cj ). Then V `

3SAT works as follows:
1. It randomly picks an ` tuple U D .bi1 ; : : : ; bi` / and checks it against an ` tuple
W D .cj1; : : : ; cj`/ such that bi� 2 cj� for 1 � � � `. W is called a companion
of U , and it is randomly picked from the set of all companions of U . The provers
provide evaluations of all variables involved in the queries to them (in particular,
the second prover gives the values of all variables in all clauses occurring in
W ) without listening to each other. The verifier accepts if V3SAT would accept
.bi� ; cj� / for every 1 � � � `, i.e., all cj� are satisfied, and the assignments of
the variables in U andW are consistent.

2. It has perfect completeness.
3. It has soundness at most c` for some fixed constant c < 1.
4. It uses O.` logn/ random bits and ` C 3` check bits. (Here parameter
n is the length of x, and it is in polynomial relation with N .) More
importantly, the verifier reads only two segments of the proof. With segment
sizes ` (bits) for prover one and 3` (bits) for prover two, this is a
two-query PCP.

The above lemma amplifies the PCP theorem and implies approximation hard-
ness of the label cover problem:

Label Cover Problem: An instance of the label cover problem is a tuple, P D
.G;†1;†2;…/, where:
1. G D .X; Y;E/ is a bipartite graph with V.G/ D X [ Y and E D E.G/ D
E.X; Y /.

2. Nodes in X; Y are assigned labels from†1;†2, respectively.
3. … D f�xy j .x; y/ 2 Eg is a set of functions, �xy W †1 ! †2.

The variables of P , by definition, are the labels assigned to nodes in X [ Y . For
each edge .x; y/ 2 E , �xy.l.x// D l.y/ defines a binary “projection” constraint.
Here, l.x/; l.y/, are the labels assigned to x; y, respectively. The value of a label
assignment is the fraction of constraints that are satisfied.

A V `
3SAT instance is a special label cover problem P , where the vertices of X are

the `-tuples of clauses of a V3SAT instance ˆx and the vertices right partition are
the `-tuples of the variables of ˆx . Therefore, †1 D f0; 1g3` and †2 D f0; 1g`.
Lemma 4 implies:

Theorem 7 For any positive � < 1, there exist sufficiently large, but constant size
alphabets †1 D †1.�/;†2 D †2.�/, such that it is NP-hard to approximate label
cover instances P.G;†1;†2;…/ within a factor smaller than 1=�.
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Proof Choosing ` 2 O.log 1
�
/, the soundness of V `

3SAT can be made smaller than �,
giving the required hardness. �

2.5.3 Proof Composition
The idea of composing probabilistic verifiers first appears in the paper of Arora and
Safra [5] and is aimed at reducing the number of check bits of a probabilistic proof
system.

To describe proof composition, consider a proof system with an .f; g/-restricted
verifier V that recognizes a language L. From now on we call V the outer verifier.
We would like to construct a new verifier V 0 which recognizes the exact same
language as V but uses less check bits. Let x 2 L, jxj D n. The composed proof for
x consists of the old proofP , which we call the core, and a proofPr for every choice
of the random string r with jr j D f .n/ which we describe later. We shall compose
proof systems only if their verifiers are non-adaptive. Let Qr be the set of bits that
V reads from P when we run it with random string r . The set of accepting views
ACCV .x; r/ can be viewed as a language Lr consisting of words only of length
jQr j D g.n/. Let Vr be an .f 0; g0/-restricted probabilistic verifier that recognizes
Lr , where f 0.g.n// and g0.g.n// are the number of random bits and check bits Vr
needs for its verification. The f 0 and g0 bounds must uniformly hold for each Lr (a
more elegant formalism for composition was worked out in [92]). Vr is called the
inner verifier, and it verifies that the view of the original verifier is accepting, with
the help of some extra advise string }r , provided separately for every r in addition
to the view.

The compound verifier works as follows: it picks a random r with jr j D g.n/

and a random string r 0 with jr 0j D f 0.jQr j/. It then runs Vr with random string
r 0 on input Qr , proof }r (reading g0.jQr j/ bits from the latter), and outputs
Vr.Qr ; }r; r

0/.
Let us compute the parameters of the composed proof system. Assume that V

has completeness probability q.n/ and soundness probability p.n/ and that each Vr
has completeness probability p0.n/ and soundness probability q0.n/. Here is what
we get:

Original proof Composed proof

Completeness probability q.n/ q.n/q0.n/

Soundness probability p.n/ .1� p.n//p0.n/C p.n/

Number of check-bits g.n/ g.n/C g0.g.n//

As we see, all parameters are getting worse. Why? The composed verifier uses
g.n/ C g0.g.n// check bits. The second term is small, but the first term, g.n/, is
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there, because althoughQr is input from the inner verifier’s view point, it is in fact
part of the composed proof. The situation would be different if Vr checked its input
Qr together with the associated proof }r instead of reading its entire input.

Babai, Fortnow, Levin, and Szegedy [12] have introduced a probabilistic verifier,
which reads only a few bits from its input. The price of this efficiency is that the
BFLS verifier can recognize a language only if it receives its input encoded. If now
the outer verifier is segmented, i.e., the outer verifier reads k chunks of the proof,
each of length g.n/=k, where k is a constant, we may use the BFLS verifier as the
inner verifier if we replace the proof of the outer verifier with a one where each
segment is encoded. (See Sect. 2.5.2 for an example to a segmented outer verifier.)
In [12] it is shown:

Theorem 8 For every language L 2 NP and every polynomial-time encoding
function En W f0; 1gn ! f0; 1gpoly.n/ that defines a code with relative distance 2,
and associated decoding function D, there is a verifier V BFLS that uses at most
f 0.n/ D O�.logn/ random bits, reads at most e.n/ D .logn/O�.1/ bits of the input
and g0.n/ D .logn/O�.1/ bits of the proof, and has the following properties:
1. If the input of the verifier is of the form z D E.x/ for some x 2 L, then the

verifier accepts with probability at least 1.
2. If V BFLS accepts an input z with probability at most 1

2
, then z decodes to some

x 2 L.

Assume now that the outer verifier’s proof is segmented and that the verifier
reads at most k segments for every r , where k is a constant. The composed prover
encodes the segments (each individually) with an efficient error-correcting code
E 0. This will be the core of the composed proof. If we now apply the BFLS
verifier of Theorem 8 as the inner verifier, then the last line of our earlier table will
change to

Original proof Composed proof

Number of check bits g.n/ e.g.n//C g0.g.n//

The above composition technique was employed in [5] and in [4]. A serious effort
in these articles had to be made to create segmented outer verifiers. Dinur’s proof
of the PCP theorem does not use the above exact composition technique, although
it also uses proof composition.

2.5.4 Randomized Graph Products
Graph products amplify gaps in sizes of independent sets [47] and chromatic
numbers [71]. There are many different types of graph products, but the one that
will work for us here is the inclusive graph product.
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Definition 5 (Inclusive Graph Product) LetG1 andG2 be graphs with vertex sets
V1, resp., V2, and edge sets E1, resp. E2. We define the inclusive graph product of
G1�G2 on the vertex set V1�V2 such that .x1; x2/ is connected with .y1; y2/ if and
only if x1 is connected with y1 in G1 or x2 is connected with y2 in G2.

Let ˛.G/ be the maximum independent set size of G and !.G/ be the maximum
clique size ofG. Independent set sizes are multiplicative with respect to the inclusive
graph product. For Gk , the k-wise inclusive graph product of G with itself, means

˛.Gk/ D ˛.G/k

!

�

G
k
�

D !.G/k:

To obtain the behavior of powers of G with respect to the chromatic number, we
first define the fractional chromatic number of a graph:

Definition 6 (Fractional Chromatic Number) Let G be an undirected graph and
I be a set ofG. The indicator functionXI of I is map from V.G/ to the reals which
assigns 1 to the elements of I and 0 to the elements of V.G/nI . Let Ind.G/ be the
collection of all independent sets of G. We define the fractional chromatic number
of G by

�f .G/ D min
X

I2Ind.G/
�I

subject to

�I � 0 for all I 2 Ind.I /
X

I2Ind.G/
�IXI � XV.G/ coordinate-wise.

Clearly,

�.G/ � �f .G/ � max

�
V.G/

˛.G/
; !.G/

�

: (2)

With respect to powering we have

�.Gk/ � �.G/k (3)

�f .G
k/ D �f .G/

k: (4)

Equation (4) is observed by Lovász [72]. We wish to amplify constant gaps in the
independence number and the fractional chromatic number to polynomial gaps by
setting k D c logn, but the size of the resulting graph becomes super-polynomial. In
order to overcome this problem, Berman and Schnitger [18] developed a randomized
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version of this graph product. Instead of takingGk , they randomly, select an induced
subgraph of it. Feige and Kilian [40] give the following lemma:

Lemma 5 Vertex-induced subgraphsG0 of Gk have the following properties:
1. �f .G0/ � �kf .G/.

2. If ˛.G/ � C , then ˛.G0/ � kjV.G/j for nearly all subgraphs G0 with jV.G/jk
Ck

vertices.
3. �f .G0/ � jV.G0/j

kjV.G/j , for all G0 satisfying ˛.G0/ � kjV.G/j.
4. ˛.G0/ � jV.G0/j

ck
with high probability over a fixed sized subgraph G0, where

c D jV.G/j=˛.G/.

The lemma lets us amplify the PCP theorem in a simple way to prove polynomial
(n�) gap for the clique approximation problem. The reduction is randomized,
however.

2.6 The Long Code

The long code was invented by Bellare, Goldreich, and Sudan [14], and it has
become a standard tool to prove exact non-approximability bounds for various CSP.
It is also used to prove the non-approximability of Max Clique to within a factor of
jV.G/j1�� in [55].

LetU be an fixed finite set of so-called “labels.” The coordinates of the long code
correspond to all possible functions f W U ! f0; 1g. When we encode an x 2 U ,
the coordinate corresponding to f takes the value f .x/:

longU .x/f D f .x/:

Since there are 2jU j Boolean-valued functions on n inputs, the long code is a string
of length 2jU j. Let A be a function that every f W U ! f0; 1g associates an element
Af 2 f0; 1g. Then A is a word of the long code if and only if there is an x such that
for every f : Af D f .x/.

Alternatively, we can think of the long code as the composition of two encodings:
first we encode x 2 U to unary.x/ 2 f0; 1gjU j, where unary.x/ is one only at a single
position, indexed with x, and zero everywhere else. Then we encode unary.x/ with
the Hadamard encoding. The latter contains all subset sums of the binary string it
encodes, modulo two.

x unary.x/ Hadamard
1 ! 0001 ! 0000000011111111
2 ! 0010 ! 0000111100001111
3 ! 0100 ! 0011001100110011
4 ! 1000 ! 0101010101010101
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Sometimes we need a technique that is due to Bellare et. al. [14] called folding.
If A D longU .x/, then for every f , we have A:f D .:f /.x/ D :.f .x// D :Af .
Let x0 2 U be a fixed (but otherwise arbitrarily chosen) element of U . For every
f exactly one of f .x0/, :f .x0/ is zero. The folded long code long0

U is obtained
by puncturing longU , keeping only those entries of every word that belong to index
f with f .x0/ D 0. This is exactly half of all entries. We, however, think of the
omitted entries that they are implicitly present, and for any f with f .x0/ D 1, we
define

Af D :A:f : (5)

Unfolding of A makes sense even when A is not in long0
A, but rather an

arbitrary 0�1 vector over the index set ff W U ! f0; 1g j f .x0/ D 0g,
if we “read” the entries that are not explicitly present by an application
of Eq. (5). PCP constructs sometimes (or oftentimes) contain the folded
variation.

2.6.1 Long Code Tests
Long code tests try to find out if in a prospective long code word A, there exists
an x such that A is close to longU .x/, by the means of checking only a few
randomly chosen entries of A. The checking procedure should have the following
properties:
1. If A D longU .x/ for some x, then the test accepts with probability q (q D 1 or

it is close to one, depending on the setting).
2. If no such x is decodable from A and not even a short list of candidates, then the

test accepts with probability at most p (in general, p < q, typically p is close to
zero).

Perhaps the following arguments explain why we want to use such a wasteful
encoding in our constructions:
• The long code is very efficiently testable, giving rise to efficient inner verifiers.
• From a long code word or from any word that is close to a long code word, we

can efficiently decode the value that any Boolean-valued function takes over the
encoded label.

Long code tests have either 1. perfect completeness or 2. imperfect completeness.
Below we describe important examples to both ones. Our first example is a test
with perfect completeness that checks long0

U and is due to Dinur [33]. In the
test we

Dinur’s Folded Long Code Check [33].
1. Randomly select f1; f2; f3, conditioned on f1_f2_f3 D 1. Retrieve b1 D Af1 ,
b2 D Af2 , b3 D Af3 .

2. Accept if b1 _ b2 _ b3 D 1.

Remark 1 Note that for any word A of the long code, if f1 _ f2 _ f3 D 1, then
Af1 _ Af2 _Af1 D 1.
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Lemma 6 For the above checking procedure, the following holds:
1. If A D long0

U .x/, then A is accepted with probability 1.
2. If dist.A; long0

U / > ı, then A is rejected with probability	.ı/.

The other test is a test with imperfect completeness, and it is due to Håstad [54].
It has historical significance too: the first exact non-approximability results were
obtained using this code. We also assume that the input is folded, i.e., Eq. (5) holds.
Below F denotes all functions of the form fW U ! f0; 1g.

Hastad’s Folded Long Code Check [54]
1. Choose f0 and f1 from F with uniform probability.
2. Choose a function 
 2 F by setting 
.x/ D 1 with probability 1 � � and

.x/ D 0 otherwise, independently for every x 2 U .

3. Set f2 D f0˚f1˚
, i.e., define f2 for each x 2 U by f2.x/ D f0.x/˚f1.x/˚

.x/.

4. Accept if Af0 ˚ Af1 ˚ Af2 D 0.

Lemma 7 If A is the table of a word in the folded long code, the verifier accepts
with probability at least 1 � �. If a folded string A passes the test with probability
at least 1Cp

2
, then there is a B which is the modulo two sum of at most ��1 log 1=p

words of the long code, and A and B agree in at least 1Cp
2

fraction of the 2jU j bit
positions.

Remark 2 Notice the difference between the soundness conditions of Dinur’s test
and Hastad’s test. If Dinur’s test succeeds with high probability, x is decodable from
the code. In the case of Håstad, it is only list-decodable. Of course, in the case of
Håstad “high probability” means 1Ctiny

2
, while in the case of Dinur, it means 1�tiny.

Dinur’s objective was not to prove sharp results, but to prove the PCP theorem. Her
long code test is part of her alphabet reduction step.

When we prove sharp results, the outer verifier plays a role too. Some generic
outer verifiers, like the label cover instance of Sect.2.5.2, lead to a variety of optimal
non-approximability results, but the inner verifier is slightly more involved than the
verifier of the long code alone. The inner verifier for the label cover problem needs
to check two long codes at the same time together with a relation between them. We
do not describe the test here, which is very similar to Håstad’s long code test, and
also appears in [54]. If we replace the label cover problem with the so-called unique
game problem (Sect. 4), we get sharper results, but this outer verifier is not proven
to be NP-hard.

2.7 Constraint Satisfaction Problems

A general CSP instance is a set

ˆ D ffi.xi;1; : : : ; xi;k/g1�i�m
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of k-variate functions acting on k-tuples of n variables, x1; : : : ; xn, each ranging in
a domainD. OftenD D f0; 1g, but in general it can be any fixed finite set. The goal
is to find an assignment to the variables such that all or in the maximization version
the maximum number of fi s is satisfied. Specific CSP have restrictions on the fi s,
namely, they have to come from a constraint family � , which is a subset of k-variate
functions on D (in the most general setting, “k-variate” has to be replaced with “at
most k-variate”), where k is a fixed constant. CSP problems are in MAXSNP and
therefore approximable within some constant factor. Here we discuss MAXkLIN,
MAXkSAT and MAXkCSP. All of these problems are over the Boolean domain,
i.e., jDj D 2.

Problem Name: MAXkLIN:
Instance: A set of linear equations over F2. L D fxi;1 ˚ xi;2 ˚ xi;3 D ci j 1 �
i � mg such that for 1 � i � m, 1 � j � 3: xi;j 2 fxi g1�i�n, where xi are
variables in F2 and ci (1 � m) are constants in F2.

Witness: An assignment to the variables xi (1 � i � n).
Objective: Maximize the number of equations set true in L.

Obviously, a random replacement on expectation satisfies half of the constraints.
On the other hand, Håstad constructs a PCP reduction [55] which shows as follows:

Theorem 9 ([55]) For any � > 0, k � 3 it is hard to approximate MAXkLIN to
within a factor of 2 � �.

Håstad’s reduction [54] briefly works as follows: The label cover problem from
Sect. 2.5.2 is the outer verifier (one may view it as a starting point of the reduction).
A random string of the outer verifier leads to checking an edge .x; y/ of the label
cover instance for the relation �xy.l.x// D l.y/, where l.x/ and l.y/ are the labels
assigned to these nodes. The compound prover encodes each label with the folded
long code (with long0

†1
or with long0

†2
depending on the node), and upon the outer

verifier picking edge .x; y/, the inner verifier checks the long codes associated with
both nodes and also if the desired relation holds between the labels that these long
codes encode. This seems like a lot of checking, but Håstad does the checking
very economically, only with three query bits. It becomes important that �xy is a
projection. The verification process is very similar to the long code test of Håstad
in Sect. 2.6, with a little extra twist, which we do not describe here. The composed
verifier accepts with probability 1 � p for positive inputs and with probability at
least 1�p

2
for negative inputs, where p can be made arbitrarily small. Moreover, each

checking criterion is a linear equation over F2 involving three variables. Theorem 9
follows.

Problem Name: MAXkSAT:
Instance: A set of disjuncts ˆ D f.ti;1 _ ti;2 _ ti;3/ j 1 � i � mg such that for
1 � i � m, 1 � j � 3 ti;j 2 fx1; x1; : : : ; xn; xng, where xi 1 � i � n are
Boolean variables.

Witness: A Boolean assignment to the variables xi 1 � i � n.
Objective: Maximize the number of disjuncts set true in ˆ.
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Johnson [56] in 1974 showed that the MAXkSAT is approximable to within
a factor of 1

1�2�k in polynomial time as long as each clause contains exactly k
literals. Trevisan, Sorkin, Sudan, and Williamson [95] show that MAX3SAT is
approximable within 1.249 without any restriction, and Karloff and Zwick [57]
show that it is approximable within a factor of 8=7 for satisfiable instances. Here
we prove the non-approximability of MAX3SAT.

Theorem 10 ([55]) For any � > 0, it is hard to approximate MAX3SAT to within a
factor of 8=7� �.

Proof We reduce the problem to the non-approximability of MAX3LIN . Let
L be an instance of MAX3LIN such that either at least 1 � �1 fraction of its
equations are satisfied or at most 1=2C �2=2 fraction of its equations are satisfied.
We replace every equation x ˚ y ˚ z of L with a set of four clauses .x ^ y ^ z/,
.x ^ y ^ z/, .x ^ y ^ z/, and .x ^ y ^ z/. An assignment that satisfies the linear
equation satisfies all the clauses, while an assignment that does not satisfies the
linear equation satisfies three of the four clauses. The MAX3SAT instance ˆ we
construct for L is the multiset union of these replacements. It is easy to see that
either 1 � �1 fraction of the clauses of ˆ are satisfied or at most 7=8.1 C �2/

fraction. �

Håstad has proven the more general statement that MAXkSAT is not approx-
imable within 1

1�2�k � � for any k and � > 0, even if every clause consists of
exactly k literals.

Theorem 10 is proven via a specific gadget reduction, i.e., where each constraint
of a CSP is replaced with a set of constraints from another CSP, called gadget. These
in general may contain auxiliary variables. Trevisan, Sorkin, Sudan, and Williamson
[97] use linear programs to systematically construct gadgets that give optimal gap-
CSPs starting from gap-E3LIN2. For a large class of CSPs, they prove that optimal
gadgets exist. They arrive at these gadgets via linear programming.

Problem Name: MAXkCSP:
Instance: A set S D ffi j 1 � i � ng of Boolean expressions (constraints), each

depending on at most k of the Boolean variables xi 1 � i � k.
Witness: A Boolean assignment to the variables xi (1 � i � n).
Objective: Maximize the number of expressions set true in S .

The best known algorithm for the MAXkCSP problem has an approximation
ratio 2k�1 [94]. Samorodnitsky and Trevisan [89] showed that for any ı > 0 and any
NP-complete languageL, there is a PCP with amortized query complexity 1Cı (!).
Their proof leads to the following:

Theorem 11 ([89]) For every k the MAXkCSP problem is NP-hard to approximate
to within 2k�O.pk/.
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2.8 The Max Clique

Instance: Undirected graph G D .V;E/.
Witness: A clique C � V in G: .x; y 2 C/ ^ .x ¤ y/ ! .x; y/ 2 E.G/
Objective: !.G/ D maxfjC j W C is a clique in Gg.

Boppana and Halldórsson [20] in 1992 proved that the maximum clique problem
can be approximated within a factor of O.jV j=.log jV j/2/. The hope for a big
improvement faded away as non-approximability results arose. Feige, Goldwasser,
Lovász, Safra and Szegedy [38] in 1991 made the following connection between
clique approximation and proof checking:

Theorem 12 (FGLSS) LetNP � PCPq;p.f; g/. Then if MaxC lique of a graph
of size h.n/ D 2f.n/Cg.n/ can be approximated within a factor better than q.n/=p.n/
in time polynomial in h.n/, then NP � DTIME.poly.h.n///.

Proof LetL be anNP -complete language. Let V.r; P; x/ be a probabilistic verifier
that recognizes L using f .n/ query bits, and g.n/ random bits, and which accepts
for at least q.n/2f .n/ choices of r for some P , if x 2 L and accepts for at most
p.n/2f .n/ choices of r for every P , if x 62 L.

Consider the FGLSS graph GV .x/ defined in Sect. 2.2. Conditions 1–3 of
Lemma 3 imply the theorem, since if we could approximate the Max Clique of
GV .x/ within a factor better than q.n/=p.n/ in time poly.h.n//, then we would be
able to use this algorithm to tell whether x 2 L or not. �

Let f .n/ D logn log logn. Feige et al. show that NP � PCP1;1=2.f; f /. This
argument used the scaled-down version of the two-prover interactive protocol by
Babai Fortnow and Lund [11] and provided the first rudimentary PCP construc-
tion. If we apply logk n independent naive repetitions on the above verifier (see
Sect. 2.5.1) we obtain

NP � PCP
1;1=2logk n .f .n/ logk n; f .n/ logk n/:

By Theorem 12 this implies that for every fixed � > 0, Max Clique cannot be
approximated within a factor of 2log1�� jV j unless NP has quasi-polynomial-time
algorithms.

The next important step was made by Arora and Safra [5] who showed the NP-

hardness of Max Clique up to an approximation factor 2
p

log jV j. This result was the
first to show the non-approximability of Max Clique under the natural P ¤ NP

assumption and provided the first PCP that characterized NP.
Arora, Lund, Motwani, Sudan, and Szegedy [4] proved that NP D

PCP1;1=2.logn;O.1// (see Theorem 1). An amplification method [25] based
on the “expander walk” technique of Ajtai, Komlós, and Szemeredi [1] yields that
NP D PCP1;1=n.logn; logn/. Then Theorem 12 gives that there is an � that
it is NP -hard to approximate MaxC lique up to a factor of jV j� . Alon, Feige,
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Wigderson, and Zuckerman [3] showed how to obtain the same result starting with
FGLSS graph constructed from Theorem 1 by derandomizing the graph product of
Berman and Schnitger [18].

The constant � was made explicit by Bellare, Goldwasser, Lund, and Russel [15].
They also slightly improved on the proof methods of [4] and coupled it with a new
amplification technique of [18, 98] to show that Max Clique is hard to approximate
within a factor of jV j1=25 unless NP is contained in co � R QP . Here QP stands for
the quasi-polynomial time.

Notice that in the last result the hardness condition is different than before, be-
cause it involves the randomized class, co�R QP . BGLR replace the conditionNP �
PCPq.n/;p.n/.f .n/; g.n// of Theorem 12 with NP �R PCPq.n/;p.n/.f .n/; g.n//,
where �R stands for “randomly reducible.” Although this weakens the hardness
condition, it allows better amplification methods and thus better parameters.

Feige and Kilian [39] have observed that Theorem 12 can be replaced with the
following lemma (for the definitions see Sect. 2.4):

Lemma 8 [39] Let NP � FPCPq;p.f; f ree/. Then if Max Clique of a graph
of size h.n/ D 2f.n/Cf ree.n/ can be approximated within a factor better than
q.n/=p.n/ in time polynomial in h.n/, then NP � DTIME.poly.h.n///.

From the above lemma they showed that Max Clique cannot be approximated
to within a factor of jV j1=15�� unless NP D coRP . Bellare and Sudan in [16]
introduced the amortized free bit complexity, f ree (see Sect. 2.4), and notice that
the best available amplification techniques give that

Lemma 9 If there is a PCP which uses O.logn/ randomness and has amortized
free bit complexity f ree, then Max Clique cannot be approximated within a factor

better than n
1

1Cf ree unless NP � coR QP .

They prove that Max Clique cannot be approximated to within a factor better than
jV j1=4 unless NP � coR QP . The next major step was made by Bellare, Goldreich,
and Sudan [14], who discovered the long code (see Sect. 2.6), and building it
into their PCP immediately could reduce the free bit complexity. They prove the
non-approximability of Max Clique to within a factor better than jV j1=3 unless
NP � coRP .

Although the constant in the exponent gradually improved, it seemed that
theoretical limitations bar the improvement of the non-approximability exponent
beyond 1=2. It has turned out that the limitations could be overcome by dropping
the perfect completeness property of the PCP. Relying on a new test for the long
code of Bellare et. al., Håstad was able to show the following:

Theorem 13 [54] Max Clique cannot be approximated to within a factor of jV j1��
for any � > 0 unless NP � ZPP .
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Arora=A, Babai=B, Bellare = Be, Feige=Fe,Goldwasser=G,
Goldreich = Go, H̊astad =H, Kilian=K, Khot = Kh,
Lovász=Lo, Lund=Lu, Motwani=M, Russel = R,
Safra=Sa, Sudan=Su, Szegedy=Sz, Zuckerman = Z
Engebretsen=En, Holmerin=Ho

Due to Factor Assumption

FeGLoSaSz 2log1− |V | for any 0 NP P̃

ASa 2
√

log |V | NP = P

ALuMSuSz |V | for some NP = P

BeGLuR |V |1/30 NP = coRP

BeGLuR |V |1/25 NP coRP̃

FeK |V |1/15 NP = coRP

BeSu |V |1/6 NP = P

BeSu |V |1/4 NP coRP̃

BeGoSu |V |1/4 NP = P

BeGoSu |V |1/3 NP = coRP

H |V |1− for any 0 NP ZPP

Kh |V |=2log1− |V | for any 0 NP ZPP

EnHo |V |1−O(
√

log log n) NP ⊆ ZP (2O(log n(log log n)3/2))
Z |V |1− for any 0 NP = P

Z |V |=2log1− |V | for any 0 ÑP = P̃

Fig. 4 A summary table on the history of clique non-approximability

In the proof of this theorem, Håstad uses the same probabilistically checkable
proof construction as he does for CSP, but the verifier works differently, and the
analysis is different. He is able to achieve amortized free bit complexity � for any
� > 0.

Sudan and Trevisan [91] and Samorodnitsky and Trevisan [89] simplified the
involved analysis of Håstad and constructed a PCP which has the additional
benefit of having amortized query bit complexity 1 C �. Building on [91] and
[89] Lars Engebretsen and Jonas Holmerin [36] showed that unless NP �
ZPTIME.2O.log n.log log n/3=2//, Max Clique cannot be approximated to within a
factor of jV j1�O.

p
log log n/. Under the same assumption, Khot [60] was able to

increase the non-approximability ratio to jV j=2log1�� jV j. Using new construction
of dispersers, Zuckerman de-randomized the PCP constructions of Håstad and
Khot [99]. Fig. 4 summarizes developments on the Clique non-approximation
problem.
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2.9 The Chromatic Number

Instance: Undirected graph G D .V;E/.
Witness: An integer k and a k-coloring F of V.G/ with the property that F W
V.G/ ! Œ1; k� and for every .a; b/ 2 E.G/ W F.a/ ¤ F.b/.

Objective: �.G/ D min k such that a k-coloring F of V.G/ exists.

The best-known lower bound for approximating the chromatic number was
obtained by Halldórsson in 1993 [52]. Given a graph G on n nodes, he finds a
coloring of G in polynomial time with at most

�.G/ � O

�

n
.log logn/2

log3 n

�

colors. From the other direction, an early result of Garey and Johnson [46] shows
that �.G/ is NP-hard to approximate to within any constant less than 2. In 1992
Lund and Yannakakis found a reduction from approximating the Max Clique of the
FGLSS graph of the ALMSS verifier to the problem of approximating the chromatic
number.

Theorem 14 (Lund and Yannakakis [74]) There is an � such that it is NP -hard
to approximate �.G/ within a factor of jV.G/j�.

The proof of Lund and Yannakakis works in three steps:
1. Construct the FGLSS graphGV .x/ for the ALMSS verifier V of an NP-complete

language L. Observe that GV .x/ has bounded degree and:
a. If x 2 L then ˛.GV .x// D R (for some R D nc).
b. If x 62 L then ˛.GV .x// � R.1 � �/:

2. Use the randomized graph products of Berman and Schnitger [18] and Blum [19]
to obtain a graph G1 from GV .x/, which has maximum independence number
n�1 for positive instances and maximum independence number n�2 for negative
instances, for some �1 > �2 > 0.

3. Apply another transformation which turns G1 into a graph
G2 such that �.G2/ � n�3 for positive instances and �.G2/ � n�4 for negative
instances, for some �3 > �4 > 0.
Improving upon this result and its subsequent sharpening [16, 58], Fürer [44]

gives a randomized reduction which shows that if !.G/ cannot be approximated to

within jV.G/j 1
f reeC1 , then �.G/ cannot be approximated to within jV.G/jı, where

ı D min
�
1
2
; 1
2f reeC1

�
� o.1/. His reduction assumes the FGLSS graph structure.

Feige and Kilian [40] have taken a different route and building on the Max Clique
result of Håstad [54] show:

Theorem 15 [40] Unless NP � ZPP , it is hard to approximate �.G/ to within
jV.G/j1�� for any constant � > 0. Here ZPP denotes the class of languages that are
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solvable with a randomized algorithm that makes no error and on expectation runs
in polynomial time.

The proof of this theorem gives more, namely, that it is NP-hard (under
randomized reductions) to distinguish between graphs with ˛.G/ � jV.G/j�
and graphs with �.G/ � jV.G/j� . To understand their proof scheme, we need
to introduce a new parameter for a PCP which requires the notion of fractional
chromatic number of Sect. 2.5.4 (Definition 6).

Definition 7 (Covering Parameter) The covering parameter of a PCP with
verifier V is

� D min
x2L

1

�f .GV .x//
: (6)

Here GV .x/ is the FGLSS graph for V and x (see Definition 4).

Since for every graph G we have �f .G/ � !.G/, the covering parameter of
a PCP for input x is at most 2�f ree.jxj/. The notion of covering parameter first
appears in [40] in the context of RPCPs. RPCPs are PCPs such that for every x 2 L,
there is a probability distribution (possibly different for different inputs) on all the
proofs. For a fixed x 2 L, this distribution gives rise to a probability distribution
on Ind.GV .x//, which in turn can be used to give a lower bound on the covering
parameter of the PCP. This lower bound is what Feige and Kilian call the covering
parameter of the RPCP. Whether we talk about RPCPs or immediately define the
covering parameter of a PCP is a matter of taste. RPCPs were introduced because
their definition suggests an elegant connection to zero knowledge proof systems.

Feige and Kilian do their crucial transformation directly on the FGLSS graph of
the PCP theorem, and then they amplify it with the randomized graph product. This
is the reverse of how Lund and Yannakakis do it. Here is what Feige and Kilian
rely on.

Assume that for an NP-complete language L, there is a polynomial-time
transformation that sends a word x into a graph G.x/ such that for some constants
0 < c2 < c1 < 1:

If x 2 L then �f .G.x// � 1=c1: (7)

If x 62 L then ˛.G.x// � c2jV.G.x//j: (8)

Then, if we apply the randomized graph product construction of [18] on G.x/ with
k D c3 logc�1

2
jV.G.x//j, where c3 > 1 is a constant, and select a random subgraph

G0 of Gk with size c�k
2 , then from Lemma 5 of Sect. 2.5.4,

�f .G
0/ � jV.G0/j log c1

log c2 if x 2 L; (9)

˛.G0/ � jV.G0/j� if x 62 L; (10)
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where � can be made arbitrarily small if c3 is large enough. We immediately obtain
the following:

Lemma 10 Assume that for an NP-complete languageL there is a polynomial-time
transformation that sends a word x into a graphG.x/ such that for some constants
0 < c2 < c1 < 1 conditions (7) and (8) hold. Then for every � > 0, we can construct
a graph G0 in randomized polynomial time such that

�.G0/ � jV.G0/j log c1
log c2

C� if x 2 L; (11)

�.G0/ � jV.G0/j1�� if x 62 L: (12)

Indeed the Inequality (11) follows from Inequality (10) and Inequality (12) is
implied by Inequality (9) and by the following result of Lovász [72]:

�.G/ � �f .G/ log.1C ˛.G//: (13)

If we combine Lemma 10 with Definition 7 of the covering parameter, we obtain
the following:

Lemma 11 Suppose that one can generate a PCP for NP with f .n/ random bits,
soundness probability p D p.n/, average free bit complexity fav D f reeav.n/, and
� D �.n/. Assume that p, fav, and � are constants and that the size of the FGLSS
graph, 2f.n/Cfav , is polynomially bounded as n grows to infinity. Then it is hard to

approximate �.G/ to within jV.G/j fav�logpClog �
fav�logp �� , where � is an arbitrarily small

positive constant, assuming NP 6� ZPP .

Starting from the construction of Håstad [55], Feige and Kilian show the
existence of PCPs for an NP-complete problem such that log�=.fav � logp/ is
arbitrarily small. Theorem 15 is implied now by Lemma 11.

We can also use Lemma 10 to derive the Lund Yannakakis result from the
non-approximability result from the MAXSNP-hardness of the MAX-3-coloring
problem proved by Petrank [82]. This example was given by Feige and Kilian, and
it is so easy that we can give their entire proof here:

Proof (Theorem 14) Let H be the graph of Petrank’s construction such that it
has m edges and either it has a valid three-coloring or every three-coloring of its
vertices miscolor at least qm edges, where q > 0 is some fixed constant. From
H we construct a graph G, which has 6m vertices of the form .e; c/, where e
ranges over the m edges of H and c ranges over the 6 valid 3-colorings of the
two endpoints of an edge. Two vertices .e1; c1/ and .e2; c2/ are connected by an
edge if e1 and e2 intersect at a vertex ofH and c1 and c2 disagree on the coloring of
this vertex. A valid 3-coloring C of H induces an independent set of size m in G.
Let � be a permutation of the three colors. As � ranges over its 6 possibilities,
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the composition of C with � induces 6 independent sets in G of size m.
Furthermore, these independent sets are disjoint and cover V.G/. Hence, G has
a chromatic number of 6. If H is not 3-colorable (and hence qm of its edges are
miscolored) then the largest independent set of G is of size at most m.1� q/. If we
apply Lemma 10 for G with c1 D 1=6, c2 D .1 � q/=6, we get Theorem 14. �

The above non-approximability of �.G/ was derandomized by Zuckerman [99]
to get the same non-approximability ratio conditioned on P ¤ NP .

Finally we mention another type of non-approximability result for �.G/.
S. Khanna, N. Linial, and S. Safra [58] have shown that it is NP-hard to tell
apart 3-chromatic graphs from 5 chromatic graphs. But the following question is
open and would be very interesting to resolve:

Problem 1 Prove that for any fixed k > 5, it isNP -hard to tell apart a k-chromatic
graph from a three-chromatic graph.

Remark 3 Recently, Dinur, Mossel, and Regev have shown [35]: For any two fixed
integers Q > q > 2, it is hard to decide whether for an input graph G we have
�.G/ � q or �.G/ � Q. The hardness is under the 2-1 conjecture, if q � 4,
and under a similar, but slightly more complicated “fish shaped” variant of this
conjecture, if q D 3 (see the definition of 2-1 conjecture in Sect. 4).

2.10 Set Cover

Instance: A collection F D fS1; : : : ; Ssg of subsets of S D f1; : : : ; ng.
Witness: A subcollection F 0 of F such that [Si2F 0Si D S .
Objective: �.F / D min jF 0j.

In 1974 D. Johnson [56] showed that the greedy algorithm finds a collection F 0
for the problem such that jF 0j is to within logn factor optimal (here the log is based
on e D 2:71::). Chvatal [24] extended this algorithm to the weighted version, and
Lovász [72] has studied a linear programming relaxation with logarithmic (in terms
of the hypergraph degree) integrality gap.

The first hardness result is that of Lund and Yannakakis [74]. They show using a
construction coming from the PCP theory that set cover cannot be approximated to
within a factor of log n

4
unless NP � TIME.npolylogn/ and within a factor of log n

2

unless NP � ZIME.npolylogn/. Here ZTIME.t/ denotes the class of problems
for which there is a probabilistic algorithm that makes no error and runs in expected
time t .

Subsequent works went in two different directions. The best results up to date that
represent these directions are that of Feige [37] which proves that set cover cannot
be approximated efficiently to within a factor of .1 � o.1// logn unless NP �
TIME.nO.log log n// and that of Raz and Safra [87] which proves that set cover is
NP-hard to approximate within a factor of � logn for some fixed � > 0. Until now
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there is no result which would achieve both optimal non-approximability ratio and
hardness condition P ¤ NP .

A predecessor of [37] was the result of Bellare et.al. [15], which proved that the
set cover cannot be approximated within any constant ratio unlessP D NP and that
it cannot be approximated within a factor of log n

4
unlessNP � TIME.nO.log log n//.

Arora and Sudan [6] followup on [87] and achieve the same bound using elegant
and difficult algebraic techniques such as Hilbert’s Nullstellensatz.

We cannot give here the technically very involved result of Raz and Safra, but
we present a complete proof of Feige’s result. The proof is a modification of a
simplified argument due to Håstad (A Rewriting of Feige’s Proof for the Setcover,
Unpublished). At many places we use his original wording. We ought to remark that
simplification is formal to a large extent: the key components of the proof are the
same as those in [37].

Theorem 16 [37] The set cover cannot be approximated efficiently to within a
factor of .1 � o.1// logn unless NP � TIME.nO.log log n//. The logarithm is
e D 2:71 : : : based.

Proof A partition system B.m; p; k; d/ [37] is a system of p partitions, .pi /
p
iD1,

on a basis set B with jBj D m such that:
1. Each pi .1 � i � p/ consists of k parts. The parts of pi are denoted pi;j
.1 � j � k/.

2. No collection .pil ;jl /
d
lD1 of d partition segments with all il distinct covers the

universe.
In other words if we only use sets from different partitions to cover, we need at

least d sets, while a small cover is given by the k sets of one pi . �

Lemma 12 (Feige [37]) For any c > 0, there exists a B.m; p; k; d/ partition
system with p � .logm/c , k an arbitrary constant, and d D .1 � f .k//k lnm,
where f .k/ tends to 0 when k tends to infinity and m is large enough compared to
k and c.

Feige shows that a random partition system satisfies Properties 1–2 with high
probability. Since d D O.logm/, we can quickly check if the Properties 1–2 hold.
Deterministic constructions are also known. Next we describe the PCP reduction to
the set-cover problem.

Our starting point is the probabilistic verifier V `
3SAT of Lemma 4 in Sect. 2.5.2

for an NP-complete language L with the choice of ` D c0 log logn, where we shall
choose c0 > 0 to be large enough. Recall that this verifier is associated with a gap-
3SAT instance �x with N Boolean variables. Note that jxj D n is in polynomial
relationship with N . On the other hand, the instance of set cover we construct will
have slightly super-polynomial size in n.

The verifier sends a subset U of variables with jU j D ` to the first prover
who answers with an assignment U to these variables. Independently, he sends
a W companion of U to the second prover, i.e., a set of ` clauses containing these
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variables. The second prover answers with the evaluation of the 3` variables in W .
The verifier rejects if not all clauses are satisfied in W or if U is not equal to the
projection �U .W /, i.e., the assignment that W gives to U . What is important for
our purposes is that if x 62 L, the verifier accepts with probability at most c`1 for
some fixed 0 < c1 < 1. The structure of �x determines all companion pairs U;W
and all the projections �U , and we can compute these in DTIME.nO.`// from x.
From now on, when we talk about a U;W pair, we always mean a pair, where W is
a companion of U .

Let k > 0 be a constant such that f .k/ of Lemma 12 is less than �. For each
U and each k-tuple W1;W2 : : : Wk D EW of possible W companions of this U , we
construct a separate partition system on a new set ofm points. We haveN` different
U and, given the choice of U , each Wi can be chosen in 5` ways. We thus have
R D N`5k` partition systems, and with the choice of m D R

1
� , the total size of the

universe is R1C 1
� D m1C�. We set the further parameters of the partition systems as

p D 2`, k, and d D .1�f .k//k lnm. Since p D 2c0 log logn D .logn/c0 and logm >

logn, the conditions of Feige’s lemma hold, and the existence of such partition
systems is guaranteed. Notice that m D nO.log log n/ for a fixed �. A particular set in
one of the partition systems has an index given by U; EW ;˛ 2 f0; 1g` and i 2 Œk�,
and we denote it by S

U; EW ;˛;i
.

The sets in our set-cover instance are indexed by W and ˇ where ˇ 2 f0; 1gW
should be thought of as an answer from the second prover on the question W . We
denote it by TW;ˇ and it is a union of S

U; EW ;˛;i
which satisfy

.Wi D W / ^ .�U .ˇ/ D ˛/;

where we of course assume that ˇ satisfies the clauses used to constructW .
LetQ D .5N=3/` be the number of differentW . We first have the simple lemma

telling us what happens when x 2 L.

Lemma 13 If x 2 L, the associated set system has a cover of size Q.

Proof We cover the universe with fTW;W gW , where W is the answer of the second
prover to questionW . Since the answers are consistent with those of the first prover,
for each U and EW , there is some U so that the chosen sets contain S

U; EW ;U ;i for
all i . This U is simply the answer of the first prover to question U . By definition,
the system fS

U; EW ;U ;i g1�i�k covers the m points of the associated U; EW pair. �

Thus, we just need to prove the lemma below (and choose c0).

Lemma 14 If x 62 L, the associated set system has a no cover of size dQ=
.k.1C �//.

Proof Suppose we have a cover of size rQ. For each W there is a set AW of
assignments ˇ on W such that TW;ˇ belong to the cover. By assumption
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X

W

jAW j D rQ: (14)

We note that none of the AW is empty since we need to cover the partition systems
with Wi D W for all i . Let us call a W good if jAW j � r.1C �/. We claim that for
appropriate choice of c0 either r > logm or there is U; EW such that
1. �U .AWi / (1 � i � k) are pairwise disjoint.
2. Wi (1 � i � k) are good.

Let us recall a simple lemma in set theory:

Lemma 15 Let A1; : : : ; Aq be sets of size at most s with the property that no k of
them are pairwise disjoint. Then there is an element which is contained in at least

1
.k�1/s fraction of the sets.

Proof Without loss of generality we may assume that A1; : : : ; Al are pairwise
disjoint, but for all j > l , the set Aj intersects A D [l

iD1Ai . Note that by our
assumption l � k � 1; hence, jAj � .k � 1/s. Since every Ai intersects A, there
must be an element of A which is contained at least 1

.k�1/s � 1
jAj of the sets. �

Let
SU D f�U .AW / j W is a companion of U , and W is goodg

be a set system on the assignments for U , and let U be an assignment which is
contained in as large fraction of elements of SU as possible (If SU is empty then U
is arbitrary). Consider the strategy of the two provers when to question U the first
prover answers U , and to question W the second prover answers with a random
W 2 AW . (So the strategy of the second prover is randomized. An averaging
argument shows that there is an equally good deterministic strategy.)

If for a fixed U , there is no EW such that both Conditions 1 and 2 hold, then
among the good companions of U , there are no W1; : : : ;Wk such that �U .AWi /
.1 � i � k/ are pairwise disjoint. By applying Lemma 15 to SU , we obtain that
there is an assignment to U which occurs in at least 1

.k�1/r.1C�/ fraction of the sets
in SU , and if fact U is such. In what follows we assume that Conditions 1 and 2 do
not hold for any U; EW .

By Eq. (14) the expected value of jAW j for a random W is r , so for at least
1 � .1C �/�1 fraction of W s, we have jAW j � r.1C �/. The verifier chooses such
a W with probability at least 1 � .1C �/�1. Conditioned on the intersection of this
event (i.e., that W is good) and the event that the verifier picks some fixed U , by
our earlier remark, the verifier chooses a W such that �U .AW / contains U with
probability at least 1

.k�1/r.1C�/ . Hence, the probability of the event that the verifier
picks a U;W pair such that W is good and U 2 �U .AW / is at least

1 � .1C �/�1

.k � 1/r.1C �/
: (15)
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In the case of this event, there is a 1
jAW j � 1

r.1C�/ chance over W 2 AW that

�U .W / D U . Combining this with (15), we get that V `
3SAT accepts the described

strategy of the two provers with probability at least

1 � .1C �/�1

.k � 1/r.1C �/

1

r.1C �/
D 	.r�2/: (16)

Either r > logm or since logm D O.c0 logn log logn/, we can choose a large
enough c0 that depends on �; k; c1, and logn N D O.1/, such that 2�c1` D
2�c1c0 log log n becomes smaller than Expression (16), and we arrive at a contradiction.

It follows from the contradiction that there exist anU and EW such that Conditions
1 and 2 hold. Fix this choice of U and EW and consider how the elements from the
corresponding partition system are covered. Since jWi j � r.1 C �/ for 1 � i � k,
the cover system has at most kr.1C �/ sets. By the disjointness of �U .AWi /s, these
sets all come from distinct partitions. Using the property of the cover system, we
conclude that kr.1C �/ > d .

In the case r > logm, since we have d � .1 � f .k//kr , we conclude the same.
We are done, since the cover size jrQj > dQ=k.1C �/, as claimed. �

Since the universe for the set-cover instance has total size t D m1C 1
� , we get that

the quotient of the minimum cover sizes when x 62 L versus when x 2 L is

1 � f .k/
1C �

logm D 1 � f .k/
.1C �/2

log t;

which tends to log t when k ! 1 and � ! 0.

2.11 Some More Non-approximability Results

The label cover problem from Sect. 2.5.2 and its variants have served as the starting
point for several known optimal non-approximability results assuming P ¤ NP .
The table below describes some further known approximation hardness results based
on the NP -hardness of the label cover. Let �p be the pth moment of the Gaussian
random variable with expectation 0 and variance 1.

Problem Known approx. Inapprox. Ref.

Max Cut � 1:1389. 17
16

� � [48, 55]

Lp Groth. Problem �2p �2p � � [51, 67]

Lp Subspace approx. �p �p � � [32, 51]

The Lp Grothendieck problem is a maximization problem where the input is a
symmetric n � n matrix A D .aij / with zero diagonal entries. The objective
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is to maximize the quadratic multilinear function
P

i;j2Œn� aij xixj subject to
Pn

iD1 jxi jp � 1 for xi 2 R. The Lp subspace approximation problem is a
generalization of the well-known least squares regression problem. The input to
the problem is a set ofm points a1; : : : ; am in R

n. The objective of the problem is to
find a k-dimensional subspace H such that

Pm
iD1 d ist.H; ai /p is minimized. Here

dist.H; ai / is the `2 distance from ai toH . The non-approximability results for the
Lp Grothendieck problem and subspace approximation problem are from a recent
manuscript by Guruswami, Raghavendra, Saket, and Wu [51] who use a stronger,
smooth variant of the label cover from [42].

3 A Short Proof of the PCP Theorem

Before [33] and [34], several different proofs have been made for the PCP
theorem, but their rough structure did not differ much. In 2005, Dinur published
a combinatorial proof for the PCP theorem. One feature of Dinur’s proof is that it
can be fully explained without mentioning PCPs and talking only about gap-CSPs.
The only hint to the old PCP ideas is the use of the long code.

Definition 8 An instance of a Œk;†�CSP problem, where † is a constant size
alphabet, consists of a set x1; : : : ; xn of variables that take their values from †

and a set of m constraints, where each constraint is a k-ary relation for a subset
of k variables. The instance is satisfiable if there is an assignment to the variables
which satisfies all constraints. We identify Œk;†�CSP with the language of satisfiable
instances.

The gap version of the problem is analogous to the gap-k-SAT problem:

Definition 9 Gap.Œk;†�CSP; p; q/ for 0 � p < q � 1 is the problem, where
we output 1 on Œk;†�CSP instances, that have an assignment satisfying at least q
fraction of the constraints and 0 on those instances with no assignment satisfying
more than p fraction of the constraints. On any other instances the output is
arbitrary.

Fact 1 Every PCP for a language L, with completeness q, soundness p, query size
k D O.1/, and witness-alphabet † can be interpreted as a Karp reduction from L

to Gap.Œk;†�CSP; p; q/ and vice-versa.

Proof Recall that a Karp reduction from a language L � †� to the gap version of
a maximization problemOPT , with lower and upper thresholds p, q, respectively,
is a polynomial-time computable function f from †� to instances of OPT such
that:
1. If x 2 L, then OPT .f .x// � q

2. If x 62 L, then OPT .f .x// � p.
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Let now V.x; P; r/ be the verifier of a PCP for L, which queries at most k bits
nonadaptively. For fixed x and r , there is a k-ary relation 'x;r expressing if the
verifier accepts or rejects the entries of the proof P it views. We have

max
y
P rob.V .x; P; r/ D 1/ D max

P
jfr j'x;r.P / D 1gj=2jr j: (17)

The problem on the right-hand side of (17) is a gap Œk;†�CSP problem, and the
completeness and soundness conditions of the PCP translate to the gap require-
ments. The converse is also straightforward: Let ˆx be a Œk;†�CSP instance that
we get from x by the Karp reduction for L that we have assumed to exist. This is a
PCP when we treat the assignment to the variables of ˆx as proof P . The verifier
of this PCP checks if P satisfies a random clause of ˆx . The completeness of this
system is q and the soundness is p. �

Till the end of the section we are going to focus only on gap-CSP instances.

Theorem 17 (Dinur’s Theorem) Let † D f0; 1g3. Then there exists � > 0 such
that Œ2;†�CSP Karp reduces to Gap .Œ2;†�CSP; 1 � �; 1/.

Remark 4 Let † D f0; 1g3. Then the Œ2;†�CSP is NP-complete, and the PCP
theorem follows.

For the rest of the section, we fix † D f0; 1g3.

Instance Size and Satisfiability Gap
For a Œ2;†�CSP instance ˆ D Vm

iD1 ˆi (in Sect. 2.7 ˆi was denoted by fi ),
we define the instance size as jˆj D m. The satisfiability gap of ˆ is sat.ˆ/ D
minP jfi jˆi.P / D 0gj=m (one minus the maximal fraction of the simultaneously
satisfiable constraints by any assignment P ).

Let ˆ be a Œ2;†�CSP instance. Either sat.ˆ/ D 0 (the formula is satisfiable)
or sat.ˆ/ � 1=jˆj (the formula is not satisfiable). For unsatisfiable instances, the
satisfiability gap cannot be smaller than 1=jˆj, since if the formula is not satisfiable,
then at least one component of ˆ is not satisfied under any assignment. Dinur
constructs a reduction that enlarges this tiny gap to a constant. The same reduction,
if applied to a satisfiable instance, leaves the resulting instance satisfiable. The latter
property will be straightforward, so we shall focus on unsatisfiable instances. The
reduction proceeds in O.log2 m/ steps, making small progresses at a time.

It is sufficient to show that there exists a (sufficiently large) constant C > 0 and
an � > 0 such that any Œ2;†�CSP instance ˆ can be reduced in polynomial time to
a Œ2;†�CSP instance ˆ0 that has the following properties:
1. If ˆ is satisfiable, then ˆ0 is satisfiable.
2. jˆ0j � C jˆj.
3. sat.ˆ0/ � minf2 sat.ˆ/; �g.
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To get Theorem 17, we start from the original instance and apply the above
reduction on it log2 m times. The size of the final instance is polynomially bounded
by that of the original instance (i.e., by m). To construct the reduction sequence
takes polynomial time.

3.1 The Three Sub-Steps of Dinur’s Basic Reduction Step

We obtain ˆ0 from ˆ of the previous section in three steps: (1) structural Improve-
ment, (2) gap amplification, (3) alphabet reduction. We say that a Œ2;†�CSP instance
is d -regular, expanding, if the graph we obtain by replacing each constraint with
the corresponding pair of variables is a d -regular expander. Let ˆ be an arbitrary
Œ2;†�CSP. Let d D 11 and t be a large enough constant to be determined later. The
steps are as follows:

ˆ 2 Œ2;†�CSP ! (Structural improvement)
ˆreg 2 d -regular, expanding Œ2;†�CSP ! (Gap amplification)

ˆbig 2 Œ2;†.dC1/d t2 e

�CSP ! (Alphabet reduction)
ˆ0 2 Œ2;†�CSP

Furthermore:
• If ˆ is satisfiable, then so are ˆreg, ˆbig and ˆ0.
• There are constants C 0 and C 00 such that

jˆregj � C 0jˆj; jˆbigj D .d C 1/d
t
2 e�1jˆregj; jˆ0j � C 00jˆbigj:

• There are � > 0, D > 1, and ı > 0 with Dı � 20 such that the satisfiability
gaps change as follows:

sat.ˆreg/ � 0:1 sat.ˆ/

sat.ˆbig/ � minfD sat.ˆreg/; �=ıg
sat.ˆ0/ � ı sat.ˆbig/:

Notice that from ˆ to ˆ0 the satisfiability gap increases by a factor of at least
0:1Dı � 2, unless it is already �. Only the ˆbig ! ˆ0 reduction requires classic
PCP ideas, namely, the long code.

3.1.1 Structural Improvement
The ˆ ! ˆreg reduction is a fairly standard transformation, which starts with
creating deg v clones of every node v of the constraint graph ofˆ. We distribute the
outgoing edges among the clones, making every clone an end-point of exactly one
outgoing edge. Then for every clone group (associated with the same original node),
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we place a degree 5 expander on the members of the clone group (each member is
one node of the expander), and we put equality constraints on the new edges. This
way the entire graph will be a 6-regular graph, and it may not be an expander itself,
since we assume nothing about the structure ofˆ. To ensure the expanding property,
we now add new edges with empty constrains on them in such a way that the new
edges form a degree 5 expander on all nodes. The final graph is d D 11-regular, and
it is an expander (since expander C any graph D expander). Throughout the whole
construction, we preserve multiple edges (possibly with different constraints). The
parameter changes are easy to calculate.

3.1.2 Gap Amplification
The second reduction (ˆreg ! ˆbig) is a wonderful new addition to PCP theory,
and this is the one that gains us the gap. We define an operation on binary constraint
systems called powering. Let G be a constraint graph and t > 1 be an integer. First
we add a loop to each node (with an empty constraint). We denote the resulting
graph with G C I . Then we construct .G C I /t in such a way that:
• The vertices of .G C I /t are the same as the vertices of G.
• Edges: u and v are connected by k edges in .G C I /t iff the number of paths of

length t from u to v in G C I (if the path includes a loop, it also counts towards
the length) is exactly k.

• Alphabet: The alphabet of .G C I /t is †.dC1/dt=2e , where every vertex (when the
prover is honest) specifies values for all of its neighbors reachable in dt=2e steps.

• Constraints: The constraint associated with an edge .u; v/ of .GCI /t is satisfied
iff the assignments for u and v are consistent with an assignment that satisfies all
of the constraints induced by the union of the dt=2e neighborhoods of u and v.
If G is satisfiable, then .G C I /t is satisfiable as well. To see what happens with

the negative instances, Dinur shows that powering has the following gap-enlarging
property:

Lemma 16 (Amplification Lemma [33]) Let † be an arbitrary constant size
alphabet. There exists a constant � D �.d; j†j/ > 0 such that for any t > 0

and for any d -regular expanding constraint graph G,

sat..G C I /t / � �
p
t min

�

sat.G/;
1

t

�

:

We define ˆbig D .ˆreg C I /t . Parameter t has to be chosen so that we
get a large enough sat.ˆbig/= sat.ˆreg/ ratio to compensate for the loss in the
satisfiability gap in the first and third transformations and even gaining a factor
of two over that. In other words, Lemma 16 ensures that we can choose D to be
sufficiently large.
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3.1.3 Alphabet Size Reduction
(ˆbig ! ˆ0): The gap amplification step has increased the alphabet size from † to
†big, and now we have to reduce the alphabet to † without loosing much of the gap
we have gained.

Since † D f0; 1g3, we can identify †big
defD †.dC1/d t2 e

with f0; 1g3.dC1/d t2 e

. If
ˆbig is satisfiable, the true prover encodes each variable of the satisfying assignment

(i.e., element of †big) with some encoding function E W f0; 1g3.dC1/d t2 e !
f0; 1g10�3.dC1/d t2 e

that corrects constant fraction of errors (from coding theory we
know that such encoding exists). To represent the bits of the code word, we shall use
†-valued variables, somewhat wastefully 10 � 3.d C 1/d t2 e of them. The necessity
of the error-correcting encoding will be explained later.

These are, however, not all the variables the true prover provides. If vi and vj are
two variables on whichˆbig has a constraint, we install a Dinur assignment tester for
the .vi ; vj / pair. This means an additional constant number of †-valued variables
per every constraint ofˆbig. For a constraint on .vi ; vj / Dinur’s tester checks, using
the additional information given by the prover, if the desired relation holds between
the (encoded) labels of vi and vj . The details are as follows:

Lemma 17 (Assignment Tester of Dinur) Let h be an arbitrary positive integer,
T � f0; 1gh. Then there are positive integers l and f , and a 2-query verifier V ,
that uses a random string r 2 f0; 1gf accesses a pair of oracles .theorem; P / 2
f0; 1gh �†l and satisfies:
1. If theorem 2 T , then there is P 2 †l such that P robr.V .theorem;
P; r/ D 1/ D 1.

2. If z 2 f0; 1gh is �-far from all words in T , then for every P 2 †l , we have
P robr.V .z; P; r/ D 0/ � �=100.

It is crucial, that the verifier does not read theorem that it verifies.

We do not prove Lemma 17 here, only mention, that to construct P of the true
prover, Dinur employs the folded long code together with her test described in
Sect. 2.6 and standard techniques.

For every constraint .vi ; vj / of ˆbig, Dinur installs an assignment tester to verify
the property:

Ti;j D f.E.i /; E.j //j.i ; j / 2 †2big satisfy all constraints of ˆbig on vi ; vj g:

Why is error-correcting encodingE necessary at all, when Dinur’s assignment tester
in Lemma 17 does not require encoded input? Notice that the success of the test
depends on the distance of the assignment from T . The tester should not accept
its input with high probability, unless there is an underlying assignment for ˆbig

that satisfies the constraint that the tester tests. If Ti;j was simply defined as the
collection of all .i ; j / laid out in binary (without any encoding) that satisfy all
constraints of ˆbig on vi ; vj , then if †big is large, changing a single bit in the pair
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could make the constraint of ˆbig fail on .i ; j /, yet the assignment tester would
still accept it with high probability.

In contrast, if we change one bit of E.i / [ E.j /, i is still decodable from
E.i / and j from E.j /, using the closest code-word decoding. (It is crucial that
the decoding procedure depends on the members of the pair individually and not on
the entire pair globally.) In fact, one has to change a constant fraction of the bits of
E.i /[E.j / to make either i or j un-decodable. Thus, when the constraints of
ˆbig are replaced with assignment testers and the average acceptance probability
of all assignment testers is 1 � �0, the closest distance decoding decodes to an
assignment for ˆbig that has satisfiability gap at most �0=ı, where ı is some fixed
constant.

Summarizing the above, the true prover transforms the proof 1 : : : n of ˆbig as
follows:

1 : : : n ! (Encodes the alphabet)
E.1/ : : : E.n/ ! (Adds assignment testers)
E.1/

0 : : : E.n/0Pi1;j1 : : : Pim0
;jm0

:

Here m0 D j‰bigj, and Pi;j is the proof of the assignment tester for constraint
.i; j /. The apostrophes in E. /0 refer to the embedding of every bit of E. / into an
element of †: 0 ! 000 and 1 ! 100. The new tests are those of the assignment
testers, combined, appropriately weighted.

It is easy to see that when ˆbig is satisfied and the prover is faithful to the
protocol, all tests are accepting. Assume now thatˆbig is a negative instance. As was
sketched a little earlier, in this case the satisfiability gap of ˆ0 is at least ısat.ˆ/big

for some fixed ı, independently of j†bigj (independence of j†bigj is crucial, since
we need the freedom to set t in the ˆreg ! ˆbig step to achieve a gap enlargement
that more than compensates us for the cumulative loss in the ˆbig ! ˆ0 and the
ˆ ! ˆreg steps). The transformation blows up the instance size by only a constant
factor (the constant depends on j†bigj, but it is all right). Since the tester looks at
binary constraints over the alphabet † D f0; 1g3, by Fact 1 it corresponds to a
Œ2; f0; 1g3�CSP .

4 The Unique Games Conjecture

Amplification of the PCP theorem via parallel repetition results in the non-
approximability of the label cover problem. When the label cover is composed
with the long code inner verifier, Hastad’s Fourier analytic technique yields optimal
non-approximability bounds for problems like MAX3SAT [55], MAX3LIN [55],
and Max Clique [54]. It is not known, however, how to prove such results for
2CSPs like vertex cover, MAX2LIN, MIN2SAT Deletion. The primary barrier is
that it is not possible to efficiently perform both the code-word and consistency
tests for projection constraints with just two queries. The barrier gets larger, when
the image of the projection becomes much smaller than the domain. This state of
affairs compelled Subhash Khot [61] to investigate what happens if we substitute the
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P ¤ NP assumption with the assumption that label cover with bijective constraints
are hard to approximate for large label size. Optimally, this could be NP-hard too,
but as of now no one can prove this.

An instance of the unique games (UG) problem (bipartite unique games problem)
is a tuple U D .G;†;…/, where:
1. G D .V;E/ is a graph (G D .V;W;E/ is a bipartite graph with bipartition
V;W ) with edge set E .

2. Nodes in V (in both V andW ) are assigned labels from†.
3. … D f�vw j .v;w/ 2 Eg, is a set of bijections (permutations), �vw W † ! †.
An assignment l W V ! † (l W V [ W ! †) is a labeling of the nodes with the
elements of †. An edge .v;w/ is satisfied iff �vw.l.v// D l.w/. Notice that unique
games are special label cover instances, where projections are bijections.

Conjecture 1 (Unique Games Conjecture (UGC) [61]) For every �; ı > 0, there
exists a fixed alphabet†, such that Gap.Œ2;†�UG ; ı; 1 � �/ is NP-hard.

A weaker version of the conjecture is that Gap.Œ2;†�UG ; ı; 1 � �/ is not in
polynomial time.

Remark 5 Khot, Kindler, Mossel, and O’Donnell [63] proved that the UGC is
equivalent to the special case where each projection constraint is a linear constraint
modulo q, i.e., † D Œq� and �uv is defined via l.u/ D l.v/ C cuv .mod q/. Khot
and Regev [65] proved that it is enough to consider constraint graphs that are left
regular.

Conditioned on the conjectured hardness of unique games, [61] was able to prove
optimal bounds for problems including MIN2SAT Deletion and MAX2LIN.

4.1 Algorithms for Unique Games

Before discussing further remarkable consequences of the UGC, let us investigate in
what sense the unique games problem is different from (easier than) the general label
cover problem. Several algorithms solve the unique games in polynomial time for
special cases, but none is strong enough to disprove the conjecture. In general, these
algorithms impose relations between the parameters �; ı; and j†j or constraints on
the underlying graph, and their existence tells us that one has to be careful with the
parameters and the structure of the instance, when trying to prove the conjecture.

It is in P to tell if a unique games instance is perfectly satisfiable. It is also easy
to see that a random assignment of labels to the nodes satisfies at least 1

j†j fraction

of edges on expectation, implying ı > 1
j†j .

From the result of Charikar, Makarychev, and Makarychev [22], it follows, that

if � 2 O
�

1
log j†j

�
, the UGC is in polynomial time (regardless of ı).

In order to disprove the UGC, it is enough to have a polynomial-time algorithm
that finds an assignment that satisfies ı.�/ fraction of the constraints, given a 1 � �
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satisfiable unique games instance and ı ! c as � ! 0, where c > 0 is some
universal constant. Importantly, ı should not depend on j†j.

Motivated by sparsest cut, researchers have considered the special case, where
the unique games graph,G, is a good spectral expander. If � D �2.G/ is the second
smallest eigenvalue of the Laplacian ofG, Arora, Khot, Kolla, Steurer, Tulsiani, and
Vishnoi [8] (improved by Makarychev and Makarychev [75]) give a polynomial-
time algorithm with ı.�/ D 1 � �

�
log �

�
.

In a recent result Arora, Barak, and Steurer [7] give an algorithm with ı.�/ D
1 � �˛ that runs in exp.n�

˛
/ time for a fixed constant ˛ > 0. Underlying their

analysis is a graph decomposition theorem, stating that the vertex set of a graph
can be partitioned in such a way that each resulting subgraph has few large
eigenvalues (� nO.�/) and there are at most a constant fraction (dependent on �)
of edges that go across the parts. The result involves applying this decomposition
to the unique games graph and then solving the unique games problem for the
induced subgraphs in the partition, using similar methods to the one used by
Kolla [68].

We refer the reader to Khot’s survey [62], which has an excellent discussion of
many of the details.

4.2 Variants of the Unique Games Conjecture

There are several non-approximability results that have been proved starting from
variants of Unique Games. Here we mention some of the variants.

A d ! 1 game is a special case of the label cover problem, and it is a
generalization of unique games, where j†1j D d j†2j and each projection constraint
� is a d ! 1 map, i.e., j��1.x/j � d for every x 2 †2. When †1 D Œdq� and
†2 D Œq�, we denote such a game by Œ2; q�PGd!1. For every positive integer d � 2,
Khot [61] makes the following conjecture:

Conjecture 2 (d ! 1-conjecture [61]) For every � > 0, there exists a q D q.�/

such that Gap.Œ2; q�PGd!1; �; 1/ is NP-hard.

The d ! 1-conjecture has the perfect completeness property which is useful
in some situations. It is shown by O’Donnell and Wu [78] that given a satisfiable
instance of a Boolean 3CSP, it is 2 ! 1-hard to find an assignment that satisfies
more than 5

8
fraction of the constraints.

Although the unique games is easy if the underlying graph is a good expander,
it may be still hard if the graph is mildly expanding. A variant of the UGC states
exactly this:

Conjecture 3 (UGC with expansion, [8]) There exists a universal constant 1=2 <
t < 1 with the following properties: For every �; ı > 0, there exists a †.�; ı/ such
that given a unique games instance U D .G;†;…/, it is NP-hard to distinguish
between the following cases:
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• U is at least 1 � �-satisfiable.
• U is at most ı-satisfiable and for every partition A

:[ B
:[ C of the vertex set of

U , where jAj � 0:001jV j and jBj and jC j � 0:1jV j, the .B; C / cut has at least
�t fraction of the edges across.

Among the consequences of the above conjecture is that the balanced separator
problem, and therefore the sparsest cut problem, is hard to approximate within any
constant factor.

4.3 Optimal Bounds Under the Unique Games Conjecture

Assuming the unique games conjecture, exact non-approximability bounds can be
proved for several classes of problems. These include max-CSPs [83], strict CSPs
[69], ordering problems [50], and clustering problems [64]. There are also problems
for which the UGC does not give optimal bounds but still better ones than the
P ¤ NP assumption alone. These include graph partitioning [2, 23, 66] and graph
coloring [35, 60]. Some of the results, like those for graph coloring, are based on
variants of the UGC. There are several excellent surveys that have details regarding
these problems and the UGC [62, 96]. In this section, we discuss some outstanding
consequences of the UGC, including Raghavendra’s general hardness result for
CSPs.

4.3.1 Optimal Non-approximability for Max Cut
Given a graph G, the Max Cut problem is to find a bipartition of V.G/ such that
the fraction of edges crossing between the parts is maximized. In [55] an 17

16
� �

non-approximability bound was shown under P ¤ NP . The best polynomial-time
algorithm, due to Goemans and Williamson [48] approximates Max Cut within a
factor of � 1:1389 and employs breakthrough semidefinite programming (SDP)
techniques.

The celebrated Goemans–Williamson (GW) approximation bound, which is
precisely �

2
max0<��� 1�cos �

�
, at first was not conjectured to be optimal. In a surprise

move, however, Khot, Kindler, Mossel, and O’Donnell [63] proved that assuming
UGC, the GW ratio is essentially the best possible. Their result was later beautifully
extended by Raghavendra [83], who showed that a natural class of semidefinite
programs solves all CSP optimally under UGC. We shall sketch the ideas in KKMO
in this section and its generalization in Sect. 4.3.3.

For proving the non-approximability of Max Cut, we build our PCP from a
bipartite unique games instance U D .G;†;…/ with G D .V;W;E/ as the outer
verifier. By Remark 5 we will assume that the instance is left regular, i.e., that all
v 2 V have the same degree. Depending on how closely we want to get to the GW
bound, we choose the alphabet size, j†j D R, of U to be an appropriately large
constant. Next, we need to set a parameter �1 < � < 0 optimally. For any � in this
range, we get that to tell instances apart that are 1��

2
satisfiable (positive instances)

from instances that are slightly more than arccos �
�

satisfiable (negative instances) is
unique games hard. The choice for � that gives the largest relative gap leads to
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the GW bound. The inner verifier is designed a little differently from the usual
reductions, where the outer verifier is the label cover problem:
• The (true) prover encodes the labels, l.w/, of every w 2 W with the long code

longR. (But it does not use the labels of v 2 V anyhow!)
• The verifier picks a vertex v 2 V at random and two of its neighbors w;w0 2 W

at random. Let � D �vw and � 0 D �vw0 be the respective bijections for edges
.v;w/ and .v;w0/.

At this point we apply the following inner verifier:
1. Let yw and yw0

be the supposed long codes of the labels of w and w0, respectively.
2. Pick f W R ! f0; 1g uniformly and randomly.
3. Pick 
 W R ! f0; 1g by choosing each function value independently to be 0 with

probability 1
2

C 1
2
� and 1 with probability 1

2
� 1

2
�.

4. Accept iff yw
g ¤ yw0

g0

, where g D f ı � and g0 D .f ı � 0/˚ 
. Here operation
˚ means the exclusive or of two Boolean-valued function.
It is easy to see that the completeness of the above test is almost (where the

“almost” comes from the imperfect completeness of the outer verifier) at least
1
2

� 1
2
�. Analyzing the soundness requires Fourier analytic techniques and the

brilliant majority is stablest theorem of Mossel, O’ Donnell, and Oleszkiewicz
[77]. If the soundness of the above PCP is slightly bigger than .arccos�/=� , then
a solution for U exists satisfying a small, but constant fraction of the constraints
(independently of M ), which is a contradiction, if M was chosen large enough
(which makes the soundness of the outer verifier small enough). Without giving the
details of the calculation, we just hint that reason for this is that for those v 2 V ,
whose average “neighbor-pair” inner verifiers have average success rate at least
.arccos�/=� C small constant, a “probabilistic” (supposed) long code word exists,
namely, 1

degv

P
v�w �v;wy

w (notice, we needed to shuffle the coordinates of yw), from
which a label l for v can be decoded, which correlates with the (supposed) long
codes for v’s neighbors as follows: The individual (supposed) long codes, yw, of a
constant fraction of the neighbors w of v have the property that from them we can
decode a constant length list of labels such that at least one from the list is �v;w.l/.
A standard random assignment technique (which picks a random label from each
list) now gives a labeling for U , which satisfies a constant fraction of the constraints.
Important was that the list for each w was recovered only from the supposed long
code of w, without looking at v.

4.3.2 Semidefinite Programming and Integrality Gap
Semidefinite programming has resulted in the best known approximation ratios
for various classes of optimization problems. For the performance analysis of
semidefinite programs, it is crucial to understand the notion of integrality gap.

Fix instance ˆ of a maximization problem � (think of � as Max Cut). The first
step in designing an SDP-based algorithm for ˆ is to translate it to a quadratic
program QPˆ, such that the optimal solutions for ˆ and QPˆ are the same. Then
we relax the variables, allowing them to take any real vector values. Multiplications
between the variables of QPˆ become scalar products (xy ! .Ex; Ey/) in the
corresponding semidefinite programming instance, SDPˆ.
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An optimal solution, SDOPTˆ, to SDPˆ is then computed, which is rounded to
a solution of QPˆ. Let OPTˆ be the optimal value for ˆ (and QPˆ). Suppose the
value of the rounded solution for SDPˆ is ROUNDˆ. To prove an approximation
ratio of rˆ, it is sufficient to have rˆROUNDˆ � SDOPTˆ. The approximation
ratio follows because

SDOPTˆ � OPTˆ � ROUNDˆ � 1

rˆ
SDOPTˆ: (18)

A barrier to this rounding technique is the integrality gap of the relaxation,
IGap� D maxˆ

SDOPTˆ
OPTˆ

. A lower bound on the integrality gap is usually proved by
exhibiting a suitable sequence of instances ˆ with integrality gap arbitrarily close
to IGap�.

4.3.3 Exact Non-approximability for All CSPs
In a remarkable recent result, Raghavendra [83] proved that assuming the UGC,
SDP rounding algorithms yield essentially the best possible approximation ratios
achievable in polynomial time. This result has confirmed former beliefs about the
extraordinary strength of semidefinite programming. For every CSP �, Raghaven-
dra explicitly constructs semidefinite programs whose maximal integrality gap is the
optimal non-approximability bound for�.

We will describe the SDP for any 2-variable CSP maximization problem. Let
� be a 2-variable CSP over the alphabet † D Œq�. We can think of each instance
ˆ of � as a directed graph G D .V;E/ with nodes denoting variables and edges
denoting constraints. Each edge .u; v/ has a corresponding pay-off function Puv W
†2 ! Œ0; 1� (generalized from f0; 1g). Without loss of generality, we can assume
that the constraints have nonnegative weights wuv summing up to one, which is a
probability distribution over E . Our goal is to find an assignment l W V ! †

such that X

.u;v/2E
wuvPuv.l.u/; l.v//

is maximized. When we turn this into a quadratic program, for every node u of G
and for every element i 2 †, we introduce a variable ui that takes value one, if u
gets label i in the optimal solution, and zero otherwise. The quadratic program is
the same in appearance as the analogous semidefinite relaxation, where the uis are
now vectors and the “dot” means scalar product:

SDP�

Maximize
P

.u;v/2E wuv

�P
i;j2Œq� Puv.i; j /ui 	 vj

�

Subject to,
8u; v 2 V; i; j 2 Œq� W ui 	 uj D 0; ui 	 vj 
 0

8u 2 V W Pi2Œq� jui j2 D 1

8u; v 2 V W Pi;j2Œq� ui 	 vj D 1
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Raghavendra [83] creates a long code test Test�.ˆ/ from instance ˆ, whose
completeness and soundness ratio is the integrality gap of ˆ. The long code test is
a generalization of the folded long code, where f0; 1g valued functions are replaced
with Œq� valued functions. The key idea is that to define the query distribution of
Test�.ˆ/, Raghavendra uses an optimal solution of the above SDP. For each edge
.u; v/ 2 E and for each node u 2 V , we define distributions Duv W P robŒi; j � D
ui � vj and Du W P robŒi � D jui j2, respectively. The following is the long code test
for z 2 Œq�qR :

Test�.ˆ; �/ for z 2 Œq�q
R

Choose an edge .u; v/ 2 E according to wuv

Pick R independent copies from Duv to obtain x; y 2 Œq�R

Form Ox from x by replacing each xi independently, with probability �, from the distribution Du

Form Oy from y by replacing each yi independently, with probability �, from the distribution Dv

Return “yes” with probability Puv.zOx; z Oy/

From the definition of the test it is fairly straightforward that the completeness
of the test Test�.ˆ/ is SDOPTˆ � o�.1/. Recall that completeness means the
probability with which a word of the long code is accepted, minimized over all long
code words.

To talk about soundness, Raghavendra first defines what it means that a word is
far away from all words of the long code. In his definition, this happens when the
word to be checked is pseudorandom, which he expresses in terms of the Fourier
coefficients of the word. The soundness analysis is nontrivial and crucially depends
on Mossel’s invariance principle of [76]. It turns out that the soundness cannot
be much larger than OPTˆ. More precisely Raghavendra shows that any word w
that is sufficiently pseudo-random gives a randomized rounding procedure roundw

to round the optimal solution of the semidefinite program SDP�.ˆ/, yielding an
integral solution (i.e. a solution to the original ˆ), whose value is close to the
success probability of Test�.ˆ/ on w. Here “close” means in terms of � and the
pseudorandomness parameters. To understand this beautiful duality better we refer
the reader to [83].

Using the unique games outer verifier of [63] in the manner as described in
Sect. 4.3.1 for the special case of Max Cut, we obtain the following result:

Theorem 18 Let ˆ be an instance of the CSP �. Then for every � > 0, there exist
�; ı > 0 such that there is a polynomial-time reduction from Gap.UG; ı; 1 � �/ to
Gap.�; SDOPTˆ � �;OPTˆ C �/.

4.3.4 Small Set Expansion and Unique Games
The unique games conjecture has contributed to the great progress in understanding
optimal non-approximability bounds. Since unique games conjecture is so central,
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it is natural to look for equivalent ways of stating it. Finding natural
approximation-equivalent problems to unique games, however, have eluded us for a
long time. To remedy this situation, Raghavendra and Steurer [84] consider the small
set expansion (SSE) problem, a natural and widely applicable graph partitioning
problem. They observe that the current techniques do not seem to be able to solve
the problem and hence propose the small set expansion conjecture (SSEC); that SSE
is NP-hard. They proved that the small set expansion conjecture implies the unique
games conjecture. In the rest of the section, we will state the small set expansion
conjecture and briefly discuss the recent results related to this conjecture.

Let G D .V;E/ be a d -regular undirected graph, E.A;B/ for A;B � V , A \
B D ; be the set of edges between A and B , and 
 be the uniform measure on
V . The edge expansion of a subset of vertices S is defined as ˆG.S/ D jE.S;V nS/j

d jS j
and ˆG.ı/ D min
.S/�ı ˆG.S/, where 0 � ı � 1, and a � b means 1=2 �
a=b � 2. (We have opted to use ˆ, which is a standard notation for conductance,
and has nothing to do with the ˆ of earlier sections, where it denotes two-query
PCP instances.) Then Gap.SSE; �; ı/ problem is distinguish between the cases
ˆG.ı/ � 1 � � and ˆG.ı/ � �. Raghavendra and Steurer make the following
conjecture:

Conjecture 4 (SSE Conjecture) For every � > 0, there exists a ı > 0 such that
Gap.SSE; �; ı/ is NP-hard.

Small set expansion comes up in several contexts in relation to unique games. If
a unique games instance U with alphabet † satisfies at least 1 � � fraction of the
edges, then the label extended graph has a less-than-�-expanding set of measure 1

j†j .
In the first step of their sub-exponential algorithm for unique games, [7] use a graph
decomposition scheme that partitions the unique games graph into almost-non-
expanding small sets. Also, all known integrality gap instances for unique games
and various other CSPs have very good small set expansion properties.

The small set expansion conjecture is interesting for several reasons. As is
the case with the unique games conjecture, it is in a way a “win–win” situation;
a positive resolution would of course prove the unique games conjecture and a
negative resolution would solve a very important natural problem, likely with
powerful new techniques. Since it is a stronger conjecture, it could potentially lead
to optimal non-approximability results for problems like sparsest cut which have so
far been out of the reach of the unique games conjecture. In fact, in a recent result,
Raghavendra, Steurer, and Tulsiani [85] prove better non-approximability bounds
for problems including balanced separator and min linear rearrangement, than those
that are known via UGC. Another interesting line of research is to have a unifying
conjecture by reducing SSEC to the variants of UGC [62].

5 Structural Consequences of the PCP Theory

What makes some NPO problems hard to approximate, while others easy? This
natural question had already been raised by Johnson in [56] long before the PCP
theory was developed: “Is there some stronger kind of reducibility than the simple
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polynomial reducibility that will explain [approximation] results, or are they due
to some structural similarity between the problems as we define them?” In this
section we present two completeness results that are consequences of the basic PCP
theorem. These results give an evidence that different problems in the same non-
approximability classes have the same reason for their hardness of approximation.

5.1 Polynomial-Time Approximation Schemes

Not all natural NP-hard optimization problems are hard to approximate. Easy classes
include PTAS and FPTAS. For the definition of these classes and for that of the class
APX, see the table below.

FPTAS PTAS APX

Quantifiers 9c 8� > 0 9A� 9c.�/ 8� 9A� 9c 9C > 1 9A
Algorithm A� A� A

Running Time .jxj C 1=�/c jxjc.�/ jxjc
Approximability Factor 1C � 1C � C

Clearly, the following inclusions hold as follows:

FPTAS � PTAS � APX � NPO:

These inclusions are strict if P ¤ NP . Cesati and Trevisan [21] also introduce
the class EPTAS which differs from FPTAS in that the bound on the running
time is f .�/nc , where f .�/ is an arbitrary function of � and c > 0 is an arbitrary
constant.

An optimization problem is practically tractable if it has a fully polynomial-time
approximation scheme or somewhat weaker, an EPTAS. If a problem has a PTAS,
but not EPTAS, then there is � such that the jxjc.�/ running time practically prohibits
approximating it within a factor better than 1C �.

5.2 Approximation Preserving Reductions

Approximation preserving reductions in between NPO problems are used to show
that if a problem P1 is easy to approximate, then any problem P2 is also easy to
approximate which reduces to P1. Since the easiness of an approximation problem
is associated with its membership in PTAS , almost all approximation preserving
reductions preserve membership in PTAS (Fig. 5).

The first paper which defines an approximation preserving reduction was that of
Orponen and Mannila [79]. Up to the present time, there are at least eight notions
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PTAS reduction 
(Crescenzi, Trevisan)

P reduction
(Orponen, Manilla)

A reduction 
(Orponen, Manilla)

L reduction
(Papadimitriou,
Yannakakis)

E reduction
(Khanna, Motwani,
Sudan)

Continuous
reduction
(Simon)

Strict reduction
(Orponen, Manilla)

Fig. 5 The taxonomy of
approximation preserving
reducibilities (Courtesy of
Crescenzi et. al. [30])

of approximation preserving reductions in use with a similar overall scheme. This
scheme is the following:

Let P1.x; y/ and P2.x0; y0/ be two polynomial-time functions that are to be
optimized for y and y0 (maximized or minimized in an arbitrary combination). Let
OPT1.x/ and OPT2.x0/ be the optimum of these problems. A reduction assumes
two maps:
1. A map f to transform instances x of P1 into instances x0 D f .x/ of P2

[instance transformation]
2. A map g to transform (input, witness) pairs .x0; y0/ of P2 into witnesses y of P1

[witness transformation]
Let OPT1 D OPT1.x/, OPT2 D OPT2.h.x//, APPR1 D P1.x; g.h.x/; y

0//,
and APPR2 D P2.h.x/; y

0/. The centerpiece of any approximation scheme is a
relation which is required to hold between these four quantities. This relation must
roughly say: “IfAPPR2 well approximatesOPT2, thenAPPR1 well approximates
OPT1.” To see that indeed this is what we need, assume that we have a PTAS for
OPT2 and that P1 reduces to P2. In order to get a good approximate solution for
OPT1.x/, where x is an arbitrary input instance of P1, first we construct h.x/
and find a witness y0 such that P2.h.x/; y0/ approximates OPT2.h.x// well. By
the central assumption of the reduction, P1.x; y/ well approximates OPT1.x/ for
y D g.h.x/; y0/. For the above argument to hold, f and g must be computable in
polynomial time.

Different reductions differ in the relation required in between the four quantities.
The L-reduction of Papadimitriou and Yannakakis [81] requires that OPT2 is
upper bounded by c1OPT1 and that jAPPR1 � OPT1j is upper bounded by
c2jAPPR2 � OPT2j for some constants c1 and c2. It follows from the next lemma
that L-reduction preserves PTAS.

Lemma 18 A reduction scheme preserves PTAS iff it enforces that jAPPR1 �
OPT1j=OPT1 ! 0 whenever jAPPR2 �OPT2j=OPT2 ! 0.
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5.3 APX Complete Problems

APX is the class of constant factor approximable NPO problems, and APX-PB is its
subclass with problems that have a polynomial bound on their objective function.
Our goal in this section is to give complete problems for APX and APX � PB .

Completeness proofs assume an underlying reduction. Even though in the theory
of APX , the L-reduction is the most widely used reduction, in [31] it has been
shown that it does not allow to reduce some problems which are known to be easy
to approximate to problems which are known to be hard to approximate. Another
flaw of the L-reduction is that it is too weak in another sense, namely, it is not
always approximation preserving unless P D NP \ co � NP [30]. Therefore,
we cannot hope for completeness results forAPX orAPX�PB with respect to the
L-reduction. Instead, S. Khanna, R. Motwani, M. Sudan, and U. Vazirani [59] define
the E reduction which, using the notation of the previous section, requires that

max

�
APPR1

OPT1
;
OPT1

APPR1

�

� 1C c

�

max

�
APPR2

OPT2
;
OPT2

APPR2

�

� 1
�

for some c > 0. It can be easily shown that the E reduction preserves PTAS. Using
the basic PCP theorem, Khanna et al. show the following:

Theorem 19 [59] The MAX SAT problem is complete for APX � PB with
respect to the E reduction. Also,

APX � PB D MAX SNP D MAX NP ;

where the closure means closure under the E reduction.

The E reducibility is still somewhat too strict. In [31] it has been shown that natural
PTAS problem exists, such as MAX KNAPSACK , which are not E reducible
to polynomially bounded APX problems such as MAX3SAT . This drawback is
mainly due to the fact that an E reduction preserves optimum values (see [31]).
Crescenzi, Kann, Silvestri, and Trevisan [30] develop a reduction where functions
f and g (see previous section) are allowed to depend on the performance ratio,
where the performance ratio of an NPO problem A is defined as the function

RA.x; y/ D max

�
A.x; y/

OPTA.x/
;
OPTA.x/

A.x; y/

�

:

Definition 10 (AP Reduction [30]) Let A and B be two NPO problems.A is said
to be AP reducible to B , if two functions f and g and a positive constant ˛ exist
such that:
1. For any x and for any r > 1, f .x; r/ is computable in time tf .jxj; r/.
2. For any x and for any r > 1 and for any y, g.x; y; r/ is computable in time
tg.jxj; jyj; r/.



2678 M. Szegedy and K. Kolipaka

3. For any fixed r , both tf .:; r/ and tg.:; :; r/ are bounded by a polynomial.
4. For any fixed n, both tf .n; :/ and tg.n; n; :/ are nonincreasing functions.
5. For any x and any r > 1 and for any y, RB.f .x; r/; y/ � r implies

RA.x; g.x; y; r// � 1C ˛.r � 1/:

The triple .f; g; ˛/ is said to be an LP reduction from A to B .

In [30] the following is claimed:

Theorem 20 MAX SAT is APX complete with respect to the AP reduction.

6 Conclusion

The major challenge of PCP theory is to build PCP reductions. The intuition to
these reductions came from Arthur–Merlin games and zero knowledge proofs.
From a combinatorial point of view, PCP reductions correspond to isoperimetric
inequalities. From a complexity theoretical standpoint, they are pseudorandom
constructs. We cannot, however, identify a single tool for building them. PCP theory
takes its tools from many different branches of mathematics and computer science:
complexity theory, polynomials, coding theory, combinatorics, pseudorandomness,
probability theory, and geometry (for semidefinite programming). PCP reductions
serve as the atoms of the theory, from which its proofs are composed.

The theory of PCP consists of the PCP theorem and its consequences. The PCP
theorem states that every proof has a “transparent” version that admits a quick
Monte Carlo verification algorithm with a constant number of check bits. Its current
shortest proof, due to Irit Dinur, differs structurally from the previous proofs. The
transformation of an ordinary proof into a transparent one is a PCP reduction itself.

The greatest consequence of PCP theory is the conditional hardness of approx-
imating NPO. The theory of NP had cast serious doubt that for many important
problems in NP we will ever find a polynomial-time solution, but hope still
existed that algorithms will be available that output increasingly good approximate
solutions. This hope has been shattered by the PCP theory: we know now that our
long-term inability to design approximation algorithms for classical optimization
problems such as MAX CLIQUE, SET COVER, COLORING, and METRIC TSP
is due to the NP-hardness of the associated gap problems. PCP theory had a
very major effect on the theory of CSP. Not only that the PCP theorem itself
is an inapproximability statement of a CSP problem but due to the search for
sharper inapproximability bounds, our understanding of CSPs has gone through an
exponential acceleration. Much of this investigation has been centered around the
so-called long code.

The most important spin-off of PCP theory is hardness studies based on the
unique game conjecture (UGC). The UGC allows us to fully characterize the
approximation bounds of all CSPs.
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PCP theory has also provided a wealth of new algebraic and combinatorial ideas,
like the notion of checkable codes and Raz’s parallel repetition theorem for two-
prover games.

Although PCP reductions have mostly replaced the approximation preserving
reductions of the pre-PCP era, the latter still may be interesting when we study
syntactically defined classes of optimization problems.

In spite of the tremendous advances, many questions remain open, like the NP-
hardness of the unique games problem itself, the behavior of chromatic number
under approximation for small chromatic graphs, and whether asymmetric TSP is
constant factor approximable. These problems will give exciting projects for future
generations of complexity theorists.
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