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Abstract

Combinatorial matrices are matrices that satisfy certain combinatorial properties
and typically give rise to extremely challenging search problems with thousands
of variables. In this chapter we present a survey of some recent algorithms to
search for some kinds of combinatorial matrices, with an emphasis to algorithms
within the realm of optimization and metaheuristics. It is to be noted that for
most kinds of combinatorial matrices there are several known infinite classes

LS. Kotsireas
Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, ON, Canada
e-mail: ikotsire@wlu.ca

PM. Pardalos et al. (eds.), Handbook of Combinatorial Optimization, 283
DOI 10.1007/978-1-4419-7997-1_13, © Springer Science+Business Media New York 2013


mailto:ikotsire@wlu.ca

284 1.S. Kotsireas

in the literature, but these infinite classes do not suffice to cover the entire
spectra of possible orders of these matrices, therefore it is necessary to resort
to computational and meta-heuristic algorithms.

1 Introduction

The search for combinatorial matrices and their associated designs has been a fertile
testing ground for algorithm designers for decades. These extremely challenging
combinatorial problems have been tackled with algorithms using concepts and
techniques from discrete mathematics, number theory, linear algebra, group theory,
optimization, and metaheuristics. This chapter will survey some recent algorithms to
search for combinatorial matrices, with an emphasis to algorithms within the realm
of optimization and metaheuristics. The hope is that this chapter will arouse the
interest of algorithm designers from various areas in order to invent new formalisms
and new algorithms to search efficiently for combinatorial matrices. There are
several open problems in the broad area of combinatorial matrices, and it is clear that
new ideas are required to solve them. The existing algorithms continue to yield new
results, especially in conjunction with the use of parallel programming techniques,
but will still eventually reach a point of saturation, beyond which they will probably
not be of much use. Therefore, cross-fertilization of research areas is necessary for
producing new results in the search for new combinatorial matrices, at both the
theoretical and the practical level.

Combinatorial matrices are defined as matrices that possess some combinatorial
properties, such as prescribed row/column sums and special structure described
in terms of circulant matrices. The research area of combinatorial matrices has
been developed in a systematic manner over the last 50 years in the four books
[10, 11,48, 88]. It is worthwhile to point out that the unifying concept of combi-
natorial matrices includes well-known and widely studied categories of matrices,
such as adjacency and incidence matrices of graphs, Hadamard matrices, and doubly
stochastic matrices.

In addition, there is a number of more recent books that contain useful in-
formation and new developments in the area of combinatorial matrices and the
closely related area of design theory. The book [52] (see also the update [53]) sheds
considerable light in the cocyclic (i.e., group cohomological) aspects of certain
kinds of combinatorial matrices and is the only systematic book-size treatment of
this topic. The book [94] features a very readable exposition of design theory with
emphasis on bent functions and coding theory aspects. The book [19] offers an
alternative algebraic foundation of design theory. The book [54] places its emphasis
on symmetric designs and their properties.

2 Preliminaries and Notations

A wide class of combinatorial matrices (or the relevant sequences) can be defined
via the concepts of the periodic and aperiodic (or nonperiodic) autocorrelation
functions associated to a finite sequence. These two concepts have been invented
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and studied widely within the engineering community, and their importance has
been recognized in the combinatorics community as well, especially in connection
with several kinds of combinatorial matrices.

All sequences in this chapter will be finite and will have elements either from
{—1, +1} (binary sequences) or from {—1, 0, +1} (ternary sequences).

Definition 1 The periodic autocorrelation function associated to a finite sequence
A =ay,...,a,] of length n is defined as

n
Py(i) =) ar@rsi, i =0.....n—1,
k=1

where k + i is taken modulo n, when k + i > n.

Definition 2 The aperiodic (or nonperiodic) autocorrelation function of a sequence
[ai,...,a,] of length n is defined as

n—i

NaG) =) aragti, i =0.....n—1,
k=1

where k + i is taken modulo n, when k +i > n.
Definitions 1 and 2 are best clarified with an example.

Example 1 For a finite sequence of lengthn =7, A = [ay, ..., a7], we have

P4(0) = a% + ar? + a3? + as? + as? + ag? + ar>

P4(1) = a1az + azas + azay + asas + asas + asa; + ara;
P4(2) = a1a3 + azay + azas + asas + asa; + asay + araz
P4(3) = ajas + aras + azae + asas + asa; + asar + azaz
P4(4) = ajas + aras + azae + asay + asa; + asar + azaz
P4(5) = ajaz + aras + azas + asae + asa; + asa; + aa;
P4(6) = ajas + aras + azas + asas + asae + agar + aza,

NA0) = ai® + ar® + as® + as* + as*> + as” + a7’
N4(1) = arar + azaz + azas + asas + asas + asas
N4(2) = araz + azay + azas + asas + asas

N4(3) = ara4 + azas + azae + asay

N4(4) = aras + azas + aza;

N4(5) = aias + azay

NA(6) = aasj.

Definition 3 Two finite sequences [a1, ...,a,] and [by,.. ., b,] of length n each are
said to have constant periodic autocorrelation if there is a constant ¢ such that



286 1.S. Kotsireas
Pa(i)+ Pg(i)=c, i=1,....n—1.

Definition 4 Two sequences [ay, ..., a,] and [by, ..., b,] of length n each are said
to have constant aperiodic autocorrelation if there is a constant ¢ such that

N4(i)+ Ng(i)=c, i=1,...,n—1.

Note that the index i = 0 is omitted from Definitions 3 and 4, because of the
property P4(0) = N4(0) = Z';=1 a?. Also note that when writing out binary and
ternary sequences, it is customary in the combinatorial literature to denote —1 by —,
zero by 0, and +1 by +, and this is the convention adopted in the current chapter.
Also note that Definitions 3 and 4 can be extended to more than two sequences.
Definitions 3 and 4 are best illustrated with an example.

Example 2 The following binary sequences with n = 26 have constant aperiodic
autocorrelation with ¢ = 0:

FH++—F+——+—F—+——+—F+++——+++
FHt++—F+——+—F -+ ——

The following ternary sequences with n = 30 have constant aperiodic autocorrela-
tion with ¢ = 0:

++-————= +——0000+0+—++++——+—+—++
++-————= +——++——0-0000——+ +—+—+——

The following properties of the periodic and aperiodic autocorrelation functions
can be observed (and verified) in Examples 1 and 2:

Property 1 (Symmetry)
Ps(i)=Ps(n—i),i =0,1,...,n.
Property 2 (Complementarity)
Ps(i) = Ngo(i) + Nys(n—1i),i =0,1,...,n.
Property 3 (Second Elementary Symmetric Function)

Py(1) + -+ Pa(n—1) = 2esx(ay,...,a)
Na(l) +---+ Na(n — 1) = ex(ay, ..., an)
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where ex(ay,...,a,) = E a;a; is the second elementary symmetric function
I<i<j=<n
in the n variables ay, ..., a,.

The proof of the three properties stated above is a straightforward application of
Definitions 1 and 2 and is left to the reader.

The complementarity property of periodic and aperiodic autocorrelation func-
tions implies that:

Property 4 If two sequences have constant aperiodic autocorrelation, then they
must also have constant periodic autocorrelation.

Therefore, the two pairs of sequences in Example 2 also have constant periodic
autocorrelation with ¢ = 0.

The converse of the above property does not hold, and counterexamples may be
easily found.

The concept of a circulant matrix is also important in connection with several
kinds of combinatorial matrices and sequences.

Definition 5 A n x n matrix C(A) is called circulant if every row (except the first)
is obtained by the previous row by a right cyclic shift by one. In particular,

ay dy ... dy—1 a4y
ay dy ... dp—2 dp—1

C(A) =

as d4 ... dj ay
a)dadsz ... a, Aai.

The relationship between circulant matrices and periodic autocorrelation is de-
scribed by the following property, whose proof is also a straightforward application
of Definitions 1 and 2.

Property 5 Consider a finite sequence A = J[ay,...,a,] of length n and the
circulant matrix C(A) whose first row is equal to A. Then P4(i) is the inner product
of the first row of C(A4) and the i + 1 row of C(A).

It turns out that the concepts of periodic and aperiodic autocorrelation can serve
as the unifying concepts needed to define several kinds of combinatorial matrices
and sequences simultaneously. We summarize some of these kinds of combinatorial
matrices and sequences in the next table.

Note that in Table 1, TCP stands for “ternary complementary pairs” and PCS
stands for “periodic complementary sequences.” We refer the reader to the papers
listed in Table 1 for the complete definitions of these combinatorial objects.
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Table 1 Combinatorial matrices and sequences

Number/type of Defining

sequences property Name References
2 binary aper. autoc. 0 Golay sequences [8,22,36,40,41]
2 binary per. autoc. 0 Hadamard matrices [60]

2 binary per. autoc. 2 D-optimal matrices [29,61]

2 binary per. autoc. —2 Hadamard matrices [63]

2 ternary aper. autoc. 0 TCP [18,43]

2 ternary per. autoc. 0 Weighing matrices [64,65]

3 binary aper. autoc. const. Normal sequences [27]

4 binary aper. autoc. 0 Base sequences [26]

4 binary aper. autoc. 0 Turyn-type sequences [57]

4 ternary aper. autoc. 0 T-sequences [57]

2 ...12 binary per. autoc. 0 PCS [6,28,66]

In the remainder of this chapter, we focus on various kinds of algorithms that
can be used to search efficiently for combinatorial matrices and sequences listed
in Table 1, as well as any other such combinatorial objects that can be defined
via periodic and aperiodic autocorrelation. In fact, we will concentrate on general
algorithmic schemes that are applicable to all such combinatorial objects and will
provide high-level descriptions for these algorithmic schemes.

3 Cyclotomy Algorithms

Cyclotomy algorithms to search for combinatorial matrices and sequences are
based on the premise that certain combinatorial concepts called “supplementary
difference sets” (abbreviated as SDS) can be constructed by taking unions of
cyclotomic classes (or cosets) or group action orbits of a suitable subgroup of
the group of invertible elements of the ring of integers modulo n, where n is a
parameter referring to the length of the sequences. This powerful theme has been
exploited by several authors at the theoretical and practical level over more than two
decades.

The crucial concept of an SDS has been introduced by Jennifer Seberry 40 years
ago [101,102].

Definition 6 Let n be a positive integer and let Si,..., S be subsets of Z,
with cardinalities ny, ..., ng, respectively. Let T; = {(s| — s4) mod n, (s5 — s!)
mod n, s}, s5 € S;} be the multiset of all pairwise differences (taken modulo 1) of
all elementsin S;, fori = 1,..., k. If the multiset 77 U- - -UTy is equal to A copies of
{1,...,n—1},then Sy, ..., Sk form an SDS with parameters k —{n;ny, ..., ng;A}.

A simple counting argument shows that existence of an SDS with parameters
k —{n;ny,...,ng; A} implies the following condition:
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k
Zn,-(n,- —1)=A(n—-1).

i=1
Here is a toy example, where the SDS property can be verified by hand.

Example 3 Letn = 13 and ¢t = 3. Then there are 4 cyclotomic classes: S| =
[1,3,9], S, =[2,5,6], S3 = [4,10,12] and S4 = [7, 8, 11]. It turns out that S; and
S5 form an SDS with parameters 2 — {13; 3, 3; 1} because (mod 13) we have

T, ={1-3,1-9,3-9,3-1,9—-1,9-3}U{2-5,2-6,5—-6,5-2,6—2, 65},

i.e.,
nuT,=1{1,2,3,4,5,6,7,8,9,10,11, 12}.

Here is a non-toy example, where the SDS property needs to be verified by a
computer program.

Example4 Let n = 323 and t+ = 3. Then there are 4 cyclotomic classes
Cy, Cy, C5, C4 with cardinalities ny = 144, n, = 144, n3; = 18 and ny = 16.
Then the sets S} = C; U C; and S, = S; form an SDS with parameters
2 —{323;162,162; 162}.

The paper [103] states a general theorem that indicates conditions under which
suitable unions of cyclotomic classes form an SDS with specific parameters.
The paper [38] contains recent theoretical results and in particular gives two
constructions of skew Hadamard difference sets in the additive groups of suitable
finite fields by using unions of cyclotomic classes. The paper [39] gives two
constructions of strongly regular Cayley graphs on finite fields by using unions of
cyclotomic classes. The paper [97] explores the idea of blending a mathematical
programming formalism with a cyclotomy-based approach; the resulting algorithm
is quite promising and deserves further investigation. Chapter 3 of the PhD thesis
[47] is a virtual treasure trove of cyclotomy-based algorithms and applications of
such algorithms to several different kinds of combinatorial matrices and sequences.
Some of the most spectacular successes of cyclotomy algorithms include the
discovery of new orders of Hadamard and skew Hadamard matrices [21, 23-25]
as well as D-optimal matrices [29]. These types of methods are bound to continue
to produce new results.

4 String Sorting Algorithms
String sorting algorithms to search for combinatorial matrices and sequences are

based on certain restrictions that the properties of constant periodic or aperiodic
autocorrelation imply. These restrictions possess the important advantage that they
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can be used to decouple the (quadratic) equations in Definitions 3 and 4. In addition,
one needs to carefully distinguish between periodic and aperiodic autocorrelation,
because the corresponding restrictions are of a different nature.

4.1 Periodic Autocorrelation

The restrictions imposed by the constancy of periodic autocorrelation are described
via the concept of power spectral density (PSD) associated to a finite sequence.
We illustrate the main idea in the context of Hadamard matrices with two circulant
cores, following [42, 63].

Let n be an odd positive integer and suppose that two binary sequences A =
[ai,...,a,] and B = [by,...,b,], both of length n, have constant periodic
autocorrelation function —2, i.e.,

n—1
7

Pi(s) + Pp(s) = =2, fors =1,..., (1)

Definition 7 Letw = e’» bea primitive n-th root of unity.
The discrete Fourier transform (DFT) of A4 is defined by

n
DFT4(s) = Zakwks, fors =0,...,n—1.
k=1

The power spectral density (PSD) of A is defined by
PSD,(s) = |DFT4(s)|?, fors =0,...,n — 1.

Therefore, the PSD values are the squared magnitudes of the DFT values, i.e.,
PSD4(s) = Re(DFT 4(s))*> + Im(DFT4(s))?. Note that the well-known properties
o" = 1and DFT4(n — s) = DFT4(s),s = 0,1,...,n — 1 are routinely used in
order to perform DFT/PSD calculations efficiently.

It can be proved (see [42]) that property (Eq. 1) implies that

n—1
PSD4(s) + PSDg(s) =2n + 2, fors = 1,..., 7 2)
Example 5 Letn = 55 and consider the two sequences from [13]:
T T R
B o T e s L b o a2 e e S e R e

The above sequences have constant periodic autocorrelation —2 and can be used to
construct a Hadamard matrix of order 2- 55 + 2 = 112. The following table records
the % = 27 PSD values for the above sequences, as well as their sums, which is
equalto 112 fors = 1,...,27 as expected.
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Table 2 PSD values for binary sequences with n = 55

PSD 4 (S)+
s PSD 4(s) PSDp (s) PSDp(s)
1 29.80737844157036985336002 82.19262155456297731046190 112
2 30.28944472490585995185313 81.71055527763585566645278 112
3 55.43998376085268510929794 56.56001623465057222621275 112
4 102.0320272601899733257176 9.967972741391460830458954 112
5 89.65677565516284911337367 22.34322434507586735097245 112
6 15.47369185908972215139240 96.52630813774760368151000 112
7 11.47686739850811259463546 100.5231326000467370829829 112
8 76.73731376355725457366036 35.26268623768915584169775 112
9 46.11225525013170242777989 65.88774474677226578858688 112
10 0.4008926865885775543776042  111.5991073136016861161094 112
11 38.11145618000341879780940 73.88854381999376144822824 112
12 17.46064389518599154629647 94.53935610256366875094971 112
13 34.87931253417465350073346 77.12068746596972533277206 112
14 82.62901343793391797610934 29.37098656225313882607487 112
15 93.37954082614625749821953 18.62045917360481914328922 112
16 60.59338387747255107616868 51.40661612647071355873921 112
17 92.66303952890268414319827 19.33696047140536416932549 112
18  106.5590520047682870981779 5.440947992051451856194138 112
19 105.3670134147016013500540 6.632986586404617855942329 112
20 79.93243752088631246467129 32.06756247928573785046143 112
21 87.07144169101030219209510 24.92855831006362765566586 112
22 73.88854381999762010973329 38.11145617999893554527716 112
23 11.57785413372743006711576 100.4221458663961229278652 112
24 38.63848171187360617293295 73.36151828958980649610761 112
25 16.63035331130720400371166 95.36964668866435905703407 112
26 108.5508478995728704749974 3.449152098190036553335345 112
27 6.640953414706377747434240 105.3590465799776576376609 112

It is instructive to examine Table 2 in order to see how Eq. (2) are materialized
for the particular solution of Example 5.

4.1.1 ThePSD Criterion
Equation (2) can be used to derive the so-called PSD criterion by first remarking
that since the PSD values are nonnegative, if for some s € {1, . %} it turns out

that PSD4(s) > 2n + 2 or PSDg(s) > 2n + 2, then the corresponding 4 or B
candidate sequence can be safely discarded from the search.

4.1.2 A Subtle Point: Integer PSD Values
There is a subtle point regarding the computation of the PSD values that occur in
string sorting algorithms, as well as other filtering-based algorithms to search for
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sequences using the PSD criterion. The subtlety comes from the fact that although
in the vast majority of cases the PSD values are (positive) floating point numbers,
there exist cases when the PSD values are (positive) integers. A particular case when
this phenomenon occurs is described in the following result proved in [64].

Lemma 1 Let n be an odd integer such that n = 0 (mod 3) and let m = g Let

w=en =cos ( )+l sm( ) the principal n-th root of unity. Let [ay, . .., a,] be
a sequence with elementsfrom { 1,0, +1}. Then we have that DFT([ay, . . . , a,], m)
can be evaluated explicitly in closed form and PSD([ay, . .. ,a,],m) isa nonnegative

integer. The explicit evaluations are given by

DFT([ai,...,ay],m) = (A1 — %AZ—%A3) + (£A2— £A3)

PSD([ay,...,a,),m) = A} + A3 + A5 — A1 Ay — A1 A3 — Ax A3

where
m—1 m—1 m—1

A=) asip1, Ay=) axta. A=) azis.
i=0 i=0 i=0

It is important to carefully account for the phenomenon described by Lemma 1
in any implementation of string sorting algorithms in order not to miss any solutions
due to numerical round-off error. One way of doing this is to omit the n/3-th value
from the construction of the string.

4.1.3 Bracelets and Necklaces

The symmetry property of periodic autocorrelation and PSD values under cyclic
shifting must also be taken into account in order to avoid redundant computations
for sequences that have the same periodic autocorrelation and PSD values. It turns
out that the right combinatorial structures to deal with this symmetry property are
bracelets and necklaces. The papers [89] and [90] and subsequent work by J. Sawada
and his collaborators provide constant amortized time (CAT) algorithms to generate
bracelets and necklaces, as well as extremely efficient C implementations of these
algorithms.

4.2 Aperiodic Autocorrelation

The restrictions imposed by the constancy of periodic autocorrelation are described
via the concept of a certain infinite class of functions associated to a finite sequence.
We illustrate the main idea in the context of Turyn-type sequences, following [57].
Let n be an even positive integer and suppose that four binary sequences X =
[X1,....,x,]and Y = [y1,.... 0], Z = [z1,...,zx] and W = [wy, ..., w,—1] of
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lengths n,n,n,n — 1 respectively, have constant aperiodic autocorrelation function
in the sense that

Nx(s) + Ny(s) +2Nz(s) + 2Nw(s) =0, fors =1,...,n — 1. 3)

The sequences X, Y, Z, W satisfying (3) are called Turyn type.
We associate to a binary sequence X of length n, the periodic (of period 27)
nonnegative function

n—1

fx(8) = Nx(0) +22Nx(j)cosj0.

=1

It can be proved (see [57]) that property (Eq. 3) implies that
fx0) + fr(0) +2/2(0) + 2 fw(0) = 6n -2, V0. “4)

4.2.1 Aperiodic Version of the PSD Criterion

Equation (4) can be used to derive the analog (an aperiodic version) of the PSD
criterion in the aperiodic case. If for some value of 0 it turns out that fx () > 6n—2
or fy(0) > 6n—2,0r fz(0) >3n—1or fiy(6) > 3n — 1, then the corresponding
X,Y, Z, W candidate sequence can be safely discarded from the search. In addition,
if for some value of 6 it turns out that fy(6) + fy(6) > 6n — 2, then the
corresponding pair (X, Y') of candidates sequences can be safely discarded from the
search. Similar conditions can be derived for other partial sums of the four values
fx(0), fr(0), fz(0), fw(0) for arbitrary (but fixed) values of 6. The preprocessing
of the sequences based on this aperiodic version of the PSD criterion is often carried

out via a finite set of @ values, such as % j=1,...,500;.

4.3 A General String Sorting Algorithmic Scheme

Based on the PSD criterion (periodic and aperiodic versions), a general string sorting

algorithmic scheme can be defined as follows.

INPUT: lengths and types (binary/ternary) of two sequences A, B and the auto-
correlation (periodic/aperiodic) property satisfied, value of PSD constant (or its
aperiodic analog)

OUTPUT: sequences satisfying the input requirements (if any are found)

e Preprocess each one of the two sequences separately using the applicable
version of the PSD criterion. In particular, discard all candidate sequences
that violate the applicable version of the PSD criterion. If the set of all
possible candidate sequences is too large to preprocess in its entirety, then
use randomized methods to generate a representative part of this set.

* Encode candidate A-sequences by a string, namely, the concatenation of the
integer parts of its PSD values, or the f(8) values, for a small set of 6 values.
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Encode candidate B-sequences by a similar string, but taking the difference
of the PSD (or f(8) value) from the PSD constant (or its aperiodic analog).

e Sort the files containing the string encodings corresponding to each A-
sequence and B-sequences separately. When the files containing the string
encodings are too large to be sorted directly, this phase involves a distributed
sorting algorithm.

* Look for identical strings in the two sorted files and output the corresponding
solutions.

String sorting algorithms have been used in [?, 64] to compute several new
weighing matrices of various weights constructed from two circulant cores, using
the PSD criterion for periodic autocorrelation.

The ternary sequences with » = 30 in Example 2 have been computed by the
author using a C implementation of a string sorting algorithm and the aperiodic
version of the PSD criterion.

5 Genetic Algorithms

Genetic algorithms (GAs) form a powerful metaheuristic method that exploits
algorithmic analogs of concepts from Darwin’s theory of evolution to design
efficient search methods. The theory of genetic algorithms is presented in a ex-
tremely readable way in the classical book [44]. Among the more recent systematic
treatments of GAs, one can consult [87]. Genetic algorithms have been applied
successfully to tackle a wide range of difficult problems across many application
areas. A central concept in the theory of GAs is the “objective function.” A judicious
choice of an objective function is necessary in order to be able to apply GAs to
solve a specific problem. Another important ingredient in the theory of GAs is
the encoding of the solution space as a set of binary vectors. We will exemplify
below how to formalize a problem of searching for combinatorial matrices as a GA
problem, using binary sequences with constant periodic autocorrelation —2 as a case
study, and following the exposition in [59].

Let n be an odd positive integer and suppose that two binary sequences A =
l[ai,...,a,] and B = [by,...,b,], both of length n, have constant periodic
autocorrelation function —2, as in (1). Since the m = % Eq. (1) must be satisfied
simultaneously, one can consider the following two types of objective functions
arising naturally:

OF = | Ps(1)+ Pp(1) +2 | +...4+ | Py(m) + Pg(m) + 2 |

and
OF, = (P4(1) + Pg(1) +2)> + ... + (P4(m) + Pg(m) + 2)%.

There are two potentially important differences between the objective functions OF;
OF,. First, OF; is not a continuous function, while OF> is. Second, OF) takes on
smaller values than OF,. The GA will seek to minimize OF; and OF>, i.e., to find
2n {£1} values of the 2n variables ay, ..., a,, by, ...,b, such that OF; and OF,
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attain the value 0. Evidently, a set of 2n {31} values with this property is also
a solution of the original problem of finding two binary sequences with constant
periodic autocorrelation function —2.

The GAs requirement of encoding the solution space as a set of binary vec-
tors is inherent in the problem of searching for binary sequences with constant
periodic/aperiodic autocorrelation function.

5.1 A General GAs Algorithmic Scheme

INPUT: k binary sequences Ay,..., Ak, all of length n, and the autocorrelation

(periodic/aperiodic) property satisfied
OUTPUT: k-tuples of sequences satisfying the input requirements (if any are

found)

e Specify an initial randomly chosen population (first generation) of binary

sequences of length n.

* Encode the required periodic/aperiodic autocorrelation property in the form
of OF; or OF,.

» Set current generation to be the first generation.

e Evolve the current generation to the next generation, using a set of genetic
operators. Commonly used such operators include reproduction, crossover,
and mutation.

¢ Examine the next generation to see whether it contains k£ binary sequences
with the required periodic/aperiodic autocorrelation property. If yes, then
output this solution and exit. If no, then set current generation to be the next
generation and iterate the previous step.

Note that popular termination criteria for GAs include a predetermined number

of generations to evolve or a predetermined amount of execution time.

There are several papers that use GAs to solve design-theoretic and combinatorial
problems. In [1] the authors devise a GA to search for cocyclic Hadamard matrices.
In [2] the author explains how to use genetic algorithms to solve three design-
theoretic problems of graph-theoretic flavor. In [S0] the authors apply GAs to
construct D-optimal designs. In [68] the authors use so-called competent GAs to
search efficiently for weighing matrices. In [17] the authors use SGA (simple genetic
algorithm) to construct Hadamard matrices of various orders. The thesis [84] is
concerned with the application of GAs to construct D-optimal experimental designs.
The thesis [46] contains GAs to search for normal and near-Yang sequences.

6 Simulated Annealing

Simulated annealing (SA) was presented in [58] as a new approach to approximate
solutions of difficult optimization problems. This approach is inspired from statisti-
cal mechanics and is motivated by an analogy to the behavior of physical systems
in the presence of heat. In the words of Kirkpatrick et al.,
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there is a deep and useful connection between statistical mechanics (the behavior of
system with many degrees of freedom in thermal equilibrium at a finite temperature)
and multivariate or combinatorial optimization (finding the minimum of a given function
depending on many parameters).

In particular, they found that the Metropolis algorithm was well suited to approx-
imate the observed behavior of solids when subjected to an annealing process.
Recall that a local optimization method starts with some initial solution and, at
each iteration, searches its neighbors for a better solution until no better solution
can be found. A weakness of the local optimization method is that the program
may get trapped at some local minima instead of detecting a global minimum.
Simulated annealing addresses this issue by using randomization to improve on the
local optimization search process, and in particular, occasional uphill moves (i.e.,
less than optimal solutions) are accepted with the hope that by doing so, a better
solution will be obtainable later on. There are several parameters in the simulated
annealing process which can significantly impact the actual performance, and there
do not seem to be general rules on how to choose these parameters for the specific
problem at hand.

In the annealing process, the physical system being optimized is first “melted”
at a high temperature. The temperature is then decreased slowly until the system
“freezes,” and no further physical changes occur. When the system’s structure is
“frozen,” this correspond to a minimum energy configuration. The physical analogy
for simulated annealing is often described using the annealing method for growing
a crystal. The rate at which the temperature is reduced is vitally important to the
annealing process. If the cooling is done too quickly, widespread irregularities will
form and the trapped energy level will be higher than what one would find in a
perfectly structured crystal. It can be shown that the states of this physical system
correspond to the solutions of an optimization problem. The energy of a state in the
physical world corresponds to the cost of a solution in the optimization world. The
minimum energy configuration that is obtained when a system is frozen corresponds
to an optimal solution in an optimization problem.

6.1 A General SA Algorithmic Scheme

The basic ingredients needed to formulate a problem in a manner amenable to SA

algorithms are:

1. A finite set S. This is the set of all possible solutions.

2. An objective function OF defined on S.

3. The set S* is the set of global minima (i.e., the desired solutions) using the OF .
It is assumed that S* C S, a proper subset of S.

4. Foreachi € §, we define aset S(i) C S — {i} to be the set of neighbors of i.

5. A nonincreasing function «(¢) called the cooling schedule, which controls how
the temperature is lowered.
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With the previous terminology in place, a general SA algorithmic scheme
looks like:

Randomly select initial solution s¢;
Select an initial temperature #y > 0;
Select a temperature reduction function «;
Repeat
Repeat
Randomly select a neighbor, s of sp;
8 = OF(s) — OF(sp);
if(§ < 0)
then 5o = s,
else
generate random x uniformly in the range (0, 1);
if(x < e™%/1)

then 5o = 53
Until iteration_count = nrep
Sett = a(?);

Until stopping condition = true
o is the approximation to the optimal solution

Recall that the goal of simulated annealing is to improve on the local search
strategies by allowing some uphill moves in a controlled manner. The above SA
scheme accepts a solution at each iteration if it is determined to be better than the
current “best” solution. However, we also see how a less than optimal solution can
be accepted and that it is accepted with probability e~%/*. Also note that for the
purposes of the OF required by SA, one can use OF; and OF, as defined previously
for GAs. Commonly used cooling schedules include «(¢) = af, where « < 1 and

at) = T

The papers [12, 55, 70, 72, 77] use SA techniques to tackle design theory
problems.

; where f§ is small.

7 Particle Swarm Optimization (PSO)

Particle swarm Optimization (PSO) is a population-based metaheuristic algorithm.
It was introduced by R.C. Eberhart and J. Kennedy in 1995 [35] primarily for solv-
ing numerical optimization problems, as an alternative to evolutionary algorithms
(EAs) [3]. Its verified efficiency in challenging optimization problems as well as
its easy implementation rapidly placed PSO in a salient position among the state-
of-the-art algorithms. Today, PSO counts a vast number of applications in diverse
scientific fields [4, 5, 78], as well as an extensive bibliography [14, 37, 56, 83], and
published scientific software [100].
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Putting it formally, consider the n-dimensional global optimization problem:

min  f(x).

xEXCR"

PSO probes the search space by using a swarm, namely, a set of search points:
S ={x1,x2,..., x5}, x; € X, iel ={1,2,...,N}.
Each search point of S constitutes a particle, i.e., a search vector:
Xi = (Xi1. Xj2s ... Xin) | € X, iel,

which is randomly initialized in X and allowed to iteratively move within it. Its
motion is based on stochastically adapted position shifts, called velocity, while it
retains in memory the best position it has ever visited. These quantities are denoted
as

T T :
vi:(vilvviZa"'5vin) ’ pi:(pilvple"'vpin) ’ 1615

respectively. Thus, if # denotes the current iteration of the algorithm, it holds that

pi(t) = arg min {f(x,-(q))}, iel.
q€{0,1,....t}

The best positions constitute a sort of experience for the particles, guiding them
towards the most promising regions of the search space, i.e., regions that posses
lower function values.

In order to avoid the premature convergence of the particles on local minimizers,
the concept of neighborhood was introduced [96]. A neighborhood of the i-th
particle is defined as a set,

NBi,sZ{jlijv“-yjs}glv i eNBi,s»

and consists of the indices of all the particles with which it can exchange
information. Then, the neighborhood’s best position

Py = argjrer;vigj{f (pj)} %)

is used along with p; to update the i-th particle’s velocity at each iteration. The
parameter s defines the neighborhood size. In the special case where s = N, the
whole swarm constitutes the neighborhood. This case defines the so-called global
PSO model (denoted as gbest), while strictly smaller neighborhoods correspond to
the local PSO model (denoted as [best). The schemes that are used for determining
the particles that constitute each neighborhood are called neighborhood topologies,
and they can have a crucial impact on PSO’s performance. A popular scheme is the
ring topology, where each particle assumes as neighbors of the particles with its
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adjacent indices, assuming that indices recycle after N. Based on the definitions
above, the iterative scheme of PSO is defined as follows [15]:

vij(t +1) = )([sz(f) +caRi (Pij(l) —Xij(f)> + Csz(Pg,-.j(f) —Xij(l))], (6)

Xt +1) = x;;(t) + v (¢ + 1), @)

where i = 1,2,...,N; j = 1,2,...,n; the parameter y is the constriction
coefficient; acceleration constants ¢; and ¢, are called the cognitive and social
parameter, respectively; and R and R,, are random variables uniformly distributed
in the range [0, 1]. It shall be noted that a different value of R; and R, is sampled
for each i and j in (6) at each iteration. Also, the best position of each particle is
updated at each iteration, as follows:

i 1), if : 1 (1)),
pit+1) = G+ D, S+ D) < f(pi() iel. (8
pi(1), otherwise,

The PSO variant described above was introduced by M. Clerc and J. Kennedy
in [15], and it has gained increasing popularity, especially in interdisciplinary
applications. This can be attributed to its simplicity, its efficiency, and its theoretical
background.

Based on the stability analysis [15], the parameter set y = 0.729,¢; = ¢, =
2.05, was determined as a satisfactory setting that produces a balanced convergence
speed of the algorithm. Nevertheless, alternative settings have been introduced in
relevant works [98]. Pseudocode of PSO is reported in Algorithm 1.

Unified particle swarm optimization (UPSO) was proposed as a scheme that
harnesses the lbest and gbest PSO models, combining their exploration and
exploitation properties [79, 82]. Let G; (¢ + 1) be the gbest velocity update of x;,
while £; (t + 1) be the corresponding lbest velocity update. Then, from Eq. (6), it
holds that

Gijt+1)= X[Vij ) +caRy (Pij () — x; (1)) + CZRZ(pg.j () — xij (ﬂ)], )
Li (e + 1) = [y + eRi (py(0) = 0)) + e2Ra (peys () = ;1)) | (10)

where g denotes the overall best particle. The aggregation of these search directions
defines the main UPSO scheme [79]:

U,-j(t+l)=ugij(t+l)+(l—u)£,-j(t+l), (11)
x,-j(t + l) = x,-j(t) +Z/f,'j(t + 1) (12)
The parameter u € [0, 1] is called the unification factor and determines the trade off

between the two directions. Obviously, the standard gbest PSO is obtained by setting
u = 1in (11), while u = 0 corresponds to the standard Ibest PSO. All intermediate
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values of u € (0, 1) define composite UPSO variants that combine the exploration
and exploitation properties of the global and local PSO variant.

Besides the basic UPSO scheme, a stochastic parameter can also be incorporated
in Eq. (11) to enhance UPSO’s exploration capabilities [79]. Thus, depending on
which variant UPSO is mostly based, Eq. (11) becomes

Ut +1) =RauG(t + 1) + (1 —u) L (t + 1), (13)
which is mostly based on Ibest, or,
L{,-j(t + l) = ug,-j(t + l) + R3 (1 - u) ﬁ,’j(f =+ 1), (14)

which is mostly based on gbest. The random variable R3 ~ N (i, 0%) is normally
distributed, resembling the mutation operator in EAs. Yet, it is biased towards direc-
tions that are consistent with the PSO dynamic, instead of the pure random mutation
used in EAs. Following the assumptions of Matyas [71], a proof of convergence in
probability was derived for the UPSO variants of Egs. (13) and (14) [79].

Although PSO and UPSO have been primarily designed for real-valued opti-
mization problems, there are various applications also in problems with integer,
mixed-integer, and binary variables (e.g., see Egs. [62, 69, 80,81,85,86]). The most
common and easy way to achieve this is by rounding the corresponding variables to
their nearest integers when evaluating the particles. Of course, problem-dependent
techniques may be additionally needed to enhance performance.

8 Ant Colony Optimization (ACO)

Ant colony optimization (ACO) is a probabilistic algorithm, primarily for solving
combinatorial optimization problems. The general algorithmic concept of ACO was
introduced by M. Dorigo in 1992 [30], aiming at detecting optimal paths in graphs
by imitating the foraging behavior of real ants. The first approaches proved to be
very promising, leading to further developments and enhancements [7,31,33].

Today, there is a variety of ant-based algorithms. Perhaps the most popular
variants are Ant System (AS) [34], Max—Min Ant System (MMAS) [95], and
Ant Colony System (ACS) [32]. Setting aside some differences, most ant-based
approaches follow the same procedure flow, which can be summarized in the
following actions:

Procedure ACO

WHILE (termination condition is false)
Construct Solutions ()

Optional Further Actions ()

Update Pheromones ()

END WHILE
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Algorithm 1: Pseudocode of the standard PSO algorithm

Input : Objective function, f : X C R" — R; swarm size: N; parameters: y, ¢y, 3.
Output: Best detected solution: x*, f (x™).

// Initialization

1¢t<0.

2 fori < 1to N do

3 Initialize x; (z) and v; (¢), randomly.

4 pi(t) <= x;(t). // Initialize best position
5 Evaluate f (x;(¢)). // Evaluate particle

6 end

// Main Iteration
7 while (termination criterion not met) do
// Position and Velocity Update
8 fori < 1to N do

9 Determine p,, (¢) from the i—th particle’s neighborhood.
10 for j < 1ton do
11 vij (t 4+ 1) < x [vi (1) + e/ Ri(pij (1) = %15 (1) + 2Ra (g, (1) — x5 ()] -
12 X;j(l+ 1)<—x,~j(t)+v,~j(t+ 1)
13 end
14 end

// Best Positions Update
15 fori <— 1to N do

16 Evaluate f (x;(t + 1)). // Evaluate new position
. xi(t+ 1), if f @+ 1) < f(pi @),

17 pit+1) < pi (), otherwise.

18 end

19 t<1t+1

20 end

In general, the algorithm assumes a number, K, of search agents, called the
ants. Each ant constructs a solution component by component. The construction
procedure is based on the probabilistic selection of each component’s value from
a discrete and finite set. For this purpose, a table of pheromones is retained and
continuously updated. The pheromones play the role of quality weights, used for
determining the corresponding selection probability of each possible value of a
solution component.

Putting it formally, let

X = (xl,xz,...,xn)T e D,

be a candidate solution of the problem, with each component x;, i = 1,2,...,n,
taking values from a discrete and finite set D;. The construction of a solution begins
from an initially empty partial solution, x” = @. At each step, the next component
of x? is assigned one of the possible values from its corresponding discrete set.
Naturally, the values assigned in previous components may affect the feasible set of
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candidate values for the current one, prohibiting the use of some of them to retain
feasibility. Assume that x? is already built up to the (i — 1)-th component, and
let D; = {d;1,d;>,...,d;p} be the set of candidate values for the i-th component.
Each possible value d;; is associated with a pheromone level 7;;. The selection of a
specific value for the i-th component is based on the probabilistic selection among
the different candidate values, using the selection probabilities:

L7 T)(dij)b
> yn(din)®

dij€D;

P(dyj|xP) = i=12,....M, (15)

where 1(.) is a heuristic function that offers a measure of the “desirability” of each
component value in the solution (e.g., in TSP problems, it can be associated with
the traveled distance). The parameters a and b are fixed, and they offer flexibility in
tuning the trade off between pheromone and heuristic information.

Upon constructing a complete solution, it is evaluated with the objective value,
and the pheromones are updated so that component values that appear in better
solutions increase their pheromone levels and, consequently, their selection proba-
bilities for subsequent iterations of the algorithm. Also, all pheromones undergo a
standard reduction in their values, a procedure also known as evaporation. Thus, the
pheromones are updated as follows:

S (I —p) tij + p Az, if d;; appears in a good candidate solution, (16)

v (1-p) 7y, otherwise,

where p € (0, 1] is the evaporation rate and At is an increment that can be either

fixed or proportional to the quality of the corresponding candidate solution.
Different ant-based approaches can differ from the basic scheme described

above. For example, in AS with K ants, the pheromone update takes place after

all ants have constructed their solutions and they all contribute to the update:

K
k
Tij = (l —p) Tij + ZAT(J),
k=1

where A‘L’l-(jk) is the contributed pheromone from the k-th ant and it is related to its
quality. On the other hand, ACS uses a different rule for selecting component values,
where the value of the i-th component is determined as

a b :

where g € [0, 1] is a uniformly distributed random number and gy € [0, 1] is
a user-defined parameter; otherwise, the scheme of Eq. (15) is used. Also, only
the best ant contributes to the pheromones, instead of the whole swarm. Finally,
MMAS employs pheromone bounds [Tmin, Tmax]- Each pheromone is initialized to
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its maximum value and updated only from the best ant, either of the current iteration
or overall.

There is a rich literature of applications of ant-based approaches in combinatorial
optimization problems [7,31,33]. Recently, such approaches were used also for the
solution of autocorrelation problems [69].

9 Combinatorial Optimization

Combinatorial optimization methods seem like a natural candidate of methods that
should be employed to tackle extremely hard optimization problems such as the
search for binary and ternary sequences that satisfy autocorrelation constraints.
This is because combinatorial optimization methods routinely deal with problems
featuring thousands of discrete variables. The missing link that allows one to
formalize autocorrelation problems in a manner suitable for combinatorial opti-
mization methods was provided in [66] and [61]. This formalism made it in fact
possible to solve in [66] the entire Bomer-Antweiler diagram, which was proposed
20 years before, in [6]. This formalism is based on the fact that autocorrelation
can be expressed in terms of certain symmetric matrices, which correspond to the
matrices associated to autocorrelation viewed as quadratic form. We shall illustrate
the formalism for D-optimal matrices, following the exposition in [61].

Let n be an odd positive integer and set m = % D-optimal matrices correspond
to two binary sequences of length n each, with constant periodic autocorrelation 2;
see [61]. D-optimal matrices are 2n x 2n {—1, +1}-matrices that attain Ehlich’s
determinant bound. See [29] for a state-of-the-art survey of existence questions for
D-optimal matrices with n < 200. We reproduce the following definition and lemma
from [66].

Definition 8 Let ¢ = [ai,a;,... ,an]T be a column n x 1 vector, where
ai,as,...,a, € {—1, +1} and consider the elements of the periodic autocorrelation
function vector P4(1),..., P4(m). Define the following m symmetric matrices
(which are independent of the sequence a), fori = 1,...,m

mjx = my; = % whenaj;ar € Ps(i), j.ke{l,....n}

M; = (m ), s.t. ;
! ( k) 0, otherwise

Lemma The matrices M; can be used to write equations involving autocorrelation
in a matrix form:
e For n odd:

a’Mia = P4(i), i =1,....m.

e Forn even:

1
a’Mja = Ps(i), i=1,....m—1 and a’ Mya = EPA(m)'
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Now one can formulate the D-optimal matrices problem as a binary feasibility
problem.

Binary Feasibility version of the D-optimal matrices problem Find two
sequences a = [ay,...,a,], b = [b1,...,b,], (viewed as n x 1 column vectors)
such that

a’Mia +b"M;b=2, i =1,....m,

where a;,b; € {—1,+1},i =1,...,n.

It is now clear that one can use combinatorial optimization algorithms to
search for D-optimal matrices, as well as several other combinatorial matrices and
sequences referenced in Table 1. Definition 8 can easily be adapted for aperiodic
autocorrelation as well.

Note that the D-optimal matrices problem also features certain Diophantine
constraints, as proved in [61] and subsequently generalized in [29]. It is not clear
what is the right way to incorporate this kind of Diophantine constraints into the
combinatorial optimization formalism described here, and this is certainly an issue
that deserves to be investigated further.

The papers [73-76] demonstrate how to use various optimization techniques to
find new designs.

10 Applications

There are several applications of combinatorial matrices and sequences described
in Table 1, in such areas as telecommunications, coding theory, and cryptography.
The reader can consult [45] for applications in signal design for communications,
radar, and cryptography applications. The book [53] describes applications in signal
processing, coding theory, and cryptography. The book [104] describes applications
in communications, signal processing, and image processing. The paper [99] dis-
cusses how partial Hadamard matrices (see [20]) are used in the area of compressed
sensing. The paper [93] describes in detail several applications of Hadamard
matrices on code division multiple access (CDMA) communication systems as
well as in telecommunications. The 55-page paper [49] describes applications of
Hadamard matrices in binary codes, information processing, maximum determinant
problems, spectrometry, pattern recognition, and other areas. The papers [91] and
[92] and the thesis [9] discuss cryptography applications of Hadamard matrices.
Chapter 10 of the book [51] is devoted to several combinatorial problems that can
be tackled with stochastic search methods.

11 Conclusion
Combinatorial matrices and the associated binary and ternary sequences provide

a wide array of extremely challenging optimization problems that can be tackled
with a variety of metaheuristic and combinatorial methods. We tried to summarize
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some of these methods in the present chapter. Although there are no polynomial
complexity algorithms to solve the problem of searching for such matrices and
sequences, the combination of new insights, new algorithms, and new implemen-
tations will continue to produce new results. The second edition of the Handbook
of Combinatorial Designs [16], edited by Charles J. Colbourn and Jeffrey H. Dinitz,
is a very valuable resource regarding the state of the art on open cases for several
types of such matrices and sequences. The on-line updated webpage maintained by
the authors is also quite useful, as many open cases have been resolved since the
publication of the handbook in 2007. We firmly believe that cross-fertilization of
disciplines is a very important process, from which all involved disciplines benefit
eventually. It seems reasonable to predict that the area of combinatorial matrices
and their associated sequences will continue to experience strong interactions with
other research areas, for many years to come.
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