
 

 

Chapter 2. Testing Conditions in Kolsky Bar 
Experiments 
 
 
 
In a material property characterization experiment, the specimen should 
deform uniformly under well-controlled testing conditions in order for 
the experimental results to be clearly documented and interpreted. In 
quasi-static experiments, testing conditions are monitored and adjusted in 
real time by closed-loop feedback control systems such that the specimen 
deforms under specified conditions throughout the test. In Kolsky-bar 
experiments, feedback control systems are not available. Furthermore, 
due to the relatively low stiffness of the bars, even under identical load-
ing conditions, the testing conditions on the specimen depend on the 
specimen response. Therefore, it is challenging to subject the specimen 
to specified loading conditions in Kolsky-bar experiments. Both the load-
ing processes in the specimen and their relations to the commonly de-
fined testing conditions need to be carefully examined. In addition, the 
development of Kolsky bar and its data reduction scheme involves many 
idealized assumptions. However, in actual Kolsky-bar experiments, these 
assumptions are not satisfied automatically, which requires further ef-
forts in experiment design. The valid testing conditions and necessary 
approaches to achieve specified conditions in the Kolsky-bar experi-
ments are presented in this Chapter. 

 
 
 

2.1 One-dimensional Planar Elastic Wave Propagation   
 

In a Kolsky-bar experiment, the incident and transmission bars must re-
main linearly elastic so that the surface strains are linearly related to the 
stress waves inside the bars and the elastic wave theory can be employed 
for data reduction. A high-strength bar material such as alloy steel is 
therefore preferred.  As indicated by (1.2), the upper limit of the striker 
impact speed is directly determined by the yield strength of the bar mate-
rial.  

The incident and transmission bars must also be sufficiently long to 
ensure one-dimensional wave propagation and to facilitate large defor-
mation in the specimen when needed. Figure 2.1 shows an example of 
stress distribution in a cross section at a distance of half of the bar diame-
ter (37 mm) to the impact end in a conventional Kolsky-bar experiment 
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(Wang 2007). It clearly shows that the amplitude of axial stress decreases 
along the radial direction with the maximum at the center of the cross 
section and minimum at the bar surface. When the stress wave propa-
gates to the distance of twice of the bar diameter, the axial stress distrib-
utes uniformly over the cross section, as shown in Fig. 2.2, but with sig-
nificant oscillations. For the case shown in Fig. 2.1, the measured strain 
by the strain gages on the bar surface deviates from the actual bar strain. 
The strain gage locations thus should be far from the bar ends. In prac-
tice, they are mounted at least 10 bar diameters from both ends. There-
fore, the bars should have a length-to-diameter (L/D) ratio of at least 
~20. Most bars, particularly the incident bar, are typically much longer 
than this limit. To avoid wave overlapping at the strain gage location, the 
incident bar is at least twice as long as the striker.   

When the Kolsky bar is used to conduct dynamic experiments on 
hard materials with a much smaller diameter than the bar diameter, the 
assumption of planar wave in the bars may be violated because of elastic 
or plastic indentation of the specimen into the bar ends. Such an indenta-
tion introduces a significant error in the strain measurements in the 
specimen particularly when specimen strain is small. The indentation can 
also cause premature failure in the specimen due to stress concentrations 
at the specimen edges. In order to avoid such an indentation, high-
stiffness and high-strength platens such as tool steel and tungsten car-
bides are placed between the bars and the specimen.  The wave imped-
ance of the platens should match with that of the bars, 
( ) ( )barplaten cAcA ρρ = , to minimize the wave disturbances caused by the 

introduction of the platens. This issue will be further addressed in Chap-
ter 3. 

The oscillations in Fig. 2.2 are the result of wave dispersion. Since 
the bar material is free to move in the radial direction, the actual stress 
wave in the slender bars is still two dimensional in nature; however, it 
may be considered to be approximately one-dimensional when dealing 
with axial quantities. When a compressive wave propagates along the bar 
axis, the material is pushed forward, which is described by the axial ki-
netic energy, as well as sideways, which are the radial directions due to 
Poisson’s effects. The material acceleration in the radial directions in 
turn causes inertia-induced stress in the axial direction. These two-
dimensional effects result in wave dispersion when propagating along the 
bars. The effects of dispersion accumulate as the waves propagate over 
distance, and become more significant when bar diameter increases. 
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Figure 2.1 Axial stress distributions over the cross section 
0.5D from the 37-mm-diameter bar end 

(Reproduced from Wang (2007) with permission) 
 
 
 
 

 
 
 

Figure 2.2 Axial stress distributions over the cross section 
2D from the 37-mm-diameter bar end 

(Reproduced from Wang (2007) with permission) 
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Wave dispersion has been extensively discussed starting from 
Pochhammer (1876) and Chree (1889). They independently solved the 
equation of motion for a sinusoidal wave propagating in an infinitely 
long cylinder. Figure 2.3 graphically shows the Pochhammer-Chree solu-
tion for wave dispersion, where Λ is the wave length (inversely propor-
tional to the frequency), a is the radius of the circular cross-section of the 

bar in which the waves are propagating, ρ
EC =0  is the elastic bar 

wave speed, and Cp is the elastic wave speed of wave components with 
various frequencies (Kolsky 1963). The Pochhammer-Chree solution re-
veals that the propagation velocity of a stress wave decreases with de-
creasing wavelength.  In other words, a high-frequency stress wave trav-
els slower than a wave which has a lower frequency.   

 
 
 
 
 
 

 
Figure 2.3 Pochhammer-Chree solution for wave dispersion )29.0( =ν  

(Reproduced from Kolsky (1963) with permission) 
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In a Kolsky-bar experiment, the ideal rectangular pulse generated 
by the impact of the striker on the incident bar is composed of a spectrum 
of frequencies. Each frequency component has its own propagating ve-
locity. The higher frequency components of the pulse lag behind the 
lower frequency components after traveling a distance, resulting in a dis-
torted waveform, which is wave dispersion as discussed above. Figure 
2.4 shows the wave dispersion in a Kolsky-bar experiment.  The stress 
waves in Fig. 2.4 are the incident pulse and its reflection at the free end 
(no transmission bar was used).  Both pulses were recorded by the same 
strain gages in the middle location of the incident bar, so that any differ-
ence between the two pulses was caused by wave dispersion in nature 
rather than by errors in the data acquisition system. As seen in Fig. 2.4, 
both incident and reflected pulses contain high frequency oscillations. A 
comparison of the two pulses shows that the reflected pulse differs from 
the incident pulse after propagating a distance of ~5700 mm, which is the 
result of wave dispersion.   
 
 
 

 
Figure 2.4.  Wave dispersion in a Kolsky-bar experiment 
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The physics of wave dispersion has been analytically modeled. 
Therefore, correction for wave dispersion is possible and numerical cor-
rections for wave dispersion have been extensively studied (Follansbee 
and Frantz 1983, Gorham 1983, Gong et al. 1990). Here we give an ex-
ample of numerical correction through Fourier transform method origi-
nally published by Follansbee and Frantz (1983). The form of the Fourier 
transform of a wave ( )tf  at the position, z , can be expressed as 
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where nC  is the propagation velocity of the frequency component 0ωn . 

The dispersion can thus be corrected by adjusting the phase angle 
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where 0δ  is the phase angel at 0z ; and δ  is the phase angel at 

zzz ∆+= 0 . The relationship between the phase velocity and wave-

length is referred to Fig. 2.3.  
Figure 2.5 shows the waves measured by the strain gages in the 

middle of the incident bar (a) and predicted at the incident bar/specimen 
interface (b) due to wave dispersion (Follansbee and Frantz 1983). In 
principle, the oscillations in all three pulses (incident, reflected, and 
transmitted pulses) should be corrected to the specimen/bar interfaces. 
When the specimen is a ductile material, the transmitted pulse is not as 
dispersive as the incident and reflected pulse because the specimen plays 
a role of filter. Dispersion correction reduces the oscillations in the resul-
tant stress-strain curve so that the measurement of stress-strain response 
of the specimen becomes more accurate, particularly at small strains.   
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Figure 2.5  Comparison of incident wave measured by the strain gages  

in the middle of the incident bar (a) with that predicted  
at the incident bar/specimen interface (b) 

(Reproduced from Follansbee and Frantz (1983) with permission) 
 
 
 
 

The wave dispersion can be physically minimized in experiments 
through pulse shaping techniques where a small piece of material is 
placed on the impact end of the incident bar as the pulse shaper. The 
plastic deformation of the pulse shaper physically filters out the high fre-
quency components in the incident pulse. Figure 2.6 shows the frequency 
spectrum comparison of a non-shaped pulse and a shaped pulse. The 
components with the frequencies above 40 KHz have been filtered out in 
the shaped pulse such that wave dispersion is significantly minimized, as 
evidenced in Fig. 2.7. Figure 2.7 shows that the incident pulse is exactly 
the same as its reflection from the free end, which is different from those 
shown in Fig. 2.4. Numerical correction of the wave dispersion is not 
necessary when the pulse shaper is used in a Kolsky-bar experiment. The 
use of the pulse shaping also extends the rise time in the incident pulse, 
which is necessary to achieve stress equilibrium in the specimen. Fur-
thermore, proper design of the pulse shaping facilitates constant strain 
rate deformation in the specimen. The detailed pulse shaping technique is 
presented in Chapter 2.5. 
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Figure 2.6  Frequency spectrums of the incident pulses  

produced without and with a pulse shaper 
 
 

 

 
Figure 2.7  The incident and reflected pulses produced  

in a pulse-shaped Kolsky-bar experiment 
 

Without pulse shaping 

With pulse shaping 
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2.2 Interfacial Friction  
 

In a Kolsky-bar experiment, due to the short specimen required by dy-
namic stress equilibrium considerations, the interfacial friction between 
the specimen and the bar ends may lead the specimen to a three-
dimensional stress state. The interfacial friction can significantly increase 
the measured strength in specimens with high lateral expansion because 
the friction limits the lateral expansion (Zenker and Clos 1998). For ex-
ample, even a lubricant with a 0.05 friction coefficient produced an in-
crease by 25% in the flow stress in a polyethylene specimen (Briscoe and 
Nosker 1984). Interfacial friction can also reduce the measured strength 
of brittle materials with small lateral expansion because the friction may 
result in multiaxial stress states at the specimen ends, causing premature 
failure. 

Figure 2.8 shows a comparison of stress-strain curves for an alu-
mina-filled epoxy without lubricant, with high vacuum grease and petro-
leum jelly as lubricants (Song et al. 2009c). All three stress-strain curves 
had similar elastic-perfectly plastic profiles with the same Young’s 
modulus. However, the stress-strain curve without lubricant exhibits the 
highest apparent flow stress. Without lubricant, the interfacial friction re-
stricted the specimen expansion laterally, which in turn increased the ax-
ial flow stress, particularly when the specimen is subject to large defor-
mation. The elastic response was not significantly affected because the 
radial deformation in the specimen is relatively small during this stage. 
There is no significant difference in stress-strain response of the alumina-
filled epoxy when using petroleum jelly or high vacuum grease as the lu-
bricant.  

Proper lubrication between the specimen and the bar interfaces is 
thus important. The lubricants may be different for different material 
characterization. Commonly used lubricants include high vacuum grease, 
petroleum jelly, polytetrafluoroethylene (PTFE), and molybdenum disul-
phide (MoS2) (Trautmann et al. 2005).  Vegetable oil has been used 
when characterizing some specific specimen materials, such as biological 
tissues (Hall and Guden 2003, Pervin and Chen 2009).   
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Figure 2.8  Lubrication effect on dynamic response 
of an alumina-filled epoxy 

(Reproduced from Song et al. (2009c) with permission) 
 
 
 
 
 
 

2.3 Inertia Effects in Specimen 
 

Inertia effects are associated with most dynamic events. In a Kolsky-bar 
experiment, the specimen is initially at rest and is expected to deform at a 
desired rate. Acceleration, and thus inertia in both axial and radial direc-
tions, accompanies the strain rate change from zero to the desired level. 
However, the goal of the Kolsky-bar experiments is to determine the in-
trinsic material response. Inertia effects should be minimized through 
appropriate design of specimen geometry and experimental conditions. 

In the analysis of the inertia effects in the specimen for Kolsky-bar 
experiments, Samanta (1971) corrected a previous analysis with the addi-
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tional consideration of the rate of change of specimen energy in the con-
vective part. The specimen stress was measured by the mean value of 
stresses at both ends with additional inertia terms. 

( ) 2
22

0
22

0
021 16128122

1 ερερσσσ &&&










−−










+−+−= alal

                    (2.4) 

where 0ρ  and ν  are density and Poisson’s ratio of the specimen mate-

rial, respectively; a  is specimen radius; and ε&&  is the time rate of change 
of strain rate in the specimen; σ1 and σ2 are the specimen stresses at the 
incident and transmission bar ends, respectively. Samanta’s analysis in-

dicates that the length-to-diameter ratio of 43  and a constant strain 
rate should be satisfied simultaneously to eliminate the inertia effect. The 
benefit of stress equilibrium from constant strain rate has also been con-
firmed by Gorham (1989). Gorham (1989) modified the inertia compo-
nent of stress as  
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The axial acceleration is accompanied by the inertia (or accelera-
tion) in the radial direction due to Poisson’s effect.  This effect becomes 
more significant for volume incompressible materials. Radial inertia has 
been recognized to produce extra axial stress in specimen. This extra ax-
ial stress due to radial inertia becomes a significant concern when char-
acterizing very soft materials.   

Kolsky (1949) used an energy method to calculate the extra axial 
stress caused by the radial inertia, 

ερνσ &&

2
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22a=                                                                                    (2.6) 

Forrestal et al. (2006) presented a closed-form solution of the extra 
axial stress due to radial inertia based on linear elasticity.  For incom-
pressible materials ( 5.0=ν ), the first order perturbation stress compo-
nents at the radius of r  in cylindrical coordinates are 

ερσσσ θ &&

4

)( 22
0 ra

rz
−===                                                         (2.7) 



48 |   Kolsky Bar 

 

The extra axial stress produced by radial inertia has a parabolic dis-
tribution, which suggests the maximum value of the extra axial stress at 

0=r  (specimen center) and zero at the specimen cylindrical surface 
( ar = ). The average extra axial stress over the entire specimen cross 
section is obtained from 
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which has been found to be consistent with Kolsky’s analysis (2.6). Both 
(2.6) and (2.7) indicate the radial inertia effect is eliminated when the 
specimen is subject to constant strain-rate deformation. It is noted that 
(2.6) is derived from linear elasticity, which is usually used for linear re-
sponse at small deformation, such as brittle material response.  

Warren and Forrestal (2010) extended the analysis of radial inertia 
effect to large plastic deformation, which benefits more engineering ma-
terials and biological tissues capable of large deformation. For a speci-
men undergoing large plastic deformation, the extra axial stress produced 
by radial inertia is 
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The extra stress induced by inertia and expressed by (2.9) also has a 
parabolic distribution in the radial direction. Similarly, the average axial 
stress, which is Cauchy stress, is 
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Both strain and strain rate in (2.9) and (2.10) are in engineering meas-
urements.  In contrast to the linear elasticity analysis, the radial inertia 
will not be eliminated at large deformation even though the strain rate is 
constant. With increasing strains in the specimen, the radial inertia be-
comes more significant. 

As indicated in (2.10), the amplitude of the extra axial stress pro-
duced by radial inertia depends on specimen density, radius, strain and 
strain rate. Within the strain rate range of Kolsky-bar experiment, the 
amplitude of the extra axial stress is approximately in the order of 1 MPa 
or below. Such a small amplitude is negligible for most engineering ma-
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terials when the flow stress is on the order of 102 to 103 MPa. However, 
for very soft materials, such as soft rubbers, gelatins, and biological tis-
sues, the stresses in which are often expressed in kPa, the radial inertia 
becomes a serious source of error. Since this radial inertia is not a part of 
the intrinsic material response of the specimen, it must be removed from 
experimental measurements. This issue will be further addressed in 
Chapter 4.2. 
 
 
 

2.4 Constant Strain Rate Deformation 
 
The Kolsky bar is designed to obtain families of stress-strain curves as a 
function of strain rate for the material under investigation. For each 
stress-strain curve, the strain rate is thus desired to be constant, particu-
larly for those strain-rate-sensitive materials. As presented in the previ-
ous section, constant strain rate deformation also helps to validate the 
Kolsky bar testing conditions by minimizing inertia effects at small 
strains.  

Unlike the quasi-static universal testing frames, the Kolsky-bar sys-
tem is not sufficiently rigid in comparison to the specimen material. A 
constant velocity input, as generated in the form of the trapezoidal inci-
dent pulses in conventional Kolsky-bar experiments, does not necessarily 
produce constant-rate deformation in the specimen. Figure 2.9 illustrates 
typical strain-rate histories in an elastic-brittle and an elastic-plastic 
specimen from conventional Kolsky-bar experiments.  Both strain rates 
are observed far from constant, particularly for the elastic brittle speci-
men. For a work-hardening material, the input stress level needs to pro-
gressively increase to deform the specimen at a constant rate. Otherwise, 
the engineering strain rate in the specimen decreases. The generation of 
an incident pulse with increasing amplitude in a Kolsky-bar experiment 
is an open loop control over the testing conditions on the specimen. Such 
control is a part of the Kolsky-bar experiment design.  

Since the impact experiment does not allow real-time adjustment on 
the loading pulse based on the specimen feedback, the adjustment proc-
ess on the control to achieve desired testing conditions on the specimen 
is iterative. In most cases, the conventional trapezoidal type of incident 
pulse does not satisfy the requirement of constant strain-rate deforma-
tion. However, the transmitted pulse from such a conventional experi-
ment reveals information about the specimen response. Based on this re-
sponse, the incident pulse is modified in the next experiment in order to 
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approach dynamic equilibrium and constant strain rate. The method to 
modify the incident pulse is pulse shaping technique. 

 
 
 
 

 
 
 

Figure 2.9  Illustration of strain rate histories for 
elastic-brittle and elastic-plastic materials in 

conventional Kolsky-bar experiments 
 
 
 
 
 
  

2.5 Pulse Shaping Technique  
    

Pulse shaping technique is used to facilitate stress equilibrium and con-
stant strain rate deformation in the specimen through properly modifying 
the profile of the incident pulse based on specimen response in Kolsky-
bar experiments. 

Pulse shaping technique has been discussed and developed over the 
past three decades. Duffy et al. (1971) were probably the first authors to 
use pulse shapers to smooth pulses generated by explosive loading for 
the torsional Kolsky bar. Christensen et al. (1972) might be the first au-
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thors to employ a pulse shaping technique in the compression version of 
Kolsky-bar tests to improve the accuracy and resolution of the initial por-
tions of the stress-strain curves. They modified the incident pulse with a 
pulse shaping technique in Kolsky-bar experiments on rocks. A ramp in-
cident pulse was found to be more appropriate than a square pulse in 
Kolsky bar experiments to obtain accurate compressive stress-strain re-
sponse for rocks. In their study, they used conical strikers instead of the 
usual cylinders to partially accomplish ramp-like incident loading pulse. 
It is noted that the small end of the cone was fired as the impact end. The 
generated profile of the incident pulse corresponds to three loading re-
gions: the initial impact of the truncated cone, the transition region de-
termined by the cone angle, and the final region depending on the area of 
the cylinder joined to the cone. The profile of the input-stress wave can 
be varied over a considerable range with this technique through varying 
the area ratio of the cylinder and the cone, as shown in Fig. 2.10. A coni-
cal striker for pulse shaping technique is still being used for Kolsky-bar 
experiments on brittle materials (Lok et al. 2002). Figure 2.11 shows a 
schematic of currently used conical striker. Although the profile of inci-
dent pulse can be modified by varying the geometry of the striker, it 
brings difficulties to design and fabricate the specialized striker.  

 
 
 

 

 
 

Figure 2.10  Incident pulses produced by varying 
the area ratio between the cylinder and the cone 

(Reproduced from Christensen et al. (1972) with permission) 
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Figure 2.11  Schematic of conical striker  
 
 
 
 
 

In order to facilitate constant strain-rate deformation in specimen, 
the incident pulse is generally required to possess a similar profile to the 
stress response of the tested specimen, which is represented by the 
transmitted signal. A three-bar technique for pulse shaping was devel-
oped to achieve this goal.  Figure 2.12 illustrates the design of the three-
bar technique (Ellwood et al. 1982). An additional pressure bar (preload-
ing bar) and dummy specimen were implemented to the conventional 
Kolsky-bar configuration. The dummy specimen is recommended to be 
made of the same material as the tested specimen. The pulse transmitted 
through the dummy specimen becomes the actual incident pulse for the 
real specimen.  Under this arrangement, the profile of the incident pulse 
is very similar to that of the transmitted pulse measured behind the 
specimen. This incident pulse produces a plateau in the reflected pulse, 
representing a constant strain rate in the specimen.  Figure 2.13 shows 
typical incident, reflected, and transmitted pulses produced from the 
three-bar technique (Ellwood et al. 1982). The incident pulse was dic-
tated by the dummy specimen’s elastic-plastic response. This elastic-
plastic response is very similar to that for the actual specimen because 
they are made of the same material. The actual specimen was thus sub-
jected to a nearly constant strain-rate deformation, as indicated by the 
plateau in the reflected pulse in Fig. 2.13. 
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Figure 2.12  Three-bar technique 
(Reproduced from Ellwood et al. (1982) with permission) 

 
 
 
 
 

 

 
 

 
Figure 2.13  Pulse shaped Kolsky bar experiment 

with the three-bar technique 
(Reproduced from Ellwood et al. (1982) with permission) 
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The preloading bar in the three-bar technique was made from the 

same material as the incident and transmission bars. However, Parry et 
al. (1995) replaced the preloading bar with a lower-strength bar to mini-
mize the stress wave dispersion. The reduction of the wave dispersion 
depends on the length of the pre-loading bar. A longer pre-loading bar 
minimizes the wave dispersion more efficiently. 

As a simpler version of the three-bar technique, the pre-loading bar 
was removed. The dummy specimen was directly placed at the end of the 
incident bar and is subjected to the direct impact of the striker (Bragov 
and Lomunov 1995). Another alternative for controlling the incident 
pulse profile is to place a “tip” material between the striker and the inci-
dent bar, as illustrated in Figure 2.14. The tip material is usually called 
“pulse shaper” in Kolsky-bar experiments.  The function of the pulse 
shaper in Kolsky-bar experiments includes minimizing wave dispersion, 
facilitating stress equilibrium and constant strain rate deformation in 
specimen.   

 
 
 
 

 
 

Figure 2.14  Pulse shaping technique with a copper “tip” material 
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This “tip” material is not necessarily the same as the specimen ma-
terial under investigation.  The tip material is commonly a disc made 
from paper, aluminum, copper, brass, stainless steel, and so on.  An-
nealed copper discs have recently been extensively used as pulse shapers 
in Kolsky-bar experiments. Nemat-Nasser et al. (1991) might be the first 
authors to analytically model the pulse-shaping process using OFHC 
(oxygen-free, high-purity copper) as pulse shaper. Their analysis is based 
on the following constitutive response,  

( )εσσ fc 0=                                                                                     (2.11)  

where the function ( )εf  is determined experimentally, 0σ  is a constant 

although it may depend on the strain rate in general.  In (2.11), cσ  refers 

to true stress; whereas, ε  is engineering strain.  If the copper pulse 
shaper has an initial area 1A  and a thickness 0h , the axial strain ε  in the 

pulse shaper as a function of time t  can be calculated with 
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Equation (2.12) has the solution 
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T is defined by (1.1).  The strain and stress in the incident bar, bε  and  

bσ , are 
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Assuming unloading of the pulse shaper occurs at 1Tt = , the strain of the 

pulse shaper at 1TtT ≤≤  is determined by integrating the following 
strain rate history, 
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The strain and stress produced in the incident bar are then determined 
with (2.16) and (2.17), respectively.  

Frew et al. (2002) presented a more extensive analysis to determine 
the strain of the pulse shaper. The pulse shaper deformation was derived 
as 
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Equations (2.19) and (2.20) have the following solutions, respectively. 
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where nε  is the strain in the pulse shaper at nTt = . The strain in the 

incident bar can be obtained from (2.16) after the pulse shaper strain is 
calculated from (2.22) and (2.23). Equations (2.22) and (2.23) are valid 
as long as the pulse shaper does not expand beyond the bar surfaces.  The 
unloading response of the pulse shaper was also analyzed by Frew et al. 
(2002). As a practical reference in Kolsky-bar experiment design, a 
FORTRAN source code for the numerical solution of the pulse shaping 
equations is attached in Appendix A of this book, which was provided by 
Dr. Frew.  

Using such a code, the shapes of the incident pulses can be pre-
dicted on the computer before pulse shapers are made, which improves 
the efficiency of the high-rate experiment design. As an example, if an 
annealed copper is used as the pulse shaper, its stress-strain response has 
been determined to have the following form,  

m
p

n
p

p ε
εσ

σ
−

=
1

0
                                                                                    (2.24) 

By curve fitting to experimental results on the pulse shaper material, the 
constants 0σ , n , and m  are determined. Then the incident stress (or 

strain) histories can be predicted by the pulse-shaping models. Figure 
2.15 shows experimental data and model predictions for incident stresses 
from a pulse shaped experiment with an annealed C11000 copper pulse 
shaper and Frew’s model (Frew et al. 2002).   

When a high-strength elastic-plastic material is to be characterized 
by the Kolsky-bar experiments with pulse shaping, the soft copper pulse 
shaper may not produce the desired incident pulse because of its low 
yield strength. In this case, a harder pulse shaper is necessary. However, 
the harder pulse shaper usually generates a high rate of loading even dur-
ing initial loading stage, which is not desired for achieving early stress 
equilibrium. Stacking the soft and hard pulse shapers together forms dual 
pulse shaping technique that is illustrated in Fig. 2.16. The dual pulse 
shaper consists of a softer material, such as a copper, and a relatively 
harder material such as a steel. During the initial compression, the de-
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formation of the soft shaper is much larger than that of the hard one. It is 
highly possible that the cross section of the soft shaper is beyond the 
hard shaper. In this case, a very rigid platen with a large diameter is 
placed between the soft and hard pulse shapers such that the soft shaper 
can continue to flow to larger strains. The major role of the soft pulse 
shaper is to produce a relatively low initial rate of loading so that the 
stress equilibrium is achieved early during an experiment. When the soft 
pulse shaper is compressed to very large strains, it eventually tends not to 
be further compressible. The hard pulse shaper starts to dominate the 
shape of incident pulse from this moment. The hard pulse shaper gener-
ates the majority of the incident pulse so that a constant strain rate is 
achievable.  

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.15  Incident pulse produced with annealed copper as pulse shaper 

(Reproduced from Frew et al. (2002) with permission) 
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Figure 2.16  Dual pulse shaping technique 
 
 
 
 

The dual pulse shaping technique for elastic-plastic material charac-
terization has also been modeled by Frew et al. (2005). Both pulse shap-
ers are assumed to have similar stress-strain response, 

( )ααα εσσ f0=                                                                                 (2.25) 

( )βββ εσσ g0=                                                                                 (2.26) 

where subscripts, α  and β , refer to the soft and hard pulse shaper, re-
spectively. The responses of both pulse shapers are correlated during 
compression, 
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Very similar to the single pulse shaping analysis, the deformation of dual 
pulse shapers is determined by 
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Equations (2.28) and (2.29) are valid only when the pulse shapers 
remain in compression and do not expand beyond the cross sections of 
the striker and incident bar. It is obvious that the dual pulse shaper model 
is more complicated than the single pulse shaper model. The response of 
both pulse shapers are coupled together, which requires numerical solu-
tions to the combination of (2.27), (2.28) and (2.29). Figure 2.17 shows 
an example of the dual pulse shaper modeling and corresponding data 
from an experiment by using annealed C11000 copper (α ) and a 4340 
Rc35 steel ( β ) as the pulse shapers (Frew et al. 2005). The detailed ap-
plication of the dual pulse shaping technique is presented in Chapter 5.  

Depending on the desired testing conditions on the specimens under 
investigation, the generation of incident pulse can be very diverse by 
varying the material, geometry, and dimensions of the pulse shaper(s) as 
well as the striking velocity, material, and geometry of the striker. Figure 
2.18 shows a few dimensionless incident pulses generated with various 
pulse shaping designs (Chen and Song 2009). These pulses are designed 
for characterizing the materials with different characteristics in stress-
strain response, in order to facilitate constant strain-rate deformation un-
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der stress equilibrium. Detailed pulse shaping techniques for different 
material characterization is presented in the next several chapters. It is 
also noted that this solution of the pulse shaping design is not exclusive. 
Any design is acceptable as long as it produces an incident pulse that sat-
isfies the requirements of constant strain rate deformation and stress 
equilibrium.  
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Figure 2.17  Incident pulse produced with dual pulse shaping technique 
(Reproduced from Frew et al. (2005) with permission) 
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Figure 2.18  Various incident pulses produced with  

different pulse shaping designs 
(Reproduced from Chen and Song (2009) with permission) 

 
 
 
 
 
 

2.6 Single Loading and Unloading Control 
 
When the striker impacts on the incident bar, the resulting stress wave 
propagates back and forth within the Kolsky-bar system. Figure 2.19 il-
lustrates the stress waves measured with the strain gages in the middle of 
the incident bar in a typical Kolsky bar experiment. The corresponding 
displacement history of the incident bar end is also illustrated in Fig. 
2.19. Figure 2.19 indicates that every time the stress wave reflects back 
from the specimen side, the bar end moves a small step. The stop-and-go 
response of the incident bar end has the specimen compressed progres-
sively.  Usually only the pulses associated with the first loading are re-
corded to calculate the stress-strain response of the specimen material; 
however, the specimen recovered after the experiment was actually sub-
jected to multiple loading in a single Kolsky bar experiment. This causes 
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confusion in any attempt to correlate the mechanical response of the 
specimen with its microstructural change.  If such correlation between 
the loading history and the microstructure evolution is desired, the 
specimen should be subjected to only a single loading.  In other words, 
only the first loading goes through the specimen while the additional 
momentum after the first loading is trapped. 

The concept of momentum trapping in Kolsky-bar experiments ap-
peared as early as 1960s (Baker and Yew 1966), but different designs 
have been developed recently. 
 
 
 
 
 
 
 
 
 

 
Figure 2.19  Multiple loading in Kolsky-bar experiment 
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Figure 2.20  Modified momentum trap for Kolsky compression bar 
(Reproduced from Song and Chen (2004c) with permission) 

 
 
 
 

 
Figure 2.21  Comparison of pulses obtained with and 

without the momentum trap 
(Reproduced from Song et al. (2006c) with permission) 
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Figure 2.22  Rear pulse shaping technique 
 
 
 
 
Song and Chen (2004c) modified a momentum trap concept and de-

veloped a single loading device for Kolsky compression bar which is il-
lustrated in Fig. 2.20. As shown in Fig. 2.20, this momentum trap con-
sists of a rigid mass and a flange attached to the impact end of the 
incident bar. The incident bar passes through the rigid mass that plays a 
role to trap the momentum (stop the bar system) after first impact. There 
exists a gap between the flange and the rigid mass that needs to be preset 
precisely. The necessary width of the preset gap, d, is determined with 
the incident strain history, 

( )∫=
T

I dttCd
0

0 ε                                                                                 (2.31) 

This gap allows only the first compressive pulse to pass into the incident 
bar before it is closed. The reaction mass then plays a role of rigid wall to 
block the incident bar from any further movement so that no more com-
pression is loaded on the specimen. Figure 2.21 shows a comparison of 
the pulses with and without the momentum trap (Song et al. 2006c). It 
clearly shows that the secondary compression in the experiment without 
momentum trap is turned into a tensile pulse that pulls the incident bar 
back from the specimen when the single loading system is employed. 
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This new design of the momentum trap does not affect the applica-
tion of the pulse shaping technique. Rather, it provides possibility of con-
trolling not only the loading portion of the incident pulse but also the 
unloading portion through a reverse pulse shaping technique. The pulse 
shaping technique described so far in the book is to place the pulse 
shaper(s) on the impact surface of the incident bar to control the profile 
of the incident pulse. In this manner, only the loading portion is control-
lable. The unloading portion remains to be uncontrolled, which is not ac-
ceptable when the unloading cannot be random in the characterization of 
certain materials. For some materials with unique hysteretic stress-strain 
response such as shape memory alloys and viscoelastic or viscoplastic 
solids, it is desirable to understand their stress-strain response not only 
for loading but also for unloading.  In some cases, understanding unload-
ing stress-strain response is even more important than loading response. 
In order to obtain a valid loading-unloading stress-strain loop, the strain 
rate should be the same constant for both loading and unloading. The en-
tire profile of the incident pulse including both loading and unloading 
needs to be under control.  

The loading profile is controlled with the conventional pulse shap-
ing technique while the unloading part is controlled through the reverse 
pulse shaping where pulse shapers are placed between the flange and re-
action mass, as shown in Fig. 2.22. The rear pulse-shapers placed on the 
surface of the rigid mass initially has a preset gap from the flange. Dur-
ing an experiment, the front pulse-shaper is extensively compressed at 
first, generating a desired incident loading profile that deforms the 
specimen at a constant strain rate under dynamic stress equilibrium over 
the loading phase of the experiment. The gap between the flange and the 
rigid mass is then closed. The rear pulse-shapers on the surface of the 
rigid mass are thereafter compressed by the flange, changing the unload-
ing profile of the incident pulse. This controlled unloading profile in the 
incident pulse ensures that the specimen recovers at the same constant 
strain rate during unloading. A compressive stress-strain hysteretic re-
sponse for the material is thus obtained at a certain constant rate of both 
loading and unloading. The detailed applications of this technique are 
discussed in Chapters 4.5.1 (for PMMA) and 5.3.2 (for shape memory al-
loy).   

The above momentum trap was designed following the general con-
cept of the stress reversal Kolsky bar that was developed by Nemat-
Nasser et al. (1991). The overall design of their setup is shown in Fig. 
2.23. In addition to the conventional Kolsky-bar design, a transfer flange, 
a tube over the bar, and a reaction mass were implemented (Fig. 2.23). 
The incident tube is placed against the transfer flange at one end and 
against the reaction mass at the other end. When the striker impacts the 
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transfer flange, it imparts two common compression pulses traveling 
along the incident tube towards the reaction mass and along the incident 
bar towards the specimen. The compressive pulse in the incident tube is 
reflected from the reaction mass and travels back to the transfer flange 
also as compression. The compression is reflected from the flange as ten-
sion. This tension makes the particle velocity in the incident bar move in 
the reverse direction, avoiding the second compression on the specimen. 
The resultant incident pulse is thus a combination of compression-
tension, as shown in Fig. 2.24 (Nemat-Nasser et al. 1991)  

 
 
 
 
 
 
 

 
 
 

Figure 2.23  Stress reversal Kolsky bar 
(Reproduced from Nemat-Nasser et al. (1991) with permission) 
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Figure 2.24  Incident pulse generated with the stress reversal Kolsky bar 

(Reproduced from Nemat-Nasser et al. (1991) with permission) 
 
 
 
 

 
 

Figure 2.25  Momentum trapped Kolsky tension bar 
(Reproduced from Nemat-Nasser et al. (1991) with permission) 

 



Testing Conditions  |     69 

 

Due to the additional incident tube, part of the external impact load 
is distributed to the incident tube, which is then reversed. This excessive 
stress may overwhelm the flange root when high stress levels are re-
quired for hard material characterization. 

The momentum trap has also been developed for Kolsky tension bar 
with a very similar mechanism, as shown in Fig. 2.25 (Nemat-Nasser et 
al. 1991). A momentum trap bar is set aside the transfer flange on the in-
cident bar with a preset gap. The gap needs to be precisely set such that 
the momentum trap bar starts to be in contact with the transfer flange 
surface once the first tensile pulse transfers into the incident bar through 
the transfer flange. The tensile pulse in the incident bar is reflected back 
at the incident bar/specimen interface, becoming compression. Without 
the momentum trap bar or with a wider gap between the momentum trap 
bar and the transfer flange, the compressive pulse turns back to the inci-
dent bar as the secondary tensile pulse, pulling the specimen in tensile 
deformation again. However, with the precisely preset gap between the 
momentum trap bar and the transfer flange, the compressive pulse di-
rectly transmits into the momentum trap bar, which will be reflected back 
at the far free end as a tensile pulse. This tensile pulse pulls the momen-
tum trap bar off the incident bar as the contact interface with the transfer 
flange does not support tension. The pulse is thus trapped within the 
momentum trap bar; whereas, the incident bar remains at rest. Conse-
quently the specimen is subject to only the first tensile loading.   

 
 
 

2.7 Upper Limit of Strain Rate 
 

In Kolsky-bar experiments for material property characterization, dy-
namic stress equilibrium and constant strain rate need to be achieved in 
the specimen.  Since the specimen is initially at rest, the ideal testing 
conditions are not satisfied over the entire duration of the experiment. It 
takes time for the stress waves to bring the specimen into near equilib-
rium and the strain rate to a desired constant level. If the desired strain 
rate is very high, the specimen may fail as the strain rate is still rising. 
Therefore, there is a limit for the maximum strain rate for achieving dy-
namic stress equilibrium and constant strain rate simultaneously.  Be-
yond this upper limit of strain rate, the specimen may deform under nei-
ther equilibrated stress nor constant strain rate. To estimate the validity 
range of the experimental results, it is necessary to know the upper limit 
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of strain rates that corresponds to certain strains where the material re-
sponse drastically changes, such as plastic yielding or failure. 

As mentioned earlier, stress wave takes several rounds of reflections 
back and forth in the specimen to approximately achieve dynamic stress 
equilibrium. The number of reflections required for dynamic stress equi-
librium varies for different materials and different loading conditions. If 
we assume the required number of reflections is n , the corresponding 
time for the specimen to achieve stress equilibrium is 

S

S

C
Lnt =                                                                                            (2.32) 

If the specimen deforms at a constant strain rate, the strain accumu-
lated before the specimen is in equilibrium is 

S

S

C
Lnt εεε && =⋅=                                                                               (2.33) 

In order to ensure the validity of the resultant data, any critical 
event, for example, either plastic yielding or failure, should not occur 
prior to this accumulated strain,  

crεε <                                                                                               (2.34) 

where crε  is the critical strain for such an event. Hence, the strain rate is 

limited due to the requirement of stress equilibrium (Ravichandran and 
Subhash 1994), 

S

Scr

nL
Cεε <&                                                                                         (2.35) 

The above strain-rate limit is derived from consideration of stress 
equilibrium. Another requirement is the achievement of constant strain 
rate, which turns out to be a more restrictive limit. In Kolsky-bar experi-
ments, the strain rate has to increase from zero to a targeted value. It 
takes a finite amount of time for this process to take place, while the 
strain in the specimen is being accumulated. If the specimen fails or plas-
tically yields during this process, the strain rate in the specimen during 
the entire loading process is not constant. Therefore, depending on the 
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failure strain in the specimen material, there is a limit on the achievable 
constant strain rate in the experiment. 

 
 
 
 
 

 
 
 

Figure 2.26  A schematic illustration of the upper limit of 
 constant strain rate in a brittle specimen 

(Reproduced from Pan et al. (2005) with permission) 
 
 
 
 
 

Figure 2.26 illustrates the upper limit of constant strain rate in a 
brittle specimen (Pan et al. 2005). As will be discussed in detail in Chap-
ter 3, it is necessary to generate a linear stress pulse to achieve a constant 
strain rate in a linear and brittle specimen, 

tMi ⋅=σ                                                                                         (2.36) 

where M  is the loading rate of such a linear (ramp) pulse. The strain-
rate history in the linear specimen, Sε& , can be analytically estimated by 

(Frew et al. 2002) 
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The strain history is calculated by integrating (2.37) with respect to time, 
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The strain rate can be considered to be a constant from the instant 
τ=t  until the specimen fails. The instant, τ , is determined by satisfy-

ing the following condition,  
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Hence, 

ηε
SS

B
S E

M
A
A ⋅=&                                                                                (2.40) 

where 

ξη −= 1                                                                                           (2.41) 

For a brittle material, a constant strain rate needs to be achieved 
prior to specimen failure or any other significant events under investiga-
tion, 

crtS εε τ <
=

                                                                                       (2.42) 

or we have 

1−
⋅<

ηα
ε

τ
βε cr

S&                                                                              (2.43) 

where 
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Hence, the upper limit of strain rate can be estimated with (2.43) for the 
consideration of constant strain-rate deformation. 

Figures 2.27 and 2.28 show the strain rate histories from the pulse-
shaped Kolsky-bar experiments on an S-2 glass/SC15 epoxy composite 
and a PMMA, respectively (Pan et al. 2005). In both figures, the solid 
dots indicate where the specimen starts to fail. The strain rate histories 
show that the critical strain rate for the composite is 1700 s-1, beyond 
which non-constant strain rate is observed for the entire loading duration. 
When the desired strain rate is higher than 1700 s-1, the specimen fails 
before a constant strain rate is achieved.  In a very similar way, such a 
critical strain rate locates between 1910 and 2130 s-1 for the PMMA, as 
shown in Fig. 2.28. Table 2.1 presents a comparison of the upper strain-
rate limit from theoretical estimates with (2.43) and experimental results 
for both materials, the result of which shows good agreement. 

When estimating the upper limit of strain rate in Kolsky-bar ex-
periments, both criteria of stress equilibrium and constant strain rate need 
to be satisfied simultaneously. The eventual upper limit of strain rate 
should be the minimum between the estimates from (2.35) and (2.43), 
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Using the above materials as examples again, the upper limits of 
strain rate for the composite and PMMA are estimated with (2.35) for 
dynamic stress equilibrium as 3950 and 9567 s-1, respectively. These lim-
its are much higher than those tabulated in Table 2.1 that are estimated 
from constant strain rate consideration. This indicates the requirement of 
constant strain-rate deformation is more restrictive than stress equilib-
rium requirement when estimating the upper limit of strain rates in Kol-
sky-bar experiments.  
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Figure 2.27  Strain-rate histories in composite specimens 

(Reproduced from Pan et al. (2005) with permission) 
 

 

 
Figure 2.28  Strain-rate histories in PMMA specimen 

(Reproduced from Pan et al. (2005) with permission) 



Testing Conditions  |     75 

 

 
 
 

Table 2.1 Comparison of upper strain-rate limit 
from theoretical estimates and experimental results (Pan et al. 2005) 
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