
Chapter 6
Statistical Analysis in DEA

6.1 Introduction

DEA is often classified as a non-statistical or deterministic approach that does not
easily allow genuine hypothesis testing. Although DEA has not historically empha-
sized the use of traditional statistical tests, considerable progress has been made
in this respect over the last 15 years. We will cover some important results in this
chapter.

Initially, however, let us note that the background for DEA is operations research
and management science. Management science is concerned with use of scientific,
mostly mathematical, methods to solve real problems. This means that DEA stud-
ies have emphasized model-building as emphatically as they have model testing.
That is, a DEA model developed for evaluation purposes is not to be evaluated
solely based on its ability to explain and predict data in the best possible way. Basic
properties of production economics like free disposability, economies of scale and
convexity, the logic of the production structure from an engineering perspective, the
relevance of the identified peers to industry representatives, etc., serves to validate
the model just as statistical tests serve to validate a statistical model developed to
replicate some underlying data generation process as closely as possible. Therefore,
we maintain that interesting insights can arise from the use of DEA models without
in the heavy use of statistical testing.

There are, of course, particular situations for which we are interested in perform-
ing hypothesis tests and constructing confidence intervals based on DEA models.
Thus for example, we might wish to

• Test model-building assumptions like the returns to scale assumption
• Test for relevant and irrelevant inputs and outputs
• Test for differences between different groups of firms in terms of efficiency
• Test allocative and scale efficiency of a group of firms
• Test whether efficiency depends on external factors

In general, there are three ways to conduct such tests.

155P. Bogetoft and L. Otto, Benchmarking with DEA, SFA, and R, International Series  

© Springer Science+Business Media, LLC 2011 

 

in Operations Research & Management Science 157, DOI 10.1007/978-1-4419-7961-2_6,  



156 6 Statistical Analysis in DEA

One is to rely on general non-parametric tests, i.e. tests used when the underlying
distribution is unknown. We discuss some of these, including Kolmogorov–Smirnov
tests and Kruskal–Wallis tests.

Another way is to rely on parametric tests, making assumptions regarding the
underlying distribution of inefficiency and noise in the data. We will cover a series
of such tests based on asymptotic statistical theory. Relying on asymptotic theory
means that the theoretical properties are only established for large samples. How-
ever, simulation studies based on samples of moderate size, those including 50 firms
and above, do suggest that they can be used quite generally.

The third approach, and one that has become popular with the development of ef-
fective computer programs, is the use of the bootstrap. The bootstrap is a computer-
based method that can answer many statistical questions. The approach replicates
sampling uncertainty by creating repeated samples of the original sample. We will
spend most of this chapter covering bootstrap-based inference in DEA models.

In the appendix, we discuss the use of statistical methods in second-stage anal-
yses, i.e. analyses performed after the development of a benchmarking model, to
validate the model and to explore the possible causes of the variations in efficien-
cies. A common approach in such studies is tobit regression, and such analyses are
not only relevant for DEA based benchmarking.

6.2 Asymptotic tests

In this section, we will assume that firm’s efficiency is the realization of a random
variable and that this is the sole reason why observed performance deviates from the
underlying production possibility frontier; i.e. all deviations are efficiency-related,
and there is no noise in the data.

Specifically, let us consider a DEA setting and assume that the true Farrell output
efficiency �, i.e.

� D maxfF j .x; Fy/ 2 T g
is a random variable with values in Œ1;1Œ and a density function g. Also, we
assume that there is a non-zero likelihood of nearly efficient performance; i.e.R 1Cı
1

g.�/ d� > 0 for all ı > 0.
In the following, it is importing to note that we distinguish between the true but

unknown and unobservable technology T and a DEA estimate T � of T . Now, it is
clear that the estimated efficiency F in any finite sample of firms

F D maxfF j .x; Fy/ 2 T �
� g

where
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T �
� D ˚

.x; y/ 2 RmC � RnC j

x �
KX
kD1

�kxk ; y �
KX
kD1

�kyk ; .�1; : : : ; �K/ 2 ƒK.�/ �
is biased downwards; i.e. it is always weakly smaller than true (in)efficiency �,
F � �. Recall here that ƒK.�/ is the restrictions on � that depends on the returns
to scale assumptions, i.e. fdh, vrs, or crs, as discussed in Sect. 4.4. The reason is
that we have only observed a subset of practices, not necessarily the best practices,
and the estimate of T � of T is therefore an inner approximation, T � � T , meaning
that F measured against T � is less than � measured against T . Thus, estimated
efficiency values never make a firm look less efficient than it really is, only more
so. DEA-based estimates in this setting are cautious and puts the firms in a positive
light.

However, asymptotically (with the number of firms going to infinity), this bias
reduces to zero; that is, the DEA estimators are consistent. This holds as soon as
the probability of observing nearly efficient firms is strictly positive, as we assumed
above. Consistency is a nice statistical property because it means that for large sam-
ples, our evaluation is correct.

Additionally, one can show that if the density function g is monotonously declin-
ing (i.e. f 0 > f ) g.f 0/ � g.f /), then the DEA estimator F is the maximum
likelihood estimator for �.

The consistency results indicate that for large samples of firms, the distribution of
F is similar to the distribution of �. Therefore, in a large sample, the distribution of
a test statistic t.F / will be similar to the distribution of t.�/, and the distribution of
t.�/ can be found from the density g of �. This technique can be used to construct
a series of tests as we do in the subsections that follow.

6.2.1 Test for group differences

If the set ofK firms is divided into two groups withK1 andK2 firms,K D K1CK2,
we may be interested in testing whether there are significant differences between
the efficiencies of the two groups—note that we use K , K1 and K2 as both the
number of firms and the set of firms. This procedure may be relevant if we aim to
test whether one special ownership structure is more efficient than another, whether
one particular treatment is more effective than another, whether a specific region
offers more favorable conditions for firms than another, etc.

Letting the density of the distributions of the efficiencies in the different groups
be g1 and g2, respectively, we seek to test

H0 W g1 D g2 againstHA W g1 ¤ g2:
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As mentioned before, the distributions of t.F / and t.�/ are asymptotically the same.
If t.�/ is exponentially distributed, a chi-square distribution with 2 degrees of free-
dom, then

PK
kD1 t.F k/ is asymptotically �2–distributed with 2K degrees of free-

dom.
Under the null hypothesis, the two groups have the same distribution of effi-

ciency, and the ratio

TEX D
P
k2K1

t.F k/=K1P
k2K2

t.F k/=K2

is the ratio of two asymptotically �2–distributions and is therefore asymptotically
distributed as a Fisher distribution with 2K1 and 2K2 degrees of freedom, TEX

a�
F.2K1; 2K2/. Note that TEX might be greater or less than 1 such that the test is
two-sided.

If we assume that true efficiency is � D 1C � where � is exponential distributed,
then we should simply use t.F / D F � 1 such that

TEX D
P
k2K1

.F k � 1/=K1P
k2K2

.F k � 1/=K2
and reject the hypothesis if TEX is greater than the 95% quantile in the distribution
F.2K1; 2K2/.

Likewise, if t.�/ has a half-normal distribution, then t.�/2 is �2 distributed,
and therefore,

PK
kD1 t.Fk/2 is asymptotically �2–distributed with K degrees of

freedom. The test statistic

THN D
P
k2K1

t.F k/2=K1P
k2K2

t.F k/2=K2

is therefore distributed as F.K1; K2/. This will be the case if, for example, � � 1

has a half-normal distribution, and in this case, we should again use t.F / D F � 1.
Lastly, if we have no a priori assumptions about the distribution of �1 and �2, we

may use the non-parametric Kolmogorov– Smirnov test statistic

TKS D max
kD1;:::;K

˚ jG1.F k/ �G2.F k/j
�

where G1 and G2 are the empirical cumulative distributions in the two subsets such
that TKS is the largest vertical distance between the cumulative distributions. Large
values of TKS as evaluated via the Kolmogorov-Smirnov test as an indication that
H0 is false. Note that this test depends on the rank (i.e. the order) of F k only and
not on the individual values of F k .

Another non-parametric test based on ranks is the Kruskal–Wallis test used to
test groups of data. We will not show how to run this test but would like to note that
the test only depends on the rank of the observations. This test is helpful because it
can be used to test the hypothesis that several groups have the same distribution.
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Numerical example in R: Milk producers

We want to test data from a group of milk producers to determine if efficiency
depends on the breed of cow. The inputs are cost categories, and the output is milk.
Group 1 is comprised of farmers without jersey cows, whereas group 2 is comprised
of farmers with jersey cows.

Implementing the TEX and THN tests in R is easy; these tests are simply a matter
of summing the efficiencies with 1 subtracted. The commands qf and pf calculate
the quantile (.95 for 95% or 5% tail probability) and the probability in the Fisher
distribution. The calculated output efficiencies are split into two groups F1 and F2
based on the value of the two-level factor race, and the test evaluates whether the
efficiency of the two groups is identical.

The Kolmogorov– Smirnov and the Kruskal–Wallis tests are more complicated,
but R already contains special methods for those tests; therefore, it is easy to use
them in R.

The code and output for the tests are shown here:

> library(Benchmarking)
> cattle = read.csv("projekt.csv")
> attach(cattle)
> kgMilk <- milkPerCow * cows
> x <- cbind(unitCost, capCost, fixedCost)
> y <- matrix(kgMilk)
> FF <- eff(dea(x,y,ORIENTATION="out"))
> TEX <- sum(F1-1)/length(F1) / (sum(F2-1)/length(F2))
> TEX
[1] 1.989044
> qf(.025, 2*length(F1), 2*length(F2))
[1] 0.6369572
> qf(.975, 2*length(F1), 2*length(F2))
[1] 1.682756
> pf(TEX, 2*length(F1), 2*length(F2))
[1] 0.9947547
> THN <- sum((F1-1)ˆ2)/length(F1) / (sum((F2-1)ˆ2)/length(F2))
> THN
[1] 2.000593
> qf(.025, length(F1), length(F2))
[1] 0.5357977
> qf(.975, length(F1), length(F2))
[1] 2.148472
> pf(THN, length(F1), length(F2))
[1] 0.9628421
> # Kolmogorov-Smirnov test
> ks.test(F1, F2)

Two-sample Kolmogorov-Smirnov test
data: F1 and F2
D = 0.4893, p-value = 0.0006954
alternative hypothesis: two-sided

> # Kruskal--Wallis, 2 groups
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> kruskal.test(FF, race=="jersey")

Kruskal-Wallis rank sum test
data: FF and race == "jersey"
Kruskal-Wallis chi-squared = 11.6309, df = 1, p-value = 0.0006487

The value of the TEX is calculated to be 1.989044, and as the 97.5% upper critical
value (the size of the test is 5%) in the F distribution with 80 (the number of firms in
group 1) and 21 (the number of firms in group 2; breed “jersey” ) is 1.68, we reject
the hypothesis that the distribution of efficiency in the groups is identical. The THN ,
on the other hand, is 2.00, and the upper critical value is 2.148. Thus, we do not
reject the hypothesis that they are identical; rather, the groups could be identical.
The results of both the Kolmogorow–Smirnov test and the Kruskal–Wallis test lead
us to reject the null hypothesis. Based on the boxplot and densities in Fig. 6.1, it
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Fig. 6.1 Boxplot and densities for output efficiency of the two subgroups

does look as if group 2 (the “jersey” breed) has steeper density and mass closer to 1
than group 1. Most of our tests also show that the difference is significant, and what
we see in the figure is therefore most likely not a matter of chance. One result that
emerges is that the for group F2 (“jersey”), the average output efficiency is lower
than that for group F1 (“large”); i.e. F2 is more efficient than F1 on average. Note
that there is an outlier in group F2, indicated both at the top of the boxplot as a circle
and in the density illustration as a blip to the far right.

6.2.2 Test of model assumptions

In model development and model validation, we may want to test if an alternative
model specification better represents firm performances. We might, for example, be
interested in testing whether we can assume variable return to scale or whether some
outputs can be eliminated from the model specification.
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Here we will distinguish not between two groups of observations, but rather dis-
tinguish between two sets of model assumptions, or what accounts to the same,
distinguish between two technology sets. In Sect. 4.3, we argued that the estimated
technology set should be the smallest set containing the data and fulfilling certain as-
sumptions (the minimal extrapolation principle). The question we ask here is there-
fore whether an estimated technology set can be made even smaller by adding fur-
ther restrictions and still be in agreement with data. Let the technology set be T1,
and let the smaller technology set be T2. For example, we could have the same as-
sumptions regarding the technology sets but assume CRS in T1 and VRS in T2, with
the additional restriction

PK
kD1 �k D 1. Likewise, the technology set T1 could in-

clude n outputs, and the technology set T2 could include n0 > n outputs; the greater
number of outputs would result in the existence of more restrictions and therefore
yield a smaller technology set.

In both examples, and in general, a smaller technology set (i.e. one with more
restrictions) results in a better (or unchanged) efficiency level; for input efficiency,
we obtain E1 � E2 � 1, and for output efficiency, we obtain F1 � F2 � 1

where the subscript of the efficiencies E and F is a product of the corresponding
technology set T1 and the smaller set T2.

In statistical language, technology set T1 represents the null hypothesis and the
smaller technology set T2 the alternative. We test technology hypothesis T1 against
alternative T2.

If the efficiencies calculated under T1 are very different from the efficiencies
calculated under T2, the two technologies are not at all similar, and we should reject
the null-hypothesis technology T1 and opt for the alternative technology T2; the
extra restrictions in T2 are of real importance. If the efficiencies are more or less
the same, then the extra restrictions are of no importance, and we opt for the null-
hypothesis technology T1. Therefore, we can test the technology assumptions by
testing whether efficiency is the same under the two technologies.

Now, let the distribution of the efficiency scores for K firms under the two tech-
nology assumptions T1 and T2 be g1 and g2, respectively. We will then test the
hypothesis

H0 W g1 D g2 againstHA W g1 ¤ g2

using the same ideas as above, except that we now sum the figures for all firms in
both the numerator and the denominator. If we accept the hypothesis H0, we use
technology T1, whereas if we reject the hypothesis, we use technology M2. More
specifically, if t.�1/ and t.�2/ are exponentially distributed for some monotone
transformation t.�/, then just as before, the test statistic

TEX D
PK
kD1 t.F k1 /PK
kD1 t.F k2 /

;

where F k1 and F k2 are the output efficiency of firm k based on technologies T1 and
T2, respectively, will follow a F–distribution underH0 with 2K and 2K degrees of
freedom, F.2K; 2K/.



162 6 Statistical Analysis in DEA

The test is one-sided as TEX � 1, and therefore, the critical value for a test of size
5% is the 95% quantile in the F–distribution with 2K and 2K degrees of freedom,
F.2K; 2K/; i.e. for large values of TEX , we reject the null hypothesisH0 that model
M 1 is true.

Likewise, if t.�1/ and t.�2/ have a half-normal distribution for some monotone
transformation t.�/, then we can use the test statistic

THN D
PK
kD1 t.F k1 /2PK
kD1 t.F k2 /2

with large values in a F.K;K/ distribution as critical values for the test ofH0.
Lastly, if we have no a priori assumptions about the distribution of �1 and �2, we

can use the non-parametric Kolmogorov– Smirnov test statistic

TKS D max
kD1;:::;K

f jG1.F k/ �G2.F k/j g

where G1 and G2 are the empirical cumulative distributions in the two models such
that TKS is the largest vertical distance between the cumulative distributions. Large
values for TKS indicate that the distributions differ and therefore thatH0 is false; the
null hypothesisH0 is rejected.

Numerical example in R: Milk producers

Implementing the tests for model assumptions is just as easy as implementing the
tests of group differences. However, we present an example anyway to introduce yet
another example of a hypothesis.

So far, we have used two examples to test our model assumptions. Here, we
use a third example to test whether to include fewer inputs. The null hypothesis is
technology T1 withm inputs, whereas the alternative is technology T2 withm0 > m
inputs. Again, the alternative includes more restrictions and specifically more input
restrictions in the LP formulation. The test statistics are as previously described.

We use the same data set that we used to test group differences. We want to
test whether we really need capacity costs when we already include the number
of cows and whether veterinary expenses are important on their own even though
they are part of unit costs. Thus, the alternative technology set T2 includes among
its inputs the number of cows and veterinary expenses, whereas technology T2, the
null hypothesis, excludes these two inputs.

The input matrix x1 in the example below excludes the variables in question,
whereas the input matrix x2 includes them. The following code reads data, cal-
culates efficiency and makes graphs as shown in Fig. 6.2. The graphs are slightly
different from the ones we presented in the test for group differences.

library(Benchmarking)
cattle = read.csv("projekt.csv")
kgMilk <- with(cattle, milkPerCow * cows )
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Fig. 6.2 Efficiency when capacity cost and veterinary costs are excluded (F1) and included (F2) in
the inputs for milk production: comparing efficiencies and the empirical distribution of efficiencies.

The box plot shows that the two technologiesT1 and T2 are only slightly different
in terms of efficiency; the spread is slightly greater for F1 that for F2. The same
pattern is seen in the top right plot, where some of the efficiencies are identical
(i.e. on the diagonal line) and some for F1 are larger than those for F2 (below the
diagonal line). This is no surprise given that the number of inputs is smaller in F1;
firms will have unchanged or greater output efficiency, as discussed in Sect. 4.6 on
page 93. The bottom figure shows the empirical distribution. The distribution of F2
is above that of F1; for every level of efficiency, the proportion of firms at that level
or lower is larger for technology T2 than for technology T1.

The problem is whether the difference that we see is statistically significant. This
is where the test statistics come into play. Based on the above calculations for the
two efficiencies, the test statistics are calculated below.

> TEX <- sum(F1-1)/length(F1) / (sum(F2-1)/length(F2))
> TEX
[1] 1.211835
> qf(.95, 2*length(F1), 2*length(F2))
[1] 1.261131
> pf(TEX, 2*length(F1), 2*length(F2))

x1 <- with(cattle, cbind(unitCost, fixedCost, cows))
x2 <- with(cattle, cbind(unitCost, capCost, fixedCost, vet, cows))
y <- matrix(kgMilk)
F1 <- eff(dea(x1,y,ORIENTATION="out"))
F2 <- eff(dea(x2,y,ORIENTATION="out"))

plot(F1,F2, xlim=range(F1,F2), ylim=range(F1,F2))
abline(0,1)

K <- length(F1)
plot(sort(F1), (1:K)/K, type="s", ylim=c(0,1),

ylab="Probability", xlab="Output efficiency")
lines(sort(F2), (1:K)/K, type="s", lty="dashed")
legend("bottomright",c("F1","F2"),

lty=c("solid","dashed"),bty="n")
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[1] 0.9135035
>
> THN <- sum((F1-1)ˆ2)/length(F1) / (sum((F2-1)ˆ2)/length(F2))
> THN
[1] 1.381849
> qf(.95, length(F1), length(F2))
[1] 1.389417
> pf(THN, length(F1), length(F2))
[1] 0.9471316
>
> # Kolmogorov-Smirnov test
> ks.test(F1, F2, alternative = "greater")

Two-sample Kolmogorov-Smirnov test

data: F1 and F2
Dˆ+ = 0, p-value = 1
alternative hypothesis: the CDF of x lies above that of y

Warning message:
In ks.test(F1, F2, alternative = "greater") :

cannot compute correct p-values with ties
> # Kruskal--Wallis
> kruskal.test(list(F1, F2))

Kruskal-Wallis rank sum test

data: list(F1, F2)
Kruskal-Wallis chi-squared = 2.519, df = 1, p-value = 0.1125

The TEX and THN are estimated to be 1.21 and 1.38, and both fall below the crit-
ical value, the 95%–quantile. The results of the Kolmogorof–Smirnof test and the
Kruskal–Wallis test both support the same conclusion. Note that the probabilities
for these tests are tail probabilities. Therefore, we do not reject the null hypothesis
that we need to include capacity cost and veterinary costs among the inputs, and for
all uses of the technology, we should be using T 1 with the fewest input variables.

Practical application: DSO regulation

In the regulation of German electricity distribution operators, DSOs, a series of tests
were undertaken to ensure that models did not unintentionally favor or disadvantage
specific types of companies. We will discuss regulation in greater detail in Chap. 10.
The tests for the DSO technologies was conducted as second-stage tests of the best
of four scores that the regulation prescribed using non-parametric Kruskal–Wallis
tests, cf. also Chap. 10. However, we could also have used tests like those above to
directly evaluate the individual DEA models and test for the impact of such factors
as 1) whether the DSO is located in what was formerly West or East Germany or 2)
whether the DSO is also involved in gas distribution, water distribution etc.
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The same regulations also stipulate that no single DSO can have too large an
impact on average efficiency in the DEA models. This requirement was tested using
the test statistic P

h2Knk

�
E.h;K n k/ � 1

�2P
h2Knk

�
E.h;K/� 1

�2 :

Here, K is both the set and the number of DSOs in the data set, and k is a po-
tential outlier. Also, E.h;K/ is the efficiency of h when all DSOs are used to es-
timate the technology, and E.h;K n k/ is the efficiency when DSO k does not
enter into the estimation. The test therefore compares the average efficiency of the
other operators when DSO k cannot affect the technology with the average effi-
ciency of the other DSOs when DSO k is part of the evaluation process. Because
E.h;K n k/ � E.h;K/, this ratio is always less than or equal to 1, and the smaller
the ratio, the larger the impact of k; i.e. small values will be an indication that k is an
outlier. We see that this line of thought resembles the model specification test prob-
lems above, which suggests that we can evaluate the test statistic in aF.K�1;K�1/
distribution.

6.3 The bootstrap method

Bootstrap is a general computer-based statistical method for calculating the accu-
racy of statistical estimates. Generally, “pulling oneself up by one’s bootstraps”
means to succeed based on one’s own efforts despite very difficult circumstances
and without help from anyone. The statistical bootstrap method has some of this
flavor and recalls the story of Baron von Munchausen, who pulled himself and his
horse out of a swamp by pulling on his own hair while holding on to the horse with
his legs. In the following pages, we first give a short introduction to bootstrap as a
general method and then explore the details of bootstrap DEA models.

The basic idea of bootstrap is to sample observations with replacements from
one’s data set and thereby create a new “random” data set of the same size as the
original. Using this dataset, one can calculate the necessary statistics, called repli-
cates. This process is repeated to create a sample of replicates. Based on this sample,
we can draw conclusions about the distribution of the statistics in which we are in-
terested.

Let us consider a very simple example, a sample of n observationsx1; x2; : : : ; xn.
Imagine that we have observed 7 numbers 94, 197, 16, 38, 99, 141, and 23.
The mean is Nx D 1

n

Pn
iD1 xi D 86:86, and the (unbiased) standard error is

s D
q

1
n�1

Pn
iD1.xi � Nx/2 D 66:77. The estimate of the standard error of the

mean is sp
n

D 25:24. The standard error is very easy to estimate when we simply
wish to determine the variance of the mean because we can use an explicit formula.
Unfortunately, we do not always have an explicit formula for the standard error or
for variance.
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Table 6.1 The bootstrap algorithm for estimating standard errors

1. Select B independent bootstrap samples x1; x2; : : : ; xB , i.e. a sample
drawn with replacement from our data set.

2. Calculate the estimate for each bootstrap sample:

t.xb/ .b D 1; : : : ; B/ :

3. Estimate the standard error using the sample standard error of theB repli-
cations

OsB D
vuut 1

B � 1
BX

bD1

�
t.xb/� Nt�2

where Nt D 1
B

PB
bD1 t.x

b/.

If instead of investigating the mean we wish to find the median and the variance
of the median, we must undertake a much more complicated process because the
formula for calculating the variance of the median is not easily determined. This is
where the bootstrap method becomes key.

A bootstrap sample in this case is a random sample obtained by sampling 7
(the number of elements in the sample) elements or data points with replace-
ments from our original sample. Hence, the bootstrap sample could be xb D
.x6; x1; x4; x1; x3; x3; x5/, i.e. 141, 94, 38, 94, 16, 16, and 99. Based on this boot-
strap sample, we estimate the statistic t.xb/ we are interested in: here, the median.
Now, instead of trying to calculate the standard deviation of the estimated median,
we make B bootstrap replications. For each bootstrap replication b, we calculate
t.xb/, the median. As the bootstrap estimate of the standard error of t.x/ with B

replications, we use OsB D
q

1
B�1

PB
bD1.t.xb/� Nt /2 where Nt D 1

B

PB
bD1 t.xb/ is

the mean over the replications of the statistic we are interested in.
The idea of the bootstrap method is that if the empirical distribution of xb corre-

sponds more or less to the true distribution of x, then the empirical distribution of
t.xb/ will correspond more or less to the true distribution of t.x/. This means that
we can use the empirical distribution of t.xb/ as the true but unknown distribution
of t.x/. Thus, when we are interested in the variance of the median, t.x/, which is
difficult or impossible to determine, we can simply use the empirical variance of the
median of the bootstrap, t.xb/, which is much easier to obtain.

The bootstrap method can be described as the algorithm in Table 6.1. The limit
of OsB as B goes to infinity is the ideal bootstrap estimate.

Luckily, we do not have to program the algorithm in Table 6.1 ourselves; it is
part of the package boot in R, and now we show how to use it in the small numerical
example we have just seen.
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Table 6.2 Bootstraping the variance of the median in a sample with 7 numbers

library(boot)
treat <- c(94, 197, 16, 38, 99, 141, 23)
func <- function(d,i) { median(d[i]) }
B <- 200
boo <- boot(treat, func, B)
sqrt(var(boo$t))
mean(boo$t)
hist(boo$t,main=NULL)

Numerical example in R

Bootstrap is easy in R because the package boot contains the function boot, which
organizes the resampling and calculation of a statistic (function) we provide; this is
just an implementation of the algorithm in Table 6.1. In our example in which we
investigate the variance of the median, we use the R script in Table 6.2. The first line
is the command to load the library boot that contains the commands and methods
for bootstrap in R. The second line defines our data set, our original sample, as the
variable treat. To use the R function boot, we must define a function that cal-
culates the statistic of interest. In our case the function must calculate the median,
and it must be defined with two arguments, the first the original data and the second
a vector of indices, frequencies or weights that define the bootstrap sample. Here,
the function is called func, and the two arguments are d for data and i for the
indices, such that d[i] is a bootstrap sample and the return of the function is the
median of the bootstrap sample d[i]. Next, we define variable B as the number
of bootstrap replicates; in this case, we use 200 replicates. To actually generate the
bootstrap replicates, we use the R function boot. This function takes 3 arguments:
the original sample, the function we have defined to calculate the statistics of inter-
est, and the number of replicates (bootstrap iterations) we seek, here the defined by
the variable B.

The function boot can take many more arguments than we use here; see the
manual, >?boot, for others.

The output from the bootstrap function is put into the variable boo, a boot object.
Hereafter, we can gain access to the replicates of the 200 calculated statistics (me-
dians in our case) in the component t in the object/variable boo, i.e. the variable
boo$t. Now we can easily calculate the variance of the median as boo$t, and if
we want to determine the standard error, we can simply take the square root. The
resulting standard error of the median of our sample treat is

> sqrt(var(boo$t))
38.00217

showing that the standard error of the median of our 7 numbers is 38. A histogram
of the bootstrap replicas is shown in Fig. 6.3. The figure indicates that the most
common median is between 90 and 99, and based on the data set, we can see that
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Fig. 6.3 Histogram of bootstrap replicas for the median of the 7 numbers

Table 6.3 Bootstrap the median of numbers with different replications in R

library(boot)
func <- function(d,i) { median(d[i]) }
treat <- c(94, 197, 16, 38, 99, 141, 23)
Ber <- c(10,50,100,250,500,1000,5000,10000,1000000)
res <- NULL
for(B in Ber) {

boo <- boot(treat, func, B)
res <- c(res, format(sqrt(var(boo$t)), digits=3))

}
Ber # print Ber
res # print res, the results
rbind(Ber, res)

it must be 94 or 99—the median in the original data set treat is 94. The second
most common median is just below 50 and the actual number is 38.

If we make the same calculations again, we may obtain a figure for variance that
is somewhat different because we obtain another series of replications. However,
if the number of replications is very large, then each time we repeat the bootstrap
series of replications, the variance will be almost the same. The question is then how
many replications we should conduct to develop a stable estimate of the variance?

The calculated standard errors of the median from several bootstraps when the
number of bootstrap replicates B is ranging from 10 to 1 000 000 is calculated using
the R program in Table 6.3. The results achieved by running this code are shown in
Table 6.4; we have run the program several times and show the different standard
errors in the different rows. When the number of bootstrap replications is larger than
1000, there is hardly any difference between the levels of variance for the different
runs. Thus, the desired level of precision of the estimated variance determines the
number of replications.

For a bootstrap sample of size 10, one of the standard errors differs substantially
from the other bootstrap samples, as can be seen in Table 6.4. Based on considera-
tions like this one, it is suggested in the literature that bootstrap samples, B , ranging
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Table 6.4 Bootstrap estimates of standard error of the median

B: 10 50 100 250 500 1 000 5 000 10 000 1 000 000

Run 1: Std.err: 32.7 38.5 37.5 38.9 36.7 38.3 37.9 38.1 37.8

Run 2: Std.err: 38.7 44.5 40.4 39.7 38.4 37.9 37.8 37.4 37.8

Run 3: Std.err: 2.58 43.3 33.2 37.0 36.8 38.2 37.7 37.8 37.8

Run 4: Std.err: 35.9 37.8 41 37.3 38.6 38.7 37.6 38.0 37.9

from 50 to 200 usually make the bootstrap a good standard error estimator. As we
shall see later, however, these suggested numbers of bootstrap replications are to
small for DEA models.

If we want to find the variance of another function or statistic instead of the
median of our sample, we can simply redefine the function func to calculate the
new statistic, which may include very complicated calculations (as is the cace, for
instance, with DEA efficiency). If we want to consider another sample, we can just
change the contents of treat.

6.3.1 Confidence interval

Using the bootstrap sample, we can also directly determine the confidence intervals
for the statistic. This approach yields more precise results than do efforts to construct
the confidence intervals based on the estimated standard deviation because the latter
technique rests on the assumption that the distribution in question is symmetric and
can be reasonably approximated using a normal distribution. This is not the case for
the aforementioned example intended to determine the median of the 7 numbers.

To find a 50% confidence interval for the sample, we can use the command quan-
tile in R, as shown in Table 6.5. The results are shown in Fig. 6.4. In the figure, the
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Fig. 6.4 Confidence interval for median of 7 numbers based on 200 replicats
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Table 6.5 Calculating a 50% confidence interval for the median of 7 numbers

library(boot)
treat <- c(94, 197, 16, 38, 99, 141, 23)
func <- function(d,i) { median(d[i]) }
B <- 200
boo <- boot(treat, func, B)
sqrt(var(boo$t))
mean(boo$t)

quant <- .50 # 50% confidence interval
ci <- boot.ci(boo, conf=quant)
m <- mean(boo$t)
b <- m - median(treat) # bias
mu <- m -b # bias corrected median
sd <- sqrt(var(boo$t)) # std.error
quantile(boo$t,c((1-quant)/2, 1-(1-quant)/2) ) -b

7 numbers are shown in sorted order, and the median is marked with the solid line
through the point at 94. The 50% confidence interval based on a normal approxi-
mation is shown as a dashed line, and of course, it is symmetric around the median.
The dotted line is based on the command quantile, and this confidence interval
is not symmetric around the median. The upper line is a little lower that the normal
line, and the lower line is much lower than the normal line. This corresponds to the
histogram in Fig. 6.3, where the distribution does not seem to be symmetric. Based
on the actual numbers in the sample treat, the 50% interval for the median 94
is from 38 to 99. This corresponds to the histogram in which one can see that the
median in half of the replicas is between 35 and 100.

6.4 Bootstrapping in DEA

It does not make sense to compute variance as 1
n�1

PK
kD1.Ek� NE/2 because then

we would be assuming that all the firms have efficiencies based on a distribution with
the same mean and therefore that all differences in efficiency are purely random and
not systematic; firms with high efficiency would then be highly efficient by chance
and because they are good at what they do.

Instead, we use our observations as a sample X D f.x1; y1/; : : : ; .xK ; yK/g of
inputs and outputs from K firms that we can use to estimate the technology set T
via DEA assuming variable returns to scale (vrs)

1; y1/; : : : ; .xK ; yK/

and the corresponding Farrell input efficiency measures be E1; : : : ; EK , i.e. Ek D
minf � 2 RC j .�xk ; yk/ 2 T g. None of what follows would change if we consid-
ered Farrell ouput efficiency instead.

We will now discuss how to estimate the variance of efficiency measures for a sample
.xof firms using the bootstrap method. Let the observations be



6.4 Bootstrapping in DEA 171

bT D f .x; y/ j x �
KX
kD1

�kxk ; y �
KX
kD1

�kyk ; �k � 0;

KX
kD1

�k D 1 g :

The DEA estimated efficiency scores are then

bEk D minf � 2 R j .�xk ; yk/ 2 bT g .k D 1; : : : ; n/

where we have used the estimated technology set bT for the technology set T .
We use this procedure to consider the sample X D f.x1; y1/; : : : ; .xK ; yK/g as

a realization of identically and independently distributed random variables .X; Y /
with a probability distribution P with support in T ; i.e. we assume that there is
no observational uncertainty in the sense that .xk ; yk/ 2 T with probability 1. In
Chap. 7, we introduce a parametric method that allows for this form of observational
uncertainty.

The distribution of bEk and bT depends on the distribution of the sample of ob-
servations X. However, this relationship is complex; the sample X is generated by
the probability distribution P , of which we have no direct knowledge. To derive a
reasonable estimate P � of P , we can use the bootstrap, i.e. a sample with replace-
ments from the original set of observations. Using this bootstrap estimate P � of
P , we can generate a sample X� from the distribution P �, then calculate a DEA
estimate T � for the technology and estimate efficiency as Ek� D minf � 2 R j
.�xk ; yk/ 2 T � g. When we repeat this sample generation process many times, we
obtain many estimates of Ek� and can then calculate the empirical variance of Ek

.k D 1; : : : ; n/.

6.4.1 Naive bootstrap

There are two ways to perform an ordinary bootstrap for the DEA model. Unfortu-
nately as we will see, neither of them is satisfactory, and we will therefore present a
better alternative.

The two simple but unsatisfactory methods are as follows:

1. Bootstrap the set directly fE1; : : : ; EKg as we did in Sect. 6.3 on the variable
treat. In using this method, we assume that all the E’s are independent and
identically distributed with a probability distribution PE . This implies that any
differences in efficiency are purely random because they all come from the same
distribution PE . On that basis, firm inefficiency appears to be related neither to
xk nor to yk . This outcome is not satisfactory.

2. We bootstrap the set X D f.x1; y1/; : : : ; .xK ; yK/g, and for each bootstrap
sample, b, we estimate the technology T b and the efficiency Ekb for firm k.
When we make B bootstrap samples, B replicas, we can calculate the mean
and variance of the efficiency of firm k using NEk� D 1

B

PB
bD1Ekb and

1
B

PB
bD1.Ekb � NEk�/2.
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One problem is that for some firm k, .xk ; yk/ may not be in a bootstrap
sample, a replica b, and .xk ; yk/ may not be in the technology set generated
by the bootstrap sample, .xk ; yk/ 62 T �b . This implies that we have a firm
outside the technology set, but one of our assumptions was that all observations
are inside the technology set with probability 1. If we calculate the efficiency
anyway, we find in this case that Ekb > 1.

This could easily happen for firms where Ek D 1 as a bootstrapped tech-
nology set T � will always be a subset of the technology set bT estimated on all
observations, T � 	 bT , and thereforeEk� � Ek. Essentially, we could in many
bootstrap samples find firms where Ekb > 1.

We could disregard the requirement that all observations be inside the tech-
nology set and just use Ekb D 1 if we obtained Ekb > 1. One problem with
this technique is that the probability of E near 1 will be underestimated be-
cause the method puts a positive probability mass at E D 1 and the estimated
distribution is therefore not a good estimate of the empirical distribution near
E D 1.

6.4.2 Smoothing

The bootstrap sample will nearly always contain repeated values, and if n is small,
then it will even contain values repeated several times. To avoid spikes in the distri-
bution like those that we saw in Fig. 6.3, it is advisable to use a smoothed boot-
strap method to smoothe the distribution. As before, we want to bootstrap the
sample .x1; : : : ; xK/. Here, the sample is constructed in the following way: For
r D 1; : : : ; K

1. choose k at random with a replacement from f1; : : : ; Kg,
2. generate � from a standard normal distribution,
3. set zr D xk C h� and call h the window or band width.

Our bootstrap sample is then .z1; : : : ; zK /, not a real sample from the original sam-
ple .x1; : : : ; xK /, but a smoothed sample. In this way, we smoothen the fixed num-
ber of points to imitate a continuous distribution function of the inputs x. The dis-
tribution for these smoothed points is a normal distribution with variance h2 and is
therefore symmetric around the observation points. When we use the bootstrap sam-
ple to calculate the efficienciesE , there might be a problem for efficiencies near the
boundary at 1 because they must be equal to or below 1. To handle problems related
to E near 1, we can use a reflection method, augmenting the dataset by adding re-
flections of all the points in the bootstrap; i.e. whenever we have efficiency E , we
augment the dataset with the reflection on 1, 2 � E, such that E and 2 � E are
symmetric around 1. Then, we simply use the value below or equal to 1.
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6.4.3 Bias and bias correction

In what follows we shall use the following terms:

�k The true efficiency based on the true but unknown technology T
O�k DEA-estimated efficiency and bT the estimated DEA technology
�kb The bootstrap replica b estimate based on the replica technology T b

�k� The bootstrap estimate of �k
Q�k The bias-corrected estimate of �k

The DEA estimate is upward biased: if there are no measurement errors, then all of
the observations in the sample are from the technology set bT 	 T . Then in OEk �
Ek , because we are minimizing over a smaller set (i.e. the estimated efficiency is
an upward-biased estimate of Ek,), the estimated efficiency may be larger than the
real efficiency. The size of bT depends on the sample, and therefore, Ek is sensitive
to sampling variations in the obtained frontier. If there are measurement errors, then
there is no direct subset relation between bT and T .

To eliminate the bias, we first estimate the bias and obtain a bias-corrected esti-
mate. We can estimate the bias as

biask D EV. O�k/ � �k :

Unfortunately, we do not know the distribution of �k , so we cannot calculate
EV. O�k/. This is where the bootstrap enters in. When �kb is a bootstrap replica
estimate of �k , the bootstrap estimate of the bias is

biask� D 1

B

BX
bD1

�kb � O�k D N�k� � O�k:

A bias-corrected estimator of �k is then

Q�k D O�k � biask� D O�k � N�� C O�k D 2 O�k � N�k�:

The precision of the estimates can be determined based on the variance of the boot-
strap estimate

O
2 D 1

B

BX
bD1

.�kb � N�k�/2:

6.5 Algorithm to bootstrap DEA

We have argued that the naive use of standard bootstrap methods is not satisfactory
for DEA models, and we have discussed how to improve by smoothing and bias cor-
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Table 6.6 Description of simplified version of boot.sw98

(1) Compute O�k as solutions to minf � j .�xk ; yk/ 2 OT g for k D 1; : : : ; n.
(2) Use bootstrap via smooth sampling from O�1; : : : ; O�K to obtain a bootstrap

replica �1�; : : : ; �K�. This is done as follows

(2.1) Bootstrap, sample with replacement from O�1; : : : ; O�K , and call the results
ˇ1; : : : ; ˇK .

(2.2) Simulate standard normal independent random variables �1; : : : �K .
(2.3) Calculate

Q�k D
(
ˇk C h�k if ˇk C h�k � 1 (Smoothing and reflection

2 � ˇk � h�k otherwise cf. page 172)

Note that by construction, Q�k � 1.
(2.4) Adjust Q�k to obtain parameters with asymptotically correct variance, and

then estimate the variance O
2 D 1
n

PK
kD1. O�k � NO�/2 and calculate

�k� D Ň C 1p
1C h2= O
2 .

Q�k � Ň/

where Ň D 1
n

PK
kD1 ˇk .

(3) Calculate bootstrapped input based on bootstrap efficiency xkb D O�k

�k� x
k .1

(4) Solve the DEA program to estimate �kb as

�kb D minf � � 0 j yk �
KX
jD1

�jyj ; �x
k �

KX
jD1

�jx
kb
j ;

�j � 0;

KX
jD1

�j D 1 g .k D 1; : : : ; n/

(5) Repeat the steps from (21) to obtain the bootstrap estimates

.�1b ; : : : ; �Kb/ .b D 1; : : : ; B/

(6) Calculate the mean and variance of .�1b; : : : ; �Kb/ to get the bootstrap estimate
�k�, the bias-corrected estimate Q�k�, and the variance.

rection. We now present present a simplified method with smoothing of the method
used in the R function boot.sw98.

It has been suggested that B D 1000 is suitable for calculating confidence inter-
vals.
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Table 6.7 Simplified version of boot.sw98 in R

y <- cbind(1,2,3,4,5)
x <- cbind(2,4,3,5,6)

B <- 1000
thetaboot <- matrix(nrow=B, ncol=dim(x)[2])
thetati <- matrix(nrow=B, ncol=dim(x)[2])
# (1)
theta <- 1/dea(x,y,RTS=1,ORIENTATION=1)
N <- length(theta)
h <- 0.014 # bandwidth

# (2.1)
for ( b in 1:B) {

beta <- sample(theta, N, replace=TRUE)
# (2.2)

eps <- rnorm(N)
thetatilde <- rep(0,N)

# (2.3)
for (i in 1:N) {

if ( beta[i]+h*eps[i] <= 1.0 ) {
thetatilde[i] <- beta[i]+h*eps[i]

} else {
thetatilde[i] <- 2.0 -beta[i] -h*eps[i]

}
}
thetati[b,] <- thetatilde

# (2.4)
v = var(theta)
thetastar = mean(beta) + (thetatilde-mean(beta))/(sqrt(1.+hˆ2/v))

# (3)
xstar = theta/thetastar * x
xstar = matrix(1,dim(x)[1],1) %*% theta/thetastar * x

# (4)
thetaboot[b,] <- 1/dea(xstar,y,RTS=1,ORIENTATION=1)

} # for b
# done, now let's see the results
# (6)
print(colMeans(thetaboot),digits=3)
print(colMeans(thetati),digits=3)
bias <- colMeans(thetaboot) - colMeans(thetati)
print(bias,digits=3)
print(sd(thetaboot),digits=3)
boxplot(data.frame(thetaboot),boxwex=.5,ylim=c(min(thetaboot)-.1,1.05))
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The DEA efficiency measures the radial distance in the input space from the
observation point to the boundary of the technology set. We make a premature
bootstrap of the efficiencies and use them to calculate the input vectors with this
bootstrapped efficiency; this is done in step 3 in the above description. These boot-
strapped input vectors are the inputs that determine the bootstrapped technology set
in step 4 from which the final bootstrapped efficiency estimates are calculated. Note
that xkb is on the same ray as xk . We could change this by also making the ray
a random variable in the form of angles to be bootstrapped —i.e. by using polar
coordinates to express xk instead of the usual rectangular coordinates.

Please note that boot.sw98 in FEAR bootstraps the Shaphard efficiency, and
not Farrell efficiency as the R program does in Table 6.7. This is not a problem
because the user has access to the individual bootstrap replica estimates in the com-
ponent boot and then can just use 1/boot for the Farrell bootstrap estimates.

6.5.1 Confidence intervals

As mentioned in Sect. 6.3.1, it is not advisable to calculate 95% confidence intervals
because Q�k˙1:96
� as the distribution might not be a normal or symmetric; rather, it
could be a skewed distribution or could have larger or smaller tails than the normal
distribution. Instead, it is advisable to use the R function quantile. That is, to
calculate a 95% confidence interval for firm 3, use

quantile(thetaboot[,3],probs=c(.025, .975),type=8)

If we do not include the firm index, here 3, then the interval is based on all firms.
This does not make any sense because the different firms have different efficiency
levels, and we must determine the confidence interval for one firm at the time. For
a 90% confidence interval, we just use probs=c(.05,0.95). To determine the
intervals for all firms, we can use

apply(thetaboot, 2, function(x) {
quantile(x,probs=c(.025, .975), type=8, na.rm=TRUE) })

In the R function boot.sw98 as part of the FEAR package, the confidence interval
is estimated for the bias-corrected distance function values.

6.6 Numerical example in R

We will use the small examples from Table 6.8 to estimate the standard errors of
the efficiency estimates and the confidence intervals for the input distance functions
with a variable return technology. The R program including the data using the func-
tion boot.sw98 is shown in Table 6.9.

The output is shown in Table 6.10. Note that if the aim is to obtain estimates
of variance, the number of replicates, the value of the parameter NREP, must be at



6.6 Numerical example in R 177

Table 6.8 1 input og 1 output example

Firm x y

1 2 1

2 4 2

3 3 3

4 5 4

5 6 5

0

0

11

1

22

2

33

3

44

4

55

5

6

6 7

x

y

crs

vrs

Table 6.9 Bootstrap DEA, R program

library(FEAR)
# Data
y <- cbind(1,2,3,4,5)
x <- cbind(2,4,3,5,6)

# DEA, Shephard input distance function,
d <- FEAR::dea(x,y, RTS=1, ORIENTATION=1)
# Efficiencies
print(1/d,digits=3)
print(mean(1/d),digits=3)

# Bootstrap
b <- boot.sw98(x,y, RTS=1, ORIENTATION=1, NREP=2000)
print(b,digits=3)
print(sqrt(b$var),digits=3)

least 50; correspondingly, to obtain confidence intervals, at least 100 are required.
It might also be necessary for the number of replicates to be much larger to obtain
stable results for larger datasets; however, that relation has not been tested as of this
writing. Part of the output is the individual replications, returned as item boot. All
of the output items are described in the help file for boot.sw98 in the FEAR pack-
age; from inside R, we use the command ?boot.sw98. In the last line, we have
calculated the standard error of the input distance, the square root of the variance.

The above method is very simple to use in practice. However, it does have a
pedagogical drawback: everything is hidden in the function boot.sw98. To make
up for this, we mimicked the function in R statements to see the inner working of
bootstrap in DEA, just as we did for the traditional bootstrap procedure in section 6.3
on page 165.

The bias-corrected estimate is in item dhat.bc and can also be found by sub-
tracting the bias from the DEA estimate of the distance function value, item dhat;
i.e. b$dhat � b$bias. The confidence interval is estimated around the bias-
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Table 6.10 Output from bootstrap

> # Efficiens
> print(1/d,digits=3)
[1] 1.000 0.625 1.000 0.900 1.000
> print(mean(1/d),digits=3)
[1] 0.905
> # Bootstrap
> print(b,digits=3)
$bias
[1] -0.143 -0.151 -0.130 -0.101 -0.150

$var
[1] 0.00914 0.01061 0.00707 0.00538 0.01358

$conf.int
[,1] [,2]

[1,] 1.01 1.35
[2,] 1.61 1.99
[3,] 1.01 1.30
[4,] 1.12 1.42
[5,] 1.00 1.41

$dhat
[1] 1.00 1.60 1.00 1.11 1.00

$dhat.bc
[1] 1.14 1.75 1.13 1.21 1.15

$boot
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] ...

[1,] 0.560 0.565 0.565 0.572 0.572 0.576 0.590 0.591 ...
[2,] 0.983 0.986 1.027 1.037 1.086 1.092 1.107 1.119 ...
[3,] 0.569 0.602 0.611 0.614 0.622 0.626 0.628 0.631 ...
[4,] 0.662 0.701 0.702 0.708 0.713 0.713 0.723 0.727 ...
[5,] 0.533 0.537 0.541 0.543 0.544 0.545 0.550 0.551 ...
...

[,1997] [,1998] [,1999] [,2000]
[1,] 1.00 1.00 1.00 1.00
[2,] 1.60 1.60 1.60 1.60
[3,] 1.00 1.00 1.00 1.00
[4,] 1.11 1.11 1.11 1.11
[5,] 1.00 1.00 1.00 1.00

> print(sqrt(b$var),digits=2)
[1] 0.096 0.103 0.084 0.073 0.117
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corrected estimate. The default confidence interval is 95% but can be changed using
the option alpha. Either a scalar option or a vector option is available, indicating
the statistical sizes of the confidence intervals to be estimated. Thus, alpha=.1
will calculate limits corresponding to a 1:0 � 0:1 D 90% interval.

To explain the confidence interval further, let us recalculate the Shephard input
values to Farrell input values by calculating the reciprocal. This is done below where
the output from the R commands is also shown.

> 1/b$dhat
[1] 1.000000 0.625000 1.000000 0.900009 1.000000
> 1/b$dhat.bc
[1] 0.8764797 0.5707759 0.8855686 0.8228137 0.8705459
> 1/b$conf.int[,c(2,1)]

[,1] [,2]
[1,] 0.7439961 0.9932824
[2,] 0.5030548 0.6218341
[3,] 0.7764515 0.9935884
[4,] 0.7085692 0.8951720
[5,] 0.7082100 0.9940264

Because of the reciprocal property, the upper limit becomes the lower limit and vice
versa, and that is why the index in $conf.int is reversed. These numbers indicate
that the upper limit of the confidence interval 1/b$conf.int is very close to the
estimated efficiency 1/b$dhat, whereas the lower limit is far below. The close-
ness of the upper limits and the efficiencies means that the frontier corresponding
to the upper limit coincides with the DEA-estimated frontier. The lower limit in the
confidence interval for the efficiencies corresponds to a frontier to the left of the
DEA frontier; if we measure the efficiency of the observations against this frontier,
we get the lower limits of efficiency; this frontier is shown in Figure 6.5 on the next
page as a dotted frontier. This frontier corresponding to the lower limit of the effi-
ciencies is far from the efficiency estimates because a variation in inputs during the
bootstrap procedure in which the input gets smaller will enlarge the technology set
and move it to the left (as the new input can be outside the frontier) and will there-
fore create a new frontier. A larger input, on the other hand, will mostly leave the
frontier unchanged because it will be below the already existing frontier. Note that
bias-corrected efficiency is more likely to be in the middle of the confidence interval
because bias correction is intended to correct for the derived bias or skewness in the
DEA estimation.

6.7 Interpretation of the bootstrap results

To further example how to interpret the DEA bootstrap results, let us investigate two
special cases. The first contains just one input and one output, whereas the second
contains two inputs and one output.
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6.7.1 One input, one output

Let us take a closer look at the output in Table 6.10 on page 178 from the R com-
mands in Table 6.9. This is a small problem involving 5 firms, 1 input, and 1 output.
Bootstrap is conducted using the method boot.sw98, and the output includes sev-
eral components or items. The item named $dhat is the estimated Shephard input
distance Function, which is equal to the reciprocal of technical input efficiency, Far-
rell efficiency; i.e. TE D 1

b$dhat . We can see this by comparing lines 8, 13, and
34. The bias-corrected Shephard input distance function is found to be $dhat.bc
in line 37. The bias-corrected Shephard input distance functions can also be found
by subtracting the bias from the DEA estimates; i.e. as $dhat � $bias ; cf. our
discussion of this idea in Sect. 6.4.3 on page 173.

If the bias-estimated distance input function value is Q� , then a point on the bias-
corrected frontier is 1

Q� x where x is the observation of the input. Because we are
looking at input functions and input efficiency, the output y remain the same.

We can plot the observations and the input corresponding to the bias-corrected
Sheppard input distance function by

dea.plot.frontier(x,y,txt=1:N)
dea.plot.frontier(x/b$dhat.bc,y,lty="dashed",add=T)
dea.plot.frontier(x/b$conf.int[,2],y,lty="dotted",add=T)

The options lty specify the line type; the default is solid.
The resulting figure is shown in Fig. 6.5. If we were to draw a random sample
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Fig. 6.5 Bias-corrected frontier, input direction

to estimate the frontier, it would to the right of the 95% confidence frontier with a
probability of 95%.

Another way to demonstrate efficiency and confidence intervals is As shown in
Fig. 6.6, constructed using the following R commands:
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Fig. 6.6 Bias-corrected efficiency estimates (Þ), DEA estimates (ı) and 95% confidence limits—
one input, one output

plot(1/b$dhat,ylim=c(.45,1),main="Bias corr...",
xlab="Firm", ylab="Efficiency")

points(1/b$dhat.bc,pch=5)
for ( i in 1:5 )lines(rep(i,2),1/b$conf.int[i,],type="o",pch=3)

6.7.2 Two inputs

The isoquants for the two inputs are calculated using the following R program,
which is similar to the program for one input and one output in Table 6.9 on page 177
except that the isoquant is plotted instead of the frontier. To plot the isoquant, we
have normalized the inputs with the output and then used an output of 1 for all
firms because then all firms have the same isoquant and can be compared. Thus,
implicitly, we are assuming constant returns to scale.

# The data
y <- t(matrix(c(1,2,3,1,2)))
x <- t(matrix(c(2,2,6,3,6, 5,4,6,2,2), ncol=2))
N <- dim(x)[2]
x1 = x[1,]/y
x2=x[2,]/y
# The frontier for the technologies
dea.plot.isoquant(x1,x2,txt=1:N)
# The observations have dotted lines from origo
for ( i in 1:length(y) ) {

lines(c(0,x1[i]), c(0,x2[i]),lty="dotted")
}
# bootstrap
b <-
dea.plot.isoquant(x1/b$dhat.bc,x2/b$dhat.bc,lty="dashed",add=T)

boot.sw98(rbind(x1,x2),matrix(rep(1,N),nrow=1),NREP=2000,RTS=3)
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Fig. 6.7 Bias-corrected frontier, input direction, 2 inputs

The graphs are in Fig. 6.7. Again, we can see that the bias-corrected frontier is below
the Isoquant, making the technology set larger, and that the upper confidence limit
is increasing it even further.

The graph in Fig. 6.8 is made using the R program lines

plot(b$dhat,ylim=c(1,3),main="Bias corr...",
xlab="Firm",ylab="Distance function")

points(b$dhat.bc,pch=5)
for ( i in 1:5 )lines(rep(i,2),b$conf.int[i,],type="o",pch=3)
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Fig. 6.8 Bias-corrected efficiency estimates (Þ), DEA estimates (ı) and 95% confidence limits –
two inputs

dea.plot.isoquant(x1/b$conf.int[,2],x2/b$conf.int[,2],lty="dotted",add=T)



6.8 Statistical tests using bootstrapping 183

6.8 Statistical tests using bootstrapping

Let us finally illustrate how to use bootstrapping to test hypotheses. Specifically, we
will show how to tests a returns to scale hypothesis, but other tests can be developed
along the same lines.

We wish to test whether the technology set T from which our observations are
sampled exhibits constant returns to scale. Formally, we wish to test the hypothesis
that the technology exhibits constant returns to scale against the alternative, that it
is VRS:

H0 W T is CRS

HA W T is VRS

If we rejectH0, then we can test if the technology set is DRS, but we will leave that
project to the reader.

If the hypothesis is true, then the efficiencies calculated from the VRS technology
are the same as the efficiencies calculated from the CTS technology. If there is not
CRS, then at least one of the efficiencies will be different; i.e. CRS efficiency will
be smaller than VRS efficiency. One way to examine this is to see whether the scale
efficiency, cf. page 99,

SEk D EkCRS

EkVRS

.k D 1; : : : ; K/

is equal to 1 for all firms, meaning that the technology is CRS, or whether there is
at least one firm where it is less than 1, meaning that the technology is VRS. For a
given set of observations of K firms, we must therefore reject the hypothesis if at
least one of the estimated SE has a value less than 1. However, as the connection
between the technology set and the scale efficiencies is an uncertain or stochastic
connection, we must reject the hypothesis if at least one of the estimated SE has a
value significantly less than 1, i.e. if one of the estimated SE is less than a critical
value. The problem is then to compute this critical value.

Instead of looking at the scale efficiencies individually, we could look at the test
statistic

S1 D 1

K

KX
kD1

EkCRS

EkVRS

or the one that we are going to use in the following:

S D
PK
kD1EkCRSPK
kD1EkVRS

: (6.1)

If theH0 is true, then S will be close to 1, and if the alternative is true, then S < 1.
As S � 1 by construction, we will reject H0 if S is significantly smaller than 1.
We therefore seek a critical threshold for the statistic S ; if it is smaller than this
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value, then we will reject the hypothesis. Thus, we seek a critical value c˛ that
will determine whether we rejectH0, the hypothesis of constant returns to scale, if
S < c˛ and Pr.S < c˛ j H0/ D ˛ where ˛ is the size of the test, typically 5%
(˛ D 0:05). The size of the test, ˛ is the probability of rejecting the hypothesis even
though it is true. (This is a type I error.)

Unfortunately, we do not know the distribution of S underH0, and therefore, we
cannot calculate c˛ directly. One way to address this lack of distributional knowl-
edge is to use a bootstrap method, and we will now show that one can bootstrap
the distribution of S under H0. We show how this can be done using a very small
example: the data from Table 6.8 on page 177. First, we enter the data and calculate
the statistic S and its quantile using the following commands in R:

library(FEAR)
y <- cbind(1,2,3,4,5)
x <- cbind(2,4,3,5,6)
e <- 1/dea(x,y,RTS=3)
ev <- 1/dea(x,y,RTS=1)
sum(e)/sum(ev)
nrep <- 2000
Bc <- boot.sw98(x,y,NREP=nrep,RTS=3)
Bv <- boot.sw98(x,y,NREP=nrep,RTS=1,XREF=x,YREF=y,DREF=1/e)
s <- colSums(1/Bc$boot)/colSums(1/Bv$boot)
quantile(s,c(1,2,5,10,15,30,50)/100.0)

We calculate the CRS efficiency (RTS=3), the VRS efficiency (RTS=1), and the
test statistic S from (6.1). The following lines is the bootstrap. First, the variable
nrep is set to the number of bootstrap replications that we will use. Then, we
bootstrap under the null-hypothesis. Thereafter, we bootstrap under the alternative
while assuming that H0 is in fact true by using the option DREF=1/e where 1/e
is efficiency calculated under the CRS technology.

The output is shown in Table 6.11. The estimate of S is 0.802945,which seems to

Table 6.11 Output for test of constant returns to scale

> y <- cbind(1,2,3,4,5)
> x <- cbind(2,4,3,5,6)
> nrep <- 2000
> e <- 1/dea(x,y,RTS=3)
> ev <- 1/dea(x,y,RTS=1)
> sum(e)/sum(ev)
[1] 0.802945
> Bc <- boot.sw98(x,y,NREP=nrep,RTS=3)
> Bv <- boot.sw98(x,y,NREP=nrep,RTS=1,XREF=x,YREF=y,DREF=1/e)
> s <- colSums(1/Bc$boot)/colSums(1/Bv$boot)
> quantile(s,c(1,2,5,10,15,30,50)/100.0)

1% 2% 5% 10% 15%
30% 50%
0.7409859 0.7431850 0.7472870 0.7531393 0.7585869 0.7940538 0.8561436
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be far less than 1, but we only have 5 firms, and the output from quantile shows
that .80 corresponds to a little more than 30%. Therefore, there is a 30% probability
of observing a lower value of S than the one we obtained, and therefore, we do not
reject H0; i.e. we do not reject that there exist constant returns to scale. If we were
to make further calculations under this model, we would therefore assume constant
returns to scale and use a CRS technology.

Earlier, we introduced the idea of the critical value, which can be calculated using
the function critValue, which takes the bootstrapped statistics and the size of
the test as input. We also have at our disposal the function typeIerror, which
calculates the probability of type I error: the probability of rejecting the hypothesis
if it is true.

critValue <- function(s,alfa) {
ss <- sort(s)

}

typeIerror <- function(shat,s) {
reject <- function(alfa) {

quantile(s,alfa,names=F) - shat
}
uniroot(reject,c(0,1))$root

}

Both functions are part of the Benchmarking package. Using the two functions with
the data above yields the output

> shat <- sum(e)/sum(ev)
> shat
[1] 0.802945
> critValue(s,0.05)
[1] 0.7418619
> typeIerror(shat,s)
[1] 0.3337649

Thus, if the estimated value of S is less than the critical value 0.7418619, we reject
the hypothesis. Correspondingly, because the estimate of S , shat, is 0.802945,
we do not reject the hypothesis. The results obtained using typeIerro show that
there is a probability of 0.3337649 that one will obtain a lower estimate of S than
the one we found, or in other words, that we will be making a mistake if we reject
the hypothesis on the basis of our estimate.

6.9 Summary

DEA originates in the operations research and management science, and this means
that the evaluation of DEA models is not a purely statistical exercise. Indeed, histor-
ically the use of traditional statistical tests has not been emphasized. Considerable
progress has however been made in this respect over the last 15 years, and we intro-
duced some important contributions in this chapter.

mean( ss[floor(alfa*length(s))], ss[ceiling(alfa*length(s))] )
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One possibility is to use general non-parametric tests, i.e. tests used when the
underlying distribution is unknown, like Kolmogorov–Smirnov tests and Kruskal–
Wallis tests. Such tests can be used to evaluate a series of different assumptions and
hypothesis but as always they may suffer from limited power.

Another possibility is to rely on parametric tests. If we can make reasonable
assumptions regarding the underlying distribution of inefficiency and noise in the
data, a series of tests are possible. We discussed tests for group differences and tests
for model assumptions. To justify the distributional assumptions in a parametric
approach, we may rely on asymptotic theory, i.e. theoretical properties that can only
be established for large samples. Simulation studies based on samples of moderate
size suggests that such assumptions may well be justified in many applications.

A third approach, and one that has become particularly popular with the devel-
opment of effective computer programs, is the use bootstrapping. The bootstrap is
a computer-based method that can answer many statistical questions. The approach
replicates sampling uncertainty by creating repeated samples of the original sample.
We spend most of this chapter covering bootstrap-based inference in DEA models.
In particular, we showed how to make bias corrections and construct bias corrected
confidence intervals for the individual efficiencies. One advantage of R is that effec-
tive bootstrapping methods for DEA models have been made easily available, not
the least via the FEAR package.

In the appendix, we discuss the use of statistical methods in second-stage anal-
yses, i.e. analyses performed after the development of a benchmarking model, to
validate the model and to explore the possible causes of the variations in efficien-
cies. A common approach in such studies is tobit regression, and we discuss how to
perform and interpret such an analyses.

6.10 Bibliographic notes

Consistency of DEA estimates and asymptotic tests are based on Banker (1993) and
Banker (1996).

The bootstrap method was invented in 1979 and it is now a well established
statistical method. A good reference to the statistical theory of bootstrap with lot
of examples is Efron and Tibshirani (1993); the mathematical level of the book is
moderate. Our description of the bootstrap, and in particular Table 6.1 is taken from
that book. A more advanced text assuming a grounding in statistics is Davison and
Hinkley (1997). The reflection method is described in (Silverman, 1986, 30).

R is based on S, a language and an environment for data analysis. Bbootstrap
methods have been in S almost since the beginning (Chambers and Hastie, 1992).

Bootstrap of DEA model have a winding history, the first attempt was done
around 1992. The bootstrap method for DEA described in this book is from Simar
and Wilson (1998) and Simar and Wilson (2000). Their approch is implemented
in R as boot.sw98 as part of the FEAR library (Wilson, 2008). The simplified
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description of boot.sw98 in Table 6.6 by and large follows Simar and Wilson
(1998).

The tobit model covered in the Appendix was first used by Tobin in 1958 (To-
bin, 1958), is discussed in many textbooks, including Greene (2008) and Maddala
(1983). The tobit model is traditionally used with point of truncation at 0, which
makes the marginal impact relatively easy to calculate. Because efficiency scores
are truncated at 1, we have derived the marginal impact for this case. An impor-
tant critical paper on the tobit approach in benchmarking, Simar and Wilson (2007),
instead proposes the use of bootstrapping. Hoff (2007) also identifies a number of
theoretical issues associated with current practice, but she concludes after analyzing
an actual dataset that the tobit procedure does produce reasonable estimates and,
moreover, can be substituted for by a regular OLS approach under some conditions.
McDonald (2009) questions whether the DEA scores should be seen as a censored
distribution, arguing for the use of a “fractional” model, but he also concludes that
theoretical niceties are of little concern to “instrumentalists”, and that hundreds of
two-stage DEA studies have proven very useful in providing insight into real-world
production processes.

6.11 Appendix: Second stage analysis

When we have estimated the efficiencies of the firms in an industry, we often become
interested in understanding why some firms are more efficient than others. Is their
efficiency related to firm size, CEO age, the fraction of highly educated employees
at the firm, the use of ICT, the business environment in different regions, and/or
other factors?

We may also wonder if the variations in estimated efficiency really reflect vari-
ations in performance or if we may have left out important inputs or output (i.e.
we might be interested in validating the model). Should we have included a mea-
sure of soil quality in a farming model, a measure of socio-economic status of the
model examining students in a school, or a measure of quality in a hospital model?
In developing a benchmarkingmodel for German DSO regulation, cf. Sect. 10.3, we
did, for example, make a final evaluation of several hundreds of omitted candidate
variables.

Both aims are often pursued using what is commonly called second-stage anal-
ysis, i.e. post-efficiency analysis that aims to explain the variations and validate the
model. In this appendix, we discuss the use of statistical methods in second-stage
analyses. The relevance of such analyses and the corresponding methods is not re-
stricted to DEA studies. Other best-practice results can be analyzed using the same
methods.

To investigate if categorial variables like high/low, east/west, and low/medi-
um/high may explain some of the variation, we can use a number of non-parametric
tests: e.g. the Mann-Whitney-Wilcoxon rank-sum test. This is a non-parametric
test used to assess whether two independent samples of observations have equally
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large values. This process is largely equivalent to performing an ordinary parametric
two-sample t-test on the data after ranking the combined sample. We can also use
other non-parametric tests like the Kolmogorov-Smirnov and Kruskal-Wallis tests,
as demonstrated in Sect. 6.2.1. All tests can easily be undertaken in R.

The most common approach used to investigate if a set of continues variables
variables may explain the variations in efficiency is to conduct a tobit regression.
Tobit regression is similar to ordinary regression analysis except that the noise term
is truncated. The use of this method in a benchmarking context is the focus of some
debate in the literature (cf. below), but it is widely applied and is generally consid-
ered to be useful.

Let E be the Farrell input efficiency calculated in a DEA model, an SFA model
or some combination of models (cf. e.g. the combined use of several models in
regulatory benchmarking as explained in Chap. 10). We will return to models of
output efficiency later. We are now interested in modeling how E depends on other
variables z D .z1; z2; : : : ; zq/. That, is we would like to estimate a model

E D g.z; a/:

whereby efficiencyE is explained by the variables z and parameters a.

6.11.1 Ordinary linear regressions OLS

A model is a linear regression ,model

E D a11C a2z2 C � � � C aqzq C " D az C "

where " is a random error that reflects that the model does not completely explain
the efficiency levels. It is easy to estimate this model using OLS. In R, this can be
done using the function lm.

One advantage of this approach is that it is easy to find the marginal effect on
efficiency based on a marginal change in zj :

@E

@zj
D aj ;

Because this effect is independent of the value of all the variables, it is also easy to
interpret—it shows how much the efficiency tends to increase if aj is increased by
one unit.

Although ordinary regressions are widely used in practice, they suffer from a
theoretical problem in a benchmarking setting. They do not take into account that
efficiencies are greater than 0 and less than or equal to 1 and that many efficiencies
are typically at the upper boundary of 1. There is nothing in the method that ensures
that the fitted value, the expected value, or the mean will be less than or equal to 1.
The tobit model for censored regression can be used to solve this problem.
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6.11.2 Tobit regression

When the dependent variable is censored, we do not observe the underlying values
of this variable in all cases. Values in a specific range are reported as a single value.
In the case of E, we can see the underlying efficiencies as a stochastic variable and
the observation of efficiency E as a a censored version hereof where values below
0 are reported as 0 and values above 1 are reported as one. Therefore, the model
becomes

E D

8̂<̂
:
0; if az C " � 0

az C " if 0 < az C " < 1

1 if az C " � 1

Our challenge is to estimate a on the basis of the observed efficiencies Ek from K

firms k D 1; : : : ; K .
In general, we do not have any firms with reported efficiency of 0. Therefore, let

K1 be the number of firms for which E D 1 (i.e. the number of efficient firms) and
K0 be the number of firms for which E < 1. We then have K D K0 CK1.

The probability that E D 1 is the probability that az C " >D 1. Let F be the
probability distribution function for " and f the corresponding density function.
Then the probability of E D 1 is

Pr.E D 1/ D Pr.az C " � 1/ D 1 � Pr.az C " < 1/

D 1� Pr." < 1 � az/ D 1 � F.1 � az/;

and the probability that E D 0 is

Pr.E D 0/ D Pr.az C " � 0/ D Pr." < �az/ D F.�az/:
The case where in which 0 < E < 1 corresponds to E D az C " or " D E � az

such that the density is this case [ED21]is f .E � az/.
The likelihood function for K observations of efficiencies is then given as the

product of the K individual terms for the cases mentioned above.

L D
Y

kWEkD1
Pr.Ek D 1/

Y
kW0<Ek<1

f .Ek � azk/

D
Y

kWEkD1

�
1 � F.1 � azk/� Y

kW0<Ek<1

f .Ek � azk/:

We have here not taken into account that E in the theory could be equal to 0. Be-
cause the number of such observations is 0, the corresponding likelihood factor is 1
irrespective of the value of Pr.E D 0/.

To estimate the above model, we also need to choose a probability distribution
F . The most commonly used distribution is the normal distribution, and in this case,
the model is called the tobit regression model. We will not formulate the likelihood
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function in this particular case but will instead refer the reader to the literature men-
tioned in the bibliographic notes. The actual optimization process is conducted using
standard iterative optimization routines that are also available in R. As part of the es-
timation process using standard programs, the variance of the estimated parameters
is also calculated such that statistical inference is possible.

Now, in benchmarking applications, we are typically interested in knowing the
marginal effect of a marginal change in one of the explanatory variables z. In the
OLS framework, these effects are readily available as the parameter estimates a. In
the tobit framework, they are more difficult to determine, and we will provide them
here.

In the rest of this section, we use EV for the mean or expectation of a random
variable to be able to distinguish the mean EV from efficiency E . We are interested
in knowing how EV.Ejz/ varies with z, i.e. how a change in z influences efficiency
E on average. The conditional expectation consists of three parts corresponding to
the three parts of the model for E .

EV.Ejz/ D
Z
E dPr.Ejz/

D
Z
0 dPr.E D 0jz/C

Z
E dPr.0 < E < 1jz/C

Z
1 dPr.E D 1jz/

D
Z 1�az

�az
" dPr."jz/C 1 � Pr." < 1 � azjz/:

where there last equality can be verified by inserting the definition ofE and making
a few reformulations.

We now calculate the two probability terms separately. The last is simple to cal-
culate when we assume that the error term is normally distributed, i.e. " � N.0; 
2/.
The first term is slightly more complicated because it involves real integration. The
final result is that

EV.Ejz/ D az

	
ˆ
�1 � az




�
�ˆ

��az



�

C 


	
'
��az



�
� '

�1 � az



�

C 1 �ˆ

�1 � az



�
:

Although this process looks complicated, the terms can interpreted simply based on
the defining equation. The last two terms, 1 � ˆ, correspond to the effect of the
firms where E D 1 multiplied by the probability of this event. The first term is the
linear effect az multiplied by the probability that 0 < E < 1. The second term is
the effect of the error term ". In the linear model, the OLS model, this effect is zero
because the expected value of " is 0, but here, the mean of " is conditioned to the
interval where 0 < az C " < 1, i.e. �az < " < 1� az.

Based on the above, we can also find
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EV.Ej0 < E < 1; z/ D az C 

'
�

�az
�

�
� '

�
1�az
�

�
ˆ
�
1�az
�

�
�ˆ

�
�az
�

� D az C 
 M.az/

where the functionM.�/ is called the inverse Mills ratio.
Now we can determine how EV.Ejz/ varies with z by finding the derivative of

EV.Ejz/ w.r.t. z. To do so, we must find the derivatives of the individual terms in
EV.Ejz/. We will not present the details here, but we should note that they make
use of the chain rule and the fact that ˆ is the antiderivative of � such that ˆ0 D '

andˆ.t/ D R t
�1 '."/ d". By collecting terms and canceling out where possible, we

get
@EV.Ejz/

@zh
D ah

	
ˆ
�1 � az




�
�ˆ

��az



�

: (6.2)

Again, the results are easy to interpret: the term ah corresponds to the linear term
that we also found for the OLS model in Sect. 6.11.1, but here, it is corrected for the
probability that 0 < E < 1. If E D 0 or E D 1, then a marginal change in z will
not change E .

All of the above calculations can be easily done numerically; both ˆ and ' are
available as functions in R, as we shall see in the numerical example.

Output efficiency and tobit

For output efficiency F , we have F � 1; therefore, the model is

F D
(
az C " for az C " > 1;

1 otherwise,

where there is no upper bound; the bound that was an upper bound for input effi-
ciencyE is here a lower bound. To determine the expectation of F , we use some of
the same terms as before. However, we use them a little differently and derive

EV.F jz/ D ˆ
�1 � az




�
C az

	
1 �ˆ

�1 � az




�

C 
 '

�1 � az




�
;

and the derivative w.r.t. zh becomes

@EV.Ejz/
@zh

D ah

	
1 �ˆ

�1 � az



�

:

Again, this corresponds to the derivative of the expected figure for input efficiency
where the upper bound is now the lower bound and the upper bound is infinity. The
interpretation is also as before; the linear effect ah is multiplied by the probability
that F > 1, i.e. 1 minus the probability that F D 1.

mailto:@EV.Ejz
mailto:@EV.Ejz
mailto:@EV.Ejz
mailto:@EV.Ejz
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Fig. 6.9 Efficiency in Norwegian forestry
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Fig. 6.10 Explaining efficiency by the absence or
presence of a forest plan (z6 D 0; 1)

6.11.3 Numerical example in R

We use a data set for 113 farmers in forestry in Norway. The basic DEA model
is quite simple; it includes just two inputs and one output. The input variables are
the value of the woodland and variable cost, and the output is earned profit. The
variables that we will later use to explain efficiency, are secondary income from
ordinary farming (z1), owner age (z3), and whether there is a long-term plan (z6).

The input efficiencies in a variable-returns-to-scale DEA technology are shown
in sorted order in Fig. 6.9. We see that there is tremendous variation in efficiency
levels and that only a few firms are fully efficient. We may therefore ask what might
explain this variation and what additional variables we should perhaps have included
in the DEA model.

The efficiencies were calculated using the R script in Table 6.12 on the facing
page, where we have also included the second step: an OLS regression and a tobit
regression. The function tobit used to conduct tobit regressions is part of the AER
package. The tobit regression is the R method tobit called with an input formula
just like lm for linear regression. Numerical differences may affect the convergence,
and we therefore ended up rescaling the z1 variable by dividing the original values
by 106; this process yielded a maximal value of 2,49.

In Fig. 6.10, the empirical box plot indicates that firms without a plan are more
efficient than firms with a plan. However, the tendency is only vague, and in the
OLS regression, the parameter for the plan factor, z6 is estimated at �:016, which
indicates that a firm with a forest plan has an efficiency level that is 1.6 percentage
points lower. The standard error of the estimate is relative large, and the t-value of
0.76 shows that the parameter is not at all significantly different from zero. The same
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Table 6.12 Two-stage DEA in R

> library(Benchmarking)
> library(AER)

> x <- cbind(d$x,d$m)
> y <- d$y
> e <- dea(x,y)
> E <- eff(e)
> eOls <- lm(E ˜ z1+z3+z6, data=d)
> summary(eOls)

Call:
lm(formula = E ˜ z1 + z3 + z6, data = d)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.850e-01 1.503e-01 1.231 0.2210
z1 -1.023e-07 6.062e-08 -1.688 0.0943 .
z3 7.425e-03 2.962e-03 2.507 0.0137 *
z6 -1.635e-02 5.479e-02 -0.298 0.7659
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> zz1 <- d$z1/1e6
> eTob <- tobit(E ˜ zz1+z3+z6, left=-Inf, right=1, data=d)
> summary(eTob)

Observations:
Total Left-censored Uncensored Right-censored

113 0 100 13

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.165955 0.165135 1.005 0.3149
zz1 -0.125615 0.066745 -1.882 0.0598 .
z3 0.008456 0.003265 2.590 0.0096 **
z6 -0.010403 0.060475 -0.172 0.8634
Log(scale) -1.171818 0.073290 -15.989 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

estimated parameter in the tobit model is �0:01 with a t-value of �0:17 that is also
not significantly different from zero. Therefore, the tendency we see in the num-
bers is probably purely incidental; it is likely that having a plan does not influence
efficiency.

In Fig. 6.11, the efficiencies are plotted against the variable z1, secondary income
from ordinary farming. The tendency in the figure is that the larger the secondary

Call:
tobit(formula = E ˜ zz1 + z3 + left = -Inf, right = 1, data = d)z6,

> d <- read.csv("norWood2004.csv", header=T, comment.char = "#")
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Table 6.13 Tobit model with continuous age and age below 37 as an explanation

Model Intercept z1 Age z6

Age continuous Estimate 0.166 -0.126 0.008 -0.010

z value 1.0 -1.9 2.6 -0.2

Age < 37 Estimate 0.594 -0.127 -0.202 -0.000

z value 9.8 -1.9 -2.3 -0.0

income, the lower the efficiency level. This may be because farmers spend more
time on secondary work and therefore neglect wood farming to some degree, which
will lead to lower efficiency. The estimated parameter in the OLS regression for
variable z1, determined using method lm as indicated in Table 6.12, is negative.
This supports the impression, based on the figure, that higher secondary income is
associated with lower efficiency. The parameter is only significantly different from
zero at a 10% level; the t-value is only 1.77.

In Fig. 6.12, the age of the owner z3 is plotted against efficiency, and it emerges
that the effect of age is positive and significantly different from zero. The older the
owner, the more efficient the firm. This may indicate that forestry farming is learned
during the practice of forestry. From the figure, we can see that the increase only
occurs below the age of 37. Instead of using age z3 as a continuous variable, we
can also use it as a factor with levels under 37 and over 37. The command used to
estimate a tobit model, where age is this two-level factor, is

tobit(E˜zz1+as.factor(d$z3<37)+z6, left=-Inf, right=1, data=d)

and the results are shown in Table 6.13, where the estimates achieved using age z3 as
a continuous variable are also shown. The difference between the two tobit models

Fig. 6.12 efficiency by the age
3

Explaining
of owner z
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Table 6.14 Comparing marginal effects in the Norwegian forest model

z1 � 10�6 z3 z6
OLS -0.102 0.00742 -0.01635

Mean of effect for all firms -0.114 0.00769 -0.00946
Effect at mean value of z -0.116 0.00782 -0.00962
Effect at min -0.100 0.00673 -0.00828
Effect at max -0.111 0.00748 -0.00920

is minimal. The conclusion is that age matters, but only in the early years, and that
young owner are less effective than older ones.

Let us now turn to the effect of a change in a variable. What would be the effect
on efficiency if the secondary income from ordinary farming increased? As we can
see from the formula, (6.2) the marginal effect of a marginal change in z depends
on the value of the explanatory variables z. To calculate a marginal effect, it must
therefore be for a specific value of z. The value could correspond to a specific firm
or the mean firm. We could also calculate the effect for all firms and then take the
mean. We will show how to do this and then compare the results with those achieved
using the OLS model. In R, the value of the distribution function for a standardized
normal distribution at the point x results from the function pnorm(x), and the
calculations corresponding to (6.2) are shown below:

# The tobit model
eTob <- tobit(E ˜ zz1+z3+z6, left=-Inf, right=1, data=d)

s <- sqrt(var(residuals(eTob)))
# The mean at the effect for all firms
az <- fitted(eTob)
mean(coef(eTob)[2] * (pnorm((1-az)/s) - pnorm(-az/s)))
mean(coef(eTob)[3] * (pnorm((1-az)/s) - pnorm(-az/s)))
mean(coef(eTob)[4] * (pnorm((1-az)/s) - pnorm(-az/s)))
# the effect at the mean of az
az <- mean(fitted(eTob))
coef(eTob) * (pnorm((1-az)/s) - pnorm(-az/s))
# the effect at the min value of az
az <- min(fitted(eTob))
coef(eTob) * (pnorm((1-az)/s) - pnorm(-az/s))
# the effect at the max value of az
az <- max(fitted(eTob))
coef(eTob) * (pnorm((1-az)/s) - pnorm(-az/s))
# the OLS model
lm(E ˜ zz1+z3+z6, data=d)

The results are collected in the Table 6.14.
If we increase z1 with 1 000 000 and increase zz1 by 1, then efficiency E in the

OLS model will decrease by .102. In the tobit model for the firm with the lowest
expected efficiency level, the minimum az, the effect on E is �:100, whereas for
the firm with the highest efficiency level, the effect is �:111. If owner age increases
by 10 years, efficiency increases 10 � 0:0067 D 0:067 for the youngest owners and

# the standard error, needed for the use of standard normal dist.
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10� 0:0078 D 0:0784 for an owner of average age. Therefore, if the efficiency of a
young owner is 60%, then after 10 years, it will be 66.7% ceteris paribus.

Note that the effect of the mean firm is �0:116, whereas the mean of the effect is
�0:114. This is just a small difference, but it is sufficient to show that the change in
efficiency is not linear in the tobit model.

6.11.4 Problems with the two-step method

The tobit model has been used in hundreds of studies of efficiency and productivity
analysis but is also the focus of some recent debates.

An assumption in the model above is that z and " are independently distributed.
If that is not the case, the likelihood function might not factorize as the condi-
tional likelihood function given z. If z and u are not independent, then we may
have EV.ujz/ ¤ EV.u/, and many of our results above will not hold. For instance,
the estimates based on the above-proposed second-stage methods might be biased
and not inconsistent. An alternative is to use bootstrapping methods. Another option
is to use stochastic frontier analysis (SFA), in which the relationship of dependence
between efficiency and the other variables can be integrated into the model formu-
lation by letting the mean and possibly the variance of the half-normal inefficiency
term " depend on z.

Still, theoretical niceties are of little concern to “instrumentalists”, and there is
considerable evidence of the success of two-stage studies in which scores are treated
as descriptive measures.
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