Chapter 6
Backscattering Data

In Sects.6.1-6.8 we describe results of [115]. As to the numerical results of
Sect. 6.8, Figs. 6.2a, b were published in Methods and Applications of Analysis [116]
and are reprinted with permission. Other figures of this chapter were not published
elsewhere.

6.1 Introduction

In Chaps.2-5 we have considered the case of the so-called “complete data”. In
other words, the data were given at the entire boundary of the domain of interest.
In the case of the experimental data of Chap.5 only transmitted data were given,
although they were measured on the transmitted side only and only for a very narrow
view angle. Thus, we have worked with incomplete data in Chap. 5. However, the
most interesting case of incomplete data is the case when they are given at the
backscattering side of the medium. The case of the backscattering data is especially
interesting in military applications. In this chapter we model the most suitable
arrangement for this case, which is to use a single position of the point source and
to measure only the backscattering signal. The target application of this chapter is
in imaging of plastic antipersonnel land mines.

In the case of backscattering data, we have both Dirichlet and Neumann boundary
conditions at the backscattering part of the boundary. These are informative
conditions, since they depend on the unknown coefficient. The Dirichlet boundary
condition models the result of measurements. The Neumann boundary condition
can be calculated, as soon as the Dirichlet condition is known. As to the rest of
the boundary, we have only the radiation condition. This one is a noninformative
boundary condition since it is independent on the unknown coefficient. Hence, we
use this noninformative condition only for a better stability of our algorithm.

Because of the overdetermination in the boundary conditions on the backscat-
tering side, the idea is to use the quasi-reversibility method (QRM). Hence, the
major part of this chapter is devoted to the version of the approximately globally
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336 6 Backscattering Data

convergent method for the case when the QRM solves (2.49) for functions ¢, ;
(Sect.2.6.1). Theorem 6.7 is the central theorem of this chapter. Remarks2.9.4 can
be reformulated for this case. In addition, we present in this chapter our most recent
computational result. In this result, only the Dirichlet boundary condition is used on
the backscattering side of the boundary, and the zero Dirichlet boundary condition
for functions g, ; is assigned on the rest of the boundary. With reference to the QRM,
we present analytical results of [115] as well as some numerical results in 2D and
3D cases. In particular, the 2D computational result was published in [116]. The 3D
result of this chapter was not published before. Computations in 2D were carried
out by Dr. Andrey V. Kuzhuget with a help from both authors of this book, and the
3D result was computed by Dr. Natee Pantong with a help from both A.V. Kuzhuget
and the second author.

In Sect. 6.9, we present results of our work with blind experimental data, which
were collected by a forward looking radar of the US Army Research Laboratory
(ARL); see [126] for a description of this radar. The ARL data were kindly provided
to us, along with the permission to use in this book, by Drs. Lam Nguyen and Anders
Sullivan, who work for ARL. The corresponding joint work is [117]. The ARL data
were collected in the field, unlike the experimental data of Chap.5, which were
collected in a laboratory. Computations for this case were performed by Dr. A. V.
Kuzhuget with a help from the authors of this book.

Because of the structure of these experimental data, only 1D inverse algorithms
have a chance to succeed in this case; see Sect.6.9.2. Thus, we have applied
the 1D version of our algorithm [114]. The 1D version of our approximately
globally convergent numerical method was initially considered in [114] “only as
a preliminary step before applying similar ideas to 2D and 3D cases” (see p. 125
of [114]). This version is based on some approximations, similar with ones of
Sect. 6.6.2. On the other hand, 1D numerical methods of [40,47,51,56,90] do not
use approximations like ours, and they also do not need a priori given good first
guess for the solution. Our experimental data have a number of uncertainties listed
in Sect.6.9.4. One of examples of such an uncertainty is the 1D modeling of the
3D process. Hence, because of these uncertainties, it is yet unclear how techniques
of [40, 47,51, 56, 90] would perform for these experimental data. The question
of comparison of the performance of some of these algorithms with ours for our
experimental data is outside of the scope of the current book.

The QRM was first proposed by R. Lattes and J.-L. Lions in their joint book
[121]. Carleman estimates were not used for the convergence analysis in this book.
It was shown later in [105] that the tool of Carleman estimates is a quite suitable
one for proofs of convergence theorems for the QRM. The latter tool was used in
a number of publications since then, where analytical results for the QRM were
combined with computational ones; see, for example, [49,59, 102, 106-108].

The QRM is designed to find approximate solutions of ill-posed problems for
PDEs, for example, Cauchy problem for the Laplace equation. In particular, it
can handle boundary value problems for PDEs with overdetermined boundary
conditions, and the backscattering data indeed generate this problem for each
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function ¢, ; in (2.49). The QRM minimizes the Tikhonov functional. However,
instead of the traditionally case of a continuous operator, the Tikhonov functional
for the QRM is generated by the linear operator of the corresponding PDE, and this
operator is unbounded of course. A good feature of the QRM is that the uniqueness
and existence of the minimizer (i.e., the regularized solution) for this case follows
immediately from the Riesz theorem. However, the question of convergence of
regularized solutions to the exact one is much more delicate, and it is usually
addressed via a Carleman estimate.

While the QRM was applied only to linear problems in [49,59,102,106—108], our
CIP is nonlinear. This causes the major difficulty, compared with previous works.
Indeed, the QRM is applied only once in the linear case. Unlike this, we need to
apply the QRM on each iteration. However, these iterations cause significant new
difficulties in the convergence analysis. Addressing these difficulties is the major
new point of the convergence analysis of this chapter.

6.2 Forward and Inverse Problems

First, we pose the forward and inverse problems. Below, x = (x1, x2, x3) € R3. The
forward problem is the same as the problem (2.1) and (2.2) in Sect. 2.1:

¢ (x)uy; = Auin R3 x (0, 00), (6.1)

u(x,0) =0,u (x,0) =8 (x — xp) . (6.2)

We impose the same conditions on the coefficient ¢ (x) as (2.3), (2.4) in Sect. 2.1,

except that we require a little bit higher smoothness. Let £2 C R? be a convex
bounded domain with the piecewise smooth boundary d£2. We assume that

c(x) €[l,d], c(x) =1forx € R\, (6.3)
c(x) e C*H(RY). (6.4)
Everywhere below, « = const. € (0, 1). It is convenient for our derivations to

introduce the following set M of functions:
M = {c € C* (R’) : conditions (6.3) hold} . (6.5)

To simplify the presentation and also because of our target application, we now
specify the domain £2 C R? as follows; see Fig.6.1. Let P > 0 be a constant.
Below,

2={x:-P <x1,x2<P,x36(0,2P)},8.Q:U?:lFi, (6.6)
I'N={x:—P <x1,x, < P,x3 =0}, (6.7)
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Back-Reflecting Side

[

Fig. 6.1 Schematic diagram of data collection in the backscattering case. The incident plane wave
falls from the top, and the back reflected data are collected on the top boundary as well

Fzz{xle,xZ::l:P,)C3€(O,2P)}, (68)
F3:{)CI—P <X1,)C2<P,)C3:2P}. (69)

Coefficient Inverse Problem 6.2. Suppose that the coefficient ¢ (x) in (6.1)
satisfies conditions (6.3), (6.4) and is unknown in the domain §2. Determine the
coefficient ¢ (x) for x € $§2, assuming that the following functions g (x,t) and
g1 (x, t) are known for a single source position xy € {x3 < 0}:

“(x’t) |1"1 = 8o (X,t), Uxs (X,l) |F1 = &1 (X,f),l € (O, OO) (610)

Since xy € {x3 < 0}, then it follows from (6.6), (6.7), (6.8), and (6.9) that I is
the backscattering side. Hence, (6.10) models measurements of the backscattering
data. In experiments, usually only the function go (x,?) is measured. One can
approximately assume that this function is known at the entire plane {x; = 0}.
Next, since by (6.3) and (6.6) the coefficient ¢ (x) = 1 for x3 < 0, then solving the
forward problem (6.1), (6.2) in the half space {z < 0} with the boundary condition
u(x,t) |x;=0= go(x,t), one can uniquely determine the function u (x,?) for
x3 < 0,¢ > 0, which gives the function g; (x, ).
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6.3 Laplace Transform

In the case of the backscattering data, we work with an analog of the algorithm of
Sect. 2.6.1. An essential difference, however, is that two boundary conditions (6.10)
generate overdetermined boundary conditions for functions ¢, ; in (2.49). This
overdetermination, in turn leads to the QRM. To derive (2.49), we have performed in
Sect. 2.3 the Laplace transform (2.10) first. Thus, consider the function w defined by

o0
w(x,s) = /u(x,t)e_”dt, fors > s = const. > 0, (6.11)
0
where s > 0 is a certain number. In our numerical studies, we choose s

experimentally. We call the parameter s pseudo-frequency. The function w satisfies
the following conditions:

Aw —s%c(x)w=—=8(x —xp), x e R*, Vs > 5, (6.12)
lim w(x,s) =0,Vs >s. (6.13)
|x|—o00
The condition (6.13) for sufficiently large s = s(c) was established in

Theorem 2.7.1 Theorem 2.7.2 provides more properties of the solution of the
problem (6.12), (6.13). In particular, it follows from this theorem that if ¢ € M,
where the set M is defined in (6.5), then for every s > 0, there exists unique solution
w of the problem (6.12), (6.13) of the form

w = wi +w, where w € C?17 (R?), (6.14)
wi (x,5) = w' (6.15)
41 |x — xol

The function w; solves the problem (6.12), (6.13) for the case ¢ (x) = 1.

Having the data at only one side I} of the cube £2 is not sufficient for a good
stability of the numerical solution. To provide a better stability, we now derive an
approximate boundary condition for the function Inw at the rest I, U I3 of the
boundary 952. It follows from (6.15) and (2.101) that the function w satisfies the
radiation condition at the infinity, limy|— oo (35w 4 sw) (x) = 0, where Jjyw =
d,w is understood in terms of spherical coordinates with the radius r := |x — x| .
Hence, assuming that the number P in (6.6)—(6.9) is sufficiently large, we impose
the following approximate boundary condition at I, U I3L:

(anw + SW) Irzuf'3= 0. (6.16)

It follows from (6.16) that

dn (Inw (x,5)) [nur,= —s. (6.17)
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Actually, condition (6.17) is not an informative one. This is because it is independent
on the target coefficient ¢ (x) . Hence, it is logical to use (6.17) only for a better
stability of the algorithm.

We have verified the approximate boundary condition (6.16) computationally,
both in 3D and 2D cases, as follows. For a variety of cases modeling our target
application to imaging of antipersonnel plastic land mines (Sect.6.1), we have
computationally solved the forward problem for (6.12) in a domain 2, which was
much larger than the domain £2 in (6.6), £2 C ?2, 992 N 92 = @. Because of
(6.13), we have imposed the zero Dirichlet boundary condition at 0. Next, we
have solved (6.12) in the domain §2 with the boundary condition (6.16) at I, U 3.
As to I, we have used the Dirichlet boundary condition, which was calculated
from the above solution of the forward problem in 2. When doing so, we have
used the same values of the parameter s for which we have numerically solved our
inverse problem. Comparison of these two solutions has consistently revealed that in
a subdomain §2 C £2, whose boundary had a small distance from I U '3, these two
solutions have almost coincided. Thus, the above provides a numerical justification
for the approximation (6.16).

Remark 6.3. A heuristic explanation of a low sensitivity of the function w (x, s) to
the choice of boundary conditions at I, U I'; is the following. Consider two arbitrary
points x; # xo and x; # xo with |x, — xo| > |x; — Xo| . Then, the function

wi (x2,5)
w1 (Xl,S)

f(x2.8) =

decays exponentially as |x, — x;| — oo, and the point x; is fixed. In terms of
practical computations of the CIP 6.2, this means that one can use such a boundary
condition for the function w at I U I'; which provides best computational results.
On the other hand, this condition will always be a noninformative one. We also refer
to Chap. 5 for an analogy, since we have assigned in this chapter a noninformative
boundary condition to those five sides of the prism £2 where experimental data were
not collected.

6.4 The Algorithm

6.4.1 Preliminaries

The algorithm is similar with the algorithm of Sect. 2.6.1. Therefore, we are rather
brief in Sects. 6.4.1 and 6.4.2. However, an essential difference is in the method of
solving of (2.49). Indeed, while the problem (2.49), (2.50) is the Dirichlet boundary
value problem, which we solve via the FEM, in the case of backscattering data,
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(2.50) is replaced with overdetermined boundary conditions. The overdetermination
is generated by two functions go (x,¢) and g; (x, t) instead of just one in (2.5) for
the coefficient inverse problem 2.1.

Quite often, in applications, one can assume that actually, the coefficient
c(x) = 1 for x € R*\G where G C £ is such a subdomain of £2 which is a
little bit smaller than the domain of interest £2. We are doing this here for the sake
of convenience of the convergence analysis. Let P, = const. € (0, P). Denote
R2p, = 2 N {x3 € (0, P,)}. We assume below that ¢ (x) = 1, Vx € R\ 2p,.
Consider a subdomain 2’ C 2p, with 2’ N 3§2p, = @. Choose a function
x1 (x) € C? (R?) such that

1in £/,
X1 (x) = { between 0 and 1 in 22p,\$2,
0 outside of £2p,.

Next, let y, (x) be the characteristic function of the domain $2p,:

1 in .sz,

X) =
12 (%) 0 outside of £2p,.

Let ¢,k (x), x € £2 be the function reconstructed by the algorithm described
below. Then, by (6.34) and (6.35),
ek €[1,d], cor €CY (R2). (6.18)
Similarly with Sect. 2.6, we extend the function ¢, ; (x) in the entire space R* as
Cuk () == (1= 1 () + 11 (¥) Cui (). ¥x € R (6.19)
Then it follows from (6.5), (6.18), and (6.19) that
Cnx € M. (6.20)

We work below only with the function w (x, s),s > 0. Let in (6.12) the coeffi-
cient ¢ € M. Then Theorem 2.7.2 implies that there exists unique solution w (x, s)
of the problem (6.12), (6.13) satisfying conditions (6.14) and (6.15). Furthermore,
w(x,s) > 0 for x # xo. Hence, similarly with Sect.2.3, we consider functions
v(x,s),q (x,s) defined as

Inw (x,5) v (x,s)

v(x,s) = —a q(x,s) = PP (6.21)
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Hence,
Av+ 2 (Vv =c(x), x € 2. (6.22)

Assume that we work on the interval s € [s,s] . Hence,

v(x,s) =—/q(x,t)dr+V(x),

Vx):=V(x53) = Inw(x.5) (6.23)

EZ

where V' (x) is the tail function. Assuming that conditions of Lemma 2.3 hold, we
have the asymptotic behavior similar with the one of Sect. 2.3:

1
IV Sy = 0350, (6.24)

1
I Dy = 0 () 5 o (625)

6.4.2 The Sequence of Elliptic Equations

Considering the partition of the interval [s,5] into N small subintervals of the
length £,
S =8y <Sy—1 <...<8 =3, Si—1—8 :h,

assuming that the function ¢ (x, s) is constant with respect to s in each of these
subintervals, ¢ (x,s) = ¢, (x), s € (s,,S,—1] and using the s-dependent CWF
(2.38), we obtain similarly with Sect. 2.5 and 2.6.1 the following sequence of elliptic
equations, which is similar with (2.49):

n—I1
Aguic = Ara | 1o 1Y Vg; = VVoi | Vaus

j=0
2

n—1 n—1

= —Ao, | D Vg | 12 () +242,VVak | B Ve | 4y (x)
j=0 j=0
—Az, (VVii)? x € 2,(n,k) € [1,N] x[1,m]. (6.26)

Here,
qo = 0. (6.27)
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In (6.26), m is the number of iterations with respect to tails. We fix this number in
the algorithm of this section. Boundary conditions for functions g, » are

qu|1“1 = Ip‘O,n(x)v ax3qu|1“1 = Ipl,n(-x)v anqu|1“zu1’3 = (628)

nSn—1

The third boundary condition (6.28) is obtained as follows. One can derive from
(6.17) that

1
Onq (x.5) Iurs = . (6.29)

Next, averaging over the interval (s,, s,—1) gives

17 ds 1
aninI’zUl} = % S_Z =

SnSn—1

We assign then

1
SpSn—1 ’

Functions ¥, ,(x) and ¥, (x) in (6.28) are obtained as follows. Let g, (x, s)
and g, (x,s) be Laplace transforms (6.11) of functions go (x,¢) and g (x,?),
respectively. Then

anQnIFZUFg =

w(x,5) [r=go (x,5), duw (x,5) [ =8, (x,5).

Hence, ;
Ing, (x,
g (x.5) In= - (“g()—ﬁ“)) = Yo (x.9), (6.30)
N S
_ 0 (&) )
0nq (x,8) |n= 55 (—s2§o (XJ)) =9, (x,s). (6.31)

Thus, we set

| Sn—1 1 Sn—1
Yo, (x) = 7 / Vo (x,s)ds, ¥,(x) = 7 / ¥y (x,s)ds, x € I7.

Sn

In (6.26), Ay, A2, are the same numbers as ones in Sect.2.6.1.

There are three differences between (6.26) and (2.49). First, the nonlinear term
2 (an,k_l)2 (11,/1p) is not present in (6.26), unlike (2.49). This is because this
term is negligible for the case when in (2.38) Ah > 1; see (2.40). We have indeed
discovered in our numerical studies that this term provides a very small impact
in solutions of CIPs. We point out, however, that neglecting this term does not
mean a linearization. Indeed, the nonlinear nature of the problem still surfaces in
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terms containing V¢ ; as well as in gradients of tails V'V, ; in (6.26). Tails depend
nonlinearly from functions ¢, . The second difference between (6.26) and (2.49) is
in the presence of the function y, (x) in (6.26), unlike (2.49). We need this presence
for our convergence analysis. Finally, the third difference is in the absence of the
term —eq,, x in the left-hand side of (6.26), unlike (2.49).

6.4.3 The Iterative Process

First, we choose an initial tail function V;; (x) € C 2ty (ﬁ) This can be either
V11 (x) = 0 or the function which corresponds to the solution of the problem (6.12),
(6.13) for the case ¢ (x) = 1, which corresponds to the value of the function ¢ (x)
outside the domain of interest §2; see (6.3), or the choice described in Sect. 6.6.2; see
(6.99), (6.100), and (6.101). These choice in our numerical studies are specified in
Tests 1 and 2 of Sect. 6.8.4. Letm > 1 be an integer which we choose in numerical
experiments. For each n € [1, N], we have m inner iterations with respect to the
tails via computing functions g, i, Vi k., k € [1,m].

Step 1y, where n € [1, N],k € [1, m]. Recall that by (6.27), go = 0. Suppose that
functions¢; € H®(£2),j € [l.n — 1] and tails Vi, ..., Vy—1, Vi x € C*17 (2) are
constructed. To construct the function g, x, we use the QRM described in Sect. 6.4.4.
Hence, we obtain the function ¢, € H> (£2). To reconstruct an approximation
¢k (x) for the function ¢ (x), we first use the following discrete analogs of (6.22)
and (6.23):

n—I1

Vi k (xv sn) = _hqn,k ()C) —h qu ()C) + Vn,k (X) , X € Qst (6.32)
j=0

Cok (X) = Avps (X, 50) + 52 [Vvui (x,50)[* . x € 2p,. (6.33)

Since we need (6.20), then, following (6.5), we set

Cok (x), ifChp(x) e[l,d],x € 2p,,
g (x) = 1, ifcp(x) <1,x € 2p,, (6.34)
d,ifc,,(x)>d,x € 2p,.
Since functions ¢;,q,x € H 3(£2). then the embedding theorem implies that
qj.qnk € c? (ﬁ) . In addition, the tail function V,, ; € c*tr @ . Hence, (6.32),
(6.33), and (6.34) imply that

cnk €CY(2p,). (6.35)
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Next, we construct the function €,  (x) in (6.19). Hence, (6.34) and (6.35)
imply (6.20).

Next, we solve the forward problem (6.12), (6.13) with ¢ (x) := T, (x) for
s := 5 and obtain the function w, ; (x,5). Both existence and uniqueness of the
function wy, & (x,5) in the form (6.14), (6.15) are guaranteed by Theorem 2.7.2. We
set for the new tail

1 .S .
Viist (x) = “W’_‘—z(“) e CV () itk <m. (6.36)
s
We also set
cn (X)) i=cpm (X)), gn (X) :=qnm (), x € £2, (6.37)
Vo (0) = Vit (1) 1= Vi (1) 1= #2552 v e 2. (638)

6.4.4 The Quasi-Reversibility Method

Denote
n—1
g (x) = Ay | 12 ()R Y Vg, =V |, (6.39)
j=0
2
n—l n—1
Hy (x) = =A0uh® | YV | 1o (0) + 242, Vs [ )Y Vg | 4o ()
j=0 J=0
— Ao (VVi)?. (6.40)

Note that the function H,; € L, (£2). Because of (6.39), (6.40), the overdeter-
mined boundary value problem (6.26), (6.28) can be rewritten as

Agnic — an ik Vqui = Hyk, (6.41)

ql‘l,k|rl = wo,n(x)v axgql‘l,kh—'] = W],n(x)a anqu|1"2u1“3 = # (642)
Since we have two boundary conditions rather then one at I, we find the “least
squares” solution of the problem (6.41), (6.42) via the QRM. Specifically, we

minimize the following Tikhonov functional

o 1 o
i) = S Au = Vu = Hulyo) + 5 lulliysigy . (643)
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subject to the boundary conditions (6.42). Here, o € (0, 1) is a small regularization
parameter. Let u (x) be the unique minimizer of this functional, the existence of
which is guaranteed by Lemma 6.5.2. Then we set g, x (x) := u (x) . Local minima
do not occur here since (6.43) is the sum of square norms of two expressions, both of
which are linear with respect to u. The second term in the right-hand side of (6.43) is
the Tikhonov regularization term. We use the H> (£2)-norm here in order to ensure
that the minimizer u := ¢, € C*(£2). It was shown in Sect. 6.4.3 that the latter
implies (6.35) and, therefore, (6.20). We call the minimizer u (x) of the functional
I (u) the QRM solution of the problem (6.41), (6.42).

6.5 Estimates for the QRM

In this section, we temporary denote x = (x, y, z) . Although x denotes here both
the vector and its first component, it will be always clear from the context what
exactly x is in any particular place. It is convenient to scale variables in such a way
that in (6.6)—(6.9) P = 1/2. Thus, in Sects. 6.5-6.7,

ol _ 11 11 0! 644
- x_(xsysz)-(xsy)e(_Zsz)x(_zsz),Ze(,E)}. ( )

Below in Sects. 6.5-6.7, C > 0 denotes different generic constants which depend
only on the domain £2 in (6.44), (-, -) denotes the scalar product in L, (£2), and [+, ]
denotes the scalar product in H> (£2).

Let A, v > 2 be two parameters. Introduce the z-dependent CWF K(z):

1
K () := K;,(z) = exp(Ap™"), where p(z) = z + 77 > 0.

This CWF is different from the ones previously used for Carleman estimates for
elliptic PDEs; see, for example, the function ¢ in (1.172) (Sect. 1.10.7) for the
case when its dependence from ¢ is dropped. Note that p (z) € (0,3/4) in £2 and
p(2) |,= 3/4. Let the number x € (1/3, 1) . Denote

.ka{xeﬂzp(z)<%x}.

Hence, if | < %, then §2,, C £§2,,. Also, 2 = §2 and §2,,3 = @. In addition,

vo
K? (z) > exp [2/1 (%x) i| in £2,.
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Lemma 6.5.1. Fix the parameter v > 2. Consider an arbitrary function u &
H?3 (2) such that
ulr=u; |r=0nu|rp=0. (6.45)

Then there exists a constant C > 0 such that for all A > 2 the following Carleman
estimate is valid for all these functions u:

/ (Au)*K?dx > % Z / (D%u)* K%dx + C / [x (Vu)? +A3u2] K?dx

7] lel=2 5 Q2

4 v
—C X ||l 33 () exP [2/\ (5) } .

Proof. 'We have
(Au)2 K? = (u%x + uiy + u?z + 2yt + 2Uxuyy + 2uyyuzz) K?
= (ufm + ”iy + ui) K?* + 9, (2uquZK2 + 2uxuny2)
+0, (2uyuZZK2) — 2upu K* — 2uxuyny2 — 2uyuZZyK2
= (u%x + ”iy + ufz) K?*+ 9, (2uquZK2 + 2uxuny2)
+0, (2uyuZZK2) +0, (—2uxuxyK2) + 2u)2(yK2
+0, (—2uXuXZK2) + 2u)2CZK2 — 42 upu, K2
+0. (—2uyuy.K?) + 2u5 K> — 42vp ™ uyu, K.
Thus, we have obtained that
(Au)2 K? = (u)z(x + uiy + ui + 2u)2(y + 2u§z + 2uiz> K?
—4 vp ! (uxuxZ + uyuyz) K%+ 0, [2 (uxuZZ + uxuyy) Kz]
+0, [2 (uyuZZ — uxuxy) Kz] + 0, [—2 (uxttyz 4 uyny) Kz] . (6.46)

Using the Cauchy—Schwarz inequality,

b2
2ab > —ga* — —, Ve > 0,
e

and taking ¢ = 1/4, we obtain

—4pvp ! (uxuxz + uyuyz) K?>— (u%z + uiz) K2 — 42202 p™ 272 (Vu)? K.
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Hence, (6.46) implies that

(AM)2 K2 > Z (Dau)Z KZ _ 4A,21)2,O_2V_2 (VM)Z KZ
la|=2

+0, [ZMX (uzZ + uyy) Kz] + 0y [2 (uyuZZ - uxuxy) Kz]
+0, [—2 (uxuxZ + uyuyz) K2] . (6.47)

Consider a new function v = uK. Substituting u = vK !, we obtain

(Au)?p" T K2 = (y1 + y2 + y3)* 0" = 2y (1 + y3)pU T, (6.48)
yi=Av, y =2dvp ", y3= ()2 p 221 = (v + 1) ()~ p")v. (6.49)

We have
2y1y2p" T = 0 (4Avv.yy) + dy (4)vazvy) + 0, [2/\\1 (vf —v: - vi)] . (6.50)

Next, by (6.48) and (6.49),
2y233p" ! = 40w)* (72— 0+ D () T vy

=9, [2(11))3 (p—2v—2 — 41w p—v—Z) Vz]

+4)P (v + 1) p23 (1 (v +2)2)! ,0”) V2

> 22342 19, [zuvf (,0_2”_2 — D)) ,0_”_2) v2] .

Hence,

2y, y3p" T 1=223 042324, [Z(Av)3 (,0_2"_2 — W+ 1! ,0_”_2) vz] .

6.51)

Summing up (6.50) with (6.51), using (6.48) and the backward substitution u = vK,
we obtain

(Au)’p" T K? > 20304 ™3P K2 + 0, Uy 4 9,Us + 9.Us, (6.52)



6.5 Estimates for the QRM 349

where the following estimates are valid for functions Uy, U,, Us:
(U] < CA Juy| (Juz] + Avp™ 7" |ul) K2,
|Uz| < CAv Juy | (Juz] + Avp™ " ul) K2, (6.53)
\Us| < CAv (|Vu|2 + szzp_z"_zuz) K2

We now need to incorporate the term A (Vu)? K2 in the right-hand side of the
Carleman estimate. Hence, we continue as follows:

—MuAuK? = 9, (—Avuusz) +0, (—Avuusz) + 0, (—AvuuZKz)
+Av (Vu)? K2 = 2222 p 7 " luuk?
— v (Vu)? K2 — 22303202 (1 L+ 1) ) p”) 2K>
+0,.Us + 0,Us + 9. Us.
Hence,
—MuAuK? > v (Vu)? K2 — 433032 22K2 + 9, Uy + 0,Us + 0,Us,
(6.54)
Uy, = —Avuu, K?, Us = —/\vuusz, |Us| < C (Avu? + szzp_”_luz) K2.
(6.55)

Summing up (6.52) and (6.54) and taking into account (6.53) and (6.55) as well as
the fact that

2/\3v4p—2v—3 _ 4)L3v3p_2”_2 _ 2/\3v4p—2v—3 (1 — 0 (2v)_1) > /\3v4p—2v—3,
we obtain

(Au)’K? — AudAuK? > 2v (Vu)? K2 + 230 p 2P K?

+0.U7 + 0,Us + 0.Up, (6.56)
|U7| < CAv |uy (|uz| + Avpv! |u|) K2, (6.57)
|Ug| < CAv |uy\ (|uz| + Avp vt |u|) K2, (6.58)

Ul = Cav (|Vul” + 2202972 ~22) K2, 6.59)
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Since the number v > 2 is fixed, we can incorporate v in C. Also, since ,0”+1 <1,
we can regard that p”+! < C. By the Cauchy-Schwarz inequality,

1
—MuAuK? < —(Au)?p" T K? + Ekzvzp_”_luzl(z.

N =

Hence, we obtain from (6.56), (6.57), (6.58), and (6.59)
(Au)K*> C [A (Vu)? + A%ﬂ] K%+ 0,Uy + 3,Us + 0.Us. (6.60)

We now divide (6.47) by Ar with a constant7 = r (v) > 0 such that 4v(2)p_2”0_2/r <
C /2, add the resulting inequality to (6.60), and take into account (6.57), (6.58), and
(6.59). Then with a new constant C, we obtain the following pointwise Carleman
estimate for the Laplace operator in the domain £2:

(Au)’K? > % > (Du? K>+ C [A (Vu)® + A%ﬂ] K>

la|=2
+0,Uio + 0,U11 + .U, (6.61)
[Uto] < CAfu] (Jue] + [utyy | + luac| + A Ju]) K2, (6.62)
U] < C [Afuy| (el + Juac] + A Jue]) + [y | |ec]] K2, (6.63)
|Un| = CA [Iunl2 + w4 [V + A%ﬂ] K> (6.64)

We now integrate both sides of formula (6.61) over the rectangle §2 using the
Gauss’ formula. It is important that because of (6.45) and estimates (6.62)—(6.64),
each resulting boundary integral over I} and I will turn out to be zero. We obtain

C
/ (Aw*K*dx = — 3 / (D*u)? K*dx + C / [/\ (Vu)® + W] Kdx
Q2 lal=2 2

—Ck/[lunler Juy. | + |Vu|2+kzu2] K%dS.  (6.65)

I3

Note that

K? (l) = K? (@) [=min K* () = exp [M (i)v} .
2 « ’

Hence,

4\’
/A [|uxz|2 + [uye]” + |Vl + Azuz] K?dx < C2% ul3s ) exp [u (5) } .
I3
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Substituting this in (6.65), we obtain the estimate of this lemma. O

We now establish both existence and uniqueness of the minimizer of the
functional (6.43). Denote afj}c (x),i = 1,2,3 components of the vector function
anx (x)in (6.39). Let

(i)
n.k

( <M, M =const. > 0,i = 1,2, 3. (6.66)
Loo(£2)

Lemma 6.5.2. Assume that there exists a function ® € H? (2) satisfying boundary
conditions (6.42). Also, assume that condition (6.66) holds. Then there exists unique
minimizer u € H> (§2) of the functional (6.43). Furthermore, with a constant C; =
C (M) > 0,

Ci
wll s (@) < ﬁ (HHn k| Ly) + 1@ gsce)) -

Proof. Let U = u — ®. Then the function U satisfies boundary conditions (6.45).
By the variational principle,

(GuiU,Guiv) +a[Uv] = (Hpg — G i@, Griv) —a [@,V],

for all functions v € H> (§2) satisfying boundary conditions (6.45). Here,
GuxU := AU —a,VU. (6.67)
The rest of the proof follows from the Riesz theorem. |

Lemma 6.5.3. Let G, be the operator defined in (6.67). Let the function u €
H? (82) satisfy boundary conditions (6.45) as well as the variational equality

(Gn,kus Gn,kv) + (04 [Ms V] = (Hn,ks Gn,kv) + (07 [gv V] (668)

for all functions v € H? (2) satisfying (6.45). Then
1
lwll sy < ﬁ I Hn il 1y 2y + 18115 (@) -

Proof. Setin (6.68) v := u and use the Cauchy—Schwarz inequality. |

Theorem 6.5. Let G, i be the operator defined in (6.67). Assume that condition
(6.66) holds. Let g € H?’ (2) be an arbitrary function. Let u € H? (2) be the
function satisfying boundary conditions (6.45) as well as the variational equality
(6.68) for all functions v € H?> (2) satisfying (6.45). Let the number x € (1/3,1)
and the number B € (x, 1) . Consider the numbers by, b,
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1 1
=P = o eh T © (O’ 5) ’ (€0
b2 = bz (,3) = % — b1 > 0, (6.70)

where v is the parameter of Lemma 6.5.1. Then there exists a sufficiently small
numberay = a1 (M, B) € (0, 1) such that for all o € (0, &) the following estimate
holds with a constant C; = C, (M, 2) > 0

lull g2,y < Coor™ [ Hnkll 1y + C20” ||g )l () - (6.71)
Proof. 1In this proof, C, = C, (M, §2) denotes different constants depending only

from M and §2. Setting in (6.68) v := u and using the Cauchy—Schwarz inequality,
we obtain

G kully, @) < F? = [ Huill 7,0 + ¢ 181750 - (6.72)

Note that
K?(0) = max K2 (z) = exp (24 - 4").
2

Hence, we obtain from (6.72)
2 - 2 1 )
F?> “Gn,ku”Lz(Q) = ||K 'K - Gn,kMHLZ(Q) > KZ—(O) K - Gn,k”“Lz(Q)
=exp (=214 -4") | K - Gy ull] o) -

Clearly
1
(Gui)’ K2 = — (Au)’ K2 = C1 (Vu)* K2,

Hence,

/ (Au)? K?dxdz < C, / (Vu)* K2dxdz 4 exp (24 - 4") F2. (6.73)
2 2

Applying Lemma 6.5.1 to (6.73), choosing A > 1 sufficiently large, and observing
that the term with (Vu)? in (5.14) will be absorbed for such A, we obtain

4\"
Aexp (21 -4") F2 + G\ ||u||§13(9) exp [2/1 (5) :|

> G Z (D%u)* K2dx
l|<2
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> G Z /(D”‘u)2 K2dx
| <20y

4 v
> Cyexp [n (E) } lull 20, -

Recalling that 8 € (%, 1), we obtain that the latter sequence of inequalities implies
that

4\"
Aexp (2 -4") F2 + G0 ||u||§13(9) exp [2/1 (5) :|

4" 4\
> Crexp [2/1 (g) :| ||u||%{2(9) > Crexp [21 (ﬁ) :| ||“||§12(9)-

Thus,

4 v
Aexp (24 - 4") F? + CoA* [|ul| 33 o) exp [n (3) }

4 v
> Cyexp [n (ﬁ) } |32, -

Dividing this inequality by the exponential term in the right-hand side, we obtain a
stronger estimate:

4\
||u||§12(9%) < Crexp(2A-4") F? + C, ||u||§13(9) exp [—2/1 (%) (1— 'Bv)i| .

(6.74)

Applying Lemma 6.5.3 to ||u||§13(9) in the right-hand side of (6.74), we obtain

1 4\
Il < P fep@r-4 + e [-22 (55) -]l @79

Since ¢ € (0, ) and «y is sufficiently small, we can choose sufficiently large

A = A () such that

exp (24 -4") = a lexp [—u (%)V a- /3”)} ) (6.76)

We obtain from (6.76) that 21 - 4° = Ina~2"'. Hence, (6.74), (6.75), and (6.76)
imply the validity of (6.71). O
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6.6 The Third Approximate Mathematical Model

6.6.1 Exact Solution

First, we need to introduce the definition of the exact solution. Some aspects of this
definition are different from the definition of Sect. 2.8.1. We assume that there exists
a coefficient ¢* (x) which is the unique exact solution of coefficient inverse problem
6.2 with the exact data g5 (x,¢), g} (x, ) in (6.10). We assume that

c*eMnC*(RY), (6.77)

where M was defined in (6.5). The assumption (6.77) is because of (6.3) and (6.4).
Let u* (x,t) be the solution of the forward problem (6.1), (6.2) with ¢ := ¢* and
w* (x, s) be its Laplace transform (3.3) for s > s = s(c*) > 0 (Theorem 2.7.1
Since the source xo ¢ 2, then it follows from (6.77) and Theorem 2.7.2 that
w* (x,5) € C>7 (ﬁ) . Similarly with (6.21), let

_Inw* (x,5) v (x,s)

vi(x,s) = — q* (x,s) = % (6.78)

Let [s, 5] be the s-interval of Sect. 6.4 and s > s (c*) . Since w* (x,s) € C¥7 (£2) .
we assume that

q* € C (2) x C'[s,5]. (6.79)
g™ (o) les+r@)xerfos] = €5 (6.80)
C* = const. > 2, (6.81)

where the constant C * is given. Consider the same partition of the interval [s, 5] into
N small subintervals as one in Sect. 6.4.2. Let ¢,; (x) be the average of the function
q* (x,s) over the interval (s,, $,—1):

Sn—1

1
W=y [ ¢ wsas

Sn

Then (6.79) and (6.80) imply that

max g, (x) = ¢” (x.9) [l cs+y () = CTh. (6.82)

NS [Sn Sn—1
Hence, increasing, if necessary, the number C *, we can assume that

max g, ||ys@) < C*. (6.83)

1<n<N
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Let

W; (X,S) = q* (X,S) |1“17 ‘Vf ()C,S) = axsq* (X,S) |F17 s € [ﬁvﬂ . (684)

Given (6.84), let functions ¥, (x) and %7, (x) be averages of functions ¥ (x, s)
and ¥ (x,s) over the interval (s,, s,—1) . Then boundary conditions for functions
q, (x)at I'] are

q:lﬂ = Wan (X), 8X3q;1k|rl = Wikn(-x) (685)

The exact tail function V* (x) is

Inw* (x,5
V*(x) = “W_—g“) (6.86)
N
The function g} satisfies the following analogue of (6.26):
n—1
Agy— Ay | hY_ Vgl (x) = VV* | Vgr
j=0
2
n—1 n—l1
=—Ap, | D Vgi (x) | +242,VV* | B Vgt (x)
j=0 j=0
Ao, (VV*) 4 Fip (e, B2, gf=0. (6.87)
Similarly with (6.32) and (6.33),
n—1
Vi) = —hgt () —h Y g} (x)+ V*(x) + Fou (x.h) . x € 2. (6.88)
j=0
¢ (x) = AV (x) + 82 |V (0))> + Fa, (x,h) ,x € 2. (6.89)

In (6.87)—(6.89) functions F\, (x,h,A), Fa, (x,h), F3, (x,h) represent approx-
imation errors. In particular, the nonlinear term 2 (1y,/1y) (Vq;l" )2, an analog of
which was ignored in (6.26), is a part of I ,. Although we can prove an analog of
Theorem 6.7 for the case

Fl,n 7é Os F2,n 7é 07 F3,n 7é 07 w:)(n 7é w(lnv w;kn 7é Ip.l,ns

this would require more space while the method of the proof would be almost the
same. Hence, we “allow” now the error in the boundary data at I'} to be present only
ats : = §, see Lemma6.7. Therefore, for brevity only we assume below that

Fin=Fun=F3=0.95, =V, Y1, =V, n€[l.N]. (6.90)
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Using, the idea of the proof of Theorem 2.7.2, it is possible to prove that not
only the function w* (x,s) € C>*7(£2) but also the functions D*w* (x,s) €
C>t7(£2) .k = 1,2. Since this implies that ¢* (x,s) € C3"7 (£2) x C'[s,5],
then it is not necessary to impose this assumption in (6.79). However, we still
prefer to use this assumption because the proof of (6.79) is not our main focus.
The reason why we require the C*-smoothness of ¢* in (6.4) and (6.77) is to ensure
that V* € C317 (£2) . We need the latter to justify that the function p* € H> ()
in (6.92).

6.6.2 The Third Approximate Mathematical Model

The third approximate mathematical model is similar with the second one of
Sect.2.9.2 Some differences with Sect.2.9.2 are due to the fact that we use the
backscattering data now, which was not the case of Sect.2.9.2. Similarly with
Sect.2.9.2, Assumptions 1-3 below mean that we take into account only the first
term of the asymptotic behavior of the function s~™2 Inw* (x,s) at s — oo and
ignore the rest. By (2.105) (Sect. 2.8.1), the equation for the function ¢* is

5 5 2

Aq*—ZsZVq*/Vq* (x,7)dr + 25 /Vq* (x,7)de | +25Vg*VV*

s s

—2sVV* / Vq* (x,7)dt + 2s (VV”‘)2 =0, (x,5) € 2 x][s,5].
(6.91)
The third approximate mathematical model consists of the following three

assumptions:

1. There exists a function p* (x) € H? (£2) such that the exact tail function V* (x)

has the form .
p*(x)

V*(x,s) = , Vs > 5. (6.92)

And also (see (6.86)),
p*(x)  Inw*(x,5)

s 52

(6.93)

2. There exists unique exact solution ¢* of CIP 6.2 satisfying condition (6.77). For
5 >85> s5(c*) > 0, the function g* (x,s) , (x,5) € 2 X [s,5] defined in (6.78),
satisfies conditions (6.79), (6.80).

3. For s € [s, 3], the function ¢* (x, s) satisfies boundary conditions (6.84) at I'| as
well as the boundary condition (6.29) at I, U I'5:
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1
Ing (x,8) [nury = et (6.94)
Since ¢* (x,s) = 9,V * (x,s) fors > 5, we derive from (6.92) that

g* (x.5) = -2 ng). (6.95)

Recall that the boundary condition (6.29) is an approximate one and this is why we
treat (6.94) as an assumption. It follows from (6.94) that

1

g, lnun= (6.96)

nSn—1 '
Setin (6.91) s = 5. Then, using (6.84) and (6.92), (6.95) and (6.94), we obtain the
following approximate PDE and boundary conditions for the function p* (x):

Ap* =0in 2, p* € H* (22), (6.97)
P¥ln = =52 (x,5), 0. p*|In = =¥ T (x.5), 0.0" |nun=—1. (6.98)

The existence of the solution of the problem (6.97), (6.98) is assumed rather than
proved because conditions (6.97) and (6.98) are derived from assumptions 1-3, and
(6.94) is an approximate boundary condition. Let functions ¥, (x,s) , ¥, (x,s) be
boundary conditions in (6.30), (6.31) (Sect. 6.4.2). Suppose that for each & € (0, 1),
there exists the QRM solution p = p (x;) of the following boundary value
problem:

Ap=0in 2, p(x) € H> (), (6.99)

plr = =5V, (x.5), 0, pln, = =5V, (x.5), 0up Inun=—1:  (6.100)

see Lemma 6.7 for the existence and uniqueness of the function p. Then, we choose
an appropriate & € (0, 1) . Next, we set the first approximation for the tail function
in the iterative process of Sect. 6.4.3 as (also, see Remarks 2.9.2)
p(x;a)

Vit (x) = Vi1 (xia) := (6.101)

Remark 6.6.2. Analogs of Remarks 2.9.2 are valid here.

We now establish uniqueness within the framework of the third approximate
mathematical model. Although uniqueness can be proven under less restrictive
assumptions imposed on functions ¢*, p* than ones above, we are not doing this
here for brevity.

Lemma 6.6.2. Suppose that above Assumptions 1-3 hold. Then for (x,s) € §2 X
[s,5], there exists at most one function q¢* (x, s) satisfying conditions (6.79), (6.80)
as well as (6.91). In addition, if assuming the continuous analog of (6.89),



358 6 Backscattering Data

¢* (x) = AV (x) + 52 [V (X)), (x,5) € 2 x [5.5].

where the function v* is the same as in (6.78), then there exists at most one function
*
c* (x).

Brief Outline of the Proof. We outline the proof only briefly because it is simple.
Uniqueness of the problem (6.97), (6.98) is obvious. Having uniquely determined
the function p*, we uniquely find the function V* (x,¥) via (6.92). Substitute this
function V* (x,5) in (6.91). Next, applying the Carleman estimate of Lemma 6.5.1,
we obtain uniqueness of the function ¢* (x, s). The s integrals are not a problem, as
it is clear from Sect. 1.10. |

6.7 The Third Approximate Global Convergence Theorem

Just as in (2.120) (Sect. 2.8.2), assume that
5>1, Ah > 1, (6.102)

where A > 1 is the parameter of the CWF (2.38). As in (2.121), we obtain from
(6.102) that
max {|Ay,] + |A2.|} < 85%. (6.103)
1<n<N

In general, embedding theorems are valid for domains with sufficiently smooth
boundaries. It follows from Lemma 1 of §4 of Chap. 3 of the book [127] that if O
is a rectangular prism, then any function f € H* (Q) can be extended in a bigger
rectangular prism Q1 D 0,90 NJQ; = @ as the function f; € H* (Q}), fi (x) =
S (x)in Q and || fill gk (o,) < Z IIf | g (o) » Where the constant Z = Z (Q, Q1) >
0. Hence, embedding theorems are valid for rectangular prisms. Hence,

1fles@y < CUflus) -V f € H (). (6.104)

Let the domain £2 be the same as in Sect.6.5. Recall that 2, C 2 for x €
(1/3,1) and £2, = £2. Following the construction of Sect. 6.4.1, we assume that

1
P, = const. € (5 1) ,c(x)=1forx e R3\.§2p2, (6.105)

Q'C 2p,, 02" N2p, = 2. (6.106)

Recall that functions ¢, x (x) are defined via (6.19). Since ¢, x (x) # cux (x) for
x € 2p,\82’, then the number meas (£2p,\$2") can be considered as a part of the
error in the data. Hence, we assume that the domain §2’ is such that
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meas (£2p,\22') < =, (6.107)

| ™

where ¢ € (0,1) is sufficiently small. Since by construction ¢, x (x),c* (x) €
[1.d].Vx € R3, and ¢, x (x) = cux (x).Vx € £, then by (6.34), (6.105), and
(6.107),

[Cnk — C*“LZ(Q) < llenk — C*”Lz(g/) +de < |[Chx — C*”Lz(g/) +de. (6.108)

As it is always the case in the convergence analysis of ill-posed problems (see
Chaps. 1, 2, and 4), we need to connect the regularization parameter « of the QRM
in (6.43) with various approximation errors. Those errors are the level of the error o
in the data (Lemma 6.7), the grid step size / in the s-direction, and the number ¢ in
(6.107).

As it was stated in Sect. 6.1, the major difficulty in applying the QRM to the
nonlinear case is caused by many iterations rather than by a single iteration in
the linear case. More precisely, to ensure the stability of our process, we need to
iteratively “suppress” the large parameter ~”' in (6.71). In addition, we need to
estimate tails. These are two reasons of imposing a smallness assumption on the
length f = 5 —s = Nh, where N > 1 is an integer. The latter is similar with
Theorems 2.8.2 and 2.9.4.

For a number x > 0, let {x}° denotes such an integer that x — {x}° € [0,1).
Thus, we impose the following conditions:

o.¢€ (0, /), (6.109)
h=Ja, p:=p@) = Ja{f (@)} = aN, (6.110)

where the function f («) is monotonically decreasing for « € (0, 1),

f () >0fora € (0,1) ’aE)I;[)lJF f (o) = o0 and al_i:ng mf((ioi)l) =0. (6.111)

Two examples of the function f (o) are

fi(w) = [ln (a_l)]r ,r = const. € (0,1)

and
f(x) =1In (ln (0{_1)) .

Recall that the number of iterations can be one of regularization parameters for an
ill-posed problem. On the other hand, one might also have a vector of regularization
parameters. Therefore, one can consider (6.109), (6.110), and (6.111) as the linkage
between regularization parameters (¢, N) := (o, N (o)) between themselves as
well as with “error” parameters (o, &, /) .
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Let (gnk,Cnks Vai) be the triple computed on a certain step of our iterative
process of Sect. 6.4.3. Denote

~ *x ~ — *x T7 *
Gnk =qnk — Gy Cnk =Cnk—C , Vak =V —=V".

Similarly for g, @y, V. Note that since the function ¢* € [1, d], then (6.34) implies
that

lenk (X) —c* (X)] < [Cok () =™ (X)| = [Chx (X)], x € 2. (6.112)

Even though we have assumed (for brevity only) that there is no error in functions
of (6.90), Lemma 6.7 and Theorem 6.7 “allow” error to be present in functions

Yo (x,5), ¥ (x,5) in (6.98).

Lemma 6.7 (estimate of Vl,l). Let the domain §2 be as in (6.44) and the source
Xo ¢ $2. Let assumptions 1-3 of Sect. 6.6.2 hold as well as (6.109). Let ¥* €
H? (2) be a function satisfying boundary conditions (6.98). Suppose that there
exists a function ¥ € H> (R2) satisfying boundary conditions (6.80). Let the number
o € (0, 1) be the level of the error in the function W* when it is replaced with the
function W, B = B (£2,5,d, x9) > 2 be the constant of Theorem 2.9.1.1 and

[ = ¥* | ys2) <0 < Vo, (6.113)

2" 5oy < B. (6.114)

Let the function p = p (x;a) € H? (2) be the unigue QRM solution of the problem

(6.99), (6.100) which is guaranteed by Lemma 6.5.2. Let the tail function V ; (x) :=
Vi1 (x; @) has the form (6.101). Then for every o € (0, 1),

HVVM ||L2(.Q) + ”AVM HLZ(Q) < BV, (6.115)

IVViille@) < B (6.116)

Proof. Note that the existence of the function ¥* follows from the assumed

existence of the function p* satisfying conditions (6.97), (6.98). Likewise the trace
theorem, (6.113), (6.98), and (6.100) imply that

_ _ _ _ o
V5 (x.5) = Yo D1y + 1T (6.5 =¥ (0D 1y = €

where C = C (§2) > 0 is a constant. This means that the error is introduced in the

boundary data ¥ (x,5) ., ¥} (x,5) and its level is proportional to o € (0, /&) . For

brevity, we do not put in this proof the dependence of the function p from «.
Denote

D) =(p=¥) ()~ (p*=¥") ().
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Then the function P (x) satisfies zero boundary conditions (6.100) and
(AD, Av) +a[p,v] = (AlI/* — AY, Av) +a [lll* -y, v] +a [p*,v] ,

for all functions v € H?> (§2) satisfying zero boundary conditions (6.100). Setting
here v := p, and using (6.109), (6.113), and (6.114), we obtain

IABN, @) + @ 1Py < @B (6.117)

Estimate ||A'ﬁ||i2(9) in (6.117) from the below. We have

(AP) = (Ph + P2y +P2) + PPy + P + 2Py P (6.118)
Z’ﬁxx’ﬁyy = ax (zfﬁx’ﬁyy) - 2fﬁx,ﬁyyx = ax (2’1\7/x’1\7/yy) + ay (_zfﬁx’ﬁxy) + 2/1\7/iys
zﬁxxﬁzz = ax (Z;X?zz) - Zﬁxﬁzzx = ax (Z?X?zz) + az (_zﬁxﬁxz) + 2?’?;17

and similarly for 2p,,p... Integrate (6.118) over £2 using these formulas for
products. Since by (6.98) and (6.100) 9,7 |se = 0, then boundary integrals will
be equal zero. Next, use

X

e (69,2 = / o (E.7.2) dE
—1/4

and similar formulas for p,, p,. Using (6.117), we obtain

@B > | AP, = D IDPlL@ = C IV, @) -
la|=2

This, (6.92), (6.101), (6.113), and (6.114) imply (6.115). Next, by (6.104), (6.109),
(6.113) (6.114), and (6.117) |[Vplle(m) < Clipllusi@y < B. This estimate

combined with (6.101) imply (6.116). O

Theorem 6.7 claims approximate global convergence property of the algorithm
of Sects. 6.4.3 and 6.4.4 in the framework of the third approximate mathematical
model.

Theorem 6.7. Let the following conditions hold: ones of Sect. (6.81), (6.90), ones
of Lemma 6.7, as well as (6.102), (6.105), (6.106),(6.107), (6.109), (6.110), and
(6.111). Let the number f € (P2,1), m be the number of inner iterations for
functions qnx, k € [1,m] and [ be the function in (6.110), (6.111). Then there
exists a constant D = D (5,d, xo, C*, f, P, B) > 1, numbers

1 1
bi = by (5.d, %0, C*, f, P2, B) € (O’E)’ b=t



362 6 Backscattering Data

defined in (6.69) and (6.70) and a sufficiently small oy = g (5,d, xo, C*, f, P2, B,
m, N) € (0, 1) such that the following estimates are valid:

lew = * @ < @2, ¥ (n,0) € [1,N] x (0,0) . (6.119)

Thus, the iterative process of Sects.6.4.3 and 6.4.4 is approximately globally
convergent of the level a”2/? in the framework of the third approximate mathematical
model.

Proof. In this proof, B = B (§2,5,d, xo) > 2 is the constant of Theorem 2.9.1.1.
A combination of Theorem 2.7.2 with (6.5), (6.18), (6.19), (6.20), (6.34), (6.35),
(6.36), and (6.37) guarantees the existence and uniqueness of tails V}, . Note that
because of (6.79) and (6.80), the estimate (6.82) does not change when the number
N of subintervals of the interval [s, 5] increases with the decrease of the parameter «.
Let (n,k) € [1,N] x [1,m].

Assuming that the constant D is found, we first estimate the number D2Nm+aybs
Using (6.110) and (6.111), we obtain that there exists a sufficiently small number

0o = 0o (E,d,xo,C*,f,Pz,,B,m,N) € (0, 1),
such that for all & € (0, «g),

S (@)
In (1)

pANmHagh < D4exp{_ln (@) [b2—2m InD }} <% (6.120)

Below, in this proof, o € (0, o). It follows from (6.120) that it is sufficient to prove
that
lew = ¢* @ < D¥™e, ¥ (n,a) € [1,N] x (0, a0). (6.121)

By (6.26), (6.28), (6.40), (6.85), (6.87), (6.90), and (6.96), the function G, x is
the QRM solution of the following problem:

n—1
AGui = Ain | 1o VR Y Vg = VVis | VGus = Hox, (6.122)
j=0
’q’n,k |F1: axsan,k |F1: anan,k |F2UF3: 07 (6123)
where
~ n_l o~
Hyp (x) = A [ 120 hY_VG; = VV,i | Vg
j=0

n—1 n—1
—Aon | X2 (x)hzv-‘ij hZ (qu + Vq;) —2VV,x
j=0 =0
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n—l1
+ A2 VV i [ 26 )R Y Vgs = (VWi + VV)
j=0
n—1 n—1
— (1= 02 () Y Vai = A1, Vay + A2,h) Va; =24,V
j=0 j=0

(6.124)

Let O, (x) be the last line of (6.124). We now estimate this function using
Theorem 2.9.1.1, (6.81), (6.83), (6.103), (6.110), (6.111), and (6.116):

10ull 1oy < 85°C*Va f (@) (C* + Vaf (@) + B) <o, ne[l,N].
(6.125)
First, we estimate g1 ;. Denote

Giiq1,1 = A1 + AL VYV V Gk
The function ¢ satisfies boundary conditions (6.123). In addition, since ¢ is
the QRM solution of the problem (6.122), (6.123), (6.124) for (n, k) = (1, 1), then
the following integral identity holds for all functions v € H? (£2) satisfying (6.123):

(G11G11. Grv) + & [qr1.v] = (H 11, Griv) —a[q].v].
Hiyi= A VV Vg — 42, VV 1 (Vi + VV) + Q1. (6.126)

By (2.195), (Theorem 2.9.1.1), and (6.103), ||A1,1VV1,1||C(§) < 8B5>. Hence,
using Lemma 6.5.3, Theorem 6.5, and (6.83), we obtain

G110l 52y = D (05_1/2 H1~‘11,1 HLz(-Q) + 1) , (6.127)
170102y = P (7 [Hra ]y + @) (6.128)

Estimate now the norm ||I71,1 |L2(Q)' By (2.195), (Theorem 2.9.1.1), (6.83),
(6.103), (6.115), (6.116), (6.125), and (6.126),

|Hia],, ) < 857°C*Ba” + 165" Ba” + o™ < 85°B (C* + 3) ™.
We choose such a constant D that
D >85°B(C* +6). (6.129)

Hence, "
” H, ” L2) = Da'.
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Hence, using (6.127), (6.128). (6.129), and b, = 1/2 — by, we obtain
17111l 5@y < D* (@7 + 1), (6.130)
17110l 2(gy,) < D2 (@272 + o). (6.131)
Since ¢11 =q1.1 + g7, then (6.83), (6.104), and (6.130) lead to
lgriller @) < D (@™ +2). (6.132)

We now estimate |[¢7 ||L2(_Q/) . It follows from (6.32), (6.33), (6.88), (6.89), and
(6.90) that

T = (~hAG + AV )
53 (=hVGis + VV 1) [<hY (qu +q7) +V (Vi + V)]
(6.133)

By (6.120),
DANmEagbr o N1 (6.134)

Hence, (6.83), (6.104), (6.110), (6.129), (6.130), (6.131), (6.132), and (6.134) imply
that

hIAG N Ly (2 - B IV L, (0,,) < 2D%0? < D3 <a”N71 (6.135)
h (”V‘]l,l|lc(§) +2 HVq;‘HC@) < D3 (a” +4a'?) < N7, (6.136)

Next, by (2.195), (Theorem 2.9.1.1), and (6.116), ||V (V11 + V*)IIC@) < 2B.
Hence, using (6.129) and (6.136), we obtain

st |=hV (g1 +47) + V (Via + Ve = D
Hence, (6.115), (6.129), (6.133), and (6.135) imply that

”’EJIJHLZ(Q’) = ||?l’l||L2(9P2) < (B + N_l) (D + l)abz < D2, (6.137)

Hence, (2.196), (Theorem 2.9.1.1), (6.108), (6.109), (6.129), and (6.137) lead to

T % 3 b

HVVL2 HLZ(.Q) + ”AVLZ“LZ(.Q) = D a™. (6.138)
We have obtained estimates (6.130)—(6.132), (6.135), (6.136), (6.137) and
(6.138) starting from the estimates (6.115), and (6.116) for functions V' 1, V.1, V*.

Hence, continuing this process m times, using ¢; = ¢ .1 = €1, and keeping in
mind that by (6.38) V2,1 = Vi +1., we obtain similarly with (6.135)—(6.138)
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"IVl (2p) 1 1AT () < N7 (6.139)
h(IVaille@) +2 Vet le@) < N7 (6.140)
ler = ¢* My < @y < D™, (6.141)

1VVoul ) + 14Vai ] ) < Dol (6.142)

To obtain (6.141) from (6.137), we have used (6.112). Note that the estimate (6.141)
is the estimate (6.121) for n = 1. Thus, Theorem 6.7 is proved for N = 1. Suppose
now that N > 2 Without loss of generality, it is convenient to assume that N > 2.
Letn € [2, N). Because of (6.139), (6.140), (6.141), and (6.142), we assume that

n—1 n—1
—_ n—1
WY VT ey - 22147 L) = o™ (6.143)
j=0 j=0
n—1 n—1
2 (Vo le +2[vai | ) < S5 G140
j=0
HV%JHLZ(QPZ) + HAT/’n,lHLz(%) < p¥n=Dmtlghs (6.145)
”cn—l _C*”LZ(Q/) =< “’En—l,m”]_z(gpz) =< DZ(n_l)mabz- (6-146)
Denote
p2n=bmtlgh.— p ab2. (6.147)

We are going to prove now (6.143), (6.144), (6.145), (6.146), and (6.121) for n :=
n + 1. Because of (6.122), denote

n—1

G i@ = 8Gus — An [ 1o R Y_Vag; = VVii | Vg, (6.148)
j=0

The function G, | satisfies boundary conditions (6.123) as well as the following
integral identity for all functions v € H?> (£2) satisfying boundary conditions
(6.123):

(Gn,lan,lv Gn1v) +a Wn,ls v = (ﬁn,lv Gn,lv) -« [C]:, V] . (6.149)

Estimate the coefficient at Vg, 1 in (6.148). Using (2.195), (Theorem 2.9.1.1),
(6.103), and (6.144), we obtain:

n—l1
At | X2 ()R Y Vg, =V, || < 16B5. (6.150)
j =0
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In terms of Theorem 6.5, an important feature of (6.150) is that this estimate is
independent on 7. Hence, the same constants D, by, b, = 1/2 — by can be used in
(6.151), (6.152) foralln € [2, N). Thus, using Lemma 6.5.3, Theorem 6.5, (6.129),
(6.149), and (6.150), we obtain

101l sy = D (a‘”2 [ Hour] ) + 1), (6.151)
1@ ll2(py) = D (@7 [ Hnt ]y + @) - (6.152)

Hence, using (6.79), (6.80), (6.103), (6.104), (6.124), (6.125), (6.129), (6.143)—
(6.147), Theorem 2.9.1.1, and that B > 2, we obtain

[Fosliy = 85 (" Do) €52 L (M 4 2)

_1
852D, o (2”T 4 23) +aP

< 852 D,_ia” (3 +4B + C ) < DD,_a"

Hence, (6.104), (6.134), (6.145), (6.151), and (6.152) imply that

h (||an,1||c(§) +2 HVqu,l ”C(ﬁ)) < D3D,_ja? < DNmtigh < N1
(6.153)

h ||'q"n,1 ”HZ(QPZ) S D (DDn_lazbz + ab2+1/2) f DZNm+4a2b2 S C(sz_l.
(6.154)
We obtain similarly with (6.133)

n—1

Pcvn,l = _hAEn,l —h Z AE] + AVM
Jj=0

n—1
52| =hVGua —h Y VG + VYV,
Jj=0

n—1
—hV(qn,1+q,’f)—hZV<q1’+4f)+v( 1V
=0

Hence, using (6.129), (6.143)—(6.145), (6.153), and (6.154), we obtain

Ca. 1||L2(9P2) < ( a2 + D, ) [1 + 5 (]’:] + B)] < DDn_labz.
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Hence, (2.196), (Theorem 2.9.1.1), (6.108), and (6.109) imply that
H V2 ||L2(.Q) + HAV”’ZHLZ(Q) < DD,
Similarly fork = 1,...,m,
CnillLy(2n) < D*7'D, o,

”VV%HIHLZ(Q) + ”AV”J""IHLZ(.Q) = DZkD"—labz'

Hence, similarly with the above, we obtain that estimates (6.153), (6.154) are valid
for functions g, k, ¢, x.This implies the validity of (6.143) and (6.144) for n :=
n + 1. Similarly,

llcn i _C*”Lz(ﬂ’) < |r5n.k||L2(9P2) < D¥*D,_ab? = pA=Dmt2kgbr e (1 m],

971 + 147wy = DY Dicra = D¥7 410

The last two estimates establish (6.145) and (6.146) forn :=n + 1. O

6.8 Numerical Studies

6.8.1 Main Discrepancies Between Convergence Analysis
and Numerical Implementation

It is well known that some discrepancies between the convergence analysis and
numerical implementations are almost inevitable for both well-posed and ill-posed
problems. The main reason is that because of the complicated structure of those
problems, the theory usually can grasp only a part of numerical studies rather than
all aspects. For example, as it was pointed out in Sect. 2.10, constants in convergence
theorems usually are significantly overestimated (maybe with the only exception of
a few very simple linear problems).

We now list main discrepancies between the above convergence analysis of this
chapter and the numerical implementation for our specific case. Some of these
discrepancies are the same as ones named in Sect. 3.1.2. The first main discrepancy
is with regard to Lemma 2.3 about a sufficient condition of the regularity of geodesic
lines. In general, an easily verifiable condition of this sort is unknown, except of
the trivial case when the function ¢ (x) is close to a constant. On the other hand,
the authors are unaware about any reasonable results for CIPs for hyperbolic PDEs
without either the assumption of the regularity of geodesic lines or a somewhat close
assumption. We verify the asymptotic behavior of Lemma 2.3 computationally; see
Sect.3.1.2.
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The second main discrepancy is that we replace in our computations « ||u ||§{5( 2)

in (6.43) with « ||u||§,2(9) , because the latter is simpler to implement numerically.
One of the reasons why this works computationally is that we deal with finite
dimensional spaces whose dimensions are not exceedingly large. Recall that all
norms are equivalent in such spaces.

The third main discrepancy is that we conduct computations for the case when
the point source in (6.2) is replaced with the plane wave. This is because the case
of the plane wave is reasonable for our target application to imaging of plastic land
mines, since the wave radiated by a point source effectively becomes a pane wave
when that source is located far from the domain of interest. We have chosen the
point source in (6.2) only because we wanted to use Lemma 2.3. Other than this, the
above technique can be easily extended to the case of the plane wave.

The fourth main discrepancy is that we have ignored in our computations the
function y, (x) in Sects. 6.4.2 and 6.4.3. Indeed, this function was introduced only
for the sake of the convergence analysis.

6.8.2 A Simplified Mathematical Model of Imaging of Plastic
Land Mines

The first main simplification of our model is that we consider the 2D case instead
of 3D, although a 3D numerical test is also presented below. Second, we ignore
the air/ground interface, assuming that the governing PDE is valid on the entire 2D
plane. Results of Sect. 6.9 indicate that the influence of the air/ground interface can
be handled via a data pre-processing procedure.

Let the ground be {x = (x,7) : z > 0} C R?. Suppose that a polarized electric
field is generated by a plane wave, which is initialized at the line {z =7"<0,x¢ R}
at the moment of time ¢ = 0. The following hyperbolic equation can be derived from
the Maxwell’s equations in the 2D case:

e (X = Au, (x,1) € R? x (0, 00), (6.155)
u(x,0) =0, u (x,0) = 8 (z—2"), (6.156)

where the function u(x, ) is a component of the electric field and &, (x) is the
spatially distributed dielectric constant. We assume that the function &, (x) satisfies
conditions (6.3) and (6.4) in 2D. Let the function wy (z, s) ,

exp (= |z — z0])

, 6.157
2 ( )

wo (Zv S) =

be the one which corresponds to the Laplace transform (6.11) of the incident plane
wave with ¢,(x) = 1. Applying the Laplace transform (6.11) to the function u in
(6.155), we obtain the following analog of the problem (6.12), (6.13)
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Aw — szsr(x)w =4 (z — zO) ,s>s =const. > 0,x e R?, (6.158)

limyj—o00 (W — wo) (X, 5) = 0. (6.159)

It is well known that the maximal depth of an antipersonnel land mine does not
exceed about 10 centimeters (cm) = 0.1 meter (m). So, we model these mines as

small squares with the 0.1 m length of sides, and their centers are at the depth of 0.1
m or less. We set

2 ={x=(x.2) € (=0.3,0.3) m x (0,0.6) m}.

Introducing dimensionless spatial variables X’ = x/ (0.1m) without changing
notations, we obtain that the domain §2 is transformed in the dimensionless domain:

2 = (=3,3) x(0,6).

6.8.3 Some Details of the Numerical Implementation

To simulate the data for our CIP, we have solved (6.158) in the truncated domain
G =(—4,4) x(-2,8).

We have used the FDM to solve this forward problem. The boundary condition
(6.159) was replaced with

(w—wp) (x,5) sg= 0. (6.160)

In principle, one might impose radiation boundary conditions at the top and bottom
sides of the rectangle G. However, our computational experience shows that this
would not bring much change for the function w (x, s) inside the domain £2, since
this function decays exponentially with |x| — oco; also see Remark 6.3 for a relevant
statement. To compare, we have also solved once the problem (6.155), (6.156)
and have applied the Laplace transform (6.11) then. Imaging results were almost
the same. To avoid using the §-function numerically, we have solved the problem
(6.158), (6.160) for the function w = w — wy.
We assume the knowledge of functions ¢, (x,s), ¢, (x,s):

w |r1=qo0(x,s),8nw |F1:¢l ()C,S), s € [ﬁsE]s
Oy (Inw (x,8)) |nun,=—s, s € [s,5],

Fl:{X:(X,Z)ZXE(—3,3),Z:O}, FZUF3:8.Q\F1;
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see (6.17) for the boundary condition at > U I'3. Functions ¢, (x,s) , ¢, (x,s) were
obtained in numerical simulations when the above forward problem was solved. We
have added the random noise of the 5% level to the function ¢ (x, s) via

©oo (Xi,0,8,) = ¢y (x;,0,5,) (1 + ow,),0 = 0.05,

where {x;} are grid points of the FDM for the forward problem solution and
® € (—1,1) is a random variable. To calculate the derivative d; [s_z In ((poﬂ / wo)
(xi, 0, s,)] (to obtain the boundary data for g (x;, s,)), we have smoothed first values
of @y, (xi,0,s,) with respect to s via cubic B-splines similarly with, for example,
[73]. Next, we have used finite differences to calculate the desired derivative.

We model land mines as squares with the dimensionless length of the side 1,
which means 10 cm in real dimensions. Centers of those squares are located at the
depths of z = 0.6 and z = 1, which means depths of 6 cm and 10 cm in variables
with dimensions. We took §2p, = (=3, 3) x (0, 3) (Sect. 6.4.1).

Tables of dielectric constants [151] show that in the dry sand ¢, = 5 and ¢, = 22
in the trinitrotoluene (TNT). Hence, the mine/background contrastis &~ 22/5 = 4.4.
Hence, considering new parameters

£,

=" 5 =5-01-45
5

and not changing notations, we obtain

&r(dry sand) = 1, &,(TNT) = 4 .4. (6.161)

Because of (6.161), we impose &, (x) € [1, 8], &, (x) = 1 outside of the rectangle
§2p,. We have modified our algorithm of Sect. 6.4 via considering functions

T(x,5) = iz In [ﬁ (x, s)i| LG (x,5) = 9,7 (x, 5) (6.162)
S wo
instead of |
v(X,s) = M, q (x,5) = dyv(X,5),

where the function wy (z, s) is the same as in (6.157). This has resulted in obvious
modifications of equations of Sect. 6.4. A slight modification of Theorem 6.7 can be
proved for this case.

We have observed in our computations that at the backscattering side I} of the
above square §2 the ratio (w/wp) (x,0,s5) ~ 1 for s > 1.2. This means a poor
sensitivity of the backscattering data to the presence of abnormalities for values of
the pseudo-frequency s > 1.2. The best sensitivity was for s € [0.5,1.2]. Hence,
one should expect that the modified tail function
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In K3
W02(2, 5) ~ 0
5

Vx35)=V(kx5)—

for’s > 1.2, at least for those points x which are located close to I';. Hence, we have
chosens = 1.2 and s € [0.5,1.2] := [s, 5] .

We note that if we would work in the original domain 7] making spatial variables
dimensionless as X" = x/(Im), then s” = +/5s implying that 5" = 12(=
1.2/0.1), which can be considered as a large pseudo-frequency. The latter shows
that in practical computations, the above notion of sufficiently large s is actually a
conditional one and depends on particular ranges of parameters at hands.

The modified QRM functional (6.43) was written in the FDM form. Its minimiza-
tion was performed with respect to the values of the function u (x) at grid points via
the conjugate gradient method. Our regularization term was

a 2 2 2
= [y + Mty + Nty ] -

We have chosen the regularization parameter « = 0.08 and the spatial grid step
size hy, = 0.122. First, we have solved the problem (6.99), (6.100) via the QRM
and thus have calculated the first tail V; | (x) in (6.101). Next, we have continued as
in Sect. 6.4 with m := 10. We have used the spatial grid step size hy, = 0.122
to minimize the QRM functional (6.43) via the FDM. However, our attempt to
decrease it by the factor of 2 to g, = 0.061 has led to a significant deterioration of
computational results.

We took the grid step size in the s-direction as # = 0.1 and have made several
sweeps over the interval s € [0.5,1.2] as follows. Let the function eil) (x) be the
approximation for the function &, (x) computed on the first sweep for [sy, sy—1] =
[0.5,0.6] . We compute the tail function

Inw (x,5:¢V) — Inwg (z, )

v (x) = — ,5=12,
S

where w (x, ;1) is the solution of the problem (6.158), (6.160) with &, :=

D (x) . Next, we set Vl(,zl) (x) := VW (x) and repeat the algorithm of Sect. 6.4.
We have made these sweeps until either

Sﬁp) _ Sip—l)

<107
LZ(QPZ) N

or the gradient of the QRM functional has “exploded,” i.e., when
H VIk (‘1;(1]2)

for any appropriate indices 7, k, p. Here, we use the discrete L (§2p,) norm. Tails
were computed via solving the problem (6.158), (6.160) for s :=5.

>10°
LZ(-QPz)
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The above algorithm has provided us with the function &, ,j0p (X). Next, we have
found points {a; } of local maxima of this function and truncated the threshold as

gr,glob (X) ’ if gr,glob (X) = 0-Ssgr,glob (ai) ,

(6.163)
1 otherwise.

Er.glob (X) =

This truncation was done in neighborhoods of points {a;}. We note that such
truncations are quite common in the image processing.

We have observed in our computations that the above algorithm can accurately
image locations of mine-like targets. However, values of the function &, giop (X) near
points of local maxima were not imaged accurately. Thus, we have applied a two-
stage numerical procedure. While the first stage was the one described above, on
the second stage, we have minimized the Tikhonov regularization functional via
the gradient method taking the function &, g0 (X) as the starting point. This was
done similarly with Sect. 5.8.4. However, while in Sect. 5.8.4, we have applied the
gradient method alone and were not successful, now we have applied it on the
second stage only. Hence, unlike Sect. 5.8.4, we were successful this time. The latter
indicates the importance of the first stage. When applying the gradient method,
we have truncated as threshold 87.5% of maximal values on each iteration of the
gradient method in a neighborhood of each point of local maxima {a;} of the
function &, g10p (X), similarly with (6.163).

6.8.4 Numerical Results

We refer to Fig. 6.1 for the schematic diagram of data collection. In both tests below,
the incident plane wave falls from the top, and measurement data are also collected
on the top side of this rectangular prism. Although only the 3D case is depicted on
Fig. 6.1, the 2D case is similar.

Test 1. We test our numerical method for the case of two squares with the same size
p = 1 of their sides. In the left square ¢, = 6, in the right one ¢, = 4, and ¢, = 1
everywhere else; see (6.161). Centers of these squares are at points (—1.5,0.6) and
(1.5,1). However, we do not assume a priori in our algorithm neither the presence
of these squares nor a knowledge of &, (x) at any point of the square £2. We took
the initial tail for the function v (x, s) in (6.162) as V' | (x,s) = 0. Figures 6.2a and
6.2b display correct and computed images, respectively. Locations of both mine-
like targets are images accurately. The computed function &, comp (X) = 1 outside of
imaged inclusions. Next,

[ ( )] 6 in the left inclusion,
max | & comp (X)| =
’ 4.3 in the right inclusion.
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Fig. 6.2 Test 1. (a) Correct image. (b) Computed image. Locations of both mine-like targets are
accurately imaged. The computed function & comp (X) = 1 outside of imaged inclusions. The
maximal value max &, comp (x) = 6 in the left and max Er.comp (x) = 4.3 in the right imaged
inclusion. Thus, the error in the inlcusion/background contrast is 0% in the left and 7% in the
right imaged inclusion. The noise in the data was 5%. Source: A.V. Kuzhuget, N. Pantong
and M.V. Klibanov, A globally convergent numerical method for a coefficient inverse problem
with backscattering data, Methods and Applications of Analysis, 18, 47-68, 2011. Reprinted with
permission

The error in the computed contrast in the right inclusion is 7%. Recall that the
noise in the data was 5%. Therefore, inclusions/background contrasts are imaged
accurately.

Test 2. The 3D Case. We have used 3D analogs of mine-like targets of Test 1.
The size of the side of each of small cubes of Fig.6.3ais p = 1. In the left cube,
&r = 6, and in the right cube, ¢, = 4. Also, ¢, = 1 everywhere else. The distances
between the centers and the upper side of the rectangular prism §2 were 0.6 in the
left cube and 1 in the right cube. An obvious 3D analog of the problem (6.158),
(6.160) was solved to simulate the backscattering data on the upper side {z = 0} of
the rectangular prism §2 of Fig. 6.3a:

2 =(-15,15) x(-=3,3) x(0,6).

The 5% noise in the data was introduced then, as in Sect. 6.8.3 . Although the data
were simulated in 3D, when solving the inverse problem, we have solved twenty-
three (23) 2D inverse problems in twenty-three (23) uniformly distributed vertical
2D cross-sections {x; = b; }123=1 of the prism £2.

We have solved them simultaneously on twenty-three (23) processors. We have
done so because the QRM works slower in the 3D case than in the 2D case.
In each 2D cross-section, the initial tail function was computed using the QRM
solution of the problem (6.99), (6.100) and formula (6.101). We again have used
(6.162). The above two-stage numerical method was applied. On the first stage, the
approximately globally convergent numerical method of this chapter was applied.
On the second stage, the gradient method of the minimization of the Tikhonov
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Fig. 6.3 Test 2. 3D case. (a) Correct image. (b) Computed image. Locations of both mine-like
targets are accurately imaged. The computed function & comp (x) = 1 outside of imaged inclusions.
The maximal value max & comp (X) = 6 in the left and max &, comp (X) = 4 in the right inclusion.
Hence, the inclusion/background contrast is imaged very accurately for both inclusions

functional was used (Sect.5.8.4). Having images in those 2D cross-sections, we
have formed the 3D image then; see Fig.6.3b. Locations of both inclusions are
imaged accurately on this figure. The computed function & comp (x) = 1 outside
of imaged inclusions. Also,

[ ( )] 6 in the left inclusion,
max | & comp (X) | =
’ 4 in the right inclusion.

Therefore, inclusions/background contrasts are imaged very accurately.

6.8.5 Backscattering Without the QRM

A natural question to pose is can the coefficient inverse problem 6.2 with the
backscattering data (6.10) be solved by the approximately globally convergent
algorithm of Sect. 2.6.17? We now briefly describe in Test 3 one numerical example
indicating that the answer on this question might be positive. This example was
obtained just before submission of the text of this book to the publisher. Hence,
although this example is promising, the corresponding study is not complete yet.

Test 3. In this test, the 2D analog of the coefficient inverse problem 6.2 is considered.
However, the Neumann boundary condition g; (x,?) in (6.10) is not used. The
data for the CIP were computationally simulated via solving the problem (6.155),
(6.156) in a truncated domain, similarly with solving such problem in Sect.4.17.1.
To solve the forward problem (6.155), (6.156), we use the hybrid FEM/FDM
method as in above chapters. The computational domain for the forward problem
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Q= Qprpu UQrpy Qppar Qrewm

Fig. 6.4 (a) Geometry of the hybrid mesh. This is a combination of the quadrilateral mesh in the
subdomain $2gpy (b), where we apply FDM, and the finite element mesh in the inner domain gy
(c), where we use FEM. The solution of the inverse problem is computed in $2ggp. The trace of the
solution of the forward problem (6.155)—(6.156) is recorded at the top boundary I of the finite
element domain 2pgm

g *-Displacemants

069178
047533
0.25887

- 0042411
0.17405

X-Displacemeants

0.80301
054942
0.28583

- 0042238
021135
046485
0.71854

= -0.87213
-1.2257

t=10.0 t=12.0

Fig. 6.5 Isosurfaces of the simulated exact solution for the forward problem (6.155)—(6.156) at
different times with a plane wave initialized at the top boundary

is 2 = [—4,4] x [—1,4]; see Figs.6.4 and 6.5. This domain is split into a finite
element subdomain 2ggy = [—3.5,3.5] x [-0.5,3.5] and a surrounding region
ppym Wwith a structured mesh such that 2ggy U £2ppym. The spatial mesh in gy
consists of triangles, and the mesh in 2ppy consists of squares. In the overlapping
regions, the mesh size is # = 0.125. The trace of the solution of the forward problem
is recorded at the top boundary I} of £2ggy. This represents the backscattering data
in space and time, and our goal is to reconstruct the unknown coefficient &, (x) in
(6.155) from these data inside the domain 2pgy.
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In this test, when solving (6.26) for functions ¢, x, the function y, (x) was not
used, and boundary conditions (6.28) were replaced with the following Dirichlet
boundary conditions:

Gkl = Von(X), quilnur, = wgf’,jf(x). (6.164)

Here functions &O,n (x) are obtained from functions ¥, (x) by setting them to zero

n
correspond to the case of the uniform background outside of the domain 2ggpy.

Recall that by (6.3) c¢(x) = 1 outside of £2. Indeed, we have observed in our
computational simulations that values of the function ¥,(x) on lateral sides of the
rectangle £2ppMm are only very slightly influenced by the presence of inclusions. And
values of ¥, (x) on the bottom side of §2pgym are very close to zero.

Figure 6.6 displays the computed function ¢ (x,s),x € I7 for different values
of the pseudo-frequency s. We have started computations of the function ¢ (x) from
very large values of the pseudo frequency s = 18 and finished with small values
s = 2. We have observed numerically that the behavior of the function |g (x,s)|
for x € I is similar for all pseudo frequencies s < 5. Namely, this function is
close to its maximal value only on a small part of the backscattering side I7; see
Fig. 6.4. This part of the boundary corresponds to the backscatered data from the
inhomogeneity which should be reconstructed. However, all values of the function
|g(x)| fors > 5 are very close to zero; see Fig. 6.4e, f. Based on Fig. 6.7a—f, we have
chosen the pseudo frequency interval for solving the inverse problem as s € [2, 3].
The grid step size with respect to s was & = 0.05. Just as in Sect.5.7, we have
used derivatives of tails d5V, x (x,¥) instead of tails themselves when computing
functions g, x; see (2.182), (5.23), and Sect. 2.8.4 for explanations.

The algorithm of Sect. 2.6.1 was used to calculate the images of Fig. 6.7. Unlike
Tests 1 and 2 in Sect. 6.8.4, the gradient method of the minimization of the Tikhonov
functional was not used here. In other words, only the first stage of our two stage
numerical procedure was used here. Location of the mine-like target is imaged
accurately. Also, €rcomp (x) = 1 outside of the imaged inclusion, which is the
correct value. Finally, max [8r,comp (x)] = 4, which is the correct value. In other
words, the inclusion/background 4 : 1 contrast is also accurately imaged.

outside of dents depicted on Figs. 6.6a, b. The functions wgf‘if (x) are the ones which

6.9 Blind Experimental Data Collected in the Field

In this section, we present results which were obtained for the case of blind
experimental data collected by the forward looking radar of US ARL [126]. We
have obtained five (5) pieces of experimental data. Two of them are described here,
and three more will be described in the paper [117]. All five cases were treated by
exactly the same technique and accurate solutions were obtained for all of them.
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Fig. 6.6 Backscattered data for the function ¢ at the top boundary I of the computational domain
$2ppm computed for the different values of the pseudo frequency s. We observe that for all pseudo
frequencies s < 5, the values of the function |g (x,s)| are close to its maximal value only on
a small part of the boundary I'j. Values of the function ¢ (x,s) at the rest of I} are close to a
constant. At the same time, |g (x,s)| &~ 0,x € I for s > 5. Computations were peformed with
the software package WavES [148]
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Fig. 6.7 (a) The computed image of the function & ; using backscattered data obtained from the
geometry presented on Fig. 6.4a. Here, we used the exact tail and the variational formulation (3.14)
for computing the function & ;. (b) Computed image using backscattered data obtained from the
geometry presented on Fig. 6.4a. Both location and contrast of the inclusion are accurately imaged.
The computed function ¢, = 1 outside of imaged inclusions. The noise level in data is 5%

6.9.1 Introduction

The term “blind”” means here that the mathematical sub-team of the authors of [117]
(A.V. Kuzhuget, L. Beilina and M. V. Klibanov) had only two pieces of information
when computing. The first piece was that only one target per data set was in place.
And the second piece was where that target was located: below or above the ground.
However, the mathematical team did not know neither constituent materials of
targets, their sizes and locations, their dielectric constants nor soil. The engineering
sub-team of the authors of [117] (L. Nguyen and A. Sullivan) knew the complete
information about both the background medium and the targets. However, they have
revealed this information to mathematicians only after computational results were
presented to that team. In particular, it was revealed that the ground was always the
dry sand with the dielectric constant in it:

&r (ground) ~ 3; (6.165)

see [151] as well as Figs. 6.14a and 6.16a. However, this dielectric constant was not
measured directly, but rather was taken from tables [151].

Since dielectric constants of both targets and soil were not measured at the
time when experimental data were collected, computed dielectric constants were a
posteriori compared with tabulated values for constituent materials of those targets
[151]. This comparison has revealed a good accuracy of computational results; see
below.

A peculiar question is how to interpret the dielectric constant of a metallic target?
This question is addressed on Figs. 6.8a, b, which were computed by Dr. Michael
A. Fiddy. Comparison of these two figures shows that metallic targets can be viewed
as dielectric targets with large values of dielectric constants. Hence, we choose
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Fig. 6.8 Comparison of the reflected electric waves from a piece of metal and from a piece
of dielectric with a large value of the dielectric constant. Only a single frequency is used. On
(a) dielectric target with &, = 10 and on (b) metallic target are shown. Comparison of these two
figures shows that reflected fields are very similar. Therefore, a metallic target can be viewed as a
dielectric target with a large value of the dielectric constant &,

the following interpretation, which is only a conditional one and has no physical
meaning:
&,(metal) > 10. (6.166)

We call this conditional dielectric constants for metals. Furthermore, our com-
putational simulations (not shown here) have demonstrated that values of the
backscattering data ¢ (s) := w (0, s) in (6.179) were changing only slightly when
the value of ¢, (target) has increased larger than 10. Therefore, it is unlikely that
target/background contrasts exceeding 10 can be accurately imaged.

6.9.2 Data Collection and Imaging Goal

The schematic diagram of data collection by the forward looking radar is depicted
on Figs.6.9 and 6.10. The goal of this radar is to detect and possibly identify
shallow mine-like targets under the ground (a few centimeters depth) as well as
those lying on the ground. The signals are originated by electric pulses emitted by
two sources installed on the radar with 2 meters distance between sources. Only one
component of the electric field is originated by these pulses. The time dependence
of that component of the electric field is measured in the backscattering regime.
Measurements are performed by sixteen (16) detectors with the step size in time of
0.133 nanosecond. For any target of interest, the radar/target distance is provided by
the ground positioning system (GPS) in real time with only a few centimeters error.

For a shallow target which is located either above the ground or a few centimeters
deep under the ground, the GPS provides the distance between the radar and a
point on the ground located above that target. Resulting time-dependent curves are
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Fig. 6.9 The schematic diagram of data collection by the forward looking radar of US Army
Research Laboratory

integrated over radar/target distances between 20 meters and 8 meters. In addition,
readings of all sixteen (16) detectors are averaged. Hence, for any target of interest,
only a single time dependent curve, which was approximately “responsible” for this
target, was given to us. This means in turn that only a 1D CIP can be solved.

Since the radar/target distance is provided by GPS with a good accuracy,
geometrical parameters of targets, including their depths, are not of an interest here.
On the other hand, the available data processing procedure of this radar delivers
only the energy information. Hence, the main goal of our work was to provide
an additional imaging capability for this radar via imaging ratios R of dielectric
constants:

R = orltareeh (6.167)
&, (background)
Using (6.165) and the value of R in (6.167), one can easily calculate ¢, (target) for
targets located under the ground. In the case when the target is located above the
ground, we have
&, (background) = ¢, (air) = 1.

Hence, R = ¢,(target) for targets located above the ground. Since targets can be
mixtures of constituent materials, then &,(target) is a certain weighted average of
dielectric constants of these materials.
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Fig. 6.10 The experimental setup for backscattered data collected in the field by a radar of the
US Army Research Laboratory

We have imaged the ratio (6.167) rather than the function &, (x) itself because
one of conditions of our theory is that the unknown coefficient should have a known
constant value outside of the domain of interest £2; see (6.3). In our mathematical
model, 2 = (0,1), where “1” stands for 1 meter. The point x = 0 corresponds
to the ground, and {x < 0} corresponds to the air in our mathematical model. We
have assumed that ¢, (x) = 1 for x ¢ £2. However, since the sand is not dry on
the depth exceeding one meter, then (6.165) is invalid for x > 1. Also, values of
er(background) were not measured, but rather were taken from tables [151]. Hence,
computing the ratio R in (6.167) was preferable.

6.9.3 The Mathematical Model and the Approximately Globally
Convergent Algorithm

Since we were given only one time resolved curve for each target, we had no choice
but to solve a 1D CIP. We have modeled the process by the 1D analog of the forward
problem (6.1), (6.2). Following (6.167), let
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5 (1) = R(x) = — 2@ LR, (6.168)

&r(background)

meaning that R (x) is a function. The forward problem is

e (X)) uy = uyy, x €R, t € (0,00), (6.169)
u(x,0) =0,u (x,0) =8 (x —x0), xo = const. < 0. (6.170)
We assume that
g (x) > &% = const.0, Vx € R, (6.171)
g (x) € [80, d] , (6.172)

where d = const. > 1. Also, we assume that
g (x)=1,x¢(0,1). (6.173)

Thus, the interval £2 := (0, 1) is our domain of interest. One of complicating factors
was that neither the “zero time” nor the source/medium distance were not given to
us, i.e., the source position x( in (6.170) was not given. Indeed, it is unclear from
Fig. 6.9 what kind of the distance is between the source and the domain of interest.
We purely intuitively set in (6.170)

xo = —1. (6.174)

Hence, we have assumed that the source is 1 meter away from the domain of
interest. As always, we use the source position outside of the interval of interest
(0, 1) because our technique works only with this case. We consider the following:

Coefficient Inverse Problem 6.9.3. Suppose that the following function ¢ (t) is
known:

u(0,1) =g (1)1 € (0,00). (6.175)

Given conditions (6.169), (6.170), (6.171), (6.172), (6.173), and (6.174), determine
the function g, (x) for x € (0,1).

Hence, the function g (#) models the backscattering data measured by the
forward looking radar. To solve this inverse problem, we have applied the 1D version
of the approximate globally convergent method of this chapter. Thus, the 1D version
of the QRM was applied. Since the convergence analysis in 3D was done above, we
do not present it here. We refer to [114] for details of both the convergence analysis
in the 1D case and for the numerical implementation.

As it was mentioned in Sect.6.8.3, in 2D and 3D cases, we have applied
the two-stage numerical procedure. On the second stage, the Tikhonov functional
was minimized as described in Sect.5.8.4. However, we have observed that the
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application of the second stage to these experimental data has resulted in rather
small changes of solutions. Hence, we have used only the first stage.
In terms of the above notations, we have in the 1D case

N={x=0}, L=, I={x=1}.

Hence, it seems to be that each boundary value problem (6.26), (6.28) can be treated
in the 1D case as the conventional Sturm-Liouville problem for the function g, x.
To do this, one needs to ignore in (6.28) either Dirichlet or Neumann boundary
condition at I} and use two remaining boundary conditions (6.28): one at I} and
the second one at I3. However, our attempt to follow this path did not lead to
acceptable quality solutions for computationally simulated data; see p. 126 of [114].
This indicates that the QRM is probably the optimal choice for the 1D case.
Just as above, consider the Laplace transform:

o0
w(x,s) = /u(x,t) e *'dt, s > 5 = const. > 0, (6.176)
0

where u (x, t) is the solution of the problem (6.169), (6.170). Then

Wy — 528 (X)w = =8 (x —x0), x € R, 6.177)
lim w(x,s) =0. (6.178)
|x|—>o00

In addition, by (6.175) and (6.176),
w(0,5) = ¢ (s), (6.179)

where ¢ (s) is the Laplace transform of the function g (¢). However, to apply the
QRM, we also need to know the derivative:

wy (0,8) = p(s). (6.180)

To find the function p (s), consider first the function wy (x, s) which is the solution
of the problem (6.177), (6.178) for the case &, (x) = 1:

exp (= |x — xo|)

wo (x,5) = 2

Letw(x,s) = w(x,s) —wp (x,s) . Then (6.177)—(6.179) imply that

Wy — 828 (X)W = 52 (& (x) — D wo, x € R, (6.181)

lim w(x,s) =0, (6.182)

|x]|—00
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exp (—s [xo|)

6.183
s ( )

w(0.5) =@ (s) =9 (s) -

Since by (6.173) €, (x) = 1 for x < 0, then (6.181), (6.182), and (6.183) become
for x < 0:

Wy — 82w =0, x <0, (6.184)

lim w(x,s) =0, (6.185)
X—>—00

w(0,5) =9 (s). (6.186)

We can consider (6.184), (6.185), and (6.186) as the boundary value problem on the
half line {x < 0} . Obviously, the unique solution of this problem is

wi(x,s) =@ (s)e’™, x <O0.

Hence,
WX (Os S) = sa (S) N
Next, wy (0,5) = wy (0,5) + wo, (0, s) . Since by (6.174) x¢ < 0, then by (6.180),
wy (0,5) 1= p(s) = 59 (s) —exp (=s [xol) . (6.187)

Therefore, both functions w (0, s) and wy (0, s) are known, which are required by
the QRM. Also, since €, (x) = 1 for x > 1, then (6.177) and (6.178) imply that

w(x,s) =C(s)e ™, x > 1,

where C (s) is a certain function of s. Using

q(x’s):a%(lnw(x,s))’

s2

we obtain the following analog of the boundary condition (6.29):

1
g« (1,5) = . (6.188)
s

Boundary conditions (6.180), (6.187), and (6.188) were used to obtain 1D analogs
of boundary conditions (6.28).
Just as in (6.162), we have replaced functions v (x, s), g (x, s),

vi(x,s) = M q (x,s) = dyv(x,s),
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Fig. 6.11 (a) The medium with a single target and &, (x) = 4 > 1 within this target. (b) The
computed function g (1) = u(0,7) — ug (0, t) for a). Here, u (x, 1) is the solution of the problem
(6.169), (6.170) for the function g, (x) depicted on (a), and ug (x, ¢) is the solution of the problem
(6.169), (6.170) for the case &, (x) =1

with functions vV (x, s) , ¢ (x, s), where

T(x,s) = Slzln [WKO (x,s)i| G0 s) = 05 (x, ). (6.189)

This led to obvious modifications of (6.26) and (6.28).

To approximate tails, one should solve the problem (6.181), (6.182) at s := 5.
Using (6.182), one can prove that the function w (x, s) decays exponentially as
|x| — oo. Hence, we have solved the Sturm—Liouville problem for (6.181) in the
interval x € (—4, 6) with the boundary conditions

w(—4,s) =w(6,5) = 0.

6.9.4 Uncertainties

Similarly with the experimental data of Chap. 5, the data from the forward looking
radar have huge misfits with computational simulations: Compare Fig. 6.12b with
Fig.6.13a as well as Fig.6.11b with Fig. 6.15a. In addition, there are some other
significant uncertainties here, which were not presented in experimental data of
Chap. 5. These difficulties are basically caused by the fact that experimental data
were collected in the field rather than in the controlled environment of a laboratory
of Chap. 5. We now list those factors:

1. We did not have the reference signal for comparison.
2. The direction of the incident plane wave was oblique to the ground rather than
orthogonal; see Figs. 6.14a and 6.16a.
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Fig. 6.12 (a) The medium with a single target and g, (x) = 0.3 < 1 within this target. (b) The
computed function g () = u (0,1) — ug (0, ¢) for (a). Here, u (x, t) is the solution of the problem
(6.169), (6.170) for the function g, (x) depicted on (a), and ug (x, ¢) is the solution of the problem
(6.169), (6.170) for the case &, (x) = 1
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Fig. 6.13 Test 1. (a) A sample of the experimentally measured signal for a buried object depicted
on Fig. 6.14a. It is unclear which part of this curve is responsible for this object and which part is
responsible for the rest of the measured signal. Horizontal axis is time in nanoseconds. It is unclear
where the time ¢ = 0 is. It is also unclear which units are displayed on the vertical axis. (b) Pre-
processed signal of (a). First, we have multiplied the amplitude of (a) by 10~7. This multiplier
was chosen to have about the same values of functions w (0, s) in (6.179) for both simulated and
experimental data. Next, we have selected the peak with the largest absolute value and have set the
rest of the curve to zero. We set zero time ¢ = 0 being 1 nanosecond to the left from the beginning
of the selected peak. We apply our algorithm only to the data of (b)

3. We did not know the units for the amplitude of experimental data. These
amplitudes were about 3 - 10*, which is too large.

4. We did not know the source location. Thus, we have just intuitively assigned by
(6.174) xo := —1.

5. We did not know where the time t = 0 was on the data.
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Radarline of sight

Target is flush buried empty (air-filled) plastic cylindrical container.
Target-to-background dielectriccontrast is around 1/3=0.333 0 0.2 0.4 0.6 0.8 1

Fig. 6.14 Test 1. (a) The real image from which the data of Fig.6.13a were collected. This is
a buried plastic cylinder with &, =~ 1 in it; see [151]. (b) Computed 1D image of (a). Most
importantly, ming, = 0.28, whereas the true value &, ~ 0.33. Thus, a good accuracy in this
blind imaging was achieved
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Fig. 6.15 Test 2. (a) The real signal. The amplitude was multiplied by 1077; see Sect. 6.9.4 for
the data pre-processing procedure. (b) The pre-processed signal of (a)

6. We had only one time resolved curve for each target, whereas the reality is 3D.

7. We did not have a reference signal, unlike Chap. 5.

8. Since targets were surrounded by clutter, then the background was inhomoge-
neous. Targets might be heterogeneous ones as well. We remind that a knowledge
of the background is not assumed in the approximately globally convergent
method of this book.

At the same time, we had the following two simplifying factors:

A. We knew that the target is present and that we should work only with one target
for each data set. In addition, we knew whether the target is located above the
ground or buried in the ground.
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Fig. 6.16 Test 2. (a) The real image from which the data on Fig.6.15a were collected. This
is a buried metal box. (b) The computed 1D image of (a). Here, the maximal value of the
target/background ratio of dielectric constants is maxe, = 4.8. Hence, the computed value of
the dielectric constant of this target is &, = 4.8 -3 = 14.4 which is about the right value of the
apparent dielectric constants of metals; see Sect.6.9.1. Therefore, a good accuracy in this blind
imaging was achieved

B. We were not interested to image locations of targets. Furthermore, it was
impossible to image locations accurately, since both the source position and the
zero time were unknown. Rather, all what we wanted was to accurately compute
either max &, (x) or ming, (x) within the target.

6.9.5 Data Pre-processing

As it was demonstrated in Chap. 5, it is crucial to pre-process experimental data
in order to handle the abovementioned huge misfit between experimental and
computationally simulated data. The idea of the data pre-processing procedure is
similar with the idea of Chap.5: basically, we immerse the experimental data in
computationally simulated ones by using only one peak of the largest amplitude.

To figure out what kind of ideal data one should expect, we have performed
computational simulations via solving the forward problem (6.169), (6.170), (6.174)
for the case of one target. In data simulations, we have replaced R in (6.169) with
the interval x € (—6, 6) and have set

u(=6,1) = u(6,1) = 0,1 € (0,4). (6.190)

Because of the structure of the medium, the signal did not yet reach points x = £6
for ¢+ € (0,4). This justifies boundary conditions (6.190). Figures 6.11 and 6.12
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display two structures of the medium we have tested as well as the computed
functions functions g(z) = u(0,¢t) — ug(0,¢) for them. Here, ug (x,t) is the
fundamental solution of the equation v,; = vy,

1
up (x,t) = EH(I —|x — xol),

where H is the Heaviside function,

lifx >0,

H (x) =
2 Oifx <O.
One can see from Figs. 6.11 and 6.12 that when working with one target only, one
should anticipate only one peak in the backscattering data. We use this observation
in our data pre-processing procedure.

Scaling

Figure 6.13a displays a typical sample of the experimental data we have worked
with. First of all, the amplitude of the signal is too large, since its maximal value
is 3 - 10*. This is well above amplitudes of Figs. 6.11 and 6.12. Hence, we need to
scale this signal via multiplying these data by a small number. A natural question is
about the value of this number. We have multiplied all experimental data by 1077,
In this case, the magnitudes of the values of the function w (0, s) in the experimental
data were about the same as ones in computational simulations for small inclusions
with reasonable contrasts.

The Largest Peak

It is unclear from Fig. 6.13a which part of the signal is responsible for reflections
from the clutter, including the air/ground interface. On the other hand, we need to
select such a part of the signal, which is responsible for reflections from the target.
In other words, we now have the same problem as the one we have faced in Chap. 5.
We knew that the target might well be a heterogeneous one, especially since it is
mixed with the ground. Nevertheless, one can hope to obtain only an average value
of the function €, (x) within the target.

Based on Figs.6.11 and 6.12, we have decided to select the peak of the largest
amplitude out of all other peaks of Fig. 6.13a and set the rest of the curve to zero.
We have done this for all five pieces of experimental data we had. Now, if the
target is located above the ground, then &, (target)= ¢, (target)> 1, since ¢, (air)= 1.
Figure 6.11b tells one that the selected peak should look downward in this case.
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Hence, our selection of the single peak was as follows: This should be the earliest
peak of the largest amplitude:

peaks for an underground target,
out of all (6.191)
downward looking peaks for an above the ground target.

Next, we regard the time zero: {¢ = 0} as the point on the time axis, which is 1
nanosecond to the left from the beginning of the selected peak.

The Laplace Transform of the Pre-processed Data

To apply our algorithm, the Laplace transform (6.176) was calculated for the pre-
processed time resolved data. It is clear from Fig. 6.13b that only the integration
over a finite time interval is needed in this case. Since we also need to calculate the
s-derivative of this transform, then we have used the formula

(o]

@' (s) = —/g (t)te™"dt, (6.192)

0

where g (¢) is pre-processed data and ¢ (s) is its Laplace transform.

Just as in Sect. 6.8.3, we have observed in computational simulations of Figs. 6.11
and 6.12 that the function ¢ (s) in (6.179) has the best sensitivity to the presence
of inclusions for s € [0.5,1.2]. Still, we have discovered in our computational
simulations that better to work on a larger interval s € [0.5, 12]. However, in
the case of the pre-processed experimental data, the function ¢ (0, s) was highly
oscillatory for s € [5, 12].

Hence, we have pre-processed the function g (0, s) in (6.189) as follows. First,
we have calculated the function ¢ (0,s) for s € [0.5,2.5] for the pre-processed
experimental data using (6.192). Next, we have assigned

G(0,12) := 0.025-5(0,2.5).

Next, we have linearly interpolated in the plane (s,q) between points (s, ;) and
(52,42) , where

(Slsz]\l) = (2576(0725)) s (527/4\2) = (1252}\(07 12)) .

Next, we have assigned to the function g (0, s) those values for s € [2.5, 12], which
were taken on this line after the linear interpolation. We have done the same to
the function ¢, (0,s). For s € [0.5,2.5], the function g, (0,s) was calculated
using (6.179), (6.187), and (6.189). Derivatives with respect to s were calculated
via finite differences. Thus, these values of functions ¢ (0, s), 9,¢ (0, s) were used
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to calculate 1D analogs of boundary conditions ¥ ,, ¥ ,, in (6.28):

Gn (0) = Yo, 0xGn (0) = V1.

Next, the 1D analog [114] of the algorithm of Sects. 6.4.3 and 6.4.4 was applied,
and functions ¥ ,, ¥ 1, were the input data for this algorithm. The grid step size in
the s-direction was h = 0.5.

6.9.6 Results of Blind Imaging

Test 1. The data are depicted on Fig. 6.13a and the pre-processed data are displayed
on Fig. 6.13b. We only knew a priori that this was a target buried in the ground;
see (6.191). Other features of this target were unknown to us when computing.
Figure 6.14b displays our computed image. After this image was computed, Drs.
L. Nguyen and A. Sullivan have compared our result with the reality and have sent
Fig. 6.14a to us. The target was an empty plastic cylinder buried in the ground with
the dielectric constant &, (plastic)a 1 [151]. The dielectric constant of the ground
(dry sand) was as in (6.191), e,(background)~ 3. We remind that this value was
unknown to the mathematical team when computations were performed. One can
see that our computed min &, comp (x¥) = 0.28. At the same time, the real value was
&, ~ 0.33. Thus, our blindly computed result is quite accurate.

Test 2. The data, which were multiplied by 1077 first (for scaling, see above),
are depicted on Fig. 6.15a. We only knew a priori that this was a target buried in
the ground. Other characteristics of this target were unknown to us at the time
when computations were performed. Hence, following (6.191), we have selected
on Fig.6.15a the peak of the largest amplitude. Figure 6.16b displays our 1D
computed image. Figure 6.16a depicts the real image, which was revealed to us
by Drs. L. Nguyen and A. Sullivan only after the computational result was sent to
ARL. The target was a metal box. One can see that our computed max g, (x) = 4.8.
Since &,(ground)~ 3, then the computed max &, comp(target)x 3 - 4.8 = 14.4. This
is the conditional dielectric constant of the metal box of Fig. 6.16b, see Sect. 6.9.1
for the definition of the conditional dielectric constant of metals. Hence, this result
matches well Figs. 6.8a, b and (6.166).

Remark 6.9.6.

113

1. The sign “~” is used in this table instead of “=" because the values of the
dielectric constant of the ground were only approximate ones, since they were
not measured in experiments.

2. The value ¢, = 0.84 in Table 6.1 does not match physics well since 0.84 < 1.
However, the value ¢,(ground)~ 3 is only an approximate one. If, for example,
the real value was ¢,(ground)> 3.58, then the computed value &, of the target
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Table 6.1 Summary of

A . Computed &,
results of blind imaging of the Test number of the target Tabulated &,
data collected by the forward - - -
looking radar 1 (buried plastic cylinder) =~ 0.84 ~ 1
2 (buried metal cylinder) ~ 144 > 10
3 (buried metal box) ~ 114 > 10
4 (wood stake in air) 3.8 from 2 to 6
5 (bush: clutter in air) 6.4 from 3 to 20

was exceeding 1. Note that in tables [151], the dielectric constant of the dry sand
is listed as being between 3 and 5. Hence, the most important point of the result
of Test 1 is that the computed ratio min, (x) = 0.28, which is quite close to the
real value of about 0.33.

3. The computed conditional dielectric constant &, ~ 14.4 of the metal box is close
to (6.166).

We had the blind data for five targets. Dielectric constants were not measured
in experiments. Therefore, we had no choice but to compare our calculated values
of dielectric constants of targets with tabulated ones [151]. In the case of bush we
use the reference [52]. In the case of two metallic targets we use inequality (6.166).
Table 6.1 summarizes our results.

6.9.7 Summary of Blind Imaging

It can be seen from the above description of complicating factors that we have
worked with the case of a severely limited information caused by many uncertainties
in the experimental data. Furthermore, we have worked with the most challenging
case of blind experimental data. Nevertheless, above results demonstrate a surpris-
ingly good accuracy. This is consistent with results of Chap. 5. Studies on larger
sets of experimental data are necessary to figure out accuracy constraints of this
algorithm.
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