
Chapter 5
Blind Experimental Data

All tables and figures of this chapter were published in Inverse Problems either in
[109] or in [28]. All of them are reprinted with permission. In particular, Tables 5.1–
5.5 and 5.6 were published in [109]. Tables 5.6 and 5.7 were published in [28].
Figure 5.1 was published in both [109] and [28]. Figures 5.2a–d, 5.3a, b, 5.4a–d,
5.5a–h and 5.6a–f were published in [109]. Figures 5.7a–c, 5.8a–c, 5.9a–f, 5.10,
5.11, 5.12, 5.13, 5.14a–i and 5.15a, b were published in [28].

5.1 Introduction

In this chapter, we demonstrate the performance of the two-stage numerical
procedure of Chaps. 2 and 4 for the case of experimental data. Specifically, we
present results of publications [28, 109]. Experimental data were collected by Drs.
Michael A. Fiddy and John Schenk in a laboratory of The University of North
Carolina at Charlotte.

While numerical studies of Chaps. 3 and 4 have confirmed the property number
2 of the informal Definition 1.1.2.1 of the approximate global convergence, results
of this chapter confirm the property number 3 of that definition. The first stage of
our two-stage numerical procedure was originally applied to the most challenging
case of blind experimental data [109]. In this chapter, the term “blind” means the
following:

1. In each experiment, the coauthors of [109] knew the location of the dielectric
inclusion. However, this information was not used in computations, since the
approximately globally convergent algorithm of Sect. 2.6.1 does not use such an
information.

2. Most importantly, the coauthors of [109], did not know refractive indices of
dielectric inclusions. First, the computational results were obtained via the
algorithm of Sect. 2.6.1. Next, those refractive indices were measured directly
by two independent and well established in physics experimental methods.
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296 5 Blind Experimental Data

3. Finally, numerical results were compared with results of those direct
measurements.

The comparison of item 3 has revealed that the difference between computed
and directly measured refractive indices was only a few percent in six out of six
cases. Furthermore, in five out of six cases, this difference was even less than the
measurement error of direct measurements; see Tables 5.5 and 5.6 below.

While results of [109] have demonstrated very accurate blind reconstructions
results of both locations and refractive indices of dielectric inclusions, their shapes
were not imaged well since the latter was outside of the scope of publication [109].
Therefore, the adaptive procedure of the second stage of our two-stage numerical
procedure was not applied in [109]. Both stages were applied later to the same
experimental data in [28]. The work on [28] was carried out later than one on [109].
Thus, the experimental data were blind only during the work on [109] and were not
blind when we have worked on [28]. It was demonstrated in [28] that the two-stage
numerical procedure very accurately reconstructs all three components of dielectric
inclusions: locations, shapes, and refractive indices.

A simple visual comparison of Fig. 5.3a, b reveals a huge misfit between the
experimental computationally simulated data. This misfit has caused the main
difficulty of the work with experimental data. Indeed, it was unclear what kind of
PDE, if any, can describe the highly oscillatory behavior of the measured signal even
for the free space case. These oscillations took place regardless on the fact that only
one period of the sinusoidal function was used as the shape of the input pulse. Hence,
it became clear that standard denoising procedures, for example, Fourier transform,
Hilbert transform, spline interpolation, etc., can provide only an insignificant help in
our case. As a result, a radically new data pre-processing procedure was proposed
in [109]. Later, this procedure was complemented by one more step in [28]. This
step was necessary for the adaptive stage.

The goal of the data pre-processing is to transform experimental data in such a
way which would lead to acceptable boundary conditions for both stages of the two-
stage numerical procedure. The idea of data pre-processing is based on the intuition
only, and it cannot be justified neither by mathematics nor by physics. The single
justification of it is the accuracy of results of reconstructions.

The data processing has likely introduced a large modeling noise. This noise was
on the top of the regular measurement noise as well as on the top of the huge misfit
between the experimental data and our mathematical model. In addition, we have
used only a single hyperbolic PDE (5.1) (the same as (2.1)) for our mathematical
model. The Maxwell’s system was not used since only a single component of the
electric field was measured. Thus, the level of the resulting noise in the boundary
data was likely very large and was. Furthermore, the noise level was unknown to the
authors of [28,109]. This is why a very good accuracy of results of [28,109] is quite
surprising. These results are presented in the current chapter.

We remind that our two-stage algorithm does not assume neither any knowledge
of the background medium nor any knowledge of the presence/absence of small
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“sharp” abnormalities of our interest in the medium. It uses only the knowledge of
the target coefficient outside of the medium of interest.

We show in Sect. 5.8.4 that a modified gradient method being applied alone to
these experimental data in the “pseudo frequency domain” leads to poor quality
results. In other words, a locally convergent algorithm, if taken alone, does not
work well for our experimental data. Therefore, the application of the approximately
globally convergent method is crucial for these data.

5.2 The Mathematical Model

We model the process of electric wave field propagation via a single hyperbolic
PDE, which is the same as our main PDE (2.1). We use this mathematical model
only for our experimental data. Other kinds of experimental data might require
different mathematical models. As the forward problem, we consider the following
Cauchy problem:

"r .x/ut t D �u; in R
3 � .0;1/ ; (5.1)

u .x; 0/ D 0; ut .x; 0/ D ı .x � x0/ : (5.2)

Here, "r .x/ is the spatially distributed dielectric constant (relative dielectric permit-
tivity),

"r .x/ D " .x/

"0
;

p
"r .x/ D n .x/ D c0

c .x/
� 1; (5.3)

where "0 is the dielectric permittivity of the vacuum (which we assume to be the
same as the one in the air), " .x/ is the dielectric permittivity of the medium of
interest, n .x/ is the refractive index of the medium of interest, c .x/ is the speed
of the propagation of the EM field in this medium, and c0 is the speed of light
in the vacuum, which we assume to be the same as one in the air. We point out
that it is the refractive index, which is measured in physics. Dielectric constants
are not measured. The assumption n .x/ � 1 means that the speed of the EM
field propagation in the medium is less or equal than the one in the air, which is
reasonable.

Let ˝ � R
3 be a convex bounded domain with the boundary @˝ 2 C3: We

assume that the coefficient "r .x/ of equation (5.1) satisfies the same conditions as
ones in (2.3), (2.4):

"r .x/ 2 Œ1; d � ; "r .x/ D 1 for x 2 R
3Ÿ˝; (5.4)

"r .x/ 2 C3
�
R
3
�
: (5.5)
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The inequality "r .x/ � 1 follows from (5.3). An upper estimate for the constant
d > 1 is assumed to be known, although we do not assume that the number d � 1

is small. The assumption "r .x/ D 1 for x 2 R
3Ÿ˝ means that one has air outside

of the medium of interest ˝ .

Coefficient Inverse Problem 5.2. Suppose that the coefficient "r .x/ satisfies (5.4)
and (5.5). Assume that the function "r .x/is unknown in the domain ˝ . Determine
the function"r .x/ for x 2 ˝;assuming that the following function g .x; t/is known
for a single source position x0 … ˝:

u .x; t/ D g .x; t/ ;8 .x; t/ 2 @˝ � .0;1/ : (5.6)

The function g .x; t/ in (5.6) represents the data for this inverse problem. This
function models the data resulting from experimental measurements. Here is a brief
outline of the two-step procedure by which we have obtained the function g .x; t/:

Step 1. First, we have measured the time resolved signal, for a single source
location, as it is schematically depicted on Fig. 5.1. The rectangular prism on this
figure is a schematic representation of our domain ˝: We have measured this
signal only on the lower side of ˝; i.e., on the transmitted side. Hence, we had
a very narrow view angle in these measurements. Although it seem to follow from
(5.6) that we should also measure the signal on other five sides of the prism ˝ ,
our computational simulations have demonstrated that these sides are much less
sensitive to the presence of dielectric abnormalities than the lower side of this prism.
Hence, we have not conducted any measurements on those five sides. Instead, we
have prescribed to them such boundary values of the function u WD g which were
calculated via solving the initial boundary value problem (5.11) for "r � 1.

Step 2. As to the lower side of the rectangular prism ˝; we have applied our data
pre-processing procedure to the experimental data collected at this side. Thus, the
function, which has resulted from this procedure, is our function g .x; t/ on the
lower side of ˝:

5.3 The Experimental Setup

Below x denotes both a vector x D .x; y; z/ 2 R
3 and the first component of this

vector, where z is the vertical coordinate. It is always clear from the context what is
what there. Our source/detectors configuration is schematically depicted on Fig. 5.1.
The source has generated an EM wave. Only one component of the vector of the
electric field was generated by our source. The same component was measured at
the bottom side of the rectangular prism˝ depicted on Fig. 5.1. Actually, the voltage
was measured.

The prism ˝ was our computational domain. It was filled with Styrofoam.
Styrofoam is a material, whose dielectric constant "r � 1; i.e., it is the same as in the
air. The sizes of˝ were 240� 140� 240mm, where “mm” stands for “millimeter.”
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Fig. 5.1 Schematic diagram of the source/detectors configuration. (a) The rectangular prism
depicts our computational domain˝. Only a single-source location outside of this prism was used.
Tomographic measurements of the scattered time resolved EM wave were conducted on the bottom
side of this prism. (b) Schematic diagram of locations of detectors on the bottom side of the prism
˝. The distance between neighboring detectors was 10 mm. Source:M. V. Klibanov, M. A. Fiddy,
L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verification of a globally
convergent numerical method for a coefficient inverse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. c� IOP Publishing. Reprinted with permission

Hence, sizes of front and back sides of the prism of Fig. 5.1 are 240 � 240mm, and
sizes of other four sides are 240 � 140mm. The distance between the wave source
and the top side of the domain ˝ was 130 mm. The initializing pulse was 100 ps
duration. Here, “ps” stands for “picosecond,” 1 ps D 10-12 s. Since the speed of the
EM wave propagation in the air is 0.3 mm/ps, then it requires 433 ps � 130/03 ps
for this wave to travel from the source to the top boundary of ˝: Hence, it follows
from (5.7) that the wave did not yet reach the domain ˝ during the 100 ps duration
of this pulse. The initializing pulse was

f .�/ D
� � A sin

�
�
50
�
�
; for � 2 .0; 100/ ps,

0; for � > 100 ps,
(5.7)

where A > 0 is the amplitude and � is the time in picoseconds. Our data processing
procedure does not rely on a knowledge of A.
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The time resolved signal was measured on a grid on the bottom side of the
prism ˝ , as indicated on Fig. 5.1b. The grid step size was 10 mm. The detector
was moved mechanically from one location to a neighboring one. For each location
of the detector, the electric pulse was sent, and one time resolved component of the
scattered electric field was measured for the total period of 12,300 ps D 12.3 ns.
Hence, it is reasonable to assume in the mathematical model that only one electric
pulse was sent and that the wave field was measured simultaneously at all those
detectors.

We had two measurements at each detector location. First, we have measured
the reference signal when the dielectric inclusion was not present. Actually, this
is the case of free space. Next, we have measured the signal when the inclusion
was present. In principle, our technique allows the measurement of the reference
signal only at a few locations outside of the medium of interest: for the calibration
purposes. The only reason why we have measured the reference signal for each
location of the detector was that our current numerical implementation works
only with the case when the incident wave field is a plane wave. However, it
was impossible to arrange a true plane wave in that experiment. In other words,
we actually had a spherical wave. On the other hand, using measurements of the
reference signal, our data pre-processing procedure has “transformed” this spherical
wave into the plane wave.

Although real sizes of the domain˝ were given above, we have naturally worked
with the dimensionless domain. Let x0 be the vector of variables with dimensions in
millimeters. Then our dimensionless vector was x D x0=50mm. Since the distance
between two neighboring detectors was 10 mm, then the dimensionless distance is
Qh D 10=50mm D 0:2: Thus, our dimensionless computational domain ˝ and the
dimensionless distance Qh between two neighboring detectors were

˝ D f.x; y; z/ 2 Œ�2:4; 2:4� � Œ�1:4; 1:4� � Œ�2:4; 2:4�g ; Qh D 0:2; t 2 .0; 12/ :
(5.8)

Let P be the bottom side of the domain˝ in (5.8):

P D f.x; y; z/ W .x; y/ 2 Œ�2:4; 2:4� � Œ�1:4; 1:4�; z D �2:4g : (5.9)

We now explain how we got the dimensionless time. First, about the zero time.
We knew that the signal arrives at the detector approximately at 11,520 ps. Since
the distance between the planar surface P in (5.9) and the source was 370 mm, the
speed of light in the air is 0.3 mm/ps and .370mm/ = .0:3mm=ps/ D 1;233 ps,
then the zero time should be at 11; 520 ps�1;233 ps � 10;300 psWD �0. Hence, we
should work with a new time variable � 0 D � � �0: The refractive index outside of
the domain ˝ is n .x/ D 1: Hence, the EM wave should travel the dimensionless
distance of Qh D 0:2 between two neighboring detectors in 0:2 dimensionless time
units. On the other hand, 0.2 corresponds to the 10 mm distance between two
neighboring detectors. Let t denotes the dimensionless time. Then we should choose
such a multiplier � > 0; which has dimension in picoseconds, that �t D � 0: Hence,
we should have
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0:2� ps D 10mm

0:3 .mm=ps/
;

which implies that � D 166:67ps. Thus, the dimensionless time t is

t D � 0

166:67
:

However, the above transformations to dimensionless variables did not affect our
governing PDE (5.1) because of the data pre-processing procedure described below
in this chapter.

5.4 Data Simulations

Since the computationally simulated data play an important role in our data pre-
processing procedure, we outline here the solution of the forward problem for
equation (5.1). Since it is practically impossible to solve the PDE (5.1) in the entire
space R3; we have solved it in a larger rectangular prism:

G D f.x; y; z/ 2 Œ�3; 3� � Œ�2; 2� � Œ�5; 5�g :

By (5.8),˝ � G: Our initializing plane wave in simulations was v .t/:

v .t/ D
�

sin .!t/ ; for t 2 �
0; 2�

!

�
;

0; for t > 2�
!
; ! D 7:

(5.10)

Let @G1 and @G2 be respectively top and bottom sides of G and @G3 D
@GŸ .@G1 [ @G2/ be the rest of the boundary of G. We have numerically solved
the following initial boundary value problem:

"r .x/ ut t D �u; in G � .0; T /; T D 12;

u.x; 0/ D 0; ut .x; 0/ D 0; in G;

@nu
ˇ
ˇ
@G1

D v .t/ ; on @G1 � .0; 2�=!�;
@nu

ˇ
ˇ
@G1

D �@tu; on @G1 � .t1; T /;
@nu

ˇ
ˇ
@G2

D �@tu; on @G2 � .0; T /;
@nu

ˇ̌
@G3

D 0; on @G3 � .0; T /: (5.11)

In the case when the data are simulated for the reference medium, we have in (5.11)
"r .x/ � 1. We denote this solution as u1 .x; t/ : Thus, in (5.11), the plane wave
is initialized at the top boundary @G1 for times t 2 .0; 2�=!� and propagates
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into G. First-order absorbing boundary conditions were used on the top boundary
for t 2 .2�=!; T / as well as on the bottom boundary @G2 for t 2 .0; T /. The zero
Neumann boundary condition was used on the rest of the boundary of the prism G.
The latter boundary condition is used because the “pure” plane wave with "r .x/� 1

satisfies this condition. The problem (5.11) was solved by the hybrid FEM/FDM
method. In this method, FDM is used outside of the domain ˝; i.e., in GŸ˝; and
FEM is used inside ˝ . The step size in the overlapping region was Qh D 0:2 which
is the same as the distance between any two neighboring detectors.

5.5 State and Adjoint Problems for Experimental Data

First, we remind the Tikhonov functional (4.8) of Sect. 4.3. Let "glob
r .x/ be the

coefficient "r .x/ which was reconstructed on the first stage of our two-stage
numerical procedure, i.e. when applying the approximately globally convergent
algorithm of Sect. 2.6.1. The Tikhonov regularization functional is

E˛."r / D 1

2

Z

ST

.u jST �g.x; t//2z� .t/ dSxdt C 1

2
˛

Z

˝

."r � "glob
r /2dx: (5.12)

Our goal now is to find a minimizer "r;˛ of this functional, i.e., to find the regularized
solution. Let Y be the set of functions defined in (4.7) (Sect. 4.3) and H1 be the
finite dimensional space of finite elements constructed in Sect. 4.9.1. We remind
that the set Y1 is defined as Y1 WD Y \H1: We assume that "glob

r 2 Y1 and assume
that conditions of Theorems 4.11.1–4.11.4 hold. In particular, these theorems imply
existence and uniqueness of the minimizer "r;˛ 2 Y1 in a small neighborhood of
the exact solution "�

r : Thus, below in this section, we work only in that small
neighborhood of "�

r .
As to state and adjoint problems, although the theory of Chap. 4 works with

solutions of those problems only in the domain QT D ˝ � .0; T /, we consider
in the current chapter different domains for these problems. Still, we believe that the
theory of the adaptivity of Chap. 4 can be extended to this case, although we have
not yet done this. At this time, however, this difference of domains represents one of
discrepancies between the above theory and its numerical implementation. Indeed,
if defining solutions of state and adjoint problems like in (4.9) and (4.10) (Sect. 4.3),
then, in the case of our experimental data, it is unclear how to figure out the normal
derivative p .x; t/ D @nu jST at the lateral boundary ST D @˝ � .0; T / of the time
cylinderQT :

Hence, consider the rectangular prism G0 D G \ fz > �2:4g : Let the rectangle
Pobs D fz D �2:4g \G be the bottom side ofG0: By (5.9), the rectangle P � Pobs:

Let

G0
T D G0 � .0; T / ; S 0

T D Pobs � .0; T / ; S 00
T D �

@G0ŸPobs
� � .0; T / : (5.13)
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Recall that the lower side P of the rectangular prism ˝ is much more sensitive to
experimental data than other five sides of this prism (Sect. 5.2). For this reason, we
have prescribed the same data to those five sides as the ones for the case of the free
space. Hence, let u .x; t; "r / be the solution of the initial boundary value problem
(5.11). Also, let u1 .x; t/ be the solution of this problem for "r .x/ � 1: For the
same reason as above, we approximately assume that

u .x; t; "r / D u1 .x; t/ for .x; t/ 2 S 00
T : (5.14)

Thus, we define state and adjoint problems for our case as:

1. The state problem is the initial boundary value problem (5.11).
2. The adjoint problem is

"r .x/ �t t ��� D 0; .x; t/ 2 G0
T ;

�.x; T / D �t.x; T / D 0;

@n� jS 0

T
D .g � u/ .x; t/ ;

@n� jS 00

T
D 0: (5.15)

The last line of (5.15) follows from (5.14). Similarly with Sects. 4.15.3 and 4.16.2,
we have dropped the function z� .t/ in the third line of (5.15), since this function is
used only for the compatibility conditions at t D T , and we have observed that
u .x; T / � g .x; T / � 0 for x 2 @G0: Thus, we have not used the function z� .t/ in
(5.12) in our computations of this chapter.

However, since measurements give us (after pre-processing) the function g .x; t/
only for x 2 P; it follows from (5.13) and (5.14) that we should somehow extend
this function on the set PobsŸP: Hence, we actually need to know the function
g .x; t/ not only for x 2 P but also for x belonging to a wider rectangle Pobs; x 2
Pobs: In general, this extension problem is very similar with the problem of analytic
continuation. And the latter problem is very unstable. However, using some features
of our specific arrangement, we have found a different way of this extension via
the so-called third stage of our data immersing procedure, which is described in
Sect. 5.6.

Assuming that the function g .x; t/ is properly extended from P into a larger
rectangle Pobs; the Tikhonov functional (5.12) becomes

E˛."r / D 1

2

Z

S 0

T

.u jS 0

T
�g.x; t//2dSxdt C 1

2
˛

Z

˝

."r � "glob
r /2dx: (5.16)

Now, we reformulate two mesh refinement recommendations (4.189) and (4.190)
of Sect. 4.13.2 for our particular case. Let "r;h .x/ be the minimizer of the Tikhonov
functional (5.12) on the current mesh.
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First Mesh Refinement Recommendation. Refine the mesh in such a subdomain
of the domain˝where

ˇ
ˇE 0̨ ."r;h/ .x/

ˇ
ˇ � ˇ1 max

˝

ˇ
ˇE 0̨ ."r;h/ .x/

ˇ
ˇ ; (5.17)

where ˇ1 2 .0; 1/is the tolerance number and

ˇ
ˇE 0̨ ."r;h/ .x/

ˇ
ˇ D

ˇ̌
ˇ
ˇ˛."r;h � "glob

r / .x/ �
Z T

0

.uht�ht / .x; t; "r;h/ dt

ˇ̌
ˇ
ˇ :

Here, functions uht .x; t; "r;h/and�ht .x; t; "r;h/are solutions of state and adjoint
problems, respectively, on the current mesh.

The Second Mesh Refinement Recommendation. Refine the mesh in such a
subdomain of the domain˝ where

"r;h .x/ � ˇ2 max
˝

"r;h .x/ ; (5.18)

where ˇ2 2 .0; 1/is the tolerance number.
Recall that tolerance numbers ˇ1; ˇ2 are chosen numerically. In our tests below,

we use
ˇ1 D 0:8; ˇ2 D 0:2; ˛ D 0:001: (5.19)

5.6 Data Pre-Processing

The main idea of the data pre-processing procedure is to immerse the experimental
data in the computationally simulated ones. The data pre-processing procedure
provides us with the boundary data at @˝;which we use in our computations. Recall
that measurements were not carried out at @˝ŸP: We have prescribed

u .x; t/ j@˝ŸP WD u1 .x; t/ j@˝ŸP ;

where u1 .x; t/ is the solution of the problem (5.11) with "r .x/ � 1: So, in this
section we describe how we pre-process the data only on the bottom side P of the
rectangular prism ˝:

5.6.1 The First Stage of Data Immersing

Samples of unprocessed time resolved experimental data are depicted on Fig. 5.2.
We work only with the first burst. Figure 5.2c, d display the curves which are
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Fig. 5.2 (a) A sample of the measured reference time resolved signal (i.e., no inclusion present)
at the location xm 2 P of the probe number m. (b) The measured signal with inclusion present
at the same probe location. The first burst starts when the EM wave arrives at the probe. The
signal before this burst reflects a process within the probe itself. (c) And (d) represent signals (a)
and (b), respectively, after cleaning some noise via applying the fast Fourier transform procedure
of MATLAB and truncating too low and too high frequencies. We are interested in the area of
the first burst only. One can observe that the amplitude of the signal with the dielectric inclusion
present (d) is generally less than one of the reference signal. Source: M. V. Klibanov, M. A. Fiddy,
L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verification of a globally
convergent numerical method for a coefficient inverse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. c� IOP Publishing. Reprinted with permission

obtained from curves Fig. 5.2a, b, respectively, after a partial denoising via the
Fourier transform. Both Fig. 5.2c, d are for the same detector. Fig. 5.2c is for the
case of free space and Fig. 5.2d is for the case when a dielectric inclusion is present.
The most troubling feature of Fig. 5.2 is the highly oscillatory behavior of the first
burst. Indeed, given that the input data was the sinusoidal function f .t/ in (5.7) with
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Fig. 5.3 This figure explains the idea of the first stage of data immersing in the time domain. We
have intentionally set to zero the small amplitude fluctuations before that first burst. (a) Resulting
superimposed experimental curves. The red curve (thin) is for the reference signal and the blue
curve (thick) is for the signal with a dielectric inclusion present, both at the same location xm 2 P of
the detector numberm. (b) The red curve (thin) displays computationally simulated data u1 .xm; t/.
The blue curve (thick) uincl .xm; t/ D u1 .xm; t ��tm/Km

exp=M
m
exp represents a sample of the

immersed experimental data in the time domain at the same detector location xm 2 P . It is only the
blue curve (thick) with which we work further. The red curve (thin) is displayed for the illustration
purpose only. Source: M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method for a
coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003,
2010. c� IOP Publishing. Reprinted with permission

only one period of the sinusoid, one cannot expect high oscillations of the output
signal for, for example, the case of the free space. These oscillations represent the
abovementioned huge misfit between experimentally measured and simulated data.

Figure 5.3a displays superimposed Fig. 5.2c, d after their parts prior the first burst
was made zero. The thin curve on Fig. 5.3a corresponds to the free space and the
thick curve corresponds to the case when the inclusion is present. Let xm 2 P be
the detector number m at the bottom side P of the prism ˝; see (5.9) for P . We
have decided to “immerse” our experimental data in the computationally simulated
data using the following two peaks for each detector xm:

1. The largest peak in the thin curve with the peak value of Mm
exp > 0:

2. The next peak after it on the thick curve with the peak value of Km
exp > 0. This

next peak was chosen because the presence of a dielectric inclusion results in a
time delay of the EM wave; see (5.3).

Recall that the function u1 .x; t/ is the solution of the problem (5.11) with
computationally simulated data for "r � 1: Obviously,

u1
�
x.1/; t

�
D u1

�
x.2/; t

�
; 8x.1/; x.2/ 2 P; 8t 2 .0; T / :

The first peak of the function u1 .x; t/ ; x 2 P is the largest peak of Fig. 5.3b. Below
t is the dimensionless time. Let t WD t sim

ref be the time of the first arrival of the
computationally simulated plane wave u1 .x; t/ at the plane P . In other words, for
all x 2 P , we have u1 .x; t/ D 0 for t < t sim

ref and u1 .x; t/ > 0 for time values
t > t sim

ref that are rather close to t sim
ref ; see the reference curve on Fig. 5.3b.

We point out that amplitudes of largest peaks of experimental curves for the
reference medium were different for different detectors. This is because we had
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in the experiment a spherical incident wave instead of the desired plane wave.
Nevertheless, we have “forced” the spherical wave to be a plane wave via applying
the first stage of our data immersing procedure.

Let y D yref
m .t/ be the experimentally measured curve at the detector fxmg for

the free space, i.e., this is the thin curve of Fig. 5.3a. Let the above chosen largest
peak of this curve is achieved at

˚
t D t ref

m

�
and yref

m

�
t ref
m

� D Mm
exp > 0: Let y D

yincl
m .t/ be the experimentally measured curve at the detector fxmg for the case when

the inclusion is present. We choose such a local maximum of the function y D
yincl
m .t/ which is achieved at the first point

˚
t D t incl

m

�
which follows after the point˚

t D t ref
m

�
; see Fig. 5.3a. Let yincl

m

�
t incl
m

� D Km
exp: Hence, Km

exp is the value of the
latter peak; see Fig. 5.3a. We have observed that Km

exp � Mm
exp on all detectors. This

is because the presence of dielectrics decreases the amplitude of the EM wave.
Now, we are ready to immerse our experimental data in the computationally

simulated data. Let �tm D t incl
m � t ref

m be the time delay between two above chosen
peaks; see Fig. 5.3a. We set

uincl .xm; t/ WD
8
<

:

Km
exp

Mm
exp

u1 .xm; t ��tm/ ; if
Km

exp

Mm
exp
< 2

3
;

u1 .xm; t/ and�tm WD 0; if
Km

exp

Mm
exp

� 2
3
:

(5.20)

Thus, (5.20) is our first immersed data in the time domain for the detector
number m: Figure 5.3b illustrates (5.20). After this data immersing, we use only
the curve uincl .xm; t/ and do not use anymore the curve which corresponds to the
reference medium. In other words, on each detector, we use only such curve which
corresponds to the thick curve on Fig. 5.3b. We cannot rigorously justify our above
decision to work with those peaks only. However, since our results of blind imaging
in [109] were very accurate ones, then this justifies our purely intuitive choice.

5.6.2 The Second Stage of Data Immersing

Although the thick curve on Fig. 5.3b is smooth, in fact the noise went into the
noise with respect to spatial variables on the rectangle P , and this will be seen in
the current section. We have found that the following frequency interval was the
optimal one for our computations:

s 2 Œ3:5; 7:5�: (5.21)

We apply the Laplace transform (2.10) to each function uincl .xm; t/ for nine values
of s D 3:5; 4; : : : ; 7:5 from the interval (5.21). Denote wincl .xm; s/ the Laplace
transform of the function uincl .xm; t/ : Let

Qwincl .xm; s/ D � ln wincl .xm; s/

s2
:
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Fig. 5.4 (a) The function Qwincl .x; s/, s D 7:5. (b) The function � .ln wsim .x; s// =s
2is depicted,

where wsim .x; s/is the Laplace transform of the function usim .x; t /for a computationally simulated
data. Figure (b) is given only for the sake of comparison with Figure (a). (c) The function
Qwsmooth .x; s/ resulting from fitting of (a) by the lowess fitting procedure in the 2D case; see
MATLABR 2009a. (d) The final function Qwimmers .x; s/. Values of Qwimmers .x; s/are used to produce
the Dirichlet boundary conditions N n .x/for PDEs (2.36) of the globally convergent algorithm.
Source: M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally convergent numerical method for a coefficient inverse
problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003, 2010. c� IOP
Publishing. Reprinted with permission

Let wincl .x; s/ be the standard linear interpolation of the values f Qwincl .xm; s/g over
the plane P . We have observed that the function wincl .x; s/ is very noisy with
respect to x 2 P . Figure 5.4a displays a sample of the function wincl .x; s/. Hence,
the noise went from the time dependence into the spatial dependence.

On the other hand, we have computationally simulated the data with a single
inclusion and have obtained the function wsim .x; s/; see Fig. 5.4b for the function

� ln wsim .x; s/

s2
:

One can observe that, unlike Fig. 5.4a, b is smooth and has only a single bump.
Comparison of Fig. 5.4a, b has motivated us to perform additional procedures with
the function wincl .x; s/ :
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Thus, we have applied a smoothing procedure with respect to .x; y/ 2 P to the
function wincl .xm; s/ for each of above nine values of s: Specifically, we have used
the Lowess fitting procedure in the 2D case, which we took from MATLABR 2009.
As a result, we have obtained the function wsmooth .x; s/ : The function wsmooth .x; s/

is displayed on Fig. 5.4c. Still, comparison of Fig. 5.4b, c tells one that we should
transform Fig. 5.4c in such a way which would end up with a single bump. Let
w1 .x; s/ ; x 2 P be the Laplace transform of the function u1 .x; t/ ; i.e., for the case
of the plane wave propagating in the air. Then we finally set for each of those nine
values of s:

wimmers .x; s/ D
�

wsmooth .x; s/ ; if wsmooth .x; s/ � 0:985maxP wsmooth .x; s/ ;

�s�2 ln w1 .x; s/ ; otherwise.

Figure 5.4d the function wimmers .x; s/ ; which is obtained from the function
wincl .x; s/ of Fig. 5.4a.

We use the function wimmers .x; s/ to obtain Dirichlet boundary conditions for
elliptic equations for functions qn of Sect. 2.6.1. Namely, we use finite differences
to approximately compute the s-derivative by

 n .x/ D wimmers .x; sn � 0:5/� wimmers .x; sn/

0:5
; x 2 P: (5.22)

As to the values of the function n .x/ on other five sides of the prism˝ , they were
computed by the same finite difference formula using the function resulting from
the Laplace transform of the function u1 .x; t/ :

5.7 Some Details of the Numerical Implementation
of the Approximately Globally Convergent Algorithm

We point out that all details of the numerical implementation of the approximately
globally convergent algorithm, which are described in this section, were imple-
mented a few months before the experimental data were collected. When working
with the experimental data, we have not changed neither our original numerical
code for the algorithm of Sect. 2.6.1 nor our parameters listed in this section. In
other words, our computations of images from experimental data were unbiased.

When solving equations (2.49) for functions qn;i (Sect. 2.6.1) in our compu-
tations, we have used in (2.49) s-derivatives of tails @sVn;i .x; s/ instead of tails
Vn;i .x; s/ themselves. These derivatives were calculated via finite differences,
similarly with (5.22). We remind that by (2.19) (Sect. 2.3) one should expect that

j@sVn;i .x; s/j2C˛ << jVn;i .x; s/j2C˛ : (5.23)
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Hence, the replacement of Vn;i .x; s/ with @sVn;i .x; s/ goes along well with the first
approximate mathematical model; see Sect. 2.8.4 for some details. At the same time,
when computing functions ".n;i/r .x/ via (5.24), we have used the function Vn;i .x; s/
itself rather than its derivative @sVn;i .x; s/.

Suppose that we have computed the function qn;i .x/ : Then, we find the
approximation "nr .x/ for the function "r .x/ via backward calculation using (3.4) as

".n;i/r .x/ D
�
fn;i .x/ WD �vn;i C s2n .rvn;i /

2 , x 2 ˝; if fn;i .x/ � 1;

1; if fn;i .x/ < 1;
(5.24)

vn;i .x/ D �hqn;i .x/ � h

n�1X

jD0
qj .x/C Vn;i .x/ ;

where q0 � 0 and Vn;i .x/ is the corresponding approximation for the tail function.
We make the cut-off to unity in (5.24) because of (5.4).

The parameter of the CWF was � D 50: Likewise, as it is quite often the case in
imaging, we have made truncations to unity of those computed functions ".n;i/r .x/

which were below a certain threshold. More precisely, for each n, we have chosen a
cut-off value Ccut .n/ > 0 and have assigned a new value Q".n;i/r .x/ for the function
".n;i/r .x/ as

Q".n;i/r .x/ D
(
".n;i/r .x/ ; if ".n;i/r .x/ > 1C Ccut .n/ ;

1; if ".n;i/r .x/ 2 Œ1; 1C Ccut .n/� :
(5.25)

Note that by (5.24), ".n;i/r .x/ � 1, 8x 2 ˝: The numbers Ccut .n/ were chosen as
follows:

Ccut .1/ D 0; Ccut .2/ D 0:2; Ccut .3/ D Ccut .4/ D 0:8; Ccut .5/ D 0:6;

Ccut .6/ D Ccut .7/ D 0:4; Ccut .8/ D 0:8:

We now define stopping rules of iterations for functions qkn;1 with respect to the
nonlinear term as well as for functions fqn;i g with respect to the tails. These rules are
almost the same as in Sect. 4.15.2. Consider the planar surface P Qh which is parallel
to the surface P in (5.9). The surface P Qh is obtained from the surface P via shifting
upward by Qh D 0:2:

P Qh D
n
.x; y; z/ W .x; y/ 2 Œ�2:4; 2:4� � Œ�1:4;�1:4�; z D �2:4C Qh D �2:2

o
:

Let ˝ 0 D f.x; y/ 2 Œ�2:4; 2:4� � Œ�1:4;�1:4�g be the orthogonal projection of
both surfaces P and P Qh on the .x; y/ plane: Consider norms

F k
n D jjqkn;1jPQh

�  njjL2.˝0/:
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We stop iterations of functions qkn;1 when either F kC1
n � F k

n or
ˇ
ˇF k
n � F k�1

n

ˇ
ˇ � ";

where " D 0:001 is a small tolerance number of our choice. Next, we iterate with
respect to the tails. We similarly introduce norms Fn;i D jjqn;i jPQh

�  njjL2.˝0/ and
use the same stopping rule as the one for F k

n :

We now describe the stopping rule for computing functions ".n/r .x/. Let

an D

�
�
�Q".n/r � Q".n�1/

r

�
�
�
L2.˝/�

�
�Q".n�1/
r

�
�
�
L2.˝/

; bn D an

an�1
:

5.7.1 Stopping Rule for

".n/r :

If

8
<̂

:̂

bn 2 Œ1:9; 4� and n > 3; then take the final solution "fr D ".n/r ;

bn > 4 and n > 3; then take the final solution "fr D ".n�1/
r ;

alternatively compute ".nC1/
r :

(5.26)

We have chosen n > 3 in (5.26) because we have observed in our work with
computationally simulated data that images are becoming more or less close to the
correct ones only starting from n D 4:

5.8 Reconstruction by the Approximately Globally
Convergent Numerical Method

5.8.1 Dielectric Inclusions and Their Positions

Our dielectric inclusions to be imaged were two wooden cubes of 40 mm size of the
side of the first cube and 60-mm size of the side of the second cube; see Table 5.1.

Let CL be the center line, i.e., the straight line which is orthogonal to the
plane P and which passes through the source of EM waves. Then CL D
f.x; y; z/ W x D y D 0g : We have placed both those cubes in two positions. In the
first position, the center of each cube was on CL: In the second position, the
center was shifted off CL by 10 mm in the positive direction of x axis (0.2 in
dimensionless units). In addition, we have used the third position for cube number
1. In the third position, the center of this cube was shifted by 60 mm off CL in the
positive direction of the x axis (1.2 in dimensionless variables), which was rather far
from CL. We have observed on the experimental data that since we had a spherical
rather than a plane wave, then the magnitude of the EM field has significantly
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Table 5.1 Sizes and coordinates of centers of two wooden cubes used in experiments

Dimensionless coordinates
Cube number Original sizes, mm Dimensionless sizes of centers

1 40 � 40� 40 0:8� 0:8� 0:8 .0; 0;�1:2/
2 60 � 60� 60 1:2� 1:2� 1:2 .0:2; 0;�1:2/
Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally convergent numerical method for a coefficient inverse
problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003, 2010. c� IOP
Publishing. Reprinted with permission

Table 5.2 Positions of
centers of two wooden cubes
to be imaged in six cases. The
difference between cases
1.1(1) and 1.1(2) is that they
were measured on two
different days for the same
position of cube 1

Cube number Case number Center

1 1:1.1/ .0; 0;�1:2/
1 1:1.2/ .0; 0;�1:2/
1 1:2 .0:2; 0;�1:2/
1 1:3 .1:2; 0;�1:2/
2 2:1 .0; 0;�1:2/
2 2:2 .0:2; 0;�1:2/
Source: M.V. Klibanov, M.A. Fiddy, L. Beilina,
N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally conver-
gent numerical method for a coefficient in-
verse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. c�
IOP Publishing. Reprinted with permission

decayed when the point has moved rather far from CL. So the goal of placing
cube number 1 in the third position was to see how this decay of the magnitude
of the EM field would affect the image quality. Due to some logistical reasons, we
have measured the scattering field from cube number 1 in the first position twice: in
two consecutive days. Therefore, we have obtained total six (6) pieces of data for
the case when either of those two cubes was present. In addition, the data for the
reference medium, was measured only once. Table 5.2 lists all six cases.

5.8.2 Tables and Images

We have made computations using the approximately globally convergent algorithm
of Sect. 2.6.1. Functions  n .x/ in (5.22) were used as boundary conditions. The
stopping rules were the same as the one in Sect. 5.7. We point out again that we did
not know in advance values refractive indices of above wooden cubes. Therefore,
we were unbiased when applying stopping rules. Table 5.3 presents numbers an
and bn D an=an�1 for the case 1.1(1) (see Table 5.2 for labeling of our cases).
It is clear from the stopping rule (5.26) why we have stopped in this table at n D 6.
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Table 5.3 Computational results for the case 1.1(1); see Table 5.2 for labeling of cases
and (49) for the stopping rule

Iter., n ".n/r an bn "
f
r nf D

q
"
f
r

2 1:28 0:027 0:21

3 2:53 0:209 7:74

4 2:9 0:160 0:76

5 3:76 0:266 1:66

6 4:66 0:580 2:18 "
f
r D ".6/r D 4:66 2:16

7 5:6 0:683 1:18

8 8:1 0:809 1:18

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method
for a coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-
5611/26/4/045003, 2010. c� IOP Publishing. Reprinted with permission

Table 5.4 Computational results for five cases; see (5.8.2) for the stopping rule and
Table 5.2 for labeling of cases. The rest of iterations for all these five cases was similar
with Table 5.3. Comparison of this table with (5.26) makes it clear why either of function
".n/r or ".n�1/

r was chosen as the final imaging result "fr

Case Iter., n bn "
f
r nf D

q
"
f
r

1.1(2) 5 2:07 "
f
r WD ".5/r D 4 2

1.2 6 2:40 "
f
r WD ".6/r D 4:65 2:16

1.3 6 3:57 "
f
r WD ".6/r D 4:82 2:19

2.1 6 5:74 "
f
r WD ".5/r D 2:98 1:73

2.2 6 5:36 "
f
r WD ".5/r D 3:19 1:79

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Pi-
cosecond scale experimental verification of a globally convergent numerical method
for a coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-
5611/26/4/045003, 2010. c� IOP Publishing. Reprinted with permission

Behavior of numbers an and bn for other cases was similar. Table 5.4 presents only
numbers bn for the final iteration. Again, the stopping rule (5.26) explains the choice
of the final image "fr : Figures 5.5 and 5.6 display computed images. Figure 5.5 is
for the case 1(1). One can see from Fig. 5.5g, h how the image “explodes” after the
stopping criterion (5.26) is reached at n D 6; see Table 5.3. Figure 5.6 show that
locations of inclusions are imaged with a good accuracy. The latter is true even in
the most difficult case 1.3 when the inclusion was located far off the center line CL,
which meant a low amplitude of the signal; see Sect. 5.8.1.

Still, shapes of abnormalities are not imaged well on Fig. 5.6. Recall, however,
that our goal for the first stage of our two-stage numerical procedure was twofold:
(1) to obtain accurate locations of inclusions and (2) to accurately image refractive
indexes in them. However, we did not have the goal to accurately image shapes of
inclusions on the first stage of our two-stage numerical procedure.
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Fig. 5.5 (a)–(h) represent the dynamics of the sequence of images for the case number 1.1(1).

Maximal values of refractive indexes maxP n
.k/ D

q
maxP "

.k/
r are displayed. Each image

represents the level surface x W n.k/.x/ D maxP n
.k/.x/: The final image is presented on (f).

(h) shows that the image “explodes” on the second iteration after the stop; see the stopping rule
(5.26) and Table 5.3. Source: M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method for a
coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003,
2010. c� IOP Publishing. Reprinted with permission

5.8.3 Accuracy of the Blind Imaging

We have independently measured refractive indices after the above images were
obtained. Those measurements were performed by two methods which are well
established in Physics: the waveguide method [133] and the oscilloscope method
[71]. In the case of the waveguide Method the measurement error was 11% for cube
number 1 and 3.5% for cube number 2. In the case of the oscilloscope method
the measurement error was 6% for both cubes. Tables 5.5 and 5.6 display both
errors: in computations and direct measurements. Only maximal values of computed
refractive indices are presented in these tables. One can see that the computational
error does not exceed the measurement error in five (5) out of six (6) cases. And it
exceeds the measurement error in the sixth case by less than 2%.

Therefore, we conclude that the approximately globally convergent numerical
method has produced images of an excellent accuracy for both locations and
refractive indices of dielectric abnormalities in blind testing. Furthermore, this
result was obtained for the case of a huge misfit between the experimental and
computationally simulated data. Therefore, this accuracy fully justifies our data pre-
processing procedure.
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Fig. 5.6 Resulting images. It should be kept in mind that we did not have a goal to image shapes
of inclusions accurately. Rather, our goal was only to image their locations and maximal values of

refractive indexes nf .x/ D
q
"
f
r . On each figure, nf .x/ D maxnf for all points of the image

of the corresponding cube. In addition to the cut-offs (5.25), we have made the last postprocessing
cut-off of the imaged function "fr each figure just to make it look better. That cut-off was made
around the center of the image. For all cases, the dynamics of the change of images of functions
".n/r with iterations was similar with one on Fig. 5.5a–h. Source: M. V. Klibanov, M. A. Fiddy,
L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verification of a globally
convergent numerical method for a coefficient inverse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. c� IOP Publishing. Reprinted with permission

Table 5.5 Comparison of imaging results of values of refractive indexes for six cases of
Table 5.2 with measurements by the waveguide method

Case Blindly imaged n WD nf Measured n, error (%) Imaging error (%)

1.1(1) 2:16 2:07; 11 4:3

1.1(2) 2 2:07; 11 3:4

1.2 2:16 2:07; 11 4:3

1.3 2:19 2:07; 11 5:8

2.1 1:73 1:71; 3:5 1:2

2.2 1:79 1:71; 3:5 4:7

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally convergent numerical method for a coefficient inverse
problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003, 2010. c� IOP
Publishing. Reprinted with permission
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Table 5.6 Comparison of imaging results of values of refractive indexes for six cases of
Table 5.2 with measurements by the oscilloscope method

Case Blindly imaged n WD nf Measured n, error (%) Imaging error (%)

1.1(1) 2:16 2:17; 6 0:5

1.1(2) 2 2:17; 6 7:8

1.2 2:16 2:17; 6 0:5

1.3 2:19 2:17; 6 1

2.1 1:73 1:78; 6 2:8

2.2 1:79 1:78; 6 0:56

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method
for a coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-
5611/26/4/045003, 2010. c� IOP Publishing. Reprinted with permission

5.8.4 Performance of a Modified Gradient Method

We have decided to compare performances of the approximately globally conver-
gent numerical method with a modified gradient method for the case of above
experimental data. Since the gradient method is outside of our main focus, our
discussion is intentionally brief here. First, we need to introduce the Tikhonov
functional for the above CIP in the pseudo frequency domain and derive its Fréchet
derivative. We call the technique of this section the “modified gradient method”
because instead of making usual steps in the gradient method, we find the zero
of the Fréchet derivative of the Tikhonov functional via solving an equation with
a contractual mapping operator. Our derivation of the Fréchet derivative of the
Tikhonov functional is similar with the heuristic derivation in Sect. 4.4.

Let u .x; t/ be the solution of the problem (5.1), (5.2) and

w .x; s/ D
1Z

0

u .x; t/ e�stdt: (5.27)

Then by Theorem 2.7.2,

�w � s2"r .x/w D �ı .x � x0/ ; (5.28)

lim
jxj!1

w .x; s/ D 0: (5.29)

Let Qg .x; s/ be the Laplace transform (5.27) of the function g .x; t/ in (5.6). Then

w .x; s/ j@˝D Qg .x; s/ : (5.30)

Since by (5.3), the coefficient "r .x/ D 1 outside of ˝; then we can uniquely
solve the boundary value problem (5.28), (5.29), (5.30) in the domain R

3Ÿ˝ for
every value of s of our interest. Hence, we can uniquely find the normal derivative
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p .x; s/ D @nw .x; s/ j@˝ . Hence, we obtain the so-called “state” boundary value
problem for the function w inside the domain˝:

�w � s2"r .x/w D 0 in ˝;

@nw .x; s/ j@˝ D p .x; s/ : (5.31)

In addition, consider the so-called “adjoint” boundary value problem for the
function �:

�� � s2"r .x/ � D 0 in ˝;

@n� .x; s/ j@˝ D .w j@˝ � Qg/ .x; s/ : (5.32)

The idea of the gradient method is to find a zero of the Fréchet derivative of the
Tikhonov functional:

E ."r/ D 1

2

s2Z

s1

Z

@˝

.w j@˝ � Qg/2 d	xds C ˛

2

Z

˝

�
"r .x/ � ".0/r .x/

�2
dx;

where .s1; s2/ is an interval of pseudo frequencies, w D w .x; sI "r / is the solution
of the problem (5.31), and ".0/r is a first approximation for the unknown coefficient
"r : In order to simplify the derivation of the Fréchet derivative of this functional,
consider the associated Lagrangian L."r/,

L."r/ D E ."r/C
s2Z

s1

Z

@˝

p�d	xds �
s2Z

s1

Z

˝

�rwr�C s2"r .x/w�
�

dxds: (5.33)

It follows from the definition of the weak solution of the problem (5.31) that the
integral term in (5.33) equals zero. Hence, L."r/ D E ."r/ for all admissible
function "r .x/. To figure out the Fréchet derivative L0 ."r/ ; we need to vary
in (5.33) the function "r via considering the function "r .x/ C b .x/ ; where the
functions b .x/ is an appropriate small perturbation of the function "r .x/ : But
since functions w D w .x; sI "r / and � D � .x; sI "r / depend on "r as solutions of
boundary value problems (5.31) and (5.32), then we should also consider respective
variations of these functions. In other words, we should consider Fréchet derivatives
of functions w .x; sI "r / ; � .x; sI "r / with respect to "r : These Fréchet derivatives
are actually solutions of such boundary value problems, which are obtained via the
linearization of problems (5.31) and (5.32) with respect to b. Finally, the linear, with
respect to b .x/ ; part of the differenceL."r C b/�L."r/ is L0 ."r / .b/. Again, the
necessary formalism for the hyperbolic case can be found in Chap. 4, and our elliptic
case is similar. So, finally, we obtain

E 0 ."r / D ˛
�
"r � ".0/r

�
.x/ �

s2Z

s1

s2 .w�/ .x; sI "r / ds:
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At a point of a minimum of the functional E ."r/ one should have E 0 ."r / D 0:

Therefore, we should solve the following equation:

"r .x/ D 1

˛

s2Z

s1

s2 .w�/ .x; sI "r / ds C ".0/r .x/ ; x 2 ˝: (5.34)

It can be proven that one can choose the number � D .s2 � s1/ =˛ so small that
equation (5.34) becomes an equation with the contraction mapping operator, which,
therefore, can be solved iteratively. Of course, the number � should not be too small
since, otherwise, the resulting solution would be too close to the initial guess ".0/r :
So, one should choose optimal parameters s1; s2; ˛:

Temporary denote x D .x; y; z/ : When applying the modified gradient method
(5.34) to the experimental data, our starting point for iterations was ".0/r � 1: In
other words, since any gradient-like method is a locally convergent one, we have
assumed that we know the background medium in the domain ˝ . This is unlike
the approximately globally convergent method. We have observed that the function
�

�
x; sI ".0/r

� D � .x; sI 1/ < 0: At the same time, by Theorem 2.7.2, w
�
x; sI ".0/r

� D
w .x; sI 1/ > 0, and we have also observed this inequality computationally. Hence,
it follows from (5.34) that ".1/r < 1, where ".1/r is the result of the first iteration
of the solution of the problem (5.34) with the contraction mapping operator. We
have tried a variety of numbers s1; s2; ˛ in (5.34), some of which have ensured the
contraction mapping property. Still, with all these parameters, we have obtained
functions ".n/r < 1 for all iteration numbers n: However, by (5.4), we should have
"r .x/ � 1.

We have a close to rigorous explanation of the negative values of the function
� .x; sI 1/ : Consider, for example, the case when the domain ˝ is the half space,
˝ D fz > �2:4g (see (5.8)). Changing variables z0 WD z C 2:4 and leaving the same
notation for the new variable as for the old one (for brevity), we obtain˝ D fz > 0g.
In addition, assume that the condition limjxj!1 � .x; sI 1/ D 0 is imposed and also
that limjxj!1 .w jzD0 � Qg/ D 0: Consider the functionQ .x; �/:

Q .x; �/ D exp .�s jx � �j/
4� jx � �j C exp

��s ˇ
ˇx � �0ˇˇ�

4�
ˇ
ˇx � �0ˇˇ ; �0 D .
1; 
2;�
3/ :

It can be easily verified that Q.x; �/ is the Green’s function with the Neumann
boundary condition in the half space fz > 0g for the operator � � s2: Hence, by
(5.31),

� .x; s; 1/ D
Z

R2

Q .x;
1; 
2; 0/ Œw ..
1; 
2; 0/ ; sI 1/� Qg .
1; 
2; s/� d
1d
2:

We have observed computationally that w ..
1; 
2; 0/ ; sI 1/ � Qg .
1; 
2; s/ � 0 for
all reasonable values of 
1; 
2; s. Hence, � .x; sI 1/ � 0:
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In addition, we have observed computationally that for all reasonable values of
the pseudo frequency s maximal absolute values of functions w and � were too
small. So that

max
x2˝

	
s2 jw�j .x; s/
 � 3 	 10�4:

By (5.34), this means, however, that in order for the function "r to be rather signif-
icantly different from ".0/r � 1; i.e., in order to obtain above inclusion/background
contrasts, one should choose a very small regularization parameter ˛: For example,
to get "fr D 4:66 within the imaged inclusion (Table 5.3), one should have ˛ �
8 	 10�5: It is well known, however, that exceedingly small values of regularization
parameters affect results quite negatively.

We, therefore conclude that the modified gradient method (5.34) is inapplicable
here. However, since any version of the gradient method should still use the gradient
E 0 ."r / ; then it is unlikely that other versions of the gradient method are applicable
here. This likely means that locally convergent numerical methods are inapplicable
in the pseudo frequency domain. Thus, it seems to be that our approximately
globally convergent technique is the single choice for this kind of experimental data.

5.9 Performance of the Two-Stage Numerical Procedure

We show in this section how the two-stage numerical procedure works for the above
experimental data. Recall that the first stage has provided us with accurate images
of two components of dielectric abnormalities: locations and refractive indices; see
Figure 5.6 as well as Tables 5.4 and 5.5. We now want to add the third component:
the shape.

5.9.1 The First Stage

We have recomputed images for two cases using the algorithm of the first stage.
More precisely, those were cases which are listed on Table 5.2 as 5.1(1) and 5.2.
For the convenience of the reader, we list these two cases in Table 5.7 again. Since
parameters in computations for these two cases were a little bit different from
those used in Sect. 5.8, our images were a little bit different also, although we
have used the same stopping rule (5.26) as in Sect. 5.8. Figures 5.7 and 5.8 show
how images were changing with iterations, which is similar with Figs. 5.5, 5.7c and
5.8c display final images for two cases of Table 5.7. Table 5.8 shows reconstructed
refractive indices for these two cases as well as their comparisons with results of
direct measurements by the wave guide method. One can again observe an excellent
accuracy of the reconstruction of refractive indices.
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Table 5.7 Cases considered
in the two-stage numerical
procedure

Cube number Case number Center

1 1.1(1) (0,0,�1.2)
2 2.2 (0.2,0,�1.2)

Source: L. Beilina and M.V. Klibanov, Reconstruction of
dielectrics from experimental data via a hybrid globally
convergent/adaptive inverse algorithm, Inverse Problems,
26, 125009, doi:10.1088/0266-5611/26/12/125009, 2010.
c� IOP Publishing. Reprinted with permission

5.9.2 The Third Stage of Data Immersing

It is evident from Fig. 5.4a that the function uincl .xm; t/ is very noisy with respect to
the positions of the detector xm 2 P: While the second stage of data immersing has
worked in the “Laplace transform domain” (Sect. 5.6.2), we apply the adaptivity in
the time domain. Hence, we now need to smooth somehow the function uincl .xm; t/ :

Although this smoothing can be done similarly with Sect. 5.6.2, this would not
address the problem we face now. Indeed, it follows from (5.13) to (5.16) that
we need to somehow obtain the proper data for the function u .x; t/ for .x; t/ 2
Pobs �.0; T / while having the data uincl .xm; t/ only for xm 2 P;where the rectangle
P is narrower than the rectangle:

Pobs D f.x; y; z/ W .x; y/ 2 .�3; 3/ � .�2; 2/ ; z D �2:4g :

This extension from P in Pobs is the subject of our third stage of data immersing.
Let "glob

r .x/ be the solution obtained on the first stage. Let U .x; t/ be the
solution of the problem (5.11) for the case "r .x/ WD "

glob
r .x/ : Let uincl .x; t/ ;

.x; t/ 2 P � .0; T / be the standard linear interpolation of the discrete function
uincl .xm; t/. Our third stage of data immersing consists in defining the function
uimmers .x; t/ for .x; t/ 2 Pobs � .0; T / as

uimmers .x; t/ D
�

uincl .x; t/ ; if x 2 P and uincl .x; t/ � ˇmaxP uincl .x; t/ ;

U .x; t/ ; otherwise.
(5.35)

The parameter ˇ 2 .0; 1/ in (5.35) should be chosen in numerical experiments. In
particular, it follows from (5.35) that

uimmers .x; t/ D U .x; t/ for x 2 PobsŸP: (5.36)

Taking into account (5.13), we set in (5.15) and (5.16)

g .x; t/ WD uimmers .x; t/ for .x; t/ 2 S 0
T D Pobs � .0; T / : (5.37)

Comparison of Fig. 5.9a, c, e with Fig. 5.9b, d, f shows that the third stage of data
immersing not only allows to extend the data from P to Pobs but also significantly
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Fig. 5.7 (a),(c),(e) The function g .x; t/ ; x 2 P for cube No.1 (Table 5.1). This is the function
uincl .x; t / ; x 2 P: However, to solve the adjoint problem (5.15) in the adaptivity, we need to know
this function at a wider rectangle x 2 Pobs; see Sect. 5.6. So, since P �� Pobs; we need to extend
somehow the function g .x; t/ from P to Pobs: This extension is carried out via the third stage of
our data immersing procedure; see Sect. 5.6. (b),(d),(f) present the resulting immersed data with
ˇ D 0:1. Source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental
data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,
doi:10.1088/0266-5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission
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Fig. 5.8 Spatial distributions of iteratively computed dielectric constants ".n;k/r and refractive

indexes n.n;k/ D
q
"
.n;k/
r for the cube number 1 (Table 5.7). The final image corresponds to

n.5;2/ WD nglob D 1:97: See Table 5.8 for the reconstruction accuracy. Recall that refrac-
tive indices rather than dielectric constants are actually measured experimentally. Source: L.
Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission

Table 5.8 Computed refractive indices on the first stage of the two-stage numerical procedure
(second column). The third and fourth column show directly measured indices by the wave
guide method and computational errors respectively

Cube Number Computed n Measured n, error (%) Imaging error (%)

1 1.97 2.17, 11 9.2
2 1.79 1.78, 3.5 0.5

Source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data
via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,
doi:10.1088/0266-5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission

Fig. 5.9 Spatial distributions of iteratively computed dielectric constants ".n;k/r and refractive

indexes n.n;k/ D
q
"
.n;k/
r for the cube number 2 (Table 5.7). The final image corresponds to

n.5;5/ WD nglob D 1:79; which is only 3.5% error compared with the experiment; see Table 5.8.
Recall that refractive indices rather than dielectric constants are actually measured experimentally.
Source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data
via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,
doi:10.1088/0266-5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission
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decreases the noise in the data compared with the function uincl .x; t/ which was the
result of the first immersing stage. Another important point here is that variations of
the parameter ˇ in a wide range ˇ 2 .0:1; 0:985/ do not significantly affect results;
see Fig. 5.15.

5.9.3 Some Details of the Numerical Implementation
of the Adaptivity

The adaptivity in this case consists of two stages of mesh refinement:

Stage 1. On this stage, we use both first and second mesh refinement recommen-
dations (5.17) and (5.18) of Sect. 5.5. In doing so, we use the same parameters
ˇ1; ˇ2; ˛ as ones in (5.19).

Stage 2. On this stage, we use only the second mesh refinement recommendation
(5.18) with parameters ˇ2; ˛ listed in (5.19).

Just as in Sect. 4.16.2, we use a cut-off parameter Bcut: In other words, we set

"r;h .x/ D
(
"r;h .x/ ; if j"r;h .x/ � "glob

r .x/ j � Bcut;

"
glob
r .x/ ; elsewhere.

(5.38)

Specific values of the parameter Bcut are given below.
In addition, we impose the upper bound d on functions "r;h .x/; see (5.4). In other

words, we enforce that

"r;h .x/ 2 CM D f1 � "r;h .x/ � d g :

We find good estimates for the number d from results of the first stage since
approximate global convergence Theorems 2.8.2 and 2.9.4 guarantee that the
function "glob

r .x/ is close to the correct solution. Concrete values of d are given
below.

5.9.4 Reconstruction Results for Cube Number 1

We have used the function "glob
r .x/ as the starting point for iterations; see Fig. 5.7c

for the image of this function. Also, in addition to (5.17), we took the following
values of parameters d in (5.4), ˇ in (5.35) and Bcut in (5.38):

d D 4:4; ˇ D 0:985; Bcut D 2:
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We have chosen d D 4:4 since by Table 5.8, max "glob
r .x/ D .1:97/2 � 3:9: Hence,

the admissible set of parameters in this case is

"r .x/ 2 CM D f1 � "r .x/ � 4g :

As to the parameters ˛; ˇ1; ˇ2; see (5.19).

5.9.4.1 The First Stage of Mesh Refinements

First, using the same coarse mesh as the one on the first stage, we have not observed
any image improvement, which is similar with numerical results of Sects. 4.15.3
and 4.16.2. To figure out when we should stop mesh refinements, we proceed
similarly with Sects. 4.15.3 and 4.16.2. Namely, we analyze norms

kg � ukL2.S 0

T /
D kuimmers � ukL2.S 0

T /
I (5.39)

see (5.37). These norms decrease with the number of mesh refinements up to the
third mesh refinement. Next, on the fourth mesh refinement, the norm (5.39) slightly
increases. Hence, similarly with Sects. 4.15.3 and 4.16.2, relaxation Theorems 4.9.3
and 4.11.4 tell us that the third mesh refinement should be the final one.

The resulting image is displayed on Fig. 5.10. Comparison of Figs. 5.10 and 5.7c
shows that the adaptivity has improved the image of the shape. Also, refractive
indices on both figures are the same. However, the shape of the abnormality is not
yet imaged well.

5.9.4.2 The Second Stage of Mesh Refinements

Let "r .x/ be the coefficient reconstructed on the first stage of mesh refinements.
The image of "r .x/ is depicted on Fig. 5.10. Analyzing the image of Fig. 5.10
computationally, we have observed that the imaged inclusion of this figure is
contained in the subdomain Q̋ � ˝; where

Q̋ D f.x; y; z/ 2 Œ�0:5; 0:5� � Œ�0:6; 0:6� � Œ�1:4;�0:5�g :

On this stage of mesh refinements, we use only the second mesh refinement
recommendation and refine the mesh in neighborhoods of all such points x that

x 2
�
"r .x/ � 0:2max

˝

"r .x/

�
\ Q̋ :

The same stopping criterion as the one in Sects. 4.15.3 and 4.16.2 was used again.
Recall that relaxation Theorems 4.9.3 and 4.11.4 help in this case.
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Fig. 5.10 The reconstruction result for the first stage of the adaptivity for the cube number 1.
Maximal values of the imaged coefficient are shown for the third refined mesh. The shape is
not yet well reconstructed, although a comparison with Fig. 5.8c shows an improvement. The
refractive index is reconstructed accurately (Table 5.8). Source: L. Beilina and M.V. Klibanov,
Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive
inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-5611/26/12/125009, 2010. c�
IOP Publishing. Reprinted with permission

Figure 5.12 displays the final image. Comparison of this figure with Fig. 5.10
shows an improvement of the image of the shape of the cube Number 1. Refractive
indices are the same in both cases and are equal to the one computed by the
approximately globally convergent algorithm.

5.9.5 Reconstruction Results for the Cube Number 2

Just as above, we took the function "glob
r .x/ as the starting point for iterations.

The image of this function is displayed on on Fig. 5.8c. See (5.19) for parameters
˛; ˇ1; ˇ2. Since by the second line of Table 5.7 max "glob

r .x/ D .1:79/2 � 3:2; then
we took d D 3:4 in (5.4). Thus,

d D 3:4; ˇ D 0:985;

where the number ˇ is defined in (5.35). Hence, the admissible set of parameters is:

"r .x/ 2 CM D f1 � "r .x/ � 4g :
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We now give the values of the parameter Bcut in (5.38). Let k be the number of the
mesh refinement. We took

Bcut WD Bcut .k/ D
8
<

:

0:91; for k D 1; 2;

1:1 for k D 3;

2 for k > 3:

The stopping criterion for mesh refinements was the same as the one in Sect. 5.9.4.

5.9.5.1 The First Stage

Because of the above criterion, we have stopped on the third mesh refinement. The
corresponding image is displayed on Fig. 5.12. Comparing with Fig. 5.8c, one can
observe an improvement of the shape of the image. However, one can also see two
disconnected inclusions on Fig. 5.12 instead of just one on Fig. 5.8c. In addition, the
value of the refractive index is now n D 1:59; which is 12% less than the value of
1.79 listed in Table 5.7.

5.9.5.2 The Second Stage

We know from the image of Fig. 5.8c, which is obtained by the approximately
globally convergent numerical method, that we have only one inclusion rather
than two disconnected as ones on Fig. 5.12. In addition, we also know from
Fig. 5.8c that this inclusion is located below the small upper inclusion imaged
on Fig. 5.12. Hence, we have decided to refine mesh in the intersections of two
subdomains ˝1;˝2 �˝: The subdomain ˝1 is defined as usual when the second
mesh refinement recommendation is used:

˝1 D
�
x 2 ˝ W "r .x/ � 0:2max

˝

"r .x/

�
:

As to the subdomain˝2; this is a rectangular prism whose upper boundary is slightly
below the lower boundary of the small inclusion imaged on Fig. 5.12. And the lower
boundary of ˝2 is slightly below the lower boundary of the larger inclusion imaged
on Fig. 5.12.

Let ˝3 D ˝1 \˝2: Then, our calculations show that

˝3 D f.x; y; z/ 2 Œ�0:6; 0:6� � Œ�0:6; 0:6� � Œ�1:8;�0:8�g :

Thus, we refine mesh in neighborhoods of all points of the rectangular prism
˝3 � ˝: The final image is displayed on Fig. 5.13. It is obtained after the third
mesh refinement.
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An excellent accuracy of the reconstruction of all three components for cube
number 2 is evident from Fig. 5.13. These three components are location, shape,
and refractive index.

5.9.6 Sensitivity to the Parameters ˛ and ˇ

We have tested the sensitivity of the image of Cube No. 2 to the choice of the
regularization parameter ˛ 2 .0; 1/ in the Tikhonov functional (5.16) as well as
to the choice of the parameter ˇ 2 .0; 1/ on the third stage of data immersing. We
have performed the following tests:

ˇ D 0:985I ˛ D 0:001; 0:01; 0:1I (5.40)

ˇ D 0:5I ˛ D 0:001; 0:01; 0:1I (5.41)

ˇ D 0:1I˛ D 0:001; 0:01; 0:1: (5.42)

Results of these tests are displayed on Fig. 5.14. One can observe that, for any given
value of ˇ; the change of the regularization parameter ˛ by the factor of 100 causes
almost no change in imaging results. In addition, the change of the parameter ˇ
by the factor of 1:97 D 0:985=0:5 affects results very insignificantly. Surprisingly,
even for ˇ D 0:1, we got almost the same visual quality of images as ones for
ˇ D 0:5; 0:985: However, the value of the imaged refractive index became 1:55
instead of the correct value of 1:78.

We conclude, therefore, that our procedure is quite stable with respect to changes
of parameters ˛ and ˇ:

5.9.7 Additional Effort for Cube Number 1

We undertook an additional effort for cube number 1 on the adaptivity stage. Recall
that the adaptivity requires solutions of state and adjoint problems on each iteration.
Also, it was stated in Sect. 5.5 that in the case of these experimental data, our state
problem is the problem (5.11). The main new element of this additional effort is that
we use in (5.10) and (5.11) a higher frequency ! D 14 instead of the previous one
of ! D 7: This is because ! D 14 corresponds to the twice smaller dimensionless
wavelength 2�=! � 0:45: Indeed, the dimensionless size of cube number 1 is
0:8 � 0:8 � 0:8 and 0:8=0:45 � 1:78 > 1: On the other hand, 2�=7 � 0:897

and 0:8=0:897 � 0:89 < 1: In other words, we had less than one dimensionless
wavelength per the side of cube number 1. However, in the new test, we have almost
two wavelengths are per the side of this cube. Thus, we have conjectured that this
new value of ! D 14 might provide an image whose quality would be better than
the one on Fig. 5.11.
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Fig. 5.11 The reconstruction result for the second stage of the adaptivity for the cube number
1. Thin lines (blue) indicate the correct cubical shape. Comparison with Fig. 5.10 shows an
improvement of the image. The refractive index is reconstructed accurately (Table 5.8). Source:
L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission

Fig. 5.12 The reconstruction result for the first stage of the adaptivity for the cube number 2.
Only maximal values of the imaged coefficient are shown for the third refined mesh. The shape of
the final imaged coefficient is better than one on Fig. 5.9c. However, the imaged refractive index
is lowered by about 19% compared with the imaged on the globally convergent stage. Source:
L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission
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Fig. 5.13 The final reconstruction result for the cube number 2. Only the final, third mesh
refinement, is shown. The imaged coefficient "r .x/ D 1 outside of these images. All three
components: shape, location, and refractive index are imaged with a very good accuracy. Source:
L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission

First, we have simulated the data for the same inclusion as cube number1 is. In
other words, we took the same location and size as ones listed in Table 5.7. Also,
we took "r D 4 inside this inclusion and "r D 1 everywhere else. We have applied
the same procedure as above to these computationally simulated data, starting from
the approximately globally convergent method. The resulting image is displayed on
Fig. 5.16a. A very good accuracy of reconstruction of location, shape, and refractive
index is evident from Fig. 5.16a.

Next, we have applied the entire above procedure to the experimental data for
cube number 1 with the new value of ! D 14 in (5.10). Figure 5.16b displays the
final resulting image of cube number 1. One can observe a significant improvement
compared with Fig. 5.11.

Still, the image of Fig. 5.16b is not as perfect as the one of Fig. 5.13. We attribute
this to the sizes of cubes 1 and 2. Indeed, the original wavelength of the signal in
the experimental data was � D 3 centimeters (cm). Hence, since the size of the
side of cube number 1 is 4 cm, then its side is 1:33�. On the other hand, the side
of cube number 2 is 6 cm, which is 2�: wavelengths. We conjecture that it is this
difference of sizes which led to the difference of the quality of images of these two
cubes.
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Fig. 5.14 Adaptively refined computational meshes in different projections and reconstruction
results for cube number 2 with parameters ˇ D 0:985 and ˛ D 0:001: Lines (blue) indicate the
correct cubical shape. Maximal values of the imaged coefficient are displayed. The computed value
of the coefficient outside of imaged inclusions is 1. We observe that a very good reconstruction is
achieved on (d). The image on (d) is the same as the image on Fig. 5.13. This image is obtained
after three mesh refinements. The same stopping criterion as the one in Sects. 4.15.3 and 4.16.2
was used. Relaxation Theorems 4.9.3 and 4.11.4 help in this case. On the other hand, (h) shows
that reconstruction is stabilized, and (l) shows that the image deteriorates if one uses more mesh
refinements than necessary, i.e., if one ignores that stopping criterion. Thus, (d) is our final
image. Source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental
data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,
doi:10.1088/0266-5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission
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Fig. 5.15 Final reconstruction results for cube number 2 with varying parameters ˇ and ˛:

Lines (blue) indicate the correct cubical shape. Maximal values of the imaged coefficient are
displayed. The computed value of the coefficient outside of imaged inclusions is 1. Source: L.
Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. c� IOP Publishing. Reprinted with permission
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Fig. 5.16 (a) The image of
computationally simulated
cube number 1 from
computationally simulated
data with ! D 14 in (5.10)
and (5.11). (b) The image of
cube number 1 from
experimental data with
! D 14 in (5.10) and (5.11).
The same imaging procedure
as above was applied.
Compared with Fig. 5.11, a
significant improvement is
observed. Still, however, the
image of the shape is not as
good as the one for Cube
number 2 on Fig. 5.13.
Source: L. Beilina and M.V.
Klibanov, Reconstruction of
dielectrics from experimental
data via a hybrid globally
convergent/adaptive inverse
algorithm, Inverse Problems,
26, 125009,
doi:10.1088/0266-
5611/26/12/125009, 2010. c�
IOP Publishing. Reprinted
with permission

5.10 Summary

In this chapter, we have presented our work on experimental data of [28, 109].
The main difficulty of this work was caused by a huge discrepancy between
experimentally measured and computationally simulated data. This discrepancy is
not only due to the noise component, which is always present in any experimental
data, but also due to a highly oscillatory behavior of experimentally measured
curves, even for the case of the free space. On the other hand, computational
simulations for the free space case do not show high oscillations. Thus, it is unclear
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what kind of a PDE, if any, governs this process. We attribute this discrepancy to
very small times at which experimental data were collected. Indeed, the time step
between two consecutive readings was only 20 ps D 2 � 10�11 s.

We have modeled this process by a single hyperbolic PDE (5.1), which is the
same as (2.1). The Maxwell’s system was not used. We believe that modeling by
this system might lead to a better accuracy of results. Still, however, an analog of the
above data pre-processing procedure should be used. Since only a single component
of the electric field was measured and since the approximately globally convergent
numerical method is not yet developed for CIPs for the Maxwell’s system, then the
above question should be left for future studies.

To handle the above huge discrepancy, a crucial step was a radically new
data pre-processing procedure. This procedure consists in immersing the data in
the mathematical model we are working with. We point out that the immersing
procedure was unbiased. This is because our approximately globally convergent
algorithm has worked with the most challenging case of blind experimental data,
i.e., we did not know the answer in advance. The immersing procedure makes
the data suitable to work with. This procedure consists of three stages. First two
immersing stages were applied to work with the algorithm of Sect. 2.6.1. And the
third stage was applied to make the data suitable for the adaptivity technique.

We had at least five (5) sources of error:

1. The natural noise in the experimental data.
2. The modeling noise, since it was unclear from the data analysis what kind of

PDE, if any, governs the process.
3. The data pre-processing has contributed even more to the modeling noise.
4. In our theory, the coefficient "r .x/ should be sufficiently smooth. However, this

function obviously had a discontinuity at the inclusion/medium interface.
5. The Maxwell’s system was not used.

Nevertheless, we have consistently obtained an excellent accuracy of the recon-
struction of both locations and refractive indices of dielectric inclusions in blind
testing by the first stage of our two-stage numerical procedure. We point out that
when applying the algorithm of Sect. 2.6.1, we were unbiased; see beginning of
Sect. 5.7. The second stage has also resulted in an excellent reconstruction accuracy
of locations and refractive indices of both cubes. In addition, the second stage has
led to reconstructions of shapes of these cubes. The shape reconstruction accuracy
was excellent for cube number 2, and it was very good for cube number 1. We
conjecture that this difference of qualities is due to the difference of sizes of those
cubes versus the wavelength � of the EM wave we were operating with. Indeed, the
size of the side of for 1 was 1:33� versus to 2� of cube number 2.

With reference to the two-stage numerical procedure, we have shown how
important it is to use the approximately globally convergent algorithm on the first
stage. Indeed, first, we have demonstrated that a modified gradient method of the
minimization of the Tikhonov functional does not produce meaningful results, if it is
taken alone, i.e., without the first stage algorithm of Sect. 2.6.1. Next, it is important
for the third stage of data immersing to use the result obtained by the algorithm of
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Sect. 2.6.1. In addition, we have shown that our adaptivity technique, being applied
to these experimental data, is very stable with respect to the large changes of two
key parameters: the regularization parameter ˛ of the Tikhonov functional and the
parameter ˇ of the third stage of data immersing.

In summary, we repeat one thought of Sect. 5.1. Namely, it is quite surprising
that, despite all these sources of error and especially despite the abovementioned
huge misfit between experimentally measured and computationally simulated data,
such a very good reconstruction accuracy was consistently observed. Finally,
another interesting feature of results of this chapter is that this accuracy was obtained
for the case when measurements were taken for a narrow view angle; see Fig. 5.1.
We believe, therefore, that these results indicate a good degree of robustness of our
algorithms. Finally, we believe that these results completely validate both first and
second approximate mathematical models.
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