
Chapter 2
Approximately Globally Convergent Numerical
Method

In this chapter, we present our approximately globally convergent numerical method
for a multidimensional CIP for a hyperbolic PDE. This method also works for a
similar CIP for a parabolic PDE. The numerical method of the current chapter
addresses the first central question of this book (Sect. 1.1). The first publication
about this method was [24] with follow-up works [25–29, 109, 114–117, 160].
We remind that only multidimensional CIPs with single measurement data are
considered in this book. Recall that the term “single measurement” means that the
boundary data are generated either by a single position of the point source or by
a single direction of the initializing plane wave (Sect. 1.1.2). It will become clear
from the material below that when approximately solving certain nonlinear integral
differential equations with Volterra-like integrals, we use an analog of the well-
known predictor-corrector approach.

We describe this numerical method and prove its approximate global conver-
gence property. The development of approximately globally convergent numerical
methods for multidimensional CIPs has started from the so-called convexification
algorithm [100–102, 157–160], which we consider as the approximately globally
convergent numerical method of the first generation. First, the convexification
comes up with a nonlinear integral differential equation, which is the same as
(2.20) in Sect. 2.3. The key point is that this equation does not contain the unknown
coefficient, which is similar with one of the ideas of the Bukhgeim-Klibanov
method; see Sects. 1.10 and 1.11. A numerical method for the solution of this
equation represents the main difficulty of both the convexification and the approach
of this book. To solve that equation, the convexification uses a layer stripping
procedure with respect to a spatial variable z and the projection method with respect
to the rest of spatial variables. In this case, both Dirichlet and Neumann boundary
conditions at a part of a plane orthogonal to the z-axis are used. Also, z dependent
CWFs are involved in the convexification. Because of this, the convexification
can use boundary conditions only at one part of the boundary, i.e., at a side of a
rectangular prism, which is orthogonal to z.
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96 2 Approximately Globally Convergent Numerical Method

The numerical method of this chapter is the approximately globally convergent
numerical method of the second generation. Its radical difference with the con-
vexification is in the solution of the abovementioned nonlinear integral differential
equation. Unlike the convexification, the current method is not using neither the
projection with respect to some spatial variables nor the layer stripping with respect
to a spatial variable. In Chaps. 2–5, the current method uses the Dirichlet boundary
condition at the entire boundary @˝ of a finite domain of interest ˝ . The target
coefficient is unknown in ˝ and has a known constant value outside of ˝ .

We use the layer stripping procedure with respect to the parameter s > 0; where
s is the parameter of the Laplace transform of a hyperbolic PDE, for which the
CIP is considered. We call s pseudo frequency. Since the differential operator with
respect to s is not involved in the corresponding PDE, unlike the differential operator
with respect to z in the convexification, then this procedure is more stable than the
convexification. On each thin s layer, the Dirichlet boundary value problem for a
nonlinear elliptic PDE of the second order is solved via the FEM. Dirichlet boundary
conditions for these elliptic PDEs are originally generated by the data for the inverse
problem. Also, s dependent CWFs are present in our numerical scheme. This pres-
ence is important, because it enables one to weaken the influence of the nonlinear
term in each of those elliptic PDEs, thus solving a linear problem on each iteration.

Starting from the remarkable work of Carleman [50], weight functions carrying
his name have been widely used for proofs of uniqueness and conditional stability
results for ill-posed Cauchy problems for PDEs [102, 124], as well as for multidi-
mensional CIPs with the single measurement data (see Sects. 1.10 and 1.11 above
for the latter). In this capacity, CWFs were dependent on spatial variables since they
have provided weighted estimates for differential operators. However, one of new
points of our method is that CWFs are used for integral Volterra-like operators, they
are involved in the numerical scheme, and depend on the pseudo frequency s; rather
than on a spatial variable.

An important element of our technique is the procedure of working with the so-
called tail functions. The tail function complements a certain truncated integral with
respect to s. We refer to earlier works [73, 155] for similar treatments of tails for
some other numerical methods for CIPs.

Theorems 2.8.2 and 2.9.4 ensure the approximate global convergence property
of our technique within frameworks of two approximate mathematical models.
It follows from these theorems that the accuracy of the solution mainly depends
from the accuracy of the reconstruction of the tail functions. On the other hand,
it follows from the second approximate mathematical model (Sect. 2.9.2) that the
reconstruction of the first tail function can be done via solving the Dirichlet
boundary value problem for the Laplace equation. Thus, if the noise in the boundary
data is small, then the solution of the latter problem is accurate. The accuracy of
the reconstruction of the rest of tail functions depends on the accuracy of the first
tail. This indicates that it is because of the successful choice of our approximate
mathematical models, a small noise in the boundary data is the main input for a
good accuracy of our algorithm. In the theory of ill-posed problems, the small noise
condition is a natural requirement.
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A substantially different layer stripping procedure with respect to the frequency
(rather than pseudo frequency) was previously developed in [55], where a conver-
gence theorem was not proved (see Remark 1.1 in [55]). The paper [55] works with
the Fourier transform of the hyperbolic equation c .x/ ut t D �u with the unknown
coefficient c .x/ : The iterative process of [55] starts from a low frequency value.
Unlike this, we start from a high value of the pseudo frequency.

2.1 Statements of Forward and Inverse Problems

Everywhere in this book, the forward problem is the Cauchy problem for either
a hyperbolic or a parabolic PDE. The case of a boundary value problem in a
finite domain is not considered here only because an analogue of the asymptotic
behavior (2.14) is not proved in this case, since (2.14) is actually derived from
Theorem 4.1 of [144] as well as from [145]. That theorem establishes a certain
asymptotic behavior of the fundamental solution of a hyperbolic equation near
the characteristic cone. In our numerical experiments, we verify the asymptotic
behavior (2.14) computationally; see Sect. 3.1.2. We also note that the existence of
the fundamental solution of the hyperbolic equation (2.1) is currently proven only
for the case when the coefficient c 2 Ck

�
R
3
�

with k � 2 and the geodesic lines are
regular [144, 145]. These justify the assumption (2.4) below.

Consider the Cauchy problem for the hyperbolic equation:

c .x/ ut t D �u in R
3 � .0;1/ ; (2.1)

u .x; 0/ D 0; ut .x; 0/ D ı .x � x0/ : (2.2)

Equation (2.1) governs a wide range of applications, including, for example,
propagation of acoustic and EM waves. In the acoustical case, 1=

p
c.x/ is the sound

speed. In the 2D case of EM waves propagation in a non-magnetic medium, the
dimensionless coefficient is c.x/ D "r .x/; where "r .x/ is the spatially distributed
dielectric constant of the medium, see, for example, [57], where (2.1) was derived
from the Maxwell equations in the 2D case. Unlike the 2D case, (2.1) cannot be
derived from the Maxwell equations in the 3D case if c.x/ D "r .x/ ¤ const:
Nevertheless, this equation was successfully used to work with experimental data in
[28, 109] in 3D; see Chap. 5.

Let ˝ � R
3 be a convex bounded domain with the boundary @˝ 2 C3: Let

d D const: > 1:We assume that the coefficient c .x/ of (2.1) is such that

c .x/ 2 Œ1; d �; c .x/ D 1 for x 2 R
3Ÿ˝; (2.3)

c 2 C3
�
R
3
�
: (2.4)

In accordance with the second condition of the fundamental concept of Tikhonov
(Sect. 1.4), we a priori assume knowledge of the constant d; which amounts to the
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knowledge of the correctness set. However, we do not assume that the number d �1
is small, i.e., we do not impose smallness assumptions on the unknown coefficient
c .x/.

Coefficient Inverse Problem 2.1. Suppose that the coefficient c .x/ satisfies (2.3)
and (2.4). Assume that the function c .x/ is unknown in the domain ˝ . Determine
the function c .x/ for x 2 ˝; assuming that the following function g .x; t/ is known
for a single source position x0 … ˝:

u .x; t/ D g .x; t/ ;8 .x; t/ 2 @˝ � .0;1/ : (2.5)

The reason why we assume here that the source x0 … ˝ is that we do not want
to deal with singularities near the source location. In applications, the assumption
c .x/ D 1 for x 2 R

3Ÿ˝ means that the target coefficient c .x/ has a known
constant value outside of the medium of interest ˝: Another argument here is that
one should bound the coefficient c .x/ from the below by a positive number to
ensure that the operator in (2.1) is a hyperbolic one on all iterations of our method.
The function g .x; t/ models time-dependent measurements of the wave field at
the boundary of the domain of interest. Practical measurements are calculated at
a number of detectors, of course. In this case, the function g .x; t/ can be obtained
via one of standard interpolation procedures.

Remarks 2.1. 1. As it was stated in Sect. 1.10.1, uniqueness theorem for this
inverse problem is a long-standing and well-known open question because of
the ı .x � x0/ function in the initial condition (2.2), although see (1.76). Thus,
we assume everywhere below that uniqueness theorem is valid for this problem,
as well as for all other CIPs considered in this book. It is an opinion of the authors
that because of applications, it is worthy to study numerical methods for CIPs of
this book, assuming that the uniqueness holds.

2. Our computational experience shows that the assumption of the infinite time
interval in (2.5) is not a restrictive one. In the case of a finite time interval,
on which measurements are performed, one should assume that this interval is
large enough. Thus, the t-integral of the Laplace transform over this interval is
approximately the same as the one over .0;1/ : Our work with experimental
data in Chaps. 5 and 6 verifies this point.

2.2 Parabolic Equation with Application in Medical Optics

In this section, we formulate both forward and inverse problems for a parabolic
equation which governs applications particularly in medical optical imaging. The
optical medical imaging consists of two stages. On the first stage, a device collects
the light scattering data at the boundary of a human tissue (e.g., at the surface of a
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brain or a female breast); see, for example, [150]. On the second stage, a mathemat-
ical algorithm for a CIP for a diffusion PDE is applied to approximately calculate
the spatially distributed absorption coefficient inside that tissue. The map of this co-
efficient produces the desired image. We are interested in the second stage. Because
of the necessity to solve a CIP, this stage represents a major mathematical challenge.

It was shown experimentally that the diffusion coefficient of light changes slowly
in human tissues [76]. Hence, we can assume that it is a known constant and consider
the following parabolic equation governing light propagation in human tissues [8]:

Ut D D�U � a.x/U in R
3 � .0;1/ ;

U .x; 0/ D ı .x � x0/ : (2.6)

Here, fx D x0g is the location of the light source, U .x; t/ is the light amplitude,
a.x/ D �a .x/ � const: > 0 is the absorption coefficient, and D D D0 D const: >
0 is the diffusion coefficient D D 1=3�0

s; where �0
s is the reduced scattering

coefficient. We assume below that the diffusion coefficientD0 is known.
Let ˝ � R

3 be a convex bounded domain with the boundary @˝ 2 C3: Let
a0; a1 D const: > 0; a0 < a1: We assume that the absorption coefficient a .x/ of
(2.6) is such that

a .x/ 2 Œa0; a1� ; a .x/ D a0 for x 2 R
3Ÿ˝; (2.7)

a .x/ 2 C˛
�
R
3
�
; ˛ 2 .0; 1/ : (2.8)

Let

U0 .x; t/ D 1
�
2
p
�t
�3 exp

 

�jx � x0j2
4t

!

be the solution of the problem (2.6) for a � 0: It follows from (2.7) and (2.8) that
there exists unique solution U of the forward problem (2.6) such that the function
.U � U0/ 2 C2C˛;1C˛=2 �

R
3 � Œ0; T �� ;8T > 0 [120].

It was established experimentally [76, 156] that cancerous tumors absorb light
more than the surrounding tissue. The tumor/background absorption contrast is
between 2:1 and 3:1 [76]. Realistic value of optical coefficients of light propagation
in human tissues are [156] �a 2 Œ0:004; 0:016�mm�1; �0

s 2 Œ0:6; 1:2�mm�1, where
�a and �0

s are absorption and reduced scattering coefficients, respectively. The
absorption coefficient characterizes blood oxygenation. Since malignant tumors are
less oxygenated than healthy tissues, a hope of researchers is to detect these tumors
on early stages using optical methods. Thus, our goal is to determine the absorption
coefficient in (2.6). We now pose the following inverse problem for (2.6).

Coefficient Inverse Problem 2.2. Let ˝ � R3 be a convex bounded domain
with the piecewise smooth boundary @˝ . Suppose that the coefficient a.x/ satisfies
conditions (2.7) and (2.8) and is unknown in ˝ . Suppose also that the diffusion
coefficient D D D0 D const: > 0 is known. Determine the coefficient a.x/ for
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x 2 ˝; assuming that the following function '.x; t/ is known for a fixed source
position some position x0 … ˝:

U .x; t/ Deg .x; t/ ;8 .x; t/ 2 @˝ � .0;1/ : (2.9)

2.3 The Transformation Procedure for the Hyperbolic Case

In this section, we reduce inverse problem 2.1 to the Dirichlet boundary value prob-
lem for a nonlinear integral differential equation. Consider the Laplace transform of
the functions u in the hyperbolic equation (2.1):

w.x; s/ D
1Z

0

u.x; t/e�stdt; for s > s D const: > 0; (2.10)

where s is a certain number. It is sufficient to choose s such that the integral (2.10)
would converge together with corresponding .x; t/ derivatives. So, we can assume
that the number s is sufficiently large. We call the parameter s pseudo frequency.
Recall that x0 … ˝: It follows from (2.1), (2.2), and (2.10) that the function w is the
solution of the following problem:

�w � s2c .x/w D �ı .x � x0/ ; x 2 R
3; (2.11)

lim
jxj!1

w .x; s/ D 0: (2.12)

We prove (2.12) in Theorem 2.7.1 Likewise, we specify properties of the function
w.x; s/ in Theorem 2.7.2 In particular, it follows from Theorems 2.7.1 and 2.7.2 that
w.x; s/ 2 C3

�
R
3Ÿ fjx � x0j < "g

�
;8" > 0: To justify the asymptotic behavior of

the function w.x; s/ at s ! 1; we need Lemma 2.3.

Lemma 2.3([102]). Assume that conditions (2.3) and (2.4) are satisfied. Let
the function w.x; s/ 2 C3

�
R
3Ÿ fjx � x0j < "g

�
;8" > 0 be the solution of the

problem (2.11) and (2.12). Assume that geodesic lines, generated by the eikonal
equation corresponding to the function c .x/ are regular, i.e., any two points in
R
3 can be connected by a single geodesic line. Let l .x; x0/ be the length of the

geodesic line connecting points x and x0: Then the following asymptotic behavior
of the function w and its derivatives takes place for jˇj � 3; k D 0; 1; x ¤ x0:

Dˇ
xD

k
s w.x; s/ D Dˇ

xD
k
s

�
exp Œ�sl .x; x0/�

f .x; x0/

�
1CO

�
1

s

��	
; s ! 1; (2.13)

where f .x; x0/ is a certain function and f .x; x0/ ¤ 0 for x ¤ x0: This behavior
is uniform for x 2 ˝:
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The C2-smoothness required by Lemma 2.1 is also because of Theorem 4.1 of
[144], which implies the asymptotic behavior (2.13). Note that Theorem 4.1 of
[144] actually requires a higher smoothness of coefficients. This is because it is
concerned with many terms of the asymptotic behavior of the fundamental solution
of the hyperbolic equation near the characteristic cone. However, since (2.13) is
dealing only with the first term of this behavior, then it follows from the proof of
that theorem that the C2-smoothness is sufficient; also see [145] for the smoothness.

Remark 2.3.1. Actually, it follows from Theorem 4.1 of [144] that the asymptotic
behavior (2.13) is valid for the Laplace transform for a general hyperbolic equation
of the second order, as long as the condition of the regularity of geodesic lines is
in place. This condition cannot be effectively verified, unless the coefficient c .x/
is close to a constant. The authors are unaware about any meaningful analytical
results for multidimensional hyperbolic CIPs without either this or somewhat close
condition imposed. For example, it was shown in [144] that condition (1.82) is close
to the condition of the regularity of geodesic lines. On the other hand, conditions of
this lemma are only sufficient, but not necessary ones for the asymptotic behavior
(2.13). Therefore, we assume everywhere in this book that the asymptotic behavior
(2.13) holds. We verify (2.13) computationally in some of our numerical studies;
see Sect. 3.1.2 below.

We now work only with the function w.x; s/: It will be shown in Theorems 2.7.1
and 2.7.2 that w.x; s/ > 0: Hence, we can consider functions v.x; s/ and H .x; s/

defined as

v .x; s/ D ln w .x; s/

s2
:

Assuming that the asymptotic behavior (2.13) holds (Remark 2.3.1), we obtain the
following asymptotic behavior of the function v:



Dˇ
xD

k
s v .x; s/




C3.˝/ D O

�
1

skC1

�
; s ! 1; k D 0; 1: (2.14)

Substituting w D ev in (2.11), keeping in mind that the source x0 … ˝ and then
dividing the resulting equation for v by s2; we obtain

�v C s2 .rv/2 D c.x/; x 2 ˝: (2.15)

Denote
q .x; s/ D @sv .x; s/ : (2.16)

By (2.14) and (2.16),

v .x; s/ D �
1Z

s

q .x; �/ d�:
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We rewrite this integral as

v .x; s/ D �
sZ

s

q .x; �/ d� C V .x; s/ ; (2.17)

where the truncation pseudo frequency s > s is a large number. It is important that
in (2.17), V .x; s/ is not an arbitrary function, but rather

V .x; s/ D v .x; s/ D ln w .x; s/

s2
; (2.18)

where w .x; s/ is the Laplace transform (2.10) of the solution of the forward
problem (2.1) and (2.2) at s WD s, or, which is equivalent, the solution of the
elliptic forward problem (2.10), (2.10) at s WD s: The number s should be chosen
in numerical experiments. We call V .x; s/ the “tail,” and this function is unknown.
By (2.14) and (2.18),

kV .x; s/kC3.˝/ D O

�
1

s

�
; k@sV .x; s/kC3.˝/ D O

�
1

s2

�
: (2.19)

In other words, the tail is small for large values of s: In principle, therefore,
one can set V .x; s/ WD 0: However, our numerical experience shows that it
would be better to update somehow the tail function in an iterative procedure.
We call the updating procedure “iterations with respect to tails” and describe it in
Sect. 2.7.

Remark 2.3.2. The integral in (2.17) is sort of truncated at a large value s of the
pseudo frequency, which is similar with a routine truncation of high frequencies in
science and engineering. We use words “sort of” because instead of just setting the
tail function to zero, as it would be the case of a “straight” truncation, we iteratively
update it in our algorithm. Hence, s is one of the regularization parameters of
our numerical method. In the computational practice, this parameter is chosen in
numerical experiments.

Thus, differentiating (2.15) with respect to s and using (2.16) and (2.17), we
obtain the following integral nonlinear differential equation:

�q � 2s2rq
sZ

s

rq .x; �/ d� C 2s

2

4
sZ

s

rq .x; �/ d�

3

5

2

C2s2rqrV � 4srV
sZ

s

rq .x; �/ d� C 2s .rV /2 D 0; x 2 ˝: (2.20)
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In addition, (2.5) and (2.16) imply that the following Dirichlet boundary
condition is given for the function q:

q .x; s/ D  .x; s/ ; 8 .x; s/ 2 @˝ � Œs; s� ; (2.21)

where:

 .x; s/ D @s ln '

s2
� 2 ln'

s3
;

and ' .x; s/ is the Laplace transform (2.10) of the function g .x; t/ in (2.5).
Suppose for a moment that functions q and V are approximated in ˝ together

with their derivatives D˛
xq;D

˛
x V; j˛j � 2: Then the corresponding approximation

for the target coefficient can be found via (2.15) as

c .x/ D �v C s2 .rv/2 ; x 2 ˝; (2.22)

where the functionH is approximated via (2.17). Although any value of the pseudo
frequency s 2 Œs; s� can be used in (2.22), we found in our numerical experiments
that the best value is s WD s:

If integrals would be absent in (2.20) and the tail function would be known,
then (2.20) and (2.21) would be the classical Dirichlet boundary value problem for
the Laplace equation. However, the presence of integrals implies the nonlinearity
and represents the main difficulty here. Another obvious difficulty is that (2.20) has
two unknown functions q and V . The reason why we can handle this difficulty is
that we treat functions q and V differently: while we iteratively approximate the
function q being sort of “restricted” only to (2.20), we find updates for V using
solutions of forward problems (2.1) and (2.2), the Laplace transform (2.10), and the
formula (2.18). In those forward problems, we use approximations for the unknown
coefficient c obtained from (2.22). The algorithm of approximating both functions
q and V is described in Sect. 2.6.

2.4 The Transformation Procedure for the Parabolic Case

The goal of this section is to show that the coefficient inverse problem 2.2 for
the parabolic equation (2.6) can be solved numerically along the same lines as
the coefficient inverse problem 2.1 for the hyperbolic equation (2.1). However,
we do not study further the parabolic case in this book. In the case of parabolic
equation (2.6), consider the Laplace transform of the solution of the parabolic
Cauchy problem (2.6)

W.x; s/ D
1Z

0

U.x; t/ exp
��s2t� dt; s � s D const: > 0: (2.23)
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For simplicity, let D0 D 1: It follows from (2.6) and (2.23) that the function W is
the solution of the following problem:

�W � s2W � a .x/W D �ı .x � x0/ ;8s � s D const: > 0;

lim
jxj!1

W.x; s/ D 0: (2.24)

The second condition (2.24) is valid for sufficiently large s and can be proved by the
method, which is similar with the one of Sect. 2.5. Theorem 11 of Chap. 2 of [69]
ensures that the fundamental solution of a general parabolic equation is positive for
t > 0: This means that U .x; t/ > 0 for t > 0:Hence, W.x; s/ > 0: Hence, we can
consider the function P D lnW: Since x0 … ˝; we obtain from (2.24)

�P C ˇ
ˇrP ˇˇ2 � s2 D a.x/; x 2 ˝: (2.25)

Consider now the following hyperbolic Cauchy problem:

ut t D �u � a .x/ u in R
3 � .0;1/ ;

u .x; 0/ D 0; ut .x; 0/ D ı .x � x0/ :

Applying to the function u the Laplace transform (2.10), we obtain (2.24). Hence,

W.x; s/ D
1Z

0

u.x; t/ exp .�st/ dt; s � s D const: > 0:

Geodesic lines are straight lines in this case. Therefore, the asymptotic behavior
(2.13) holds (the first sentence of Remark 2.3.1),

Dˇ
xD

k
s W.x; s/ D Dˇ

xD
k
s

�
exp Œ�s jx � x0j�
4� jx � x0j

�
1CO

�
1

s

��	
; s ! 1;

where jˇj � 2; k D 0; 1: Consider the function P :

P .x; s/ D P .x; s/ � ln

�
exp Œ�s jx � x0j�
4� jx � x0j

�
WD P .x; s/ � P0 .x; s/ :

Then the following asymptotic behavior is valid:

Dˇ
xD

k
s P .x; s/ D O

�
1

skC1

�
; s ! 1; jˇj � 2; k D 0; 1; x 2 ˝: (2.26)

Next, similarly with (2.16), we “eliminate” the unknown coefficient a .x/ from
equation for the function P via the differentiation with respect to s. Denote

Q .x; s/ D @sP .x; s/ : (2.27)
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By (2.26) and (2.27),

P .x; s/ D �
1Z

s

Q .x; �/ d�:

We represent this integral as

P .x; s/ D �
sZ

s

Q .x; �/ d� C V .x; s/ ; (2.28)

where s > s is a large number. Again, we call the function QV .x; s/ in (2.28) as “the
tail function” and it is defined as

V .x; s/ D P .x; s/ D lnW .x; s/� ln

�
exp Œ�s jx � x0j�
4� jx � x0j

�
: (2.29)

Similarly with the hyperbolic case, differentiating equation for P with respect
to s and using (2.27)–(2.29), we obtain the following integral nonlinear differential
equation for the functionQ:

�Q � 2 .s C 1/

jx � x0j .rQ;x � x0/� 2rQ
sZ

s

rQ.x; �/ d� C 2rQrV

C 2

jx � x0j

0

@
sZ

s

rQ.x; �/ d�; x � x0

1

A � 2

jx � x0j .rV; x � x0/ D 0: (2.30)

Here, .�; �/ denotes the scalar product in R
3: The boundary condition for the

functionQ is

Q j˝D N .x; s/ ; .x; s/ 2 @˝ � Œs; s� ; (2.31)

where the function N is defined as

N .x; s/ D @s ln N' .x; s/C jx � x0j ;
where N' .x; s/ is the Laplace transform of the functioneg .x; t/ in (2.9).

Assume that we can approximate both functions Q and V in ˝ together with
their derivatives D˛

xQ;D
˛
xV; j˛j � 2: Then the corresponding approximation for

the absorption coefficient a.x/ can be found via (2.25) as

a .x/ D �.P C P0/C jr .P C P0/j2 � s2; x 2 ˝;
where the function P is approximated via (2.28). As it was mentioned above, the
main difficulty of our method consists in the numerical solution of the nonlinear
integral differential equation (2.30) with the boundary condition (2.31).
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2.5 The Layer Stripping with Respect to the Pseudo
Frequency s

In this section, we introduce the layer stripping procedure with respect to the
pseudo-frequency for the solution of the integral-differential equation (2.20).
Almost the same procedure can be applied for the solution of (2.30), although it
is not presented here.

We approximate the function q .x; s/ in (2.20) as a piecewise constant function
with respect to the pseudo frequency s: That is, we assume that there exists a
partition

s D sN < sN�1 < ::: < s1 < s0 D s; si�1 � si D h

of the interval Œs; s� with a sufficiently small grid step size h such that q .x; s/ D
qn .x/ for s 2 .sn; sn�1�: We set

q0 � 0: (2.32)

Hence,

Z s

s

rq.x; �/d� D .sn�1 � s/rqn.x/C h

n�1X

jD0
rqj .x/; s 2 .sn; sn�1/: (2.33)

We approximate the boundary condition (2.21) as a piecewise constant function:

qn .x/ D  n .x/ ; x 2 @˝; (2.34)

 n .x/ D 1

h

sn�1Z

sn

 .x; s/ ds: (2.35)

For each subinterval .sn; sn�1�; n � 1, we assume that functions qj .x/ ; j D 1; :::;

n � 1 for all previous subintervals are known. We obtain from (2.20) the following
approximate equation for the function qn.x/:

eLn .qn/ WD �qn � 2 �s2 � 2s .sn�1 � s/
�
0

@h
n�1X

jD1
rqj

1

Arqn

C2 �s2 � 2s .sn�1 � s/
�rqnrV

D 2 .sn�1 � s/
�
s2 � s .sn�1 � s/� .rqn/2 � 2sh2

0

@
n�1X

jD1
rqj

1

A

2

C4srV
0

@h
n�1X

jD1
rqj

1

A � 2s jrV j2 ; s 2 .sn�1; sn� : (2.36)
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Equation (2.36) is nonlinear, and it depends on the parameter s;whereas the function
qn .x/ is independent on s. This discrepancy is due to the approximation of the
function q .x; s/ by a piecewise constant function. Although it seems that (2.36) is
over-determined because the function qn .x/ is not changing with the change of s;
variations of s dependent coefficients of (2.36) are small over s 2 Œsn; sn�1/ because
this interval is small. This discrepancy is actually helpful for our method since it
enables us to “mitigate” the influence of the nonlinear term .rqn/2 in (2.36) via
introducing the s dependent CWF.

In addition, we add the term �"qn to the left-hand side of (2.36), where " > 0 is a
small parameter. We are doing so because, by the maximum principle, if a function
p.x; s/ is the classical solution of the Dirichlet boundary value problem

eLn .p/� "p D f .x; s/ in ˝; p j@˝D pb.x; s/;

then [118] (Chap. 3, Sect. 1)

max
˝

jpj � max

�
max
@˝

jpbj ; "�1 max
˝

jf j
�
;8s 2 .sn�1; sn� : (2.37)

On the other hand, if " D 0; then an analogue of the estimate (2.37) would be worse
because of the involvement of some other constants: Therefore, it is anticipated that
the introduction of the term �"qn should provide a better stability of our process,
and we indeed observe this in our computations.

After adding the term �"qn to the left-hand side of (2.36), multiply this equation
by the CWF of the form:

Cn;�.s/ D exp Œ�.s � sn�1/� ; s 2 .sn; sn�1�; (2.38)

and integrate with respect to s over .sn; sn�1/: In (2.38) � >> 1 is a parameter,
which should be chosen in numerical experiments. Theorem 2.8.2 provides a recipe
for this choice. Taking into account (2.34), we obtain

Ln .qn/ WD �qn �A1;n
0

@h
n�1X

jD0
rqj

1

Arqn C A1nrqnrV � "qn

D 2
I1;n

I0
.rqn/2 � A2;nh

2

0

@
n�1X

jD0
rqj .x/

1

A

2

C2A2;nrV
0

@h
n�1X

jD0
rqj

1

A �A2;n .rV /2 ; n D 1; :::; N;

qn jx2@˝D  n .x/ : (2.39)
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In (2.39),

I0 WD I0 .�; h/ D
sn�1Z

sn

Cn;� .s/ ds D 1 � e��h

�
;

I1;n WD I1;n .�; h/ D
sn�1Z

sn

.sn�1 � s/
�
s2 � s .sn�1 � s/� Cn;� .s/ ds;

A1;n WD A1;n .�; h/ D 2

I0

sn�1Z

sn

�
s2 � 2s .sn�1 � s/

� Cn;� .s/ ds;

A2;n WD A2;n .�; h/ D 2

I0

sn�1Z

sn

sCn;� .s/ ds:

Thus, we have obtained the Dirichlet boundary value problem (2.39) for a nonlinear
elliptic PDE with the unknown function qn .x/. In (2.39), the tail function V is also
unknown. An important observation is that

jI1;n .�; h/j
I0 .�; h/

� 4s2

�
; for �h � 1: (2.40)

Therefore, by taking � >> 1; we mitigate the influence of the nonlinear term with
.rqn/2 in (2.39). This enables us to solve each elliptic Dirichlet boundary value
problem (2.34) and (2.39) iteratively at each n via solving a linear problem on
each step.

Remarks 2.5. 1. It is clear from (2.40) that the nonlinear term .rqn/2 in
(2.39) can be ignored for large values of �. This is done in Sect. 2.6. However,
ignoring this term does not mean linearization of the original problem. Indeed,
the nonlinearity actually surfaces in iterations with respect to n, because of the
involvement of terms rqjrqn;

�rqj
�2
;rqjrqi I i; j 2 Œ1; n � 1� in (2.39).

In addition, the tail function V , which we will calculate iteratively, depends
nonlinearly on qj ; qn:

2. In principle, one can avoid using the CWF via decreasing the step size h, which
would also result in a small influence of the term .rqn/2 in (2.39). However, this
would lead to an unnecessary increase of the number of equations N in (2.39).
Hence, one would need to solve too many Dirichlet boundary problems (2.39),
which is time-consuming. Thus, the introduction of the s dependent CWF (2.38)
in the numerical scheme makes this scheme more flexible.
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2.6 The Approximately Globally Convergent Algorithm

The above considerations lead to the algorithm described in this section. This
is an algorithm with the approximate global convergence property for coefficient
inverse problem 2.1. This property is established in Theorems 2.8.2 and 2.9.4 for
two different approximate mathematical models (Definition 1.1.2.1). We present in
this section two versions of the algorithm. The first version, which is described
in Sect. 2.6.1, is verified computationally in our above cited works. However, a
simplified version of the algorithm of Sect. 2.6.2 is not yet verified computationally.

Everywhere below,

jf jkC˛ D kf kCkC˛.˝/ ; 8f 2 CkC˛ �˝
�
:

Our algorithm reconstructs iterative approximations cn;i .x/ 2 C˛
�
˝
�

of the
function c .x/ only inside the domain ˝: To update tails, we should solve the
forward problem (2.1) and (2.2). Hence, we should extend each function cn;i .x/
outside of the domain ˝ in such a way that the resulting functionbcn;i 2 C˛

�
R
3
�
;

bcn;i � 1 in ˝ andbcn;i D 1 outside of ˝ . So, we first describe a rather standard
procedure of such an extension. Choose a smaller subdomain ˝ 0 � ˝: Choose a
function � .x/ such that

� 2 C1
�
R
3
�
; � .x/ D

8
<

:

1 in ˝ 0;
2 Œ0; 1� in ˝Ÿ˝ 0;
0 outside of ˝:

The existence of such functions � .x/ is well known from the real analysis course.
Define the target extension of the function cn;i as

bcn;i .x/ WD .1 � � .x//C � .x/ cn;i .x/ ;8x 2 R
3:

Hence,bcn;i .x/ D 1 outside of the domain ˝ andbcn;i 2 C˛
�
R
3
�
. Furthermore,

since cn;i .x/ 2 Œ1; d C 1� in ˝; thenbcn;i .x/ 2 Œ1; d C 1� in ˝ . Indeed,

bcn;i .x/ � 1 D � .x/ .cn;i .x/ � 1/ � 0; x 2 ˝;
bcn;i .x/ � .d C 1/ D 1 � � .x/C � .x/ cn;i .x/ � � .x/ .d C 1/� .1 � � .x//

.d C 1/ D � .1 � � .x// d C � .x/ .cn;i .x/� d � 1/ � 0; x 2 ˝:

In accordance with (2.17), (2.22), and (2.33), denote

vn;i .x/ D �hqn;i .x/ � h
n�1X

jD0
qj .x/C Vn;i .x/ ; x 2 ˝; (2.41)
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cn;i .x/ D
h
�vn;i C s2n .rvn;i /

2
i
.x/ ; x 2 ˝; (2.42)

where functions qj ; qn;i ; Vn;i are defined in this section below. Here, Vn;i .x/ is a
certain approximation for the tail function and mn is the number of iterations with
respect to tails for a given n � 1;where k D 1; :::; mn: Recall that by (2.32) q0 � 0:

Hence, we set

q01;1 WD 0; V1;1 .x/ WD V 0
1;1 .x/ , (2.43)

q0n;1 WD qn�1; Vn;1 WD Vn�1;mn�1 ; for n � 2; (2.44)

where V 0
1;1 .x/ is a certain starting value for the tail function.

In our iterative algorithm below, iterations with respect to k in qkn;1 are conducted

in order to take into account the nonlinear term .rqn/2in (2.39). As a limiting case,
we construct the function qn;1 for each n. Next, we iterate with respect to the tail
and construct functions qn;i ; i D 2; :::; mn: However, we do not iterate with respect
to the nonlinear term for functions qn;i with i � 2.

Remarks 2.6. We now need to comment on the choice of the function V 0
1;1 .x/ :

1. By (2.14) and (2.18), this function should be small for large s: In our numerical
studies, we work with the incident plane wave rather with the point source in
(2.2). The reason is that it is more convenient to computationally implement the
case of the plane wave. On the other hand, we have chosen the case of the point
source in (2.2) because Lemma 2.3 is actually derived from Theorem 4.1 of [144].
And this theorem was proven for the case of the point source.

2. In the first work [24], we took V 0
1;1 .x/ � 0; and this is the case of numerical stud-

ies in Chap. 3. In follow-up publications, we have taken V 0
1;1 .x/ D Vuniform .x/ ;

where

Vuniform .x/ D ln .wuniform .x; s//

s2
:

Here, wuniform .x; s/ is the solution of the problem (2.11) and (2.12) for c .x/ �
1; s WD s in the case of the incident plane wave. The latter is the case of
numerical studies in Chaps. 4–6. In other words, Vuniform .x/ corresponds to the
solution of the problem (2.11) and (2.12) for the case of the uniform medium
which surrounds our domain of interest ˝; see (2.3). Recall that we do not
assume any knowledge of the function c .x/ inside the domain ˝ . We have
discovered in our computational experiments that both these choices provide
about the same solutions. However, the second one leads to a faster numerical
convergence.

3. The second approximate mathematical model leads to another choice for the
initial tail function V1;1 .x/; see Sect. 2.9.2. We have tested numerically this
choice as well. Our computations have shown that although this choice provides
a little bit better accuracy than the above two, the difference is still insignificant.
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2.6.1 The First Version of the Algorithm

Step n1; n � 1: Suppose that functions

q1; :::; qn�1; q0n;1 WD qn�1 2 C2C˛.˝/; cn�1 2 C˛.˝/

and the tail function Vn;1.x; s/ 2 C2C˛.˝/ are constructed; see (2.43) and (2.44).
We now construct the function qn;1: To do this, we solve iteratively the following
Dirichlet boundary value problems:

�qkn;1 �A1;n
0

@h
n�1X

jD0
rqj

1

A � rqkn;1 � "qkn;1 C A1;nrqkn;1 � rVn;1

D 2
I1n

I0

�rqk�1
n;1

�2 �A2;nh2
0

@
n�1X

jD0
rqj

1

A

2

C 2A2;nrVn;1 �
0

@h
n�1X

jD0
rqj

1

A

�A2n .rVn;1/2 ; x 2 ˝; (2.45)

qkn;1 .x/ D  n .x/ ; x 2 @˝; (2.46)

where k D 1; 2; :::; functions  n .x/ are defined in (2.34) and (2.35) and functions
qkn;1 2 C2C˛ �˝

�
: We call these “iterations with respect to the nonlinear term.”It

can be proven that this process converges; see Theorem 2.8.2 So, we set

qn;1 D lim
k!1 qkn;1 in the C2C˛ �˝

�
norm. (2.47)

Our numerical convergence criterion for the sequence
˚
qkn;1


1
kD1 is described in

Chap. 3. Next, we reconstruct an approximation cn;1 .x/ ; x 2 ˝ for the unknown
function c .x/ using the resulting function qn;1 .x/ and formulas (2.41) and (2.42)
at i D 1. Hence, cn;1 2 C˛

�
˝
�
. Construct the function bcn;1 .x/ 2 C˛

�
R
3
�
:

Next, solve the forward problem (2.1) and (2.2) with c .x/ WD bcn;1 .x/ : We obtain
the function un;1 .x; t/ : Calculate the Laplace transform (2.10) of this function and
obtain the function wn;1.x; s/ this way. Next, following (2.18), we set for x 2 ˝

Vn;2 .x; s/ D ln wn;1.x; s/

s2
2 C2C˛ �˝

�
: (2.48)

Step ni , i � 2; n � 1: We now iterate with respect to the tails. Suppose
that functions qn;i�1; Vn;i .x; s/ 2 C2C˛ �˝

�
are constructed. Then we solve the

following Dirichlet boundary value problem:

�qn;i �A1n
0

@h
n�1X

jD0
rqj

1

A � rqn;i � "qn;i C A1nrqn;i � rVn;i
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D 2
I1n

I0
.rqn;i�1/2 � A2nh

2

0

@
n�1X

jD0
rqj

1

A

2

C 2A2nrVn;i �
0

@h
n�1X

jD0
rqj

1

A

�A2n .rVn;i /2 ; x 2 ˝; (2.49)

qn;i .x/ D  n .x/ ; x 2 @˝: (2.50)

Having the function qn;i ; we reconstruct the next approximation cn;i 2 C˛.˝/

for the target coefficient using (2.41) and (2.42). Next, we construct the function
bcn;i 2 C˛.R3/: Next, we solve the forward problem (2.1) and (2.2) with c .x/ WD
bcn;i .x/ ; calculate the Laplace transform (2.10), and update the tail as in (2.48),
where .wn;1; Vn;2/ is replaced with .wn;i ; Vn;iC1/ : Alternatively to the solution of
the problem (2.1) and (2.2), one can also solve the problem (2.11) and (2.12) at
s WD s; see Theorem 2.7.2 for the justification. We iterate with respect to i until
convergence occurs at the step i WD mn: Then we set

qn WD qn;mn 2 C2C˛ �˝
�
; cn WD cn;mn 2 C˛

�
˝
�
; (2.51)

VnC1;1 .x; s/ D 1

s2
ln wn;mn.x; s/ 2 C2C˛ �˝

�
: (2.52)

While convergence of the sequence
˚
qkn;1


1
kD1 ; which is generated by iterations

with respect to the nonlinear term (see Step n1) can be proven (Theorem 2.8.2),
convergence of the sequence fqn;i g (with respect to i ) cannot be proven. Hence,
we have established a stopping rule for the latter sequence numerically; see details
in Chap. 3. So, if the stopping rule is not yet reached, then we proceed with Step
.nC 1/. Alternatively we stop.

The stopping rule is chosen in numerical experiments; see Chap. 3. In addition,
Theorem 2.8.2 claims that a subsequence of the sequence fcn;i g1

iD1 converges in
the L2 .˝/-norm. We use the discrete L2 .˝/ norm in our computations for the
stopping rule. This norm is the most convenient one for the computational analysis.
Therefore, the stopping rule of Chap. 3 is indeed a reasonable one.

2.6.2 A Simplified Version of the Algorithm

We now briefly present a simplified version of the algorithm, which is not yet
computationally verified. The idea is generated by the standard way of solving
Volterra integral equations. First, we present the latter idea in brief. Consider a
Volterra-like integral equation

y .t/ D
tZ

0

f .t; �; y .�// d� C g .t/ ; t > 0; (2.53)
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where f; @yf; g are continuous functions of their variables. Equation (2.53) can be
solved iteratively as

yn .t/ D
tZ

0

f .t; �; yn�1 .�// d� C g .t/ ; n � 1; y0 .t/ D g .t/ : (2.54)

It is proved in the standard ordinary differential equations course that this process
converges as long as t 2 .0; "/ ; where " > 0 is a sufficiently small number.
Furthermore, solution of (2.53) is unique for all t > 0; as long as f; @yf are
continuous functions of their variables for appropriate values of �; t; y: At the same
time, existence of the solution of (2.53) as well as convergence of the iterative
process (2.54) can be proved only for small values t 2 .0; "/ :

Equation (2.20) can be written in the form, which is similar with (2.53):

�q D 2s2rq
sZ

s

rq .x; �/ d� � 2s

2

4
sZ

s

rq .x; �/ d�

3

5

2

� 2s2rqrV C 4srV
sZ

s

rq .x; �/ d� � 2s .rV /2 D 0; x 2 ˝; s 2 Œs; s� :

(2.55)

The boundary condition (2.21) is

q .x; s/ D  .x; s/ ; 8 .x; s/ 2 @˝ � Œs; s� : (2.56)

Hence, the idea is to solve the problem (2.55) and (2.56) for each appropriate tail
function V iteratively via the process, which is similar with (2.54). Next, the tail
should be updated, and the process should be repeated.

We use (2.32) and (2.33). Similarly with (2.43), we set

q0 WD 0; V0 .x/ WD V 0
0 .x/ 2 C2C˛ �˝

�
;

where V 0
0 .x/ is the first guess for the tail; see Remarks 2.6.

Step n0, n � 1: Assume that functions q0j 2 C2C˛ �˝
�
; j 2 Œ0; n� 1� are

constructed. To find the function q0n; solve the following Dirichlet boundary value
problem:

�q0n � A1n

0

@h
n�1X

jD0
rq0j

1

Arq0n � "q0n C A1nrq0n � rV0

D �A2nh2
0

@
n�1X

jD0
rqj

1

A

2

C 2A2nrV0
0

@h
n�1X

jD0
rqj

1

A �A2n .rV0/2 ; x 2 ˝;

(2.57)
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q0n .x/ D  n .x/ ; x 2 @˝: (2.58)

Continue until n D N: Next, reconstruct an approximation c1 .x/ ; x 2 ˝ for the
unknown function c .x/ using the resulting vector function q0 .x/ D �

q00; q
0
1; :::; q

0
N

�

and obvious analogs of formulas (2.41) and (2.42). Next, construct the function
bc1 .x/ 2 C˛

�
R
3
�

and solve the problem (2.11) and (2.12) with the coefficientbc1 .x/
at s D s: We obtain the function w .x; sIbc1/ : Next, construct the function V1 .x/ as

V1 .x/ D 1

s2
ln w .x; sIbc1/ 2 C2C˛ �˝

�
: (2.59)

Set q10 WD 0:

Step nk; n � 1; k � 1: Assume that functions Vk; qkj 2 C2C˛ �˝
�
; j 2 Œ0; n� 1�

are constructed and qk0 D 0. To construct the function qkn ; solve the following analog
of the Dirichlet boundary value problem (2.57) and (2.58):

�qkn � A1n

0

@h
n�1X

jD0
rqkj

1

Arqkn � "q0n C A1nrqknrVk

D �A2nh2
0

@
n�1X

jD0
rqkj

1

A

2

C 2A2nrVk
0

@h
n�1X

jD0
rqkj

1

A �A2n .rVk/2 ; x 2 ˝;

qkn .x/ D  n .x/ ; x 2 @˝:

Continue until n D N: Next, reconstruct an approximation ck .x/ ; x 2 ˝

for the unknown function c .x/ using the resulting vector function qk .x/ D�
qk0 ; q

k
1 ; :::; q

k
N

�
and obvious analogs of formulas (2.41), (2.42). Next, construct

the functionbck .x/ 2 C˛
�
R
3
�

and solve the problem (2.11) and (2.12) with the
coefficientbck .x/ at s D s: A “good” solution of this problem exists and is unique;
see Theorem 2.7.2 We obtain the function w .x; sIbck/ : Next, construct the function
VkC1 .x/ similarly with (2.59):

VkC1 .x/ D 1

s2
ln w .x; sIbck/ 2 C2C˛ �˝

�
:

Continue above iterations with respect to k until a convergence criterion is met. That
convergence criterion should be established computationally.



2.7 Some Properties of the Laplace Transform of the Solution of the Cauchy Problem... 115

2.7 Some Properties of the Laplace Transform of the Solution
of the Cauchy Problem (2.1) and (2.2)

We need the material of this section for our analysis of the approximate global
convergence property of the algorithm of Sect. 2.6.1. Indeed, we have not proven
the limit (2.12) in Sect. 2.3. This is done in Sect. 2.7.1. In Sect. 2.7.2, we establish
some additional properties of the solution of the problem (2.11) and (2.12).

2.7.1 The Study of the Limit (2.12)

Theorem 2.7.1. Let x0 … ˝ , the function c .x/ satisfies conditions (2.3) and also
c 2 CkC˛ �

R
3
�
; where k � 0 is an integer and the number ˛ 2 .0; 1/ : Assume that

there exist constants

M1 D M1 .c/ > 0;M2 D M2 .x; c/ > 0; s1 D s1 .c/ > 1;

such that for k D 0; 1; 2 and j	 j � 2,
ˇ
ˇDk

t u .x; t/
ˇ
ˇ ; jD	

xu .x; t/j � M1 .c/ es1t ; t > M2 .x; c/ ;8x 2 R
3; (2.60)

where u .x; t/ is the solution of the problem (2.1) and (2.2). Then there exists a
constant s2 D s2 .c/ � s1 .c/ > 1 such that for all s > s2; the function w .x; s/ ;
which is the Laplace transform (2.10) of the function u .x; t/, satisfies the following
conditions:

�w � s2c .x/w D �ı .x � x0/ ; 8s > s2; (2.61)

lim
jxj!1

w .x; s/ D 0; 8s > s2; (2.62)

w .x; s/ > 0 for x ¤ x0; (2.63)

w .x; s/ D exp .�s jx � x0j/
4� jx � x0j C w .x; s/ WD w1 .x; s/C w .x; s/ ; 8s > s2 .c/ ;

(2.64)

w .x; s/ 2 CkC2C˛ �
R
3
�
; 8s > s2: (2.65)

Proof. The limit (2.12) can be proven as follows. First, apply to (2.1) and (2.2) the
integral transformation (1.162), which is an analog of the Laplace transform:

v .x; t/ D 1

2
p
�t3=2

1Z

0

u .x; �/ � exp

�
� �

2

4t

�
d� WD L1u: (2.66)

Let f .t/ ; t 2 Œ0;1/ be a piecewise continuous function such that the function
jf .t/j e�s1t is bounded for t 2 Œ0;1/ : Two other types of the Laplace transform
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which we use are

L2f D
1Z

0

f .t/ e�s2tdt; s > s1 > 1; (2.67)

Lf D
1Z

0

f .t/ e�stdt; s > s1 > 1: (2.68)

One can easily verify that

.Lf / .s/ D .L2 .L1f // .s/ ;8s > s1 > 1: (2.69)

It follows from (2.66) that [102, 123, 124]

c .x/ vt D �v; (2.70)

v .x; 0/ D ı .x � x0/ : (2.71)

Hence, it follows from (2.1), (2.2), (2.60), and (2.67)–(2.71) that the function w D
Lu satisfies (2.61). We now need to establish (2.62)–(2.65). First, (2.63) follows
from w D L2v: Indeed, Theorem 11 of Chap. 2 of the book [69] claims that the
fundamental solution of a general parabolic equation is positive for t > 0:

Detailed estimates of the fundamental solution of a general parabolic equation
with variable coefficients can be found in Sects. 11–13 of Chap. 4 of the book [120].
In particular, it follows from the formula (13.1) of that chapter of [120] that the
following estimate is valid for .x; t/-derivativesDr

t D
n
xv of the function v:

jDr
t D

n
xvj � vr;k WD C1

exp
�
�C2 jx�x0j2

t

�

tp
exp.C3t/I p D 3C 2r C n

2
; (2.72)

where 2r C n � 2 and C1; C2; C3 are certain positive constants depending only
on the upper estimate of the norm kckC˛.R3/ : Let wr;n .x; s/ D L2

�
Dr
t D

n
xv
�
:

Using estimate (2.72) as well as formula (29) in Sect. 4.5 in the table of the Laplace
transform of the book [13], we obtain

jwr;n .x; s/j � 2C1

 
C2 jx � x0jp
s2 � C3

!.1�p/=2
Kp�1

�
2
p
C2 .s2 � C3/ � jx � x0j

�
;

(2.73)

where s � s >
p
C3 and Kp�1 is the McDonald function. Note that Kp�1 D K1�p

[1]: Since for y 2 R, the functionKp�1 .y/ 2 C1 .y � %/ ;8% > 0; then it follows
from (2.73) that the function w 2 C2 .fjx � x0j � #g/ ;8# > 0; for s >

p
C3:

Furthermore, since the functionKp�1 .y/ decays exponentially when y ! 1; y 2
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R; then we obtain from (2.73) that

lim
jxj!1

Dn
xw .x; s/ D 0 for n D 0; 1; 2 and s >

p
C3; (2.74)

from which (2.62) follows.
Consider now the fundamental solution v0 of the heat equation:

v0t D �v0; in R
3;

v0 .x; 0/ D ı .x � x0/ :

Hence,

v0.x; t/ D 1
�
2
p
�t
�3 exp

 

�jx � x0j2
4t

!

: (2.75)

Let v1 D v � v0: Then (2.70) and (2.71) imply that

c .x/ v1t D �v1 � .c .x/ � 1/ v0t ; (2.76)

v1 .x; 0/ D 0: (2.77)

Since the source x0 … ˝ , the function c 2 CkC˛ �
R
3
�
, and by (2.3) c .x/ � 1 D 0

outside of ˝; then it follows from (2.75) that

.c .x/ � 1/ v0t 2 CkC˛ �
R
3 � Œ0; T �� ;8T > 0:

Consider the function w.1/ WD L2v1 for s � s >
p
C3: Estimates for the solution

of the Cauchy problem for a general parabolic equation with variable coefficients
are obtained in Sect. 14 of Chap. 4 of [120] for the case when the right-hand side of
this equation belongs to C˛

�
R
3 � Œ0; T �� ;8T > 0: So, these estimates as well as

(2.73), (2.75), (2.76), and (2.77) imply that w.1/ 2 C2
�
R
3
�
:

Consider the function L2v0: Formula (28) of Sect. 4.5 of [13] implies that

L2v0 D exp .�s jx � x0j/
4� jx � x0j D w1 .x; s/ : (2.78)

Next, by (2.62) and (2.76)–(2.78) the function w D w � w0 satisfies the following
conditions:

�w � s2c .x/w D s2 .c .x/ � 1/w1; s � s >
p
C3; (2.79)

lim
jxj!1

w .x; s/ D 0: (2.80)

Now, since the function .c .x/ � 1/w1 2 CkC˛ �
R
3
�
; then Theorem 6.17 of [72]

ensures that w 2 CkC2C˛ �
R
3
�
:
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We now show that the solution w 2 C2
�
R
3
�

of the problem (2.79) and (2.80)
is unique. Suppose that there exists another function ew 2 C2

�
R
3
�

satisfying
conditions (2.79) and (2.80). Let w2 D w �ew: Then

�w2 � s2c .x/w2 D 0; s >
p
C3;

lim
jxj!1

w2 .x; s/ D 0:

Fix a pseudo frequency s; s >
p
C3: Let " 2 .0; 1/ be an arbitrary number. Choose a

sufficiently large numberR ."/ > 0 such that jw2 .x; s/j < " for x 2 fjxj D R ."/g :
Then by the maximum principle (see Sect. 1 in Chap. 3 of [118])

max
jxj�R."/

jw2 .x; s/j � max
jxjDR."/

jw2 .x; s/j < ":

Since 
 2 .0; 1/ is an arbitrary number, then w2 .x; s/ � 0: Hence, w .x; s/ �
ew .x; s/ : Furthermore, since the above function w.1/ 2 C2

�
R
3
�

is w.1/ WD L2v1 for
s � s >

p
C3; then by (2.76), (2.77), and (2.74) imply that the function w.1/ satisfies

conditions (2.79) and (2.80). Hence, w.1/ D w: Thus, conditions (2.61)–(2.65) are
established. ut

2.7.2 Some Additional Properties of the Solution
of the Problem (2.11) and (2.12)

An inconvenient point of Theorem 2.7.1 is that it works only for s > s2 .c/ : The
next natural question is whether its analog would be valid for values of s, which are
independent on the function c .x/ : In addition, the question about lower and upper
bounds for the function w is important for our convergence analysis in Sect. 2.9.
Thus, we need to prove Theorem 2.7.2 It should be noticed that this theorem does
not follow from classical results of the theory of elliptic PDEs, since there results
are known only for bounded domains. Unlike this, Theorem 2.7.2 is concerned with
the elliptic problem (2.11) and (2.12) in the entire space R3:

First, we copy condition (2.3) for the convenience of the reader:

c .x/ 2 Œ1; d �; c .x/ D 1 for x 2 R
3Ÿ˝: (2.81)

Theorem 2.7.2. Let x0 … ˝ and the function c .x/ satisfies condition (2.81) as well
as the following smoothness condition:

c 2 CkC˛ �
R
3
�
; k � 0; ˛ 2 .0; 1/ : (2.82)
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Denote

w1 .x; s/ D exp .�s jx � x0j/
4� jx � x0j and wd .x; s/ D

exp
�
�spd jx � x0j

�

4� jx � x0j ; (2.83)

the solutions of the problem (2.11) and (2.12) for c .x/ � 1 and c .x/ � d ,
respectively. Then for any s > 0, there exists unique solution of the problem (2.11)
and (2.12) of the form

w .x; s/ D w1 .x; s/C w .x; s/ ; where w 2 CkC2C˛ �
R
3
�
: (2.84)

Furthermore,

wd .x; s/ < w .x; s/ � w1 .x; s/ ; 8x ¤ x0: (2.85)

Proof. Consider the following parabolic Cauchy problem for .x; t/ 2 R
3 � .0;1/:

c .x/ vt D �v; v .x; 0/ D ı .x � x0/ : (2.86)

Let the function v0 .x; t/ in (2.75) be the solution of the problem (2.86) with c � 1:

Also, consider the function v .x; t/:

v .x; t/ D
tZ

0

.v � v0/ .x; �/ d�: (2.87)

Denote b .x/ D c .x/ � 1: By (2.81) and (2.82),

b .x/ D 0 for x 2 R
3Ÿ˝; b 2 CkC˛ �

R
3
�
: (2.88)

We obtain from (2.86) and (2.87)

�v � c .x/ vt D b .x/ v0; v .x; 0/ D 0; .x; t/ 2 R
3 � .0;1/ : (2.89)

Since x0 … ˝ , then it follows from (2.75) and (2.88) that the right hand of (2.89)
does not have a singularity in R

3 � Œ0;1/. Let T;R > 0 be two arbitrary numbers
and BR .T / D fjxj < Rg � .0; T / : By (2.81) and (2.22), b .x/ v0 .x; t/ � 0 for
.x; t/ 2 R

3�.0;1/ :Hence, applying to (2.89), the maximum principle of Theorem
1 of Chap. 2 of [69], we obtain maxBR.T / v .x; t/ � 0: Since R; T > 0 are arbitrary
numbers, then

v .x; t/ � 0 in R
3 � Œ0;1/ : (2.90)
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On the other hand, Theorem 11 of Chap. 2 of [69] ensures that the fundamental
solution of the parabolic equation is positive for t > 0. Hence, (2.87) and (2.90)
imply that

0 <

tZ

0

v .x; �/ d� �
tZ

0

v0 .x; �/ d� and v .x; t/ > 0 for t > 0: (2.91)

Next, we apply to the function v the operator L2 of the Laplace transform (2.67):

L2v D
1Z

0

v.x; t/e�s2tdt: (2.92)

By one of the well-known properties of the Laplace transform,

L2
0

@
tZ

0

f .�/ d�

1

A D 1

s2
L2f (2.93)

for any appropriate function f . By (2.75), the integral

L2v0 D
1Z

0

v0.x; t/e�s2tdt

converges for all s > 0: Formula (28) of Sect. 4.5 of Tables [13] gives L2v0 D
w1;8s > 0: Hence, (2.91)–(2.93), and Fubini theorem lead to

L2
0

@
tZ

0

v .x; �/ d�

1

A D 1

s2
L2v � 1

s2
L2 .v0/ D 1

s2
w1 .x; s/ ; 8s > 0: (2.94)

Hence, the integral (2.92) converges absolutely. Next, by (2.89), for any A > 0,

�

AZ

0

v .x; t/ e�s2tdt D
AZ

0

�v .x; t/ e�s2tdt D
AZ

0

Œcvt C .c � 1/ v0� e
�s2tdt:

Setting here A ! 1 and using that by (2.87) cvt C .c � 1/ v0 D cv � v0; we obtain

lim
A!1�

AZ

0

v .x; t/ e�s2tdt D lim
A!1

AZ

0

�v .x; t/ e�s2tdt D cL2v � L2v0: (2.95)
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Hence, it follows from (2.95) that �L2 .v/ and L2 .�v/ exist and �L2 .v/ D
L2 .�v/ : Furthermore, by (2.87) and (2.93)–(2.95):

�L2 .v/ D s�2� .L2v � L2v0/ D cL2v � L2v0:

Hence, denoting w WD L2 .v/ and using L2v0 D w1 as well as �w1 � s2w1 D
�ı .x � x0/ ; we obtain that the function w satisfies (2.11):

�w � s2c .x/w D �ı .x � x0/ ; x 2 R
3: (2.96)

We now prove (2.12). Since cvt D vt C bvt ; then using (2.87) and (2.89), we
obtain

vt ��v D �b .x/ v; v .x; 0/ D 0: (2.97)

Since by (2.88) b .x/ D 0 near x0 and b 2 CkC˛ �
R
3
�
, then at least

bv 2 C˛;˛=2
�
R
3 � Œ0; T �� : (2.98)

Hence, it follows from formula (13.2) of Chap. 4 of [120] that

v 2 C2C˛;1C˛=2 �
R
3 � Œ0; T �� ;8T > 0: (2.99)

Consider (2.97) as the Cauchy problem for the heat equation with the right hand
.�b .x/ v/ : It follows from (2.88), (2.98) and (2.99), and results of Sect. 1 of Chap. 4
of [120] that the solution of the problem (2.97) can be written in the following form:

v .x; t/ D �
tZ

0

Z

˝

v0 .x � �; t � �/ b .�/ v .�; �/ d�d�: (2.100)

By (2.87), (2.92), and (2.94), L2v D s�2 .L2v � w1/ D s�2 .w � w1/. Hence,
applying the Laplace transformL2 to both sides of (2.100) and using the convolution
theorem, we obtain

w .x; s/ D w1 .x; s/ � s2
Z

˝

w1 .x � �; s/ b .�/w .�; s/ d�: (2.101)

By (2.83) and (2.101), functions w .x; s/ ;w1 .x; s/ and .w � w1/ .x; s/ satisfy con-
dition (2.12):

lim
jxj!1

w .x; s/ D lim
jxj!1

w1 .x; s/ D lim
jxj!1

.w � w1/ .x; s/ D 0: (2.102)
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We now establish (2.84). Let ˝1 � R
3 be a bounded domain such that

˝ � ˝1; @˝ \ @˝1 D ¿; @˝1 2 C3; x0 … ˝1:

It follows from (2.101) that the function w .x; s/ 2 C1
�
˝1

�
: Hence, by (2.88), the

function b .x/w .x; s/ 2 C˛
�
˝1

�
: Hence, Lemma 2.9.1.4 (Sect. 2.9.1) and (2.101)

imply that the function .w � w0/ .x; s/ 2 C2C˛ �
R
3
�
: Finally, the abovementioned

Theorem 6.17 of [72] combined with (2.96) ensures that (2.84) is true for any k � 0.
Thus, we have proven the existence of the solution of the problem (2.11) and

(2.12) in the form (2.84). The proof of the uniqueness is the same as in the last part
of the proof of Theorem 2.7.1 (after (2.80)).

Finally, we prove (2.85). We have established above in this proof that w D L2 .v/
and v � 0; b � 0: Hence, the right inequality (2.85) follows from (2.101). Consider
the functionew .x; s/ D w .x; s/� wd .x; s/ : Then (2.96), (2.102), and (2.83) imply
that

�ew � s2cew D s2 .c .x/ � d/wd ; lim
jxj!1

ew .x; s/ D 0: (2.103)

By (2.83) and (2.84),

ew .x; s/
wd .x; s/

D exp
h
s
�p

d � 1
�

jx � x0j
i
Œ1CO .jx � x0j/� > 0; x ! x0; x ¤ x0:

Hence, there exists a sufficiently small number " > 0 such that

ew .x; s/ > 0 for x 2 fjx � x0j � "; x ¤ x0g : (2.104)

For R > 0, consider the domain BR;" D fjxj < R; jx � x0j > "g : Assuming that
BR;" ¤ ¿; which is true for sufficiently large R; we obtain ew 2 C2C˛ �BR;"

�
and

s2 .c .x/ � d/wd � 0 in BR;": Hence, applying the maximum principle to (2.103),
we obtain

min
BR;"

ew � min
@BR;"

ew:

Setting R ! 1 and using the second condition (2.103) as well as (2.104), we
obtain

min
jx�x0j�"

ew � min
jx�x0jD"

ew > 0:

Thus, w .x; s/ > wd .x; s/ for x ¤ x0: ut

2.8 The First Approximate Global Convergence Theorem

In this section, we present the first version of the proof of the approximate
global convergence property of the algorithm of Sect. 2.6.1 for coefficient inverse
problem 2.1. In other words, we show that this algorithm addresses the first central
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question of this book; see Sect. 1.1. Following the fundamental concept of Tikhonov
(Sect. 1.4), we should assume first that there exists an “ideal” exact solution of an ill-
posed problem with the exact data. Next, one should assume the presence of an error
of the level � in the data and construct the solution for each such � . So constructed
solution is called a “regularized solution”, if it tends to the exact solution as � ! 0.

2.8.1 Exact Solution

Following the fundamental concept of Tikhonov (Sect. 1.4), we introduce first the
definition of the exact solution of coefficient inverse problem 2.1. We assume
that there exists a coefficient c� .x/ satisfying conditions (2.3) and (2.4), and
this function is the exact solution of this CIP with the “ideal” exact data in
g�.x; t/ in (2.5). Recall that by Remark 2.1, we always assume that the uniqueness
theorem is in place for each inverse problem considered in Chaps. 2–6. The Laplace
transform (2.10) of the function g� .x; t/ leads to the exact function '� .x; s/ D
w� .x; s/ ;8 .x; s/ 2 @˝ � Œs; s�.

Denote

v� .x; s/ D ln Œw� .x; s/�
s2

; q� .x; s/ D @v� .x; s/
@s

; V � .x; s/ D v� .x; s/ :

Recall that (2.20) for the exact function q� .x; s/ is

�q� � 2s2rq�
sZ

s

rq� .x; �/ d� C 2s

2

4
sZ

s

rq� .x; �/ d�

3

5

2

C 2s2rq�rV � � 4srV �
sZ

s

rq� .x; �/ d� C 2s
�rV ��2 D 0;

x 2 ˝; s 2 Œs; s� : (2.105)

In addition, by (2.21) and (2.15),

q� .x; s/ D  � .x; s/ ; 8 .x; s/ 2 @˝ � Œs; s� : (2.106)

c� .x/ D
h
�v� C s2 jrv�j2

i
.x; s/ ; .x; s/ 2 ˝ � Œs; s� : (2.107)

In (2.106),

 � .x; s/ D 1

'�s2
� @'

�

@s
� 2 ln'�

s3
:

The formula (2.107) is used to reconstruct the exact solution c� from the function v�:
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Definition 2.8.1. We call the function q� .x; s/ the exact solution of the prob-
lem (2.20) and (2.21), or, equivalently, of the problem (2.105) and (2.106), with
the exact boundary condition  � .x; s/.

Hence,
q� .x; s/ 2 C3C˛ �˝

� � C1 Œs; s� : (2.108)

We now follow (2.33)–(2.36), (2.38), and (2.39). First, we approximate functions
q� .x; s/ and  � .x; s/ via piecewise constant functions with respect to s 2 Œs; s� :

For n 2 Œ1; N �, let

q�
n .x/ D 1

h

sn�1Z

sn

q� .x; s/ ds;  
�
n .x/ D 1

h

sn�1Z

sn

 � .x; s/ ds; q�
0 .x/ � 0: (2.109)

Hence,

q� .x; s/ D q�
n .x/CQn .x; s/ ;  

� .x; s/

D  
�
n .x/C 
n .x; s/ ; n 2 Œ1; N � ; s 2 Œsn; sn�1� ;

where by (2.108), functionsQn;
n are such that

jQn .x; s/j2C˛ � C �h; j
n .x; s/j2C˛ � C �h; for s 2 Œsn; sn�1� : (2.110)

Here, the constant C � D C �.kq�kC2C˛.˝/�C1Œs;s�/ > 0 depends only on the

C2C˛ �˝
� � C1 Œs; s� norm of the function q� .x; s/. Hence, we can assume that

max
1�n�N jq�

n j2C˛ � C �: (2.111)

Without any loss of generality, we assume that

C � � 1: (2.112)

By the fundamental concept of Tikhonov (Sect. 1.4), we assume that the constant
C � is known a priori. By (2.14), it is reasonable to assume that C � is independent
on s; although we do not use this assumption. By (2.109),

q�
n .x/ D  

�
n .x/ ; x 2 @˝: (2.113)

Hence, we obtain from (2.105) the following analogue of (2.39):

�q�
n �A1;n

0

@h
n�1X

jD0
rq�

j

1

Arq�
n C A1;nrq�

nrV �
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D 2
I1;n

I0

�rq�
n

�2 � A2;nh
2

 
n�1X

iD1
rq�

i

!2

C2A2;nrV �
0

@h
n�1X

jD0
rq�

j

1

A � A2;n jrV �j2 C Fn .x; h; �/ ; (2.114)

where the function Fn .x; h; �/ 2 C˛
�
˝
�

and

max
�h�1 jFn .x; h; �/j˛ � C �h; �h � 1: (2.115)

Let

v�
n .x/ D �hq�

n .x/ � h
n�1X

jD0
q�
j .x/C V � .x/ ; x 2 ˝; n 2 Œ1; N � : (2.116)

Then (2.107), (2.108), and (2.115) imply that

c� .x/ D
h
�v�

n C s2n jrv�
n j2
i
.x/C F n .x/ ; (2.117)

where
ˇ
ˇF n

ˇ
ˇ
˛

� C �h: To simplify the presentation, we replace the latter inequality
with

ˇ̌
F n

ˇ̌
˛

� h: (2.118)

This is not a severe restriction since a similar convergence analysis can be conducted
for the case

ˇ
ˇF n

ˇ
ˇ
˛

� C �h; although it would take more space.
We also assume that the function g.x; t/ in (2.5) is given with an error. This

naturally produces an error in the function  .x; s/ in (2.21). An additional error
is introduced due to the averaging in (2.35) and (2.109). Hence, we assume that in
(2.34) functions  n .x/ 2 C2C˛ .@˝/ and





 

�
n .x/ �  n .x/






C2C˛.@˝/

� C � .� C h/ ; (2.119)

where � > 0 is a small parameter characterizing the level of the error in the data
 .x; s/. The parameter h can also be considered as a part of the error in the data.

2.8.2 The First Approximate Global Convergence Theorem

First, we reformulate the Schauder theorem in a simplified form, which is sufficient
for our case; see Chap. 3, Sect. 1 in [118] for this theorem. Assuming that
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s > 1; �h � 1; (2.120)

and using (2.38) as well as formulas for numbers A1;n; A2;n; we obtain [24]

max
1�n�N fjA1;nj C jA2;njg � 8s2: (2.121)

Introduce the positive constant M � D M � .C � W s/,

M � D 16C �s2 D 2C � max

�
8s2; max

1�n�N fjA1;nj C jA2;njg
�
> 16: (2.122)

The inequality M � > 16 follows from (2.112) and (2.120). Consider the Dirichlet
boundary value problem:

�u C
3X

jD1
bj .x/uxj � b0.x/u D f .x/ , x 2 ˝;

u j@˝D g .x/ 2 C2C˛ .@˝/ : (2.123)

Assume that the following conditions are satisfied:

bj ; b0; f 2 C˛
�
˝
�
; b0 .x/ � 0I max

j2Œ0;n�
�ˇˇbj

ˇ
ˇ
˛

� � 1: (2.124)

This upper bound is chosen to simplify the presentation since this is sufficient for
our goal. By the Schauder theorem, there exists unique solution u 2 C2C˛ �˝

�
of

the boundary value problem (2.123). Furthermore, with a constantK D K .˝/ > 1,
depending only on the domain˝ , the following estimate holds:

juj2C˛ � K
�kgkC2C˛.@˝/ C jf j˛

�
: (2.125)

We point out that the constantK depends only on the domain˝ as long as estimate
(2.124) for coefficients is in place. In general, however, K depends on both the
domain˝ and the upper estimate of the C˛

�
˝
�
-norm of coefficients. Note that the

definition of the C˛
�
˝
�
-norm implies that

jf1f2j˛ � jf1j˛ jf2j˛ ; 8f1; f2 2 C˛
�
˝
�
: (2.126)

Theorem 2.8.2. Let ˝ � R
3 be a bounded domain with the boundary @˝ 2

C3. Consider the algorithm of Sect. 2.6.1, where s D const: > 1. Assume that all
functions cn;i reconstructed in this algorithm are such that

cn;i .x/ � 1; x 2 ˝: (2.127)



2.8 The First Approximate Global Convergence Theorem 127

Let the exact coefficient c� .x/ satisfies conditions (2.3) and (2.4), i.e.,

c� .x/ 2 Œ1; d �; c� .x/ D 1 for x 2 R
3Ÿ˝;

c� 2 C3
�
R
3
�
;

where the number d > 1 is given. Let C � � 1 be the constant defined in (2.111) and
(2.112). Let in (2.34) boundary functions  n 2 C2C˛ .@˝/ : Assume that (2.115),
(2.119), and (2.120) hold. For any function c .x/ 2 C˛

�
R
3
�

such that c .x/ 2
Œ1; d C 1� in ˝ and c .x/ D 1 in R

3Ÿ˝; consider the solution wc.x; s/ of the
problem (2.11) and (2.12),

�wc � s2c .x/wc D �ı .x � x0/ ; x 2 R
3; (2.128)

lim
jxj!1

wc .x; s/ D 0; (2.129)

satisfying condition (2.84) with k D 0. Consider the corresponding tail functions,

V � .x/ D ln w� .x; s/
s2

2 C2C˛ �˝
�
; Vc .x/ D ln wc .x; s/

s2
2 C2C˛ �˝

�
;

(2.130)

where w� .x; s/ is the solution of the problem (2.128) and (2.129) of the form (2.84)
with k D 3 for c .x/ WD c� .x/. Suppose that the number s is so large that the
following estimates hold

jV �j2C˛ � �; jVcj2C˛ � �; (2.131)

for all such functions c; where � 2 .0; 1/ is a sufficiently small number. Let
V1;1 .x; s/ 2 C2C˛ �˝

�
be the initial tail function and let

jV1;1j2C˛ � �: (2.132)

Denote

� WD 2 .hC � C � C "/ : (2.133)

Let K D K .˝/ > 1 be the constant of the Schauder theorem in (2.84) and N �
N be the total number of functions qn calculated by the algorithm of Sect. 2.6.1.
Suppose that the numberN D N .h/ is connected with the step size h viaN .h/ h D
ˇ; where the constant ˇ > 0 is independent on h. Let ˇ be so small that

ˇ � 1

24KM � D 1

384Ks2
; (2.134)
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where the number M � was defined in (2.122). In addition, let the number � in
(2.133) and the parameter � of the CWF in (2.38) satisfy the following estimates:

� � �0
�
K;C �; s

� D 1

16KM � D 1

256KC �s2
; (2.135)

� � �0
�
C �; K; s; �

� D max

��
C ��2 ; 96KC �s2;

1

�2

�
: (2.136)

Then for each n 2 �
1;N

�
; the sequence

˚
qkn;1


1
kD1 converges in C2C˛ �˝

�
:

Furthermore, functions

cn;i 2 C˛
�
˝
�
;bcn;k 2 C˛

�
R
3
�
;

cn;i .x/ ;bcn;i .x/ 2 Œ1; d C 1� in ˝:

In addition, the following estimates hold :

jqn � q�
n j2C˛ � 2KM �

�
1p
�

C 3�

�
; n 2 �1;N � ; (2.137)

jqnj2C˛ � 2C �; n 2 �1;N � ; (2.138)

jcn � c�j˛ � 1

2 � 9n�1 �C 23

8
�; n 2 �2;N � : (2.139)

Denote

" D
�
1

18
C 23

8

�
� D 211

72
�:

By (2.135), " 2 .0; 0:012/ : Therefore, estimate (2.139) implies the approximate
global convergence property of the algorithm of Sect. 2.6.1 of the level " within the
framework of the first approximate mathematical model of Sect. 2.8.4 (below).

It is worthy to make some comments prior to the proof of this theorem. We
formulate these comments as the following remarks:

Remarks 2.8.2. 1. The existence and uniqueness of the solution of the problem
(2.128) and (2.129) is guaranteed by Theorem 2.7.2 This theorem also guarantees
that wc .x; s/ > 0 for x ¤ x0; which justifies the consideration of ln wc .x; s/ in
(2.130). We impose condition (2.127) because of Theorem 2.7.2

2. We have observed in our computations that the inequality (2.127) holds indeed
for computed functions cn;i .x/; see Sect. 3.1.2. In fact, if we would need to
estimate norms kcn � c�kL2.˝/ instead of Hölder norms above, then we would
ensure (2.127) via replacing (2.42) with

cn;i .x/ D min
n
1;
h
�vn;i C s2n .rvn;i /

2
i
.x/
o
; x 2 ˝: (2.140)
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Clearly, this function belongs to C˛
�
˝
�

if the function
h
�vn;i C s2n .rvn;i /

2
i

2
C˛

�
˝
�
: An analog of (2.140) is used in Sect. 6.4.3, since the follow up

Theorem 6.7 estimates the reconstruction accuracy in the L2-norm.
3. In fact, it is established in the proof of this theorem that jcn � c�j˛ � 8�=3;which

is stronger than estimate (2.139). Nevertheless, estimate (2.139) is interesting in
its own right because it shows the dependence from the iteration number n. In-
deed, it follows from (2.139) that initially, the reconstruction accuracy improves
with iterations. However, for larger values of n, one should expect a stabilization
of functions cn; since �=

�
2 � 9n�1� 	 0 for large n. This is exactly what we

observe in our computations.
4. The number ˇ D N .h/ h is the length of the s interval, which is covered by the

algorithm of Sect. 2.6.1. The smallness condition (2.134) imposed on ˇ seems
to be inevitable since (2.39) are actually generated by (2.20), which contains
Volterra integrals in nonlinear terms.

Proof of Theorem 2.8.2. We obtain from (2.112), (2.135), and (2.136) that

C �

2
p
�

� 1;
1p
�

C 3� � C �

2KM � ;
KM �

�
� 1

3
;

1p
�

� �: (2.141)

Denote

eqkn;1 D qkn;1 � q�
n ; eqn;i D qn;i � q�

n ;

eV n;i D Vn;i � V �; ecn;i D cn;i � c�;e n D  n �  �
n ;

evn;i .x/ D vn;i .x/ � v� .x; sn/ ; evn .x/ D vn .x/ � v� .x; sn/ ;

where H� .x; s/ is the function Hn .x/ in (2.41) in the case when functions qj and
Vn are replaced with q�

j and V �, respectively. Recall that by (2.40),

jI1;n .�; h/j
I0 .�; h/

� 4s2

�
; for �h � 1: (2.142)

The proof of Theorem 2.8.2 basically consists in estimating norms jeqkn;1j2C˛,
jeqn;i j2C˛ from the above. First, we estimate norms jeq11;kj2C˛:By (2.132) and (2.133),

ˇ
ˇeV 1;1

ˇ
ˇ
2C˛ � 2� � �: (2.143)

Substituting n D 1 in (2.114), subtracting it from (2.45), and subtracting (2.113)
from (2.46), we obtain

�eqk1;1 � "eqk1;1 C A1;1rV1;1reqk1;1 D 2
I1;1

I0
reqk�1

1;1

�rqk�1
1;1 C rq�

1

�

�A1;1reV 1;1rq�
1 �A2;1reV 1;1

�rV1;1 C rV ��C "q�
1 � F1; (2.144)
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eq11;1 .x/ D e 1 .x/ ; x 2 @˝: (2.145)

By (2.133) and (2.135), " � �=2 < 1: Also, since K;C � > 1, then by (2.122),
(2.132), (2.133), and (2.135),

jA1;1rV1;1j � 4s2� � 1

64KC � � 1

64K
< 1: (2.146)

Hence, combining the Schauder theorem (2.125) with (2.115)–(2.122), (2.131),
(2.135), and (2.143)–(2.146), we obtain

ˇ
ˇeqk1;1

ˇ
ˇ
2C˛ � KM �

2C ��
ˇ
ˇeqk�1
1;1

ˇ
ˇ
1C˛

ˇ
ˇqk�1
1;1 C q�

1

ˇ
ˇ
1C˛ C 3KM ��: (2.147)

First, let k D 1. Since by (2.43) and (2.44), q01;1 D 0; theneq01;1 D �q�
1 : By (2.111)

ˇ
ˇrq�

1

ˇ
ˇ2
˛

� .C �/2 : Hence, (2.147) implies that

ˇ
ˇeq11;1

ˇ
ˇ
2C˛ � KM �

�
C �

2�
C 3�

�
:

Hence, using the first inequality (2.141), we obtain

ˇ
ˇeq11;1

ˇ
ˇ
2C˛ � KM �

�
1p
�

C 3�

�
� 2KM �

�
1p
�

C 3�

�
:

Hence, the second inequality (2.141) and (2.111) imply that

ˇ
ˇq11;1

ˇ
ˇ
2C˛ � ˇ

ˇeq11;1
ˇ
ˇ
2C˛ C jq�j2C˛ � 2C �: (2.148)

Assume now that

ˇ̌
eqk�1
1;1

ˇ̌
2C˛ � 2KM �

�
1p
�

C 3�

�
; k � 2: (2.149)

Then similarly with (2.148), we obtain

ˇ
ˇqk�1
1;1

ˇ
ˇ
2C˛ � 2C �: (2.150)

We obtain from (2.147), (2.149), and (2.150)

ˇ̌
eqk1;1

ˇ̌
2C˛ � 3 .KM �/2

�

�
1p
�

C 3�

�
C 3KM ��:
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Hence, the third inequality (2.141) leads to

ˇ
ˇeqk1;1

ˇ
ˇ
2C˛ � 2KM �

�
1p
�

C 3�

�
; k � 1: (2.151)

Hence, we obtain similarly with (2.148) that

ˇ
ˇqk1;1

ˇ
ˇ
2C˛ � 2C �; k � 1: (2.152)

Estimates (2.151) and (2.152) enable us to prove convergence of functions qk1;1
for k ! 1: Letm; r > 2 be two positive integers. Denote am;r D qm1;1 �qr1;1: Then,
am;r D eqm1;1 �eqr1;1: First, set in (2.144) k WD m and then set k WD r: Next, subtract
two resulting equations and use the following:

reqm�1
1;1

�rqm�1
1;1 C rq�

1

� � reqr�11;1

�rqr�11;1 C rq�
1

�

D reqm�1
1;1

�rqm�1
1;1 C rq�

1

� � reqr�11;1

�rqm�1
1;1 C rq�

1

�

C reqr�11;1

�rqm�1
1;1 C rq�

1

� � reqr�11;1

�rqr�11;1 C rq�
1

�

D ram�1;r�1
�rqm�1

1;1 C rq�
1

�C reqr�11;1 � ram�1;r�1

D ram�1;r�1
�rqm�1

1;1 C reqr�11;1 C rq�
1

�
:

We obtain

�am;r � "am;r C A1;1rV1;1ramr D 2
I1;1

I0
ram�1;r�1 � �rqm�1

1;1 C reqr�11;1 C rq�
1

�
;

am;r j@˝ D 0:

Hence, by the Schauder theorem (2.125), second and third inequalities (2.141),
(2.151), (2.152), and (2.142),

jam;r j2C˛ � 2KM �

�
jam�1;r�1j2C˛ � 2

3
jam�1;r�1j2C˛ : (2.153)

It follows from (2.153) that the sequence
˚
qk1;1


1
kD1 satisfies the Cauchy convergence

criterion. Convergence of other sequences
˚
qkn;1


1
kD1 can be proven similarly. Thus,

these proofs are omitted below.
Since functionseq1;1 and q1;1 are estimated via (2.151) and (2.152), we now can

estimate the norm jec1;1j˛ : First, we note that by (2.41), (2.42), and (2.116)–(2.118),

jec1;1j˛ �
�
jev1;1j2C˛ C �

2

� �
1C s2

�jv1;1j2C˛ C jv�
1 j2C˛

��
:
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As to the truncation in (2.42), it does not affect this estimate because c� � 1. By
(2.41), (2.116), (2.131)–(2.134) and the fourth inequality (2.141),

jec1;1j2C˛ C �

2
� 8KM �ˇ�C 3

2
� � 1

3
�C 3

2
� D 11

6
�:

Next, (2.41), (2.116), (2.132), (2.134), (2.135), and (2.152) lead to

1C s2
�jv1;1j2C˛ C jv�

1 j2C˛
� � 1C 3s2C �ˇ C s2� � 1C M �

5
ˇ C 1

256

� 1C 1

120
C 1

256
<
16

11
:

Thus, the last three inequalities combined with (2.135) imply that

jec1;1j˛ � 8

3
� <

1

2
: (2.154)

Since the function c� satisfies conditions (2.42), then it follows from (2.154) and
(2.127) that functions c1;1;bc1;1 2 Œ1; d C 1=2� : This, along with one of conditions
of Theorem 2.8.2, ensures that jV1;2j2C˛ � �: Hence, similarly with the above,
one can prove that estimates (2.151), (2.152), and (2.154) are valid for functions
eq1;2; q1;2 andec1;2, respectively. To do this, one should use (2.45) and (2.46) at n D 1;

i D 2. Repeating this processm1 times, we obtain the same estimates for functions
eq1; q1;ec1: In addition, we also obtain that functions c1;bc1 2 Œ1; d C 1=2� : Hence,
one of conditions of this theorem implies that jV2;1j2C˛ � �:

Let now n � 2. Assume that

ˇ̌
eqj
ˇ̌
2C˛ � 2KM �

�
1p
�

C 3�

�
; j 2 Œ1; n � 1� ; (2.155)

ˇ
ˇqj
ˇ
ˇ
2C˛ � 2C �; j 2 Œ1; n � 1� ; (2.156)

ˇ
ěcj
ˇ
ˇ
˛

� 8

3
� <

1

2
; j 2 Œ1; n � 1� ; (2.157)

cj ;bcj 2 Œ1; d C 1� ; bcj .x/ D 1 in R
3Ÿ˝; cj ;bcj 2 C˛

�
R
3
�
; j 2 Œ1; n � 1� :

(2.158)

We now obtain these estimates at j D n. It follows from (2.131), (2.133), and
(2.158) that

jVn;1j2C˛ � � � �

2
;
ˇ
ˇeV n;1

ˇ
ˇ � 2� � �: (2.159)

For brevity, consider only functions qn;i with i � 1; since convergence of the
sequence

˚
qkn;1


1
kD1 can be proved very similarly with the above case of

˚
qk1;1


1
kD1.

Also, for brevity set,

qn;0 WD qn�1: (2.160)
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Recall that by (2.47), limk!1 qkn;1 D qn;1 in the norm of the space C2C˛ �˝
�
:

Subtracting (2.114) from (2.45) and (2.113) from (2.46), we obtain for i � 1

�eqn;i �A1;n
0

@h
n�1X

jD0
rqj .x/

1

Areqn;i CA1;nrVn;i � reqn;i � "eqn;i

D 2
I1;n

I0

�reqn;i�1
�rqn;i�1 C rq�

n

��

C
0

@A1;nrq�
n � A2;nh

n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;i

1

A

0

@h
n�1X

jD0
reqj

1

A

C
2

42A2;nh
n�1X

jD0
rq�

j �A1;nrq�
n �A2;n

�rVn;i C rV ��
3

5reV n;i C "q�
n � Fn;

(2.161)

eqn;i j@˝D e n.x/: (2.162)

We estimate the sum of 2nd, 3rd, 4th, and 5th terms in the right-hand side of
(2.161). As to the second term, using (2.111), (2.122), (2.135), (2.156), and (2.159),
we obtain

ˇ̌
ˇ
ˇ
ˇ
ˇ
A1;nrq�

n �A2;nh
n�1X

jD1

�
rqj C rq�

j

�
C 2A2;nrVn;1

ˇ̌
ˇ
ˇ
ˇ
ˇ
˛

� M �

2
C 3M �ˇ

2
C M �

2
D M �

�
1C 3

2
ˇ

�
:

On the other hand, by (2.155),

h

n�1X

jD0

ˇ
ˇreqj

ˇ
ˇ
˛

� 2KM �ˇ
�
1p
�

C 3�

�
: (2.163)

Hence, (2.131), (2.133), and (2.163) imply that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
A1;nrq�

n � A2;nh

n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
˛

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
h

n�1X

jD1
reqj .x/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
˛

� 2K
�
M ��2 ˇ

�
1C 3

2
ˇ

��
1p
�

C 3�

�
: (2.164)
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Estimate now the sum of 3rd, 4th, and 5th terms in the right-hand side of (2.161).
We obtain similarly with the above:

ˇ
ˇ
ˇ̌
ˇ
ˇ

0

@2A2;nh
n�1X

jD0
rq�

j �A1;nrq�
n � A2;n

�rVn;1 C rV ��
1

AreV n;1 C "q�
n � F1

ˇ
ˇ
ˇ̌
ˇ
ˇ
˛

� 2M �
�
1C ˇ

2

�
�:

(2.165)

Combining (2.165) with (2.163), we obtain the following estimate the sum of 3rd,
4th, and 5th terms in the right-hand side of (2.161):

ˇ
ˇ̌
ˇ
ˇ
ˇ

0

@A1;nrq�
n � A2;nh

n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;1

1

A

0

@h
n�1X

jD0
reqj

1

A

ˇ
ˇ̌
ˇ
ˇ
ˇ
˛

C
ˇ̌
ˇ
ˇ
ˇ
ˇ

0

@2A2;nh
n�1X

jD0
rq�

j � A1;nrq�
n � A2;n

�rVn;1 C rV ��
1

AreV n;1 C "q�
n � F1

ˇ̌
ˇ
ˇ
ˇ
ˇ
˛

� 2K
�
M ��2 ˇ

�
1C 3

2
ˇ

��
1p
�

C 3�

�
C 2M �

�
1C ˇ

2

�
�:

(2.166)

Since K;M � > 1; then (2.134) and the 4th inequality (2.141) imply that

2K
�
M ��2 ˇ

�
1C 3

2
ˇ

��
1p
�

C 3�

�
� 8K

�
M ��2 ˇ

�
1C 3

2
ˇ

�
� � 1

2
M ��:
(2.167)

By (2.134),

2M �
�
1C ˇ

2

�
� � 5

2
M ��: (2.168)

Hence, we obtain from (2.166)–(2.168) that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

0

@A1;nrq�
n �A2;nh

n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;1

1

A

0

@h
n�1X

jD0
reqj

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
˛

C
ˇ
ˇ
ˇ
ˇ
ˇ̌

0

@2A2;nh
n�1X

jD0
rq�

j � A1;nrq�
n � A2;n

�rVn;1 C rV ��
1

AreV n;1 C "q�
n � F1

ˇ
ˇ
ˇ
ˇ
ˇ̌
˛

� 1

2
M ��C 5

2
M �� D 3M ��:

(2.169)
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It follows from (2.134), (2.137), and (2.156) that C˛
�
˝
�

norms of coefficients
at reqn;i ;eqn;i in the left-hand side of (2.161) do not exceed 1: Hence, we can
apply the estimate (2.125) of the Schauder theorem to the Dirichlet boundary value
problem (2.161) and (2.162). Using that estimate and (2.142), we obtain

jeqn;i j2C˛ � KM �

2C ��
jreqn;i�1j˛ jrqn;i�1 C rq�

n j˛ C 3KM ��:

First, consider the case i D 1: By (2.160) qn;0 D qn�1: Since estimates (2.155)
and (2.156) hold true for functionseqn�1; qn�1; then (2.111), (2.136), (2.155), and
(2.156) imply that

jeqn;1j2C˛ � 3KM �

�
KM �

�
1p
�

C 3�

�
C 3KM �� � 2KM �

�
1p
�

C 3�

�
;

(2.170)

which establishes (2.155) for the function eqn;1: Hence, similarly with (2.148),
we obtain jqn;1j2C˛ � 2C �; which proves (2.156) for qn;1: Using (2.41), (2.42),
(2.116)–(2.118), (2.155), (2.156), (2.170), and the fourth inequality (2.141), we
obtain similarly with (2.154) that

jecn;1j˛ � 8

3
� <

1

2
;

which establishes (2.157) forecn;1:We obtain from (2.127) and (2.157) that functions

cn;1;bcn;1 2 Œ1; d C 1� ; bcn .x/ D 1 in R
3Ÿ˝; cn;1;bcn;1 2 C˛

�
R
3
�
:

This establishes (2.158) for functions cn;1;bcn;1 .x/ : The latter, (2.48), and one of
conditions of this theorem guarantee that jVn;2j2C˛ � �: Recalling that qn D
qn;mn and applying the mathematical induction principle, we obtain that estimates
(2.155)–(2.159) are valid for j D n.

Having estimates (2.155)–(2.158) for j D 1; :::; n, we now obtain estimate
(2.139). Denote

pn WD
nX

jD0

ˇ
ˇeqj
ˇ
ˇ
2C˛ ; gn D hpn; n 2 �1;N � :

It follows from the above proof that

ˇ
ˇ̌
ˇ
ˇ
ˇ

0

@A1;nrq�
n � A2;nh

n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;1

1

A

0

@h
n�1X

jD0
reqj

1

A

ˇ
ˇ̌
ˇ
ˇ
ˇ
˛

� M �
�
1C 3

2
ˇ

�
hpn�1 � 2M �hpn�1:
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Hence, it follows from (2.165) and (2.168) that the sum of all terms in the
right-hand side of (2.161), excluding the first one, can be estimated from the
above via 2M �hpn�1 C 5=2 � M ��: First, consider the case when in (2.161)eqn;i
is replaced with eqkn;1 and eqn;i�1 is replaced with eqk�1

n;1 ; respectively: Since the

sequence
˚
qkn;1


1
kD1 converges, we can replace in (2.161) the vector

�
eqkn;1; q

k�1
n;1

�
with

the vector .eqn;1; qn;1/ : Hence, applying to the boundary value problem (2.161) and
(2.162), the estimate (2.125) of the Schauder theorem as well as (2.135)–(2.137),
and the fourth inequality (2.141), we obtain

jeqn;1j2C˛ � jeqn;1j2C˛
4

C 2KM �hpn�1 C 5

2
KM ��

or

jeqn;1j2C˛ � 8

3
KM �hpn�1 C 10

3
KM ��: (2.171)

Similarly, we obtain for eqn;i ; i 2 Œ2;mn�

jeqn;i j2C˛ � KM �

2C ��
jeqn;i�1j2C˛ jrqn;i�1 C rq�

n j C 2KM �hpn�1 C 5

2
KM ��

� 3KM �

�
jeqn;i�1j2C˛ C 2KM �hpn�1 C 5

2
KM ��

� 24 .KM �/2

�
�C 2KM �hpn�1 C 5

2
KM �� � 2KM �hpn�1

C 11

4
KM ��: (2.172)

Thus, it follows from (2.171) and (2.172) that

jeqn;i j2C˛ � 2KM �hpn�1 C 10

3
KM ��; i 2 Œ1;mn� :

Hence, recalling that eqn Deqn;mn; we obtain

jeqnj2C˛ � 8

3
KM �hpn�1 C 10

3
KM ��: (2.173)

Substituting in (2.173) eqn�k for eqn; we obtain the following sequence of estimates:

jeqn�kj2C˛ � 8

3
KM �hpn�k�1 C 10

3
KM ��; 0 � k � n � 2: (2.174)

Summing up all estimates (2.174) for functions eqn�k with 0 � k � n�2, we obtain

pn � jeq1j2C˛ � 8

3
KM �h

n�1X

iD1
pi C 10

3
KM �n�:
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Since jpi j2C˛ � jpiC1j2C˛ and hN D ˇ; then

jpnj2C˛ � 8

3
KM �ˇpn�1 C 10

3
KM �N�C jeq1j2C˛ :

Hence, multiplying by h and using (2.155) and the fourth inequality (2.141), we
obtain

gn � 8

3
KM �ˇgn�1 C 10

3
KM �ˇ�C 4KM ��2:

Hence, (2.134) and (2.135) imply that

gn � 1

9
gn�1 C 7

18
�; n 2 �2;N � :

Iterating this inequality and using the formula for the sum of the geometrical
progression, we obtain

gn � 1

9n�1 g1 C 7

16
�; n 2 �2;N � :

Since g1 D h jeq1j2C˛ � jeq1j2C˛ �=2; then (2.135), (2.155), and the fourth
inequality (2.141) imply that

gn � �

4 � 9n�1 C 7

16
�; n 2 �2;N � : (2.175)

We now prove (2.139). Repeating the above arguments, which were presented
for jec1;1j˛ ; we obtain

jecnj˛ � jevnj2C˛
�
1C s2

�jvnj2C˛ C jv�
n j2C˛

�� � 2 jevnj2C˛ : (2.176)

Also, by (2.41) and (2.131), jevnj2C˛ � gn C �: Hence, it follows from (2.176) that
jecnj˛ � 2 .gn C �/ : Combining this with (2.175), we obtain

jecnj˛ � 1

2 � 9n�1 �C 23

8
�; n 2 �2;N � ;

which is (2.139). �

2.8.3 Informal Discussion of Theorem 2.8.2

In this section, we informally discuss the meaning of the parameter � . In Sect. 2.8.4,
we formalize this discussion via the introduction of the first approximate mathemati-
cal model; see Definition 1.1.2.1 in Sect. 1.1.2 for this notion. Theorem 2.8.2, which
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fits this model, was our first result about the approximate global convergence [24].
The second approximate mathematical model of Sect. 2.9.2 imposes less restrictive
conditions than the first one. That model is free from the discrepancy mentioned
below in the current section.

By (2.14), (2.18), (2.131), and (2.132) the parameter � is small as long as the
truncated pseudo frequency s is large. This implies, of course that the parameter
� is also small since other numbers in (2.133) are those occurred either in the
approximation procedure or the noise level. And the latter parameters traditionally
assumed to be small in the numerical analysis. There is nothing unusual in the
smallness assumption imposed on � . Indeed, since by (2.19), (2.131), and (2.132)

� D O

�
1

s

�
; s ! 1; (2.177)

then that smallness assumption is similar with the truncation of high frequencies.
And the latter is routinely done in engineering. Nevertheless, Theorem 2.8.2 has a
discrepancy related to the parameter �: Indeed, by (2.135) we should have

� � 1

256KC �s2
: (2.178)

Conditions (2.177) and (2.178) are incompatible. In addition, since by (2.122)
M � D O

�
s2
�

as s ! 1; then there is no guarantee that the right-hand side of
(2.137) is indeed small.

We explain the discrepancy between (2.177) and (2.178) the same way as we
have explained Definition 1.1.2.1 of the approximate global convergence property.
The problem of construction of globally convergent numerical methods for our
CIP is obviously an extremely challenging one because of three factors combined:
nonlinearity, ill-posedness, and single measurement data. Hence, we need to come
up with a certain compromise. One version of such a compromise is outlined in
the previous paragraph. In simple terms, not everything can be covered by the
theory, while numerical results are fortunately more optimistic than theoretical
ones. Analogously, see the fifth Remark 1.1.2.1 about the well-known discrepancy
between the Huygens-Fresnel theory of optics and the Maxwell equations.

Likewise, if we would prove convergence of our method as s ! 1; then we
would also prove uniqueness of the above formulated inverse problems, which is a
long-standing and not yet addressed question; see Remark 2.1

2.8.4 The First Approximate Mathematical Model

We now introduce the first approximate mathematical model which ensures that,
within the framework of this model, Theorem 2.8.2 claims the approximate global
convergence property of the algorithm of Sect. 2.6.1. We follow Definition 1.1.2.1
in Sect. 1.1.2.
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Let ˝ � R
3 be a convex bounded domain with the boundary @˝ 2 C3: Let the

exact coefficient c� .x/ satisfies conditions (2.3) and (2.4):

c� .x/ 2 Œ1; d �; c� .x/ D 1 for x 2 R
3Ÿ˝;

c� 2 C3
�
R
3
�
; jc�j˛ � d;

where the numbers d; d > 1 are given. Let the cut-off pseudo frequency s D
const: > 1: For any function c .x/ such that

c 2 Œ1; d C 1� in ˝; c .x/ D 1 for x 2 R
3Ÿ˝; (2.179)

c .x/ 2 C˛
�
R
3
�
; jcj˛ � d; (2.180)

consider the solution wc.x; s/ of the problem:

�wc � s2c .x/wc D �ı .x � x0/ ; x 2 R
3;

lim
jxj!1

wc .x; s/ D 0:

We seek solution of this problem in the class represented as

wc .x; s/ D w1 .x; s/C wc .x; s/ ;

where

w1 .x; s/ D exp .�s jx � x0j/
4� jx � x0j ; wc 2 C2C˛ �

R
3
�
:

Consider the corresponding tail function Vc .x/ W

Vc .x/ D ln wc .x; s/

s2
2 C2C˛ �˝

�
:

Suppose that the following inequality holds for all functions c satisfying (2.179) and
(2.180):

jrVcj1C˛ � �; (2.181)

where � 2 .0; 1/ is a sufficiently small number. It follows from Theorem 2.9.1.2
that norms jrVcj1C˛ are indeed uniformly bounded for all functions c .x/ satisfying
conditions (2.179) and (2.180).

The First Approximate Mathematical Model for the Algorithm of Sect. 2.6.1
consists of the following two assumptions.

Assumptions:

1. We assume that the number � in (2.181) is a free parameter, which can be made
infinitely small independently on the parameter s:

2. We assume that the tail function V � .x/ is unique.



140 2 Approximately Globally Convergent Numerical Method

Actually, the first assumption was realized numerically in our works with
experimental data [28,109]; also see Sect. 5.7. Indeed, it is stated in Sect. 7.2 of [109]
that we have used derivatives of tails @sVc .x; s/ instead of tails Vc .x; s/ themselves.
Assuming that conditions of Lemma 2.3 hold, it follows from this lemma and (2.19)
that

j@sVc .x; s/j2C˛ << jVc .x; s/j2C˛ ; s ! 1: (2.182)

Hence, it is reasonable to assume that in the formulation of Theorem 2.8.2, tails V �
and Vc are replaced with @sV � and @sVc , respectively. Theorem 2.8.2 is still valid in
this case with an insignificant change of its proof.

The second above assumption is imposed to make sure that the solution of
(2.105) with the boundary condition (2.106) and the smoothness condition (2.108)
is unique. Recall that its existence is assumed a priori by the fundamental concept of
Tikhonov (Sects. 1.4 and 2.8.1). Uniqueness can be proven similarly with the proof
of Lemma 2.9.2.

Remarks 2.8.4. 1. As it is stated in Theorem 2.8.2, (2.139) implies the approximate
global convergence property of the algorithm of Sect. 2.6.1 within the framework
of the first approximate mathematical model.

2. The only way to justify assumption 1 is via numerical studies. Numerical
experiments of Chaps. 3 and 4 demonstrate that this model is reasonable since
computational results confirm the validity of Theorem 2.8.2. The same is true
for the second approximate mathematical model of Sect. 2.9.2. It is an opinion
of the authors that results of testing of experimental data in [109] and [28]
completely justify both approximate mathematical models; see the informal
Definition 1.1.2.2 of the approximate global convergence property. Indeed, in
[109], very accurate images of both locations and refractive indices of dielectric
abnormalities were obtained for the most challenging case of blind experimental
data when answers were unknown in advance. The follow-up refinement stage
of nonblind testing in [28] led to very accurate images of all three components:
locations, shapes, and refractive indices of those dielectric abnormalities. These
results are presented in Chap. 5.

2.9 The Second Approximate Global Convergence Theorem

In this section, we present the second version of the proof of the approximate
global convergence property of the algorithm of Sect. 2.6.1. Unlike Sect. 2.8, we
estimate tail functions first. Next, we present the second approximate mathematical
model. This model sounds more convenient than the first one because it basically
amounts to the truncation of all terms of the asymptotic series for the tail function
V .x; s/ at s ! 1; except of the first one. Finally, based on this model as
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well as on estimates for tail functions, we prove the second approximate global
convergence Theorem 2.9.4 This theorem claims that the algorithm of Sect. 2.6.1
has the approximate global convergence property within the framework of the
second approximate mathematical model; see Definition 1.1.2.1 in Sect. 1.1.2 for
this property.

For reader’s convenience, we remind here some facts from previous sections of
this chapter. Let˝ � R

3 be a convex bounded domain with the boundary @˝ 2 C3:

Let c� .x/ be the exact solution of Inverse Problem 2.1. Just as above, we assume
that the exact coefficient c� .x/ satisfies the following conditions:

c� .x/ 2 Œ1; d �; c� .x/ D 1 for x 2 R
3Ÿ˝; (2.183)

c� 2 C3
�
R
3
�
; jc�j˛ � d; (2.184)

where the numbers d; d > 1 are given. In addition, we consider functions c .x/
satisfying conditions (2.179) and (2.180):

c 2 Œ1; d C 1� in ˝; c .x/ D 1 for x 2 R
3Ÿ˝; (2.185)

c .x/ 2 C˛
�
R
3
�
; jcj˛ � d: (2.186)

For each such function c and for each s > 0, we consider the solution wc .x; s/ of
the following problem

�wc � s2c .x/wc D �ı .x � x0/ ; x 2 R
3; (2.187)

lim
jxj!1

wc .x; s/ D 0; (2.188)

such that

wc .x; s/ D w1 .x; s/C wc .x; s/ ; where wc 2 C2C˛ �
R
3
�
; (2.189)

w1 .x; s/ D exp .�s jx � x0j/
4� jx � x0j : (2.190)

The existence and uniqueness of the solution wc of the problem (2.187)–(2.190) is
guaranteed by Theorem 2.7.2. Let the function wdC1 .x; s/ be the solution of the
problem (2.187) and (2.188) for the case c .x/ � d C 1 W

wdC1 .x; s/ D exp
��spd C 1 jx � x0j

�

4� jx � x0j : (2.191)

By Theorem 2.7.2,

wdC1 .x; s/ < wc .x; s/ � w1 .x; s/ ;8s > 0; (2.192)
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for all functions c .x/ satisfying conditions (2.179) and (2.180). Also, we define tail
functions as

V � .x/ WD V � .x; s/ D ln w� .x; s/
s2

; (2.193)

Vc .x/ WD Vc .x; s/ D ln wc .x; s/

s2
; (2.194)

where w� .x; s/ is the solution of the problem (2.187)–(2.190) with the function
c .x/ WD c� .x/ satisfying conditions (2.183) and (2.184).

2.9.1 Estimates of the Tail Function

In Theorem 2.9.1.1 of this section, we estimate tails in non-Hölder norms. We will
need these estimates in Chap. 6. And in Theorem 2.9.1.2, we estimate tails in Hölder
norms. We will use Theorem 2.9.1.2 in Sect. 2.9.4.

Theorem 2.9.1.1. Let ˝ � R
3 be a bounded domain. Let the source x0 … ˝:

Let the function c� .x/ satisfying (2.183) and (2.184) be the exact solution of
Inverse Problem 2.1 and the parameter s > 1 and V � .x/ be the exact tail
function as in (2.193). For each function c .x/ satisfying condition (2.185) and
(2.186), let w .x; s/ WD wc .x; s/ be the solution of the problems (2.187)–(2.190)
(Theorem 2.7.2) and Vc .x/ be the corresponding tail function as defined in (2.194).
Then there exists a constant B D B .˝; s; d; x0/ > 2 depending only on listed
parameters such that for all functions c .x/ satisfying (2.185) and (2.186) the
following inequalities hold:

krVckC.˝/ ; krV �kC.˝/ � B; (2.195)

krVc � rV �kL2.˝/ C k�Vc ��V �kL2.˝/ � B kc � c�kL2.˝/ : (2.196)

Proof. In this proof, B D B .˝; s; d; x0/ > 1 denotes different constants
depending on listed parameters. Temporary denote in this proof only x D .x; y; z/ :
For brevity, we estimate only kVxkC.˝/ : Estimates of two other first derivatives are
similar. By (2.192)–(2.194)

j@xVcj D
ˇ
ˇ̌wx

w
.x; s/

ˇ
ˇ̌ � B jwx .x; s/j ; j@xV �j D

ˇ
ˇ̌
ˇ
w�
x

w� .x; s/
ˇ
ˇ̌
ˇ � B jw�

x .x; s/j :

(2.197)

Theorem 2.7.2, (2.190), and (2.101) imply that for � D .�1; �2; �3/ ; x 2 ˝; b .x/ D
c .x/� 1,



2.9 The Second Approximate Global Convergence Theorem 143

wx .x; s/ D w1x .x; s/C s2

4�

Z

˝

��
s
x � �1
jx � �j2 C x � �1

jx � �j3
�

� exp .�s jx � �j/ b .�/w .�; s/

�
d�: (2.198)

Since x0 … ˝; then functions w0;w0x do not have a singularity for x 2 ˝: Hence,
(2.192) and (2.198) imply that

jwx .x; s/j � B C B

Z

˝

�
1

jx � �j C 1

jx � �j2
�

exp .�s jx � �j/ d� � B; x 2 ˝:

(2.199)

Hence, (2.196) follows from (2.197) and (2.199). Denoteew WD w�w�: Then (2.193)
and (2.194) imply that

@xVc � @xV � D
�
ewx
w

� w�
x

ww�ew
�
.x; s/ ; x 2 ˝:

Hence, by (2.192) and (2.199),

krVc � rV �kL2.˝/ � B
�krewkL2.˝/ C kewkL2.˝/

�

� B
�
krewkL2.R3/ C kewkL2.R3/

�
: (2.200)

Let ec .x/ D c .x/� c� .x/ : Since

c .x/w .x; s/ � c� .x/w� .x; s/ D c .x/ew .x; s/Cec .x/w� .x; s/ ;

we obtain from (2.187)

�ew .x; s/� s2c .x/ew .x; s/ D s2ec .x/w� .x; s/ ; x 2 R
3: (2.201)

Sinceec .x/ D 0 outside of ˝ and x0 … ˝; then s2ec .x/w� .x;s/ D 0 near x0. In
particular, s2ec .x/w� .x;s/ D 0 for x 2 R

3Ÿ˝: Let the number R > 0 be so large
that ˝ � BR D fjxj < Rg : Multiply both sides of (2.201) by .�ew/ and integrate
over BR: We obtain

Z

BR

�
jrew .x; s/j2 C s2c .x/ew2 .x; s/

�
dx �

Z

@BR

�
ew
@ew
@n

�
.x; s/ dS

D �s2
Z

˝

ec .x/
�
w�ew

�
.x; s/ dx: (2.202)
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It follows from (2.101) and (2.198) that rew .x; s/ ;ew .x; s/ 2 L2
�
R
3
�

and the
second term in the left-hand side of (2.202) tends to zero as R ! 1: Hence, setting
in (2.202)R ! 1; we obtain

Z

R3

�
jrew .x; s/j2 C s2c .x/ew2 .x; s/

�
dx D �s2

Z

˝

ec .x/
�
w�ew

�
.x; s/ dx:

Since c � 1; then s2c .x/ew2 .x; s/ � s2ew2 .x; s/ : Hence, using (2.192) and the
Cauchy-Schwarz inequality, we obtain

kew .x; s/kH1.R3/ � B keckL2.˝/ : (2.203)

Next,

�Vc��V � D
"
�ew
w

� r .w C w�/
w2

rew �
 
�w�

ww� � .rw�/2 .w C w�/
.ww�/2

!

ew

#

.x; s/ :

(2.204)

Since �w� .x; s/ D s2c� .x/w� .x; s/ for x 2 ˝; then (2.192), (2.199), and (2.204)
imply that

j�Vc ��V �j � B .j�ewj C jrewj C jewj/ ; x 2 ˝: (2.205)

By (2.201),

k�ewkL2.R3/ � B
�
kewkL2.R3/ C keckL2.˝/

�
:

Hence, (2.200), (2.203), and (2.205) imply (2.196). ut
We now want to prove an analog of Theorem 2.9.1.1 for the Hölder norms. Let

c� .x/ be the exact solution of Inverse Problem 2.1. In applications, the domain of
interest ˝ can often be increased if necessary. In terms of Inverse Problem 2.1, this
means that one can have measured data g .x; t/ in (2.5) at the boundary of a domain
which is a little bit larger than the original domain of interest. Hence, let ˝ 0 � ˝

be a subdomain of the domain˝ and @˝ 0 \@˝ D ¿:We replace condition (2.183)
by a little bit different one:

c� .x/ 2 Œ1; d �; c� .x/ D 1 for x 2 R
3Ÿ˝ 0: (2.206)

Recall that in Sect. 2.6 we have introduced the following cut-off function � .x/ W

� 2 C3
�
R
3
�
; � .x/ D

8
<

:

1 in ˝ 0;
between 0 and 1 in ˝Ÿ˝ 0;

0 outside of ˝:
(2.207)
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Consider the set of functions P
�
d; d

�
defined as

P
�
d; d

�
D
n
c 2 C˛

�
˝
� W jcj˛ � d C 1; c 2 Œ1; d C 1�

o
: (2.208)

Hence, (2.184) and (2.206) imply that

c� 2 P
�
d; d

�
: (2.209)

For each function c 2 P
�
d; d

�
, consider the functionbc .x/:

bc .x/ D .1 � � .x//C � .x/ c .x/ ; (2.210)

where the function � .x/ is defined in (2.207). Then (Sect. 6.1),

bc 2 C˛
�
R
3
�
; bc 2 Œ1; d C 1� in ˝; bc .x/ D 1 for x 2 R

3Ÿ˝: (2.211)

Next, consider the solution wbc .x; s/ of the problem (2.187)–(2.190) with c .x/ WD
bc .x/. The existence and uniqueness of this solution is guaranteed by Theorem 2.7.2
Hence, by (2.192),

wdC1 .x; s/ < wbc .x; s/ � w1 .x; s/ ; 8x ¤ x0; 8c 2 P
�
d; d

�
: (2.212)

Lemma 2.9.1.1. Let functions c; c� 2 P
�
d; d

�
(see (2.209) for c�). Consider the

functionbc .x/ defined in (2.210). Then

jbc � c�j˛ � j�j˛ jc � c�j˛ :
Proof. By (2.210),

bc .x/ � c� .x/ D � .x/
�
c .x/ � c� .x/

�C .1 � � .x// �1� c� .x/
�
:

Since 1 � c� .x/ D 0 for x 2 ˝Ÿ˝ 0 and 1 � � .x/ D 0 in ˝ 0; then
.1 � � .x// .1 � c� .x// � 0: Hence, bc .x/ � c� .x/ D � .x/ .c .x/ � c� .x// ;
which implies the assertion of this lemma. ut

Note that there exists a constant C D C .˝; ˛/ > 0 depending only on the
domain˝ and the parameter ˛ 2 .0; 1/ such that

jf j˛ � C kf kC1.˝/ ; 8f 2 C1
�
˝
�
: (2.213)

Lemma 2.9.1.2. Let the source x0 … ˝: Let the function c 2 P
�
d; d

�
:

Consider the functionbc.x/ defined in (2.210). Let wbc .x; s/ be the solution of the
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problem (2.187)–(2.190) with c .x/ WD bc .x/. Then wbc .x; s/ 2 C2C˛ �˝
�
:

Also, there exists a constant Y D Y
�
˝; s; d; d ; �; x0

�
> 0 depending on listed

parameters such that

ˇ
ˇwbc .x; s/

ˇ
ˇ
˛

� Y; 8c 2 P
�
d; d

�
:

Proof. Below in this proof, Y D Y
�
˝; s; d; d ; �; x0

�
> 0 denotes different

constants depending on listed parameters. Denote b .x/ D bc .x/ � 1: Recall that
by (2.101),

wbc .x; s/ D w1 .x; s/� s2
Z

˝

w1 .x � �; s/ b .�/wbc .�; s/ d�: (2.214)

Since x0 … ˝; then by (2.189), wbc .x; s/ 2 C2C˛ �˝
�
: Next, (2.211), (2.212), and

(2.214) imply

ˇ
ˇwbc .x; s/

ˇ
ˇ � Y C Y kbkC.˝/

Z

˝

w1 .x � �; s/ d� � Y; x 2 ˝:

In addition, by (2.211) and (2.199),
ˇ̌rwbc .x; s/

ˇ̌ � Y; x 2 ˝: Hence,


wbc .x; s/





C1.˝/ � Y: The rest of the proof follows from (2.213). ut
Consider a bounded domain ˝1 � R

3 such that

˝ � ˝1; @˝ \ @˝1 D ¿; @˝1 2 C3; x0 … ˝1: (2.215)

Lemma 2.9.1.3. Let ˝;˝1 � R
3 be two bounded domains satisfying condi-

tions (2.215). Let the function c 2 P
�
d; d

�
: Consider the functionbc .x/ defined in

(2.210). Let wbc .x; s/ be the solution of the problem (2.187)–(2.190) with c .x/ WD
bc .x/. Then the function wbc .x; s/ 2 C3.@˝1/: Furthermore, there exists a constant

B D B
�
˝;˝1; s; d; d ; �; x0

�
> 2 depending only on listed parameters such that




wbc .x; s/





C3.@˝1/

� B; 8c 2 P
�
d; d

�
: (2.216)

Let two functions c1; c2 2 P
�
d; d

�
: Denoteew .x/ D wbc1 .x; s/ � wbc2 .x; s/ : Then

kewkC3.@˝1/ � B jc1 � c2j˛ ; 8c1; c2 2 P
�
d; d

�
:
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Proof. In this proof, B denotes different positive constant depending on above
parameters. The integrand of the formula (2.214) does not have a singularity for
x 2 ˝1Ÿ˝: Hence, it follows from (2.214) that wbc .x; s/ 2 C3 .@˝1/ : Next,
(2.216) follows from (2.192) and (2.214).

Denoteec .x/ D c1 .x/ � c2 .x/ : By (2.210)bc1 .x/�bc2 .x/ D � .x/ec .x/ : First,
substitute in (2.214)

�
b1;wbc1

� D �
bc1 � 1;wbc1

�
: Next, substitute

�
b2;wc2

� D �
bc2 �

1;wbc2
�

and subtract the second equation from the first one. We obtain

ew .x/ D �s2
Z

˝

w1 .x � �; s/ � .�/ec .�/wbc1 .�; s/ d�

�s2
Z

˝

w1 .x � �; s/ b2 .�/ew .�/ d�:

Let

I1 .x/ D �s2
Z

˝

w1 .x � �; s/ � .�/ec .�/wbc1 .�; s/ d�;

I2 .x/ D �s2
Z

˝

w1 .x � �; s/ b2 .�/ew .�/ d�:

Using the same arguments as ones in the proof of Lemma 2.9.1.2 as well the
assertion of this lemma, we obtain

kI1kC3.@˝1/ � B keckL2.˝/ � B jecj˛ :

Next, by (2.203),

kewkL2.˝/ � B keckL2.˝/ � B jecj˛ :

The latter estimate implies that kI2kC3.@˝1/ � B jecj˛ : ut
We need Lemma 2.9.1.4 since we have referred to this lemma in the course of

the proof of Theorem 2.7.2.

Lemma 2.9.1.4. Let ˝;˝1 � R
3 be two convex bounded domains satisfying

conditions (2.215) and let @˝ 2 C3: Let the function f 2 C˛
�
˝1

�
and f .x/ D 0

outside of the domain˝: For a number s > 0 consider the function u .x/ W

u .x/ D
Z

˝1

w1 .x � �; s/ f .�/ d� D
Z

˝1

exp .�s jx � �j/
4� jx � �j f .�/ d�: (2.217)

Then,
u 2 C2C˛ �

R
3
�
; lim

jxj!1
u .x/ D 0; (2.218)
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juj2C˛ � C jf j˛ ; (2.219)

�u � s2u D �f in R
3; (2.220)

where the constant C > 0 is independent on the function f .

Proof. In this proof, C > 0 denotes different constants independent on the function
f . Since the function w1 .x � �; s/ does not have a singularity for x 2 @˝1; � 2 ˝ ,
then by (2.217), u 2 C3 .@˝1/ and

kukC2C˛.@˝1/
� C jf j˛ : (2.221)

First, consider the case when the function f 2 C1
�
˝1

�
: We have

�w1 .x � �/ � s2w1 .x � �/ D �ı .x � �/ :

Hence, using the same method as the one used in the standard PDE course for the
Poisson equation,

�v D �g .x/ ; g 2 C1
�
R
3
�
; g .x/ D 0 for x 2 R

3Ÿ˝;

lim
jxj!1

v .x/ D 0;

one can prove that the function u 2 C2
�
˝1

�
and satisfies (2.220). Hence, by the

Schauder theorem and (2.221), u 2 C2C˛ �˝1

�
and

kukC2C˛.˝1/ � C kukC2C˛.@˝1/
� C jf j˛ ;8f 2 C1

�
˝1

�
;

f .x/ D 0 for x 2 R
3Ÿ˝: (2.222)

Consider now a function f such that f 2 C˛
�
˝1

�
and f .x/ D 0 for

x 2 ˝1Ÿ˝: Consider a sequence of functions ffn .x/g1
nD1 � C1

�
˝1

�
such that

fn .x/ D 0 for x 2 ˝1Ÿ˝ and:

lim
n!1 jfn � f j˛ D 0:

Let fun .x/g1
nD1 be the corresponding sequence of functions defined via (2.217),

where f is replaced with fn: Then un 2 C2C˛ �˝1

�
and estimate (2.222) is valid

for each n with the replacement of the vector .u; f / with the vector .un; fn/ is valid.
Hence, fun .x/g1

nD1 is the Cauchy sequence in the space C2C˛ �˝1

�
: Hence, this is

a convergent sequence. On the other hand, (2.217) implies that

lim
n!1 kun � ukC1.˝1/ D 0:
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Hence, it is the function u which is the limit of the sequence fun .x/g1
nD1 in the space

C2C˛ �˝1

�
: Hence, (2.218) and (2.220) are valid. Also, it follows from the above

that in (2.222), “8f 2 C1
�
˝1

�
” can be replaced with “8f 2 C˛

�
˝1

�
”: The

latter implies (2.219). ut
Theorem 2.9.1.2 provides estimates of tails in Hölder norms.

Theorem 2.9.1.2. Let ˝;˝ 0;˝1 � R
3 be bounded domain with the boundaries

@˝; @˝1 2 C3. Let condition (2.215) be satisfied and also let ˝ 0 � ˝; @˝ 0 \
@˝ D ¿. Let the function c� .x/ satisfying conditions (2.206) and (2.209) be
the exact solution of Inverse Problem 2.1, where constants d; d > 1 are given.
Let the parameter s > 1 and V � .x/ be the exact tail function as in (2.193). For

each function ,c 2 P
�
d; d

�
construct the functionbc .x/ by the formula (2.210),

where the function � .x/ is defined in (2.207). Let wbc .x; s/ be the solution of the
problems (2.187)–(2.190) with c .x/ WD bc .x/ (Theorem 2.7.2). Let V .x/ be the
corresponding tail function as defined in (2.194), where c .x/ WDbc .x/. Then, there

exists a constant B D B
�
˝;˝1; s; d; d ; �; x0

�
> 2 depending only on listed

parameters such that for all functions c 2 P .d; d�/ the following inequalities
hold:

jrV �j1C˛ � B; (2.223)

jrVcj1C˛ � B; (2.224)

jrVc � rV �j1C˛ � B jc � c�j˛ : (2.225)

Proof. In this proof,B D B
�
˝;˝1; s; d; d ; �; x0

�
>2 denotes different constants

depending on listed parameters. It follows from (2.197), (2.204), and (2.212) that in
order to prove (2.223), (2.224), and (2.225), it is sufficient to prove that

jw�j2C˛ ;
ˇ
ˇwbc

ˇ
ˇ
2C˛ � B; (2.226)

ˇ
ˇwbc � w�ˇˇ

2C˛ � B jc � c�j˛ : (2.227)

For x 2 @˝1, denote fbc .x/ D wbc .x; s/ j@˝1:By (2.187) and (2.188), we have the
following Dirichlet boundary value problem in the domain˝1:

�wbc � s2bc .x/wbc D 0; x 2 ˝1; (2.228)

wbc .x; s/ j@˝1D fbc .x/ : (2.229)



150 2 Approximately Globally Convergent Numerical Method

By Lemma 2.9.1.3,

fbc 2 C3 .@˝1/ ;



fbc





C3.@˝1/

� B: (2.230)

In addition, by (2.189),

wbc .x; s/ D w1 .x; s/C wbc .x; s/ ; where wbc 2 C2C˛ �
R
3
�
:

Since x0 … ˝1; then it follows from (2.190) that w1 .x; s/ 2 C1 �
˝1

�
: Hence,

wbc .x; s/ 2 C2C˛ �˝1

�
: Hence, Schauder theorem, (2.228)–(2.230) imply that

ˇ
ˇwbc

ˇ
ˇ
2C˛ � 



wbc




C2C˛.˝1/

� B



fbc





C2C˛.@˝1/

� B



fbc





C3.@˝1/

� B;

which establishes (2.226) for the function wbc .x; s/ : The proof for case of the
function w� .x; s/ is almost identical.

We now prove (2.227). Denote

ew .x/ D w� .x; s/� wbc .x; s/ ; ec .x/ Dbc .x/ � c� .x/ :

By Lemma 2.9.1.1,
jecj˛ � j�j˛ jc � c�j˛ : (2.231)

Rewriting (2.228) for the function w� and subtracting the resulting equation from
(2.228), we obtain

�ew � s2c� .x/ew D �s2ec .x/wbc .x; s/ in ˝1; (2.232)

ew j@˝1D f � .x/ � fbc .x/ ; (2.233)

where f � .x/ D w� j@˝1 : Using Lemma 2.9.1.3 and (2.231), we obtain




f � � fbc





C3.@˝1/

� B jc � c�j˛ : (2.234)

Next, sinceec .x/ D 0 outside of the domain ˝; then, using the second inequality
(2.226) as well as (2.231), we obtain



s2ec .x/wbc .x; s/



C˛.˝1/

D 

s2ec .x/wbc .x; s/



C˛.˝/

� B jc � c�j˛ : (2.235)

Hence, applying the Schauder theorem to the Dirichlet boundary value prob-
lem (2.232), (2.233) and using (2.234) and (2.235), we obtain

jewj2C˛ � kewkC2C˛.˝1/ � B jc � c�j˛ : ut
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2.9.2 The Second Approximate Mathematical Model

Assuming that the asymptotic behavior (2.13) holds, assumption below basically
means that we take into account only the first term of the asymptotic behavior of
each of functions V � .x; s/ ; q� .x; s/ at s ! 1 and ignore the rest:

V � .x; s/ D p� .x/
s

CO

�
1

s2

�
	 p� .x/

s
; s ! 1;

q� .x; s/ D �p
� .x/
s2

CO

�
1

s3

�
	 �p

� .x/
s2

; s ! 1:

Such assumptions are quite common in science. As an example, we refer to the
geometrical optics assumption. Still, our technique is not just geometrical optics
since we take into account not only the information at s WD s but also the lower
values of s 2 Œs; s�. In addition, we update tails in the “corrector” procedure, via
solving the problems (2.187)–(2.190), which is not the geometrical optics. Just as
above, we assume that ˝ � R

3 is a convex bounded domain with the boundary
@˝ 2 C3 and the source x0 … ˝:

Recall that (2.105) for the exact function q� .x; s/ is

�q� �2s2rq�
sZ

s

rq� .x; �/ d� C 2s

2

4
sZ

s

rq� .x; �/ d�

3

5

2

C2s2rq�rV � � 4srV �
sZ

s

rq� .x; �/ d� C 2s
�rV ��2 D 0;

x 2 ˝; s 2 Œs; s� : (2.236)

In addition, by (2.106) and (2.108),

q� .x; s/ D  � .x; s/ ; 8 .x; s/ 2 @˝ � Œs; s� ; (2.237)

q� .x; s/ 2 C3C˛ �˝
� � C1 Œs; s� : (2.238)

The second approximate mathematical model for the algorithm of Sect. 2.6.1
consists of the following:

Assumption. There exists a function p� .x/ 2 C2C˛ �˝
�

such that the exact tail
function V � .x/ has the form:

V � .x; s/ WD p� .x/
s

; 8s � s: (2.239)
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And also (see (2.193)),

p� .x/
s

D ln w� .x; s/
s2

: (2.240)

Since q� .x; s/ D @sV
� .x; s/ for s � s; we derive from (2.239) that

q� .x; s/ D �p
� .x/
s2

. (2.241)

Set in (2.236), s D s. Then, using (2.237), (2.239), and (2.241), we obtain the
following approximate Dirichlet boundary value problem for the function p� .x/:

�p� D 0 in ˝; p� 2 C2C˛ �˝
�
; (2.242)

p�j@˝ D �s2 � .x; s/ : (2.243)

The approximate (2.242) is valid only within the framework of the above assump-
tion. Although (2.242) is linear, formulas (2.107) and (2.117) of the reconstruction
of the target coefficient c� are nonlinear.

Recall that by (2.21),

q .x; s/ D  .x; s/ ; 8 .x; s/ 2 @˝ � Œs; s� :

Assume that

 .x; s/ 2 C2C˛ �˝
�
: (2.244)

Consider the solution p .x/ of the following boundary value problem:

�p D 0 in ˝; p 2 C2C˛ �˝
�
; (2.245)

pj@˝ D �s2 .x; s/ : (2.246)

By the Schauder theorem, there exists unique solution p of the problem (2.245) and
(2.246). Furthermore, it follows from (2.242)–(2.246) that

jp � p�j2C˛ � Ks2 k .x; s/ �  � .x; s/kC2C˛.@˝/ ; (2.247)

whereK D K .˝/ > 1 is the constant defined in formula (2.125) of Sect. 2.8.2. As
the first guess for the tail function in the formula (2.43) of Sect. 2.6, we take

V1;1 .x/ WD p .x/

s
: (2.248)

Remarks 2.9.2. 1. Let p .x/ be the solution of the problem (2.245), (2.246).
Substituting (2.248) in (2.41), (2.42) at n D i D 1 and setting temporary
q1;1 WD 0; one obtains a good approximation for the exact coefficient c� .x/ :
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Furthermore, Theorem 2.9.4 guarantees that all functions cn;k are good ap-
proximations for c�; as long as the total number of iterations is not too large.
Since we find the function p .x/ only using the boundary data, then this means
that our approximate mathematical model is indeed a good one. Hence, we
can stop iterations on any function cn;k for those indices .n; k/; which are
“allowed” by Theorem 2.9.4. Next, one can use the adaptivity procedure to
refine the solution. However, if not using the adaptivity for refinement, then,
quite naturally, one needs to find an optimal iteration number to stop. These
considerations correspond well with Definitions 1.1.2.1, 1.1.2.2, and they are
confirmed numerically in Chaps. 3–6.

2. Because of the approximate nature of our mathematical model, equation (2.242)
does not match the asymptotic behavior (2.13). Indeed, actually one should have
jrp� .x/j2 D c .x/. The same can be stated about the Third Approximate
Mathematical Model of Chap. 6. Nevertheless, it has been consistently demon-
strated that our numerical method works well for both computationally simulated
and experimental data, see Chaps. 3–6. Based on our numerical experience, we
believe that this is because of two factors: (1) The truncation of the asymptotic
series with respect to 1=s at s ! 1 is reasonable, and (2) The procedure of
updating tails via solutions of forward problems.

We now establish uniqueness within the framework of our approximate mathe-
matical model.

Lemma 2.9.2. Let assumption of this section holds. Then for .x; s/ 2 ˝ � Œs; s� ;

there exists at most one function q� .x; s/ satisfying conditions (2.236)–(2.238). In
addition, let (2.107) be true, i.e.,

c� .x/ D
h
�v� C s2 jrv�j2

i
.x; s/ ; .x; s/ 2 ˝ � Œs; s� ; (2.249)

where

v� .x; s/ D �
sZ

s

q� .x; �/ d� C V � .x; s/ ; (2.250)

with the tail function V � .x; s/ satisfying conditions (2.239) and (2.240). Then there
exists at most one function c� .x/ :

Proof. It follows from (2.242) and (2.243) that there exists unique function p� .x/
satisfying these conditions. Hence, (2.239) implies uniqueness of the function
V � .x; s/ : Below in this proof, V � WD V � .x; s/ : Assume that there exist two
functions q�

1 and q�
2 : Leteq D q�

1 � q�
2 : Use the formulas

a1b1 � a2b2 Deab1 C a2eb; 8a1; b1; a2; b2 2 R;

ea D a1 � a2; eb D b1 � b2:
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Hence, (2.236) and (2.237) lead to

�eq � 2s2
0

@
sZ

s

rq�
1 .x; �/ d�

1

Areq C 2s2rV �req

D �2s
2

4
sZ

s

r �
q�
1 C q�

2

�
.x; �/ d�

3

5
sZ

s

req .x; �/ d� C 4srV �
sZ

s

req .x; �/ d�;

.x; s/ 2 ˝ � Œs; s� ; eq .x; s/ j@˝D 0: (2.251)

Let

M1 D 2s2 max
.x;s/2˝�Œs;s�

8
<

:

sZ

s

�jrq�
1 j C jrq�

2 j� .x; �/ d�

9
=

;
;

M2 D max
�
2s2; 4s

� kV �kC1.˝/ ;

M3 D max .M1;M2/ ;

M D max
s2Œs;s�

keq .x; s/kC2.˝/ :

For each fixed value of the parameter s 2 Œs; s�, we consider (2.251) as the Dirichlet
boundary value problem for the linear elliptic equation with the same right-hand side
as one in (2.251). Then, Schauder theorem and implies that there exists a constant
K1 D K1 .˝;M3/ > 0 such that

max
s2Œs;s�

keq .x; s/kC2.˝/ D M � K1 .s � s/ ; 8s 2 Œs; s� :

Substituting this in (2.251), we obtain

max
s2Œs;s�

keq .x; s/kC2.˝/ D M � K2
1

sZ

s

.s � �/ d� D K2
1

.s � s/2

2
:

Substituting this again in (2.251), we obtain

max
s2Œs;s�

keq .x; s/kC2.˝/ D M � 1

2
K2
1

sZ

s

.s � �/2 d� D K3
1

.s � s/2
3Š

:
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Continuing this process, we obtain

max
s2Œs;s�

keq .x; s/kC2.˝/ D M � Kn
1

.s � s/n

nŠ
:

Setting here, n ! 1 leads to M D 0: Hence, (2.249) and (2.250) imply that the
function c� .x/ is also unique. ut

2.9.3 Preliminaries

The goal of this and next sections is to prove the theorem about the approximate
global convergence property within the framework of the second approximate
mathematical model of Sect. 2.9.2. We assume that in (2.39) and (2.256),

2
I1;n

I0
.rqn/2 WD 0: (2.252)

Therefore, we set

2
I1;n

I0
.rqn;k/2 WD 0: (2.253)

The Assumption (2.252) can be justified by (2.40) via choosing the parameter
�>>1; which we do in our computations. We point out that an analog of
Theorem 2.9.4 can be proven similarly even without (2.252). We are not doing so
here only because we want to simplify the presentation. Assumptions (2.252) and
(2.253) do not mean a linearization of the original problem, since the nonlinearity
surfaces in terms rqjrqn;i in (2.49). Also, tails Vn;i in (2.49) depend nonlinearly
on functions qj ; j 2 Œ0; n� 1� :

Assume that in (2.34), functions  n 2 C2C˛ .@˝/. Then by (2.119),





 n .x/ �  

�
n .x/






C2C˛.@˝/

� C � .hC �/ : (2.254)

Recall that by (2.114)–(2.118) we have for x 2 ˝

�q�
n � A1;n

0

@h
n�1X

jD0
rq�

j

1

Arq�
n CA1;nrq�

nrV � D 2
I1;n

I0

�rq�
n

�2

� A2;nh
2

 
n�1X

iD1
rq�

i

!2

C 2A2;nrV �
0

@h
n�1X

jD0
rq�

j

1

A �A2;n jrV �j2 C Fn .x; h; �/ ;

(2.255)
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Fn .x; h; �/ 2 C˛
�
˝
�
; max
�h�1 jFn .x; h; �/j˛ � C �h; (2.256)

v�
n .x/ D �hq�

n .x/ � h

n�1X

jD0
q�
j .x/C V � .x/ ; x 2 ˝; n 2 Œ1; N � ; (2.257)

c� .x/ D
h
�v�

n C s2n jrv�
n j2
i
.x/C F n .x/ ; n 2 Œ1; N � ; (2.258)

ˇ
ˇF n

ˇ
ˇ
˛

� C �h: (2.259)

By (2.254), Eq. (2.49) and the boundary condition (2.50) become:

�qn;k � A1n

0

@h
n�1X

jD0
rqj

1

Arqn;k � ~qn;k C A1nrVn;krqn;k

D �A2nh2
0

@
n�1X

jD0
rqj

1

A

2

C 2A2nrVn;k
0

@h
n�1X

jD0
rqj

1

A �A2n .rVn;k/2 ; x 2 ˝;

(2.260)

qn;k .x/ D  n .x/ ; x 2 @˝; (2.261)

where ~ 2 .0; 1/ is a small parameter of ones choice. Recall that by (2.41) and
(2.42), q0 .x/ � q�

0 .x/ � 0;

vn;k .x/ D �hqn;k .x/ � h

n�1X

jD0
qj .x/C Vn;k .x/ ; x 2 ˝; n 2 Œ1; N � ; (2.262)

cn;k .x/ D
h
�vn;k C s2n .rvn;k/

2
i
.x/ ; x 2 ˝; n 2 Œ1; N � : (2.263)

We now reformulate the estimate of the Schauder theorem of Sect. 2.8.2 since
we impose now upper estimates on the coefficients of the elliptic equation, which
are different from ones imposed in Sect. 2.8.2. Just as in Sect. 2.8.2, consider the
Dirichlet boundary value problem

�u C
3X

jD1
bj .x/uxj � b0.x/u D f .x/ , x 2 ˝; u j@˝D g .x/ 2 C2C˛ .@˝/ :

(2.264)

Assume that the following conditions are satisfied,

bj ; b0; f 2 C˛
�
˝
�
; b0 .x/ � 0; max

j2Œ0;n�
�ˇˇbj

ˇ
ˇ
˛

� � Q; (2.265)
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where Q > 0 is a certain constant. Then by the Schauder theorem (see Chap. 3,
Sect. 1 in [118]), there exists unique solution u 2 C2C˛ �˝

�
of the boundary

value problem (2.264). Furthermore, there exists a constant K D K .˝;Q/ > 2,
depending only on the domain ˝ and the constant Q such that the following
estimate holds:

juj2C˛ � K
�kgkC2C˛.@˝/ C jf j˛

�
: (2.266)

2.9.4 The Second Approximate Global Convergence Theorem

Let N be the total number of functions qn computed in the algorithm of Sect. 2.6.1.
In principle, eN 2 .1;N � : However, to avoid new notations, we denote for brevity
eN WD N: Keeping this in mind, we assume in Theorem 2.9.4 that the total number
N of functions qn of the algorithm of 2.6.1 is independent on the grid step size h in
the s-direction. In addition, the number mn of functions fqn;kgmnkD1 is bounded from
the above:

max
n2Œ1;N �

mn D m: (2.267)

Condition (2.280) of Theorem 2.9.4 provides a linkage between the level of the
error � in the data and the total “allowable” number of iterations Nm; i.e., the
allowable number of functions fcn;kg.N;m/.n;k/D.1;1/ : This is going along well with the
theory of ill-posed problems. Indeed, it is well known that the maximal number of
iterations and the error in the data are often connected with each other. So that the
maximal number of iterations is a regularization parameter in this case, see pp. 156
and 157 of [65] as well as Sect. 1.6. Hence, Theorem 2.9.4 provides another example
of such a connection, in addition to those of [65] and Sect. 1.6.

Theorem 2.9.4. Consider the algorithm of Sect. 2.6.1. As in Theorem 2.9.1.2, let
˝;˝1 � R

3 be two convex bounded domain with the boundaries @˝; @˝1 2 C3

and let condition (2.215) hold. Let the maximal pseudo frequency s D const: > 1:

• Let assumptions of Sect. 2.9.2 be valid, the number N of functions fqngNnD1 be
independent on the grid step size h of the partition of the s interval, and (2.267)
holds.

• In addition, assume that all functions cn;k .x/ in (2.263) are such that

cn;k .x/ � 1; x 2 ˝: (2.268)

• Let in (2.34) and (2.35) functions  n 2 C2C˛ .@˝/.
• Let the function c� .x/ satisfying conditions (2.206) and (2.209) be the exact

solution of Inverse Problem 2.1, where constants d; d > 1 are given, where
˝ 0 � ˝ is a subdomain of the domain ˝; @˝ 0 \ @˝ D ¿, and let � .x/ be the
cut-off function defined in (2.207).
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• Assume that conditions (2.120), (2.244), (2.252)–(2.254), (2.259), and (2.267)
hold, where the constant C � � 1 is defined in (2.112).

• Let the first tail function V1;1 .x/ be constructed via (2.245), (2.246), and (2.248).
• Let h be the grid step size in the layer-stripping procedure with respect to s, �

be level of the error in the data, and ~ 2 .0; 1/ be a small parameter in (2.260).
Denote

� D 2 .hC � C ~/ : (2.269)

• Choose the parameter � of the CWF (2.38) so large that

� � 8 .sC �/2

�
: (2.270)

• Let B D B
�
˝;˝1; s; d; d ; �; x0

�
> 2 be the constant of Theorem 2.9.1.2

Then there exists a constant B1 D B1

�
˝;˝1; s; d; d ; C

�; �; x0
�

� B > 2 such

that if K D K
�
s2B1

�
> 2 is the constant in (2.266) and the parameter � is so

small that

� 2 .0; �0/ ; �0 D 1

KNB3Nm
1

; (2.271)

then functions

cn;k 2 C˛
�
˝
�
;bcn;k 2 C˛

�
R
3
�
; .n; k/ 2 Œ1; N � � Œ1;m� ; (2.272)

cn;k .x/ ;bcn;k .x/ 2 Œ1; d C 1� in ˝; .n; k/ 2 Œ1; N � � Œ1;m� : (2.273)

In particular, all functions cn;k 2 P
�
d; d

�
; where the set of functions P

�
d; d

�
is

defined in (2.208). In addition, the following estimates hold for .n; k/ 2 Œ1; N � �
Œ1;m�:

jrVn;kj1C˛ ; j�Vn;kj˛ � B1; (2.274)

jrVn;k � rV �j1C˛ � B
3Œk�1C.n�1/m�C1
1 � �; (2.275)

j�Vn;k ��V �j˛ � B
3Œk�1C.n�1/m�C1
1 � �; (2.276)

jqn;k � q�
n j2C˛ � KB

3ŒkC.n�1/m�
1 � �; (2.277)

jqn;kj2C˛ � 2C �; n 2 Œ1; N � ; (2.278)

jcn;k � c�j˛ � B
3ŒkC.n�1/m�
1 � �: (2.279)
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Denote

! D ln
�
KN

�

3Nm lnB1 C ln
�
KN

� 2 .0; 1/ : (2.280)

Then (2.279) becomes

jcn;k � c�j˛ � �! WD "; (2.281)

where the number " 2 .0; 1/ : Hence, the algorithm of Sect. 2.6.1 possesses the
approximate globally convergent property of the level " in the framework of the
second approximate mathematical model of Sect. 2.9.2.

Remarks 2.9.4. 1. Since ! 2 .0; 1/ ; then (2.281) is a Hölder-like estimate. We
impose condition (2.268) to ensure that the right inequality (2.192) holds for all
functions cn;k: Indeed, we use the latter inequality quite extensively in Sect. 2.9.4.
We have observed computationally that (2.268) holds; see Sect. 3.1.2.

2. The fact that the constant B1 depends not only on the domain ˝ but also on
the domain ˝1 as well does not affect the approximate global convergence
property. It follows from (2.281) and (2.280) that as long as total iteration
number Nm is not too large, conditions of the approximate global convergence
of Definition 1.1.2.1 are satisfied. Hence, one can take any function cn;k .x/ as
cglob .x/ : The question of an optimal choice of the pair .n; k/ should be decided
in numerical experiments.

3. Theorem 2.9.4 implies thatP
�
d; d

�
is our correctness set for the second approx-

imate mathematical model, see Definitions 1.4.2 and 1.4.2 for the correctness set.
4. It is hard to establish a priori the upper limit for the number N in practical

computations. This is the reason why we have consistently observed in our
numerical tests that certain numbers indicating convergence grow steeply for
n � N with a number N < N; while they stabilize a few iterations before
N; i.e., at n D eN < N: This phenomenon means that the process should be
stopped at n D eN . The third Remark 1.1.2.1 is relevant here.

Proof of Theorem 2.9.4. The estimate (2.281) follows from (2.271) and (2.280).
Thus, we focus below on the proof of estimates (2.272)–(2.279). Denote

eV n;k D Vn;k � V �; eqn;k D qn;k � q�
n ;

evn;k D vn;k � v�
n;k; ecn;k D cn;k � c�; e n D  n �  �

n :

Estimates (2.274)–(2.276) for functions V1;1;eV 1;1 follow from (2.111), (2.239)–
(2.241) and (2.244)–(2.247).

Assume for a moment that the estimate (2.279) is valid. Then the function cn;k 2
P .d; d�/ : Indeed, by (2.209), (2.271), and (2.279),

jcn;kj˛ D jcn;k � c� C c�j˛ � jcn;k � c�j˛ C jc�j˛
� B

3ŒkC.n�1/m�
1 �C d < d C 1:
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Similarly, cn;k � d C 1: These two estimates combined with (2.208) and (2.268)

imply that cn;k 2 P
�
d; d

�
: Next, since the function cn;k 2 P

�
d; d

�
; then

Theorem 2.9.1.2 implies (2.274). Also, since the function cn;k 2 Œ1; d C 1� ; then
the functionbcn;k 2 Œ1; d C 1� as well; see Sect. 2.6. Thus, if (2.279) is valid, then
(2.273) is valid as well.

We now prove (2.275)–(2.279) for .n; k/ D .1; 1/ : Set in (2.255) and (2.260)
.n; k/ D .1; 1/ : Subtracting (2.255) from (2.260), we obtain

�eq1;1 C A1;1rV1;1req1;1 � ~eq1;1 D �A1;1reV 1;1rq�
1

�A2;1reV 1;1

�rV1;1 C rV ��C ~q�
1 � bF 1; (2.282)

eq1;1 .x/ D e 1 .x/ ; x 2 @˝; (2.283)

bF n D Fn � 2I1;n

I0

�rq�
n

�2
; n 2 Œ1; N � : (2.284)

Recall that by (2.111) and (2.112),

max
n2Œ1;N �

jq�
n j2C˛ � C �; C � � 1: (2.285)

Hence, (2.142), (2.256), (2.269), (2.270), (2.284), and (2.285) imply that

ˇ
ˇ
ˇbF n

ˇ
ˇ
ˇ
˛

� C ��: (2.286)

Estimate now the right-hand side of (2.282). Using (2.121), (2.223), (2.224),
(2.269), (2.286) as well as (2.274) and (2.275) at .n; k/ D .1; 1/ ; we obtain

ˇ
ˇ
ˇA1;1reV 1;1rq�

1 C A2;1reV 1;1

�rV1;1 C rV ��C ~q�
1 � bF 1

ˇ
ˇ
ˇ
˛

� 8s2BC ��C 16s2B2�C 2C �� D 8s2B

�
2B C C � C C �

4s2

�
�:

We choose the constant B1 D B1

�
˝;˝1; s; d; d ; C

�; �; x0
�

� B > 2 such that

C � C 2B C C �

4s2
� 2B

�
1C C �

B

�
� 3B1: (2.287)

By (2.287),

C � <
B1

2
: (2.288)
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Hence, it follows from (2.287) that

ˇ̌
ˇA1;1reV 1;1rq�

1 C A2;1reV 1;1

�rV1;1 C rV ��C ~q�
1 � bF 1

ˇ̌
ˇ
˛

� 24s2B2
1�:

(2.289)
Next, consider coefficients in the left-hand side of (2.282). We have

jA1;1rV1;1j � 8s2B1; ~ 2 .0; 1/ :

Hence, conditions (2.265) are satisfied. Hence, it follows from (2.266) and (2.289)
that the solution of the Dirichlet boundary value problem (2.282), (2.283) can be
estimated as

jeq1;1j2C˛ � 24s2KB2
1�CK




e 1





C2C˛.@˝/

:

Using (2.254) and (2.269), we obtain from this inequality and (2.288)

jeq1;1j2C˛ � KB2

�
24s2 C C �

2B2
1

�
� � KB2

1

�
24s2 C 1

8

�
� � 25s2KB2

1�:

In addition to (2.287), we can assume without any loss of generality that

40s2 � B1: (2.290)

Hence,

jeq1;1j2C˛ � KB3
1�: (2.291)

Estimate (2.291) establishes (2.277) for the function eq1;1: Next, using (2.271),
(2.285), and (2.291), we obtain

jq1;1j2C˛ � jeq1;1j2C˛ C jq�
1 j2C˛ � KB3

1�C C � � 2C �: (2.292)

This establishes (2.278) for jq1;1j2C˛ .
Now, we estimate the norm jec1;1j˛ . Subtracting (2.258) from (2.263) for .n; k/ D

.1; 1/ ; we obtain

ec1;1 D �ev1;1 C s2nrev1;1
�rv1;1 C rv�

1

� � F 1: (2.293)

Since by (2.257) and (2.262), the functionev1;1 2 C2C˛ �˝
�
; then it follows from

(2.293) that the functionec1;1 2 C˛
�
˝
�
: Since c� 2 C˛

�
˝
�

as well, then also
c1;1 2 C˛

�
˝
�
; which establishes (2.272) for .n; k/ D .1; 1/ : Hence, taking into

account the estimate (2.259) for the function F 1; we obtain from (2.293)

jec1;1j˛ � max
�j�ev1;1j˛ ; jrev1;1j˛

� �
1C s2

�jrv1;1j˛ C jrv�
1 j˛
��C C �

2
�: (2.294)
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By (2.257) and (2.262),

ev1;1 D �heq1;1 C eV 1;1:

Hence, it follows from (2.269), (2.271), (2.287), (2.291) as well as from (2.275) and
(2.276) at .n; k/ D .1; 1/ that

j�ev1;1j˛ ; jrev1;1j˛ � 1

2
KB3

1�
2 C B1� � 2B1�: (2.295)

Next, using (2.223), (2.257), (2.262), (2.269) and (2.274) at .n; k/ D .1; 1/ and
(2.292), we obtain

1C s2
�jrv1;1j˛ C jrv�

1 j˛
� � 1C s2

�
2C ��C 2B1

� � 4s2B1: (2.296)

Hence, comparing this with (2.288), (2.290), (2.294), and (2.295), we obtain

jec1;1j˛ � 9s2B2
1� � B3

1�: (2.297)

This establishes (2.279) for .n; k/ D .1; 1/ : Hence, using Theorem 2.9.1.2 and
(2.297), we obtain estimates (2.274)–(2.276) for the tail function at .n; k/ D .1; 2/ W

jrV1;2j1C˛ ; j�V1;2j˛ � B1;

jrV1;2 � rV �j1C˛ � B4
1�; j�V1;2 ��V �j˛ � B4

1�:

Recall that by the algorithm of Sect. 2.6.1,

qn WD qn;mn; cn WD cn;mn ;

VnC1;1 .x; s/ D 1

s2
ln wn;mn.x; s/:

Also, recall that by (2.267) mn 2 Œ1;m� : Having functions qn and VnC1;1 .x; s/ ;
we calculate next the function qnC1;1: Also, recall that q0 D q�

0 D 0: Thus, for
the convenience of the mathematical induction, we temporary set qn;0 WD qn�1 for
n � 1 and also c0 WD c�; V0;0 WD V1;1:Hence, (2.272)–(2.279) are valid for .n; k/ D
.0; 0/ : In addition, since we have established (2.272)–(2.279) for .n; k/ D .1; 1/,
we can assume now that we have proved (2.272)–(2.279) for .n0; k0/ 2 Œ0; n� �
Œ0; k � 1� ; where k � 2: We now want to prove (2.272)–(2.279) for .n0; k0/ D
.n; k/ :
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Subtracting (2.255) from (2.260), we obtain

�eqn;k � A1;n

0

@h
n�1X

jD0
rqj .x/

1

Areqn;k C A1;nrVn;k � reqn;k � ~eqn;k

D
0

@A1;nrq�
n �A2;nh

n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;k

1

A

0

@h
n�1X

jD0
reqj

1

A

C
2

42A2;nh
n�1X

jD0
rq�

j � A1;nrq�
n � A2;n

�rVn;k C rV ��
3

5reV n;k C ~q�
n � bF n;

(2.298)

eqn;i j@˝D e n.x/: (2.299)

The function bF n is defined in (2.284), and the estimate (2.286) is valid. First, we
estimate the difference of tails eV n;k: Since estimates (2.272)–(2.279) are valid for
.n0; k0/ 2 Œ0; n� � Œ0; k � 1� ; then by Theorem 2.9.1.2,

jrVn;kj1C˛ ; j�Vn;kj˛ � B1;

ˇ
ˇreV n;k

ˇ
ˇ
1C˛ � B jecn;k�1j˛ � B1B

3Œk�1C.n�1/m�
1 � � D B

3Œk�1C.n�1/m�C1
1 � �;

ˇ
ˇ�eV n;k

ˇ
ˇ
˛

� B3ŒkC.n�1/m�C1 � �:
The last three estimates establish (2.274)–(2.276) for .n0; k0/ D .n; k/ :

We now need to estimate the right-hand side of (2.298) using (2.121) as well as
above established estimates. We have

ˇ
ˇ
ˇ
ˇ
ˇ̌A1;nrq�

n �A2;nh
n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;k

ˇ
ˇ
ˇ
ˇ
ˇ̌
˛

� 8s2
�
C � C 3C �NhC 2B1

� � 8s2
�
C � C 1C 2B1

�
:

Since B1 > 2; then this inequality and (2.288) imply that

ˇ̌
ˇ
ˇ
ˇ
ˇ
A1;nrq�

n �A2;nh
n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;k

ˇ̌
ˇ
ˇ
ˇ
ˇ
˛

� 25s2B1: (2.300)
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Next, since estimates (2.277) are valid for functionseqj D qj � q�
j ; j 2 Œ0; n � 1� ;

then using (2.271), we obtain

ˇ
ˇ
ˇ̌
ˇ
ˇ
h

n�1X

jD0
reqj

ˇ
ˇ
ˇ̌
ˇ
ˇ
˛

� 1

2
KB3Nm

1 N�2 � �

2
:

Hence, using (2.300), we obtain the following estimate for the first term in the right-
hand side of (2.298):

ˇ
ˇ
ˇ
ˇ
ˇ̌A1;nrq�

n � A2;nh

n�1X

jD0

�
rqj C rq�

j

�
C 2A2;nrVn;k

ˇ
ˇ
ˇ
ˇ
ˇ̌
˛

ˇ
ˇ
ˇ
ˇ
ˇ̌h

n�1X

jD0
reqj

ˇ
ˇ
ˇ
ˇ
ˇ̌
˛

� 14s2B1�:

(2.301)
Next, using (2.121), (2.223), (2.271), and (2.274), we obtain

ˇ̌
ˇ
ˇ
ˇ
ˇ
2A2;nh

n�1X

jD0
rq�

j �A1;nrq�
n � A2;n

�rVn;k C rV ��
ˇ̌
ˇ
ˇ
ˇ
ˇ
˛

� 4s2C �N�C 8s2C � C 16s2B1 � 1

4
s2C � C 4s2B1 C 16s2B1 � 21s2B1:

Hence,

ˇ
ˇ
ˇ
ˇ
ˇ̌2A2;nh

n�1X

jD0
rq�

j � A1;nrq�
n �A2;n

�rVn;k C rV ��
ˇ
ˇ
ˇ
ˇ
ˇ̌
˛

ˇ
ˇreV n;k

ˇ
ˇ
˛

C
ˇ
ˇ
ˇ~q�

n � bF n

ˇ
ˇ
ˇ
˛

� 21s2B1B
3Œk�1C.n�1/m�C1
1 � �C 3

2
C �� � 21s2B1B

3Œk�1C.n�1/m�C1
1 �C B1�:

Combining this with (2.301), we obtain

jrhsj˛ � 21s2B1B
3Œk�1C.n�1/m�C1
1 � �C 15s2B1�

D 21s2B1B
3Œk�1C.n�1/m�C1
1

�
1C 15

22B1

�
�

� 21s2B1B
3Œk�1C.n�1/m�C1
1

�
1C 1

2

�
�

D 32s2B1B
3Œk�1C.n�1/m�C1
1 � �;

where rhs is the right-hand side of (2.298). Thus,

jrhsj˛ � 32s2B1B
3Œk�1C.n�1/m�C1
1 � �: (2.302)
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We now estimate coefficients in the left-hand side of (2.298) using (2.271),
(2.288), as well as (2.278) for functions qj with j 2 Œ0; n � 1� : The first resulting
estimate is

ˇ
ˇ̌
ˇ
ˇ
ˇ
A1;n

0

@h
n�1X

jD0
rqj .x/

1

A

ˇ
ˇ̌
ˇ
ˇ
ˇ
˛

� 12s2C �N� � 6s2

KB3Nm�1
1

� 3

4
s2: (2.303)

Next, by (2.121) and (2.274),

jA1;nrVn;kj˛ � 8s2B1: (2.304)

Hence, it follows from (2.303) and (2.304) that condition (2.265) is satisfied for
(2.298). Hence, (2.254), (2.266), (2.288), (2.299), and (2.302) imply that

jeqn;kj2C˛ � K

�
32s2B1B

3Œk�1C.n�1/m�C1
1 C C �

2

�
�

� K � 40s2BB3Œk�1C.n�1/m�C1 � �:

Since by (2.290), 40s2 � B; then the last estimate implies that

jeqn;kj2C˛ � KB3ŒkC.n�1/m� � �;

which proves (2.277). The inequality (2.278) can be derived from (2.277) similarly
with the derivation of (2.292).

Estimate now the norm jecn;kj˛ : Using (2.288), we obtain similarly with (2.294)

jecn;kj˛ � max
�j�evn;kj˛ ; jrevn;kj˛

� �
1C s2

�jrvn;kj˛ C jrv�
n j˛
��C B1

4
�: (2.305)

We have

evn;k .x/ D �heqn;k .x/ � h
n�1X

jD0
eqj .x/C eV n;k .x/ ; x 2 ˝:

Hence, by (2.271), (2.275), and (2.277)

j�evn;kj˛ ; jrevn;kj˛ � 1

2
KNB

3ŒkC.n�1/m�
1 �2 C B

3Œk�1C.n�1/m�C1
1 �

� 5

4
B
3Œk�1C.n�1/m�C1
1 � �: (2.306)
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Next, using expressions (2.257) and (2.262) for functions vn;k and v�
n , we obtain

1C s2
�jrvn;kj˛ C jrv�

n j˛
� � 1C 3

2
s2C �N�C 2s2B1 � 3s2B1:

Combining this with (2.305) and (2.306) and taking into account (2.290), we obtain

jecn;kj˛ � 4s2B1B
3Œk�1C.n�1/m�C1
1 � �C B1

4
� � 5s2B1B

3Œk�1C.n�1/m�C1
1 � �

� B2
1B

3Œk�1C.n�1/m�C1
1 � � D B

3ŒkC.n�1/m�
1 � �:

Thus, jecn;kj˛ � B3ŒkC.n�1/m��: This establishes (2.279). �

2.10 Summary

One can see from Theorem 2.9.4 that the accuracy of the reconstruction strongly
depends from the accuracy of the reconstruction of the tail functions. On the
other hand, it follows from the second approximate mathematical model that the
first tail function V1;1 .x/ is proportional to the solution of the Dirichlet boundary
value problem for the Laplace equation; see (2.245) and (2.246) in Sect. 2.9.2.
Therefore, it follows from estimate (2.247) that as long as the noise in the boundary
data is small, the function V1;1 .x/ is reconstructed accurately. On the other hand,
the accuracy of the reconstruction of other tail functions Vn;k .x/ depends on the
accuracy of the reconstruction of the function V1;1 .x/ : This explains why the
approximately globally convergent algorithm of Sect. 2.9.4 works well numerically;
see Chaps. 3–5 for computational studies. The “small noise” assumption is a natural
one which is used in almost all numerical methods.

Thus, all what our approximately globally convergent numerical method requires
is that the noise in the boundary data should be small. Under this assumption,
we have a rigorous guarantee, within the framework of the second approximate
mathematical model, that our resulting solution will be located in a small neighbor-
hood of the exact solution. The size of this neighborhood is completely defined
by the “noise” parameter � in (2.269), as it is conventionally done in standard
convergence theorems. It is important that no a priori knowledge of any point in a
small neighborhood of the exact solution is required. Therefore, the approximately
globally convergent numerical method of this chapter indeed addresses the first
central question of this book (Sect. 1.1).

Now, about the constants in convergence estimates of Theorems 2.8.2 and 2.9.4.
They are probably large. However, this is not a discouraging factor. Indeed, it
is well known that constants in almost all convergence estimates of numerical
analysis are largely over-estimated for both well-posed and ill-posed problems.
Consider, for example, standard energy estimates for classical initial boundary value
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problems for hyperbolic and parabolic PDEs with variable coefficients and non-
self-adjoint elliptic operators [119, 120]. The final step of these estimates usually
consists in the application of the Gronwall’s theorem. It is well known that this
theorem implies that constants in those estimates are bounded from the above by
C1 WD exp .CT / ; where T is the final time and C >0 is a constant depending on
coefficients of the corresponding PDE as well as on the spatial domain. Thus, the
number C1 is expected to be sufficiently large. On the other hand, it is well known
that convergence estimates for both finite difference and FEMs are based on those
energy estimates.
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