
Chapter 1
Two Central Questions of This Book
and an Introduction to the Theories of Ill-posed
and Coefficient Inverse Problems

This is an introductory chapter. In Sect. 1.1, we outline two central questions
discussed in this book. Sections 1.2–1.9 are introductory ones to the theory of ill-
posed problems. In Sects. 1.10 and 1.11, we present main uniqueness results for
coefficient inverse problems (CIPs) with the single measurement data. The material
of this chapter might serve as an introductory course for theories of ill-posed and
CIPs. We refer to books [7, 10, 41, 45, 48, 51, 54, 60, 65, 83, 84, 90, 93, 94, 102, 124,
138, 143, 144, 153, 154] where various Ill-Posed and CIPs were studied.

This book focuses on CIPs with single measurement time resolved data. “Single
measurement” means that the data are generated by either a single location of
the point source or a single direction of the incident plane wave. More generally,
in the case of a CIP for a hyperbolic partial differential equation (PDE), “single
measurement” means that only one pair of initial conditions is available, and in the
case of a CIP for a parabolic PDE, only one initial condition is available. In other
words, single measurement amounts to the minimal information content. The single
measurement arrangement is the most suitable one for military applications. Indeed,
because of various dangers on the battlefield, it is desirable to minimize the number
of measurements in the military environment.

The single measurement case is the most economical way of data collection with
the minimal available information. At the same time, because of the minimal in-
formation content, it is apparently more challenging than the multiple measurement
case. At the time of the submission of this book the authors are unaware about other
research groups working on non-local numerical methods for multidimensional
CIPs with single measurement data.

CIPs with the data resulting from multiple measurements are also considered in
the mathematical literature. These CIPs have applications in, for example, medical
imaging and geophysics. In the case of multiple measurements, either the point
source should run along a manifold or the direction of the incident plane wave
should vary within a certain cone. We refer to, for example, [3, 35, 46, 63, 75, 82,
90,92,129–132] and references cited therein for some nonlocal algorithms for CIPs
with multiple measurements.
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CIPs have many applications, for example, geophysics, detection of explosives
(e.g., land mines), and medical imaging of malignant tumors. Because of these
applications, we focus our numerical studies on imaging of small sharp abnormal-
ities embedded in an otherwise slowly changing background medium. We image
both locations of these inclusions and values of the unknown coefficient inside
them. However, we are not interested in imaging of slowly changing backgrounds.
We point out to an important point: our algorithms, which address the first central
question of this book, as well as those of the two-stage numerical procedure
(Sect. 1.1), do not use a priori knowledge of the background medium. An application
to the detection of explosives is addressed in Sect. 6.9 of Chap. 6 for the case of blind
experimental data collected by a radar in the field.

1.1 Two Central Questions of This Book

Since the field of inverse problems is an applied one, it is important to develop
numerical methods for these problems. The following are the two central questions
which inevitably surface in the computational treatment of any CIP for a PDE:

The First Central Question. Consider a CIP and suppose that this problem has
unique exact solution for noiseless data. Assume that we have a small noise in
the data. Then the question is, how to develop such a numerical method for
this CIP, which would provide an approximate solution located in a sufficiently
small neighborhood of that exact solution without any a priori knowledge of this
neighborhood? The most important point here is that this method should not rely
on the assumption of a priori knowledge of that neighborhood. The second very
important point is that the property of obtaining such an approximation should be
rigorously guaranteed. However, since CIPs are enormously challenging ones, then
one has no choice but to “allow” this rigorous guarantee to be within the framework
of a certain reasonable approximate mathematical model. Numerical studies should
confirm this property. It is also desirable to provide an addition confirmation for the
case of experimental data.

The most challenging case of blind experimental data is especially persuasive
one. Indeed, since results are unbiased in this case, then the success in the blind
data case would mean an ultimate verification of that approximate mathematical
model. Similarly, the ultimate verification of any Partial Differential Equation of
Mathematical Physics is in experiments. Results for blind experimental data are
described in Chap. 5 and Sect. 6.9 of this book.

The Second Central Question. Suppose that the approximate solution mentioned
in the first central question is computed. The second central question is, how to
refine this solution? Indeed, since an approximate mathematical model is used, then
the room might be left for a refinement.
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Roughly speaking, any numerical method addressing the first central question
is called globally convergent. However, because of the abovementioned approxi-
mation, we use in this book the term approximate global convergence. A rigorous
definition of this term is presented in Sect. 1.1.2. Still, a short term for the latter is
global convergence.

It is well known that there are a number of numerical methods for one-
dimensional CIPs which do not require a priori knowledge of a small neighborhood
of the exact solution; see, for example, [40, 47, 51, 56, 90] and references cited
therein. At the same time, the latter is not the case for multidimensional CIPs. In this
book, we consider only multidimensional CIPs with the only exception of Sect. 6.9.
Thus, below, the abbreviation “CIP” always means an n-D CIP .n D 2; 3/.

Conventional numerical methods for CIPs, such as, for example, various versions
of Newton and gradient methods, converge locally, i.e., they need to use a good
approximation for the exact solution to start from; see, for example, books [10, 93]
for these methods for ill-posed problems. However, in the case of CIPs, such an
approximation is rarely available in applications. Nevertheless, locally convergent
methods can well be used to address the second central question. Indeed, the main
input which any locally convergent algorithm needs is a good approximation for the
exact solution. This approximation would be used as the starting point for iterations.

The above two questions were addressed in a series of recent publications of the
authors for 2D and 3D CIPs for a hyperbolic PDE [9, 24–29, 109, 114–117, 160].
In particular, numerical methods addressing first and second central questions were
synthesized in these publications in a two-stage numerical procedure. On the first
stage, a good approximation for the exact solution is obtained for a CIP via our
approximately globally convergent algorithm. Hence, the first central question is
addressed on the first stage. On the second stage, this approximation is taken as the
starting point for iterations of a locally convergent adaptive finite element method
(adaptivity). In other words, the second central question is addressed on the second
stage.

Unlike traditional numerical methods for CIPs, our technique, which addresses
the first central question, does not use least squares functionals. Rather, only the
structure of the underlying PDE operator is used. Also, it does not use a knowledge
of the background values of the unknown coefficient. The goal of this book is
to present results of above cited publications of the authors in a concise way. In
addition, some previous results of the authors are presented as well.

An approximately globally convergent numerical method, which is similar to the
one of this book, was developed in parallel for the case of a CIP for an elliptic PDE:

�u � a .x/ u D �ı .x � x0/ ; x 2 R
2;

with the point source fx0g running along a straight line. This CIP has direct
applications in medical optical imaging. That effort was undertaken by a team of
researchers from the University of Texas at Arlington in collaboration with the
second author of this book [110, 135, 147, 149, 150]. However, a description of this
effort is outside of the scope of the current book.
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1.1.1 Why the Above Two Questions Are the Central Ones
for Computations of CIPs

Consider a radiation propagating through a medium. Some examples of the radiation
are electromagnetic (EM), acoustical, thermo, light, and nuclear. Usually, the
propagation of a radiation is governed by a PDE. Suppose that one needs to figure
out the spatial dependence of one of properties of that medium. That property of
interest is described by one of coefficients of the governing PDE. Some examples of
such properties are the spatially distributed dielectric constant, electric conductivity,
speed of sound, and absorption coefficient of light. If one would approximately
calculate the spatial distribution of the property of interest, then one would create
an image of the interior of that medium.

An attractive goal is to image that property of interest without placing detectors
inside the medium. The latter is called noninvasive imaging. To obtain a noninvasive
image, one can place detectors at some positions either at the entire boundary of the
medium or at a part of it. In the first case, one would have complete data, and one
would have incomplete data in the second case. Quite often, detectors can be placed
only rather far from the medium. The latter is the case in, for example, imaging of
explosives. Detectors would measure the output radiation. That output signal should
have some trace of the property of interest. Suppose that readings of those detectors
are interpolated in one of standard ways over the surface where those detectors are
placed. Then the resulting function represents a boundary condition for that PDE.
This is an extra boundary condition, the one which is given in addition to the original
boundary condition for that equation. We call this boundary condition the measured
data or shortly the data. For example, if originally one has the Neumann boundary
condition, then the additional one is the Dirichlet boundary condition. The idea is to
compute that unknown coefficient of the governing PDE (i.e., the unknown property
of ones interest) using this additional boundary condition. Hence, we arrive at a CIP
for that PDE.

Therefore, a CIP for a PDE is the problem of the reconstruction of an unknown
spatially dependent coefficient of that PDE, given an additional boundary condition.
This boundary condition can be given either at the entire boundary or at its part, and
it models measurements of the corresponding output signal propagating through
the medium of interest. Thus, to find a good approximation of the target property,
one should solve numerically that CIP using the measured data. Clearly, these data
contain a noisy component, since noise is inevitable in any measurement.

It is well known that it is extremely hard to solve a CIP. First, an important
theoretical question is far not easy to address. Namely, this is the question about the
uniqueness of the solution of a CIP. It will be clear from the material of this chapter
that the uniqueness is one of the central questions to address in order to justify
numerical methods for CIPs. This is why many mathematicians work on proofs of
uniqueness theorems for CIPs. At the same time, since the discipline of inverse
problems is an applied one, it is insufficient only to prove a uniqueness theorem.
Along with proofs of uniqueness results, an important question is to construct
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reliable numerical methods. However, there are two main phenomena which cause
huge challenges in the latter topic. These phenomena are the nonlinearity and the
ill-posedness of CIPs combined. A problem is called ill-posed if small fluctuations
of input data, which are inevitable in any experiment, can cause large fluctuations
of resulting solutions. In other words this problem is unstable.

Here is a trivial example of the nonlinearity. Consider the Cauchy problem for
the simplest ordinary differential equation:

y0 D ay; y .0/ D 1; (1.1)

where a D const. ¤ 0: The solution of the problem (1.1) is y .t; a/ D eat :
Obviously, the function y .t; a/ depends nonlinearly on the coefficient a.

As to the numerical solution of a CIP, the first idea which naturally comes in mind
is to construct a least squares cost functional and to minimize it then. It seems to be,
on the first glance, that the point of the minimum of this functional should provide
a good approximation for the exact solution. However, there are some serious
problems associated with this idea. Indeed, because of the nonlinearity and the ill-
posedness of CIPs, corresponding cost functionals usually suffer from the problem
of multiple local minima and ravines; see, for example, [102] for some examples.
Furthermore, there is no guarantee that a point of a global minimum is indeed close
to the correct solution. Suppose, for example, that a cost functional has one hundred
(100) points of local minima, one of them is a global one, the values of this func-
tional at those points of local minima differ from each other by 0.5%, and the noise
in the measured data is 5%. This might well happen when solving a 3D/2D CIP.
Hence, there are no rigorous methods to decide which of these local minima is in-
deed close to the correct solution. Therefore, the idea of the minimization of the cost
functional can work only in the case when a good first approximation for the exact
solution is known in advance. However, the latter is a luxury in many applications.

A standard way to treat an ill-posed problem numerically is to minimize the
Tikhonov regularization functional; see Sects. 1.7 and 1.8 below in this chapter
for this functional. However, if the original problem is nonlinear, for example, a
CIP, then this idea also cannot work in practical computations unless a good first
approximation for the exact solution is available. In other words, one should know
in advance such an approximation, which is located in the "- neighborhood of the
exact solution, where " > 0 is sufficiently small. Indeed, the theory of the Tikhonov
functional is based on the assumption that one can find a minimizing sequence,
which ensures the convergence of the values of that functional to its infimum.
However, the search of such a sequence can well face the abovementioned problem
of local minima and ravines; see, for example, p. 3 of [93] for a similar observation.

Since the first central question is very challenging one to address, then it is hard
to anticipate that it can be addressed without some approximations. In other words, a
certain reasonable approximate mathematical model should likely be used. Because
this model is not an exact one, it is likely that the above good approximation for the
exact solution can be refined by one of locally convergent numerical methods. Thus,
we arrive at the above second central question.
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1.1.2 Approximate Global Convergence

Because of the approximate mathematical model mentioned both in the beginning
of Sect. 1.1 and in the end of Sect. 1.1.1, we now discuss the notion of the global
convergence. The common perception of the notion of a globally convergent
numerical method is that this should be such an iterative algorithm which converges
to the exact solution of a corresponding problem starting from an arbitrary point of
a sufficiently large set. However, if thinking more carefully, all what one needs is to
obtain a point in a sufficiently small neighborhood of the exact solution, provided
that iterations would start not from an arbitrary point but rather from a prescribed
and rather easily selected point. At the same time, the choice of that starting point
should not be based on an a priori knowledge of a small neighborhood of the exact
solution. In addition, one should have a rigorous guarantee of reaching that small
neighborhood if starting from that selected point. Furthermore, it would be sufficient
if that small neighborhood would be reached after a finite number of iterations. In
other words, it is not necessary to consider infinitely many iterations, as it is usually
done in the classical convergence analysis. On the other hand, since nonlinear
problems are usually extremely challenging ones, some approximations should be
allowed when developing such numerical methods. A valuable illustration of the
idea of “allowed approximations” is the fifth Remark 1.1.2.1 below in this section.
These thoughts have generated our definition of the approximate global convergence
property.

Definition 1.1.2.1 (Approximate global convergence). Consider a nonlinear ill-
posed problem P . Suppose that this problem has a unique solution x� 2 B for the
noiseless data y�;whereB is a Banach space with the norm k�kB :We call x� “exact
solution” or “correct solution.” Suppose that a certain approximate mathematical
model M1 is proposed to solve the problem P numerically. Assume that, within
the framework of the modelM1; this problem has unique exact solution x�

M1
: Also,

let one of assumptions of the model M1 be that x�
M1

D x�: Consider an iterative
numerical method for solving the problem P . Suppose that this method produces a
sequence of points fxngNnD1 � B; where N 2 Œ1;1/ : Let the number " 2 .0; 1/ :

We call this numerical method approximately globally convergent of the level ", or
shortly globally convergent, if, within the framework of the approximate modelM1;

a theorem is proven, which guarantees that, without any a priori knowledge of a
sufficiently small neighborhood of x�; there exists a number N 2 Œ1; N / such that

kxn � x�kB � ";8n � N: (1.2)

Suppose that iterations are stopped at a certain number k � N: Then the point xk
is denoted as xk WD xglob and is called “the approximate solution resulting from this
method.”

This is our formal mathematical definition of the approximate global conver-
gence property. However, since the approximate mathematical modelM1 is involved



1.1 Two Central Questions of This Book 7

in it, then a natural question can be raised about the validity of this model. This
question can be addressed only via computational experiments. In fact, it is a success
in computational experiments, which is the true key for the verification of the model
M1: In addition, it would be good to verifyM1 on experimental data. These thoughts
lead to the following informal definition of the approximate global convergence
property.

Definition 1.1.2.2 (informal definition of the approximate global convergence
property). Consider a nonlinear ill-posed problem P . Suppose that this problem
has a unique solution x� 2 B for the noiseless data y�; where B is a Banach space
with the norm k�kB : Suppose that a certain approximate mathematical modelM1 is
proposed to solve the problem P numerically. Assume that, within the framework
of the model M1; this problem has unique exact solution x�

M1
: Also, let one of

assumptions of the model M1 be that x�
M1

D x�: Consider an iterative numerical
method for solving the problem P . Suppose that this method produces a sequence
of points fxngNnD1 � B; where N 2 Œ1;1/ : Let the number " 2 .0; 1/ : We call
this numerical method approximately globally convergent of the level ", or shortly
globally convergent, if the following three conditions are satisfied:

1. Within the framework of the approximate modelM1; a theorem is proven, which
claims that, without any knowledge of a sufficiently small neighborhood of x�;
there exists a number N 2 Œ1; N / such that the inequality (1.2) is valid.

2. Numerical studies confirm that xglob is indeed a sufficiently good approximation
for the true exact solution x�; where xglob is introduced in Definition 1.1.2.1.

3. Testing of this numerical method on appropriate experimental data also demon-
strates that iterative solutions provide a good approximation for the exact one
(optional).

We consider the third condition as an optional one because it is sometimes
both hard and expensive to obtain proper experimental data. Furthermore, these
data might be suitable only for one version of that numerical method and not
suitable for other versions. Nevertheless, we believe that good results obtained
for experimental data provide an ultimate confirmation of the validity of the
approximate mathematical modelM1:

Remarks 1.1.2.1. 1. We repeat that we have introduced these two definitions
because of substantial challenges which one inevitably faces when attempting
to construct reliable numerical methods for CIPs. Indeed, because of these
challenges, it is unlikely that the desired good approximation for the exact
solution would be obtained without a “price.” This price is the approximate
mathematical modelM1.

2. The main requirement of the above definitions is that this numerical method
should provide a sufficiently good approximation for the exact solution x�
without any a priori knowledge of a sufficiently small neighborhood of x�.
Furthermore, it is important that one should have a rigorous guarantee of the
latter, within the framework of the modelM1.
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3. Unlike the classical convergence, these definitions only require that points
fxngknD1 belong to a small neighborhood of the exact solution x�: However, the
total number of iterations N can be finite in Definitions 1.1.2.1, 1.1.2.2. Such
algorithms are not rare in the theory of Ill-Posed Problems. As two examples, we
refer to Theorem 4.6 of [10] and Lemma 6.2 on page 156 of [65] for some other
numerical methods with the property (1.2). Actually, (1.2) is sufficient, since one
can apply a refinement procedure on the second stage, i.e. a procedure addressing
The Second Central Question.

4. Therefore, the above definitions leave the room for a refinement of the approxi-
mate solution xglob via a subsequent application of a locally convergent numerical
method. The latter is exactly what the second central question is about.

5. As to the approximate mathematical model M1; here is a good analogy. First of
all, all equations of mathematical physics are approximate ones. More precisely,
it is well known that the Huygens-Fresnel optics is not yet rigorously derived
from the Maxwell equations. We now cite some relevant statements from
Sect. 8.1 of the classical book of Born and Wolf [36]. “Diffraction problems are
amongst the most difficult ones encountered in optics. Solutions which, in some
sense, can be regarded as rigorous are very rare in diffraction theory.” Next,
“because of mathematical difficulties, approximate models must be used in most
cases of practical interest. Of these the theory of Huygens and Fresnel is by far
the most powerful and is adequate for the treatment of the majority of problems
encountered in instrumental optics.” It is well known that the entire optical indus-
try nowadays is based on the Huygens-Fresnel theory. Analogously, although the
numerical method of this book works only with approximate models, its accurate
numerical performance has been consistently demonstrated in [24–29, 109, 114–
116], including the most challenging case of blind experimental data; see [109],
Chap. 5, and Sect. 6.9.

Based on Definitions 1.1.2.1, 1.1.2.2, we address The First Central Question of
this book via six steps listed below.

Step 1. A reasonable approximate mathematical model is proposed. The accuracy
of this model cannot be rigorously estimated.

Step 2. A numerical method is developed, which works within the framework of
this model.

Step 3. A theorem is proven, which guarantees that, within the framework of
this model, the numerical method of Step 2 indeed reaches a sufficiently small
neighborhood of the exact solution, as long as the error, both in the data and in
some additional approximations is sufficiently small. It is a crucial requirement
of our approach that this theorem should not rely neither on the assumption about
a knowledge of any point in a small neighborhood of the exact solution nor on the
assumption of a knowledge of the background medium inside the domain of interest.
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Step 4. Testing of the numerical method of Step 2 on computationally simulated
data.

Step 5. Testing of the numerical method of Step 2 on experimental data (if
available). To have a truly unbiased case, the most challenging case of blind
experimental data is preferable.

Step 6. Finally, if results of Step 4 and Step 5 are good ones, then we conclude that
our approximate mathematical model is a valid one. However, if experimental data
are unavailable, while results of Step 4 are good ones, then we still conclude that
our approximate mathematical model is a valid one.

Step 6 is logical, because its condition is that the resulting numerical method
is proved to be effective. It is sufficient to achieve that small neighborhood of the
exact solution after a finite (rather than infinite) number of iterations. Next, because
of approximations in the mathematical model, the resulting solution can be refined
via a locally convergent numerical method, i.e. the Second Central Question should
be addressed.

Therefore, the key philosophical focus of Definitions 1.1.2.1 and 1.1.2.2 is
the point about natural assumptions/approximations which make the technique
numerically efficient and, at the same time, independent on the availability of a
good first guess.

The next definition is about a locally convergent numerical method for a
nonlinear ill-posed problem. In this definition, we consider the Tikhonov functional
which is introduced in Sect. 1.7. While sometimes the existence of a minimizer
of the Tikhonov functional can be proved in an infinitely dimensional space, in
a generic case of a nonlinear ill-posed problem, for example, CIP, this existence
cannot be guaranteed; see Sects. 1.7.1 and 1.7.2. On the other hand, the existence
of a minimizer for the classical Tikhonov regularization functional is guaranteed
only in the case of a finite dimensional space (Sect. 1.8). This minimizer is called
a regularized solution (in principle, one might have many minimizers). A good
example of such a finite dimensional space is the space of piecewise linear finite
elements. Furthermore, this is a natural space to use in practical computations, and
we use it throughout this book.

Still, the resulting finite dimensional problem inherits the ill-posed nature of the
original ill-posed problem. Thus, the Tikhonov regularization functional should be
used in that finite dimensional space. At the same time, since a finite dimensional
space is taken instead of an infinitely dimensional one, then this can be considered
as an approximate mathematical model of the original ill-posed problem. Thus, the
approximate mathematical model M2 for an ill-posed problem P means that P is
considered in a finite dimensional space.

Definition 1.1.2.3. Consider a nonlinear ill-posed problem P . Suppose that this
problem has a exact unique solution x� 2 B for the noiseless data y�; where
B is a Banach space. Consider the approximate mathematical model M2 for the
problem P . The model M2 means the replacement of the infinitely dimensional
space B with a finite dimensional Banach space Bk , dimBk D k: Assume that,
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within the framework of the model M2; the problem P has unique exact solution
x�
M2

2 Bk and let one of assumptions of the model M2 be that x�
M2

D x�: Let
G � Bk be an open bounded set. Let the small number ı > 0 be the level of the error
in the data and ˛ D ˛ .ı/ be the regularization parameter depending on ı (Sect. 1.4).
For the problem P , consider the Tikhonov functional defined in Sect. 1.7. Consider
an iterative numerical method of the minimization of this functional on the set G.
Suppose that this method starts its iterations from the point x0 and produces iterative
solutions

˚
xın
�1
nD1 � G: Let x˛.ı/ 2 G be a minimizer of the Tikhonov functional

with ˛ D ˛ .ı/ : Let ı0; � 2 .0; 1/ be two sufficiently small numbers. We call this
method locally convergent, if the following two conditions are satisfied:

1. A theorem is proven, which ensures that if ı 2 .0; ı0/ and kx0 � x�kBk � �,
then

lim
n!1

�
�xın � x˛.ı/

�
�
Bk

D 0; 8ı 2 .0; ı0/ :
2. This theorem also claims that

lim
ı!0

�
�x˛.ı/ � x���

Bk
D 0:

On the other hand, the global convergence in the classical sense intuitively means
that, regardless on the absence of a good first approximation for the exact solution,
the iterative solutions tend to the exact one, as long as certain parameters tend
to their limiting values. This, as well as Definitions 1.1.2.1 and 1.1.2.3 lead to
Definition 1.1.2.4. Prior this definition, we need to impose the Assumption 1.1.2.
We impose this assumption only for the simplicity of the presentation. Note that
Assumption 1.1.2 makes sense only if the two-stage numerical procedure mentioned
in Sect. 1.1 is applied. However, if only the first stage is applied, then we do not need
this assumption.

Assumption 1.1.2. Suppose that a nonlinear ill-posed problem P is the same
in both Definitions 1.1.2.1 and 1.1.2.3. Suppose that the two-stage numerical
procedure mentioned in Sect. 1.1 is applied. Then, we assume throughout the book
that the finite dimensional space Bk � B and that the exact solution x� is the same
for both mathematical modelsM1;M2 of these two stages.

Definition 1.1.2.4. Consider a nonlinear ill-posed problem. Let B and Bk be
the Banach spaces, " and � be the numbers of Definitions 1.1.2.1 and 1.1.2.3,
respectively, and let Bk � B and " 2 .0; �� : Consider a numerical procedure for
this problem, which consists of the following two stages:

1. On the first stage, a numerical method satisfying conditions of Definitions 1.1.2.1
is applied, and it ends up with an element xglob 2 Bk satisfying inequality (1.2).

2. On the second stage, a locally convergent numerical method satisfying conditions
of Definition 1.1.2.3 is applied. This method takes xglob WD x0 2 Bk as the
starting point for iterations.
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Then, we call this two-stage numerical procedure globally convergent in the
classical sense within frameworks of the pair of approximate mathematical models
.M1;M2/. In short, we call this procedure globally convergent in the classical sense.

Remarks 1.1.2.2. 1. The single most important point of Definition 1.1.2.4 is that
the two-stage numerical procedure converges globally in the classical sense to
the exact solution within the frameworks of the pair .M1;M2/. In other words,
it converges regardless on the availability of a good first guess for the exact
solution.

2. The two-stage numerical procedure for CIPs which is developed in this book
satisfies conditions of Definition 1.1.2.4.

1.1.3 Some Notations and Definitions

The theory of ill-posed problems addresses the following fundamental question:
How to obtain a good approximation for the solution of an ill-posed problem in a
stable way? Roughly speaking, a numerical method, which provides a stable and
accurate solution of an ill-posed problem, is called the regularization method for
this problem; see Sect. 1.7 for a rigorous definition. Foundations of the theory of ill-
posed problems were established by three Russian mathematicians: Tikhonov [152–
154], Lavrent’ev [122,124], and Ivanov [85,86] in the 1960s. The first foundational
work was published by Tikhonov in 1943 [152].

We now briefly introduce some common notations which will be used throughout
this book. These notations can be found in, for example, the textbook [127].
We work in this book only with real valued functions. Let ˝ � R

n be a
bounded domain. We will always assume in our analytical derivations that its
boundary @˝ 2 C3; although we will work with piecewise smooth boundaries
in numerical studies. This is one of natural discrepancies between the theory and
its numerical implementation, which always exist in computations. Let u .x/ ; x D
.x1; :::; xn/ 2 ˝ be a k times continuously differentiable function defined in ˝ .
Denote

D˛u D @j˛ju
@˛1x1 : : : @˛nxn

; j˛j D ˛1 C : : :C ˛n;

the partial derivative of the order j˛j � k; where ˛ D .˛1; : : : ; ˛n/ is a multi-index
with integers ˛i � 0. Denote Ck

�
˝
�

the Banach space of functions u .x/ which
are continuous in the closure ˝ of the domain ˝ together with their derivatives
D˛u; j˛j � m. The norm in this space is defined as

kukCk.˝/ D
X

j˛j�m
sup
x2˝

jD˛u .x/j < 1:
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By definition, C0
�
˝
� D C

�
˝
�

is the space of functions continuous in ˝ with the
norm

kukC.˝/ D sup
x2˝

ju .x/j :

We also introduce Hölder spaces CkC˛ �˝
�

for any number ˛ 2 .0; 1/ : The norm
in this space is defined as

kukCkC˛.˝/ WD jujkC˛ WD kukCk.˝/ C sup
x;y2˝; x¤y

ju .x/ � u .y/j
jx � yj˛ ;

provided that the last term is finite. It is clear that if the function u 2 CkC1 �˝
�
;

then u 2 CkC˛ �˝
�
;8˛ 2 .0; 1/, and:

jujkC˛ � C kukCkC1.˝/ ; 8u 2 CkC1 �˝
�
;

where C D C .˝; ˛/ > 0 is a constant independent on the function u. Sometimes,
we also use the notion of Hölder spaces for infinite domains. Let D be such
a domain. It is convenient for us to say that the function u 2 CkC˛ .D/ if
u 2 CkC˛ �˝

�
for every bounded subdomain˝ � D: Although sometimes people

say that u 2 CkC˛ �D
�

if the above Hölder norm in D is finite.
Consider the Sobolev space Hk .˝/ of all functions with the norm defined as

kuk2Hk.˝/ D
X

j˛j�k

Z

˝

jD˛uj2 dx < 1;

where D˛u are weak derivatives of the function u. By the definition, H0 .˝/ D
L2 .˝/ : It is well known that Hk .˝/ is a Hilbert space with the inner product
defined as

.u; v/Hk.˝/ D
X

j˛j�k

Z

˝

D˛uD˛vdx:

Let T > 0 and � � @˝ be a part of the boundary @˝ of the domain ˝: We will
use the following notations throughout this book:

QT D ˝ � .0; T / ; ST D @˝ � .0; T / ; �T D � � .0; T / ;DnC1
T D R

n � .0; T / :
The spaceC2k;k

�
QT

�
is defined as the set of all functions u .x; t/ having derivatives

D˛
xD

ˇ
t u 2 C �QT

�
with j˛j C 2ˇ � 2k and with the following norm:

kukC2k;k.QT /
D

X

j˛jC2ˇ�2k
max
QT

ˇ
ˇ
ˇD˛

xD
ˇ
t u .x; t/

ˇ
ˇ
ˇ :

The Hölder space C2kC˛;kC˛=2 �QT

�
; ˛ 2 .0; 1/ is defined similarly [120].
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We now remind some definitions from the standard course of functional analysis.

Definition 1.1.3.1. Let B be a Banach space. The set V � B is called precompact
set if every sequence fxng1

nD1 � V contains a fundamental subsequence (i.e., the
Cauchy subsequence).

Although by the Cauchy criterion the subsequence of Definition 1.1.3.1 con-
verges to a certain point, there is no guarantee that this point belongs to the set V . If
we consider the closure of V , i.e., the set V ; then all limiting points of all convergent
sequences in V would belong to V: Therefore, we arrive at Definition 1.1.3.2.

Definition 1.1.3.2. Let B be a Banach space. The set V � B is called compact set
if V is a closed set, V D V , every sequence fxng1

nD1 � V contains a fundamental
subsequence, and the limiting point of this subsequence belongs to the set V .

Definition 1.1.3.3. Let B1 and B2 be two Banach spaces, U � B1 be a set and
A W U ! B2 be a continuous operator. The operator A is called a compact operator
or completely continuous operator if it maps any bounded subset U 0 � U in a
precompact set in B2: Clearly, if U 0 is a closed set, then A .U 0/ is a compact set.

The following theorem is well known under the name of Ascoli-Archela theorem
(More general formulations of this theorem can also be found).

Theorem 1.1.3.1. The set of functions M � C
�
˝
�

is a compact set if and only
if it is uniformly bounded and equicontinuous. In other words, if the following two
conditions are satisfied:

1. There exists a constantM > 0 such that

kf kC.˝/ � M; 8f 2 M:

2. For any " > 0, there exists ı D ı ."/ > 0 such that

jf .x/ � f .y/j < "; 8x; y 2 fjx � yj < ıg \˝; 8f 2 M:

In particular, because of some generalizations of this theorem, any bounded set
in Ck

�
˝
�

(or Hk .˝/); k � 1 is a compact set in Cp
�
˝
�

(respectively Hp .˝/)
for p 2 Œ0; k � 1� : We also remind one of the Sobolev embedding theorems for
spacesHk .˝/ : Let Œn=2� be the least integer which does not exceed n=2:

Theorem 1.1.3.2 ([127]). Suppose that k > Œn=2�Cm, the domain˝ is bounded
and @˝ 2 Ck: Then Hk .˝/ � Cm

�
˝
�

and kf kCm.˝/ � C kf kHk.˝/ ;8f 2
Hk .˝/ ; where the constant C D C .˝; k;m/ > 0 depends only on ˝; k;m: In
addition, any bounded set in Hk .˝/ is a precompact set in Cm

�
˝
�
.

Theorem 1.1.3.2 actually claims that the space Hk .˝/ is compactly embed-
ded in the space Cm

�
˝
�
: “Compactly embedded” means that kf kCm.˝/ �

C kf kHk.˝/ ;8f 2 Hk .˝/, and any bounded set in Hk .˝/ is a precompact



14 1 Two Central Questions of This Book and an Introduction to the Theories: : :

set in Cm
�
˝
�
: In other words, any sequence bounded in Hk .˝/ contains a

subsequence, which converges in Cm
�
˝
�
; although the limit of this subsequence

does not necessarily belong to Hk .˝/ :

1.2 Some Examples of Ill-posed Problems

Example 1 (J. Hadamard). We now describe the classical example of Hadamard;
see, for example, [124]. Consider the Cauchy problem for the Laplace equation for
the function u.x; y/ W

�u D 0; x 2 .0; �/; y > 0; (1.3)

u.x; 0/ D 0; uy.x; 0/ D ˛ sin.nx/; (1.4)

where n > 0 is an integer. It is well known that the Cauchy problem for a
general elliptic equation with “good” variable coefficients has at most one solution
[102, 124] (although it might not have solutions at all). The unique solution of the
problems (1.3) and (1.4) is

u.x; y/ D ˛

n
sinh.ny/ sin.nx/: (1.5)

Choose sufficiently small numbers " > 0; ˛ D ˛ ."/ > 0 and a number y WD
y0 > 0. Let in (1.5) x 2 .0; �/ : Since the function

sinh.ny0/ D eny0
�
1C e�2ny0�

2

grows exponentially as n ! 1; then it is clear from (1.5) that for any pair of
reasonable functional spaces Ck Œ0; �� ; L2 Œ0; �� ;H

k Œ0; ��, etc., one can choose
such two numbers c > 0; n0 > 0 depending only on numbers "; ˛; y0 that

jj˛ sin.nx/jj1 < "; 8n � n0;

ku .x; y0/k2 D
ˇ
ˇ̌
ˇ
ˇ̌˛
n

sinh.ny0/ sin.nx/
ˇ
ˇ̌
ˇ
ˇ̌
2
> c; 8n � n0;

where k�k1 is the norm in one of those spaces and k�k2 is the norm in another one.
The above example demonstrates that although both the Dirichlet and Neumann

boundary data are small, any reasonable norm of the solution is still large. In other
words, this is a manifestation of a high instability of this problem. Based on this
example, Hadamard has concluded that it makes no sense to consider unstable
problems. However, his conclusion was an exaggeration. Indeed, unstable problems
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arise in many applications. Being inspired by applications to geophysics, Tikhonov
has proposed in 1943 [152] the fundamental concept for solving unstable problems;
see Sect. 1.3.

Example 2 (Differentiation of a Function Given with a Noise). The differentiation
of functions given by analytic formulas is a trivial exercise. In the reality, however,
functions are often measured in experiments. Since experimental data always
contain noise, then measured functions are given with a noise. Quite often, it
is necessary to differentiate these noisy functions. We demonstrate now that the
problem of the differentiation of noisy functions is unstable. Suppose that the
function f .x/; x 2 Œ0; 1� is given with a noise. In other words, suppose that instead
of f .x/ 2 C1 Œ0; 1� the following function fı.x/ is given:

fı .x/ D f .x/C ıf .x/; x 2 Œ0; 1� ;

where ıf .x/ is the noisy component. Let ı > 0 be a small parameter characterizing
the level of noise. We assume that the noisy component is small, kıf kCŒ0;1� � ı: The
problem of calculating the derivative f 0

ı .x/ is unstable. Indeed, let, for example,

ıf .x/ D sin.n2x/

n
;

where n > 0 is a large integer. Then the C Œ0; 1�-norm of the noisy component is
small:

kıf kCŒ0;1� � 1

n
:

However, the difference between derivatives of noisy and exact functions

f 0
ı .x/ � f 0 .x/ D n cosn2x

is not small in any reasonable norm.
We now describe a simple regularization method of stable calculation of

derivatives. The idea is that the step size h in the corresponding finite difference
should be connected with the level of noise ı: Thus, h cannot be made arbitrary
small, as it is the case of the classic definition of the derivative. We obviously have

f 0
ı .x/ 	 f .x C h/� f .x/

h
C ıf .x C h/� ıf .x/

h
: (1.6)

The first term in the right-hand side of (1.6) is close to the exact derivative f 0 .x/ ;
if h is small enough. The second term, however, comes from the noise. Hence, we
need to balance these two terms via an appropriate choice of h D h .ı/ : Obviously:

ˇ̌
ˇ
ˇf

0
ı .x/ � f .x C h/ � f .x/

h

ˇ̌
ˇ
ˇ � 2ı

h
:
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Hence, we should choose h D h .ı/ such that

lim
ı!0

2ı

h .ı/
D 0:

For example, let h .ı/ D ı�; where � 2 .0; 1/ : Then

lim
ı!0

ˇ
ˇ
ˇ
ˇf

0
ı .x/ � f .x C h/� f .x/

h

ˇ
ˇ
ˇ
ˇ � lim

ı!0

�
2ı1��

�
D 0:

Hence, the problem becomes stable for this choice of the grid step size h .ı/ D ı�.
This means that h .ı/ is the regularization parameter here. There are many practical
methods in the literature designed for stable differentiation. For example, one
can approximate the function fı .x/ via cubic B splines and differentiate this
approximation then; see, for example, [73]. However, the number of these splines
should not be too large; otherwise, the problem would become unstable. So the
number of cubic B splines is the regularization parameter in this case, and its
intuitive meaning is the same as the meaning of the number 1=h .ı/ : A more
detailed description of regularization methods for the differentiation procedure is
outside of the scope of this book.

Let ˝ � R
n is a bounded domain and the function K .x; y/ 2 C

�
˝ �˝�.

Recall that the equation

g .x/C
Z

˝

K .x; y/ g .y/ dy D p .x/ ; x 2 ˝; (1.7)

where p .x/ is a bounded function, is called integral equation of the second kind.
These equations are considered quite often in the classic theory of PDEs. The
classical Fredholm theory works for these equations; see, for example, the textbook
[127]. Next, let ˝ 0 � R

n be a bounded domain and the function K.x; y/ 2
C
�
˝ �˝�. Unlike (1.7), the equation

Z

˝

K .x; y/ g .y/ dy D p .x/ ; x 2 ˝ 0 (1.8)

is called the integral equation of the first kind. The Fredholm theory does not work
for such equations. The problem of solution of (1.8) is an ill-posed problem; see
Example 3.

Example 3 (Integral Equation of the First Kind). Consider (1.8). The function
K .x; y/ is called kernel of the integral operator. Equation (1.8) can be rewritten
in the form

Kf D p; (1.9)

where K W C �˝� ! C
�
˝

0�
is the integral operator in (1.8). It is well known

from the standard functional analysis course that K is a compact operator. We now
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show that the problem (1.9) is ill-posed. Let ˝ D .0; 1/ ;˝ 0 D .a; b/ : Replace the
function f with the function fn .x/ D f .x/C sinnx: Then

1Z

0

K .x; y/ fn .y/ dy D gn .x/ ; x 2 .0; 1/ ; (1.10)

where gn .x/ D p .x/C pn.x/ and

pn.x/ D
1Z

0

K .x; y/ sinnydy:

By the Lebesque lemma,
lim
n!1 kpnkCŒa;b� D 0:

However, it is clear that

kfn .x/ � f .x/kCŒ0;1� D ksinnxkCŒ0;1�
is not small for large n.

Example 4 (The Case of a General Compact Operator). We now describe an
example of a general ill-posed problem. Let H1 and H2 be two Hilbert spaces with
dimH1 D dimH2 D 1: We remind that a sphere in an infinitely dimensional
Hilbert space is not a compact set. Indeed, although the orthonormal basis in this
space belongs to the unit sphere, it does not contain a fundamental subsequence.

Theorem 1.2. Let G D ˚kxkH1 � 1
� � H1: Let A W G ! H2 be a compact

operator and let R .A/ WD A .G/ be its range. Consider an arbitrary point
y0 2 R .A/. Let " > 0 be a number and U" .y0/ D ˚

y 2 H2 W ky � y0kH2 < "
�
:

Then there exists a point y 2 U" .y0/ŸR .A/ : If, in addition, the operator A is
one-to-one, then the inverse operator A�1 W R .A/ ! G is not continuous. Hence,
the problem of the solution of the equation

A .x/ D z; x 2 G; z 2 R .A/ (1.11)

is unstable, i.e., this is an ill-posed problem.

Proof. First, we prove the existence of a point y 2 U" .y0/ŸR .A/ : Assume to the
contrary, i.e., assume that U" .y0/ � R .A/ : Let fyng1

nD1 � H2 be an orthonormal
basis in H2: Then the sequence

n
y0 C "

2
yn

o1
nD1

WD fzng1
nD1 �

n
ky � y0k D "

2

o
� U" .y0/ :
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We have
kzn � zmkH2 D "p

2
:

Hence, the sequence fzng1
nD1 does not contain a fundamental subsequence.

Therefore, U" .y0/ is not a precompact set in H2. On the other hand, since G is
a closed bounded set and A is a compact operator, then R .A/ is a compact set.
Hence, U" .y0/ is a precompact set. We got a contradiction, which proves the first
assertion of this lemma.

We now prove the second assertion. Assume to the contrary that the operator
A�1 W R .A/ ! G is continuous. By the definition of the operator A, we have
A�1 .R .A// D G: Since R .A/ is a compact set in H2; then the continuity of A�1
implies that G is a compact set in H1; which is not true.

We now summarize some conclusions which follow from Theorem 1.2. By this
theorem, the set R.A/ is not dense everywhere. Therefore, the question about the
existence of the solution of either of (1.9) or (1.11) does not make an applied sense.
Indeed, since the set R.A/ is not dense everywhere, then it is very hard to describe
a set of values y belonging to this set. As an example, consider the case when the
kernel K .x; y/ 2 C .Œa; b� � Œ0; 1�/ in (1.10) is an analytic function of the real
variable x 2 .a; b/ : Then the right hand side p .x/ of (1.8) should also be analytic
with respect to x 2 .a; b/ : However, in applications, the function p .x/ is a result
of measurements, it is given only at a number of discrete points and contains noise.
Clearly, it is impossible to determine from this information whether the function
p .x/ is analytic or not. Hence, we got the following important conclusion.

Conclusion. Assuming that conditions of Theorem 1.2 are satisfied, the problem
of solving (1.11) is ill-posed in the following terms: (a) the proof of an existence
theorem makes no applied sense, and (b) small fluctuations of the right hand
side y can lead to large fluctuations of the solution x, i.e., the problem is
unstable.

Example 5 (A Coefficient Inverse Problem (CIP)). Let the functions a .x/ 2
C˛ .Rn/ ; ˛ 2 .0; 1/, and a .x/ D 0 outside of the bounded domain ˝ � R

n with
@˝ 2 C3: Consider the following Cauchy problem:

ut D �u C a .x/ u; .x; t/ 2 DnC1
T ; (1.12)

u .x; 0/ D f .x/ : (1.13)

Here, the function f .x/ 2 C2C˛ .Rn/ has a finite support in R
n: Although less

restrictive conditions on f can also be imposed, we are not doing this here for
brevity; see details in the book [120]. Another option for the initial condition is

f .x/ D ı .x � x0/ ; (1.14)
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where the source position x0 … ˝: Throughout the book, we will always assume that
the source is located outside of the domain of interest ˝: The reason of doing this
is that we do not want to work with singularities since CIPs are very complicated
even without singularities. The second reason is that in the majority of applications,
sources are indeed located outside of domains of interest; see Chaps. 5 and 6 for
experimental data.

Statement of a Coefficient Inverse Problem. Assume that the function a .x/ is
unknown inside the domain ˝: Determine this function for x 2 ˝ assuming that
the following function g .x; t/ is known:

u jST D g .x; t/ : (1.15)

The function g .x; t/ is an additional boundary condition. This function can be
interpreted as a result of measurements: One is measuring the function u .x; t/ at
the boundary of the domain ˝ in order to reconstruct the function a .x/ inside ˝:
Indeed, if the coefficient a .x/ would be known in the entire space R

n; then one
would uniquely determine the function u .x; t/ inDnC1

T :But since a .x/ is unknown,
then the function u jST can be determined only via measurements. Note that since
a .x/ D 0 outside of ˝; then one can uniquely solve the following initial boundary
value problem outside of ˝ W

ut D �u; .x; t/ 2 .RnŸ˝/ � .0; T / ;

u .x; 0/ D f .x/ ; x 2 R
nŸ˝;

u jST D g .x; t/ :

Hence, one can uniquely determine the Neumann boundary condition for the
function u at the boundary @˝; and we will use this consideration throughout
this book. Thus, the following function g1 .x; t/ is known along with the function
g .x; t/ in (1.15):

@nu jST D g1 .x; t/ :

This CIP has direct applications in imaging of the turbid media using light
propagation [8, 76, 156]. In a turbid medium, photons of light, originated by a
laser, propagate randomly in the diffuse manner. In other words, they experience
many random scattering events. Two examples of turbid media are smog and flames
in the air. The most popular example is the biological tissue, including human
organs. Assuming that the diffusion coefficient D D 1; we obtain that in (1.12) the
coefficient a .x/ D ��a .x/ � 0, where �a .x/ is the absorption coefficient of the
medium. The case of smog and flames has military applications. Since �a .x/ D 1
for any metallic target, then imaging small inhomogeneities with large values of
the absorption coefficient might lead to detection of those targets. In the case of
medical applications, high values of�a .x/ usually correspond to malignant legions.
Naturally, one is interested to image those legions noninvasively via solving a CIP.
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Thus, in both applications, the main interest is in imaging of small sharp
abnormalities, rather than in imaging of a slowly changing background function.
Furthermore, to correctly identify those abnormalities, one needs to image with a
good accuracy the value of the coefficient �a .x/ within them. Naturally, in both
applications, one should use the function (1.14) as the initial condition. In this case,
x0 is the location of the light source.

We now show that this CIP is an ill-posed problem. Let the function u0 be the
fundamental solution of the heat equation u0t D �u0 W

u0 .x; t/ D 1
�
2
p
�t
�n exp

 

�jxj2
4t

!

:

It is well known that the function u has the following integral representation [120]:

u .x; t/ D
Z

Rn

u0 .x � �; t/ f .�/ d� C
tZ

0

Z

˝

u0 .x � �; t � 	/ a .�/ u .�; 	/ d	:

(1.16)
Because of the presence of the integral

tZ

0

.�/ d	;

(1.16) is a Volterra-like integral equation of the second kind. Hence, it can be solved
as [120]:

u .x; t/ D
Z

Rn

u0 .x � �; t/ f .�/ d� C
1X

nD1
un .x; t/ ; (1.17)

un .x; t/ D
tZ

0

Z

˝

u0 .x � �; t � 	/ a .�/ un�1 .�; 	/ d	:

One can prove that each function un 2 C2C˛;1C˛=2
�
D
nC1
T

�
and [120]

ˇ
ˇDˇ

xD
k
t un .x; t/

ˇ
ˇ � .M t/n

nŠ
; jˇj C 2k � 2; (1.18)

whereM D kakC˛.˝/ : In the case when f D ı .x � x0/, the first term in the right-

hand side of (1.17) should be replaced with u0 .x � x0; t/ : Let uf0 .x; t/ be the first

term of the right-hand side of (1.17) and v .x; t/ D u .x; t/�uf0 .x; t/. Using (1.18),
one can rewrite (1.17) as
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v .x; t/ D
tZ

0

Z

˝

u0 .x � �; t � 	/
�
a .�/ uf0 .�; 	/C P .a/ .�; 	/

�
d�d	; (1.19)

whereP .a/ is a nonlinear operator applied to the function a: It is clear from (1.17)–
(1.19) that the operator P W C˛

�
˝
� ! C2C˛;1C˛=2 �QT

�
is continuous. Setting in

(1.19) .x; t/ 2 ST ; recalling (1.15), and denoting g .x; t/ D g .x; t/� uf0 .x; t/, we
obtain a nonlinear integral equation of the first kind with respect to the unknown
coefficient a .x/:

tZ

0

Z

˝

u0 .x � �; t � 	/
�

uf0 .�; 	/ a .�/CP .a/ .�; 	/
�

d�d	 Dg .x; t/ ; .x; t/ 2 ST :

(1.20)
Let A .a/ be the operator in the left-hand side of (1.20). Let H1 D L2 .˝/ and
H2 D L2 .ST / : Consider now the set U of functions defined as

U D
n
a W a 2 C˛

�
˝
�
; kakC˛.˝/ � M

o
� H1:

Since the L2 .˝/ norm is weaker than the C˛
�
˝
�
-norm, then U is a bounded set

in H1: Using (1.18) and Theorem 1.1, one can prove that A W U ! C .ST / is a
compact operator: Since the norm in L2 .ST / is weaker than the norm in C .ST /,
then A W U ! H2 is also a compact operator. Hence, Theorem 1.2 implies that the
problem of solution of the equation

A .a/ D g; a 2 U � H1; g 2 H2

is ill-posed in terms of the above conclusion.

1.3 The Foundational Theorem of A.N. Tikhonov

This theorem “restores” stability of unstable problems, provided that uniqueness
theorems hold for such problems. The original motivation for this theorem came
from the collaboration of Tikhonov with geophysicists. To his surprise, Tikhonov
has learned that geophysicists successfully solve problems which are unstable from
the mathematical standpoint. Naturally, Tikhonov was puzzled by this. This puzzle
has prompted him to explain that “matter of fact” stability of unstable problems
from the mathematical standpoint. He has observed that geophysicists have worked
with rather simple models, which included only a few abnormalities. In addition,
they knew very well ranges of parameters they have worked with. Also, they knew
that the functions, which they have reconstructed from measured date, had only very
few oscillations. In other words, they have reconstructed only rather simple media
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structures. On the other hand, the Ascoli-Archela Theorem 1.1.3.1 basically requires
a priori known upper bounds of both the function and its first derivatives. Clearly,
there is a connection between the number of oscillations per a bounded set in R

n

and the upper bound of the modulus of the gradient of the corresponding function.
These observations have made Tikhonov to believe that actually geophysicists have
worked with compact sets. This was the starting point for the formulation of the
foundational Tikhonov theorem (below). In particular, this means that in an ill-posed
problem, one should not expect to reconstruct a complicated fine structure of the
medium of interest. Rather, one should expect to reconstruct rather simple features
of this medium.

The key idea of Tikhonov was that to restore stability of an unstable problem,
one should solve this problem on a compact set. The question is then whether it is
reasonable to assume that the solution belongs to a specific compact set. The answer
on this question lies in applications. Indeed, by, for example, Theorem 1.1.3.1, an
example of a compact set in the space C

�
˝
�

is the set of all functions from C1
�
˝
�

which are bounded together with the absolute values of their first derivatives by an
a priori chosen constant. On the other hand, it is very often known in any specific
application that functions of ones interest are bounded by a certain known constant.
In addition, it is also known that those functions do not have too many oscillations,
which is guaranteed by an a priori bound imposed on absolute values of their first
derivatives. These bounds should be uniform for all functions under consideration.
Similar arguments can be brought up in the case of other conventional functional
spaces, like, for example, Ck

�
˝
�
;Hk .˝/. Another expression of these thoughts,

which is often used in applications, is that the admissible range of parameters is
known in advance. On the other hand, because of the compact set requirement
of Theorem 1.3, the foundational Tikhonov theorem essentially requires a higher
smoothness of sought for functions than one would originally expect. The latter is
the true underlying reason why computed solutions of ill-posed problems usually
look smoother than the original ones. In particular, sharp boundaries usually look as
smooth ones.

Although the proof of Theorem 1.3 is short and simple, this result is one of only
a few backbones of the entire theory of ill-posed problems.

Theorem 1.3 (Tikhonov [152], 1943). Let B1 and B2 be two Banach spaces. Let
U � B1 be a compact set and F W U ! B2 be a continuous operator. Assume
that the operator F is one-to-one. Let V D F.U /. Then the inverse operator F �1 W
V ! U is continuous.

Proof. Assume the opposite: that the operator F�1 is not continuous on the set V .
Then, there exists a point y0 2 V and a number " > 0 such that for any ı > 0,
there exists a point yı such that although kyı � y0kB2 < ı; still

�
�F �1 .yı/

�F�1 .y0/
�
�
B1

� ": Hence, there exists a sequence fıng1
nD1 ; limn!1 ın D 0C

and the corresponding sequence fyng1
nD1 � V such that

kyın � y0kB2 < ın;
��F�1 .yn/� F�1 .y0/

��
B1

� ": (1.21)
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Denote
xn D F�1 .yn/ ; x0 D F�1 .y0/ : (1.22)

Then

kxn � x0kB1 � ": (1.23)

Since U is a compact set and all points xn 2 U , then one can extract a convergent
subsequence fxnk g1

kD1 � fxng1
nD1 from the sequence fxng1

nD1. Let limk!1 xnk D
x: Then x 2 U: Since F

�
xnk
� D ynk and the operator F is continuous, then

by (1.21) and (1.22), F .x/ D y0 D F .x0/ : Since the operator F is one-to
one, we should have x D x0: However, by (1.23), kx � x0kB1 � ": We got a
contradiction. �

1.4 Classical Correctness and Conditional Correctness

The notion of the classical correctness is called sometimes correctness by Hadamard.

Definition 1.4.1. Let B1 and B2 be two Banach spaces. Let G � B1 be an open set
and F W G ! B2 be an operator. Consider the equation

F.x/ D y; x 2 G: (1.24)

The problem of solution of (1.24) is called well-posed by Hadamard, or simply well-
posed, or classically well-posed if the following three conditions are satisfied:

1. For any y 2 B2, there exists a solution x D x.y/ of (1.24) (existence theorem).
2. This solution is unique (uniqueness theorem).
3. The solution x.y/ depends continuously on y. In other words, the operatorF �1 W
B2 ! B1 is continuous.

Thus, the well-posedness by Hadamard means the existence of the solution of the
operator equation (1.24) for any right-hand side y. This solution should be unique.
In addition, it should depend on the data y continuously. All classical boundary
value problems for PDEs, which are studied in the standard PDE course, satisfy
these criteria and are, therefore, well-posed by Hadamard.

If (1.24) does not satisfy to at least one these three conditions, then the
problem (1.24) is called ill-posed. The most pronounced feature of an ill-posed
problem is its instability, i.e., small fluctuations of y can lead to large fluctuations
of the solution x. The definition of the correctness by Tikhonov, or conditional
correctness, reflects the above Theorems 1.2 and 1.3.

Since the experimental data are always given with a random noise, we need
to introduce the notion of the error in the data. In practice, this error is always
due to that random noise as well as due to an inevitable discrepancy between the
mathematical model and the reality. However, we do not assume the randomness of
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y in (1.24). Let ı > 0 be a small number. We say that the right-hand side of (1.24)
is given with an error of the level ı if ky� � ykB2 � ı; where y� is the exact value
of y, which has no error.

Definition 1.4.2. Let B1 and B2 be two Banach spaces. Let G � B1 be an a priori
chosen set of the formG D G1; where G1 is an open set in B1: Let F W G ! B2 be
a continuous operator. Suppose that the right-hand side of (1.24) y WD yı is given
with an error of the level ı > 0, where ı is a small number, ky� � yıkB2 � ı: Here,
y� is the ideal noiseless data y�. The problem (1.24) is called conditionally well-
posed on the set G, or well-posed by Tikhonov on the set G, if the following three
conditions are satisfied:

1. It is a priori known that there exists an ideal solution x� D x� .y�/ 2 G of this
problem for the ideal noiseless data y�.

2. The operator F W G ! B2 is one-to-one:
3. The inverse operator F�1 is continuous on the set F .G/.

Definition 1.4.3. The set G of Definition 1.4.2 is called correctness set for the
problem (1.24).

We point out that, unlike the classical well-posedness, the conditional well-
posedness, does not require the correctness set G to coincide with the entire Banach
space B1: Likewise, Definition 1.4.2 does not require a proof of an existence theo-
rem, unlike the classical case. Indeed, it follows from Theorem 1.2 that it is hopeless
to prove such a theorem for (1.11). In addition, such a result would not have a
practical meaning. For comparison, recall that a significant part of the classical PDE
theory is devoted to proofs of existence theorems, as it is required by the definition of
the classical well-posedness. On the other hand, in the definition of the conditional
well-posedness the existence is assumed a priori. Still, the existence is assumed not
for every y in (1.24) but only for an ideal, noiseless y WD y�: The assumption of
the existence of the ideal solution x� is a very important notion of the theory of
ill-posed problems. Neither the ideal right-hand side y� nor the ideal solution x�
are never known in applications. This is because of the presence of the noise in any
experiment. Still, this assumption is a quite reasonable one because actually, it tells
one that the physical process is indeed in place and that the mathematical model,
which is described by the operator F , governs this process accurately.

The second condition in Definition 1.4.2 means uniqueness theorem. Combined
with Theorem 1.3, this condition emphasizes the importance of uniqueness theorems
for the theory of ill-posed problems.

The third condition in Definition 1.4.2 means that the solution of the prob-
lem (1.24) is stable with respect to small fluctuations of the right-hand side y, as
long as x 2 G. This goes along well with Theorem 1.3. In other words, the third
condition restores the most important feature: stability. The requirement that the
correctness set G � B1 is not conventionally used in the classical theory of PDEs.
In other words, the requirement of x belonging to a “special” subset of B1 is not
imposed in classically well-posed problems.



1.5 Quasi-solution 25

Motivated by the above arguments, Tikhonov has introduced the Fundamental
Concept of Tikhonov.

The Fundamental Concept of Tikhonov. This concept consists of the following
three conditions which should be in place when solving the ill-posed problem (1.24):

1. One should a priori assume that there exists an ideal exact solution x� of (1.24)
for an ideal noiseless data y�.

2. The correctness set G should be chosen a priori, meaning that some a priori
bounds imposed on the solution x of (1.24) should be imposed.

3. To construct a stable numerical method for the problem (1.24), one should
assume that there exists a family fyıg of right-hand sides of (1.24), where ı > 0
is the level of the error in the data with ky� � yıkB2 � ı: Next, one should
construct a family of approximate solutions fxıg of (1.24), where xı corresponds
to yı . The family fxıg should be such that

lim
ı!0C

kxı � x�k D 0:

1.5 Quasi-solution

The concept of quasi-solutions was originally proposed by Ivanov [85]. It is
designed to provide a rather general method for solving the ill-posed problem (1.24).
This concept is actually a quite useful, as long as one is seeking a solution on a
compact set. An example is when the solution is parametrized, i.e.,

x D
NX

iD1
ai 'i ;

where elements f'i g are a part of an orthonormal basis in a Hilbert space, the
number N is fixed, and coefficients fai gNnD1 are unknown. So, one is seeking
numbers fai gNnD1 � G; where G � R

N is a priori chosen closed bounded set.
This set is called sometimes “the set of admissible parameters.”

Since the right-hand side y of (1.24) is given with an error, Theorem 1.2 implies
that it is unlikely that y belongs to the range of the operator F . Therefore, the
following natural question can be raised about the usefulness of Theorem 1.3: Since
the right-hand side y of (1.24) most likely does not belong to the range F .G/ of
the operator F , then what is the practical meaning of solving this equation on the
compact set G; as required by Theorem 1.3? The importance of the notion of quasi-
solutions is that it addresses this question in a natural way.

Suppose that the problem (1.24) is conditionally well-posed and let G � B1
be a compact set. Then, the set F.G/ � B2 is also a compact set. We have
ky � y�kB2 � ı. Consider the minimization problem

min
G
J.x/; where J.x/ D jjF.x/ � yjj2B2 : (1.25)
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Since G is a compact set, then there exists a point x D x.yı/ 2 G at which
the minimum in (1.25) is achieved. In fact, one can have many points x.yı/:
Nevertheless, it follows from Theorem 1.5 that they are located close to each other,
as long as the number ı is sufficiently small.

Definition 1.5. Any point x D x.y/ 2 G of the minimum of the functional J.x/ in
(1.25) is called quasi-solution of equation in (1.24) on the compact set G.

A natural question is, how far is the quasi-solution from the exact solution x�?
Since by Theorem 1.3 the operator F �1 W F.G/ ! G is continuous and the set
F.G/ is compact, then one of classical results of real analysis implies that there
exists the modulus of the continuity !F .z/ of the operator F �1 on the set F.G/.
The function !F .z/ satisfies the following four conditions:

1. !F .z/ is defined for z � 0:

2. !F .z/ > 0 for z > 0, !F .0/ D 0, and limz!0C !F .z/ D 0:

3. The function !F .z/ is monotonically increasing for z > 0.
4. For any two points y1; y2 2 F.G/, the following estimate holds:

jjF�1.y1/ � F �1.y2/jjB1 � !F .jjy1 � y2/jjB2/:

The following theorem characterizes the accuracy of the quasi-solution:

Theorem 1.5. Let B1 and B2 be two Banach spaces, G � B1 be a compact set,
and F W G ! B2 be a continuous one-to-one operator. Consider (1.24). Suppose
that its right-hand side y WD yı is given with an error of the level ı > 0, where ı
is a small number, ky� � yıkB2 � ı: Here, y� is the ideal noiseless data y�. Let
x� 2 G be the ideal exact solution of (1.24) corresponding to the ideal data y�; i.e.,
F .x�/ D y�. Let xqı be a quasi-solution of (1.24), i.e.,

J.x
q

ı / D min
G

jjF.x/ � yıjj2B2 : (1.26)

Let !F .z/ ; z � 0 be the modulus of the continuity of the operator F�1 W F .G/ !
G which exists by Theorem 1.3. Then the following error estimate holds

�
�xqı � x���

B1
� !F .2ı/ : (1.27)

In other words, the problem of finding a quasi-solution is stable, and two quasi-
solutions are close to each other as long as the error in the data is small.

Proof. Since ky� � yıkB2 � ı, then

J
�
x�� D jjF.x�/ � yıjj2B2 D ky� � yık2B2 � ı2:

Since the minimal value of the functional J .x�/ is achieved at the point xqı ; then

J.x
q

ı / � J
�
x�� � ı2:
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Hence, jjF.xqı /� yıjjB2 � ı: Hence,

jjF.xqı /� F.x�/jjB2 � jjF.xqı / � yıjjB2 C kyı � F.x�/kB2
D jjF.xqı / � yıjjB2 C kyı � y�kB2 � 2ı:

Thus, we have obtained that jjF.xqı /�F.x�/jjB2 � 2ı: Therefore, the definition of
the modulus of the continuity of the operator F�1 implies (1.27). �

This theorem is very important for justifying the practical value of Theorem 1.3.
Still, the notion of the quasi-solution has a drawback. This is because it is unclear
how to actually find the target minimizer in practical computations. Indeed, to find
it, one should minimize the functional J.x/ on the compact set G. The commonly
acceptable minimization technique for any least squares functional is via searching
points where the Frechét derivative of that functional equals zero. However, the
well-known obstacle on this path is that this functional might have multiple local
minima and ravines. Therefore, most likely, the norm of the Frechét derivative is
sufficiently small at many points of, for example, a ravine. Thus, it is unclear how
to practically select a quasi-solution. In other words, we come back again to the
first central question of this book: How to find a good approximation for the exact
solution without an advanced knowledge of a small neighborhood of this solution?

1.6 Regularization

To solve ill-posed problems, regularization methods should be used. In this section,
we present main ideas of the regularization. Note that we do not assume in
Definition 1.6 that the operator F is defined on a compact set.

Definition 1.6. Let B1 and B2 be two Banach spaces and G � B1 be a set. Let the
operator F W G ! B2 be one-to-one: Consider the equation

F .x/ D y: (1.28)

Let y� be the ideal noiseless right-hand side of (1.28) and x� be the ideal noiseless
solution corresponding to y�; F .x�/ D y�. Let ı0 2 .0; 1/ be a sufficiently small
number. For every ı 2 .0; ı0/ denote

Kı

�
y�� D ˚

z 2 B2 W kz � y�kB2 � ı
�
:

Let ˛ > 0 be a parameter and R˛ W Kı0 .y
�/ ! G be a continuous operator

depending on the parameter ˛. The operatorR˛ is called the regularization operator
for (1.28) if there exists a function ˛ .ı/ defined for ı 2 .0; ı0/ such that

lim
ı!0

�
�R˛.ı/ .yı/ � x���

B1
D 0:
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The parameter ˛ is called the regularization parameter. The procedure of con-
structing the approximate solution x˛.ı/ D R˛.ı/ .yı/ is called the regularization
procedure, or simply regularization.

There might be several regularization procedures for the same problem. This is
a simplified notion of the regularization. In our experience, in the case of CIPs,
usually ˛ .ı/ is a vector of regularization parameters, for example, the number of
iterations, the truncation value of the parameter of the Laplace transform, and the
number of finite elements. Since this vector has many coordinates, then its practical
choice is usually quite time-consuming. This is because one should choose a proper
combination of several components of the vector ˛ .ı/.

The first example of the regularization was Example 2 of Sect. 1.6. We now
present the second example. Consider the problem of the solution of the heat
equation with the reversed time. Let the function u .x; t/ be the solution of the
following problem:

ut D uxx; x 2 .0; �/ ; t 2 .0; T /;
u .x; T / D y .x/ 2 L2 .0; �/;
u .0; t/ D u .�; t/ D 0:

Uniqueness theorem for this and a more general problem is well known and can be
found in, for example, the book [124]. Obviously, the solution of this problem, if it
exists, is

u .x; t/ D
1X

nD1
ynen

2.T�t / sin nx; (1.29)

yn D
r
2

�

�Z

0

y .x/ sin nxdx:

It is clear, however, that the Fourier series (1.29) converges a narrow class of
functions y .x/ : This is because the numbers fen

2.T�t /g1
nD1 grow exponentially

with n.
To regularize this problem, consider the following approximation for the function

u .x; t/ W
uN .x; t/ D

NX

nD1
ynen

2.T�t / sin nx:

Here, ˛D 1=N is the regularization parameter. To show that this is indeed a
regularization procedure in terms of Definition 1.6, we need to consider the
following:

Inverse Problem. For each function f 2 L2 .0; �/, consider the solution of the
following initial boundary value problem
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vt D vxx; x 2 .0; �/ ; t 2 .0; T /;
v .x; 0/ D f .x/;

v .0; t/ D v .�; t/ D 0: (1.30)

Given the function y .x/ D v .x; T / ; determine the initial condition f .x/ in (1.30).
Define the operator F W L2 .0; �/ ! L2 .0; �/ as F .f / D v .x; T / : It is known

from the standard PDEs course that

F .f / D v .x; T / D
�Z

0

G .x; �; T / f .�/ d�; (1.31)

G .x; �; t/ D
1X

nD1
e�n2t sin nx sin n�;

where G is the Green’s function for the problem (1.30). In other words, we have
obtained the integral equation (1.31) of the first kind. Hence, Theorem 1.2 implies
that the operator F�1 cannot be continuous.

Following the fundamental concept of Tikhonov, let y� 2L2 .0; �/ be the “ideal”
noiseless function y, which corresponds to the function f � in (1.30). Let the
function yı 2 L2 .0; �/ be such that kyı � y�kL2.0;�/ � ı:Define the regularization
parameter ˛ WD 1=N and the regularization operator R˛ .y/ as

R˛ .yı/ .x/ D
NX

nD1
ynen

2.T�t / sin nx; (1.32)

yn D
r
2

�

�Z

0

yı .x/ sinnxdx:

Let f � 2 C1 Œ0; �� and f � .0/ D f � .�/ D 0: The integration by parts leads to

f �
n D

r
2

�

�Z

0

f � .x/ sin nxdx D 1

n

r
2

�

�Z

0

�
f � .x/

�0
cosnxdx:

Hence,

�
f �
n

�2 �
�
�.f � .x//0

�
�2

n2
:

Hence,

1X

nDNC1

�
f �
n

�2 �
C
�
�.f � .x//0

�
�2
L2.0;�/

N
; (1.33)
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where C > 0 is a constant independent on the function f �: Consider now the
functionR˛ .y/� f � W

R˛ .yı/� f � D
r
2

�

NX

nD1

�
yn � y�

n

�
en

2T sinnx �
r
2

�

1X

nDNC1
f �
n sinnx:

Since functions
n
.2=�/1=2 sin nx

o1
nD1 form an orthonormal basis in L2 .0; �/ ; then

kR˛ .y/� f �k2L2.0;�/ � e2N
2T

NX

nD1

�
yn � y�

n

�2 C
1X

nDNC1

�
f �
n

�2
:

This implies that

kR˛ .y/ � f �k2L2.0;�/ � e2N
2T ı2 C

1X

nDNC1

�
f �
n

�2
: (1.34)

The second term in the right-hand side of (1.34) is independent on the level of
error ı: However, it depends on the exact solution as well as on the regularization
parameter ˛ D 1=N: So, the idea of obtaining the error estimate here is to balance
these two terms via equalizing them. To do this, we need to impose an a priori
assumption first about the maximum of a certain norm of the exact solution f �.
Hence, we assume that

�
�.f �/0

�
�2
L2.0;�/

� M2; where M is a priori given positive
constant. This means, in particular, that the resulting estimate of the accuracy of
the regularized solution will hold uniformly for all functions f � satisfying this
condition. This is a typical scenario in the theory of ill-posed problems and it goes
along well with Theorem 1.3.

Using (1.33), we obtain from (1.34)

kR˛ .yı/� f �k2L2.0;�/ � e2N
2T ı2 C CM2

N
: (1.35)

The right-hand side of (1.35) contains two terms, which we need to balance by
equalizing them:

e2N
2T ı2 D CM2

N
:

Since e2N
2T N

�
CM2

��1
< e3N

2T for sufficiently large N , we set

e3N
2T D 1

ı2
:
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Hence, the regularization parameter is

˛ .ı/ WD 1

N .ı/
WD
�h

ln
�
ı�2=3T �i1=2

	�1
:

Here, fag denotes the least integer for a number a > 0: Thus, (1.35) implies that

kR˛ .yı/ � f �k2L2.0;�/ � ı2=3 C CM2

h
ln
�
ı�2=3T �i1=2

:

It is clear that the right-hand side of this inequality tends to zero as ı ! 0: Hence,
R˛.ı/ is indeed a regularization operator for the above inverse problem.

In simpler terms, the number N of terms of the Fourier series (1.32) rather than
1=N is the regularization parameter here. It is also well known from the literature
that the number of iterations in an iterative algorithm can serve as a regularization
parameter. Since in this chapter we want to outline only main principles of the
theory of ill-posed problems rather than working with advanced topics of this
theory, we now derive from the above a simple example illustrating that the iteration
number can indeed be used as a regularization parameter; see [65, 93, 124, 153] for
more advanced examples. Indeed, in principle, we can construct the regularized
solution (1.32) iteratively via

f1 D y1en
2.T�t / sin x; f2 D f1 C y2e2

2.T�t / sin 2x; :::;

fN D fN�1 C yN eN
2.T�t / sinNx: (1.36)

It is clear from (1.36) that the number of iterationsN D N .ı/ can be considered as
a regularization parameter here.

1.7 The Tikhonov Regularization Functional

Tikhonov has constructed a general regularization functional which works for a
broad class of ill-posed problems [153, 154]. That functional carries his name in
the literature. In the current section, we construct this functional and study its
properties. We point out that the first stage of the two-stage numerical procedure
of this book does not use this functional. The Tikhonov functional has proven to be
a very powerful tool for solving ill-posed problems.
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1.7.1 The Tikhonov Functional

Let B1 and B2 be two Banach spaces. LetQ be another space,Q � B1 as a set, and
Q D B1, where the closure is understood in the norm of the space B1: In addition,
we assume that Q is compactly embedded in B1: It follows from Theorems 1.1.3.1
and 1.1.3.2 that Q and B1 are:

(a) B1 D L2 .˝/ ;Q D Hk .˝/ ;8k � 1; where ˝ � R
n is a bounded domain.

(b) B1 D Cm
�
˝
�
;Q D CmCk �˝

�
;8m � 0;8k � 1; where m and k are

integers.
(c) B1 D Cm

�
˝
�
;Q D Hk .˝/ ; k > Œn=2�Cm; assuming that @˝ 2 Ck:

Let G � B1 be the closure of an open set: Consider a continuous one-to-one
operator F W G ! B2: The continuity here is in terms of the pair of spaces B1;B2;
rather that in terms of the pairQ;B2:We are again interested in solving the equation

F .x/ D y; x 2 G: (1.37)

Just as above, we assume that the right-hand side of this equation is given with an
error of the level ı: Let y� be the ideal noiseless right-hand side corresponding to
the ideal exact solution x� W

F
�
x�� D y�; ky � y�kB2 < ı: (1.38)

To find an approximate solution of (1.37), we minimize the Tikhonov regularization
functional J˛ .x/ W

J˛ .x/ D 1

2
kF.x/ � yk2B2 C ˛

2
kx � x0k2Q ; (1.39)

J˛ W G ! R; x0 2 G;
where ˛ D ˛ .ı/ > 0 is a small regularization parameter and the point x0 2 Q. In
general, the choice of the point x0 depends on the problem at hands. Usually, x0 is a
good first approximation for the exact solution x�: Because of this, x0 is sometimes
called the first guess or the first approximation. The dependence ˛ D ˛ .ı/ will
be specified later. The term ˛ kx � x0k2Q is called the Tikhonov regularization
term or simply the regularization term. Consider a sequence fıkg1

kD1 such that
ık > 0; limk!1 ık D 0: We want to construct sequences f˛ .ık/g ;

˚
x˛.ık/

�

such that

lim
k!1

�
�x˛.ık/ � x���

B1
D 0:

Hence, if such a sequence will be constructed, then we will approximate the exact
solution x� in a stable way, and this would correspond well with the second
condition of the fundamental concept of Tikhonov.
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Using (1.38) and (1.39), we obtain

J˛
�
x�� � ı2

2
C ˛

2
kx� � x0k2Q � ı2

2
C ˛

2
kx� � x0k2Q : (1.40)

Let

m˛.ık/ D inf
G
J˛.ık/ .x/ :

By (1.40),

m˛.ık/ � ı2k
2

C ˛ .ık/

2
kx� � x0k2Q :

Hence, there exists a point x˛.ık/ 2 G such that

m˛.ık/ � J˛.ık/
�
x˛.ık/

� � ı2k
2

C ˛ .ık/

2
kx� � x0k2Q : (1.41)

Hence, by (1.39) and (1.41),

�
�x˛.ık/ � x0

�
�2
Q

� ı2k
˛ .ık/

C kx� � x0k2Q : (1.42)

Suppose that

lim
k!1˛ .ık/ D 0 and lim

k!1
ı2k

˛ .ık/
D 0: (1.43)

Then (1.42) implies that the sequence
˚
x˛.ık/

� � G � Q is bounded in the norm of
the spaceQ: SinceQ is compactly embedded in B1; then there exists a subsequence
of the sequence

˚
x˛.ık/

�
which converges in the norm of the space B1: For brevity

and without any loss of generality, we assume that the sequence
˚
x˛.ık/

�
itself

converges to a point x 2 B1 W

lim
k!1

�
�x˛.ık/ � x��

B1
D 0:

Then (1.41) and (1.43) imply that limk!1 J˛.ık/
�
x˛.ık/

� D 0: On the other hand,

lim
k!1J˛.ık/

�
x˛.ık/

� D 1

2
lim
k!1

h
kF .xk/ � yıkk2B2 C ˛ .ık/

�
�x˛.ık/ � x0

�
�2
Q

i

D 1

2
kF .x/ � y�k2B2 :

Hence, kF .x/� y�kB2 D 0; which means that F .x/ D y�: Since the op-
erator F is one-to-one, then xDx�: Thus, we have constructed the sequence
of regularization parameters f˛ .ık/g1

kD1 and the sequence
˚
x˛.ık/

�1
kD1 such that
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limk!1
�
�x˛.ık/ � x���

B1
D 0: To ensure (1.43), one can choose, for example,

˛ .ık/ DCı
�

k ; �2 .0; 2/ : It is reasonable to call
˚
x˛.ık/

�1
kD1 regularizing sequence.

Note that although both points x˛.ık/ and x� belong to the spaceQ; convergence
is proven in a weaker norm of the space B1, which is typical for ill-posed problems.
We point out that the original idea of Theorem 1.3 about compact sets plays a
very important role in the above construction. The sequence

˚
x˛.ık/

�1
kD1 is called

minimizing sequence. There are two inconveniences in the above construction. First,
it is unclear how to find the minimizing sequence computationally. Second, the
problem of multiple local minima and ravines of the functional (1.39) presents a
significant complicating factor in the goal of the construction of such a sequence.

1.7.2 Regularized Solution

The construction of Sect. 1.7.1 does not guarantee that the functional J˛ .x/ indeed
achieves it minimal value. Suppose now that the functional J˛ .x/ does achieve
its minimal value, J˛ .x˛/ D minG J˛ .x/ ; ˛ D ˛ .ı/ : Then x˛.ı/ is called a
regularized solution of (1.37) for this specific value ˛ D ˛ .ı/ of the regularization
parameter. Let ı0 > 0 be a sufficiently small number. Suppose that for each
ı 2 .0; ı0/, there exists an x˛.ı/ such that J˛.ı/

�
x˛.ı/

� D minG J˛.ı/ .x/ : Even
though one might have several points x˛.ı/; we select a single one of them for each
˛ D ˛ .ı/ : Indeed, it follows from the construction of Sect. 1.7.1 that all points
x˛.ı/ are close to the exact solution x�; as long as ı is sufficiently small. It makes
sense now to relax a little bit the definition of Sect. 1.6 of the regularization operator.
Namely, instead of the existence of a function ˛ .ı/ ; we now require the existence
of a sequence fıkg1

kD1 � .0; 1/ such that

lim
k!1 ık D 0 and lim

k!1
�
�R˛.ık/

�
yık
�� x���

B1
D 0:

For each ı 2 .0; ı0/ and for each yı such that kyı � y�kB2 � ı, we define the
operator R˛.ı/ .y/ D x˛.ı/; where x˛.ı/ is a regularized solution. Then it follows
from the construction of Sect. 1.7.1 thatR˛.ı/ .y/ is a regularization operator. Hence,
the parameter ˛ .ı/ in (1.39) is a regularization parameter for the problem (1.37).

Consider now the case when the space B1 is a finite dimensional space. Since
all norms in finite dimensional spaces are equivalent, we can set Q D B1 D R

n:

We denote the standard euclidean norm in R
n as k�k : Hence, we assume now that

G � R
n is the closure of an open bounded domain. Hence, G is a compact set. Let

x� 2 G and ˛ D ˛ .ı/ : We have

J˛.ı/ .x/ D 1

2
kF.x/ � yk2B2 C ˛ .ı/

2
kx � x0k2 ;

J˛.ı/ W G ! R; x0 2 G:
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By the Weierstrass’ theorem, the functional J˛.ı/ .x/ achieves its minimal value on
the set G. Let x˛.ı/ be a minimizer of the functional J˛.ı/ .x/ on G (there might be
several minimizers). Then

J˛.ı/
�
x˛.ı/

� � J˛.ı/
�
x�� D 1

2
kF.x�/� yk2B2 C ˛

2
kx� � x0k2

� ı2

2
C ˛ .ı/

2
kx� � x0k2 :

Hence,

�
�x˛.ı/ � x0

�
� �

s
ı2

˛
C kx� � x0k2 � ıp

˛
C kx� � x0k : (1.44)

Since
��x˛.ı/ � x0

�� � ��x˛.ı/ � x��� � kx� � x0k, then we obtain from (1.44)

�
�x˛.ı/ � x��� � ıp

˛
C 2 kx� � x0k : (1.45)

An important conclusion from (1.45) is that for a given pair .ı; ˛ .ı//, the
accuracy of the regularized solution is determined by the accuracy of the first guess
x0: This becomes even more clear when we recall that by (1.43), we should have
limı!0

�
ı=

p
˛
� D 0: This once again points toward the importance of the first

central question of this book.

1.8 The Accuracy of the Regularized Solution for a Single
Value of ˛

It was proven in Sect. 1.7.1 that the regularizing sequence
˚
x˛.ık/

�1
kD1 converges to

the exact solution x� provided that limk!1 ık D 0: However,
˚
x˛.ık/

�1
kD1 is only

a subsequence of a certain sequence, which is inconvenient for computations. In
addition, in practical computations, one always works only with a single value of
the noise level ı and with a single value of the regularization parameter ˛ .ı/ : In
these computations, people naturally work with finite dimensional spaces, in which
the existence of a regularized solution is guaranteed; see Sect. 1.7.2. Naturally, one
would want the regularized solution to be more accurate than the first guess for
a single pair .ı; ˛ .ı//. It has been often observed in numerical studies of many
researchers that even though parameters ı and ˛ .ı/ are fixed, the regularized
solution x˛.ı/ is indeed closer to the exact solution x� than the first approximation
x0: The first analytical proof of this phenomenon was presented in the work [111].
Basically, Theorem 2 of [111] states that the regularized solution is indeed closer
to the exact one than the first approximation in the case when uniqueness theorem
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holds for the original ill-posed problem. In this section, we present the main idea of
[111]. An application of this idea to specific CIPs can be found in [111].

We assume that conditions of Sect. 1.7.1 which were imposed there on spaces
and the operator F hold. Consider again the equation

F .x/ D y; x 2 G: (1.46)

Just as above, we assume that the right-hand side of this equation is given with an
error of the level ı: Let y� be the ideal noiseless data corresponding to the ideal
solution x�:

F
�
x�� D y�; ky � y�kB2 � ı: (1.47)

To find an approximate solution of (1.46), we minimize the Tikhonov regularization
functional J˛ .x/:

J˛ .x/ D 1

2
kF.x/ � yk2B2 C ˛

2
kx � x0k2Q ; (1.48)

J˛ W G ! R; x0 2 G:
Since it is unlikely that one can get a better accuracy of the solution than ı;

then it is usually acceptable that all other parameters involved in the regularization
process are much larger than ı: For example, let the number � 2 .0; 1/ : Since

limı!0

�
ı2�=ı2

�
D 1; then there exists a sufficiently small number ı0 .�/ 2 .0; 1/

such that ı2� > ı2;8ı 2 .0; ı0 .�// : Hence, we choose below in this section

˛ .ı/ D ı2�; � 2 .0; 1/ : (1.49)

We introduce the dependence (1.49) for the sake of definiteness only. In fact, other
dependencies ˛ .ı/ are also possible. Let m˛.ı/ D infG J˛.ı/ .x/ : Then

m˛.ı/ � J˛.ı/
�
x�� : (1.50)

Let dimB1 D 1: As it was noticed in the beginning of Sect. 1.7.2, we cannot
prove the existence of a minimizer of the functional J˛ in this case. Hence, we work
now with the minimizing sequence. It follows from (1.48) and (1.50) that there exists
a sequence fxng1

nD1 � G such that

m˛.ı/ � J˛.ı/ .xn/ � ı2

2
C ˛

2
kx� � x0k2Q and lim

n!1J˛.ı/ .xn/ D m.ı/ : (1.51)

By (1.42) and (1.51),

kxnkQ �
 
ı2

˛
C kx� � x0k2Q

!1=2
C kx0kQ : (1.52)
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Hence, it follows from (1.49) and (1.52) that fxng1
nD1 � K .ı; x0/ ; where

K .ı; x0/ � Q is a precompact set in B1 defined as

K .ı; x0/ D
�
x 2 Q W kxkQ �

q
ı2
.1��/ C kx� � x0k2Q C kx0kQ

	
: (1.53)

Note that the sequence fxng1
nD1 depends on ı: Let K .ı; x0/ be the closure of the

set K .ı; x0/ in the norm of the space B1: Hence, K .ı; x0/ is a closed compact set
in B1:

Theorem 1.8 ([111]). Let B1 and B2 be two Banach spaces. Let Q be another
Banach space and Q � B1 as a set. Assume that Q D B1and Q is compactly
embedded in B1: Let G � Q be a convex set and F W G ! B2 be a one-to-
one operator, continuous in terms of norms k�kB1 ; k�kB2 : Consider the problem of
solution of (1.46). Let y� be the ideal noiseless right-hand side of (1.46) and x�
be the corresponding exact solution of (1.46), F .x�/ D y�: Let ky � y�kB2 � ı:

Consider the Tikhonov functional (1.48), assume that (1.49) holds and that x0 ¤ x�.
Let fxng1

nD1 � K .ı; x0/ � K .ı; x0/ be a minimizing sequence of the functional
(1.48) satisfying (1.52). Let � 2 .0; 1/ be an arbitrary number. Then there exists
a sufficiently small number ı0 D ı0 .�/ 2 .0; 1/ such that for all ı 2 .0; ı0/ ; the
following inequality holds:

kxn � x�kB1 � � kx0 � x�kQ ;8n: (1.54)

In particular, if dimB1 < 1; then all norms in B1 are equivalent. In this case,
we set Q D B1: Then a regularized solution x˛.ı/ exists (Sect. 1.7.2) and (1.54)
becomes

��x˛.ı/ � x���
B1

� � kx0 � x�kB1 : (1.55)

In the case of noiseless data with ı D 0; the assertion of this theorem remains true
if one replaces above ı 2 .0; ı0/ with ˛ 2 .0; ˛0/ ; where ˛0 D ˛0 .�/ 2 .0; 1/ is
sufficiently small.

Proof. Note that if x0 D x�; then the exact solution is found, and all xn D x�: So
this is not an interesting case to consider. By (1.47), (1.48), and (1.50),

kF .xn/ � ykB2 �
q
ı2 C ˛ kx0 � x�k2Q D

q
ı2 C ı2� kx0 � x�k2Q :

Hence,
��F .xn/ � F �x����

B2
D ��.F .xn/ � y/C �

y � F
�
x�����

B2

D �
�.F .xn/ � y/C �

y � y����
B2

� kF .xn/� ykB2 C ky � y�kB2
�
q
ı2 C ı2� kx� � x0k21 C ı: (1.56)
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By Theorem 1.3, there exists the modulus of the continuity !F .z/ of the operator

F�1 W F �K .ı; x0/
� ! K .ı; x0/ :

By (1.56),

kxn � x�kB1 � !F


q
ı2 C ı2� kx0 � x�k2Q C ı

�
: (1.57)

Consider an arbitrary � 2 .0; 1/ : Then one can choose the number ı0 D ı0 .�/ so
small that

!F


q
ı2 C ı2� kx� � x0k2Q C ı

�
� � kx0 � x�kQ ;8ı 2 .0; ı0/ : (1.58)

The estimate (1.54) follows from (1.57) and (1.58). The proof for the case ı D 0 is
almost identical with the above. �

Thus, a simple conclusion from Theorem 1.8 is that if a uniqueness theorem
holds for an ill-posed problem and the level of the error ı is sufficiently small, then
the minimization of the Tikhonov functional leads to a refinement of the first guess
x0 even for a single value of the regularization parameter. This explains why the
second stage of the two-stage numerical procedure of this book refines the solution
obtained on the first stage.

In estimates (1.54) and (1.55) the number � is not specified. We now want to
specify the dependence � from ı: To do this, we need to impose an additional
assumption on the function ! .z/ : In fact, this assumption requires the proof of
the Lipschitz stability of the problem (1.46) on the compact setK .ı; x0/ : However,
in order to simplify the presentation, we do not prove the Lipschitz stability of CIPs
in this book. We refer to, for example, works [14,32,33,62,79–81,104,161], where
the Lipschitz stability was established for some CIPs via the method of Carleman
estimates; see Sect. 1.10 for this method.

Corollary 1.8. Assume that conditions of Theorem 1.8 are satisfied. Let !F .z/ be
the modulus of the continuity of the operator F�1 W F �K .ı; x0/

� ! K .ı; x0/. Let
the function !F .z/ be such that !F .z/ � C z;8z � 0 with a positive constant C
independent on z. Then there exists a sufficiently small number ı0 > 0 such that for
all ı 2 .0; ı0/ (1.54) becomes

kxn � x�kB1 � 3Cı� kx0 � x�kQ ;
and (1.55) becomes

kxn � x�kB1 � 3Cı� kx0 � x�kB1 :

In the case of the noiseless data with ı D 0, one should replace ı� with ˛ in these
estimates.
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Proof. It was assumed in Theorem 1.8 that kx� � x0kQ ¤ 0: Since, ı <

ı� kx� � x0kQ for sufficiently small ı; then for ı 2 .0; ı0/ ;
q
ı2 C ı2� kx� � x0k2Q C ı � ı C ı� kx� � x0kQ C ı < 3ı� kx� � x0k :

Hence,

!F


q
ı2 C ı2� kx� � x0k2Q C ı

�
� 3Cı� kx� � x0k ; ı 2

�
0; ı

�
:

The rest of the proof follows from (1.57). �

1.9 Global Convergence in Terms of Definition 1.1.2.4

The goal of this section is to show that the two-stage numerical procedure of this
book converges globally to the exact solution in the classical sense in terms of
Definition 1.1.2.4. In other words, it converges globally within the frameworks of
the pair of approximate mathematical models .M1;M2/. Since we discuss in this
section the two-stage numerical procedure (rather than the first stage only), we rely
here on assumption 1.1.2. First, we need to prove that if the locally convergent
numerical method of the second stage is based on the minimization of the Tikhonov
functional, then it does not face the problem of local minima and ravines in a small
neighborhood of the exact solution.

Consider a nonlinear ill-posed problem. Suppose that a numerical method for
this problem is approximately globally convergent in terms of Definition 1.1.2.1.
Then this method ends up with a good approximation x0 WD xglob for the element
x� 2 B . The element x� represents the unique exact solution of this problem within
the framework of the approximate mathematical modelM1. To refine xglob;we apply
a locally convergent method satisfying conditions of Definition 1.1.2.3. Consider
now the approximate mathematical modelM2 associated with the numerical method
of this definition. Let the corresponding k-dimensional Banach space be Bk �
B; dimBk D k < 1. Let xglob; x

� 2 Bk . We want to refine the solution xglob;

which is obtained on the first stage, via the minimization of the Tikhonov functional
in which the starting point of iterations would be x0 WD xglob. We anticipate that this
refinement would provide a better approximation for the exact solution x�.

Almost any minimization procedure of a least squares functional is based on a
version of the gradient method, which is a locally convergent one. The gradient
method stops at a point where a certain norm of the gradient is close to zero. Hence,
if this Tikhonov functional has local minima in any neighborhood of x�; then any
version of the gradient method can stop at any of those minima. However, it is
unclear which of these minima should be selected as a regularized solution. On the
other hand, a strongly convex functional does not have local minima. Furthermore, it
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is well known that if a functional is strongly convex on an open set and if it achieves
its minimal value on this set, then the point of this minimum is unique, and the
gradient method converges to it; see, for example, [128, 137].

Suppose that the Tikhonov functional is strongly convex in a certain small
neighborhood of the point x� 2 Bk (i.e., locally strongly convex). In addition, let
both the regularized solution and xglob belong to the interior of this neighborhood.
Then local minima do not occur on the refinement stage, provided that xglob is the
starting point of iterations for this stage. Theorem 3.1 of [29] claims the local strong
convexity of this functional in a small neighborhood of a regularized solution. In
Theorem 1.9.1.2, we extend that result of [29] to the case of a small neighborhood
of the exact solution x�: In addition, we use here Theorem 1.8, which was not used
in [29]. Based on Theorem 1.9.1.2, we conclude in Sect. 1.9.2 that the two-stage
numerical procedure of this book converges globally in the classical sense in terms
of Definition 1.1.2.4.

The local strong convexity of the Tikhonov functional was also proved in earlier
publications [139, 140]. These works require the continuity of the second Fréchet
derivative of the original operatorF . Unlike this, we require the Lipschitz continuity
of the first Fréchet derivative, which is easier to verify for CIPs.

1.9.1 The Local Strong Convexity

First, we remind the notion of the Fréchet derivative [113].

Definition 1.9.1 ([113]). Let B1 and B2 be two Banach spaces and L .B1; B2/ be
the space of bounded linear operators mappingB1 into B2: LetG � B1 be a convex
set containing interior points and A W G ! B2 be an operator. Let x 2 G be an
interior point of the set G. Let x 2 G be an interior point of G. Assume that

A .x C h/ D A .x/C �
A0 .x/ ; h

�C " .x; h/ ;8h W x C h 2 G;
where the operatorA0 .x/ 2 L .B1; B2/ and .A0 .x/ ; h/ means that A0 .x/ acts on h:
Assume that

lim
khkB1!0

k" .x; h/kB2
khkB1

D 0:

Then the bounded linear operator A0 .x/ W B1 ! B2 is called the Fréchet derivative
of the operator A at the point x.

Assume that the Fréchet derivative of the operator A exists for all interior points
x 2 G, and it is continuous in terms of the norm of the space L .B1; B2/ : Let
interior points x; z 2 G. Since G is convex, then the entire segment of the straight
line connecting these two points also belongs to G. The following formula is valid:

A .x/ � A .z/ D
1Z

0

�
A0 .z C 
 .x � z// ; x � z

�
d
: (1.59)



1.9 Global Convergence in Terms of Definition 1.1.2.4 41

Let B be a Banach space, G � B be a convex set, and J W G ! R be a
functional. The functional J is called strongly convex on the set G if there exists a
constant � > 0 such that for any two interior points x; z 2 G and for any number
� 2 Œ0; 1�, the following inequality holds [128]:

�
� .1 � �/

2
kx � zk2B C J .�x C .1 � �/ z/ � �J .x/C .1 � �/ J .z/ :

The following theorem is well known:

Theorem 1.9.1.1 ([128]). Let H be a Hilbert space, G � H be a convex set
containing interior points, and J W G ! R be a functional. Suppose that this
functional has the Fréchet derivative J 0 .x/ 2 L .H;R/ for any interior point
x 2 G: Then the strong convexity of J on the set G is equivalent with the following
condition: �

J 0 .x/ � J 0 .z/ ; x � z
� � 2� kx � zk2 ;8x; z 2 G; (1.60)

where � > 0 is the strong convexity constant.

Consider now the case when B1 D H1 and B2 D H2 are two Hilbert spaces.
In order not to work with a stronger norm of the regularization term in the
Tikhonov functional, we assume that dimH1 < 1 since all norms in a finite
dimensional Banach space are equivalent. Denote norms in H1 and H2 as k�k and
k�k2, respectively. The norm in the space of bounded linear operators L .H1;H2/ we
also denote in this section as k�k for brevity. It will always be clear from the context
of this section whether the sign k�k is related to an element of H1 or to an element
of L .H1;H2/ : Let G � H1 be a bounded closed convex set and eF W G ! H2 be a
continuous operator. Similarly with (1.46), consider the problem of the solution of
the equation eF .x/ D y; x 2 G:We again assume that the element y (which we call
“the data”) is given with an error, ky � y�k2 � ı; where y� is the exact right-hand
side of this equation, which corresponds to its exact solution x� 2 G; eF .x�/ D y�:
It is convenient to replace in this section the operator eF with F W G ! H2 defined
as F .x/ D eF .x/ � y: Hence, we consider the equation

F .x/ D 0; x 2 G; (1.61)

where
�
�F

�
x����

2
� ı: (1.62)

Let the point x0 2 G: Consider the Tikhonov functional corresponding to (1.61):

J˛ .x/ D 1

2
kF .x/k22 C ˛

2
kx � x0k2 : (1.63)

For any ˇ > 0 and for any x 2 H1, denote Vˇ .x/ D fz 2 H1 W kx � zk < ˇg :
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Theorem 1.9.1.2. Let H1 and H2 be two Hilbert spaces, dimH1 < 1; G � H1

be a closed bounded convex set containing interior points, and F W G ! H2 be
a continuous one-to-one operator. Let x� 2 G be the exact solution of (1.61) with
the exact data and ı 2 .0; 1/ be the error in the data . Let (1.62) be satisfied and
V1 .x

�/ � G. Assume that for every x 2 V1 .x
�/, the operator F has the Fréchet

derivative F 0 .x/ 2 L .H1;H2/ : Suppose that this derivative is uniformly bounded
and Lipschitz continuous in V1 .x�/, i.e.,

kF 0 .x/k � N1; 8x 2 V1 .x�/ ; (1.64)

kF 0 .x/ � F 0 .z/k � N2 kx � zk ; 8x; z 2 V1 .x�/ ; (1.65)

where N1;N2 D const. > 0: Let

˛ D ˛ .ı/ D ı2�; 8ı 2 .0; 1/ ; (1.66)

� D const. 2


0;
1

4

�
: (1.67)

Then there exists a sufficiently small number ı0 D ı0 .N1;N2; �/ 2 .0; 1/ such that
for all ı 2 .0; ı0/, the functional J˛.ı/ .x/ is strongly convex in the neighborhood
V˛.ı/ .x

�/ of the exact solution x� with the strong convexity constant ˛=4: Next, let
in (1.63) the first guess x0 for the exact solution x� be so accurate that

kx0 � x�k < ı3�

3
: (1.68)

Then there exists the unique regularized solution x˛.ı/ of (1.61) and x˛.ı/ 2
Vı3�=3 .x

�/ : In addition, the gradient method of the minimization of the functional
J˛.ı/ .x/ ; which starts at x0; converges to x˛.ı/: Furthermore, let � 2 .0; 1/ be an
arbitrary number. Then there exists a number ı1 D ı1 .N1;N2; �; �/ 2 .0; ı0/ such
that

�
�x˛.ı/ � x��� � � kx0 � x�k ; 8ı 2 .0; ı1/ : (1.69)

In other words, the regularized solution x˛.ı/ provides a better accuracy than the
first guess x0:

Remark 1.9.1. Consider now the noiseless case with ı D 0: Then one should replace
in this theorem ı0 D ı0 .N1;N2; �/ 2 .0; 1/ with ˛0 D ˛0 .N1;N2/ 2 .0; 1/ to be
sufficiently small and require that ˛ 2 .0; ˛0/ :
Proof of Theorem 1.9.1.2. For any point x 2 V1 .x

�/, let F 0� .x/ be the linear
operator, which is adjoint to the operator F 0 .x/ : By (1.63), the Fréchet derivative
of the functional J˛ .x/ acts on the element u 2 H1 as

�
J 0̨ .x/ ; u

� D �
F 0� .x/ F .x/C ˛ .x � x0/ ; u

�
; 8x 2 G;8u 2 H1:
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Consider two arbitrary points x; z 2 Vı3� .x�/. We have

�
J 0̨ .x/ � J 0̨ .z/ ; x � z

� D ˛ kx � zk2 C �
F 0� .x/ F .x/ � F 0� .z/ F .z/ ; x � z

�

D ˛ kx � zk2 C �
F 0� .x/ F .x/ � F 0� .x/ F .z/ ; x � z

�

C �
F 0� .x/ F .z/ � F 0� .z/ F .z/ ; x � z

�
:

Denote

A1 D �
F 0� .x/ F .x/ � F 0� .x/ F .z/ ; x � z

�
;

A2 D �
F 0� .x/ F .z/ � F 0� .z/ F .z/ ; x � z

�
:

Then �
J 0̨ .x/ � J 0̨ .z/ ; x � z

� D ˛ kx � zk2 C A1 C A2: (1.70)

Estimate A1;A2 from the below. Since

A1 D A1 � �
F 0� .x/ F 0 .x/ .x � z/ ; x � z

�C �
F 0� .x/ F 0 .x/ .x � z/ ; x � z

�
;

then by (1.59),

A1 D
0

@F 0� .x/

0

@
1Z

0

�
F 0 .z C 
 .x � z// � F 0 .x/ ; x � zd


�
1

A ; x � z

1

A

C �
F 0� .x/ F 0 .x/ .x � z/ ; x � z

�
: (1.71)

Since kAk D kA�k ;8A 2 L .H1;H2/ ; then using (1.64) and (1.65), we obtain

ˇ
ˇ
ˇ
ˇ̌
ˇ

0

@F 0� .x/

0

@
1Z

0

�
F 0 .z C 
 .x � z// � F 0 .x/ ; x � zd


�
1

A ; x � z

1

A

ˇ
ˇ
ˇ
ˇ̌
ˇ

� �
�F 0 .x/

�
�

1Z

0

�
�F 0 .z C 
 .x � z//� F 0 .x/ ; x � z

�
�
2

d
 � kx � zk

� 1

2
N1N2 kx � zk3 :

Next,

�
F 0� .x/ F 0 .x/ .x � z/ ; x � z

� D �
F 0 .x/ .x � z/ ; F 0 .x/ .x � z/

�
2

D ��F 0 .x/ .x � y/
��2
2

� 0;
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where .; /2 is the scalar product in H2: Hence, using (1.71), we obtain

A1 � �1
2
N1N2 kx � zk3 : (1.72)

Now we estimate A2 W

jA2j � kF .z/k2
�
�F 0.x/ � F 0 .z/

�
� kx � zk � N2 kx � zk2 kF .z/k2 :

By (1.59) and (1.64),

kF .z/k2 � �
�F .z/ � F �x����

2
C �
�F

�
x����

2
� N1 kz � x�k C �

�F
�
x����

2
:

Hence, using (1.62), we obtain

jA2j � N2 kx � zk2 �N1 kz � x�k C �
�F

�
x����

2

� � N2 kx � zk2
�
N1ı

3� C ı
�
:

Thus,

A2 � �N2 kx � zk2
�
N1ı

3� C ı
�
: (1.73)

By (1.66) and (1.67), we can choose ı0 D ı0 .N1;N2; �/ 2 .0; 1/ and 	 D
	 .N1;N2/ 2 .0; 1/ so small that

�
N1ı

3� C ı
�

� 2N1ı
3�: (1.74)

Combining (1.73) and (1.74) with (1.66)–(1.70) and (1.72) and recalling that x; z 2
Vı3� .x

�/, we obtain

�
J 0̨ .x/ � J 0̨ .z/ ; x � z

� � kx � zk2
�
˛ � N1N2

2
kx � zk � 2N1N2ı

3�




� kx � zk2
�
ı2� � 5

2
N1N2ı

3�




� ı2�

2
kx � zk2 D ˛

2
kx � zk2 :

Combing this with Theorem 1.9.1.1, we obtain the assertion about the strong
convexity.

Since G is a closed bounded set in the finite dimensional space H1; then there
exists a minimizer x˛.ı/ 2 G of the functionalJ˛.ı/ in (1.63). Combining (1.45) with
(1.66), (1.67), and (1.68) and decreasing, if necessary, ı0; we obtain for ı 2 .0; ı0/
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�
�x˛.ı/ � x��� � ıp

˛
C 2 kx� � x0k < ı1�� C 2

3
ı3�

D 2

3
ı3�



1C 3

2
ı1�4�

�
<
2

3
ı3� � 3

2
D ı3�:

Thus,
�
�x˛.ı/ � x��� < ı3�:

The latter implies that x˛.ı/ 2 Vı3� .x�/ : Since the functional J˛ is strongly convex
on the set Vı2� .x

�/, the set Vı3� .x
�/ � Vı2� .x

�/ for sufficiently small ı and the
minimizer x˛.ı/ 2 Vı3� .x

�/, then this minimizer is unique. Furthermore, since by
(1.68) the point x0 2 Vı3� .x�/, then it is well known that the gradient method with
its starting point at x0 converges to the minimizer x˛.ı/I see, for example, [137].

Let � 2 .0; 1/ be an arbitrary number. By Theorem 1.8 we can choose

ı1 D ı1 .N1;N2; �; �/ 2 .0; ı0/ ;
so small that

�
�x˛.ı/ � x��� � � kx0 � x�k ;8ı 2 .0; ı1/ ;

which proves (1.69). Hence, (1.68) implies that x˛.ı/ 2 Vı3�=3 .x�/ : �

1.9.2 The Global Convergence

One of main points of this book is the two-stage numerical procedure for certain
CIPs, which addresses both central questions posed in the beginning of Sect. 1.1.
This procedure was developed in [25–29, 115, 116, 160]. In this section, we briefly
present some arguments showing that this procedure converges globally to the exact
solution in terms of Definition 1.1.2.4. Corresponding theorems and numerical
confirmations are presented in Chaps. 2–6. Consider one of CIPs of this book.

• On the first stage, a numerical method with the approximate global convergence
property (Definition 1.1.2.1) ends up with a function cglob .x/. Let c� .x/ 2
B be the exact solution of this CIP. Then corresponding approximate global
convergence theorems of either Chap. 2 or Chap. 6 guarantee that the function
cglob provides a sufficiently good approximation for c�:

• On the second stage, we use an approximate mathematical modelM2 to minimize
the Tikhonov functional (1.63) associated with our CIP. In the case of the
adaptive finite element method (FEM) this model basically means the assumption
that the solution belongs to a finite dimensional space generated by all linear
combinations of standard piecewise linear finite elements (see details in Chap. 4).
This space is equipped with the norm k�kL2.˝/ : In the case when the Tikhonov
functional is minimized via the finite difference method (FDM) (Chap. 6), this
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model means a finite number of grid points in the finite difference scheme and
a finite dimensional space associated with it; see, for example, [146] for this
space. In any of these two cases, we have the finite dimensional Hilbert space
H1: We assume that H1 � B as a set, k�kH1 � k�kB and cglob 2 H1. Also,
c� 2 H1 (assumption 1.1.2). Following Definition 1.1.2.4 we assume that in
(1.2) xn WD cn and " 2 .0; ��. Here, � is the number of Definition 1.1.2.3, and
functions cn are obtained in our iterative process of the numerical method of the
first stage. Let ı 2 .0; ı0/ be the level of the error in the data. Let the number

� 2
�
0; ı3�=3

�
; where the numbers ı0; � were defined in Theorem 1.9.1.2 Then

(1.2) implies that
��cglob � c���

H1
<
ı3mu

3
;

which is exactly (1.68) with x0 WD cglob; x
� WD c�. Theorem 1.9.1.2 implies

that the regularized solution c˛.ı/ exists, and it is unique: Furthermore, (1.69) of
Theorem 1.9.1.2 ensures that

��c˛.ı/ � c���
H1
<
��cglob � c���

H1
<
ı3�

3
:

Next, again by Theorem 1.9.1.2, the gradient method of the minimization of the
Tikhonov functional with its starting point cglob converges to c˛.ı/. Thus, in the
limiting case of ı ! 0, we arrive at the exact solution c�.

• Therefore the two-stage numerical procedure of this book converges globally in
the classical sense within frameworks of the pair of approximate mathematical
models .M1;M2/, as described in Definition 1.1.2.4.

• In addition, extensive numerical and experimental studies of follow-up chapters
demonstrate that conditions of the informal Definition 1.1.2.2 are also in place.

1.10 Uniqueness Theorems for Some Coefficient Inverse
Problems

1.10.1 Introduction

This section is devoted to a short survey of currently known uniqueness theorems
for CIPs with the data resulting from a single measurement. As it is clear from
the construction of Sect. 1.7.1 as well as from Theorems 1.3, 1.8, and 1.9.1.2, the
question of the uniqueness is a very important one for, for example, a justification
of the validity of numerical methods for ill-posed problems. Before 1981, only the
so-called “local” uniqueness theorems were known for multidimensional CIPs with
single measurement data. The word “local” in this case means that it was assumed
in these theorems that either the unknown coefficient is sufficiently small, or it is
piecewise analytic with respect to at least one variable, or that this coefficient can
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be represented in a special form, or that the CIP is linearized near the constant
background [124, 143]. The absence of “global” uniqueness results for these CIPs
was one of main stumbling blocks of the entire theory of inverse problems at
that time. The term “global” means here that the main assumption about the
unknown coefficient should be that it belongs to one of main functional spaces,
for example, Ck;Hk: In addition, one might probably impose some mild additional
assumptions, for example, positivity. But one should not impose abovementioned
“local” assumptions.

For the first time, the question about global uniqueness theorems was addressed
positively and for a broad class of CIPs with single measurement data in the
works of A.L. Bukhgeim and M.V. Klibanov in 1981. First, these results were
announced in their joint paper [43]. The first complete proofs were published in
two separate papers [44, 95] in the same issue of proceedings. This technique
is now called the “Bukhgeim-Klibanov method.” Currently, this method is the
only one enabling for proofs of global uniqueness results for multidimensional
CIPs with single measurement data. Note that the idea of the “elimination” of the
unknown coefficient from the governing PDE via the differentiation, which is used
in our approximately globally convergent numerical method (Chaps. 2 and 6), was
originated by the Bukhgeim-Klibanov method.

The Bukhgeim-Klibanov method is based on the idea of applications of the so-
called Carleman estimates to proofs of uniqueness results for CIPs. These estimates
were first introduced in the famous paper of the Swedish mathematician Torsten
Carleman in 1939 [50]. Roughly speaking, as soon as a Carleman estimate is
valid for the operator of a PDE, then the Bukhgeim-Klibanov method leads to a
certain uniqueness theorem for a corresponding CIP for this CIP. On the other hand,
since Carleman estimates are known for three main types of partial differential
operators of the second order (hyperbolic, parabolic, and elliptic), then this method
is applicable to a wide class of CIPs. Since the publication of works [43, 44, 95] in
1981, many researchers have discussed this method in their publications. Because
uniqueness is not the main topic of this book, we refer only to some samples of those
publications in [14, 31–33, 45, 62, 79–81, 83, 84, 96–99, 102–104, 136]. We refer to
[161] for a survey with a far more detailed list of references.

Although the Bukhgeim-Klibanov method is a very general one, there is a certain
problem associated with it. This problem was viewed as a shortcoming at the time
of the inception of this method. Specifically, it is required that at least one initial
condition not to be zero in the entire domain of interest ˝ . At the same time, the
main interest in applications in, for example, the hyperbolic case, is when one of
initial conditions is identically zero and another one is either the ı-function or that
the wave field is initialized by the plane wave. The uniqueness question in the latter
case remains a long-standing and well-known unsolved problem; see [58] for some
progress in this direction.

On the other hand, the recent computational experience of the authors indicates
that the above is only a mild restriction from the applied standpoint. Indeed, suppose
that initial conditions for a hyperbolic equation are

u .x; 0/ D 0; ut .x; 0/ D ı .x � x0/ (1.75)
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where x; x0 2 R
n and the source position fx0g is fixed. Then one can consider an

approximation for the ı-function in the sense of distributions as

u" .x; 0/ D 0; u"t .x; 0/ D 1
�p
�"
�n exp

 

�jx � x0j2
"2

!

(1.76)

for a sufficiently small number " > 0: Suppose that the domain ˝ is located
far from the source fx0g, which is common in applications. Then the solution of
the forward problem with initial conditions (1.76) differs negligibly from the case
(1.75) for x 2 ˝ . If a numerical method of solving this CIP is stable, as it is
the case of algorithms of this book, then this negligible difference in the boundary
data at @˝ will practically not affect computational results. On the other hand, in
the case (1.76), uniqueness is restored. Therefore, the Bukhgeim-Klibanov method
addresses properly the applied aspect of the uniqueness question for CIPs with
single measurement data.

The single work where the problem of the zero initial condition was partially
addressed is [112]. In this paper, the case of a single incident plane wave was
considered. Derivatives with respect to variables, which are orthogonal to the
direction of the propagation of this wave, are expressed via finite differences.
Results of this work are presented in Sect. 1.11.

In Sect. 1.10, we prove uniqueness theorems for some CIPs for hyperbolic,
parabolic, and elliptic PDEs using the Bukhgeim-Klibanov method. These theorems
were published in somewhat different formulations in [43, 95–97, 99, 102]. For the
sake of completeness, we also derive a Carleman estimate for the corresponding
hyperbolic operator. Since this is an introductory chapter, we do not include here
proofs of Carleman estimates for parabolic and elliptic operators and refer to Chap. 4
of [124] instead. In addition, the Carleman estimate for the Laplace operator is
derived in Chap. 6 of this book. The only reason why we assume everywhere in
Sect. 1.10 that the domain˝ is˝ D fjxj < Rg � R

n; R D const. > 0 is our desire
to simplify the presentation. Similar arguments can be considered for an arbitrary
convex domain with a smooth boundary.

1.10.2 Carleman Estimate for a Hyperbolic Operator

Let ˝ D fjxj < Rg � R
n and T D const. > 0: Denote

QṪ D ˝� .�T; T / ; SṪ D @˝� .�T; T / ;QT D ˝� .0; T / ; ST D @˝� .0; T / :

Let x0 2 ˝; 
 2 .0; 1/. Consider the function  .x; t/:

 .x; t/ D jx � x0j2 � 
t2: (1.77)
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We now introduce the Carleman weight function (CWF) by

W .x; t/ D exp Œ� .x; t/� ; (1.78)

where � > 1 is a large parameter which we will specify later. The level surfaces of

the function W .x; t/ are hyperboloidsHd D
n
jx � x0j2 � 
t2 D d D const

o
: For

d 2 �0;R2�, consider the domain Gd :

Gd D
n
.x; t/ W x 2 ˝; jx � x0j2 � 
t2 > d

o
� QṪ : (1.79)

Hence, Gd ¤ ¿ and rx .x; t/ ¤ 0 in Gd : Define the hyperbolic operator L0 as

L0u D c .x/ ut t ��u: (1.80)

The Carleman estimate for the operator L0 is established in Theorem 1.10.2. As to
the proof of this theorem, it should be kept in mind that proofs of Carleman estimates
are always space consuming; see, for example, Chap. 4 of [124]. For brevity, we
assume in Theorem 1.10.2 that the dimension of the space R

n is n � 2. An analog
of this theorem for the case n D 1 can be proven similarly. This theorem was
proven in [124] for the case c 
 1 and in [84, 102] for the case when the function
c satisfies conditions (1.81) and (1.82). As it is clear from Theorem 1.10.2, the
Carleman estimate for a partial differential operator depends only on its principal
part.

Theorem 1.10.2. Let ˝ D fjxj < Rg � R
n; n � 2; x0 2 ˝ , and L0 be the

hyperbolic operator defined in (1.80). Suppose that in (1.80), the coefficient satisfies
the following conditions:

c 2 C1
�
˝
�
; c .x/ 2 Œ1; c� ;where c D const. � 1; (1.81)

.x � x0;rc/ � 0; 8x 2 ˝; (1.82)

where .�; �/ denotes the dot product in R
n. Let

P D P .x0;˝/ D max
x2˝

jx � x0j : (1.83)

Then there exist a sufficiently small number 
0 D 
0.c; P; krckC.˝// 2 .0; 1�

such that for any 
 2 .0; 
0�, one can choose a sufficiently large number �0 D
�0 .˝; 
; c; x0/ > 1 and number C D .˝; 
; c; x0/ > 0, such that for all u 2
C2

�
Gd

�
and for all � � �0, the following pointwise Carleman estimate holds

.L0u/
2 W 2 � C�

�
jruj2 C u2t C �2u2

�
W 2 C r � U C Vt , in Gd ; (1.84)



50 1 Two Central Questions of This Book and an Introduction to the Theories: : :

where the CWF W .x; t/ is defined by (1.78) and components of the vector function
.U; V / satisfy the following estimates:

jU j � C�3
�
jruj2 C u2t C u2

�
W 2; (1.85)

jV j � C�3
h
jt j
�

u2t C jruj2 C u2
�

C .jruj C juj/ jut j
i
W 2: (1.86)

In particular, (1.86) implies that if either u .x; 0/ D 0 or ut .x; 0/ D 0; then

V .x; 0/ D 0: (1.87)

Proof. In this proof, C denotes different positive constants depending on the
same parameters as indicated in the conditions of this theorem. Also, in this proof,

O .1=�/ denotes different C1
�
Q

˙
T

�
functions such that

ˇ
ˇ
ˇ
ˇO


1

�

�ˇˇ
ˇ
ˇ � C

�
;8� > 1; (1.88)

and the same is true for the first derivatives of these functions. We use (1.88) in
many parts of this proof below. Denote v D u � W and express the operator L0 .u/
in terms of the function v. Below fi WD @xi f: We have

u D v � exp
h
�
�

t2 � jx � x0j2

�i
;

ut D .vt C 2�
t � v/ exp
h
�
�

t2 � jx � x0j2

�i
;

ut t D



vt t C 4�
t � vt C 4�2



2t2 CO



1

�

��
v

�
W �1;

ui D Œvi � 2� .xi � x0i / v� exp
h
�
�

t2 � jx � x0j2

�i
;

ui i D
�

vi i � 4� .xi � x0i / vi C 4�2



jx � x0j2 CO



1

�

��
v



W �1:

Hence,

.L0u/
2 W 2 D .c .x/ ut t ��u/2 W 2

D
� �
c .x/ vt t ��v � 4�2



jx � x0j2 � c
2t2 CO



1

�

��
v




C 4�c
tvt C 4�

nX

iD1
.xi � x0i / vi

	 2
:
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Denote

z1 D cvt t ��v � 4�2



jx � x0j2 � c
2t2 CO



1

�

��
v;

z2 D 4�c
t � vt ;

z3 D 4�

nX

iD1
.xi � x0i / vi :

Then .L0u/
2 W 2 D .z1 C z2 C z3/

2 : Hence,

.L0u/
2 W 2 � z21 C 2z1z2 C 2z1z3: (1.89)

We estimate separately each term in the inequality (1.89) from the below in five
steps.

Step 1. Estimate the term 2z1z2. We have

2z1z2 D 8�c
t � vt

�
cvt t ��v � 4�2



jx � x0j2 � c
2t2 CO



1

�

��
v




D �
4�c2
t � v2t

�
t
� 4�c2
v2t

C
nX

iD1
.�8�c
t � vtvi /i C

nX

iD1
8�c
t � vi tvi

C8�
t � vt

nX

iD1
civi C

�
�16�3c




t jx � x0j2 � c
2t3 C tO



1

�

��
v2



t

C16�3c




jx � x0j2 � 3c
2t2 CO



1

�

��
v2

D �4�c2
v2t C
 

4�c2
t � v2t C
nX

iD1
4�c
tv2i

!

t

� 4�c
 jrvj2

C8�
t � vt

nX

iD1
civi C 16�3c


�
jx � x0j2 � 3c
2t2 CO



1

�

�

v2

Cr � U1 C
�
4�c2
tv2t � 16�3c




t jx � x0j2 � c
2t2 C tO



1

�

��
v2



t
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Thus, we have obtained that

2z1z2 D �4�c

�
cv2t C jrvj2

�
C 8�
t � vt

nX

iD1
civi

C16�3c

�
jx � x0j2 � 3c
2t2 CO



1

�

�

v2 C r � U1 C .V1/t ; (1.90)

where the vector function .U1; V1/ satisfies the following estimates:

jU1j � C�3
�
jruj2 C u2t C u2

�
W 2; (1.91)

jV1j � C�3 jt j
�

u2t C jruj2 C u2
�
W 2: (1.92)

To include the function u in the estimate for jU1j ; jV1j ; we have replaced v with
u D v �W �1:

Step 2. We now estimate the term 2z1z3. We have

2z1z3 D 8�

nX

iD1
.xi � x0i / vi

�
cvt t ��v � 4�2



jx � x0j2 � c
2t2 CO



1

�

��
v




D
 

nX

iD1
8c� .xi � x0i / vivt

!

t

�
nX

iD1
8� .xi � x0i / cvi tvt

�
nX

jD1

nX

iD1
8� .xi � x0i / vivjj

C
nX

iD1

�
�16�3 .xi � x0i /



jx � x0j2 � c
2t2 CO



1

�

��
v2



i

C16�3
�
.nC 2/ jx � x0j2 � nc
2t2 CO



1

�

�

v2

D
nX

iD1

��4� .xi � x0i / cv2t
�
i

C 4� Œnc C .x � x0;rc/� v2t

C
nX

jD1

"
nX

iD1

��8� .xi � x0i / vivj
�
#

j

C 8� jrvj2

C
nX

jD1

nX

iD1
8� .xi � x0i / vij vj
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C16�3
�
.nC 2/ jx � x0j2 � nc
2t2 CO



1

�

�

v2

C
 

8c�vt

nX

iD1
.xi � x0i / vi

!

t

D 4� Œnc C .x � x0;rc/� v2t C 8� jrvj2

C
nX

iD1

2

4
nX

jD1
4� .xi � x0i / v2j

3

5

i

� 4� jrvj2

C16�3
�
.nC 2/ jx � x0j2 � c
2t2 CO



1

�

�

v2 C r � U2 C .V2/t :

Since by (1.82), .x � x0;rc/ � 0, then we obtain

2z1z3 � 4�ncv2t C 4� jrvj2

C16�3
�
.nC 2/ jx � x0j2 � nc
2t2 CO



1

�

�

v2

Cr � U2 C V2t ; (1.93)

jU2j � C�3
�
jruj2 C u2t C u2

�
W 2; (1.94)

jV2j � C�3
h
jt j
�
jruj2 C juj2

�
C .jruj C juj/ jut j

i
W 2: (1.95)

Step 3. In this step, we estimate the term 2z1z2 C 2z1z3. It follows from (1.82) that
jx � x0j � P;8x 2 ˝: On the other hand, since jx � x0j2 � 
t2 > d > 0 in Gd ;
then 
 jt j � P

p

 in Gd . This estimate as well as the Cauchy-Schwarz inequality

imply that

8�
t � vt

nX

iD1
civi D �8�
t � vt .rc;rv/ � �8�
 jt j � jvt j � jrvj � krckC.˝/

� �4�p

P krckC.˝/ �

�
v2t C jrvj2

�
: (1.96)

Since by (1.81), c � 1; then (1.90) and (1.96) imply that

2z1z2 � �4�
�
c2
C p


P krckC.˝/
� �

v2t C jrvj2
�

C16�3

�
jx � x0j2 � 3c1


2t2 CO



1

�

�

v2 C r � U1 C .V1/t : (1.97)
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Let U3 D U1 C U2; V3 D V1 C V2: Hence, (1.93)–(1.97) imply that

2z1z2 C 2z1z3 � 4�
h
nc �

�
c2
C p


P krckC.˝/
�i

v2t

C 4�
�
1 �

�
c2
C p


P krckC.˝/
��

jrvj2

C 16�3
�
.nC 2C 
/ jx � x0j2 � .nC 3
/ c
2t2 CO



1

�

�

v2

C r � U3 C V3t ; (1.98)

jU3j � C�3
�
jruj2 C u2t C u2

�
W 2; (1.99)

jV3j � C�3
h
jt j
�

u2t C jruj2 C u2
�

C .jruj C juj/ jut j
i
W 2: (1.100)

Step 4. We now estimate the term z21 from the below. We are doing this only in order
to prove Corollary 1.10.2, since multipliers at v2t ; jrvj2 ; v2 in (1.98) are positive
anyway for sufficiently small 
: Let b > 0 be a number, which we will choose later.
We have

z21 D
�
cvt t ��v � 4�2



jx � x0j2 � c
2t2 CO



1

�

��
v C �bv


2

D .2�cbvvt /t � 2�cbv2t C
nX

iD1
.�2�bvvi /i

C2�b jrvj2 � 8�3b

�
jx � x0j2 � c
2t2 CO



1

�

�

v2:

Since by (1.81), c � 1, then we obtain

z21 � 2�b jrvj2 � 2�cbv2t

� 8�3b

�
jx � x0j2 � 
2t2 CO



1

�

�

v2 C r � U4 C V4t ; (1.101)

jU4j � C�3
�
jruj2 C u2t C u2

�
W 2; (1.102)

jV4j � C�3
�jt j u2 C jut j � juj�W 2: (1.103)

Step 5. Finally, we estimate the term z21C2z1z2C2z1z3, which is the right-hand side
of (1.89). Summing up (1.98) and (1.101) and taking into account (1.99), (1.100),
(1.102), and (1.103), we obtain
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z21 C 2z1z2 C 2z1z3 � 4�

�

n � b

2

�
c �

�
c2
C p


P krckC.˝/
�


v2t

C4�


1C b

2
�
�
c2
C p


P krckC.˝/
��

jrvj2

C16�3
�

nC 2C 
 � b

2

�
jx � x0j2

�


nc C 3
c � b

2

�

2t2 CO



1

�

�

v2

Cr � U5 C V5t ; (1.104)

jU5j � C�3
�
jruj2 C u2t C u2

�
W 2; (1.105)

jV5j � C�3
h
jt j
�

u2t C jruj2 C u2
�

C .jruj C juj/ jut j
i
W 2: (1.106)

Choose now b D 1 and choose 
0 D 
0

�
c; P; krckC.˝/

�
2 .0; 1/ so small that

3

2
�
�
c2
C p


P krckC.˝/
�

� 1;8
 2 .0; 
0� ; (1.107)



nc C 3
c � 1

2

�

 � nC 3

2
C 
;8
 2 .0; 
0� : (1.108)

Since n � 2 and c � 1; then (1.104) becomes

z21 C 2z1z2 C 2z1z3 � 2�
�

v2t C jrvj2
�

C16�3



jx � x0j2 � 
t2 CO



1

�

��
v2 C r � U5 C V5t : (1.109)

Since jx � x0j2 � 
t2 > d > 0 in Gd ; then replacing in (1.109) v with u D vW �1
and using (1.88), (1.105), and (1.106) as well as the fact that � is sufficiently large,
we obtain (1.84)–(1.86). �

Corollary 1.10.2. Assume now that in (1.80), the operator L0u D ut t � �u and
n � 2: Then, condition (1.82) holds automatically, and in Theorem 1.10.2,one can
choose 
0 D 1:

Proof. We now can set in (1.81) c WD 1: Since in the above proof b D 1; then we
have in (1.104) for n � 2
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n � b

2

�
c �

�
c2
C p


P krckC.˝/
�

D n �



C 1

2

�
� 1

2
;



1C b

2
�
�
c2
C p


P krckC.˝/
��

D 3

2
� 
 � 1

2
;



nC 2C 
 � b

2

�
jx � x0j2 �



nc C 3
c � b

2

�

2t2

D


nC 3

2
C 


�
jx � x0j2 �



n � 1

2
C 3


�

2t2

� jx � x0j2 � 
t2 > d:

Therefore, (1.109) is satisfied for all 
 2 .0; 1/ : �

1.10.3 Estimating an Integral

Lemma 1.10.3 is very important for the Bukhgeim-Klibanov method.

Lemma 1.10.3. Let the function ' 2 C1 Œ0; a� and ' 0 .t/ � �b in Œ0; a�, where
b D const > 0. For a function g 2 L2 .�a; a/, consider the integral

I .g; �/ D
Z a

�a


Z t

0

g .	/ d	

�2
exp

�
2�'

�
t2
��

dt:

Then,

I .g; �/ � 1

4�b

Z a

�a
g2 .t/ exp

�
2�'

�
t2
��

dt:

Proof. We have for t > 0

t exp
�
2�'

�
t2
�� D t

4�'0 �t2
�

4�' 0 .t2/
exp

�
2�'

�
t2
��

D 1

4�' 0 .t2/
d

dt

˚
exp

�
2�'

�
t2
���

D � 1

4�' 0 .t2/
d

dt

˚� exp
�
2�'

�
t2
���

� 1

4�b

d

dt

˚� exp
�
2�'

�
t2
���

:
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Hence,

Z a

0


Z t

0

g .	/ d	

�2
exp

�
2�'

�
t2
��

dt �
Z a

0

exp
�
2�'

�
t2
��
t


Z t

0

g2 .	/ d	

�
dt

� 1

4�b

Z a

0

d

dt

�� exp
�
2�'

�
t2
��� 
Z t

0

g2 .	/ d	

�
dt

D � 1

4�b
exp

�
2�'

�
a2
�� Z a

0

g2 .	/ d	 C 1

4�b

Z a

0

g2 .	/ exp
�
2�'

�
t2
��

dt

� 1

4�b

Z a

0

g2 .	/ exp
�
2�'

�
t2
��

dt:

Thus, we have obtained that

Z a

0

exp
�
2�'

�
t2
�� 
Z t

0

g .	/ d	

�2
dt � 1

4�b

Z a

0

g2 .	/ exp
�
2�'

�
t2
��

dt:

Similarly,

Z 0

�a
exp

�
2�'

�
t2
�� 
Z t

0

g .	/ d	

�2
dt � 1

4�b

Z 0

�a
g2 .	/ exp

�
2�'

�
t2
��

dt:

�

1.10.4 Cauchy Problem with the Lateral Data for a Hyperbolic
Inequality with Volterra-Like Integrals

Recall that we assume in Sect. 1.10 that˝ D fjxj < Rg � R
n: Let P be the number

defined in (1.83) and d D const. 2 �0; P 2
�
. LetGd be the domain defined in (1.79).

Define its subdomainGC
d as

GC
d D

n
.x; t/ W jx � x0j2 � 
t2 > d; t > 0; x 2 ˝

o
: (1.110)

Hence, GC
d D Gd \ ft > 0g : Let

T >

s
P2 � d



: (1.111)
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Using (1.79) and (1.110), we obtain

GC
d � QT ; GC

d D Gd \ ft > 0g ; (1.112)

G
C
d \ ft D T g D ¿; Gd \ ft D ˙T g D ¿: (1.113)

Let A1 > 0 and A2 � 0 be two constants. Assume that the function u 2 C2
�
QT

�

satisfies the following hyperbolic inequality with Volterra-like integrals:

jc .x/ ut t ��uj � A1



jruj C jut j C juj

�
.x; t/

CA2
tZ

0

.jruj C jut j C juj/ .x; 	/ d	; in GC
d : (1.114)

Also, let this function u has zero Cauchy data at the lateral side ST \ G
C
d of the

domain GC
d W

u j
ST\GC

d

D @u

@n
j
ST\GC

d

D 0: (1.115)

In addition, we assume that

either u .x; 0/ D 0 or ut .x; 0/ D 0 for x 2 GC
d \ ft D 0g : (1.116)

The goal of this section is to prove that conditions (1.114)–(1.116) imply that
u .x; t/ 
 0 inGC

d : In particular, if A2 D 0; then integrals are not present in (1.114).
Hence, in this case, the corresponding hyperbolic equation

c .x/ ut t D �u C
nC1X

jD1
bj .x; t/ uj C a .x; t/ u in GC

d ;

where unC1 WD ut with coefficients bj ; c 2 C
�
G C

d

�
can be reduced to the

inequality (1.114). Hence, Theorem 1.10.4 implies uniqueness for this equation
with the Cauchy data (1.115) and one of initial conditions (1.116). The reason
why we introduce Volterra integrals in (1.114) is that they appear in the proof of
Theorem 1.10.5.1 Furthermore, assume that (1.111) holds. This implies (1.112)
and (1.113). Consider now inequality (1.114) with the Cauchy data (1.115) in the
domain Gd (thus allowing t < 0/: Then an obvious analog of Theorem 1.10.4 is
also valid, and the proof is almost identical. In the case A2 D 0, such an analog was
published in [124].

Theorem 1.10.4. Let ˝ D fjxj < Rg � R
n; n � 2, and x0 2 ˝ . Assume

that d 2 �
0; P 2

�
and the inequality (1.111) holds with the constant 
 WD 
0 D


0

�
c; P; krckC.˝/

�
2 .0; 1� of Theorem 1.10.2. Suppose that the function u 2
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C2
�
G C

d

�
satisfies conditions (1.114)–(1.116) and that the coefficient c .x/ satisfies

conditions (1.81), (1.82). Then

u .x; t/ D 0 in GC
d : (1.117)

In particular, if in (1.110) x0 D 0 and d D 0; then

u .x; t/ D 0 in QT : (1.118)

In addition, if c .x/ 
 1 and in (1.110) x0 D 0 and d D 0; then it is sufficient for
(1.118) to replace (1.111) with

T > R; 
 D 1: (1.119)

Proof. We note first that the boundary of the domain GC
d consists of three parts:

@GC
d D [3

iD1@iGC
d ;

@1G
C
d D

n
jx � x0j2 � 
0t

2 D d; t > 0; jxj < R
o

� QT ;

@2G
C
d D

n
jx � x0j2 � 
0t

2 > d; t > 0; jxj D R
o

� ST ;

@3G
C
d D

n
jx � x0j2 > d; t D 0; jxj < R

o
: (1.120)

Hence, the hypersurface @1G
C
d is a level surface of the CWF W: Let the function

g 2 L2
�
GC
d

�
. Then (1.77), (1.78), and (1.120) imply that

Z

G
C
d

0

@
tZ

0

g .x; 	/ d	

1

A

2

W 2dxdt D
Z

@3G
C
d

exp
�
2� jx � x0j2

�

�

2

6
4

t .x/Z

0

0

@
tZ

0

g .x; 	/ d	

1

A

2

e�2�
t2dt

3

7
5 dx;

t .x/ D
q

jx � x0j2 � d
p



:

Hence, applying Lemma 1.10.3 to the inner integral

t .x/Z

0

0

@
tZ

0

g .x; 	/ d	

1

A

2

e�2�
t2dt;
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we obtain

Z

G
C
d

0

@
tZ

0

g .x; 	/ d	

1

A

2

W 2dxdt � 1

4
�

Z

G
C
d

g2W 2dxdt; 8g 2 L2
�
GC
d

�
:

(1.121)
Multiply both sides of the inequality (1.114) by the function W .x; t/ with

sufficiently large parameter � > 1. Then, square both sides, integrate over the
domain GC

d , and use (1.121). We obtain with a constant A D A .A1;A2; 
/ > 0

Z

G
C
d

.cut t ��u/2 W 2dxdt � A

Z

G
C
d

�
jruj2 C u2t C u2

�
W 2dxdt: (1.122)

We now can apply Theorem 1.10.2 to estimate the left-hand side of (1.122) from
the below. Integrating the inequality (1.84) over the domain GC

d using (1.85)–
(1.87), (1.115), (1.116), and (1.120) and applying the Gauss’ formula, we obtain
for sufficiently large � � �0 > 1

Z

G
C
d

.cut t ��u/2 W 2dxdt � C�

Z

G
C
d

�
jruj2 C u2t C �2u2

�
W 2dxdt

�C�3e2�d
Z

@1G
C
d

�
jruj2 C u2t C �2u2

�
W 2dS:

Comparing this with (1.122), we obtain

C�

Z

G
C
d

�
jruj2 Cu2t C�2u2

�
W 2dxdt � C�3e2�d

Z

@1G
C
d

�
jruj2 C u2t C �2u2

�
W 2dS

� A

Z

G
C
d

�
jruj2 C u2t C u2

�
W 2dxdt:

Hence, choosing a sufficient large �1 > �0; we obtain for � � �1 with a new
constant C > 0

�

Z

G
C
d

�
jruj2 C u2t C �2u2

�
W 2dxdt � C�3e2�d

Z

@1G
C
d

�
jruj2 C u2t C �2u2

�
dS:

(1.123)
Consider a sufficiently small number " > 0 such that d C " < P 2: Then by (1.112),
GC
dC" � QT : Obviously,GC

d � GC
dC": Hence, replacing in the left-hand side of the
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inequality (1.123) GC
d with GC

dC"; we strengthen this inequality. Also, W 2 .x; t/ �
e2�.dC"/ in GC

dC": Hence, we obtain from (1.123)

e2�.dC"/
Z

G
C

dC"

u2dxdt � C e2�d
Z

@1G
C
d

�
jruj2 C u2t C �2u2

�
dS:

Dividing this inequality by e2�.dC"/; we obtain

Z

G
C

dC"

u2dxdt � C e�2�"
Z

@1G
C
d

�
jruj2 C u2t C �2u2

�
dS: (1.124)

Setting in (1.124) � ! 1; we obtain u D 0 in GC
dC": Since " > 0 is an arbitrary

sufficiently small number, then (1.117) is true.
Consider now the case when in (1.110) x0 D 0 and d D 0: Then P D R and by

(1.111),

T >
Rp

0
: (1.125)

Consider a sufficiently small number " 2 �0;R2� : Then by (1.112),GC
" � QT and

by (1.125),

T >

p
R2 � "p

0

:

Hence, (1.117) implies that u D 0 in GC
" : Hence, u D 0 in GC

0 : Next, since x0 D 0;

then it follows from (1.122) that G
C
0 \ ft D 0g D fjxj < Rg D ˝: Hence,

u .x; 0/ D ut .x; 0/ D 0; x 2 ˝: (1.126)

Next, denote cut t ��u WD f: Hence, by (1.114),

2ut .cut t ��u/ D 2utf � u2t C f 2

� u2t C A

2

4jruj2 C u2t C u2 C
tZ

0

�
jruj2 C u2t C u2

�
.x; 	/ d	

3

5 ;

with a certain positive constantA: Hence, we now can work with 2ut .cut t ��u/ as
it is done in the standard energy estimate for a hyperbolic PDE [119]. In doing so,
we can use one of zero boundary conditions (1.115) at ST and zero initial conditions
(1.126). This way, we obtain u D 0 in QT ; which proves (1.118). The case c 
 1;

including (1.119), follows from Corollary 1.10.2 and (1.118). �
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The proof of the following corollary can be obtained via a slight modification of
the proof of Theorem 1.10.4.

Corollary 1.10.4. Assume that in Theorem 1.10.4 the domainGC
d is replaced with

the domain Gd , the integral in (1.114) is replaced with

ˇ
ˇ
ˇ
ˇ
ˇ̌

tZ

0

.jruj C jut j C juj/ .x; 	/ d	

ˇ
ˇ
ˇ
ˇ
ˇ̌ ;

and that the rest of conditions of Theorem 1.10.4, except of (1.116), is in place. Then
conclusions (1.117)–(1.119) of Theorem 1.10.4 still hold with the replacement of the
pair

�
GC
d ;QT

�
with the pair

�
Gd ;QṪ

�
:

1.10.5 Coefficient Inverse Problem for a Hyperbolic Equation

The Hyperbolic Coefficient Inverse Problem. Let the function u 2 C2
�
QT

�

satisfies the following conditions:

c .x/ ut t D �u C
X

j˛j�1
a˛ .x/D

˛
xu, in QT ; (1.127)

u .x; 0/ D f0 .x/ ; ut .x; 0/ D f1 .x/ ; (1.128)

ujST D p .x; t/ ;
@u

@n
jST D q .x; t/ ; (1.129)

where functions a˛; c 2 C
�
QT

�
, and c � 1: Determine one of coefficients of

(1.127).
The CIP (1.127)–(1.129) is the problem with the single measurement data

because only a single pair .f0; f1/ of initial conditions is used.

Theorem 1.10.5.1. Let the coefficient c .x/ in (1.127) satisfies conditions (1.81)
and (1.82). In addition, let coefficients a˛ 2 C

�
˝
�
: Let the domain ˝ D

fjxj < Rg � R
n; n � 2: Consider two cases:

Case 1. The coefficient c .x/ is unknown, and all other coefficients a˛ .x/ are
known. In this case, we assume that

�f0 .x/C
X

j˛j�1
a˛ .x/D

˛
xf0 .x/ ¤ 0 for x 2 ˝: (1.130)

Then for a sufficiently large T > 0; there exists at most one pair of functions .u; c/
satisfying (1.127)–(1.129) and such that u 2 C4

�
QT

�
:
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Case 2. The coefficient a˛0 .x/ is unknown, and the rest of coefficients is known.
In this case, we assume that

D˛0
x f0 .x/ ¤ 0 for x 2 ˝:

Then for a sufficiently large T > 0; there exists at most one pair of functions .u; a˛0 /
satisfying (1.127)–(1.129) and such that u 2 C3Cj˛0j �QT

�
.

If in (1.128) f0 .x/ 
 0; then conditions of these two cases should be imposed on
the function f1 .x/, the required smoothness of the function u should be increased
by one and the above statements about uniqueness would still hold.

Proof. First, we note that if f0 .x/ 
 0; then one should consider in this proof
ut instead of u; and the rest of the proof is the same as the one below. We prove
this theorem only for Case 1, since Case 2 is similar. Assume that there exist two
solutions .u1; c1/ and .u2; c2/. Denoteeu D u1 � u2;ec D c1 � c2. Since

c1u1t t � c2u2t t D c1u1t t � c1u2t t C .c1 � c2/ u2t t D c1eut t Cecu2t t ;

then (1.127)–(1.129) lead to

Leu D c1 .x/eut t ��eu �
nX

jD1
a˛ .x/D

˛
xeu D �ec .x/H .x; t/ ; in QT ; (1.131)

eu .x; 0/ D 0;eut .x; 0/ D 0; (1.132)

eujST D @eu
@n

jST D 0; (1.133)

H .x; t/ WD u2t t .x; t/ : (1.134)

Setting in (1.127) c WD c2; u WD u2; t WD 0 and using (1.128), (1.130), and (1.134),
we obtain

H .x; 0/ D c�1
2 .x/

0

@�f0 .x/C
X

j˛j�1
a˛ .x/D

˛
xf0 .x/

1

A ¤ 0 for x 2 ˝:

Hence, there exists a sufficiently small positive number ", such that

H .x; t/ ¤ 0 in Q" D ˝ � Œ0; "� : (1.135)

Now, we eliminate the unknown coefficientec .x/ from (1.131). We have

�ec .x/ D Leu
H .x; t/

in Q":
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Hence,

@

@t
Œ�ec .x/� D @

@t

�
Leu

H .x; t/



D 0 in Q":

Or

Leut D Ht

H
.Leu/ in Q": (1.136)

Denote

h .x; t/ D Ht

H
.x; t/ : (1.137)

Since u 2 C4
�
QT

�
; then (1.134), (1.135), and (1.137) imply that

h 2 C2
�
Q"

�
: (1.138)

Introduce a new function v .x; t/ W

v .x; t/ Deut .x; t/ � heu .x; t/ (1.139)

Considering (1.139) as an ordinary differential equation with respect toeu .x; t/ and
using (1.132) as well as (1.137), we obtain

eu .x; t/ D
tZ

0

K .x; t; 	/ v .x; 	/ d	; (1.140)

K .x; t; 	/ D H .x; t/

H .x; 	/
2 C2

�
˝ � Œ0; "� � Œ0; "�� ; (1.141)

v .x; 0/ D 0: (1.142)

Using (1.139)–(1.141), we obtain the following formulas in Q":

c1 .eut /t t � hc1eut t D c1 .eut � heu/t t C 2c1hteut C c1ht teu

D c1vt t C 2c1htv C 2c1ht

tZ

0

Kt .x; t; 	/ v .x; 	/ d	

Cc1ht t
tZ

0

K .x; t; 	/ v .x; 	/ d	;
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�eut � h�eu D �.eut � heu/C 2rhreu C�heu

D �v C 2rhr
0

@
tZ

0

K .x; t; 	/ v .x; 	/ d	

1

A

C�h
tZ

0

K .x; t; 	/ v .x; 	/ d	:

By (1.136),

Leut � hLeu D 0 in Q": (1.143)

Hence, substituting the recent formulas in (1.143) and using boundary condi-
tions (1.133) and the initial condition (1.142), we obtain the following inequality:

jc1 .x/ vt t ��vj � M

2

4jrvj .x; t/C jvj .x; t/C
tZ

0

.jrvj C jvj/ .x; 	/ d	

3

5 in Q";

v jS"D
@v

@n
jS"D 0; (1.144)

v .x; 0/ D 0;

whereM > 0 is a constant independent on v; x; t:

Let 
0 D 
0

�
c;R; krckC.˝/

�
2 .0; 1� be the number considered in Theo-

rems 1.10.2 and 1.10.4. Consider now the domain GC

0"

2 defined as

GC

0"

2 D
n
.x; t/ W jxj2 � 
0t

2 > R2 � 
0"2; t > 0; jxj < R
o
:

Then,GC

0"

2 � Q": Hence, we can apply now Theorem 1.10.4 to conditions (1.144).

Thus, we obtain v .x; t/ D 0 in GC

0"

2 : Hence, by (1.140)eu .x; t/ D 0 in GC

0"

2 :

Therefore, setting t D 0 in (1.131) and using (1.135), we obtain

ec .x/ D 0 for x 2
�

jxj 2

q

R2 � 
0"2; R
�	
: (1.145)

Substitute this in (1.131) and use (1.132) and (1.133). We obtain

Leu D c1 .x/eut t ��eu �
nX

jD1
a˛ .x/D

˛
xeu D 0; (1.146)
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for .x; t/ 2
�

jxj 2

q

R2 � 
0"
2; R

�	
� .0; T / ; (1.147)

eu .x; 0/ D 0;eut .x; 0/ D 0; (1.148)

eujST D @eu
@n

jST D 0: (1.149)

Consider an arbitrary number t0 2 .0; T � "/ : And consider the domain G
0"2 .t0/:

G
0"2 .t0/ D
n
.x; t/ W jxj2 � 
0 .t � t0/

2 > R2 � 
0"
2; t > 0; jxj < R

o
:

Hence, in this domain t 2 .t0 � "; t0 C "/ \ ft > 0g : Since t0 2 .0; T � "/ ; then
t 2 .0; T / in this domain. Hence,

G
0"2 .t0/ �
�

jxj 2

q

R2 � 
0"2; R
�	

� .0; T / :

Hence, we can apply Corollary 1.10.4 to the domain G
0"2 .t0/ and conditions
(1.146)–(1.149). Therefore, eu .x; t/ D 0 for .x; t/ 2 G
0"2 .t0/ : Since t0 is an
arbitrary number of the interval .0; T � "/ ; then, varying this number, we obtain
that

eu .x; t/ D 0 for .x; t/ 2
�

jxj 2

q

R2 � 
0"2; R
�	

� .0; T � "/ :

Therefore, we now can replace in (1.131)–(1.134) sets QT ; ST with sets

Q"
T D

�
jxj <

q
R2 � 
0"2

	
� .0; T � "/ ;

S"T D
�

jxj D
q
R2 � 
0"2

	
� .0; T � "/ ;

and repeat the above proof. Hence, we obtain instead of (1.145) that

ec .x/ D 0 for x 2
�

jxj 2

q

R2 � 2
0"2; R
�	
:

Since " > 0 is sufficiently small, we can always choose " such that R2 D k
0"
2

where k D k .R; "/ � 1 is an integer. Suppose that

T > k" D Rp

0"

:
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Hence, we can repeat this process k times until the entire domain ˝ D fjxj < Rg
would be exhausted. Thus, we obtain after k steps thatec .x/ D 0 in ˝: Thus, the
right-hand side of (1.131) is identical zero. This, (1.131)–(1.133) and the standard
energy estimate imply thateu .x; t/ D 0 in QT : �

A slightly inconvenient point of Theorem 1.10.5.1 is that the observation time
T is assumed to be sufficiently large. Our experience of working with experimental
data (Chaps. 5 and 6) indicates that this is not a severe restriction in applications.
Indeed, usually the outcoming signal can be measured for quite a long time. Still,
it is possible to restrict the value of T to the same one as in Theorem 1.10.4 via
imposing the condition f1 .x/ 
 0: This was observed in [80, 81]. The proof of
Theorem 1.10.5.2 partially repeats arguments of [80, 81].

Theorem 1.10.5.2. Assume that all conditions of Theorem 1.10.5.1 are satisfied.
In addition, assume that in (1.128) the function f1 .x/ 
 0: Then Theorem 1.10.5.1
remains valid if

T >
Rp

0
: (1.150)

In particular, if c .x/ 
 1; then it is sufficient to have T > R:

Proof. Similarly with the proof of Theorem 1.10.5.1, we consider now only for
Case 1. We keep notations of Theorem 1.10.5.1Consider the function w .x; t/ D
eut t .x; t/ : Then (1.131)–(1.134) imply that

c1 .x/wt t ��w �
nX

jD1
a˛ .x/D

˛
xw D �ec .x/ @4t u2; in QT ; (1.151)

wt .x; 0/ D 0; (1.152)

wjST D @w

@n
jST D 0; (1.153)

w .x; 0/ D �ec .x/ p .x/ ; (1.154)

p .x/ D c�1
1 .x/

0

@�f0 .x/C
X

j˛j�1
a˛ .x/D

˛
xf0 .x/

1

A ¤ 0 for x 2 ˝: (1.155)

Hence, it follows from (1.154) and (1.155) that

�ec .x/ D w .x; 0/

p .x/
D 1

p .x/

2

4w .x; t/ �
tZ

0

wt .x; 	/ d	

3

5 :
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Substituting this formula in (1.151), using Theorem 1.10.4, (1.150), (1.152), and
(1.153) and proceeding similarly with the proof of Theorem 1.10.4, we obtain that
ec .x/ D 0 in ˝ and w .x; t/ Deu .x; t/ D 0 in QT : �

1.10.6 The First Coefficient Inverse Problem for a Parabolic
Equation

Consider the Cauchy problem for the following parabolic equation:

c .x/ ut D �u C
X

j˛j�1
a˛ .x/D

˛
xu, in DnC1

T D R
n � .0; T / ; (1.156)

u .x; 0/ D f0 .x/ ; (1.157)

c; a˛ 2 Cˇ .Rn/ ; c .x/ � 1; f0 2 C2Cˇ .Rn/ ; ˇ 2 .0; 1/ : (1.158)

So (1.156) and (1.157) is the forward problem. Given conditions (1.158), this
problem has unique solution u 2 C2Cˇ;1Cˇ=2 �D nC1

T

�
[120]. Just as in Sect. 1.10.5,

assume that ˝ D fjxj < Rg � R
n; n � 2: Let � � @˝ be a part of the boundary

of the domain˝ , T D const. > 0 and �T D � � .0; T /.
The First Parabolic Coefficient Inverse Problem. Suppose that one of coeffi-
cients in (1.156) is unknown inside the domain ˝ and is known outside of it. Also,
assume that all other coefficients in (1.156) are known, and conditions (1.157),
(1.158) are satisfied. Determine that unknown coefficient inside ˝; assuming that
the following functions p .x; t/ and q .x; t/ are known,

u j�T D p .x; t/ ;
@u

@n
j�T D q .x; t/ : (1.159)

It is yet unclear how to prove a uniqueness theorem for this CIP “straight-
forwardly.” The reason is that one cannot extend properly the solution of the
problem (1.156) and (1.157) in ft < 0g : Thus, the idea here is to consider an
associated CIP for a hyperbolic PDE using a connection between these two CIPs
via an analog of the Laplace transform. Next, Theorem 1.10.5.1will provide the
desired uniqueness result.

That associated hyperbolic Cauchy problem is

vt t D 1

c .x/

0

@�v C
X

j˛j�1
a˛ .x/D

˛
x v

1

A in DnC11 D R
n � .0;1/ ; (1.160)

vjtD0 D 0; vt jtD0 D f0 .x/ : (1.161)
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In addition to (1.158), we assume that the coefficients c .x/ ; a˛ .x/ and the initial
condition f0 .x/ are so smooth that the solution v of the problem (1.160) and

(1.161) is such that (a) v 2 C4.D
nC1
1 / if the function c .x/ is unknown and (b)

v 2 C3Cj˛j.DnC1
1 / if the function c .x/ is known and any of functions a˛ .x/ is

unknown.
Consider an interesting Laplace-like transform which was proposed, for the first

time, by K.G. Reznickaya in 1973 [142] and was widely used since then [102, 123,
124]. Namely, one can easily verify the following connection between solutions u
and v of parabolic and hyperbolic Cauchy problems (1.156), (1.157) and (1.160),
(1.161)

u .x; t/ D 1

2t
p
�t

Z 1

0

exp

�
� 	

2

4t



	v .x; 	/ d	: (1.162)

Since the transformation (1.162) is one-to-one (as an analog of the Laplace trans-
form), the following two functions p .x; t/ and q .x; t/ can be uniquely determined
from functions (1.159):

vj�1
D p .x; t/ ;

@v

@n
j�1

D q .x; t/ : (1.163)

Therefore, the first parabolic CIP is reduced to the hyperbolic CIP (1.160), (1.161)
and (1.163). At the same time, the inversion of the transformation (1.162) is a
severely ill-posed procedure. Hence, this inversion cannot be used for computations.

We are almost ready now to apply Theorem 1.10.5.1 The only thing left to do is
to replace �1 in (1.163) with S1: To do this, we observe that, using (1.159) and the
fact that the unknown coefficient is given outside of the domain˝ , one can uniquely
determine the function u .x; t/ for .x; t/ 2 .RnŸ˝/ � .0; T / : This is because of
the well known uniqueness result for the Cauchy problem for the parabolic equation
with the Cauchy data given at a part of the lateral boundary [124]. Therefore, we can
uniquely determine functions u; @nu at ST : This means in turn that we can replace
in (1.163) �1 with S1: Hence, Theorem 1.10.5.1 leads to Theorem 1.10.6.

Theorem 1.10.6. Assume that conditions (1.158 ) hold. Also, assume that coeffi-
cients c .x/ ; a˛ .x/ and the initial condition f0 .x/ are so smooth that the solution
v of the problem (1.160) and (1.161) is such that:

(a) v 2 C4.D
nC1
1 / if the function c .x/ is unknown

and
(b) v 2 C3Cj˛j.DnC1

1 / if any of functions a˛ .x/ is unknown. Let˝ D fjxj < Rg �
R
n; n � 2: Suppose that conditions of either of Cases 1 or 2 of Theorem 1.10.5.1

hold. Also, assume that coefficients of (1.160) and the initial condition (1.157)
are so smooth that the smoothness of the solution v .x; t/ of the hyper-
bolic Cauchy problem (1.160) and (1.161) required in Theorem 1.10.5.1 is
guaranteed. Then, conclusions of 1.10.5.1 are true with respect to the CIP
(1.156)–(1.159).
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1.10.7 The Second Coefficient Inverse Problem for a Parabolic
Equation

Theorem 1.10.6 has two inconvenient points. First, one needs to reduce the parabolic
CIP to the hyperbolic CIP via inverting the transform (1.162). Second, one needs to
use a special form of the elliptic operator in (1.156). The coefficient c .x/ in the
principal part of this operator must satisfy conditions (1.81) and (1.82). Although
these conditions are satisfied for the case c .x/ 
 1, still the question remains
whether it is possible to prove uniqueness of a CIP for the case of a general parabolic
operator of the second order. It is shown in this section that the latter is possible,
provided that one can guarantee the existence of the solution of the parabolic PDE
for both positive and negative values of t . This condition is always used in studies
of CIPs for parabolic PDEs via the Bukhgeim-Klibanov method; see for example,
[33, 62, 79, 161].

Let ˝ � R
n be either finite or infinite domain with the piecewise smooth

boundary @˝ , � � @˚ be a part of this boundary, and T D const > 0. Denote

QṪ D G � .�T; T / ; �Ṫ D � � .�T; T / :

Let L be the following elliptic operator in PṪ :

Lu D
X

j˛j�2
a˛ .x; t/ D

˛
xu; .x; t/ 2 PṪ ; (1.164)

a˛ 2 C1
�
Q

˙
T

�
; (1.165)

�1 j�j2 �
X

j˛jD2
a˛ .x; t/ �

˛ � �2 j�j2 I �1; �2 D const. > 0; (1.166)

8� 2 R
n;8 .x; t/ 2 Q˙

T : (1.167)

The Second Parabolic Coefficient Inverse Problem. Assume that one of coeffi-
cients a˛0 of the operator L is independent of t , a˛0 WD a˛0 .x/ and is unknown
in ˝ , whereas all other coefficients of L are known in QṪ . Let the function
u 2 C4;2

�
Q Ṫ

�
satisfy the parabolic equation

ut D Lu C F .x; t/ ; in QṪ : (1.168)

Determine the coefficient a˛0 .x/ for x 2 ˝ assuming that the function F .x; t/
is known in QṪ and that the following functions f0 .x/ ; p .x; t/, and q .x; t/ are
known as well:

u .x; 0/ D f0 .x/ ; x 2 ˝; (1.169)
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uj
�˙
T

D p .x; t/ ;
@u

@n
j
�˙
T

D q .x; t/ : (1.170)

Prior to the formulation of the uniqueness theorem for this problem, we present
the Carleman estimate for the principal part Lp of the parabolic operator L in
(1.164):

Lpu D ut �
X

j˛jD2
a˛ .x; t/ D

˛
xu:

We assume for brevity only that

˝ � fx1 > 0g and � D fx 2 R
n W x1 D 0; jxj � Ag ; A D const. > 0; (1.171)

where x D .x2; :::; xn/ : Let � 2 .0; 1/ : Consider the function

 .x; t/ D x1 C jxj2
A2

C t2

T 2
C �: (1.172)

Let � 2 .�; 1/. Consider the domainH� W

H� D f.x; t/ W x1 > 0; .x; t/ < �g : (1.173)

Let �; � > 1 be two large parameters which we will choose later. In the domainH�

we consider the following function '; which is the CWF for the operator Lp W

' .x; t/ D exp Œ� �� .x; t/� :

Lemma 1.10.7 was proven in [124] for the case when terms with 1=� were
not involved in (1.174). However, these terms can still be incorporated if using
ideas of the proof of the second fundamental inequality for elliptic operators of
Ladyzhenskaya [119].

Lemma 1.10.7. Let functions a˛ .x; t/ ; j˛j D 2 satisfy conditions (1.165)–(1.167)
and:

max
j˛jD2

kjrx;t a˛jk
C
�
Q

˙

T

� � B D const:

Then, there exist sufficiently large numbers �0 D �0 .�; �; �1; �2; B/ > 1; �0 D
�0 .�; �; �1; �2; B/ > 1 such that for � WD �0, for all � � �0, and for all

functions u 2 C2;1.Q
˙
T /, the following pointwise Carleman estimate holds for the

operator Lp:

�
Lpu

�2
'2 � C

�

0

@u2t C
X

j˛jD2

�
D˛
xu
�2
1

A'2 C C� jruj2 '2 C C�3 jruj2 '2

Cr � U C Vt ; .x; t/ 2 H�; (1.174)
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where the vector function .U; V / satisfies the following estimate:

j.U; V /j � C�3

2

4
X

j˛j�2

�
D˛
xu
�2 C u2t

3

5'2:

Here, the constant C D C .ˇ; �; �1; �2; B/ > 0 is independent on �; u:

Theorem 1.10.7. Assume that (1.171) holds, the unknown coefficient a˛0 .x/ is
independent on t , and that D˛0

x f0 .x/ ¤ 0 in ˝ . Then there exists at most one

solution .a˛0 ; u/ 2 C1
�
˝
� � C4;2

�
P

˙
T

�
of the inverse problem (1.164)–(1.170).

Proof. LetB1 D kuk
C4;2

�
Q

˙

T

� : Let 
 2 .0; 1/ be a parameter which we will choose

later. We change variables now only because coefficients in the principal part Lp of
the operator @t � L depend on t . If they would be independent on t , we would not

need this change of variables. Change variables in (1.168) as .t 0; x0/ D
�

t;

p

x
�

and keep the same notations for new functions, new domains, and new variables for
brevity. In new variables we have

max
P

˙

T

j@ta˛ .x; t/j � 
B; max
P

˙

T

jrxa˛ .x; t/j �
p

B; j˛j D 2; (1.175)

max
P

˙

T

j@ta˛ .x; t/j � 
B 0; j˛j � 1; (1.176)

where the number B is defined in Lemma 1.10.7 and B 0 is another positive
constant independent on 
 . In particular, (1.175) means that the constant C > 0 in
Lemma 1.10.7 remains the same after this change of variables. Conditions (1.168)–
(1.170) become

ut D
X

j˛jD2
a˛ .x; t/ D

˛
xu C

X

j˛j�1

�p


�j˛j�2

a˛ .x; t/ D
˛
xu C 
F .x; t/ ; (1.177)

u .x; 0/ D f0 .x/ ; (1.178)

uj
�˙
T

D p .x; t/ ; @x1uj
�˙
T

D �
p

q .x; t/ : (1.179)

Assume that there exist two pairs of functions satisfying conditions of this
theorem:

�
a.1/˛0 ; u1

�
;
�
a.2/˛0 ; u2

�
; b .x/ D a.1/˛0 .x/ � a.2/˛0 .x/ ;eu D u1 � u2:
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Then, similarly with the proof of Theorem 1.10.5.1, we obtain from (1.177)–(1.179)

eut �
X

j˛jD2;˛¤˛0
a˛ .x; t/ D

˛
xeu �

X

j˛j�1

�p


�j˛j�2

a˛ .x; t/ D
˛
xu

�
�p



�j˛0j�2

a.1/˛0 .x/D
˛0
x eu D �

�p


�j˛0j�2

b .x/D˛0
x u2; (1.180)

eu .x; 0/ D 0; (1.181)

euj
�˙
T

D 0; @x1euj
�˙
T

D 0: (1.182)

Since (1.171) holds, we can assume without loss of generality thatH� � PṪ : Next,
since D˛0

x f0 .x/ ¤ 0 in ˝; we can assume without loss of generality that there
exists a constant d > 0 such that in old variables D˛0

x f0 .x/ � 2d > 0: Hence,
in new variables jD˛0

x f0 .x/j � 2
˛0=2d: Therefore, we can choose in (1.172) and
(1.173) � � � > 0 so small that in new variables

D˛0
x u2 .x; t/ � 
˛0=2d in H�: (1.183)

In addition,
ˇ
ˇD˛C˛0u2 .x; t/

ˇ
ˇ � d1 in H�; 8˛ 2 fj˛j � 2g , (1.184)

where the constant d1 > 0 is independent on 
; as long as 
 2 .0; 1/ :
Let

L1eu D
X

j˛jD2;˛¤˛0
a˛ .x; t/ D

˛
xeu C

X

j˛j�1;˛¤˛0

�p


�j˛j�2

a˛ .x; t/ D
˛
xeu

C
�p



�j˛0j�2

a.1/˛0 .x/D
˛0
x eu:

Using (1.180), we obtain

�
�p



�j˛0j�2

b .x/ D eut � L1eu
D
˛0
x u2

in H�:

Differentiating this equality with respect to t , we obtain

.eut � L1eu/t � g .x; t/ .eut �L1eu/ D 0 in H�; (1.185)

g .x; t/ D @t ln
�
D˛0
x u2

�
: (1.186)
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We have

.L1eu/t D
X

j˛jD2;˛¤˛0
a˛ .x; t/ D

˛
xeut C

X

j˛j�1;˛¤˛0

�p


�j˛j�2

a˛ .x; t/D
˛
xeut

C
�p



�j˛0j�2

a.1/˛0 .x/D
˛0
x eut C

X

j˛jD2;˛¤˛0
@t .a˛ .x; t//D

˛
xeu

C
X

j˛j�1;˛¤˛0

�p


�j˛j�2

@t .a˛ .x; t//D
˛
xeu:

Hence, (1.185) implies that

.eut t � geut /�
X

j˛jD2;˛¤˛0
a˛ .x; t/

�
D˛
xeut � gD˛

xeu
�

�
X

j˛j�1;˛¤˛0

�p


�j˛j�2

a˛ .x; t/
�
D˛
xeut � gD˛

xeu
�

�
�p



�j˛0j�2

a.1/˛0 .x/
�
D˛0
x eut � gD˛0

x eu
�

�
X

j˛jD2;˛¤˛0
@t .a˛ .x; t//D

˛
xeu

�
X

j˛j�1;˛¤˛0

�p


�j˛j�2

@t .a˛ .x; t//D
˛
xeu D 0; in H�: (1.187)

Now, use the formula gD˛
xeu D D˛

x .geu/C lot; where lot is a linear combination of
derivatives of the functioneu whose order is less than j˛j : Then

D˛
xeut � gD˛

xeu D D˛
x .eut � geu/C lot; eut t � geut D Dt .eut � geu/C gteu: (1.188)

Denote v Deut � peu: Then, (1.181) and (1.186) imply that

eu .x; t/ D
tZ

0

K .x; t; 	/ v .x; 	/ d	; in H�; (1.189)

K .x; t; 	/ D D˛0
x u2 .x; t/

D
˛0
x u2 .x; 	/

: (1.190)

It follows from (1.183), (1.184), and (1.190) that

jD˛
xK .x; t; 	/j � M; j˛j � 2 for .x; t/ ; .x; 	/ 2 H�: (1.191)

Here and below in this proof, M denotes different positive constants independent
on the function v and the parameter 
 2 .0; 1/ :
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Hence, using (1.175), (1.176), and (1.187)–(1.191), we obtain

ˇ
ˇLpv

ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
vt �

X

j˛jD2
a˛ .x; t/ D

˛
x v

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� M

X

j˛jD2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

tZ

0

jD˛
x vj .x; 	/ d	

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

CM


2

X

j˛j�1
jD˛

x vj C M


2

X

j˛j�1

ˇ
ˇ
ˇ̌
ˇ
ˇ

tZ

0

jD˛
x vj .x; 	/ d	

ˇ
ˇ
ˇ̌
ˇ
ˇ
; in H�; (1.192)

vj
�˙
T \H�

D 0; @x1vj
�˙
T \H�

D 0: (1.193)

Now, we are ready to apply the Carleman estimate of Lemma 1.10.7, assuming
that parameters � WD �0; �0 are the same as ones in this lemma and that � � �0.
Multiply both sides of the inequality (1.192) by the function ' .x; t/, then square it
and integrate over the domainH�: We obtain

Z

H�

�
Lpv

�2
'2dxdt � M
2

X

j˛jD2

Z

H�

0

@
tZ

0

jD˛
x vj .x; 	/ d	

1

A

2

'2dxdt

CM


4

Z

H�

0

@
tZ

0

.jrvj C jvj/ .x; 	/ d	

1

A

2

'2dxdt

CM


4

Z

H�

�
jrvj2 C v2

�
'2dxdt: (1.194)

Using Lemma 1.10.3, we obtain from (1.194)

Z

H�

.L0v/
2 '2dxdt � M
2

�

X

j˛jD2

Z

H�

�
D˛
x v
�2
'2dxdt C M


4

Z

H�

�
jrvj2 C v2

�
'2dxdt:

(1.195)
On the other hand, using (1.174) and (1.193), we obtain

Z

H�

�
Lpv

�2
'2dxdt � C

�

X

j˛jD2

Z

H�

�
D˛
x v
�2
'2dxdt C C

Z

H�

�
� jrvj2 C �3v2

�
'2dxdt

�C�3
Z

@1H�

X

j˛j�2

�
D˛
x v
�2
'2dxdt; (1.196)

where @1H� D f.x; t/ W  .x; t/ D �; x1 > 0g : Hence,

'2 D exp .2����/ on @1H� : (1.197)
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Choose 
 2 .0; 1/ so small thatM
2 � C=2: Then comparing (1.195) with (1.196)
and taking into account (1.197), we obtain for sufficiently large � � �1 .
/ > 1

1

�

X

j˛jD2

Z

H�

�
D˛
x v
�2
'2dxdt C

Z

H�

�
� jrvj2 C �3v2

�
'2dxdt

� M�3 exp .2����/
Z

@1H�

X

j˛j�2

�
D˛
x v
�2
'2dS: (1.198)

Let " 2 .0; � � �/ be an arbitrary number. Then H��" � H� and '2 .x; t/ �
exp Œ2� .� � "/�� � in H��": Hence, (1.198) implies that

Z

H��"

v2dxdt � M exp f�2� Œ.� � "/�� � ����g
Z

@1H�

X

j˛j�2

�
D˛
x v
�2
'2dS:

Setting here � ! 1; we obtain that the right-hand side of this inequality tends
to zero, which implies that v .x; t/ D 0 in H��": Since " 2 .0; � � �/ is an
arbitrary number, then v .x; t/ D 0 in H�: Hence, (1.189) implies thateu .x; t/ D 0

in H�: Next, (1.180) and (1.183) imply that b .x/ D 0 in H� \ ft D 0g : Hence,
a.1/˛0 .x/ D a.2/˛0 .x/ in H� \ ft D 0g : Therefore, applying the same method to the
homogeneous equation (1.180) with boundary conditions (1.182) and changing,
if necessary, variables as .t 00; x00/ D .t � t0; x/ with appropriate numbers t0 2
.�T; T / ; we obtain that

eu .x; t/ D 0 for .x; t/ 2
(

x1 C jxj2
A2

< � � �

)

� .�T; T / : (1.199)

It is clear that changing x variables by rotations of the coordinate system as well as
by shifting the location of the origin and proceeding similarly with the above, we
can cover the entire time cylinder QṪ by domains, which are similar with the one
in (1.199). Thus, a.1/˛0 .x/ D a.2/˛0 .x/ in G and u1 .x; t/ D u2 .x; t/ in QṪ : �

1.10.8 The Third Coefficient Inverse Problem for a Parabolic
Equation

Let L be the elliptic operator in R
n, whose coefficients depend only on x:

Lu D
X

j˛j�2
a˛ .x/D

˛
xu; (1.200)

a˛ 2 C2Cˇ .Rn/ ; ˇ 2 .0; 1/ (1.201)
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We assume that

�1 j�j2 �
X

j˛jD2
a˛ .x/ �

˛ � �2 j�j2 ;8x; � 2 R
n: (1.202)

Consider the following Cauchy problem

ut D Lu in DnC1
T ; u 2 C4Cˇ;2Cˇ=2

�
D
nC1
T

�
; (1.203)

ujtD0 D f .x/ 2 C4Cˇ .Rn/ (1.204)

It is well known that the problem (1.203) and (1.204) has unique solution [120].

The Third Parabolic Coefficient Inverse Problem. Let T0 2 .0; T / and ˝ �
R
n be a bounded domain. Suppose that the coefficient a˛0 .x/ of the operator L is

known inside ˝ and is unknown outside of ˝ . Assume that the initial condition
f .x/ is also unknown. Determine both the coefficient a˛0 .x/ for x 2 R

nŸ˝ and
the initial condition f .x/ for x 2 R

n; assuming that the following function F .x/
is known:

F .x/ D u .x; T0/ ; x 2 R
n: (1.205)

Theorem 1.10.8. Assume that conditions (1.200)–(1.202) hold, all coefficients of
the operator L belong to C1 .˝/, and

D˛0F .x/ ¤ 0, in R
nŸ˝:

Then, there exists at most one pair of functions .a˛0 .x/ ; u .x; t// satisfying
conditions (1.203)–(1.205).

Proof. Consider the solution of the following hyperbolic Cauchy problem:

vt t D Lv in DnC11 ;

v .x; 0/ D 0; vt .x; 0/ D f .x/ :

Then the Laplace-like transform (1.162) connects functions u and v. Hence, for any
x 2 R

n the function u .x; t/ is analytic with respect to the variable t > 0 as a
function of a real variable. We now show that the function u .x; t/ can be uniquely
determined for .x; t/ 2 ˝ � .0; T / : Since all coefficients a˛ 2 C1 .˝/, then the
solution u of the Cauchy problem (1.203) and (1.204) is u 2 C1 .˝ � .0; T // [69].
Hence, using (1.203) and (1.205), we obtain

DkC1
t u .x; T0/ D Lk ŒF .x/� ; x 2 ˝; k D 0; 1; : : :

Thus, one can uniquely determine all t derivatives of the function u .x; t/ at t D
T0 for all x 2 ˝: Hence, the analyticity of the function u .x; t/ with respect to
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t implies that this function can be uniquely determined for .x; t/ 2 ˝ � .0; T / :

Hence, Theorem 1.10.7 implies that the coefficient a˛0 .x/ is uniquely determined
in the domain R

nŸ˝: To establish that the initial condition f .x/ is also uniquely
determined, we refer to the well-known theorem about the uniqueness of the solution
of the parabolic equation with reversed time [69, 124]. �

1.10.9 A Coefficient Inverse Problem for an Elliptic Equation

We now consider an elliptic analog of the second parabolic CIP. Let ˝ � R
n be

either finite or infinite convex domain with the piecewise smooth boundary @˝ and
let � � @˝ be a part of this boundary. Let T D const > 0. Denote again

QṪ D ˝ � .�T; T / ; �Ṫ D � � .�T; T / :

Let L be an elliptic operator in QṪ :

Lu D
X

j˛j�2
a˛ .x; t/ D

˛
xu; .x; t/ 2 QṪ ; (1.206)

a˛ 2 C1
�
Q

˙
T

�
; (1.207)

�1 j�j2 �
X

j˛jD2
a˛ .x; t/ �

˛ � �2 j�j2 I �1; �2 D const. > 0 (1.208)

8� 2 R
n;8 .x; t/ 2 Q˙

T : (1.209)

Coefficient Inverse Problem for an Elliptic Equation. Let the function u 2
C2

�
Q

˙
T

�
satisfies the following conditions:

ut t C Lu D F .x; t/ in QṪ ; (1.210)

u .x; 0/ D f0 .x/ in ˝; (1.211)

uj
�˙
T

D p .x; t/ ;
@u

@n
j
�˙
T

D q .x; t/ : (1.212)

Assume that the coefficient a˛0 .x/ of the operator L is independent of t and is
unknown in˝ and all other coefficients are known inQṪ . Determine the coefficient
a˛0 .x/ from conditions (1.206)–(1.212).

Theorem 1.10.9. Assume that D˛0
x f0 .x/ ¤ 0 in ˝: Then, there exists at most one

pair of functions .a˛0 .x/ ; u .x; t// such that conditions (1.206)–(1.212) hold and,

in addition, the function u 2 C3
�
Q

˙
T

�
:
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Proof. Lemma 1.10.7 remains valid if the parabolic operator Lp in (1.174) is
replaced with the elliptic operator [124]:

ut t C
X

j˛jD2
a˛ .x; t/ D

˛
xu:

Therefore, the proof is completely similar with the proof of Theorem 1.10.7. �

1.11 Uniqueness for the Case of an Incident Plane Wave
in Partial Finite Differences

We present in this section the result of the paper [112]. Unlike all uniqueness
theorems of Sect. 1.10, we assume now that initial conditions equal zero in the entire
domain of interest. At the same time, we assume that the underlying hyperbolic PDE
is written in the form of finite differences with respect to those variables which are
orthogonal to the direction of propagation of the incident plane wave. Derivatives
with respect to other variables are understood in the conventional form. In addition,
we assume that grid step sizes in finite differences are bounded from the below. In
fact, this assumption is quite often used in computations of CIPs.

Both classical forward problems for PDEs and ill-posed problems are routinely
solved numerically by the FDM, see; for example, [114–116, 146] as well as
Sects. 6.8 and 6.9. Therefore, it is important to prove uniqueness theorems for
CIPs for the case when they are written in finite differences. However, there is a
fundamental difference between classical forward problems and nonclassical ill-
posed problems. Indeed, since classical forward problems are well-posed, then it
makes sense to investigate convergence of the FDM when the spatial step grid step
size hsp tends to zero; see, for example, [146] for such results.

However, in the case of ill-posed problems, there is no point sometimes to
investigate the convergence of FDM-based numerical methods when the spatial step
size hsp tends to zero. This is because in the ill-posed case, hsp should usually be
limited from the below by an a priori chosen constant, hsp � h D const. > 0. The
constant h is usually chosen in numerical experiments. The reason of this limitation
is that hsp serves as an implicit regularization parameter in the discrete case of the
FDM. Because of this, hsp cannot be significantly decreased. The same observation
takes place in numerical studies of Chap. 6; see Sect. 6.8.1 as well as [114, 116].

For the sake of brevity, we consider here only the 3D case. Theorems 1.11.1.1
and 1.11.1.2 below have almost identical formulations and proofs for the n-D case
with n � 2: Below, x D .x; y; z/ 2 R

3: Let the function a 2 C2
�
R
3
�

and is
bounded in R

3 together with its derivatives. Consider the Cauchy problem

ut t D �u C a .x/ u; .x; t/ 2 R
3 � .0; T / ; (1.213)

u .x; 0/ D 0; ut .x; 0/ D ı .z/ : (1.214)
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Conditions (1.213) and (1.214) mean that the wave field u is initialized by the
plane wave at the plane fz D 0g : This plane wave propagates along the z-axis. Let
Ax;Ay; T D const. > 0: Define the strip G as

G D ˚
x W x 2 .0; Ax/ ; y 2 �0;Ay

��
; GT D G � .0; T / ;

ST D ˚
z D 0; x 2 .0; Ax/ ; y 2 �0;Ay

�� � .0; T / :

Coefficient Inverse Problem 1.11. Assume that the function a .x/ is unknown in
G. Determine the coefficient a .x/ for x 2 G; assuming that the following two
functions r .x; t/ ; s .x; t/ are given:

u jST D r .x; t/ ; uz jST D s .x; t/ : (1.215)

The question of the uniqueness of this CIP is a well-known long-standing open
problem. Note that (1.215) is the backscattering data. The main challenge is the
single measurement, not the backscattering. For the first time, this question was
addressed in [34]. However, infinitely many measurements were considered in these
references. The second class of uniqueness results for the case of single measure-
ment data with zero initial conditions are ones when the unknown coefficient is
represented as a finite sum of a Fourier-like series:

a .x; y; z/ D
NX

kD1
bk .x; y/ ak .z/ ; N < 1; (1.216)

where functions ak; bk are unknown. The main restriction here is N < 1: This
kind of results follows from a special method of the integral geometry, which was
developed in [124]; see Sect. 6.3 of [124].

In this section, we prove uniqueness theorem for a closely related inverse
problem. Specifically, we assume that derivatives with respect to .x; y/ are written
via finite differences with the grid step sizes .h1; h2/ : Numbers h1; h2 do not tend
to zero. However, derivatives with respect to z; t are written in the usual form. The
uniqueness Theorem 1.11.1.2 uses these assumptions. Since finite differences are
often used in computations, then Theorem 1.11.1.2 seems to be more attractive for
computations than the assumption (1.216).

First, we prove in Lemma 1.11.3 a new Carleman estimate, which is significantly
different from conventional Carleman estimates of Sect. 1.10. The main new
element here is that a certain integral over the characteristic curve contains only
nonnegative terms with large parameters involved. Usually, the positivity of surface
integrals is not the case of Carleman estimates. This new Carleman estimate enables
us to apply a new idea, compared with the method of Sect. 1.10. That new idea
is generated by the second line of (1.244) in combination with (1.254). Indeed, in
all previous publications about the Bukhgeim-Klibanov method, t-integrals of the
Volterra type were used; see Sect. 1.10. Unlike this, we do not use those integrals in
the proof of Theorem 1.11.1.2.



1.11 Uniqueness for the Case of an Incident Plane Wave in Partial Finite Differences 81

Discrete Carleman estimates are attracting an interest of researchers [37,38,105].
However, they were not yet used for proofs of uniqueness of discrete CIPs.
A discrete Carleman estimate is not used here.

1.11.1 Results

Consider partitions of intervals x 2 .0; Ax/ ; y 2 �0;Ay
�

in small subintervals with
step sizes h1 and h2, respectively:

0 D x0 < x1 < ::: < xN1 D Ax; 0 D y0 < y1 < ::: < yN2 DAy; (1.217)

xi � xi�1 D h1; yj � yj�1 D h2; h WD .h1; h2/ ; h0Dmin .h1; h2/ IN1;N2 > 2:
(1.218)

Hence, we have obtained the grid

Gh D f.x; y/ W x D ih1; y D jh2g.N1;N2/.i;j /D.0;0/ :

Consider a vector function f h .z; t/ defined on this grid:

f h .z; t/ D ˚
fi;j .z; t/

�.N1;N2/
.i;j /D.0;0/ :

For two vector functions f h .z; t/ ; gh .z; t/, define

gh .z; t/ f h .z; t/ WD ˚
ki;j .z; t/

�.N1;N2/
.i;j /D.0;0/ ; ki;j .z; t/ D gi;j .z; t/ � fi;j .z; t/ :

(1.219)

Denote

�
f h .z; t/

�2 WD
.N1;N2/X

.i;j /D.0;0/
f 2
i;j .z; t/ :

We define finite difference second derivatives @2x;hf
h .z; t/ and @2y;hf

h .z; t/ with
respect to x and y, respectively, in the usual way as

@2x;hf
h .z; t/ D ˚

@2x;hfi;j .z; t/
�.N1;N2/
.i;j /D.0;0/ ;

@2y;hf
h .z; t/ D

n
@2y;hfi;j .z; t/

o.N1;N2/

.i;j /D.0;0/ ;
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@2x;hfi;j .z; t/ WD 1

h21

8
<

:

fi�1;j .z; t/ � 2fi;j .z; t/C fiC1;j .z; t/ ; if i ¤ 0; i ¤ N1;

fi;j .z; t/ � 2fiC1;j .z; t/C fiC2;j .z; t/ ; if i D 0;

fi;j .z; t/ � 2fi�1;j .z; t/C fi�2;j .z; t/ ; if i D N1;

and similarly for @2y;hf
h .z; t/ : Hence, if a function g .x; y; z; t/ has continuous

derivatives up to the fourth order with respect to x, then @2x;hgi;j .z; t/ approximates
gxx .x; y; z; t/ at the point .x; y/ D .ih1; jh2/ with the accuracyO

�
h21
�
; h1 ! 0 in

the case when ih1 ¤ 0;Ax: And it approximates with the accuracyO .h1/ ; h1 ! 0

in the case when ih1 D 0;Ax: This is similar for the y derivative. Next, we define
the finite difference Laplace operator as

�hfi;j .z; t/ WD @2zfi;j .z; t/C�h;x;yfi;j .z; t/ ;

�h;x;yfi;j .z; t/ WD @2x;hfi;j .z; t/C @2y;hfi;j .z; t/ ;

�hf
h .z; t/ WD ˚

�hfi;j .z; t/
�.N1;N2/
.i;j /D.0;0/

WD �
@2zfi;j .z; t/

�.N1;N2/
.i;j /D.0;0/ C ˚

�h;x;yfi;j .z; t/
�.N1;N2/
.i;j /D.0;0/

WD @2zf
h .z; t/C�h;x;yf

h .z; t/ :

Define

ah .z/ WD ˚
ai;j .z/

�.N1;N2/
.i;j /D.0;0/ :

Rewrite the problem (1.213), (1.214) in the finite difference form as

uht t D �huh C ah .z/ uh; .z; t/ 2 R � .0; T / ; (1.220)

uh .z; 0/ D 0; uht .z; 0/ D ı .z/ ; (1.221)

where the product ah .z/ uh is understood as in (1.219).

Coefficient Inverse Problem 1.11.1.1. Let the vector function uh .z; t/ be the
solution of the problem (1.220) and (1.221). Determine the vector function ah .z/
assuming that the following two vector functions rh .t/ ; sh .t/ ;

rh .t/ D ˚
ri;j .t/

�.N1;N2/
.i;j /D.0;0/ ; s

h .t/ D ˚
si;j .t/

�.N1;N2/
.i;j /D.0;0/ ; (1.222)

are given:
uh .0; t/ D rh .t/ ; uhz .0; t/ D sh .t/ ; t 2 .0; T / : (1.223)

Theorem 1.11.1.1. Let the vector function ah .z/ 2 C1 .R/ and is bounded in R:

Then, there exists unique solution of the forward problem (1.220) and (1.221) of the
form

uh .z; t/ D ˚
ui;j .z; t/

�.N1;N2/
.i;j /D.0;0/ ;
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where

ui;j .z; t/ D 1

2
H .t � jzj/C ui;j .z; t/ ; .i; j / 2 Œ0; N1� � Œ0; N2� : (1.224)

In (1.223),H .z/ is the Heaviside function,

H .z/ D
�
1 if z � 0;

0 if z < 0

and the function ui;j is such that

ui;j 2 C3 .t � jzj/ , ui;j .z; t/ D 0 for t 2 .0; jzj� : (1.225)

Theorem 1.11.1.2. Let R > 0 be an arbitrary number and T > 2R: Assume
that there exist two pairs of vector functions

�
uh1 .z; t/ ; a

h
1 .z/

�
;
�
uh2 .z; t/ ; a

h
2 .z/

�

such that ah1 ; a
h
2 2 C1 .R/ and vector functions uh1 and uh2are solutions of the

problem (1.220) and (1.221) of the form (1.224) and (1.225) with ah WD ah1 and
ah WD ah2 , respectively. In addition, assume that both vector functions uh1; u

h
2 satisfy

the same conditions (1.223). Then ah1 .z/ D ah2 .z/ for jzj < R and

uh1 .z; t/ D uh2 .z; t/ for .z; t/ 2 fjzj < R; t 2 .0; T � jzj/g : (1.226)

1.11.2 Proof of Theorem 1.11.1.1

Denoting temporarily fi;j .z; t/ D �h;x;yui;j C ai;jui;j ; rewrite (1.220) and
(1.221) as

@2t ui;j D @2z ui;j C fi;j .z; t/ ; .i; j / 2 Œ0; N1� � Œ0; N2� ; (1.227)

ui;j .z; 0/ D 0; @tui;j .z; 0/ D ı .z/ : (1.228)

Using D’Alembert formula, we derive from (1.227) and (1.228) that

ui;j .z; t/ D 1

2
H .t � jzj/C 1

2

tZ

0

d	

t�	CzZ

	�tCz

�
�h;x;yui;j C ai;j ui;j

�
.�; 	/ d�; (1.229)

for .i; j / 2 Œ0; N1� � Œ0; N2�. In (1.229), the integration is carried out over the
triangle �.z; t/ in the .�; 	/-plane, where the triangle �.z; t/ has vertices at
.�1; 	1/ D .z � t; 0/ ; .�2; 	2/ D .z; t/, and .�3; 	3/ D .z C t; 0/ : If we consider
the set of equations (1.229) considered for .i; j / 2 Œ0; N1�� Œ0; N2� ; then we obtain
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a linear system of coupled Volterra-like integral equations. Hence, this system can
be solved iteratively:

u.n/i;j .z; t/ D 1

2
H .t � jzj/C 1

2

tZ

0

d	

t�	CzZ

	�tCz

�
�h;x;yu.n�1/

i;j C ai;j u.n�1/
i;j

�
.�; 	/ d�;

for .i; j / 2 Œ0; N1� � Œ0; N2� : Let

max
i;j

sup
R

ˇ
ˇai;j .z/

ˇ
ˇ � M;M D const. > 0:

The standard technique for Volterra equations leads to the following estimate:

ˇ
ˇ
ˇu.n/i;j .z; t/

ˇ
ˇ
ˇ �

1X

nD0

.C t/n

nŠ
; z 2 R; t > 0; 8 .i; j / 2 Œ0; N1� � Œ0; N2� ; (1.230)

where the constant C D C .h;M/ : Hence, there exists a solution of the integral
equation (1.229) such that this solution is continuous for t 2 Œ0; jzj� and for t � jzj :

Next, let in (1.229) t < jzj : Then the triangle �.z; t/ is located below f	 D j�jg
and above f	 D 0g : Hence, we obtain from (1.229)

ui;j .z; t/ D 1

2

tZ

0

d	

t�	CzZ

	�tCz

�
�h;x;yui;j C ai;j ui;j

�
.�; 	/ d�;

for t < jzj ; .i; j / 2 Œ0; N1� � Œ0; N2� : (1.231)

Iterating (1.231), we obtain similarly with (1.230) that

ˇ
ˇui;j .z; t/

ˇ
ˇ � .C t/n

nŠ
; n D 1; 2; :::I .i; j / 2 Œ0; N1� � Œ0; N2� :

Hence, ui;j .z; t/ D 0 for t < jzj : The same way uniqueness of the problem (1.229)
can be proven.

Let

ui;j .z; t/ D ui;j .z; t/ � 1

2
H .t � jzj/ :

Since �h;x;y ŒH .t � jzj/� D 0 and ui;j .z; t/ D 0 for t < jzj ; then the integration in
(1.229) is actually carried out over the following domain:

f.�; 	/ W j�j < 	 < t � jz � �jg D
�
.�; 	/ W � 2



z � t

2
;

z C t

2

�
;

	 2 .j�j ; t � jz � �j/
	
:
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Hence, (1.229) leads to the following equation for ui;j .z; t/:

ui;j .z; t/ D 1

2

zCt
2Z

z�t
2

d�

t�jz��jZ

j�j

�
�h;x;yui;j C ai;j ui;j

�
.�; 	/ d	

C1

2

zCt
2Z

z�t
2

ai;j .�/ .t � jz � �j � j�j/ d�; t > jzj ; .i; j / 2 Œ0; N1�

� Œ0; N2� :

Differentiating these equations, we obtain that

ui;j .z; t/ 2 C3 .t � jzj/ ;8 .i; j / 2 Œ0; N1� � Œ0; N2�

Thus, the solution
˚
ui;j .z; t/

�.N1;N2/
.i;j /D.0;0/ of the system of equations (1.229) satisfies

conditions (1.227), (1.228), (1.224), and (1.225).
It follows from Theorem 1.11.1.1 that we can consider functions ui;j .z; t/ only

above the characteristic line ft D jzjg in the .z; t/ plane. Hence, consider new
functions wi;j .z; t/ D ui;j .z; t C z/ ; z > 0: The domain ft > z; z > 0g becomes
now ft > 0; z > 0g : Using (1.220), (1.222)–(1.224), and (1.225), we obtain

@2z wi;j � 2@z@twi;j D ��h;x;ywi;j C ai;j .z/wi;j ; .z; t/ 2 fz; t > 0g ; (1.232)

wi;j .z; 0/ D 1
2
; (1.233)

wi;j .0; t/ D ri;j .t/ ; @zwi;j .0; t/ D si;j .t/ ; t 2 .0; T / ; (1.234)

wi;j 2 C3 .z; t � 0/ ; (1.235)

.i; j / 2 Œ0; N1� � Œ0; N2� : (1.236)

1.11.3 The Carleman Estimate

Consider parameters ˛; ˇ; � where

˛ 2


0;
1

2

�
; ˇ; � > 0:

Also, let � > 1 be a sufficiently large parameter. We will choose � later. Consider
functions  .z; t/ and ' .z; t/ defined as

 .z; t/ D z C ˛t C 1; ' .z; t/ D exp .� ��/ : (1.237)
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Define the domainDˇ;˛ as

Dˇ;˛ D f.z; t/ W z; t > 0;  .z; t/ < 1C ˇg : (1.238)

The boundary of this domain is

@Dˇ;˛ D [3
iD1@iDˇ;˛; (1.239)

@1Dˇ;˛ D ft D 0; z 2 .0; ˇ/g ; (1.240)

@2Dˇ;˛ D
n
z D 0; 0 < t <

ˇ

˛

o
; (1.241)

@3Dˇ;˛ D fz; t > 0;  .z; t/ D 1C ˇg ; (1.242)

' .z; t/ j@3Dˇ;˛D exp Œ� .1C ˇ/��� D minDˇ;˛
' .z; t/ : (1.243)

It follows from (1.234) that when applying the Carleman estimate of Lemma
1.11.3 in the proof of Theorem 1.11.1.2, we will have Dirichlet and Neumann data
at @2Dˇ;˛ . At @3Dˇ;˛ the function ' .z; t/ attains its minimal value, which is one
of the key points of any Carleman estimate. However, we will not have any data at
@1Dˇ;˛ when applying Lemma 1.11.3. Note that @1Dˇ;˛ is not a level curve of the
function ' .z; t/ : Still, we prove that the integral over @1Dˇ;˛; which occurs in the
Carleman estimate due to the Gauss’ formula, contains only nonnegative terms with
the large parameters �; �3; see the second line of (1.244). The latter is the main new
feature of Lemma 1.11.3.

Lemma 1.11.3 (Carleman estimate). Let ˛ 2 .0; 1=2/ and ˇ; � > 0: Then, there
exist constants �0 D �0 .˛; ˇ; �/ > 1; C D C .˛; ˇ; �/ > 0 such that the following
Carleman estimate is valid:

Z

Dˇ;˛

.uzz � 2uzt /
2 '2dzdt � C�

Z

Dˇ;˛

�
u2z C u2t C �2u2

�
'2dzdt

CC�
Z

@1Dˇ;˛

�
u2z C �2u2

�
.z; 0/ '2 .z; 0/ dz

�C�3 exp Œ2� .ˇ C 1/���
Z

@3Dˇ;˛

�
u2z C u2t C u2

�
dS; (1.244)

8u 2 ˚u W u 2 C2
�
Dˇ;˛

�
; u j@2Dˇ;˛D @zu j@2Dˇ;˛D 0

�
; 8� � �0: (1.245)

Proof. In this proof, C D C .˛; ˇ; �/ > 0 denotes different positive constants.
Consider a new function v D u' and express uzz � 2uzt via v. By (1.237),
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u D v exp .�� ��/ ;

uz D �
vz C �� ���1v

�
exp .�� ��/ ;

uzz D
�

vzz C 2�� ���1vz C �2�2 �2��2


1 � .� C 1/

��
 �

�
v



exp .�� ��/ ;

uzt D
�

vzt C ˛�� ���1vz C �� ���1vt C ˛�2�2 �2��2


1 � .� C 1/

��
 �

�
v




� exp .�� ��/ ;

uzz � 2uzt D
�

vzz � 2vzt C .1 � 2˛/ �2�2 �2��2


1 � .� C 1/

��
 �
�

v




� exp .�� ��/C �
2 .1 � ˛/ �� ���1vz � 2�� ���1vt

�
exp .�� ��/ :

Denote

y1 D
h
vzz � 2vzt C .1 � 2˛/ �2�2 �2��2

�
1 � .�C1/

��
 �
�

v
i
;

y2 D 2 .1 � ˛/ �� ���1vz;

y3 D 2�� ���1vt :

Hence,

.uzz � 2uzt /
2 '2 � 2y1y2 � 2y1y3: (1.246)

We have

2y1y2 D 4 .1 � ˛/ �� ���1vz

�
vzz � 2vzt C .1 � 2˛/ �2�2 �2��2

�


1 � .� C 1/

��
 �

�
v




D @z
�
2 .1� ˛/ �� ���1v2z

�C 2 .1 � ˛/ �� .� C 1/ ���2v2z
C@t

��4 .1 � ˛/ �� ���1v2z
� � 4˛ .1� ˛/ �� .� C 1/ ���2v2z

C@z

�
2 .1 � ˛/ .1 � 2˛/ �3�3 �3��3



1 � .� C 1/

��
 �

�
v2



C6 .1 � ˛/ .1 � 2˛/ �3�3 .� C 1/ �3��4


1 � .2� C 3/

3��
 �

�
v2:

Thus,

2y1y2 D 2 .1 � ˛/ .1 � 2˛/ �� .� C 1/ ���2v2z

C6 .1 � ˛/ .1 � 2˛/ �3�3 .� C 1/ �3��4


1 � .2� C 3/

3��
 �

�
v2
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C@t
��4 .1 � ˛/ �� ���1v2z

�

C@z

�
2 .1 � ˛/ �� ���1v2z C 2 .1 � ˛/ .1 � 2˛/ �3�3 �3��3

�


1 � .� C 1/

��
 �

�
v2


: (1.247)

Next, we estimate �2y1y3:

�2y1y3 D �4�� ���1vt
�

vzz � 2vzt C .1 � 2˛/ �2�2 �2��2


1 � .� C 1/

��
 �
�

v




D @z
��4�� ���1vtvz

�C 4�� ���1vztvz � 4�� .� C 1/ ���2vtvz

C@z
�
4�� ���1v2t

�C 4�� .� C 1/ ���2v2t

C@t
�
�2 .1 � 2˛/ �3�3 �3��3



1� .� C 1/

��
 �

�
v2



�6˛ .1 � 2˛/ �3�3 .� C 1/ �3��4


1 � .2� C 3/

3��
 �

�
v2:

Next,

4�� ���1vztvz D @t
�
2�� ���1v2z

�C 2˛�� .� C 1/ ���2v2z :

Hence,

� 2y3y1 D 2�� .� C 1/ ���2 �˛v2z � 2vtvz C 2v2t
�

�6˛ .1 � 2˛/ �3�3 .� C 1/ �3��4


1 � .2� C 3/

3��
 �
�

v2

C@t
�
2�� ���1v2z � 2 .1 � 2˛/ �3�3 �3��3



1 � .� C 1/

��
 �

�
v2



C@z
��4�� ���1vtvz C 4�� ���1v2t

�
: (1.248)

Summing up (1.247) and (1.248) and taking into account (1.246), we obtain

.uzz � 2uzt /
2 '2 � 2y2y1 � 2y3y1

D 2�� .� C 1/ ���2 ��1 � 2˛ C 3˛2
�

v2z � 2vtvz C 2v2t
�

C6 .1 � 2˛/2 �3�3 .� C 1/ �3��4


1 � .2� C 3/

3��
 �

�
v2

C@t
�

� 2 .1 � 2˛/ �� ���1v2z � 2 .1 � 2˛/ �3�3 �3��3
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�


1 � .� C 1/

��
 �

�
v2



C@z

�
2 .1 � ˛/ �� ���1v2z C 2 .1� ˛/ .1 � 2˛/ �3�3 �3��3

�


1 � .� C 1/

��
 �

�
v2



C@z
��4�� ���1vtvz C 4�� ���1v2t

�
: (1.249)

For any ˛ 2 .0; 1=2/, there exists a constant C1 D C1 .˛/ > 0 such that

�
1 � 2˛ C 3˛2

�
a2 � 2ab C 2b2 � C1

�
a2 C b2

�
; 8a; b 2 R:

Hence, integrating (1.249) over Dˇ and using (1.239)–(1.243), and (1.245) as well
as the Gauss’s formula, we obtain

Z

Dˇ;˛

.uzz � 2uzt /
2 '2dzdt � 2�� .� C 1/ C1

Z

Dˇ;˛

�
v2z C v2t

�
 ���2dzdt

C6 .1 � 2˛/2 �3�3 .� C 1/

Z

Dˇ;˛

 �3��4


1 � .2� C 3/

3��
 �

�
v2dzdt

C
Z

@1Dˇ;˛

�
2 .1 � 2˛/ �� ���1v2z C 2 .1 � 2˛/ �3�3 �3��3

�


1 � .� C 1/

��
 �

�
v2



dz

C
Z

@3Dˇ;˛

�
� 2 .1 � 2˛/ �� ���1v2z � 2 .1 � 2˛/ �3�3 �3��3

�


1 � .� C 1/

��
 �

�
v2



cos .n; t/ dS

C
Z

@3Dˇ;˛

�
2 .1 � ˛/ �� ���1v2z C 2 .1 � ˛/ .1 � 2˛/ �3�3 �3��3

�


1 � .� C 1/

��
 �

�
v2



cos .n; z/ dS

C
Z

@3Dˇ;˛

��4�� ���1vtvz C 4�� ���1v2t
�

cos .n; z/ dS: (1.250)
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Here, cos .n; t/ is the cosine of the angle between the unit outward normal vector
n at @3Dˇ and the positive direction of t axis and similarly cos .n; z/. Since the
number � > 0 is fixed, we can incorporate it in the constant C . Change variables
back in (1.250) replacing v with u D v': Then we obtain (1.244) for sufficiently
large � � �0 .�; ˇ/. �

1.11.4 Proof of Theorem 1.11.1.2

We consider in this proof only the case z 2 fz > 0g since the case z 2 fz < 0g is
similar. Assume that there exist two pairs of vector functions:

�
u1;h .z; t/ ; a1;h .z/

�
and

�
u2;h .z; t/ ; a2;h .z/

�

satisfying conditions of this theorem. Then for z; t > 0 there exist two pairs of
functions: �

w1;h .z; t/ ; a1;h .z/
�

and
�
w2;h .z; t/ ; a2;h .z/

�
;

where

w1;h .z; t/ D u1;h .z; t C z/ and w2;h .z; t/ D u2;h .z; t C z/ :

Denote

ewh .z; t/ D w1;h .z; t/ � w2;h .z; t/ D ˚
ewi;j .z; t/

�.N1;N2/
.i;j /D.0;0/ ;

eah .z/ D a1;h .z/ � a2;h .z/ D ˚
eai;j .z/

�.N1;N2/
.i;j /D.0;0/ :

Then, (1.232)–(1.236) imply that

ewhzz � 2ewhztD ��h;x;yewhCa1;h .z/ewhCeah .z/w2;h .z; t/ ; .z; t/ 2 ft > 0; z > 0g ;
(1.251)

ewh .z; 0/ D 0; (1.252)

ewh .0; t/ D 0; @zewh .0; t/ D 0; t 2 .0; T / ;
Cewh 2 C3 .R � Œ0; T �/ : (1.253)

Hence, setting t D 0 in (1.251) and using (1.252), we obtain

eah .z/ D �4@z@tewh .z; 0/ : (1.254)

Let

evh .z; t/ D @tewh .z; t/ ; v2;h .z; t/ D @tw
2;h .z; t/ : (1.255)
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Differentiating (1.251) with respect to t and using (1.253) and (1.254), we obtain
for .z; t/ 2 ft > 0; z > 0g

evhzz � 2evhzt D ��h;x;yevh C a1;h .z/evh � 4@zevh .z; 0/ v2;h .z; t/ ; (1.256)

evh .0; t/ D 0; @zevh .0; t/ D 0; t 2 .0; T / : (1.257)

Since T > 2R; then .0;R=T / � .0; 1=2/ : In (1.237), choose an arbitrary ˛ 2
.R=T; 1=2/ and an arbitrary � > 0: Next, set in (1.238) ˇ WD R. Consider (1.256)
for the functionevi;j for an arbitrary pair .i; j / 2 Œ0; N1�� Œ0; N2�. Square both sides
of the latter equation, multiply by the function '2 .z; t/, and integrate overDR;˛:We
obtain with a constant

M D M
�
h0;

�
�a1;h

�
�
CŒ0;R�

;
�
�v2;h

�
�
C.DR/

�
> 0;

depending on listed parameters

Z

DR;˛

�
@2zevi;j � 2@z@tevi;j

�2
'2dzdt

� M

Z

DR;˛

�
evh .z; t/

�2
'2d zdt CM

Z

DR;˛

�
evi;j .z; 0/

�2
'2dzdt: (1.258)

Since the function '2 .z; t/ is decreasing with respect to t , we obtain from (1.241)
and (1.258)

Z

DR;˛

�
@2zevi;j � 2@z@tevi;j

�2
'2dzdt

� M

Z

DR;˛

�
evh .z; t/

�2
'2dzdt CM1

Z

@1DR;˛

�
evi;j .z; 0/

�2
'2 .z; 0/ dz; (1.259)

where the constantM1 D M1 .M;R; ˛/ > 0:

Applying Lemma 1.11.3 to the left-hand side of (1.259) and using (1.257), we
obtain

C�

Z

DR;˛

h�
@zevi;j

�2 C �
@tevi;j

�2 C �2
�
evi;j

�2i
'2dzdt

CC�
Z

@1DR;˛

h�
@zevi;j

�2 C �2
�
evi;j

�2i
.z; 0/ '2 .z; 0/ dz



92 1 Two Central Questions of This Book and an Introduction to the Theories: : :

�C�3 exp .2� .RC 1/��/
Z

@3DR;˛

h�
@zevi;j

�2 C �
@tevi;j

�2 C �
evi;j

�2i
dS

� M

Z

DR;˛

�
evh .z; t/

�2
'2dzdt CM1

Z

@1DR;˛

�
evi;j .z; 0/

�2
'2 .z; 0/ dz: (1.260)

Choose a sufficiently large number �0 > 1 such that

max .M;M1/ <
C�30
2
: (1.261)

Then with a new constant C > 0, we obtain from the estimate (1.260)

C�

Z

DR;˛

h�
@zevi;j

�2 C �
@tevi;j

�2 C �2
�
evi;j

�2i
'2dzdt

CC�3
Z

@1DR;˛

�
evi;j

�2
.z; 0/ '2 .z; 0/ dz

�C�3 exp Œ2� .RC 1/���
Z

@3DR;˛

h�
@zevi;j

�2 C �
@tevi;j

�2 C �
evi;j

�2i
dS

� M

Z

DR;˛

�
evh .z; t/

�2
'2dzdt: (1.262)

Summing up estimates (1.262) with respect to .i; j / 2 Œ0; N1� � Œ0; N2� and using
(1.261), we obtain a stronger estimate:

Z

DR;˛

�
evh
�2
'2dzdt � C exp Œ2� .RC 1/���

Z

@3DR;˛

h�
evhz
�2 C �

evht
�2 C �

evh
�2i

dS:

(1.263)
Let " 2 .0;R/ be an arbitrary number. By (1.237) and (1.238),

'2 .z; t/ > exp Œ2� .RC 1 � "/��� in DR�"; DR�" � DR:

Hence, making the estimate (1.263) stronger, we obtain

exp Œ2� .RC 1 � "/���
Z

DR�";˛

�
evh
�2

dzdt � C exp Œ2� .RC 1/���

�
Z

@3DR;˛

h�
evhz
�2 C �

evht
�2 C �

evh
�2i

dS
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or
Z

DR�";˛

�
evh
�2

dzdt � C exp f�2� Œ.RC 1 � "/�� � .R C 1/���g

�
Z

@3DR;˛

h�
evhz
�2 C �

evht
�2 C �

evh
�2i

dS:

Setting here � ! 1; we obtain

Z

DR�";˛

�
evh
�2

dzdt D 0: (1.264)

Since " 2 .0;R/ is an arbitrary number, then (1.264) implies that

evh .z; t/ D 0 in DR;˛:

Since by (1.254),

eah .z/ D �4@z@tewh .z; 0/ D �4@zevh .z; 0/ ;

theneah .z/ D 0 for z 2 .0;R/ : Thus, the function ah .z/ is uniquely determined for
z 2 fjzj < Rg :

Equations (1.220) represent a coupled system of 1D wave-like equations.
Conditions (1.221) and (1.223) are Cauchy data for this system at ft D 0g and
fz D 0; t 2 .0; T /g, respectively. Because of the 1D case, the time variable can be
treated as the spatial variable and vice versa. Hence, treating for a moment z as the
time variable and t as the spatial variable and recalling that the vector function ah .z/
is known for z 2 fjzj < Rg, one can apply the standard energy estimate to (1.220),
(1.221), and (1.223) for fz 2 .0;R/g : It follows from this estimate that the vector
function uh .z; t/ is uniquely determined in the domain

.z; t/ 2 fz 2 .0;R/ ; t 2 .0; T � z/g :

Similarly, the function uh .z; t/ is uniquely determined in the domain

.z; t/ 2 fz 2 .�R; 0/ ; t 2 .0; T C z/g :

Thus, (1.226) is established. �
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