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Preface

This book focuses on two new ideas of the authors: approximate global convergence
and adaptive finite element method (FEM) for coefficient inverse problems (CIPs)
for a hyperbolic partial differential equation (PDE). The first chapter might be
used as an introductory course to the theory of ill-posed problems. In addition, a
number of uniqueness theorems for CIPs are proved in this chapter via the method of
Carleman estimates. The book features many recipes for numerical implementations
of developed algorithms. Those readers who would wish to focus on numerical
studies, might skip the reading of the convergence analysis. Naturally, those recipes
are accompanied by many numerical examples. These examples address both
synthetic (computational) and experimental data.

Two types of experimental data are studied: the data collected in a laboratory and
the data collected in the field by a forward-looking radar of the US Army Research
laboratory (ARL); see [126] for the description of this radar. In both cases, the most
challenging case of blind experimental data is considered. Results of numerical
testing for both synthetic and experimental data are in a good agreement with the
convergence analysis. Results for ARL data address a real world problem of imaging
of explosives using the data of the forward-looking radar of ARL.

Suppose that the propagation of a signal through a medium of interest is governed
by a PDE. Assume that one wants to calculate a certain spatially distributed internal
property of that medium using measurements of the output signal either at the entire
boundary or at a part of the boundary of that medium. This property is usually
described by a spatially dependent coefficient of that PDE. Thus, one arrives at a
CIP for that PDE. This CIP is about the computation of that coefficient using those
boundary measurements.

Having a good approximation for the coefficient of interest, one can visualize
its spatial distribution. In other words, one can create an image of the interior of
that medium. Hence, in simple terms, a CIP is a problem of “seeing through” the
medium, i.e., this is the problem of imaging of the interior structure of that medium.
Some examples of those properties of interest are spatially distributed dielectric
permittivity, electric conductivity, and sound speed. It is clear from the above that
CIPs have a broad range of applications in, for example, geophysics, imaging of land
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mines, and, more generally, hidden explosives, geophysics, and medical imaging,
etc. However, having said this, the next question is: Given measurements of an
output signal, how to actually calculate the unknown coefficient of interest?

CIPs are both nonlinear and ill-posed. These two factors combined cause very
substantial difficulties in the goal of addressing this question. The very first
idea which comes in mind is to minimize a least squares objective functional
and approximate solution this way. However, these functionals suffer from the
phenomenon of local minima and ravines. Hence, any gradient-like technique of the
minimization of such a functional will likely stop at such a point of a local minimum
which is the closest one to the starting point of that iteration process. Because of the
local minima problem, all conventional algorithms for CIPs are locally convergent
ones. This means that their convergence can be rigorously guaranteed only if the
starting point of iterations is sufficiently close to the exact solution. However, a
knowledge of a sufficiently small neighborhood of the exact coefficient is a luxury
in the majority of applications.

Therefore, it is important for many applications to develop such numerical
methods which would provide good approximations for exact solutions of CIPs
without any advanced knowledge of small neighborhoods of exact solutions. This
goal is an enormously challenging one. Hence, to achieve it, one can work with
some approximate mathematical models. Still, these models should be verified
numerically. It is also desirable to verify those approximate mathematical models
on experimental data, provided of course that such data are available (usually
it is both hard and expensive to get experimental data). Thus, we use a new
term for such numerical methods “approximate global convergence.” Results of
abovementioned testing on synthetic and experimental data validate approximate
mathematical models.

The development of approximately globally convergent numerical methods for
CIPs with single measurement data has started from the so-called convexification
algorithm [101,102,157-160], which the authors consider as an approximately glob-
ally convergent method of the first generation. The book focuses on a substantially
different approach, which can be regarded as the approximately globally convergent
method of the second generation. This approach was developed by the authors in
2008-2011 [9,24-29,109, 114-117,160].

Only the single measurement case is considered in this book. The term “single
measurement” means that only a single position of the point source or a single
direction of the incident plane wave is used to generate the data. This case is
preferable in, for example, military applications in which one wants to minimize
the number of measurements because of many dangers on the battlefield.

The main interest in computations of applied CIPs is an accurate imaging of
both locations of small inclusions as well as values of unknown coefficients inside
them. Those inclusions are embedded in an otherwise slowly changing background
medium. This is because those inclusions are, for example, land mines, tumors,
defects in materials, etc. It is important to accurately calculate values of unknown
coefficients, because they can help to identify those inclusions. We do not separate
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between inclusions and backgrounds. Rather we just calculate unknown coefficients.
A different approach to the topic of imaging of small inclusions can be found
in [4-6].

This book considers both two-dimensional and three-dimensional CIPs for an
important hyperbolic PDE and addresses two questions which are the central ones
for numerical treatments of those CIPs:

1. How to calculate a good approximation for the exact solution without an
advanced knowledge of a small neighborhood of this solution?
2. How to refine that approximation?

The first question is addressed via a new approximately globally convergent
numerical method of the authors. Corresponding approximate mathematical models
basically amount to the truncation of a certain asymptotic series. The second
question is addressed via a locally convergent adaptive finite element method
(adaptivity). It is natural therefore that a two-stage numerical procedure is devel-
oped. On the first stage, the approximately globally convergent method provides a
good approximation for the exact coefficient. On the second stage, this approxima-
tion is refined via the adaptivity. A detailed convergence analysis for both stages is
an important part of this book.

The work on this book was generously supported by US Army Research
Laboratory and US Army Research Office (ARO) grants W911NF-08-1-0470,
WOII11NF-09-1-0409, and W911NF-11-1-0399, by National Institutes of Health
(USA) grant IR2INS052850-01A1, by Swedish Research Council, Swedish Foun-
dation of Strategic Research, Gothenburg Mathematical Modeling Center and by
Visby Program of Swedish Institute. We express our special gratitude to Dr. Joseph
D. Myers, the Program Manager of the Numerical Analysis program of ARO.

Computations of Chaps.3-5 and Sect. 6.8.5 were performed (1) on 16 parallel
processors in NOTUR 2 production system of NTNU, Trondheim, Norway (67
IBM p575+16 way nodes, 1.9 GHz dual-core CPU, 2,464 GB memory) and (2)
in a center for scientific and technical computing C3SE at Chalmers University
and Gothenburg University, Gothenburg, Sweden. Computations of Chap.6 with
the only exception of Sect.6.8.5 were performed computational facilities of the
Department of Mathematics and Statistics of University of North Carolina at
Charlotte, Charlotte, USA.

A number of our colleagues, who are listed below in the alphabetical order, have
helped us in our work on this book. Dr. Mohammad Asadzadeh has collaborated
with the first author on the development of the idea of using the adaptivity inside the
approximately globally convergent method. This has resulted in the adaptive one-
stage numerical procedure; see [9] and Sect.4.17. Dr. Anatoly B. Bakushinsky has
provided a significant input in our formulation of the definition of the approximate
global convergence property and has also advised us many times on a number of
issues of the theory of ill-posed problems; see [111] and Sect. 1.8. Dr. Christian
Clason has collaborated with the first author on the subject of the application of the
adaptivity technique to scanning acoustic microscopy; see [21] and Sect. 4.14.2.2.
Drs. Michael A. Fiddy and John Schenk have collected experimental data in the
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Microwave Laboratory of University of North Carolina at Charlotte; see Chap. 5 as
well as [28,109]. Dr. Irina Gainova has helped us with many technical issues related
to the text of this book. Dr. Claes Johnson was Ph.D. advisor of the first author. He
has presented to the first author the idea of the adaptivity for the CIPs, for the first
time; see [16,20] and Sects. 4.5 and 4.14. Dr. Mikhail Yu. Kokurin has collaborated
with us on the topic of the accuracy improvement with mesh refinements in the
adaptivity technique; see [29] as well as Sects. 1.9, 4.1.2, and 4.9. Drs. Andrey
V. Kuzhuget and Natee Pantong have performed computations of the major part
of results of Chap. 6; also see [114-117]. Drs. Lam Nguyen and Anders Sullivan
from ARL have supplied us with experimental data collected by the forward-looking
radar of ARL in the field, along with the permission to use these data in the current
book; see Sect. 6.9 of Chap. 6. The corresponding joint work is [117]. Dr. Roman
G. Novikov has given us a number of quite useful advises on some analytical and
numerical issues. We sincerely appreciate a great help of all these individuals.

Gothenburg, Sweden Larisa Beilina
Charlotte, North Carolina, USA Michael Victor Klibanov
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Chapter 1

Two Central Questions of This Book

and an Introduction to the Theories of Ill-posed
and Coefficient Inverse Problems

This is an introductory chapter. In Sect. 1.1, we outline two central questions
discussed in this book. Sections 1.2-1.9 are introductory ones to the theory of ill-
posed problems. In Sects. 1.10 and 1.11, we present main uniqueness results for
coefficient inverse problems (CIPs) with the single measurement data. The material
of this chapter might serve as an introductory course for theories of ill-posed and
CIPs. We refer to books [7,10,41,45,48,51, 54,60, 65, 83, 84,90,93,94, 102, 124,
138,143,144,153, 154] where various I1l-Posed and CIPs were studied.

This book focuses on CIPs with single measurement time resolved data. “Single
measurement” means that the data are generated by either a single location of
the point source or a single direction of the incident plane wave. More generally,
in the case of a CIP for a hyperbolic partial differential equation (PDE), “single
measurement” means that only one pair of initial conditions is available, and in the
case of a CIP for a parabolic PDE, only one initial condition is available. In other
words, single measurement amounts to the minimal information content. The single
measurement arrangement is the most suitable one for military applications. Indeed,
because of various dangers on the battlefield, it is desirable to minimize the number
of measurements in the military environment.

The single measurement case is the most economical way of data collection with
the minimal available information. At the same time, because of the minimal in-
formation content, it is apparently more challenging than the multiple measurement
case. At the time of the submission of this book the authors are unaware about other
research groups working on non-local numerical methods for multidimensional
CIPs with single measurement data.

CIPs with the data resulting from multiple measurements are also considered in
the mathematical literature. These CIPs have applications in, for example, medical
imaging and geophysics. In the case of multiple measurements, either the point
source should run along a manifold or the direction of the incident plane wave
should vary within a certain cone. We refer to, for example, [3, 35, 46, 63,75, 82,
90,92, 129-132] and references cited therein for some nonlocal algorithms for CIPs
with multiple measurements.

L. Beilina and M.\V. Klibanov, Approximate Global Convergence and Adaptivity 1
for Coefficient Inverse Problems, DOI 10.1007/978-1-4419-7805-9_1,
© Springer Science+Business Media, LLC 2012



2 1 Two Central Questions of This Book and an Introduction to the Theories. . .

CIPs have many applications, for example, geophysics, detection of explosives
(e.g., land mines), and medical imaging of malignant tumors. Because of these
applications, we focus our numerical studies on imaging of small sharp abnormal-
ities embedded in an otherwise slowly changing background medium. We image
both locations of these inclusions and values of the unknown coefficient inside
them. However, we are not interested in imaging of slowly changing backgrounds.
We point out to an important point: our algorithms, which address the first central
question of this book, as well as those of the two-stage numerical procedure
(Sect. 1.1), do not use a priori knowledge of the background medium. An application
to the detection of explosives is addressed in Sect. 6.9 of Chap. 6 for the case of blind
experimental data collected by a radar in the field.

1.1 Two Central Questions of This Book

Since the field of inverse problems is an applied one, it is important to develop
numerical methods for these problems. The following are the two central questions
which inevitably surface in the computational treatment of any CIP for a PDE:

The First Central Question. Consider a CIP and suppose that this problem has
unique exact solution for noiseless data. Assume that we have a small noise in
the data. Then the question is, how fo develop such a numerical method for
this CIP, which would provide an approximate solution located in a sufficiently
small neighborhood of that exact solution without any a priori knowledge of this
neighborhood? The most important point here is that this method should not rely
on the assumption of a priori knowledge of that neighborhood. The second very
important point is that the property of obtaining such an approximation should be
rigorously guaranteed. However, since CIPs are enormously challenging ones, then
one has no choice but to “allow” this rigorous guarantee to be within the framework
of a certain reasonable approximate mathematical model. Numerical studies should
confirm this property. It is also desirable to provide an addition confirmation for the
case of experimental data.

The most challenging case of blind experimental data is especially persuasive
one. Indeed, since results are unbiased in this case, then the success in the blind
data case would mean an ultimate verification of that approximate mathematical
model. Similarly, the ultimate verification of any Partial Differential Equation of
Mathematical Physics is in experiments. Results for blind experimental data are
described in Chap. 5 and Sect. 6.9 of this book.

The Second Central Question. Suppose that the approximate solution mentioned
in the first central question is computed. The second central question is, how fo
refine this solution? Indeed, since an approximate mathematical model is used, then
the room might be left for a refinement.
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Roughly speaking, any numerical method addressing the first central question
is called globally convergent. However, because of the abovementioned approxi-
mation, we use in this book the term approximate global convergence. A rigorous
definition of this term is presented in Sect. 1.1.2. Still, a short term for the latter is
global convergence.

It is well known that there are a number of numerical methods for one-
dimensional CIPs which do not require a priori knowledge of a small neighborhood
of the exact solution; see, for example, [40, 47, 51, 56, 90] and references cited
therein. At the same time, the latter is not the case for multidimensional CIPs. In this
book, we consider only multidimensional CIPs with the only exception of Sect. 6.9.
Thus, below, the abbreviation “CIP” always means an n-D CIP (n = 2, 3).

Conventional numerical methods for CIPs, such as, for example, various versions
of Newton and gradient methods, converge locally, i.e., they need to use a good
approximation for the exact solution to start from; see, for example, books [10,93]
for these methods for ill-posed problems. However, in the case of CIPs, such an
approximation is rarely available in applications. Nevertheless, locally convergent
methods can well be used to address the second central question. Indeed, the main
input which any locally convergent algorithm needs is a good approximation for the
exact solution. This approximation would be used as the starting point for iterations.

The above two questions were addressed in a series of recent publications of the
authors for 2D and 3D CIPs for a hyperbolic PDE [9, 24-29, 109, 114-117, 160].
In particular, numerical methods addressing first and second central questions were
synthesized in these publications in a two-stage numerical procedure. On the first
stage, a good approximation for the exact solution is obtained for a CIP via our
approximately globally convergent algorithm. Hence, the first central question is
addressed on the first stage. On the second stage, this approximation is taken as the
starting point for iterations of a locally convergent adaptive finite element method
(adaptivity). In other words, the second central question is addressed on the second
stage.

Unlike traditional numerical methods for CIPs, our technique, which addresses
the first central question, does not use least squares functionals. Rather, only the
structure of the underlying PDE operator is used. Also, it does not use a knowledge
of the background values of the unknown coefficient. The goal of this book is
to present results of above cited publications of the authors in a concise way. In
addition, some previous results of the authors are presented as well.

An approximately globally convergent numerical method, which is similar to the
one of this book, was developed in parallel for the case of a CIP for an elliptic PDE:

Au—a (xX)u =—8(x —xo),x € R?,

with the point source {x(} running along a straight line. This CIP has direct
applications in medical optical imaging. That effort was undertaken by a team of
researchers from the University of Texas at Arlington in collaboration with the
second author of this book [110, 135, 147, 149, 150]. However, a description of this
effort is outside of the scope of the current book.
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1.1.1 Why the Above Two Questions Are the Central Ones
Jor Computations of CIPs

Consider a radiation propagating through a medium. Some examples of the radiation
are electromagnetic (EM), acoustical, thermo, light, and nuclear. Usually, the
propagation of a radiation is governed by a PDE. Suppose that one needs to figure
out the spatial dependence of one of properties of that medium. That property of
interest is described by one of coefficients of the governing PDE. Some examples of
such properties are the spatially distributed dielectric constant, electric conductivity,
speed of sound, and absorption coefficient of light. If one would approximately
calculate the spatial distribution of the property of interest, then one would create
an image of the interior of that medium.

An attractive goal is to image that property of interest without placing detectors
inside the medium. The latter is called noninvasive imaging. To obtain a noninvasive
image, one can place detectors at some positions either at the entire boundary of the
medium or at a part of it. In the first case, one would have complete data, and one
would have incomplete data in the second case. Quite often, detectors can be placed
only rather far from the medium. The latter is the case in, for example, imaging of
explosives. Detectors would measure the output radiation. That output signal should
have some trace of the property of interest. Suppose that readings of those detectors
are interpolated in one of standard ways over the surface where those detectors are
placed. Then the resulting function represents a boundary condition for that PDE.
This is an extra boundary condition, the one which is given in addition to the original
boundary condition for that equation. We call this boundary condition the measured
data or shortly the data. For example, if originally one has the Neumann boundary
condition, then the additional one is the Dirichlet boundary condition. The idea is to
compute that unknown coefficient of the governing PDE (i.e., the unknown property
of ones interest) using this additional boundary condition. Hence, we arrive at a CIP
for that PDE.

Therefore, a CIP for a PDE is the problem of the reconstruction of an unknown
spatially dependent coefficient of that PDE, given an additional boundary condition.
This boundary condition can be given either at the entire boundary or at its part, and
it models measurements of the corresponding output signal propagating through
the medium of interest. Thus, to find a good approximation of the target property,
one should solve numerically that CIP using the measured data. Clearly, these data
contain a noisy component, since noise is inevitable in any measurement.

It is well known that it is extremely hard to solve a CIP. First, an important
theoretical question is far not easy to address. Namely, this is the question about the
uniqueness of the solution of a CIP. It will be clear from the material of this chapter
that the uniqueness is one of the central questions to address in order to justify
numerical methods for CIPs. This is why many mathematicians work on proofs of
uniqueness theorems for CIPs. At the same time, since the discipline of inverse
problems is an applied one, it is insufficient only to prove a uniqueness theorem.
Along with proofs of uniqueness results, an important question is to construct
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reliable numerical methods. However, there are two main phenomena which cause
huge challenges in the latter topic. These phenomena are the nonlinearity and the
ill-posedness of CIPs combined. A problem is called ill-posed if small fluctuations
of input data, which are inevitable in any experiment, can cause large fluctuations
of resulting solutions. In other words this problem is unstable.

Here is a trivial example of the nonlinearity. Consider the Cauchy problem for
the simplest ordinary differential equation:

y' =ay.y0) =1, (1.1)

where a = const. # 0. The solution of the problem (1.1) is y (f,a) = e“.
Obviously, the function y (¢, @) depends nonlinearly on the coefficient a.

As to the numerical solution of a CIP, the first idea which naturally comes in mind
is to construct a least squares cost functional and to minimize it then. It seems to be,
on the first glance, that the point of the minimum of this functional should provide
a good approximation for the exact solution. However, there are some serious
problems associated with this idea. Indeed, because of the nonlinearity and the ill-
posedness of CIPs, corresponding cost functionals usually suffer from the problem
of multiple local minima and ravines; see, for example, [102] for some examples.
Furthermore, there is no guarantee that a point of a global minimum is indeed close
to the correct solution. Suppose, for example, that a cost functional has one hundred
(100) points of local minima, one of them is a global one, the values of this func-
tional at those points of local minima differ from each other by 0.5%, and the noise
in the measured data is 5%. This might well happen when solving a 3D/2D CIP.
Hence, there are no rigorous methods to decide which of these local minima is in-
deed close to the correct solution. Therefore, the idea of the minimization of the cost
functional can work only in the case when a good first approximation for the exact
solution is known in advance. However, the latter is a luxury in many applications.

A standard way to treat an ill-posed problem numerically is to minimize the
Tikhonov regularization functional; see Sects. 1.7 and 1.8 below in this chapter
for this functional. However, if the original problem is nonlinear, for example, a
CIP, then this idea also cannot work in practical computations unless a good first
approximation for the exact solution is available. In other words, one should know
in advance such an approximation, which is located in the ¢- neighborhood of the
exact solution, where & > 0 is sufficiently small. Indeed, the theory of the Tikhonov
functional is based on the assumption that one can find a minimizing sequence,
which ensures the convergence of the values of that functional to its infimum.
However, the search of such a sequence can well face the abovementioned problem
of local minima and ravines; see, for example, p. 3 of [93] for a similar observation.

Since the first central question is very challenging one to address, then it is hard
to anticipate that it can be addressed without some approximations. In other words, a
certain reasonable approximate mathematical model should likely be used. Because
this model is not an exact one, it is likely that the above good approximation for the
exact solution can be refined by one of locally convergent numerical methods. Thus,
we arrive at the above second central question.
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1.1.2 Approximate Global Convergence

Because of the approximate mathematical model mentioned both in the beginning
of Sect. 1.1 and in the end of Sect. 1.1.1, we now discuss the notion of the global
convergence. The common perception of the notion of a globally convergent
numerical method is that this should be such an iterative algorithm which converges
to the exact solution of a corresponding problem starting from an arbitrary point of
a sufficiently large set. However, if thinking more carefully, all what one needs is to
obtain a point in a sufficiently small neighborhood of the exact solution, provided
that iterations would start not from an arbitrary point but rather from a prescribed
and rather easily selected point. At the same time, the choice of that starting point
should not be based on an a priori knowledge of a small neighborhood of the exact
solution. In addition, one should have a rigorous guarantee of reaching that small
neighborhood if starting from that selected point. Furthermore, it would be sufficient
if that small neighborhood would be reached after a finite number of iterations. In
other words, it is not necessary to consider infinitely many iterations, as it is usually
done in the classical convergence analysis. On the other hand, since nonlinear
problems are usually extremely challenging ones, some approximations should be
allowed when developing such numerical methods. A valuable illustration of the
idea of “allowed approximations” is the fifth Remark 1.1.2.1 below in this section.
These thoughts have generated our definition of the approximate global convergence

property.

Definition 1.1.2.1 (Approximate global convergence). Consider a nonlinear ill-
posed problem P. Suppose that this problem has a unique solution x* € B for the
noiseless data y*, where B is a Banach space with the norm ||-|| 5 . We call x* “exact
solution” or “correct solution.” Suppose that a certain approximate mathematical
model M, is proposed to solve the problem P numerically. Assume that, within
the framework of the model M|, this problem has unique exact solution x}fll . Also,
let one of assumptions of the model M; be that xj, = x*. Consider an iterative
numerical method for solving the problem P. Suppose that this method produces a
sequence of points {x, }fle C B, where N € [1,00). Let the number ¢ € (0,1).
We call this numerical method approximately globally convergent of the level ¢, or
shortly globally convergent, if, within the framework of the approximate model M|,
a theorem is proven, which guarantees that, without any a priori knowledge of a
sufficiently small neighborhood of x*, there exists a number N e [1, N) such that

X, —x*|| 3 <e.Vn > N. (1.2)

Suppose that iterations are stopped at a certain number k > N. Then the point x;
is denoted as xj := Xglob and is called “the approximate solution resulting from this
method.”

This is our formal mathematical definition of the approximate global conver-
gence property. However, since the approximate mathematical model M is involved
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in it, then a natural question can be raised about the validity of this model. This
question can be addressed only via computational experiments. In fact, it is a success
in computational experiments, which is the true key for the verification of the model
M. In addition, it would be good to verify M, on experimental data. These thoughts
lead to the following informal definition of the approximate global convergence

property.

Definition 1.1.2.2 (informal definition of the approximate global convergence
property). Consider a nonlinear ill-posed problem P. Suppose that this problem
has a unique solution x* € B for the noiseless data y*, where B is a Banach space
with the norm ||| 5 . Suppose that a certain approximate mathematical model M| is
proposed to solve the problem P numerically. Assume that, within the framework
of the model M|, this problem has unique exact solution x;}l. Also, let one of
assumptions of the model M, be that xj; = x*. Consider an iterative numerical
method for solving the problem P. Suppose that this method produces a sequence
of points {xn}flvzl C B, where N € [1,00). Let the number ¢ € (0,1). We call
this numerical method approximately globally convergent of the level ¢, or shortly
globally convergent, if the following three conditions are satisfied:

1. Within the framework of the approximate model M, a theorem is proven, which
claims that, without any knowledge of a sufficiently small neighborhood of x*,
there exists a number N € [1, N) such that the inequality (1.2) is valid.

2. Numerical studies confirm that xg,}, is indeed a sufficiently good approximation
for the true exact solution x*, where xgqp is introduced in Definition 1.1.2.1.

3. Testing of this numerical method on appropriate experimental data also demon-
strates that iterative solutions provide a good approximation for the exact one
(optional).

We consider the third condition as an optional one because it is sometimes
both hard and expensive to obtain proper experimental data. Furthermore, these
data might be suitable only for one version of that numerical method and not
suitable for other versions. Nevertheless, we believe that good results obtained
for experimental data provide an ultimate confirmation of the validity of the
approximate mathematical model M.

Remarks 1.1.2.1. 1. We repeat that we have introduced these two definitions
because of substantial challenges which one inevitably faces when attempting
to construct reliable numerical methods for CIPs. Indeed, because of these
challenges, it is unlikely that the desired good approximation for the exact
solution would be obtained without a “price.” This price is the approximate
mathematical model M.

2. The main requirement of the above definitions is that this numerical method
should provide a sufficiently good approximation for the exact solution x*
without any a priori knowledge of a sufficiently small neighborhood of x*.
Furthermore, it is important that one should have a rigorous guarantee of the
latter, within the framework of the model M;.
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3. Unlike the classical convergence, these definitions only require that points
{xn }1;=1 belong to a small neighborhood of the exact solution x*. However, the
total number of iterations N can be finite in Definitions 1.1.2.1, 1.1.2.2. Such
algorithms are not rare in the theory of Ill-Posed Problems. As two examples, we
refer to Theorem 4.6 of [10] and Lemma 6.2 on page 156 of [65] for some other
numerical methods with the property (1.2). Actually, (1.2) is sufficient, since one
can apply a refinement procedure on the second stage, i.e. a procedure addressing
The Second Central Question.

4. Therefore, the above definitions leave the room for a refinement of the approxi-
mate solution xgop Via a subsequent application of a locally convergent numerical
method. The latter is exactly what the second central question is about.

5. As to the approximate mathematical model M|, here is a good analogy. First of
all, all equations of mathematical physics are approximate ones. More precisely,
it is well known that the Huygens-Fresnel optics is not yet rigorously derived
from the Maxwell equations. We now cite some relevant statements from
Sect. 8.1 of the classical book of Born and Wolf [36]. “Diffraction problems are
amongst the most difficult ones encountered in optics. Solutions which, in some
sense, can be regarded as rigorous are very rare in diffraction theory.” Next,
“because of mathematical difficulties, approximate models must be used in most
cases of practical interest. Of these the theory of Huygens and Fresnel is by far
the most powerful and is adequate for the treatment of the majority of problems
encountered in instrumental optics.” It is well known that the entire optical indus-
try nowadays is based on the Huygens-Fresnel theory. Analogously, although the
numerical method of this book works only with approximate models, its accurate
numerical performance has been consistently demonstrated in [24-29, 109, 114—
116], including the most challenging case of blind experimental data; see [109],
Chap. 5, and Sect. 6.9.

Based on Definitions 1.1.2.1, 1.1.2.2, we address The First Central Question of
this book via six steps listed below.

Step 1. A reasonable approximate mathematical model is proposed. The accuracy
of this model cannot be rigorously estimated.

Step 2. A numerical method is developed, which works within the framework of
this model.

Step 3. A theorem is proven, which guarantees that, within the framework of
this model, the numerical method of Step 2 indeed reaches a sufficiently small
neighborhood of the exact solution, as long as the error, both in the data and in
some additional approximations is sufficiently small. It is a crucial requirement
of our approach that this theorem should not rely neither on the assumption about
a knowledge of any point in a small neighborhood of the exact solution nor on the
assumption of a knowledge of the background medium inside the domain of interest.
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Step 4. Testing of the numerical method of Step 2 on computationally simulated
data.

Step 5. Testing of the numerical method of Step 2 on experimental data (if
available). To have a truly unbiased case, the most challenging case of blind
experimental data is preferable.

Step 6. Finally, if results of Step 4 and Step 5 are good ones, then we conclude that
our approximate mathematical model is a valid one. However, if experimental data
are unavailable, while results of Step 4 are good ones, then we still conclude that
our approximate mathematical model is a valid one.

Step 6 is logical, because its condition is that the resulting numerical method
is proved to be effective. It is sufficient to achieve that small neighborhood of the
exact solution after a finite (rather than infinite) number of iterations. Next, because
of approximations in the mathematical model, the resulting solution can be refined
via a locally convergent numerical method, i.e. the Second Central Question should
be addressed.

Therefore, the key philosophical focus of Definitions 1.1.2.1 and 1.1.2.2 is
the point about natural assumptions/approximations which make the technique
numerically efficient and, at the same time, independent on the availability of a
good first guess.

The next definition is about a locally convergent numerical method for a
nonlinear ill-posed problem. In this definition, we consider the Tikhonov functional
which is introduced in Sect.1.7. While sometimes the existence of a minimizer
of the Tikhonov functional can be proved in an infinitely dimensional space, in
a generic case of a nonlinear ill-posed problem, for example, CIP, this existence
cannot be guaranteed; see Sects. 1.7.1 and 1.7.2. On the other hand, the existence
of a minimizer for the classical Tikhonov regularization functional is guaranteed
only in the case of a finite dimensional space (Sect. 1.8). This minimizer is called
a regularized solution (in principle, one might have many minimizers). A good
example of such a finite dimensional space is the space of piecewise linear finite
elements. Furthermore, this is a natural space to use in practical computations, and
we use it throughout this book.

Still, the resulting finite dimensional problem inherits the ill-posed nature of the
original ill-posed problem. Thus, the Tikhonov regularization functional should be
used in that finite dimensional space. At the same time, since a finite dimensional
space is taken instead of an infinitely dimensional one, then this can be considered
as an approximate mathematical model of the original ill-posed problem. Thus, the
approximate mathematical model M, for an ill-posed problem P means that P is
considered in a finite dimensional space.

Definition 1.1.2.3. Consider a nonlinear ill-posed problem P. Suppose that this
problem has a exact unique solution x* € B for the noiseless data y*, where
B is a Banach space. Consider the approximate mathematical model M, for the
problem P. The model M, means the replacement of the infinitely dimensional
space B with a finite dimensional Banach space By, dim By = k. Assume that,
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within the framework of the model M,, the problem P has unique exact solution
Xy, € Bi and let one of assumptions of the model M, be that xj, = x*. Let
G C By be an open bounded set. Let the small number § > 0 be the level of the error
in the data and @ = « (§) be the regularization parameter depending on § (Sect. 1.4).
For the problem P, consider the Tikhonov functional defined in Sect. 1.7. Consider
an iterative numerical method of the minimization of this functional on the set G.
Suppose that this method starts its iterations from the point x¢ and produces iterative
solutions {x 5}n C G. Let x4(5) € G be a minimizer of the Tikhonov functional
with o = a (§). Let 80, p € (0, 1) be two sufficiently small numbers. We call this
method locally convergent, if the following two conditions are satisfied:

1. A theorem is proven, which ensures that if § € (0,8) and |[xo — x*| 5, =< p,
then
lim H)C — Xa(5) ”B =0, Ve (0 50)

n—o0

2. This theorem also claims that
lim [ xa) = x*[ 5, = 0.

On the other hand, the global convergence in the classical sense intuitively means
that, regardless on the absence of a good first approximation for the exact solution,
the iterative solutions tend to the exact one, as long as certain parameters tend
to their limiting values. This, as well as Definitions 1.1.2.1 and 1.1.2.3 lead to
Definition 1.1.2.4. Prior this definition, we need to impose the Assumption 1.1.2.
We impose this assumption only for the simplicity of the presentation. Note that
Assumption 1.1.2 makes sense only if the two-stage numerical procedure mentioned
in Sect. 1.1 is applied. However, if only the first stage is applied, then we do not need
this assumption.

Assumption 1.1.2. Suppose that a nonlinear ill-posed problem P is the same
in both Definitions 1.1.2.1 and 1.1.2.3. Suppose that the two-stage numerical
procedure mentioned in Sect. 1.1 is applied. Then, we assume throughout the book
that the finite dimensional space By € B and that the exact solution x™* is the same
for both mathematical models M|, M, of these two stages.

Definition 1.1.2.4. Consider a nonlinear ill-posed problem. Let B and Bj be
the Banach spaces, ¢ and p be the numbers of Definitions 1.1.2.1 and 1.1.2.3,
respectively, and let By € B and ¢ € (0, p] . Consider a numerical procedure for
this problem, which consists of the following two stages:

1. On the first stage, a numerical method satisfying conditions of Definitions 1.1.2.1
is applied, and it ends up with an element xgo, € By satisfying inequality (1.2).

2. On the second stage, a locally convergent numerical method satisfying conditions
of Definition 1.1.2.3 is applied. This method takes xgo, := X9 € By as the
starting point for iterations.
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Then, we call this two-stage numerical procedure globally convergent in the
classical sense within frameworks of the pair of approximate mathematical models
(M, M>). In short, we call this procedure globally convergent in the classical sense.

Remarks 1.1.2.2. 1. The single most important point of Definition 1.1.2.4 is that
the two-stage numerical procedure converges globally in the classical sense to
the exact solution within the frameworks of the pair (M}, M>). In other words,
it converges regardless on the availability of a good first guess for the exact
solution.

2. The two-stage numerical procedure for CIPs which is developed in this book
satisfies conditions of Definition 1.1.2.4.

1.1.3 Some Notations and Definitions

The theory of ill-posed problems addresses the following fundamental question:
How to obtain a good approximation for the solution of an ill-posed problem in a
stable way? Roughly speaking, a numerical method, which provides a stable and
accurate solution of an ill-posed problem, is called the regularization method for
this problem; see Sect. 1.7 for a rigorous definition. Foundations of the theory of ill-
posed problems were established by three Russian mathematicians: Tikhonov [152—
154], Lavrent’ev [122,124], and Ivanov [85,86] in the 1960s. The first foundational
work was published by Tikhonov in 1943 [152].

We now briefly introduce some common notations which will be used throughout
this book. These notations can be found in, for example, the textbook [127].
We work in this book only with real valued functions. Let £2 C R” be a
bounded domain. We will always assume in our analytical derivations that its
boundary 92 € C?3, although we will work with piecewise smooth boundaries
in numerical studies. This is one of natural discrepancies between the theory and
its numerical implementation, which always exist in computations. Let u (x), x =
(x1,...,x,) € £2 be a k times continuously differentiable function defined in £2.
Denote

dlely

DO(M = —
0% x; ... 0%Xx,

, o)l =ar+ .o+,

the partial derivative of the order |«| < k, where @ = («1, ..., ;) is a multi-index
with integers ; > 0. Denote C¥ ([2) the Banach space of functions u (x) which
are continuous in the closure £2 of the domain £2 together with their derivatives
D%y, |a| < m. The norm in this space is defined as

lullex @y = D sup [Du(x)| < oco.
ol <m ¥
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By definition, C° (ﬁ) =C (ﬁ) is the space of functions continuous in £2 with the
norm

lulez) = sup e (o).

We also introduce Holder spaces CK+ @ for any number @ € (0, 1) . The norm
in this space is defined as

lu(x) —u(y)]
lull cita(z)y = |Uliye == lullcv@)y +  sup ————a—
¢ (9) o ¢ (Q) X,yER, xF#y |X - yl

3

provided that the last term is finite. It is clear that if the function u € C**! @ ,
thenu € C*** (), Va € (0, 1), and:

[ulfrq =C ||“||ck+1(§), Yu e CF! (2),

where C = C (£2,«) > 0 is a constant independent on the function «. Sometimes,
we also use the notion of Holder spaces for infinite domains. Let D be such
a domain. It is convenient for us to say that the function u € C*** (D) if
ue Ckte @ for every bounded subdomain £2 C D. Although sometimes people

say that u € CK+ (m if the above Holder norm in D is finite.
Consider the Sobolev space H* (£2) of all functions with the norm defined as

2 2
iy = 3 [ 1D ax < oo,
lo|<k

where D%u are weak derivatives of the function u. By the definition, H° (2) =
L, (£2). Tt is well known that H* (£2) is a Hilbert space with the inner product
defined as

(U, V) g2y = Z /D“uD“vdx.
lo|<k o

Let T > Oand I € 052 be a part of the boundary 952 of the domain £2. We will
use the following notations throughout this book:

Or =2 x(0,T),Sr =02 x(0,T), It =T x(0,T), D' =R"x (0, 7).
The space C%* @ T) is defined as the set of all functions u (x, ¢) having derivatives

D)”C‘Dfu eC @T) with || 4+ 28 < 2k and with the following norm:

D)”C‘Dfu (x,0)].

lullcaeg,y = D max

la|+28<2k Or

The Hélder space C2*Tek+e/2 (0 ) ‘o € (0, 1) is defined similarly [120].
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We now remind some definitions from the standard course of functional analysis.

Definition 1.1.3.1. Let B be a Banach space. The set V' C B is called precompact
set if every sequence {x,}.—, € V contains a fundamental subsequence (i.e., the
Cauchy subsequence).

Although by the Cauchy criterion the subsequence of Definition 1.1.3.1 con-
verges to a certain point, there is no guarantee that this point belongs to the set V. If
we consider the closure of V, i.e., the set V, then all limiting points of all convergent
sequences in V' would belong to V. Therefore, we arrive at Definition 1.1.3.2.

Definition 1.1.3.2. Let B be a Banach space. The set V' C B is called compact set
if V is a closed set, V = V, every sequence {x,}r—, C V contains a fundamental
subsequence, and the limiting point of this subsequence belongs to the set V.

Definition 1.1.3.3. Let B; and B, be two Banach spaces, U C B be a set and
A : U — B, be a continuous operator. The operator A is called a compact operator
or completely continuous operator if it maps any bounded subset U’ € U in a
precompact set in B,. Clearly, if U’ is a closed set, then A (U’) is a compact set.

The following theorem is well known under the name of Ascoli-Archela theorem
(More general formulations of this theorem can also be found).

Theorem 1.1.3.1. The set of functions M C C (ﬁ) is a compact set if and only
if it is uniformly bounded and equicontinuous. In other words, if the following two
conditions are satisfied:

1. There exists a constant M > 0 such that
1fle@@) <M. Vf eM.
2. For any ¢ > 0, there exists § = 6 (¢) > 0 such that
f)—fOl<e Vxyellx—y|<8ne vfeM.

In particular, because of some generalizations of this theorem, any bounded set
in C¥ @ (or H¥ (£2)),k > 1is a compact set in C? (ﬁ) (respectively H? (§2))
for p € [0,k —1]. We also remind one of the Sobolev embedding theorems for
spaces H* (£2) . Let [n/2] be the least integer which does not exceed 1/2.

Theorem 1.1.3.2 ([127]). Suppose that k > [n/2] + m, the domain 2 is bounded
and 32 € C*. Then H* (2) C C™ (£2) and I fllen(zy < CUflure) - Yf €
H* (2), where the constant C = C (2,k,m) > 0 depends only on 2, k,m. In
addition, any bounded set in H* (2) is a precompact set in C" (@

Theorem 1.1.3.2 actually claims that the space H* (£2) is compactly embed-
ded in the space C” (ﬁ) “Compactly embedded” means that | f ||C,,,(§) <

Cllfllgk VS € H*(£2), and any bounded set in H* (£2) is a precompact
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set in C” @ In other words, any sequence bounded in H (£2) contains a
subsequence, which converges in C™ (ﬁ ) , although the limit of this subsequence
does not necessarily belong to H* (£2).

1.2 Some Examples of Ill-posed Problems

Example 1 (J. Hadamard). We now describe the classical example of Hadamard;
see, for example, [124]. Consider the Cauchy problem for the Laplace equation for
the function u(x, y):

Au=0, xe€(0,7), y>0, (1.3)
u(x,0) = 0,u,(x,0) = asin(nx), (1.4)

where n > 0 is an integer. It is well known that the Cauchy problem for a
general elliptic equation with “good” variable coefficients has at most one solution
[102, 124] (although it might not have solutions at all). The unique solution of the
problems (1.3) and (1.4) is

u(x,y) = % sinh(ny) sin(nx). (1.5)

Choose sufficiently small numbers ¢ > 0,0 = «(¢) > 0 and a number y :=
yo > 0.Letin (1.5) x € (0, ). Since the function

e/1yo (1 + e—2nyo)

sinh(nyg) = >

grows exponentially as n — oo, then it is clear from (1.5) that for any pair of
reasonable functional spaces C¥ [0, ], L, [0, ], H¥ [0, 7], etc., one can choose
such two numbers ¢ > 0,1y > 0 depending only on numbers ¢, o, yo that

|l sin(nx)[|1 <&, Vn = no,

llu (x, yo)ll, = Hg sinh(nyy) sin(nx)H >c, Vn>ny,
n 2

where ||-||; is the norm in one of those spaces and |||, is the norm in another one.
The above example demonstrates that although both the Dirichlet and Neumann
boundary data are small, any reasonable norm of the solution is still large. In other
words, this is a manifestation of a high instability of this problem. Based on this
example, Hadamard has concluded that it makes no sense to consider unstable
problems. However, his conclusion was an exaggeration. Indeed, unstable problems



1.2 Some Examples of Ill-posed Problems 15

arise in many applications. Being inspired by applications to geophysics, Tikhonov
has proposed in 1943 [152] the fundamental concept for solving unstable problems;
see Sect. 1.3.

Example 2 (Differentiation of a Function Given with a Noise). The differentiation
of functions given by analytic formulas is a trivial exercise. In the reality, however,
functions are often measured in experiments. Since experimental data always
contain noise, then measured functions are given with a noise. Quite often, it
is necessary to differentiate these noisy functions. We demonstrate now that the
problem of the differentiation of noisy functions is unstable. Suppose that the
function f(x),x € [0, 1] is given with a noise. In other words, suppose that instead
of f(x) € C']0, 1] the following function fs(x) is given:

s (x) = f(x)+8f(x).x €[0,1],

where § f(x) is the noisy component. Let § > 0 be a small parameter characterizing
the level of noise. We assume that the noisy componentis small, [|8 /|| c[o.; < J. The
problem of calculating the derivative f; (x) is unstable. Indeed, let, for example,

sin(n’x)

§f(x) = Y

where n > 0 is a large integer. Then the C[0, 1]-norm of the noisy component is
small:

1
18/ oy = P

However, the difference between derivatives of noisy and exact functions
fi(x) — f'(x) = ncosn’x

is not small in any reasonable norm.

We now describe a simple regularization method of stable calculation of
derivatives. The idea is that the step size & in the corresponding finite difference
should be connected with the level of noise §. Thus, & cannot be made arbitrary
small, as it is the case of the classic definition of the derivative. We obviously have

£ () ~ f(erhz—f(X) N 3f(X+hZ—5f(X)_

The first term in the right-hand side of (1.6) is close to the exact derivative f/ (x),
if & is small enough. The second term, however, comes from the noise. Hence, we
need to balance these two terms via an appropriate choice of 4 = & (§) . Obviously:

St —-f)|_ 28
h ~h

(1.6)

f5 (x) =
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Hence, we should choose & = & (§) such that

25

e -

For example, let & (§) = §", where u € (0, 1) . Then
fx+h—fx)
h

fi |5 0 = = lim (27) =0
Hence, the problem becomes stable for this choice of the grid step size / (§) = §*.
This means that / (§) is the regularization parameter here. There are many practical
methods in the literature designed for stable differentiation. For example, one
can approximate the function f5(x) via cubic B splines and differentiate this
approximation then; see, for example, [73]. However, the number of these splines
should not be too large; otherwise, the problem would become unstable. So the
number of cubic B splines is the regularization parameter in this case, and its
intuitive meaning is the same as the meaning of the number 1/4 (§). A more
detailed description of regularization methods for the differentiation procedure is
outside of the scope of this book.

Let 2 C R” is a bounded domain and the function K (x,y) € C (2 x ).
Recall that the equation

g(x)+/1<(x,y>g(y)dy=p(x),xe9, (17)
2

where p (x) is a bounded function, is called integral equation of the second kind.
These equations are considered quite often in the classic theory of PDEs. The
classical Fredholm theory works for these equations; see, for example, the textbook
[127]. Next, let 2’ C R” be a bounded domain and the function K(x,y) €
C (£2 x ). Unlike (1.7), the equation

/K(x,y)gu)dy:p(x),xesz/ (1.8)
2

is called the integral equation of the first kind. The Fredholm theory does not work
for such equations. The problem of solution of (1.8) is an ill-posed problem; see
Example 3.

Example 3 (Integral Equation of the First Kind). Consider (1.8). The function
K (x,y) is called kernel of the integral operator. Equation (1.8) can be rewritten
in the form

Kf = p, (1.9

where K : C (2) - C (5/) is the integral operator in (1.8). It is well known
from the standard functional analysis course that K is a compact operator. We now
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show that the problem (1.9) is ill-posed. Let 2 = (0, 1), £2' = (a, b) . Replace the
function f with the function f, (x) = f (x) + sinnx. Then

1
/K(x,y)fn(y)dy=gn(X), x€(0,1), (1.10)
0
where g, (x) = p (x) + pn(x) and
1
pu(x) = /K (x,y)sinnydy.
0

By the Lebesque lemma,
Him [ pallepa ) = 0

However, it is clear that

I fn () = f (x)”C[O,l] = ||sinnx||c[0,1]
is not small for large n.

Example 4 (The Case of a General Compact Operator). We now describe an
example of a general ill-posed problem. Let H; and H, be two Hilbert spaces with
dim H;, = dim H, = oo. We remind that a sphere in an infinitely dimensional
Hilbert space is not a compact set. Indeed, although the orthonormal basis in this
space belongs to the unit sphere, it does not contain a fundamental subsequence.

Theorem 1.2. Let G = {|lx|y, <1} C Hy. Let A : G — H, be a compact
operator and let R(A) := A(G) be its range. Consider an arbitrary point
vo € R(A). Let ¢ > 0 be a number and U, (yy) = {y € Hy: ||y —yolpg, < 8}.
Then there exists a point y € U, (o) \ R (A) . If, in addition, the operator A is
one-to-one, then the inverse operator A~' : R (A) — G is not continuous. Hence,
the problem of the solution of the equation

A(x)=2zx€G,ze R(A) (1.11)

is unstable, i.e., this is an ill-posed problem.

Proof. First, we prove the existence of a point y € U, (yo) \ R (A) . Assume to the
contrary, i.e., assume that U, (y9) C R (A). Let {y, },f°=1 C H; be an orthonormal
basis in H,. Then the sequence

o+ 2o =tz < {ly =yl = 3} € U 0w).
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We have
£

|2 _Zm“Hz = %
o0

Hence, the sequence {z,},—, does not contain a fundamental subsequence.
Therefore, U, (yo) is not a precompact set in H,. On the other hand, since G is
a closed bounded set and A is a compact operator, then R (A) is a compact set.
Hence, U, (yo) is a precompact set. We got a contradiction, which proves the first
assertion of this lemma.

We now prove the second assertion. Assume to the contrary that the operator
A7" : R(A) — G is continuous. By the definition of the operator A, we have
A7' (R (A)) = G. Since R (A) is a compact set in H,, then the continuity of 4~
implies that G is a compact set in H;, which is not true.

We now summarize some conclusions which follow from Theorem 1.2. By this
theorem, the set R(A) is not dense everywhere. Therefore, the question about the
existence of the solution of either of (1.9) or (1.11) does not make an applied sense.
Indeed, since the set R(A) is not dense everywhere, then it is very hard to describe
a set of values y belonging to this set. As an example, consider the case when the
kernel K (x,y) € C ([a,b] x[0,1]) in (1.10) is an analytic function of the real
variable x € (a, b). Then the right hand side p (x) of (1.8) should also be analytic
with respect to x € (a, b) . However, in applications, the function p (x) is a result
of measurements, it is given only at a number of discrete points and contains noise.
Clearly, it is impossible to determine from this information whether the function
p (x) is analytic or not. Hence, we got the following important conclusion.

Conclusion. Assuming that conditions of Theorem 1.2 are satisfied, the problem
of solving (1.11) is ill-posed in the following terms: (a) the proof of an existence
theorem makes no applied sense, and (b) small fluctuations of the right hand
side y can lead to large fluctuations of the solution x, i.e., the problem is
unstable.

Example 5 (A Coefficient Inverse Problem (CIP)). Let the functions a (x) €
C*[R"),x € (0,1), and a (x) = 0 outside of the bounded domain 2 C R” with
052 € C3. Consider the following Cauchy problem:

u, = Au+a(x)u, (x,t)€ D’}H, (1.12)
u(x,0)=f(x). (1.13)

Here, the function f (x) € C**%(R") has a finite support in R”. Although less
restrictive conditions on f can also be imposed, we are not doing this here for
brevity; see details in the book [120]. Another option for the initial condition is

f(x)=8(x—xo), (1.14)
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where the source position xo ¢ £2. Throughout the book, we will always assume that
the source is located outside of the domain of interest §2. The reason of doing this
is that we do not want to work with singularities since CIPs are very complicated
even without singularities. The second reason is that in the majority of applications,
sources are indeed located outside of domains of interest; see Chaps.5 and 6 for
experimental data.

Statement of a Coefficient Inverse Problem. Assume that the function a (x) is
unknown inside the domain §2. Determine this function for x € §2 assuming that
the following function g (x, ) is known:

uls,=g(x,1). (1.15)

The function g (x,¢) is an additional boundary condition. This function can be
interpreted as a result of measurements: One is measuring the function u (x,7) at
the boundary of the domain 2 in order to reconstruct the function a (x) inside 2.
Indeed, if the coefficient a (x) would be known in the entire space R”, then one
would uniquely determine the function u (x, ¢) in D?H . But since @ (x) is unknown,
then the function u |s, can be determined only via measurements. Note that since
a (x) = 0 outside of £2, then one can uniquely solve the following initial boundary
value problem outside of £2 :

u, = Au, (x,1) € (R"™\ ) x (0,7),

u(x,0) = f(x),x € R"\\ £,
uls,=g(x,t).

Hence, one can uniquely determine the Neumann boundary condition for the
function u at the boundary 0£2, and we will use this consideration throughout
this book. Thus, the following function g; (x,¢) is known along with the function
g (x,1)in (1.15):

Ot |sp= g1 (x,1).

This CIP has direct applications in imaging of the turbid media using light
propagation [8, 76, 156]. In a turbid medium, photons of light, originated by a
laser, propagate randomly in the diffuse manner. In other words, they experience
many random scattering events. Two examples of turbid media are smog and flames
in the air. The most popular example is the biological tissue, including human
organs. Assuming that the diffusion coefficient D = 1, we obtain that in (1.12) the
coefficient a (x) = —p, (x) < 0, where p, (x) is the absorption coefficient of the
medium. The case of smog and flames has military applications. Since 1, (x) = 00
for any metallic target, then imaging small inhomogeneities with large values of
the absorption coefficient might lead to detection of those targets. In the case of
medical applications, high values of 1, (x) usually correspond to malignant legions.
Naturally, one is interested to image those legions noninvasively via solving a CIP.
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Thus, in both applications, the main interest is in imaging of small sharp
abnormalities, rather than in imaging of a slowly changing background function.
Furthermore, to correctly identify those abnormalities, one needs to image with a
good accuracy the value of the coefficient u, (x) within them. Naturally, in both
applications, one should use the function (1.14) as the initial condition. In this case,
Xo is the location of the light source.

We now show that this CIP is an ill-posed problem. Let the function u( be the
fundamental solution of the heat equation uy, = Auy :

up (x,t) = ;exp —ﬁ
YT adm)” 4t )

It is well known that the function « has the following integral representation [120]:

u(m)=/uo(x—s,of@)ds+//uo(x—s,r—r)a(s)u(s,r)dr.
0 2

]Rn
(1.16)

Because of the presence of the integral

0/ () dr,

(1.16) is a Volterra-like integral equation of the second kind. Hence, it can be solved
as [120]:

wten) = [ (=60 £ @+ Y (rur), (1.17)
n=1

R~

" (x,z)=//uo(x—s,z—r)a@)un_l (. 70)dr,
0 £

One can prove that each function u, € C>t®!1+e/2 (D;H) and [120]

(Mt)"
n! '

|DEDfu, (x.1)] < B + 2k < 2, (1.18)

where M = |ja ”Cw(ﬁ) . In the case when f* = § (x — X), the first term in the right-

hand side of (1.17) should be replaced with ug (x — xg,1) . Let ug (x,t) be the first
term of the right-hand side of (1.17) and v (x, 1) = u (x,t) —uof (x,1). Using (1.18),
one can rewrite (1.17) as
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v(x,t)=//uo(x—§,t—t) (a®ul €0+ P@ED)dedr, (1.19)
0 2

where P (a) is a nonlinear operator applied to the function a. It is clear from (1.17)—
(1.19) that the operator P : C* (£2) — C*T*!*%/2((Q ) is continuous. Setting in
(1.19) (x,t) € St, recalling (1.15), and denoting g (x,t) = g (x,t) — u‘g (x,t), we
obtain a nonlinear integral equation of the first kind with respect to the unknown
coefficient a (x):

[ [ue=et-0(d €0a@+P @) dsdr=g o). (0 € 51
0 £

(1.20)
Let A (a) be the operator in the left-hand side of (1.20). Let H; = L, (£2) and
H, = L, (S7) . Consider now the set U of functions defined as

U= {a ta e C*(Q), allcua) = M} C Hi.

Since the L, (§2) norm is weaker than the C¢ (ﬁ)-norm, then U is a bounded set
in H;. Using (1.18) and Theorem 1.1, one can prove that A : U — C (S7) is a
compact operator. Since the norm in L, (S7) is weaker than the norm in C (S7),
then A : U — H, is also a compact operator. Hence, Theorem 1.2 implies that the
problem of solution of the equation

A(a)=g,acU CH,,geH,

is ill-posed in terms of the above conclusion.

1.3 The Foundational Theorem of A.N. Tikhonov

This theorem “restores” stability of unstable problems, provided that uniqueness
theorems hold for such problems. The original motivation for this theorem came
from the collaboration of Tikhonov with geophysicists. To his surprise, Tikhonov
has learned that geophysicists successfully solve problems which are unstable from
the mathematical standpoint. Naturally, Tikhonov was puzzled by this. This puzzle
has prompted him to explain that “matter of fact” stability of unstable problems
from the mathematical standpoint. He has observed that geophysicists have worked
with rather simple models, which included only a few abnormalities. In addition,
they knew very well ranges of parameters they have worked with. Also, they knew
that the functions, which they have reconstructed from measured date, had only very
few oscillations. In other words, they have reconstructed only rather simple media
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structures. On the other hand, the Ascoli-Archela Theorem 1.1.3.1 basically requires
a priori known upper bounds of both the function and its first derivatives. Clearly,
there is a connection between the number of oscillations per a bounded set in R”
and the upper bound of the modulus of the gradient of the corresponding function.
These observations have made Tikhonov to believe that actually geophysicists have
worked with compact sets. This was the starting point for the formulation of the
foundational Tikhonov theorem (below). In particular, this means that in an ill-posed
problem, one should not expect to reconstruct a complicated fine structure of the
medium of interest. Rather, one should expect to reconstruct rather simple features
of this medium.

The key idea of Tikhonov was that to restore stability of an unstable problem,
one should solve this problem on a compact set. The question is then whether it is
reasonable to assume that the solution belongs to a specific compact set. The answer
on this question lies in applications. Indeed, by, for example, Theorem 1.1.3.1, an
example of a compact set in the space C (£2) is the set of all functions from C' (£2)
which are bounded together with the absolute values of their first derivatives by an
a priori chosen constant. On the other hand, it is very often known in any specific
application that functions of ones interest are bounded by a certain known constant.
In addition, it is also known that those functions do not have too many oscillations,
which is guaranteed by an a priori bound imposed on absolute values of their first
derivatives. These bounds should be uniform for all functions under consideration.
Similar arguments can be brought up in the case of other conventional functional
spaces, like, for example, C* (£2) , H* (£2). Another expression of these thoughts,
which is often used in applications, is that the admissible range of parameters is
known in advance. On the other hand, because of the compact set requirement
of Theorem 1.3, the foundational Tikhonov theorem essentially requires a higher
smoothness of sought for functions than one would originally expect. The latter is
the true underlying reason why computed solutions of ill-posed problems usually
look smoother than the original ones. In particular, sharp boundaries usually look as
smooth ones.

Although the proof of Theorem 1.3 is short and simple, this result is one of only
a few backbones of the entire theory of ill-posed problems.

Theorem 1.3 (Tikhonov [152], 1943). Let B; and B; be two Banach spaces. Let
U C Bj be a compact set and F : U — B, be a continuous operator. Assume
that the operator F is one-to-one. Let V.= F(U). Then the inverse operator F~' :
V — U is continuous.

Proof. Assume the opposite: that the operator F~! is not continuous on the set V.
Then, there exists a point yo € V and a number ¢ > 0 such that for any § > O,
there exists a point y; such that although ||ys — yollp, < d, still HF 1 (ys)
—F~ () ||B1 > ¢. Hence, there exists a sequence {8,}oo, limy o008, = ot
and the corresponding sequence {y, }r—; C V such that

15, = voll g, < 8u [F~H(va) = F 1 (0) | 5, = €. (1.21)
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Denote
X =F~' (). x0 = F~' (y0). (1.22)
Then
X0 —xoll 5, = €. (1.23)

Since U is a compact set and all points x, € U, then one can extract a convergent
subsequence {x,, }yo; € {Xn},=, from the sequence {x,},=,. Let limj_ o0 X,, =

X. Then x € U. Since F (x,,k) = Yy, and the operator F is continuous, then
by (1.21) and (1.22), F (X) = yo = F (xo). Since the operator F is one-to
one, we should have X = xo. However, by (1.23), [|X — xo[|5, > &. We got a
contradiction. O

1.4 Classical Correctness and Conditional Correctness

The notion of the classical correctness is called sometimes correctness by Hadamard.

Definition 1.4.1. Let B; and B, be two Banach spaces. Let G € B; be an open set
and F : G — B, be an operator. Consider the equation

F(x)=y, xegG. (1.24)

The problem of solution of (1.24) is called well-posed by Hadamard, or simply well-
posed, or classically well-posed if the following three conditions are satisfied:

1. For any y € B,, there exists a solution x = x(y) of (1.24) (existence theorem).

2. This solution is unique (uniqueness theorem).

3. The solution x(y) depends continuously on y. In other words, the operator F~! :
B> — B is continuous.

Thus, the well-posedness by Hadamard means the existence of the solution of the
operator equation (1.24) for any right-hand side y. This solution should be unique.
In addition, it should depend on the data y continuously. All classical boundary
value problems for PDEs, which are studied in the standard PDE course, satisfy
these criteria and are, therefore, well-posed by Hadamard.

If (1.24) does not satisfy to at least one these three conditions, then the
problem (1.24) is called ill-posed. The most pronounced feature of an ill-posed
problem is its instability, i.e., small fluctuations of y can lead to large fluctuations
of the solution x. The definition of the correctness by Tikhonov, or conditional
correctness, reflects the above Theorems 1.2 and 1.3.

Since the experimental data are always given with a random noise, we need
to introduce the notion of the error in the data. In practice, this error is always
due to that random noise as well as due to an inevitable discrepancy between the
mathematical model and the reality. However, we do not assume the randomness of
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y in (1.24). Let § > 0 be a small number. We say that the right-hand side of (1.24)
is given with an error of the level 4 if ||y* — y||5, < 8, where y* is the exact value
of y, which has no error.

Definition 1.4.2. Let B, and B, be two Banach spaces. Let G C B; be an a priori
chosen set of the form G = G, where G is an opensetin By.Let F : G — B; be
a continuous operator. Suppose that the right-hand side of (1.24) y := y; is given
with an error of the level § > 0, where § is a small number, ||y* — ys|| 5, < §. Here,
y* is the ideal noiseless data y*. The problem (1.24) is called conditionally well-
posed on the set G, or well-posed by Tikhonov on the set G, if the following three
conditions are satisfied:

1. It is a priori known that there exists an ideal solution x* = x* (y*) € G of this
problem for the ideal noiseless data y*.

2. The operator F' : G — B, is one-to-one.

3. The inverse operator F~! is continuous on the set F (G).

Definition 1.4.3. The set G of Definition 1.4.2 is called correctness set for the
problem (1.24).

We point out that, unlike the classical well-posedness, the conditional well-
posedness, does not require the correctness set G to coincide with the entire Banach
space B). Likewise, Definition 1.4.2 does not require a proof of an existence theo-
rem, unlike the classical case. Indeed, it follows from Theorem 1.2 that it is hopeless
to prove such a theorem for (1.11). In addition, such a result would not have a
practical meaning. For comparison, recall that a significant part of the classical PDE
theory is devoted to proofs of existence theorems, as it is required by the definition of
the classical well-posedness. On the other hand, in the definition of the conditional
well-posedness the existence is assumed a priori. Still, the existence is assumed not
for every y in (1.24) but only for an ideal, noiseless y := y*. The assumption of
the existence of the ideal solution x* is a very important notion of the theory of
ill-posed problems. Neither the ideal right-hand side y* nor the ideal solution x*
are never known in applications. This is because of the presence of the noise in any
experiment. Still, this assumption is a quite reasonable one because actually, it tells
one that the physical process is indeed in place and that the mathematical model,
which is described by the operator F', governs this process accurately.

The second condition in Definition 1.4.2 means uniqueness theorem. Combined
with Theorem 1.3, this condition emphasizes the importance of uniqueness theorems
for the theory of ill-posed problems.

The third condition in Definition 1.4.2 means that the solution of the prob-
lem (1.24) is stable with respect to small fluctuations of the right-hand side y, as
long as x € G. This goes along well with Theorem 1.3. In other words, the third
condition restores the most important feature: stability. The requirement that the
correctness set G C Bj is not conventionally used in the classical theory of PDEs.
In other words, the requirement of x belonging to a “special” subset of B; is not
imposed in classically well-posed problems.
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Motivated by the above arguments, Tikhonov has introduced the Fundamental
Concept of Tikhonov.

The Fundamental Concept of Tikhonov. This concept consists of the following
three conditions which should be in place when solving the ill-posed problem (1.24):

1. One should a priori assume that there exists an ideal exact solution x* of (1.24)
for an ideal noiseless data y*.

2. The correctness set G should be chosen a priori, meaning that some a priori
bounds imposed on the solution x of (1.24) should be imposed.

3. To construct a stable numerical method for the problem (1.24), one should
assume that there exists a family {y;} of right-hand sides of (1.24), where § > 0
is the level of the error in the data with ||y* — ys||5, < §. Next, one should
construct a family of approximate solutions {x;} of (1.24), where x5 corresponds
to ys. The family {xs} should be such that

lim ||xs —x*| = 0.
§—>07t

1.5 Quasi-solution

The concept of quasi-solutions was originally proposed by Ivanov [85]. It is
designed to provide a rather general method for solving the ill-posed problem (1.24).
This concept is actually a quite useful, as long as one is seeking a solution on a
compact set. An example is when the solution is parametrized, i.e.,

N
X = E aig;,

i=1

where elements {¢;} are a part of an orthonormal basis in a Hilbert space, the
number N is fixed, and coefficients {a,-}fl\/:l are unknown. So, one is seeking
numbers {a,-}flv:l C G, where G C R" is a priori chosen closed bounded set.
This set is called sometimes “the set of admissible parameters.”

Since the right-hand side y of (1.24) is given with an error, Theorem 1.2 implies
that it is unlikely that y belongs to the range of the operator F. Therefore, the
following natural question can be raised about the usefulness of Theorem 1.3: Since
the right-hand side y of (1.24) most likely does not belong to the range F (G) of
the operator F, then what is the practical meaning of solving this equation on the
compact set G, as required by Theorem 1.3? The importance of the notion of quasi-
solutions is that it addresses this question in a natural way.

Suppose that the problem (1.24) is conditionally well-posed and let G C B,
be a compact set. Then, the set F(G) C B, is also a compact set. We have
|y —y*llp, < 8. Consider the minimization problem

min J(x), where J(x) = ||F(x) — 113, (1.25)
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Since G is a compact set, then there exists a point x = x(ys) € G at which
the minimum in (1.25) is achieved. In fact, one can have many points x(ys).
Nevertheless, it follows from Theorem 1.5 that they are located close to each other,
as long as the number § is sufficiently small.

Definition 1.5. Any point x = x(y) € G of the minimum of the functional J(x) in
(1.25) is called quasi-solution of equation in (1.24) on the compact set G.

A natural question is, how far is the quasi-solution from the exact solution x*?
Since by Theorem 1.3 the operator F~' : F(G) — G is continuous and the set
F(G) is compact, then one of classical results of real analysis implies that there
exists the modulus of the continuity @ r (z) of the operator F~! on the set F(G).
The function w (z) satisfies the following four conditions:

. wF (z) is defined for z > 0.

. wp(z) > 0forz >0, wr(0) =0, and lim,_, 4+ wr (z) = 0.

. The function wr (z) is monotonically increasing for z > 0.

. For any two points yj, y, € F(G), the following estimate holds:

BN =

IF ) = F7' Ol < @r(l[yv1 = y2)l15,)-

The following theorem characterizes the accuracy of the quasi-solution:

Theorem 1.5. Let By and B, be two Banach spaces, G C B be a compact set,
and F : G — B, be a continuous one-to-one operator. Consider (1.24). Suppose
that its right-hand side y := ys is given with an error of the level § > 0, where §
is a small number; | y* — ys|lg, < 8. Here, y* is the ideal noiseless data y*. Let
x* € G be the ideal exact solution of (1.24) corresponding to the ideal data y*, i.e.,
F (x*) = y*. Let x] be a quasi-solution of (1.24), i.e.,

J(x) = min|| F(x) = ys[3,- (1.26)

Let wr (z) ,z > 0 be the modulus of the continuity of the operator F~' : F (G) —
G which exists by Theorem 1.3. Then the following error estimate holds

|5 —x*| 5, < wr (28). (1.27)

In other words, the problem of finding a quasi-solution is stable, and two quasi-
solutions are close to each other as long as the error in the data is small.

Proof. Since ||y* — ys||5, <6, then
2
J () = NFO®) = yslly, = 19" = vsllp, < 8
Since the minimal value of the functional J (x*) is achieved at the point xg, then

Jxf) < J (x*) < 82,
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Hence, ||F(xg) — ys||B, < 8. Hence,

|1F(x§) = F(x™)|8, < |[F(x§) = ysll, + lvs = F(x™)l p,
= [|F(x{) = ysll3, + llys — y" I, < 26.

Thus, we have obtained that || F (xg) — F(x*)||s, < 26. Therefore, the definition of
the modulus of the continuity of the operator F~! implies (1.27). |

This theorem is very important for justifying the practical value of Theorem 1.3.
Still, the notion of the quasi-solution has a drawback. This is because it is unclear
how to actually find the target minimizer in practical computations. Indeed, to find
it, one should minimize the functional J(x) on the compact set G. The commonly
acceptable minimization technique for any least squares functional is via searching
points where the Frechét derivative of that functional equals zero. However, the
well-known obstacle on this path is that this functional might have multiple local
minima and ravines. Therefore, most likely, the norm of the Frechét derivative is
sufficiently small at many points of, for example, a ravine. Thus, it is unclear how
to practically select a quasi-solution. In other words, we come back again to the
first central question of this book: How fo find a good approximation for the exact
solution without an advanced knowledge of a small neighborhood of this solution?

1.6 Regularization

To solve ill-posed problems, regularization methods should be used. In this section,
we present main ideas of the regularization. Note that we do not assume in
Definition 1.6 that the operator F is defined on a compact set.

Definition 1.6. Let B, and B, be two Banach spaces and G C B be a set. Let the
operator F' : G — B, be one-to-one. Consider the equation

F(x)=y. (1.28)

Let y* be the ideal noiseless right-hand side of (1.28) and x* be the ideal noiseless
solution corresponding to y*, F (x*) = y*. Let §¢ € (0, 1) be a sufficiently small
number. For every § € (0, §p) denote

Ks(y*) ={z€ Ba: llz—y*l5, < §}.
Let « > 0 be a parameter and R, : Ks,(¥*) — G be a continuous operator

depending on the parameter «. The operator R, is called the regularization operator
for (1.28) if there exists a function « (6) defined for 6 € (0, 8y) such that

%i_% | Ras) (vs) — x* ”31 =0.
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The parameter « is called the regularization parameter. The procedure of con-
structing the approximate solution x4y = Ry (s) (Vs) is called the regularization
procedure, or simply regularization.

There might be several regularization procedures for the same problem. This is
a simplified notion of the regularization. In our experience, in the case of CIPs,
usually o (§) is a vector of regularization parameters, for example, the number of
iterations, the truncation value of the parameter of the Laplace transform, and the
number of finite elements. Since this vector has many coordinates, then its practical
choice is usually quite time-consuming. This is because one should choose a proper
combination of several components of the vector « ().

The first example of the regularization was Example 2 of Sect.1.6. We now
present the second example. Consider the problem of the solution of the heat
equation with the reversed time. Let the function u (x,t) be the solution of the
following problem:

U = uyy, X €0,7), 1t €(0,7),
u(x,T)=y(x)€ L (0,m),
u(,t) =u(m,t) =0.

Uniqueness theorem for this and a more general problem is well known and can be
found in, for example, the book [124]. Obviously, the solution of this problem, if it
exists, is

o0
u(x,r) = Z y,e” T sin nx, (1.29)

n=1

2 b
Yn = ,/—/y(x) sinnxdx.
T
0

It is clear, however, that the Fourier series (1.29) converges a narrow class of
functions y (x). This is because the numbers {e”z(T_’) }o°, grow exponentially
with n.

To regularize this problem, consider the following approximation for the function
u(x,t):

N
2T—1) .
uy (x,t) = Zy,,e” =D sin nx.
n=1
Here, « =1/N is the regularization parameter. To show that this is indeed a
regularization procedure in terms of Definition 1.6, we need to consider the
following:

Inverse Problem. For each function f € L, (0, ), consider the solution of the
following initial boundary value problem
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Vi =Vyy, X €(0,7),1€(0,7),

v(x,0) = f(x),
v(0,1) = v (1) =0. (1.30)

Given the function y (x) = v (x, T') , determine the initial condition f (x) in (1.30).
Define the operator F : L, (0,7) — L, (0,7) as F (f) =v(x,T).Itis known
from the standard PDEs course that

T

F(f)=vxT)= /G(x,%‘,T)f(E)dE, (1.31)
0
o0
G (x,£,1) = Z ¢! sin nx sin nk,
n=1
where G is the Green’s function for the problem (1.30). In other words, we have
obtained the integral equation (1.31) of the first kind. Hence, Theorem 1.2 implies
that the operator F~! cannot be continuous.

Following the fundamental concept of Tikhonov, let y* € L, (0, ) be the “ideal”
noiseless function y, which corresponds to the function f* in (1.30). Let the
function ys € L, (0, ) be such that || ys — y* ||, (9.r) < 8. Define the regularization
parameter & := 1/N and the regularization operator R, (y) as

N
Ro () (¥) = Y €T sinnx, (132)

n=1

T
[2
Yn = —/yg (x) sinnxdx.
b
0

Let f* € C'[0, 7] and f* (0) = f* (;r) = 0. The integration by parts leads to

f* = \/g/f* (x)sinnxdx = %\/g/(f* (x))/cosnxdx.
0 0

=

Hence,
(o < Lo e
n — n2 .
Hence,
o0 C * I 2
(= I oy )

n=N+1
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where C > 0 is a constant independent on the function f*. Consider now the
function R, (y) — f*:

Ry (ys) — \/72 Tsinnx — \/7 Z S sinnx.

n=N+1

o0
Since functions {(2 / 7)"/% sin nx} form an orthonormal basis in L, (0, ) , then

N 00
2 2 2 2
1Re () = a0 V7D (n—vi) + D (£
n=1 n=N+1
This implies that
IRa () = ™17 000 < €V78 + Z (1.34)

n=N+1

The second term in the right-hand side of (1.34) is independent on the level of
error §. However, it depends on the exact solution as well as on the regularization
parameter « = 1/N. So, the idea of obtaining the error estimate here is to balance
these two terms via equalizing them. To do this, we need to impose an a priori
assumption first about the maximum of a certain norm of the exact solution f*.
Hence, we assume that H (f *)/H iz(o,ﬂ) < M?, where M is a priori given positive
constant. This means, in particular, that the resulting estimate of the accuracy of
the regularized solution will hold uniformly for all functions f* satisfying this
condition. This is a typical scenario in the theory of ill-posed problems and it goes
along well with Theorem 1.3.
Using (1.33), we obtain from (1.34)

2N2T82 + cM?

v (1.35)

2
IRe (v8) = ¥ s00) = €

The right-hand side of (1.35) contains two terms, which we need to balance by
equalizing them:
CM?

2
Q2NT 52
N

1

Since e2N’T N (CM?)™" < &*N°7 for sufficiently large N, we set

3N2T _ 1
(&) = 8_2
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Hence, the regularization parameter is

@)= N;(g) = {[m (5—2/3r)]‘/2}

Here, {a} denotes the least integer for a number a > 0. Thus, (1.35) implies that

-1

cM?
)"

It is clear that the right-hand side of this inequality tends to zero as 6 — 0. Hence,
R s) 1s indeed a regularization operator for the above inverse problem.

In simpler terms, the number N of terms of the Fourier series (1.32) rather than
1/N is the regularization parameter here. It is also well known from the literature
that the number of iterations in an iterative algorithm can serve as a regularization
parameter. Since in this chapter we want to outline only main principles of the
theory of ill-posed problems rather than working with advanced topics of this
theory, we now derive from the above a simple example illustrating that the iteration
number can indeed be used as a regularization parameter; see [65,93, 124, 153] for
more advanced examples. Indeed, in principle, we can construct the regularized
solution (1.32) iteratively via

1R () — f* 70 < 8 +

fi =11 T Dsinx, fo= fi + yeX T Dsin2x, ...,

fv = fver + yneV T sin Nx. (1.36)

It is clear from (1.36) that the number of iterations N = N (§) can be considered as
aregularization parameter here.

1.7 The Tikhonov Regularization Functional

Tikhonov has constructed a general regularization functional which works for a
broad class of ill-posed problems [153, 154]. That functional carries his name in
the literature. In the current section, we construct this functional and study its
properties. We point out that the first stage of the two-stage numerical procedure
of this book does not use this functional. The Tikhonov functional has proven to be
a very powerful tool for solving ill-posed problems.
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1.7.1 The Tikhonov Functional

Let B; and B, be two Banach spaces. Let Q be another space, Q C Bj as a set, and
@ = B\, where the closure is understood in the norm of the space B). In addition,
we assume that Q is compactly embedded in B;. It follows from Theorems 1.1.3.1
and 1.1.3.2 that Q and B are:

(@) By =L,(2),0 = H*(2),Yk > 1, where 2 C R”" is a bounded domain.

(b) By = C"(22).0 = C"*(2).Ym = 0.Vk > 1, where m and k are
integers.

(c) Bi=C"(2).0 = H* () ,k > [n/2] + m, assuming that 02 € C*.

Let G C B be the closure of an open set. Consider a continuous one-to-one
operator F' : G — B,. The continuity here is in terms of the pair of spaces By, B,
rather that in terms of the pair Q, B,. We are again interested in solving the equation

F(x)=y,xeaG. (1.37)

Just as above, we assume that the right-hand side of this equation is given with an
error of the level §. Let y* be the ideal noiseless right-hand side corresponding to
the ideal exact solution x* :

F(x*)=y% |ly—=y"ls <6 (1.38)

To find an approximate solution of (1.37), we minimize the Tikhonov regularization
functional J,, (x) :

1 o
Ju () = S IFC) = ¥ll, + 5 I = xolg (139)

Jo 1G> R, xy€G,

where @ = « (§) > 0 is a small regularization parameter and the point xo € Q. In
general, the choice of the point x¢ depends on the problem at hands. Usually, x, is a
good first approximation for the exact solution x*. Because of this, xj is sometimes
called the first guess or the first approximation. The dependence o = « (§) will
be specified later. The term o |x —x0||2Q is called the Tikhonov regularization
term or simply the regularization term. Consider a sequence {8k}, such that
8r > 0,limg_008r = 0. We want to construct sequences {« (§;)}, {xa(gk)}
such that

. * .
kll)H;O Hxa(f?k) —-X HBI =0.
Hence, if such a sequence will be constructed, then we will approximate the exact

solution x* in a stable way, and this would correspond well with the second
condition of the fundamental concept of Tikhonov.
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Using (1.38) and (1.39), we obtain

82 o 32 o
Jo (x¥) < > t3 [l x* —x0||2Q =5 t+3 [lx* _XOHZQ-
Let
Ma(s) = 10f Jagy) ().
By (1.40),
8¢ o (8 2
M) = ?k + 5 [l x* — ol -

Hence, there exists a point x,s,) € G such that

82 a(8)
Matsy) < Jao) (Yasp) < = + —— [|Ix*

— xolI%
2 2 oltg -

Hence, by (1.39) and (1.41),

2

2 8 * 2
(EMERRE] P w o Tl
Suppose that
5
li drx) = 0and i =
Pt () and e o (8k)
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(1.40)

(1.41)

(1.42)

(1.43)

Then (1.42) implies that the sequence {xa(gk)} C G C Q is bounded in the norm of
the space Q. Since Q is compactly embedded in By, then there exists a subsequence
of the sequence {xa(gk)} which converges in the norm of the space B;. For brevity
and without any loss of generality, we assume that the sequence {xa(gk)} itself

converges to a point X € By :

Jim [xao =% 5, = 0.

Then (1.41) and (1.43) imply that lim -0 Ja(s,) (*a(s,)) = 0. On the other hand,

. 1 . 2 2
klggo Jap) (Xa@p) = 3 klglgo [||F () = ys, I3, + @ (81) | xa) — Xo HQ]

1 -
= 3 1F =",

Hence, |F (X) — y*|l3, = 0, which means that F (x) = y*. Since the op-
erator F is one-to-one, then X = x™*. Thus, we have constructed the sequence
of regularization parameters {& (§x)}r—, and the sequence {xa(gk)};:ozl such that
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limy s o0 Hxa(gk) —x*”Bl = 0. To ensure (1.43), one can choose, for example,

a(Br) = C8g, n € (0,2). Itis reasonable to call {xa(gk)}:il regularizing sequence.
Note that although both points x,s,) and x* belong to the space Q, convergence
is proven in a weaker norm of the space B;, which is typical for ill-posed problems.
We point out that the original idea of Theorem 1.3 about compact sets plays a
very important role in the above construction. The sequence {xa(gk)}:il is called
minimizing sequence. There are two inconveniences in the above construction. First,
it is unclear how to find the minimizing sequence computationally. Second, the
problem of multiple local minima and ravines of the functional (1.39) presents a
significant complicating factor in the goal of the construction of such a sequence.

1.7.2 Regularized Solution

The construction of Sect. 1.7.1 does not guarantee that the functional J,, (x) indeed
achieves it minimal value. Suppose now that the functional J, (x) does achieve
its minimal value, J, (X4) = ming Jo (x),a = o« (§). Then x4 is called a
regularized solution of (1.37) for this specific value @« = « (8) of the regularization
parameter. Let §o > 0 be a sufficiently small number. Suppose that for each
§ € (0.8), there exists an xq(s) such that Joes) (X)) = ming Jue) (x) . Even
though one might have several points x, ), we select a single one of them for each
a = o (d). Indeed, it follows from the construction of Sect. 1.7.1 that all points
Xq(s) are close to the exact solution x*, as long as § is sufficiently small. It makes
sense now to relax a little bit the definition of Sect. 1.6 of the regularization operator.
Namely, instead of the existence of a function « (§) , we now require the existence
of a sequence {8k}, C (0, 1) such that

Jim 8 =0and lim | Rucs) (vs,) = %75 =0.

For each § € (0,8) and for each ys such that |ys — y*| 5, < &, we define the
operator Rys) () = Xo(5), Where xq(s) is a regularized solution. Then it follows
from the construction of Sect. 1.7.1 that R, () is a regularization operator. Hence,
the parameter « (§) in (1.39) is a regularization parameter for the problem (1.37).

Consider now the case when the space B is a finite dimensional space. Since
all norms in finite dimensional spaces are equivalent, we can set Q = B; = R”".
We denote the standard euclidean norm in R” as ||-|| . Hence, we assume now that
G C R” is the closure of an open bounded domain. Hence, G is a compact set. Let
x* € Gand o = « (§) . We have

@ ¥

Ix = xol?,
2

1
Juty (¥) = S [F() = yl[3, +

Jo) 1 G =R, x0 €G.
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By the Weierstrass’ theorem, the functional J,5) (x) achieves its minimal value on
the set G. Let x,4(s) be a minimizer of the functional Jys) (x) on G (there might be
several minimizers). Then

1 2 o 2
o (xa0) = o () = 3 G = ¥ 1B, + 5 I =l

8 §
=5+ % llx* = xol|*.
Hence,
82 * 2 8 *
oy —xol < [T+l =l < Z= 4 " ol (144)
Since || xo@) — xo| = ||*a@ — x*| — Ix* — Xol|, then we obtain from (1.44)
1)
||xa(5) —x* || < ﬁ + 2 |x* = xo] . (1.45)

An important conclusion from (1.45) is that for a given pair (6, « (§)), the
accuracy of the regularized solution is determined by the accuracy of the first guess
Xo. This becomes even more clear when we recall that by (1.43), we should have
limg—¢ (8 / ﬁ) = 0. This once again points toward the importance of the first
central question of this book.

1.8 The Accuracy of the Regularized Solution for a Single
Value of «

It was proven in Sect. 1.7.1 that the regularizing sequence {xa(gk )};o:l converges to

the exact solution x* provided that lim; ., 8y = 0. However, {xa(gk)};o:  is only
a subsequence of a certain sequence, which is inconvenient for computations. In
addition, in practical computations, one always works only with a single value of
the noise level § and with a single value of the regularization parameter « (8) . In
these computations, people naturally work with finite dimensional spaces, in which
the existence of a regularized solution is guaranteed; see Sect. 1.7.2. Naturally, one
would want the regularized solution to be more accurate than the first guess for
a single pair (6, « (8)). It has been often observed in numerical studies of many
researchers that even though parameters § and « (6) are fixed, the regularized
solution x,(s) is indeed closer to the exact solution x* than the first approximation
Xo. The first analytical proof of this phenomenon was presented in the work [111].
Basically, Theorem 2 of [111] states that the regularized solution is indeed closer
to the exact one than the first approximation in the case when uniqueness theorem
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holds for the original ill-posed problem. In this section, we present the main idea of
[111]. An application of this idea to specific CIPs can be found in [111].

We assume that conditions of Sect. 1.7.1 which were imposed there on spaces
and the operator F hold. Consider again the equation

F(x)=y, xeaG. (1.46)

Just as above, we assume that the right-hand side of this equation is given with an
error of the level §. Let y* be the ideal noiseless data corresponding to the ideal
solution x*:

F(m)=y" ly=y"ls <6 (1.47)

To find an approximate solution of (1.46), we minimize the Tikhonov regularization
functional J, (x):

1 o
Ju (¥) = S IF() = yl3, + 5 ¥ = xollg (1.48)

Jy: G —> R x9 €G.

Since it is unlikely that one can get a better accuracy of the solution than 4,
then it is usually acceptable that all other parameters involved in the regularization
process are much larger than §. For example, let the number u € (0, 1). Since

lims—o (82“ / 82) = 00, then there exists a sufficiently small number §o (1) € (0, 1)

such that §** > 62, V8 € (0,8, (1)) . Hence, we choose below in this section
a(8) =8" e (01). (1.49)

We introduce the dependence (1.49) for the sake of definiteness only. In fact, other
dependencies « (8) are also possible. Let m,5) = infg Jy(s) (x) . Then

Mas) < Ja@) (X*) . (1.50)

Let dim B; = oo. As it was noticed in the beginning of Sect. 1.7.2, we cannot
prove the existence of a minimizer of the functional J, in this case. Hence, we work
now with the minimizing sequence. It follows from (1.48) and (1.50) that there exists
a sequence {x,},—, C G such that

52 o 2 .
Mai) < Jus) (Xn) < > + 3 flx* —)C()”Q and nll)ngo o) (X)) =m (8). (1.51)

By (1.42) and (1.51),

1/2
82
Il < (; + —x0||2Q) ol (1.5
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Hence, it follows from (1.49) and (1.52) that {x,};~, C K (§,x0), where
K (8,x0) C Q is aprecompact set in B, defined as

K@xo)=)xeQ:lxllg < /84 +x* —xol + Ixollg} . (153)

Note that the sequence {x,}—, depends on §. Let . K (8, xo) be the closure of the
set K (8, xo) in the norm of the space B;. Hence, K (8, xo) is a closed compact set
in Bl.

Theorem 1.8 ([111]). Let B, and B, be two Banach spaces. Let Q be another
Banach space and Q C By as a set. Assume that Q = Byand Q is compactly
embedded in By. Let G C Q be a convex set and F : G — B, be a one-to-
one operator, continuous in terms of norms ||| g, , ||l g, . Consider the problem of
solution of (1.46). Let y* be the ideal noiseless right-hand side of (1.46) and x*
be the corresponding exact solution of (1.46), F (x*) = y*. Let ||y — y*|l5, < 6.
Consider the Tikhonov functional (1.48), assume that (1.49) holds and that xo # x*.
Let {x,}°2, C K (8,x0) € K (8,x0) be a minimizing sequence of the functional
(1.48) satisfying (1.52). Let § € (0,1) be an arbitrary number. Then there exists
a sufficiently small number 6o = 6o (§) € (0, 1) such that for all § € (0,8¢), the
following inequality holds:

X0 —x*[lp, <&llxo—x"[g,V¥n. (1.54)

In particular, if dim By < oo, then all norms in B are equivalent. In this case,
we set Q = By. Then a regularized solution xq) exists (Sect. 1.7.2) and (1.54)
becomes

|%a@) = x*[ 5, < &llxo = x* 13, - (1.55)
In the case of noiseless data with § = 0, the assertion of this theorem remains true

if one replaces above § € (0,80) with a € (0,aq) , where ag = ao (§) € (0,1) is
sufficiently small.

Proof. Note that if xo = x*, then the exact solution is found, and all x,, = x*. So
this is not an interesting case to consider. By (1.47), (1.48), and (1.50),

1 ) = llp, < 8 +allxo—x = 8+ 5% g "] -
Hence,
|F ) = F (x*) |, = |(F ) =)+ (v = F (x*))] ,
= [(F ) =)+ (y =),

< NF ) =ylig, + 1y = y*lls,

< 8248t — x|} +6. (1.56)



38 1 Two Central Questions of This Book and an Introduction to the Theories. . .
By Theorem 1.3, there exists the modulus of the continuity w r (z) of the operator
F™': F (K (8.x0)) = K (8, x0) .

By (1.56),

[0 — x*I 5, < @F (\/32 + 8 lxo —x*[1p + 5) . (1.57)

Consider an arbitrary £ € (0, 1) . Then one can choose the number 6y = 8y (§) so
small that

wF (\/52 + 8 ||x* —xolle + 5) <&lxo—x"lp,V8€(0,80). (1.58)

The estimate (1.54) follows from (1.57) and (1.58). The proof for the case § = 0 is
almost identical with the above. |

Thus, a simple conclusion from Theorem 1.8 is that if a uniqueness theorem
holds for an ill-posed problem and the level of the error § is sufficiently small, then
the minimization of the Tikhonov functional leads to a refinement of the first guess
Xxo even for a single value of the regularization parameter. This explains why the
second stage of the two-stage numerical procedure of this book refines the solution
obtained on the first stage.

In estimates (1.54) and (1.55) the number £ is not specified. We now want to
specify the dependence & from §. To do this, we need to impose an additional
assumption on the function w (z) . In fact, this assumption requires the proof of
the Lipschitz stability of the problem (1.46) on the compact set K (8, x,) . However,
in order to simplify the presentation, we do not prove the Lipschitz stability of CIPs
in this book. We refer to, for example, works [14,32,33,62,79-81,104, 161], where
the Lipschitz stability was established for some CIPs via the method of Carleman
estimates; see Sect. 1.10 for this method.

Corollary 1.8. Assume that conditions of Theorem 1.8 are satisfied. Let wF (z) be
the modulus of the continuity of the operator F~' : F (f (6, xo)) — K (8, x0). Let
the function wr (z) be such that wg (z) < Cz,Vz > 0 with a positive constant C
independent on z. Then there exists a sufficiently small number &y > 0 such that for
all § € (0,68¢) (1.54) becomes

%0 = x| 5, = 3C8" lxo = x"[lg .

and (1.55) becomes
X — x|, <3C8" [lxo—x"p, -

In the case of the noiseless data with § = 0, one should replace §" with « in these
estimates.
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Proof. 1t was assumed in Theorem 1.8 that [[x* —xll, # 0. Since, § <
8 |x* = Xol| o for sufficiently small &, then for § € (0,o) ,

VB 8 = xoly 8 <848 | —xollg + 8 < 38" " — ol

Hence,

wr (\/32 + 8 e — xolly + 5) <308 x* — xo|| .6 € (0,3) .

The rest of the proof follows from (1.57). O

1.9 Global Convergence in Terms of Definition 1.1.2.4

The goal of this section is to show that the two-stage numerical procedure of this
book converges globally to the exact solution in the classical sense in terms of
Definition 1.1.2.4. In other words, it converges globally within the frameworks of
the pair of approximate mathematical models (M;, M;). Since we discuss in this
section the two-stage numerical procedure (rather than the first stage only), we rely
here on assumption 1.1.2. First, we need to prove that if the locally convergent
numerical method of the second stage is based on the minimization of the Tikhonov
functional, then it does not face the problem of local minima and ravines in a small
neighborhood of the exact solution.

Consider a nonlinear ill-posed problem. Suppose that a numerical method for
this problem is approximately globally convergent in terms of Definition 1.1.2.1.
Then this method ends up with a good approximation xo := Xgob for the element
x* € B.The element x* represents the unique exact solution of this problem within
the framework of the approximate mathematical model M. To refine xgiob, We apply
a locally convergent method satisfying conditions of Definition 1.1.2.3. Consider
now the approximate mathematical model M, associated with the numerical method
of this definition. Let the corresponding k-dimensional Banach space be By C
B,dim By = k < oo. Let Xgiop, X* € Bir. We want to refine the solution xgop,
which is obtained on the first stage, via the minimization of the Tikhonov functional
in which the starting point of iterations would be xo := Xgi0,. We anticipate that this
refinement would provide a better approximation for the exact solution x*.

Almost any minimization procedure of a least squares functional is based on a
version of the gradient method, which is a locally convergent one. The gradient
method stops at a point where a certain norm of the gradient is close to zero. Hence,
if this Tikhonov functional has local minima in any neighborhood of x*, then any
version of the gradient method can stop at any of those minima. However, it is
unclear which of these minima should be selected as a regularized solution. On the
other hand, a strongly convex functional does not have local minima. Furthermore, it
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is well known that if a functional is strongly convex on an open set and if it achieves
its minimal value on this set, then the point of this minimum is unique, and the
gradient method converges to it; see, for example, [128, 137].

Suppose that the Tikhonov functional is strongly convex in a certain small
neighborhood of the point x* € By (i.e., locally strongly convex). In addition, let
both the regularized solution and x4, belong to the interior of this neighborhood.
Then local minima do not occur on the refinement stage, provided that xgop is the
starting point of iterations for this stage. Theorem 3.1 of [29] claims the local strong
convexity of this functional in a small neighborhood of a regularized solution. In
Theorem 1.9.1.2, we extend that result of [29] to the case of a small neighborhood
of the exact solution x*. In addition, we use here Theorem 1.8, which was not used
in [29]. Based on Theorem 1.9.1.2, we conclude in Sect. 1.9.2 that the two-stage
numerical procedure of this book converges globally in the classical sense in terms
of Definition 1.1.2.4.

The local strong convexity of the Tikhonov functional was also proved in earlier
publications [139, 140]. These works require the continuity of the second Fréchet
derivative of the original operator F. Unlike this, we require the Lipschitz continuity
of the first Fréchet derivative, which is easier to verify for CIPs.

1.9.1 The Local Strong Convexity

First, we remind the notion of the Fréchet derivative [113].

Definition 1.9.1 ([113]). Let B; and B, be two Banach spaces and L (B, B,) be
the space of bounded linear operators mapping B into B,. Let G C B) be a convex
set containing interior points and A : G — B, be an operator. Let x € G be an
interior point of the set G. Let x € G be an interior point of G. Assume that

A(x+h)=Ax)+ (A (x).h) +e(x,h),Vh:x+heG,

where the operator A’ (x) € L (By, By) and (A’ (x) , h) means that A’ (x) acts on /.
Assume that

le (x.h)llp,
lallg,—0 |7 g,

Then the bounded linear operator A’ (x) : By — B is called the Fréchet derivative
of the operator A at the point x.

Assume that the Fréchet derivative of the operator A exists for all interior points
x € G, and it is continuous in terms of the norm of the space L (B, By). Let
interior points x,z € G. Since G is convex, then the entire segment of the straight
line connecting these two points also belongs to G. The following formula is valid:

1
A(x)—A(z)=/(A’(z+9(x—z)),x—z)d9. (1.59)
0
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Let B be a Banach space, G € B be a convex set, and J : G — R bea
functional. The functional J is called strongly convex on the set G if there exists a
constant k > 0 such that for any two interior points x,z € G and for any number
A € [0, 1], the following inequality holds [128]:

A=)
SU=A)

5 lx—zl34+J Ax+ (1= <A (X)) +(1—-1)J ().

The following theorem is well known:

Theorem 1.9.1.1 ([128]). Let H be a Hilbert space, G C H be a convex set
containing interior points, and J : G — R be a functional. Suppose that this
functional has the Fréchet derivative J' (x) € L (H,R) for any interior point
x € G. Then the strong convexity of J on the set G is equivalent with the following
condition:

(J'(x)=J (@), x—2)=2p|x—2z|*,¥x,z € G, (1.60)
where p > 0 is the strong convexity constant.

Consider now the case when B; = H; and B, = H; are two Hilbert spaces.
In order not to work with a stronger norm of the regularization term in the
Tikhonov functional, we assume that dim H; < oo since all norms in a finite
dimensional Banach space are equivalent. Denote norms in H; and H; as ||-|| and
|I-]l,, respectively. The norm in the space of bounded linear operators £ (H, H,) we
also denote in this section as ||-|| for brevity. It will always be clear from the context
of this section whether the sign ||-|| is related to an element of H; or to an element
of L(H,, H).Let G C H, be a bounded closed convex set and F:G— H, bea
continuous operator. Similarly with (1.46), consider the problem of the solution of
the equation F (x) = y,x € G. We again assume that the element y (which we call
“the data”) is given with an error, |y — y*||, < 8, where y* is the exact right-hand
side of this equation, which corresponds to its exact solution x* € G, F (x*) = y*.
It is convenient to replace in this section the operator F with F : G — H, defined
as F (x) = F (x) — y. Hence, we consider the equation

F((x)=0,x €G, (1.61)

where
| F ()], =8 (1.62)

Let the point xo € G. Consider the Tikhonov functional corresponding to (1.61):
1 2, @ 2
Ja () = SIF @I + 3 v = (1.63)

For any 8 > 0 and for any x € H;, denote V3 (x) = {z € H; : ||x —z|| < B}.
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Theorem 1.9.1.2. Let H| and H, be two Hilbert spaces, dim H; < oo, G C H,
be a closed bounded convex set containing interior points, and F : G — H; be
a continuous one-to-one operator. Let x* € G be the exact solution of (1.61) with
the exact data and § € (0, 1) be the error in the data . Let (1.62) be satisfied and
Vi (x*) C G. Assume that for every x € V| (x*), the operator F has the Fréchet
derivative F' (x) € L (Hy, H>) . Suppose that this derivative is uniformly bounded
and Lipschitz continuous in Vi (x*), i.e.,

[F" ()|l < Ny, Vx € Vi (x%), (1.64)
|F'(x)— F' ()| < Na|lx —z||, Vx,z € Vi (x*), (1.65)

where N1, N» = const. > 0. Let

a=a()=8" V5e(0,1), (1.66)

1
L = const. € (O, Z) . (1.67)

Then there exists a sufficiently small number 8y = 8o (N1, Na, iu) € (0, 1) such that
for all § € (0,68), the functional J,s) (x) is strongly convex in the neighborhood
Vas) (x™) of the exact solution x* with the strong convexity constant o /4. Next, let
in (1.63) the first guess xq for the exact solution x* be so accurate that

8
lxo — x*| < R (1.68)
Then there exists the unique regularized solution xus) of (1.61) and xus) €
V83“/3 (x*) . In addition, the gradient method of the minimization of the functional
Jos) (x) , which starts at xo, converges to Xy s). Furthermore, let § € (0, 1) be an
arbitrary number. Then there exists a number §; = &1 (N1, N2, i, €) € (0, 8¢) such
that

H)Ca(g) — x*” <E|xo—x*|, Y8 € (0,61). (1.69)

In other words, the regularized solution x,s) provides a better accuracy than the
first guess Xx.

Remark 1.9.1. Consider now the noiseless case with § = 0. Then one should replace
in this theorem 8o = o (N1, N2, ) € (0, 1) with ¢g = g (N1, N;) € (0,1) to be
sufficiently small and require that o € (0, cp) .

Proof of Theorem 1.9.1.2. For any point x € Vj (x*), let F"* (x) be the linear
operator, which is adjoint to the operator F’ (x) . By (1.63), the Fréchet derivative
of the functional J,, (x) acts on the element u € H; as

(Jo (x) . u) = (F™ (x) F (x) + & (x —x0),u), Vx € G,Yu € H,.
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Consider two arbitrary points x,z € Viau (x*). We have

(Jox)=T, @), x—2) =alx—z]*+ (F* (x) F(x) = F*(2) F () ,x — 2)
=allx—z|* + (F* (x) F (x) = F”* (x) F (2) , x —2)
+(F* () F@)—F*@F@,x—2).

Denote

A = (F’* (x)F(x)—F"™ (x)F(z),x—z),
Ay = (F*(x) F(2) = F™*(2) F (z) . x —2).

Then
(JL(x) = JL(2),x —2) =a|x —z|> + 4 + A, (1.70)

Estimate A, A, from the below. Since
A=A —(FF () F (x)(x—2),x—2)+ (F* (x) F'(x) (x —2) ,.x —2),
then by (1.59),

|
A = (F/* (x) (/ (F’(z+Q(x—z))—F’(x),x—de)) ,x—z)

0
+(F™*(x) F'(x) (x —2),x —2). (1.71)

Since || A|| = |A*||,VA € L (H\, H>), then using (1.64) and (1.65), we obtain

1
(F’* (x) (/ (F/(z—i-@(x—z))—F’(x),x—zd@)) ,x—z)
0

1
< HF/(X)H/||F/(z+9(x—z))—F/(x),x—Z”zd@.||x_z||
0

NiN, [|x — 2.

=

N =

Next,

(F*(x)F'(x)(x—2),x—2) = (F' (x) (x —=2) . F/ (x) (x —2)),
=|F )=yl =0,
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where (, ), is the scalar product in H,. Hence, using (1.71), we obtain
A > —%NlNz x —z|°. (1.72)
Now we estimate A :
42| < IF @, [ F'(x) = F' @ Ix =z = Nallx =2l | F @),
By (1.59) and (1.64),
1F @l = [F@=F @), + [F ()], = Nilla ="l + | F (7).

Hence, using (1.62), we obtain
| 2] < Naflx = 2> (N1 |z — x| + | F (x*)],) < N2 [lx =z (N183“ + 5) .

Thus,
Ay > =N, |x — 2 <N153" + 5) . (1.73)

By (1.66) and (1.67), we can choose §¢ = 8o (N, Na, ) € (0,1) and T =
7 (N1, Ny) € (0, 1) so small that

<N153" 4 5) < 2N, 8" (1.74)

Combining (1.73) and (1.74) with (1.66)—(1.70) and (1.72) and recalling that x, z €
Viau (x™), we obtain

NN,
2

(L) = L@ x —2) = 2] [a BRIy P lestﬂ

5
> [lx -zl I:SZM - §N1N253“:|

2u
2« 2
> —|x—=z||" = =|lx—2z|".
> k=2l = S e =zl

Combing this with Theorem 1.9.1.1, we obtain the assertion about the strong
convexity.

Since G is a closed bounded set in the finite dimensional space Hj, then there
exists a minimizer x5y € G of the functional Jys) in (1.63). Combining (1.45) with
(1.66), (1.67), and (1.68) and decreasing, if necessary, &,, we obtain for § € (0, §y)
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IA

8 2
— 42 |]x* — x| < 8'TH 4 28
NG + 2 [x™ — xo +3

= gsw 1+ 351—4# < 353“ 3 53,
3 2 3 2

[ Xy — x|

Thus,
Hxa(g) — x* H < 83M.

The latter implies that x4y € Viau (x*) . Since the functional J, is strongly convex

on the set Vi, (x*), the set Vs (x*) C Viau (x*) for sufficiently small § and the

minimizer X4 € Vi (x*), then this minimizer is unique. Furthermore, since by

(1.68) the point xg € Vs (x*), then it is well known that the gradient method with

its starting point at x, converges to the minimizer x,s); see, for example, [137].
Let £ € (0, 1) be an arbitrary number. By Theorem 1.8 we can choose

81 =381 (N1, Na, 1, §) € (0,80) .

so small that
|Xats) — x*| < Ellxo —x*||. V8 € (0.81).

which proves (1.69). Hence, (1.68) implies that x,5) € ng,% (x*). O

1.9.2 The Global Convergence

One of main points of this book is the two-stage numerical procedure for certain
CIPs, which addresses both central questions posed in the beginning of Sect. 1.1.
This procedure was developed in [25-29, 115, 116, 160]. In this section, we briefly
present some arguments showing that this procedure converges globally to the exact
solution in terms of Definition 1.1.2.4. Corresponding theorems and numerical
confirmations are presented in Chaps. 2—6. Consider one of CIPs of this book.

* On the first stage, a numerical method with the approximate global convergence
property (Definition 1.1.2.1) ends up with a function cgob (x). Let ¢* (x) €
B be the exact solution of this CIP. Then corresponding approximate global
convergence theorems of either Chap.2 or Chap. 6 guarantee that the function
Cglob Provides a sufficiently good approximation for c*.

* On the second stage, we use an approximate mathematical model M, to minimize
the Tikhonov functional (1.63) associated with our CIP. In the case of the
adaptive finite element method (FEM) this model basically means the assumption
that the solution belongs to a finite dimensional space generated by all linear
combinations of standard piecewise linear finite elements (see details in Chap. 4).
This space is equipped with the norm |||, (o) - In the case when the Tikhonov
functional is minimized via the finite difference method (FDM) (Chap. 6), this
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model means a finite number of grid points in the finite difference scheme and
a finite dimensional space associated with it; see, for example, [146] for this
space. In any of these two cases, we have the finite dimensional Hilbert space
H;. We assume that H, C B as a set, |||z, < ||l and cgor € H,. Also,
¢* € H; (assumption 1.1.2). Following Definition 1.1.2.4 we assume that in
(1.2) x, := ¢, and ¢ € (0, p]. Here, p is the number of Definition 1.1.2.3, and
functions ¢, are obtained in our iterative process of the numerical method of the

first stage. Let § € (0,8p) be the level of the error in the data. Let the number
pE (0, s / 3) , where the numbers 8, 1 were defined in Theorem 1.9.1.2 Then
(1.2) implies that

3mu

3 bl
which is exactly (1.68) with xy := cgiob, x* 1= ¢*. Theorem 1.9.1.2 implies

that the regularized solution cys) exists, and it is unique. Furthermore, (1.69) of
Theorem 1.9.1.2 ensures that

L P

5

Jews =, < leaon =1 < 5
Next, again by Theorem 1.9.1.2, the gradient method of the minimization of the
Tikhonov functional with its starting point ¢gjop coOnverges to cq(s). Thus, in the
limiting case of § — 0, we arrive at the exact solution ¢*.

e Therefore the two-stage numerical procedure of this book converges globally in
the classical sense within frameworks of the pair of approximate mathematical
models (M, M), as described in Definition 1.1.2.4.

* In addition, extensive numerical and experimental studies of follow-up chapters
demonstrate that conditions of the informal Definition 1.1.2.2 are also in place.

1.10 Uniqueness Theorems for Some Coefficient Inverse
Problems

1.10.1 Introduction

This section is devoted to a short survey of currently known uniqueness theorems
for CIPs with the data resulting from a single measurement. As it is clear from
the construction of Sect. 1.7.1 as well as from Theorems 1.3, 1.8, and 1.9.1.2, the
question of the uniqueness is a very important one for, for example, a justification
of the validity of numerical methods for ill-posed problems. Before 1981, only the
so-called “local” uniqueness theorems were known for multidimensional CIPs with
single measurement data. The word “local” in this case means that it was assumed
in these theorems that either the unknown coefficient is sufficiently small, or it is
piecewise analytic with respect to at least one variable, or that this coefficient can
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be represented in a special form, or that the CIP is linearized near the constant
background [124, 143]. The absence of “global” uniqueness results for these CIPs
was one of main stumbling blocks of the entire theory of inverse problems at
that time. The term “global” means here that the main assumption about the
unknown coefficient should be that it belongs to one of main functional spaces,
for example, C¥, H* . In addition, one might probably impose some mild additional
assumptions, for example, positivity. But one should not impose abovementioned
“local” assumptions.

For the first time, the question about global uniqueness theorems was addressed
positively and for a broad class of CIPs with single measurement data in the
works of A.L. Bukhgeim and M.V. Klibanov in 1981. First, these results were
announced in their joint paper [43]. The first complete proofs were published in
two separate papers [44, 95] in the same issue of proceedings. This technique
is now called the “Bukhgeim-Klibanov method.” Currently, this method is the
only one enabling for proofs of global uniqueness results for multidimensional
CIPs with single measurement data. Note that the idea of the “elimination” of the
unknown coefficient from the governing PDE via the differentiation, which is used
in our approximately globally convergent numerical method (Chaps. 2 and 6), was
originated by the Bukhgeim-Klibanov method.

The Bukhgeim-Klibanov method is based on the idea of applications of the so-
called Carleman estimates to proofs of uniqueness results for CIPs. These estimates
were first introduced in the famous paper of the Swedish mathematician Torsten
Carleman in 1939 [50]. Roughly speaking, as soon as a Carleman estimate is
valid for the operator of a PDE, then the Bukhgeim-Klibanov method leads to a
certain uniqueness theorem for a corresponding CIP for this CIP. On the other hand,
since Carleman estimates are known for three main types of partial differential
operators of the second order (hyperbolic, parabolic, and elliptic), then this method
is applicable to a wide class of CIPs. Since the publication of works [43,44,95] in
1981, many researchers have discussed this method in their publications. Because
uniqueness is not the main topic of this book, we refer only to some samples of those
publications in [14,31-33, 45, 62, 79-81, 83, 84, 96-99, 102-104, 136]. We refer to
[161] for a survey with a far more detailed list of references.

Although the Bukhgeim-Klibanov method is a very general one, there is a certain
problem associated with it. This problem was viewed as a shortcoming at the time
of the inception of this method. Specifically, it is required that at least one initial
condition not to be zero in the entire domain of interest §2. At the same time, the
main interest in applications in, for example, the hyperbolic case, is when one of
initial conditions is identically zero and another one is either the §-function or that
the wave field is initialized by the plane wave. The uniqueness question in the latter
case remains a long-standing and well-known unsolved problem; see [58] for some
progress in this direction.

On the other hand, the recent computational experience of the authors indicates
that the above is only a mild restriction from the applied standpoint. Indeed, suppose
that initial conditions for a hyperbolic equation are

u(x,0) =0,u (x,0) =8 (x — xp) (1.75)
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where x, xo € R" and the source position {x} is fixed. Then one can consider an
approximation for the §-function in the sense of distributions as

1 2
u® (x,0) =0,uf (x,0) = (ﬁg)" exp (_ng—zxol) (1.76)

for a sufficiently small number ¢ > 0. Suppose that the domain §2 is located
far from the source {x(}, which is common in applications. Then the solution of
the forward problem with initial conditions (1.76) differs negligibly from the case
(1.75) for x € $£2. If a numerical method of solving this CIP is stable, as it is
the case of algorithms of this book, then this negligible difference in the boundary
data at 052 will practically not affect computational results. On the other hand, in
the case (1.76), uniqueness is restored. Therefore, the Bukhgeim-Klibanov method
addresses properly the applied aspect of the uniqueness question for CIPs with
single measurement data.

The single work where the problem of the zero initial condition was partially
addressed is [112]. In this paper, the case of a single incident plane wave was
considered. Derivatives with respect to variables, which are orthogonal to the
direction of the propagation of this wave, are expressed via finite differences.
Results of this work are presented in Sect. 1.11.

In Sect.1.10, we prove uniqueness theorems for some CIPs for hyperbolic,
parabolic, and elliptic PDEs using the Bukhgeim-Klibanov method. These theorems
were published in somewhat different formulations in [43,95-97,99, 102]. For the
sake of completeness, we also derive a Carleman estimate for the corresponding
hyperbolic operator. Since this is an introductory chapter, we do not include here
proofs of Carleman estimates for parabolic and elliptic operators and refer to Chap. 4
of [124] instead. In addition, the Carleman estimate for the Laplace operator is
derived in Chap. 6 of this book. The only reason why we assume everywhere in
Sect. 1.10 that the domain £2 is £2 = {|x| < R} C R", R = const. > 0 is our desire
to simplify the presentation. Similar arguments can be considered for an arbitrary
convex domain with a smooth boundary.

1.10.2 Carleman Estimate for a Hyperbolic Operator

Let £2 = {|x] < R} C R" and T = const. > 0. Denote
0Ff = 2x(~T.T),SEf =302 x(-T.T),Qr = 2x(0,T),Sr = 32 x(0,T).
Let xo € £2,7n € (0, 1). Consider the function v (x,¢):

¥ (x,1) = |x — xo)* — nt>. (1.77)
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We now introduce the Carleman weight function (CWF) by
W(x.1) = exp[Ay (x,1)], (1.78)

where A > 1 is a large parameter which we will specify later. The level surfaces of
the function W (x, t) are hyperboloids H; = {|x — x0|2 —nt’=d = const} . For
d € (0, R?), consider the domain G:

Gy = {(x,t):xE.Q,|x—x0|2—ntz>d} C Q%. (1.79)

Hence, G4 # @ and V¥ (x,t) # 0 in G 4. Define the hyperbolic operator L as
Lou = ¢ (x) uyy — Au. (1.80)

The Carleman estimate for the operator L is established in Theorem 1.10.2. As to
the proof of this theorem, it should be kept in mind that proofs of Carleman estimates
are always space consuming; see, for example, Chap. 4 of [124]. For brevity, we
assume in Theorem 1.10.2 that the dimension of the space R” is n > 2. An analog
of this theorem for the case n = 1 can be proven similarly. This theorem was
proven in [124] for the case ¢ = 1 and in [84, 102] for the case when the function
c satisfies conditions (1.81) and (1.82). As it is clear from Theorem 1.10.2, the
Carleman estimate for a partial differential operator depends only on its principal
part.

Theorem 1.10.2. Let 2 = {|x| < R} C R".,n > 2,x0 € £, and L be the
hyperbolic operator defined in (1.80). Suppose that in (1.80), the coefficient satisfies
the following conditions:

c€C'(22).c(x) €[l,c],where T = const. > 1, (1.81)
(x — x0,Ve) >0, Vx € 22, (1.82)

where (-, ) denotes the dot product in R". Let

P = P (x0,£2) = max |x — xo . (1.83)
XESR

Then there exist a sufficiently small number n, = n,(c, P, ||Vc||c(§)) e (0,1]

such that for any n € (0,n,], one can choose a sufficiently large number Ay =
Ao (82,1n,¢,x0) > 1 and number C = (§2,n,¢,x9) > 0, such that for all u €
C? (Ed) and for all A > Ay, the following pointwise Carleman estimate holds

(Lou)> W2 > CA <|Vu|2 ot + A%ﬂ) W2EV-U+V,inGy,  (1.84)
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where the CWF W (x,t) is defined by (1.78) and components of the vector function
(U, V) satisfy the following estimates:

U| < CA3(|VM|2+u,2+u2) w2, (1.85)
V| <Cal [|z| (u,z +Vul + uz) + (IVu| + |u]) |u,|] W2 (1.86)

In particular, (1.86) implies that if either u (x,0) = 0 or u, (x,0) = 0, then
V (x,0) = 0. (1.87)

Proof. In this proof, C denotes different positive constants depending on the
same parameters as indicated in the conditions of this theorem. Also, in this proof,

O (1/2) denotes different C'! (@?) functions such that

1
ol =
‘ (x)
and the same is true for the first derivatives of these functions. We use (1.88) in

many parts of this proof below. Denote v = u - W and express the operator L (1)
in terms of the function v. Below f; := 9, f. We have

w=v-exp[A (= x = xo)].

w = v+ 200 vyexp[2 (w2 = 1x — xoP)].
Uy = (v,, + 47t v, + 427 (nzﬂ +0 (%)) v) w,
w = [vi =24 (i = xo) vl exp [4 (2 = Iy — %) ]

1
Uj; = |:vi,- — 4 (x; — x0i) Vi + 472 (|x —)C()I2 + 0 (X)) v:| wt.

< %,VA > 1, (1.88)

Hence,

(Lou)> W? = (¢ (x) uyy — Au)*> W?

Aot a0 (s er s 0 (1))

n 2
+4Aentv, + 4X4 Z (x; — xoi) v,-} .

i=1



1.10  Uniqueness Theorems for Some Coefficient Inverse Problems 51

Denote

1
7= cvy — Av— 447 (|x — x> =t + 0 (X)) v,

72 = 4Aent - vy,

3 = 4AZ(X,‘ —Xo,‘)vi.

i=1
Then (Lou)®> W2 = (z; + 22 + z3)° . Hence,
(Lou)* W2 > 22 + 2712 + 22123. (1.89)

We estimate separately each term in the inequality (1.89) from the below in five
steps.

Step 1. Estimate the term 2z;z,. We have

1
27172 = 8Acnt - vy [cvn — Av—4)? (|x — xol2 - 677212 + 0 (X)) v:|

= [4Ac’nt - v} ], — 4AcPy;

n n
+ Z (—8Acnt -vvi); + Z 8Acnt - viv;

i=1 i=1

. 1
+8Ant - v, Zc,-vi + |:—16A3cn (t |x — xol2 —cen’t} +10 (X)) v2:|t

i=1

1
+16A%cy (|x —xo* =3c*t> + 0 (X)) Vv

= —drctp? + (4/\6277t P+ Z 4/\cr)tv,-2) —4den |Vv)?
t

i=1

. 1
+8Ant - v, Zc,-vi + 1613y |:|x - xol2 —3cn*t’ + 0 (X):| v

i=1

1
1V.U + |:4AC27]ZV[2 — 16A3C7I (t |X - -’COI2 - antz +10 (X)) v2i|
t
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Thus, we have obtained that
27120 = —4Acy (cv,2 + |Vv|2) + 8Ant - v, ch_vi
i=1

1
+161%cy |:|x —xol* =3en’> + 0 (X)} V4 VU + (W), (1.90)
where the vector function (Uj, V) satisfies the following estimates:

U] = €O (1l + f +2) W2, (1.91)

Vil < CA3r] (uf 4Vl + uz) e (1.92)

To include the function u in the estimate for |U,|, |V}|, we have replaced v with
u=v-wL

Step 2. We now estimate the term 2z;z3. We have

. 1
27123 = 84 Z (x; — x0i) vi [cv,, — Av—4)? (|x — xo|2 — cr’;zt2 + O (X)) vi|

i=1

= (Z 8cA (xi — xo7) Vivt) — > 8A(x; — x0i) cviews
t

i=1 i=1

— ZZSA (Xi —X(),')Viij

j=li=1
. 1
+ ; |:—16A3 (x; — xo07) (lx - xo|2 - cn2t2 + O (X)) v2:|

1
+16A° [(n +2)|x —xo|* —nen*t> + 0 (X)i| v

i

= 3 (—4h (xi — x0) ©2), + 4h [ne + (x — x0, Vo) 2

i=1

+ Z |:Z (_SA (xi — xo0i) ViVj):| + 81 |Vy]?

j=1Li=1 j

+ ZZSA ()C,' —)C(),.)Vijvj‘

j=li=1
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3 2 2.2 1 2
+16A° | (n +2) |x — x| —nent™+ O 1Y

+ (80/\1% Z (x; — xo7) Vi)
t

i=1

= 4L [nc + (x — xo, V)] v + 84 Vv

DD Ah i —xo) Vi | —4A [V

i=1]j=1 i
1

+16A° [(n +2)|x —xo|* —cn’> + O (,\

):|v2+V-U2+(V2)t.
Since by (1.82), (x — x9, Vc) > 0, then we obtain
22123 = 4Ancv? + 44 | V)

1
+162° |:(n +2) |x = xo|? —nen*t> + 0 (—)} Vv

A
+V .U, + Vy, (1.93)
|Us| < CA3 (|vu|2 ol + uz) w2, (1.94)
Val = €23 [1e] (190l + 1ul?) + (V] + Jul) | ] W2. (1.95)

Step 3. In this step, we estimate the term 2z,z; + 2z;z3. It follows from (1.82) that
|x —xo| < P,V¥x € £2. On the other hand, since |x — x0|2 —nt? >d > 0in Gy,
then n|t| < P./nin G,. This estimate as well as the Cauchy-Schwarz inequality
imply that

8Ant - v, Zn:civi = —8Ant - v, (Vc,Vv) = =8An|t] - [v/|-|Vy]- ||VC||C(§)
i=1
> —4A/iP Vel e (o) (v,z + |Vv|2). (1.96)
Since by (1.81),¢ > 1, then (1.90) and (1.96) imply that
2212 > —4A (zzn + JiP ||vc||c@) (vf + |Vv|2)

1
+161% [|x — x> =3c1*> + 0 (X)} V4 VU + (V). (1.97)
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Let Us = U; 4+ U,, V3 = V| + V5. Hence, (1.93)—(1.97) imply that
2212 + 22123 > 4A [nc . (Ezn + /7P ||Vc||c(§))] v
+ 41 (1= (@ + VAP IVellez)) ) 1997

A
+V-Us + Va, (1.98)

1
T 161 [(n T 24 ) fx = xoP — (1 4 3T+ O (_)} 2

Us| < CA3 (|Vu|2 Fud+ uz) w2, (1.99)
V| < €23 [|z| (u,z + |Vl + uz) + (IVu + |ul) |u,|] W2 (1.100)
Step 4. We now estimate the term z% from the below. We are doing this only in order
to prove Corollary 1.10.2, since multipliers at v2, |Vv|2 ,v? in (1.98) are positive

anyway for sufficiently small 7. Let b > 0 be a number, which we will choose later.
We have

| 2
7= |:cv,, — Av—4)2 (|x — x> —en’t? + 0 (X)) v+ lbvi|

= (2Achw,), — 2Achv] + Y (—=2Abw;);

i=1
+2Ab |Vv)? — 81%b [lx — x> =t + 0 (%)} V2.
Since by (1.81), ¢ > 1, then we obtain
22 > 2Ab |Vv|]* — 2Achv?
—8A% |:|x —xl* =0’ 4+ 0 G)} V+V Uy + Vi, (1.101)
Uy < CA3 <|Vu|2 ol + uz) w2, (1.102)
Vil < CA2 (Jt] u? + |ug| - |u]) W2 (1.103)

Step 5. Finally, we estimate the term zf + 22125 + 27)z3, which is the right-hand side
of (1.89). Summing up (1.98) and (1.101) and taking into account (1.99), (1.100),
(1.102), and (1.103), we obtain
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b
2+ 22120 + 22123 > 4A |:(n - E) c— (Ezﬂ + VP ”VC”C(-Q))} v
b iy 2
+4) (1 + o (c n+ VnP ”VCHC(Q))) [Vl

b
+16A3[(n +24n— 5) |x — xo|?

= v b 2.2 1 2
—(nc+3r)c E)r}t +0(X)i|v

+V - -Us+ Vs, (1.104)

|Us| < CA° (IWI2 +ul + uz) w2, (1.105)

Vsl = €A [je] (s + |Vul” + o) + (Yl + Ju) | | W2, (1.106)

Choose now b = 1 and choose 1, = 7, (E, P, ||Vc|lc(§)) € (0, 1) so small that

3
5= (@n+ VAP IVeleq) = 1.¥n € Oyl (1.107)
_ _ 1 3
nc+37)c—§ nfn—i—i—l—n,VnE(O,nO]. (1.108)

Since n > 2 and ¢ > 1, then (1.104) becomes
2 2 2
7+ 2212 + 20123 > 21 (vt + | Vy| )

1
+164° (|x — x> =0+ 0 (X)) V 4+ V-Us+ Vs, (1.109)

Since |x — xo|* — 712 > d > 0in Gy, then replacing in (1.109) v with u = vW !
and using (1.88), (1.105), and (1.106) as well as the fact that A is sufficiently large,
we obtain (1.84)—(1.86). O

Corollary 1.10.2. Assume now that in (1.80), the operator Lou = u,; — Au and
n > 2. Then, condition (1.82) holds automatically, and in Theorem 1.10.2,0ne can
choose ny, = 1.

Proof. 'We now can set in (1.81) ¢ := 1. Since in the above proof b = 1, then we
have in (1.104) forn > 2
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b 5 1 1
n——=J)c—|(cn+ P ||Vc *):n— +=-]1= =,
( 2) ( N+ VP lIVele(m) n+5)=3

b, 3 1
(1+§—(c n+nP ||V6||c(g))) =513

b 2 - _ b\ 5,
n+2+7]—§ |x — xo|” — nc+3nc—§ nt

3 1
= (n—l—z+n)|x—x0|2—(n—§+3n)nzt2

> |x —xol* =t > d.

Therefore, (1.109) is satisfied for all n € (0, 1) . O

1.10.3 Estimating an Integral

Lemma 1.10.3 is very important for the Bukhgeim-Klibanov method.

Lemma 1.10.3. Let the function ¢ € C'[0,a] and ¢’ (t) < —b in [0,a], where
b = const > 0. For a function g € L, (—a, a), consider the integral

a t 2
I(g. M) = / ( /0 g(r)dt) exp[2A¢ (¢%)] dr.

—a

Then,

1 a
I(g.A) < b /;a g2 () exp [Zl(p (l‘z)] dr.
Proof. We have fort > 0

4rg’ (12
twgﬂg exp [ZMp (tz)]

1 d
= YPITORT {exp [2A¢ (tz)]}

t exp [2/190 (tz)] =

1 d
= _Wd_t {— exp [2/\(/) (tz)]}
1 d
=TT {—exp[22¢ (¢%)]} -
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Hence,

/Ou (/Ot g () dl’)zexp (2Ag (¢%)) dr < /0“ exp (249 (£%)) (/Ot g2 (1) dr) d

1 “d t
S T [—exp (2A¢ (1%))] (/0 g’ () dr) dt

a

1 ¢ 1
Ty exp (2/1(,0 (az)) /0 g (t)dr + b A g (1) exp (2’\(/’ (IZ)) dr

e, 2
=0 i g” (v)exp (2Ag (1%)) dr.

Thus, we have obtained that

/0 " exp (200 (12) ( /0 () df)

Similarly,

2
1 ¢ 2 2

0 t 2 1 0
/ exp (249 (%)) (/0 g (1) d‘l,') dr < o5 | g () exp (2Ag (¢%)) dr.

—a

1.10.4 Cauchy Problem with the Lateral Data for a Hyperbolic
Inequality with Volterra-Like Integrals

Recall that we assume in Sect. 1.10 that 2 = {|x| < R} C R”". Let P be the number
defined in (1.83) and d = const. € (O, PZ). Let G; be the domain defined in (1.79).

Define its subdomain Gj as
Gj={(x,t):|x—x0|2—nz2>d,z>o,xes2}. (1.110)

Hence, G; =Gy N{t >0}. Let

P2—d

(1.111)
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Using (1.79) and (1.110), we obtain
G cOr, Gf=Gsn{t>0}, (1.112)

Gin{t=Tt=2, GuNit==+T}=0. (1.113)

Let A; > 0 and A, > 0 be two constants. Assume that the function u € C? (Q7)
satisfies the following hyperbolic inequality with Volterra-like integrals:

le (x) ury — Aul < Al(IWI + |ue| + IMI) (x,7)

t
+A2/(|Vu|+ |uc| + |u]) (x,7)d7, in G} (1.114)
0

Also, let this function u has zero Cauchy data at the lateral side S7 N @j of the
domain Gj :

_ u - 111
u ISTﬂEj_ % |S7‘ﬂ§j_ 0. ( . 5)
In addition, we assume that
either u (x,0) = O or u, (x,0) = Oforx € G, N {t = 0}. (1.116)

The goal of this section is to prove that conditions (1.114)—(1.116) imply that
u(x,t) =0in G;’. In particular, if A, = 0, then integrals are not present in (1.114).
Hence, in this case, the corresponding hyperbolic equation

n+1
c(X)uy = Au—i—ZbJ- (x, ) u; +a(x,t)uinG+,
j=1
where u,41 = u, with coefficients b;,c € C (G }) can be reduced to the

inequality (1.114). Hence, Theorem 1.10.4 implies uniqueness for this equation
with the Cauchy data (1.115) and one of initial conditions (1.116). The reason
why we introduce Volterra integrals in (1.114) is that they appear in the proof of
Theorem 1.10.5.1 Furthermore, assume that (1.111) holds. This implies (1.112)
and (1.113). Consider now inequality (1.114) with the Cauchy data (1.115) in the
domain G4 (thus allowing ¢ < 0). Then an obvious analog of Theorem 1.10.4 is
also valid, and the proof is almost identical. In the case A, = 0, such an analog was
published in [124].

Theorem 1.104. Let 2 = {|x| <R} C R"'.n > 2, and xo € 2. Assume
that d € (0, P2) and the inequality (1.111) holds with the constant n := n, =

Mo (E, P, ”VC||C(§)> € (0,1] of Theorem 1.10.2. Suppose that the function u €
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c? (6 ;}') satisfies conditions (1.114)—(1.116) and that the coefficient c (x) satisfies
conditions (1.81), (1.82). Then

u(x,t) =0inGJ. (1.117)
In particular, if in (1.110) xo = 0 and d = 0, then
u(x,t) =0in Q7. (1.118)

In addition, if ¢ (x) = 1 and in (1.110) xo = 0 and d = 0, then it is sufficient for
(1.118) to replace (1.111) with

T>Rn=1. (1.119)
Proof. 'We note first that the boundary of the domain G;’ consists of three parts:
G =U_0;G},
3G = {|x —xolP =t =d.t > 0,|x| < R} c Or.
G+ = {|x —xolP =gt > d.t > 0, |x| = R} C Sy,

G+ = {|x—x0|2>d,t =0, |x| <R}. (1.120)

Hence, the hypersurface 31G; is a level surface of the CWF W. Let the function
gel, (G;’). Then (1.77), (1.78), and (1.120) imply that

t 2

/ /g(x,r) dr | Widxdr = / exp (2)& |x—x0|2)

+ \o +
G, 903G,
t(x) t 2

X / /g(x,t)dr e 2y | dx,

0 0
VIx—x*—d
t(X) = T

Hence, applying Lemma 1.10.3 to the inner integral

1x) /¢ 2

/ /g(x,t)dt e_M"tzdt,

0 0
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we obtain
t 2
/ /g(x,‘[)d‘f W2dxdr < ﬁ/ngzdxdt, Vg e L, (G)).
Gf N0 G

(1.121)

Multiply both sides of the inequality (1.114) by the function W (x,t) with

sufficiently large parameter A > 1. Then, square both sides, integrate over the
domain G;’, and use (1.121). We obtain with a constant A = A (A, A2, 1) >0

/ (citry — Au)? Wdxdr < A / (|vu|2 +u? 4 uz) Wldxdr.  (1.122)
G G
We now can apply Theorem 1.10.2 to estimate the left-hand side of (1.122) from
the below. Integrating the inequality (1.84) over the domain G; using (1.85)—
(1.87), (1.115), (1.116), and (1.120) and applying the Gauss’ formula, we obtain
for sufficiently large A > A > 1
/ (Citry — Au)® W2dxdt > CA / <|Vu|2 +ud 4 Azuz) W2dxds
G G
—CA3e?M / (|Vu|2 Fid+ Azuz) W2ds.

"G

Comparing this with (1.122), we obtain

CA / (|Vu|2 +u,2+xzu2) W2dxdr — CA%e?H / (|vu|2 +ud + Azuz) W2ds
G WGy
<4 / (|vu|2 Fud 4 uz) W2dxdr.
G

Hence, choosing a sufficient large A; > Ao, we obtain for A > A; with a new
constant C > 0

A / (|vu|2 +ud+ Azu2> Wldxdr < CA3e?H / <|Vu|2 +ud 4 Azuz) ds.
G 16
(1.123)

Consider a sufficiently small number & > 0 such that d + & < P?. Then by (1.112),
Gj . C Q7. Obviously, G;‘ C GL_S. Hence, replacing in the left-hand side of the
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inequality (1.123) G;’ with G;’+£, we strengthen this inequality. Also, W2 (x,t) >
e2Md+e) jp G(Lg. Hence, we obtain from (1.123)

2Hd+e) / Wdxdt < Ce?M / (|Vu|2 +id+ Azuz) ds.

¢t

+
d+s nG,

Dividing this inequality by e?*(?*+9  we obtain

/ Wdxdr < Ce2¢ / (|Vu|2 Fid+ Azuz) ds. (1.124)
Gl "G

Setting in (1.124) A — oo, we obtain u = 0 in G;’+£. Since € > 0 is an arbitrary
sufficiently small number, then (1.117) is true.

Consider now the case when in (1.110) xo = O and d = 0. Then P = R and by
(1.111),

R
T> . (1.125)

Vo

Consider a sufficiently small number ¢ € (0, RZ) . Then by (1.112), G} C Q7 and
by (1.125),

R?—¢
—\/77_0 .
Hence, (1.117) implies that u = 0 in Gj . Hence, u = 0in GO+ . Next, since xo = 0,
then it follows from (1.122) that @: N{t =0} = {|x| < R} = £2. Hence,

T >

u(x,0) =u (x,0) =0,x € 2. (1.126)
Next, denote cu;; — Au := f. Hence, by (1.114),

ZMI(CM”_AM)ZZMIffutz-’_fZ
t
<u +4 |Vu|2+u,2+u2+/(lvulz'f'“tz"‘”z)(xvf)df ’
0

with a certain positive constant ‘A. Hence, we now can work with 2u, (cuy — Au) as
it is done in the standard energy estimate for a hyperbolic PDE [119]. In doing so,
we can use one of zero boundary conditions (1.115) at S and zero initial conditions
(1.126). This way, we obtain # = 0 in Qr, which proves (1.118). The case ¢ = 1,
including (1.119), follows from Corollary 1.10.2 and (1.118). O
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The proof of the following corollary can be obtained via a slight modification of
the proof of Theorem 1.10.4.

Corollary 1.10.4. Assume that in Theorem 1.10.4 the domain G;’ is replaced with
the domain G4, the integral in (1.114) is replaced with

t
/ (Yl + [is] + Ju]) (. 7) de .
0

and that the rest of conditions of Theorem 1.10.4, except of (1.116), is in place. Then
conclusions (1.117)—(1.119) of Theorem 1.10.4 still hold with the replacement of the
pair (Gj', QT) with the pair (Gd, Q%) .

1.10.5 Coefficient Inverse Problem for a Hyperbolic Equation

The Hyperbolic Coefficient Inverse Problem. Let the function u € C*(Q7)
satisfies the following conditions:

c(X)uy = Au+ Z ag (x) DSu,in O, (1.127)
lo|<1
u(x,0) = fo(x), u (x,0) = fi(x), (1.128)
3
uls, = p(x.1). 3—”|ST —q (1), (1.129)
n

where functions a,,¢c € C (@T), and ¢ > 1. Determine one of coefficients of
(1.127).

The CIP (1.127)—(1.129) is the problem with the single measurement data
because only a single pair ( fp, f1) of initial conditions is used.

Theorem 1.10.5.1. Let the coefficient ¢ (x) in (1.127) satisfies conditions (1.81)
and (1.82). In addition, let coefficients a, € C (ﬁ) Let the domain §2 =
{Ix] < R} CR",n > 2. Consider two cases:

Case 1. The coefficient ¢ (x) is unknown, and all other coefficients a, (x) are
known. In this case, we assume that

Afo(x) + Y aa (x) DY fo (x) # 0 for x € 2. (1.130)

lo|<1

Then for a sufficiently large 7" > 0, there exists at most one pair of functions (u, ¢)
satisfying (1.127)—(1.129) and such thatu € C*(Q7).
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Case 2. The coefficient aq, (x) is unknown, and the rest of coefficients is known.
In this case, we assume that

D fy(x) # 0 for x € 2.

Then for a sufficiently large 7 > 0, there exists at most one pair of functions (u, a,)
satisfying (1.127)~(1.129) and such that u € C3*l@l (Q).

Ifin (1.128) £, (x) = 0, then conditions of these two cases should be imposed on
the function f; (x), the required smoothness of the function u should be increased
by one and the above statements about uniqueness would still hold.

Proof. First, we note that if fy (x) = 0, then one should consider in this proof
u; instead of u, and the rest of the proof is the same as the one below. We prove
this theorem only for Case 1, since Case 2 is similar. Assume that there exist two
solutions (u1, ¢1) and (u2, ¢3). Denote W = uy — up, ¢ = ¢ — ¢;. Since

Clib1ys — Collpyy = Clibyyy — Crlday 4 (€1 — €2) Upyy = iUty + Cltoyy,

then (1.127)=(1.129) lead to

L = ¢ (0) Ty — K=Y aq (x) DY = =T (x) H (x,1). in O,  (1.131)

j=1

%(x,0) = 0,7 (x,0) =0, (1.132)
o

Uls, = 3_n|ST =0, (1.133)

H (x,t) := upy (x,1). (1.134)

Setting in (1.127) ¢ := ¢y, u := up,t := 0 and using (1.128), (1.130), and (1.134),
we obtain

H(x,0)=c;' () [ Afo () + D au (x) D fo (x) | # Oforx € 2.
le|<1
Hence, there exists a sufficiently small positive number &, such that
H(x,t) #0in 0, = 2 x [0,¢]. (1.135)
Now, we eliminate the unknown coefficient ¢ (x) from (1.131). We have

L | —
Hon in Q,.

—c(x) =
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Hence,
0 0 L . =
Sl o [H(x’t)} —0inT..
Or
L, = % (Lu) in Q,. (1.136)
Denote
H,
h(x,t) = Ft(x,t). (1.137)

Since u € C* @T) , then (1.134), (1.135), and (1.137) imply that

heC*(0,). (1.138)

Introduce a new function v (x, t) :
vi(x,t) =u (x,t) — hu(x,1) (1.139)

Considering (1.139) as an ordinary differential equation with respect to u (x, t) and
using (1.132) as well as (1.137), we obtain

U(x,t) = /K(x,t,r)v(x,r) dr, (1.140)
0
_ H(x,0) )
K (x,t,7) = IeRS) € C*(2x[0.¢] x [0,¢]), (1.141)
v (x,0) = 0. (1.142)

Using (1.139)—(1.141), we obtain the following formulas in @8:
Ci @)tt —heiiy = ¢y (y — hm,, + 2¢1hity + cih i

1
= c1vy +2¢1hv + 21 by / K, (x,t,7)v(x,7t)dt
0

t

—i—clhn/K(x,t,r)v(x,t)dt,
0
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Ay — hAu = A (u; — hu) + 2VhViu + Ahu

t
= Av 4+ 2VhV /K(x,t,r)v(x,r)dt
0

t
+Ah/K(x,t,t)v(x,r)dr.
0

By (1.136),
Lii; —hLi=0in Q.. (1.143)

Hence, substituting the recent formulas in (1.143) and using boundary condi-
tions (1.133) and the initial condition (1.142), we obtain the following inequality:

t
ler (X) vy — Av| < M | |Vy| (x, 1) + |v| (x,1) + / (Vv| + v]) (x,7)dz | in @8,
0

d
vs.= a—v ls.= 0. (1.144)
n
v(x,0) =0,

where M > 0 is a constant independent on v, X, t.
Let 5y = 7, (E, R, ||Vc||c(§)) € (0, 1] be the number considered in Theo-

rems 1.10.2 and 1.10.4. Consider now the domain G;;gl defined as

G+ {(x,z) X = ngt? > R2—netat > 0, |x] < R}.

2 ey
No€

Then, G;;Sz C Q,. Hence, we can apply now Theorem 1.10.4 to conditions (1.144).
Thus, we obtain v (x,¢) = 0 in G;(')gz. Hence, by (1.140) u(x,7) = 0 in G;;SZ.
Therefore, setting # = 0 in (1.131) and using (1.135), we obtain

T(x)=0forx e %|x| € (,/R2 — nOsZ,R)}. (1.145)

Substitute this in (1.131) and use (1.132) and (1.133). We obtain

Lii = ¢ (x) & — Al — Y a, (x) DT = 0, (1.146)
j=1
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for (x,1) € %|x| € (,/RZ— r)osz,R)} x (0,T), (1.147)

% (x,0) = 0,7 (x,0) =0, (1.148)
1
uls, = o lsr =0. (1.149)

Consider an arbitrary number 7y € (0,7 — ¢) . And consider the domain G, > (f):
G z(to)z{(x 0 xP =50 (= 10)> > R — nye?, 1 > 0, |x| <R}
Noe sb) - 0 0 No€™ > .

Hence, in this domain ¢ € (tp —¢&,79 + ¢) N {t > 0}. Since 7y € (0,7 —¢), then
t € (0, T) in this domain. Hence,

Gye2 (10) C %|x| € (,/R2 — nOsZ,R)} x (0,T).

Hence, we can apply Corollary 1.10.4 to the domain G, .2 (f)) and conditions
(1.146)—(1.149). Therefore, u (x,t) = 0 for (x,t) € G2 (fo) . Since 7o is an
arbitrary number of the interval (0, T — ¢), then, varying this number, we obtain

that
U(x,t) =0for (x,1) € {|x| € (,/Rz—nosz,R)} x (0, T —¢).

Therefore, we now can replace in (1.131)—(1.134) sets Qr, St with sets

07 = {|x| < ,/Rz—nosz} x (0, T —¢),
S5 = {|x| - \/Rz—noez} X (0.T —e),

and repeat the above proof. Hence, we obtain instead of (1.145) that

C(x)=0forx e {|x| € (,/R2—277082,R)}.

Since & > 0 is sufficiently small, we can always choose ¢ such that R? = kn,&?
where k = k (R, &) > 1 is an integer. Suppose that

T > ke = .
Noé
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Hence, we can repeat this process k times until the entire domain 2 = {|x| < R}
would be exhausted. Thus, we obtain after k steps that'¢'(x) = 0 in £2. Thus, the
right-hand side of (1.131) is identical zero. This, (1.131)—(1.133) and the standard
energy estimate imply that % (x,7) = 0in Q7. |

A slightly inconvenient point of Theorem 1.10.5.1 is that the observation time
T is assumed to be sufficiently large. Our experience of working with experimental
data (Chaps. 5 and 6) indicates that this is not a severe restriction in applications.
Indeed, usually the outcoming signal can be measured for quite a long time. Still,
it is possible to restrict the value of T to the same one as in Theorem 1.10.4 via
imposing the condition f; (x) = 0. This was observed in [80, 81]. The proof of
Theorem 1.10.5.2 partially repeats arguments of [80, 81].

Theorem 1.10.5.2. Assume that all conditions of Theorem 1.10.5.1 are satisfied.
In addition, assume that in (1.128) the function fi (x) = 0. Then Theorem 1.10.5.1

remains valid if

R
T>——. (1.150)

Vo

In particular, if ¢ (x) = 1, then it is sufficient to have T > R.

Proof. Similarly with the proof of Theorem 1.10.5.1, we consider now only for
Case 1. We keep notations of Theorem 1.10.5.1Consider the function w (x,t) =
Uy (x,1) . Then (1.131)—(1.134) imply that

c1 (X)W — Aw = Y " aq (x) Déw = =T (x) 0}y, in Q. (1.151)
j=1
we (x,0) =0, (1.152)
ow
wls, = 3_n|ST =0, (1.153)
w(x,0) = —¢(x) p(x), (1.154)

P =ci' ()| Afo () + ) au (x) DY fo(x) | #Oforx € 2. (1.155)

lo|<1

Hence, it follows from (1.154) and (1.155) that

w(x,0) _ L w(x,t)—/Wt(va)dT
0

—Cc(x) =

p(x)  px)
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Substituting this formula in (1.151), using Theorem 1.10.4, (1.150), (1.152), and

(1.153) and proceeding similarly with the proof of Theorem 1.10.4, we obtain that
T(x)=0in2andw(x,t) =u(x,t) =0in Or. O

1.10.6 The First Coefficient Inverse Problem for a Parabolic
Equation

Consider the Cauchy problem for the following parabolic equation:

c(X)u, = Au+ Z aq (x) D%u, in D;H =R"x(0,T), (1.156)
lee|<1

u(x,0) = fo(x), (1.157)

c.ag € CPRY), c(x) 21, foe CPHP®R"), pe(01). (1.158)

So (1.156) and (1.157) is the forward problem. Given conditions (1.158), this
problem has unique solution u € C*T#:1+/2 (D 7*1) [120]. Just as in Sect. 1.10.5,
assume that 2 = {|x| < R} C R",n > 2. Let I’ C 952 be a part of the boundary
of the domain 2, T = const. > 0and I'y =I" x (0, 7).

The First Parabolic Coefficient Inverse Problem. Suppose that one of coeffi-
cients in (1.156) is unknown inside the domain 2 and is known outside of it. Also,
assume that all other coefficients in (1.156) are known, and conditions (1.157),
(1.158) are satisfied. Determine that unknown coefficient inside £2, assuming that
the following functions p (x,¢) and g (x, t) are known,

Ju
wlrp=p e oo lr=qx.0). (1.159)

It is yet unclear how to prove a uniqueness theorem for this CIP “straight-
forwardly.” The reason is that one cannot extend properly the solution of the
problem (1.156) and (1.157) in {¢t < 0}. Thus, the idea here is to consider an
associated CIP for a hyperbolic PDE using a connection between these two CIPs
via an analog of the Laplace transform. Next, Theorem 1.10.5.1will provide the
desired uniqueness result.

That associated hyperbolic Cauchy problem is

Vit

Av+ Y ae (x) D | in DIF =R x (0.00),  (1.160)

la|<1

V=0 =0, vili=0 = fo (x). (1.161)

o
e
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In addition to (1.158), we assume that the coefficients ¢ (x) , aq (x) and the initial
condition f (x) are so smooth that the solution v of the problem (1.160) and

(1.161) is such that (a) v € C 4(5’;:1) if the function ¢ (x) is unknown and (b)

vecC 3+|°‘|(5Z:1) if the function ¢ (x) is known and any of functions a, (x) is

unknown.

Consider an interesting Laplace-like transform which was proposed, for the first
time, by K.G. Reznickaya in 1973 [142] and was widely used since then [102, 123,
124]. Namely, one can easily verify the following connection between solutions u
and v of parabolic and hyperbolic Cauchy problems (1.156), (1.157) and (1.160),
(1.161)

1 *° 72
u(x,t) = 21«/5/0 exp [_E:| v (x,7)dr. (1.162)

Since the transformation (1.162) is one-to-one (as an analog of the Laplace trans-
form), the following two functions p (x, ¢) and g (x, t) can be uniquely determined
from functions (1.159):

eroo =q(x,1). (1.163)

Vre =P (x,1), o

Therefore, the first parabolic CIP is reduced to the hyperbolic CIP (1.160), (1.161)
and (1.163). At the same time, the inversion of the transformation (1.162) is a
severely ill-posed procedure. Hence, this inversion cannot be used for computations.

We are almost ready now to apply Theorem 1.10.5.1 The only thing left to do is
to replace I in (1.163) with S.. To do this, we observe that, using (1.159) and the
fact that the unknown coefficient is given outside of the domain §2, one can uniquely
determine the function u (x,¢) for (x,¢) € (R"\§2) x (0, T). This is because of
the well known uniqueness result for the Cauchy problem for the parabolic equation
with the Cauchy data given at a part of the lateral boundary [124]. Therefore, we can
uniquely determine functions u, d,u at S7. This means in turn that we can replace
in (1.163) 'y with So. Hence, Theorem 1.10.5.1 leads to Theorem 1.10.6.

Theorem 1.10.6. Assume that conditions (1.158 ) hold. Also, assume that coeffi-
cients ¢ (x) , ay (x) and the initial condition fy(x) are so smooth that the solution
v of the problem (1.160) and (1.161) is such that:

(a) v e C4(E’;H) if the function c (x) is unknown
and

(b) ve C3+I“‘(E’;:l) if any of functions ay (x) is unknown. Let 2 = {|x| < R} C
R", n > 2. Suppose that conditions of either of Cases 1 or 2 of Theorem 1.10.5.1
hold. Also, assume that coefficients of (1.160) and the initial condition (1.157)
are so smooth that the smoothness of the solution v(x,t) of the hyper-
bolic Cauchy problem (1.160) and (1.161) required in Theorem 1.10.5.1 is
guaranteed. Then, conclusions of 1.10.5.1 are true with respect to the CIP
(1.156)—(1.159).
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1.10.7 The Second Coefficient Inverse Problem for a Parabolic
Equation

Theorem 1.10.6 has two inconvenient points. First, one needs to reduce the parabolic
CIP to the hyperbolic CIP via inverting the transform (1.162). Second, one needs to
use a special form of the elliptic operator in (1.156). The coefficient ¢ (x) in the
principal part of this operator must satisfy conditions (1.81) and (1.82). Although
these conditions are satisfied for the case ¢ (x) =1, still the question remains
whether it is possible to prove uniqueness of a CIP for the case of a general parabolic
operator of the second order. It is shown in this section that the latter is possible,
provided that one can guarantee the existence of the solution of the parabolic PDE
for both positive and negative values of 7. This condition is always used in studies
of CIPs for parabolic PDEs via the Bukhgeim-Klibanov method; see for example,
[33,62,79,161].

Let 2 C R” be either finite or infinite domain with the piecewise smooth
boundary 082, I’ C 0@ be a part of this boundary, and 7" = const > 0. Denote

0f =G x(-T.T). T =T x(-T.T).

Let L be the following elliptic operator in PTi:

Lu = Z ag (x,t) DYu, (x,t) € PTi, (1.164)
lo|<2
aq € C! (@f) (1.165)
6P < Y aw (e ) E* < s |65 . iy = const. > 0, (1.166)
lo|=2
VEER" Y (x.1) € 0. (1.167)

The Second Parabolic Coefficient Inverse Problem. Assume that one of coeffi-
cients aq, of the operator L is independent of ¢, a4, := aq, (x¥) and is unknown
in §2, whereas all other coefficients of L are known in Q% Let the function
ueC*? @ %) satisfy the parabolic equation

u, = Lu+ F (x,1), in QF. (1.168)

Determine the coefficient aq, (x) for x € £2 assuming that the function F (x,?)
is known in Q% and that the following functions fy (x), p (x,t), and ¢q (x,t) are
known as well:

u(x,0)= fo(x),x € 2, (1.169)
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du
ulpt = p(x,t),a—nlr; =q(x,1). (1.170)

Prior to the formulation of the uniqueness theorem for this problem, we present
the Carleman estimate for the principal part L, of the parabolic operator L in
(1.164):

Lou=u — Z aq (x,t) DYu.
la|=2

We assume for brevity only that
C{x;>0and " ={x eR" : x; =0,|x] < A}, 4 =const. >0, (1.171)

where X = (x2,...,x,) . Let & € (0, 1) . Consider the function

&, 7
w(xsl):xl‘FF-Fﬁ‘f‘E- (1.172)
Let y € (£, 1). Consider the domain H,, :
H, ={(x,t) :x; >0,y (x,1) < y}. (1.173)

Let A, v > 1 be two large parameters which we will choose later. In the domain H,
we consider the following function ¢, which is the CWF for the operator L :

¢ (x.0) = exp[Ay " (x.1)].

Lemma 1.10.7 was proven in [124] for the case when terms with 1/1 were
not involved in (1.174). However, these terms can still be incorporated if using
ideas of the proof of the second fundamental inequality for elliptic operators of
Ladyzhenskaya [119].

Lemma 1.10.7. Let functions a, (x, 1), || =2 satisfy conditions (1.165)~(1.167)
and:
rn‘a)é |||Vx,l‘aa|||c(§7:!:) < B = const.

|or|=

Then, there exist sufficiently large numbers Lo = Ao (E, ¥y, 41, [y, B) > 1, v9 =
vo (&, ¥, 1, [y, B) > 1 such that for v := vy, for all A > Ao, and for all

—+
functions u € C*'(Q7), the following pointwise Carleman estimate holds for the
operator Ly:

(Lou)’ ¢ = % w+ Y (Du)’ | 9% + CA|Vul? o> + CA* |Vu)? o
la|=2

+V-U 4V, (x.1)€H, (1.174)
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where the vector function (U, V') satisfies the following estimate:

(W) = CA | Y (D2u) +u? | o2

lo| <2
Here, the constant C = C (B,y, [L,, Ly, B) > 0 is independent on A, u.

Theorem 1.10.7. Assume that (1.171) holds, the unknown coefficient da, (x) is
independent on t, and that D% f, (x) # 0 in $2. Then there exists at most one

solution (ag,,u) € C! (ﬁ) x C*? (F?) of the inverse problem (1.164)—(1.170).

Proof. Let By = ||u|| 4 . Let 0 € (0, 1) be a parameter which we will choose

c+2(o7)

later. We change variables now only because coefficients in the principal part L, of
the operator d, — L depend on ¢. If they would be independent on ¢, we would not
need this change of variables. Change variables in (1.168) as (¢', x") = <9t, x/gx)

and keep the same notations for new functions, new domains, and new variables for
brevity. In new variables we have

max |0;a, (x,1)| < 0B, max|V.ay (x,1)] < VOB, la| =2, (1.175)
P Vs
mzzltx|8,aa (x,0)] < OB, |a] <1, (1.176)
Py

where the number B is defined in Lemma 1.10.7 and B’ is another positive
constant independent on 6. In particular, (1.175) means that the constant C > 0 in
Lemma 1.10.7 remains the same after this change of variables. Conditions (1.168)—
(1.170) become

u = Z ag (x,t) DYu+ Z (\/5)\04—2% (x,t) Dfu+ 0F (x,t), (1.177)

lee|=2 la|<1
u(x,0) = fo(x), (1.178)
Ul = p(e0). nulpe = —Vog (x.0). (1.179)

Assume that there exist two pairs of functions satisfying conditions of this
theorem:

(a.m) . (a2 w) b (0) = all) (¥) = a (x) .7 = wr — 2,
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Then, similarly with the proof of Theorem 1.10.5.1, we obtain from (1.177)—(1.179)
2

U — Z ag (x,1) DU — Z (\/5)\04— ag (x,t) Diu

lo|=2.a7#a0 lo|<1
lero|—2 log|—2
- (J@) " () DT = — (ﬂ) b () D%y, (1.180)

% (x,0) =0, (1.181)

Wt =0, 0yl =0. (1.182)

Since (1.171) holds, we can assume without loss of generality that H, C PTi. Next,
since DY fo (x) # 0 in £2, we can assume without loss of generality that there
exists a constant ¢ > 0 such that in old variables D° f; (x) > 2d > 0. Hence,
in new variables | D¢ fy (x)| > 20%0/2d . Therefore, we can choose in (1.172) and
(1.173)y —£>0 so small that in new variables

D%uy (x,1) > 0°*d in H,. (1.183)
In addition,

|D*Fu, (x,1)| < dyin Hy, Ya € {|a| <2}, (1.184)

where the constant d; > 0 is independent on 6, as long as 6§ € (0, 1).
Let

Liu = Z ag (x,t) DYU + Z (\/g)m—z ag (x,1) D%

o] =2,a7#a0 o] <la7ag

lag]—2
+ (x/g) T e (x) DYu.

(&%)

Using (1.180), we obtain

|2 U — LW
_(ﬁ) o) = utDa—OuluinHy.

Differentiating this equality with respect to ¢, we obtain

(@, — L), — g (x.1) (i, — L) = 0in H,, (1.185)
g (x,1) = 3 In (D%us) . (1.186)
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We have

(L7, = Z aq (x,1) D%u; + Z («/E)M_zaa(x,t)Di‘E

lo|=2,a7#ag lo|<T.a#ao

leg|—2
+(VO) " el ) DI+ YD b (aw (x.1) DI

lo|=2,a7ao

N CC R A

lo|<la7ag

Hence, (1.185) implies that

@ — i) — Y aa(x,0) (DS — gD

lo|=2,a7#ao
. (ﬂ)'“‘_zaa (x, 1) (D%, — D7)

le|<1.a7#ag
g =2 ) o o
- (\/5) ay) (x) (D"w; — gD{"n)
=Y 0@ ) DT

loe|=2.a#ao

_ (\/g)la‘_zﬁt(aa(x,t))DzﬁzO,inH),. (1.187)

le|<1.a7#ag

Now, use the formula gD%u = D¢ (gu) + lot, where [ ot is a linear combination of
derivatives of the function  whose order is less than || . Then

D¢, — gDYu = DY (; — gu) + lot, Wy, — gy = Dy (0, — gu) + g/u. (1.188)

Denote v = u; — pu. Then, (1.181) and (1.186) imply that

t
U(x,t) = /K(x,t,t)v(x,r) dr, in H,, (1.189)

0

D%y, (x,t)
K(xt1)= 2220 1.190
(x.2,7) D%y (x.7) ( )
It follows from (1.183), (1.184), and (1.190) that

IDSK (x,t,7)| < M, || <2for (x,t),(x,7) € H,y. (1.191)

Here and below in this proof, M denotes different positive constants independent
on the function v and the parameter 6 € (0, 1) .
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Hence, using (1.175), (1.176), and (1.187)—(1.191), we obtain

t

|Lpv| = |vi = > aa (x.0) DIV < MO ) /|ng| (x,7)dt

lo|=2 =2}
- Z [ DS + — /ID“V| (x,7)dz|, in H,, (1.192)
9 le|<1 |ot\<1
rgam, =0 vl o o =0. (1.193)

Now, we are ready to apply the Carleman estimate of Lemma 1.10.7, assuming
that parameters v := v, A¢ are the same as ones in this lemma and that A > A,.
Multiply both sides of the inequality (1.192) by the function ¢ (x, ¢), then square it
and integrate over the domain H,. We obtain

2
/(L v)’ pPdxdr < M6 Z/ /lD“v| (x,7)dr | ¢*dxds
i, lol=2g,

2

t
M
+F/ /(|Vv| + ) (x,7)dr (pzdxdt

i, \0
M
+F/(|Vv|2+v2) @dxdr. (1.194)
HV

Using Lemma 1.10.3, we obtain from (1.194)
/(Lov) 0] Z / D“ 2dxdt + —/ |Vv| + v @>dxdr.
HV

la|= 21-1
On the other hand, using (1.174) and (1.193), we obtain

/(L v) @>dxdt > — Z/ (D) (pzdxdt+C/(A|Vv| + A3 2) Zdxdt

H, | I=2f, i,

(1.195)

—c2 [ Y (p2v) pPdxdr, (1.196)
I H,y lo|<2

where 01 H, = {(x.t) : ¥ (x,t) = y,x;1 > 0}. Hence,

¢* =exp(2Ay™") on 0, H,. (1.197)
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Choose 6 € (0, 1) so small that MO?* < C /2. Then comparing (1.195) with (1.196)
and taking into account (1.197), we obtain for sufficiently large A > A, (6) > 1

% Z /(ijv)zqozdxdt + / (/\ |Vv|* + /\31)2) @>dxdr

Ia‘=2HV Hy
<MPexpiy™) [ D (D)’ ¢2ds. (1.198)
3 H,y lo|=<2

Let ¢ € (0,y —£) be an arbitrary number. Then H,_. C H, and ¢° (x,1) >
exp [2A (y —¢) "] in H,_,. Hence, (1.198) implies that

/ vidxdr < Mexp{=2A[(y —&)" —y"1} / Z (ch‘v)zfpzdS.
Hy—e 31 H, lor]<2

Setting here A — oo, we obtain that the right-hand side of this inequality tends
to zero, which implies that v(x,#) = 0 in H, . Since ¢ € (0,y —§) is an
arbitrary number, then v (x,¢) = 0 in H,. Hence, (1.189) implies that ' (x,t) = 0
in H,. Next, (1.180) and (1.183) imply that b (x) = 0 in H, N {¢ = 0}. Hence,
al) (x) = a{? (x) in H, N {t = 0}. Therefore, applying the same method to the
homogeneous equation (1.180) with boundary conditions (1.182) and changing,
if necessary, variables as (t”,x”) = (t —ty,x) with appropriate numbers fy €
(=T, T), we obtain that

— [ }

u(x,t)=0for (x,1) e Jx1+ — <y—§& x(-T.7). (1.199)

A2

It is clear that changing x variables by rotations of the coordinate system as well as
by shifting the location of the origin and proceeding similarly with the above, we
can cover the entire time cylinder Q% by domains, which are similar with the one
in (1.199). Thus, aélo) (x) = aézo) (x)in G and u; (x,t) = up (x,¢) in QYﬂF a

1.10.8 The Third Coefficient Inverse Problem for a Parabolic
Equation

Let L be the elliptic operator in R”, whose coefficients depend only on x:

Lu =Y ay(x) Dfu. (1.200)

lo|<2

ay, € CPYP@R"), B € (0,1) (1.201)
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We assume that

wEP < Y ae (1) E < s |67V £ € R (1.202)
la|=2

Consider the following Cauchy problem

u = Luin DIt ue CHP2Hp2 (5’}“) , (1.203)
uli=o = f (x) € C*P (R") (1.204)

It is well known that the problem (1.203) and (1.204) has unique solution [120].

The Third Parabolic Coefficient Inverse Problem. Let 75 € (0,7) and 2 C
R” be a bounded domain. Suppose that the coefficient a,, (x) of the operator L is
known inside §2 and is unknown outside of £2. Assume that the initial condition
f (x) is also unknown. Determine both the coefficient a,, (x) for x € R"\ §2 and
the initial condition f (x) for x € R”, assuming that the following function F (x)
is known:

F(x)=u(x,Ty,x € R". (1.205)

Theorem 1.10.8. Assume that conditions (1.200)—(1.202) hold, all coefficients of
the operator L belong to C* (82), and

DF (x) # 0, in R"\ 2.

Then, there exists at most one pair of functions (aq, (x),u(x,t)) satisfying
conditions (1.203)—(1.205).

Proof. Consider the solution of the following hyperbolic Cauchy problem:

vie = Lvin D2,

v(x,0) =0,v (x,0) = f (x).

Then the Laplace-like transform (1.162) connects functions u# and v. Hence, for any
x € R” the function u (x,¢) is analytic with respect to the variable t+ > 0 as a
function of a real variable. We now show that the function u (x, ) can be uniquely
determined for (x,7) € £2 x (0, T). Since all coefficients a, € C (§2), then the
solution u of the Cauchy problem (1.203) and (1.204)is u € C*° (£2 x (0, T)) [69].
Hence, using (1.203) and (1.205), we obtain

DMty (x, To) = LF[F (0)],x € 2,k =0,1,...

Thus, one can uniquely determine all # derivatives of the function u (x, ) att =
Ty for all x € £2. Hence, the analyticity of the function u (x,t) with respect to
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¢t implies that this function can be uniquely determined for (x,7) € £2 x (0,7).
Hence, Theorem 1.10.7 implies that the coefficient ay, (x) is uniquely determined
in the domain R"\ £2. To establish that the initial condition f (x) is also uniquely
determined, we refer to the well-known theorem about the uniqueness of the solution
of the parabolic equation with reversed time [69, 124]. a

1.10.9 A Coefficient Inverse Problem for an Elliptic Equation

We now consider an elliptic analog of the second parabolic CIP. Let £2 C R" be
either finite or infinite convex domain with the piecewise smooth boundary 952 and
let I C 052 be a part of this boundary. Let 7 = const > 0. Denote again

0Ff =2 x (-T.T),I'F =T x(-T.T).

Let L be an elliptic operator in Q%:

Lu= )" ay(x.1) Dlu.(x.1) € OF, (1.206)
lo|<2
4y € C! (@f) (1.207)
W JEP < Y a (x 1) E* <y |67 py. g, = const. > 0 (1.208)
la|=2
VEER" Y (x.1) € 0. (1.209)

Coefficient Inverse Problem for an Elliptic Equation. Let the function u €
c? (E?) satisfies the following conditions:

uy + Lu= F (x,t) in QF, (1.210)
u(x,0) = fo(x) in £2, (1.211)

ou
MIFTgE = p(x,1), 8_n|1"ri =q(x,1). (1.212)

Assume that the coefficient ay, (x) of the operator L is independent of ¢ and is
unknown in §2 and all other coefficients are known in Q YjF Determine the coefficient
dg, (x) from conditions (1.206)—(1.212).

Theorem 1.10.9. Assume that D f (x) # 0 in $2. Then, there exists at most one
pair of functions (ay, (X) ,u (x,t)) such that conditions (1.206)—(1.212) hold and,

in addition, the functionu € C3 (@f) .
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Proof. Lemma 1.10.7 remains valid if the parabolic operator L, in (1.174) is
replaced with the elliptic operator [124]:

Ui + Z Ay (x,t) D)O;I/l.
la|=2

Therefore, the proof is completely similar with the proof of Theorem 1.10.7. O

1.11 Uniqueness for the Case of an Incident Plane Wave
in Partial Finite Differences

We present in this section the result of the paper [112]. Unlike all uniqueness
theorems of Sect. 1.10, we assume now that initial conditions equal zero in the entire
domain of interest. At the same time, we assume that the underlying hyperbolic PDE
is written in the form of finite differences with respect to those variables which are
orthogonal to the direction of propagation of the incident plane wave. Derivatives
with respect to other variables are understood in the conventional form. In addition,
we assume that grid step sizes in finite differences are bounded from the below. In
fact, this assumption is quite often used in computations of CIPs.

Both classical forward problems for PDEs and ill-posed problems are routinely
solved numerically by the FDM, see; for example, [114-116, 146] as well as
Sects. 6.8 and 6.9. Therefore, it is important to prove uniqueness theorems for
CIPs for the case when they are written in finite differences. However, there is a
fundamental difference between classical forward problems and nonclassical ill-
posed problems. Indeed, since classical forward problems are well-posed, then it
makes sense to investigate convergence of the FDM when the spatial step grid step
size hg, tends to zero; see, for example, [146] for such results.

However, in the case of ill-posed problems, there is no point sometimes to
investigate the convergence of FDM-based numerical methods when the spatial step
size hgp tends to zero. This is because in the ill-posed case, kg, should usually be
limited from the below by an a priori chosen constant, /s, > h = const. > 0. The
constant / is usually chosen in numerical experiments. The reason of this limitation
is that hp serves as an implicit regularization parameter in the discrete case of the
FDM. Because of this, /i, cannot be significantly decreased. The same observation
takes place in numerical studies of Chap. 6; see Sect. 6.8.1 as well as [114,116].

For the sake of brevity, we consider here only the 3D case. Theorems 1.11.1.1
and 1.11.1.2 below have almost identical formulations and proofs for the n-D case
with n > 2. Below, x = (x,y,z) € R Let the function a € C?(R?) and is
bounded in R? together with its derivatives. Consider the Cauchy problem

up = Au+aX)u, (x,1) € R x (0,7), (1.213)
u(x,0)=0,u (x,0) =6(z). (1.214)
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Conditions (1.213) and (1.214) mean that the wave field u is initialized by the
plane wave at the plane {z = 0} . This plane wave propagates along the z-axis. Let
Ax,A,, T = const. > 0. Define the strip G as

G={x:x€(0,4,).y€(0.4,)}. Gr =G x(0.7T),
Sr=1{z=0,x€(0.4x).y € (0,4,)} x (0. T).

Coefficient Inverse Problem 1.11. Assume that the function a (X) is unknown in
G. Determine the coefficient a (x) for x € G, assuming that the following two
Sunctions r (x,t),s (x,t) are given:

uls,=r(xt), u; |s,=s(x,1). (1.215)

The question of the uniqueness of this CIP is a well-known long-standing open
problem. Note that (1.215) is the backscattering data. The main challenge is the
single measurement, not the backscattering. For the first time, this question was
addressed in [34]. However, infinitely many measurements were considered in these
references. The second class of uniqueness results for the case of single measure-
ment data with zero initial conditions are ones when the unknown coefficient is
represented as a finite sum of a Fourier-like series:

N
a(x,y.9 =Y bi(x.y)a(@).N < oo, (1.216)
k=1

where functions ay, by are unknown. The main restriction here is N < oo. This
kind of results follows from a special method of the integral geometry, which was
developed in [124]; see Sect. 6.3 of [124].

In this section, we prove uniqueness theorem for a closely related inverse
problem. Specifically, we assume that derivatives with respect to (x, y) are written
via finite differences with the grid step sizes (h1, h;) . Numbers /1, h; do not tend
to zero. However, derivatives with respect to z, ¢ are written in the usual form. The
uniqueness Theorem 1.11.1.2 uses these assumptions. Since finite differences are
often used in computations, then Theorem 1.11.1.2 seems to be more attractive for
computations than the assumption (1.216).

First, we prove in Lemma 1.11.3 a new Carleman estimate, which is significantly
different from conventional Carleman estimates of Sect.1.10. The main new
element here is that a certain integral over the characteristic curve contains only
nonnegative terms with large parameters involved. Usually, the positivity of surface
integrals is not the case of Carleman estimates. This new Carleman estimate enables
us to apply a new idea, compared with the method of Sect. 1.10. That new idea
is generated by the second line of (1.244) in combination with (1.254). Indeed, in
all previous publications about the Bukhgeim-Klibanov method, z-integrals of the
Volterra type were used; see Sect. 1.10. Unlike this, we do not use those integrals in
the proof of Theorem 1.11.1.2.
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Discrete Carleman estimates are attracting an interest of researchers [37,38,105].
However, they were not yet used for proofs of uniqueness of discrete CIPs.
A discrete Carleman estimate is not used here.

1.11.1 Results

Consider partitions of intervals x € (0, Ay),y € (O, A y) in small subintervals with
step sizes /1 and h,, respectively:

0= Xp < X1 <...< Xy = Ax, 0= Yo <) <..< yNz:Ayv (1217)

Xi —Xi—1 = hi, yj —yj—1 = hy, h:= (h1,h2), ho=min (hy, h); N1, Ny > 2.

(1.218)
Hence, we have obtained the grid
. . (N1,
Gy ={(x,y):x=ih,y= /hZ}Ei,})=2()0,0)'
Consider a vector function f” (z,t) defined on this grid:
h (N1.N2)
Freny = {fiy @}, -
For two vector functions " (z,1), g" (z, 1), define
(N1.N2)
g" (1) fM(z1t) = ki @D} =00 ki @) =8, @0 fij @0).
(1.219)
Denote
5 (N1.N2)
(fh (Zyt)) = Z ,2] (Zs Z).
(i.j)=(0,0)

‘We define finite difference second derivatives 8)2( i

respect to x and y, respectively, in the usual way as

£ (z, 1) and ai’hfh (z.1) with

2 Y/ a2 (N1.N2)
&Sty =103, /i Z)}(,-,j)=(o,o)’

(N1,N2)

K" @) = {3;;1]?,; (Z,t)}

(./)=00"
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ficrj @) =2fi; (zt)+ firrj (z.1), ifi #0,i # Ny,
Ry fig(at) = 7 Jij @) =2fiv1 (1) + fita) (z,1), ifi =0,
! fij @) =2fic1j (@ t) + fimaj (z.1), ifi = Ny,

and similarly for a;h £ (z,t). Hence, if a function g (x, y,z,) has continuous
derivatives up to the fourth order with respect to x, then 3? »&i.j (z,1) approximates
gxx (x,y,2z,t) at the point (x, y) = (ihy, jh,) with the accuracy O (h%) ,hi — 0in
the case when ii; # 0, A.. And it approximates with the accuracy O (h;),h; — 0
in the case when ih; = 0, A,. This is similar for the y derivative. Next, we define
the finite difference Laplace operator as

Apfij(zt) = 02fi; (2.0) + Anxy fij (@ 1),

Ah,x,yfi,j (Z’t) = ai,hfi,j (Z’t) + ai,hfi,j (Z’t)a

(N1.N2)
Ahfh (z,0) == {Ahfi,j (@ [)}(,-’;):2(0,0)

(2 (N1.N2) (N1.N2)
= (02 i (Z’t))<i,j)=(o,0> +{ s fij (Z’t)}<i,j)=(o,0)

= a?fh (Z,t) + Ah,x,yfh (Z, Z) .

Define
h o (N1.N2)
a" () = {ai; D} )=00

Rewrite the problem (1.213), (1.214) in the finite difference form as

ul, =AMl +a ()", (z,1) e R x(0,T), (1.220)
u' (2,0) = 0,uf (2,0) = § (2). (1.221)

where the product a” (z) u" is understood as in (1.219).

Coefficient Inverse Problem 1.11.1.1. Let the vector function u” (z,¢) be the
solution of the problem (1.220) and (1.221). Determine the vector function ah (z)
assuming that the following two vector functions r" (¢),s" (¢)

(N1, N N1, N
0 = (g O} 520 - 8" 0 = {5 O} 500 - (1.222)
are given:
u (0,1) =" (t), ul (0,1) = 5" (1), 1 €(0,T). (1.223)

Theorem 1.11.1.1. Let the vector function a” (z) € C' (R) and is bounded in R.
Then, there exists unique solution of the forward problem (1.220) and (1.221) of the

form
h (N1.N2)
u (Z7 t) = {Mi,j (Zs Z)}(i,jl-)=2(0,0) B
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where
1 _ .
uij(z,t) = EH (t —lz) +wij (z,1), (i, j) €0, Ni] x [0, No] . (1.224)

In (1.223), H (z) is the Heaviside function,

1if z=>0,
H(z) = -
@=010i z<0
and the function u; ; is such that
;e C(t>z]), U (z.t) =0fort € (0, z]] . (1.225)

Theorem 1.11.1.2. Let R > 0 be an arbitrary number and T > 2R. Assume
that there exist two pairs of vector functions (u’l’ (z,1) ,a{’ (z)) , (ug (z,1) ,aé’ (z))
such that a{’,aé’ € C'(R) and vector functions u}f and ugare solutions of the
problem (1.220) and (1.221) of the form (1.224) and (1.225) with a" := a" and
a = aél, respectively. In addition, assume that both vector functions uﬁ’, ug satisfy

the same conditions (1.223). Then ail (z) = ag (z) for |z] < R and

ul (z,t) = ul (z,1) for (z,1) € {|z] < R.t € (0, T — |2])}. (1.226)

1.11.2 Proof of Theorem 1.11.1.1

Denoting temporarily f; ; (z,t) = Apxyui; + a;ju;j, rewrite (1.220) and
(1.221) as

Fuij = Puij + fij(z.1), (i.)) €0, N]x[0,Ny], (1.227)

uij (2,0) =0, d;u; ; (z,0) =6 (2). (1.228)

Using D’ Alembert formula, we derive from (1.227) and (1.228) that

t t—1t+z
1 1
Ui, j (Z,t) = EH (l — |Z|)+§/df / (Ah,x,yui’j —+ a,-,ju,-,j) (g, ‘L’) dg, (1229)
0 T—t+z

for (i, j) € [0, Ni] x [0, N2]. In (1.229), the integration is carried out over the
triangle A (z,t) in the (&, 7)-plane, where the triangle A (z,7) has vertices at
&.11) = (z—1,0),(§,,72) = (z,1), and (§5,73) = (z+¢,0). If we consider
the set of equations (1.229) considered for (i, j) € [0, Ni] x [0, N2] , then we obtain
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a linear system of coupled Volterra-like integral equations. Hence, this system can
be solved iteratively:

t t—1+z
1
" (z.1) = H(t—|z|)+ /d / (Ahxyu(n Vg ul “) (.7) dE,
0 T—t+z

for (i, j) € [0, N1] x [0, N,] . Let

max sup \a,-,j (z)| < M, M = const. > 0.
i,j R

The standard technique for Volterra equations leads to the following estimate:

Z

where the constant C = C (h, M) . Hence, there exists a solution of the integral
equation (1.229) such that this solution is continuous for ¢ € [0, |z|] and for ¢ > |z|.

Next, let in (1.229) ¢t < |z| . Then the triangle A (z, t) is located below {t = |&|}
and above {t = 0} . Hence, we obtain from (1.229)

zeR >0, Y3, j)e[0.N]x[0,N>], (1.230)

t t—1+z

1
Ui j (Z,l) = E/d‘c / (Ah’x’yui!]‘ +ai,jui,j) (%‘,‘L’)dé,
0 T—t+z
fort < |z|], (i,j) € [0, N{] x [0, N7]. (1.231)

Iterating (1.231), we obtain similarly with (1.230) that

g ol =S =12y e o.Ml o,V

Hence, u; j (z,t) = O fort < |z| . The same way uniqueness of the problem (1.229)
can be proven.
Let

1
ﬁ,',j (Z,t) = Uj,j (Z,t) — EH (f — |Z|)

Since Ay, [H (t —|z])] = 0and u; j (z,¢) = O fort < |z, then the integration in
(1.229) is actually carried out over the following domain:

{(é,z):|s|<z<1_|z_g|}:{@T)5 (_t %)

TE(ISI,I—IZ—SI)}.
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Hence, (1.229) leads to the following equation for #; ; (z,1):

e
1
i (z.1) = E/dé / (Apxytiij + ai i ) (€, 7)de
Sy
%

1
+§/a,-,,- ) (2= & — |ENdE. (> [ (G)) € [0. V]
X[O,Nz].

Differentiating these equations, we obtain that

Uij (z,1) € C7(t = |2]), ¥ (i, ) € [0, Ni] x [0, N2]
Th . N (N1,N2) . .

us, the solution {u,,] (z, t)}(l.,j)=(0’0) of the system of equations (1.229) satisfies
conditions (1.227), (1.228), (1.224), and (1.225).

It follows from Theorem 1.11.1.1 that we can consider functions u; ; (z,¢) only
above the characteristic line {t = |z|} in the (z,7) plane. Hence, consider new
functions w; j (z,¢) = u;j (z.t +2),z > 0. The domain {t > z,z > 0} becomes
now {t > 0,z > 0} . Using (1.220), (1.222)—(1.224), and (1.225), we obtain

Fwij —20.0wi; = —Apxywij +aij (@ wij,(z.1) €{z,t >0}, (1.232)

wij (2.0) = 1, (1.233)

wij (0,1) =1 (1), d,w;ij (0,1) =s;;(¢), 1 €(0,T), (1.234)
wij € C3(z,1 >0), (1.235)

(i, ) €0, Ni] x [0, N7]. (1.236)

1.11.3 The Carleman Estimate

Consider parameters «, 8, v where

1
€|(0,=1),8,v>0.
o ( 2) B.v

Also, let A > 1 be a sufficiently large parameter. We will choose A later. Consider
functions v (z, ) and ¢ (z, ) defined as

Y(z,t)=z+at+1, ¢(z,t) =exp(Ay ™). (1.237)
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Define the domain Dg o as
Dgo ={(z.t) 12, > 0,9 (z,t) <1+ B}. (1.238)

The boundary of this domain is

Do = U, Dpa. (1.239)

01Dy = {t =0,z (0,B)}. (1.240)

,Dpq = {z —00<t< 5}, (1.241)

Dpg =2t > 0.9 (1) = 1 + B}, (1.242)

9 (1) lospp,=exp[A (1 + B)~"] = ming, ¢ (z.1). (1.243)

It follows from (1.234) that when applying the Carleman estimate of Lemma
1.11.3 in the proof of Theorem 1.11.1.2, we will have Dirichlet and Neumann data
at 0o Dgo. At 03Dg , the function ¢ (z,¢) attains its minimal value, which is one
of the key points of any Carleman estimate. However, we will not have any data at
01Dg when applying Lemma 1.11.3. Note that d; Dg , is not a level curve of the
function ¢ (z,¢) . Still, we prove that the integral over d; Dg, which occurs in the
Carleman estimate due to the Gauss’ formula, contains only nonnegative terms with
the large parameters A, A3 ; see the second line of (1.244). The latter is the main new
feature of Lemma 1.11.3.

Lemma 1.11.3 (Carleman estimate). Let o € (0,1/2) and B,v > 0. Then, there
exist constants Ay = Ao (o, B,v) > 1,C = C («, B,v) > 0 such that the following
Carleman estimate is valid:

/ (u; — 2uy)* *dzdt > C A / (u§ +u? + kzuz) @*dzdt
Dﬁ.u D/ju

+CA / (u§+xzu2) (z.0)¢* (z.0) dz
01Dp o

—CAexp2A (B + 17" / (12 + u} + ) dS, (1.244)
03Dp o

Vue{u:ueC>(Dpa) . ulops,= 0:u la,p5,= 0}, YA = Ao. (1.245)

Proof. In this proof, C = C (o, B,v) > 0 denotes different positive constants.
Consider a new function v = ug and express u,, — 2u; viav. By (1.237),
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u=vexp(—y"),
u, = (vZ + )Lvl//_”_lv) exp (=AY "),

_+1
Av

Uy, = [va + 240y Ty, 4 ARy 22 (1 1//”) v:| exp (—Ay "),

1
Uy = |:vzt + oty 4 Ay Ty, a2 (1 — ml//v) v:|

Av
xexp (=AY "),
2.2 -2 v+
Uy — 2y = |V — 2V + (1 = 20) A" 07y l_x—‘” v
v
xexp (=AY ") + [2(1—a) Avy v, — 2209y Jexp (—Ay ).
Denote
y1 = [sz —2vy + (1 = 2a) /\2”21#_2‘}_2 (1 - %W) V] ,
yo=2(1 —a) vy,
y3 =2 vy V.
Hence,
(22 — 2uz)> @ = 2y1y2 — 291 )s. (1.246)
We have

2y1ys =4 (1 —a) Avy "y, |:sz —2vy + (1 —20) szzw—zu—z

w+1
X (1 - 4 )vi|
= 3. 20— Ay ™) +2(—a) v (v + 1) Y2
0, (<4 (1= ) 20y ™) —da (L= ) v (0 + Dy 2

19, [2 (1 — @) (1 = 2a) A3p3y—3 (1 — (”; D w”) v2:|

46(1—a) (1 —20) A3 (v + 1)y (1 _ (21;;) 3%&\)) W

Thus,
2y132 = 2(1 =) (1 =20) v (v + ) Y77

+6(1—a) (1 —2a0) A7V (v + 1)y (1 - —(2‘;;)3)w) Vv
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+0, (4 (1 —a) Aoy 7h2)
+0, [2 (I—a) Wy ™2 421 —a) (1 —20) APV y >3
1
X (1_(V+ )wu)v2i|. (1247)
Av

Next, we estimate —2y y3:

1
—2y1y3 = —4Av1ﬂ_”_1vt I:vZz —2v; + (1 —2) szzl//—zu—z (1 — (v;— )1//”) v:|
v

=9 (—4AVW_V_1VtVZ) + 4/\1)1#_”_11)1,1)1 — 4w (v +1) w—v—zvtvz
+0, 4wy ) + 4 (v + Dy TR

+0, [—2 (1= 2a) APy =73 (1 - —(v;) D w”) v2i|

—60 (1 —2a) A2V (v + 1)y =304 (1 _@+3) w”) v
31V

Next,
Ay v, = 0, (200 T TN + 20A0 (v + D YTV T
Hence,
2y =2lv (v + )y (av? —2v,v, + 2v[2)

—6a (1 —2a) A*v® (v + 1)y (1 - Mw”) v
3Av

+at [Zlvw—v—lvg ) (1 _ 20[) A3v3w—3v—3 (1 _ (V;) 1)1#\,) V2:|

+0. [—4y ™ v, + 4oy TN (1.248)

Summing up (1.247) and (1.248) and taking into account (1.246), we obtain

(2 — 2uz)” % > 2291 — 2301
=20 (v + D)y [(1 =20 + 3?) V2 = 2vv, + 207 ]

#6(1=207 20 0o 0y (12 Gy )
3Av

+0; [ —2(1=2a) Ay N2 =2 (1 = 2a) vy
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v+ L\,
x(l— " w)vi|

+9. [2 (I—a) Ay ™2+ 2(1 —a) (1 — 20) A3y =73

wv+1
x(l— " w)v2i|

+0, [—4Avy ™ vy, + 4y T T (1.249)

For any o € (0, 1/2), there exists a constant C; = C, (@) > 0 such that
(1 —2a +3a?)a® —2ab +2b*> > C, (a* + b*), Va.b € R.

Hence, integrating (1.249) over Dg and using (1.239)—(1.243), and (1.245) as well
as the Gauss’s formula, we obtain

/ (s — 2uz)? @%dzdr = 240 (v + 1) C / (V2 +2) v 2dzdr

Dﬁ.tx Dﬁ-a

3 2v+3)

+6 (1 —2a)* 233 (v + 1) / YT (1 3 w”)vzdzdt
V
Dgo

+ / [2(1—2a)/\u¢—”—1v§+2(1—2a)x3u3¢—3”—3

31Dﬁu
x (1 _ (U + 1)1#\)) VZ} dz
Av

+ / [ —2(1 = 2a2) Ay "2 = 2(1 = 2a) A3y
33Dﬁu

X (1 — W+ Uw") v2:| cos(n,t)dS
Av
+ / [2 (1—a) Wy 2 4 2(1 —a) (1 —20) APv3y 73
33Dﬁu
X (1 i Chs l)w”) v2i| cos(n,z)dS
Av
+ / [—420y ™ v, + 4dvy ™ v cos (n, 2) dS. (1.250)

33Dﬁu
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Here, cos (n, t) is the cosine of the angle between the unit outward normal vector
n at 93Dg and the positive direction of ¢ axis and similarly cos (n, z). Since the
number v > 0 is fixed, we can incorporate it in the constant C. Change variables
back in (1.250) replacing v with u = v¢. Then we obtain (1.244) for sufficiently
large A > Ag (v, B). |

1.11.4 Proof of Theorem 1.11.1.2

We consider in this proof only the case z € {z > 0} since the case z € {z < 0} is
similar. Assume that there exist two pairs of vector functions:

(ul’h (z.1),a"" (z)) and (uz’h (z.1),a>" (2)

satisfying conditions of this theorem. Then for z,# > 0 there exist two pairs of
functions:

(wl’h (z.t),a"" (z)) and (wz’h (z.1),a>" (z)) ,
where
wh (z,1) = u (z,t + 2) and w?" (z,1) = u*" (2,1 + 7).
Denote

(N1,N2)

Wz, 1) = W (2 t) =W (z,0) = Wi (2 t)}(,.,j)=(0,0) )

~ (N1,Ny)
@ () =a" () =" @) = {T@; @} 200 -

Then, (1.232)~(1.236) imply that

W =2 = — Ay, W Ha Y () WG Q)W (2,1), (21) € {t > 0,2> 0},
(1.251)
W (z,0) =0, (1.252)

W(0,1) =0, 3.%" (0,1) =0, 1 €(0,T),
+W e CP(Rx[0,T]). (1.253)

Hence, setting # = 0 in (1.251) and using (1.252), we obtain
" (2) = —43,0,%" (2,0). (1.254)

Let
Yz 1) = 0,W (z.1), V! (z1) = a,wP" (2, 1). (1.255)
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Differentiating (1.251) with respect to ¢ and using (1.253) and (1.254), we obtain
for (z,1) € {t > 0,z > 0}

V= = — Ay V4 a (V= 405" (2, 0) v (2, 1), (1.256)
7 (0,1) =0, 3" (0,t) =0, t € (0,T). (1.257)

Since T > 2R, then (0, R/T) C (0,1/2). In (1.237), choose an arbitrary « €
(R/T,1/2) and an arbitrary v > 0. Next, set in (1.238) 8 := R. Consider (1.256)
for the functionv; ; for an arbitrary pair (7, j) € [0, N1] x [0, N>]. Square both sides

of the latter equation, multiply by the function ¢? (z, ¢), and integrate over D ,,. We
obtain with a constant

M = M(ho,

Ao 1P leey) > 0

depending on listed parameters

Z

/ (a%‘j}qj - zazat"\;i,j)z @ dzde

DR«

<M / [ (z,t)]zgozdzdt+M / [Vi.; (Z,O)]2<p2dzdt. (1.258)
D D

R.a R.a

Since the function ¢? (z,t) is decreasing with respect to ¢, we obtain from (1.241)
and (1.258)

Z

/ (8?\7}’1» - zazat"\;i,j)z @*dzdt
DRy

<M / [?h(z,z)]zwzdzderMl / [V 0] ¢ (z.0)dz, (1.259)
DR 01 DR«

where the constant My = M; (M, R, o) > 0.
Applying Lemma 1.11.3 to the left-hand side of (1.259) and using (1.257), we
obtain

ca / [0350))" + (031,)" + 22 (7)) o2dzt

DR

+Ca / [(0705)" + 27 ()" 2. 0) 0 (. 0 dz

01DR o
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— ~ \2 ~ \2 2
—cXep@ @+ 1) [ [@F) + (@07,)" + 37)"] s
03DR o

=M / [ (z.0)] 9?dzdr + M, / [V 0] ¢ 0)dz.  (1.260)
DR 01DR«

Choose a sufficiently large number Ay > 1 such that
CA
maX(M, Ml) < T (1261)

Then with a new constant C > 0, we obtain from the estimate (1.260)
Ca / [635,)" + (07.5)° + 4 ()| o2
DR.LY

+CA3 / (i) (2,0) 9> (z,0) dz

01 DRa
3 —v ~ 2 ~ 2 2
—CA exp RA(R+1)7"] / [(azv,-,j) + (a,v,-,j) + (17,}) ]dS
903DR o
<M / [ (z.0)] p*dzdt. (1.262)
DR.u

Summing up estimates (1.262) with respect to (i, j) € [0, Ni] x [0, N»] and using
(1.261), we obtain a stronger estimate:

/ (‘7‘1)2 @*dzdt < Cexp2AL (R+ 1)7"] / [(‘;4;)2 n (‘7?)2 N (‘,)h)g] is.
DR 03DR«
(1.263)

Let ¢ € (0, R) be an arbitrary number. By (1.237) and (1.238),
©*(z.1) > exp[2A (R + 1 —¢)""] in Dg_e, Dr_e C Dg.
Hence, making the estimate (1.263) stronger, we obtain

exp[2L(R+1—¢)""] / m)zdzdt <Cexp2A(R+1D7"]

DRr—a

< [ [E 4@+ @) ]as

03DR o
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or

/ ()’ dzdt < Cexp{—2A[(R+1—2)" —(R+ )]}

DR—ea

< [ [+ @ )]s,

93D«
Setting here A — 0o, we obtain
/ ()’ dzdt = 0. (1.264)

Dr—¢a
Since ¢ € (0, R) is an arbitrary number, then (1.264) implies that

V' (z.1) =0in Dg,.
Since by (1.254),

@' (z) = —49.9,W" (2.0) = —40.5" (2, 0),

then@" (z) = 0 for z € (0, R) . Thus, the function a” (z) is uniquely determined for
z € {lz] < Rj.

Equations (1.220) represent a coupled system of 1D wave-like equations.
Conditions (1.221) and (1.223) are Cauchy data for this system at {t = 0} and
{z=0,t € (0, T)}, respectively. Because of the 1D case, the time variable can be
treated as the spatial variable and vice versa. Hence, treating for a moment z as the
time variable and ¢ as the spatial variable and recalling that the vector function a” (z)
is known for z € {|z| < R}, one can apply the standard energy estimate to (1.220),

(1.221), and (1.223) for {z € (0, R)} . It follows from this estimate that the vector
function u” (z, t) is uniquely determined in the domain

(z.1) €{z€ (0,R),1 € (0.T —2)}.
Similarly, the function u” (z, t) is uniquely determined in the domain
(z,t) €e{z€ (—R,0),t € (0, T +2)}.

Thus, (1.226) is established. O



Chapter 2

Approximately Globally Convergent Numerical
Method

In this chapter, we present our approximately globally convergent numerical method
for a multidimensional CIP for a hyperbolic PDE. This method also works for a
similar CIP for a parabolic PDE. The numerical method of the current chapter
addresses the first central question of this book (Sect. 1.1). The first publication
about this method was [24] with follow-up works [25-29, 109, 114-117, 160].
We remind that only multidimensional CIPs with single measurement data are
considered in this book. Recall that the term “single measurement” means that the
boundary data are generated either by a single position of the point source or by
a single direction of the initializing plane wave (Sect. 1.1.2). It will become clear
from the material below that when approximately solving certain nonlinear integral
differential equations with Volterra-like integrals, we use an analog of the well-
known predictor-corrector approach.

We describe this numerical method and prove its approximate global conver-
gence property. The development of approximately globally convergent numerical
methods for multidimensional CIPs has started from the so-called convexification
algorithm [100-102, 157-160], which we consider as the approximately globally
convergent numerical method of the first generation. First, the convexification
comes up with a nonlinear integral differential equation, which is the same as
(2.20) in Sect. 2.3. The key point is that this equation does not contain the unknown
coefficient, which is similar with one of the ideas of the Bukhgeim-Klibanov
method; see Sects. 1.10 and 1.11. A numerical method for the solution of this
equation represents the main difficulty of both the convexification and the approach
of this book. To solve that equation, the convexification uses a layer stripping
procedure with respect to a spatial variable z and the projection method with respect
to the rest of spatial variables. In this case, both Dirichlet and Neumann boundary
conditions at a part of a plane orthogonal to the z-axis are used. Also, z dependent
CWFs are involved in the convexification. Because of this, the convexification
can use boundary conditions only at one part of the boundary, i.e., at a side of a
rectangular prism, which is orthogonal to z.

L. Beilina and M.\V. Klibanov, Approximate Global Convergence and Adaptivity 95
for Coefficient Inverse Problems, DOI 10.1007/978-1-4419-7805-9_2,
© Springer Science+Business Media, LLC 2012
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The numerical method of this chapter is the approximately globally convergent
numerical method of the second generation. Its radical difference with the con-
vexification is in the solution of the abovementioned nonlinear integral differential
equation. Unlike the convexification, the current method is not using neither the
projection with respect to some spatial variables nor the layer stripping with respect
to a spatial variable. In Chaps. 2-5, the current method uses the Dirichlet boundary
condition at the entire boundary 92 of a finite domain of interest £2. The target
coefficient is unknown in §2 and has a known constant value outside of §2.

We use the layer stripping procedure with respect to the parameter s > 0, where
s is the parameter of the Laplace transform of a hyperbolic PDE, for which the
CIP is considered. We call s pseudo frequency. Since the differential operator with
respect to s is not involved in the corresponding PDE, unlike the differential operator
with respect to z in the convexification, then this procedure is more stable than the
convexification. On each thin s layer, the Dirichlet boundary value problem for a
nonlinear elliptic PDE of the second order is solved via the FEM. Dirichlet boundary
conditions for these elliptic PDEs are originally generated by the data for the inverse
problem. Also, s dependent CWFs are present in our numerical scheme. This pres-
ence is important, because it enables one to weaken the influence of the nonlinear
term in each of those elliptic PDEs, thus solving a linear problem on each iteration.

Starting from the remarkable work of Carleman [50], weight functions carrying
his name have been widely used for proofs of uniqueness and conditional stability
results for ill-posed Cauchy problems for PDEs [102, 124], as well as for multidi-
mensional CIPs with the single measurement data (see Sects. 1.10 and 1.11 above
for the latter). In this capacity, CWFs were dependent on spatial variables since they
have provided weighted estimates for differential operators. However, one of new
points of our method is that CWFs are used for integral Volterra-like operators, they
are involved in the numerical scheme, and depend on the pseudo frequency s, rather
than on a spatial variable.

An important element of our technique is the procedure of working with the so-
called tail functions. The tail function complements a certain truncated integral with
respect to s. We refer to earlier works [73, 155] for similar treatments of tails for
some other numerical methods for CIPs.

Theorems 2.8.2 and 2.9.4 ensure the approximate global convergence property
of our technique within frameworks of two approximate mathematical models.
It follows from these theorems that the accuracy of the solution mainly depends
from the accuracy of the reconstruction of the tail functions. On the other hand,
it follows from the second approximate mathematical model (Sect.2.9.2) that the
reconstruction of the first tail function can be done via solving the Dirichlet
boundary value problem for the Laplace equation. Thus, if the noise in the boundary
data is small, then the solution of the latter problem is accurate. The accuracy of
the reconstruction of the rest of tail functions depends on the accuracy of the first
tail. This indicates that it is because of the successful choice of our approximate
mathematical models, a small noise in the boundary data is the main input for a
good accuracy of our algorithm. In the theory of ill-posed problems, the small noise
condition is a natural requirement.



2.1 Statements of Forward and Inverse Problems 97

A substantially different layer stripping procedure with respect to the frequency
(rather than pseudo frequency) was previously developed in [55], where a conver-
gence theorem was not proved (see Remark 1.1 in [55]). The paper [55] works with
the Fourier transform of the hyperbolic equation ¢ (x) u;; = Au with the unknown
coefficient ¢ (x) . The iterative process of [55] starts from a low frequency value.
Unlike this, we start from a high value of the pseudo frequency.

2.1 Statements of Forward and Inverse Problems

Everywhere in this book, the forward problem is the Cauchy problem for either
a hyperbolic or a parabolic PDE. The case of a boundary value problem in a
finite domain is not considered here only because an analogue of the asymptotic
behavior (2.14) is not proved in this case, since (2.14) is actually derived from
Theorem 4.1 of [144] as well as from [145]. That theorem establishes a certain
asymptotic behavior of the fundamental solution of a hyperbolic equation near
the characteristic cone. In our numerical experiments, we verify the asymptotic
behavior (2.14) computationally; see Sect. 3.1.2. We also note that the existence of
the fundamental solution of the hyperbolic equation (2.1) is currently proven only
for the case when the coefficient ¢ € C* (R3) with k£ > 2 and the geodesic lines are
regular [144, 145]. These justify the assumption (2.4) below.
Consider the Cauchy problem for the hyperbolic equation:

¢ (xX)uy = Auin R3 x (0, 00), 2.1
u(x,0) =0, u (x,0) =68 (x — xp). (2.2)

Equation (2.1) governs a wide range of applications, including, for example,
propagation of acoustic and EM waves. In the acoustical case, 1/+/c(x) is the sound
speed. In the 2D case of EM waves propagation in a non-magnetic medium, the
dimensionless coefficient is ¢(x) = &,(x), where &,(x) is the spatially distributed
dielectric constant of the medium, see, for example, [57], where (2.1) was derived
from the Maxwell equations in the 2D case. Unlike the 2D case, (2.1) cannot be
derived from the Maxwell equations in the 3D case if c¢(x) = &,(x) # const.
Nevertheless, this equation was successfully used to work with experimental data in
[28,109] in 3D; see Chap. 5.

Let 2 C R? be a convex bounded domain with the boundary 32 € C3. Let
d = const. > 1. We assume that the coefficient ¢ (x) of (2.1) is such that

c(x) e[l,d], ¢(x)=1forx e RA\ 2, (2.3)
ceC?(R). (2.4)

In accordance with the second condition of the fundamental concept of Tikhonov
(Sect. 1.4), we a priori assume knowledge of the constant ¢, which amounts to the
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knowledge of the correctness set. However, we do nor assume that the number d — 1
is small, i.e., we do not impose smallness assumptions on the unknown coefficient

¢ (x).

Coefficient Inverse Problem 2.1. Suppose that the coefficient c (x) satisfies (2.3)
and (2.4). Assume that the function c (x) is unknown in the domain §2. Determine
the function c (x) for x € $2, assuming that the following function g (x,t) is known
for a single source position xo ¢ 2

u(x,t) =g(x,1),V(x,t) € 082 x (0,00) . 2.5)

The reason why we assume here that the source xo ¢ 2 is that we do not want
to deal with singularities near the source location. In applications, the assumption
c(x) = 1for x € R*\£2 means that the target coefficient ¢ (x) has a known
constant value outside of the medium of interest £2. Another argument here is that
one should bound the coefficient ¢ (x) from the below by a positive number to
ensure that the operator in (2.1) is a hyperbolic one on all iterations of our method.
The function g (x,?) models time-dependent measurements of the wave field at
the boundary of the domain of interest. Practical measurements are calculated at
a number of detectors, of course. In this case, the function g (x,?) can be obtained
via one of standard interpolation procedures.

Remarks 2.1. 1. As it was stated in Sect. 1.10.1, uniqueness theorem for this
inverse problem is a long-standing and well-known open question because of
the § (x — x¢) function in the initial condition (2.2), although see (1.76). Thus,
we assume everywhere below that uniqueness theorem is valid for this problem,
as well as for all other CIPs considered in this book. It is an opinion of the authors
that because of applications, it is worthy to study numerical methods for CIPs of
this book, assuming that the uniqueness holds.

2. Our computational experience shows that the assumption of the infinite time
interval in (2.5) is not a restrictive one. In the case of a finite time interval,
on which measurements are performed, one should assume that this interval is
large enough. Thus, the #-integral of the Laplace transform over this interval is
approximately the same as the one over (0, 00). Our work with experimental
data in Chaps. 5 and 6 verifies this point.

2.2 Parabolic Equation with Application in Medical Optics

In this section, we formulate both forward and inverse problems for a parabolic
equation which governs applications particularly in medical optical imaging. The
optical medical imaging consists of two stages. On the first stage, a device collects
the light scattering data at the boundary of a human tissue (e.g., at the surface of a
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brain or a female breast); see, for example, [150]. On the second stage, a mathemat-
ical algorithm for a CIP for a diffusion PDE is applied to approximately calculate
the spatially distributed absorption coefficient inside that tissue. The map of this co-
efficient produces the desired image. We are interested in the second stage. Because
of the necessity to solve a CIP, this stage represents a major mathematical challenge.
It was shown experimentally that the diffusion coefficient of light changes slowly
in human tissues [76]. Hence, we can assume that it is a known constant and consider
the following parabolic equation governing light propagation in human tissues [8]:

U, = DAU —a(x)U inR? x (0, 00),
U (x,0) =6 (x —xo). (2.6)

Here, {x = xo} is the location of the light source, U (x, ) is the light amplitude,
a(x) = p, (x) > const. > 0 is the absorption coefficient, and D = D, = const. >
0 is the diffusion coefficient D = 1/3ul, where u. is the reduced scattering
coefficient. We assume below that the diffusion coefficient D is known.

Let 2 C R? be a convex bounded domain with the boundary 32 € C?3. Let
ag,a; = const. > 0, ap < a;. We assume that the absorption coefficient a (x) of
(2.6) is such that

a (x) € [ag,a1], a(x) = ao for x € RAN\ 2, 2.7)
a(x) e C*(R’),ae(01). (2.8)

Let

. 1 |x — xo|*
U() (x,t) = m exp (—T)

be the solution of the problem (2.6) for a = 0. It follows from (2.7) and (2.8) that
there exists unique solution U of the forward problem (2.6) such that the function
(U = Uy) € CHH1+e/2(R3 % [0, T]), VT > 0[120].

It was established experimentally [76, 156] that cancerous tumors absorb light
more than the surrounding tissue. The tumor/background absorption contrast is
between 2:1 and 3:1 [76]. Realistic value of optical coefficients of light propagation
in human tissues are [156] p, € [0.004,0.016]mm™", u/ € [0.6,1.2] mm™!, where
W, and u. are absorption and reduced scattering coefficients, respectively. The
absorption coefficient characterizes blood oxygenation. Since malignant tumors are
less oxygenated than healthy tissues, a hope of researchers is to detect these tumors
on early stages using optical methods. Thus, our goal is to determine the absorption
coefficient in (2.6). We now pose the following inverse problem for (2.6).

Coefficient Inverse Problem 2.2. Let 2 C R? be a convex bounded domain
with the piecewise smooth boundary d52. Suppose that the coefficient a(x) satisfies
conditions (2.7) and (2.8) and is unknown in §2. Suppose also that the diffusion
coefficient D = Dy = const. > 0 is known. Determine the coefficient a(x) for
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x € £2, assuming that the following function ¢(x,?) is known for a fixed source
position some position xo ¢ §2:

U(x,t) =g (x,1),VY (x,1) € 982 x (0, 00). (2.9)

2.3 The Transformation Procedure for the Hyperbolic Case

In this section, we reduce inverse problem 2.1 to the Dirichlet boundary value prob-
lem for a nonlinear integral differential equation. Consider the Laplace transform of
the functions u in the hyperbolic equation (2.1):

o0
w(x,s) = /u(x,t)e_”dt, fors > s = const. > 0, (2.10)
0

where s is a certain number. It is sufficient to choose s such that the integral (2.10)
would converge together with corresponding (x, ¢) derivatives. So, we can assume
that the number s is sufficiently large. We call the parameter s pseudo frequency.
Recall that xo ¢ 2. It follows from (2.1), (2.2), and (2.10) that the function w is the
solution of the following problem:

Aw —s%c (x)w = =8 (x —xg), x € R, (2.11)
lim w(x,s) =0. (2.12)
|x|—>o00

We prove (2.12) in Theorem 2.7.1 Likewise, we specify properties of the function
w(x, s) in Theorem 2.7.2 In particular, it follows from Theorems 2.7.1 and 2.7.2 that
w(x,s) € C3 (R3\ {lx —xo| < 5}) , Ve > 0. To justify the asymptotic behavior of
the function w(x, s) at s — oo, we need Lemma 2.3.

Lemma 2.3([102]). Assume that conditions (2.3) and (2.4) are satisfied. Let
the function w(x,s) € C3 (R3\{|x —Xo| < 5}) ,Ve > 0 be the solution of the
problem (2.11) and (2.12). Assume that geodesic lines, generated by the eikonal
equation corresponding to the function c (x) are regular, i.e., any two points in
R? can be connected by a single geodesic line. Let | (x,xo) be the length of the
geodesic line connecting points x and xo. Then the following asymptotic behavior
of the function w and its derivatives takes place for |B| <3,k = 0,1, x # xo:

DFDkyw(x,s) = b pt | XPISL (v x0)] [1 +0 (l)}} s =00, (2.13)
S (x,x0) s

where f (x,xo) is a certain function and f (x,xo) # 0 for x # xo. This behavior
is uniform for x € S2.
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The C2-smoothness required by Lemma 2.1 is also because of Theorem 4.1 of
[144], which implies the asymptotic behavior (2.13). Note that Theorem 4.1 of
[144] actually requires a higher smoothness of coefficients. This is because it is
concerned with many terms of the asymptotic behavior of the fundamental solution
of the hyperbolic equation near the characteristic cone. However, since (2.13) is
dealing only with the first term of this behavior, then it follows from the proof of
that theorem that the C?-smoothness is sufficient; also see [145] for the smoothness.

Remark 2.3.1. Actually, it follows from Theorem 4.1 of [144] that the asymptotic
behavior (2.13) is valid for the Laplace transform for a general hyperbolic equation
of the second order, as long as the condition of the regularity of geodesic lines is
in place. This condition cannot be effectively verified, unless the coefficient ¢ (x)
is close to a constant. The authors are unaware about any meaningful analytical
results for multidimensional hyperbolic CIPs without either this or somewhat close
condition imposed. For example, it was shown in [144] that condition (1.82) is close
to the condition of the regularity of geodesic lines. On the other hand, conditions of
this lemma are only sufficient, but not necessary ones for the asymptotic behavior
(2.13). Therefore, we assume everywhere in this book that the asymptotic behavior
(2.13) holds. We verify (2.13) computationally in some of our numerical studies;
see Sect. 3.1.2 below.

We now work only with the function w(x, s). It will be shown in Theorems 2.7.1
and 2.7.2 that w(x, s) > 0. Hence, we can consider functions v(x, s) and H (x,s)
defined as

vi(x,s) = w
s
Assuming that the asymptotic behavior (2.13) holds (Remark 2.3.1), we obtain the
following asymptotic behavior of the function v:

| DEDEY (x.9) [ oy = O(Sk%), s — 00,k =0,1. (2.14)

Substituting w = e" in (2.11), keeping in mind that the source x, ¢ £2 and then
dividing the resulting equation for v by s, we obtain

Av+ 52 (V)2 = ¢(x),x € 2. (2.15)

Denote
q(x,s) = dsv(x,s). (2.16)

By (2.14) and (2.16),

o0

v(x,s) = —/q(x,r)dr.

s
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We rewrite this integral as

v(x,s)=—/q(x,r)dr+V(x,§), (2.17)

where the truncation pseudo frequency § > s is a large number. It is important that
in (2.17), V (x,5) is not an arbitrary function, but rather

_Inw(x,s)

Vi(x,5) =v(x5) = —5—, (2.18)
K

where w(x,5) is the Laplace transform (2.10) of the solution of the forward
problem (2.1) and (2.2) at s := ¥, or, which is equivalent, the solution of the
elliptic forward problem (2.10), (2.10) at s := 5. The number § should be chosen
in numerical experiments. We call V' (x,5) the “tail,” and this function is unknown.
By (2.14) and (2.18),

1 1
V@ Dle@ =0 (3). BV eIlem =0 (%) @9

In other words, the tail is small for large values of 5. In principle, therefore,
one can set V (x,5) := 0. However, our numerical experience shows that it
would be better to update somehow the tail function in an iterative procedure.
We call the updating procedure “iterations with respect to tails” and describe it in
Sect.2.7.

Remark 2.3.2. The integral in (2.17) is sort of truncated at a large value s of the
pseudo frequency, which is similar with a routine truncation of high frequencies in
science and engineering. We use words “sort of” because instead of just setting the
tail function to zero, as it would be the case of a “straight” truncation, we iteratively
update it in our algorithm. Hence, s is one of the regularization parameters of
our numerical method. In the computational practice, this parameter is chosen in
numerical experiments.

Thus, differentiating (2.15) with respect to s and using (2.16) and (2.17), we
obtain the following integral nonlinear differential equation:

5 5 2

Aq—ZSZVq/Vq (x,t)dt + 2s /Vq (x,7)dt

s s

+252VgVV — 4sVV / Vg (x,7)dt +2s(VV)* =0,x € 2. (2.20)

s
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In addition, (2.5) and (2.16) imply that the following Dirichlet boundary
condition is given for the function ¢:

q(x,s) =v¥(x,5), V(x,5) €082 x[s,5], (2.21)
where:
dsInp  2Ing
W (X,S) = P - 3
s s

and ¢ (x, s) is the Laplace transform (2.10) of the function g (x,?) in (2.5).

Suppose for a moment that functions ¢ and V' are approximated in §2 together
with their derivatives D¢q, D2V, |e| < 2. Then the corresponding approximation
for the target coefficient can be found via (2.15) as

c(x) = Av+ s> (V)2 x € 2, (2.22)

where the function H is approximated via (2.17). Although any value of the pseudo
frequency s € [s,s] can be used in (2.22), we found in our numerical experiments
that the best value is s := s.

If integrals would be absent in (2.20) and the tail function would be known,
then (2.20) and (2.21) would be the classical Dirichlet boundary value problem for
the Laplace equation. However, the presence of integrals implies the nonlinearity
and represents the main difficulty here. Another obvious difficulty is that (2.20) has
two unknown functions ¢ and V. The reason why we can handle this difficulty is
that we treat functions ¢ and V differently: while we iteratively approximate the
function g being sort of “restricted” only to (2.20), we find updates for V' using
solutions of forward problems (2.1) and (2.2), the Laplace transform (2.10), and the
formula (2.18). In those forward problems, we use approximations for the unknown
coefficient ¢ obtained from (2.22). The algorithm of approximating both functions
¢ and V is described in Sect. 2.6.

2.4 The Transformation Procedure for the Parabolic Case

The goal of this section is to show that the coefficient inverse problem 2.2 for
the parabolic equation (2.6) can be solved numerically along the same lines as
the coefficient inverse problem 2.1 for the hyperbolic equation (2.1). However,
we do not study further the parabolic case in this book. In the case of parabolic
equation (2.6), consider the Laplace transform of the solution of the parabolic
Cauchy problem (2.6)

o0

W(x,s) = / U(x,t)exp (—s’t)dt, s > s = const. > 0. (2.23)
0
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For simplicity, let Dy = 1. It follows from (2.6) and (2.23) that the function W is
the solution of the following problem:

AW—szW—a(x)W = —§ (x — xp), Vs >s = const. > 0,
lim W(x,s) =0. (2.24)

[x|—o00

The second condition (2.24) is valid for sufficiently large s and can be proved by the
method, which is similar with the one of Sect.2.5. Theorem 11 of Chap.2 of [69]
ensures that the fundamental solution of a general parabolic equation is positive for
t > 0. This means that U (x,t) > 0 for ¢ > 0.Hence, W(x, s) > 0. Hence, we can
consider the function P = In W. Since x, ¢ 2, we obtain from (2.24)

AP + |VP[ =5 = a(x),x € 2. (2.25)
Consider now the following hyperbolic Cauchy problem:

wy = Au—a(x)uin R x (0, 00),

u(x,0) =0,u (x,0) =68 (x —xp) .

Applying to the function u the Laplace transform (2.10), we obtain (2.24). Hence,
o0
Wi(x,s) = /u(x,t) exp (—st)dt, s > s = const. > 0.
0

Geodesic lines are straight lines in this case. Therefore, the asymptotic behavior
(2.13) holds (the first sentence of Remark 2.3.1),

—s|x — 1
DPD*W(x,s) = DP DF exp s |x — xol) 1+0|- ,§ — 00,
o o 41 |x — x| s

where |8] < 2,k = 0, 1. Consider the function P:

exp [—s |x — xo]

P(x,s)z?(x,s)—ln( ):=F(x,s)—Po(x,s).

47 |x — x|

Then the following asymptotic behavior is valid:
1 —
DPDFP (x,5) =0 (W) ,s—>o00, |B|<2, k=01 xe2. (226)

Next, similarly with (2.16), we “eliminate” the unknown coefficient a (x) from
equation for the function P via the differentiation with respect to s. Denote

0 (x,s5) = 0;P (x,5). (2.27)
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By (2.26) and (2.27),
P(x,s) = —/ 0 (x,7)dr.

We represent this integral as

P(x,s) = —/ O ((x,t)ydt+V (x,5), (2.28)

where s > s is a large number. Again, we call the function v (x,5) in (2.28) as “the
tail function” and it is defined as

V (x.5) = P (x.5) = InW (x.5) — In (w)

2.29
47 |x — xol ( )

Similarly with the hyperbolic case, differentiating equation for P with respect
to s and using (2.27)—(2.29), we obtain the following integral nonlinear differential
equation for the function Q:

AQ _2|(; +xl)| (VQ,x—xo)—ZVQ/VQ(x,r)dr—l-ZVQVV
— Xo
/VQ(x,t)dr,x—xo - (VV,x —x0) =0. (2.30)
|x — xol ¢ — xol

s

Here, (-,-) denotes the scalar product in R3. The boundary condition for the
function Q is

0 |lo= vV (x.5),(x,s) € 02 x [5,5], (2.31)

where the function v is defined as
¥ (x,5) = d;In (x,5) + |x — X0

where @ (x, s) is the Laplace transform of the function g (x,¢) in (2.9).

Assume that we can approximate both functions Q and V in §2 together with
their derivatives D¢ Q, D¢V, |e| < 2. Then the corresponding approximation for
the absorption coefficient a(x) can be found via (2.25) as

a(x) =A(P + Py) + |V (P + P> —s% x € 2,

where the function P is approximated via (2.28). As it was mentioned above, the
main difficulty of our method consists in the numerical solution of the nonlinear
integral differential equation (2.30) with the boundary condition (2.31).
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2.5 The Layer Stripping with Respect to the Pseudo
Frequency s

In this section, we introduce the layer stripping procedure with respect to the
pseudo-frequency for the solution of the integral-differential equation (2.20).
Almost the same procedure can be applied for the solution of (2.30), although it
is not presented here.

We approximate the function g (x, s) in (2.20) as a piecewise constant function
with respect to the pseudo frequency s. That is, we assume that there exists a
partition

S =85y <Sy—1 < ... <] <50=§,si_1—si =h

of the interval [s, 5] with a sufficiently small grid step size /& such that ¢ (x,s) =
qn (x) for s € (s, s,—1]. We set

q0 = 0. (2.32)
Hence,
5 n—1
/ Vq(x. 1At = (s9-1 = )Vau(x) + 7Y Vg;(x).s € (su.s0-1).  (2.33)

We approximate the boundary condition (2.21) as a piecewise constant function:

gn (X) =¥, (x),x €982, (2.34)

v, (x)=%/1ﬂ(x,s)ds. (2.35)

Sn

For each subinterval (s,, s,—1],n > 1, we assume that functions ¢; (x), j =1, ...,
n — 1 for all previous subintervals are known. We obtain from (2.20) the following
approximate equation for the function g, (x):

n—1

z,, (qn) == Agq, —2 (s2 — 25 (Sp—1 — s)) h Z Vq; | Van
j=1

+2 (s> = 25 (sy—1 — 5)) Vg, VV

2
n—1
= 2 (5,1 —8) [s* = 5 (s0m1 — )] (Vgu)* = 2507 [ Y Vg,
j=1
n—l1
+4sVV | hY Vg; | 25|V’ .5 € (s-1.54]).- (2.36)

Jj=1



2.5 The Layer Stripping with Respect to the Pseudo Frequency s 107

Equation (2.36) is nonlinear, and it depends on the parameter s, whereas the function
gn (x) is independent on s. This discrepancy is due to the approximation of the
function ¢ (x, s) by a piecewise constant function. Although it seems that (2.36) is
over-determined because the function g, (x) is not changing with the change of s,
variations of s dependent coefficients of (2.36) are small over s € [s,, s,—) because
this interval is small. This discrepancy is actually helpful for our method since it
enables us to “mitigate” the influence of the nonlinear term (an)2 in (2.36) via
introducing the s dependent CWF.

In addition, we add the term —eg,, to the left-hand side of (2.36), where ¢ > O is a
small parameter. We are doing so because, by the maximum principle, if a function
p(x,s) is the classical solution of the Dirichlet boundary value problem

L, (p)—ep = f(x,5)in 2, p lso= pp(x,s),

then [118] (Chap. 3, Sect. 1)
max |p| < max [max |ps] . e ! max |f|} , Vs € (Sy—1,84] - (2.37)
k7] 92 2

On the other hand, if ¢ = 0, then an analogue of the estimate (2.37) would be worse
because of the involvement of some other constants. Therefore, it is anticipated that
the introduction of the term —eq, should provide a better stability of our process,
and we indeed observe this in our computations.

After adding the term —&g,, to the left-hand side of (2.36), multiply this equation
by the CWF of the form:

Coa(s) = exp[A(s —su—1)], S € (Sy,Sn—1], (2.38)
and integrate with respect to s over (s,,s,—1). In (2.38) A >> 1 is a parameter,

which should be chosen in numerical experiments. Theorem 2.8.2 provides a recipe
for this choice. Taking into account (2.34), we obtain

n—1
Ly (qn) == Aqn — A1 | B Z Vq; | Vgn + A1u V@, VV —eq,
j=0
2
Iln ) ) n—1
= 2 (V4,)’ = A2l | 3V, ()

j=0

n—1
+24,,VV 1Y Vg | = 42w (VV)? .0 =1, N,

j=0

Gn |xese= V¥, (x). (2.39)
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In (2.39),

Sn—1

—Ah
Iy =1y (A, h) = / Cua(s)ds =

1—e
A’ bl

Sn

Sn—1
Iy =Ty Ouh) = / (St = $) [5% = 5 (5n—1 — )] Gz (5) ds,

Sn—1

2
Aiyi= A Gul) = — / (5 = 25 (su—1 — 5)) Cos (5) ds.
0

Sn

Sn—1

2
Apy = Ay (A h) = 1—0 / $Cp (s)ds.

Sn

Thus, we have obtained the Dirichlet boundary value problem (2.39) for a nonlinear
elliptic PDE with the unknown function g, (x). In (2.39), the tail function V is also
unknown. An important observation is that

|11, (A )| _ 45°
A 2 < — forAh > 1. 2.40
oLy — a0 o= (2.40)

Therefore, by taking A >> 1, we mitigate the influence of the nonlinear term with
(an)2 in (2.39). This enables us to solve each elliptic Dirichlet boundary value
problem (2.34) and (2.39) iteratively at each n via solving a linear problem on
each step.

Remarks 2.5. 1. 1t is clear from (2.40) that the nonlinear term (Vg,)” in
(2.39) can be ignored for large values of A. This is done in Sect.2.6. However,
ignoring this term does not mean linearization of the original problem. Indeed,
the nonlinearity actually surfaces in iterations with respect to n, because of the
involvement of terms Vgq;Vg,, (qu)z,quti;i,j e [l,n—1] in (2.39).
In addition, the tail function V', which we will calculate iteratively, depends
nonlinearly on g, g,.

2. In principle, one can avoid using the CWF via decreasing the step size &, which
would also result in a small influence of the term (V¢,,)* in (2.39). However, this
would lead to an unnecessary increase of the number of equations N in (2.39).
Hence, one would need to solve too many Dirichlet boundary problems (2.39),
which is time-consuming. Thus, the introduction of the s dependent CWF (2.38)
in the numerical scheme makes this scheme more flexible.
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2.6 The Approximately Globally Convergent Algorithm

The above considerations lead to the algorithm described in this section. This
is an algorithm with the approximate global convergence property for coefficient
inverse problem 2.1. This property is established in Theorems 2.8.2 and 2.9.4 for
two different approximate mathematical models (Definition 1.1.2.1). We present in
this section two versions of the algorithm. The first version, which is described
in Sect.2.6.1, is verified computationally in our above cited works. However, a
simplified version of the algorithm of Sect. 2.6.2 is not yet verified computationally.
Everywhere below,

| f ke = ||f||ck+a(§), Vf ekt (ﬁ)

Our algorithm reconstructs iterative approximations ¢, ; (x) € C¢ @ of the
function ¢ (x) only inside the domain £2. To update tails, we should solve the
forward problem (2.1) and (2.2). Hence, we should extend each function ¢, ; (x)
outside of the domain £2 in such a way that the resulting function ¢, ; € C* (R?),
Cni > 1in £ and ¢,; = 1 outside of §2. So, we first describe a rather standard
procedure of such an extension. Choose a smaller subdomain 2’ C £2. Choose a
function y (x) such that

11in £/,
x€C'(R’), x(x) =1 €0,1] in 2\ £,
0 outside of 2.

The existence of such functions y (x) is well known from the real analysis course.
Define the target extension of the function ¢, ; as

Cui (X)) i= (1= x (%) 4+ x (x)cni (x), Vx € R,

Hence, ¢,,; (x) = 1 outside of the domain §2 and¢,; € C* (R3). Furthermore,
since ¢, ; (x) € [1,d + 1] in £2, then ¢, ; (x) € [1,d + 1] in £2. Indeed,
Cni (X) =1 =y (x)(cai (x) = 1) 20, x € 2,
Cri(X)=@d+1D)=1—x(x)+ x(xX)cpi (x) = x(x)(d+1) -1~ x(x))
d+D)==-00=xx)Nd+ x(x)(cr; (x)—d —1) <0, x € 2.

In accordance with (2.17), (2.22), and (2.33), denote

n—1

Vi (X) = =hgui () —h Y q; () + Vii (x), x € 2, (2.41)
j=0
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cni(x) = [Avn,i + s,f (Vv,,,,-)z] (x), x € 2, (2.42)

where functions ¢;,q,;, V,,; are defined in this section below. Here, V,,; (x) is a
certain approximation for the tail function and m,, is the number of iterations with
respect to tails for a givenn > 1, where k = 1, ..., m,,. Recall that by (2.32) gg = 0.
Hence, we set

qr,=0,Vi1(x) =V (v), (2.43)
q}?,l = Qn—h Vn,l = Vl—l,m”_lsforn 2 27 (2'44)

where V| (x) is a certain starting value for the tail function.
In our iterative algorithm below, iterations with respect to k in %]1(.1 are conducted

in order to take into account the nonlinear term (an)zin (2.39). As a limiting case,
we construct the function g, ; for each n. Next, we iterate with respect to the tail
and construct functions ¢, ;,i = 2, ...,m,. However, we do not iterate with respect
to the nonlinear term for functions ¢, ; withi > 2.

Remarks 2.6.  We now need to comment on the choice of the function V}*; (x).

1. By (2.14) and (2.18), this function should be small for large 5. In our numerical
studies, we work with the incident plane wave rather with the point source in
(2.2). The reason is that it is more convenient to computationally implement the
case of the plane wave. On the other hand, we have chosen the case of the point
source in (2.2) because Lemma 2.3 is actually derived from Theorem 4.1 of [144].
And this theorem was proven for the case of the point source.

2. In the first work [24], we took Vl(?l (x) = 0, and this is the case of numerical stud-
ies in Chap. 3. In follow-up publications, we have taken V& (x) = Viniform (x) ,
where

In (Wuniform X, S )
Vuniform (X) = %

Here, wypiform (X, 5) is the solution of the problem (2.11) and (2.12) for ¢ (x) =
I,s := 7§ in the case of the incident plane wave. The latter is the case of
numerical studies in Chaps. 4—6. In other words, Viniform (x) corresponds to the
solution of the problem (2.11) and (2.12) for the case of the uniform medium
which surrounds our domain of interest §2; see (2.3). Recall that we do not
assume any knowledge of the function c¢ (x) inside the domain §2. We have
discovered in our computational experiments that both these choices provide
about the same solutions. However, the second one leads to a faster numerical
convergence.

3. The second approximate mathematical model leads to another choice for the
initial tail function V7 (x); see Sect.2.9.2. We have tested numerically this
choice as well. Our computations have shown that although this choice provides
a little bit better accuracy than the above two, the difference is still insignificant.
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2.6.1 The First Version of the Algorithm

Step n;,n > 1. Suppose that functions
Q1o Gnet.dy | = qu—1 € C*T*(R2), ¢4y € C*(RQ)

and the tail function V,, | (x,5) € C2T%(£2) are constructed; see (2.43) and (2.44).
We now construct the function ¢, ;. To do this, we solve iteratively the following
Dirichlet boundary value problems:

n—l1
Agyy = Ara | b Z Va; |- Vay, —eay, + A1V, - Vi
j=0
2
I -
= 2]—” (V") — Ay, qu, + 245,V V- hZ_:qu
—A2y (VV, 1), x € 2, (2.45)
4k, (x) =V, (x).x € 022, (2.46)

where k = 1, 2, ..., functions Wn (x) are defined in (2.34) and (2.35) and functions
gk, € C*(£2). We call these “iterations with respect to the nonlinear term.”It
can be proven that this process converges; see Theorem 2.8.2 So, we set

Gni1 = kll)n;o q/n"l in the C >+ (£2) norm. (2.47)

Our numerical convergence criterion for the sequence {q,]jl};o: , 1s described in
Chap. 3. Next, we reconstruct an approximation ¢, (x),x € §2 for the unknown
function ¢ (x) using the resulting function ¢, ; (x) and formulas (2.41) and (2.42)
ati = 1. Hence, ¢,; € C% (£2). Construct the function ¢, (x) € C*(R?).
Next, solve the forward problem (2.1) and (2.2) with ¢ (x) := ¢,.1 (x) . We obtain
the function u, ; (x,t) . Calculate the Laplace transform (2.10) of this function and

obtain the function w,, ;(x, ) this way. Next, following (2.18), we set for x € £2

Inw, 1(x,s o
Vi (x,5) = % C*(2). (2.48)
Step n;, i > 2,n > 1. We now iterate with respect to the tails. Suppose
that functions ¢, ;—1, V,,; (x,5) € C 2+o @ are constructed. Then we solve the
following Dirichlet boundary value problem:

n—1

Agni = A [ Y Va; |- Vani = equi + AnVaui - VVai
j=0



112 2 Approximately Globally Convergent Numerical Method

2
I . n—1 n—1
= ZIL (Vqui-1)* — Az, h? Z Vg | +24,,VV,;-|h Z Vg;
0 j=0 i =0
— A2y (VVii)*, x € 2, (2.49)

@i (X) =¥, (x),x € 082. (2.50)

Having the function g, ;, we reconstruct the next approximation c,; € C%(£2)
for the target coefficient using (2.41) and (2.42). Next, we construct the function
Cni € C*(IR?). Next, we solve the forward problem (2.1) and (2.2) with ¢ (x) :=
Cpi (x), calculate the Laplace transform (2.10), and update the tail as in (2.48),
where (wy 1, V;,2) is replaced with (wy,;, V;,i+1) . Alternatively to the solution of
the problem (2.1) and (2.2), one can also solve the problem (2.11) and (2.12) at
s := §; see Theorem 2.7.2 for the justification. We iterate with respect to i until
convergence occurs at the step i := m,. Then we set

qn ‘= 4n.m, € C2+a (ﬁ) 2 Cn = Cumy, ecC” (ﬁ) ’ (251)

1
Vag11 (x,5) = — Inwy, (x,5) € C*H(2). (2.52)
S

While convergence of the sequence {q,]j,l}:il , which is generated by iterations
with respect to the nonlinear term (see Step n;) can be proven (Theorem 2.8.2),
convergence of the sequence {g,;} (with respect to i) cannot be proven. Hence,
we have established a stopping rule for the latter sequence numerically; see details
in Chap. 3. So, if the stopping rule is not yet reached, then we proceed with Step
(n + 1). Alternatively we stop.

The stopping rule is chosen in numerical experiments; see Chap. 3. In addition,
Theorem 2.8.2 claims that a subsequence of the sequence {c,;};c, converges in
the L, (§£2)-norm. We use the discrete L, (£2) norm in our computations for the
stopping rule. This norm is the most convenient one for the computational analysis.
Therefore, the stopping rule of Chap. 3 is indeed a reasonable one.

2.6.2 A Simplified Version of the Algorithm

We now briefly present a simplified version of the algorithm, which is not yet
computationally verified. The idea is generated by the standard way of solving
Volterra integral equations. First, we present the latter idea in brief. Consider a
Volterra-like integral equation

y() = /f(t,r,y(t))dt—i—g(t),t > 0, (2.53)
0
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where f, d, f, g are continuous functions of their variables. Equation (2.53) can be
solved iteratively as

Vo (1) = /f(t,r,yn_l At +g@).n>1 o) =g@). (254
0

It is proved in the standard ordinary differential equations course that this process
converges as long as ¢ € (0,¢e), where ¢ > 0 is a sufficiently small number.
Furthermore, solution of (2.53) is unique for all + > 0, as long as f,d, f are
continuous functions of their variables for appropriate values of 7, ¢, y. At the same
time, existence of the solution of (2.53) as well as convergence of the iterative
process (2.54) can be proved only for small values ¢ € (0, ¢) .

Equation (2.20) can be written in the form, which is similar with (2.53):

5 5 2

Aq = 2s2Vq/Vq (x,7)dtr —2s /Vq (x,7)dr

s s

—2s2VgVV + 4sVV/Vq (x,7)dt =25 (VV)? =0, x € 2,5 € [s,5].
(2.55)

The boundary condition (2.21) is
q(x,s) =9 (x,s), V(x,s) € 082 x [s,5]. (2.56)

Hence, the idea is to solve the problem (2.55) and (2.56) for each appropriate tail
function V iteratively via the process, which is similar with (2.54). Next, the tail
should be updated, and the process should be repeated.

We use (2.32) and (2.33). Similarly with (2.43), we set

qo =0,V (x) ==V (x) € C*1* (2),

where V) (x) is the first guess for the tail; see Remarks 2.6.

Step n9, n > 1. Assume that functions ¢9 € C*™(2).; € [0.n—1] are
constructed. To find the function ¢°, solve the following Dirichlet boundary value
problem:

n—1

Aq) — A [ 1D Vq) | Va —eq) + A1, V) - YV
j=0
2
n—1 n—1
= — Ay, h? qu,- + 245, VV, thqj — Ay (VV)?, x € £2,
j =0 j=0

(2.57)
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g0 (x) =V, (x),x €302 (2.58)

Continue until # = N. Next, reconstruct an approximation ¢; (x),x € §2 for the
unknown function ¢ (x) using the resulting vector function ¢° (x) = (qg . q), ., q?v)
and obvious analogs of formulas (2.41) and (2.42). Next, construct the function
ci(x)ecC” (R3) and solve the problem (2.11) and (2.12) with the coefficient ¢ (x)
at s = 5. We obtain the function w (x,5;¢1) . Next, construct the function V; (x) as

1 _
N =5 Inw (x,5;01) € C** (). (2.59)

Set g, := 0.
Step n;,n > 1,k > 1. Assume that functions Vk,qj? e C(2).j €0,n—1]

are constructed and qlg = 0. To construct the function q,]j , solve the following analog
of the Dirichlet boundary value problem (2.57) and (2.58):

n—1
Agk— A1, [ 1) Va | Vgt —eql + A41,V4f Vi
j=0
2
n—l n—1
= Aok [ Ve | #2450,V [0 Vh | - 42 (VV)?, x € 2.
Jj=0 j=0
qay (x) =V, (x),x €90,
Continue until n = N. Next, reconstruct an approximation ¢ (x),x € £

for the unknown function ¢ (x) using the resulting vector function ¢* (x) =
(qlg ,q{‘ , ...,qﬂ‘\,) and obvious analogs of formulas (2.41), (2.42). Next, construct
the function ¢y (x) € C* (R3) and solve the problem (2.11) and (2.12) with the
coefficient ¢ (x) at s = 5. A “good” solution of this problem exists and is unique;
see Theorem 2.7.2 We obtain the function w (x, 3;Cx) . Next, construct the function
Vi+1 (x) similarly with (2.59):

1 ~
Vi1 (x) = = Inw (x,5:¢) € C*7 (2).
N

Continue above iterations with respect to k until a convergence criterion is met. That
convergence criterion should be established computationally.
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2.7 Some Properties of the Laplace Transform of the Solution
of the Cauchy Problem (2.1) and (2.2)

We need the material of this section for our analysis of the approximate global
convergence property of the algorithm of Sect.2.6.1. Indeed, we have not proven
the limit (2.12) in Sect. 2.3. This is done in Sect.2.7.1. In Sect.2.7.2, we establish
some additional properties of the solution of the problem (2.11) and (2.12).

2.7.1 The Study of the Limit (2.12)

Theorem 2.7.1. Let xo ¢ $2, the function c (x) satisfies conditions (2.3) and also
c e Ckte (R3) , where k > 0 is an integer and the number o € (0, 1) . Assume that
there exist constants

M, = M, (C) >0,M, = Mz(x,c) > 0,£1 =5 (C) > 1,
such that fork = 0,1,2 and |y| < 2,

|Dfu(x, )|, |DYu(x.t)] < My (c)et', t > My (x.c),Vx € R, (2.60)

where u (x,t) is the solution of the problem (2.1) and (2.2). Then there exists a
constant S, = 8, (c) > s, (c) > 1 such that for all s > s,, the function w(x,s) ,
which is the Laplace transform (2.10) of the function u (x, t), satisfies the following
conditions:

Aw —s?c (X)w = =8 (x — xq), Vs > 55, (2.61)
lim w(x,s) =0, Vs > s,, (2.62)
|x]—00
w(x,s) > 0for x # xo, (2.63)
w(x,s) = w +W(x,s) ==wi(x,5) +w(x,s), Vs > 5, (c),
41 |x — x|
(2.64)
W(x,s) € CF2Te(RY) | Vs > 5, (2.65)

Proof. The limit (2.12) can be proven as follows. First, apply to (2.1) and (2.2) the
integral transformation (1.162), which is an analog of the Laplace transform:

o0
2

1 T
v(x,t) = m / u(x,7)Texp (_E) dt := Lu. (2.66)

0

Let £ (¢),t € [0,00) be a piecewise continuous function such that the function
|/ (t)|e™1" is bounded for ¢ € [0, 00). Two other types of the Laplace transform
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which we use are

Lof = / F@)e s > 5, > 1, (2.67)
0

Lf = / f()e™de,s > 5, > 1. (2.68)
0

One can easily verify that
(LS) () = (L2(L1f))(s). Vs >5 > 1. (2.69)
It follows from (2.66) that [102, 123, 124]

c(x)v, = Av, (2.70)
v(x,0) =68 (x —x0). (2.71)

Hence, it follows from (2.1), (2.2), (2.60), and (2.67)—(2.71) that the function w =
Lu satisfies (2.61). We now need to establish (2.62)—(2.65). First, (2.63) follows
from w = L,v. Indeed, Theorem 11 of Chap.2 of the book [69] claims that the
fundamental solution of a general parabolic equation is positive for ¢ > 0.

Detailed estimates of the fundamental solution of a general parabolic equation
with variable coefficients can be found in Sects. 11-13 of Chap. 4 of the book [120].
In particular, it follows from the formula (13.1) of that chapter of [120] that the
following estimate is valid for (x, t)-derivatives D] Dv of the function v:

lx—xo|?
exp (—Cr—- 3492

. (272
” > (2.72)

|D; Div] < vep = Ci
where 2r + n < 2 and C, C,, C5 are certain positive constants depending only
on the upper estimate of the norm ||c||Cu(R3). Let wy, (x,5) = Ly (D,"va).
Using estimate (2.72) as well as formula (29) in Sect. 4.5 in the table of the Laplace
transform of the book [13], we obtain

(1-p)/2
Cylx —x
|Wr,n (X,S)l < 2C1 (%) Kp—l (2\/ C2 (52 — C3) . |x — xol) s
§7—0C3
(2.73)

where s > s > /C5 and K, is the McDonald function. Note that K ,—; = K;—,,
[1]. Since for y € R, the function K,—; (y) € C*° (¥ > 0), Yo > 0, then it follows
from (2.73) that the function w € C2 (lx =x0| = 9}).V® > 0, fors > /C5.
Furthermore, since the function K, (y) decays exponentially when y — oo,y €
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R, then we obtain from (2.73) that

lim Diw(x,s) =0forn =0,1,2and s > v/Cs, (2.74)

|x]—00

from which (2.62) follows.
Consider now the fundamental solution v, of the heat equation:

vor = Avp, in R,

vo (x,0) =68 (x — xp) .

Hence,
1 |x — xo|2
vo(x,t) = ———exp| —— | . (2.75)
(2v/m1)’ ( 4
Let vi = v —vg. Then (2.70) and (2.71) imply that
c(x)vyy = Avy — (¢ (x) — 1) vyy, (2.76)
vi (x,0) = 0. 2.77)

Since the source xq ¢ £2, the function ¢ € C¥** (R?), and by (2.3) ¢ (x) =1 = 0
outside of £2, then it follows from (2.75) that

(c (x) = 1) vy, € C*T* (R* x [0, T]), VT > 0.

Consider the function w'!) := Lovy for s > s > +/C;. Estimates for the solution
of the Cauchy problem for a general parabolic equation with variable coefficients
are obtained in Sect. 14 of Chap. 4 of [120] for the case when the right-hand side of
this equation belongs to C“ (R3 x [0, T]) ,VYT > 0. So, these estimates as well as
(2.73), (2.75), (2.76), and (2.77) imply that w') € C? (R?).
Consider the function £,vy. Formula (28) of Sect. 4.5 of [13] implies that
exp (= |x —xol) _

Lovg = ————— =w; (x,5). (2.78)
47 |x — x|

Next, by (2.62) and (2.76)—(2.78) the function w = w — wy satisfies the following
conditions:

A —stce () w=s>(c(x)—Dwy, s>5>/Cs, (2.79)
‘ l‘im wi(x,s)=0. (2.80)

Now, since the function (¢ (x) — 1) w, € Ck*@ (R3) , then Theorem 6.17 of [72]
ensures thatw € C*+2%% (R3) |
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We now show that the solution w € C? (R3) of the problem (2.79) and (2.80)
is unique. Suppose that there exists another function w € C? (R3) satisfying
conditions (2.79) and (2.80). Let w, = w — w. Then

Awy —s2c (x)wr = 0, 5 > /C3,

lim w; (x,s) =0.
|x|—>00

Fix a pseudo frequency s, s > /Cs. Let e € (0, 1) be an arbitrary number. Choose a
sufficiently large number R (¢) > 0 such that [w; (x, s)| < e forx € {|x| = R (¢)}.
Then by the maximum principle (see Sect. 1 in Chap. 3 of [118])

max |wy (x,s)] < max |w; (x,s)] <e.
[x|<R(e) |x|=R(e)

Since k € (0,1) is an arbitrary number, then w; (x,s) = 0. Hence, w(x,s) =
W (x, ) . Furthermore, since the above function w(") € C2 (R?) is w'V) := Lv, for
s > 5 > /C5, then by (2.76), (2.77), and (2.74) imply that the function w'" satisfies
conditions (2.79) and (2.80). Hence, w") = w. Thus, conditions (2.61)—(2.65) are
established. O

2.7.2 Some Additional Properties of the Solution
of the Problem (2.11) and (2.12)

An inconvenient point of Theorem 2.7.1 is that it works only for s > s, (¢) . The
next natural question is whether its analog would be valid for values of s, which are
independent on the function ¢ (x) . In addition, the question about lower and upper
bounds for the function w is important for our convergence analysis in Sect.2.9.
Thus, we need to prove Theorem 2.7.2 It should be noticed that this theorem does
not follow from classical results of the theory of elliptic PDEs, since there results
are known only for bounded domains. Unlike this, Theorem 2.7.2 is concerned with
the elliptic problem (2.11) and (2.12) in the entire space R3.
First, we copy condition (2.3) for the convenience of the reader:

c(x)e[l,d], ¢(x)=1forx e R3\ 2. (2.81)
Theorem 2.7.2. Let xo ¢ $2 and the function c (x) satisfies condition (2.81) as well
as the following smoothness condition:

ceCH™ (R, k>0, e (0,1). (2.82)



2.7 Some Properties of the Laplace Transform of the Solution of the Cauchy Problem... 119
Denote

exp (—S |x _XOD exp (—S«/EPC —X()l)
wi (x,5) = ———— and wq (x,5) =
47 |x — x| 41 |x — x|

, (2.83)

the solutions of the problem (2.11) and (2.12) for ¢ (x) = 1 and ¢ (x) = d,
respectively. Then for any s > 0, there exists unique solution of the problem (2.11)
and (2.12) of the form

w(x,s) = wi (x,5) +W(x,5), where w € C¥T2T (R?). (2.84)

Furthermore,

wg (x,8) <w(x,s) <wp(x,s), Vx # xo. (2.85)
Proof. Consider the following parabolic Cauchy problem for (x,7) € R? x (0, 00):
c(x)v, = Av, v(x,0) = 8§ (x — xp) . (2.86)

Let the function vy (x, ¢) in (2.75) be the solution of the problem (2.86) with ¢ = 1.
Also, consider the function v (x, ¢):

v(x,t) = / v =) (x,7)dr7. (2.87)
0

Denote b (x) = ¢ (x) — 1. By (2.81) and (2.82),
b (x) = 0forx e R*\R2, b € CF*(R?). (2.88)

We obtain from (2.86) and (2.87)
AVv—c (X)V = b (x) v, 7(x,0) =0, (x,1) € R*x (0, 00). (2.89)

Since xo ¢ £2, then it follows from (2.75) and (2.88) that the right hand of (2.89)
does not have a singularity in R® x [0, 00). Let T, R > 0 be two arbitrary numbers
and Br(T) = {|x| < R} x (0,T). By (2.81) and (2.22), b (x) vy (x,2) > 0 for
(x.t) € R3x(0, 00) . Hence, applying to (2.89), the maximum principle of Theorem
1 of Chap.2 of [69], we obtain maxg, r) v (x,1) <0.Since R, T > 0 are arbitrary
numbers, then

V(x,1) <0inR> x [0, 00). (2.90)
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On the other hand, Theorem 11 of Chap.2 of [69] ensures that the fundamental
solution of the parabolic equation is positive for ¢ > 0. Hence, (2.87) and (2.90)
imply that

t t
O</v(x,t)dr §/v0(x,t)dt and v (x,t) > O fort > 0. (2.91)
0 0

Next, we apply to the function v the operator £, of the Laplace transform (2.67):

o0

Lov = /v(x,t)e_“'ztdt. (2.92)
0

By one of the well-known properties of the Laplace transform,
t
L / f@dr ] = sizﬁzf (2.93)
0

for any appropriate function f. By (2.75), the integral

)

Lovy = / vol(x, t)e_sztdt
0

converges for all s > 0. Formula (28) of Sect.4.5 of Tables [13] gives Lovy =
wi, Vs > 0. Hence, (2.91)—(2.93), and Fubini theorem lead to

t
1 1 1
L /v(x, T)dr | = —zﬁzv < —2£2 (v) = Wi (x,5), Vs > 0. (2.94)
S S S
0

Hence, the integral (2.92) converges absolutely. Next, by (2.89), for any A4 > 0,

A A A
A / v(x, e = / AV (x.0)e " dr = / [0 + (¢ — D vol e~ dr.
0 0 0

Setting here A — oo and using that by (2.87) ¢v; + (¢ — 1) vo = ¢v— vy, we obtain

A A
lim A/V(x,t) e5"dt = lim /Av(x,t) e dr = cLov—Lovy. (2.95)
A—>00 A—o00

0 0
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Hence, it follows from (2.95) that AL, (v) and L, (AV) exist and AL, (V) =
L, (Av) . Furthermore, by (2.87) and (2.93)—(2.95):

ALy (V) = s 2A (Lav — Lavg) = cLov — Lavg.

Hence, denoting w := L, (v) and using Lovy = w; as well as Aw; — 2wy =
—& (x — Xx¢) , we obtain that the function w satisfies (2.11):

Aw —s%c (x)w = =8 (x — x0), x € R%. (2.96)

We now prove (2.12). Since ¢v; = v; + by, then using (2.87) and (2.89), we
obtain

v —Av=—=b(x)v, v(x,0) =0. (2.97)
Since by (2.88) b (x) = 0 near xo and b € C**¢ (]R3), then at least
by e C*/2 (R* x [0, T]). (2.98)
Hence, it follows from formula (13.2) of Chap. 4 of [120] that
ve CFreITe2 (RS % [0, T]), YT > 0. (2.99)

Consider (2.97) as the Cauchy problem for the heat equation with the right hand
(—b (x) v) . It follows from (2.88), (2.98) and (2.99), and results of Sect. 1 of Chap. 4
of [120] that the solution of the problem (2.97) can be written in the following form:

v(x,t) = —//vo (x—=&t—1)b(§)v(E, 1)dédr. (2.100)
0 2

By (2.87), (2.92), and (2.94), L,V = s 2(Lov—wi) = s (w—w;). Hence,
applying the Laplace transform £, to both sides of (2.100) and using the convolution
theorem, we obtain

w(x,s) = w (x,s) —s° / wi (x —&£,5)b (E)w(E,5)dE. (2.101)
2

By (2.83) and (2.101), functions w (x, s) , w; (x, s) and (w — wy) (x, 5) satisfy con-
dition (2.12):

lim w(x,s) = lim w;(x,s) = lim (w—w;)(x,s)=0. (2.102)
[x|—o00 |x|—o00 |x]—>00
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We now establish (2.84). Let £2; C R? be a bounded domain such that
RCR,02N02 =0, 32, € C3, xo ¢ 2.

It follows from (2.101) that the function w (x, s) € C'! (51) . Hence, by (2.88), the
function b (x) w(x,s) € C“ (ﬁl) . Hence, Lemma 2.9.1.4 (Sect.2.9.1) and (2.101)
imply that the function (w — wo) (x,s) € C** (R3) . Finally, the abovementioned
Theorem 6.17 of [72] combined with (2.96) ensures that (2.84) is true for any k > 0.

Thus, we have proven the existence of the solution of the problem (2.11) and
(2.12) in the form (2.84). The proof of the uniqueness is the same as in the last part
of the proof of Theorem 2.7.1 (after (2.80)).

Finally, we prove (2.85). We have established above in this proof that w = £, (v)
and v > 0,5 > 0. Hence, the right inequality (2.85) follows from (2.101). Consider
the function w (x, s) = w(x,s) —wy (x,s) . Then (2.96), (2.102), and (2.83) imply
that

AW — 57w =57 (¢ (x) —d) wa, | llim w(x,s) =0. (2.103)
By (2.83) and (2.84),
O exp[s (VA= 1) v = w0l 1+ 0 (1 = o)) > 0.5 = w0, # v
wqa (x,5)

Hence, there exists a sufficiently small number ¢ > 0 such that
W (x,s) > 0forx € {|x —xo| <e&,x # xo}. (2.104)

For R > 0, consider the domain Bg, = {|x| < R, |x — xo| > &} . Assuming that
Bgr. # @, which is true for sufficiently large R, we obtain w € C>™® (Bg,) and
s2(c (x) —d)wg < 0in Bg,. Hence, applying the maximum principle to (2.103),
we obtain

minw > minw.

Bre 0BR.e
Setting R — oo and using the second condition (2.103) as well as (2.104), we
obtain

min W> min w> 0.
[x—xo|>e lx—xo|=e

Thus, w (x, ) > wy (x, s) for x # xo. O

2.8 The First Approximate Global Convergence Theorem

In this section, we present the first version of the proof of the approximate
global convergence property of the algorithm of Sect.2.6.1 for coefficient inverse
problem 2.1. In other words, we show that this algorithm addresses the first central
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question of this book; see Sect. 1.1. Following the fundamental concept of Tikhonov
(Sect. 1.4), we should assume first that there exists an “ideal” exact solution of an ill-
posed problem with the exact data. Next, one should assume the presence of an error
of the level o in the data and construct the solution for each such o. So constructed
solution is called a “regularized solution”, if it tends to the exact solution as 0 — 0.

2.8.1 Exact Solution

Following the fundamental concept of Tikhonov (Sect. 1.4), we introduce first the
definition of the exact solution of coefficient inverse problem 2.1. We assume
that there exists a coefficient ¢* (x) satisfying conditions (2.3) and (2.4), and
this function is the exact solution of this CIP with the “ideal” exact data in
g*(x,1) in (2.5). Recall that by Remark 2.1, we always assume that the uniqueness
theorem is in place for each inverse problem considered in Chaps. 2—6. The Laplace
transform (2.10) of the function g* (x,¢) leads to the exact function ¢* (x,s) =
w* (x,s),V (x,5) € 082 x [s5,5].
Denote

In [w* (x, )]

N N ov* (x,s
v (x,s):s—z,q (x,s)ZL

L,V (x,5) =v" (x,5).
as

Recall that (2.20) for the exact function ¢* (x, 5) is
5 5 2

Ag* —25*Vg* / Vq* (x,7)dt + 2s / Vq* (x,7)dr

s N
5
+25’Vg*VV* —4sVI* / Vq* (x,7)dt + 25 (VV"‘)2 =0,
s

x €2,s €ls,s]. (2.105)
In addition, by (2.21) and (2.15),
g* (x.5) = ¥ (x.5). V (x.5) € 982 x [5.5]. (2.106)
ot (x) = [Av* 452 |Vv*|2] (x,5), (x,5) € 2x[s,5]. (2107
In (2.106),

1 dp* 2lne*

Yr(xs) =

p*s?  Os 53

The formula (2.107) is used to reconstruct the exact solution ¢* from the function v*.



124 2 Approximately Globally Convergent Numerical Method

Definition 2.8.1. We call the function ¢* (x,s) the exact solution of the prob-
lem (2.20) and (2.21), or, equivalently, of the problem (2.105) and (2.106), with
the exact boundary condition ¥ * (x, ).
Hence,
q* (x,5) € CPT* (2) x C'[s5.5]. (2.108)

We now follow (2.33)—(2.36), (2.38), and (2.39). First, we approximate functions
q* (x,s) and ¥* (x,s) via piecewise constant functions with respect to s € [s,5] .
Forn € [1, N], let

Sp—

g = / 4" (r5)ds, T (0 = 5 / P (s)ds, gf (x) = 0. (2.109)

S Sn
Hence,
q" (x.8) =g, (x) + OQu (x.9), V" (x.5)
= W; xX)+ ¥, (x,8),ne[l,N], s €][su,sn-1],
where by (2.108), functions Q,,, ¥, are such that
100 (x.5)y4e < C¥h, Wy (x.5)|y4q < Ch, fors € sy sum].  (2.110)

Here, the constant C* = C*(||¢*[c2+e@)xc!ss) > O depends only on the
C?te (ﬁ) x C![s,5] norm of the function ¢* (x,s). Hence, we can assume that

max |g, |,y < C". (2.111)

1<n<N -

Without any loss of generality, we assume that
C*>1. (2.112)

By the fundamental concept of Tikhonov (Sect. 1.4), we assume that the constant
C* is known a priori. By (2.14), it is reasonable to assume that C* is independent
on §, although we do not use this assumption. By (2.109),

4 (x) =V, (x). x € 982 (2.113)
Hence, we obtain from (2.105) the following analogue of (2.39):
n—1

Agy — A [ R VaT | Var + 41, Vg vV
j=0
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i=1

2
I
-2 ]10 (Vqr) = Az ,h (ZVq,)

n—1
+240,VV* [ hY Vgt | = A0 [VV*P + Fy (x . 2). (2114
j=0

where the function F, (x,h,A) € C* (ﬁ) and

max | Fy (x, h, A)ly < C*h, Ah > 1. (2.115)
Let
n—1
vi(X) =—hqr (x)=hY qf (x)+V*(x). xeR ne[l,N]. (2116)
j=0

Then (2.107), (2.108), and (2.115) imply that
¢t (x) = [Av;; + 52 |vv,’;|2] () + Fn (x) 2.117)

where ‘fn ‘a < C*h. To simplify the presentation, we replace the latter inequality
with

|Faul, < h. (2.118)

This is not a severe restriction since a similar convergence analysis can be conducted
for the case |7n |a < C*h, although it would take more space.

We also assume that the function g(x,?) in (2.5) is given with an error. This
naturally produces an error in the function ¥ (x, s) in (2.21). An additional error
is introduced due to the averaging in (2.35) and (2.109). Hence, we assume that in
(2.34) functions ¥, (x) € C*** (3£2) and

h 2.11
o =€ @) (2.119)

|77 0 =7, @)

where o0 > 0 is a small parameter characterizing the level of the error in the data
¥ (x, s). The parameter / can also be considered as a part of the error in the data.
2.8.2 The First Approximate Global Convergence Theorem

First, we reformulate the Schauder theorem in a simplified form, which is sufficient
for our case; see Chap. 3, Sect. 1 in [118] for this theorem. Assuming that
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5>1, Ah > 1, (2.120)
and using (2.38) as well as formulas for numbers A; ,,, A2 ,, we obtain [24]

max {|A1a] + |A2.|} < 85%. (2.121)
1<n<N

Introduce the positive constant M* = M* (C* : %),
M* = 16C*s* = 2C* max (852, [max {[41,] + |A2,n|}) >16.  (2.122)
<n<

The inequality M * > 16 follows from (2.112) and (2.120). Consider the Dirichlet
boundary value problem:

3
Au+ Y " bj(x)uy, —bo(x)u = f (x),x € 2,

j=1

ulso=g (x) € C** (3R). (2.123)
Assume that the following conditions are satisfied:

bj.bo. f € C* () .bo(x) = 0; max (|6;],) < 1. (2.124)
j€lo,n

This upper bound is chosen to simplify the presentation since this is sufficient for
our goal. By the Schauder theorem, there exists unique solution u € C>** (£2) of
the boundary value problem (2.123). Furthermore, with a constant K = K (£2) > 1,
depending only on the domain £2, the following estimate holds:

luly o < K [lIgllc2taag) + 1 1] - (2.125)

We point out that the constant K depends only on the domain £2 as long as estimate
(2.124) for coefficients is in place. In general, however, K depends on both the

domain £2 and the upper estimate of the C* (.Q)-norm of coefficients. Note that the
definition of the C* @-norm implies that

|fifole < 1 file | ol VA1, o €C*(R). (2.126)

Theorem 2.8.2. Let 2 C R? be a bounded domain with the boundary 92 €
C3. Consider the algorithm of Sect. 2.6.1, where’ s = const. > 1. Assume that all
functions c, ; reconstructed in this algorithm are such that

cni(x) =1, x € 2. (2.127)
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Let the exact coefficient ¢* (x) satisfies conditions (2.3) and (2.4), i.e.,
c*(x) €[l,d], c*(x)=1forx e R3\ 2,
c*eC* (R,
where the number d > 1 is given. Let C* > 1 be the constant defined in (2.111) and
(2.112). Let in (2.34) boundary functions ¥, € C* (082) . Assume that (2.115),
(2.119), and (2.120) hold. For any function c (x) € C* (R3) such that ¢ (x) €

[1,d + 1] in 2 and ¢ (x) = 1 in R\ 82, consider the solution w.(x,5) of the
problem (2.11) and (2.12),

Aw, —5%c (X)w, = =6 (x — x0) , x € R®, (2.128)
lim w, (x,5) =0, (2.129)
lx|—>o00

satisfying condition (2.84) with k = 0. Consider the corresponding tail functions,

% — —
V*()C):E—Z’ECZ-l—a(ﬁ), %(X)ZWGCZ_FQ(E),

(2.130)
where w* (x,5) is the solution of the problem (2.128) and (2.129) of the form (2.84)

with k = 3 for ¢ (x) := c¢* (x). Suppose that the number s is so large that the
following estimates hold

V¥ hio <& Velpo <& (2.131)

for all such functions c, where &€ € (0,1) is a sufficiently small number. Let
Vii(x,5) € C?Fe @ be the initial tail function and let

Wity <6 (2.132)

Denote
n:=2Mh+o+&+¢). (2.133)

Let K = K (2) > 1 be the constant of the Schauder theorem in (2.84) and N <
N be the total number of functions g, calculated by the algorithm of Sect. 2.6.1.
Suppose that the number N = N (h) is connected with the step size h via N (h) h =
B, where the constant § > 0 is independent on h. Let B be so small that

1 1
< - , 2.134
b= 24KM*  384K32 ( )
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where the number M™* was defined in (2.122). In addition, let the number 1 in
(2.133) and the parameter A of the CWF in (2.38) satisfy the following estimates:

1 I
< K’C*’_ = = N 2135
1= m(K.C75) = 1 = 25eke? 13

1> Ao (C* K,5,7) = max ((c*)2 ,96KC*32, %) . (2.136)

Then for each n € [1,N], the sequence {qul(,l}:il converges in C2ta (ﬁ)
Furthermore, functions

cni€C* (ﬁ) ,Chx €C* (R3) ,

Cni (X) . Cni (x) €[1.d + 1] in £2.

In addition, the following estimates hold :

1 _
n—q §2KM*(—+3),ne 1.N], (2.137)
lgnlyse <2C*. ne[1.N], (2.138)
1 23 _
en—c*|, < m;7+ g neE [2.N]. (2.139)

Denote
(1,3, o
)T

By (2.135), ¢ € (0,0.012). Therefore, estimate (2.139) implies the approximate
global convergence property of the algorithm of Sect. 2.6.1 of the level & within the
[framework of the first approximate mathematical model of Sect. 2.8.4 (below).

It is worthy to make some comments prior to the proof of this theorem. We
formulate these comments as the following remarks:

Remarks 2.8.2. 1. The existence and uniqueness of the solution of the problem
(2.128) and (2.129) is guaranteed by Theorem 2.7.2 This theorem also guarantees
that w, (x,5) > 0 for x # x¢, which justifies the consideration of In w, (x,s) in
(2.130). We impose condition (2.127) because of Theorem 2.7.2

2. We have observed in our computations that the inequality (2.127) holds indeed
for computed functions ¢, ; (x); see Sect.3.1.2. In fact, if we would need to
estimate norms | ¢, — ¢*||;,(q) instead of Holder norms above, then we would
ensure (2.127) via replacing (2.42) with

i (x) = min{l, [Av,,,,- + 52 (vv,,,,-)z] (x)} L xen. (2.140)
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Clearly, this function belongs to C* (£2) if the function [Avn,i + 52 (Vv,,,i)z] €

ce (ﬁ) . An analog of (2.140) is used in Sect.6.4.3, since the follow up
Theorem 6.7 estimates the reconstruction accuracy in the L,-norm.

3. Infact, it is established in the proof of this theorem that |c, — c¢*|, < 81/3, which
is stronger than estimate (2.139). Nevertheless, estimate (2.139) is interesting in
its own right because it shows the dependence from the iteration number 7. In-
deed, it follows from (2.139) that initially, the reconstruction accuracy improves
with iterations. However, for larger values of n, one should expect a stabilization
of functions ¢,, since 1/ (2 . 9"_1) ~ 0 for large n. This is exactly what we
observe in our computations.

4. The number 8 = N (h) h is the length of the s interval, which is covered by the
algorithm of Sect.2.6.1. The smallness condition (2.134) imposed on 8 seems
to be inevitable since (2.39) are actually generated by (2.20), which contains
Volterra integrals in nonlinear terms.

Proof of Theorem 2.8.2. We obtain from (2.112), (2.135), and (2.136) that
c* 1 c* KM*

— +3

1
=<1, ) (2.141)
N Y Y 9V L e MV Y

Denote

2712,1 = ql]‘f,l _q:’ Gni = qni _q:’
Vn,i = Vni — V*7 Pcvn,i = Cn,i _C*a ;;n = En _W:a
Vi (X) = v (X) =V (x,80) Vo (X) = v (X) = V" (x,50),

where H* (x,s) is the function H, (x) in (2.41) in the case when functions ¢; and
V,, are replaced with q;‘ and V'*, respectively. Recall that by (2.40),

|11, (A )| _ 45°
Won G R _ 357 ah > 1. 2.142
oLy — a0 o= (2.142)

The proof of Theorem 2.8.2 basically consists in estimating norms W;l |2+a>
[ i |2+« from the above. First, we estimate norms |’cﬂyk |24+¢- By (2.132) and (2.133),

Viilyy, <26 <n. (2.143)

Substituting 7 = 1 in (2.114), subtracting it from (2.45), and subtracting (2.113)
from (2.46), we obtain

Iy _ _
A?l{,l - 5"71(,1 + A1,1VV1,1V541{,1 = 21_0 ‘11,11 (VCIfll + Vqy)

—ALVV VG — A2 VV 1 (Vi + VVY) +eqf — Fi, (2.144)
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71 () = V1 (x).x €082 (2.145)

By (2.133) and (2.135), ¢ < /2 < 1. Also, since K,C* > 1, then by (2.122),
(2.132),(2.133), and (2.135),

1
A V| < 457y < <— <1
(ALVVIl =45 = Thees = Gk

(2.146)

Hence, combining the Schauder theorem (2.125) with (2.115)-(2.122), (2.131),
(2.135), and (2.143)—(2.146), we obtain

KM* _ _ _
i%,li2+a = 20%) |71€,11|1+a |q]1€,11 + qr|l+a +3KM™. (2.147)
First, let k = 1. Since by (2.43) and (2.44), ¢}, = 0, then g} | = —¢}. By (2.111)
‘Vqﬂz < (C*)*. Hence, (2.147) implies that

— c*
‘q{,l|2+a = KM~ [ﬁ + 3’7]

Hence, using the first inequality (2.141), we obtain

i * 1 * 1
iqi,l 24a =< KM (ﬁ"‘:&ﬂ) SZKM (ﬁ—k:in)

Hence, the second inequality (2.141) and (2.111) imply that

911 ]5se < (@1 ]y 167240 < 2C* (2.148)
Assume now that
_ 1
[, <2KM* (ﬁ + 3'7) k=2 (2.149)

Then similarly with (2.148), we obtain
457!, =2C*. (2.150)
We obtain from (2.147), (2.149), and (2.150)

3(KM*? [ 1 .
’6/11{,1|2+a = — (ﬁ + 377) +3KM™n.
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Hence, the third inequality (2.141) leads to

1
|/(71(,1|2+a <2KM* (ﬁ‘*‘?”])sk > 1. (2.151)

Hence, we obtain similarly with (2.148) that
451,y <2C* k= 1. (2.152)

Estimates (2.151) and (2.152) enable us to prove convergence of functions q’f!l
for k — oo. Letm, r > 2 be two positive integers. Denote a,, » = ¢y, —4q7 ;- Then,
amy =qy'y —q} . First, setin (2.144) k := m and then set k := r. Next, subtract
two resulting equations and use the following:

VT Vet + Vat) = VaiT! (VaiT' + Vay)
= Vg (Vai'T! + Vai) = Vai! (Ve + Vay)
+ Vg (Ve + Vay) = Vi (Ve + Vi)
= Vay_1,-1 (Va7 + Vai) + V@i 1" - Va1,
= Vay-1,-1 (Vai'T" + V@i + Vay).

We obtain

1 .
Aam,r — &m,r + Al,lvvl,lvamr = 2%Vam—l,r—l : (qull_l + qul_ll + tik) s
0

Am.r |3Q =0.

Hence, by the Schauder theorem (2.125), second and third inequalities (2.141),
(2.151),(2.152), and (2.142),

2KM*

2
|am,r|2+a = |am—1,r—1|2+a = g |am—l,r—l|2+a . (2153)

It follows from (2.153) that the sequence {¢f | }ZO:I satisfies the Cauchy convergence

criterion. Convergence of other sequences {q,‘;"1 }:o: can be proven similarly. Thus,
these proofs are omitted below.
Since functions q; 1 and ¢;; are estimated via (2.151) and (2.152), we now can

estimate the norm [¢ 1|, . First, we note that by (2.41), (2.42), and (2.116)—(2.118),

1

n _
[Ciil, < (Wl,llHa + 5) [1+5 (Vialope + Vi hya)] -
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As to the truncation in (2.42), it does not affect this estimate because ¢* > 1. By
(2.41), (2.116), (2.131)—(2.134) and the fourth inequality (2.141),

11

31 3
[Clilrpe + —<8KM Bn+ = =gt Sn=on

Next, (2.41), (2.116), (2.132), (2.134), (2.135), and (2.152) lead to

1
=2 _
145 (|V1,1|2+a + |VT|2+Q) < 1+ 35 o

R SR B 1

120 256 11
Thus, the last three inequalities combined with (2.135) imply that
8 1
[Caly = 31 < 3 (2.154)

Since the function ¢* satisfies conditions (2.42), then it follows from (2.154) and
(2.127) that functions ¢y 1,¢1.1 € [1,d + 1/2]. This, along with one of conditions
of Theorem 2.8.2, ensures that |Vi|,,, < &. Hence, similarly with the above,
one can prove that estimates (2.151), (2.152), and (2.154) are valid for functions
12,412 and ¢ 5, respectively. To do this, one should use (2.45) and (2.46) atn = 1,
i = 2. Repeating this process m | times, we obtain the same estimates for functions
q1,41,¢1. In addition, we also obtain that functions ¢;,¢; € [1,d + 1/2]. Hence,
one of conditions of this theorem implies that V31|, , < §.
Let now n > 2. Assume that

1 .
|‘1/’2+a <2KM* (ﬁ +3n), J€lin—1], (2.155)
4]y =2C* j e llin—1]. (2.156)
[, < <S8yl el.n—1], (2.157)
Jlag — 377 2v J .
¢j.¢jell,d+1],¢;(x) = 1inR\ R, ¢;,¢; e C*(RY), j e[l,n—1].
(2.158)

We now obtain these estimates at j = n. It follows from (2.131), (2.133), and
(2.158) that

Vitlyro <€ < g Vi| <28 <. (2.159)

For brevity, consider only functions ¢g,; with i > 1, since convergence of the

k 19° .. . k 0°
sequence {%,1 } 4=, can be proved very similarly with the above case of {‘11 1} k=1"
Also, for brevity set,

qn0 ‘= qn—1- (2.160)
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Recall that by (2.47), limi—o0 ¥ | = ¢u.1 in the norm of the space C*** (£2) .
Subtracting (2.114) from (2.45) and (2.113) from (2.46), we obtain for i > 1

n—1
Aﬂqvn,i - Al,n h Z VCI] (-x) VPq’n,i + Aanan * VPq’n,i - EEn,i
j=0
Il,n *
=2 7o [Vani-1 (Vani—1 + Vaq)]
n—1 n—1
+ [ 41aVar = A2,k Y (qu + Vg7 ) + 240,V | | 1DV,
j=0 j=0
B n—1 ] .
+ | 24050 Vgt — A1 Vgy — Ay (Vi + VV*) | VV,i + 27 — F,,
L =0
(2.161)
Tni loo= Va(x). (2.162)

We estimate the sum of 2nd, 3rd, 4th, and 5th terms in the right-hand side of
(2.161). As to the second term, using (2.111), (2.122), (2.135), (2.156), and (2.159),
we obtain

n—1
A1aVg; = A2uh Y (Va; +Va}) + 245, VYo
j=1 o
M*  3M*B M* 3
< =M*[1+=8]).
-2 + 2 + 2 ( + 2'3)
On the other hand, by (2.155),
n—1 1
h Vgi| <2KM* (—+3 ) (2.163)
;I qil, Blgz 3
Hence, (2.131), (2.133), and (2.163) imply that
n—1 n—1
A1aVa; = Ao,h Y (Va; +Va)) +240, VW | - 1Y VT ()
j=0 ji=1

o o

<2K (M*)’B (1 + %/3) (% + 3n) . (2.164)
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Estimate now the sum of 3rd, 4th, and 5th terms in the right-hand side of (2.161).
We obtain similarly with the above:

n—1
24050 Y Vgt — A1 Vgr — Asy (VVai + VV*) | YV, +2qf — Fy
j=0

§2M*(1+§)n

(2.165)

Combining (2.165) with (2.163), we obtain the following estimate the sum of 3rd,
4th, and Sth terms in the right-hand side of (2.161):

n—1 n—1
A Vg — Ay (vq,- + vq;f) 240, Vi | [0 VT,
j=0 j=0 a
n—1 e
+ || 24200 VGt — A1aVar — Agy (Vs + VV) | VYV + 2q) — Fy
j=0

o

<2K (M*)* B (1 + %/3) (% + 3n) +2M* (1 + g) .
(2.166)

Since K, M* > 1, then (2.134) and the 4th inequality (2.141) imply that

2K (M*) B (1 + %/3) (L + Sn) < 8K (M*)’ B (1 + %,8) n< %M*n.

VA
(2.167)
By (2.134),
2M* 1+ 2 )= oM™, (2.168)
Hence, we obtain from (2.166)—(2.168) that
n—1 n—1
A1,Va; = Aouhy (Va; +Va7) + 240,V | | 1DV,
j=0 j =0 N
n—1
+ | 24200 Y " VaF — A1 Vg = Ay (Vi + VVF) | VV i + eq) — Fy
Jj=0 o
1 * 5 * *
< M+ My =3M".

(2.169)
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It follows from (2.134), (2.137), and (2.156) that C% (ﬁ) norms of coefficients
at Vq,.i,qn; in the left-hand side of (2.161) do not exceed 1. Hence, we can
apply the estimate (2.125) of the Schauder theorem to the Dirichlet boundary value
problem (2.161) and (2.162). Using that estimate and (2.142), we obtain

*

— KM
[Gnilyye = 30 IVGni-1ly IVGni-1 + Va,l, +3KM™n.

First, consider the case i = 1. By (2.160) g, 0 = ¢n—1. Since estimates (2.155)
and (2.156) hold true for functions G,—1,¢,—1, then (2.111), (2.136), (2.155), and
(2.156) imply that

3KM* 1 1
Tntloge < KM* (—+3n)+3KM*n52KM*(_+3,,),
a1+ A 7 7

(2.170)

which establishes (2.155) for the function 7, ;. Hence, similarly with (2.148),
we obtain |¢,1|,,, < 2C*, which proves (2.156) for g,,;. Using (2.41), (2.42),
(2.116)—(2.118), (2.155), (2.156), (2.170), and the fourth inequality (2.141), we
obtain similarly with (2.154) that

8 1
I’E’n,l|a =-n< Ev

which establishes (2.157) for'c, ;. We obtain from (2.127) and (2.157) that functions
CutsCun € [Ld + 1], 8, (x) = 1IN RN, ¢,1,8,1 € C* ().

This establishes (2.158) for functions ¢, 1, ¢, 1 (x) . The latter, (2.48), and one of
conditions of this theorem guarantee that |V, |,,, =< &. Recalling that ¢, =
qn.m, and applying the mathematical induction principle, we obtain that estimates
(2.155)—(2.159) are valid for j = n.

Having estimates (2.155)—(2.158) for j = 1,...,n, we now obtain estimate
(2.139). Denote

P = Z Gi] )y -&n = hpan € [1.N].
=0

It follows from the above proof that

n—1 n—1

AV — Asuh Y (Vq, + Vq;‘) + 245,V | [ 1Y va,
=0 =0

3
<M (1 + 5,3) hpa—1 <2M*hp,_;.
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Hence, it follows from (2.165) and (2.168) that the sum of all terms in the
right-hand side of (2.161), excluding the first one, can be estimated from the
above via 2M*hpn 1+ 5/2 M *n. First, consider the case when in (2.161) G,
is replaced with 7% | and G, ;1 is replaced with g}7" respectively. Since the
sequence {g/ | }7-  converges, we can replace in (2.161) the vector (§¥ |, gk 7!) with
the vector (¢,.1, ¢n.1) . Hence, applying to the boundary value problem (2.161) and
(2.162), the estimate (2.125) of the Schauder theorem as well as (2.135)—(2.137),
and the fourth inequality (2.141), we obtain

< rqvn,l|2+a
4

o 5
[Gnilre = +2KM*hp, 1 + SKM*

or
8 10
([Gnilrga < 3KM hpn—1 + — 3 —KM™. (2.171)

Similarly, we obtain for G, ;,i € [2,m,]

- KM* * 5 *
|Qn,i|2+a < — 20*A |qn1 1|2+a|vqn1 1+an|+2KM hpn 1+2KM n
3KM*
= |qn1 1|2+a+2KM hpp—1 + = KM n
24 (KM* 5
< %rﬂr 2KM*hp,—1 + EKM*n <2KM*hp,—,
11
+ L, (2.172)

Thus, it follows from (2.171) and (2.172) that
~ X 10 N
|qn,i|2+a <2KM*hp,_ + ?KM n, i €l,my].
Hence, recalling that G, = Gy.m,, we obtain
. 8 10 "
[Gnlrie < 3KM hpp—1 + — 3 —KM™n (2.173)
Substituting in (2.173) ¢,—x for §,, we obtain the following sequence of estimates:
8 10 "
[Gn— klz+a_ ~KM*hp, -1 + — KM n,0<k<n-2. (2.174)

Summing up all estimates (2.174) for functions §,—x with0 < k < n—2, we obtain

n—1

~ 8 10
DPn—q1lr4q < gKM*h;pi + ?KM*I’H?.
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Since | pi |y =< |Pi+1]r4, and hN = B, then

8 10 — ~
|pn|2+a = gKM*,Bpn—l + ?KM*N'? + |q1|2+a .

Hence, multiplying by / and using (2.155) and the fourth inequality (2.141), we
obtain

8 10
gn = 3KM™Bgu—1 + 5 KM™fn + 4K M*n?.
Hence, (2.134) and (2.135) imply that

1 7 —
n < —Gn— —n, ne|(2,N]|.
gn = 581+ gm n € [2,N]
Iterating this inequality and using the formula for the sum of the geometrical
progression, we obtain

1 7 _
&n = Wé’l + Eﬂ, ne [Z,N]-
Since g1 = h[qilhre = [qilr4en/2. then (2.135), (2.155), and the fourth
inequality (2.141) imply that

7 _
gn < 4_;_1 +1en ne2N]. (2.175)

We now prove (2.139). Repeating the above arguments, which were presented
for [¢,1], , we obtain

[Calo < Falote [1+57 (Walote + Vi lhgo) ] < 2Fulora- (2.176)

Also, by (2.41) and (2.131), [Vn|2+a < g, + 1. Hence, it follows from (2.176) that
[Culy < 2(gn + 1) . Combining this with (2.175), we obtain

23 —
n+—n nel[2,N],

[Cala = 2.9n-1 8

which is (2.139). |

2.8.3 Informal Discussion of Theorem 2.8.2

In this section, we informally discuss the meaning of the parameter &. In Sect. 2.8.4,
we formalize this discussion via the introduction of the first approximate mathemati-
cal model; see Definition 1.1.2.1 in Sect. 1.1.2 for this notion. Theorem 2.8.2, which
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fits this model, was our first result about the approximate global convergence [24].
The second approximate mathematical model of Sect.2.9.2 imposes less restrictive
conditions than the first one. That model is free from the discrepancy mentioned
below in the current section.

By (2.14), (2.18), (2.131), and (2.132) the parameter £ is small as long as the
truncated pseudo frequency s is large. This implies, of course that the parameter
n is also small since other numbers in (2.133) are those occurred either in the
approximation procedure or the noise level. And the latter parameters traditionally
assumed to be small in the numerical analysis. There is nothing unusual in the
smallness assumption imposed on £. Indeed, since by (2.19), (2.131), and (2.132)

£E=0 (i) .5 — 00, (2.177)

N

then that smallness assumption is similar with the truncation of high frequencies.
And the latter is routinely done in engineering. Nevertheless, Theorem 2.8.2 has a
discrepancy related to the parameter &. Indeed, by (2.135) we should have

1

. 2.178
256K C*5° ( )

n=

Conditions (2.177) and (2.178) are incompatible. In addition, since by (2.122)
M* = 0 (52) as § — o0, then there is no guarantee that the right-hand side of
(2.137) is indeed small.

We explain the discrepancy between (2.177) and (2.178) the same way as we
have explained Definition 1.1.2.1 of the approximate global convergence property.
The problem of construction of globally convergent numerical methods for our
CIP is obviously an extremely challenging one because of three factors combined:
nonlinearity, ill-posedness, and single measurement data. Hence, we need to come
up with a certain compromise. One version of such a compromise is outlined in
the previous paragraph. In simple terms, not everything can be covered by the
theory, while numerical results are fortunately more optimistic than theoretical
ones. Analogously, see the fifth Remark 1.1.2.1 about the well-known discrepancy
between the Huygens-Fresnel theory of optics and the Maxwell equations.

Likewise, if we would prove convergence of our method as 5§ — oo, then we
would also prove uniqueness of the above formulated inverse problems, which is a
long-standing and not yet addressed question; see Remark 2.1

2.8.4 The First Approximate Mathematical Model

We now introduce the first approximate mathematical model which ensures that,
within the framework of this model, Theorem 2.8.2 claims the approximate global
convergence property of the algorithm of Sect.2.6.1. We follow Definition 1.1.2.1
in Sect. 1.1.2.



2.8 The First Approximate Global Convergence Theorem 139

Let £2 C R3 be a convex bounded domain with the boundary 952 € C3. Let the
exact coefficient ¢* (x) satisfies conditions (2.3) and (2.4):

c*(x) e[l d], ¢*(x)=1forx e RO\,
e CP(RY),|c*|, <d,
where the numbers d,d > 1 are given. Let the cut-off pseudo frequency 5 =
const. > 1. For any function ¢ (x) such that

cell,d+1]in £, ¢ (x) = 1forx € R3\ 2, (2.179)

¢ (x) e C*(RY),e|, <d, (2.180)
consider the solution w,(x,s) of the problem:
Aw, —5%2c (X)we = =8 (x —xg), x € R?,

lim w, (x,5) = 0.
[x|—>o0

We seek solution of this problem in the class represented as
we (x,8) = wy (x,8) +we (x,5),

where

wi (x,5) = exp (=5 |x — %) w. € C2te (R3)
’ 4 |x —xo| € ’

Consider the corresponding tail function V, (x) :
1 .S
V. (x) = l’lWL:g_—g)CS) c C2+0‘ (ﬁ) .

Suppose that the following inequality holds for all functions ¢ satisfying (2.179) and
(2.180):
IVVeli4o = 6. (2.181)

where £ € (0, 1) is a sufficiently small number. It follows from Theorem 2.9.1.2
that norms |VV,|,,, are indeed uniformly bounded for all functions c (x) satisfying
conditions (2.179) and (2.180).

The First Approximate Mathematical Model for the Algorithm of Sect.2.6.1
consists of the following two assumptions.

Assumptions:

1. We assume that the number £ in (2.181) is a free parameter, which can be made
infinitely small independently on the parameter 5.
2. We assume that the tail function V* (x) is unique.



140 2 Approximately Globally Convergent Numerical Method

Actually, the first assumption was realized numerically in our works with
experimental data [28,109]; also see Sect. 5.7. Indeed, it is stated in Sect. 7.2 of [109]
that we have used derivatives of tails dsV, (x,s) instead of tails V, (x,5) themselves.
Assuming that conditions of Lemma 2.3 hold, it follows from this lemma and (2.19)
that

[05Ve (2. 8) hie << Ve (X,5)|ppy, § = 00. (2.182)

Hence, it is reasonable to assume that in the formulation of Theorem 2.8.2, tails V*
and V, are replaced with o5V * and 05V, respectively. Theorem 2.8.2 is still valid in
this case with an insignificant change of its proof.

The second above assumption is imposed to make sure that the solution of
(2.105) with the boundary condition (2.106) and the smoothness condition (2.108)
is unique. Recall that its existence is assumed a priori by the fundamental concept of
Tikhonov (Sects. 1.4 and 2.8.1). Uniqueness can be proven similarly with the proof
of Lemma 2.9.2.

Remarks 2.8.4. 1. Asitis stated in Theorem 2.8.2, (2.139) implies the approximate
global convergence property of the algorithm of Sect. 2.6.1 within the framework
of the first approximate mathematical model.

2. The only way to justify assumption 1 is via numerical studies. Numerical
experiments of Chaps.3 and 4 demonstrate that this model is reasonable since
computational results confirm the validity of Theorem 2.8.2. The same is true
for the second approximate mathematical model of Sect.2.9.2. It is an opinion
of the authors that results of testing of experimental data in [109] and [28]
completely justify both approximate mathematical models; see the informal
Definition 1.1.2.2 of the approximate global convergence property. Indeed, in
[109], very accurate images of both locations and refractive indices of dielectric
abnormalities were obtained for the most challenging case of blind experimental
data when answers were unknown in advance. The follow-up refinement stage
of nonblind testing in [28] led to very accurate images of all three components:
locations, shapes, and refractive indices of those dielectric abnormalities. These
results are presented in Chap. 5.

2.9 The Second Approximate Global Convergence Theorem

In this section, we present the second version of the proof of the approximate
global convergence property of the algorithm of Sect.2.6.1. Unlike Sect.2.8, we
estimate tail functions first. Next, we present the second approximate mathematical
model. This model sounds more convenient than the first one because it basically
amounts to the truncation of all terms of the asymptotic series for the tail function
V(x,5) at 5 — o0, except of the first one. Finally, based on this model as
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well as on estimates for tail functions, we prove the second approximate global
convergence Theorem 2.9.4 This theorem claims that the algorithm of Sect. 2.6.1
has the approximate global convergence property within the framework of the
second approximate mathematical model; see Definition 1.1.2.1 in Sect. 1.1.2 for
this property.

For reader’s convenience, we remind here some facts from previous sections of
this chapter. Let 2 C R3 be a convex bounded domain with the boundary 952 € C3.
Let ¢* (x) be the exact solution of Inverse Problem 2.1. Just as above, we assume
that the exact coefficient ¢* (x) satisfies the following conditions:

c*(x) €[l.d], ¢*(x) =1forx e R*\ 82, (2.183)

c*eC?(RY),|c*|, <d, (2.184)

where the numbers d,d > 1 are given. In addition, we consider functions ¢ (x)
satisfying conditions (2.179) and (2.180):

cell,d+1]in 2, ¢ (x) = 1 forx € R*\ 2, (2.185)

c(x) e C* (R, e, <d. (2.186)

For each such function ¢ and for each s > 0, we consider the solution w, (x, s) of
the following problem

Aw, —52¢ (x) we = =8 (x — xg), x € R?, (2.187)
lim w. (x,5) =0, (2.188)
|x|—o00
such that
we (x,5) = wy (x,5) + W, (x,s), where w, € C*1* (R?), (2.189)
wy (x.5) = RS X = xb) (2.190)

41 |x — x|

The existence and uniqueness of the solution w. of the problem (2.187)—(2.190) is
guaranteed by Theorem 2.7.2. Let the function wy4; (x, s) be the solution of the
problem (2.187) and (2.188) for the case ¢ (x) =d + 1 :

exp (—sv/d + 1 |x — xo|)

41 |x — x|

wag1 (x, ) = . (2.191)

By Theorem 2.7.2,

wa+t1 (x,8) < we (x,58) <wp(x,s5), Vs >0, (2.192)
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for all functions ¢ (x) satisfying conditions (2.179) and (2.180). Also, we define tail
functions as

V*(x) = V* (x,5) = M (2.193)
N

Vo) = Vi () = e BS) (2.194)
N

where w* (x,5) is the solution of the problem (2.187)—(2.190) with the function
¢ (x) := ¢* (x) satisfying conditions (2.183) and (2.184).

2.9.1 Estimates of the Tail Function

In Theorem 2.9.1.1 of this section, we estimate tails in non-Holder norms. We will
need these estimates in Chap. 6. And in Theorem 2.9.1.2, we estimate tails in Holder
norms. We will use Theorem 2.9.1.2 in Sect. 2.9.4.

Theorem 2.9.1.1. Let 2 C R? be a bounded domain. Let the source xy ¢ £2.
Let the function ¢* (x) satisfying (2.183) and (2.184) be the exact solution of
Inverse Problem 2.1 and the parameter s > 1 and V* (x) be the exact tail
function as in (2.193). For each function ¢ (x) satisfying condition (2.185) and
(2.186), let w(x,5) := we (x,5) be the solution of the problems (2.187)—(2.190)
(Theorem 2.7.2) and V. (x) be the corresponding tail function as defined in (2.194).
Then there exists a constant B = B (§2,5,d,x9) > 2 depending only on listed
parameters such that for all functions c (x) satisfying (2.185) and (2.186) the
following inequalities hold:

IVVelle@) - IVV Nl (@) = B (2.195)
IVVe = VVZ I @) + 1AVe = AV ) £ B lle = ¢l ) - (2.196)

Proof. In this proof, B = B (£2,5,d,xo) > 1 denotes different constants
depending on listed parameters. Temporary denote in this proof only x = (x, y,z) .
For brevity, we estimate only || Vy || - @) Estimates of two other first derivatives are

similar. By (2.192)—(2.194)

Wy o _ _ . wi o
0.Vel = |25 ()| < Bl )] 18,V = |22 (xF)

(2.197)

Theorem 2.7.2, (2.190), and (2.101) imply that for § = (£,,&,,&;),x € 2,b (x) =
c(x)—1,
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o N x—§ x—£
wy (X,5) = Wlx(X,S)"‘E/[(ﬁx_gf * |x—§|3)

2

cexp (<5 x — ) (6) (6.5 [ (2.198)
Since x¢ ¢ 2, then functions wo, wo, do not have a singularity for x € 2. Hence,
(2.192) and (2.198) imply that

1+1
Ix—&  |x—¢)

[wy (x,5)] < B+B/(

2

)exp(—§|x—’§|)d’§ < B, xe€ .

(2.199)

Hence, (2.196) follows from (2.197) and (2.199). Denote w := w—w™. Then (2.193)
and (2.194) imply that

*

X*W) (x,5), x€ 2.
ww

Wy w

Ve — 0, V™ = (— -
w

Hence, by (2.192) and (2.199),
IVVe =VV* 2 < B (”VW”LZ(Q) + ||W||L2(g))
< B (1Yl ) + Wl ) - (2.200)

Let ¢ (x) = ¢ (x) — c* (x). Since

c(xX)w(x,3) —c*@Xw*(x,5) =cXWE,5) +7Txw(X,7),
we obtain from (2.187)

AW (X,5) —52c (X)W (X,5) = 50 (x) w* (x,5), x € R>. (2.201)
Since 7 (x) = 0 outside of £2 and x¢ ¢ £2, then 5°¢ (x) w* (x,5) = 0 near xo. In
particular, 5°¢ (x) w* (x,5) = 0 for x € R\ £2. Let the number R > 0 be so large

that 2 C Br = {|x| < R}. Multiply both sides of (2.201) by (—w) and integrate
over Br. We obtain

/(|W(x,§)|2+§2c (X)W(X,E))dx— / (wa—w) (x,5)dS

on
Bg 3Br

=5 / 7T (x) [w*W] (x.5) dx. (2.202)
2
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It follows from (2.101) and (2.198) that Vw (x,5) ,w (x,5) € L, (R3) and the
second term in the left-hand side of (2.202) tends to zero as R — oco. Hence, setting
in (2.202) R — oo, we obtain

/ (|V?v' x,5)> + 5% (x) W? (x,§)) dx = —5° /?(x) (W*W) (x,5) dx.
R3 Q

Since ¢ > 1, then 5%¢ (x) W2 (x,5) > 57w (x.5). Hence, using (2.192) and the
Cauchy-Schwarz inequality, we obtain

||W(X7§)||H1(R3) < B¢l - (2.203)
Next,
AN \V4 * _ A * V™ 2 * _
AV.—AV* = AW _ VA w ) on  (AwT (VW) w+wh) ) o (X.5).
w w? ww* (ww*)?
(2.204)

Since Aw* (x,5) = 52¢* (x) w* (x,5) for x € £2, then (2.192), (2.199), and (2.204)
imply that

|AV. — AV*| < B (|AW| + |VW| + [W]) ,x € 2. (2.205)
By (2.201),
1A%y ey = B (170 85) + I Loy ) -
Hence, (2.200), (2.203), and (2.205) imply (2.196). |

We now want to prove an analog of Theorem 2.9.1.1 for the Holder norms. Let
¢* (x) be the exact solution of Inverse Problem 2.1. In applications, the domain of
interest £2 can often be increased if necessary. In terms of Inverse Problem 2.1, this
means that one can have measured data g (x, ¢) in (2.5) at the boundary of a domain
which is a little bit larger than the original domain of interest. Hence, let 2’ C 2
be a subdomain of the domain §2 and 92’ N 92 = &. We replace condition (2.183)
by a little bit different one:

c*(x) €[l,d], ¢*(x) =1forx e R\ &' (2.206)
Recall that in Sect. 2.6 we have introduced the following cut-off function y (x) :
1in £2/,

yeC? (R3) , x (x) = { between 0 and 1 in 2\ §2, (2.207)
0 outside of £2.
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Consider the set of functions P (d , 3) defined as

P (d,z) - {c eC(R):lel,<d+1l.cel.d+ 1]} . (2.208)
Hence, (2.184) and (2.206) imply that

*eP (d,E) . (2.209)

For each functionc¢ € P (d , E), consider the function ¢ (x):

c(x)=(1=x@)+xx)ecx), (2.210)
where the function y (x) is defined in (2.207). Then (Sect. 6.1),
TeC*(R),Ce[l.d +1]in, T(x) = 1forx € R\ Q. (2.211)

Next, consider the solution w~(x,s) of the problem (2.187)~(2.190) with ¢ (x) :=
€ (x). The existence and uniqueness of this solution is guaranteed by Theorem 2.7.2
Hence, by (2.192),

Wa+1 (x,5) <w~(x,5) <wi (x,5), Vx #x9, Ve € P (d,g) . (2.212)

Lemma 2.9.1.1. Let functionsc,c* € P (d,g) (see (2.209) for ¢*). Consider the
function ¢ (x) defined in (2.210). Then

|/c\_c>k|a = IXIa IC - C*|a .
Proof. By (2.210),
Cx) =" (x) = x(x) (¢ (1) =™ () + (1 = x () (1 =" (x)).

Since 1 —c¢*(x) = 0 for x € 2 &2 and 1 — y(x) = 0 in £’, then

(1—x () (I =c*(x)) = 0. Hence, ¢(x) — c*(x) = y(x)(c(x)—c*(x)),
which implies the assertion of this lemma. O

Note that there exists a constant C = C (§2,«) > 0 depending only on the
domain £2 and the parameter & € (0, 1) such that

1/l =C 1 fllergm) . YV €CH(R2). (2.213)

Lemma 2.9.1.2. Let the source xo ¢ £2. Let the function ¢ € P (d,g).
Consider the function ¢(x) defined in (2.210). Let w~(x,5) be the solution of the
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problem (2.187)—(2.190) with ¢ (x) := ¢ (x). Then w~(x,5) € C2+a (ﬁ)
Also, there exists a constant Y = Y(.Q,E, d,g, X,Xo) > 0 depending on listed
parameters such that

o), = V. Ve e P (d.d).

Proof. Below in this proof, ¥ = Y (.Q,E,d,g, X,Xo) > 0 denotes different

constants depending on listed parameters. Denote b (x) = ¢ (x) — 1. Recall that
by (2.101),

W) =w (D) -5 [ - EDb@OwE D Q214

2

Since xg ¢ £2. then by (2.189), w~(x.5) € C**® (£2) . Next, (2.211), (2.212), and
(2.214) imply

|w?(x,§)‘ <Y+4+Y ||b||C(§)/w1 (x—=§&,5)dE<Y, x € 2.
2

In addition, by (2.211) and (2.199), |Vw=(x,5)| < Y. x € 2. Hence, |w~(x.5)||

) < Y. The rest of the proof follows from (2.213). O
Consider a bounded domain £2; C R3 such that

NRCR,INNIN =0, 02, €C?, xo ¢ 2. (2.215)

Lemma 2.9.1.3. Let 2,2, C R3 be two bounded domains satisfying condi-
tions (2.215). Let the function ¢ € P (d ,d ) Consider the function ¢ (x) defined in
(2.210). Let w~(x,s) be the solution of the problem (2.187)~(2.190) with ¢ (x) :=

€ (x). Then the function wa(x,5) € C 3(0821). Furthermore, there exists a constant
B =B (.Q, £21,5,d, E, x> xo) > 2 depending only on listed parameters such that

[w25.9) | 3oy = B Ve € P (). (2.216)
Let two functions cy,c; € P (d,g) . Denote w (x) = w (x,5) — w (x,5). Then

”W”C3(891) <B |C1 —C2|a , Vci,co € P (d,g) .
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Proof. In this proof, B denotes different positive constant depending on above
parameters. The integrand of the formula (2.214) does not have a singularity for
x € £2,\£2. Hence, it follows from (2.214) that w~(x.5) € C*(9£2;). Next,
(2.216) follows from (2.192) and (2.214).

Denote ¢ (x) = ¢1 (x) — ¢z (x). By (2.210) ¢ (x) — ¢ (x) = y (x)C (x) . First,

(o~

substitute in (2.214) (bl,w:l) = (¢ - l,wa). Next, substitute (b, w,,) = (¢2 —

1, wo ) and subtract the second equation from the first one. We obtain

) == [ (- 69 2 OTO ws, €56

2

= / Wi (x — £,5) by (6) 7 (£) dE.
2
Let
1w =5 [ 6= 65 1 OTE) s, (€5

2

L) = - / w1 (x — £.5) by () (£) dé.
2

Using the same arguments as ones in the proof of Lemma 2.9.1.2 as well the
assertion of this lemma, we obtain

Iillcspay < B, < BICly-
Next, by (2.203),
Wil ) = B IICllLy0) = B [Cla -

The latter estimate implies that || 11| ¢350,) < B[c], - O

We need Lemma 2.9.1.4 since we have referred to this lemma in the course of
the proof of Theorem 2.7.2.

Lemma 2.9.14. Let 2,82, C R? be two convex bounded domains satisfying
conditions (2.215) and let 32 € C3. Let the function f € C* (.Ql) and f (x) =0

outside of the domain $2. For a number s > 0 consider the function u (x) :

v = [we—gn @ = XS 8D p oy ge 217

4 |x —§
.Ql Q1

Then,
ue C*T*(R?), lim u(x) =0, (2.218)

|x|—o00
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[Ulyrq < C1fly (2.219)

Au—s*u=—f inR3, (2.220)
where the constant C > 0 is independent on the function f.

Proof. In this proof, C > 0 denotes different constants independent on the function
f. Since the function w; (x — &, s) does not have a singularity for x € 982, € £2,
then by (2.217), u € C?(9£2,) and

lull 2oy < C 1f 1o - (2.221)

First, consider the case when the function f € C' (£2) . We have

Awi (x —§) = 5wy (x —§) = =8 (x —§).

Hence, using the same method as the one used in the standard PDE course for the
Poisson equation,

AV:—g(x),gECI(R?’), g (x) =0 for x € R\ £2,

lim v(x) =0,
|x|—>o00

one can prove that the function u € C?(£2;) and satisfies (2.220). Hence, by the
Schauder theorem and (2.221),u € C>** (£2) and

lullc2ta(a,) < C lullcrtapny < C 1 fla. ¥ f € C (1),

f(x) = 0forx € R°\ £2. (2.222)

Consider now a function f such that f € C%(£;) and f (x) = 0 for

x € 2\ 2. Consider a sequence of functions { f, (x)}°2, C C! (51) such that
Jfn (x) = 0for x € £2,\ £2 and:

lim | f, — f], =0.
n—>oo

Let {u, (x)}.—, be the corresponding sequence of functions defined via (2.217),
where f is replaced with f,. Then u, € C*** (51) and estimate (2.222) is valid
for each n with the replacement of the vector (u, f) with the vector (u,, f,) is valid.
Hence, {u, (x)}°° | is the Cauchy sequence in the space C>+* (ﬁ 1) . Hence, this is
a convergent sequence. On the other hand, (2.217) implies that

i o =l ) = O
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Hence, it is the function u which is the limit of the sequence {u, (x)},=, in the space
Ccte (51) . Hence, (2.218) and (2.220) are valid. Also, it follows from the above

that in (2.222), “V f € C'(£21)” can be replaced with “V f € C*(£2,)”. The
latter implies (2.219). O

Theorem 2.9.1.2 provides estimates of tails in Holder norms.

Theorem 2.9.1.2. Let 2, 2,82, C R3 be bounded domain with the boundaries
02,082, € C3. Let condition (2.215) be satisfied and also let 2’ C £2,02' N
02 = @. Let the function c* (x) satisfying conditions (2.206) and (2.209) be
the exact solution of Inverse Problem 2.1, where constants d,d > 1 are given.
Let the parameter’s > 1 and V* (x) be the exact tail function as in (2.193). For
each function ,c € P (d ,E) construct the function ¢ (x) by the formula (2.210),
where the function x (x) is defined in (2.207). Let w~(x,5) be the solution of the
problems (2.187)—(2.190) with ¢ (x) := ¢ (x) (Theorem 2.7.2). Let V (x) be the
corresponding tail function as defined in (2.194), where ¢ (x) := ¢ (x). Then, there
exists a constant B = B (.Q, 21,5, d,g, X,Xo) > 2 depending only on listed

parameters such that for all functions ¢ € P (d,d™) the following inequalities
hold:

[VV*| 14 < B, (2.223)
IVVeli4o < B, (2.224)
|VVe = VV*| 11 < Ble —c*,. (2.225)

Proof. In this proof, B = B ([2, 21,5, d ,E, xs xo) > 2 denotes different constants

depending on listed parameters. It follows from (2.197), (2.204), and (2.212) that in
order to prove (2.223), (2.224), and (2.225), it is sufficient to prove that

wal,, < B. (2.226)

[wa—w*|,. < Blc—c*|,. (2.227)

IW*|2+a ,

For x € 02y, denote fc\(x) = w~(x,5) lac2, By (2.187) and (2.188), we have the
following Dirichlet boundary value problem in the domain £2;:

Aw~—5C (x)w~=0,x € 2y, (2.228)
W~ (x,5) oz, = F(x). (2.229)
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By Lemma 2.9.1.3,
3
£eC?@2). | Alepe, = B (2.230)
In addition, by (2.189),
w~(x,5) = wi (x,5) + W~(x,5) , where w~ e C*** (RY).

Since xo ¢ £2, then it follows from (2.190) that w; (x,5) € C® (ﬁl) . Hence,
w~(x,5) € C*7(£2,) . Hence, Schauder theorem, (2.228)—(2.230) imply that

|W?|2+a = HW?”(:HH(EI) =B ”/%Hclﬂ(agl) =B ”/%HC%BQO = B,

which establishes (2.226) for the function w'c\(x,E). The proof for case of the
function w* (x,) is almost identical.
We now prove (2.227). Denote

W(x) =w* (x,5) —wa(x,5), T(x) =C(x) —c* (x).

By Lemma 2.9.1.1,
[l < [Xlole ="y (2.231)

Rewriting (2.228) for the function w* and subtracting the resulting equation from
(2.228), we obtain

AW — 57¢* (X)W = —5°C (x) w~(x.5) in 2, (2.232)
W lag,= f* (%) = £ (x), (2.233)

where f* (x) = w* |y, . Using Lemma 2.9.1.3 and (2.231), we obtain
17 = Elesog, < Ble—c*la- (2.234)

Next, since ¢ (x) = 0 outside of the domain £2, then, using the second inequality
(2.226) as well as (2.231), we obtain

|57 (x) w~(x. 5) lceqmy = [5°C () wo (0. 5) | ) < Ble =¥l (2.235)
Hence, applying the Schauder theorem to the Dirichlet boundary value prob-
lem (2.232), (2.233) and using (2.234) and (2.235), we obtain

oo < [Fleateqmy < Ble =l 0
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2.9.2 The Second Approximate Mathematical Model

Assuming that the asymptotic behavior (2.13) holds, assumption below basically
means that we take into account only the first term of the asymptotic behavior of
each of functions V* (x,5),¢* (x,5) at 5§ — oo and ignore the rest:

V*(x,5) = p*E(x) + 0 (i) ~ r (x)7 5 — 00,

¢ am =0 0(i) A

EZ

Such assumptions are quite common in science. As an example, we refer to the
geometrical optics assumption. Still, our technique is not just geometrical optics
since we take into account not only the information at s := § but also the lower
values of s € [s,]. In addition, we update tails in the “corrector” procedure, via
solving the problems (2.187)—(2.190), which is not the geometrical optics. Just as
above, we assume that 2 C R3 is a convex bounded domain with the boundary
082 € C? and the source x( ¢ £2.
Recall that (2.105) for the exact function ¢* (x, s) is

3 3 2

Ag* —ZSZVq*/Vq* (x,7)dt + 2s /Vq* (x,7)dr

s s

+25°Vg*VV* —4sVV* / Vg* (x,7)dt + 25 (VV"‘)2 =0,

x € 82,5 €ls,5]. (2.236)
In addition, by (2.106) and (2.108),
q* (x,8) =vy*(x,s), YV(x,5) € 02 x [s,5], (2.237)

q* (x,5) € C*T* (2) x C'[s5.5]. (2.238)

The second approximate mathematical model for the algorithm of Sect.2.6.1
consists of the following:

Assumption. There exists a function p* (x) € C>T¢ (ﬁ) such that the exact tail
function V* (x) has the form:

V* (x.s) = p*(x)

, Vs >75. (2.239)
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And also (see (2.193)),
p*(x)  Inw*(x,5)

= (2.240)
N S
Since ¢* (x,s) = 9,V * (x,s) fors > 5, we derive from (2.239) that
*
q* (x,5) = —”_ﬁ’“). (2.241)
s

Set in (2.236), s = . Then, using (2.237), (2.239), and (2.241), we obtain the
following approximate Dirichlet boundary value problem for the function p* (x):

Ap* =0in 2, p* € C*** (), (2.242)

Plag = =5y * (x.5). (2.243)

The approximate (2.242) is valid only within the framework of the above assump-
tion. Although (2.242) is linear, formulas (2.107) and (2.117) of the reconstruction
of the target coefficient ¢* are nonlinear.

Recall that by (2.21),

q(x,s) =v(x,5), V(x,5) €082 x [s,5].
Assume that
¥ (x,5) € C*T (). (2.244)
Consider the solution p (x) of the following boundary value problem:

Ap=0inf2, pe C**(Q), (2.245)

Plag = —5°Y (x,5). (2.246)
By the Schauder theorem, there exists unique solution p of the problem (2.245) and
(2.246). Furthermore, it follows from (2.242)—(2.246) that

1P = P laga = K52 ¥ (2,5) = ¥ (x,5) [l c2teag) - (2.247)

where K = K (§2) > 1 is the constant defined in formula (2.125) of Sect.2.8.2. As
the first guess for the tail function in the formula (2.43) of Sect. 2.6, we take

p(X)_

N

V1,1 (X) = (2248)
Remarks 2.9.2. 1. Let p(x) be the solution of the problem (2.245), (2.246).
Substituting (2.248) in (2.41), (2.42) at n = i = 1 and setting temporary
¢11 = 0, one obtains a good approximation for the exact coefficient ¢* (x).
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Furthermore, Theorem 2.9.4 guarantees that all functions ¢, are good ap-
proximations for ¢*, as long as the total number of iterations is not too large.
Since we find the function p (x) only using the boundary data, then this means
that our approximate mathematical model is indeed a good one. Hence, we
can stop iterations on any function ¢, for those indices (n,k), which are
“allowed” by Theorem 2.9.4. Next, one can use the adaptivity procedure to
refine the solution. However, if not using the adaptivity for refinement, then,
quite naturally, one needs to find an optimal iteration number to stop. These
considerations correspond well with Definitions 1.1.2.1, 1.1.2.2, and they are
confirmed numerically in Chaps. 3—6.

2. Because of the approximate nature of our mathematical model, equation (2.242)
does not match the asymptotic behavior (2.13). Indeed, actually one should have
|V p* (x)|2 = c¢(x). The same can be stated about the Third Approximate
Mathematical Model of Chap. 6. Nevertheless, it has been consistently demon-
strated that our numerical method works well for both computationally simulated
and experimental data, see Chaps. 3—6. Based on our numerical experience, we
believe that this is because of two factors: (1) The truncation of the asymptotic
series with respect to 1/5 at 5 — oo is reasonable, and (2) The procedure of
updating tails via solutions of forward problems.

We now establish uniqueness within the framework of our approximate mathe-

matical model.

Lemma 2.9.2. Let assumption of this section holds. Then for (x,s) € £2 x [s,5],
there exists at most one function q* (x, s) satisfying conditions (2.236)—(2.238). In
addition, let (2.107) be true, i.e.,

* (x) = [Av* e |Vv*|2] (x,s),(x,s) € 2 x[5,5], (2.249)

where

v (x,s) = —/q* (x,7)dt + V* (x,5), (2.250)

with the tail function V* (x, s) satisfying conditions (2.239) and (2.240). Then there
exists at most one function c¢* (x) .

Proof. Tt follows from (2.242) and (2.243) that there exists unique function p* (x)
satisfying these conditions. Hence, (2.239) implies uniqueness of the function
V*(x,5). Below in this proof, V* := V*(x,5). Assume that there exist two
functions ¢} and ¢5. Letq = ¢{ — ¢5. Use the formulas

aiby — arbr, =7aby + a{l?, Yai,by,ax,by € R,

H:al—az, b:bl—bz.
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Hence, (2.236) and (2.237) lead to

A — 257 /tik(x,z')d‘c V§ + 2s*°VV*Vg
s

= —2s /V(qi" +¢3) (x,7)dr /Vi(x,r)dr—|—4sVV*/Vé'(x,r)dr,

N

(x.5) € 2 x[s5.5]. G(x.5) |so=0. (2.251)

Let

s

M; = 25> max / [IVay| + Vg3 |] (x.t)dr ¢ .
(x,s)eﬂx[g,f] 4

M, = max (252, 45) ||V*||C1(§) ,
M; = max (M, M) ,

M= mex 17 G )l -

SE|s,S

For each fixed value of the parameter s € [s, 5], we consider (2.251) as the Dirichlet
boundary value problem for the linear elliptic equation with the same right-hand side
as one in (2.251). Then, Schauder theorem and implies that there exists a constant
K| = K (§2, M3) > 0 such that

max 7.5y = M < K16 =9). Vs € 15,3,

SE|s.s

Substituting this in (2.251), we obtain

_ o [ ,(5—5)
ma?f] 17 Cx.9)lle2@y =M < Ki | 5—1)dr = K] )
SE|Ss,S
Substituting this again in (2.251), we obtain
5
;5 —9)

3!

SE|s, 3

_ 1 ~
ma 17 (5.5l = M < K] [E-vtar=xi

s
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Continuing this process, we obtain

~ 5—9)"
max [[7 (x.5)c2(g) = M = Ki :

SE [g,s] n:

Setting here, n — oo leads to M = 0. Hence, (2.249) and (2.250) imply that the
function ¢* (x) is also unique. O

2.9.3 Preliminaries

The goal of this and next sections is to prove the theorem about the approximate
global convergence property within the framework of the second approximate
mathematical model of Sect. 2.9.2. We assume that in (2.39) and (2.256),

1
27 (Vg,)? = 0. (2.252)
Iy
Therefore, we set
I
277 (Vaup)® = 0. (2.253)
0

The Assumption (2.252) can be justified by (2.40) via choosing the parameter
A>>1, which we do in our computations. We point out that an analog of
Theorem 2.9.4 can be proven similarly even without (2.252). We are not doing so
here only because we want to simplify the presentation. Assumptions (2.252) and
(2.253) do not mean a linearization of the original problem, since the nonlinearity
surfaces in terms Vq; Vg, ; in (2.49). Also, tails V, ; in (2.49) depend nonlinearly
on functions g, j € [0,n —1].
Assume that in (2.34), functions ¥, € C>** (3£2). Then by (2.119),

<C*(h . 2.254
o S €T+ 0) (2.254)

7, 077 @)

Recall that by (2.114)—(2.118) we have for x € £2

n—1

Iy
Agi—Ava B Vg | Vai + A1,Vq; vV =227 (Vgr)?
Iy

n

Jj=0

n—1 2 n—1
—Az,nh2<ZVq,-*) + 240, VV* Y VqT | = Asn [VVF + F, (x.h,2),
i=1 j=0

(2.255)



156 2 Approximately Globally Convergent Numerical Method

F,(x,h,X) € C*(2), ir}la)§|Fn (x,h,1)|, < C*h, (2.256)
n—l1
Vi) =—hgi (x)—hY qf(x)+V*(x). x€ 2. ne[l.N]. (2257
j=0
et (x) = [Av;; + 52 |Vv;;|2] (x) + Fo (x), n€[1,N], (2.258)
|Fa|, < C*h. (2.259)

By (2.254), Eq. (2.49) and the boundary condition (2.50) become:

n—1
Agnik — A | B Z Va; | Vank — 2qnik + AinVViiVqu i
=0
2
n—1 n—1
:_AZnhZ quj + 242, V'V hZqu — Az (VVn,k)zv x €82,
=0 =0
(2.260)
Gnik (X) =V, (x) . x €082, (2.261)

where x € (0,1) is a small parameter of ones choice. Recall that by (2.41) and
(242), 90 (x) = g5 (x) =0,

n—I1

Vik (1) = =hqui () =h)_q; (0) + Vi (x) . x € 2. n € [ILLN].  (2262)
j=0

enp (x) = [Avn,k + 52 (vvn,k)z] (x), x €2, nell,N]. (2.263)

We now reformulate the estimate of the Schauder theorem of Sect.2.8.2 since
we impose now upper estimates on the coefficients of the elliptic equation, which
are different from ones imposed in Sect.2.8.2. Just as in Sect. 2.8.2, consider the
Dirichlet boundary value problem

3
Au+ ij(x)uxj —bo(X)u= f(x),x € 2,ulye=g(x) e C>T*3RQ).
j=1
(2.264)

Assume that the following conditions are satisfied,

bj.bo, f € C*(2). by(x) >0, max (|6,1],) = 0. (2.265)
j€Elon
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where Q > 0 is a certain constant. Then by the Schauder theorem (see Chap. 3,
Sect. 1 in [118]), there exists unique solution u € C?*%(£2) of the boundary
value problem (2.264). Furthermore, there exists a constant K=K (£2,0) > 2,
depending only on the domain 2 and the constant Q such that the following
estimate holds:

lulyro < K[lIgllc2re@a + 1/ 1a] - (2.266)

2.9.4 The Second Approximate Global Convergence Theorem

Let N be the total number of functions ¢, computed in the algorithm of Sect. 2.6.1.
In principle, N e (1, N]. However, to avoid new notations, we denote for brevity
N := N. Keeping this in mind, we assume in Theorem 2.9.4 that the total number
N of functions g, of the algorithm of 2.6.1 is independent on the grid step size 4 in
the s-direction. In addition, the number m,, of functions {qn,k}f;l is bounded from

the above:
max m, = m. (2.267)

nell,N]

Condition (2.280) of Theorem 2.9.4 provides a linkage between the level of the

error 77 in the data and the total “allowable” number of iterations Nm, i.e., the
allowable number of functions {cnqk}zi\f’”)l): (1.1) - This is going along well with the
theory of ill-posed problems. Indeed, it is well known that the maximal number of
iterations and the error in the data are often connected with each other. So that the
maximal number of iterations is a regularization parameter in this case, see pp. 156
and 157 of [65] as well as Sect. 1.6. Hence, Theorem 2.9.4 provides another example

of such a connection, in addition to those of [65] and Sect. 1.6.

Theorem 2.9.4. Consider the algorithm of Sect.2.6.1. As in Theorem 2.9.1.2, let
2,82, C R3 be two convex bounded domain with the boundaries 052,982, € C3
and let condition (2.215) hold. Let the maximal pseudo frequency s = const. > 1:

e Let assumptions of Sect. 2.9.2 be valid, the number N of functions {q, },iv=1 be
independent on the grid step size h of the partition of the s interval, and (2.267)
holds.

 In addition, assume that all functions c, i (x) in (2.263) are such that

ek (x) >1,x € £2. (2.268)

o Letin (2.34) and (2.35) functions ¥, € C>T% (32).

e Let the function c* (x) satisfying conditions (2.206) and (2.209) be the exact
solution of Inverse Problem 2.1, where constants d ,E > 1 are given, where
2’ C 2 is a subdomain of the domain §2, 02’ N 02 = &, and let x (x) be the
cut-off function defined in (2.207).
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e Assume that conditions (2.120), (2.244), (2.252)—(2.254), (2.259), and (2.267)
hold, where the constant C* > 1 is defined in (2.112).
o Let the first tail function Vi 1 (x) be constructed via (2.245), (2.246), and (2.248).
e Let h be the grid step size in the layer-stripping procedure with respect to s, o
be level of the error in the data, and x € (0, 1) be a small parameter in (2.260).
Denote
n=2Mh+o+x). (2.269)

e Choose the parameter A of the CWF (2.38) so large that

< *\2
/\ZS(SC).

n

(2.270)

e JetB=B8B (.Q, 21,5, d,g, X,Xo) > 2 be the constant of Theorem 2.9.1.2

Then there exists a constant B = B (Q, £21,5, d,g, C*, X,Xo) > B > 2 such

thatif K = K (EzBl) > 2 is the constant in (2.266) and the parameter 1 is so
small that

1
(S] 0, s = =, 2.271
n € (0.19) . 1o KN ( )
then functions
ek €CY(2).Co € C*(RY), (n,k) €[l N]x[l,m], (2.272)
Cnk (X)), Cox (x) €[l,d +1] in 2, (n,k) €[l,N]x[1,m]. (2.273)

In particular, all functions ¢, € P (d,g) , where the set of functions P (d, 3) is

defined in (2.208). In addition, the following estimates hold for (n,k) € [1, N] x
[1,m]:

[VViklite s |[AVakly = B, (2.274)

[VVik = VV*| 4, < BIETIHODmidL (2.275)
|AV,yj — AV*|, < BTl (2.276)
gnk = @ lypy < KBIETOTDM ) (2.277)

|gnklrrq <2C*, nell,N], (2.278)

Icn,k . C*|a < Bl3[k+(n—1)m] . (2.279)
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Denote
In (K) 0,1) (2.280)
w = c (0,1). .
3NmInB; +1n(KN)
Then (2.279) becomes
lenk — ™|, = n” =, (2.281)

where the number ¢ € (0,1). Hence, the algorithm of Sect.2.6.1 possesses the
approximate globally convergent property of the level ¢ in the framework of the
second approximate mathematical model of Sect. 2.9.2.

Remarks 2.9.4. 1. Since w € (0,1), then (2.281) is a Holder-like estimate. We
impose condition (2.268) to ensure that the right inequality (2.192) holds for all
functions ¢, ;. Indeed, we use the latter inequality quite extensively in Sect. 2.9.4.
We have observed computationally that (2.268) holds; see Sect. 3.1.2.

2. The fact that the constant B; depends not only on the domain £2 but also on
the domain £2; as well does not affect the approximate global convergence
property. It follows from (2.281) and (2.280) that as long as total iteration
number Nm is not too large, conditions of the approximate global convergence
of Definition 1.1.2.1 are satisfied. Hence, one can take any function ¢, ; (x) as
Cglob (x) . The question of an optimal choice of the pair (n, k) should be decided
in numerical experiments.

3. Theorem 2.9.4 implies that P (d , E) is our correctness set for the second approx-

imate mathematical model, see Definitions 1.4.2 and 1.4.2 for the correctness set.
4. Tt is hard to establish a priori the upper limit for the number N in practical
computations. This is the reason why we have consistently observed in our
numerical tests that certain numbers indicating convergence grow steeply for
n > N with a rglmber N < N, while they stabilize a few iterations before
N,ie,atn = N < N. This phenomenon means that the process should be

~

stopped at n = N. The third Remark 1.1.2.1 is relevant here.

Proof of Theorem 2.9.4. The estimate (2.281) follows from (2.271) and (2.280).
Thus, we focus below on the proof of estimates (2.272)—(2.279). Denote

Vik = Vask = V™, Gk = qui — 4
7n,k = Vnk — V:’ka Pcvn,k =Cnk — C*a {/‘f’n = 1/fn - 1//;:
Estimates (2.274)—(2.276) for functions V) i, Vu follow from (2.111), (2.239)—
(2.241) and (2.244)—(2.247).
Assume for a moment that the estimate (2.279) is valid. Then the function ¢, x €
P (d,d*).Indeed, by (2.209), (2.271), and (2.279),

[enily = lenie — ™+, <lens —c*|, + Ic¥],

< BlkHe=Dml, LT < d 41,
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Similarly, ¢, x < d + 1. These two estimates combined with (2.208) and (2.268)
imply that ¢, € P (d ,3). Next, since the function ¢, € P (d ,E), then
Theorem 2.9.1.2 implies (2.274). Also, since the function ¢, € [1,d + 1], then
the function ¢, x € [1,d + 1] as well; see Sect. 2.6. Thus, if (2.279) is valid, then
(2.273) is valid as well.

We now prove (2.275)—(2.279) for (n,k) = (1,1). Set in (2.255) and (2.260)
(n,k) = (1,1). Subtracting (2.255) from (2.260), we obtain

Aqii + A VVIAVGL — %g = _Al,lvvl,lvqr

— A2, VV 11 (VVii + VV*) + xqf — F, (2.282)
Tu1(x) = Y1 (x),x € 382, (2.283)

_ 21
F,=F,— = (vqr)’, ne[l,N]. (2.284)

0

Recall that by (2.111) and (2.112),

* <C* C*>1. 2.285
max 19 |rge = > ( )

Hence, (2.142), (2.256), (2.269), (2.270), (2.284), and (2.285) imply that
‘fn <c*p. (2.286)

o

Estimate now the right-hand side of (2.282). Using (2.121), (2.223), (2.224),
(2.269), (2.286) as well as (2.274) and (2.275) at (n, k) = (1, 1), we obtain

ALYV VG + A VV (VVii+ VV*) + g — ﬁl)
o
C*
< 85°BC*n+ 165°B*n+2C*n = 85°B (23 +C*+ F) .
s
We choose the constant By = B, ([2, Ql,E,d,E, Cc*, X,Xo) > B > 2 such that

. C* c*
C*+2B+ 5 =281+ ) =3B (2.287)
S

By (2.287),

c* < 2L, (2.288)
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Hence, it follows from (2.287) that

AMVVMVqT + AMVV“ (VVI,I + VV*) + }f(]ik — /F\l < 24523127]

(2.289)
Next, consider coefficients in the left-hand side of (2.282). We have

|A11VVi| < 85°By, x € (0,1).

Hence, conditions (2.265) are satisfied. Hence, it follows from (2.266) and (2.289)
that the solution of the Dirichlet boundary value problem (2.282), (2.283) can be
estimated as

[F11lp0q < 245°KBin+ K ”{/71 “c2+a(39) :

Using (2.254) and (2.269), we obtain from this inequality and (2.288)

_ — Cc* —_ 1 _
[G11]1e < KB? (2452 + 232) n<KB} (2452 + g) n < 255°K Bin.
1

In addition to (2.287), we can assume without any loss of generality that
405° < By. (2.290)

Hence,
[@1.1)r4q < KBin. (2.291)

Estimate (2.291) establishes (2.277) for the function Gy 1. Next, using (2.271),
(2.285), and (2.291), we obtain

1911 ]24e < [@11154e + 1471y < KBin+ C* <2C*. (2.292)

This establishes (2.278) for |g1.1],.,-
Now, we estimate the norm [¢} 1|, Subtracting (2.258) from (2.263) for (n, k) =
(1, 1), we obtain

Ci= AV 4 s,V (Vv + Vvf) = Fo. (2.293)

Since by (2.257) and (2.262), the function v;; € C*** @ , then it follows from
(2.293) that the function¢c;; € C* (ﬁ) . Since ¢* € C* (ﬁ) as well, then also
cr1 € C* (ﬁ) , which establishes (2.272) for (n,k) = (1,1). Hence, taking into
account the estimate (2.259) for the function F;, we obtain from (2.293)

*

—~ _ C
[Cuily < max (|AVi ], [ViLile) [1 452 (IVvial, + VVT,)] + - (2.294)
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By (2.257) and (2.262),
Vi =g+ Vi

Hence, it follows from (2.269), (2.271), (2.287), (2.291) as well as from (2.275) and
(2.276) at (n, k) = (1, 1) that

— 1—
|AV AL, . VL, < EKBf’nZ + Bin < 2B (2.295)

Next, using (2.223), (2.257), (2.262), (2.269) and (2.274) at (n,k) = (1,1) and
(2.292), we obtain

1+5 (|Vviil, +1Vvil,) <1+5°(2C*n+2B,) < 45°B,. (2.296)
Hence, comparing this with (2.288), (2.290), (2.294), and (2.295), we obtain
[C1il, < 95°Bin < B. (2.297)

This establishes (2.279) for (n,k) = (1,1). Hence, using Theorem 2.9.1.2 and
(2.297), we obtain estimates (2.274)—(2.276) for the tail function at (n, k) = (1,2) :

|VV1,2|1+04 , |AV1,2|a < By,
|VVio = VV*| 1 < Bin. |AVio— AV*|, < Bn.

Recall that by the algorithm of Sect. 2.6.1,
qn ‘= 4nm,sCn ‘= Cnmy s
_ 1 _
Vait1a (x,5) = = Inwy g, (X,5).
s

Also, recall that by (2.267) m, € [1,m]. Having functions ¢, and V, 4+ (x,5),
we calculate next the function g, 41,1. Also, recall that g0 = g; = 0. Thus, for
the convenience of the mathematical induction, we temporary set g, o := ¢,—; for
n > landalso ¢y := ¢*, Voo := V1.1. Hence, (2.272)—(2.279) are valid for (n, k) =
(0,0) . In addition, since we have established (2.272)—(2.279) for (n,k) = (1, 1),
we can assume now that we have proved (2.272)—(2.279) for (n’, k") € [0,n] x
[0,k — 1], where k > 2. We now want to prove (2.272)—(2.279) for (n', k') =
(n,k).
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Subtracting (2.255) from (2.260), we obtain

n—l1
NG = Ara | hY Vi () | Vauk + AruV Vi - Vink — Xqni
j=0
n—1 n—1
= | 41aVa; = A2uh " (Va; + Va7 ) + 240, VWi | [ 1Y VT
Jj=0 j=0
n—1 i
+ | 24050 Vgt — A1 Vg) — Ay (VVak + VV*) | VVik + xq) — Fo,
j=0
(2.298)
Tni loo= Va(x). (2.299)

The function ﬁn is defined in (2.284), and the estimate (2.286) is valid. First, we
estimate the difference of tails V, x. Since estimates (2.272)—(2.279) are valid for
(n’,k") € [0,n] x [0,k — 1], then by Theorem 2.9.1.2,

[VViklita  |AVakly < B,

- k=14 (—1 k=14 (n—
‘VVn,k‘H_a < Brgn,k—l|a < BlBl[ 14+(n )m]n _ Bl[ +(n—1Dm]+1 o,

‘Avn,k‘a < B3[k+(n—l)m]+l .

The last three estimates establish (2.274)-(2.276) for (n’, k') = (n, k).
We now need to estimate the right-hand side of (2.298) using (2.121) as well as
above established estimates. We have

n—1
A1aVgy = A2 Y (Va; + VT +240, VWi

Jj=0 o

<85 (C*+3C*Nh+2B)) <85 (C*+1+2B)).

Since B > 2, then this inequality and (2.288) imply that

n—1
A1aVaE = Asah Y (Vq et Vq;f) £24,,VV,i| <25B..  (2.300)

Jj=0 o
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Next, since estimates (2.277) are valid for functions'q; = ¢q; — q}*, jeo,n—1],
then using (2.271), we obtain

-
hY V| < KBVINY < g
o

Hence, using (2.300), we obtain the following estimate for the first term in the right-
hand side of (2.298):

n—1 n—1
A1aVay = Aonh Y (Vay +Va7) + 242, VVas| |BY VG| = 145 By,
j=0 ol J=0
(2.301)
Next, using (2.121), (2.223), (2.271), and (2.274), we obtain
n—1
242,10 Y VqF — A1 Vgy — Ay (VWi + VV?)
j=0

o

1
< 45°C*Nn + 85°C* +165°B, < Z?c* + 45° B, + 165*B; < 215 B.

Hence,
n—l1
245 ,h Z Va; = A1aVay — Apn (VVak + VV)| [VVoi|, + ‘xq,,* —F, .
j=0

— n—1)m 3 = — n—1)m
< 215231313[k 14+(n—1Dm]+1 4 EC*"’ < 21s231313[k 1+(n—1) ]+17’I+ Bin.
Combining this with (2.301), we obtain
Irhs|, < 2152 B, BT 4 1582y

15
M 5, )"

1t ti—Dm 1
< 215231313[k 14+ (n—1m]+1 (1 +§)7I

_ 32§2BIBIS[k—l+(n—l)m]+l o,

where rhs is the right-hand side of (2.298). Thus,

rhs|, < 325° B, BT bmitl ) (2.302)
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We now estimate coefficients in the left-hand side of (2.298) using (2.271),
(2.288), as well as (2.278) for functions g; with j € [0,n — 1]. The first resulting
estimate is

n—1 —2
_ 65 3
A | hY Vg (x) || <128°C*Nn < =T < Zsz' (2.303)
j=0 o !
Next, by (2.121) and (2.274),
|41,V Vkl, <85 Bi. (2.304)

Hence, it follows from (2.303) and (2.304) that condition (2.265) is satisfied for
(2.298). Hence, (2.254), (2.266), (2.288), (2.299), and (2.302) imply that

—_ 1 (n— c*
ﬁn,k|2+a <K |:32§ZBlBl3[k 1+m—1)m]+1 + 7i| n
< f . 4052333[k—1+(n—1)m]+1 ).

Since by (2.290), 4052 < B, then the last estimate implies that

BS[k+(n—l)m] X

Ian,klz.g_a =< F n,

which proves (2.277). The inequality (2.278) can be derived from (2.277) similarly
with the derivation of (2.292).
Estimate now the norm [, x|, - Using (2.288), we obtain similarly with (2.294)

B
[Crkly < max (|AVkly - [VVnkle) [1 452 (IVvnkly + IVVEL)] + Tln' (2.305)

We have
n—1
Yk (X) = —Hgui (x) =0 Y _Gj () + Vi (x). x € 2.
j=0

Hence, by (2.271), (2.275), and (2.277)

| AV |

ol

1— _ _ _
Wn,kla < EKNBf[k_Hn l)m]nz_‘r_Bi’)[k 1+(n 1)m]+1n

< 2313[1{—1+(n—1)m]+1 . (2.306)
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Next, using expressions (2.257) and (2.262) for functions v, x and v;;, we obtain
3
145 (|Vvakl, +1VVE],) <1+ E§2c*Nr; +25°B; < 35°B.
Combining this with (2.305) and (2.306) and taking into account (2.290), we obtain

et (n— B et (—
rgn,kla < 4§2B1313[k 1+(n—1m]+1 o+ Tlrl < 5§2B1313[k 1+(n—1)m]+1 -

< BlzBlZ’)[k—l+(n—l)m]+l . Bl?)[k-l—(n—l)m] n

Thus, [¢, k|, < B3F+=Dmly This establishes (2.279). O

2.10 Summary

One can see from Theorem 2.9.4 that the accuracy of the reconstruction strongly
depends from the accuracy of the reconstruction of the tail functions. On the
other hand, it follows from the second approximate mathematical model that the
first tail function V;; (x) is proportional to the solution of the Dirichlet boundary
value problem for the Laplace equation; see (2.245) and (2.246) in Sect.2.9.2.
Therefore, it follows from estimate (2.247) that as long as the noise in the boundary
data is small, the function V7 (x) is reconstructed accurately. On the other hand,
the accuracy of the reconstruction of other tail functions V,, x (x) depends on the
accuracy of the reconstruction of the function V;; (x). This explains why the
approximately globally convergent algorithm of Sect. 2.9.4 works well numerically;
see Chaps. 3—5 for computational studies. The “small noise” assumption is a natural
one which is used in almost all numerical methods.

Thus, all what our approximately globally convergent numerical method requires
is that the noise in the boundary data should be small. Under this assumption,
we have a rigorous guarantee, within the framework of the second approximate
mathematical model, that our resulting solution will be located in a small neighbor-
hood of the exact solution. The size of this neighborhood is completely defined
by the “noise” parameter 7 in (2.269), as it is conventionally done in standard
convergence theorems. It is important that no a priori knowledge of any point in a
small neighborhood of the exact solution is required. Therefore, the approximately
globally convergent numerical method of this chapter indeed addresses the first
central question of this book (Sect. 1.1).

Now, about the constants in convergence estimates of Theorems 2.8.2 and 2.9.4.
They are probably large. However, this is not a discouraging factor. Indeed, it
is well known that constants in almost all convergence estimates of numerical
analysis are largely over-estimated for both well-posed and ill-posed problems.
Consider, for example, standard energy estimates for classical initial boundary value
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problems for hyperbolic and parabolic PDEs with variable coefficients and non-
self-adjoint elliptic operators [119, 120]. The final step of these estimates usually
consists in the application of the Gronwall’s theorem. It is well known that this
theorem implies that constants in those estimates are bounded from the above by
Cy :=exp(CT), where T is the final time and C > 0 is a constant depending on
coefficients of the corresponding PDE as well as on the spatial domain. Thus, the
number C| is expected to be sufficiently large. On the other hand, it is well known
that convergence estimates for both finite difference and FEMs are based on those
energy estimates.



Chapter 3
Numerical Implementation of the
Approximately Globally Convergent Method

In this chapter, we describe our computational implementation of the approxi-
mately globally convergent numerical method of Chap. 2. We use the algorithm of
Sect.2.6.1. Theorems 2.8.2 and 2.9.4 ensure the approximate global convergence of
this algorithm within either of above two approximate mathematical models. Thus,
we verify in this chapter the second condition of the informal Definition 1.1.2.2
of the approximate global convergence property. Computations of Chaps. 3-5 and
Sect. 6.8.5 for simulation of the forward problem in 2D and 3D were performed
using the software package WavES, see www.waves24.com.

In each 2D numerical test of this chapter, we choose the first approximation for
the tail function V; ;(x,§) = 0. Thus, no a priori information about the solution of
our CIP is included in this choice. In 3D tests of Sect. 3.2 as well as in Chaps. 4-6
we use another alternative of the choice of the initial tail function. More precisely,
we take the same function V; 1(x, 5) as one for the homogeneous domain with the
coefficient ¢ = 1. This choice is a natural one since it reflects ones knowledge of the
value of the unknown coefficient ¢ (x) outside of the domain of interest; see (2.3).

The choice V;1(x,5) = 0 corresponds well with the first approximate mathe-
matical model of Sect. 2.8.4, since it requires all tails to be bounded from the above
by a small number § > 0. Suppose now that the nonlinear term with (Vq,’j;l)z
in the right-hand side of (2.45) is ignored, as it is done in the second approximate
mathematical model of Sect.2.9.2. Indeed, our numerical experience shows that
the nonlinear term (Vq,]fjl)z does not provide an essential impact to computational
results. Then (2.260) and (2.261) imply that the choice V7 ;(x,5) = 0 means that
in order to find the function ¢, ;, one should solve the following Dirichlet boundary
value problem:

Aqi1—xq11 =0, x € £2,
a1 lag= v, (x).
This equation differs from the Laplace equation (2.245) for the function p only

by the term —xgq; 1, where x € (0, 1) is sufficiently small. Also, the boundary

L. Beilina and M.\V. Klibanov, Approximate Global Convergence and Adaptivity 169
for Coefficient Inverse Problems, DOI 10.1007/978-1-4419-7805-9_3,
© Springer Science+Business Media, LLC 2012



170 3 Numerical Implementation of the Approximately Globally Convergent Method

condition (2.246) is p |ae= —5°¥, (x) . This means that the choice of the initial tail
function V} ;(x, §) = 0 is basically equivalent to the choice (2.248) as V} 1(x,5) =
p (x) /5 of the second approximate mathematical model.

Two key steps of the algorithm of Sect.2.6.1 are:

1. Iterative solutions of the boundary value problems (2.39), which is equivalent to
the layer-stripping procedure.

2. Updating tail functions V,,; (x) via solving the Cauchy problem (2.1) and (2.2)
on each iterative step and using formula (2.52) then.

Instead of solving the problem (2.1) and (2.2), one can solve the problem (2.11)
and (2.12) at s = 5. Note that while functions ¢, ; are approximated via inner
iterations “inside” the domain 2, tail functions V), ; (x) are updated via outer
iterations via solving either the problem (2.1) and (2.2) or the problem (2.11) and
(2.12) in the entire space. Thus, the information that (2.1) is valid in the entire
space rather than in the domain £2 only is “embedded” in functions V,; (x). In
other words, the problem (2.1) and (2.2) plays the role of the second equation for
functions ¢, V.

Following a statement in the beginning of Chap.1 in numerical studies of
both this and follow-up chapters, we focus on imaging of small sharp inclusions
embedded in an otherwise slowly changing background medium. However, we
are not interested to image slowly changing backgrounds. This is because such
inclusions represent the main interest in many applications, for example, imaging of
explosives and medical imaging. Indeed, it is well known from tables of dielectric
constants that those constants in explosives are usually much higher than in regular
materials; see tables [151]. A discussion about applications of (2.1) to solutions
of CIPs of propagations of EM waves is presented in Sect. 2.1 as well as Chaps. 5
and 6. In this case, the coefficient of interest ¢ (x) = &,(x) is the spatially distributed
dielectric constant.

We present in this chapter several numerical experiments which demonstrate
robustness of our method and provide good quality images with up to 15%
multiplicative random noise in the data. It is worthy to mention that the numerical
method of Chap.2 does not require any a priori knowledge of the unknown
coefficient ¢ (x) inside the domain of interest £2. In particular, it does not require a
knowledge of the background medium inside £2.

3.1 Numerical Study in 2D

In this section, we test numerical method of Chap. 2 in the 2D case. Specifically, we
test the algorithm of Sect. 2.6.1.
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Grpum G = Grem U Grpu Grem = (2

Fig. 3.1 The hybrid mesh (b) is a combination of a structured mesh (a), where FDM is applied,
and a mesh (c), where we use FEM, with a thin overlapping of structured elements. The solution of
the inverse problem is computed in the square £2 and ¢(x) = 1 for x € G\ £2. Source: L. Beilina
and M.V. Klibanov, A globally convergent numerical method for a coefficient inverse problem,
SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for Industrial and Applied Mathematics.
Reprinted with permission

3.1.1 The Forward Problem

In the numerical tests of this chapter, we use only the computationally simulated
data. That is, the data are generated by computing the forward problem (3.2)
with the given function c¢(x). To solve the forward problem, we use the hybrid
FEM/FDM method described in [30]. The computational domain in all our tests
is = G = Gpgm U Gppum. In the 2D case, G = [—4,4] x [-5,5]. The domain
G is split into a finite element subdomain Gggy = §2 = [-3,3] x [-3,3] and a
surrounding subdomain Ggpy with a structured mesh; see Fig. 3.1. The space mesh
in §2 consists of triangles, and it consists of squares in Ggpy, with the mesh size
h = 0.125 in the overlapping regions. At the top and bottom boundaries of G, we
use first-order absorbing boundary conditions [66] which are exact in this particular
case. At the lateral boundaries, the zero Neumann boundary condition is used. Since
the initializing plane wave propagates downward, then the zero Neumann boundary
condition allows us to model an infinite space domain in the lateral direction.

The forward problem is computed in the rectangle G C R? (Fig.3.1). The
coefficient ¢(x) is unknown only in the square £2 C G, and

c(x) = 1in G\ £2; 3.
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see the original statement of Inverse Problem 2.1. The trace g (x, ) of the solution of
the forward problem is recorded at the boundary d£2; see (2.5). This trace generates
the Dirichlet boundary data ¥ (x,s) in (2.21) (after the Laplace transform). Next,
the coefficient c(x) is “forgotten,”and our goal is to reconstruct this coefficient for
x € §2 from the data ¥ (x,s) . The boundary of the rectangle G is G = G, U
dG, U 0G3. Here, G and 0G, are respectively top and bottom sides of the largest
rectangle of Fig. 3.1, and 0G5 is the union of left and right sides of this rectangle.
The forward problem for data generation is

c(x)uy—Au=0, inGx(0,7),
u(x,0) =0, u,(x,0) =0, in G,
3,1u|3G1 = f (), ondG; x (0,4],
a"”|acl = d,u, on 0G| x (t;,T),
3,1u|3G2 = d;u, on 0G, x (0, 7),
3,1u|3G3 =0, ondG3 x (0, T), (3.2)

where T is the final time. Since it is impossible to calculate an integral over the
infinite interval (0, 00), it is natural that when calculating the Laplace transform
(2.10) of the boundary data, we integrate for € (0, T'), thus calculating an approxi-
mation of this transform. On the other hand, since the kernel e’ of this transform
decays rapidly with ¢ — oo, then this is a good approximation. Our work with
the experimental data in Chaps. 5 and 6 confirms this, since experimental data were
measured on a finite time interval.

We use in our tests the plane wave instead of the point source; see Sect. 3.1.2. The
plane wave f in (3.3) is initialized at the top boundary G, of the computational
domain G during the time period ¢ € (0, #;], propagates downward into G, and is
absorbed at the bottom boundary G, for all times ¢ € (0, 7"). In addition, it is also
absorbed at the top boundary dG; for times ¢ € (¢, T'). Here,

(sin(st—m/2) 4+ 1) fort € (0.11], 1 = Z,
Ofort € (t,,T), T = 17.8¢.

fo=

In order to produce updates for tails, we have solved on each iterative step the
forward problem (3.2). Next, we have calculated the Laplace transform (2.10) to
obtain the function w, ; (x,5); see Sect.2.6.1.

We have found that the s-interval [s,s] = [6.7,7.45] is the optimal one for the
above domains G, §2. Thus, we have used this interval in our computations.
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3.1.2 Main Discrepancies Between the Theory
and the Numerical Implementation

It is well known that quite often, some discrepancies take place between the theory
of a numerical method and its computational implementation. In this section,
we summarize main discrepancies between the above theory and our numerical
implementation.

The first main discrepancy is that in order to generate the data for the inverse
problem, we solve the forward problem (3.2) in the finite domain G with the plane
wave instead of the Cauchy problem (2.1) and (2.2) with the point source. Indeed,
because of the singularity associated with the point source, it is easier to implement
computationally the case of the plane wave compared with the case of the point
source. In addition, if a point source is located far from the medium of interest, then
this medium “percepts” it as a plane wave. On the other hand, our theory needs the
point source in the problem (2.1) and (2.2) rather than the plane wave only for the
formulation of Lemma 2.3 about the asymptotic behavior as well as for establishing
(2.12). In turn, this lemma is derived from Theorem 4.1 of the book [144], which is
about the structure of the fundamental solution of the hyperbolic equation.

The second main discrepancy is that conditions of Lemma 2.3 are hard to
verify computationally when reconstructing the unknown coefficient via an iterative
procedure. Therefore, in all our numerical Tests 1-3 of Sect. 3.1.3, we have verified
numerically the asymptotic behavior (2.13) of this lemma. To do this, we have
considered functions g; (s) and g, (s), for s € [6.5,7.5] D [s,5] = [6.7,7.45],
where

1
gi(s) = " IVInw (X, $)[l 2 - 8&2(5) =57 IVg (x.9)l 1,0 -

Graphs of functions g; (s) and g» (s) (not presented here) have shown that these
functions are very close to constants for s € [6.5,7.5], which corresponds well
with (2.13).

We now describe the third main discrepancy. Instead of using the extension
procedure described in the beginning of Sect.2.6, we simply set ¢,; (x) = 1
in G\ £2. In addition, since by (2.3) we need a priori lower bound c(x) > 1,
we enforce that the coefficient c(x) belongs to the set of admissible coefficient
Cuam = {c(x) > 0.5} as follows: If ¢, ; (xo) < 0.5 for a certain point xo € £2,
then we set ¢, ;(xp) := 1. The reason why we use the value 1 in this setting is
that the set of functions P (d, d*) is our correctness set in the second approximate
mathematical model; see Definitions 1.4.2 and 1.4.3 for the correctness set and
the third Remark 2.9.4 for P (d,d*). The set P (d,d™) was defined in (2.208).
Therefore, this setting as well as the fact that we allow the function c(x) to attain
values between 0.5 and 1 does not mean that we assume the knowledge of the
background value of the function c(x). Still, we have observed in our numerical

tests that all resulting functions ¢, ; (x) > 1 for all x € £2, i.e., “allowed” values
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Fig. 3.2 Three different coefficients c(x), x € §2, to be imaged in our numerical tests. In all cases
¢ (x) = 1 everywhere, except of small squares. In (a), ¢ (x) = 4 and ¢ (x) = 3 in the left and
right small squares, respectively. In (b), ¢ (x) = 4 in both small squares. In (c¢), ¢ (x) = 3 in
the small square. Source: L. Beilina and M. V. Klibanov, A globally convergent numerical method
for a coefficient inverse problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for
Industrial and Applied Mathematics. Reprinted with permission

between 0.5 and 1 are not actually attained in iterations. In particular, the latter
means that conditions (2.127) and (2.268) of Theorems 2.8.2 and 2.9.4 are satisfied
in our computations.

The fourth main discrepancy is that our square §2 does not have a smooth
boundary, as it is required by the Schauder theorem. Furthermore, the Dirichlet
boundary value problems (2.49) and (2.50) for functions ¢,; in the square §2
were solved by the FEM. The FEM cannot guarantee that resulting functions
qni € C*T(82), as it is required by Theorems 2.8.2 and 2.9.4 Nevertheless,
analogues of these theorems can be proved for the discrete case when the FEM
analogues of equations for functions g, ; are used, and also, the domain 2 with
052 € C3 isreplaced respectively with either a rectangular prism in R? or a rectangle
in R2, as in our numerical examples.

The fifth main discrepancy is that we use discrete L, (§2) norms in (3.8) and (3.9)
for our stopping rule. This is because all norms in discrete spaces of finite elements
are equivalent as well as because the discrete L, (£2) norm is computationally easier
to work with than the C* (£2) norm.

3.1.3 Results of the Reconstruction

In this section, we present results of our reconstructions. We have performed
numerical experiments to reconstruct the medium, which is homogeneous with
¢ (x) = 1 except of either two small squares or a single square; see Fig.3.2.
However, we have not assumed a priori knowledge neither of the structure of this
medium nor of the background constant ¢ (x) = 1 outside of those squares.

In all our numerical experiments, we have chosen s € [s,5] = [6.7,7.45] and
the step size with respect to the pseudo frequency 7 = 0.05. Hence, N = 15
in our case. We have chosen two sequences of regularization parameters A := A,
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and ¢ = ¢, forn = 1,... , N. Both formulations and proofs of Theorems 2.8.2
and 2.9.4 remain almost unchanged for this case. The reason of choosing different
values of A, and &, is that values of gradients |Vq,| and |Vg,| are very small. Hence,
in order not to eliminate totally the influence of the nonlinear term (Vq,,;_1)*,n =
1,2 in (2.49), the values of A and A, should not be too large. Starting fromn = 3,
values of the nonlinear term start to grow. Hence, we balance them by choosing
a larger value of A, for n = 3,4,5. For n > 5, values of the nonlinear term
become even lager. Thus, we balance them via increasing the value of A, again.
Considerations for choosing different values of ¢, are similar. In Tests 1-4, the
values of the parameters A, and ¢, were:

An =20,n =1,2;4, =200,n =3,4,5; 1, = 2000,n > 6;
en =0,n=1,2;¢, =0.001,n =3,4,5¢, =0.01,n =6,7,
en = 0.1,n > 8. (3.3)
Once the function ¢, ; is calculated, we update the function ¢ := c¢,; using
formulas (2.41) and (2.42). To find second derivatives in (2.42), we use the standard
finite difference approximations of both the Laplacian and the gradient on a

structured Cartesian mesh. More precisely, in two dimensions, we use the following
approximation to calculate the function ¢(x) at the point (i, j):

Vitl,j — 2Vij +Vvie1j + Vij+1—2Vij +Vij—1
dx? dy?

+ 52 ((—MLQ; Vi’j)z + (—Vi’H;y_ vi’j)z), (3.4)

where dx and dy are grid step sizes of the finite difference mesh in the directions x
and y, respectively. An additional important procedure is averaging. For each inner
grid point (x;, y; ), we average the value ¢’/ over neighboring points. The averaging
helps to smooth out solutions. The resulting value at (xi Y j) isch/

i =

PR oo N AR RIS 3 I BRI S R R
¢ = 5 . 3.5)

Once the number ¢/ is obtained, in any neighboring point, the number ¢ is used
in (3.5) instead of ¢’/

The final computed function is ¢ (x) := cz(x). Recall that the number of
iterations is a part of the vectorial regularization parameter in our case. The number
m,, of iterations with respect to tails was

m, = 4forn <ng, m, =7forn=ny+1,...,N, 3.6)
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where numbers 79 and N are chosen on the basis of an objective stopping rule
described below. Hence, while the pairs (no,ﬁ) differ in our tests, the rule of
their choice (i.e., the stopping rule) remains the same. As it is always the case in
ill-posed problems, the choice of proper regularization parameters as well as of
a proper stopping rule was time-consuming. However, once the stopping rule and
regularization parameters A,,, €,, m,, s are chosen for one test example, they remain
the same for all our numerical experiments described in Tests 1-4 below. Hence,
results were not “conveniently adjusted” for each specific test in order to obtain the
best possible image for that test.

In all our tests, we have introduced the multiplicative random noise in the
boundary data by adding relative error to computed data uops using the following
expression:

Uy (xhyiatj) = Uobs (-xhyi’tj) [1 + aj(“max - umin)a] . (3.7

The function u, was used for the inversion. Here, uops (Xi, yi.t;) = u (X, yi.1;),
(x;,yi) € 052 is a mesh point at the boundary d£2,¢; € (0, T) is the mesh point
in time, «; is a random number in the interval [—1; 1], #max and up;, are maximal
and minimal values of the computed data ups, respectively, and o is the noise level.
Next, we apply the Laplace transform (2.10) to the boundary data, which helps to do
both: “smooth out” and decrease the noise due to the integration. Because of that, we
have successfully used the following formula for the s-derivative of the boundary
data ¢ (x, s) to obtain the function ¥ (x, s,,) in (2.21):

99 (x, 54) ¢ (X, 8n—1) — @ (x,8,)

, h =0.05.
as h

Test 1. We reconstruct of the structure given on Fig. 3.2a. In this figure:

4 in the left small square of Fig. 3.2a,
¢ = 3 3 in the right small square of Fig. 3.2a,
1 everywhere else.

We use 0 = 10% in (3.7).

Figure 3.3 displays isosurfaces of functions ¢, ;,n = 1, 8, 12. Figure 3.4 presents
one-dimensional cross-sections of computed images of functions ¢, x along the ver-
tical line passing through the center of the left small square. Comparison of images
of functions ¢, ; for different values n and i shows that the inclusion/background
contrasts grow with the grow of both n and i. In particular, these contrasts are very
low forn =i =1, since they do not exceed 1.006/1. The final computed image is
c12,7 (x) := c12 (x) = Ceomp (x) . The right Fig. 3.4 depicts those 1D cross-sections
of computed functions ¢, ; being superimposed with the correct one.

Figure 3.5 displays one-dimensional cross-sections of the image of the functions
cn k along the vertical line passing through the center of the right small square. These
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Fig. 3.3 Test 1: Spatial distribution of some functions ¢, ; (x) obtained after computing functions
gni (x). Here, n = 1,8,12. The final computed image corresponds to 127 (X) 1= Ceomp ().
Compare with Fig.3.2a, where the real image is displayed. Maximal values ¢comp (x) = 4 and
Ceomp (¥) = 3.2 in the left and right imaged inclusions, respectively. Correct values are 4 and 3,
respectively. Also, ccomp (X) = 1 outside of imaged inclusions, which is the correct value. Source:
L. Beilina and M.V. Klibanov, A globally convergent numerical method for a coefficient inverse
problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for Industrial and Applied
Mathematics. Reprinted with permission
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Fig. 3.4 Test 1: One-dimensional cross-sections of computed images ¢, ; (x) of the left small
square along the vertical line passing through the center of this square. The function ¢, ; (x) is
obtained after computing the function g, ; (x) . Here, n = 1,8, 12. On the right figure, computed
1D cross-sections functions c¢»; (x) are superimposed with the correct one. The final computed
image corresponds to ¢j2.7 (X) := ccomp (X) . Source: L. Beilina and M.V. Klibanov, A globally
convergent numerical method for a coefficient inverse problem, SIAM J. Sci. Comp., 31, 478-509,
2008. (© 2008 Society for Industrial and Applied Mathematics. Reprinted with permission

cross-sections are superimposed with the correct one. One can see from Fig. 3.4 that
the 4 : 1 contrast in the left square is imaged accurately. As to the right square,
we got the 3.5 : 1 contrast. The function c¢(x) = 1 outside of these squares is also
imaged accurately. Locations of imaged inclusions are somewhat shifted upward.
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Fig. 3.5 Test 1: One-dimensional cross-sections of computed images ¢, ; (x) of the right small
square along the vertical line passing through the center of this square. These cross-sections are
superimposed with the correct one. Here, n = 1,8, 12. The final computed image corresponds
to 12,7 (X) 1= Ceomp (x) . Source: L. Beilina and M.V. Klibanov, A globally convergent numerical
method for a coefficient inverse problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (©) 2008 Society
for Industrial and Applied Mathematics. Reprinted with permission

a 0.07 b
_M0.065 =

S 006F ===¥= R &

> r-oTes oa || =
g 0.055 . X o g EC
= 005 o oq |l =,
= * 05 =

10045 4 Qg T

= -0 07 &

; 0.04 —o- Qg EI'S

1 0.035 —o-Jg H x 0.02

3 a -+ q §& 0. ——

=5 003 il £ o 0 o 31?
2 0025 —=— G2 ] 0.01 e ap
= —— 043 —— 13

002 0 n 9 n 2 n n n
1 15 2 25 3 35 4 45 5 55 6 1 15 2 25 3 35 4 45 5 55 6
k - (k=1) k

. . . Vi =V iz

Fig. 3.6 Test 1: Computed discrete relative L,-norms: (a) of the M and (b) of the
2 [TVVaill
Heni—cni—1ll

Tedl - Source: L. Beilina and M.V. Klibanov, A globally convergent numerical method for a
coefficient inverse problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (©) 2008 Society for Industrial
and Applied Mathematics. Reprinted with permission

We now explain our objective stopping criterion. Figure 3.6a displays computed
discrete relative L,-norms of gradients of tails

IV Vs = V Vo as)
IV Vil ’
and Fig. 3.6b displays relative L,-norms of the target coefficient
Ilcn,i _Cn,i—lll (39)
[en.i]

We use these norms as the stopping rule for computations in our iterative algorithm.
We stop our iterations for computing the new function ¢, when both relative norms
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Fig. 3.7 Test 2: Spatial distribution of functions ¢y,;. The final image is ¢j2 7 (X) := Ccomp (X) .
Compare with Fig. 3.2b where the real image is displayed. Maximal values of ccomp (X) = 4 in both
imaged inclusions, which is the correct value. Also, ccomp (x) = 1 outside of imaged inclusions,
which is the correct value. Source: L. Beilina and M.V. Klibanov, A globally convergent numerical
method for a coefficient inverse problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (©) 2008 Society
for Industrial and Applied Mathematics. Reprinted with permission

(3.8) and (3.9) are stabilized. Here is how we do this. First, we observe on Fig. 3.6a
that relative L,-norms (3.8) of the computed gradients of tails grow until n = 10.
For n > 10, norms (3.8) change slowly. Thus, we conclude that at n = 9, tails are
stabilized. However, norms (3.9) still grow forn > ny = 9; see Fig. 3.6b. We repeat
our iterative procedure forn = 10, 11,12, 13. And for n > 10, we also increase the
number of iterations with respect to tails: we now take seven iterations instead of
four; see (3.6). We observe that at n = 12, both relative norms (3.8) and (3.9) are
stabilized. Thus, we set N = 12 and take c12.7(x) as our final reconstructed image.
On Fig. 3.6, we also present results for n = 13 which confirms that norms (3.8) and
(3.9) are stabilized.

Remark 3.1.3. At the same time, we have observed that for n = 14,15, norms
(3.9) abruptly grow, which was reflected in an abrupt move of positions of imaged
inclusions upward (not shown). This confirms that our choice of ‘N was correct one.
A similar behavior was observed in Tests 2 and 3; see the fourth Remark 2.9.4 for
explanations. In addition, the same type of behavior was observed on Figs. 5.8 and
5.9 for experimental data; see Chap.5. We use exactly the same stopping criterion
in Tests 2, 3 and 4.

Test 2. We now test our numerical method on the reconstruction of the structure
given on Fig. 3.2b. We introduce o0 = 5% of the multiplicative random noise in the
boundary data uqps in (3.7). We take ¢ = 4 for both small squares of Fig. 3.2b and
¢ = 1 outside of these squares. Hence, the inclusion/background contrast is 4 : 1.
Figure 3.7 presents isosurfaces of resulting images of functions ¢y ;.

Using the above stopping rule, we have observed that np = 9 and N = 12.
The behavior of norms (3.8) and (3.9) (not shown) was similar with the one of
Fig.3.6. The last image on Fig. 3.7 represents the final computed image c12.7 (x) :=
c12 (X) = ceomp (x) of the target coefficient. Figure 3.8 displays the one-dimensional
cross-sections of the images of the functions ¢, along the vertical line passing
through the center of the left small square. These cross-sections are superimposed
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Fig. 3.8 Test 2: One-dimensional cross-sections of computed images ¢, ; (x) of the left small
square along the vertical line passing through the center of this square. These cross-sections are
superimposed with the correct one. The function ¢, ; (x) is obtained after computing the function
Gn;i (x). Here, n = 5,11, 12. The final computed image corresponds to c¢127 (x) 1= Ccomp (X).
Source: L. Beilina and M.V. Klibanov, A globally convergent numerical method for a coefficient
inverse problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for Industrial and
Applied Mathematics. Reprinted with permission
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Fig. 3.9 Test 3: The case of the 5% multiplicative random noise in the data. Spatial distribution
of functions ¢y ;. The final image is 10,7 (x) := ccomp (x) . Compare with Fig. 3.2c where the real
image is displayed. The maximal values of ccomp (x) = 3.2 in the imaged inclusion. The correct
value is 3. Also, ccomp (x) = 1 outside of the imaged inclusion, which is the correct value. Source:
L. Beilina and M.V. Klibanov, A globally convergent numerical method for a coefficient inverse
problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for Industrial and Applied
Mathematics. Reprinted with permission

with the correct one. One can see that the value of the function ¢12 7 (x) := ccomp (X)
both inside and outside of both inclusions is imaged correctly, although the locations
of inclusions are somewhat shifted to the top.

Test 3. We now consider a single small square of Fig. 3.2c with ¢ = 3 in it, leaving
all other parameters the same as above. We perform computations with two values
0 = 5% and 0 = 15% of the multiplicative random noise in the boundary data ups
in (3.7).

Figure 3.9 displays isosurfaces of functions c¢jo; for the case of 5% noise in the
boundary data. Figure 3.10 presents one-dimensional cross-sections of images of
functions ¢, x forn = 9,10, 11 along the vertical line passing through the center
of this small square. The imaged function c¢(x) is superimposed with the correct
one. We observe that we obtain the 3.2 : 1 contrast of the reconstructed function
c(x) := c107 (x), which is quite accurate, since the correct contrastis 3 : 1.

Figure 3.11 shows computed relative L,-norms (3.8) and (3.9) with the noise
level 0 = 5% in data. Using Fig.3.11, we analyze results of the reconstruction.



3.1 Numerical Study in 2D 181

3 3.5 L 4
2.8 \ 9,1 G10,1 G111
26 W —dg2 3 — G102 35 A 12
24 ! - Qg3 - G103 N - O413
! --q -~ 9404 3 ! - G414
2.2 | 94 25 k { :
\ — 95 — 9105 i — 415
2 ) —~-Gg6 - Qyog|| 25 { - Gy16
1.8 ! ——dg7 2 - 9107 2 | - G117
1.6 \ - exact —— exact \ -+ exact
1.4 1.5 15
1.2
1 1

' 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Coir 0 = 5% 10, 0 = 5% 11, 0 = 5%
3

: 3.5 4
2.8 \ 99,1 2 9101 . 11,1
26 A — G2 3 — 02| 35 N — G412
24 \ - Qo3 Rl - G103 3 \ 9113
oo i - 39'4 o5 | i o 910,4 - 11,4
5 | 9,5 | 910,5 25 11,5
) —-doe -~ 106 —- G116
1.8 | Q97 2 —G107 > G117
1.6 \ —a— exact | - exact ! - exact
1.4 15 ‘ 15
12 ‘
1 1 b

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
g 0 = 15% 10 0 = 15% e 0 = 15%

Fig. 3.10 Test 3: One-dimensional cross-sections of computed images ¢, ; (x)through the middle
of the small square. These cross-sections are superimposed with the correct one. Source: L. Beilina
and M.V. Klibanov, A globally convergent numerical method for a coefficient inverse problem,
SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for Industrial and Applied Mathematics.
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On Fig.3.11a we observe that relative L,-norms (3.8) of the computed gradients
of tails grow until computing the function g;. After that, tails change slowly,
which means that nyp = 7 in (3.6). However, norms (3.9) are not yet stabilized.
Hence, we now want to stabilize norms (3.9). We repeat our iterative procedure
forn = 8,9,10, 11 and with seven iterations with respect to tails for these values
of n instead of previous four; see (3.6). On Fig.3.11b we observe that at n = 9,
both norms (3.8) and (3.9) are stabilized, and at n = 10, 11, these norms almost do
not change, although the norm for ¢q;; 7 starts to grow. Thus, following the fourth
Remark 2.9.4, we conclude, that we have achieved the solution of our problem at
10 (x) 1= c10,7 (X) = Ceomp (x) With ‘N = 10. We have observed a similar behavior
of our solution with the relative noise level ¢ = 15% (not shown).

Test 4. The goal of this test is to confirm that the error in the reconstructed images is
mainly determined by the error in the tail function. From the analytical standpoint,
this is clear from both approximate mathematical models presented in Sects. 2.8.4
and 2.9.2. Still, it would be good to confirm this numerically. We consider the
same parameters, as ones in previous tests, except that we take the exact initial
tail V11 (x,5) = V* (x,5) and the noise level 0 = 5%. We use the same iterative
algorithm as in previous tests. We stop our iterative algorithm after computing the
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Fig. 3.12 Test 4: The spatial distribution of the function ¢; ; (x) with the exact tail using the finite
difference formula (3.4). (a), (b) and (c¢) correspond to (a), (b) and (c¢) of Fig.3.2, respectively.
Source: L. Beilina and M.V. Klibanov, A globally convergent numerical method for a coefficient
inverse problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for Industrial and
Applied Mathematics. Reprinted with permission

function ¢ ;, since we have observed computationally that relative L,-norms (3.8)
and (3.9) equal zero forn = k = 1.

We present reconstruction results using two different methods for computing of
the function ¢ ;(x). On Fig. 3.12, the function ¢; ;(x) is approximated using finite
difference discretization formula (3.4). However, on Fig.3.13, we have computed
¢1.1(x) using the variational formulation of (2.11). On Figures 3.12a and 3.13a
¢ = 4 in the left small square and ¢ = 3 in the right small square (as in Test 1).
On Figs. 3.12b and 3.13b ¢ = 4 in both small squares (as in Test 2), and ¢ = 3 in
the one small square on Figs. 3.12c and 3.13c (as in Test 3).

One can observe that reconstructions are almost ideal ones. Indeed, even shapes
of inclusions resemble well the correct ones. Reconstructions are not completely
ideal ones on Fig.3.12 because of inevitable computational and approximation
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Fig. 3.13 Test 4: The spatial distribution of the function ¢y (x) with the exact tail using the
variational formulation; see (3.10)—(3.13). (a), (b) and (c¢) correspond to (a), (b) and (c) of Fig. 3.2,
respectively. Comparison with Fig. 3.12 shows that the variational formulation (3.14 ) provides a
better accuracy than the finite difference formula (3.4)

errors in (3.4), as well as the 5% noise in the data. At the same time, the
reconstruction on Fig. 3.13 is more accurate than the one of Fig. 3.12.

We now explain how do we reconstruct the function ¢ (x) in Test 4, using the
variational formulation of (2.11). This formulation is similar with the one of [9,110,
135,147,149, 150]. Once the pair of functions (V,;, ¢, ;) is calculated, we calculate
the function v, ; (x) by (2.41):

n—1

Vi (X) = =hgui () —=h Y q; (x) + Vi (), x € Q. (3.10)
j=0

Next, we recall that we should have

Inwe,, (x,5,)

Vi (X) = . (3.11)

2
S

where the function w, , (x, s,) is the solution of the following analog of the problem
(2.11) and (2.12):

Awe,; — 52Cni (X)W, = 0in £, (3.12)
InWe,; log= Jui (x), (3.13)
where:
S (x) = B, exp [spvi (x)] forx € 382.

Hence, using (3.10), we calculate the function w,, ; (x) = exp [sﬁvn,i (x)] .
To find ¢, ; from (3.12), we will formulate the FEM for the problem (3.12) and
(3.13). First, we introduce the finite element trial space V},, defined by

Vii={ue H' () :ulx € PI(K),YK € K},
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where P;(K) denotes the set of linear functions on the element K of the finite
element mesh K. Hence, the finite element space V) consists of continuous
piecewise linear functions in space. To approximate functions ¢, ;, we introduce
space of piecewise constants Cj defined by

Ch:=1{u€ Ly(2) :ulx € Po(K),VK € Ky},

where Py(K) is the piecewise constant function defined in the vertices of the
element K of the mesh Kj,; see also assumption about functions ¢, ; in Sect.4.2.

Now, the finite element formulation for (3.12) and (3.13) reads, find ¢,; €
Ch,we, ; €Vj such that Vv € V,

1 1
(CniWe, V) = —S—Z(Vwcn_i, Vv) + s—z(fn,,-, V)a2, (3.14)
n n

where:
(o, B) = /905,3 dx

is L, inner product.
Next, we expand w,,, in terms of the standard continuous piecewise linear
. N .
functions {¢; };'_, in space as

N
ch.i = Z ch.ikwk(x)7

k=1

where w,, ;« denote the nodal values of the already computed functions v, ; with the
nodal values v, jx,
We, ik = €Xp [spvik (x)] Vx € £2,

substitute this expansion in the variational formulation (3.14) with v(x) = ¢;(x),
and obtain the following system of discrete equations:

N N N
1 1
D ik e ki 9)) = = D We,k (Vo Vo) + 5 3 (fain ) )ae,

k,j=1 mkj=1 noj=1
(3.15)
which can be rewritten for all elements K € §2 as
N N
1
Z Z CnigWe, 1 @1 © Fx, @ 0 Fg)g = —— Z We, i (Vo © Fi, Vo 0 F)k
KeQk.j=1 n KeQk,j=1

N
1
t3 DY (faie; © Fran)-

nKeQ j=1
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In the formula above Fx defines the mapping such that F K(Ie) = K where ¢
defines the basis function on the reference element K. For computations of entries
in the above system we define

o Fg =9,
Vg o Fx = DF™'V. (3.16)
Here, V = (3/d,,3/d,,9/9.)7,V = (3/d;, 3/9;5,0/0:)" and DF ™" is the inverse
of the transposed Jacobian matrix of Fk, see details in [61].

The system (3.15), can be rewritten in the matrix form for the unknown ¢, ; and
known w, ; as

1 1

Mcn,i = __ZGWC,,_,' + _2F (317)
S
n n

Here, M is the block mass matrice in space, G is the stiffness matrix corresponding
to the gradient term and F is the load vector. At the element level, the matrix entries
in (3.17) are explicitly given by

Mklfj = (W, k ¢ © Fx,9; o Fg)k, (3.18)
G&; = (Vg 0 Fx. Vo, o Fx)k. (3.19)
FjI,<m = (fnis¢; ° Fx)oe), (3.20)

where 062 (K) is the boundary of the element K and 0£2(K) € 952.

To obtain an explicit scheme for the computation of the coefficients ¢, ;, we
approximate M by the lumped mass matrix M in space, i.e., the diagonal
approximation obtained by taking the row sum of M [78,89], and get the following
equation:

Cni = —Siz(ML)_lec,“- + Siz(ML)‘lF. 3.21)
n n
Test 5. While our method does not require a good a priori guess about the solution,
the main point of this test is to show that a reconstruction algorithm, which is based
on the minimization of a least squares objective functional, might lead to a poor
reconstruction, if a good first guess about the solution is unavailable. We use the
reconstruction algorithm described in [21], where the inverse problem is formulated
as an optimal control problem of the minimization of a least squares objective
functional. The latter is solved by the quasi-Newton method, which is known to be a
good method for this purpose. This method minimizes the Lagrangian; see details in
Chap. 4. We generate the data for the inverse problem using the same computational
mesh as well as the same parameters as the ones of Test 2. We start the minimization
the quasi-Newton method with different values of the first guess for the parameter
Cauess (X) = const. at all points of the computational domain §2. Figure 3.14 displays
the images of the computed function ccomp (x) for the following initial guesses: on
(a), Cguess (X) = 1; on (b), Cuess (x) = 1.5; and on (c), Cauess (x) = 2. We observe
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Fig. 3.14 Test 5: Spatial distributions of functions ccomp (x) for different initial guesses Cguess
(x) = const. These images were obtained via the minimization of a least squares residual
functional by the quasi-Newton method. The correct image is displayed on Fig.3.2b. (a) cgyess
(x) = 1. (b) Couess (x) = 1.5. (€) Cguess (x) = 2. Compare with the last image of Fig. 3.7 (Test 2),
which was obtained for the same data by the approximately globally convergent numerical method.
Source: L. Beilina and M.V. Klibanov, A globally convergent numerical method for a coefficient
inverse problem, SIAM J. Sci. Comp., 31, 478-509, 2008. (© 2008 Society for Industrial and
Applied Mathematics. Reprinted with permission

that images deteriorate from (a) to (c) with the deterioration of the first guess. Even
the closest first guess cguess (X) = 1 provides an image whose quality is significantly
worse than the quality of the last image on Fig. 3.7. We conjecture that local minima
are achieved in all these three cases.

3.2 Numerical Study in 3D

3.2.1 Computations of the Forward Problem

We work with the computationally simulated data. To solve the forward problem,
we again use the hybrid FEM/FDM method described in [30]. The computational
domain in all our tests is the rectangular prism:

G =[-4,4] x[-5,5] x [-2.4,2].
We represent G as G = Gggm U Gepym, Where the finite element subdomain is
Grem = 2 = [-3,3] x [-3,3] x [-2, 1.4],

and the surrounding subdomain Grpy is the one where the finite differences are used
with a structured mesh; see Fig.3.15. The space mesh in the domain £2 = Ggpm
consists of tetrahedra. The space mesh in Ggpm consists of cubes with the mesh size
h = 0.2 in the overlapping regions. The inclusion which we intend to reconstruct
is a small cube inside £2. This cube is [1,2] x [-2,—1] x [—1, 0]. Thus, the length
of the side of this cube equals 1. We remind that our algorithm does not use any
knowledge of the background values of the unknown coefficient inside the domain
of interest £2.
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Fig. 3.15 The hybrid mesh (b) is a combinations of a structured mesh (a), where the FDM is
applied and a mesh (c), where we use the FEM, with a thin overlapping of structured elements.
The solution of the inverse problem is computed in the rectangular prism £2 and c¢(x) = 1 for
X € G\ 2

The forward problem is computed in the domain G C R? (Fig.3.15). The
coefficient ¢ (x) is unknown in the domain £2 C G and

c(x) = 1in G\ £2;

see (2.3). The trace g (x, t) of the solution of the forward problem is recorded at the
boundary 02; see (2.5). Next, the coefficient ¢ (x) is “forgotten,” and our goal is to
reconstruct this coefficient for x € §2 from the data ¢ (x, s) . The function ¢ (x, 5)
is the Laplace transform (2.10) of the function g (x,¢) in (2.5). The boundary of
the domain G is G = dG; U dG, U dG3. Here, dG| and G, are respectively top
and bottom sides of the largest domain of Fig. 3.15, and dG3 is the union of vertical
(i.e., lateral) sides of this domain. The forward problem in this test is as in (3.2)
(Fig. 3.16). The time dependence of the incident plane wave f(¢) is

2
sin(57), if0 <t <t := Tn

f(@) = s
0,ift € (1, T), T = 12.

’

Thus, the plane wave is initialized at the top boundary dG; and propagates into G
fort € (0, #;]. First-order absorbing boundary conditions are used on 0G| x (t1, T
and 0G, x (0, T'], and the zero Neumann boundary condition is used on the lateral
boundary dG3. Since we use explicit scheme to compute hybrid FEM/FDM solution
of the wave equation, the time step 7 is chosen correspondingly to CFL (Courant-
Friedrichs-Lewy) condition [61]

h

T< N (3.22)
max
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Fig. 3.16 Test 1: Isosurfaces of the simulated exact solution to the forward problem (3.2) at
different times with a plane wave initialized at the top boundary. In (a)-(d) are presented
isosurfaces of the hybrid FEM/FDM solution, and in (e)—(h) are corresponding isosurfaces only
for FEM solution

with

1
Cmax = Max

2 Jc(x)

in the case of (3.2) and is T = 0.03 in our particular case. This time step corresponds
to 400 iterations in time for the time interval [0, 12].

3.2.2 Result of the Reconstruction

We have performed a numerical experiment to reconstruct the medium, which is
homogeneous with ¢ (x) = 1 except of one small cube, where ¢ (x) = 4; see
Fig.3.15c¢. In our test, we have introduced the multiplicative random noise of the
level 0 = 5% in the boundary data; see (3.7). We have not assumed any a priori
knowledge of neither the structure of this medium nor of the background constant
¢ (x) = 1 outside of this small cube. Because of this, the starting value for the tail
Vi1 (x,s) was computed via solving the forward problem (3.2) for ¢ = 1, which re-
flects our knowledge of this coefficient only outside of the domain of interest £2; see
(2.3). Let we=1 (x,5) be the corresponding function w (x, s) at s = 5. Then, we took

ln We=1 (x7 E)

Ez

Vig(x,5) =
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Fig. 3.17 Slices of computed ¢, ; and exact function ¢, for n = 1,2,3. Here, the pseudo

frequency interval is [g E] = [4, 8], and the step size in pseudo frequency is & = 0.5

We have found that the s-interval s € [s,s5] = [4, 8] is the optimal one for these
domains G, £2. Thus, we have used this interval in our numerical test. We have
chosen the step size with respect to the pseudo frequency 7 = 0.5 (Fig.3.17).
Hence, N = 8 in our case. Values of parameters A and & were

A =20 ne[l,N];
g1 =0.01; & =0003,1<n <5 & =0n€c[6,N].

The resulting computed function was ¢ (x) := cx(x).
We now choose a new stopping rule. When calculating iterations with respect to
the nonlinear term (Sect. 2.6.1), we consider discrete numbers F,f‘ :

. _
_ ||61,,,1|af —Vullao2) (3.23)
NVl Ly02)

where L,-norms are understood in the discrete sense. For each n, we stop our
iterations with respect to the nonlinear terms when, i.e., with respect to k, if

either ¥ > Ff-!

or |[Fk — FF11 <9, (3.24)

where & = 0.001 is a small tolerance number of our choice. Next, we iterate with
respect to the tails. Similarly with (3.23), let
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Table 3.1 F,;,n = 1,...,10. Computations was performed with the noise level ¢ = 5% and
with the regularization parameter y = 0.01

It.nr. i=1 i =2 i=3 i =4 i=5 i =6

1 0.202592 0.202984

2 0.208818 0.191831 0.19212

3 0.187327 0.175833 0.176045

4 0.152134 0.203397 0.204205

5 0.17487 0.202605 0.202889 0.203076 0.203103 0.202986
6 0.206424 0.202276 0.202091 0.201566 0.201046 0.200468
7 0.203256 0.200669 0.198746 0.195911 0.195683

8 0.191367 0.195898 0.194232

9 0.188395 0.195584 0.194025

—
(=)

0.187154 0.19684 0.197282

_ llgniloe — VallLao0)
V11,002

(3.25)

n,i

For each n, we stop iterations with respect to the tails, i.e., with respect to i, if

either F,,; > F, ;-
or |Fui — Fyia| < 0. (3.26)

In other words, we stop iterations with respect to the tails, when either norms F;, ;
start to grow or are stabilized. The number 7, on which these iterations are stopped,
is denoted as i := m,,. Once the criterion (3.26) is met, we take the last computed
pair (qnm,» Vam,)> €t qn = qnm,, Vat1.1 = Vim,, and run computations again
for g, +1. Hence, the number m,, of iterations with respect to the tails as well as the
reconstructed function ¢, (x) is chosen automatically “inside” each iteration for g,,
which means that m,, varies with n (Table 3.1).

Therefore, new criteria (3.23)—(3.26) mean a more flexible stopping rule in
the globally convergent algorithm compared with Sect. 3.1.3, since in Sect.3.1.3,
numbers m,, where not chosen automatically.

The next important question is about the stopping rule with respect to n. We stop
iterations with respect to 7 at n = N when the norms F, ; generally stabilize with
respect to n; see the fourth Remark 2.9.4 for explanations.

Table 4.8 shows computed norms F,, ;. Using this table, we analyze results of the
reconstruction. One can see from Table 4.8 that the number m,, of iterations with
respect to tails indeed varies with n, since m,, is chosen automatically now using
the criterion (3.24). We observe that the norms F,,; decrease until computing the
function g4 ;. Next, they slightly grow and are stabilize forn = 6. The computed L,-
norms of the reconstructed functions ¢, ; (x) (not presented here) are also stabilized
for n = 6. Thus, we conclude that we can take c¢ ¢ (x) as the solution resulting from
our approximately globally convergent method, cs6 (X) := Cglop (X).
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Fig. 3.18 Spatial distribution of functions ¢, ; after computing g, ;;n = 1-5, where n is the
number of the computed function g and i is the number of the iteration with respect to the tails. The
final image is cg6 (¥) 1= Ccomp (x) . Compare with Fig.3.15¢ where the real image is displayed.

The maximal value of ccomp (x) = 3.5 in the imaged inclusion. Also, ¢comp (x) = 1 outside of the
imaged inclusion, which is the correct value

One can see from Fig. 3.18 that the location of the small cube is imaged well. It
follows from Fig. 3.18d that the imaged contrast in this cubeis 3.5 : 1 = max ceg : 1
atn := N = 6. Thus, we have obtained the 12.5% error (0.3/4) in the imaged
contrast with the level of noise in the data 0 = 5%. The value of the function

¢(x) = 1 outside of this cube is imaged accurately.

3.3 Summary of Numerical Studies

We have tested our algorithm for three different structures of the medium in the
2D case and for one structure in the 3D case. We have successfully imaged both
4 :1and 3 : 1 inclusion/background contrasts, which are considered high in inverse
problems. Our regularization parameters were the truncation pseudo frequency &,
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the sequences {1, },11\;1, and {g, },]1\;1 , as well as iteration numbers no and N. Here,
nop is the iteration number at which relative norms (3.8) of gradients of tails are
stabilized, and N € (10, N) is the total number of functions ¢, we have computed.
The number N is such that the relative norms (3.8) of the unknown coefficient are
stabilized. We have used m; = ... = m,, = 4, my,41 = ... = my = 7 for the
number of iterations with respect to tails. Numbers 1y and N were chosen on the
basis of an objective stopping rule. On the other hand, forn € [W +2,N ], norms
(3.8) and (3.9) were abruptly growing. This indicates that our choices of the number
N of iterations as a regularization parameter were correct ones. In the 3D case, we
have stopped when norms F,, ; in (3.25) have generally stabilized with respect to n;
see Table 4.8.

It is important that our numerical experiments have consistently demonstrated
good reconstruction results for the same parameters and the same objective stopping
rule in all 2D tests. Levels of the random noise were 5% and 15%. These point
toward the robustness of our numerical method. The robustness will be more evident
from Chaps.5 and 6 where results for experimental data with a huge noise are
presented.

Another important factor, which we have constantly observed in all our compu-
tations of this book, is that parameters, once chosen, work well for all other tests
of a series of tests considered. This once again points toward the robustness of our
approximately globally convergent algorithm. In all experiments, we have stopped
iterations with respect to n when the stabilization occurred. This goes along well
with the fourth Remark 2.9.4.

An interesting conclusion can be drawn from the comparison of Fig. 3.6a with
Fig.3.6b as well as from the comparison of Fig. 3.11a with Fig. 3.11b. One can ob-
serve that the relative errors in final tails are about the same as those in reconstructed
coefficients. This provides a numerical confirmation for estimates (2.275), (2.276),
(2.279), and (2.281) of the approximate global convergence Theorem 2.9.4 Indeed,
comparison of (2.275) and (2.276) with (2.279) and (2.281) shows that one should
anticipate that the error in the reconstructed coefficient should be about the same
as the error in the tail function. In addition, results of Test 4 of Sect. 3.1.3 indicate
that the main input in the reconstruction error is provided by the error in the tail
function; see Figs.3.12 and 3.13.

On the other hand, results of Test 5 of Sect. 3.1.3 indicate the advantage of our
approach over traditional locally convergent numerical methods. It is clear from
Fig.3.14 that the image quality in traditional approaches heavily depends on the
quality of the first guess about the solution. This is likely because of the local
minima problem of least squares residual functionals.



Chapter 4

The Adaptive Finite Element Technique
and Its Synthesis with the Approximately
Globally Convergent Numerical Method

4.1 Introduction

In Chap.2, we have described our approximately globally convergent numerical
method for a CIP for the hyperbolic PDE c (x) u;; = Au. We remind that the
notion of the approximate global convergence was introduced in Definition 1.1.2.1.
This method addresses the first central question of this book posed in the beginning
of the introductory Chap. 1: Given a CIP, how to obtain a good approximation for
the exact solution without an advanced knowledge of a small neighborhood of this
solution? Theorems 2.8.2 and 2.9.4 guarantee that, within the frameworks of the
first and the second approximate mathematical models respectively (Sects. 2.8.4 and
2.9.2), this approximation is obtained indeed for our CIP.

At the same time, since certain approximations were made, the room is left
for a refinement. In this chapter, we present a numerical method which is, by our
experience, an optimal one for the refinement goal. This is the so-called adaptive
finite element technique, which we call adaptivity below, for brevity. The adaptivity
addresses the second central question of this book posed in the beginning of Chap. 1:
Given a good approximation for the solution of our CIP, how to refine it? The
adaptivity is a locally convergent numerical method, which has a special feature
of adaptive local refinements of finite element meshes. As a result, a two-stage
numerical procedure is developed in this chapter; see Sect.4.1.1.

4.1.1 The Idea of the Two-Stage Numerical Procedure

An important part of the current chapter is the synthesis of the adaptivity with the
approximately globally convergent numerical method of Chap.2. This synthesis
represents a natural two-stage numerical procedure:

Stage 1. On this stage, the approximately globally convergent method of Chap. 2 is
applied. As a result, a good first approximation for the exact solution is obtained.

L. Beilina and M.\V. Klibanov, Approximate Global Convergence and Adaptivity 193
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Stage 2. The adaptivity technique is applied. The adaptivity takes the solution of
the first stage as the starting point for iterations and refines it.

The first stage provides the input for the adaptivity which any locally convergent
algorithm needs at most: a guaranteed good first approximation for the exact
solution. An important advantage of using the two-stage numerical procedure
follows from Theorem 1.8 Indeed, by this theorem, the approximation obtained on
the first stage should be inevitably refined on the second stage. However, a subtle
point of Theorem 1.8 is that the refinement is achieved only at a minimizer. Indeed,
unless a good first approximation for the exact solution is available, it is unclear
how to practically find this minimizer—because of the problem of local minima of
the Tikhonov functional. On the other hand, as soon as a good approximation is
available, Theorem 1.9.1.2 guarantees that this minimizer can be found indeed and
also that it refines that approximation. This once again points toward the importance
of the first stage.

The adaptivity minimizes the Tikhonov functional on a sequence of locally
refined meshes of standard piecewise linear finite elements. Local mesh refinements
enable one to maintain a reasonable compromise between not using an exceedingly
large number of finite elements and a good accuracy of resulting solutions. This
compromise is the main attractive point of the adaptivity.

4.1.2 The Concept of the Adaptivity for CIPs

The adaptivity technique for classical well-posed problems for PDEs is well known;
see, for example, [2,67,87,141]. However, the unstable nature of ill-posed problems
represents a radically new difficulty for the adaptivity as compared with the well-
posed case. First publications on the adaptivity for ill-posed problems were [15,16].
In [16] a CIP, which is similar with the one of this book, was considered. The
adaptivity for this as well as for some other CIPs was also considered in [17-23]
and references therein. In addition, we refer to publications [12, 68, 74] where the
adaptivity technique for various inverse problems was considered. In particular,
in [125], the adaptivity was, quite surprisingly, applied to the classical Cauchy
problem for the Laplace equation, for the first time. A significant improvement of
computational results was observed in [125].

The first publication of the abovementioned two-stage numerical procedure
was the one of the authors of this book [25] with follow-up publications [26—
29,111, 160]. Along with the two-stage procedure, some new ideas of a posteriori
error analysis for the adaptivity were developed in [26-29]. Unlike previous works
[16-23,68], a posteriori error analysis of [26-29] does not use specific properties
of finite elements. As a result, derivations of a posteriori error estimates became
more compact and more sounding from the functional analysis standpoint. Another
important new element of [26—29] is that these works analyze the original Tikhonov
functional rather than the secondary Lagrangian of some previous publications.
We also refer to the publication [11] where a new idea of an a posteriori error
estimate for an abstract nonlinear operator is presented.
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We point out that we consider a posteriori error estimates only as an auxiliary
tool. Indeed, usually a posteriori error analysis is about estimating the accuracy of
computing an approximate solution. Unlike this, our goal is to use that accuracy
estimate as a tool to decide where to refine the mesh in order to improve the
accuracy further.

Previously, a posteriori error estimates in the adaptivity for both CIPs, and the
so-called “parameter identification” problems were derived for the Lagrangian.
However, because of the ill-posedness, there is no guarantee that such an estimate
would imply an error estimate for the regularized coefficient. On the other hand,
the regularized coefficient is the true quantity of interest. Motivated by these
considerations, the authors of [28,29] have established a posteriori error estimates
for the regularized coefficient. This was done on the basis of an analog of the local
strong convexity Theorem 1.9.1.2. Furthermore, the work [111] has actually justified
the effort of the accuracy improvement of the regularized coefficient rather than
the exact coefficient. Indeed, it follows from [111] and from above Theorems 1.8
and 1.9.1.2, respectively, that the regularized coefficient is closer to the exact
coefficient than the first guess, provided that uniqueness theorem holds. Therefore,
an improvement of the accuracy of the reconstruction of the regularized coefficient
(due to the adaptivity) leads to an improvement of the accuracy of the reconstruction
of the exact solution.

In addition, in [29], a new framework of functional analysis for the adaptivity
technique for ill-posed problems was proposed; also see, for example, [15], for
another possible framework. The main result of [29] is a rigorous guarantee that
the accuracy of the reconstruction obtained on a finer mesh is indeed better than
the one obtained on the coarser mesh (see Theorems 4.9.3 and 4.11.1 below). The
latter is the central fact which justifies mesh refinements for ill-posed problems.
Prior to [29], image improvements with mesh refinements were observed only
numerically rather than analytically. In this chapter, we describe main results of
[16-29]. In particular, we obtain a posteriori error estimates of the accuracy of
the reconstruction of the regularized coefficient, rather than of the accuracy of the
Lagrangian of previous publications [12, 15,17, 18,20-23].

In summary, six main new elements of the results of the authors for the adaptivity
technique which are presented in publications [26-29] as well as in the current
chapter are:

1. The originating Tikhonov functional rather than the secondary Lagrangian is

considered.

2. A certain smoothness of solutions of state and adjoint problems for our hyper-
bolic CIP is established. This smoothness is a necessary ingredient for a rigorous
derivation of the Fréchet derivative of the Tikhonov functional.

. A new framework of functional analysis is proposed.

. In a posteriori error analysis, we use Theorem 1.9.1.2.

5. Theorem 1.9.1.2 leads to a posteriori error estimates for the regularized coeffi-

cient.

6. It is rigorously guaranteed that the accuracy of the regularized solution improves

with mesh refinements.

P NN
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We now briefly outline the main concept of the adaptivity technique for CIPs. It
is inefficient to use an exceedingly fine mesh in computations. Thus, the idea of
the adaptivity is to obtain a good accuracy of solutions via local mesh refinements,
i.e., refinements in certain rather small subdomains of the original domain. In other
words, the adaptivity minimizes the Tikhonov functional several times on a
sequence of locally refined meshes. Therefore, the main question of the adaptivity
is, how to find those subdomains where the mesh should be locally refined? In the
case of nonlinear ill-posed problems, such as CIPs are, this question conventionally
is addressed via a posteriori error analysis of the regularization functional. More
recently, the accuracy of the reconstruction of the regularized coefficient was
estimated a posteriori [111], and it is the latter what is done in this chapter. This
became possible because of the local strong convexity Theorem 1.9.1.2. Thus, the
mesh is refined locally in such subdomains of the original domain §2, where a
posteriori error analysis indicates the largest error in the reconstructed regularized
coefficient. Next, the regularization functional is minimized again on that refined
mesh. It is important that the a posteriori analysis uses an upper estimate of the
solution rather than the solution itself since the solution is unknown. The latter goes
along well with Definitions 1.4.2 and 1.4.3, i.e., with the notion of the conditional
well-posedness of Sect. 1.4.

In addition to the above two-stage numerical procedure, the adaptivity was
applied in [9] “inside” the approximately globally convergent numerical algorithm
of Sect.2.6.1. Thus, the technique of [9] is a one-stage numerical procedure. An
advantage of the idea of [9] is that it leads to faster reconstructions than the two-
stage numerical procedure.

4.2 Some Assumptions

First, we need to make a few remarks about some assumptions used in this
chapter. It is well known that our CIP is a very complex problem with many yet
unknown factors. It is natural, therefore, that some simplifications should be in
place to develop the adaptivity theory for this CIP. We now list main simplifying
assumptions. The first one is about the smoothness of initial conditions. Indeed, the
solution of the Cauchy problem (2.1) and (2.2) is not smooth, because of the §-
function in the initial condition. However, if one would replace the § (x — xo) with
its approximation in the distribution sense 8¢ (x — xo), then smoothness would be
restored. Here, 6 € (0, 1) is a small number. The function 8¢ (x — xp) is

1 _

0, |x —xo| > 6,

/59 (x —x0)dx = 1.
R3
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Hence, the constant Cg > 0 is chosen to ensure the value of this integral. Since the
source xo ¢ £2, then for sufficiently small 6

8o (x — x9) = 0 for x € £2. 4.1)
Thus, the problem (2.1) and (2.2) becomes

c(X)uy = Au, (x,1) € R* x (0,00), 4.2)
u(x,0) =0, u (x,0) =g (x — xp) . 4.3)

Recall that the condition (2.5) for the coefficient inverse problem 2.1 is
u(x,t) =g(x,t),V(x,t) € 082 x (0,00) . 4.4)

To simplify the presentation, we intentionally do not go into tiny details formu-
lating minimal smoothness assumptions for state and adjoint initial boundary value
problems. Hence, we impose smoothness assumptions in Sects. 4.6 and 4.7 which
can probably be relaxed. Also, instead of formulating in these sections stronger
results, which follow from these assumptions, we formulate only those results which
we need for our goals. We extensively use in this chapter results of Chap. 4 of the
book of Ladyzhenskaya [119] about the smoothness of the solution of the initial
boundary value problem for the hyperbolic equation with the Dirichlet boundary
condition. Thus, we work only with the Dirichlet boundary condition in Sect. 4.6.
It seems from Sect. 5 of Chap. 4 of [119] that the Neumann boundary condition can
also be used. However, the full proof of this would require a substantial and space
consuming effort to work out results for forward hyperbolic problems. Thus, since
we are interested in inverse rather than in forward problems, we consider only the
Dirichlet boundary condition in Sect.4.6. On the other hand, since we also need
the same smoothness results for the case of the Neumann boundary condition, we
simply assume that these results are valid.

Let the number 7 > 0. Denote

Or = 2x(0,T), Sp =d2x(0,7), 2, ={(x,7):xe€R,t=t},Vt €[0,T].
4.5)

For this value of 7', we can consider conditions (4.2)—(4.4) as the initial boundary
value problem for (4.2) in (R¥*\£2) x (0, T) . Since by (2.3), ¢ (x) = 1 outside of
£2, then this problem can be uniquely solved. Hence, the function u (x, t) is known
in (R¥\£2) x (0, T) . Hence, the following two functions g and p are known at the
lateral side St of the cylinder Qr

MlST:g()C,Z), anulST:p(-xsZ)- (4.6)
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Let w € (0, 1) be a sufficiently small number. Keeping in mind that we work with
piecewise linear functions, we introduce the set Y of functions ¢ (x) satisfying the
following conditions:

ceC(R)NH"(2),0c€ Lo (2),i =1,2,3,
. (2) N H' (@) .80 € Lo (). 5 “n
c(x)e(l-—w,d +w) forx € £2.

We introduce now another simple assumption. In all our analytical derivations,
we assume that the function c(x) € Y. However, in computations, the function ¢ (x)
is piecewise constant defined at the mesh points.

4.3 State and Adjoint Problems

In the adaptivity, we work with a finite dimensional space of standard piecewise
linear finite elements. In other words, we assume that the unknown coefficient ¢ (x)
in (4.2) belongs to this space. We minimize the following Tikhonov functional on a
sequence of locally refined meshes:

Ey(c) = %/(u ls; — g(x,t))zz; (t)dodt + %a/(c — Cglob)z dx, (4.8)
St 2

where cgop is the solution obtained on the first stage of our two-stage numerical
procedure, i.e., Cglop is the solution obtained by the approximately globally con-
vergent method of Sect.2.6. In (4.8), « is the regularization parameter. Here, the
function z¢ () is introduced to ensure that compatibility conditions are satisfied for
the adjoint problem (4.10) at t = T'. Let { > 0 be a sufficiently small number. Then
the function z; (1) € C*° [0, T is

1fore[0, T —¢],

2 (1) = Oforte(T—%,T],
between 0 and 1 for ¢ € (T—Q,T—%).

We use the L (£2) norm in the second term of the right-hand side of (4.8) because
we work in a finite dimensional space of finite elements.
We now introduce the state and adjoint initial boundary value problems. The
state problem is
c(xX)uy —Au=10in Qr,
u(x,0) = u;(x,0) =0,

a,,l/t |Sr =P (X,l) . (4’9)
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The adjoint problem is the one with the reversed time:

C (x) A,[[ — AL =0in QT,
A, T) = A(x, T) = 0,
A sy = ze (1) (g —u) (x,1). (4.10)

In (4.9) and (4.10), functions p and g are the ones of (4.6). Hence, to solve the
adjoint problem, one should solve the state problem first.

The weak solution of the problem (4.9) is defined as any functionu € H' (Qr)
with u(x, 0) = 0 satisfying the following integral identity (see Sect. 5 of Chap. 4 of
[119]):

/ (—c (x) uyv; + VuVy) dxdt — / pvdS,, =0, Vv e H' Qr),v(x,T)=0.

or St
(4.11)

The weak solution of the adjoint problem (4.10) is the function A € H' (Q7) such
that A(x, 7)) = 0 and

/(—c (x) Arve + VAVY) dxdt—/zg(g —u)vdSy;=0,Vv e H! (Q71)v(x,0)=0.

or Sr
(4.12)

We now formulate an error estimate for interpolants in the format, which is
convenient for our derivations below. Let s and be the maximal grid step size
of standard piecewise linear finite elements with for x € 2. For any function
fecC (ﬁ) NH'(£2),let £ beits interpolant via those finite elements. Let partial
derivatives fy, € Lo (£2). Then

If - fluc(ﬁ) < KIVSllLow b (4.13)

where the positive constant K = K (£2) depends only on the domain §2. Estimate
(4.13) follows from the formula 76.3 in [67].

4.4 The Lagrangian

We start our derivations for the adaptivity from the Lagrangian rather than from the
Tikhonov functional. This is because historically it was started from the Lagrangian
in [16-22]. The Tikhonov functional is more general, and the Lagrangian is only
a secondary one to the Tikhonov functional. Thus, we work with the Tikhonov
functional in Sects. 4.7—4.11.
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Introduce the following spaces of real valued functions:

H,(Or)={f € H'(Q7) : f(x,0) =0},
Hi(Qr)={f € H(Qr): f(x,T) =0},
U? = H*(Qr) x H*(Q7) x C (),
U'=H,/(Qr)x H{(Qr) x C (2),
U’ =Ly (Qr) x L2 (Q71) X L2 (£2).

Hence, U? C U' C U° as a sets, and sets U2, U are dense in U°. Let i be
the maximal grid step size of standard piecewise linear finite elements in space. We
introduce finite element subspaces W' C H, 1(Qr)and th CcCH j (Qr) of standard
piecewise linear finite elements in space and time. Obviously,

u(x,0)=0,Yue W
A(x,T) =0,V € W

To work with the target coefficient c(x), we also introduce the subspace V;, C
L, (§2) of standard piecewise linear finite elements. Denote U, = W} x WhA x Vj.
Obviously, dim U, < oo, U, C U! and U, C U as a set. So, we consider U, as a
discrete analogue of the space U'. We introduce the same norm in Uj, as the one in
U°, [lolly, = oo -

To solve the problem of the minimization of the functional (4.8), we introduce
the Lagrangian

L) = Ea(c)—/c(x)u,/\,dxdt + / VMV/\dxdt—/p/\dodt, (4.14)

or or St

where functions u € H! (Q7) and A € H j (Qr) are weak solutions of problems
(4.9) and (4.10), respectively, and v = (u,A,c). By (4.11) the sum of integral
terms in (4.14) equals zero. The reason of considering the Lagrangian instead of
E,(u,c) is that it is easier to find a stationary point of L(v) compared with E, (u).
To minimize the Lagrangian, we need to calculate its Fréchet derivative and set it to
zero.

Both functions u and A depend on the coefficient c. Hence, in order to calculate
the Fréchet derivative rigorously, one should assume that variations of functions u
and A depend on variations of the coefficient ¢ and calculate the Fréchet derivative of
L (c) := L(v(c)). To do this, one needs, therefore, to consider Fréchet derivatives
of functions u and A with respect to the coefficient ¢ in certain functional spaces.
A rigorous derivation of the Fréchet derivative for the Tikhonov functional (4.8)
is far from trivial. We need two preparatory Sects. 4.6 and 4.7 to finally derive it
rigorously in Sect. 4.8.
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Now, we describe a simpler heuristic approach of the derivation of the Fréchet
derivative for (4.14). The advantage of the heuristic approach is that it is free from
lengthy calculations, while the final result is still the same as the one for the rigorous
approach. We assume that in (4.14), functions u, A, ¢ can be varied independently
on each other. However, as soon as the Fréchet derivative is calculated, we assume
that solutions u and A of state (4.9) and adjoint (4.10) problems do depend on the
coefficient c.

Thus, we search for a stationary point of the functional L(v),v € U satisfying

L@ =0, Vv= @17 eU, (4.15)

where L’(v)(-) is the Fréchet derivative of L at the point v under the above
assumption of the mutual independence of functions u, A,c. To find L'(v) (v),
consider L (v +7) — L (v), Vv € U! and single out the linear, with respect to
v, part of this expression. We obtain from (4.14) and (4.15)

T
L'(v)(v) = / o (¢ = Cylob) — / uh, dt | ¢dx
0

2

+ / (—cu,x, +vuv1) dxds — / pAdod

| O St

+ / (—cAu; + VAVu) dxdt —/z; (g—ulsy)udodt | =0,
|97 Sr

vy = (ﬁIZ) cU". (4.16)

Using (4.9)—(4.12), we obtain that second and third lines of (4.16) equal zero.
Hence,

T
L' (v) (x) = & (c — caop) (x) — / (A (x,0)dt, x € 8. (4.17)
0

Hence, to find the stationary point of the Lagrangian, one should solve the following
equation with respect to the function ¢ (x):

T
c(x) = é/(m,) (x.1) df + cgop (). X € 2. (4.18)
0

where functions u € H!(Qr) and A € H/(Q7) are weak solutions of initial
boundary value problems (4.9) and (4.10), respectively.
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4.5 A Posteriori Error Estimate for the Lagrangian

Let the function ¢* (x) satisfying (2.3) and (2.4) be the exact solution of our
CIP, g* (x,t) be the corresponding function (2.5), and u (c*) be the solution of
the Cauchy problem (2.1) and (2.2) with ¢ := c¢*. Hence, u* |5, —g* = 0,
and the corresponding solution of the adjoint problem (4.10) A (¢*) = 0. Denote
v¥ = (u(c*).,0,c*) € U?. Since the adaptivity is a locally convergent numerical
method, we work in this section in a small neighborhood of the exact solution v*.
Hence, since U2 C U! as a set, we work in this section in the set V; C U!,:

Vi={eU': [v—vyu <8}, (4.19)

where § € (0, 1) is a sufficiently small number. Let Y be the class of functions
defined in (4.7). Suppose that there exists a minimizer v = (u(c),A(c),c) €
Vs of the Lagrangian L (v) in (4.14) on the set (4.19). We assume that this
minimizer v = (u(c),A (c),c) € U?. Here, the coefficient ¢ € Y, and functions
u(c) € H>(Qr) and A(c) € H*(Qr) are solutions of initial boundary value
problems (4.9) and (4.10), respectively. Assume that there exists a minimizer
v = (uy (cp), An (cn) ,cp) € Uy N Vs of L (v) on the discrete subspace Uy, where
the function ¢, € Y. Here and below, uj, (c;) € W' and An(cp) € WhA are finite
element solutions of problems (4.9) and (4.10), respectively, with ¢ := c¢; and
boundary functions p, g, u |s, in (4.9) and (4.10) are the same as ones for functions
u(c),A(c) . Hence, the vector function v;, is a solution of the following problem:

L (vy) (®) = 0,V € Uy (4.20)

The equality (4.20) is called the Galerkin orthogonality principle; also see, for
example, [15, 16], for this principle. Following [16-22], we now present the main
steps in the derivation of an a posteriori error estimate for the Lagrangian. We start
by writing the equation for the error e in Lagrangian (4.14) as

1
e:=LWV)—L(y) = / L' @Ov+(A—=0)v)dd =L (vy) v—w;) + R, (4.21)
0

where the remainder term R has the second order of smallness with respect to
8, and L’ (v;) is the Fréchet derivative of the Lagrangian at the point v, =
(up, An, cp). Because the number § in (4.19) is small, we ignore R in (4.21). Let
vi = (u, AL, ¢j) € Uy be the interpolant of v = (u, A, ¢). We have

V—y = (vi —vh) + (v—vi). (4.22)
Since (vi —vp) € Uy, then by (4.20),

L' (vy) (v} —vp) = 0. (4.23)
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Hence, (4.22) and (4.23) imply that
L' (vn) v =vi) = L' () v = vi) + L (vp) (v = vp) = L' () (v = vp). (4.24)

Hence, (4.21) implies that the following approximate error estimate for the
Lagrangian holds:

e=L®—Ly)~L (vp)©v—v}). (4.25)

The estimate (4.23) taken alone does not provide anything of a significance. This is
because it was derived by the series of steps (4.20)—(4.24) which did not contain any
specific information about the Lagrangian L. To make the estimate (4.23) valuable,
we need to specify it using the specific form (4.14) of the Lagrangian L. The latter
is done below in this section. More precisely, we need to incorporate specifics in the
expression L’ (v;) (v — v}).

If state and adjoint problems are solved exactly, then only the first line in the
right-hand side of (4.16) should be considered in a posteriori error the analysis of
the Fréchet derivative of the Lagrangian. This is because two other lines equal zero
by (4.11) and (4.12). However, since we work with L’ (vj,) in (4.23) and the vector
function vy, = (uy (cn) , An (c1) , cn) € Uy N Vs includes approximate FEM solutions
uy (cp) , A (cp) of state and adjoint problems, then the second and third lines in the
right-hand side of (4.16) do not equal zero when functions uy, (c;) , Ay (¢i) , ¢j are
involved in them. Hence, these lines should be taken into account in a posteriori
error estimates.

Consider a mesh which is split into triangles/tetrahedral elements K such that
2 = UK. Let hg be the diameter of the element K. Consider a uniform partition
of the time interval / = [0, T'] into subintervals J; = (fx—1,%], 0 = tp < t; <

.. <ty = T. Lett = 1t — t;—; be the grid step size of this partition. In a general
case, we allow meshes in space and time with hanging nodes and assume that the
local mesh size has bounded variation in such meshes. This means that there exists
a constant y > 0 such that yhg+ < hg— < y~'hy+ for all neighboring elements
K~ and K. We define also by /g the diameter of the finite element K.

Let S be the internal face of the nonempty intersection of the boundaries of
two neighboring elements K and K . We denote the jump of the derivative of v,
computed from the two elements K™ and K~ sharing S as

[0svi] = asv,;" — vy, (4.26)

The jump of v;, in time computed from the two neighboring time intervals J ™ and
J ™ is defined similarly:
[3,1)],] = 8[1),_1'_ — 3,\/;7. (427)

Theorem 4.5 is proved by the technique, which was developed in the earlier pub-
lications [16-22]. We derive here an approximate error estimate of the Lagrangian.
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In the context of Theorem 4.5, the word “approximate” means not only ignoring
the remainder term R in (4.21) but also ignoring residuals of various interpolation
estimates appearing in the proof of this theorem. A more advanced approach, which
is free from these approximations, was developed in joint publications of the authors
of this book [26-29], and it is presented in this chapter below.

Theorem 4.5. Let Y be the class of functions defined in (4.7). Assume that there
exists a minimizer v.= (u(c),A(c),c) € Vs of the Lagrangian L in (4.14) on
the set (4.19) and v = (u(c),A(c).c) € U?. Here, the function ¢ € Y and
functions u (¢c) € H>(Qr) and A (¢) € H*(Qr) are solutions of initial boundary
value problems (4.9) and (4.10), respectively. Let functions u (c) , A (¢) € C? @T) .
Suppose that there exists a minimizer vy, = (uy, (cp) , Ap (cn) ,cn) € Uy N Vs of the
Lagrangian L on the discrete subspace Uy, where the function ¢, € Y. Then the
following approximate estimate of the error e = L(v) — L(v;) of the Lagrangian
holds:

le| < /R,“(m dodt +/Rum dxdr + / R0 dxdt
St or Or

—i—/Rllcfu dxdt—i—/RMou dxdt—i—/Rlsou dxdt

or or or
+/Rc10c dxdrt +/Rcz(7c dx, (4.28)
or Q

where the residuals are defined by

Ry = max ! |[9u]

Ry, = cp ! | [8, uh]

Ry, = |p

)

)

Rll = Zf‘g - ulST , R/\z = SI‘Ié%)I(( h1_(1|[as/\h] s
Ry, = cpt [0 An]].

Rey = |0:An] - [0:unl, Rey = |cn — cgiobls (4.29)

and the interpolation errors are
0,=Cr |[at/\h]| + Chg |[an/\h]| ’

0w = Ct|[dup]| + Chi |[3nun]| .
oc = C|lex]]- (4.30)
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Remark 4.5. In publications [16-22], only the sum of two terms in the last line
of (4.28) was used to single out subdomains of the domain §2 where the mesh
should be locally refined. The same conclusion is derived from the theory which
was developed in joint works of the authors of this book [26-29]; see (4.188) and
(4.189).

Proof of Theorem 4.5. In this proof, C > 0 denotes different constants independent
on i, T as well as on functions we consider. Using (4.16) and (4.23), we obtain

e~ L(p)v—vi)=+ L+ 1), (4.31)

where:

I = / [—c,,a,(x—x,’,)afuh + V(A—A,’,)vuh] dxdt —/p(x—x,ﬁ) dodr,

or St
(4.32)
L= / 2(g — uls;)(u — ul) dodr
St
+ / [ —cn @An) 0 (w—up) + VA,V (u—uj)] dxdt, (4.33)
or

Iy = —/ (0 An) @rup) (c —cf) dxdt + « /(Ch — Cgiob) (¢ — ¢} )dx. (4.34)
or A

Integrating by parts in the first and second terms of (4.32), we obtain the
following estimate:

L] = ‘/Q (ch (afuh)(x—x,ﬁ)—Auh(x—xg)) dxdt

T
—/ p(x—x,g)detJrZ/ / Ongun(A — A}y dSdr
Sy < Jo Jok

_Z/Qch[a,uh (1) | = 2D dx‘. (4.35)
k

Here, terms 9, u; and [B,uh] appear due to the integration by parts and denote,
respectively, the derivative of u, in the outward normal direction n ¢ at the boundary
dK of the element K and the jump of the derivative of u, in time. In the third term
of (4.35), we sum over the all boundaries of the element K, and each internal side
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S € S}, occurs twice. Denoting by du;, the derivative of a function uy, in one of the
normal directions of each side S, we obtain

/ankuh(x Ay ds = Z/ [0,un](A — A1) ds,

K 9k

where [8Suh] is the jump of the derivative d;u; computed from the two elements
sharing S defined by (4.26). We distribute each jump equally to the two sharing
elements and return to the sum over edges dK of the element:

Z/[au,,](x Alyds = Z —hy /auh (A—Ab) hg dS.

Since dx &~ hgdS, we approximately set dx = hgdS and replace the integrals
over the boundaries 0K of finite elements by integrals over the finite elements K.
Then

Z ~h /au,, A=A hx dS| < C [ max il [0 ][ - [2 = A | dx,
2

where [3Suh]|K = maxgscyx [asuh]is.
Similarly we can estimate the fourth term in (4.35):

3 / e [0 (1)) (0 — A1) v
k
<% / ot w0 - [ = 2 w0 7 dx

fCZ//Ch‘L' L. 3tkuh]i-|/l—l,€|dxdt

ka

e / et - [un]| - | — A1 | dxdr,
or

where:

|85 un]| = mjilx(”at“h(fk)”’ [0 wn (tre+]11) (4.36)

and [duy,] is defined as the maximum of the two jumps in time on each time interval
Jx appearing in (4.36):
[atuh] = [atk uh] on Ji.
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Substituting both above expressions in the second and third terms in (4.35), we
obtain

|| < / (cn2up — Aup)(A — Ay) dxdt| + /p(/\ —A}) dodt
T T
+C / Snéaa)lc(h}l |[0sun]| - [A — A | dxdt
or

e / ent™ - [dun]| - |2 — A1 |dxdr.
or

Next, we use the standard, elementwise, interpolation estimate for A — /\i for every
element K and the time interval J; [67]

12 = M llawomso < G (P Mgy + 1% 1D czy) . @3D)

with an interpolation constant C;. Here, D? denote second order derivative of A.
We obtain

Ih|<cC / |endfun — Auy| - (rz 1Aeelle (®x7,) + h | D*A ”C(?xﬂ)) dxdr
or

€ [1o1 (2 Walle oy + W 1D e,y ) dor
St

+C / (Sng)lgh?) @sunl] (22 Wl () + 1 | DA e, ) dede

Or

+C / et )l (7 Wl (i) + Wk 1D A ]z )

Or
(4.38)

Note that the first integral in (4.38) disappears, since uy, is a continuous piecewise
linear function in space and time. We use the following approximation [88]:

3
A . Lo ’],zeJk,

,xeK. (4.39)
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Hence,
|1 <C/|p| 19:A4] _ +h% (O A} | dodr
T lle®x7y) hk llc®x7y)
+C/ max h}l|[85uh]| 7? Bl dxdt
g SCoK T lle®xTy) hk e @xTy)
T
A
+C/Ch7:;1 [07 1] (TZ _h] o h—] _ )dxdt.
O T lle(&xTx) K llc(BxTy)

We estimate [, similarly:
|12| < / |c,,a,2/\h(u - u,’l) — AN (u— uﬁ)! dxdr + / z;|(g —uls, ) (u— uﬁ)! dodr
St
or

+C Snézb)[(< hx |[8S/\h]| . |u — u,11| dxdr

or
+c/chr—1.|[a,xh]\.|u_u,g|dxd[

or

T
< c/ /|c,lagxh_mh|.|u_ug|dxdt
0
2

+ /z;|(g —uls,)| - |u—uj| dodt

St

+C / ma i[9, ]] - |~ uf | dxar
or

e / et [0, ]| - |u — | dxatr,
or

Using (4.37) and (4.39), we estimate the function ‘u — uz | Also, we use the fact
that A, is a piecewise linear function. We obtain

L] <C / ‘Chatzlh - Alh‘ (Tz
Or

nuh]
hk

T

) dxdt
C (?X7k) C (?X7k)
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+/ 2 g —usy | (2 2l + 1 | e dodr
¢ T le@®x7) hk e @)
T
d d
e / max A - [[9sA4]] [ 72 [9: 1] +h (011 dxdr
J SCoK T lle@®xTy) hk llc®x7y)
T
+C/ e o) - (22| L] i iy [t dxdr
J T lle@xa) hg e ®xay)
T
SC/zg|g—usT’~ 72 Uz h2 M dxdt
F T lle@®xTy) hk N ®@x7)
T
+C / max g (0]l [ <2 | 2] 4 12, [ Lntn] dxdt
5 SCoK T lle@®xTy) hk c(BxTy)
T
9 9
+C/ are o) 2 |2 4 1 | L] dxdr
J T le@®x7) hg lle@xTy)
T

To estimate /3, we use the standard interpolation estimate (4.13) for every
element K for the coefficient c(x):

le—c! ||C® = Chg |IVell, o, (x)

Also [88],
|Ve| ~

I[cn]]
hg
We obtain

|I3i =C / [0 An| - 10run] - ”VC”LOQ(K) hg dxdt
or

+ C/ |leh = Caton | - Vel ) Pk dx
2

<C / [0;An| - |0run]| - |[ch]] dxdt
or

+C / |ch - cglobl : I[ch]l dx.
2

Collecting above estimates for /1, I, and I3, we get a posteriori error estimate
(4.28) of the Lagrangian.
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4.6 Some Estimates of the Solution an Initial Boundary Value
Problem for Hyperbolic Equation (4.9)

In Sect. 4.4, we have heuristically derived formula (4.17) for the Fréchet derivative
of the Lagrangian (4.14). It is shown in Sect.4.8 that the same formula can be
derived rigorously for the case of the Tikhonov functional (4.8). However, in order
to derive it rigorously, we need to make some preparations in Sects. 4.6 and 4.7. In
particular, in this section, we establish certain estimates for the solution of the initial
boundary value problem with the Dirichlet boundary condition for the hyperbolic
equation (4.9). The initial boundary value problem with the Dirichlet boundary
condition for a general hyperbolic equation was studied in Chap.4 of the book
[119]. In particular, Theorems 3.1 and 3.2 of that chapter establish existence and
uniqueness of the weak solution of this problem in the space H' (Qr). In addition,
Theorem 4.1 and Corollary 4.1 of Sect.4 of Chap.4 of [119] establish a higher
smoothness of the weak solution. It is also important that the proofs of both Theorem
4.1 and Corollary 4.1 provide a tool for the further increase of the smoothness. At
the same time, some constants in proofs of these results of [119] are not specified in
the form which is convenient for our particular goal. Thus, we specify them in this
section. Naturally, we extensively use Theorem 4.1 and Corollary 4.1 of the book
[119] in the current section. Still, since we are interested in this book in inverse
rather than in forward problems, we do not reformulate these results here.

We refer to (4.5) for notations of domains. Let the function ¢ € Y, where the set
Y was defined in (4.7). Denote

1
b(x) = - (x)' (4.40)
Then . .
If
c(x)vy = Av+ g (x,t), (4.42)
then

v =V (b(xX) V) = VDV + T (x,1), T(x.t) = b (x) g (x.1).  (4.43)

Let the function f (x,t) € L,(Qr). Because of (4.40)—(4.43), consider the
following initial boundary value problem with the Dirichlet boundary condition:

uyy =V-(b(x)Vu) —VbVu+ f (x,t) in Qr, (4.44)

u(x,0) =u (x,0) =0, (4.45)

uls;,=0. (4.46)



4.6 Some Estimates of the Solution an Initial Boundary Value Problem...

211

We remind that the function u € H'(Q7) is called the weak solution of the
problems (4.44)—(4.46) if it satisfies the initial condition (4.45) as well as the

following integral identity:

/ (—un, + b (x) VuVn) dxdr + / (VbVu) ndxdt
or or

= / fndxdt, ¥ne H) (Qr).n(x,T) =0,
or

where
Hy (Qr)={ve H' (Qr):v|s,=0}.

Consider now the case when the function f (x, ¢) in (4.44) satisfies the following

conditions:

a?f(-xst) S LZ (QT)s ke [15317
9 f(x.0)=0in 2. ne0.2].

Note that (4.47) and (4.48) imply that

f’ft’ftt € LZ(‘QI)’ Vt € [O’T]v
195 f (el < T2 |05

f ”Lz(QT) ’

To prove (4.49) and (4.50), we note that since

fu ) = | 8f (x.1)dr,
[

then

I oD oy = [ S2 0 A ST F g
2

s €10,2].

(4.47)
(4.48)

(4.49)
(4.50)

(4.51)

(4.52)

Theorem 4.6. Let 2 C R? be a convex bounded domain with the boundary 952 €
C?. Let the function ¢ € Y, where the set Y was defined in (4.7), and let b (x) be
the function defined in (4.40). Let the function f (x,t) in (4.44) satisfies conditions

(4.47) and (4.48). Denote
m = |lclle(g) -

(4.53)
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Then, there exists unique weak solution u € H' (Q7) of the problem (4.44)—(4.46).
Furthermore,

u,ur, uye € H* (Q7), (4.54)

Also,
u € H*(2,)NC (2,). Vi €[0,T]. (4.55)

Let
u' (1) = ||us (x,f)”c(ﬁ,) :

Then, the function u! (t) € Loo (0, T) and there exists a constant C = C (2,d, w)
> 0 such that

<mexp(CT) |9; (4.56)

1
”u HLOO(O,T) f ”Lz(QT) :
Proof. In this proof, C = C (£2,d,®) > 0 denotes different constants depending
on these parameters. Using (4.40), (4.41), and (4.53), we obtain

VDIl oi2) < (4.57)

M
(1-w)?
with a certain constant M > 0. Since by (4.47), the function f; € L, (Qr), then
(4.57) and Corollary 4.1 of Sect.4 of Chap.4 of the book [119] imply that u €
H?(Qr). Consider now the solution u; of the following initial boundary value
problem:

Puy = V- (b (x) Vuy) — VbVuy + f; (x,1) in Qr, (4.58)
up (x,0) = d,u; (x,0) =0, (4.59)
up |s,= 0. (4.60)

This problem is obtained from the problem (4.44)—(4.46) via the differentiation of
(4.44) with respect to t keeping in mind (4.49). Since by (4.47) and (4.48), the
function f;; € L, (Qr), then, using the same arguments again, we obtain that

up € H2(0r).
Consider the function u:

1

u(x,t) = /ul (x,7)dr.

0

Since u; € H?(Qr), then obviously, u € H?(Q7). We apply to both sides of
(4.58) and (4.60) the operator
t
/ (-)dr.
0



4.6 Some Estimates of the Solution an Initial Boundary Value Problem... 213

Using (4.49), we obtain that the function # € H?(Qr) satisfies conditions
(4.44)-(4.46). Hence, u = u. Hence, u;, = u;, € H? (Qr). Similarly, u,, €
H?(Qr) . Thus, (4.54) is true.

Hence,

t
/D?Dgu(x, t)dt = D, D%u(x,t) € Ly (£2,), YVt € [0, T]; || <2.
0

Hence, u, € H? (£2,) . Using (4.40) and boundary condition (4.46), we now rewrite
(4.58) and as

Au;, = g (x,t), in £2;, 4.61)
u Jag,= 0, (4.62)
g(x,t) =c(x)Pu(x,1)—c(x) fi (x,1). (4.63)

One can consider (4.61) and (4.62) as the Dirichlet boundary value problem for the
Poisson equation for the function u (x, 7). It is well known that this problem has
unique solution in the space HZ (£2;):

H; (82,) = {ve H*(2):v|g=0}.
Since by (4.46), the function u, € HO2 (£2;), then this function is exactly that

solution. Furthermore, the second fundamental inequality for elliptic operators of
0O.A. Ladyzhenskaya implies that

3
Z v, ”iz(.o,) < 1 AVIIL, 0, - Vv € Hi (20):
ij=1
see Sect. 6 of Chap. 2 of the book [119]. In addition, the Poincare inequality is
Mlza@y = CullVVliyg,) > YV € H (2) = {v e H' (2) v |o,= 0},
where the constant C; = C)(§2) depends only on the domain 2. Thus, the

combination of the two latter inequalities with (4.61)—(4.63), (4.47)—(4.50), and
(4.53) implies that

s Oy = € [m B0 o + T8 S o] 464

Since by the embedding Theorem 1.1.3.2 H?(£2;) C C (ﬁ,) , then (4.64) implies
that the function u, € C (ﬁt) . Thus, (4.55) is true.
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Hence, it follows from (4.64) that with a different constant C,
1 _ 3 3
W (0) =l (.0l ¢ () < C [m |0u .00, + T 0 f ||L2(QT)] . (4.65)

Therefore, we now need to estimate the norm || 3;’14 (x,1) H Lo(2) from the above.
Denote w = u;,. By (4.54), the function w € H? (Q7). It follows from (4.44)—
(4.49) that the function w is the solution of the following initial boundary value
problem:

c(xX)wy — Aw =c¢ (x) fi; (x,1) in Qr, (4.66)
w(x,0) = w; (x,0) =0, 4.67)
w|s,= 0. (4.68)

We now use the standard method of energy estimates. Multiply both sides of (4.66)
by 2w, and integrate over the time cylinder Q, = £2 x (0, ¢) using integration by
parts as well (4.68). We obtain

/ 0; [c (x) sz (x, t)] dxdr + / 3 (Vw (x,7))*dxdt = 2/c (x) frew, dxdz.

O [oF 0,
(4.69)

Integrating with respect to t in the integrals in the left-hand side of (4.69) and using
(4.67), we obtain

/ [c (x) wt2 + (Vw)z] (x,t)dx = 2/6’ (x) frrw,dxdt. (4.70)
2 O
Since ¢ (x) > 1 — w, then
/ [c (x)w? + (Vw)z] (x,1)dx > (1 — a))/ [w,z n (Vw)z] (x,f)dx. (471
2; 2
Hence, using the Cauchy-Schwarz inequality, we obtain from (4.70) and (4.71)

t

/ [wtz + (Vw)z] (x,t)dx < C / / (W? + (Vw)z) (x,7)dx | dt

o 0 2

+C / f2dxdr. 4.72)
O
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Denote
— 2 2
1(1) _/[W, + (V)| (.0 d,
2
G () = c/f,fdxdr.
oy
Then by (4.72),

I(Z)SC/I(t)dr—i—G(t).
0

Hence, using the well-known Gronwall’s inequality (see, e.g., Lemma 1.1 in Sect. 1
of Chap. 3 of the book [119]), we obtain

I1()<exp(Ct)G(T),t<]0,T].
The latter inequality means that

we ¢,y + IVW (D L2 < exp(CT) (| fuell Ly 00)

<exp(CT)|9; 4.73)

f ”Lz(QT) ’

t € [0,7]. Recall that w = u,,. Hence, w, = Bfu. Therefore, (4.65) and (4.73)
imply (4.56). O

In Sect. 4.7, we will need the following:

Corollary 4.6. Let in (4.47)k € [O, E]  wherek € [1,4]. Also, let other conditions
of Theorem 4.6 hold true. Then functions

due H>(QOr).ic [O,E— 1] (4.74)
and the following estimates hold for (k,i, j) € [O, E] X [O,E— 1] x [1,3]:

tel0,T],
4.75)

[l gy Jois, (50 0 = e (CT) o1
0 L

207)

where C = C (£2,d, w) > 0 is the constant of Theorem 4.6
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Proof. The assertion (4.74) can be proved similarly with (4.54). To prove (4.75),
consider the following initial boundary value problem:

v = V- (b (x) Vv) — VbV + 05 £ (x.1) in O, (4.76)
v(x,0) = v (x,0) =0, 4.77)
v |s,= 0. (4.78)

Since the function 3 f € L, (Qr), then Corollary 4.1 of Sect.4 of Chap.4 of
the book [119] implies that the problem (4.76)—(4.78) has unique solution v €
H?(Qr) . Similarly with the proof of Theorem 4.6, we verify that v = 9 lu.
We now rewrite (4.76) in the equivalent form:

c(xX)vir = Av+c(x) 3 f (x.1) in Or. (4.79)

Next, applying to the problem (4.77)—(4.79) the standard energy estimate in the
same manner as it was done in the proof of Theorem 4.6, we obtain (4.75) for

k=%k,i=k—1Thecases0 <k <k—1,0<i < max(O,E—Z) can be
considered similarly with (4.51) and (4.52).

4.7 Fréchet Derivatives of Solutions of State and Adjoint
Problems

This is the second preparatory section for the rigorous derivation of the Fréchet
derivative of the Tikhonov functional. Here, we use Theorem 4.6 to derive Fréchet
derivatives of solutions of state and adjoint initial boundary value problems (4.9)
and (4.10). However, the inconvenient point of Theorem 4.6 is that it is valid only
for the case of the Dirichlet boundary condition in (4.46). On the other hand, we
have the Neumann boundary condition in each of the problems (4.9) and (4.10).
Nevertheless, the material of Sect.5 of Chap.4 of the book [119] indicates that
Theorem 4.5 can be extended to the case of the Neumann boundary condition. The
actual proof would be quite space consuming, since we would need to prove first
analogs of Theorems 3.1, 3.2 and Theorem 4.1 of Chap. 4 of [119]. However, since
we focus here on inverse rather than forward problems, this proof is outside of the
scope of the current book. Thus, we simply assume that Theorem 4.6 holds for
this case. Therefore, when referencing to Theorem 4.6 in this section, we mean an
obvious analog of this theorem for the case of the Neumann boundary condition.

Just as in Theorem 4.6, we assume here that £2 C R? is a convex bounded domain
with 92 € C2. We also assume that there exists a function a (x) such that

a e C2 (ﬁ), a |3Q= 0, a,,a |3Q= 1. (4.80)
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For example, if £2 = {|x| < R}, then one can choose a (x) = (|x| — R) x (|x]).,
where the function y is such that

1forz e [%,R],
1) € C®[0,R], x(z) = 0 forz € [0, %],

between 0 and 1 for z € [%, %] .

Although such functions a (x) might also likely be constructed for more general
convex domains, we are not doing this here for brevity.

For the convenience of the reader, we rewrite state and adjoint problems (4.9)
and (4.10) in this section as problems (4.81) and (4.82), respectively:

c(xX)uy —Au=0in Qr,
u(x,0) = us(x,0) =0,
Butt |5y = p (x.1) (4.81)

c(x)Ay — AL =0in Q7p,
Ax,T) = A(x,T) =0,
A Isp = 20 (1) (g —u) (x,1). (4.82)

The function z; () was introduced in Sect. 4.3.

We need to extend boundary functions p (x, ), z; (t) g (x,t) in (4.81) and (4.82)
from the boundary S7 inside the domain Q. Let P (x,¢) and G (x, t) be extensions
of p(x,t) and z; (¢) g (x, 1), respectively. Because of (4.47)-(4.49), we need these
extensions to be sufficiently smooth. Also, the function P (x,t) should be equal
zero at {t = 0} together with some of its #-derivatives. The function G (x, t) should
be equal zero together with some of its ¢-derivatives at {t = T'} . Note that it is quite
natural to assume that the function p (x,¢) = 0 for sufficiently small 7. Indeed,
since the source xo ¢ £2, then (4.1) implies that the solution of the problem (4.2)
and (4.3) u (x,1) = 0 for (x,1) € £2 x [0, &] for a sufficiently small & > 0.As to the
function G (x, 1), it is also natural to assume that G (x, T') = 0 together with some
of its derivatives, since the function z; (f) = O near {t = T'}. Thus, we assume that
there exist functions P and G such that

P € H*(Qr), ® € H (07), (4.83)
anP |ST :p(xvt)s an¢ |Sr:Z§ (Z)g(xvt)s (4‘84)
P (x,00=0d(x,T)=0in 2, k €[0,4]. (4.85)

Theorem 4.7.1. Let 2 C R® be a convex bounded domain with the boundary
052 € C2. Suppose that there exists a function a (x) satisfying conditions (4.80).
Let the function ¢ € Y, where the set Y was defined in (4.7). Suppose that
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there exist functions P (x,t) and @ (x,t) satisfying conditions (4.83)—(4.85). Then
each of problems (4.81) and (4.82) has unique weak solution u € H' (Qr) and
A € H'Y(Qr), respectively. Furthermore, derivatives Bf‘u, 3?21 exist for k| €
[0,3],k, € [0,2] and

I'ue H*(Qr). ki €[0,3], (4.86)
21 e H2(Qr). ky €0,2]. (4.87)

In addition, there exists a constant C = C (Q,d,a),z;,a) > 0 such that the
Sfollowing estimates hold for (k,i, j) €[0,4] x [0,3] x [1,3]andt € [0,T] :

|9F el 0,y 19ux; 2.0 ) < XD (CT) 1Pl ooy - (4.88)

Also, for (r,s, j) €[0,3] x [0,2] x [1, 3],

197 Ay 3122, (0| g,y = €xP (CT) (1P N gsory + 1P 5c0) -
(4.89)
In addition, functions

uu € H*(2,)NC (2,), Vi €[0,T], (4.90)
A € H*(2,)NC(2,). Vi €[0,T] (4.91)

and the following estimates hold
i (.0l zy < mexp (CT) [Pl oo - (4.92)
1A . D)llc () < mexp(CT) (1Pl uscor) + 1Pl asiop) - (4.93)

where the number m = ||c ”c(ﬁ) was defined in (4.53).

Proof of Theorem4.7.1. First, we prove assertions of this theorem for the function
u. To obtain the zero Neumann boundary condition at S7, introduce the function
U(x,t) =u(x,t) — P (x,t). Then (4.81) implies that

¢ (X) iy = A — (¢ (x) ;P — AP),

U(x,0) =u (x,0) =0,

0t | s, = 0. (4.94)
It follows from (4.83)—(4.85) that conditions of both Theorem 4.6 and Corollary 4.6
are valid for the problem (4.94). Hence, Theorem 4.6 and Corollary 4.6 imply that

assertions (4.86), (4.88), (4.90), and (4.92) are valid for the function %. Since u =
U + P, then these assertions are also true for the function u.
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Consider now the function A (x, 7):
A(x,t) =2 (x,0) = [@ (x.1) —z () a (x)u(x,1)]. (4.95)

Substituting this in (4.82) and using (4.81), we obtain

¢ (X) Ay = AL+ f(x,1), (4.96)
A(x,T)y=A (x,T) =0, (4.97)
A |sp=0, (4.98)

f(x,t) =—(c(x) 7@ — AD) + 2¢ (x) a (x) L 4 ¢ (x) a (x) zgu
—22:VaVu — zzula. (4.99)

Hence, (4.83), (4.85), (4.86), (4.88), and (4.99) imply that

If (x.1) € Ly (Q7). k €0.3], (4.100)
I f(x.T)=0,n¢el0,2]. (4.101)
5T ion = € (IPlason + 19luson) - (4.102)

Conditions (4.100) and (4.101) are the same as conditions (4.47) and (4.48) in
Sect.4.6. This means that conditions of Theorem 4.6 are valid for the problem
(4.96)—(4.99). Hence, Theorem 4.6, Corollary 4.6 (for the case k = 3), and (4.102)
imply that there exists unique solution A € H2 (Q7) of the problem (4.96)—(4.99),
the function A satisfies (4.87), and assertions (4.89), (4.91), and (4.93) are true for
. Finally, the above established assertion for the function u as well as (4.95) ensure
that the function A also satisfies (4.87), (4.89), (4.91), and (4.93). O
Introduce the set Z of functions as

Z={f:feC(2)NH" (). 0y, f € Loo(R)., i =1,2,3},

where 0y, f is the weak derivative of the function f* with respect to the variable x;.
Define the norm in Z as

3
1Az = 1 le@y + D 105 f e - (4.103)
i=1

Hence, Z is a Banach space. Then the set Y C Z, where Y was defined in (4.7). In
Theorem 4.7.2, we derive Fréchet derivatives of solutions of both state and adjoint
problems with respect to the coefficient ¢ (x).
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Theorem 4.7.2. Let 2 C R? be a convex bounded domain with the boundary
052 € C?. Suppose that there exists a function a (x) satisfying conditions (4.80).
For each function ¢ € Y, consider solutions of state and adjoin initial boundary
value problems (4.81) and (4.82). Assume that there exist functions P (x,t) and
@ (x,t) satisfying conditions (4.83)—(4.85). Consider the set Y as an open set in
the space Z. Define operators Ay : Y — H'(Qr)and A> : Y — H'(Qr) as
those which map every function ¢ € Y in the weak solution u (x, t, c¢) of the problem
(4.81) and the weak solution A (x,t, c) of the problem (4.82), respectively, where in
(4.82) u |s;:= u(x,t,¢) |s; . Then functions u (x,t,c), A (x,t,¢) € H>(Qr) and
relations (4.86)—(4.93), are valid for these functions. Each of the operators A; and
A has the Fréchet derivative A’ (c) (b), A} (¢) (b):
A (c) (b) =T (x,t,¢,b) € H' (Qr),
A5 () (b) = X (x.t.¢.b) € H' (Q1).
at each point ¢ € Y, where b(x) € Z is an arbitrary function. Functions
% e H*(Qr) and & € H? (Qr) are solutions of initial boundary value problems
(4.104) and (4.105), respectively, where
¢ (X)) = Ad—b(x)uy, (x,t,¢), in Or,
U (x,0) = (x,0) =0,
il |s, =0, (4.104)

¢ (xX) Ay = AX — b (X) Ayt (x,2,¢), in O,
A(x,T)=2(x,T) =0,
A sy = —20 |sy (4.105)

In addition, the following estimates are valid:

07y < €0 (CTY [Pl 1511z (4.106)

70, =P C€D (1P Ineiony + 19 1si0n) 1Bl (4107

where C = C (.Q, d,w,z, a) > 0 is the constant of Theorem 4.7.1.
Consider the operator Az (c) defined in Y :,

T
As (c) (x) := / (uAy) (x,t,c)dt,x € 2, Ve € Y. (4.108)
0

Then
A3 Y = Lo (2) (4.109)
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and
145 @l wiay = mexp (C€T) (1P Brey) + 12ps0,y) . 4110)

where the number m was defined in (4.53).

Proof. Consider an arbitrary function ¢ € Y. Theorem 4.7.1 implies that relations
(4.86)—(4.93) for u (x,t,c) , A (x,t,c) € H*(Qr) are valid. Relations (4.109) and
(4.110) for the operator A3 (c) in (4.108) follow from (4.90)—(4.93).

By (4.88), the function d}u € L, (Qr) . Hence, Theorems 3.1 and 3.2 of Chap. 3
of the book [119] imply that there exists unique weak solution € H' (Qr) of the
problem (4.104). Furthermore, Corollary 4.1 of Sect. 4 of Chap. 4 of [119] implies
that functions %, %, € H? (Qr). In addition, Corollary 4.6 implies that

el acor 107 |,y < €XP(CTY P geop 1011 (@.111)

The estimate (4.106) follows from (4.111).
Consider now the function A. Let v = A+z; (t) a (x)u. Then (4.104) and (4.105)
imply that

vy =Av+ @ (x,t) —b(x) Ay (x,2,0), (4.112)
v(x,0) = v (x,0) =0, 4.113)
v |5, = 0, (4.114)
0 (1) = —a ()b (¥) 20 () g + (@) () (2 (VT + 22 ()7, )
—z; @WAa +2VaVu) . (4.115)

Since functions %%, € H?(Qr). In addition, by Theorem 4.7.1, the function
u;; € H?(Qr). Hence, (4.115) and Theorems 3.1 and 3.2 of Sect.3 of Chap.3
of the book [119] imply that there exists unique weak solution v € H' (Qr) of the
problem (4.112)—(4.114). Furthermore, Corollary 4.1 of Sect. 4 of Chap.4 of [119]
and (4.111) imply that the functionv € H? (Q7) . In addition, Corollary 4.6, (4.88),
(4.89), and (4.111) imply that

VIl or) = exp (CT) 1Pl gogory 1Pz -

Hence, the function A € H> (Qr) and (4.107) holds.

We prove now that the function % (x,¢,c,b) € H' (Qr) is indeed the Fréchet
derivative of the operator A;. It follows from (4.7) that there exists a sufficiently
small number o € (0,1) suchthat 1 —w (1 —0) < c(x) <d +w (1 —0) in 2.
Let the function b € Z be such that ||5|| c(@) <o Hence, ¢ + b € Y. Consider

c+b

functions u“7”, u¢ and u; defined by
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uctt (x,t) ;== u(x,t,c +b),
u® (x,t) :=u(x,t,c),

uy = up (x,t,¢,b) = (ut? —u =) (x,1). (4.116)
Hence, u; € H? (Or) . We now figure out the equation for the function u;. First,
substitute in (4.81) ¢ := ¢ + b. Next, substitute ¢ := c¢. Next, subtract the second
resulting equation from the first one and then subtract (4.104) from the resulting
equation. First, we have

(¢ + by ul]? — cuf, — Gy = (¢ + b)ui” — (¢ + b) ul, — (¢ + b) iy

+bu;, + buy = (¢ + b) ury + buy, + by,

Hence,
(¢ + b)uyyy = Auy — bus, + bus, — by, = Auy — by,

Hence, the function u; is the solution of the following initial boundary value
problem:

(¢ +b)uy; = Auy — by,
ui (X,O) = Uy (X,O) = O,

8n up |ST =0.
Hence, using (4.106), we obtain

1oy < exp(CTY Pl gogop 10117 -

u
lim (M) — 0. 4.117)
o]l 0 151l

Since the function u depends linearly on the function b, then (4.116) and (4.117)
imply that the function @ (x,,c,b) € H' (Qr) is indeed the Fréchet derivative of
the operator A : ¥ — H '(Qr) at the point ¢ € Y. The proof for the function
A (x,t,c,b) is similar and is, therefore, omitted. O

Hence,

4.8 The Fréchet Derivative of the Tikhonov Functional

After two preparatory Sects.4.6 and 4.7, we are ready now to derive the Fréchet
derivative of the Tikhonov functional (4.8). We assume in this section that conditions
of Theorem 4.7.2 hold. For functions ¢ € Y, we consider the Tikhonov functional
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E(c) (4.8) and the associated Lagrange functional L (c) defined in (4.14). For the
convenience of the reader, we copy here both functionals (4.8) and (4.14) as well as
the definitions (4.11) and (4.12) of weak solutions of the state and adjoint problems,
respectively. So these are formulas (4.118)—(4.121):

1 1
Eue) = 3 / (uls, — £0x.1)’% (1) dodi + 3o / (¢ —ca)’dr,  (4118)
Sr 2

L(c) = Ey(c) — / c(X)u;Adxdr + / VuVAdxdr — / pAdodt, v = (u,A,c),

or Or Sr
4.119)

/ (—c (x) uyv; + VuVy) dxdt — / pvdSy; =0, Vve H' (Q7), v(x,T) = 0.

or St
(4.120)

/ (—c (x) Ayve + VAVY) dxdr — / ze(g —uyvdSy, =0,
or St

Yve H' (Q7), v(x,0) = 0. (4.121)

In (4.118)—~(4.121), ¢ € Y is an arbitrary function, u € H? (Q7) is the solution of
the state problem (4.81), and A € H? (Qr) is the solution of the adjoint problem
(4.82). Since by (4.82), A (x, T') = 0, then the integral term in (4.119) equals zero.
Hence, L (¢) = E, (c), implying that

L'(c) = E,(c).Vec €Y, (4.122)

where L’ (¢) and E/, (c) are Fréchet derivatives of functionals L (¢) and E, (c),
respectively. By Definition 1.9.1 of the Fréchet derivative, in order to obtain an
explicit expression for L' (¢) = E/, (c), we need to vary in (4.120) the function ¢
via considering ¢ + b € Y for b € Z and then to single out the term, which is linear
with respect to b. When varying ¢, we also need to consider respective variations
of functions u and A, since these functions depend on the function ¢ as solutions of
state and adjoint problems (4.81) and (4.82). By Theorem 4.7.2, linear, with respect
to ¢, parts of variations of u and A are functions w (x, ¢, ¢, b), A (x,t,¢,b) .

Theorem 4.8. Assume that conditions of Theorem 4.7.2 hold. Then for every
function ¢ € Y, the Fréchet derivative of the Tikhonov functional E (c) in (4.118)
is the functionE’ (¢) (x) defined as

T
E/ (c) (x) = L' (¢) (x) = & (¢ — Cgiop) (x) — / (u:As) (x,t)dt, x € 2. (4.123)
0
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The functional of the Fréchet derivative acts on an arbitrary function b € Z as
Jfollows:

T

(E, (¢).b) = / o (¢ — Colon) — / A dt | (x)-b(x)dx, Vb e Z, (4.124)
2 0

where the functional space Z was introduced in Sect. 4.7. Also,

E!(¢) (x) € Loo (2). (4.125)

Proof. Considering in (4.119), L (¢ +b) — L (¢) = E4 (¢ + b) — E, (¢), singling
out the term, which is linear with respect to b, and using Theorem 4.7.2 as well as
(4.122), we obtain

T

L' (c)(b) = E, (c)(b) = / o (¢ — Colon) — / u A de | b (x)dx

2 0

+ / (—cu,i, +VuVI) dxdr — / pAdxds

or St

+ / (—cAduy + VAVE) dxdr — / (g —ulsy)z (t)udodt,
or Sr

YceY,VbeZ, (4.126)

where functions % € H? (Qr) and X e H? (Qr) are solutions of problems (4.104)
and (4.105), respectively. Since u (x,0) = A (x,T) = 0, then (4.120) and (4.121)
imply that second and third lines in (4.126 ) equal zero, which proves (4.123) and
(4.124). The validity of (4.125) follows from (4.108) and (4.109).

Thus, Theorem 4.8 rigorously establishes the same expression for the Fréchet
derivative of the Tikhonov functional as the one established heuristically for the
Lagrangian in (4.17) (Sect.4.4). One can see that this rigorous derivation has
required a significant preparation described in Sects.4.6 and 4.7. We also note
that the Tikhonov functional is the primary one (Chap. 1). On the other hand, the
Lagrangian is a secondary one. Nevertheless, quite often, a simple derivation like
the one in Sect. 4.4 is preferable when one wants to skip lengthy discussions. In
fact, we use such simplified derivations in Chaps. 5 and 6.

We refer to [77, 91] for different approaches to derivations of the Fréchet
derivatives for the Tikhonov functionals for some 1D CIPs. In the earlier work
[53], the Fréchet derivative for the Tikhonov functional was derived for a parameter
identification problem. Parameter identification problems are different from CIPs.
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The author of [53] has kindly informed us that the complete proof of the result of
[53] is presented in his Ph.D. thesis (1971).

4.9 Relaxation with Mesh Refinements

The goal of this section is establish the central property of the adaptivity technique
for ill-posed problems: the relaxation. In other words, we prove that the accuracy
of the reconstruction of the regularized solution indeed improves with mesh
refinements. This improvement takes place until the regularized solution is indeed
achieved. While such improvements were constantly observed computationally
in all previous works on the adaptivity, the first analytical confirmation of this
phenomenon was done in the paper [29]. The proof of the relaxation property is
presented in Sect.4.9.3. This proof is significantly simplified compared with the
one of [29]. Sections 4.9.1 and 4.9.2 are preparatory ones, and ideas of [29] are
used in these sections quite essentially. The local strong convexity Theorem 1.9.1.2
plays a significant role in this section. We remind that an analog of this theorem was
proved in [29].

First, we introduce one of possible frameworks of functional analysis for
the adaptive FEM for ill-posed problems, see, e.g., [15], for another possible
framework. Next, we prove the relaxation property of the adaptivity. In other
words, we prove that the next mesh refinement indeed provides a more accurate
approximation for the regularized coefficient than the previous one. This is done
for an abstract nonlinear operator. Since in real computations we work with finite
dimensional spaces of standard piecewise linear finite elements, we focus our theory
only on these spaces.

To explain intuitively the importance of the relaxation property, consider first an
example of the FDM for a “good” boundary value problem. Let / be the grid step
size of the FDM, U be the exact solution of that problem, and U}, the FDM solution.
Then the standard convergence theorem ensures that [146]

U — Ul < Ch?, p = const. >0, (4.127)

where |-|| is a certain norm in the discrete space which corresponds to finite
differences. The inequality (4.127) ensures of course that the accuracy of the FDM
solution improves as & — 0. However, (4.127) does not imply a more subtle effect.
Specifically, consider now two grid step sizes &, and h, with h, < hy. Then (4.127)
does not guarantee that |U — Uy, || < 6 |U — U, || . where 6 € (0, 1) is called “the
relaxation parameter.”

Unlike the above, the relaxation property for the adaptivity guarantees just that.
Roughly speaking, let x,, be the minimizer of the Tikhonov functional obtained
after n mesh refinements. Let x4 (s5) be the regularized solution, the existence and
uniqueness of which is guaranteed by Theorem 1.9.1.2 The relaxation property
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means that if x, # x,, then for any number 1, € (0, 1), one can choose the maximal
grid step size h, 4+ of the next mesh refinement so small that

[nt1 = Xa) | < 1, X0 — Xa) | - (4.128)

Hence, the improvement of the accuracy with mesh refinements is guaranteed by
(4.128).

The next natural question to pose is what does (4.128) give us in terms of a
better approximation of the exact solution x*? To address this question, we recall
the estimate (1.69) of Theorem 1.9.1.2:

[xa@ —x*| < &llxo—x*||, V8 € (0,81). (4.129)

where £ € (0,1) and 6; = §; (§) € (0, 1) . It follows from (4.128) and (4.129) that
21 = x| < & llxo = x| + 1, X0 = X -

Therefore, the accuracy of the reconstruction of the exact solution x* improves
with mesh refinements, and when n grows, it approaches its limiting value of
Hxa(g) —x* H for a given noise level §. Furthermore, this limiting value is strictly
less than the distance between the first guess x and the exact solution x*. In other
words, an improvement of the accuracy of the reconstruction of the regularized
solution leads to an improvement of the accuracy of the reconstruction of the exact
solution, compared with the first guess.

4.9.1 The Space of Finite Elements

We consider only standard piecewise linear finite elements, which are triangles in
2D and tetrahedra in 3D. Let 2 C R",n = 2,3 be a bounded domain. Consider
a triangulation T of 2 with a rather coarse mesh. We will have several more
triangulations with finer meshes. Let T be one of such triangulations such that

el
2 = Uj=lKj’ Kj S T,

where el is the number of non-overlapping elements K; in the mesh 7.
Following Sect. 76.3 of [67], we construct the linear space of piecewise linear

. . . . = T .
functions, which are continuous in 2. Let {N j} f (:1) be the set of nodal points of

those triangles/tetrahedra and {e ]}f (=T1) be the corresponding nodal basis for the
finite element space V},(7T) defined as

Vi (T) ={v(x) e V(T):veC(22),v |, islinearon K; € T},

where

V(T)={v(x):v(x) e H(R)}. (4.130)
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Here, p(T) denotes the number of the points in the mesh 7. The finite element
space V;,(T) C V(T), where V(T) is defined by (4.130). Thus, the functions

{e; (x, T)}f(:Tl) C C (£2) are piecewise linear functions. They are called fest
functions.
These functions are linearly independent in £2 and satisfy

1,i =,

ej (N;.T) = 0.i #

Thus, the dimension of the space V,,(7T) equals to the number p (T') of test

functions {e; (x, T)}f(:Tl) .

dim V;, (T) = p(T)

and each function v € V}, (T') can be represented as

p(T)
v(x) =Y vi(Nye; (x.T).

j=1
Leth (K j) be diameter of the triangle/tetrahedra K; C T. Then the number /,

h:}(rjlngh(Kj),

is called the maximal grid step size of the triangulation 7'. Let w be the radius of the
maximal circle/sphere contained in K ;. We impose the shape regularity assumption
for all triangles/tetrahedra uniformly for all possible triangulations 7" we consider.
Specifically, we assume that in all triangulations 7' below,

a $h(K]) < wa,, ap,a, = const.> 0, VKj cT, VT, (4.131)
where numbers aj,a, are independent on the triangulation 7. Obviously, the

number of all possible triangulations satisfying (4.131) is finite. Thus, we introduce
the following finite dimensional linear space H:

H, = U Span (V (T')), VT satisfying (4.131).
T
Hence,
dim H; < oo,

H C(C(2)NH"(R)), 0y f € Loo (2), Vf € Hi, (4.132)
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where the inclusion is understood as an inclusion of sets. Hence, functions belonging
to H, have the same properties as those of functions of the space Z defined in
(4.103). We equip H; with the same inner product as the one in L, (£2) . Let (, ) and
||l || be the inner product and the norm in Hj, respectively:

Iy = 1 ey i= IFI Y € Hi

Thus, H; became a finite dimensional subspace of the space L, (§2).

We view the space H; as an “ideal” space of very fine finite elements, which
cannot be reached in practical computations. At the same time, all other spaces of
finite elements we work with in the adaptivity procedure are subspaces of H;.

With reference to the mesh refinement process in the adaptivity, we now explain
how do we construct triangulations {7}, } as well as corresponding subspaces {M,, }
of the space H; with which we work with. First, we set

My :=V, (To) C H,.

Suppose that the pair (7, M,) is constructed after » mesh refinements in the
adaptivity and that the basis functions in the space M, are {e i (x, T”)}f g’) . We
now want to refine the mesh again while keeping (4.131). We define the pair
(Ty+1, M, 4+1) as follows. First, following mesh refinement recommendations in
the adaptivity (Sect.4.12), we refine the mesh in the standard manner as it is
usually done in triangular/tetrahedron finite elements. When doing so, we keep
(4.131). Hence, we obtain a triangulation 7,4, and the corresponding test func-

tions {e; (x, Tn+1)}p( T+1) Tt is well known that test functions {ej (x.T, )}p(T”

linearly depend from new test functions {e i (x, T,,+1)}p (To+1) . Thus, we define the
subspace M), 1 as

M+, := Span ({31 (x, Tn+1)}p(T"+l)) -

Therefore, we have obtained a finite set of linear subspaces {M,, } —, of the space
H,. Each subspace M, corresponds to the mesh refinement number n and

M, C M,+1 C H,n e [O,N]

Let I be the identity operator on H;. For any subspace M C Hi, let Py :
H; — M be the orthogonal projection operator onto M,. Denote for brevity:

Pn = PM,,-

Let &,, be the maximal grid step size of T,,. By construction, 4, +; < h,,. Consider an
arbitrary function f € Hj. Let f,! be its standard interpolant on triangles/tetrahedra
of T,: see Sect. 76.3 of [67]. By properties of orthogonal projection operators,
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If =PifI<|f = £l VS € H.
Hence, (4.13) and (4.132) imply that
1f = Paf I < KUV f sty s ¥ f € Hi, (4.133)

where K = K (§2, @, ay,a,) is a positive constant depending only on the domain
£2 and numbers @, a, a, in (4.131).

4.9.2 Minimizers on Subspaces

Since in the adaptivity procedure we sequentially minimize the Tikhonov functional

on subspaces {Mk},](\;o , we need to prove first the existence of minimizers on each
of these subspaces. We impose the same conditions on the operator F' as ones in the
local strong convexity Theorem 1.9.1.2. Let H, be another Hilbert space and ||-||,
be the norm in H,. Just as in Sect. 1.9.1, let £ (H,, H,) be the space of bounded
linear operators mapping from H, into H,. The norm in £ (H;, H>) is also denoted
as ||-|| for brevity. It will always be clear from the context of this section whether the
sign ||-|| is related to an element of H; or to an element of £ (H;, H,) . Let G C H,
be the closure of a bounded open set and F : G — H, be a continuous operator.
Consider the equation .

F(x)=y. (4.134)

Assume that the element y in (4.134) is given with an error, ||y — y*|, < §, where
y* is the exact right-hand side of (4.134), which corresponds to its exact solution
x*eG, F (x*) = y*. We assume that x* is an interior point of the set G. Again,
we replace the operator F (x) with the operator F (x) = F (x) —y. Hence, (4.134)
becomes

F(x)=0, xe€gG, (4.135)

where
|7 )], =6 (4.136)

Since dim H; < oo, then all norms are equivalent in this space. In particular, there
exists a constant C = C (Hj, §2) such that

IVxll, @ < ClxIl, Vx € Hi.

Hence, (4.133) implies that there exists a constant K; = K (K, H;) = CK > 0
independent on the subspace M,, such that

|x — Pux|| < Ky | x| hny ¥x € Hy,Vn €[0,N]. (4.137)
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Let the point xo € G. We consider xq as the first guess for the exact solution
x*. In particular, in the case of the CIP of Sect.2.1, xo = Xgob is Obtained on the
first stage of our two-stage numerical procedure. The Tikhonov functional for the
problem (4.135) and (4.136) is

1 o
Ju (¥) = SIIF ()3 + 3 1x = xo>. (4.138)
Recall one of notations of Sect. 1.9.1: for any § > 0 and for any x € H,

Ve (x) ={z€ Hy:|x—z|| <B}.

Denote /nt (G) the set of interior points of the set G. In other words, for each point
x € Int (G), there exists a number 8 (x) > 0 such that Vg (x) C G.

Theorem 4.9.2 claims the existence and uniqueness of the minimizer of the
functional (4.138) on each subspace of the space H|, as long as the maximal grid
step size of finite elements, which are involved in that subspace, is sufficiently small.
A similar theorem was proved in [29] by a different method. The smallness of that
grid step size depends on the upper estimate of the norm ||x*|| of the exact solution.
By the fundamental concept of Tikhonov (Sect. 1.4), one can assume an a priori
knowledge of this estimate.

Theorem 4.9.2. Let H, be the space of finite elements introduced in Sect. 4.9.1 and
H, be another Hilbert space. Let G C H\ be the closure of a bounded open set and
F : G — H, be a continuous one-to-one operator. Let x* € G be the exact solution
of (4.135) with the exact data y*, § € (0, 1) be the error in the data, as in (4.136).
Suppose that Vi (x*) C Int (G). Assume that for every x € V| (x*), the operator
F has the Frechét derivative F' (x) € L (Hy, H) . Suppose that this derivative is
uniformly bounded and Lipschitz continuous in V| (x*), i.e.,

|F" x)| < N1, Vx € Vi (x¥), (4.139)
|F'x) = F' @] < Nallx =zl Vx.z € Vi (x*), (4.140)

where N1, N, = const. > 1. Let

a=a(§)=8" V5§e(0,1), (4.141)
1
[ = const. € (0, 4_1) . (4.142)

Let M C H, be a subspace of H,. Then there exists a sufficiently small number
8o = 80 (N1, Na, ) € (0, 1) such that for all § € (0, 8y) the functional Jys) (x) is
strongly convex on the set V) (x*) N M with the strong convexity constant o /2.
Assume that ||x*|| < A and the number A is known in advance. Suppose that the
maximal grid step size h of finite elements of M is so small that
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s
< AT 1 °
~ 54N, K,

h (4.143)

where K is the constant in (4.137). Furthermore, assume that the first guess xg for
the exact solution x™* in the functional (4.138) is so accurate that

3u

1
||X()—)C*|| < T (4144)

Then there exists unique minimizer xyy € G N M of the functional (4.138) and
Xp € Vg (x*) N M.

Proof. If M = Hj, then both the strong convexity of Jys) (x) on the set Vi) (x*)
and the existence of the minimizer follows from Theorem 1.9.1.2 Hence, below,
we work with the case M # H;. We now establish the strong convexity of
the functional Jy(s) on the set Vs (x*) N M with the strong convexity constant
a (8) /2. In terms of Theorem 1.9.1.2 , we should work in this case with Py, Joi(a)

rather than with J/ @ Consider two arbitrary points x,y € Vi) (x*) N M.
Then

(I —Pu)z,x—y)=0,VYz € H.

Hence, using Theorem 1.9.1.2, we obtain

(PaaFsy ) = Pas Iy ) ox=) = (T=Par) (5 ) = Ty ) o = )
+ (PMJ;(S) (X) = Pud s (3) % — J’)
o
= (J;(w () = Joe () x = Y) 2 x =y

We now prove that the point Py x* € Int (G) if the number &, is sufficiently
small. Indeed, by (4.137) and (4.143),

~ ~ S
lx* = Pyl < Ky <" < AK b < = < 1.

Hence, Py x™ € Vi (x*). Since V; (x*) C Int (G), then Py x* € Int (G).

Since G is a closed bounded set in a finite dimensional space, then there exists a
minimizer x) € G of the functional (4.138). We have Jy5) (Xar) < Ju(s) (Pux™).
Hence,

| F (Pyx™)ll,
Ja
| F (Pyx™)ll,

Ja

IA

llxar — xo| + | Pyx™ = xo|

+ | Pux™ —x*|| + |x* —xo . (4.145)
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Since ||xpr — xoll = |lxp — x*|| — |x* — x0]| , then (4.137) and (4.143)—(4.145)
imply that
I F (Pyx™)l 43

Ja Z83“. (4.146)

X —x*| <
Next, by (4.136) and (4.141),

IF PruxDly _ IE (Pux™) = FOD),  1F D,

v 7 7
|F (Pyux™)—F "), | -
< 1)
< 7 +
Thus,
IF (Pux*), IIF (Pux*™)—F ()|, 1-
< 5. 4.147
e < 7 + ( )
By (1.59) (Sect. 1.9.1),
1
F (Pyx™) / F' (x* + 0 (Pyx* —x¥)), Pyx™ —x*)d6.

0
Hence, using (4.137), (4.139), and (4.143), we obtain

~ &
|F (Pyx™) = F (x*)], < Nax* — Pux™|| < AK NoK < ‘%

Hence, by (4.141) and (4.147)

3
| F (Pyux*)|l, - 5_ Login,
Je 5
This and (4.146) lead to

20
S = g (g4 D) < g
lxm —x |I_20 ( 1o
Thus, any minimizer xpy € G N M of the functional J,) is such that xy €

Viau (x*)N M. Since the functional Jys) is strongly convex on the set Vi, (x*)N M,
then the minimizer x); € G N M of Jys) is unique. O



4.9 Relaxation with Mesh Refinements 233
4.9.3 Relaxation

Theorem 4.9.3 establishes the relaxation property of mesh refinements.

Theorem 4.9.3. Let M,, C H, be the subspace obtained after n mesh refinements,
as described in Sect. 4.9.1. Let h,, be the maximal grid step size of the subspace M,,.
Suppose that all conditions of Theorem 4.9.2 hold with the only exception that the
subspace M is replaced with the subspace M,, and the inequality (4.143) is replaced
with
84
n S T
5AN, K,

Let x,, € Vi (x*) N M, be the minimizer of the Tikhonov functional (4.138) on the
set G N M, the existence of which is guaranteed by Theorem 4.9.2. Assume that
the regularized solution xqs) # X, i.e., Xo@5) ¢ M, , meaning that the regularized
solution is not yet reached after n mesh refinements. Let n,, € (0, 1) be an arbitrary
number and K| > 0 be the constant in (4.137). Then one can choose the maximal
grid size hx+1 = hi4+1(N3,68, A, K1) € (0, hi] of the mesh refinement number
(n + 1) so small that

h (4.148)

[xn1 = Xe@ | < 1 200 = Xas] (4.149)
where X, 11 € Vigu (X*) N M, 11 is the minimizer of the Tikhonov functional (4.138)

on the set G N M, 4| and N3 = N3 (N, N,) = const. > 0 is a constant depending
only on constants N1 and N, in (4.139) and (4.140).

Proof. 1In this proof, we denote for brevity « (§) := «. Let x,4+; be a minimizer
of the functional (4.138) on the set G N M, . Since inequality (4.148) is valid
for h,41, then Theorem 4.9.2 implies that the minimizer x,4; is unique and
Xn+1 € Vgu (x*)NM,,41. Since by Theorem 4.9.2, the functional (4.138) is strongly
convex on the set V. (x*) N My with the strong convexity constant /2, then
Theorem 1.9.1.1 implies that

o
5 11 = xall® = (Jg (1) = g (), X1 = Xa) (4.150)
Since x,, 4+ is the minimizer on G N M, 41, then

(Jolé (-xn+l) ,y) =0, Vy e M, 4.
Next, since x, is the minimizer on the set G C Hy, then

(J, (x4),2) =0, Vz € H,.
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These justify the application of the Galerkin orthogonality principle,which is
similar with (4.23) in Sect. 4.5 (also see references in that section):

(Joi (-xn+l) — Joi (Xa) s Xn41 — Pn+l-xoc) =0. (4151)
Next,

Xp41 — Xg = (X1 — Puy1Xe) + (Prt1Xe — Xo) -

Hence, (4.150) and (4.151) imply that
o
5 ||xn+1 - xot”Z = (Jo; (xn+l) - Jolz (xoz) s Prixe — xa) . (4.152)

It was shown in the proof of Theorem 1.9.1.1 that conditions (4.139) and (4.140)
imply that
g Cone) = Ty (ko) || < N3 [126041 = Xall (4.153)

with a constant N3 = N3 (N, N,) > 0. Also, by (4.133),
Xe = Pot1Xell < Ky ||Xall Hnt1. (4.154)

Using the Cauchy-Schwarz inequality as well as (4.153) and (4.154), we obtain from
(4.152)

K| Ns
52

||xn+1 - xa” = ”xa” hn+1- (4155)

Since by one of conditions of Theorem 4.9.2 we have an a priori known upper
estimate
Ix*| < 4, (4.156)

we now estimate the norm ||xy| in (4.155) via the number A. Since by Theo-
rem4.9.2 x, € 1/83,1/3 (x*), then (4.156) leads to

3p
ol < v = 5 + ")) < - + 4.

Hence, (4.155) becomes

2K N5 (8%
X041 — Xal < # (T + A) B (4.157)

Letn, € (0, 1) be an arbitrary number. Since || x, — Xx4|| # 0, then we can choose
hyt1 = hyv1 (N2, 68, A, Ky) € (0, hy] so small that

2K N5 [ 8
—Szlﬂ d (T + A) B < My X0 — Xel| - (4.158)

Comparing (4.157) with (4.158), we obtain the target estimate (4.149). O
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Remarks 4.9.3. 1. An inconvenient aspect of Theorem 4.9.3 is that is not a
constructive one. Indeed, since we do not know the regularized solution x,, then
we cannot effectively estimate the norm ||x, — x4 || from the below. This means
that it is unclear how to practically choose the number /4,4 to ensure (4.149).
In our numerical studies, we choose grid step sizes of local mesh refinements
on the basis of our computational experience. Nevertheless, the main point of
this theorem is that it ensures the image improvement in the case when the grid
step size h,+1 is properly chosen. In other words, it says that the adaptive mesh
refinement process is worthy to work with. The inequality (4.155) can be used
for one of mesh refinement recommendations; see Sect. 4.12.

2. Furthermore, Theorem 4.9.3 as well as its specification Theorem 4.11.4 actually
helps to decide when to stop mesh refinements; see tests in Sects.4.15.3 and
4.16.2.

4.10 From the Abstract Scheme to the Coefficient Inverse
Problem 2.1

In Sect. 4.9, we have considered an abstract operator F'. Now, however, the question
is on how to “project” those results on our specific coefficient inverse problem 2.1
formulated in Sect. 2.1. The goal of this section is to address this question. In other
words, we reformulate here results of Sect. 4.9 for our specific case. In doing so,
we restrict our attention to state and adjoint problems (4.81) and (4.82) of Sect. 4.7
since only solutions of these problems are involved in the Fréchet derivative (4.123)
of the Tikhonov functional (4.118) for our CIP.

Let Y be the set of functions defined in (4.7) (Sect.4.3) and H; be the finite
dimensional space of finite elements constructed in Sect. 4.9.1. We define the set Y
as Y, := Y N H,. And consider the closure G := Y, in the norm ||-|| , which is the
norm in H;. Hence,

G={c(x)eH :c(x)e[l—w,d+ o] forx € 2},

where w € (0, 1) is a sufficiently small positive number. For every coefficientc € G,
consider the weak solution u := u (x, ¢, ¢) of the state problem (4.81):

c(xX)uy —Au=0in Qr,
u(x,0) = us(x,0) =0,
Ot |s, = p(x,1). (4.159)

Let z; (¢) be the function introduced in Sect.4.3. Let the Hilbert space H, :=
L, (S7) . We define the operator F as

F:G — H, (4.160)
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F)x,t)=z@)[gx,t)—u(x.t,c)], (x,t) € Sr, 4.161)

where the function u := u (x, ¢, ¢) is the weak solution of the problem (4.159).

Theorem 4.10. Let 2 C R? be a convex bounded domain with the boundary
052 € C?. Suppose that there exists a function a (x) satisfying conditions (4.80).
Assume that there exists a function P (x,t) satisfying conditions (4.83)—(4.85) of
Sect.4.7. Then the operator F in (4.160) and (4.161) has the Fréchet derivative
F' (¢) (b) for every function ¢ € Int (G), where b € Hy is an arbitrary function.
The expression for the operator F’' (c) (b) is

F'(¢)(b) = —z: (1)U (x,t,¢,D) |s;, (4.162)

where the functionw (x,t,c,b) € H?>(Qr) is the solution of the boundary value
problem (4.104) of Sect. 4.7. Let C = C ([2, d,w,zg,a) > 0 be the constant of
Theorem 4.7.1 Then

VE" O 2.1, = P (CT) 1Pl ooy > Ve € Int (G). (4.163)

In addition, the operator F' (¢) is Lipschitz continuous:

| F' (c1) —F' (c2) Hqu,Hz) <exp(CT) || Plgscop llcr —c2ll . Yer.co € Int (G).
(4.164)

Proof. The existence of the Fréchet derivative F’ (c) of the operator F and the
formula (4.162) follow from Theorem 4.7.2 and the trace theorem. Next, by (4.106),

7.1 ¢.0) [ 1igr) < exp(CT) P ooy b1 Vb € Hi.
Hence, the trace theorem and (4.162) imply
|F" @) )y, < exp€TY [ Pllysop ]l Vb € Hy,

which leads to (4.163).
We now prove (4.164). Denote

T =TU(x. 1 0,b), TP =T (x e b) v =T =T, (4.165)

Y =ux,t,c1), u® =u(x.t,¢2), U =u —u?, (4.166)

It follows from (4.162) and the trace theorem that it is sufficient to prove that

IVl icor) < exp(CT) [Pl gsop e —c2ll - 161l ¥b € Hyi,Yeiex € Int (G).
(4.167)
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It can be derived from (4.104), (4.159), (4.165), and (4.166) that functions U and v
are solutions of the following initial boundary value problems:

Uy = AU = (¢ — e2)u?, in O,
U (x,0) = U (x,0) =0,
U |s, = 0; (4.168)

v = Av—(c1 — )2 — b (x) Uy, in Or,
v(x,0) = v, (x,0) =0,
d,v s, = 0. (4.169)

It follows from Corollary 4.6 and estimate (4.88) of Theorem 4.7.1 that the
following estimate holds for the solution U of the problem (4.168):

1UitllLor) = exp (CT) [Pl gocoq ller = call- (4.170)

By Theorem 4.7.2, the function % € H?(Qr). Hence, by (4.165), the function
v e H?(Qr). Next, by (4.111),

[t Lacory < X0 €T IP ooy 151 (@.171)

Hence, a combination of (4.170) and (4.171) with the standard energy estimate
applied to the initial boundary value problem (4.169) leads to (4.167). O

4.11 A Posteriori Error Estimates for the Regularized
Coefficient and the Relaxation Property of Mesh
Refinements

Theorem 4.10 implies that the operator F' in (4.160) and (4.161) satisfies conditions
of Theorem 1.9.1.2 On the other hand, it is this operator which forms the Tikhonov
functional (4.118) of Sect. 4.8. Therefore, Theorems 1.9.1.2,4.9.2, and 4.9.3, which
were initially formulated for the Tikhonov functional generated by an abstract
operator F', can be reformulated for the specific Tikhonov functional (4.118). The
latter is done in this section. Theorems 4.11.1 and 4.11.2 of this section are a
posteriori error estimates. In other words, in these theorems, the accuracy of the
reconstruction of the regularized coefficient is estimated via the L, (§2)-norm of the
Fréchet derivative of the Tikhonov functional. The validity of all theorems of this
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section follows from Theorem 4.10 as well as from the validity of corresponding
theorems proved above for the abstract operator F. In this section, |-|| denotes the
norm in the space of finite elements H;, which was introduced in Sect. 4.9.1.

For the convenience of the reader, we remind that the Tikhonov functional
(4.118) has the form

Eq(c) = % / (u s, — g(x, 1))z (1) dodt + %a / (¢ —caop)?dx,  (4.172)
St 2

where cg10p € Int (G) is the solution of our coefficient inverse problem 2.1 obtained
via the approximately globally convergent algorithm of Sect. 2.6.1. In other words,
Cglob 18 Obtained on the first stage of our two-stage numerical procedure. By our
common scheme, we also introduce the error of the level § in the function g(x, ¢) in
(4.161). So, we assume that

g(x.1) = g"(x,1) + gs(x.1): g%, g5 € L2 (S7) = H, (4.173)

where g*(x, ) is the exact data and the function gs(x,t) represents the error in
these data, i.e.,
g8l L,s7) <9 (4.174)

As it was stated in Remark 2.1 as well as in Sect.1.10.1, the question of
uniqueness of the coefficient inverse problem 2.1 is not yet addressed. The same
is true for the uniqueness of the solution of (4.161). On the other hand, we need
uniqueness in the local strong convexity Theorem 1.9.1.2 Therefore, we have no
choice but to assume that uniqueness takes place. Thus, we introduce the following:

Assumption 4.11. The operator F (c) defined in (4.160) and (4.161) is one-to-
one.

Theorem4.11.1 is the direct analog of Theorem 1.9.1.2 for the specific case of the
Tikhonov functional (4.172). Note that if a function ¢ € H, is such that ¢ € [1,d],
thenc € Int (G).

Theorem 4.11.1. Let 2 C R? be a convex bounded domain with the boundary
92 € C3. Suppose that there exists a function a (x) satisfying conditions (4.80)
and that there exist functions P (x,t), @ (x,t) satisfying conditions (4.83)—(4.85)
of Sect. 4.7. Suppose that assumption 4.11 as well as conditions (4.173) and (4.174)
hold. Let the function u = u(x,t,c) € H*(Qr) in (4.172) be the solution of the
state problem (4.159) for the function ¢ € G, where the set G C H| is defined in
(4.158). Assume that there exists the exact solution ¢* € G of the equation F (¢*) =
0 for the case when the function g in (4.161) is replaced with the function g* in
(4.173). Let ¢* (x) € [1,d]. Let in (4.174)

a=wa() =8 Vs§e(0.1),
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1
= t.e(0,-).
L = cons ( 4)

Furthermore, let in (4.172) the function cgo, € G be such that

3u

o

Then there exists a sufficiently small number 8y = 8¢ (.Q, d,w,z,a,|P ||H6(QT) ,,u)
€ (0, 1) such that for all § € (0, 8y), the functional Es) (c) in (4.172) is strongly
convex in the neighborhood Vy sy (c*) of the function c* with the strong convexity
constant o /2. In other words,

2
ler —eal® < e (El;(g) (c1) = Eys (c2) e — Cz) ., Ve, e € Hi, o (4.175)
where (,) is the scalar product in L,(§2) and the expression for the Fréchet
derivative E! ® is in (4.123). Also, there exists the unique regularized solution
Ca) of (4.172) and co@) € Vs (x*). In addition, the gradient method of the
minimization of the functional Es) (c), which starts at cgop, converges to Cq(s).

Furthermore, let £ € (0,1) be an arbitrary number. Then there exists a number
§1 =681 (2.d, w,z.a, 1P| oo 1. §) € (0,80) such that

leay — || <& [caon — ™| . V8 € (0.61).

In other words, the regularized solution cy sy provides a better accuracy than the
solution obtained on the first stage of our two-stage numerical procedure.

Theorem 4.11.2 specifies the estimate of the norm H Ca@s) — C* || via the norm of
the Fréchet derivative of the functional E,s) (c).

Theorem 4.11.2. Assume that conditions of Theorem 4.11.1 hold. Then, for any
Sunction c € Vs (c*),

2

o (4.176)

|Euw ©

2
e —cew | = o H Pr Eqgy) (©) H = L)

where the function E;(S) (¢) (x) is defined in (4.123) and Py, : L, ($2) — H\ is the
orthogonal projection operator of the space L, (§2) on its subspace H,.

Proof. By Theorem 4.8, the Fréchet derivative £/, ® (¢) (x) € Lo (£2). Hence,
E/ (c) € L, (£2). Next, since cq(s) is the minimizer of the functional Ey ) () on
the set G and ¢, (5) € Int (G), then

P, Es (cats) = 0. (4.177)
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Also, since ¢ — ¢q(5) € Hi, then
(E;(S) (c) - E&(a) (Ca(é)) €~ Ca(b’))
= (PH1 Els) (€) = Py Els) (Cats) € — Ca(é)) :
Hence, by (4.175) and (4.177),
2 2
le—cawn]” = o5 (Bt (© = Elgs) (ca) - = caw))

2
= s (PH1 El) (©) = Pry Es) (cos)) ¢ — Ca(é))

2 2
(@ .c=0) = 2 P ] el
Thus, 2
le = caes Hz = pem H Pr, Eqgs) (€) H e = caw| -

Dividing this by H ¢ — Ca(s) || and noting that

H Pry Eqgs) (€) H = H Eqs (©)

Ly(2)

we obtain (4.176). O

Theorem 4.11.3. Assume that conditions of Theorem 4.11.1 hold. Let ||c*| < A,
where the constant A is given. Let M,, C H, be the subspace obtained after n
mesh refinements as described in Sect.4.9.1. Let h, be the maximal grid step size
of the subspace M,,. Let C = C (.Q, d,a),zg,a) > 0 be the constant in (4.163)
and (4.164) and K| > 0 be the constant in (4.137). There exists a constant N, =
N (exp(CT) || Pl yocoy)) such that if

s

AN,K,’

hy <

(4.178)

then there exists the unique minimizer ¢, € G N M, of the functional equa-
tion (4.172), ¢y € Vigu (x*) N M and

2
Jew = can| = 537 | Bl e (4.179)

L)
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Theorem 4.11.4. [(relaxation property of mesh refinements)] Assume that con-
ditions of Theorem 4.11.2 hold. Let ¢, € Vgu (x*) N My be the minimizer of the
Tikhonov functional (4.172) on the set G N\ M,,, the existence of which is guaranteed
by Theorem 4.11.3. Assume that the regularized solution cq(s) 7# Cn, i.€., Cos) & M,.
Let 1, € (0, 1) be an arbitrary number. Then one can choose the maximal grid size
hyyr = hps (NZ,S, A, Kl) € (0, hy,] of the mesh refinement number (n + 1) so
small that
ch+1 — Cy(8) || =My ch — Cy(8) H .

4.12 Mesh Refinement Recommendations

The estimate (4.179) provides one with an idea on where to refine mesh locally in
order to improve the accuracy of the reconstruction of the regularized coefficient
cq(s)- Indeed, it follows from (4.179) that, given a subspace of finite elements,
the less is the norm of the Fréchet derivative at the point of the minimizer on
this subspace, the less is the distance between this minimizer and the regularized
coefficient ¢, (5). Given a function f € L,(2) N C (ﬁ) , the main impact in the
norm || f ., (@) is provided by neighborhoods of those points x € 2 where | f (x)]

achieves its maximal value. Therefore, the idea of mesh refinements is that neigh-

/
a8

are indicators of subdomains of the domain £2 where the mesh should be refined.
On the other hand, since in practical computations the function E/ ®) (cn) (x) is
always expressed as a linear combination of finite elements of the subspace M,,,
then one simply does not see the difference between functions E ®) (¢y) (x) and
P,E! ® (cy) (x) in those computations. Therefore, below, we always work only with
the function E;(s) (cu) (x) . Since it is convenient to differentiate between subspaces
{M,} below, we denote the minimizer on the subspace M, as ¢, := ¢, € G.

The first mesh refinement recommendation is derived on the basis of (4.179).
Let ¢, := ¢, € G be the minimizer of the functional (4.172) obtained after n
mesh refinements. The existence and uniqueness of this minimizer is guaranteed by
Theorem 4.11.3. Let functions u := u (x,t,c;) € H>(Q7) and A := A (x,t,¢p) €
H?(Qr) be solutions of the following state and adjoint initial boundary value
problems:

borhoods of points where the function | P, £, 5 (cn) (x)) achieves its maximal value

cp (X)uyy — Au=0in Qr,
u(x,0) = u(x,0) =0,
Onu |sp = p(x.1); (4.180)
ch (X) Ay —AAL =0in Q7p,
Ax,T) = A(x,T) =0,
A sy =z (1) (8 —u) (x,1). (4.181)
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The existence and uniqueness of such solutions are guaranteed by Theorem 4.7.1.
Recall that by (4.123),

T
Ey s () (x) = a (ch — Cgiob) (X) — / (uhe) (x,0)dt, x € 2. (4.182)
0

First Mesh Refinement Recommendation. Refine the mesh in neighborhoods of
those grid points x € §2 where the function ‘E; ®) (cn) (x)‘ attains its maximal

values. More precisely, refine the mesh in such subdomains of the domain §2 where

|l (en) )] 2 By max | Bl (en) ()] (4.183)

where 8, € (0, 1) is the tolerance number.
To figure out the second mesh refinement recommendation, we take into account
estimates (4.92) and (4.93) of Theorem 4.7.1 By these estimates, the function

E(;(S) (cn) (x)| can be estimated as

Es (cn) (x)) ey’ (m + max Cglob)‘*‘ m?exp (CT) (”P”iﬁ(Qr) + ||¢||i]5(QT)) ;
(4.184)
m = maxcy (x). (4.185)

2

Since functions cgjop and ¢, are close to each other, it is reasonable to assume that
points where these two functions achieve their maximal values are also close to each
other. Next, since we have decided to refine the mesh in neighborhoods of those

points which deliver maximal values for the function |E/ ®) (cn) (x)|, then (4.184)
and (4.185) lead to the following:

Second Mesh Refinement Recommendation. Refine the mesh in neighborhoods
of those grid points x € §2 where the function cj, (x) attains its maximal values.
More precisely, refine the mesh in such subdomains of the domain §2 where

cp (x) > Bymaxcy (x), (4.186)
9]

where 8, € (0, 1) is the tolerance number.

In fact, these two mesh refinement recommendations do not guarantee of course
that the minimizer obtained on the corresponding finer mesh would be indeed more
accurate than the one obtained on the coarser mesh. This is because right-hand sides
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of formulas (4.183) and (4.186) are indicators only. Nevertheless, we will show
now that the second mesh refinement recommendation is close to be a sufficient
condition ensuring a better accuracy on the finer mesh. To do this, we recall the
formula (4.155). This formula and Theorem 4.11.4 imply that

e eall s < 1, e =l (4.187)

llcnt1 = call <
where Q > 0 is a certain constant, 1, € (0, 1) and /4,4, is the maximal grid step
size of the mesh refinement number n + 1. After n mesh refinements, the function
¢y 1s unknown, unlike the function ¢, := c¢j,. Nevertheless, functions ¢;, and ¢,
are close to each other, since both of them are located in a small neighborhood of
the exact solution. Hence, similarly with the above, it is reasonable to assume that
points, where functions ¢, and ¢, achieve their maximal values, are close to each
other. Although the number /,4; in (4.187) is uniform for the entire mesh on the
refinement step number n + 1, it can be made nonuniform. Indeed, let QcQ
be such a subdomain of the domain £2, which includes neighborhoods of all points
where the maximal value of the function ¢, is achieved. We want to refine mesh
locally only in 2. We have

2 a2 a2 2
leall” = llcallrye) = ||Ca||L2(§) + ||Ca||L2(Q\§)-

Hence, one can choose two grid step sizes hfllj_l := hy4+1 and h,(fj_l = h, in
(4.187), where hflll L < hf}rl. The smaller grid step size hflli  would be used in

the subdomain £2, where the mesh would be refined. And the larger grid step size

h;(124)-1 = h, from the previous mesh would be used in Q\@ Numbers hfllj_l and

hf}rl can be balanced in such a way that

B 1
e = ol = 5z el B0 + el oy e ) < s =l

In other words, the local mesh refinement in the subdomain Q still guarantees an
improvement of the accuracy of the reconstruction of the regularized coefficient.

‘We conclude that the use of the second mesh refinement recommendation is close
to be a rigorous guarantee of an improvement of the accuracy. Nevertheless, such an
improvement should be verified in numerical experiments.

Now, about the choice of tolerance numbers 8, and 8, in (4.183) and (4.186). If
we would choose B, 8, ~ 1, then we would refine the mesh in too narrow regions.
On the other hand, if we would choose 8, 8, ~ 0, then we would refine the mesh in
almost the entire domain §2, which is inefficient. Hence, tolerance numbers S, 8,
should be chosen numerically.
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4.13 The Adaptive Algorithm

4.13.1 The Algorithm In Brief

Numerically, we proceed as follows for both first and second mesh refinement
recommendations. By (4.182), we need to approximately solve the following
equation on each mesh:

E! (¢) (x) = 0.

We start our computations on the same mesh on which the approximately globally
convergent algorithm of Sect.2.6.1 has worked. In our experience, this mesh does
not provide an improvement of the image. For each newly refined mesh, we first
linearly interpolate the function cgjop (X) on it. Since this function was initially
computed as a linear combination of finite elements forming the initial mesh and
since these finite elements are piecewise linear functions, then subsequent linear
interpolations on finer meshes do not change the function cgjob (x). On each mesh,
we iteratively update approximations ¢y, of the function cy,. To do so, we use
the quasi-Newton method with the classic BFGS update formula with the limited
storage [134]. Denote

T
(%) = a(cl] — caon) (x) — /0 (e dne) (.. ¢]) i,

where functions uy, (x,1,¢}') . Ay (x,,¢}}) are FEM solutions of state and adjoint
problems (4.180) and (4.181) with c¢:=c¢;. We stop computing ¢; if either
[1€"||L,2) < 107> or norms ||g"||L,(q) are stabilized. Of course, only discrete
norms ||g"||1,(x) are considered here.

For a given mesh, let ¢; be the last computed function on which we have
stopped. Next, we compute the function |EJ, (¢;) (x)| by formula (4.182), where
u = up(x,t,cp), A = Ay (x,t,cp). Next, we consider all grid points in this
mesh where (4.183) is fulfilled. Next, we refine the mesh in neighborhoods of all
grid points satisfying (4.183). In those numerical studies when we use both above
mesh refinement recommendations, we also consider all grid points where (4.186)
is fulfilled and refine mesh in those subdomains where both (4.183) and (4.186) are
fulfilled. The stopping criterion for the mesh refinement process is described in this
Sect.4.13.2.

4.13.2 The Algorithm

Step 0. Choose an initial mesh K}, in the domain §2 and a time partition Jy of the
time interval (0, 7') . Start with the initial approximation c,? ‘= Cglop and compute
the sequence of functions c; via steps described below.
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Step 1. Compute FEM solutions uj, (x, t, CZ) LA (x, t, c,’;) of state and adjoint
problems (4.180) and (4.181) on K}, Jy.

Step 2. Update the coefficient ¢ := cZ‘H on K, as described in Sect.4.13.1.

Step 3. Stop updating functions ¢} if either ||g"[|1,(2) < €1 or norms ||g"||1,(2)
are stabilized. Otherwise, set n := n + 1 and go to Step 1. In our computations,
we took 6, = 107,

Step 4. Compute the function B, (x):

T
By, (X) = Ol(Ch - cglob) (X) - /(; (uhtlht) (X, [ Ch) dz|. (4188)

Next, refine the mesh in neighborhoods of all points where

By (x) > By max By, (x). (4.189)
7]

In the case when the second mesh refinement recommendation is used in addition
to the first one, also refine the mesh in neighborhoods of all points where

cn (x) > Bymaxcy (x). (4.190)
7]

Here, tolerance numbers 8, 8, are chosen by the user.

Step 5. Construct a new mesh K, on the basis of mesh refinements of Step 4. Also,
construct a new partition J; of the time interval (0, 7). The new time step
of Jj, should be such that the CFL condition would be satisfied. Interpolate the
initial approximation cgje, from the previous mesh on the new mesh. Next, return
to Step 1 and perform all the above steps on the new mesh.

Step 6. Stop mesh refinements when a stopping criterion is satisfied. Stopping
criteria are described in follow-up sections of this chapter.

4.14 Numerical Studies of the Adaptivity Technique

In this section, results of two numerical studies of the adaptive algorithm of
Sect.4.13.2 are presented. This is done in the case when that algorithm works
without the first stage of our two-stage numerical procedure. We are not using the
function z; () here, since we have observed that the solution of the state problem
is close to zero for t ~ T. We have established computationally that the tolerance
numbers 8, = 0.8 in (4.189) and B, = 0.2 in (4.190) were the optimal ones for our
tests in Sects. 4.14.1 and 4.14.2.

We start our presentation in Sect.4.14.1 where numerical results of [20] are
presented. Next, numerical results of [21] are described in Sect.4.14.2, where we
discuss an application of the adaptivity technique to ultrasound imaging using the
scanning acoustic microscope.
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In numerical results of both Sects.4.14.1 and 4.14.2, Theorem 4.5 was used
to derive mesh the refinement recommendation, which is similar with the one of
(4.189). More precisely, in accordance with (4.28) and (4.29), denote

Rey (x,t) = (10 An] - [0,un]) (x,2) (4.191)
R, (x) = |en (x) —co (x) |, (4.192)
T
R. (x) = / R (x,t)dt + R, (x). (4.193)
0

Mesh refinement recommendations of Sects. 4.14.1 and 4.14.2 were derived respec-
tively in [20] and [21] on the basis of

R, (x) = B, max R, (x). (4.194)

S2FEM

In both Sects. 4.14.1 and 4.14.2, B, = 0.8 was used in (4.194).

In (4.192), ¢y (x) = 1 is the starting point for iterations in numerical examples of
both Sects. 4.14.1 and 4.14.2. It should be pointed out, however, that since the quasi-
Newton method is a locally convergent one, the reconstructed function ¢ (x) is very
sensitive to the starting values of the parameters in the optimization algorithm; also
see Test 5 in Sect. 3.1.3 as well as Sect. 3.3 for a similar conclusion.

4.14.1 Reconstruction of a Single Cube

In the numerical example of this section, the adaptive algorithm of Sect.4.9.3
is tested for the case of the reconstruction of a single cube from scattered data
at the boundary of the domain of interest. Just as in Sect.3.2.1, the hybrid
FEM/FDM method [30] is used to solve the forward problem of data generation.
The computational domain is

G =[0,5.0] x [0,2.5] x [0,2.5].
The rectangular prism G = §2ppm U $2ppy 18 split into a finite element domain:
QrpMm = 2 =[0.3,4.7] x [0.3,2.3] x [0.3,2.3]
with a nonstructured mesh and a surrounding domain £2ppy With a structured mesh
see Fig. 4.1 for the exact scatterer and the domain 2ggy. The space mesh in 2ppm

consists of tetrahedra and of hexahedra in $2gpy with the mesh size & = 0.2 in
overlapping regions.
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~— ==

Fig. 4.1 Cubic scatterer to be reconstructed. It is located inside the domain of interest §2ggy.
Source: L. Beilina and C. Johnson, A posteriori error estimation in computational inverse

scattering, Mathematical Models and Methods in Applied Sciences, 15, 23-37, 2005. (© World
Scientific Publishing Company. Reprinted with permission

The forward problem is computed in the domain G, and the coefficient c(x) is
unknown only in the domain £2ggy with the known value ¢(x) = 1 in G\ £2pgm-
In the test of this section,

2 inside the small cube,

c(x) =
1 everywhere else.

Location, size, and value of the function ¢ (x) inside that small cube are unknown.

However, since a locally convergent method is applied, the knowledge of the

background value of the function ¢ (x) = 1 outside of that small cube is known.

The starting point of iterations for the minimization of the Lagrangian (4.14) is

co = 1. In other words, in (4.8), cglop is replaced with ¢o = 1 (Sect. 4.3).

In this test, the forward problem is

6
Autp0)Y  f(x—=x]). inGx(0.7),

i=1
u(x,0) = u, (x,0) =0in G,
Iut|,; = —d;u, ondG x (0,T), (4.195)

¢ (x) afu

where T is the final time. In (4.195), the function f(z),z € R is a Gaussian which
approximates the function § (z) in the distribution sense. Six sources {x; }f=1 were
used. They were located close to the top boundary of the domain §2pgy on the same
straight line. Therefore, the case of six simultaneously launched spherical waves
was modeled. Points {x;}°_, were:

x; = (0.45,2.2,1.25), x, = (1.25,2.2,1.25), x3 = (2.05,2.2,1.25),
x5 = (2.95,2.2,1.25), x5 = (3.75,2.2,1.25), x¢ = (4.55,2.2,1.25).
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The source function p (¢) is

(0) = 103sin® 7t if t € [0, 1],
PR =10 otherwise.
Coefficient Inverse Problem. Suppose that the following function g (x, ) is given,

uls,=g(x,t).

Given the function g (x,?), determine the function ¢ (x) for x € £2 = $2ppm,
assuming that ¢ (x) = 1 for x € G\ §2 and also ¢ (x) = 1 outside of a small
inclusion located inside the domain §2. Both this inclusion and the function ¢ (x)
inside it are unknown.

The computed solution of the forward problem (4.195) inside the domain 2pgy
for different times is presented on Fig. 4.2. The test was performed for 7 = 3.0 and
with 300 time steps satisfying the CFL condition (4.198).

In Tables 4.1 and 4.2, we show computed norms ||u|s, — g||r,(s;) With the
regularization parameters ¢ = 0.0001, 0.001, respectively. In Fig. 4.3, the spatial
distribution of the computed coefficient ¢, on different adaptively refined meshes is
presented. It can be observed from Tables 4.1 and 4.2 that norms ||u [s; —g|l,,(s;)
at the boundary S7 of the domain 2ggy; generally decrease as meshes are refined,
and they are stabilized on the fifth refined mesh.

Recall that the relaxation Theorem 4.11.4 ensures an improvement of the
accuracy of the reconstruction of the regularized coefficient with mesh refinements
as long as that coefficient is not yet reached on a certain mesh. Hence, the
stabilization of norms |[u |s; —g|,, s, indicates that the regularized coefficient is
likely reached on the fifth refined mesh. Thus, we stop our procedure on the fifth
refined mesh. The corresponding image is displayed on Fig. 4.3f. One can see from
this figure that all three components of the unknown abnormality are accurately
reconstructed: location, shape, and contrast.

4.14.2 Scanning Acoustic Microscope

In this section, we address a CIP which occurs in the modeling of a scanning
acoustic microscope [21].

4.14.2.1 Ultrasound Microscopy
In the daily medical practice, ultrasound imaging is a widely accepted imaging

technology. The main clinical focus up to now has been on detecting pathological
soft tissue changes, for example, malignant tumors. However, it is impossible to
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Fig. 4.2 Isosurfaces of the exact solution in 2y for the forward problem (4.195) at different
times with six spherical pulses initialized in the domain $2ppy. Source: L. Beilina and C.
Johnson, A posteriori error estimation in computational inverse scattering, Mathematical Models
and Methods in Applied Sciences, 15, 23-37, 2005. (© World Scientific Publishing Company.
Reprinted with permission

apply these low-frequency technologies to the hard tissue, for example, bone.
On the other hand, the ultrasound microscopy on high frequencies is used for
nondestructive material testing; see, for example, [39]. This technology might be
also potentially used in medicine to image the microstructure of human cortico-
spongious bone as well as the growing patterns of cell cultures [64,70].
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Table 4.1 Computed norms Hu sy —g” Ly(sp) at the boundary S7 of the domain 2pgy with the
regularization parameter « = 0.0001 on different adaptively refined meshes with five stored
corrections of the quasi-Newton method

Opt.it. 2,783 nodes 2,847 nodes 3,183 nodes 3,771 nodes 4,283 nodes 6,613 nodes

1 0.0493302  0.0516122 0.051569 0.0529257 0.0535081 0.0537523
2 0.0405683  0.0423093 0.0419412 0.0428817 0.0433272 0.0439134
3 0.0235056  0.0239327 0.0245081 0.0271383 0.0285571 0.031920
4 0.0191902  0.0192185 0.0187792 0.0205331 0.0221997 0.0239426
5 0.0115005  0.0110448 0.0174202 0.0205711 0.0104240
6 0.0156732 0.0112331 0.0101503
7 0.0121359 0.0102246

Source: L. Beilina and C. Johnson, A posteriori error estimation in computational inverse
scattering, Mathematical Models and Methods in Applied Sciences, 15, 23-37, 2005. (© World
Scientific Publishing Company. Reprinted with permission

Table 4.2 Computed norms ||u Isr —g” Lo(sp) At the boundary Sy of the domain $2pgy with
the regularization parameter « = 0.001 on different adaptively refined meshes with five stored
corrections of the quasi-Newton method

Opt.it. 2,783 nodes 2,847 nodes 3,183 nodes 3,771 nodes 4,283 nodes 6,613 nodes

1 0.0493302 0.0516122 0.051569 0.0529257 0.0535081 0.0537523
2 0.0409375 0.0426592 0.0422985 0.0432254 0.043665 0.0439134

3 0.0258043 0.0260785 0.0263276 0.0286128 0.029808 00.03192

4 0.0224222 0.0221598 0.0206731 0.0209556 0.0212633 0.0.0239426
5 0.0171107 0.0142682 0.0105603 0.01003 0.0104199 0.010424

6 0.0157419 0.0101503

Source: L. Beilina and C. Johnson, A posteriori error estimation in computational inverse
scattering, Mathematical Models and Methods in Applied Sciences, 15, 23-37, 2005. (© World
Scientific Publishing Company. Reprinted with permission

The available modern ultrasound microscope of the KSI company (Kraemer
Scientific Instruments Herborn/Germany) is based on the so-called “scanning
acoustic microscopy” concept. This microscope uses high-frequency (up to 2 GHz)
pulsed and focused raster scanning of the investigated object. An electrical input
signal is converted by an acoustic transducer over a modulation network into plane
acoustic waves; see Fig.4.4 for the sketch of the scanning acoustic microscope.
These waves are focused by an acoustic-optical lens on the substrate. The reflected
signal is send back via the lens to the same transducer and is transformed back then
in an electrical output signal.

4.14.2.2 The Adaptivity Method for an Inverse Problem of Scanning
Acoustic Microscopy

We model the problem of imaging of biomechanical parameters of the bone as
an inverse problem for the scalar acoustic wave equation ¢ =2 (x) u;; = Au with
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a b
o=
coarse mesh, 9 q.N. it., max¢, = 1.21 1 time ref., 8 q.N.it., max ¢, =~ 1.27
c d
I
3 times ref.mesh, 4 q.N.it, max ¢, = 1.23 4 times ref.mesh, 9 q.N.it, maxe, =~ 1.23
e

Sl
5 times ref.imesh, 8 q.N.it, max ¢, = 1.74 5 times ref.amesh, 9 q.N.it, max ¢, = 1.91
Fig. 4.3 Maximal values of the reconstructed coefficient ¢ with « = 0.001 on adaptively

refined meshes with different number of quasi-Newton iterations (q.N.it) in the optimization
algorithm. Source: L. Beilina and C. Johnson, A posteriori error estimation in computational
inverse scattering, Mathematical Models and Methods in Applied Sciences, 15, 23-37, 2005. ©
World Scientific Publishing Company. Reprinted with permission

the (longitudinal) wave speed ¢ (x). The backscattering data are considered. Quite
often, the surrounding medium is homogeneous, and the material inhomogeneities
occupy only a small portion of the body. In other words, a small inclusion should be
imaged.

The geometry of the problem (see Fig.4.5) is taken from a specific microscope
(WinSAM 2000, KSI Germany). The computational domain G and the finite
element domain 2rgy C G are set as
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Fig. 4.4 Schematic diagram of the scanning acoustic microscope (left) and a 2D cross-section of
this microscope by a vertical plane (right). Here, ¢y = 1 corresponds to the region filled with
water and ¢ (x) corresponds to the investigated sample. I is the cross-section of the spherical
surface I} of a lens. The plane wave is initialized at I and propagates into the medium. The
time-dependent backreflected wave is recorded at I'j. The inverse problem then consists in the
recovery of the function ¢ (x) from these backscattering data. Source: L. Beilina and C. Clason,
An adaptive hybrid FEM/FDM method for an inverse scattering problem in scanning acoustic
microscopy, SIAM J. Sci. Comp., 28, 382-402, 2006. (©) 2006 Society for Industrial and Applied
Mathematics. Reprinted with permission

G = [-10.0, 10.0] x [—14.0, 16.0] x [—10.0, 10.0],
Qrem = [-9.0, 9.0] x [—10.0, —12.0] x [-9.0, 9.0].

We have an unstructured mesh in and §2pgy and a structured mesh in the surrounding
domain £2ppy. The space mesh in §2pgy consists of tetrahedra, and in §2ppy of
hexahedra. The mesh step size & in 2gpy is £ = 1.0. To solve the forward problem
of data simulation, the hybrid FEM/FDM method with finite elements in £2ggy and
finite differences in £2gpy is applied. First-order absorbing boundary conditions at
the entire boundary dG are used [66].

Consider Fig.4.5. On this figure, the cylinder represents the microscope. Let §2
be the domain occupied by this microscope. Then §2 C 2ggm. A 2D cross-section
by of this microscope by a vertical plane is displayed on Fig. 4.4 (right). The top of
this cylinder is a spherical surface, which we denote as I'}. This spherical surface is
the surface of a lens. The plane wave with three components v = (vy, va, v3) (¢) is
initialized at I} during the time period ¢ € [0, 7] and propagates downward. This
plane wave interacts with the substrate. A part of the wave field is reflected back.
The backscattering wave field is recorded at I7.
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Fig. 4.5 (a) The acoustical microscope with the unknown inclusion. Location and shape of
this inclusion as well as the coefficient ¢ (x) inside it are unknown. (b) The domain £2ggy. The
acoustical microscope is located inside this domain. Surrounding mesh (outlined) with overlapping
nodes at the boundary. Source: L. Beilina and C. Clason, An adaptive hybrid FEM/FDM method
for an inverse scattering problem in scanning acoustic microscopy, SIAM J. Sci. Comp., 28, 382—
402, 2006. (© 2006 Society for Industrial and Applied Mathematics. Reprinted with permission

Thus, the forward problem in our test is

2 (X)uy — Au =0, inG x (0,T), T = 40,
u(x,0) =0, inG,
u; (x,0) =0, inG, (4.196)
duu(x,t) =v(t), on I] x (0,4],

dpu(x,t) = —du(x,t), ondG x (0,7T),
where the forced acoustic field at I is v () = (vi, vz, v3) (£):

o =((sin (1001 — 7w /2) + 1)/10) - n;, 0 <1 < 1y := 2,
i) = 0.te(t,T),i =123 (4.197)
Thus, the acoustic wave field initiates at the spherical boundary I} of the lens in
$£2ppMm and propagates in the normal direction n = (11, 13, n3) into §2. This acoustic
field models the excitation pulse generated by the transducer of the microscope. We
assume that the coefficient ¢ (x) = 1 for x € G\ §2. The observation points are
placed on the surface of the lens I']. Hence, only the backscattering acoustic wave
field is measured. Also, u (x, 1) = (uy, uz, u3) (x, t) is the vector function Fig. (4.6).
In all computational tests, we choose the time step t in the forward problem
(4.196) on the basis of the CFL stability condition in 3D:
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22528 nodes 23549 nodes

26133 nodes 33138 nodes

Fig. 4.6 Adaptively refined meshes. Source: L. Beilina and C. Clason, An adaptive hybrid
FEM/FDM method for an inverse scattering problem in scanning acoustic microscopy, SIAM
J. Sci. Comp., 28, 382-402, 2006. © 2006 Society for Industrial and Applied Mathematics.
Reprinted with permission

max

where /& is the minimal local mesh size and ¢y, is an a priori given upper bound
for the coefficient ¢ (x). To generate the data at the observation points, we solve
the forward problem in the time interval ¢ € [0, 40] with the exact value of the
parameter ¢ = 0.5 inside a spherical inclusion depicted on Fig.4.5a and ¢ = 1
everywhere else in G. Figure 4.6 displays adaptively refined meshes. In Fig. 4.7, we
present isosurfaces of the function
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£t=26.0

Fig. 4.7 Isosurfaces of the computed function |u (x,1)] = (u% +ud + u%) (x, 1) for different
times with the exact ¢ (x) = 0.5 inside the spherical inclusion and ¢ (x) = 1 everywhere else.
Source: L. Beilina and C. Clason, An adaptive hybrid FEM/FDM method for an inverse scattering
problem in scanning acoustic microscopy, SIAM J. Sci. Comp., 28, 382-402, 2006. © 2006
Society for Industrial and Applied Mathematics. Reprinted with permission
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lu(x,t)] = u%—}—u%—i—u%(x,t),

which corresponds to the solution of the forward problem (4.196) with the exact
parameters. The function |u (x, t)| is presented at different times inside the domain
2pem. We consider the following

Coefficient Inverse Problem. Let the vector function u (x, ¢) be the solution of the
problem (4.196) and (4.197). Suppose that the following vector function g (x,?) =

(g1, 22, g3) (x, 1) is known,
ulnxomn=g(x.1).

Determine the coefficient ¢ (x) inside the domain §2, assuming that ¢ (x) = 1 for
all x € £2 outside of a small unknown inclusion located inside 2 as well as for all
x € G\ S2.

Since we need to work with the vector function v (¢) , we consider the vectorial
form of both state and adjoint problems. Let Q7 = 2 x(0,7),Sr = 92 x(0,7T).
The state problem for the vector function u (x, 1) = (uy, uz, u3) (x,1t) is

2 (x) 8,214 = Au, in Qr,
u(x,0) = u, (x,0) =0in £2,
Opu |, =v(t), on I x(0,4],
Opu |, =0, onl x(,7T),

duu s~y = Oforz € (0,7T). (4.199)

Denote

~ gx,t), (x,t) e N x(0,T),
EOOD =107 (x.1) e 27 x (0.T)
The adjoint problem for the vector function A (x,1) = (A1, A2, A3) (x,1) is
¢ 2 (x)9*A = AA, inQr,
Ax,T) = A (x,T) =0in £,
I s, =F —u. (4.200)

Hence, the Lagrangian (4.14) in Sect. 4.3 should be replaced with its analog:
1
L(w) = 5 / (u—7F)*dS.dr — / 2 (x)uy Adxdt
St or

+/VuVAdxdt—/pAdedt + %/(c(x)—l)z,
or St 2
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w= (u,A,c),

v(t), on I x(0,1],
p () = (p1, p2, p3) (1) = 0, on I x(#,T),
0, on (082\17) x(0,7),

where vector functions u (x, t) = (uy, ua, u3) (x,t) and A (x,1) = (A, A2, A3) (x,1)
are solutions of problems (4.199) and (4.200), respectively. Here,

3
/ (=) dS.dr = ) / (i =) dS,dr,
St

i=1ST

3
/ 2 (uddxdr =) / ¢2(x),u; 0, A xdr,
or

or i=1
3
/ VuVAdxd: =y / Vu; VA;dxdr,
or i:lQT
3
/ pAdS.dr =) / pikidSydr.
St i=lST

Similarly with the formula (4.17) of Sect. 4.4, we obtain

T
LW =a(c—1)(x)— / (uAy) (x,1)de, x € £2.
0

Hence, we can now proceed as in Sect.4.13.2 using (4.194) with B, = 0.8; see
beginning of Sect. 4.14. In this section, the regularization parameter « = 0.1.
In Table 4.3, computed norms

lu(x,t) Iy =8 D L,y x0.1)) 4.201)

on different adaptively refined meshes at each optimization iteration are shown.
The computational tests show that the best results are obtained on a four times
adaptively refined mesh, where norms (4.201) are reduced approximately by a factor
four between two optimization iterations.

Isosurfaces of the reconstructed coefficient ¢ (x) on different adaptively refined
meshes on the final optimization iteration is presented in Fig. 4.8. Maximal values of
the reconstructed function ¢ (x) are indicated. We see that although the qualitative
reconstruction on the coarse grid is already good enough for the recovery of



258 4 The Adaptive Finite Element Technique and Its Synthesis...

Table 4.3 Hu (x, 1) |, —g(x, I)HL (ryx(0.ry ©n adaptively refined meshes
Opt.it. 22,205 nodes 22,528 nodes 23,549 nodes 26,133 nodes 33,138 nodes

1 0.0506618 0.059448 0.0698214 0.0761904 0.120892
2 0.050106 0.0594441 0.0612598 0.063955 0.0358431
3 0.0358798 0.0465678 0.028501 0.0618176

4 0.0244553 0.0413165

5 0.0219676

The number of stored corrections in the quasi-Newton method ism = 5

Source: L. Beilina and C. Clason, An adaptive hybrid FEM/FDM method for an inverse scattering
problem in scanning acoustic microscopy, SIAM J. Sci. Comp., 28, 382-402, 2006. © 2006
Society for Industrial and Applied Mathematics. Reprinted with permission

the shape of the inclusion, the accuracy of the reconstruction of the contrast
becomes acceptable only on the fourth refined mesh. Additionally, with successive
refinement, the boundary of the reconstructed inclusion becomes sharper (compare
the isosurface in Fig.4.8a,b with those in Fig.4.8d,e). On the grid with 33,138
nodes (Fig. 4.8f), the calculated maximal value of the coefficient ¢ (x) inside the
inclusion as max ¢ (x) = 0.51. This is very accurate, since the true maximal value
ismaxc (x) = 0.5.

4.15 Performance of the Two-Stage Numerical Procedure
in 2D

In this section, we present numerical results of our papers [26, 111, 160] for the
two-stage numerical procedure in two dimensions.

4.15.1 Computations of the Forward Problem

To simulate the data for the inverse problem, we solve the forward problem
via the hybrid FEM/FDM method described in [30], just as in Sect.3.1.1. The
computational domain for the forward problem in our test is G = [—4.0,4.0] x
[—5.0,5.0]. This domain is split into a finite element domain Gpgy = £2 =
[—3.0,3.0] x [-3.0,3.0] and a surrounding domain Ggpy with a structured mesh,
G = Gpem U Grpy; see Fig. 4.9. The reason of using the hybrid method is that since
it is known that

c(x) = 1in G\ £2, (4.202)

then there is no point to have a locally fine mesh in G\ §2. On the other hand,
since inhomogeneities are located inside §2, then it is natural to have a locally fine
mesh in £2, which is provided by finite elements. The space mesh in £2 and in Ggpm
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&® &
T S T g

22528 nodes, ¢;, =~ 0.66 22528 nodes, ¢, ~ 0.623

26133 nodes, ¢, =~ 0.531 33138 nodes, ¢;, =~ 0.51

Fig. 4.8 Reconstructed coefficient ¢(x) on different adaptively refined meshes. Only maximal
values of c;(x) are shown. Source: L. Beilina and C. Clason, An adaptive hybrid FEM/FDM
method for an inverse scattering problem in scanning acoustic microscopy, SIAM J. Sci. Comp.,
28, 382-402, 2006. © 2006 Society for Industrial and Applied Mathematics. Reprinted with
permission

consists of triangles and squares, respectively, with the mesh size h = 0.125 in the
overlapping regions. The boundary of the domain G is dG = dG; U dG, U 9Gs5.
Here, 0G| and dG, are respectively top and bottom sides of the largest domain of
Fig.4.9, and 0Gs is the union of left and right sides of this domain.
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a b c

Grom G =GremUGrpy Gren =)

Fig. 4.9 The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied,
and a mesh (c), where we use FEM, with a thin overlapping of structured elements. The solution of
the inverse problem is computed in the square £2 and ¢(x) = 1 for x € G\ £2. Source: L. Beilina
and M.V. Klibanov, A posteriori error estimates for the adaptivity technique for the Tikhonov
functional and global convergence for a coefficient inverse problem, Inverse Problems, 26, 045012,
doi:10.1088/0266-5611/26/4/045012, 2010. (© IOP Publishing. Reprinted with permission

Thus, the forward problem in our test is
c(X)uy—Au=0, inG x(0,T),
u(x,0) =0, u,(x,0) =0, in G,
Bnu|361 = f(t), on G| x (0, 1],
Bnu|3G1 = —0du, on dGy X (t;,T),
3nu|302 = —d,u, on 3G, x (0, 7T),
a,,u|363 =0, on dG; x (0, T), (4.203)

where f(¢) is the time dependent amplitude of the incident plane wave,

=(Sll’l(S 171(')/ )+ ),Oftftl = Tn’T=17.8t1-
S

S
Thus, the plane wave is initialized at the top boundary dG; and propagates into G
fort € (0,1]. Just as in Sect. 3.1.1, first-order absorbing boundary conditions [66]
are used on top G X (¢1, T'] and bottom G, x (0, T'] boundaries, and the Neumann
boundary condition is used on dG3. The zero Neumann boundary condition at dG3
allows us to model an infinite space domain in the lateral direction. The trace g (x, )
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t =

Fig. 4.10 Isosurfaces of the simulated exact solution to the forward problem (4.203) at different
times with a plane wave initialized at the top boundary. Source: L. Beilina and M.V. Klibanov,
A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global
convergence for a coefficient inverse problem, Inverse Problems, 26, 045012, doi:10.1088/0266-
5611/26/4/045012, 2010. © IOP Publishing. Reprinted with permission

of the solution of the forward problem is recorded at the boundary d£2. Next, the
coefficient c(x) is “forgotten,”’and our goal is to reconstruct this coefficient for
x € £2 from the data g (x,¢); see (2.5). Figures 4.10 show how the plane wave
propagates for the structure given on Fig. 4.9.

4.15.2 The First Stage

In our numerical experiment, we reconstruct the medium, which is homogeneous
with ¢ (x) = 1 except of two small squares, where ¢ (x) = 4; see Fig.4.9c.
However, we have not assumed any a priori knowledge neither of the structure of
this medium nor of the background constant ¢ (x) = 1 outside of those two small
squares. We have only assumed the knowledge of the lower bound ¢ (x) > 1 and
also that ¢ (x) = 1 outside of the domain of interest £2; see (2.3). The assumption
¢ (x) > 1 was used as follows: If at any point x’, the reconstructed value of the
coefficient was ¢, x (x’) < 1, then we have assigned a new value at this point by
setting ¢, x (x') := 1.
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Because of (4.202), the starting value for the tail V7 (x,5) was computed via
solving the forward problem (4.203) for ¢ = 1. Let w.=; (x,s) be the corresponding
function w (x, s) at s = 5. Then, using (2.18), we took

Inwe=1 (x,5)

Vii(x,5) = = (4.204)

We have used the same parameters as ones in Sect.3.1.3. The s-interval was
[s,5] = [6.7,7.45]. The step size with respect to the pseudo frequency s was h =
0.05. Hence, N = 15 in our case. We have chosen two sequences of regularization
parameters A := A, and ¢ := ¢, for n € [1, N] which were the same ones as in
(3.3). Once the function ¢, x is calculated, we update the function ¢ := ¢, via
backward calculation as in (3.4). The resulting computed function is cgjop (X) .

In this test, we have chosen a stopping rule which is similar with the rule (3.23)-
(3.26) of Sect. 3.2.2. We have observed that the lower boundary I" of the square £2,

I'={x,=-3}N%N, (4.205)

is such a part of the boundary 92, which is the most sensitive one to the presence
of inclusions. Denote I = {(xl,xz) € :x,=-3+ h} . In other words, 5
is the part of the horizontal straight line, which is inside the square §2, and the

distance between I5- and the lower boundary {x, = —3} of £ is 4 = 0.125. When
calculating iterations with respect to the nonlinear term, we consider norms F ,’j :

k ”qy]fj |F;’_ Wn”l‘z(—&?))

n

Yl Lo(=33)

Given the number n, we stop our iterations with respect to the nonlinear term
when
either F¥ > FK-!
k k—1
or|[Fy —F, | <e, (4.206)
where ¢ = 0.001 is a small tolerance number of our choice. In other words, we
stop iterations, when either norms Fnk start to grow or stabilize. Next, we iterate

with respect to the tails and use the same stopping criterion. Namely, we stop our
iterations with respect to tails when

either Fn,i > Fn,i—l or |Fnl — Fn’,'_1| <e, (4207)

where

||Qn,i|F;_$n||Lz(—3,3)
ni =

Yl Lo(=33)
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Fig. 4.11 Results of the performance of the globally convergent stage of our two-stage numerical
procedure. Spatial distributions of some functions ¢, ; are shown. The function c¢y; is taken as
the final result of this stage (see details in the text). The maximal value of ¢}, (x) = 3.8 within
each imaged inclusion. Also, imaged inclusions. Hence, the contrast is imaged with only 5% of
error (the correct one is 4 : 1). However, while the location of the right inclusion is imaged
accurately, comparison with Fig.4.9c shows that the left imaged inclusion is located below its
correct position. Hence, it is desirable to move the left imaged square upward. This paves the way
for a subsequent application of the adaptivity technique, which takes the function ¢y 1= cgiop
as the starting point for computations. Source: L. Beilina and M.V. Klibanov, A posteriori error
estimates for the adaptivity technique for the Tikhonov functional and global convergence for a
coefficient inverse problem, Inverse Problems, 26, 045012, doi:10.1088/0266-5611/26/4/045012,
2010. © IOP Publishing. Reprinted with permission

Recall that the number i, on which these iterations are stopped, is denoted as i :=
m,. Once the convergence criterion (4.207) is satisfied, we take the last computed
tail Vj, m,, set V,411 := Vim,. and run computations again for ¢,+;. Hence, the
number m,, of iterations with respect to tails is chosen automatically “inside” each
iteration for ¢,, which means that m, varies with n.

In our numerical test, we have considered the noisy boundary data gpoise
introduced as in (3.7) in Sect. 3.1.1:

8o (xi’[j) =8 (-xivtj) [1 + o (gmax _gmin)a] . (4.208)

Here, g (x',77) = u(x",7/),x" € 02 is a mesh point at the boundary 952,17 €
(0,T) is a mesh point in time, o; is a random number in the interval [—1, 1],
o = 0.05 is the level of noise and gm.x and gmin are respectively maximal and
minimal values of the computed boundary data g in (2.5). Hence, the noise level in
the boundary data was 5%.

Figure 4.11 displays results of the performance of the approximately globally
convergent stage of our two-stage numerical procedure. One can see that the location
of the right small square is imaged well. It follows from Fig. 4.11c that the imaged
contrast in this square is

maxcyp:1=38:1,

where n := N = 11 is our final iteration number (see below for this choice of N).
Thus, we have obtained the 5% error (0.2/4) in the imaged contrast, which is the
same as the error in the input data. As to the left small square, we got the same
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Fig. 4.12 (a) The one-dimensional cross-sections of the image of the function ¢, ; computed
for corresponding functions ¢, ; along the vertical line passing through the middle of the right
Han.ilag =V, 111y (—3.3)
YLy (=33)
and M.V. Klibanov, A posteriori error estimates for the adaptivity technique for the Tikhonov

functional and global convergence for a coefficient inverse problem, Inverse Problems, 26, 045012,
doi:10.1088/0266-5611/26/4/045012, 2010. (© IOP Publishing. Reprinted with permission

small square; (b) Computed L, -norms of the F,; = . Source: L. Beilina

3.8 : 1 contrast in it for ¢ (x). Values of the function ¢;12(x) = 1 outside of
these squares are imaged accurately. However, the location of the left square is
shifted downward. Hence, both imaged squares are on about the same horizontal
level. Therefore, comparison with Fig.4.9¢c reveals that it is desirable to shift the
left imaged square upward. This opens the door for the subsequent application of
the adaptivity technique.

Figure 4.12b shows computed numbers F,, ;. Using this figure, we analyze results
of our reconstruction. One can see on Fig.4.12b that the number m,, of iterations
with respect to tails indeed varies with n, since m, is chosen automatically now,
using the criterion (4.207). We observe that the norms F),; generally decrease until
computing the function g;. Next, they slightly grow, decay from Fy, to Fjo, and
then these norms stabilize on n = 11,12. For n = 13,14, 15, these F,; grow
steeply. Thus, following the fourth Remark 2.9.4, we conclude, that we should stop
our iterations when the stabilization occurs first, i.e., at N = 11. So, we take the
function ¢y := cgop as our final reconstruction result on the globally convergent
stage.

4.15.3 The Second Stage

We show in this section that the second stage of our two-stage numerical procedure
can refine the image of the first stage, which was presented in the previous section.
More precisely, we take the function cgqp := ¢11,2 of Fig.4.11c as the starting point
for the adaptivity algorithm. We demonstrate in this section that the left square on
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Fig.4.11c can be indeed moved upward to its correct location of Fig.4.9¢c, while
the right figure would still remain in its correct location of Fig. 4.11c. At the same
time, the calculated inclusions/background contrasts in both imaged squares as well
as the value of the computed function ccomp (x) outside of these squares will remain
accurate.
We now solve state and adjoint problems (4.180) and (4.181) in the domain
(Tl) = 2, x(0,T), where

leGﬂ{x2>—3}.

Hence, £2 C £2; and the line I" C 952 in (4.205) is a part of the lower boundary of
the rectangle §2;. We have not used here the function z; (¢) since we have observed
that u (x,t) =~ 0 fort ~ T = 15 in our case. To simplify, computations, we
have found the normal derivative d,u |30, x(0.r),» Which we need to solve the state
problem, via solving the forward problem (4.203); also see Sect.4.2 for a more
rigorous way to find this normal derivative.

We use the adaptive algorithm of Sect.4.13.2 with the refinement criterion
(4.189). The tolerance number B, is chosen via numerical experiments; see
Sect.4.12 for relevant explanations. We take B, = 0.1 on the initial coarse mesh,
B, = 0.2 on the one, two, and three times refined meshes, and 8, = 0.6 for all
follow-up refinements of the initial mesh.

On all refined meshes, we have used a cut-off parameter C for the reconstructed
coefficient c¢j,. Thus, we redefine ¢, as

cn ()C) — Ch (.X) P if Ich (.X) — Cglob (X) | > Ccut
Cglob (X) , elsewhere.

We choose Cyi= 0 for m < 3 and C.= 0.3 for m > 3, where m is the number of
iterations in the quasi-Newton method on each mesh. Hence, the cut-off parameter
ensures that we do not go too far from our good first guess for the solution cgiep (x) .

In the adaptive algorithm, we can use box constrains for the reconstructed coef-
ficient. We obtain these constraints using the solution computed on the first stage.
Namely, minimal and maximal values of the target coefficient in box constraints
are taken using results of the first stage, since approximate global convergence
Theorems 2.8.2 and 2.9.4 guarantee that the function cgo, oObtained on the first
stage is a good approximation for the correct solution. Since cgiop (x) € [1,3.8],
then we enforce that the coefficient c(x) belongs to the following set of admissible
parameters ¢ € {c € C(2)|l < c(x) < 4}. Hence, this is similar with the
correctness set P (d,g) of Theorem 2.9.4; see (2.208) in Sect. 2.9.1 for P (d,g)

as well as the third Remark 2.9.4. Thus, in our case, the number d := 4 (Table 4.4).

First, the function cgqp(x) was taken on the initial coarse mesh shown on
Fig.4.13a and the quasi-Newton method was applied on this mesh. Comparison
of Figs.4.13d and 4.11c (for ci1p := cgop) shows that the image was not
improved, compared with the one obtained on the globally convergent stage. Next,



266 4 The Adaptive Finite Element Technique and Its Synthesis...

Table 4.4 Norms ||u |, —g||1,(r) on adaptively refined meshes

n 4,608 elements 5,340 elements 6,356 elements 10,058 elements 14,586 elements
1 0.0992683 0.097325 0.0961796 0.0866793 0.0880115

2 0.0988798 0.097322 0.096723 0.0868341 0.0880866

3 0.0959911 0.096723 0.0876543

4 0.096658

Here, I'r = I x (0, T) and n is the number of updates in the quasi-Newton method. These norms
generally decrease as meshes are refined. Then they slightly increase on the fourth refinement.
Thus, because of this increase on the fourth mesh refinement, we use relaxation Theorems 4.9.3
and 4.11.4 to decide that our final solution corresponds to the fourth mesh refinement; also see the
second Remark 4.9.3

Source: L. Beilina and M.V. Klibanov, A posteriori error estimates for the adaptivity technique
for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse
Problems, 26, 045012, doi:10.1088/0266-5611/26/4/045012, 2010. © IOP Publishing. Reprinted
with permission

the mesh was adaptively refined four times. Adaptively refined meshes are shown
on Fig.4.13b,c,g,h. Table 4.4 presents computed norms of ||u |, —gl|L,p)s
where I'T = I' x (0,7T) and I" was defined in (4.205). The first mesh refinement
correspond to the second column. We observe that norms at the boundary generally
decrease as meshes are refined. Then they slightly increase at the fourth refinement.
Thus, because of this increase on the fourth mesh refinement, we use relaxation
Theorems 4.9.3 and 4.11.4 to decide that our final solution corresponds to the fourth
mesh refinement; also see the second Remark 4.9.3. This solution is displayed
on Fig.4.13j. One can see on Fig. 4.13j that we are able to accurately reconstruct
locations of both small squares. At the same time, an accurate inclusion/background
contrast obtained on the globally convergent stage is preserved and even improved.
This contrast is now 4 : 1 = maxcs(x) : 1 instead of 3.8:1 calculated on the
first stage, where c¢(x) is the final imaged coefficient. The value of the coefficient
cs(x) = 1 outside of small squares is also imaged well.

4.16 Performance of the Two-Stage Numerical Procedure
in 3D

In this section, Figs.4.14a—c, 4.15a,b, 4.16a—f, 4.17a—p, 4.18a—p, 4.19a-1 and
4.20a-1 as well as Tables 4.5-4.7 were published in Journal of Inverse and Ill-
Posed Problems [25]. In addition, Figs.4.14a and 4.17p were published in IEEE
J. Computing in Science and Engineering [160], © 2010, IEEE. All above listed
figures are reprinted with permission.

In this section, we present numerical results of our paper [25]. Numerical studies
of [25] were concerned with analyzing the performance of the two-stage numerical
procedure in the 3D case. We work here with the computationally simulated data.



4.16 Performance of the Two-Stage Numerical Procedure in 3D 267

4608 elements 6356 elements

Scalar result Scalar result Scalar result
3684E 2,072 3.950€
3.3865 1.95M J62eE
30882 1.8342 3.294¢

+ 2.789: 1.8 - 29671
Z49E 1.595¢ . 26392
2193 14767 234

i 1.357¢
1.2382
1119
1

F 19838
1.6557
1.327¢
1

| 1.834¢
@ 1596€
12983

1

4608 elements 5340 elements

14586 elements

Scalar result Scalar result

34 3.999¢

l 3.567¢ I 3 BEBE

32644 3.333

z.9408 28992

28174 2 BEBE

22838 23332

¢ 1.970% 19998
1.647

1.323%
1

10058 elements 14586 elements

Fig. 4.13 Adaptively refined meshes (a)—(c), (g), (h) and corresponding images (d)—(f), (i), (j)
on the second stage of our two-stage numerical procedure. In a) the same mesh was used as one
on the globally convergent stage. Comparison of (d) with Fig.4.25¢ (for ¢, = cgop) shows
that the image was not improved compared with the globally convergent stage when the same
mesh was used. However, the image was improved due to further mesh refinements. Figure 4.13j
displays the final image obtained after four mesh refinements. Locations of both inclusions as
well as 4:1 inclusions/background contrasts in them are imaged accurately; see details in the text
and compare with Fig.4.9¢c. Source: L. Beilina and M.V. Klibanov, A posteriori error estimates
for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient
inverse problem, Inverse Problems, 26, 045012, doi:10.1088/0266-5611/26/4/045012, 2010. ©
IOP Publishing. Reprinted with permission
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Growm G =GremUGrpym Grem =Q

Fig. 4.14 (a) The exact geometry with two scatterers. Domain decomposition (b)—(d): the hybrid
mesh (c) is a combinations of a structured mesh (b), where FDM is applied, and a mesh (d),
where we use FEM, with a thin overlapping of structured elements. The solution of the inverse
problem is computed in the hexahedron £2 and ¢(x) = 1 for x € G\ £2. Source: L. Beilina
and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic coefficient
inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010. © de Gruyter 2010.
Reprinted with permission
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Fig. 4.15 Test 1: On (a), we show computed and on (b), exact values of |/ ,|/ Iy compared with
the estimation |1y ,|/Iy < 452/ ) (see (2.40)) for different values of A. Computations performed
on pseudo frequency interval [3.4,7.4] with &~ = 0.05. Here, x-axis presents pseudo-frequency
interval. One can see that (2.40) significantly overestimates the value of |I;,|/Iy. Source: L.
Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic
coefficient inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010. © de
Gruyter 2010. Reprinted with permission

That is, the data g(x,7) in (2.5) are generated by computing the forward problem
(4.210) with the given function c(x). Just as in all tests above, we use the hybrid
FEM/FDM method of [30] to solve the forward problem. The computational domain
in all our tests G = Gggm U Grpy is set as

G = {(x1,x2,x3) € [-4,4] x [-2.5,2] x [-5,5]}.
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Fig. 4.16 Test 1. The spatial distribution of ¢, after computing ¢, ;;n = 1,3,7,11, 12, 13 where n
is the number of the computed function ¢. Maximal values of the imaged coefficient are displayed.
Its computed value outside of imaged inclusions is 1. Results are presented with numerically
approximated integrals /o, I . A1, A2 », with the noise level 0 = 5% and with A = 200. Source:
L. Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic
coefficient inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010. © de
Gruyter 2010. Reprinted with permission

This domain is split into the finite element domain Gggy:
Grem = $2 = {()Cl,)C2,)C3) € [—3, 3] X [—2, 15] X [—3, 3]}

and the surrounding domain Ggpy with the structured mesh; see Fig.4.14. The
space mesh in §2 consists of tetrahedra, and it consists of cubes in Ggpm, with the
mesh size 7 = 0.25 in the overlapping regions. At the top and bottom boundaries of
G, we use first-order absorbing boundary conditions [66]. At the lateral boundaries,
zero Neumann boundary conditions allow us to assume an infinite space domain in
the lateral direction.

The forward problem is computed in the domain G C R? (Fig.4.14). The
coefficient ¢(x) is unknown only in the domain 2 C G. Following (2.3) and
(4.207), we assume the knowledge of this coefficient only outside of the domain £2:

c(x) = 1in G\R2. (4.209)
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Fig. 4.17 Test 2. The case when the noise level = 0%. First, second, third, and fourth raws
correspond to the first, second, third, and fourth mesh refinements, respectively. Maximal values
of the computed coefficients on different meshes are displayed. In each case, the computed value
of that coefficient outside of imaged inclusions is 1. The final image is displayed on (I). Locations
of both inclusions as well as the 4 : 1 inclusions/background contrasts are imaged with a good
accuracy. See Table 4.6 for the number of mesh points. Source: L. Beilina and M.V. Klibanov,
Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in
3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010. (© de Gruyter 2010. Reprinted with

permission
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Fig. 4.18 Test 2. The case when the noise level 0 = 5%. First, second, third, and fourth raws
correspond to first, second, third, and fourth mesh refinements respectively. Maximal values of the
computed coefficients on different meshes are displayed. In each case, the computed value of that
coefficient outside of imaged inclusions is 1. The final image is displayed on (). Locations of both
inclusions are imaged with a good accuracy. The correct 4:1 inclusions/background contrasts are
imaged as 4.1:1, which is a good accuracy. See Table 4.6 for the number of mesh points. Source:
L. Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic
coefficient inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010. © de
Gruyter 2010. Reprinted with permission
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Fig. 4.19 Test 3. The case when the noise level ¢ = 3%. Adaptively refined computational
meshes in different projections and corresponding reconstructed coefficients. First, second, and
third raws correspond to the first, second, and third refinements, respectively. Maximal values of
the computed coefficients on different meshes are displayed. In each case, the computed value of
that coefficient outside of imaged inclusions is 1. The final image is displayed on (). Locations
of both inclusions are imaged with a good accuracy. The correct 4:1 inclusions/background
contrasts are imaged as 3.7 : 1. See Table 4.7 for the number of mesh points. Source: L. Beilina
and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic coefficient
inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010. © de Gruyter 2010.
Reprinted with permission

The trace g (x, t) of the solution of the forward problem is recorded at the boundary
d£2. Next, the coefficient c(x) is “forgotten,” and our goal is to reconstruct this
coefficient for x € £2 from the data g (x,#). The boundary of the domain G is
dG = 0G| U G, U 0G3. Here, 0G| and 0G, are respectively top and bottom sides
of the largest domain of Fig. 4.14, and dGj is the union of left, right, front, and back
sides of this domain. In our tests, the forward problem is

c(x)0*u—Au=0, inGx(0,T),
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Fig. 4.20 Test 3. The case when the noise level 0 = 5%. Adaptively refined computational
meshes in different projections and corresponding reconstructed coefficients. First, second, and
third raws correspond to the first, second, and third refinements, respectively. Maximal values of
the computed coefficients on different meshes are displayed. In each case, the computed value of
that coefficient outside of imaged inclusions is 1. The final image is displayed on (I). Locations of
both inclusions are imaged with a good accuracy. The 4 : 1 inclusions/background contrasts are
also imaged with a good accuracy. See Table 4.7 for the number of mesh points. Source: L. Beilina
and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic coefficient
inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010. © de Gruyter 2010.
Reprinted with permission

u(x,0) =0, d,u(x,0) =0, in G,
8"“|a(;1 = f(t), ondGy x (0,1],
8"“|3(;1 = —0d;u, on dGy x (t;,T),
8nu|3(;2 = —d,u, on 3G, x (0, 7T),
|y, = 0, on dG3 x (0, 7), (4.210)
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Table 4.5 Test 1: Computed discrete Ly-norms F,; =

Iqn.i |r/-’—%, Niy(a))
A

for A = 50 and A =

1V, o2
200
It.n It.n
A=50 i=1 i=2 i =3 A=200 i=1 i=2 i =3
1 0.0522995  0.0522995 1 0.052307 0.052307
2 0.0523043  0.0521799 2 0.0523043  0.0521758
3 0.0535235  0.053353 3 0.0535235  0.053353
4 0.0516891  0.0556757 4 0.0516891  0.0556757
5 0.0467661  0.091598 5 0.0467661  0.091598
6 0.0466467  0.0440336  0.0464053 6 0.0466467  0.0440336  0.0464053
7 0.048653 0.0658041 7 0.048651 0.0658031
8 0.0631709  0.0893371 8 0.0631753  0.0893179
9 0.0851995  0.112022 9 0.085511 0.112321
10 0.0914011  0.106414 10 0.0915352  0.10644
11 0.0900873  0.104467 11 0.0905234  0.104808
12 0.111039 0.133793 12 0.111136 0.134055
13 0.141459 0.167344 13 0.141494 0.166125
14 0.176421 0.219103 14 0.174968 0.222117
15 0.238352 0.296523 15 0.240944 0.29716
16 0.327406 0.463613 16 0.328997 0.464465
17 0.528386 0.606531 17 0.53069 0.606824
18 0.630857 0.680105 18 0.630438 0.681458

Source: L. Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a
hyperbolic coefficient inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010.
(© de Gruyter 2010. Reprinted with permission

Table 4.6 Test 2. ||u |, —gl|1,(ry), maxg R, and maxg R., on adaptively refined meshes

CPU time (s)

[lu |Fr —g| |Lz(FT) R, R, gNit. T Trel
Mesh
o=0%
9,375 0.0285508 0.502511  0.0159757 5 23.87 0.0025
9,583 0.0259143 0.358853  0.0440558 5 24.26 0.0025
10,885 0.0301035 0.115057  0.105189 6 27.44 0.0025
11,500 0.028857 0.119722  0.0952689 6 29 0.0025
12,031 0.0342642 0.318698  0.049062 7 30.55 0.0025
Mesh
o=5% T
9,375 0.031286 0.501337 0.0160262 4 23.77 0.0025
9,555 0.0417805 0.18959 0.0497364 6 24.16 0.0025
11,248 0.0293965 0.114448 0.0733725 6 28.18 0.0025
13,042 0.0296054 0.126106  0.0723502 6 32.64 0.0025
20,229 0.0398704 0.210689  0.105882 4 50.74 0.0025

Here, q.N.it. denotes the number of iterations in the quasi-Newton method. In this table, coarse
mesh consists of 9,375 nodes. CPU time 7" is given for one q.N.it
Source: L. Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a
hyperbolic coefficient inverse problem in 3D, J. Inverse and Ill-posed Problems, 18, 85-132, 2010.
(© de Gruyter 2010. Reprinted with permission
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Table 4.7 Test 3: ||u |, —gl|L,(ry) on adaptively refined meshes with different noise level
o in data

Mesh o=13% q.N.it. CPU time (s) min CPU time/node (s)
9,375 0.030811 3 26.2 0.0028

10,564 0.029154 3 29.08 0.0028

12,001 0.035018 3 32.91 0.0027

16,598 0.034 8 46.49 0.0028

Mesh o=5% q.N.it. CPU time (s) min CPU time/node (s)
9,375 0.0345013 3 26.53 0.0028

10,600 0.0324908 3 29.78 0.0028

12,370 0.03923 2 34.88 0.0028

19,821 0.0277991 8 53.12 0.0027

Here, q.N.it. denotes the number of iterations in the quasi-Newton method. In this table
coarse mesh consists of 9,375 nodes. CPU time T is given for one q.N.it

Source: L. Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a
hyperbolic coefficient inverse problem in 3D, J. Inverse and 1ll-posed Problems, 18, 85-132,
2010. © de Gruyter 2010. Reprinted with permission

where T is the final time and f(¢) is the plane wave defined as

in(st—m/2) + 1 2
f(t)=(sm(s E)/H ),szgtl =T T =8201.
S

Thus, the plane wave is initialized at the top boundary dG and propagates into
G fort € (0, t1]. First-order absorbing boundary conditions [66] are used on 0G| x
(t1, T] and 0G, x (0, T], and the Neumann boundary condition is used on the bottom
boundary dG3. In our computations, the upper limit of the integral in the Laplace
transform (2.10) is 7.

4.16.1 The First Stage

We have performed numerical experiments to reconstruct the medium, which is
homogeneous with ¢ (x) = 1 except of two small cubes, where ¢ (x) = 4; see
Fig.4.14a. However, we have not assumed a priori knowledge of the structure
of this medium. Because of (4.209), the starting value for the tail V;; (x,5) was
computed via solving the forward problem (4.210) for ¢ = 1. Then, we have used
for V11 (x,5) the formula (4.204) from Sect. 4.15.2.

We have found that the pseudo frequency interval s € [3.3, 4.3] was the optimal
one for the above domains G, §2. The step size in the s direction was chosen as
h = 0.05. Hence, N = 20 in our case. We have chosen the same sequence &, of
regularization parameters as in Sect. 3.1.1. However, we choose here the parameter
A independent on 7n; see below.
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Once the function ¢, ; is calculated, we update the function ¢ := ¢,; via
backward calculation as in formula (3.4) in Sect.3.1.3. The stopping rule for
iterations with respect to the nonlinear term as well as with respect to the tails is
the same as in Sect. 4.15.2 with the only difference that I" and I are parts of planes
now rather than parts of straight lines:

[={x;=-3n%2 K= {(xl,xz) €Q:x; =3 +%} =025 (4211)

Hence, I' is the lower boundary of the domain 2. We have observed in our
numerical tests that the lower boundary of the domain £2 is the most sensitive one
to the presence of inclusions. Recall that the incident plane wave falls from the top;
see (4.210).

Test 1. We test the approximately globally convergent method for the case of the
reconstruction of the structure given on Fig.4.14a. We take the noise level 5% in
(4.208), which means 0 = 0.05. In Table 4.5, we analyze computed relative L,-
norms of the F,; for different values of the parameter A in the CWF in (2.38).
We observe that significant changes in A cause only insignificant changes in L;-
norms of the F, ;. The results in Table 4.5 are in an agreement with results in
Fig.4.15, where in Fig.4.15a, we present approximated, and on Fig. 4.15b, exact
values of the ratio |/ ,|/ly compared with the estimate (2.37). Figure 4.15 shows
that a significant growth of the value of A has a very small influence to the value
of |1 ,|/1o on the pseudo frequency interval [3.3,4.3] which we take in actual
computations. Therefore, we can work only with one value of A for all n.

Figure 4.16 displays isosurfaces of resulting images of functions c¢,;,n =
1,3,7,11,12,13 with numerically approximated integrals Iy, I ,, A1n, A2, by
midpoint rule, which corresponds to the computed integrals of the Fig.4.15a with
A = 200. Comparison of images of functions ¢, ; for different values n and i shows
that the inclusion/background contrasts grows with the increase of n and i.

One can see from Table 4.5 that the numbers F, ; decrease until computing the
function ¢g7. Next, F7, > Fg, and numbers F), ; start to grow with the increase of n.
They are stabilized for n = 10, 11 and then grow steeply for n = 12, ..., 18. Thus,
we conclude, that convergence of functions ¢, occurs at n = 7 and we take ¢ :=
Cglob as our final reconstruction result of the first stage of our two-stage procedure.
The function c7; is depicted on Fig. 4.16c.

We point out, however, that in the above numerical studies of the first stage
procedure in Sects. 3.2.2, 3.1.3, and 4.15.2, we have stopped at those values of n for
which the stabilization has occurred. Thus, if following the fourth Remark 2.9.4 in
this test, then we can also stop at n = 10 or n = 11. However, we have noticed that
the adaptivity stage works better for this specific test when we stop at lower values
of n. This is the reason why we took ¢7,1 := cgop. We show in Test 3 (Sect. 4.16.2)
that the second stage also works well starting from c4 5.
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4.16.2 The Second Stage

In Tests 2—4 of this section, we demonstrate the performance of the synthesis of the
adaptivity with the approximately globally convergent algorithm. We do not use the
function z; (¢) here, since we have observed that u (x, T) ~ 0, where u (x, t) is the
solution of the state problem. In tests of this section, we use different levels of noise
in the boundary data g = u |y for the adaptivity. Although we have introduced the
5% noise in the data in Test 1 for the first stage of our two-stage procedure, we can
introduce different levels of noise in (4.208) on the second stage. Still, in all tests of
this section, we take the solution of the first stage as the starting point for iterations.
Denote I'r = I' x (0, T), where I was defined in (4.211), and this the lower part
of the boundary of our domain of interest £2. We use the regularization parameter
a = 0.01 in all tests of this section.
Recall that by (4.194), mesh should be refined locally in those regions were

|R:(x)| = By max |R.(x)], (4.212)
2

where the number 8, € (0, 1) should be chosen in numerical experiments. We have
used 8, = 0.2.

Just as in Sect.4.15.3, we use a cut-off parameter C.y for the reconstructed
coefficient ¢; on all refined meshes. Specifically,

Ch (X) ,if |Ch (X) — Cglob (.X) I > Ceuts

4.213
Cglob (X) , elsewhere. ( )

Ch (x) =

Let m be the number of mesh refinements. In all tests we choose C.,; = 0.05 for
m < 3and Cey = 0.2 form > 3.

Similarly with Sect.4.15.3, we use box constrains for the reconstructed coef-
ficient in the adaptivity algorithm. We obtain these constraints using the solution
obtained on the first stage of Test 1 To choose the upper bound d for the function
¢, we observe that Figs.4.16 implies that for n < 13, the maximal value of the
imaged coefficient did not exceed 4.09, whereas we took ¢7,1 := cglob; see the end
of Test 1 for an explanation. On the other hand, approximate global convergence
Theorems 2.8.2 and 2.9.4 guarantee that the function cgqp is close to the exact
solution. Hence, we choose in (2.3) d = 4.2. Thus, in Tests 2-4, we enforce that
the coefficient c(x) belongs to the set of admissible parameters, c(x) € Cy = {c €
C()|1 < c(x) < 4.2}

Results of computations are presented in Table 4.6. The relative time T in this
table (CPU time/node) is computed as

T
T = —, (4.214)
p
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where T is the total CPU time and p is number of nodes in the computational
mesh. We note that 7, is approximately the same for all refined meshes which show
efficiency of using hybrid FEM/FDM method for solution of the inverse problem.
The knowledge of T} can help to estimate in advance the timing 7" for the solution
of this CIP for any number of mesh points using (4.214).

Test 2. This test consists of two subtests with 0% and 5% noise; see beginning of this
section. In both subtests the function ¢7,1 := cglop, Which corresponds to Fig. 4.16c,
was taken as the starting point on all meshes.

First, we use the coarse mesh and obtain almost the same reconstruction as the
one on the first stage, which is similar with the 2D case of Sect. 4.15.3. We repeat the
optimization procedure on every new mesh. Already on the first mesh refinement,
we have reconstructed shifted location of small cubes; see Figs.4.17d and 4.18d.
Table 4.6 shows computed norms ||u |, —g||r,) as well as maximal values of
residuals R, and R.,. The second row corresponds to the first mesh refinement. We
observe that on the fourth mesh refinement, these norms increase by about 20% for
o = 0% and by about 34% for o0 = 5%.

Hence, relaxation Theorems 4.9.3 and 4.11.4 imply that because of this signifi-
cant increase of norms ||u |, —g||r,(r) on the fourth mesh refinement, our final
solution should be taken from the third mesh refinement. Thus, our final images for
both levels of noise are presented on Figs. 4.171 and 4.18L.

To compare with Sect.4.15.3, we note that in that section, these norms ||u |,
—g||L,(ry) have increased on the fourth mesh refinement only by about 1%; see
Table 4.8. This is why we took in Sect.4.15.3 as the final solution the one which
was obtained on the four times refined mesh.

Test 3. The goal of this test is to see how the number of iterations n of the
approximately globally convergent method of the first stage affects the result of
the second stage of our two-stage numerical procedure. Indeed, although in both
subtests of Test 2, we have started iterations of the adaptivity from the function
¢7.1, approximate global convergence Theorems 2.8.2 and 2.9.4 guarantee that any
function ¢, ; with n € [1,7] is close to the correct solution. Hence, in this test,
we start iterations of the adaptivity from the function c4,; see Fig.4.16b for this
function.

Just as in Test 2, we again have two sub-tests here, which differ by the level
of noise of 3% and 5% in data. First, on the coarse mesh, we obtain almost the
same reconstruction as one of the first stage, which is similar with the previous
example. On the two times adaptively refined mesh, we have reconstructed shifted
location of cubes; see Figs.4.19h and 4.20h. Table 4.7 shows computed norms of
[l |r; —&llL,(rr)- The first mesh refinement corresponds to the second row. The
fourth mesh refinement led to a significant increase of this norm in both subtests (not
shown in Table 4.7). Thus, using again relaxation Theorems 4.9.3 and 4.11.4, we
conclude that we obtain the solution of our CIP on the three times adaptively refined
mesh. Our final images for both levels of noise are presented on Figs.4.191 and
4.201. Locations of both inclusions are imaged accurately in both cases. In particular,
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especially in comparison with the first stage, the resulting computed maximal value
¢y = 3.7 and ¢;, = 4 for noise levels of 3% and 5%, respectively. Values of ¢, = 1
outside of imaged inclusions are also accurately calculated.

Thus, although we have replaced in Test 3 the function c¢7; of Test 2 with
the function ¢4, as the starting point for the subsequent adaptivity technique, we
have still obtained the same quality images as ones in Test 2 This again verifies
computationally convergence estimates of both approximate global convergence
Theorems 2.8.2 and 2.9.4.

4.17 Numerical Study of the Adaptive Approximately
Globally Convergent Algorithm

In this section, Figs.4.21a—c, 4.22a—d, 4.23a,b, 4.24a—d, 4.25a-d, 4.26a—d and
4.27a—d as well as Tables 4.8-4.10 were published in Inverse Problems [9].
Reprinted with permission.

In this section, we present the adaptive approximately globally convergent
algorithm developed in [9]. The idea of [9] is to use the adaptivity inside the
approximately globally convergent algorithm of Sect. 2.6.1. Thus, unlike the above,
this is a one-stage numerical procedure. The a posteriori error analysis of [9] is
based on the analysis of the sequence of Dirichlet boundary value problems for

GFDJL-I G= GFE;\-I U GFDJ‘L-I GFEJ\-I =Q

Fig. 4.21 The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is
applied, and a mesh (c), where we use FEM, with a thin overlapping of structured elements. The
solution of the inverse problem is computed in the square §2 and c¢(x) = 1 for x € G\ 2.
Source: M. Asadzadeh and L. Beilina, A posteriori error analysis in a globally convergent
numerical method for a hyperbolic coefficient inverse problem, Inverse Problems, 26, 115007,
doi:10.1088/0266-5611/26/11/115007, 2010. (© IOP Publishing. Reprinted with permission
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Fig. 4.22 Isosurfaces of the simulated exact solution to the forward problem (4.203) at different
times with a plane wave initialized at the top boundary. Source: M. Asadzadeh and L. Beilina, A
posteriori error analysis in a globally convergent numerical method for a hyperbolic coefficient
inverse problem, Inverse Problems, 26, 115007, doi:10.1088/0266-5611/26/11/115007, 2010. ©
IOP Publishing. Reprinted with permission

elliptic equations (2.49) for functions g, ; with Dirichlet boundary conditions (2.50).
We do not discuss this analysis here referring the reader to the publication [9]
instead. Rather, we focus here on numerical results of this publication.

That a posteriori error analysis led the authors of [9] to the mesh refinement
recommendation which is the direct analog of the second mesh refinement rec-
ommendation of Sect.4.12; see (4.186). Thus, the mesh should be refined in all
subdomains, where

cp (x) = Amaxcy (x), (4.215)
2

where cj, (x) is the reconstructed coefficient on the current, coarser, mesh. In
(4.215), A € (0,1) is the tolerance number which should be chosen numerically;
see Sect.4.12.

Thus, the procedure works as follows. On the coarse mesh, the algorithm of
Sect. 2.6.1 is applied, and the function ¢z := cglob := ¢;, is found. Next, the mesh is
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Fig. 4.23 Exact and computed solutions of equation using different methods. (a) Comparison of
exact solution and computed solutions at the point (0.5, 3.7), which is located at the top of the
computational domain G. (b) Comparison of exact solution and computed solutions at the point
(3.0, —3.7), which is located at the bottom of the computational domain G. Source: M. Asadzadeh
and L. Beilina, A posteriori error analysis in a globally convergent numerical method for
a hyperbolic coefficient inverse problem, Inverse Problems, 26, 115007, doi:10.1088/0266-
5611/26/11/115007, 2010. © IOP Publishing. Reprinted with permission
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Fig. 4.24 Exact (on (a)) and computed (on (b)—(d)) coefficients ¢ (x) using exact computed values
of the tail function V(x,s). Source: M. Asadzadeh and L. Beilina, A posteriori error analysis
in a globally convergent numerical method for a hyperbolic coefficient inverse problem, Inverse
Problems, 26, 115007, doi:10.1088/0266-5611/26/11/115007, 2010. (© IOP Publishing. Reprinted
with permission

refined using the criterion (4.215), and the algorithm of Sect.2.6.1 is applied again
using this finer mesh. Next, the mesh is refined again, if necessary, and the process
is repeated.

We update functions ¢, ; using the variational formulation of (2.11); see formulas
(3.10)—(3.21) in Sect. 3.1.3. Note that we always set ¢, ;(x) = 1 forx € G \ £2.

On the refined mesh, the first guess for the tail is computed using the solution of
the forward problem (4.219) with so interpolated function cgiop(x). Let w (x, 5) be
the Laplace transform of this solution. Then the first guess for tails on the refined
mesh is taken as

71,1 (x) = w
s

Next, we perform all steps of the algorithm of Sect.2.6.1 to obtain the function
[

For each new mesh, we first linearly interpolate the boundary function ¥, and
the reconstructed function ¢, (x) obtained on the previous mesh. Then on the new
refined mesh for the first guess of the tail, we use the computed solution of the
forward problem (4.219) with interpolated function cgiob(x). Let W (x,s) be the
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Fig. 4.25 Results of the performance of the globally convergent algorithm. Spatial distributions of
some functions ¢, ;. The function cg | is taken as the final result. The maximal value of ¢g ;| (x) =
3.8 within maximal value of function (4.220). Also, ¢g; (x) = 1 outside of this maximal value.
Hence, the 3.8 : 1 inclusion/background contrast is imaged well (the correct maximal value of
function (4.220) is 4 : 1). However, the form of the imaged function is desirable to be improved.
This is why we apply the adaptive globally convergent algorithm, which takes the function cg;
for refinement criterion (4.217). Source: M. Asadzadeh and L. Beilina, A posteriori error analysis
in a globally convergent numerical method for a hyperbolic coefficient inverse problem, Inverse
Problems, 26, 115007, doi:10.1088/0266-5611/26/11/115007, 2010. (© IOP Publishing. Reprinted
with permission

Laplace transform of the solution of the forward problem (4.219) obtained on a
new refined mesh. Then the first guess for tails on the refined mesh is taken as

~ Inw(x,s
Foaco - H5GD

This enables us to solve equations for functions g |, ¢, on the new refined mesh.

Let c; i be the function ¢, ; computed on the j times refined mesh. In our case, the
domain §2 = [-3, 3]x[—3, 3] is the same as one in Sects. 3.1.3 and 4.15.1. Hence, to
stop iterations with respect to the nonlinear term, i.e., to stop iterating with respect to
k in q,]f,l, we use the same criterion as the one in Sect. 4.15.2; see (4.206). Next, we
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Fig. 4.26 Test 1: Adaptively refined meshes (a), (¢) and corresponding images (b)-(d) using
adaptive globally convergent algorithm. In this test we choose set of admissible parameters
for coefficient ¢ € P = {¢c € C(2)[1 < c(x) < 8}. Locations of maximum value
of the function (4.220) as well as shape and 4 : 1 contrasts in them are imaged accurately.
Source: M. Asadzadeh and L. Beilina, A posteriori error analysis in a globally convergent
numerical method for a hyperbolic coefficient inverse problem, Inverse Problems, 26, 115007,
doi:10.1088/0266-5611/26/11/115007, 2010. (© IOP Publishing. Reprinted with permission

iterate with respect to the tails and use another stopping criterion for computations
of functions c; ;. For each pair (1, 1), we stop computing functions ¢; ; when

either Nn,,' > Nn,i—l or |Nn,,' — Nn,i—l| <& =10.001, (4.216)
where ) )
Nypi = lle, _Cz,i—llle(Q)' 4217

”C;,i—l”LZ(Q)
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Fig. 4.27 Test 2. Adaptively refined mesh (a) and corresponding images (b)—(d), using adaptive
globally convergent algorithm. In this test, we choose set of admissible parameters for coefficient
c€P ={c € C)|1 < c(x) < 5}. Locations of maximum value of the function (4.220) as well
as shape and 4 : 1 contrasts in them are imaged accurately. Source: M. Asadzadeh and L. Beilina,
A posteriori error analysis in a globally convergent numerical method for a hyperbolic coefficient
inverse problem, Inverse Problems, 26, 115007, doi:10.1088/0266-5611/26/11/115007, 2010. ©
IOP Publishing. Reprinted with permission

73R

To simplify the presentation, we drop the mesh index “;” in notations for numbers
N,.i. We denote the number iy on which these iterations are stopped as iy := m,,.
Also, for the analysis in computed examples, we use numbers N, denoted as

Ny := Ny . (4.218)

4.17.1 Computations of the Forward Problem

We work with the computationally simulated data generated by computing the
forward problem with the given c(x). To solve the forward problem, we use the
hybrid FEM/FDM method mentioned above. The computational domain for the
forward problem G = [—4, 4] x [-5, 5] here is the same as the one in Sect.4.15.1.
This domain is split into a finite element subdomain Gggy 1= £2 = [-3, 3] x[-3, 3]
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Table 4.8 F ﬁ n = 1,...,10. Computations was performed with the noise level 0 = 5%
and with the regularization parameter y = 0.01

It.nr. i=1 i =2 i=3 i =4 i=5 i =6

1 0.202592 0.202984

2 0.208818 0.191831 0.19212

3 0.187327 0.175833 0.176045

4 0.152134 0.203397 0.204205

5 0.17487 0.202605 0.202889 0.203076 0.203103 0.202986
6 0.206424 0.202276 0.202091 0.201566 0.201046 0.200468
7 0.203256 0.200669 0.198746 0.195911 0.195683

8 0.191367 0.195898 0.194232

9 0.188395 0.195584 0.194025

10 0.187154 0.19684 0.197282

Source: M. Asadzadeh and L. Beilina, A posteriori error analysis in a globally convergent
numerical method for a hyperbolic coefficient inverse problem, Inverse Problems, 26,
115007, doi:10.1088/0266-5611/26/11/115007, 2010. (© IOP Publishing. Reprinted with
permission

Table 4.9 Computational

. Iter., n Chnum N,

results for the adaptive -

approximately globally 1 1.26 0.0324175

convergent algorithm 2 1.33 0.033511
3 1.4 0.0360971
4 1.48 0.0509878
5 1.7 0.11818
6 1.9 0.179527
7 3.2 0.14
8 3.8 0.16
9 3.9 0.16

Source: M. Asadzadeh and L. Beilina, A
posteriori error analysis in a globally con-
vergent numerical method for a hyper-
bolic coefficient inverse problem, Inverse
Problems, 26, 115007, doi:10.1088/0266-
5611/26/11/115007, 2010. © IOP Publish-
ing. Reprinted with permission

Table 4.10 The set of
admissible parameters in
different tests

Test] c€P=4{ceC@®)|l <c(x)<8}
Test2 c¢€ P ={ceC)<c(x)<5}

and a surrounding region Gppy Wwith a structured mesh, G = Gggm U Grpy; see
Fig.4.21. The spatial mesh in 2 consists of triangles, and it consists of squares in
Grpm. In the overlapping regions, the mesh size is # = 0.125. The boundary of the
domain G is dG = 0G| U dG, U dG3. Here, G and dG;, are respectively top and
bottom sides of the largest domain in Fig. 4.21, and dGj is the union of left and right
sides of this domain. At dG,, we use the first-order absorbing boundary condition
fort € (0,T), and we also use the same condition at G for ¢ € [t;,T), where
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t; € (0,T) is a certain number. We use the zero Neumann boundary condition at
0G5, which models an infinite space in the horizontal direction.

The trace of the solution of the forward problem is recorded at the boundary
082. Next, the coefficient ¢(x) is “forgotten,” and our goal is to reconstruct this
coefficient for x € §2 from the data g (x,¢); see (2.5). The forward problem here
is almost the same as the one in Sect.4.15.1, except that we now use the Dirichlet
boundary condition at dG; for ¢t € (0,7) instead of the Neumann condition in
(4.203) in Sect. 4.15.1. Thus, the forward problem is

c(X)uy—Au=0, inGx(0,T),
u(x,0) =0, u,(x,0) =0, in G,
u‘aGl = f(t), on Gy x (0,1],
anu|3G1 = —0du, on dGy X (t;,T),
anu‘acz = —d,u, on 3G, x (0, 7),

[y, = 0, on dG3 x (0, T). (4.219)
Here, f(¢) is amplitude of the incident plane wave:

in (51— /2) + 1 2
(sin (5 17;/ )+ )’ 0<i1<t = T]T T =17.81.
s

J@) =

Thus, the plane wave is initialized at the top boundary dG; and propagates into G
for ¢t € (0,1]. Figures 4.22 shows how the plane wave propagates for the structure
given on Fig. 4.24a.

To perform computations of the forward problem in an optimal way, we need
to choose, optimal, computational parameters such as the mesh size & and the
time step t. Since we compute the forward problem (4.219) at every iteration
in the approximately globally convergent algorithm to compute tails, we want to
reduce the computational time of computing the solution of the problem (4.219)
without losing an important information from this solution when solving the inverse
problem. To do it, we use different meshes in order to select an optimal mesh size /
in the computations. Let @ > 0 be a number. We define the plane wave in (4.219) as

: . 2
sin (wt), ift € (0, X) ,
0, ifr > 2%,

f=

Considerthe case ¢ = 1. Letx := (x, y) anda := 5. Then the analytical solution of
the problem (4.219) with the function f (¢) from (4.17.1) is given by the following
formula [42]:

0, ift € (0,a—y).
u(y,t)=qsinw(t—a+y). ift€(a—ya—y+3).
0, ift>a—y+%”.
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We have compared different computed solutions obtained via FEM, FDM, and
hybrid methods with the exact solution (4.17.1). Figure 4.23 displays these compar-
isons at two different points of the computational domain G for different mesh sizes.
We observe that major differences between exact and computed solutions occur at
the bottom of the computational domain G. The computed solution on the mesh
with the mesh size & = 0.05 approximates the exact solution more accurately than
the one with 2 = 0.1. We have also tested the solution of our inverse problem on
different meshes. It turns out that the mesh size 7 = 0.05 gives similar solution
for the inverse problem as the ones on the meshes with mesh sizes 7 = 0.1 and
h = 0.125. On the other hand, compared with the computations on the mesh with
h = 0.125, computations on the mesh with the mesh size # = 0.05 are much more
time-consuming. Therefore, in computations of the forward problem below, we use
the mesh with 7 = 0.125.

4.17.2 Reconstruction by the Approximately Globally
Convergent Algorithm

In numerical experiments of previous sections, we have simulated the data for the
case of a homogeneous medium with sharp inclusions inside. When solving the
inverse problem, we have not assumed any knowledge of the background inside
the domain of interest. In this numerical experiment, we also do not rely on any
knowledge of the background. However, unlike previous cases, we simulate the data
for the case when a sharp inclusion (the third line in (4.220)) is embedded in a
nonhomogeneous background. We are still interested in the reconstruction of this
inclusion only rather than of the background.
Thus, we simulate the data for the case when the unknown function ¢ (x) is

1405 sinz(gx) - sin? 3Y), —3=<x <0, and -3 <y <3,
c(x)=491+405 sinz(gx) - sin? Z¥), 0<x=<3 and 0=<y=<3, (4220)
14+ 3sin2(§x) - sin? %y), 0<x <3, and -3 <y <0,

see Fig. 4.24a. Our starting value for the tail function is the same as in (4.204); see
Sect.4.15.2.

Since our domains G, §2 are the same ones as in Sects.3.1.3 and 4.15.2, the
interval [s,5] = [6.7,7.45] is also the same as in those sections. We choose the
step size with respect to the pseudo frequency 2 = 0.05. Hence, N = 15. The
regularization parameter A in the CWF is A := 20 and ¢ = 0 forn € [1, N].
Once the function ¢, ; is calculated, we update the function ¢ := ¢, ; by backward
calculations using the variational approach; see formulas (3.12), (3.13), (3.15), and
(3.21) of Sect. 3.1.3. The resulting computed functionis ¢, ;,, := c3(x). The choice
of N is described below. In our tests, we have considered the noisy boundary data
go asin the formula (4.208) of Sect. 4.15.2. We have used the 5% noise level, which
means that 0 = 0.05 in (4.208).
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Figure 4.25 displays results of the performance of the approximately globally
convergent algorithm of Sect.2.6.1. One can see that both the location of the
maximal value of the function (4.220) are imaged very accurately. It follows from
Fig.4.25d that the imaged contrast in this function is 3.8 : 1 = maxcg; : 1,
3,1 := Cglob. However, the values of the slowly changing background function

b4 b
1+0.5sin” [ —x ) -sin® [ =
+ sin (3x) sin (3y)

in (4.220) are not reconstructed. Comparison with Fig.4.24a reveals that it is
desirable to improve the shape of the imaged function. This is done below via
applying the adaptivity technique inside the approximately globally convergent
algorithm.

Using Table 4.9, we analyze results of our reconstruction; see (4.216)—(4.218) for
N,. Observe that the numbers N, increase until computing the function ¢g7. Next,
they stabilize forn = 8,9.Forn = 10, ..., 15 the numbers grow steeply (not shown).
Hence, using, just as above, the fourth Remark 2.9.4, we conclude that we should
stop our iterations at ‘N = 8. Thus, we take the function 3,1 1= Cglob as our final
reconstruction result on this stage.

4.17.3 The Adaptive Part

In this section, we apply the adaptivity inside the approximately globally convergent
algorithm of Sect.2.6.1. As it was pointed out in the beginning of Sect.4.17, the
tolerance A € (0, 1) in (4.215) should be chosen numerically. We take A = 0.6
for all meshes. On each new mesh refinement, we refine the mesh at the all
points located in the circle with the centre at maxg C;?.m,, and with the radius
r = Amaxg c,?,mn.

In the adaptive algorithm, we use box constrains for the reconstructed coefficient.
Since approximate global convergence Theorems 2.8.2 and 2.9.4 guarantee that the
above function cgop is @ good approximation for the correct solution ¢*, and since
Calob (x) € [1,3.8], then we use two different upper limits for this function in our
tests; see Table 4.10 for the other second set of admissible parameters.

We have carried out two tests described below. In both tests, we start with the
function cgin(x) on the initial coarse mesh. This function is shown on Fig.4.25d.
Using the criterion (4.215), we refine the coarse mesh and interpolate the function
Cglob(x). On the refined mesh, the first guess for the tail is computed using the
solution of the forward problem (4.219) with so interpolated function cgep(x). Let
W (x, s) be the Laplace transform of this solution. Then, the first guess for tails on
the refined mesh is taken as

Inw(x,5)

T//1,1 (x) = )



290 4 The Adaptive Finite Element Technique and Its Synthesis...

Table 4.11 Corpputational Test 1 Test 2
results for adaptive

1
approximately globally Iter, n Cnmy Ny Tter, n Comy Nu
convergent algorithm 1 1.6 0.05 1 1.87 0.038
2 1.5 0.04 2 1.43 0.09
3 1.6 0.05 3 1.48 0.13
4 1.6 0.05 4 1.53 0.16
5 1.7 0.16 5 1.59 0.2
6 1.6 0.16
Iter., n c,%‘m” N, Iter., n cim” N,
1 1.9 0.08 1 2.45 0.04
2 3.99 0.342 4.0 0.25
3 3.99 0.33 3 4.0 0.25
4 3.99 0.33 4 4.0 0.25
Iter., n R N,
1 2.25 0.04
2 3.8 0.16
3 3.9 0.16
4 4.0 0.16

Source: M. Asadzadeh and L. Beilina, A posteriori error analy-
sis in a globally convergent numerical method for a hyperbolic
coefficient inverse problem, Inverse Problems, 26, 115007,
doi:10.1088/0266-5611/26/11/115007, 2010. © IOP Publish-
ing. Reprinted with permission

Next, we perform all steps of the algorithm of Sect. 2.6.1 to obtain the function c;,m” .

And continue mesh refinements similarly until stopped. We analyze the results of
this reconstruction using Table 4.11.

Test 1. We observe in Table 4.11 that numbers N, in (4.218) are stable first until
computing c4. Next, N5 = 3.2 N4, which is a steep growth. Thus, we conclude, that
we should stop the iterations when the stabilization occurs first, i.e., at N = 1. So,
we take the function c1174 as our final reconstruction result on the first iteration of
adaptive refinement procedure. Comparison of Figs. 4.25d and 4.26b reveals that
the image has worsened, since the maximal value of the reconstructed coefficient is
max c117 4+ = 2. On the other hand, the correct maximum value is 4.

Next, we refine the mesh locally again using the criterion (4.215) and the same
function cgiep(x) of Fig. 4.25d, and perform the algorithm on the new mesh. Using
the Table 4.11, we analyze again results of our reconstruction on this twice refined
mesh. We observe that N, = 4.25N, which is a steep growth. Next, these numbers
stabilize forn = 2,3,4. Forn = 5,...,7, numbers N, grow steeply (not shown).
Hence, we again conclude, that one should stop iterations when the stabilization
occurs first, i.e., at N = 2. Thus, we take the function C%,l as our final reconstruction
result on twice adaptively refined mesh.
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One can see on Fig. 4.26d that we are able to accurately reconstruct both location
and shape of the inclusion with the largest inclusion/background contrast of 4. As to
the inclusion/background contrast, at the majority of points of the imaged inclusion
¢3, = 4.5, whereas the correct value is 4. The value of the coefficient ¢(x) = 1
outside of the imaged inclusion is imaged accurately, except of three other “bumps”
of Fig. 4.24a.

Therefore, although our “allowable” upper bound 8 for the coefficient ¢ is twice
larger than the real maximal value of this coefficient, we still got a quite accurate
image after the second mesh refinement.

Test 2. Since approximate global convergence Theorems 2.8.2 and 2.9.4 guarantee
that the function cgqp is close to the exact solution, we take in Test 2 the maximal
value in the set of admissible parameters for the coefficient to be ¢ = 5; see
Table 4.10, which is close to the maximal value of the function ¢gjp. We observe on
Table 4.11 that after one mesh refinement of the mesh, the numbers N, grow. Hence,
we conclude that we should stop our iterations at N = 1 and take the function ¢ '
as the final reconstruction result on the first adaptively refined mesh. This function
is not shown, since the image is not improved compared with the image of cgqp.

Next, we refine the mesh locally again. Table 4.11 reveals that, similarly with
the above, we should stop at ‘N = 2. Thus, we take cg’ | as our final reconstruction
result on the twice adaptively refined mesh. We observe on Fig.4.27b that we are
able to very accurately reconstruct location, shape, and the maximal value of 4 of the
function (4.220). This result is similar to the results of Test 1, although the contrast
here is much closer to the exact one. To demonstrate the stability of the process with
respect to the third mesh refinement, we also display on Fig. 4.27 functions ",%,2 and
¢;,- Hence, the reconstruction is more accurate now than in Test 1.

4.18 Summary of Numerical Studies of Chapter 4

In numerical experiments of Sects. 4.15 and 4.16, the two-stage numerical procedure
was considered. In this case, the approximately globally convergent numerical
algorithm of Sect. 2.6.1 is applied on the first stage. On the second stage, the locally
convergent adaptivity technique is applied, in which case the solution ¢, of the
first stage is taken as the starting point of iterations. In Sect. 4.17, the adaptivity was
applied inside the algorithm of Sect.2.6.1 via refining the mesh in the area near the
points where the maximal value of the function cgp, is achieved.

Recall that in Sects.3.1 and 3.2, we have tested the case of either a single
inclusion or two inclusions located on the same horizontal level with the incident
plane wave propagating in the vertical direction. In this case, we were able to
obtain accurate reconstructions using the algorithm of the first stage only. However,
in Sects.4.15 and 4.16, we have tested a more complicated scenario when two
inclusions are located on different horizontal levels. It was shown that in this case
location of the lower inclusion as well as the contrast in both can be accurately
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reconstructed using the first stage only (at least in 2D). However, both imaged
inclusions remained on the same horizontal level in the 2D case, and their locations
were even less accurate in the 3D case. Next, the subsequent application of the
adaptivity technique has led to the correct shift of locations. As a result, both
locations and inclusions/background contrasts were accurately imaged. On the other
hand, it was pointed out in Sect.4.1 and confirmed in Test 5 of Sect. 3.1.3 that, as
a locally convergent numerical method, the adaptivity is remains sensitive to the
starting point of iterations. This is why the start from the solution obtained on the
first stage leads to stable results.

Numerical testing of the first stage has consistently demonstrated that results
are in a good agreement with approximate global convergence Theorems 2.8.2
and 2.9.4. In particular, because of the fourth Remark 2.9.4, we have chosen
in most cases those iteration numbers for stopping criteria which correspond to
the stabilization of certain residuals at the boundary. Also, it was demonstrated
numerically in Test 3 of Sect. 4.16 that even if the adaptivity starts from the solution
obtained on a lower iteration number, the final result is still accurate. This is in a
good agreement with Theorems 2.8.2 and 2.9.4

We point out that relaxation Theorems 4.9.3 and 4.11.4 have always helped us to
figure out the final mesh refinement number. Indeed, these theorems claim that if the
regularized solution is not achieved yet on a certain mesh, then one can improve the
accuracy of the reconstruction of this solution via a proper mesh refinement. Hence,
as long as one is rather far from the regularized solution, residuals at the boundary
are expected to decay with mesh refinements. Therefore, the growth of residuals
indicates that one is likely close to the regularized solution, which means that one
should stop mesh refinements.

In all tests with the adaptivity in Sects.4.14-4.16, we have used only the first
mesh refinement recommendation (4.189) of Sect. 4.13.2. Since the adaptivity has
indeed improved the quality of images, then one can anticipate that the gradient
(4.188) of the Tikhonov functional (4.172) (Sect.4.11) is sensitive to the locations
of inclusions. Figure 4.28 shows that this is true. This figure displays the absolute
value of the gradient (4.188) of the Tikhonov functional (4.172) for the 2D case
configuration considered on Fig. 4.9¢ of Sect.4.15. Mesh refinements on Fig. 4.28
are obtained using both mesh refinement recommendations (4.189) and (4.190).
Thus, Fig. 4.28 shows that the gradient (4.188) of the Tikhonov functional (4.172)
for the CIP 2.1 “senses” locations of inclusions. Furthermore, the gradient becomes
more sensitive to those locations when meshes are refined.

We now comment on results of Sect. 4.17, where the mesh was adaptively refined
inside the approximately globally convergent algorithm. Comparison of Fig.4.25d
with Fig. 4.26d and Fig. 4.27b—d shows that this kind of mesh refinement can indeed
significantly improve the image of the shape of the inclusion. In the case when the
“allowable” upper limit for the unknown coefficient is twice larger than the real
one (Test 1), one can still obtain quite accurate inclusion/background contrast. At
the same time, Theorems 2.8.2 and 2.9.4 guarantee that the image obtained prior to
these mesh refinements is accurate already (Fig.4.25d). Hence, the assumption of
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Fig. 4.28 Computed absolute values of the gradient (4.188) of the Tikhonov functional (4.172)
for the 2D case configuration considered in Sect. 4.15. Mesh refinements here are obtained using
both mesh refinement recommendations (4.189) and (4.190). Therefore, the absolute value of the
gradient of the Tikhonov functional for our coefficient inverse problem 2.1 is sensitive to the
locations of inclusions. We cannot guarantee, of course, that a similar sensitivity takes place for
other CIPs

Test 2 of Sect.4.17 that the “allowable” upper limit is rather close to the already
calculated inclusion/background contrast is a more realistic one. As a result, Test 2
shows a very accurate image of all three components of the inclusion with the
largest inclusion/background contrast: location, shape, and value of the unknown
coefficient inside that inclusion. Still, we have observed that while the algorithm of
Sect.4.17 can image one inclusion well, it cannot image two shifted inclusions, for
example, the case of Fig.4.9 in Sect. 4.15.

Consider now numbers d, d characterizing upper limits of the unknown coeffi-
cient ¢ (x); see (2.208) in Sect. 2.9.1. Another point worthy to mention here is that
we have used these numbers only in the convergence analysis in Theorem 2.9.4 of
the algorithm of Sect. 2.6.1. However, we have not used neither of numbers d, d in
the numerical implementation of this algorithm. Rather, we have relied only on the
knowledge of the lower limit ¢ (x) > 1. We have used the number d only in Tests 1
and 2 of Sect.4.17.



Chapter 5
Blind Experimental Data

All tables and figures of this chapter were published in Inverse Problems either in
[109] or in [28]. All of them are reprinted with permission. In particular, Tables 5.1—
5.5 and 5.6 were published in [109]. Tables 5.6 and 5.7 were published in [28].
Figure 5.1 was published in both [109] and [28]. Figures 5.2a-d, 5.3a, b, 5.4a—d,
5.5a-h and 5.6a—f were published in [109]. Figures 5.7a—c, 5.8a—c, 5.9a—f, 5.10,
5.11,5.12, 5.13, 5.14a—iand 5.15a, b were published in [28].

5.1 Introduction

In this chapter, we demonstrate the performance of the two-stage numerical
procedure of Chaps.2 and 4 for the case of experimental data. Specifically, we
present results of publications [28, 109]. Experimental data were collected by Drs.
Michael A. Fiddy and John Schenk in a laboratory of The University of North
Carolina at Charlotte.

While numerical studies of Chaps. 3 and 4 have confirmed the property number
2 of the informal Definition 1.1.2.1 of the approximate global convergence, results
of this chapter confirm the property number 3 of that definition. The first stage of
our two-stage numerical procedure was originally applied to the most challenging
case of blind experimental data [109]. In this chapter, the term “blind” means the
following:

1. In each experiment, the coauthors of [109] knew the location of the dielectric
inclusion. However, this information was not used in computations, since the
approximately globally convergent algorithm of Sect. 2.6.1 does not use such an
information.

2. Most importantly, the coauthors of [109], did not know refractive indices of
dielectric inclusions. First, the computational results were obtained via the
algorithm of Sect.2.6.1. Next, those refractive indices were measured directly
by two independent and well established in physics experimental methods.

L. Beilina and M.\V. Klibanov, Approximate Global Convergence and Adaptivity 295
for Coefficient Inverse Problems, DOI 10.1007/978-1-4419-7805-9_5,
© Springer Science+Business Media, LLC 2012
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3. Finally, numerical results were compared with results of those direct
measurements.

The comparison of item 3 has revealed that the difference between computed
and directly measured refractive indices was only a few percent in six out of six
cases. Furthermore, in five out of six cases, this difference was even less than the
measurement error of direct measurements; see Tables 5.5 and 5.6 below.

While results of [109] have demonstrated very accurate blind reconstructions
results of both locations and refractive indices of dielectric inclusions, their shapes
were not imaged well since the latter was outside of the scope of publication [109].
Therefore, the adaptive procedure of the second stage of our two-stage numerical
procedure was not applied in [109]. Both stages were applied later to the same
experimental data in [28]. The work on [28] was carried out later than one on [109].
Thus, the experimental data were blind only during the work on [109] and were not
blind when we have worked on [28]. It was demonstrated in [28] that the two-stage
numerical procedure very accurately reconstructs all three components of dielectric
inclusions: locations, shapes, and refractive indices.

A simple visual comparison of Fig.5.3a, b reveals a huge misfit between the
experimental computationally simulated data. This misfit has caused the main
difficulty of the work with experimental data. Indeed, it was unclear what kind of
PDE, if any, can describe the highly oscillatory behavior of the measured signal even
for the free space case. These oscillations took place regardless on the fact that only
one period of the sinusoidal function was used as the shape of the input pulse. Hence,
it became clear that standard denoising procedures, for example, Fourier transform,
Hilbert transform, spline interpolation, etc., can provide only an insignificant help in
our case. As a result, a radically new data pre-processing procedure was proposed
in [109]. Later, this procedure was complemented by one more step in [28]. This
step was necessary for the adaptive stage.

The goal of the data pre-processing is to transform experimental data in such a
way which would lead to acceptable boundary conditions for both stages of the two-
stage numerical procedure. The idea of data pre-processing is based on the intuition
only, and it cannot be justified neither by mathematics nor by physics. The single
justification of it is the accuracy of results of reconstructions.

The data processing has likely introduced a large modeling noise. This noise was
on the top of the regular measurement noise as well as on the top of the huge misfit
between the experimental data and our mathematical model. In addition, we have
used only a single hyperbolic PDE (5.1) (the same as (2.1)) for our mathematical
model. The Maxwell’s system was not used since only a single component of the
electric field was measured. Thus, the level of the resulting noise in the boundary
data was likely very large and was. Furthermore, the noise level was unknown to the
authors of [28, 109]. This is why a very good accuracy of results of [28, 109] is quite
surprising. These results are presented in the current chapter.

We remind that our two-stage algorithm does not assume neither any knowledge
of the background medium nor any knowledge of the presence/absence of small
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“sharp” abnormalities of our interest in the medium. It uses only the knowledge of
the target coefficient outside of the medium of interest.

We show in Sect.5.8.4 that a modified gradient method being applied alone to
these experimental data in the “pseudo frequency domain” leads to poor quality
results. In other words, a locally convergent algorithm, if taken alone, does not
work well for our experimental data. Therefore, the application of the approximately
globally convergent method is crucial for these data.

5.2 The Mathematical Model

We model the process of electric wave field propagation via a single hyperbolic
PDE, which is the same as our main PDE (2.1). We use this mathematical model
only for our experimental data. Other kinds of experimental data might require
different mathematical models. As the forward problem, we consider the following
Cauchy problem:

e (X)uy = Au, in R x (0, 00) , (5.1)
u(x,0) =0, u; (x,0) =6 (x —xp). (5.2)

Here, ¢, (x) is the spatially distributed dielectric constant (relative dielectric permit-
tivity),

er(x) = ﬂ Ver(x) =n(x) = <

Lt
£o c(x)

(5.3)

where ¢ is the dielectric permittivity of the vacuum (which we assume to be the
same as the one in the air), € (x) is the dielectric permittivity of the medium of
interest, 7 (x) is the refractive index of the medium of interest, ¢ (x) is the speed
of the propagation of the EM field in this medium, and cg is the speed of light
in the vacuum, which we assume to be the same as one in the air. We point out
that it is the refractive index, which is measured in physics. Dielectric constants
are not measured. The assumption 7 (x) > 1 means that the speed of the EM
field propagation in the medium is less or equal than the one in the air, which is
reasonable.

Let 2 C R3 be a convex bounded domain with the boundary 352 € C3. We
assume that the coefficient ¢, (x) of equation (5.1) satisfies the same conditions as
ones in (2.3), (2.4):

e (x) €[1,d], & (x) = 1 for x € RA\ 2, 5.4
& (x) € C*(R?). (5.5)
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The inequality &, (x) > 1 follows from (5.3). An upper estimate for the constant
d > 1 is assumed to be known, although we do not assume that the number d — 1
is small. The assumption &, (x) = 1 for x € R¥\ 2 means that one has air outside
of the medium of interest £2.

Coefficient Inverse Problem 5.2. Suppose that the coefficient &, (x) satisfies (5.4)
and (5.5). Assume that the function &, (x)is unknown in the domain £2. Determine
the functione, (x) for x € §2,assuming that the following function g (x, ¢)is known
for a single source position xo ¢ £2:

u(x,t) = g (x,0),V (x,1) € 32 x (0, 0) . (5.6)

The function g (x,¢) in (5.6) represents the data for this inverse problem. This
function models the data resulting from experimental measurements. Here is a brief
outline of the two-step procedure by which we have obtained the function g (x, ?):

Step 1. First, we have measured the time resolved signal, for a single source
location, as it is schematically depicted on Fig.5.1. The rectangular prism on this
figure is a schematic representation of our domain 2. We have measured this
signal only on the lower side of £2, i.e., on the transmitted side. Hence, we had
a very narrow view angle in these measurements. Although it seem to follow from
(5.6) that we should also measure the signal on other five sides of the prism §2,
our computational simulations have demonstrated that these sides are much less
sensitive to the presence of dielectric abnormalities than the lower side of this prism.
Hence, we have not conducted any measurements on those five sides. Instead, we
have prescribed to them such boundary values of the function u := g which were
calculated via solving the initial boundary value problem (5.11) for e, = 1.

Step 2. As to the lower side of the rectangular prism 2, we have applied our data
pre-processing procedure to the experimental data collected at this side. Thus, the
function, which has resulted from this procedure, is our function g (x,¢) on the
lower side of 2.

5.3 The Experimental Setup

Below x denotes both a vector x = (x, y,z) € R? and the first component of this
vector, where z is the vertical coordinate. It is always clear from the context what is
what there. Our source/detectors configuration is schematically depicted on Fig.5.1.
The source has generated an EM wave. Only one component of the vector of the
electric field was generated by our source. The same component was measured at
the bottom side of the rectangular prism £2 depicted on Fig. 5.1. Actually, the voltage
was measured.

The prism §2 was our computational domain. It was filled with Styrofoam.
Styrofoam is a material, whose dielectric constant e, & 1, i.e., it is the same as in the
air. The sizes of 2 were 240 x 140 x 240 mm, where “mm” stands for “millimeter.”
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Fig. 5.1 Schematic diagram of the source/detectors configuration. (a) The rectangular prism
depicts our computational domain £2. Only a single-source location outside of this prism was used.
Tomographic measurements of the scattered time resolved EM wave were conducted on the bottom
side of this prism. (b) Schematic diagram of locations of detectors on the bottom side of the prism
§2. The distance between neighboring detectors was 10 mm. Source:M. V. Klibanov, M. A. Fiddy,
L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verification of a globally
convergent numerical method for a coefficient inverse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. (© IOP Publishing. Reprinted with permission

Hence, sizes of front and back sides of the prism of Fig. 5.1 are 240 x 240 mm, and
sizes of other four sides are 240 x 140 mm. The distance between the wave source
and the top side of the domain 2 was 130mm. The initializing pulse was 100 ps
duration. Here, “ps” stands for “picosecond,” 1 ps = 10712 s. Since the speed of the
EM wave propagation in the air is 0.3 mm/ps, then it requires 433 ps ~ 130/03 ps
for this wave to travel from the source to the top boundary of £2. Hence, it follows
from (5.7) that the wave did not yet reach the domain §2 during the 100 ps duration
of this pulse. The initializing pulse was

~ Asin (&), for T € (0,100) ps,

f(@) = 0, for > 100 ps,

(5.7)

where A > 0 is the amplitude and 7 is the time in picoseconds. Our data processing
procedure does not rely on a knowledge of A.
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The time resolved signal was measured on a grid on the bottom side of the
prism §2, as indicated on Fig.5.1b. The grid step size was 10 mm. The detector
was moved mechanically from one location to a neighboring one. For each location
of the detector, the electric pulse was sent, and one time resolved component of the
scattered electric field was measured for the total period of 12,300ps = 12.3ns.
Hence, it is reasonable to assume in the mathematical model that only one electric
pulse was sent and that the wave field was measured simultaneously at all those
detectors.

We had two measurements at each detector location. First, we have measured
the reference signal when the dielectric inclusion was not present. Actually, this
is the case of free space. Next, we have measured the signal when the inclusion
was present. In principle, our technique allows the measurement of the reference
signal only at a few locations outside of the medium of interest: for the calibration
purposes. The only reason why we have measured the reference signal for each
location of the detector was that our current numerical implementation works
only with the case when the incident wave field is a plane wave. However, it
was impossible to arrange a true plane wave in that experiment. In other words,
we actually had a spherical wave. On the other hand, using measurements of the
reference signal, our data pre-processing procedure has “transformed” this spherical
wave into the plane wave.

Although real sizes of the domain §2 were given above, we have naturally worked
with the dimensionless domain. Let x’ be the vector of variables with dimensions in
millimeters. Then our dimensionless vector was x = x’/50 mm. Since the distance
between two neighboring detectors was 10 mm, then the dimensionless distance is
h = 10/50mm = 0.2. ~Thus, our dimensionless computational domain §2 and the
dimensionless distance /& between two neighboring detectors were

2 ={(x,y,2) €[-2.4,24] x [-1.4,1.4] x [—2.4,2.4]},}; =0.2,1€(0,12).
(5.8)
Let P be the bottom side of the domain £2 in (5.8):

P={(x,y,2):(x,y)€[-2.4,24] x[-1.4,1.4], z=-2.4}. (5.9)

We now explain how we got the dimensionless time. First, about the zero time.
We knew that the signal arrives at the detector approximately at 11,520 ps. Since
the distance between the planar surface P in (5.9) and the source was 370 mm, the
speed of light in the air is 0.3 mm/ps and (370 mm) / (0.3 mm/ps) = 1,233 ps,
then the zero time should be at 11, 520 ps—1,233 ps ~ 10,300 ps:= 7(. Hence, we
should work with a new time variable T/ = © — 1. The refractive index outside of
the domain .Q is n (x) = 1. Hence, the EM wave should travel the dimensionless
distance of 7 = 0.2 between two neighboring detectors in 0.2 dimensionless time
units. On the other hand, 0.2 corresponds to the 10 mm distance between two
neighboring detectors. Let ¢ denotes the dimensionless time. Then we should choose
such a multiplier y > 0, which has dimension in picoseconds, that y¢ = t’. Hence,
we should have
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10mm
0.3 (mm/ps)’
which implies that y = 166.67 ps. Thus, the dimensionless time ¢ is

0.2y ps =

,L,/

r = .
166.67

Howeyver, the above transformations to dimensionless variables did not affect our
governing PDE (5.1) because of the data pre-processing procedure described below
in this chapter.

5.4 Data Simulations

Since the computationally simulated data play an important role in our data pre-
processing procedure, we outline here the solution of the forward problem for
equation (5.1). Since it is practically impossible to solve the PDE (5.1) in the entire
space R3, we have solved it in a larger rectangular prism:

G ={(x,y,2) € [-3,3] x[-2,2] x [-5,5]}.
By (5.8), £2 C G. Our initializing plane wave in simulations was v (¢):

sin (wt), fort € (0, %’),
0, fort > 2Z o =17.

V(1) = (5.10)

Let dG; and 0G, be respectively top and bottom sides of G and dG; =
dG\_ (0G| U 3G>) be the rest of the boundary of G. We have numerically solved
the following initial boundary value problem:

& (X)uy =Au, inGx(0,T), T =12,
u(x,0) =0, u;(x,0) =0, in G,
anu‘acl =v(t), on dG; x (0,27 /w],
anu‘aG1 = —d,u, on G| x (1, T),
3nu|3G2 = —0d,u, on G, x (0,7T),
dnuly5, = 0, on dG3 x (0, 7). (5.11)
In the case when the data are simulated for the reference medium, we have in (5.11)

&r (x) = 1. We denote this solution as u; (x, ). Thus, in (5.11), the plane wave
is initialized at the top boundary dG; for times ¢ € (0,27 /w] and propagates
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into G. First-order absorbing boundary conditions were used on the top boundary
fort € 2n/w, T) as well as on the bottom boundary dG, for ¢ € (0, T). The zero
Neumann boundary condition was used on the rest of the boundary of the prism G.
The latter boundary condition is used because the “pure” plane wave with &, (x) = 1
satisfies this condition. The problem (5.11) was solved by the hybrid FEM/FDM
method. In this method, FDM is used outside of the domain £2, i.e., ~in G\ 2, and
FEM is used inside £2. The step size in the overlapping region was 4 = 0.2 which
is the same as the distance between any two neighboring detectors.

5.5 State and Adjoint Problems for Experimental Data

First, we remind the Tikhonov functional (4.8) of Sect.4.3. Let 2" (x) be the

coefficient &, (x) which was reconstructed on the first stage of our two-stage
numerical procedure, i.e. when applying the approximately globally convergent
algorithm of Sect. 2.6.1. The Tikhonov regularization functional is

1 1
Eo(e,) = 3 / (u s, —g(x, 1))z (t) dSydt + ¢ / (e, —e&P)2dx.  (5.12)
St 2

Our goal now is to find a minimizer ¢, , of this functional, i.e., to find the regularized
solution. Let Y be the set of functions defined in (4.7) (Sect.4.3) and H, be the
finite dimensional space of finite elements constructed in Sect.4.9.1. We remind
that the set Y; is defined as Y; := Y N H;. We assume that s,g.k)b € Y and assume
that conditions of Theorems 4.11.1-4.11.4 hold. In particular, these theorems imply
existence and uniqueness of the minimizer ¢,, € Y; in a small neighborhood of
the exact solution &) . Thus, below in this section, we work only in that small
neighborhood of €.

As to state and adjoint problems, although the theory of Chap.4 works with
solutions of those problems only in the domain Q7 = £2 x (0,7), we consider
in the current chapter different domains for these problems. Still, we believe that the
theory of the adaptivity of Chap.4 can be extended to this case, although we have
not yet done this. At this time, however, this difference of domains represents one of
discrepancies between the above theory and its numerical implementation. Indeed,
if defining solutions of state and adjoint problems like in (4.9) and (4.10) (Sect. 4.3),
then, in the case of our experimental data, it is unclear how to figure out the normal
derivative p (x,t) = 0,u |s, at the lateral boundary S; = 92 x (0, T') of the time
cylinder Q7.

Hence, consider the rectangular prism G’ = G N {z > —2.4}. Let the rectangle
Pops = {z = —2.4} N G be the bottom side of G'. By (5.9), the rectangle P C Pyps.
Let

Gr =G x(0,T), S7 = Pops x (0.T), S = (0G"\ Pops) x (0,T). (5.13)
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Recall that the lower side P of the rectangular prism £2 is much more sensitive to
experimental data than other five sides of this prism (Sect. 5.2). For this reason, we
have prescribed the same data to those five sides as the ones for the case of the free
space. Hence, let u (x,1, ¢,) be the solution of the initial boundary value problem
(5.11). Also, let u; (x, ) be the solution of this problem for ¢, (x) = 1. For the
same reason as above, we approximately assume that

u(x,t,e,) =u (x,1) for (x,1) € S. (5.14)

Thus, we define state and adjoint problems for our case as:

1. The state problem is the initial boundary value problem (5.11).
2. The adjoint problem is

& (X)Ay — AL =0, (x,1) € G,
A, T) = A (x, T) = 0,

A = (g —u)(x,1),
A |sy=0. (5.15)

The last line of (5.15) follows from (5.14). Similarly with Sects. 4.15.3 and 4.16.2,
we have dropped the function z; (¢) in the third line of (5.15), since this function is
used only for the compatibility conditions at # = 7', and we have observed that
u(x,T)~ g(x,T) ~ 0forx € d0G'. Thus, we have not used the function z; (¢) in
(5.12) in our computations of this chapter.

However, since measurements give us (after pre-processing) the function g (x, )
only for x € P, it follows from (5.13) and (5.14) that we should somehow extend
this function on the set Py, \ P. Hence, we actually need to know the function
g (x, 1) not only for x € P but also for x belonging to a wider rectangle Poys, X €
Pgys. In general, this extension problem is very similar with the problem of analytic
continuation. And the latter problem is very unstable. However, using some features
of our specific arrangement, we have found a different way of this extension via
the so-called third stage of our data immersing procedure, which is described in
Sect. 5.6.

Assuming that the function g (x,7) is properly extended from P into a larger
rectangle Pops, the Tikhonov functional (5.12) becomes

1 1
Eq(e,) = 3 / (u |5 —g(x,1))*dSds + ¢ / (er — e&°")2dx. (5.16)
s} 2

Now, we reformulate two mesh refinement recommendations (4.189) and (4.190)
of Sect.4.13.2 for our particular case. Let &, (x) be the minimizer of the Tikhonov
functional (5.12) on the current mesh.
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First Mesh Refinement Recommendation. Refine the mesh in such a subdomain
of the domain 2where

|El, (era) (X)] = B, max |E], (er) ()] (5.17)

where B, € (0, 1)is the tolerance number and

T
|El, (er) ()| = |at(ern — e8°) (x) — /0 (upiAne) (x,t,8.p) dt|.

Here, functions up; (x,t, &.p)andAp; (x,t, . )are solutions of state and adjoint
problems, respectively, on the current mesh.

The Second Mesh Refinement Recommendation. Refine the mesh in such a
subdomain of the domain 2 where

&rp (x) = B, max e, (x), (5.18)
9]

where B, € (0, 1)is the tolerance number.
Recall that tolerance numbers 3, 8, are chosen numerically. In our tests below,
we use
B, =0.8,8, =020 =0.001. (5.19)

5.6 Data Pre-Processing

The main idea of the data pre-processing procedure is to immerse the experimental
data in the computationally simulated ones. The data pre-processing procedure
provides us with the boundary data at 952, which we use in our computations. Recall
that measurements were not carried out at d§2™\ P. We have prescribed

u(x,t) oo pi=ur (x,1) s\ P,

where u; (x, t) is the solution of the problem (5.11) with &, (x) = 1. So, in this
section we describe how we pre-process the data only on the bottom side P of the
rectangular prism §2.

5.6.1 The First Stage of Data Immersing

Samples of unprocessed time resolved experimental data are depicted on Fig.5.2.
We work only with the first burst. Figure5.2c, d display the curves which are
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Fig. 5.2 (a) A sample of the measured reference time resolved signal (i.e., no inclusion present)
at the location x,, € P of the probe number m. (b) The measured signal with inclusion present
at the same probe location. The first burst starts when the EM wave arrives at the probe. The
signal before this burst reflects a process within the probe itself. (¢) And (d) represent signals (a)
and (b), respectively, after cleaning some noise via applying the fast Fourier transform procedure
of MATLAB and truncating too low and too high frequencies. We are interested in the area of
the first burst only. One can observe that the amplitude of the signal with the dielectric inclusion
present (d) is generally less than one of the reference signal. Source: M. V. Klibanov, M. A. Fiddy,
L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verification of a globally
convergent numerical method for a coefficient inverse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. © IOP Publishing. Reprinted with permission

obtained from curves Fig.5.2a, b, respectively, after a partial denoising via the
Fourier transform. Both Fig. 5.2c, d are for the same detector. Fig. 5.2c is for the
case of free space and Fig. 5.2d is for the case when a dielectric inclusion is present.
The most troubling feature of Fig. 5.2 is the highly oscillatory behavior of the first
burst. Indeed, given that the input data was the sinusoidal function f (¢) in (5.7) with
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Fig. 5.3 This figure explains the idea of the first stage of data immersing in the time domain. We
have intentionally set to zero the small amplitude fluctuations before that first burst. (a) Resulting
superimposed experimental curves. The red curve (thin) is for the reference signal and the blue
curve (thick) is for the signal with a dielectric inclusion present, both at the same location x,, € Pof
the detector number m. (b) The red curve (thin) displays computationally simulated data u; (x,,, t).
The blue curve (thick) upng (X;,,1) = uy (x,,, 1 — At™) Ko,/ My, represents a sample of the

exp
immersed experimental data in the time domain at the same detector location x,,, € P.Itis only the

blue curve (thick) with which we work further. The red curve (thin) is displayed for the illustration
purpose only. Source: M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method for a
coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003,
2010. © IOP Publishing. Reprinted with permission

only one period of the sinusoid, one cannot expect high oscillations of the output
signal for, for example, the case of the free space. These oscillations represent the
abovementioned huge misfit between experimentally measured and simulated data.

Figure 5.3a displays superimposed Fig. 5.2c, d after their parts prior the first burst
was made zero. The thin curve on Fig.5.3a corresponds to the free space and the
thick curve corresponds to the case when the inclusion is present. Let x,, € P be
the detector number m at the bottom side P of the prism £2; see (5.9) for P. We
have decided to “immerse” our experimental data in the computationally simulated
data using the following two peaks for each detector x,,:

1. The largest peak in the thin curve with the peak value of M, > 0.
2. The next peak after it on the thick curve with the peak value of Kt > 0. This
next peak was chosen because the presence of a dielectric inclusion results in a

time delay of the EM wave; see (5.3).

Recall that the function u; (x,?) is
computationally simulated data for ¢,

the solution of the problem (5.11) with
1. Obviously,

u (x(l),t) =u (x(z),t) , Vx(l),x(z) e P, Vte (0, 7).

The first peak of the function u; (x, ), x € P is the largest peak of Fig. 5.3b. Below
t is the dimensionless time. Let ¢ := trse‘?l be the time of the first arrival of the
computationally simulated plane wave u; (x, ) at the plane P. In other words, for
all x € P, we have u; (x,t) = 0 fort < trse‘?l and u; (x,t) > O for time values
t > 3" that are rather close to 7;.{"; see the reference curve on Fig. 5.3b.

We point out that amplitudes of largest peaks of experimental curves for the

reference medium were different for different detectors. This is because we had
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in the experiment a spherical incident wave instead of the desired plane wave.
Nevertheless, we have “forced” the spherical wave to be a plane wave via applying
the first stage of our data immersing procedure.

Let y = y™ () be the experimentally measured curve at the detector {x,,} for
the free space, i.e., this is the thin curve of Fig.5.3a. Let the above chosen largest
peak of this curve is achieved at {r = 15’} and yye' (1) = MJ, > 0. Let y =
yinel (7) be the experimentally measured curve at the detector {x,, } for the case when
the inclusion is present. We choose such a local maximum of the function y =
y;':d (t) which is achieved at the first point {t = t;;‘d} which follows after the point
{t = t;ff}; see Fig.5.3a. Let y:;‘d (tj;d) = K, Hence, K is the value of the
latter peak; see Fig. 5.3a. We have observed that K&, < M on all detectors. This
is because the presence of dielectrics decreases the amplitude of the EM wave.

Now, we are ready to immerse our experimental data in the computationally
simulated data. Let At,, = tj,fd - tfnef be the time delay between two above chosen

peaks; see Fig. 5.3a. We set

K”’l . K”’l
oy (X, 0 — Aby) , if 355 < %

Mé;z €X]
Uinel (X, 1) := ’ gm 5 (5.20)
uy (xm, 1) and Aty 2= 0, if 355 > 5.
exp

Thus, (5.20) is our first immersed data in the time domain for the detector
number m. Figure 5.3b illustrates (5.20). After this data immersing, we use only
the curve uine (X, 1) and do not use anymore the curve which corresponds to the
reference medium. In other words, on each detector, we use only such curve which
corresponds to the thick curve on Fig. 5.3b. We cannot rigorously justify our above
decision to work with those peaks only. However, since our results of blind imaging
in [109] were very accurate ones, then this justifies our purely intuitive choice.

5.6.2 The Second Stage of Data Immersing

Although the thick curve on Fig.5.3b is smooth, in fact the noise went into the
noise with respect to spatial variables on the rectangle P, and this will be seen in
the current section. We have found that the following frequency interval was the
optimal one for our computations:

s € [3.5.7.5]. (5.21)

We apply the Laplace transform (2.10) to each function u;nc) (X, ¢) for nine values
of s = 3.5,4,...,7.5 from the interval (5.21). Denote wiyc (X, s) the Laplace
transform of the function uin (X, 2) . Let

- In Winci ('xWIs S)
Wincl (x}’nv s) - _S—Z
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Fig. 5.4 (a) The function Wi, (x,5), § = 7.5. (b) The function — (In wgjr, (x,5)) /5%is depicted,
where wgn (x, 5)is the Laplace transform of the function ugy, (x, ¢)for a computationally simulated
data. Figure (b) is given only for the sake of comparison with Figure (a). (¢) The function
Wsmooth (X, 5) resulting from fitting of (a) by the lowess fitting procedure in the 2D case; see
MATLABR 2009a. (d) The final function wiymers (X, 5). Values of Wiymers (X, s)are used to produce
the Dirichlet boundary conditions ¥, (x)for PDEs (2.36) of the globally convergent algorithm.
Source: M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally convergent numerical method for a coefficient inverse
problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003, 2010. © IOP
Publishing. Reprinted with permission

Let Wine (x, 5) be the standard linear interpolation of the values {Wiyc (X, §)} over
the plane P. We have observed that the function Wi, (x,s) is very noisy with
respect to x € P. Figure 5.4a displays a sample of the function wiy (x,s). Hence,
the noise went from the time dependence into the spatial dependence.

On the other hand, we have computationally simulated the data with a single
inclusion and have obtained the function wgn (x,5); see Fig. 5.4b for the function

Inwgim (-xs E)
_S—Z‘

One can observe that, unlike Fig. 5.4a, b is smooth and has only a single bump.
Comparison of Fig. 5.4a, b has motivated us to perform additional procedures with
the function Wiy (x, 5) .
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Thus, we have applied a smoothing procedure with respect to (x, y) € P to the
function Wiy (X,,, ) for each of above nine values of s. Specifically, we have used
the Lowess fitting procedure in the 2D case, which we took from MATLABR 2009.
As a result, we have obtained the function Wymeom (¥, §) . The function Wmeom (X, 5)
is displayed on Fig. 5.4c. Still, comparison of Fig.5.4b, c tells one that we should
transform Fig.5.4c in such a way which would end up with a single bump. Let
wi (x,s),x € P be the Laplace transform of the function u; (x, ?) , i.e., for the case
of the plane wave propagating in the air. Then we finally set for each of those nine
values of s:

— _ Wsmomh (X, S) 5 if "_Vsmoolh (X, S) 2 0985 max? "_Vsmooth (xa S) )
Wimmers (X, ) = 2 .
—s“Ilnw; (x,s), otherwise.
Figure 5.4d the function Wipmers (X,5), which is obtained from the function
Winel (x, 5) of Fig. 5.4a.

We use the function Wimmers (X, §) to obtain Dirichlet boundary conditions for
elliptic equations for functions g, of Sect.2.6.1. Namely, we use finite differences
to approximately compute the s-derivative by

Wimmers (xs Sp — 05) — Wimmers (xs Sn)

v, () = =

,xeP. (5.22)

As to the values of the function ¥, (x) on other five sides of the prism £2, they were
computed by the same finite difference formula using the function resulting from
the Laplace transform of the function u; (x,?) .

5.7 Some Details of the Numerical Implementation
of the Approximately Globally Convergent Algorithm

We point out that all details of the numerical implementation of the approximately
globally convergent algorithm, which are described in this section, were imple-
mented a few months before the experimental data were collected. When working
with the experimental data, we have not changed neither our original numerical
code for the algorithm of Sect.2.6.1 nor our parameters listed in this section. In
other words, our computations of images from experimental data were unbiased.
When solving equations (2.49) for functions ¢, ; (Sect.2.6.1) in our compu-
tations, we have used in (2.49) s-derivatives of tails dsV,; (x,s) instead of tails
V,i(x,5) themselves. These derivatives were calculated via finite differences,
similarly with (5.22). We remind that by (2.19) (Sect.2.3) one should expect that

105Vi (X, 5|51 o << |Vai (x,5)]544 - (5.23)
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Hence, the replacement of V,; (x,5) with d5V},; (x,5) goes along well with the first
approximate mathematical model; see Sect. 2.8.4 for some details. At the same time,
when computing functions sﬁ"*" ) (x) via (5.24), we have used the function V,,; (x,s)
itself rather than its derivative dsV}, ; (x,5).

Suppose that we have computed the function ¢,; (x). Then, we find the
approximation &/ (x) for the function &, (x) via backward calculation using (3.4) as

fn,i ()C) = Avn,i + S}% (an,i)zy-x S Qs if fn,i ()C) = 1,

SI(,H’i) (X) — ! lff - (x) <1 (524)
n—1
Vi (%) = =i () =h Y q; (x) + Vai (%),
j=0

where go = 0 and V},; (x) is the corresponding approximation for the tail function.
We make the cut-off to unity in (5.24) because of (5.4).

The parameter of the CWF was A = 50. Likewise, as it is quite often the case in
imaging, we have made truncations to unity of those computed functions s,(,”’i ) (x)
which were below a certain threshold. More precisely, for each n, we have chosen a
cut-off value Cgy (1) > 0 and have assigned a new value éﬁn'i ) (x) for the function
g (x) as

e (x) . if ) (x) > 1+ Ceu (1) ,

‘ (5.25)
1, if e (x) € [1. 1 + Ceu (n)] .

g (x) =

Note that by (5.24), sﬁ”*" ) (x) > 1, Vx € £2. The numbers C.y (1) were chosen as
follows:
Ccut (1) = 07 Ccul (2) = 02, Ccul (3) = Ccut (4) = 08, Ccut (5) = 06,
Ceut (6) = Cew (7) = 0.4, Coy (8) = 0.8.
We now define stopping rules of iterations for functions ‘1;11{,1 with respect to the
nonlinear term as well as for functions {g, ; } with respect to the tails. These rules are

almost the same as in Sect. 4.15.2. Consider the planar surface Pj; which is parallel
to the surface P in (5.9). The surface Pj is obtained from the surface P via shifting

upward by h=0.2:
P; = {(x, 1.2 (6 y) € [<2.4,2.4] X [~1.4,— 1.4,z = 2.4+ h = —2.2} .

Let 2 = {(x,y) € [-2.4,2.4] x [-1.4,—1.4]} be the orthogonal projection of
both surfaces P and P; on the (x, y) plane. Consider norms

k k -
Fy = lldylp; = ¥allio@).
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We stop iterations of functions ¢% | when either F**! > FFor |[Ff — FF!| <&,
where ¢ = 0.001 is a small tolerance number of our choice. Next, we iterate with
respect to the tails. We similarly introduce norms Fy,; = ||qn.i|p; — ¥, |L,2) and

use the same stopping rule as the one for F¥.
We now describe the stopping rule for computing functions sﬁ") (x). Let

F) _ gl

) ‘

Lr(82) b — an
’ n an_l

a, =
g\;(fl_l)

Ly(£2)

5.7.1 Stopping Rule for

sﬁ"):
b, € [1.9,4] and n > 3, then take the final solution Srf = sﬁ”),
If b, > 4andn > 3, then take the final solution &/ = g1, (5.26)

alternatively compute e 1.

We have chosen n > 3 in (5.26) because we have observed in our work with
computationally simulated data that images are becoming more or less close to the
correct ones only starting fromn = 4.

5.8 Reconstruction by the Approximately Globally
Convergent Numerical Method

5.8.1 Dielectric Inclusions and Their Positions

Our dielectric inclusions to be imaged were two wooden cubes of 40 mm size of the
side of the first cube and 60-mm size of the side of the second cube; see Table 5.1.
Let CL be the center line, i.e., the straight line which is orthogonal to the
plane P and which passes through the source of EM waves. Then CL =
{(x,y,2) : x =y = 0}. We have placed both those cubes in two positions. In the
first position, the center of each cube was on CL. In the second position, the
center was shifted off CL by 10mm in the positive direction of x axis (0.2 in
dimensionless units). In addition, we have used the third position for cube number
1. In the third position, the center of this cube was shifted by 60 mm off CL in the
positive direction of the x axis (1.2 in dimensionless variables), which was rather far
from C L. We have observed on the experimental data that since we had a spherical
rather than a plane wave, then the magnitude of the EM field has significantly
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Table 5.1 Sizes and coordinates of centers of two wooden cubes used in experiments

Dimensionless coordinates

Cube number Original sizes, mm Dimensionless sizes of centers
1 40 x 40 x 40 0.8%x0.8%x0.8 0,0,—1.2)
2 60 x 60 X 60 1.2x12x%x12 0.2,0,—1.2)

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally convergent numerical method for a coefficient inverse
problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003, 2010. © IOP
Publishing. Reprinted with permission

Table 5.2 Positions of
centers of two wooden cubes

Cube number  Case number  Center

to be imaged in six cases. The 1 L1(1) (0,0,-1.2)
difference between cases 1 1.1(2) 0,0,—1.2)
1.1(1) and 1.1(2) is that they 1 1.2 0.2,0,—1.2)
were measured on two 1 1.3 (1.2,0,—1.2)
different days for the same 2 2.1 (0,0,—1.2)
position of cube 1 2 22 (0.2,0,—1.2)

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina,
N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally conver-
gent numerical method for a coefficient in-
verse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. ©
IOP Publishing. Reprinted with permission

decayed when the point has moved rather far from CL. So the goal of placing
cube number 1 in the third position was to see how this decay of the magnitude
of the EM field would affect the image quality. Due to some logistical reasons, we
have measured the scattering field from cube number 1 in the first position twice: in
two consecutive days. Therefore, we have obtained total six (6) pieces of data for
the case when either of those two cubes was present. In addition, the data for the
reference medium, was measured only once. Table 5.2 lists all six cases.

5.8.2 Tables and Images

We have made computations using the approximately globally convergent algorithm
of Sect.2.6.1. Functions ¥, (x) in (5.22) were used as boundary conditions. The
stopping rules were the same as the one in Sect. 5.7. We point out again that we did
not know in advance values refractive indices of above wooden cubes. Therefore,
we were unbiased when applying stopping rules. Table 5.3 presents numbers a,
and b, = a,/a,— for the case 1.1(1) (see Table 5.2 for labeling of our cases).
It is clear from the stopping rule (5.26) why we have stopped in this table at n = 6.
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Table 5.3 Computational results for the case 1.1(1); see Table 5.2 for labeling of cases
and (49) for the stopping rule

Iter., n eﬁ”) a, b, a‘,f ny= ,/gf

2 1.28 0.027 0.21
3 2.53 0.209 7.74
4 2.9 0.160 0.76
5 3.76 0.266 1.66
6 4.66 0.580 2.18 el =¢6© = 4.66 2.16
7 5.6 0.683 1.18
8 8.1 0.809 1.18

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method
for a coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-
5611/26/4/045003, 2010. (© IOP Publishing. Reprinted with permission

Table 5.4 Computational results for five cases; see (5.8.2) for the stopping rule and
Table 5.2 for labeling of cases. The rest of iterations for all these five cases was similar
with Table 5.3. Comparison of this table with (5.26) makes it clear why either of function

a,(.”) or eﬁ”fl) was chosen as the final imaging result a‘,f

Case Iter., n b, e{ ny= \/;
1.1(2) 5 2.07 e i=e® =4 2

12 6 2.40 el 1= =465 2.16

13 6 3.57 e =60 = 4.82 2.19

2.1 6 5.74 &l =69 =2.98 1.73

22 6 5.36 ef 1= =319 1.79

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Pi-
cosecond scale experimental verification of a globally convergent numerical method
for a coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-
5611/26/4/045003, 2010. (© 1OP Publishing. Reprinted with permission

Behavior of numbers a, and b, for other cases was similar. Table 5.4 presents only
numbers b, for the final iteration. Again, the stopping rule (5.26) explains the choice
of the final image Srf . Figures 5.5 and 5.6 display computed images. Figure 5.5 is
for the case 1(1). One can see from Fig. 5.5g, h how the image “explodes” after the
stopping criterion (5.26) is reached at n = 6; see Table 5.3. Figure 5.6 show that
locations of inclusions are imaged with a good accuracy. The latter is true even in
the most difficult case 1.3 when the inclusion was located far off the center line CL,
which meant a low amplitude of the signal; see Sect.5.8.1.

Still, shapes of abnormalities are not imaged well on Fig. 5.6. Recall, however,
that our goal for the first stage of our two-stage numerical procedure was twofold:
(1) to obtain accurate locations of inclusions and (2) to accurately image refractive
indexes in them. However, we did not have the goal to accurately image shapes of
inclusions on the first stage of our two-stage numerical procedure.
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a b c d
maxn't = 1.02 maxn(® =1.13 maxn'® = 1.59 maxn'Y = 1.70
e f g h

- - - _. il
maxn(® =1.94 maxn® = maxn; = 2.16 maxn'?) = 2.37 maxn'® = 2.85

Fig. 5.5 (a)-(h) represent the dynamics of the sequence of images for the case number 1.1(1).

Maximal values of refractive indexes maxyn® = \/maszﬁk) are displayed. Each image

represents the level surface x : n®)(x) = maxpn® (x). The final image is presented on (f).
(h) shows that the image “explodes” on the second iteration after the stop; see the stopping rule
(5.26) and Table 5.3. Source: M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method for a
coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003,
2010. © IOP Publishing. Reprinted with permission

5.8.3 Accuracy of the Blind Imaging

We have independently measured refractive indices after the above images were
obtained. Those measurements were performed by two methods which are well
established in Physics: the waveguide method [133] and the oscilloscope method
[71]. In the case of the waveguide Method the measurement error was 11% for cube
number 1 and 3.5% for cube number 2. In the case of the oscilloscope method
the measurement error was 6% for both cubes. Tables 5.5 and 5.6 display both
errors: in computations and direct measurements. Only maximal values of computed
refractive indices are presented in these tables. One can see that the computational
error does not exceed the measurement error in five (5) out of six (6) cases. And it
exceeds the measurement error in the sixth case by less than 2%.

Therefore, we conclude that the approximately globally convergent numerical
method has produced images of an excellent accuracy for both locations and
refractive indices of dielectric abnormalities in blind testing. Furthermore, this
result was obtained for the case of a huge misfit between the experimental and
computationally simulated data. Therefore, this accuracy fully justifies our data pre-
processing procedure.
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Fig. 5.6 Resulting images. It should be kept in mind that we did not have a goal to image shapes
of inclusions accurately. Rather, our goal was only to image their locations and maximal values of

refractive indexes n ¢ (x) = +/ &/ . On each figure, n ¢ (x) = maxn ¢ for all points of the image
of the corresponding cube. In addition to the cut-offs (5.25), we have made the last postprocessing

cut-off of the imaged function 5,/ each figure just to make it look better. That cut-off was made
around the center of the image. For all cases, the dynamics of the change of images of functions
85”) with iterations was similar with one on Fig. 5.5a—h. Source: M. V. Klibanov, M. A. Fiddy,
L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verification of a globally
convergent numerical method for a coefficient inverse problem, Inverse Problems, 26, 045003,
doi:10.1088/0266-5611/26/4/045003, 2010. © IOP Publishing. Reprinted with permission

Table 5.5 Comparison of imaging results of values of refractive indexes for six cases of
Table 5.2 with measurements by the waveguide method

Case Blindly imaged n :=ny Measured n, error (%) Imaging error (%)
1.1(1) 2.16 2.07,11 4.3
1.1(2) 2 2.07,11 34
1.2 2.16 2.07,11 4.3
1.3 2.19 2.07,11 5.8
2.1 1.73 1.71,3.5 1.2
22 1.79 1.71,3.5 4.7

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale
experimental verification of a globally convergent numerical method for a coefficient inverse
problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003, 2010. © IOP
Publishing. Reprinted with permission
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Table 5.6 Comparison of imaging results of values of refractive indexes for six cases of
Table 5.2 with measurements by the oscilloscope method

Case Blindly imaged n :=ny Measured n, error (%) Imaging error (%)
1.1(1) 2.16 2.17,6 0.5

1.1(2) 2 2.17,6 7.8

1.2 2.16 2.17,6 0.5

1.3 2.19 2.17,6 1

2.1 1.73 1.78,6 2.8

2.2 1.79 1.78,6 0.56

Source: M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk,
Picosecond scale experimental verification of a globally convergent numerical method
for a coefficient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-
5611/26/4/045003, 2010. (© 1OP Publishing. Reprinted with permission

5.8.4 Performance of a Modified Gradient Method

We have decided to compare performances of the approximately globally conver-
gent numerical method with a modified gradient method for the case of above
experimental data. Since the gradient method is outside of our main focus, our
discussion is intentionally brief here. First, we need to introduce the Tikhonov
functional for the above CIP in the pseudo frequency domain and derive its Fréchet
derivative. We call the technique of this section the “modified gradient method”
because instead of making usual steps in the gradient method, we find the zero
of the Fréchet derivative of the Tikhonov functional via solving an equation with
a contractual mapping operator. Our derivation of the Fréchet derivative of the
Tikhonov functional is similar with the heuristic derivation in Sect. 4.4.
Let u (x, t) be the solution of the problem (5.1), (5.2) and

oo

wi(x,s) = /u (x,1) e dr. (5.27)
0
Then by Theorem 2.7.2,
Aw —s2e. (X)w = =8 (x — xp), (5.28)
lim w(x,s) =0. (5.29)

|x| =00
Let g (x, s) be the Laplace transform (5.27) of the function g (x, ¢) in (5.6). Then
wi(x,s) lao= 8 (x,5). (5.30)
Since by (5.3), the coefficient ¢, (x) = 1 outside of £2, then we can uniquely

solve the boundary value problem (5.28), (5.29), (5.30) in the domain R3>\ £ for
every value of s of our interest. Hence, we can uniquely find the normal derivative
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p(x,s) = d,w(x,s) |se. Hence, we obtain the so-called “state” boundary value
problem for the function w inside the domain £2:

Aw —s%g, (x)w = 0in £2,

aw (x,5) lae = p (x,5). (5.31)

In addition, consider the so-called “adjoint” boundary value problem for the
function A:

AL — s%s, (x)A =0in £,
A (x,5) [se = (W [ae —8) (x,5) . (5.32)

The idea of the gradient method is to find a zero of the Fréchet derivative of the
Tikhonov functional:

52

E () = %//(w oo —&)% docds + %/(e (x) — e© (x))zdx,
2

51 002

where (51, 52) is an interval of pseudo frequencies, w = w (x, s; &,) is the solution
of the problem (5.31), and sio) is a first approximation for the unknown coefficient
&r: In order to simplify the derivation of the Fréchet derivative of this functional,
consider the associated Lagrangian L (&),

L(e)=E(g)+ / / pAdods — / / (VwVA + 5?6, (x)wA) dxds.  (5.33)
s1 2

S1 082

It follows from the definition of the weak solution of the problem (5.31) that the
integral term in (5.33) equals zero. Hence, L (¢,) = E (e,) for all admissible
function &, (x). To figure out the Fréchet derivative L’ (e,), we need to vary
in (5.33) the function ¢, via considering the function &, (x) + b (x), where the
functions b (x) is an appropriate small perturbation of the function &, (x). But
since functions w = w(x, s;¢,) and A = A (x,s;¢,) depend on &, as solutions of
boundary value problems (5.31) and (5.32), then we should also consider respective
variations of these functions. In other words, we should consider Fréchet derivatives
of functions w (x, s;¢,),A (x, s;&,) with respect to &,. These Fréchet derivatives
are actually solutions of such boundary value problems, which are obtained via the
linearization of problems (5.31) and (5.32) with respect to b. Finally, the linear, with
respect to b (x) , part of the difference L (¢, + b) — L (g,) is L' (&,) (b). Again, the
necessary formalism for the hyperbolic case can be found in Chap. 4, and our elliptic
case is similar. So, finally, we obtain

52

E' ()=« (8, - 8,(.0)) (x) — / 52 (wA) (x, ;) ds.

S1
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At a point of a minimum of the functional E (g,) one should have E’ (¢,) = 0.
Therefore, we should solve the following equation:

52
1
& (x) = o / s2 (W) (x,5;6)ds + sio) (x),x € £2. (5.34)

S1

It can be proven that one can choose the number { = (s, —s1) /o so small that
equation (5.34) becomes an equation with the contraction mapping operator, which,
therefore, can be solved iteratively. Of course, the number ¢ should not be too small
since, otherwise, the resulting solution would be too close to the initial guess 8§0).
So, one should choose optimal parameters sy, 52, ¢.

Temporary denote x = (x, y,z) . When applying the modified gradient method
(5.34) to the experimental data, our starting point for iterations was 8§0) = 1.In
other words, since any gradient-like method is a locally convergent one, we have
assumed that we know the background medium in the domain §2. This is unlike
the approximately globally convergent method. We have observed that the function
A (x.5:6%) = A (x.5:1) < 0. At the same time, by Theorem 2.7.2, w (x, 5;6'”)) =
w(x,s;1) > 0, and we have also observed this inequality computationally. Hence,
it follows from (5.34) that ¢! < 1, where &) is the result of the first iteration
of the solution of the problem (5.34) with the contraction mapping operator. We
have tried a variety of numbers sy, 52, & in (5.34), some of which have ensured the
contraction mapping property. Still, with all these parameters, we have obtained
functions sﬁ") < 1 for all iteration numbers n. However, by (5.4), we should have
e (x) > 1.

We have a close to rigorous explanation of the negative values of the function
A (x,s; 1) . Consider, for example, the case when the domain §2 is the half space,
2 = {z > —2.4} (see (5.8)). Changing variables 7 := z+ 2.4 and leaving the same
notation for the new variable as for the old one (for brevity), we obtain £2 = {z > 0}.
In addition, assume that the condition lim|y|c A (X, 53 1) = 0 is imposed and also
that limjy| 0 (W [;=0 —&) = 0. Consider the function Q (x, §):

exp(—s|x—&[) exp(—s|x—&|)

4 |x — & 47r|x—§’| & =(51.6,.-6).

Q&)=

It can be easily verified that Q (x, &) is the Green’s function with the Neumann
boundary condition in the half space {z > 0} for the operator A — s2. Hence, by
(5.31),

Ax,s, 1) = / 0 (x.51.82.0) [w((§).82.0).5:1) = g (5. &5, 5)] d§,dE,.
R2

We have observed computationally that w ((§,,&,,0),s;1) — g (§,,&,,5) < 0 for
all reasonable values of &, &,, 5. Hence, A (x,s;1) < 0.
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In addition, we have observed computationally that for all reasonable values of
the pseudo frequency s maximal absolute values of functions w and A were too
small. So that

max [s% [wA| (x,s)] <3-107%
X€ES

By (5.34), this means, however, that in order for the function ¢, to be rather signif-
icantly different from sﬁo) = 1, i.e., in order to obtain above inclusion/background
contrasts, one should choose a very small regularization parameter . For example,
to get srf = 4.66 within the imaged inclusion (Table 5.3), one should have o ~
8- 107 It is well known, however, that exceedingly small values of regularization
parameters affect results quite negatively.

We, therefore conclude that the modified gradient method (5.34) is inapplicable
here. However, since any version of the gradient method should still use the gradient
E’ (g,), then it is unlikely that other versions of the gradient method are applicable
here. This likely means that locally convergent numerical methods are inapplicable
in the pseudo frequency domain. Thus, it seems to be that our approximately
globally convergent technique is the single choice for this kind of experimental data.

5.9 Performance of the Two-Stage Numerical Procedure

We show in this section how the two-stage numerical procedure works for the above
experimental data. Recall that the first stage has provided us with accurate images
of two components of dielectric abnormalities: locations and refractive indices; see
Figure 5.6 as well as Tables 5.4 and 5.5. We now want to add the third component:
the shape.

5.9.1 The First Stage

We have recomputed images for two cases using the algorithm of the first stage.
More precisely, those were cases which are listed on Table 5.2 as 5.1(1) and 5.2.
For the convenience of the reader, we list these two cases in Table 5.7 again. Since
parameters in computations for these two cases were a little bit different from
those used in Sect.5.8, our images were a little bit different also, although we
have used the same stopping rule (5.26) as in Sect. 5.8. Figures 5.7 and 5.8 show
how images were changing with iterations, which is similar with Figs. 5.5, 5.7c and
5.8c display final images for two cases of Table 5.7. Table 5.8 shows reconstructed
refractive indices for these two cases as well as their comparisons with results of
direct measurements by the wave guide method. One can again observe an excellent
accuracy of the reconstruction of refractive indices.
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Table 5.7 Cases considered

; . Cube number Case number Center
in the two-stage numerical
procedure 1 1.1(1) (0,0,—1.2)
2 2.2 (0.2,0,—1.2)

Source: L. Beilina and M.V. Klibanov, Reconstruction of
dielectrics from experimental data via a hybrid globally
convergent/adaptive inverse algorithm, Inverse Problems,
26, 125009, doi:10.1088/0266-5611/26/12/125009, 2010.
(© IOP Publishing. Reprinted with permission

5.9.2 The Third Stage of Data Immersing

It is evident from Fig. 5.4a that the function uj,c; (X, t) is very noisy with respect to
the positions of the detector x,, € P. While the second stage of data immersing has
worked in the “Laplace transform domain” (Sect. 5.6.2), we apply the adaptivity in
the time domain. Hence, we now need to smooth somehow the function ujne (X;:, 7) .
Although this smoothing can be done similarly with Sect.5.6.2, this would not
address the problem we face now. Indeed, it follows from (5.13) to (5.16) that
we need to somehow obtain the proper data for the function u (x, ) for (x,¢) €
Pops X (0, T') while having the data ujnc; (X, ¢) only for x,, € P, where the rectangle
P is narrower than the rectangle:

Povs = {(x,¥.2) : (x,y) € (=3,3) x (=2,2) ,z = —2.4}.

This extension from P in Py, is the subject of our third stage of data immersing.

Let 8§l°b (x) be the solution obtained on the first stage. Let U (x,?) be the
solution of the problem (5.11) for the case & (x) := &5 (x). Let uinei (X, 1),

(x,t) € P x (0,T) be the standard linear interpolation of the discrete function
Uinel (X, 1). Our third stage of data immersing consists in defining the function
Uimmers (xv t) for (-xs [) € Pobs X (Os T) as

Uincl ()C,Z) , if x € P and ujnq ()C,Z) > ﬂmaxﬁuincl ('xst)s

u: . x’[ frd M
immers ( ) U (x, [) , otherwise.

The parameter 8 € (0, 1) in (5.35) should be chosen in numerical experimer(lfsélsrz
particular, it follows from (5.35) that
Uimmers (X, 1) = U (x,1) for x € Pops \ P. (5.36)
Taking into account (5.13), we set in (5.15) and (5.16)
g (X, 1) 1= Uimmers (x, ) for (x,7) € S = Pops X (0, 7). (5.37)

Comparison of Fig. 5.9a, ¢, e with Fig. 5.9b, d, f shows that the third stage of data
immersing not only allows to extend the data from P to P, but also significantly



5.9 Performance of the Two-Stage Numerical Procedure 321

0 o QY R
~05 i W ,,,“\\\;\ti :
Q0 SRty
-1 A PRI NN
RO RN AR
25 ’szﬁtg‘if&?\\\\\\\\\\"‘\\‘gﬁ“"
e N 40

RIS
Y
RS
RS>
N
>

=

t =12.0 t =12.0

Fig. 5.7 (a),(c),(e) The function g (x,¢),x € P for cube No.1 (Table 5.1). This is the function
Uinc1 (x, 1), x € P. However, to solve the adjoint problem (5.15) in the adaptivity, we need to know
this function at a wider rectangle x € Pyps; see Sect. 5.6. So, since P CC Py, we need to extend
somehow the function g (x, ) from P to Pys. This extension is carried out via the third stage of
our data immersing procedure; see Sect.5.6. (b),(d),(f) present the resulting immersed data with
B = 0.1. Source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental
data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,
doi:10.1088/0266-5611/26/12/125009, 2010. (© IOP Publishing. Reprinted with permission
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Fig. 5.8 Spatial distributions of iteratively computed dielectric constants &,"*’ and refractive

(nk) — Syl'k

indexes n ) for the cube number 1 (Table 5.7). The final image corresponds to

nG2 = ngob = 1.97. See Table 5.8 for the reconstruction accuracy. Recall that refrac-
tive indices rather than dielectric constants are actually measured experimentally. Source: L.
Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. © IOP Publishing. Reprinted with permission

Table 5.8 Computed refractive indices on the first stage of the two-stage numerical procedure
(second column). The third and fourth column show directly measured indices by the wave
guide method and computational errors respectively

Cube Number Computed n Measured n, error (%) Imaging error (%)
1 1.97 217,11 9.2
2 1.79 1.78,3.5 0.5

Source: L. Beilina and M. V. Klibanov, Reconstruction of dielectrics from experimental data
via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,
doi:10.1088/0266-5611/26/12/125009, 2010. (© IOP Publishing. Reprinted with permission

e?? =122 =110 %P =204, 014D =143 £,(5,5) =3.19,n6 = 1.79

— T — L
=1

Fig. 5.9 Spatial distributions of iteratively computed dielectric constants af.”*k) and refractive

sff"k) for the cube number 2 (Table 5.7). The final image corresponds to

indexes n"* =
nG = n glob = 1.79, which is only 3.5% error compared with the experiment; see Table 5.8.
Recall that refractive indices rather than dielectric constants are actually measured experimentally.
Source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data
via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,

doi:10.1088/0266-5611/26/12/125009, 2010. © IOP Publishing. Reprinted with permission
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decreases the noise in the data compared with the function u;, (X, #) which was the
result of the first immersing stage. Another important point here is that variations of
the parameter § in a wide range € (0.1, 0.985) do not significantly affect results;
see Fig.5.15.

5.9.3 Some Details of the Numerical Implementation
of the Adaptivity

The adaptivity in this case consists of two stages of mesh refinement:

Stage 1. On this stage, we use both first and second mesh refinement recommen-
dations (5.17) and (5.18) of Sect.5.5. In doing so, we use the same parameters
B1. B, o as ones in (5.19).

Stage 2. On this stage, we use only the second mesh refinement recommendation
(5.18) with parameters ,, « listed in (5.19).
Just as in Sect.4.16.2, we use a cut-off parameter B.. In other words, we set

Erh (-x) P if |5r,h (X) - 5§10b (-x) | > Bcuh

e = 5.38
i (%) 2 (x) , elsewhere. (538)
Specific values of the parameter B, are given below.
In addition, we impose the upper bound d on functions €, (x); see (5.4). In other
words, we enforce that

Erh (x) eCy = {1 = &h (x) = d} .

We find good estimates for the number d from results of the first stage since
approximate global convergence Theorems 2.8.2 and 2.9.4 guarantee that the
function sflob (x) is close to the correct solution. Concrete values of d are given
below.

5.9.4 Reconstruction Results for Cube Number 1

We have used the function & (x) as the starting point for iterations; see Fig.5.7¢c

for the image of this function. Also, in addition to (5.17), we took the following
values of parameters d in (5.4), B in (5.35) and By in (5.38):

d =44, B=0.985 B =2.
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We have chosen d = 4.4 since by Table 5.8, max g8lop (x) = (1.97)* &~ 3.9. Hence,
the admissible set of parameters in this case is

ey (x) € Cyy = {1 <& (x) <4}

As to the parameters o, B, 8, see (5.19).

5.9.4.1 The First Stage of Mesh Refinements

First, using the same coarse mesh as the one on the first stage, we have not observed
any image improvement, which is similar with numerical results of Sects.4.15.3
and 4.16.2. To figure out when we should stop mesh refinements, we proceed
similarly with Sects. 4.15.3 and 4.16.2. Namely, we analyze norms

”g - u”Lz(S}) = ”Mimmers - u”Lz(S}) N (539)

see (5.37). These norms decrease with the number of mesh refinements up to the
third mesh refinement. Next, on the fourth mesh refinement, the norm (5.39) slightly
increases. Hence, similarly with Sects. 4.15.3 and 4.16.2, relaxation Theorems 4.9.3
and 4.11.4 tell us that the third mesh refinement should be the final one.

The resulting image is displayed on Fig. 5.10. Comparison of Figs.5.10 and 5.7¢
shows that the adaptivity has improved the image of the shape. Also, refractive
indices on both figures are the same. However, the shape of the abnormality is not
yet imaged well.

5.9.4.2 The Second Stage of Mesh Refinements

Let &, (x) be the coefficient reconstructed on the first stage of mesh refinements.
The image of &, (x) is depicted on Fig.5.10. Analyzing the image of Fig.5.10
computationally, we have observed that the imaged inclusion of this figure is
contained in the subdomain §2 C §2, where

Q2 ={(x,y,2) € [-0.5,0.5] x [-0.6,0.6] x [-1.4,—0.5]}.

On this stage of mesh refinements, we use only the second mesh refinement
recommendation and refine the mesh in neighborhoods of all such points x that

X €% (x) > 0.2maxe, (x); N 2.
2

The same stopping criterion as the one in Sects.4.15.3 and 4.16.2 was used again.
Recall that relaxation Theorems 4.9.3 and 4.11.4 help in this case.
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Erp = 3.9, Nglob = /Erp =~ 1.97

Fig. 5.10 The reconstruction result for the first stage of the adaptivity for the cube number 1.
Maximal values of the imaged coefficient are shown for the third refined mesh. The shape is
not yet well reconstructed, although a comparison with Fig.5.8c shows an improvement. The
refractive index is reconstructed accurately (Table 5.8). Source: L. Beilina and M.V. Klibanov,
Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive
inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-5611/26/12/125009, 2010. ©
IOP Publishing. Reprinted with permission

Figure 5.12 displays the final image. Comparison of this figure with Fig.5.10
shows an improvement of the image of the shape of the cube Number 1. Refractive
indices are the same in both cases and are equal to the one computed by the
approximately globally convergent algorithm.

5.9.5 Reconstruction Results for the Cube Number 2

Just as above, we took the function 8§l°b (x) as the starting point for iterations.
The image of this function is displayed on on Fig. 5.8c. See (5.19) for parameters
. By, B,. Since by the second line of Table 5.7 max 2 (x) = (1.79)? & 3.2, then
we took d = 3.4 in (5.4). Thus,

d =34, 8=0.985,
where the number 8 is defined in (5.35). Hence, the admissible set of parameters is:

e (x) €Cy ={1 <& (x) <4}.
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We now give the values of the parameter B in (5.38). Let k be the number of the
mesh refinement. We took

0.91, fork = 1,2,
Bcut = Bcul (k) = 1.1 fork = 3,
2 for k > 3.

The stopping criterion for mesh refinements was the same as the one in Sect. 5.9.4.

5.9.5.1 The First Stage

Because of the above criterion, we have stopped on the third mesh refinement. The
corresponding image is displayed on Fig.5.12. Comparing with Fig. 5.8c, one can
observe an improvement of the shape of the image. However, one can also see two
disconnected inclusions on Fig. 5.12 instead of just one on Fig. 5.8c. In addition, the
value of the refractive index is now n = 1.59, which is 12% less than the value of
1.79 listed in Table 5.7.

5.9.5.2 The Second Stage

We know from the image of Fig.5.8c, which is obtained by the approximately
globally convergent numerical method, that we have only one inclusion rather
than two disconnected as ones on Fig.5.12. In addition, we also know from
Fig.5.8c that this inclusion is located below the small upper inclusion imaged
on Fig.5.12. Hence, we have decided to refine mesh in the intersections of two
subdomains 21, §£2, C §2. The subdomain 2 is defined as usual when the second
mesh refinement recommendation is used:

2, =3x€8:& (x)>0.2maxg, (x) .
2

As to the subdomain 2, this is a rectangular prism whose upper boundary is slightly
below the lower boundary of the small inclusion imaged on Fig. 5.12. And the lower
boundary of £2; is slightly below the lower boundary of the larger inclusion imaged
on Fig.5.12.

Let £25 = £21 N £2,. Then, our calculations show that

25 = {(x,y,z) € [-0.6,0.6] x [-0.6,0.6] x [—-1.8,—0.8]}.
Thus, we refine mesh in neighborhoods of all points of the rectangular prism

§£23 C §2. The final image is displayed on Fig.5.13. It is obtained after the third
mesh refinement.
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An excellent accuracy of the reconstruction of all three components for cube
number 2 is evident from Fig.5.13. These three components are location, shape,
and refractive index.

5.9.6 Sensitivity to the Parameters o and f8

We have tested the sensitivity of the image of Cube No. 2 to the choice of the
regularization parameter @ € (0, 1) in the Tikhonov functional (5.16) as well as
to the choice of the parameter 8 € (0, 1) on the third stage of data immersing. We
have performed the following tests:

B =0.985; « = 0.001,0.01,0.1; (5.40)
B =0.5 o =0.001,0.01,0.1; (5.41)
B =0.1;0¢ = 0.001,0.01,0.1. (5.42)

Results of these tests are displayed on Fig. 5.14. One can observe that, for any given
value of §, the change of the regularization parameter o by the factor of 100 causes
almost no change in imaging results. In addition, the change of the parameter
by the factor of 1.97 = 0.985/0.5 affects results very insignificantly. Surprisingly,
even for B = 0.1, we got almost the same visual quality of images as ones for
B = 0.5,0.985. However, the value of the imaged refractive index became 1.55
instead of the correct value of 1.78.

We conclude, therefore, that our procedure is quite stable with respect to changes
of parameters « and 3.

5.9.7 Additional Effort for Cube Number 1

We undertook an additional effort for cube number 1 on the adaptivity stage. Recall
that the adaptivity requires solutions of state and adjoint problems on each iteration.
Also, it was stated in Sect. 5.5 that in the case of these experimental data, our state
problem is the problem (5.11). The main new element of this additional effort is that
we use in (5.10) and (5.11) a higher frequency v = 14 instead of the previous one
of w = 7. This is because @ = 14 corresponds to the twice smaller dimensionless
wavelength 2t /w = 0.45. Indeed, the dimensionless size of cube number 1 is
0.8 x 0.8 x 0.8 and 0.8/0.45 &~ 1.78 > 1. On the other hand, 27 /7 ~ 0.897
and 0.8/0.897 ~ 0.89 < 1. In other words, we had less than one dimensionless
wavelength per the side of cube number 1. However, in the new test, we have almost
two wavelengths are per the side of this cube. Thus, we have conjectured that this
new value of @ = 14 might provide an image whose quality would be better than
the one on Fig.5.11.
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Fig. 5.11 The reconstruction result for the second stage of the adaptivity for the cube number
1. Thin lines (blue) indicate the correct cubical shape. Comparison with Fig. 5.10 shows an
improvement of the image. The refractive index is reconstructed accurately (Table 5.8). Source:
L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. (© IOP Publishing. Reprinted with permission

Erh & 2.52, Ng1oh = /Erp ~ 1.59

Fig. 5.12 The reconstruction result for the first stage of the adaptivity for the cube number 2.
Only maximal values of the imaged coefficient are shown for the third refined mesh. The shape of
the final imaged coefficient is better than one on Fig.5.9c. However, the imaged refractive index
is lowered by about 19% compared with the imaged on the globally convergent stage. Source:
L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. © IOP Publishing. Reprinted with permission
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Fig. 5.13 The final reconstruction result for the cube number 2. Only the final, third mesh
refinement, is shown. The imaged coefficient ¢, (x) = 1 outside of these images. All three
components: shape, location, and refractive index are imaged with a very good accuracy. Source:
L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-
5611/26/12/125009, 2010. (© IOP Publishing. Reprinted with permission

First, we have simulated the data for the same inclusion as cube number] is. In
other words, we took the same location and size as ones listed in Table 5.7. Also,
we took &, = 4 inside this inclusion and ¢, = 1 everywhere else. We have applied
the same procedure as above to these computationally simulated data, starting from
the approximately globally convergent method. The resulting image is displayed on
Fig.5.16a. A very good accuracy of reconstruction of location, shape, and refractive
index is evident from Fig. 5.16a.

Next, we have applied the entire above procedure to the experimental data for
cube number 1 with the new value of @ = 14 in (5.10). Figure 5.16b displays the
final resulting image of cube number 1. One can observe a significant improvement
compared with Fig.5.11.

Still, the image of Fig. 5.16b is not as perfect as the one of Fig. 5.13. We attribute
this to the sizes of cubes 1 and 2. Indeed, the original wavelength of the signal in
the experimental data was A = 3 centimeters (cm). Hence, since the size of the
side of cube number 1 is 4 cm, then its side is 1.33A. On the other hand, the side
of cube number 2 is 6 cm, which is 2A. wavelengths. We conjecture that it is this
difference of sizes which led to the difference of the quality of images of these two
cubes.
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Fig. 5.14 Adaptively refined computational meshes in different projections and reconstruction
results for cube number 2 with parameters f = 0.985 and @ = 0.001. Lines (blue) indicate the
correct cubical shape. Maximal values of the imaged coefficient are displayed. The computed value
of the coefficient outside of imaged inclusions is 1. We observe that a very good reconstruction is
achieved on (d). The image on (d) is the same as the image on Fig. 5.13. This image is obtained
after three mesh refinements. The same stopping criterion as the one in Sects.4.15.3 and 4.16.2
was used. Relaxation Theorems 4.9.3 and 4.11.4 help in this case. On the other hand, (h) shows
that reconstruction is stabilized, and (1) shows that the image deteriorates if one uses more mesh
refinements than necessary, i.e., if one ignores that stopping criterion. Thus, (d) is our final
image. Source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental
data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009,
doi:10.1088/0266-5611/26/12/125009, 2010. (© IOP Publishing. Reprinted with permission
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Fig. 5.15 Final reconstruction results for cube number 2 with varying parameters  and o.
Lines (blue) indicate the correct cubical shape. Maximal values of the imaged coefficient are
displayed. The computed value of the coefficient outside of imaged inclusions is 1. Source: L.
Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid
globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-

5611/26/12/125009, 2010. © IOP Publishing. Reprinted with permission
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Fig. 5.16 (a) The image of
computationally simulated
cube number 1 from \
computationally simulated
data with @ = 14 in (5.10)
and (5.11). (b) The image of
cube number 1 from
experimental data with

o = 141in(5.10) and (5.11).
The same imaging procedure
as above was applied.
Compared with Fig.5.11, a
significant improvement is
observed. Still, however, the

image of the shape is not as _‘\-\_x__—__

good as the one for Cube
number 2 on Fig. 5.13. 7
Source: L. Beilina and M.V.
Klibanov, Reconstruction of ~ S ~

: Ern = 4.09, ngi0p = /Erp = 2.02
dielectrics from experimental Tl ¥iSoeb ikt

data via a hybrid globally

convergent/adaptive inverse b
algorithm, Inverse Problems,
26, 125009, T

doi:10.1088/0266-
5611/26/12/125009, 2010. ©
IOP Publishing. Reprinted
with permission

Erh & 4.2, Ng100 = \/Erp = 2.05

5.10 Summary

In this chapter, we have presented our work on experimental data of [28, 109].
The main difficulty of this work was caused by a huge discrepancy between
experimentally measured and computationally simulated data. This discrepancy is
not only due to the noise component, which is always present in any experimental
data, but also due to a highly oscillatory behavior of experimentally measured
curves, even for the case of the free space. On the other hand, computational
simulations for the free space case do not show high oscillations. Thus, it is unclear
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what kind of a PDE, if any, governs this process. We attribute this discrepancy to
very small times at which experimental data were collected. Indeed, the time step
between two consecutive readings was only 20 ps = 2 x 10™!!'s.

We have modeled this process by a single hyperbolic PDE (5.1), which is the
same as (2.1). The Maxwell’s system was not used. We believe that modeling by
this system might lead to a better accuracy of results. Still, however, an analog of the
above data pre-processing procedure should be used. Since only a single component
of the electric field was measured and since the approximately globally convergent
numerical method is not yet developed for CIPs for the Maxwell’s system, then the
above question should be left for future studies.

To handle the above huge discrepancy, a crucial step was a radically new
data pre-processing procedure. This procedure consists in immersing the data in
the mathematical model we are working with. We point out that the immersing
procedure was unbiased. This is because our approximately globally convergent
algorithm has worked with the most challenging case of blind experimental data,
i.e., we did not know the answer in advance. The immersing procedure makes
the data suitable to work with. This procedure consists of three stages. First two
immersing stages were applied to work with the algorithm of Sect.2.6.1. And the
third stage was applied to make the data suitable for the adaptivity technique.

We had at least five (5) sources of error:

1. The natural noise in the experimental data.
2. The modeling noise, since it was unclear from the data analysis what kind of
PDE, if any, governs the process.
. The data pre-processing has contributed even more to the modeling noise.
4. In our theory, the coefficient &, (x) should be sufficiently smooth. However, this
function obviously had a discontinuity at the inclusion/medium interface.
5. The Maxwell’s system was not used.

W

Nevertheless, we have consistently obtained an excellent accuracy of the recon-
struction of both locations and refractive indices of dielectric inclusions in blind
testing by the first stage of our two-stage numerical procedure. We point out that
when applying the algorithm of Sect.2.6.1, we were unbiased; see beginning of
Sect. 5.7. The second stage has also resulted in an excellent reconstruction accuracy
of locations and refractive indices of both cubes. In addition, the second stage has
led to reconstructions of shapes of these cubes. The shape reconstruction accuracy
was excellent for cube number 2, and it was very good for cube number 1. We
conjecture that this difference of qualities is due to the difference of sizes of those
cubes versus the wavelength A of the EM wave we were operating with. Indeed, the
size of the side of for 1 was 1.33A versus to 24 of cube number 2.

With reference to the two-stage numerical procedure, we have shown how
important it is to use the approximately globally convergent algorithm on the first
stage. Indeed, first, we have demonstrated that a modified gradient method of the
minimization of the Tikhonov functional does not produce meaningful results, if it is
taken alone, i.e., without the first stage algorithm of Sect. 2.6.1. Next, it is important
for the third stage of data immersing to use the result obtained by the algorithm of



334 5 Blind Experimental Data

Sect.2.6.1. In addition, we have shown that our adaptivity technique, being applied
to these experimental data, is very stable with respect to the large changes of two
key parameters: the regularization parameter o of the Tikhonov functional and the
parameter B of the third stage of data immersing.

In summary, we repeat one thought of Sect.5.1. Namely, it is quite surprising
that, despite all these sources of error and especially despite the abovementioned
huge misfit between experimentally measured and computationally simulated data,
such a very good reconstruction accuracy was consistently observed. Finally,
another interesting feature of results of this chapter is that this accuracy was obtained
for the case when measurements were taken for a narrow view angle; see Fig.5.1.
We believe, therefore, that these results indicate a good degree of robustness of our
algorithms. Finally, we believe that these results completely validate both first and
second approximate mathematical models.



Chapter 6
Backscattering Data

In Sects.6.1-6.8 we describe results of [115]. As to the numerical results of
Sect. 6.8, Figs. 6.2a, b were published in Methods and Applications of Analysis [116]
and are reprinted with permission. Other figures of this chapter were not published
elsewhere.

6.1 Introduction

In Chaps.2-5 we have considered the case of the so-called “complete data”. In
other words, the data were given at the entire boundary of the domain of interest.
In the case of the experimental data of Chap.5 only transmitted data were given,
although they were measured on the transmitted side only and only for a very narrow
view angle. Thus, we have worked with incomplete data in Chap. 5. However, the
most interesting case of incomplete data is the case when they are given at the
backscattering side of the medium. The case of the backscattering data is especially
interesting in military applications. In this chapter we model the most suitable
arrangement for this case, which is to use a single position of the point source and
to measure only the backscattering signal. The target application of this chapter is
in imaging of plastic antipersonnel land mines.

In the case of backscattering data, we have both Dirichlet and Neumann boundary
conditions at the backscattering part of the boundary. These are informative
conditions, since they depend on the unknown coefficient. The Dirichlet boundary
condition models the result of measurements. The Neumann boundary condition
can be calculated, as soon as the Dirichlet condition is known. As to the rest of
the boundary, we have only the radiation condition. This one is a noninformative
boundary condition since it is independent on the unknown coefficient. Hence, we
use this noninformative condition only for a better stability of our algorithm.

Because of the overdetermination in the boundary conditions on the backscat-
tering side, the idea is to use the quasi-reversibility method (QRM). Hence, the
major part of this chapter is devoted to the version of the approximately globally

L. Beilina and M.\V. Klibanov, Approximate Global Convergence and Adaptivity 335
for Coefficient Inverse Problems, DOI 10.1007/978-1-4419-7805-9_6,
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convergent method for the case when the QRM solves (2.49) for functions ¢, ;
(Sect.2.6.1). Theorem 6.7 is the central theorem of this chapter. Remarks2.9.4 can
be reformulated for this case. In addition, we present in this chapter our most recent
computational result. In this result, only the Dirichlet boundary condition is used on
the backscattering side of the boundary, and the zero Dirichlet boundary condition
for functions ¢, ; is assigned on the rest of the boundary. With reference to the QRM,
we present analytical results of [115] as well as some numerical results in 2D and
3D cases. In particular, the 2D computational result was published in [116]. The 3D
result of this chapter was not published before. Computations in 2D were carried
out by Dr. Andrey V. Kuzhuget with a help from both authors of this book, and the
3D result was computed by Dr. Natee Pantong with a help from both A.V. Kuzhuget
and the second author.

In Sect. 6.9, we present results of our work with blind experimental data, which
were collected by a forward looking radar of the US Army Research Laboratory
(ARL); see [126] for a description of this radar. The ARL data were kindly provided
to us, along with the permission to use in this book, by Drs. Lam Nguyen and Anders
Sullivan, who work for ARL. The corresponding joint work is [117]. The ARL data
were collected in the field, unlike the experimental data of Chap.5, which were
collected in a laboratory. Computations for this case were performed by Dr. A. V.
Kuzhuget with a help from the authors of this book.

Because of the structure of these experimental data, only 1D inverse algorithms
have a chance to succeed in this case; see Sect.6.9.2. Thus, we have applied
the 1D version of our algorithm [114]. The 1D version of our approximately
globally convergent numerical method was initially considered in [114] “only as
a preliminary step before applying similar ideas to 2D and 3D cases” (see p. 125
of [114]). This version is based on some approximations, similar with ones of
Sect. 6.6.2. On the other hand, 1D numerical methods of [40,47,51,56,90] do not
use approximations like ours, and they also do not need a priori given good first
guess for the solution. Our experimental data have a number of uncertainties listed
in Sect.6.9.4. One of examples of such an uncertainty is the 1D modeling of the
3D process. Hence, because of these uncertainties, it is yet unclear how techniques
of [40, 47,51, 56, 90] would perform for these experimental data. The question
of comparison of the performance of some of these algorithms with ours for our
experimental data is outside of the scope of the current book.

The QRM was first proposed by R. Lattes and J.-L. Lions in their joint book
[121]. Carleman estimates were not used for the convergence analysis in this book.
It was shown later in [105] that the tool of Carleman estimates is a quite suitable
one for proofs of convergence theorems for the QRM. The latter tool was used in
a number of publications since then, where analytical results for the QRM were
combined with computational ones; see, for example, [49,59, 102, 106-108].

The QRM is designed to find approximate solutions of ill-posed problems for
PDEs, for example, Cauchy problem for the Laplace equation. In particular, it
can handle boundary value problems for PDEs with overdetermined boundary
conditions, and the backscattering data indeed generate this problem for each
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function ¢, ; in (2.49). The QRM minimizes the Tikhonov functional. However,
instead of the traditionally case of a continuous operator, the Tikhonov functional
for the QRM is generated by the linear operator of the corresponding PDE, and this
operator is unbounded of course. A good feature of the QRM is that the uniqueness
and existence of the minimizer (i.e., the regularized solution) for this case follows
immediately from the Riesz theorem. However, the question of convergence of
regularized solutions to the exact one is much more delicate, and it is usually
addressed via a Carleman estimate.

While the QRM was applied only to linear problems in [49,59,102,106—108], our
CIP is nonlinear. This causes the major difficulty, compared with previous works.
Indeed, the QRM is applied only once in the linear case. Unlike this, we need to
apply the QRM on each iteration. However, these iterations cause significant new
difficulties in the convergence analysis. Addressing these difficulties is the major
new point of the convergence analysis of this chapter.

6.2 Forward and Inverse Problems

First, we pose the forward and inverse problems. Below, x = (x1, x2, x3) € R3. The
forward problem is the same as the problem (2.1) and (2.2) in Sect. 2.1:

¢ (x)uy; = Auin R3 x (0, 00), (6.1)

u(x,0) =0,u (x,0) =8 (x — xp) . (6.2)

We impose the same conditions on the coefficient ¢ (x) as (2.3), (2.4) in Sect. 2.1,

except that we require a little bit higher smoothness. Let £2 C R? be a convex
bounded domain with the piecewise smooth boundary d£2. We assume that

c(x) €[l,d], c(x) =1forx € R\, (6.3)
c(x) e C*H(RY). (6.4)
Everywhere below, « = const. € (0, 1). It is convenient for our derivations to

introduce the following set M of functions:
M = {c € C* (R’) : conditions (6.3) hold} . (6.5)

To simplify the presentation and also because of our target application, we now
specify the domain £2 C R? as follows; see Fig.6.1. Let P > 0 be a constant.
Below,

2={x:-P <x1,x2<P,x36(0,2P)},8.Q:U?:lFi, (6.6)
I'N={x:—P <x1,x, < P,x3 =0}, (6.7)
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Back-Reflecting Side

[

Fig. 6.1 Schematic diagram of data collection in the backscattering case. The incident plane wave
falls from the top, and the back reflected data are collected on the top boundary as well

Fzz{xle,xZ::l:P,)C3€(O,2P)}, (68)
F3:{)CI—P <X1,)C2<P,)C3:2P}. (69)

Coefficient Inverse Problem 6.2. Suppose that the coefficient ¢ (x) in (6.1)
satisfies conditions (6.3), (6.4) and is unknown in the domain §2. Determine the
coefficient ¢ (x) for x € $§2, assuming that the following functions g (x,t) and
g1 (x, t) are known for a single source position xy € {x3 < 0}:

“(x’t) |1"1 = 8o (X,t), Uxs (X,l) |F1 = &1 (X,f),l € (O, OO) (610)

Since xy € {x3 < 0}, then it follows from (6.6), (6.7), (6.8), and (6.9) that I is
the backscattering side. Hence, (6.10) models measurements of the backscattering
data. In experiments, usually only the function go (x,?) is measured. One can
approximately assume that this function is known at the entire plane {x; = 0}.
Next, since by (6.3) and (6.6) the coefficient ¢ (x) = 1 for x3 < 0, then solving the
forward problem (6.1), (6.2) in the half space {z < 0} with the boundary condition
u(x,t) |x;=0= go(x,t), one can uniquely determine the function u (x,?) for
x3 < 0,¢ > 0, which gives the function g; (x, ).
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6.3 Laplace Transform

In the case of the backscattering data, we work with an analog of the algorithm of
Sect.2.6.1. An essential difference, however, is that two boundary conditions (6.10)
generate overdetermined boundary conditions for functions ¢, ; in (2.49). This
overdetermination, in turn leads to the QRM. To derive (2.49), we have performed in
Sect. 2.3 the Laplace transform (2.10) first. Thus, consider the function w defined by

o0
w(x,s) = /u(x,t)e_”dt, fors > s = const. > 0, (6.11)
0
where s > 0 is a certain number. In our numerical studies, we choose s

experimentally. We call the parameter s pseudo-frequency. The function w satisfies
the following conditions:

Aw —s%c(x)w=—=8(x —xp), x e R*, Vs > 5, (6.12)
lim w(x,s) =0,Vs >s. (6.13)
|x|—o00
The condition (6.13) for sufficiently large s = s(c) was established in

Theorem 2.7.1 Theorem 2.7.2 provides more properties of the solution of the
problem (6.12), (6.13). In particular, it follows from this theorem that if ¢ € M,
where the set M is defined in (6.5), then for every s > 0, there exists unique solution
w of the problem (6.12), (6.13) of the form

w =wi +w, where w € C?*7 (R?), (6.14)
wi (x,5) = w' (6.15)
41 |x — xol

The function w; solves the problem (6.12), (6.13) for the case ¢ (x) = 1.

Having the data at only one side I} of the cube £2 is not sufficient for a good
stability of the numerical solution. To provide a better stability, we now derive an
approximate boundary condition for the function Inw at the rest I, U I3 of the
boundary 952. It follows from (6.15) and (2.101) that the function w satisfies the
radiation condition at the infinity, limy|— oo (35w 4 sw) (x) = 0, where Jjyw =
d,w is understood in terms of spherical coordinates with the radius r := |x — x| .
Hence, assuming that the number P in (6.6)—(6.9) is sufficiently large, we impose
the following approximate boundary condition at I, U I3L:

(anw + SW) Irzuf'3= 0. (6.16)

It follows from (6.16) that

dn (Inw (x,5)) [nur,= —s. (6.17)
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Actually, condition (6.17) is not an informative one. This is because it is independent
on the target coefficient ¢ (x) . Hence, it is logical to use (6.17) only for a better
stability of the algorithm.

We have verified the approximate boundary condition (6.16) computationally,
both in 3D and 2D cases, as follows. For a variety of cases modeling our target
application to imaging of antipersonnel plastic land mines (Sect.6.1), we have
computationally solved the forward problem for (6.12) in a domain 2, which was
much larger than the domain £2 in (6.6), £2 C ?2, 992 N 92 = @. Because of
(6.13), we have imposed the zero Dirichlet boundary condition at 0. Next, we
have solved (6.12) in the domain §2 with the boundary condition (6.16) at I, U 3.
As to I, we have used the Dirichlet boundary condition, which was calculated
from the above solution of the forward problem in 2. When doing so, we have
used the same values of the parameter s for which we have numerically solved our
inverse problem. Comparison of these two solutions has consistently revealed that in
a subdomain §2 C £2, whose boundary had a small distance from I U '3, these two
solutions have almost coincided. Thus, the above provides a numerical justification
for the approximation (6.16).

Remark 6.3. A heuristic explanation of a low sensitivity of the function w (x, s) to
the choice of boundary conditions at I, U I'; is the following. Consider two arbitrary
points x; # xo and x; # xo with |x, — xo| > |x; — Xo| . Then, the function

wi (x2,5)
w1 (Xl,S)

f(x2.8) =

decays exponentially as |x, — x;| — oo, and the point x; is fixed. In terms of
practical computations of the CIP 6.2, this means that one can use such a boundary
condition for the function w at I U I'; which provides best computational results.
On the other hand, this condition will always be a noninformative one. We also refer
to Chap. 5 for an analogy, since we have assigned in this chapter a noninformative
boundary condition to those five sides of the prism £2 where experimental data were
not collected.

6.4 The Algorithm

6.4.1 Preliminaries

The algorithm is similar with the algorithm of Sect. 2.6.1. Therefore, we are rather
brief in Sects. 6.4.1 and 6.4.2. However, an essential difference is in the method of
solving of (2.49). Indeed, while the problem (2.49), (2.50) is the Dirichlet boundary
value problem, which we solve via the FEM, in the case of backscattering data,
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(2.50) is replaced with overdetermined boundary conditions. The overdetermination
is generated by two functions go (x,¢) and g; (x, t) instead of just one in (2.5) for
the coefficient inverse problem 2.1.

Quite often, in applications, one can assume that actually, the coefficient
c(x) = 1 for x € R*\G where G C £ is such a subdomain of £2 which is a
little bit smaller than the domain of interest £2. We are doing this here for the sake
of convenience of the convergence analysis. Let P, = const. € (0, P). Denote
R2p, = 2 N {x3 € (0, P,)}. We assume below that ¢ (x) = 1, Vx € R\ 2p,.
Consider a subdomain 2’ C 2p, with 2’ N 3§2p, = @. Choose a function
x1 (x) € C? (R?) such that

1in £/,
X1 (x) = { between 0 and 1 in 22p,\$2,
0 outside of £2p,.

Next, let y, (x) be the characteristic function of the domain $2p,:

1 in .sz,

X) =
12 (%) 0 outside of £2p,.

Let ¢,k (x), x € £2 be the function reconstructed by the algorithm described
below. Then, by (6.34) and (6.35),
ek €[1,d], cor €CY (R2). (6.18)
Similarly with Sect. 2.6, we extend the function ¢, ; (x) in the entire space R? as
Tuke () := (1 =y (X)) + x1 (¥) e (x), ¥x € R (6.19)
Then it follows from (6.5), (6.18), and (6.19) that
Tk € ML (6.20)
We work below only with the function w (x, s),s > 0. Let in (6.12) the coeffi-
cient ¢ € M. Then Theorem 2.7.2 implies that there exists unique solution w (x, s)
of the problem (6.12), (6.13) satisfying conditions (6.14) and (6.15). Furthermore,

w(x,s) > 0 for x # xo. Hence, similarly with Sect.2.3, we consider functions
v(x,s),q (x,s) defined as

Inw(x,s av(x,s
v(x,s) = %, q(x,s) = (BS )

. 6.21)
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Hence,
Av+ 2 (Vv =c(x), x € 2. (6.22)

Assume that we work on the interval s € [s,s] . Hence,

v(x,s) =—/q(x,t)dr+V(x),

_Inw(x,¥)

V)=V s = —3, (6.23)

where V' (x) is the tail function. Assuming that conditions of Lemma 2.3 hold, we
have the asymptotic behavior similar with the one of Sect. 2.3:

1
IV Sy = 0350, (6.24)

1
I Dy = 0 () 5 o (625)

6.4.2 The Sequence of Elliptic Equations

Considering the partition of the interval [s,5] into N small subintervals of the
length £,
S =8y <Sy—1 <...<8 =3, Si—1—8 :h,

assuming that the function ¢ (x, s) is constant with respect to s in each of these
subintervals, ¢ (x,s) = ¢, (x), s € (s,,S,—1] and using the s-dependent CWF
(2.38), we obtain similarly with Sect. 2.5 and 2.6.1 the following sequence of elliptic
equations, which is similar with (2.49):

n—I1
Aguic = Ara | 1o 1Y Vg; = VVoi | Vaus

j=0
2

n—1 n—1

= —Ao, | D Vg | 12 () +242,VVak | B Ve | 4y (x)
j=0 j=0
—Az, (VVii)? x € 2,(n,k) € [1,N] x[1,m]. (6.26)

Here,
qo = 0. (6.27)
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In (6.26), m is the number of iterations with respect to tails. We fix this number in
the algorithm of this section. Boundary conditions for functions g, » are

qu|1“1 = Ip‘O,n(x)v ax3qu|1“1 = Ipl,n(-x)v anqu|1“zu1’3 = (628)

nSn—1

The third boundary condition (6.28) is obtained as follows. One can derive from
(6.17) that

1
Onq (x.5) Iurs = . (6.29)

Next, averaging over the interval (s,, s,—1) gives

17 ds 1
aninI’zUl} = % S_Z =

SnSn—1

We assign then

1
SpSn—1 ’

Functions ¥, ,(x) and ¥, (x) in (6.28) are obtained as follows. Let g, (x, s)
and g, (x,s) be Laplace transforms (6.11) of functions go (x,¢) and g (x,?),
respectively. Then

anQnIFZUFg =

w(x,5) [r=go (x,5), duw (x,5) [ =8, (x,5).

Hence, ;
Ing, (x,
g (x.5) In= - (“g()—ﬁ“)) = Yo (x.9), (6.30)
N S
_ 0 (&) )
0nq (x,8) |n= 55 (—s2§o (XJ)) =9, (x,s). (6.31)

Thus, we set

| Sn—1 1 Sn—1
Yo, (x) = 7 / Vo (x,s)ds, ¥,(x) = 7 / ¥y (x,s)ds, x € I7.

Sn

In (6.26), Ay, A2, are the same numbers as ones in Sect. 2.6.1.

There are three differences between (6.26) and (2.49). First, the nonlinear term
2 (an,k_l)2 (11,/1p) is not present in (6.26), unlike (2.49). This is because this
term is negligible for the case when in (2.38) Ah > 1; see (2.40). We have indeed
discovered in our numerical studies that this term provides a very small impact
in solutions of CIPs. We point out, however, that neglecting this term does not
mean a linearization. Indeed, the nonlinear nature of the problem still surfaces in
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terms containing V¢ ; as well as in gradients of tails V'V, ; in (6.26). Tails depend
nonlinearly from functions ¢, . The second difference between (6.26) and (2.49) is
in the presence of the function y, (x) in (6.26), unlike (2.49). We need this presence
for our convergence analysis. Finally, the third difference is in the absence of the
term —eq,,  in the left-hand side of (6.26), unlike (2.49).

6.4.3 The Iterative Process

First, we choose an initial tail function V;; (x) € C 2ty (ﬁ) This can be either
V11 (x) = 0 or the function which corresponds to the solution of the problem (6.12),
(6.13) for the case ¢ (x) = 1, which corresponds to the value of the function ¢ (x)
outside the domain of interest §2; see (6.3), or the choice described in Sect. 6.6.2; see
(6.99), (6.100), and (6.101). These choice in our numerical studies are specified in
Tests 1 and 2 of Sect. 6.8.4. Letm > 1 be an integer which we choose in numerical
experiments. For each n € [1, N], we have m inner iterations with respect to the
tails via computing functions g, i, Vi k., k € [1,m].

Step 1y, where n € [1, N],k € [1, m]. Recall that by (6.27), go = 0. Suppose that
functions¢; € H®(£2),j € [l.n — 1] and tails Vi, ..., Vy—1, Vi x € C*17 (2) are
constructed. To construct the function g, x, we use the QRM described in Sect. 6.4.4.
Hence, we obtain the function ¢, € H> (£2). To reconstruct an approximation
¢k (x) for the function ¢ (x), we first use the following discrete analogs of (6.22)
and (6.23):

n—I1

Vi k (xv sn) = _hqn,k ()C) —h qu ()C) + Vn,k (X) , X € Qst (6.32)
j=0

Cok (X) = Avps (X, 50) + 52 [Vvui (x,50)[* . x € 2p,. (6.33)

Since we need (6.20), then, following (6.5), we set

Cok (x), ifChp(x) e[l,d],x € 2p,,
g (x) = 1, ifcp(x) <1,x € 2p,, (6.34)
d,ifc,,(x)>d,x € 2p,.
Since functions ¢;,q,x € H 3(£2). then the embedding theorem implies that
qj.qnk € c? (ﬁ) . In addition, the tail function V,, ; € c*tr @ . Hence, (6.32),
(6.33), and (6.34) imply that

cnk €CY(2p,). (6.35)
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Next, we construct the function €,  (x) in (6.19). Hence, (6.34) and (6.35)
imply (6.20).

Next, we solve the forward problem (6.12), (6.13) with ¢ (x) := T, (x) for
s := 5 and obtain the function w, ; (x,5). Both existence and uniqueness of the
function wy, & (x,5) in the form (6.14), (6.15) are guaranteed by Theorem 2.7.2. We
set for the new tail

1 .S .
Viist (x) = “W’_‘—z(“) e CV () itk <m. (6.36)
s
We also set
cn (X)) i=cpm (X)), gn (X) :=qnm (), x € £2, (6.37)
Vo (0) = Vit (1) 1= Vi (1) 1= #2552 v e 2. (638)

6.4.4 The Quasi-Reversibility Method

Denote
n—1
g (x) = Ay | 12 ()R Y Vg, =V |, (6.39)
j=0
2
n—l n—1
Hy (x) = =A0uh® | YV | 1o (0) + 242, Vs [ )Y Vg | 4o ()
j=0 J=0
— Ao (VVi)?. (6.40)

Note that the function H,; € L, (£2). Because of (6.39), (6.40), the overdeter-
mined boundary value problem (6.26), (6.28) can be rewritten as

Agnic — an ik Vqui = Hyk, (6.41)

ql‘l,k|rl = wo,n(x)v axgql‘l,kh—'] = W],n(x)a anqu|1"2u1“3 = # (642)
Since we have two boundary conditions rather then one at I, we find the “least
squares” solution of the problem (6.41), (6.42) via the QRM. Specifically, we

minimize the following Tikhonov functional

o 1 o
i) = S Au = Vu = Hulyo) + 5 lulliysigy . (643)
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subject to the boundary conditions (6.42). Here, o € (0, 1) is a small regularization
parameter. Let u (x) be the unique minimizer of this functional, the existence of
which is guaranteed by Lemma 6.5.2. Then we set g, x (x) := u (x) . Local minima
do not occur here since (6.43) is the sum of square norms of two expressions, both of
which are linear with respect to u. The second term in the right-hand side of (6.43) is
the Tikhonov regularization term. We use the H> (£2)-norm here in order to ensure
that the minimizer u := ¢, € C*(£2). It was shown in Sect. 6.4.3 that the latter
implies (6.35) and, therefore, (6.20). We call the minimizer u (x) of the functional
I (u) the QRM solution of the problem (6.41), (6.42).

6.5 Estimates for the QRM

In this section, we temporary denote x = (x, y, z) . Although x denotes here both
the vector and its first component, it will be always clear from the context what
exactly x is in any particular place. It is convenient to scale variables in such a way
that in (6.6)—(6.9) P = 1/2. Thus, in Sects. 6.5-6.7,

ol _ 11 11 0! 644
- x_(xsysz)-(xsy)e(_Zsz)x(_zsz),Ze(,E)}. ( )

Below in Sects. 6.5-6.7, C > 0 denotes different generic constants which depend
only on the domain £2 in (6.44), (-, -) denotes the scalar product in L, (£2), and [+, ]
denotes the scalar product in H> (£2).

Let A, v > 2 be two parameters. Introduce the z-dependent CWF K(z):

1
K () := K;,(z) = exp(Ap™"), where p(z) = z + 77 > 0.

This CWF is different from the ones previously used for Carleman estimates for
elliptic PDEs; see, for example, the function ¢ in (1.172) (Sect. 1.10.7) for the
case when its dependence from ¢ is dropped. Note that p (z) € (0,3/4) in £2 and
p(2) |,= 3/4. Let the number x € (1/3, 1) . Denote

.ka{xeﬂzp(z)<%x}.

Hence, if | < %, then §2,, C £§2,,. Also, 2 = §2 and §2,,3 = @. In addition,

vo
K? (z) > exp [2/1 (%x) i| in £2,.
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Lemma 6.5.1. Fix the parameter v > 2. Consider an arbitrary function u &
H?3 (2) such that
ulr=u; |r=0nu|rp=0. (6.45)

Then there exists a constant C > 0 such that for all A > 2 the following Carleman
estimate is valid for all these functions u:

/ (Au)*K?dx > % Z / (D%u)* K%dx + C / [x (Vu)? +A3u2] K?dx

7] lel=2 5 Q2

4 v
—C X ||l 33 () exP [2/\ (5) } .

Proof. 'We have
(Au)2 K? = (u%x + uiy + u?z + 2yt + 2Uxuyy + 2uyyuzz) K?
= (ufm + ”iy + ui) K?* + 9, (2uquZK2 + 2uxuny2)
+0, (2uyuZZK2) — 2upu K* — 2uxuyny2 — 2uyuZZyK2
= (u%x + ”iy + ufz) K?*+ 9, (2uquZK2 + 2uxuny2)
+0, (2uyuZZK2) +0, (—2uxuxyK2) + 2u)2(yK2
+0, (—2uXuXZK2) + 2u)2CZK2 — 42 upu, K2
+0. (—2uyuy.K?) + 2u5 K> — 42vp ™ uyu, K.
Thus, we have obtained that
(Au)2 K? = (u)z(x + uiy + ui + 2u)2(y + 2u§z + 2uiz> K?
—4 vp ! (uxuxZ + uyuyz) K%+ 0, [2 (uxuZZ + uxuyy) Kz]
+0, [2 (uyuZZ — uxuxy) Kz] + 0, [—2 (uxttyz 4 uyny) Kz] . (6.46)

Using the Cauchy—Schwarz inequality,

b2
2ab > —ga* — —, Ve > 0,
e

and taking ¢ = 1/4, we obtain

—4pvp ! (uxuxz + uyuyz) K?>— (u%z + uiz) K2 — 42202 p™ 272 (Vu)? K.
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Hence, (6.46) implies that

(AM)2 K2 > Z (Dau)Z KZ _ 4A,21)2,O_2V_2 (VM)Z KZ
la|=2

+0, [ZMX (uzZ + uyy) Kz] + 0y [2 (uyuZZ - uxuxy) Kz]
+0, [—2 (uxuxZ + uyuyz) K2] . (6.47)

Consider a new function v = uK. Substituting u = vK !, we obtain

(Au)?p" T K2 = (y1 + y2 + y3)* 0" = 2y (1 + y3)pU T, (6.48)
yi=Av, y =2dvp ", y3= ()2 p 221 = (v + 1) ()~ p")v. (6.49)

We have
2y1y2p" T = 0 (4Avv.yy) + dy (4)vazvy) + 0, [2/\\1 (vf —v: - vi)] . (6.50)

Next, by (6.48) and (6.49),
2y233p" ! = 40w)* (72— 0+ D () T vy

=9, [2(11))3 (p—2v—2 — 41w p—v—Z) Vz]

+4)P (v + 1) p23 (1 (v +2)2)! ,0”) V2

> 22342 19, [zuvf (,0_2”_2 — D)) ,0_”_2) v2] .

Hence,

2y, y3p" T 1=223 042324, [Z(Av)3 (,0_2"_2 — W+ 1! ,0_”_2) vz] .

6.51)

Summing up (6.50) with (6.51), using (6.48) and the backward substitution u = vK,
we obtain

(Au)’p" T K? > 20304 ™3P K2 + 0, Uy 4 9,Us + 9.Us, (6.52)
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where the following estimates are valid for functions Uy, U,, Us:
(U] < CA Juy| (Juz] + Avp™ 7" |ul) K2,
|Uz| < CAv Juy | (Juz] + Avp™ " ul) K2, (6.53)
\Us| < CAv (|Vu|2 + szzp_z"_zuz) K2

We now need to incorporate the term A (Vu)? K2 in the right-hand side of the
Carleman estimate. Hence, we continue as follows:

—MuAuK? = 9, (—Avuusz) +0, (—Avuusz) + 0, (—AvuuZKz)
+Av (Vu)? K2 = 2222 p 7 " luuk?
— v (Vu)? K2 — 22303202 (1 L+ 1) ) p”) 2K>
+0,.Us + 0,Us + 9. Us.
Hence,
—MuAuK? > v (Vu)? K2 — 433032 22K2 + 9, Uy + 0,Us + 0,Us,
(6.54)
Uy, = —Avuu, K?, Us = —/\vuusz, |Us| < C (Avu? + szzp_”_luz) K2.
(6.55)

Summing up (6.52) and (6.54) and taking into account (6.53) and (6.55) as well as
the fact that

2/\3v4p—2v—3 _ 4)L3v3p_2”_2 _ 2/\3v4p—2v—3 (1 — 0 (2v)_1) > /\3v4p—2v—3,
we obtain

(Au)’K? — AudAuK? > 2v (Vu)? K2 + 230 p 2P K?

+0.U7 + 0,Us + 0.Up, (6.56)
|U7| < CAv |uy (|uz| + Avpv! |u|) K2, (6.57)
|Ug| < CAv |uy\ (|uz| + Avp vt |u|) K2, (6.58)

Ul = Cav (|Vul” + 2202972 ~22) K2, 6.59)
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Since the number v > 2 is fixed, we can incorporate v in C. Also, since ,0”+1 <1,
we can regard that p”+! < C. By the Cauchy-Schwarz inequality,

1
—MuAuK? < —(Au)?p" T K? + Ekzvzp_”_luzl(z.

N =

Hence, we obtain from (6.56), (6.57), (6.58), and (6.59)
(Au)K*> C [A (Vu)? + A%ﬂ] K%+ 0,Uy + 3,Us + 0.Us. (6.60)

We now divide (6.47) by Ar with a constant7 = r (v) > 0 such that 4v(2)p_2”0_2/r <
C /2, add the resulting inequality to (6.60), and take into account (6.57), (6.58), and
(6.59). Then with a new constant C, we obtain the following pointwise Carleman
estimate for the Laplace operator in the domain £2:

(Au)’K? > % > (Du? K>+ C [A (Vu)® + A%ﬂ] K>

la|=2
+0,Uio + 0,U11 + .U, (6.61)
[Uto] < CAfu] (Jue] + [utyy | + luac| + A Ju]) K2, (6.62)
U] < C [Afuy| (el + Juac] + A Jue]) + [y | |ec]] K2, (6.63)
|Un| = CA [Iunl2 + w4 [V + A%ﬂ] K> (6.64)

We now integrate both sides of formula (6.61) over the rectangle §2 using the
Gauss’ formula. It is important that because of (6.45) and estimates (6.62)—(6.64),
each resulting boundary integral over I} and I will turn out to be zero. We obtain

C
/ (Aw*K*dx = — 3 / (D*u)? K*dx + C / [/\ (Vu)® + W] Kdx
Q2 lal=2 2

—Ck/[lunler Juy. | + |Vu|2+kzu2] K%dS.  (6.65)

I3

Note that

K? (l) = K? (@) [=min K* () = exp [M (i)v} .
2 « ’

Hence,

4\’
/A [|uxz|2 + [uye]” + |Vl + Azuz] K?dx < C2% ul3s ) exp [u (5) } .
I3
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Substituting this in (6.65), we obtain the estimate of this lemma. O

We now establish both existence and uniqueness of the minimizer of the
functional (6.43). Denote afj}c (x),i = 1,2,3 components of the vector function
anx (x)in (6.39). Let

(i)
n.k

( <M, M =const. > 0,i = 1,2, 3. (6.66)
Loo(£2)

Lemma 6.5.2. Assume that there exists a function ® € H? (2) satisfying boundary
conditions (6.42). Also, assume that condition (6.66) holds. Then there exists unique
minimizer u € H> (§2) of the functional (6.43). Furthermore, with a constant C; =
C (M) > 0,

Ci
wll s (@) < ﬁ (HHn k| Ly) + 1@ gsce)) -

Proof. Let U = u — ®. Then the function U satisfies boundary conditions (6.45).
By the variational principle,

(GuiU,Guiv) +a[Uv] = (Hpg — G i@, Griv) —a [@,V],

for all functions v € H> (§2) satisfying boundary conditions (6.45). Here,
GuxU := AU —a,VU. (6.67)
The rest of the proof follows from the Riesz theorem. |

Lemma 6.5.3. Let G, be the operator defined in (6.67). Let the function u €
H? (82) satisfy boundary conditions (6.45) as well as the variational equality

(Gn,kus Gn,kv) + (04 [Ms V] = (Hn,ks Gn,kv) + (07 [gv V] (668)

for all functions v € H? (2) satisfying (6.45). Then
1
lwll sy < ﬁ I Hn il 1y 2y + 18115 (@) -

Proof. Setin (6.68) v := u and use the Cauchy—Schwarz inequality. |

Theorem 6.5. Let G, i be the operator defined in (6.67). Assume that condition
(6.66) holds. Let g € H?’ (2) be an arbitrary function. Let u € H? (2) be the
function satisfying boundary conditions (6.45) as well as the variational equality
(6.68) for all functions v € H?> (2) satisfying (6.45). Let the number x € (1/3,1)
and the number B € (x, 1) . Consider the numbers by, b,
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1 1
=P = o eh T © (O’ 5) ’ (€0
b2 = bz (,3) = % — b1 > 0, (6.70)

where v is the parameter of Lemma 6.5.1. Then there exists a sufficiently small
numberay = a1 (M, B) € (0, 1) such that for all o € (0, &) the following estimate
holds with a constant C; = C, (M, 2) > 0

lull g2,y < Coor™ [ Hnkll 1y + C20” ||g )l () - (6.71)
Proof. 1In this proof, C, = C, (M, §2) denotes different constants depending only

from M and §2. Setting in (6.68) v := u and using the Cauchy—Schwarz inequality,
we obtain

G kully, @) < F? = [ Huill 7,0 + ¢ 181750 - (6.72)

Note that
K?(0) = max K2 (z) = exp (24 - 4").
2

Hence, we obtain from (6.72)
2 - 2 1 )
F?> “Gn,ku”Lz(Q) = ||K 'K - Gn,kMHLZ(Q) > KZ—(O) K - Gn,k”“Lz(Q)
=exp (=214 -4") | K - Gy ull] o) -

Clearly
1
(Gui)’ K2 = — (Au)’ K2 = C1 (Vu)* K2,

Hence,

/ (Au)? K?dxdz < C, / (Vu)* K2dxdz 4 exp (24 - 4") F2. (6.73)
2 2

Applying Lemma 6.5.1 to (6.73), choosing A > 1 sufficiently large, and observing
that the term with (Vu)? in (5.14) will be absorbed for such A, we obtain

4\"
Aexp (21 -4") F2 + G\ ||u||§13(9) exp [2/1 (5) :|

> G Z (D%u)* K2dx
l|<2
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> G Z /(D”‘u)2 K2dx
| <20y

4 v
> Cyexp [n (E) } lull 20, -

Recalling that 8 € (%, 1), we obtain that the latter sequence of inequalities implies
that

4\"
Aexp (2 -4") F2 + G0 ||u||§13(9) exp [2/1 (5) :|

4" 4\
> Crexp [2/1 (g) :| ||u||%{2(9) > Crexp [21 (ﬁ) :| ||“||§12(9)-

Thus,

4 v
Aexp (24 - 4") F? + CoA* [|ul| 33 o) exp [n (3) }

4 v
> Cyexp [n (ﬁ) } |32, -

Dividing this inequality by the exponential term in the right-hand side, we obtain a
stronger estimate:

4\
||u||§12(9%) < Crexp(2A-4") F? + C, ||u||§13(9) exp [—2/1 (%) (1— 'Bv)i| .

(6.74)

Applying Lemma 6.5.3 to ||u||§13(9) in the right-hand side of (6.74), we obtain

1 4\
Il < P fep@r-4 + e [-22 (55) -]l @79

Since ¢ € (0, ) and «y is sufficiently small, we can choose sufficiently large

A = A () such that

exp (24 -4") = a lexp [—u (%)V a- /3”)} ) (6.76)

We obtain from (6.76) that 21 - 4° = Ina~2"'. Hence, (6.74), (6.75), and (6.76)
imply the validity of (6.71). O
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6.6 The Third Approximate Mathematical Model

6.6.1 Exact Solution

First, we need to introduce the definition of the exact solution. Some aspects of this
definition are different from the definition of Sect. 2.8.1. We assume that there exists
a coefficient ¢* (x) which is the unique exact solution of coefficient inverse problem
6.2 with the exact data g5 (x,¢), g} (x, ) in (6.10). We assume that

c*eMnC*(RY), (6.77)

where M was defined in (6.5). The assumption (6.77) is because of (6.3) and (6.4).
Let u* (x,t) be the solution of the forward problem (6.1), (6.2) with ¢ := ¢* and
w* (x, s) be its Laplace transform (3.3) for s > s = s(c*) > 0 (Theorem 2.7.1
Since the source xo ¢ 2, then it follows from (6.77) and Theorem 2.7.2 that
w* (x,5) € C>7 (ﬁ) . Similarly with (6.21), let

_Inw* (x,5) v (x,s)

vi(x,s) = — q* (x,s) = % (6.78)

Let [s, 5] be the s-interval of Sect. 6.4 and s > s (c*) . Since w* (x,s) € C¥7 (£2) .
we assume that

q* € C (2) x C'[s,5]. (6.79)
g™ (o) les+r@)xerfos] = €5 (6.80)
C* = const. > 2, (6.81)

where the constant C * is given. Consider the same partition of the interval [s, 5] into
N small subintervals as one in Sect. 6.4.2. Let ¢,; (x) be the average of the function
q* (x,s) over the interval (s,, $,—1):

Sn—1

1
W=y [ ¢ wsas

Sn

Then (6.79) and (6.80) imply that

max g, (x) = ¢” (x.9) [l cs+y () = CTh. (6.82)

NS [Sn Sn—1
Hence, increasing, if necessary, the number C *, we can assume that

max g, ||ys@) < C*. (6.83)

1<n<N
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Let

W; (X,S) = q* (X,S) |1“17 ‘Vf ()C,S) = axsq* (X,S) |F17 s € [ﬁvﬂ . (684)

Given (6.84), let functions ¥, (x) and %7, (x) be averages of functions ¥ (x, s)
and ¥ (x,s) over the interval (s,, s,—1) . Then boundary conditions for functions
q, (x)at I'] are

q:lﬂ = Wan (X), 8X3q;1k|rl = Wikn(-x) (685)

The exact tail function V* (x) is

Inw* (x,5
V*(x) = “W_—g“) (6.86)
N
The function g} satisfies the following analogue of (6.26):
n—1
Agy— Ay | hY_ Vgl (x) = VV* | Vgr
j=0
2
n—1 n—l1
=—Ap, | D Vgi (x) | +242,VV* | B Vgt (x)
j=0 j=0
Ao, (VV*) 4 Fip (e, B2, gf=0. (6.87)
Similarly with (6.32) and (6.33),
n—1
Vi) = —hgt () —h Y g} (x)+ V*(x) + Fou (x.h) . x € 2. (6.88)
j=0
¢ (x) = AV (x) + 82 |V (0))> + Fa, (x,h) ,x € 2. (6.89)

In (6.87)—(6.89) functions F\, (x,h,A), Fa, (x,h), F3, (x,h) represent approx-
imation errors. In particular, the nonlinear term 2 (1y,/1y) (Vq;l" )2, an analog of
which was ignored in (6.26), is a part of I ,. Although we can prove an analog of
Theorem 6.7 for the case

Fl,n 7é Os F2,n 7é 07 F3,n 7é 07 w:)(n 7é w(lnv w;kn 7é Ip.l,ns

this would require more space while the method of the proof would be almost the
same. Hence, we “allow” now the error in the boundary data at I'} to be present only
ats : = §, see Lemma6.7. Therefore, for brevity only we assume below that

Fin=Fun=F3=0.95, =V, Y1, =V, n€[l.N]. (6.90)
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Using, the idea of the proof of Theorem 2.7.2, it is possible to prove that not
only the function w* (x,s) € C>*7(£2) but also the functions D*w* (x,s) €
C>t7(£2) .k = 1,2. Since this implies that ¢* (x,s) € C3"7 (£2) x C'[s,5],
then it is not necessary to impose this assumption in (6.79). However, we still
prefer to use this assumption because the proof of (6.79) is not our main focus.
The reason why we require the C*-smoothness of ¢* in (6.4) and (6.77) is to ensure
that V* € C317 (£2) . We need the latter to justify that the function p* € H> ()
in (6.92).

6.6.2 The Third Approximate Mathematical Model

The third approximate mathematical model is similar with the second one of
Sect.2.9.2 Some differences with Sect.2.9.2 are due to the fact that we use the
backscattering data now, which was not the case of Sect.2.9.2. Similarly with
Sect.2.9.2, Assumptions 1-3 below mean that we take into account only the first
term of the asymptotic behavior of the function s—2 Inw* (x,s) at s — oo and
ignore the rest. By (2.105) (Sect. 2.8.1), the equation for the function ¢* is

5 5 2

Aq*—ZsZVq*/Vq* (x,7)dr + 25 /Vq* (x,7)de | +25Vg*VV*

s s

—2sVV* / Vq* (x,7)dt + 2s (VV”‘)2 =0, (x,5) € 2 x][s,5].
(6.91)
The third approximate mathematical model consists of the following three

assumptions:

1. There exists a function p* (x) € H? (£2) such that the exact tail function V* (x)

has the form .
p*(x)

V*(x,s) = , Vs > 5. (6.92)

And also (see (6.86)),
p*(x)  Inw*(x,5)

s 52

(6.93)

2. There exists unique exact solution ¢* of CIP 6.2 satisfying condition (6.77). For
5 >85> s5(c*) > 0, the function g* (x,s) , (x,5) € 2 X [s,5] defined in (6.78),
satisfies conditions (6.79), (6.80).

3. For s € [s, 3], the function ¢* (x, s) satisfies boundary conditions (6.84) at I'| as
well as the boundary condition (6.29) at I, U I'5:
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1
Ing (x,8) [nury = et (6.94)
Since ¢* (x,s) = 9,V * (x,s) fors > 5, we derive from (6.92) that

g* (x.5) = -2 ng). (6.95)

Recall that the boundary condition (6.29) is an approximate one and this is why we
treat (6.94) as an assumption. It follows from (6.94) that

1

g, lnun= (6.96)

nSn—1 '
Setin (6.91) s = 5. Then, using (6.84) and (6.92), (6.95) and (6.94), we obtain the
following approximate PDE and boundary conditions for the function p* (x):

Ap* =0in 2, p* € H* (22), (6.97)
P¥ln = =52 (x,5), 0. p*|In = =¥ T (x.5), 0.0" |nun=—1. (6.98)

The existence of the solution of the problem (6.97), (6.98) is assumed rather than
proved because conditions (6.97) and (6.98) are derived from assumptions 1-3, and
(6.94) is an approximate boundary condition. Let functions ¥, (x,s) , ¥, (x,s) be
boundary conditions in (6.30), (6.31) (Sect. 6.4.2). Suppose that for each & € (0, 1),
there exists the QRM solution p = p (x;) of the following boundary value
problem:

Ap=0in 2, p(x) € H> (), (6.99)

plr = =5V, (x.5), 0, pln, = =5V, (x.5), 0up Inun=—1:  (6.100)

see Lemma 6.7 for the existence and uniqueness of the function p. Then, we choose
an appropriate & € (0, 1) . Next, we set the first approximation for the tail function
in the iterative process of Sect. 6.4.3 as (also, see Remarks 2.9.2)
p(x;a)

Vit (x) = Vi1 (xia) := (6.101)

Remark 6.6.2. Analogs of Remarks 2.9.2 are valid here.

We now establish uniqueness within the framework of the third approximate
mathematical model. Although uniqueness can be proven under less restrictive
assumptions imposed on functions ¢*, p* than ones above, we are not doing this
here for brevity.

Lemma 6.6.2. Suppose that above Assumptions 1-3 hold. Then for (x,s) € §2 X
[s,5], there exists at most one function q¢* (x, s) satisfying conditions (6.79), (6.80)
as well as (6.91). In addition, if assuming the continuous analog of (6.89),
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¢* (x) = AV (x) + 52 [V (X)), (x,5) € 2 x [5.5].

where the function v* is the same as in (6.78), then there exists at most one function
*
c* (x).

Brief Outline of the Proof. We outline the proof only briefly because it is simple.
Uniqueness of the problem (6.97), (6.98) is obvious. Having uniquely determined
the function p*, we uniquely find the function V* (x,¥) via (6.92). Substitute this
function V* (x,5) in (6.91). Next, applying the Carleman estimate of Lemma 6.5.1,
we obtain uniqueness of the function ¢* (x, s). The s integrals are not a problem, as
it is clear from Sect. 1.10. |

6.7 The Third Approximate Global Convergence Theorem

Just as in (2.120) (Sect. 2.8.2), assume that
5>1, Ah > 1, (6.102)

where A > 1 is the parameter of the CWF (2.38). As in (2.121), we obtain from
(6.102) that
max {|Ay,] + |A2.|} < 85%. (6.103)
1<n<N

In general, embedding theorems are valid for domains with sufficiently smooth
boundaries. It follows from Lemma 1 of §4 of Chap. 3 of the book [127] that if O
is a rectangular prism, then any function f € H* (Q) can be extended in a bigger
rectangular prism Q1 D 0,90 NJQ; = @ as the function f; € H* (Q}), fi (x) =
S (x)in Q and || fill gk (o,) < Z IIf | g (o) » Where the constant Z = Z (Q, Q1) >
0. Hence, embedding theorems are valid for rectangular prisms. Hence,

1fles@y < CUflus) -V f € H (). (6.104)

Let the domain £2 be the same as in Sect.6.5. Recall that 2, C 2 for x €
(1/3,1) and £2, = £2. Following the construction of Sect. 6.4.1, we assume that

1
P, = const. € (5 1) ,c(x)=1forx e R3\.§2p2, (6.105)

Q'C 2p,, 02" N2p, = 2. (6.106)

Recall that functions ¢, x (x) are defined via (6.19). Since ¢, x (x) # cux (x) for
x € 2p,\82’, then the number meas (£2p,\$2") can be considered as a part of the
error in the data. Hence, we assume that the domain §2’ is such that
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meas (£2p,\22') < =, (6.107)

| ™

where ¢ € (0,1) is sufficiently small. Since by construction ¢, x (x),c* (x) €
[1.d].Vx € R3, and ¢, x (x) = cux (x).Vx € £, then by (6.34), (6.105), and
(6.107),

[Cnk — C*“LZ(Q) < llenk — C*”Lz(g/) +de < |[Chx — C*”Lz(g/) +de. (6.108)

As it is always the case in the convergence analysis of ill-posed problems (see
Chaps. 1, 2, and 4), we need to connect the regularization parameter « of the QRM
in (6.43) with various approximation errors. Those errors are the level of the error o
in the data (Lemma 6.7), the grid step size / in the s-direction, and the number ¢ in
(6.107).

As it was stated in Sect. 6.1, the major difficulty in applying the QRM to the
nonlinear case is caused by many iterations rather than by a single iteration in
the linear case. More precisely, to ensure the stability of our process, we need to
iteratively “suppress” the large parameter "' in (6.71). In addition, we need to
estimate tails. These are two reasons of imposing a smallness assumption on the
length f = 5 —s = Nh, where N > 1 is an integer. The latter is similar with
Theorems 2.8.2 and 2.9.4.

For a number x > 0, let {x}° denotes such an integer that x — {x}° € [0,1).
Thus, we impose the following conditions:

o.¢€ (0, /), (6.109)
h=Ja, p:=p@) = Ja{f (@)} = aN, (6.110)

where the function f («) is monotonically decreasing for « € (0, 1),

f () >0fora € (0,1) ’aE)I;[)lJF f (o) = o0 and al_i:ng mf((ioi)l) =0. (6.111)

Two examples of the function f (o) are

fi(w) = [ln (a_l)]r ,r = const. € (0,1)

and
f(x) =1In (ln (0{_1)) .

Recall that the number of iterations can be one of regularization parameters for an
ill-posed problem. On the other hand, one might also have a vector of regularization
parameters. Therefore, one can consider (6.109), (6.110), and (6.111) as the linkage
between regularization parameters (¢, N) := (o, N (o)) between themselves as
well as with “error” parameters (o, &, /) .
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Let (gnk,Cnks Vai) be the triple computed on a certain step of our iterative
process of Sect. 6.4.3. Denote

~ *x ~ — *x T7 *
Gnk =qnk — Gy Cnk =Cnk—C , Vak =V —=V".

Similarly for g, @y, V. Note that since the function ¢* € [1, d], then (6.34) implies
that

lenk (X) —c* (X)] < [Cok () =™ (X)| = [Chx (X)], x € 2. (6.112)

Even though we have assumed (for brevity only) that there is no error in functions
of (6.90), Lemma 6.7 and Theorem 6.7 “allow” error to be present in functions

Yo (x,5), ¥ (x,5) in (6.98).

Lemma 6.7 (estimate of Vl,l). Let the domain §2 be as in (6.44) and the source
Xo ¢ $2. Let assumptions 1-3 of Sect. 6.6.2 hold as well as (6.109). Let ¥* €
H? (2) be a function satisfying boundary conditions (6.98). Suppose that there
exists a function ¥ € H> (R2) satisfying boundary conditions (6.80). Let the number
o € (0, 1) be the level of the error in the function W* when it is replaced with the
function W, B = B (£2,5,d, x9) > 2 be the constant of Theorem 2.9.1.1 and

[ = ¥* | ys2) <0 < Vo, (6.113)

2" 5oy < B. (6.114)

Let the function p = p (x;a) € H? (2) be the unigue QRM solution of the problem

(6.99), (6.100) which is guaranteed by Lemma 6.5.2. Let the tail function V ; (x) :=
Vi1 (x; @) has the form (6.101). Then for every o € (0, 1),

HVVM ||L2(.Q) + ”AVM HLZ(Q) < BV, (6.115)

IVViille@) < B (6.116)

Proof. Note that the existence of the function ¥* follows from the assumed

existence of the function p* satisfying conditions (6.97), (6.98). Likewise the trace
theorem, (6.113), (6.98), and (6.100) imply that

_ _ _ _ o
V5 (x.5) = Yo D1y + 1T (6.5 =¥ (0D 1y = €

where C = C (§2) > 0 is a constant. This means that the error is introduced in the

boundary data ¥ (x,5) ., ¥} (x,5) and its level is proportional to o € (0, /&) . For

brevity, we do not put in this proof the dependence of the function p from «.
Denote

D) =(p=¥) ()~ (p*=¥") ().



6.7 The Third Approximate Global Convergence Theorem 361

Then the function P (x) satisfies zero boundary conditions (6.100) and
(AD, Av) +a[p,v] = (AlI/* — AY, Av) +a [lll* -y, v] +a [p*,v] ,

for all functions v € H?> (§2) satisfying zero boundary conditions (6.100). Setting
here v := p, and using (6.109), (6.113), and (6.114), we obtain

IABN, @) + @ 1Py < @B (6.117)

Estimate ||A'ﬁ||i2(9) in (6.117) from the below. We have

(AP) = (Ph + P2y +P2) + PPy + P + 2Py P (6.118)
Z’ﬁxx’ﬁyy = ax (zfﬁx’ﬁyy) - 2fﬁx,ﬁyyx = ax (2’1\7/x’1\7/yy) + ay (_zfﬁx’ﬁxy) + 2/1\7/iys
zﬁxxﬁzz = ax (Z;X?zz) - Zﬁxﬁzzx = ax (Z?X?zz) + az (_zﬁxﬁxz) + 2?’?;17

and similarly for 2p,,p... Integrate (6.118) over £2 using these formulas for
products. Since by (6.98) and (6.100) 9,7 |se = 0, then boundary integrals will
be equal zero. Next, use

X

e (69,2 = / o (E.7.2) dE
—1/4

and similar formulas for p,, p,. Using (6.117), we obtain

@B > | AP, = D IDPlL@ = C IV, @) -
la|=2

This, (6.92), (6.101), (6.113), and (6.114) imply (6.115). Next, by (6.104), (6.109),
(6.113) (6.114), and (6.117) |[Vplle(m) < Clipllusi@y < B. This estimate

combined with (6.101) imply (6.116). O

Theorem 6.7 claims approximate global convergence property of the algorithm
of Sects. 6.4.3 and 6.4.4 in the framework of the third approximate mathematical
model.

Theorem 6.7. Let the following conditions hold: ones of Sect. (6.81), (6.90), ones
of Lemma 6.7, as well as (6.102), (6.105), (6.106),(6.107), (6.109), (6.110), and
(6.111). Let the number f € (P2,1), m be the number of inner iterations for
functions qnx, k € [1,m] and [ be the function in (6.110), (6.111). Then there
exists a constant D = D (5,d, xo, C*, f, P, B) > 1, numbers

1 1
bi = by (5.d, %0, C*, f, P2, B) € (O’E)’ b=t
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defined in (6.69) and (6.70) and a sufficiently small oy = g (5,d, xo, C*, f, P2, B,
m, N) € (0, 1) such that the following estimates are valid:

lew = * @ < @2, ¥ (n,0) € [1,N] x (0,0) . (6.119)

Thus, the iterative process of Sects.6.4.3 and 6.4.4 is approximately globally
convergent of the level a”2/? in the framework of the third approximate mathematical
model.

Proof. In this proof, B = B (§2,5,d, xo) > 2 is the constant of Theorem 2.9.1.1.
A combination of Theorem 2.7.2 with (6.5), (6.18), (6.19), (6.20), (6.34), (6.35),
(6.36), and (6.37) guarantees the existence and uniqueness of tails V}, . Note that
because of (6.79) and (6.80), the estimate (6.82) does not change when the number
N of subintervals of the interval [s, 5] increases with the decrease of the parameter «.
Let (n,k) € [1,N] x [1,m].

Assuming that the constant D is found, we first estimate the number D2Nm+aybs
Using (6.110) and (6.111), we obtain that there exists a sufficiently small number

0o = 0o (E,d,xo,C*,f,Pz,,B,m,N) € (0, 1),
such that for all & € (0, «g),

S (@)
In (1)

pANmHagh < D4exp{_ln (@) [b2—2m InD }} <% (6.120)

Below, in this proof, o € (0, o). It follows from (6.120) that it is sufficient to prove
that
lew = ¢* @ < D¥™e, ¥ (n,a) € [1,N] x (0, a0). (6.121)

By (6.26), (6.28), (6.40), (6.85), (6.87), (6.90), and (6.96), the function G, x is
the QRM solution of the following problem:

n—1
AGui = Ain | 1o VR Y Vg = VVis | VGus = Hox, (6.122)
j=0
’q’n,k |F1: axsan,k |F1: anan,k |F2UF3: 07 (6123)
where
~ n_l o~
Hyp (x) = A [ 120 hY_VG; = VV,i | Vg
j=0

n—1 n—1
—Aon | X2 (x)hzv-‘ij hZ (qu + Vq;) —2VV,x
j=0 =0



6.7 The Third Approximate Global Convergence Theorem 363

n—l1
+ A2 VV i [ 26 )R Y Vgs = (VWi + VV)
j=0
n—1 n—1
— (1= 02 () Y Vai = A1, Vay + A2,h) Va; =24,V
j=0 j=0

(6.124)

Let O, (x) be the last line of (6.124). We now estimate this function using
Theorem 2.9.1.1, (6.81), (6.83), (6.103), (6.110), (6.111), and (6.116):

10ull 1oy < 85°C*Va f (@) (C* + Vaf (@) + B) <o, ne[l,N].
(6.125)
First, we estimate g1 ;. Denote

Giiq1,1 = A1 + AL VYV V Gk
The function ¢ satisfies boundary conditions (6.123). In addition, since ¢ is
the QRM solution of the problem (6.122), (6.123), (6.124) for (n, k) = (1, 1), then
the following integral identity holds for all functions v € H? (£2) satisfying (6.123):

(G11G11. Grv) + & [qr1.v] = (H 11, Griv) —a[q].v].
Hiyi= A VV Vg — 42, VV 1 (Vi + VV) + Q1. (6.126)

By (2.195), (Theorem 2.9.1.1), and (6.103), ||A1,1VV1,1||C(§) < 8B5>. Hence,
using Lemma 6.5.3, Theorem 6.5, and (6.83), we obtain

G110l 52y = D (05_1/2 H1~‘11,1 HLz(-Q) + 1) , (6.127)
170102y = P (7 [Hra ]y + @) (6.128)

Estimate now the norm ||I71,1 |L2(Q)' By (2.195), (Theorem 2.9.1.1), (6.83),
(6.103), (6.115), (6.116), (6.125), and (6.126),

|Hia],, ) < 857°C*Ba” + 165" Ba” + o™ < 85°B (C* + 3) ™.
We choose such a constant D that
D >85°B(C* +6). (6.129)

Hence, "
” H, ” L2) = Da'.
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Hence, using (6.127), (6.128). (6.129), and b, = 1/2 — by, we obtain
17111l 5@y < D* (@7 + 1), (6.130)
17110l 2(gy,) < D2 (@272 + o). (6.131)
Since ¢11 =q1.1 + g7, then (6.83), (6.104), and (6.130) lead to
lgriller @) < D (@™ +2). (6.132)

We now estimate |[¢7 ||L2(_Q/) . It follows from (6.32), (6.33), (6.88), (6.89), and
(6.90) that

T = (~hAG + AV )
53 (=hVGis + VV 1) [<hY (qu +q7) +V (Vi + V)]
(6.133)

By (6.120),
DANmEagbr o N1 (6.134)

Hence, (6.83), (6.104), (6.110), (6.129), (6.130), (6.131), (6.132), and (6.134) imply
that

hIAG N Ly (2 - B IV L, (0,,) < 2D%0? < D3 <a”N71 (6.135)
h (”V‘]l,l|lc(§) +2 HVq;‘HC@) < D3 (a” +4a'?) < N7, (6.136)

Next, by (2.195), (Theorem 2.9.1.1), and (6.116), ||V (V11 + V*)IIC@) < 2B.
Hence, using (6.129) and (6.136), we obtain

st |=hV (g1 +47) + V (Via + Ve = D
Hence, (6.115), (6.129), (6.133), and (6.135) imply that

”’EJIJHLZ(Q’) = ||?l’l||L2(9P2) < (B + N_l) (D + l)abz < D2, (6.137)

Hence, (2.196), (Theorem 2.9.1.1), (6.108), (6.109), (6.129), and (6.137) lead to

T % 3 b

HVVL2 HLZ(.Q) + ”AVLZ“LZ(.Q) = D a™. (6.138)
We have obtained estimates (6.130)—(6.132), (6.135), (6.136), (6.137) and
(6.138) starting from the estimates (6.115), and (6.116) for functions V' 1, V.1, V*.

Hence, continuing this process m times, using ¢; = ¢ .1 = €1, and keeping in
mind that by (6.38) V2,1 = Vi +1., we obtain similarly with (6.135)—(6.138)
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"IVl (2p) 1 1AT () < N7 (6.139)
h(IVaille@) +2 Vet le@) < N7 (6.140)
ler = ¢* My < @y < D™, (6.141)

1VVoul ) + 14Vai ] ) < Dol (6.142)

To obtain (6.141) from (6.137), we have used (6.112). Note that the estimate (6.141)
is the estimate (6.121) for n = 1. Thus, Theorem 6.7 is proved for N = 1. Suppose
now that N > 2 Without loss of generality, it is convenient to assume that N > 2.
Letn € [2, N). Because of (6.139), (6.140), (6.141), and (6.142), we assume that

n—1 n—1
—_ n—1
WY VT ey - 22147 L) = o™ (6.143)
j=0 j=0
n—1 n—1
2 (Vo le +2[vai | ) < S5 G140
j=0
HV%JHLZ(QPZ) + HAT/’n,lHLz(%) < p¥n=Dmtlghs (6.145)
”cn—l _C*”LZ(Q/) =< “’En—l,m”]_z(gpz) =< DZ(n_l)mabz- (6-146)
Denote
p2n=bmtlgh.— p ab2. (6.147)

We are going to prove now (6.143), (6.144), (6.145), (6.146), and (6.121) for n :=
n + 1. Because of (6.122), denote

n—1

G i@ = 8Gus — An [ 1o R Y_Vag; = VVii | Vg, (6.148)
j=0

The function G, | satisfies boundary conditions (6.123) as well as the following
integral identity for all functions v € H?> (£2) satisfying boundary conditions
(6.123):

(Gn,lan,lv Gn1v) +a Wn,ls v = (ﬁn,lv Gn,lv) -« [C]:, V] . (6.149)

Estimate the coefficient at Vg, in (6.148). Using (2.195), (Theorem 2.9.1.1),
(6.103), and (6.144), we obtain:

n—l1
At | X2 (0)RY Vg, =V, || < 16B5. (6.150)
j =0
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In terms of Theorem 6.5, an important feature of (6.150) is that this estimate is
independent on 7. Hence, the same constants D, by, b, = 1/2 — by can be used in
(6.151), (6.152) foralln € [2, N). Thus, using Lemma 6.5.3, Theorem 6.5, (6.129),
(6.149), and (6.150), we obtain

101l sy = D (a‘”2 [ Hour] ) + 1), (6.151)
1@ ll2(py) = D (@7 [ Hnt ]y + @) - (6.152)

Hence, using (6.79), (6.80), (6.103), (6.104), (6.124), (6.125), (6.129), (6.143)—
(6.147), Theorem 2.9.1.1, and that B > 2, we obtain

[Fosliy = 85 (" Do) €52 L (M 4 2)

_1
852D, o (2”T 4 23) +aP

< 852 D,_ia” (3 +4B + C ) < DD,_a"

Hence, (6.104), (6.134), (6.145), (6.151), and (6.152) imply that

h (||an,1||c(§) +2 HVqu,l ”C(ﬁ)) < D3D,_ja? < DNmtigh < N1
(6.153)

h ||'q"n,1 ”HZ(QPZ) S D (DDn_lazbz + ab2+1/2) f DZNm+4a2b2 S C(sz_l.
(6.154)
We obtain similarly with (6.133)

n—1

Pcvn,l = _hAEn,l —h Z AE] + AVM
Jj=0

n—1
52| =hVGua —h Y VG + VYV,
Jj=0

n—1
—hV(qn,1+q,’f)—hZV<q1’+4f)+v( 1V
=0

Hence, using (6.129), (6.143)—(6.145), (6.153), and (6.154), we obtain

Ca. 1||L2(9P2) < ( a2 + D, ) [1 + 5 (]’:] + B)] < DDn_labz.
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Hence, (2.196), (Theorem 2.9.1.1), (6.108), and (6.109) imply that
H V2 ||L2(.Q) + HAV”’ZHLZ(Q) < DD,
Similarly fork = 1,...,m,
CnillLy(2n) < D*7'D, o,

”VV%HIHLZ(Q) + ”AV”J""IHLZ(.Q) = DZkD"—labz'

Hence, similarly with the above, we obtain that estimates (6.153), (6.154) are valid
for functions g, k, ¢, x.This implies the validity of (6.143) and (6.144) for n :=
n + 1. Similarly,

llcn i _C*”Lz(ﬂ’) < |r5n.k||L2(9P2) < D¥*D,_ab? = pA=Dmt2kgbr e (1 m],

971 + 147wy = DY Dicra = D¥7 410

The last two estimates establish (6.145) and (6.146) forn :=n + 1. O

6.8 Numerical Studies

6.8.1 Main Discrepancies Between Convergence Analysis
and Numerical Implementation

It is well known that some discrepancies between the convergence analysis and
numerical implementations are almost inevitable for both well-posed and ill-posed
problems. The main reason is that because of the complicated structure of those
problems, the theory usually can grasp only a part of numerical studies rather than
all aspects. For example, as it was pointed out in Sect. 2.10, constants in convergence
theorems usually are significantly overestimated (maybe with the only exception of
a few very simple linear problems).

We now list main discrepancies between the above convergence analysis of this
chapter and the numerical implementation for our specific case. Some of these
discrepancies are the same as ones named in Sect. 3.1.2. The first main discrepancy
is with regard to Lemma 2.3 about a sufficient condition of the regularity of geodesic
lines. In general, an easily verifiable condition of this sort is unknown, except of
the trivial case when the function ¢ (x) is close to a constant. On the other hand,
the authors are unaware about any reasonable results for CIPs for hyperbolic PDEs
without either the assumption of the regularity of geodesic lines or a somewhat close
assumption. We verify the asymptotic behavior of Lemma 2.3 computationally; see
Sect.3.1.2.
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The second main discrepancy is that we replace in our computations « ||u ||§{5( 2)

in (6.43) with « ||u||§,2(9) , because the latter is simpler to implement numerically.
One of the reasons why this works computationally is that we deal with finite
dimensional spaces whose dimensions are not exceedingly large. Recall that all
norms are equivalent in such spaces.

The third main discrepancy is that we conduct computations for the case when
the point source in (6.2) is replaced with the plane wave. This is because the case
of the plane wave is reasonable for our target application to imaging of plastic land
mines, since the wave radiated by a point source effectively becomes a pane wave
when that source is located far from the domain of interest. We have chosen the
point source in (6.2) only because we wanted to use Lemma 2.3. Other than this, the
above technique can be easily extended to the case of the plane wave.

The fourth main discrepancy is that we have ignored in our computations the
function y, (x) in Sects. 6.4.2 and 6.4.3. Indeed, this function was introduced only
for the sake of the convergence analysis.

6.8.2 A Simplified Mathematical Model of Imaging of Plastic
Land Mines

The first main simplification of our model is that we consider the 2D case instead
of 3D, although a 3D numerical test is also presented below. Second, we ignore
the air/ground interface, assuming that the governing PDE is valid on the entire 2D
plane. Results of Sect. 6.9 indicate that the influence of the air/ground interface can
be handled via a data pre-processing procedure.

Let the ground be {x = (x,7) : z > 0} C R?. Suppose that a polarized electric
field is generated by a plane wave, which is initialized at the line {z =7"<0,x¢ R}
at the moment of time ¢ = 0. The following hyperbolic equation can be derived from
the Maxwell’s equations in the 2D case:

e (X = Au, (x,1) € R? x (0, 00), (6.155)
u(x,0) =0, u (x,0) = 8 (z—2"), (6.156)

where the function u(x, ) is a component of the electric field and &, (x) is the
spatially distributed dielectric constant. We assume that the function &, (x) satisfies
conditions (6.3) and (6.4) in 2D. Let the function wy (z, s) ,

exp (= |z — z0])

, 6.157
2 ( )

wo (Zv S) =

be the one which corresponds to the Laplace transform (6.11) of the incident plane
wave with ¢,(x) = 1. Applying the Laplace transform (6.11) to the function u in
(6.155), we obtain the following analog of the problem (6.12), (6.13)
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Aw — szsr(x)w =4 (z — zO) ,s>s =const. > 0,x e R?, (6.158)

limyj—o00 (W — wo) (X, 5) = 0. (6.159)

It is well known that the maximal depth of an antipersonnel land mine does not
exceed about 10 centimeters (cm) = 0.1 meter (m). So, we model these mines as

small squares with the 0.1 m length of sides, and their centers are at the depth of 0.1
m or less. We set

2 ={x=(x.2) € (=0.3,0.3) m x (0,0.6) m}.

Introducing dimensionless spatial variables X’ = x/ (0.1m) without changing
notations, we obtain that the domain §2 is transformed in the dimensionless domain:

2 = (=3,3) x(0,6).

6.8.3 Some Details of the Numerical Implementation

To simulate the data for our CIP, we have solved (6.158) in the truncated domain
G =(—4,4) x(-2,8).

We have used the FDM to solve this forward problem. The boundary condition
(6.159) was replaced with

(w—wp) (x,5) sg= 0. (6.160)

In principle, one might impose radiation boundary conditions at the top and bottom
sides of the rectangle G. However, our computational experience shows that this
would not bring much change for the function w (x, s) inside the domain £2, since
this function decays exponentially with |x| — oco; also see Remark 6.3 for a relevant
statement. To compare, we have also solved once the problem (6.155), (6.156)
and have applied the Laplace transform (6.11) then. Imaging results were almost
the same. To avoid using the §-function numerically, we have solved the problem
(6.158), (6.160) for the function w = w — wy.
We assume the knowledge of functions ¢, (x,s), ¢, (x,s):

w |r1=qo0(x,s),8nw |F1:¢l ()C,S), s € [ﬁsE]s
Oy (Inw (x,8)) |nun,=—s, s € [s,5],

Fl:{X:(X,Z)ZXE(—3,3),Z:O}, FZUF3:8.Q\F1;
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see (6.17) for the boundary condition at > U I'3. Functions ¢, (x,s) , ¢, (x,s) were
obtained in numerical simulations when the above forward problem was solved. We
have added the random noise of the 5% level to the function ¢ (x, s) via

©oo (Xi,0,8,) = ¢y (x;,0,5,) (1 + ow,),0 = 0.05,

where {x;} are grid points of the FDM for the forward problem solution and
® € (—1,1) is a random variable. To calculate the derivative d; [s_z In ((poﬂ / wo)
(xi, 0, s,)] (to obtain the boundary data for g (x;, s,)), we have smoothed first values
of @y, (xi,0,s,) with respect to s via cubic B-splines similarly with, for example,
[73]. Next, we have used finite differences to calculate the desired derivative.

We model land mines as squares with the dimensionless length of the side 1,
which means 10 cm in real dimensions. Centers of those squares are located at the
depths of z = 0.6 and z = 1, which means depths of 6 cm and 10 cm in variables
with dimensions. We took §£2p, = (=3, 3) x (0, 3) (Sect. 6.4.1).

Tables of dielectric constants [151] show that in the dry sand ¢, = 5 and ¢, = 22
in the trinitrotoluene (TNT). Hence, the mine/background contrastis &~ 22/5 = 4.4.
Hence, considering new parameters

£,

=" 5 =5-01-45
5

and not changing notations, we obtain

&r(dry sand) = 1, &,(TNT) = 4 .4. (6.161)

Because of (6.161), we impose &, (x) € [1, 8], &, (x) = 1 outside of the rectangle
§2p,. We have modified our algorithm of Sect. 6.4 via considering functions

T(x,5) = iz In [ﬁ (x, s)i| LG (x,5) = 9,7 (x, 5) (6.162)
S wo
instead of |
v(X,s) = M, q (x,5) = dyv(X,5),

where the function wy (z, s) is the same as in (6.157). This has resulted in obvious
modifications of equations of Sect. 6.4. A slight modification of Theorem 6.7 can be
proved for this case.

We have observed in our computations that at the backscattering side I} of the
above square §2 the ratio (w/wp) (x,0,s5) ~ 1 for s > 1.2. This means a poor
sensitivity of the backscattering data to the presence of abnormalities for values of
the pseudo-frequency s > 1.2. The best sensitivity was for s € [0.5,1.2]. Hence,
one should expect that the modified tail function
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In K3
W02(2, 5) ~ 0
5

Vx35)=V(kx5)—

for’s > 1.2, at least for those points x which are located close to I';. Hence, we have
chosens = 1.2 and s € [0.5,1.2] := [s, 5] .

We note that if we would work in the original domain 7] making spatial variables
dimensionless as X" = x/(Im), then s” = +/5s implying that 5" = 12(=
1.2/0.1), which can be considered as a large pseudo-frequency. The latter shows
that in practical computations, the above notion of sufficiently large s is actually a
conditional one and depends on particular ranges of parameters at hands.

The modified QRM functional (6.43) was written in the FDM form. Its minimiza-
tion was performed with respect to the values of the function u (x) at grid points via
the conjugate gradient method. Our regularization term was

a 2 2 2
= [y + Mty + Nty ] -

We have chosen the regularization parameter « = 0.08 and the spatial grid step
size hy, = 0.122. First, we have solved the problem (6.99), (6.100) via the QRM
and thus have calculated the first tail V; | (x) in (6.101). Next, we have continued as
in Sect. 6.4 with m := 10. We have used the spatial grid step size hy, = 0.122
to minimize the QRM functional (6.43) via the FDM. However, our attempt to
decrease it by the factor of 2 to g, = 0.061 has led to a significant deterioration of
computational results.

We took the grid step size in the s-direction as # = 0.1 and have made several
sweeps over the interval s € [0.5,1.2] as follows. Let the function eil) (x) be the
approximation for the function &, (x) computed on the first sweep for [sy, sy—1] =
[0.5,0.6] . We compute the tail function

Inw (x,5:¢V) — Inwg (z, )

v (x) = — ,5=12,
S

where w (x, ;1) is the solution of the problem (6.158), (6.160) with &, :=

D (x) . Next, we set Vl(,zl) (x) := VW (x) and repeat the algorithm of Sect. 6.4.
We have made these sweeps until either

Sﬁp) _ Sip—l)

<107
LZ(QPZ) N

or the gradient of the QRM functional has “exploded,” i.e., when
H VIk (‘1;(1]2)

for any appropriate indices 7, k, p. Here, we use the discrete L (§2p,) norm. Tails
were computed via solving the problem (6.158), (6.160) for s :=5.

>10°
LZ(-QPz)
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The above algorithm has provided us with the function &, ,j0p (X). Next, we have
found points {a; } of local maxima of this function and truncated the threshold as

gr,glob (X) ’ if gr,glob (X) = 0-Ssgr,glob (ai) ,

(6.163)
1 otherwise.

Er.glob (X) =

This truncation was done in neighborhoods of points {a;}. We note that such
truncations are quite common in the image processing.

We have observed in our computations that the above algorithm can accurately
image locations of mine-like targets. However, values of the function &, giop (X) near
points of local maxima were not imaged accurately. Thus, we have applied a two-
stage numerical procedure. While the first stage was the one described above, on
the second stage, we have minimized the Tikhonov regularization functional via
the gradient method taking the function &, g0 (X) as the starting point. This was
done similarly with Sect. 5.8.4. However, while in Sect. 5.8.4, we have applied the
gradient method alone and were not successful, now we have applied it on the
second stage only. Hence, unlike Sect. 5.8.4, we were successful this time. The latter
indicates the importance of the first stage. When applying the gradient method,
we have truncated as threshold 87.5% of maximal values on each iteration of the
gradient method in a neighborhood of each point of local maxima {a;} of the
function &, g10p (X), similarly with (6.163).

6.8.4 Numerical Results

We refer to Fig. 6.1 for the schematic diagram of data collection. In both tests below,
the incident plane wave falls from the top, and measurement data are also collected
on the top side of this rectangular prism. Although only the 3D case is depicted on
Fig. 6.1, the 2D case is similar.

Test 1. We test our numerical method for the case of two squares with the same size
p = 1 of their sides. In the left square ¢, = 6, in the right one ¢, = 4, and ¢, = 1
everywhere else; see (6.161). Centers of these squares are at points (—1.5,0.6) and
(1.5,1). However, we do not assume a priori in our algorithm neither the presence
of these squares nor a knowledge of &, (x) at any point of the square £2. We took
the initial tail for the function v (x, s) in (6.162) as V' | (x,s) = 0. Figures 6.2a and
6.2b display correct and computed images, respectively. Locations of both mine-
like targets are images accurately. The computed function &, comp (X) = 1 outside of
imaged inclusions. Next,

[ ( )] 6 in the left inclusion,
max | & comp (X)| =
’ 4.3 in the right inclusion.
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Fig. 6.2 Test 1. (a) Correct image. (b) Computed image. Locations of both mine-like targets are
accurately imaged. The computed function & comp (X) = 1 outside of imaged inclusions. The
maximal value max &, comp (x) = 6 in the left and max Er.comp (x) = 4.3 in the right imaged
inclusion. Thus, the error in the inlcusion/background contrast is 0% in the left and 7% in the
right imaged inclusion. The noise in the data was 5%. Source: A.V. Kuzhuget, N. Pantong
and M.V. Klibanov, A globally convergent numerical method for a coefficient inverse problem
with backscattering data, Methods and Applications of Analysis, 18, 47-68, 2011. Reprinted with
permission

The error in the computed contrast in the right inclusion is 7%. Recall that the
noise in the data was 5%. Therefore, inclusions/background contrasts are imaged
accurately.

Test 2. The 3D Case. We have used 3D analogs of mine-like targets of Test 1.
The size of the side of each of small cubes of Fig.6.3ais p = 1. In the left cube,
&r = 6, and in the right cube, ¢, = 4. Also, ¢, = 1 everywhere else. The distances
between the centers and the upper side of the rectangular prism §2 were 0.6 in the
left cube and 1 in the right cube. An obvious 3D analog of the problem (6.158),
(6.160) was solved to simulate the backscattering data on the upper side {z = 0} of
the rectangular prism §2 of Fig. 6.3a:

2 =(-15,15) x(-=3,3) x(0,6).

The 5% noise in the data was introduced then, as in Sect. 6.8.3 . Although the data
were simulated in 3D, when solving the inverse problem, we have solved twenty-
three (23) 2D inverse problems in twenty-three (23) uniformly distributed vertical
2D cross-sections {x; = b; }123=1 of the prism £2.

We have solved them simultaneously on twenty-three (23) processors. We have
done so because the QRM works slower in the 3D case than in the 2D case.
In each 2D cross-section, the initial tail function was computed using the QRM
solution of the problem (6.99), (6.100) and formula (6.101). We again have used
(6.162). The above two-stage numerical method was applied. On the first stage, the
approximately globally convergent numerical method of this chapter was applied.
On the second stage, the gradient method of the minimization of the Tikhonov
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Fig. 6.3 Test 2. 3D case. (a) Correct image. (b) Computed image. Locations of both mine-like
targets are accurately imaged. The computed function & comp (x) = 1 outside of imaged inclusions.
The maximal value max & comp (X) = 6 in the left and max &, comp (X) = 4 in the right inclusion.
Hence, the inclusion/background contrast is imaged very accurately for both inclusions

functional was used (Sect.5.8.4). Having images in those 2D cross-sections, we
have formed the 3D image then; see Fig.6.3b. Locations of both inclusions are
imaged accurately on this figure. The computed function & comp (x) = 1 outside
of imaged inclusions. Also,

[ ( )] 6 in the left inclusion,
max | & comp (X) | =
’ 4 in the right inclusion.

Therefore, inclusions/background contrasts are imaged very accurately.

6.8.5 Backscattering Without the QRM

A natural question to pose is can the coefficient inverse problem 6.2 with the
backscattering data (6.10) be solved by the approximately globally convergent
algorithm of Sect. 2.6.1? We now briefly describe in Test 3 one numerical example
indicating that the answer on this question might be positive. This example was
obtained just before submission of the text of this book to the publisher. Hence,
although this example is promising, the corresponding study is not complete yet.

Test 3. In this test, the 2D analog of the coefficient inverse problem 6.2 is considered.
However, the Neumann boundary condition g; (x,?) in (6.10) is not used. The
data for the CIP were computationally simulated via solving the problem (6.155),
(6.156) in a truncated domain, similarly with solving such problem in Sect.4.17.1.
To solve the forward problem (6.155), (6.156), we use the hybrid FEM/FDM
method as in above chapters. The computational domain for the forward problem
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Q= Qprpu UQrpy Qppar Qrewm

Fig. 6.4 (a) Geometry of the hybrid mesh. This is a combination of the quadrilateral mesh in the
subdomain $2gpy (b), where we apply FDM, and the finite element mesh in the inner domain gy
(c), where we use FEM. The solution of the inverse problem is computed in $2ggp. The trace of the
solution of the forward problem (6.155)—(6.156) is recorded at the top boundary I of the finite
element domain 2pgm

g *-Displacemants

069178
047533
0.25887

- 0042411
0.17405

X-Displacemeants

0.80301
054942
0.28583

- 0042238
021135
046485
0.71854

= -0.87213
-1.2257

t=10.0 t=12.0

Fig. 6.5 Isosurfaces of the simulated exact solution for the forward problem (6.155)—(6.156) at
different times with a plane wave initialized at the top boundary

is 2 = [—4,4] x [—1,4]; see Figs.6.4 and 6.5. This domain is split into a finite
element subdomain 2ggy = [—3.5,3.5] x [-0.5,3.5] and a surrounding region
ppym Wwith a structured mesh such that 2ggy U £2ppym. The spatial mesh in gy
consists of triangles, and the mesh in 2ppy consists of squares. In the overlapping
regions, the mesh size is # = 0.125. The trace of the solution of the forward problem
is recorded at the top boundary I} of £2ggy. This represents the backscattering data
in space and time, and our goal is to reconstruct the unknown coefficient &, (x) in
(6.155) from these data inside the domain 2pgy.
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In this test, when solving (6.26) for functions ¢, x, the function y, (x) was not
used, and boundary conditions (6.28) were replaced with the following Dirichlet
boundary conditions:

Gkl = Von(X), quilnur, = wgf’,jf(x). (6.164)

Here functions &O,n (x) are obtained from functions ¥, (x) by setting them to zero

n
correspond to the case of the uniform background outside of the domain 2ggpy.

Recall that by (6.3) c¢(x) = 1 outside of £2. Indeed, we have observed in our
computational simulations that values of the function ¥,(x) on lateral sides of the
rectangle £2ppMm are only very slightly influenced by the presence of inclusions. And
values of ¥, (x) on the bottom side of §2pgym are very close to zero.

Figure 6.6 displays the computed function ¢ (x,s),x € I7 for different values
of the pseudo-frequency s. We have started computations of the function ¢ (x) from
very large values of the pseudo frequency s = 18 and finished with small values
s = 2. We have observed numerically that the behavior of the function |g (x,s)|
for x € I is similar for all pseudo frequencies s < 5. Namely, this function is
close to its maximal value only on a small part of the backscattering side I7; see
Fig. 6.4. This part of the boundary corresponds to the backscatered data from the
inhomogeneity which should be reconstructed. However, all values of the function
|g(x)| fors > 5 are very close to zero; see Fig. 6.4e, f. Based on Fig. 6.7a—f, we have
chosen the pseudo frequency interval for solving the inverse problem as s € [2, 3].
The grid step size with respect to s was & = 0.05. Just as in Sect.5.7, we have
used derivatives of tails d5V, x (x,¥) instead of tails themselves when computing
functions g, x; see (2.182), (5.23), and Sect. 2.8.4 for explanations.

The algorithm of Sect. 2.6.1 was used to calculate the images of Fig. 6.7. Unlike
Tests 1 and 2 in Sect. 6.8.4, the gradient method of the minimization of the Tikhonov
functional was not used here. In other words, only the first stage of our two stage
numerical procedure was used here. Location of the mine-like target is imaged
accurately. Also, €,comp (x) = 1 outside of the imaged inclusion, which is the
correct value. Finally, max [8r,comp (x)] = 4, which is the correct value. In other
words, the inclusion/background 4 : 1 contrast is also accurately imaged.

outside of dents depicted on Figs. 6.6a, b. The functions wgf‘if (x) are the ones which

6.9 Blind Experimental Data Collected in the Field

In this section, we present results which were obtained for the case of blind
experimental data collected by the forward looking radar of US ARL [126]. We
have obtained five (5) pieces of experimental data. Two of them are described here,
and three more will be described in the paper [117]. All five cases were treated by
exactly the same technique and accurate solutions were obtained for all of them.
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Fig. 6.6 Backscattered data for the function ¢ at the top boundary I of the computational domain
$2ppm computed for the different values of the pseudo frequency s. We observe that for all pseudo
frequencies s < 5, the values of the function |g (x,s)| are close to its maximal value only on
a small part of the boundary I'j. Values of the function ¢ (x,s) at the rest of I} are close to a
constant. At the same time, |g (x,s)| &~ 0,x € I for s > 5. Computations were peformed with
the software package WavES [148]
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Fig. 6.7 (a) The computed image of the function & ; using backscattered data obtained from the
geometry presented on Fig. 6.4a. Here, we used the exact tail and the variational formulation (3.14)
for computing the function & ;. (b) Computed image using backscattered data obtained from the
geometry presented on Fig. 6.4a. Both location and contrast of the inclusion are accurately imaged.
The computed function ¢, = 1 outside of imaged inclusions. The noise level in data is 5%

6.9.1 Introduction

The term “blind”” means here that the mathematical sub-team of the authors of [117]
(A.V. Kuzhuget, L. Beilina and M. V. Klibanov) had only two pieces of information
when computing. The first piece was that only one target per data set was in place.
And the second piece was where that target was located: below or above the ground.
However, the mathematical team did not know neither constituent materials of
targets, their sizes and locations, their dielectric constants nor soil. The engineering
sub-team of the authors of [117] (L. Nguyen and A. Sullivan) knew the complete
information about both the background medium and the targets. However, they have
revealed this information to mathematicians only after computational results were
presented to that team. In particular, it was revealed that the ground was always the
dry sand with the dielectric constant in it:

&r (ground) ~ 3; (6.165)

see [151] as well as Figs. 6.14a and 6.16a. However, this dielectric constant was not
measured directly, but rather was taken from tables [151].

Since dielectric constants of both targets and soil were not measured at the
time when experimental data were collected, computed dielectric constants were a
posteriori compared with tabulated values for constituent materials of those targets
[151]. This comparison has revealed a good accuracy of computational results; see
below.

A peculiar question is how to interpret the dielectric constant of a metallic target?
This question is addressed on Figs. 6.8a, b, which were computed by Dr. Michael
A. Fiddy. Comparison of these two figures shows that metallic targets can be viewed
as dielectric targets with large values of dielectric constants. Hence, we choose
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Fig. 6.8 Comparison of the reflected electric waves from a piece of metal and from a piece
of dielectric with a large value of the dielectric constant. Only a single frequency is used. On
(a) dielectric target with &, = 10 and on (b) metallic target are shown. Comparison of these two
figures shows that reflected fields are very similar. Therefore, a metallic target can be viewed as a
dielectric target with a large value of the dielectric constant &,

the following interpretation, which is only a conditional one and has no physical
meaning:
&,(metal) > 10. (6.166)

We call this conditional dielectric constants for metals. Furthermore, our com-
putational simulations (not shown here) have demonstrated that values of the
backscattering data ¢ (s) := w (0, s) in (6.179) were changing only slightly when
the value of ¢, (target) has increased larger than 10. Therefore, it is unlikely that
target/background contrasts exceeding 10 can be accurately imaged.

6.9.2 Data Collection and Imaging Goal

The schematic diagram of data collection by the forward looking radar is depicted
on Figs.6.9 and 6.10. The goal of this radar is to detect and possibly identify
shallow mine-like targets under the ground (a few centimeters depth) as well as
those lying on the ground. The signals are originated by electric pulses emitted by
two sources installed on the radar with 2 meters distance between sources. Only one
component of the electric field is originated by these pulses. The time dependence
of that component of the electric field is measured in the backscattering regime.
Measurements are performed by sixteen (16) detectors with the step size in time of
0.133 nanosecond. For any target of interest, the radar/target distance is provided by
the ground positioning system (GPS) in real time with only a few centimeters error.

For a shallow target which is located either above the ground or a few centimeters
deep under the ground, the GPS provides the distance between the radar and a
point on the ground located above that target. Resulting time-dependent curves are
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Fig. 6.9 The schematic diagram of data collection by the forward looking radar of US Army
Research Laboratory

integrated over radar/target distances between 20 meters and 8 meters. In addition,
readings of all sixteen (16) detectors are averaged. Hence, for any target of interest,
only a single time dependent curve, which was approximately “responsible” for this
target, was given to us. This means in turn that only a 1D CIP can be solved.

Since the radar/target distance is provided by GPS with a good accuracy,
geometrical parameters of targets, including their depths, are not of an interest here.
On the other hand, the available data processing procedure of this radar delivers
only the energy information. Hence, the main goal of our work was to provide
an additional imaging capability for this radar via imaging ratios R of dielectric
constants:

R = orltareeh (6.167)
&, (background)
Using (6.165) and the value of R in (6.167), one can easily calculate ¢, (target) for
targets located under the ground. In the case when the target is located above the
ground, we have
&, (background) = ¢, (air) = 1.

Hence, R = ¢,(target) for targets located above the ground. Since targets can be
mixtures of constituent materials, then &,(target) is a certain weighted average of
dielectric constants of these materials.
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Fig. 6.10 The experimental setup for backscattered data collected in the field by a radar of the
US Army Research Laboratory

We have imaged the ratio (6.167) rather than the function &, (x) itself because
one of conditions of our theory is that the unknown coefficient should have a known
constant value outside of the domain of interest £2; see (6.3). In our mathematical
model, 2 = (0,1), where “1” stands for 1 meter. The point x = 0 corresponds
to the ground, and {x < 0} corresponds to the air in our mathematical model. We
have assumed that ¢, (x) = 1 for x ¢ £2. However, since the sand is not dry on
the depth exceeding one meter, then (6.165) is invalid for x > 1. Also, values of
er(background) were not measured, but rather were taken from tables [151]. Hence,
computing the ratio R in (6.167) was preferable.

6.9.3 The Mathematical Model and the Approximately Globally
Convergent Algorithm

Since we were given only one time resolved curve for each target, we had no choice
but to solve a 1D CIP. We have modeled the process by the 1D analog of the forward
problem (6.1), (6.2). Following (6.167), let
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5 (1) = R(x) = — 2@ LR, (6.168)

&r(background)

meaning that R (x) is a function. The forward problem is

e (X)) uy = uyy, x €R, t € (0,00), (6.169)
u(x,0) =0,u (x,0) =8 (x —x0), xo = const. < 0. (6.170)
We assume that
g (x) > &% = const.0, Vx € R, (6.171)
g (x) € [80, d] , (6.172)

where d = const. > 1. Also, we assume that
g (x)=1,x¢(0,1). (6.173)

Thus, the interval £2 := (0, 1) is our domain of interest. One of complicating factors
was that neither the “zero time” nor the source/medium distance were not given to
us, i.e., the source position x( in (6.170) was not given. Indeed, it is unclear from
Fig. 6.9 what kind of the distance is between the source and the domain of interest.
We purely intuitively set in (6.170)

xo = —1. (6.174)

Hence, we have assumed that the source is 1 meter away from the domain of
interest. As always, we use the source position outside of the interval of interest
(0, 1) because our technique works only with this case. We consider the following:

Coefficient Inverse Problem 6.9.3. Suppose that the following function ¢ (t) is
known:

u(0,1) =g (1)1 € (0,00). (6.175)

Given conditions (6.169), (6.170), (6.171), (6.172), (6.173), and (6.174), determine
the function g, (x) for x € (0,1).

Hence, the function g (#) models the backscattering data measured by the
forward looking radar. To solve this inverse problem, we have applied the 1D version
of the approximate globally convergent method of this chapter. Thus, the 1D version
of the QRM was applied. Since the convergence analysis in 3D was done above, we
do not present it here. We refer to [114] for details of both the convergence analysis
in the 1D case and for the numerical implementation.

As it was mentioned in Sect.6.8.3, in 2D and 3D cases, we have applied
the two-stage numerical procedure. On the second stage, the Tikhonov functional
was minimized as described in Sect.5.8.4. However, we have observed that the
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application of the second stage to these experimental data has resulted in rather
small changes of solutions. Hence, we have used only the first stage.
In terms of the above notations, we have in the 1D case

N={x=0}, L=, I={x=1}.

Hence, it seems to be that each boundary value problem (6.26), (6.28) can be treated
in the 1D case as the conventional Sturm-Liouville problem for the function g, x.
To do this, one needs to ignore in (6.28) either Dirichlet or Neumann boundary
condition at I} and use two remaining boundary conditions (6.28): one at I} and
the second one at I3. However, our attempt to follow this path did not lead to
acceptable quality solutions for computationally simulated data; see p. 126 of [114].
This indicates that the QRM is probably the optimal choice for the 1D case.
Just as above, consider the Laplace transform:

o0
w(x,s) = /u(x,t) e *'dt, s > 5 = const. > 0, (6.176)
0

where u (x, t) is the solution of the problem (6.169), (6.170). Then

Wy — 528 (X)w = =8 (x —x0), x € R, 6.177)
lim w(x,s) =0. (6.178)
|x|—>o00

In addition, by (6.175) and (6.176),
w(0,5) = ¢ (s), (6.179)

where ¢ (s) is the Laplace transform of the function g (¢). However, to apply the
QRM, we also need to know the derivative:

wy (0,8) = p(s). (6.180)

To find the function p (s), consider first the function wy (x, s) which is the solution
of the problem (6.177), (6.178) for the case &, (x) = 1:

exp (= |x — xo|)

wo (x,5) = 2

Letw(x,s) = w(x,s) —wp (x,s) . Then (6.177)—(6.179) imply that

Wy — 828 (X)W = 52 (& (x) — D wo, x € R, (6.181)

lim w(x,s) =0, (6.182)

|x]|—00
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exp (—s [xo|)

6.183
s ( )

w(0.5) =@ (s) =9 (s) -

Since by (6.173) €, (x) = 1 for x < 0, then (6.181), (6.182), and (6.183) become
for x < 0:

Wy — 82w =0, x <0, (6.184)

lim w(x,s) =0, (6.185)
X—>—00

w(0,5) =9 (s). (6.186)

We can consider (6.184), (6.185), and (6.186) as the boundary value problem on the
half line {x < 0} . Obviously, the unique solution of this problem is

wi(x,s) =@ (s)e’™, x <O0.

Hence,
WX (Os S) = sa (S) N
Next, wy (0,5) = wy (0,5) + wo, (0, s) . Since by (6.174) x¢ < 0, then by (6.180),
wy (0,5) 1= p(s) = 59 (s) —exp (=s [xol) . (6.187)

Therefore, both functions w (0, s) and wy (0, s) are known, which are required by
the QRM. Also, since €, (x) = 1 for x > 1, then (6.177) and (6.178) imply that

w(x,s) =C(s)e ™, x > 1,

where C (s) is a certain function of s. Using

q(x’s):a%(lnw(x,s))’

s2

we obtain the following analog of the boundary condition (6.29):

1
g« (1,5) = . (6.188)
s

Boundary conditions (6.180), (6.187), and (6.188) were used to obtain 1D analogs
of boundary conditions (6.28).
Just as in (6.162), we have replaced functions v (x, s), g (x, s),

vi(x,s) = M q (x,s) = dyv(x,s),
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Fig. 6.11 (a) The medium with a single target and &, (x) = 4 > 1 within this target. (b) The
computed function g (1) = u(0,7) — ug (0, t) for a). Here, u (x, 1) is the solution of the problem
(6.169), (6.170) for the function g, (x) depicted on (a), and ug (x, ¢) is the solution of the problem
(6.169), (6.170) for the case &, (x) =1

with functions vV (x, s) , ¢ (x, s), where

T(x,s) = Slzln [WKO (x,s)i| G0 s) = 05 (x, ). (6.189)

This led to obvious modifications of (6.26) and (6.28).

To approximate tails, one should solve the problem (6.181), (6.182) at s := 5.
Using (6.182), one can prove that the function w (x, s) decays exponentially as
|x| — oo. Hence, we have solved the Sturm—Liouville problem for (6.181) in the
interval x € (—4, 6) with the boundary conditions

w(—4,s) =w(6,5) = 0.

6.9.4 Uncertainties

Similarly with the experimental data of Chap. 5, the data from the forward looking
radar have huge misfits with computational simulations: Compare Fig. 6.12b with
Fig.6.13a as well as Fig.6.11b with Fig. 6.15a. In addition, there are some other
significant uncertainties here, which were not presented in experimental data of
Chap. 5. These difficulties are basically caused by the fact that experimental data
were collected in the field rather than in the controlled environment of a laboratory
of Chap. 5. We now list those factors:

1. We did not have the reference signal for comparison.
2. The direction of the incident plane wave was oblique to the ground rather than
orthogonal; see Figs. 6.14a and 6.16a.
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Fig. 6.12 (a) The medium with a single target and g, (x) = 0.3 < 1 within this target. (b) The
computed function g () = u (0,1) — ug (0, ¢) for (a). Here, u (x, t) is the solution of the problem
(6.169), (6.170) for the function g, (x) depicted on (a), and ug (x, ¢) is the solution of the problem
(6.169), (6.170) for the case &, (x) = 1

a b
30000 0.003 £
20000 0.0025 |
10000 0.002 F
0 0.0015 -
001 F
—10000 0.00 .
—20000 0.0005

0'...|...|...|...|...|.

-2 0 2 4 6

Fig. 6.13 Test 1. (a) A sample of the experimentally measured signal for a buried object depicted
on Fig. 6.14a. It is unclear which part of this curve is responsible for this object and which part is
responsible for the rest of the measured signal. Horizontal axis is time in nanoseconds. It is unclear
where the time ¢ = 0 is. It is also unclear which units are displayed on the vertical axis. (b) Pre-
processed signal of (a). First, we have multiplied the amplitude of (a) by 10~7. This multiplier
was chosen to have about the same values of functions w (0, s) in (6.179) for both simulated and
experimental data. Next, we have selected the peak with the largest absolute value and have set the
rest of the curve to zero. We set zero time ¢ = 0 being 1 nanosecond to the left from the beginning
of the selected peak. We apply our algorithm only to the data of (b)

3. We did not know the units for the amplitude of experimental data. These
amplitudes were about 3 - 10*, which is too large.

4. We did not know the source location. Thus, we have just intuitively assigned by
(6.174) xo := —1.

5. We did not know where the time t = 0 was on the data.
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Fig. 6.14 Test 1. (a) The real image from which the data of Fig.6.13a were collected. This is
a buried plastic cylinder with &, =~ 1 in it; see [151]. (b) Computed 1D image of (a). Most
importantly, ming, = 0.28, whereas the true value &, ~ 0.33. Thus, a good accuracy in this
blind imaging was achieved
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Fig. 6.15 Test 2. (a) The real signal. The amplitude was multiplied by 1077; see Sect. 6.9.4 for
the data pre-processing procedure. (b) The pre-processed signal of (a)

6. We had only one time resolved curve for each target, whereas the reality is 3D.

7. We did not have a reference signal, unlike Chap. 5.

8. Since targets were surrounded by clutter, then the background was inhomoge-
neous. Targets might be heterogeneous ones as well. We remind that a knowledge
of the background is not assumed in the approximately globally convergent
method of this book.

At the same time, we had the following two simplifying factors:

A. We knew that the target is present and that we should work only with one target
for each data set. In addition, we knew whether the target is located above the
ground or buried in the ground.
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Fig. 6.16 Test 2. (a) The real image from which the data on Fig.6.15a were collected. This
is a buried metal box. (b) The computed 1D image of (a). Here, the maximal value of the
target/background ratio of dielectric constants is maxe, = 4.8. Hence, the computed value of
the dielectric constant of this target is &, = 4.8 -3 = 14.4 which is about the right value of the
apparent dielectric constants of metals; see Sect.6.9.1. Therefore, a good accuracy in this blind
imaging was achieved

B. We were not interested to image locations of targets. Furthermore, it was
impossible to image locations accurately, since both the source position and the
zero time were unknown. Rather, all what we wanted was to accurately compute
either max &, (x) or ming, (x) within the target.

6.9.5 Data Pre-processing

As it was demonstrated in Chap. 5, it is crucial to pre-process experimental data
in order to handle the abovementioned huge misfit between experimental and
computationally simulated data. The idea of the data pre-processing procedure is
similar with the idea of Chap.5: basically, we immerse the experimental data in
computationally simulated ones by using only one peak of the largest amplitude.

To figure out what kind of ideal data one should expect, we have performed
computational simulations via solving the forward problem (6.169), (6.170), (6.174)
for the case of one target. In data simulations, we have replaced R in (6.169) with
the interval x € (—6, 6) and have set

u(=6,1) = u(6,1) = 0,1 € (0,4). (6.190)

Because of the structure of the medium, the signal did not yet reach points x = £6
for ¢+ € (0,4). This justifies boundary conditions (6.190). Figures 6.11 and 6.12
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display two structures of the medium we have tested as well as the computed
functions functions g(z) = u(0,¢t) — ug(0,¢) for them. Here, ug (x,t) is the
fundamental solution of the equation v,; = vy,

1
up (x,t) = EH(I —|x — xol),

where H is the Heaviside function,

lifx >0,

H (x) =
2 Oifx <O.
One can see from Figs. 6.11 and 6.12 that when working with one target only, one
should anticipate only one peak in the backscattering data. We use this observation
in our data pre-processing procedure.

Scaling

Figure 6.13a displays a typical sample of the experimental data we have worked
with. First of all, the amplitude of the signal is too large, since its maximal value
is 3 - 10*. This is well above amplitudes of Figs. 6.11 and 6.12. Hence, we need to
scale this signal via multiplying these data by a small number. A natural question is
about the value of this number. We have multiplied all experimental data by 1077,
In this case, the magnitudes of the values of the function w (0, s) in the experimental
data were about the same as ones in computational simulations for small inclusions
with reasonable contrasts.

The Largest Peak

It is unclear from Fig. 6.13a which part of the signal is responsible for reflections
from the clutter, including the air/ground interface. On the other hand, we need to
select such a part of the signal, which is responsible for reflections from the target.
In other words, we now have the same problem as the one we have faced in Chap. 5.
We knew that the target might well be a heterogeneous one, especially since it is
mixed with the ground. Nevertheless, one can hope to obtain only an average value
of the function €, (x) within the target.

Based on Figs.6.11 and 6.12, we have decided to select the peak of the largest
amplitude out of all other peaks of Fig. 6.13a and set the rest of the curve to zero.
We have done this for all five pieces of experimental data we had. Now, if the
target is located above the ground, then &, (target)= ¢, (target)> 1, since ¢, (air)= 1.
Figure 6.11b tells one that the selected peak should look downward in this case.
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Hence, our selection of the single peak was as follows: This should be the earliest
peak of the largest amplitude:

peaks for an underground target,
out of all (6.191)
downward looking peaks for an above the ground target.

Next, we regard the time zero: {¢ = 0} as the point on the time axis, which is 1
nanosecond to the left from the beginning of the selected peak.

The Laplace Transform of the Pre-processed Data

To apply our algorithm, the Laplace transform (6.176) was calculated for the pre-
processed time resolved data. It is clear from Fig. 6.13b that only the integration
over a finite time interval is needed in this case. Since we also need to calculate the
s-derivative of this transform, then we have used the formula

(o]

@' (s) = —/g (t)te™"dt, (6.192)

0

where g (¢) is pre-processed data and ¢ (s) is its Laplace transform.

Just as in Sect. 6.8.3, we have observed in computational simulations of Figs. 6.11
and 6.12 that the function ¢ (s) in (6.179) has the best sensitivity to the presence
of inclusions for s € [0.5,1.2]. Still, we have discovered in our computational
simulations that better to work on a larger interval s € [0.5, 12]. However, in
the case of the pre-processed experimental data, the function ¢ (0, s) was highly
oscillatory for s € [5, 12].

Hence, we have pre-processed the function g (0, s) in (6.189) as follows. First,
we have calculated the function ¢ (0,s) for s € [0.5,2.5] for the pre-processed
experimental data using (6.192). Next, we have assigned

G(0,12) := 0.025-5(0,2.5).

Next, we have linearly interpolated in the plane (s,q) between points (s, ;) and
(52,42) , where

(Slsz]\l) = (2576(0725)) s (527/4\2) = (1252}\(07 12)) .

Next, we have assigned to the function g (0, s) those values for s € [2.5, 12], which
were taken on this line after the linear interpolation. We have done the same to
the function ¢, (0,s). For s € [0.5,2.5], the function g, (0,s) was calculated
using (6.179), (6.187), and (6.189). Derivatives with respect to s were calculated
via finite differences. Thus, these values of functions ¢ (0, s), 9,¢ (0, s) were used
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to calculate 1D analogs of boundary conditions ¥ ,, ¥ ,, in (6.28):

Gn (0) = Yo, 0xGn (0) = V1.

Next, the 1D analog [114] of the algorithm of Sects. 6.4.3 and 6.4.4 was applied,
and functions ¥, ¥ 1, were the input data for this algorithm. The grid step size in
the s-direction was h = 0.5.

6.9.6 Results of Blind Imaging

Test 1. The data are depicted on Fig. 6.13a and the pre-processed data are displayed
on Fig. 6.13b. We only knew a priori that this was a target buried in the ground;
see (6.191). Other features of this target were unknown to us when computing.
Figure 6.14b displays our computed image. After this image was computed, Drs.
L. Nguyen and A. Sullivan have compared our result with the reality and have sent
Fig. 6.14a to us. The target was an empty plastic cylinder buried in the ground with
the dielectric constant &,(plastic)a 1 [151]. The dielectric constant of the ground
(dry sand) was as in (6.191), e,(background)~ 3. We remind that this value was
unknown to the mathematical team when computations were performed. One can
see that our computed min &, comp (x¥) = 0.28. At the same time, the real value was
&, ~ 0.33. Thus, our blindly computed result is quite accurate.

Test 2. The data, which were multiplied by 1077 first (for scaling, see above),
are depicted on Fig. 6.15a. We only knew a priori that this was a target buried in
the ground. Other characteristics of this target were unknown to us at the time
when computations were performed. Hence, following (6.191), we have selected
on Fig.6.15a the peak of the largest amplitude. Figure 6.16b displays our 1D
computed image. Figure 6.16a depicts the real image, which was revealed to us
by Drs. L. Nguyen and A. Sullivan only after the computational result was sent to
ARL. The target was a metal box. One can see that our computed max g, (x) = 4.8.
Since &,(ground)~ 3, then the computed max &, comp(target)x 3 - 4.8 = 14.4. This
is the conditional dielectric constant of the metal box of Fig. 6.16b, see Sect. 6.9.1
for the definition of the conditional dielectric constant of metals. Hence, this result
matches well Figs. 6.8a, b and (6.166).

Remark 6.9.6.

113

1. The sign “~” is used in this table instead of “=" because the values of the
dielectric constant of the ground were only approximate ones, since they were
not measured in experiments.

2. The value ¢, = 0.84 in Table 6.1 does not match physics well since 0.84 < 1.
However, the value ¢,(ground)~ 3 is only an approximate one. If, for example,
the real value was ¢,(ground)> 3.58, then the computed value &, of the target
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Table 6.1 Summary of

A . Computed &,
results of blind imaging of the Test number of the target Tabulated &,
data collected by the forward - - -
looking radar 1 (buried plastic cylinder) =~ 0.84 ~ 1
2 (buried metal cylinder) ~ 144 > 10
3 (buried metal box) ~ 114 > 10
4 (wood stake in air) 3.8 from 2 to 6
5 (bush: clutter in air) 6.4 from 3 to 20

was exceeding 1. Note that in tables [151], the dielectric constant of the dry sand
is listed as being between 3 and 5. Hence, the most important point of the result
of Test 1 is that the computed ratio min, (x) = 0.28, which is quite close to the
real value of about 0.33.

3. The computed conditional dielectric constant &, ~ 14.4 of the metal box is close
to (6.166).

We had the blind data for five targets. Dielectric constants were not measured
in experiments. Therefore, we had no choice but to compare our calculated values
of dielectric constants of targets with tabulated ones [151]. In the case of bush we
use the reference [52]. In the case of two metallic targets we use inequality (6.166).
Table 6.1 summarizes our results.

6.9.7 Summary of Blind Imaging

It can be seen from the above description of complicating factors that we have
worked with the case of a severely limited information caused by many uncertainties
in the experimental data. Furthermore, we have worked with the most challenging
case of blind experimental data. Nevertheless, above results demonstrate a surpris-
ingly good accuracy. This is consistent with results of Chap. 5. Studies on larger
sets of experimental data are necessary to figure out accuracy constraints of this
algorithm.
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Approximate global convergence (cont.)
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