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Factor Models and Principal Components

17.1 Dimension Reduction

High-dimensional data can be challenging to analyze. They are difficult to vi-
sualize, need extensive computer resources, and often require special statistical
methodology. Fortunately, in many practical applications, high-dimensional
data have most of their variation in a lower-dimensional space that can be
found using dimension reduction techniques. There are many methods de-
signed for dimension reduction, and in this chapter we will study two closely
related techniques, factor analysis and principal components analysis, often
called PCA.

PCA finds structure in the covariance or correlation matrix and uses this
structure to locate low-dimensional subspaces containing most of the variation
in the data.

Factor analysis explains returns with a smaller number of fundamental
variables called factors or risk factors. Factor analysis models can be classified
by the types of variables used as factors, macroeconomic or fundamental, and
by the estimation technique, time series regression, cross-sectional regression,
or statistical factor analysis.

17.2 Principal Components Analysis

PCA starts with a sample Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n, of d-dimensional
random vectors with mean vector µ and covariance matrix Σ. One goal of
PCA is finding “structure” in Σ.

We will start with a simple example that illustrates the main idea. Suppose
that Y i = µ + Wio, where W1, . . . , Wn are i.i.d. mean-zero random variables
and o is some fixed vector, which can be taken to have norm 1. The Y i lie on
the line that passes through µ and is in the direction given by o, so that all
variation among the mean-centered vectors Y i − µ is in the one-dimensional
space spanned by o. Also, the covariance matrix of Y i is
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Σ = E{W 2
i ooT} = σ2

W ooT.

The vector o is called the first principal axis of Σ and is the only eigenvector of
Σ with a nonzero eigenvalue, so o can be estimated by an eigen-decomposition
(Section A.20) of the estimated covariance matrix.

A slightly more realistic situation is where Y i = µ+Wio+εi, where εi is a
random vector uncorrelated with Wi and having a “small” covariance matrix.
Then most of the variation among the Y i−µ vectors is in the space spanned
by o, but there is small variation in other directions due to εi. Having looked
at some simple special cases, we now turn to the general case.

PCA can be applied to either the sample covariance matrix or the corre-
lation matrix. We will use Σ to represent whichever matrix is chosen. The
correlation matrix is, of course, the covariance matrix of the standardized
variables, so the choice between the two matrices is really a decision whether
or not to standardize the variables before PCA. This issue will be addressed
later. Even if the data have not been standardized, to keep notation simple,
we assume that the mean Y has been subtracted from each Y i. By (A.47),

Σ = O diag(λ1, . . . , λd) OT, (17.1)

where O is an orthogonal matrix whose columns o1, . . . , od are the eigenvec-
tors of Σ and λ1 > . . . > λd are the corresponding eigenvalues. The columns
of O have been arranged so that the eigenvalues are ordered from largest to
smallest. This is not essential, but it is convenient. We also assume no ties
among the eigenvalues, which almost certainly will be true in actual applica-
tions.

A normed linear combination of Y i (either standardized or not) is of the
form αTY i =

∑p
j=1 αjYi,j , where ‖α‖ =

∑p
j=1 α2

i = 1. The first principal
component is the normed linear combination with the greatest variance. The
variation in the direction α, where α is any fixed vector with norm 1, is

Var(αTY i) = αTΣα. (17.2)

The first principal component maximizes (17.2). The maximizer is α = o1,
the eigenvector corresponding to the largest eigenvalue, and is called the first
principal axis. The projections oT

1 Y i, i = 1, . . . , n, onto this vector are called
the first principal component. Requiring that the norm of α be fixed is essen-
tial, because otherwise (17.2) is unbounded and there is no maximizer.

After the first principal component has been found, one searches for the
direction of maximum variation perpendicular to the first principal axis (eigen-
vector). This means maximizing (17.2) subject to ‖α‖ = 1 and αTo1 = 0.
The maximizer, called the second principal axis, is o2, and the second prin-
cipal component is the set of projections oT

2 Y i, i = 1, . . . , n, onto this axis.
The reader can probably see where we are going. The third principal compo-
nent maximizes (17.2) subject to ‖α‖ = 1, αTo1 = 0, and αTo2 = 0 and is
oT

3 Y i, and so forth, so that o1, . . . , od are the principal axes and the set of
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projections oT
j Y i, i = 1, . . . , n, onto the jth eigenvector is the jth principal

component. Moreover,
λi = oT

i Σoi

is the variance of the ith principal component, λi/(λ1+ · · ·+λd) is the propor-
tion of the variance due to this principal component, and (λ1 + · · ·+λi)/(λ1 +
· · ·+ λd) is the proportion of the variance due to the first i principal compo-
nents. The principal components are mutually uncorrelated since for j 6= k
we have

Cov(oT
j Y i,o

T
kY i) = oT

j Σok = 0

by (A.49).
Let

Y =




Y T
1
...

Y T
n




be the original data and let

S =




oT
1 Y 1 · · · oT

d Y 1

...
. . .

...
oT

1 Y n · · · oT
d Y n




be the matrix of principal components. Then

S = Y O.

Postmultiplication of Y by O to obtain S is an orthogonal rotation of the
data. For this reason, the eigenvectors are sometimes called the rotations, e.g.,
in output from R’s pca function.

In many applications, the first few principal components, such as, the first
three to five, have almost all of the variation, and, for most purposes, one can
work solely with these principal components and discard the rest. This can
be a sizable reduction in dimension. See Example 17.2 for an illustration.

So far, we have left unanswered the question of how one should decide
between working with the original or the standardized variables. If the com-
ponents of Y i are comparable, e.g., are all daily returns on equities or all
are yields on bonds, then working with the original variables should cause no
problems. However, if the variables are not comparable, e.g., one is an unem-
ployment rate and another is the GDP in dollars, then some variables may
be many orders of magnitude larger than the others. In such cases, the large
variables could completely dominate the PCA, so that the first principal com-
ponent is in the direction of the variable with the largest standard deviation.
To eliminate this problem, one should standardize the variables.
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Example 17.1. PCA with unstandardized and standardized variables

As a simple illustration of the difference between using standardized and
unstandardized variables, suppose there are two variables (d = 2) with a
correlation of 0.9. Then the correlation matrix is

(
1 0.9

0.9 1

)

with eigenvectors (0.71, 0.71) and (−0.71, 0.71) [or 0.71, 0.71)] and eigenvalues
1.9 and 0.1. Most of the variation is in the direction (1, 1), which is consistent
with the high correlation between the two variables.

However, suppose that the first variable has variance 1,000,000 and the
second has variance 1. The covariance matrix is

(
1, 000, 000 900

900 1

)
,

which has eigenvectors, after rounding, equal to (1.0000,0.0009) and (−0.0009,
1) and eigenvalues 1,000,000 and 0.19. The first variable dominates the princi-
pal components analysis based on the covariance matrix. This principal com-
ponents analysis does correctly show that almost all of the variation is in the
first variable, but this is true only with the original units. Suppose that vari-
able 1 had been in dollars and is now converted to millions of dollars. Then its
variance is equal to 10−6, so that the principal components analysis using the
covariance matrix will now show most of the variation to be due to variable
2. In contrast, principal components analysis based on the correlation matrix
does not change as the variables’ units change.

¤

Example 17.2. Principal components analysis of yield curves

This example uses yields on Treasury bonds at 11 maturities, T = 1, 3, and
6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years. Daily yields were taken from
a U.S. Treasury website for the time period January 2, 1990, to October 31,
2008, A subset of these data was used in Example 15.1. The yield curves are
shown in Figure 17.1(a) for three different dates. Notice that the yield curves
can have a variety of shapes. In this example, we will use PCA to study how
the curves change from day to day.

To analyze daily changes in yields, all 11 time series were differenced. Daily
yields were missing from some values of T because, for example to quote the
website, “Treasury discontinued the 20-year constant maturity series at the
end of calendar year 1986 and reinstated that series on October 1, 1993.” Dif-
ferencing caused a few additional days to have missing values. In the analysis,
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Fig. 17.1. (a) Treasury yields on three dates. (b) Scree plot for the changes in
Treasury yields. Note that the first three principal components have most of the
variation, and the first five have virtually all of it. (c) The first three eigenvectors
for changes in the Treasury yields. (d) The first three eigenvectors for changes in
the Treasury yields in the range 0 ≤ T ≤ 3.

all days with missing values of the differenced data were omitted. This left
819 days of data starting on July 31, 2001, when the one-month series started
and ending on October 31, 2008, with the exclusion of the period February
19, 2002 to February 2, 2006 when the 30-year Treasury was discontinued.
One could use much longer series by not including the one-month and 30-year
series.

The covariance matrix, not the correlation matrix, was used, because in
this example the variables are comparable and in the same units.

First, we will look at the 11 eigenvalues. The results from R’s function
prcomp are
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Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 0.21 0.14 0.071 0.045 0.033 0.0173
Proportion of Variance 0.62 0.25 0.070 0.028 0.015 0.0041
Cumulative Proportion 0.62 0.88 0.946 0.974 0.989 0.9932

PC7 PC8 PC9 PC10 PC11
0.0140 0.0108 0.0092 0.00789 0.00610
0.0027 0.0016 0.0012 0.00085 0.00051
0.9959 0.9975 0.9986 0.99949 1.00000

The first row gives the values of
√

λi, the second row the values of λi/(λ1+
· · · + λd), and the third row the values of (λ1 + · · · + λi)/(λ1 + · · · + λd) for
i = 1, . . . , 11. One can see, for example, that the standard deviation of the
first principal component is 0.21 and represents 62% of the total variance.
Also, the first three principal components have 94.6% of the variation, and
this increases to 97.4% for the first four principal components and to 98.9%
for the first five. The variances (the squares of the first row) are plotted in
Figure 17.1(b). This type of plot is called a “scree plot” since it looks like
scree, fallen rocks that have accumulated at the base of a mountain.

We will concentrate on the first three principal components since approxi-
mately 95% of the variation in the changes in yields is in the space they span.
The eigenvectors, labeled “PC,” are plotted in Figures 17.1(c) and (d), the
latter showing detail in the range T ≤ 3. The eigenvectors have interesting
interpretations. The first, o1, has all positive values.1 A change in this di-
rection either increases all yields or decreases all yields, and by roughly the
same amounts. One could call such changes “parallel shifts” of the yield curve,
though they are only approximately parallel. These shifts are shown in Fig-
ure 17.2 (a), where the mean yield curve is shown as a heavy, solid line, the
mean plus o1 is a dashed line, and the mean minus o1 is a dotted line. Only
the range T ≤ 7 is shown, since the curves change less after this point. Since
the standard deviation of the first principal component is only 0.21, a ±1 shift
in a single day is huge and is used only for better graphical presentation.

The graph of o2 is decreasing and changes in this direction either increase
or decrease the slope of the yield curve. The result is that a graph of the mean
plus or minus PC2 will cross the graph of the mean curve at approximately
T = 1, where o2 equals zero; see Figure 17.2(b).

The graph of o3 is first decreasing and then increasing, and the changes
in this direction either increase or decrease the convexity of the yield curve.
The result is that a graph of the mean plus or minus PC3 will cross the graph
1 The eigenvectors are determined only up to a sign reversal, since multiplication

by −1 would not change the spanned space or the norm. Thus, we could in-
stead say the eigenvector has only negative values, but this would not change the
interpretation.
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Fig. 17.2. (a) The mean yield curve plus and minus the first eigenvector. (b)
The mean yield curve plus and minus the second eigenvector. (c) The mean yield
curve plus and minus the third eigenvector. (d) The fourth and fifth eigenvectors for
changes in the Treasury yields.

of the mean curve twice; see Figure 17.2(c). It is worth repeating a point
just made in connection with PC1, since it is even more important here. The
standard deviations in the directions of PC2 and PC3 are only 0.14 and 0.071,
respectively, so observed changes in these directions will be much smaller than
those shown in Figures 17.2(b) and (c). Moreover, parallel shifts will be larger
than changes in slope, which will be larger than changes in convexity.

Figure 17.2(d) plots the fourth and fifth eigenvectors. The patterns in
their graphs are complex and do not have easy interpretations. Fortunately,
the variation in the space they span is too small to be of much importance.

A bond portfolio manager would be interested in the behavior of the yield
changes over time. Time series analysis based on the changes in the 11 yields
could be useful, but a better approach would be to use the first three principal
components. Their time series and auto- and cross-correlation plots are shown
in Figures 17.3 and 17.4, respectively. The latter shows moderate short-term
auto-correlations which could be modeled with an ARMA process, though
the correlation is small enough that it might be ignored. Notice that the lag-0
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Fig. 17.3. Time series plots of the first three principal components of the Treasury
yields. There are 819 days of data, but they are not consecutive because of missing
data; see text.

0 5 10 15 20

−0
.2

0.
2

0.
6

1.
0

lag

Series  1

0 5 10 15 20

−0
.2

0.
2

0.
6

1.
0

lag

Srs1 & Srs2

0 5 10 15 20

−0
.2

0.
2

0.
6

1.
0

lag

Srs1 & Srs3

−20 −10 0

−0
.2

0.
2

0.
6

1.
0

lag

Srs2 & Srs1

0 5 10 15 20

−0
.2

0.
2

0.
6

1.
0

lag

Series  2

0 5 10 15 20

−0
.2

0.
2

0.
6

1.
0

lag

Srs2 & Srs3

−20 −10 0

−0
.2

0.
2

0.
6

1.
0

lag

Srs3 & Srs1

−20 −10 0

−0
.2

0.
2

0.
6

1.
0

lag

Srs3 & Srs2

0 5 10 15 20

−0
.2

0.
2

0.
6

1.
0

lag

Series  3

Fig. 17.4. Sample auto- and cross-correlations of the first three principal compo-
nents of the Treasury yields.
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cross-correlations are zero; this is not a coincidence but rather is due to the
way the principal components are defined. They are defined to be uncorrelated
with each other, so their lag-0 correlations are exactly zero. Cross-correlations
at nonzero lags are not zero, but in this example they are small. In practical
implication is that parallel shifts, changes in slopes, and changes in convexity
are nearly uncorrelated and could be analyzed separately. The time series
plots show substantial volatility clustering which could be modeled using the
GARCH models of Chapter 18.

¤

Example 17.3. Principal components analysis of equity funds

This example uses the data set equityFunds in R’s fEcofin package. The
variables are daily returns from January 1, 2002 to May 31, 2007 on eight eq-
uity funds: EASTEU, LATAM, CHINA, INDIA, ENERGY, MINING, GOLD,
and WATER. The eigenvalues are shown ahead. The results here are different
than those for the changes in yields, because in this example the variation is
less concentrated in the first few principal components. For example, the first
three principal components have only 75% of the variance, compared to 95%
for the yield changes. For the equity funds, one needs six principal components
to get 95%. A scree plot is shown in Figure 17.5(a).
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vectors for the Equity Funds example.
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Importance of components:
PC1 PC2 PC3 PC4 PC5

Standard deviation 0.026 0.016 0.013 0.012 0.0097
Proportion of Variance 0.467 0.168 0.117 0.097 0.0627
Cumulative Proportion 0.467 0.635 0.751 0.848 0.9107

PC6 PC7 PC8
0.0079 0.0065 0.0055
0.0413 0.0280 0.0201
0.9520 0.9799 1.0000

The first three eigenvectors are plotted in Figure 17.5(b). The first eigen-
vector has only positive values, and returns in this direction are either positive
for all of the funds or negative for all of them. The second eigenvector is neg-
ative for mining and gold (funds 6 and 7) and positive for the other funds.
Variation along this eigenvector has mining and gold moving in the opposite
direction of the other funds. Gold and mining moving counter to the rest of the
stock market is a common occurrence, so it is not surprising that the second
principal component has 17% of the variation. The third principal component
is less easy to interpret, but its loading on India (fund 4) is higher than on
the other funds, which might indicate that there is something different about
Indian equities.

¤

Example 17.4. Principal components analysis of the Dow Jones 30

As a further example, we will use returns on the 30 stocks on the Dow
Jones average. The data are in the data set DowJone30 in R’s fEcofin package
and cover the period from January 2, 1991 to January 2, 2002 The first five
principal components have over 97% of the variation:

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 88.53 24.967 13.44 10.602 8.2165

Proportion of Variance 0.87 0.069 0.02 0.012 0.0075

Cumulative Proportion 0.87 0.934 0.95 0.967 0.9743

In contrast to the analysis of the equity funds where six principal compo-
nents were needed to obtain 95% of the variance, here the first three principal
components have over 95% of the variance. Why are the Dow Jones stocks
behaving differently compared to the equity funds? The Dow Jones stocks are
similar to each other since they are all large companies in the United States.
Thus, we can expect that their returns will be highly correlated with each
other and a few principal components will explain most of the variation.

¤
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17.3 Factor Models

A factor model for excess equity returns is

Rj,t = β0,j + β1,jF1,t + · · ·+ βp,jFp,t + εj,t, (17.3)

where Rj,t is either the return or the excess return on the jth asset at time
t, F1,t, . . . , Fp,t are variables, called factors or risk factors, that represent the
“state of the financial markets and world economy” at time t, and ε1,t, . . . , εn,t

are uncorrelated, mean-zero random variables called the unique risks of the
individual stocks. The assumption that unique risks are uncorrelated means
that all cross-correlation between the returns is due to the factors. Notice
that the factors do not depend on j since they are common to all returns. The
parameter βi,j is called a factor loading and specifies the sensitivity of the jth
return to the ith factor. Depending on the type of factor model, either the
loadings, the factors, or both the factors and the loadings are unknown and
must be estimated.

The CAPM is a factor model where p = 1 and F1,t is the excess return on
the market portfolio. In the CAPM, the market risk factor is the only source of
risk besides the unique risk of each asset. Because the market risk factor is the
only risk that any two assets share, it is the sole source of correlation between
asset returns. Factor models generalize the CAPM by allowing more factors
than simply the market risk and the unique risk of each asset. A factor can
be any variable thought to affect asset returns. Examples of factors include:

1. returns on the market portfolio;
2. growth rate of the GDP;
3. interest rate on short term Treasury bills or changes in this rate;
4. inflation rate or changes in this rate;
5. interest rate spreads, for example, the difference between long-term Trea-

sury bonds and long-term corporate bonds;
6. return on some portfolio of stocks, for example, all U.S. stocks or all stocks

with a high ratio of book equity to market equity — this ratio is called
BE/ME in Fama and French (1992, 1995, 1996);

7. the difference between the returns on two portfolios, for example, the
difference between returns on stocks with high BE/ME values and stocks
with low BE/ME values.

With enough factors, most, and perhaps all, commonalities between assets
should be accounted for in the model. Then the εj,t should represent factors
truly unique to the individual assets and therefore should be uncorrelated
across j (across assets), as is being assumed.

Factor models that use macroeconomic variables such as 1–5 as factors
are called macroeconomic factor models. Fundamental factor models use ob-
servable asset characteristics (fundamentals) such as 6 and 7 as factors. Both
types of factor models can be fit by time series regression, the topic of the
next section. Fundamental factor models can also be fit by cross-sectional
regression, as explained in Section 17.5.
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17.4 Fitting Factor Models by Time Series Regression

Equation (17.3) is a regression model. If j is fixed, then it is a univariate
multiple regression model, “univariate” because there is one response (the
return on the jth asset) and “multiple” since there can be several predictor
variables (the factors). If we combine these models across j, then we have
a multivariate regression model, that is, a regression model with more than
one response. Multivariate regression is used when fitting a set of returns to
factors.

As discussed in Section 16.6, when fitting time series regression models,
one should use data at the highest sampling frequency available, which is
often daily or weekly, though only monthly data were available for the next
example.

Example 17.5. A macroeconomic factor model

The efficient market hypothesis implies that stock prices change because
of new information. Although there is considerable debate about the extent
to which markets are efficient, one still can expect that stock returns will be
influenced by unpredictable changes in macroeconomic variables. Accordingly,
the factors in a macroeconomic model are not the macroeconomic variables
themselves, but rather the residuals when changes in the macroeconomic vari-
ables are predicted by a time series model, such as, a multivariate AR model.

In this example, we look at a subset of a case study that has been presented
by other authors; see the bibliographical notes in Section 17.7. The macroe-
conomic variables in this example are changes in the logs of CPI (Consumer
Price Index) and IP (Industrial Production). The changes in these series have
been analyzed before in Examples 9.10, 9.11, and 10.4 and in that last example
a bivariate AR model was fit. It was found that the AR(5) model minimized
AIC, but the AR(1) had an AIC value nearly as small as the AR(5) model.

In this example, we will use the residuals from the AR(5) model as the fac-
tors. Monthly returns on nine stocks were taken from the berndtInvest data
set in R’s fEcofin package. The returns are from January 1978 to December
1987. The CPI and IP series from July 1977 to December 1987 were used, but
the month of July 1977 was lost through differencing. This left enough data
(the five months August 1977 to December 1977) for forecasting CPI and IP
beginning January 1978 when the return series started.
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Fig. 17.6. R2 and slopes of regressions of stock returns on CPI residuals and IP
residuals.

R2 and the slopes for the regressions of the stock returns on the CPI
residuals and the IP residuals are plotted in Figure 17.6 for each of the 9 stocks.
Note that the R2-values are very small, so the macroeconomic factors have
little explanatory power. The problem of low explanatory power is common
with macroeconomic factor models and has been noticed by other authors. For
this reason, fundamental factor models are more widely used macroeconomic
models. ¤

17.4.1 Fama and French Three-Factor Model

Fama and French (1995) have developed a fundamental factor model with
three risk factors, the first being the excess return of the market portfolio,
which is the sole factor in the CAPM. The second risk factor, which is called



456 17 Factor Models and Principal Components

small minus large (SML), is the difference in returns on a portfolio of small
stocks and a portfolio of large stock. Here “small” and “large” refer to the
size of the market value, which is the share price times the number of shares
outstanding. The third factor, HML (high minus low), is the difference in
returns on a portfolio of high book-to-market value (BE/ME) stocks and
a portfolio of low BE/ME stocks. Book value is the net worth of the firm
according to its accounting balance sheet. Fama and French argue that most
pricing anomalies that are inconsistent with the CAPM disappear in the three-
factor model. Their model of the return on the jth asset for the tth holding
period is

Rj,t − µf,t = β0,j + β1,j(RM,t − µf,t) + β2,jSMLt + β3,jHMLt + εj,t,

where SMLt and HMLt are the values of SML and HML and µf,t is the
risk-free rate for the tth holding period. Returns on portfolios have little au-
tocorrelation, so the returns themselves, rather than residuals from a time
series model, can be used.

Notice that this model does not use the size or the BE/ME ratio of the
jth asset to explain returns. The coefficients β2,j and β3,j are the loading
of the jth asset on SML and HML. These loadings may, but need not, be
related to the size and to the BE/ME ratio of the jth asset. In any event, the
loadings are estimated by regression, not by measuring the size or BE/ME of
the jth asset. If the loading β2,j of the jth asset on SML is high, that might
be because the jth asset is small or it might be because that asset is large
but, in terms of returns, behaves similarly to small assets.

For emphasis, it is mentioned again that the factors SMLt and HMLt

do not depend on j since they are differences between returns on two fixed
portfolios, not variables that are measured on the jth asset. This is true in
general of the factors and loadings in model (17.3), not just the Fama–French
model—only the loadings, that is, the parameters βk,j , depend on the asset
j. The factors are macroeconomic variables, linear combinations of returns on
portfolios, or other variables that depend only on the financial markets and
the economy as a whole.

There are many reasons why book and market values may differ. Book
value is determined by accounting methods that do not necessarily reflect
market values. Also, a stock might have a low book-to-market value because
investors expect a high return on equity, which increases its market value rela-
tive to its book value. Conversely, a high book-to-market value could indicate
a firm that is in trouble, which decreases its market value. A low market value
relative to the book value is an indication of a stock’s “cheapness,” and stocks
with a high market-to-book value are considered growth stocks for which in-
vestors are willing to pay a premium because of the promise of higher future
earnings. Stocks with a low market-to-book value are called value stocks and
investing in them is called value investing.
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SML and HML are the returns on portfolio that are long on one portfolio
and short on another. Such portfolios are called hedge portfolios since they are
hedged, though perhaps not perfectly, against changes in the overall market.

Example 17.6. Fitting the Fama–French model to GE, IBM, and Mobil

This example uses two data sets. The first is CRSPmon in R’s Ecdat package.
This is similar to the CRSPday data set used in previous examples except that
the returns are now monthly rather than daily. There are returns on three
equities, GE, IBM, and Mobil, as well as on the CRSP average, though we
will not use the last one here. The returns are from January 1969 to December
1998. The second data set is the Fama–French factors and was taken from the
website of Prof. Kenneth French.

Figure 17.7 is a scatterplot matrix of the GE, IBM, and Mobil excess
returns and the factors. Focusing on GE, we see that, as would be expected,
GE excess returns are highly correlated with the excess market returns. The
GE returns are negatively related with the factor HML which would indicate
that GE behaves as a value stock. However, this is a false impression caused
by the lack of adjustment for associations between GE excess returns and the
other factors. Regression analysis will be used soon to address this problem.
The two Fama–French factors are not quite hedge portfolios since SMB is
positively and HML negatively related to the excess market return. However,
these associations are far weaker than that between the excess returns on the
stocks and the market excess returns. Moreover, SMB and HML have little
association between each other, so multicollinearity is not a problem.

The three excess equity returns were regressed on the three factors using
the lm function in R. The estimated coefficients are

Call:
lm(formula = cbind(ge, ibm, mobil) ~ Mkt.RF + SMB + HML)

Coefficients:
ge ibm mobil

(Intercept) 0.3443 0.1460 0.1635
Mkt.RF 1.1407 0.8114 0.9867
SMB -0.3719 -0.3125 -0.3753
HML 0.0095 -0.2983 0.3725

Notice that GE now has a positive relationship with HML, not the neg-
ative relationship seen in Figure 17.7. All three equity returns have negative
relationships with SMB, so, not surprisingly, they behave like large stocks.

Recall that one important assumption of the factor model is that the
εj,t in (17.3) are uncorrelated. Violation of this assumption, that is, cross-
correlations between εj,t and εj′,t, j 6= j′, will create biases when the factor
model is used to estimate correlations between the equity returns, a topic
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Fig. 17.7. Scatterplot matrix of the excess returns on GE, IBM, and Mobil and the
three factors in the Fama–French model.

explained in the next section. Lack of cross-correlation is not an assumption
of the multivariate regression model and does not cause bias in the estimation
of the regression coefficients or the variances of the εj,t. The biases arise only
when estimating covariances between the equity returns.

To check for cross-correlations, we will use the residuals from the multi-
variate regression. Their sample correlation matrix is

ge ibm mobil
ge 1.000000 0.070824 -0.25401
ibm 0.070824 1.000000 -0.10153
mobil -0.254012 -0.101532 1.00000
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Fig. 17.8. Scatterplot matrix of the residuals for GE, IBM, and Mobil from the
Fama–French model.

The correlation between GE and Mobil is rather far from zero and is worth
checking. A 95% confidence interval for the residual correlations between GE
excess returns and Mobil excess returns does not include 0, so a test would
reject the null hypotheses that the true correlation is 0. The other correlations
are not significantly different from 0. Because of the large negative GE–Mobil
correlation, we should be careful about using the Fama–French model for es-
timation of the covariance matrix of the equity returns. As always, it is good
practice to look at scatterplot matrices as well as correlations, since scat-
terplots may be outliers or nonlinear relationships affecting the correlations.
Figure 17.8 contains a scatterplot matrix of the residuals. One sees that there
are few outliers. Though none of the outliers is really extreme, it seems worth-
while to compute robust correlations estimates and to compare them with the
ordinary sample correlation matrix. Robust estimates were found using the
function covRob in R’s robust package. What was found is that the robust
estimates are all closer to zero than the nonrobust estimates, but the robust
correlation estimate for GE and Mobil is still a large negative value.

Call:
covRob(data = fit$residuals, corr = T)

Robust Estimate of Correlation:
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ge ibm mobil
ge 1.000000 0.035966 -0.247884
ibm 0.035966 1.000000 -0.068716
mobil -0.247884 -0.068716 1.000000

This example is atypical of real applications because, for illustration pur-
poses, the number of returns has been kept low, only three, whereas in port-
folio management the number of returns will be larger and might be in the
hundreds.

¤

17.4.2 Estimating Expectations and Covariances of Asset Returns

Section 16.7 discussed how the CAPM can simplify the estimation of expec-
tations and covariances of asset returns. However, using the CAPM for this
purpose can be dangerous since the estimates depend on the validity of the
CAPM. Fortunately, it is also possible to estimate return expectations and
covariances using a more realistic factor model instead of the CAPM.

We start with two factors for simplicity. From (17.3), now with p = 2, we
have

Rj,t = β0,j + β1,jF1,t + β2,jF2,t + εj,t. (17.4)

It follows from (17.4) that

E(Rj,t) = β0,j + β1,jE(F1,t) + β2,jE(F2,t) (17.5)

and

Var(Rj,t) = β2
1,jVar(F1) + β2

2,jVar(F2) + 2β1,jβ2,jCov(F1, F2) + σ2
ε,j .

Also, because Rj,t and Rj′,t are two linear combinations of the risk factors, it
follows from (7.8) that for any j 6= j′,

Cov(Rj,t, Rj′,t) = β1,jβ1,j′Var(F1) + β2,jβ2,j′Var(F2)
+ (β1,jβ2,j′ + β1,j′β2,j)Cov(F1, F2). (17.6)

More generally, let
F T

t = (F1,t, . . . , Fp,t) (17.7)

be the vector of p factors at time t and suppose that ΣF is the p×p covariance
matrix of F t. Define the vector of intercepts

βT
0 = (β0,1, . . . , β0,n)

and the matrix of loadings

β =




β1,1 · · · β1,j · · · β1,n

...
. . .

...
. . .

...
βp,1 · · · βp,j · · · βp,n


 .
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Also, define
εT = (ε1,t, . . . , εn,t) (17.8)

and let Σε be the n× n diagonal covariance matrix of ε:

Σε =




σ2
ε,1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · σ2
ε,j · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · σ2

ε,n




.

Finally, let
RT

t = (R1,t . . . , Rn,t) (17.9)

be the vector of all returns at time t. Model (17.3) then can be reexpressed
in matrix notation as

Rt = β0 + βTF t + εt. (17.10)

Therefore, the n× n covariance matrix of Rt is

ΣR = βTΣF β + Σε. (17.11)

In particular, if βj = (β1,j · · · βp,j )T is the jth column of β, then the
variance of the jth return is

Var(Rj) = βT
j ΣF βj + σ2

εj
, (17.12)

and the covariance between the jth and j′th returns is

Cov(Rj , R
′
j) = βT

j ΣF βj′ . (17.13)

To use (17.11), (17.12) or (17.13), one needs estimates of β, ΣF , and Σε.
The regression coefficients are used to estimate β, the sample covariance of
the factors can be used to estimate ΣF , and Σ̂ε can be the diagonal matrix
of the mean residual sum of squared errors from the regressions; see equation
(12.12).

Why estimate ΣR via a factor model instead of simply using the sample
covariance matrix? One reason is estimation accuracy. This is another example
of bias–variance tradeoff. The sample covariance matrix is unbiased, but it
contains n(n + 1)/2 estimates, one for each covariance and each variance.
Each of these parameters is estimated with error and when this many errors
accumulate, the result can be a sizable loss of precision. In contrast, the factor
model requires estimates of n× p parameters in β, p2 parameters in ΣF , and
n parameters in the diagonal matrix Σε, for a total of np+n+p2 parameters.
Typically, n, the number of returns, is large but p, the number of factors, is
much smaller, so np + n + p2 is much smaller than n(n + 1)/2. For example,
suppose there are 200 returns and 5 factors. Then n(n + 1)/2 = 20,100 but
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np + n + p2 is only 1,225. The downside of the factor model is that there will
be bias in the estimate of ΣR if the factor model is misspecified, especially if
Σε is not diagonal as the factor model assumes.

Another advantage of the factor model is expediency. Having fewer param-
eters to estimate is one convenience and another is ease of updating. Suppose
a portfolio manager has implemented a factor model for n equities and now
needs to add another equity. If the manager uses the sample covariance ma-
trix, then the n sample covariances between the new return time series and
the old ones must be computed. This requires that all n of the old time series
be available. In comparison, with a factor model, the portfolio manager needs
only to regress the new return time series on the factors. Only the p factor
time series need to be available.

Example 17.7. Estimating the covariance matrix of GE, IBM, and Mobil ex-
cess returns

This example continues Example 17.6. Recall that the number of returns
has been kept artificially low, since with more returns it would not have been
possible to display the results. Therefore, this example merely illustrates the
calculations and is not a typical application of factor modeling.

The estimate of ΣF is the sample covariance matrix of the factors:

Mkt.RF SMB HML
Mkt.RF 21.1507 4.2326 -5.1045
SMB 4.2326 8.1811 -1.0760
HML -5.1045 -1.0760 7.1797

The estimate of β is the matrix of regression coefficients (without the inter-
cepts):

Mkt.RF SMB HML
ge 1.14071 -0.37193 0.009503
ibm 0.81145 -0.31250 -0.298302
mobil 0.98672 -0.37530 0.372520

The estimate of Σε is the diagonal matrix of residual error MS values:

[,1] [,2] [,3]
[1,] 16.077 0.000 0.000
[2,] 0.000 31.263 0.000
[3,] 0.000 0.000 27.432

Therefore, the estimate of βTΣF β is

ge ibm mobil
ge 24.960 19.303 19.544
ibm 19.303 15.488 14.467
mobil 19.544 14.467 16.155
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and the estimate of βTΣF β + Σε is

ge ibm mobil
ge 41.036 19.303 19.544
ibm 19.303 46.752 14.467
mobil 19.544 14.467 43.587

For comparison, the sample covariance matrix of the equity returns is

ge ibm mobil
ge 40.902 20.878 14.255
ibm 20.878 46.491 11.518
mobil 14.255 11.518 43.357

The largest difference between the estimate of βTΣF β + Σε and the sample
covariance matrix is in the covariance between the excess returns on GE and
Mobil. The reason for this large discrepancy is that the factor model assumes
a zero residual correlation between these two variables, but the data show a
negative correlation of −0.25.

¤

17.5 Cross-Sectional Factor Models

Models of the form (17.3) are time series factor models. They use time series
data, one single asset at a time, to estimate the loadings.

As just discussed, time series factor models do not make use of variables
such as dividend yields, book-to-market value, or other variables specific to the
jth firm. An alternative is a cross-sectional factor model, which is a regression
model using data from many assets but from only a single holding period. For
example, suppose that Rj , (B/M)j , and Dj are the return, book-to-market
value, and dividend yield for the jth asset for some fixed time t. Since t is fixed,
it will not be made explicit in the notation. Then a possible cross-sectional
factor model is

Rj = β0 + β1(B/M)j + β2Dj + εj .

The parameters β1 and β2 are unknown values at time t of a book-to-market
value risk factor and a dividend yield risk factor. These values are estimated
by regression.

There are two fundamental differences between time series factor models
and cross-sectional factor models. The first is that with a time series factor
model one estimates parameters, one asset at a time, using multiple holding
periods, while in a cross-sectional model one estimates parameters, one single
holding period at a time, using multiple assets. The other major difference
is that in a time series factor model, the factors are directly measured and
the loadings are the unknown parameters to be estimated by regression. In
a cross-sectional factor model the opposite is true; the loadings are directly
measured and the factor values are estimated by regression.
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Example 17.8. An industry cross-sectional factor model

This example uses the berndtInvest data set in R’s fEcofin package.
This data set has monthly returns on 15 stocks over 10 years, 1978 to 1987.
The 15 stocks were classified into three industries,“Tech,” “Oil,” and “Other,”
as follows:

tech oil other
CITCRP 0 0 1
CONED 0 0 1
CONTIL 0 1 0
DATGEN 1 0 0
DEC 1 0 0
DELTA 0 1 0
GENMIL 0 0 1
GERBER 0 0 1
IBM 1 0 0
MOBIL 0 1 0
PANAM 0 1 0
PSNH 0 0 1
TANDY 1 0 0
TEXACO 0 1 0
WEYER 0 0 1

We used the indicator variables of “tech” and “oil” as loadings and fit the
model

Rj = β0 + β1techj + β2oilj + εj , (17.14)

where Rj is the return on the jth stock, techj equals 1 if the jth stock is a
technology stock and equals 0 otherwise, and oilj is defined similarly. Model
(17.14) was fit separately for each of the 120 months. The estimates β̂0, β̂1,
and β̂3 for a month were the values of the three factors for that month. The
loadings were the known values of techj and oilj .

Factor 1, the values of β̂0, can be viewed as an overall market factor, since
it affects all 15 returns. Factors 2 and 3 are the technology and oil factors.
For example, if the value of factor 2 is positive in any given month, then Tech
stocks have better-than-market returns that month. Figure 17.9 contains time
series plots of the three factor series, and Figure 17.10 shows their auto- and
cross-correlation functions. The largest cross-correlation is between the tech
and oil factors at lag 0, which indicates that above- (below-) market returns
for technology stocks are associated with above (below) market returns for oil
stocks.
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Fig. 17.9. Time series plots of the estimated values of the three factors in the
cross-sectional factor model.
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Fig. 17.10. Auto- and cross-correlation plots of the estimated three factors in the
cross-sectional factor model. Series 1–3 are the market, tech, and oil factors, respec-
tively.
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The standard deviations of the three factors are

market tech oil
0.04924626 0.06856372 0.05334319

There are other ways of defining the factors. For example, Zivot and Wang
(2006) use the model

Rj = β1techj + β2oilj + β3otherj + εj , (17.15)

with no intercept but with otherJ as a third variable. With this model, there
is no market factor but instead factors for all three industries.

¤

Cross-sectional factor models are sometimes called BARRA models af-
ter BARRA, Inc., a company that has been developing cross-sectional factor
models and marketing the output of their models to financial managers.

17.6 Statistical Factor Models

In a statistical factor model, neither the factor values nor the loadings are di-
rectly observable. All that is available is the sample Y 1, . . . , Y n or, perhaps,
only the sample covariance matrix. This is the same type of data available
for PCA and we will see that statistical factor analysis and PCA have some
common characteristics. As with PCA, one can work with either the stan-
dardized or unstandardized variables. R’s factanal function automatically
standardizes the variables.

We start with the multifactor model in matrix notation (17.10) and the
return covariance matrix (17.11) which for convenience will be repeated as

Rt = β0 + βTF t + εt. (17.16)

and
ΣR = βTΣF β + Σε. (17.17)

The only component of (17.17) that can be estimated directly from the data is
ΣR. One can use this estimate to find estimates of β, ΣF , and Σε. However,
it is too much to ask that all three of these matrices be identified from ΣR

alone. Here is the problem: Let A be any p × p invertible matrix. Then the
returns vector Rt in (17.16) is unchanged if βT is replaced by βTA−1 and F t

is replaced by AF t. Therefore, the returns only determine β and F t up to
a nonsingular linear transformation, and consequently a set of constraints is
needed to identify the parameters. The usual constraints are the factors are
uncorrelated and standardized, so that

ΣF = I, (17.18)
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where I is the p×p identity matrix. With these constraints, (17.17) simplifies
to the statistical factor model

ΣR = βTβ + Σε. (17.19)

However, even with this simplification, β is only determined up to a rotation,
that is, by multiplication by an orthogonal matrix. To appreciate why this
is so, let P be any orthogonal matrix, so that P T = P−1. Then (17.19) is
unchanged if β is replaced by Pβ since

(Pβ)T(Pβ) = βTP TPβ = βTP−1Pβ = βTβ.

Therefore, to determine β a further set of constraints is needed. One set of
constraints in common usage, that is, by the function factanal in R, is that
βΣ−1

ε βT is diagonal.

Example 17.9. Factor analysis of equity funds

This example continues the analysis of the equity funds data set that was
used in Example 17.3 to illustrate PCA. The results from fitting a 4-factor
model (p = 4) using factanal are

> factanal(equityFunds[,2:9],4,rotation="none")

Call:
factanal(x = equityFunds[, 2:9], factors = 4,

rotation = "none")

Uniquenesses:
EASTEU LATAM CHINA INDIA ENERGY MINING GOLD WATER
0.735 0.368 0.683 0.015 0.005 0.129 0.005 0.778

Loadings:
Factor1 Factor2 Factor3 Factor4

EASTEU 0.387 0.169 0.293
LATAM 0.511 0.167 0.579
CHINA 0.310 0.298 0.362
INDIA 0.281 0.951
ENERGY 0.784 0.614
MINING 0.786 0.425 -0.258
GOLD 0.798 -0.596
WATER 0.340 0.298 0.109

Factor1 Factor2 Factor3 Factor4
SS loadings 2.57 1.07 0.82 0.82
Proportion Var 0.32 0.13 0.10 0.10
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Cumulative Var 0.32 0.46 0.56 0.66

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 17 on 2 degrees of freedom.
The p-value is 2e-04

The “loadings” are the estimates β̂. By convention, any loading with an
absolute value less than the parameter cutoff is not printed, and the default
value of cutoff is 0.1. Because all its loadings have the same sign, the first
factor is an overall index of the eight funds. The second factor has large
loadings on the four regional funds (EASTEU, LATAM, CHINA, INDIA)
and small loadings on the four industry section funds (ENERGY, MINING,
GOLD, WATER). The four regions are all emerging markets, so the second
factor might be interpreted as an emerging markets factor. The fourth factor
is a contrast of MINING and GOLD with ENERGY and WATER, and mimics
a hedge portfolio that is long on ENERGY and WATER and short on GOLD
and MINING. The third factor is less interpretable. The uniquenesses are the
diagonal elements of the estimate Σ̂ε.

The output gives a p-value for testing the null hypothesis that there are
at most four factors. The p-value is small, indicating that the null hypothesis
should be rejected. However, four is that maximum number of factors that can
be used by factanal when there are only eight returns. Should we be con-
cerned that we are not using enough factors? Recall the important distinction
between statistical and practical significance that has been emphasized else-
where in this book. One way to assess practical significance is to see how well
the factor model can reproduce the sample correlation matrix. Since factanal
standardizes the variables, the factor model estimate of the correlation matrix
is the estimate of the covariance matrix, that is,

β̂
T
β̂ + Σ̂ε. (17.20)

The difference between this estimate and the sample correlation matrix is a
8 × 8 matrix. We would like all of its entries to be close to 0. Unfortunately,
they are not as small as we would like. There are various ways to check if a
matrix this size is “small.” The smallest entry is −0.063 and the largest is
0.03. These are reasonably large discrepancies between correlation matrices.
Also, the eigenvalues of the difference are

-7.5e-02 -6.0e-03 -3.4e-15 -2.0e-15
-1.3e-15 3.0e-15 7.7e-03 7.3e-02

Another way to check for smallness of the difference between the two estimates
is to look at the estimates of the variance of an equally weighted portfolio (of
the standardized returns), which is

wTΣRw,
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where wT = (1/8, . . . , 1/8). These estimates are 0.37 and 0.47 using the factor
model and the sample correlation matrix, respectively. The absolute difference,
0.07, is relatively large compared to either of the estimates. The conclusion is
that the lack of fit to the factor model might be of real importance.

¤

17.6.1 Varimax Rotation of the Factors

As discussed earlier, the estimate of the covariance matrix is unchanged if the
loadings β are rotated by multiplication by an orthogonal matrix. Rotation
might increase the interpretability of the loadings. In some applications, it is
desirable for each loading to be either close to 0 or large, so that a variable
will load only on a few factors, or even on only one factor. Varimax rotation
attempts to make each loading either small or large by maximizing the sum
of the variances of the squared loadings. Varimax rotation is the default with
R’s factanal function, but this can be changed. In Example 17.9, no rotation
was used. In finance, having variables loading on only one or a few factors is
not that important, and may even be undesirable, so varimax rotation may
not advantageous.

We repeat again for emphasis that the estimate of Σε is not changed by
rotation. The uniquenesses are also unchanged. Only the loadings change.

Example 17.10. Factor analysis of equity funds: Varimax rotation

The statistical factor analysis in Example 17.9 is repeated here but now
with varimax rotation.

Call:
factanal(x = equityFunds[, 2:9], factors = 4,

rotation = "varimax")

Uniquenesses:
EASTEU LATAM CHINA INDIA ENERGY MINING GOLD WATER
0.735 0.368 0.683 0.015 0.005 0.129 0.005 0.778

Loadings:
Factor1 Factor2 Factor3 Factor4

EASTEU 0.436 0.175 0.148 0.148
LATAM 0.748 0.174 0.180
CHINA 0.494 0.247
INDIA 0.243 0.959
ENERGY 0.327 0.118 0.934
MINING 0.655 0.637 0.168
GOLD 0.202 0.971
WATER 0.418 0.188
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Factor1 Factor2 Factor3 Factor4
SS loadings 1.80 1.45 1.03 1.00
Proportion Var 0.23 0.18 0.13 0.12
Cumulative Var 0.23 0.41 0.54 0.66

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 17 on 2 degrees of freedom.
The p-value is 2e-04

The most notable change compared to the nonrotated loadings is that
now all loadings with an absolute value above 0.1 are positive. Therefore, the
factors all represent long positions, whereas before some were more like hedge
portfolios. However, the rotated factors seem less interpretable compared to
the unrotated factors, so a financial analyst might prefer the unrotated factors.

¤

17.7 Bibliographic Notes

The Fama–French three-factor model was introduced by Fama and French
(1993) and discussed further in Fama and French (1995, 1996). Connor (1995)
compares the three types of factor models and finds that macroeconomic factor
models have less explanatory power than other factor models. Example 17.5
was adopted from Zivot and Wang (2006). Sharpe, Alexander, and Bailey
(1999) has a brief description of the BARRA, Inc. factor model.
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17.9 R Lab

17.9.1 PCA

In the first section of this lab, you will do a principal components analysis
of daily yield data in the file yields.txt. R has functions, which we will use
later, that automate PCA, but it is easy to do PCA “from scratch” and it
is instructive to do this. First load the data and, to get a feel for what yield
curves look like, plot the yield curves on days 1, 101, 201, 301, . . ., 1101. There
are 1352 yield curves in the data, so you will see a representative sample of
them. The yield curves change slowly, which is why one should look at yield
curves that are spaced rather far (100 days) apart.

yieldDat = read.table("yields.txt",header=T)
maturity = c((0:5),5.5,6.5,7.5,8.5,9.5)
pairs(yieldDat)
par(mfrow=c(4,3))
for (i in 0:11)
{
plot(maturity,yieldDat[100*i+1,],type="b")
}

Next compute the eigenvalues and eigenvectors of the sample covariance ma-
trix, print the results, and plot the eigenvalues as a scree plot.

eig = eigen(cov(yieldDat))
eig$values
eig$vectors
par(mfrow=c(1,1))
barplot(eig$values)

The following R code plots the first four eigenvectors.

par(mfrow=c(2,2))

plot(eig$vector[,1],ylim=c(-.7,.7),type="b")

abline(h=0)

plot(eig$vector[,2],ylim=c(-.7,.7),type="b")

abline(h=0)

plot(eig$vector[,3],ylim=c(-.7,.7),type="b")

abline(h=0)

plot(eig$vector[,4],ylim=c(-.7,.7),type="b")

abline(h=0)

Problem 1 It is generally recommended that PCA be applied to time series
that are stationary. Plot the first column of yieldDat. (You can look at other
columns as well. You will see that they are fairly similar.) Does the plot appear
stationary? Why or why not? Include your plot with your work.
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Another way to check for stationarity is to run the augmented Dickey–Fuller
test. You can do that with the following code:

library("tseries")

adf.test(yieldDat[,1])

Problem 2 Based on the augmented Dickey–Fuller test, do you think the first
column of yieldDat is stationary? Why or why not?

Run the following code to compute changes in the yield curves. Notice the use
of [-1,] to delete the first row and similarly the use of [-n,].

n=dim(yieldDat)[1]
delta_yield = yieldDat[-1,] - yieldDat[-n,]

Plot the first column of delta_yield and run the augmented Dickey–Fuller
test to check for stationarity.

Problem 3 Do you think the first column of delta yield is stationary? Why
or why not?

Run the following code to perform a PCA using the function princomp. By
default,princomp does a PCA on the covariance matrix, though there is an
option to use the correlation matrix instead. We will use the covariance matrix.
The second line of the code will print the names of the components in the
object that is returned by princomp. As you can see, the names function
can be useful for learning just what is being returned. You can also get this
information by typing ?princomp.

pca_del = princomp(delta_yield)
names(pca_del)
summary(pca_del)
plot(pca_del)

Problem 4 (a) The output from names includes the following:

[1] "sdev" "loadings" "center" "scores"

Describe each of these components in mathematical terms. To answer this
part of the question, you can print and plot the components to see what
they contain and use R’s help for further information.

(b) What are the first two eigenvalues of the covariance matrix?
(c) What is the eigenvector corresponding to the largest eigenvalue?
(d) Suppose you wish to “explain” at least 95% of the variation in the changes

in the yield curves. Then how many principal components should you use?
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17.9.2 Fitting Factor Models by Time Series Regression

In this section, we will start with the one-factor CAPM model of Chapter 16
and then extend this model to the three-factor Fama–French model. We will
use the data set Stock_FX_Bond_2004_to_2005.csv on the book’s website,
which contains stock prices and other financial time series for the years 2004
and 2005. Data on the Fama–French factors are available at Prof. Kenneth
French’s website

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html#Research

where RF is the risk-free rate and Mkt.RF, SMB, and HML are the Fama–French
factors.

Go to Prof. French’s website and get the daily values of RF, Mkt.RF, SMB,
and HML for the years 2004–2005. It is assumed here that you’ve put the data
in a text file FamaFrenchDaily.txt. Returns on this website are expressed as
percentages.

Now fit the CAPM to the four stocks using the lm command. This code
fits a linear regression model separately to the four responses. In each case,
the independent variable is Mkt.RF.

# Uses daily data 2004-2005

stocks = read.csv("Stock_FX_Bond_2004_to_2005.csv",header=T)
stocks_subset=as.data.frame(cbind(GM_AC,F_AC,UTX_AC,MRK_AC))
stocks_diff = as.data.frame(100*apply(log(stocks_subset),

2,diff) - FF_data$RF)
names(stocks_diff) = c("GM","Ford","UTX","Merck")

FF_data = read.table("FamaFrenchDaily.txt",header=T)
FF_data = FF_data[-1,] # delete first row since stocks_diff

# lost a row due to differencing

fit1 = lm(as.matrix(stocks_diff)~FF_data$Mkt.RF)
summary(fit1)

Problem 5 The CAPM predicts that all four intercepts will be zero. For each
stock, using α = 0.025, can you accept the null hypothesis that its intercept is
zero? Why or why not? Include the p-values with your work.

Problem 6 The CAPM also predicts that the four sets of residuals will be
uncorrelated. What is the correlation matrix of the residuals? Give a 95% con-
fidence interval for each of the six correlations. Can you accept the hypothesis
that all six correlations are zero?
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Problem 7 Regardless of your answer to Problem 6, assume for now that
the residuals are uncorrelated. Then use the CAPM to estimate the covariance
matrix of the excess returns on the four stocks. Compare this estimate with
the sample covariance matrix of the excess returns. Do you see any large
discrepancies between the two estimates of the covariance matrix?

Next, you will fit the Fama–French three-factor model. Run the following
R code, which is much like the previous code except that the regression model
has two additional predictor variables, SMB and HML.

fit2 = lm(as.matrix(stocks_diff)~FF_data$Mkt.RF +
FF_data$SMB + FF_data$HML)

summary(fit2)

Problem 8 The CAPM predicts that for each stock, the slope (beta) for SMB
and HML will be zero. Explain why the CAPM makes this prediction. Do you
accept this null hypothesis? Why or why not?

Problem 9 If the Fama–French model explains all covariances between the
returns, then the correlation matrix of the residuals should be diagonal. What
is the estimated correlations matrix? Would you accept the hypothesis that the
correlations are all zero?

Problem 10 Which model, CAPM or Fama–French, has the smaller value
of AIC? Which has the smaller value of BIC? What do you conclude from
this?

Problem 11 What is the covariance matrix of the three Fama–French fac-
tors?

Problem 12 In this problem, Stocks 1 and 2 are two stocks, not necessarily
in the Stock_FX_Bond_2004_to_2005.csv data set. Suppose that Stock 1 has
betas of 0.5, 0.4, and −0.1 with respect to the three factors in the Fama–French
model and a residual variance of 23.0. Suppose also that Stock 2 has betas of
0.6, 0.15, and 0.7 with respect to the three factors and a residual variance
of 37.0. Regardless of your answer to Problem 9, when doing this problem,
assume that the three factors do account for all covariances.

(a) Use the Fama–French model to estimate the variance of the excess return
on Stock 1.

(b) Use the Fama–French model to estimate the variance of the excess return
on Stock 2.
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(c) Use the Fama–French model to estimate the covariance between the excess
returns on Stock 1 and Stock 2.

17.9.3 Statistical Factor Models

This section applies statistical factor analysis to the log returns of 10 stocks
in the data set Stock_FX_Bond.csv. The data set contains adjusted costing
(AC) prices of the stocks, as well as daily volumes and other information that
we will not use here.

The following R code will read the data, compute the log returns, and fit a
two-factor model. Note that factanal works with the correlation matrix or,
equivalently, with standardized variables.

dat = read.csv("Stock_FX_Bond.csv")
stocks_ac = dat[,c(3,5,7,9,11,13,15,17)]
n = length(stocks_ac[,1])
stocks_returns = log(stocks_ac[-1,] / stocks_ac[-n,])
fact = factanal(stocks_returns,factors=2,,rotation="none")
print(fact)

Loadings less than the parameter cutoff are not printed. The default value
of cutoff is 0.1, but you can change it as in “print(fact,cutoff=.01)” or
“print(fact,cutoff=0)”.

Problem 13 What are the factor loadings? What are the variances of the
unique risks for Ford and General Motors?

Problem 14 Does the likelihood ratio test suggest that two factors are enough?
If not, what is the minimum number of factors that seems sufficient?

The following code will extract the loadings and uniquenesses.

loadings = matrix(as.numeric(loadings(fact)),ncol=2)
unique = as.numeric(fact$unique)

Problem 15 Regardless of your answer to Problem 6, use the two-factor
model to estimate the correlation of the log returns for Ford and IBM.

17.10 Exercises

1. The file yields2009.csv on this book’s website contains daily Treasury
yields for 2009. Perform a principal components analysis on changes in
the yields. Describe your findings. How many principal components are
needed to capture 98% of the variability?
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2. Perform a statistical factor analysis of the returns in the data set mid-
capD.ts in the fEcofin package. How many factors did you select? Use
(17.20) to estimate the covariance matrix of the returns.

3. Verify equation (17.6).
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