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Cointegration

15.1 Introduction

Cointegration analysis is a technique that is frequently applied in economet-
rics. In finance it can be used to find trading strategies based on mean-
reversion.

Suppose one could find a stock whose price (or log-price) series was sta-
tionary and therefore mean-reverting. This would be a wonderful investment
opportunity. Whenever the price was below the mean, one could buy the stock
and realize a profit when the price returned to the mean. Similarly, one could
realize profits by selling short whenever the price was above the mean. Alas,
returns are stationary but not prices. We have seen that log-prices are inte-
grated. However, not all is lost. Sometimes one can find two or more assets
with prices so closely connected that a linear combination of their prices is
stationary. Then, a portfolio using as portfolio weights the cointegrating vec-
tor, which is the vector of coefficients of this linear combination, will have a
stationary price. Cointegration analysis is a means for finding cointegration
vectors.

Two time series, Y1,t and Y2,t, are cointegrated if each is I(1) but if there
exists a λ such that Y1,t−λY2,t is stationary. For example, the common trends
model is that

Y1,t = β1Wt + ε1,t,

Y2,t = β2Wt + ε2,t,

where β1 and β2 are nonzero, the trend Wt common to both series is I(1),
and the noise processes ε1,t and ε2,t are I(0). Because of the common trend,
Y1,t and Y2,t are nonstationary but there is a linear combination of these two
series that is free of the trend so they are cointegrated. To see this, note that
if λ = β1/β2, then

β2(Y1,t − λY2,t) = β2Y1,t − β1Y2,t = β2ε1,t − β1ε2,t (15.1)

is free of the trend Wt and therefore is I(0).
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The definition of cointegration extends to more than two time series. A d-
dimensional multivariate time series is cointegrated of order r if the component
series are I(1) but r independent linear combinations of the components are
I(0) for some r, 0 < r ≤ d. Somewhat different definitions of cointegration
exist, but this one is best for our purposes.

In Section 13.2.4 we saw the danger of spurious regression when the resid-
uals are integrated. This problem should make one cautious about regression
with nonstationary time series. However, if Yt is regressed on Xt and the two
series are cointegrated, then the residuals will be I(0) so that least-squares
estimator will be consistent.

The Phillips–Ouliaris cointegration test regresses one integrated series on
others and applies the Phillips–Perron unit root test to the residuals. The
null hypothesis is that the residuals are unit root nonstationary, which implies
that the series are not cointegrated. Therefore, a small p-value implies that
the series are cointegrated and therefore suitable for regression analysis. The
residuals will still be correlated and so they should be modeled as such; see
Section 14.1.
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Fig. 15.1. Time series plots of the five yields and the residuals from a regression of
the 1-year yields on the other four yields. Also, a ACF plot of the residuals.

Example 15.1. Phillips–Ouliaris test on bond yields

This example uses three-month, six-month, one-year, two-year, and three-
year bond yields recorded daily from January 2, 1990 to October 31, 2008, for a
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total of 4714 observations. The five yields series are plotted in Figure 15.1, and
one can see that they track each other somewhat closely. This suggests that the
five series may be cointegrated. The one-year yields were regressed on the four
others and the residuals and their ACF are also plotted in Figure 15.1. The
two residual plots are ambiguous about whether the residuals are stationary,
so a test of cointegration would be helpful.

Next, the Phillips–Ouliaris test was run using the R function po.test in
the tseries package.

Phillips-Ouliaris Cointegration Test

data: dat[, c(3, 1, 2, 4, 5)]

Phillips-Ouliaris demeaned = -323.546, Truncation lag

parameter = 47, p-value = 0.01

Warning message:

In po.test(dat[, c(3, 1, 2, 4, 5)]) : p-value smaller

than printed p-value

The p-value is computed by interpolation if it is within the range of a
table in Phillips and Ouliaris (1990). In this example, the p-value is outside
the range and we know only that it is below 0.01, the lower limit of the table.
The small p-value leads to the conclusion that the residuals are stationary
and so the five series are cointegrated.

Though stationary, the residuals have a large amount of autocorrelation
and may have long-term memory. They take a long time to revert to their
mean of zero. Devising a profitable trading strategy from these yields seems
problematic.

¤

15.2 Vector Error Correction Models

The regression approach to cointegration is somewhat unsatisfactory, since
one series must be chosen as the dependent variable, and this choice must be
somewhat arbitrary. In Example 15.1, the middle yield, ordered by maturity,
was used but for no compelling reason. Moreover, regression will find only one
cointegration vector, but there could be more than one.

An alternative approach to cointegration that treats the series symmet-
rically uses a vector error correction model (VECM). In these models, the
deviation from the mean is called the “error” and whenever the stationary
linear combination deviates from its mean, then it is pushed back toward its
mean (the error is “corrected”).

The idea behind error correction is simplest when there are only two series,
Y1,t and Y2,t. In this case, the error correction model is
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∆Y1,t = φ1(Y1,t−1 − λY2,t−1) + ε1,t, (15.2)
∆Y2,t = φ2(Y1,t−1 − λY2,t−1) + ε2,t, (15.3)

where ε1,t and ε2,t are white noises. Subtracting λ times (15.3) from (15.2)
gives

∆(Y1,t − λY2,t) = (φ1 − λφ2)(Y1,t−1 − λY2,t−1) + (ε1,t − λε2,t). (15.4)

Let Ft denote the information set at time t. If (φ1 − λφ2) < 0, then
E {∆(Y1,t − λY2,t)|Ft} is opposite in sign to Y1,t−1 − λY2,t−1. This causes
error correction because whenever Y1,t−1 − λY2,t−1 is positive, its expected
change is negative and vice versa.

A rearrangement of (15.4) shows that Y1,t−1−λY2,t−1 is an AR(1) process
with coefficient 1+φ1−λφ2. Therefore, the series Y1,t−λY2,t is I(0), unit-root
nonstationary, or an explosive series in the cases where |1 + φ1 − λφ2| is less
than 1, equal to 1, and greater than 1, respectively.

If φ1 − λφ2 > 0, then 1 + φ1 − λφ2 > 1 and Y1,t − λY2,t is explosive. If
φ1 − λφ2 = 0, then 1 + φ1 − λφ2 = 1 and Y1,t − λY2,t is a random walk. If
φ1 − λφ2 < 0, then 1 + φ1 − λφ2 < 1 and Y1,t − λY2,t is stationary, unless
φ1 − λφ2 < −2 so that 1 + φ1 − λφ2 ≤ −1.

The case φ1 − λφ2 ≤ −2 is “over-correction.” The change in Y1,t − λY2,t

is in the correct direction but too large, so the series oscillates in sign but
diverges to ∞ in magnitude.

Example 15.2. Simulation of error correction model

Model (15.2)–(15.3) was simulated with φ1 = 0.5, φ2 = 0.55, and λ = 1.
A total of 5000 observations was simulated, but, for visual clarity, only every
10th observation is plotted in Figure 15.2. Neither Y1,t nor Y2,t is stationary,
but Y1,t−λY2,t is stationary. Notice how closely Y1,t and Y2,t track each other.

¤

To see how to generalize error correction to more than two series, it is useful
to rewrite equations (15.2) and 15.3) in vector form. Let Y t = (Y1,t, Y2,t)T

and εt = (ε1,t, ε2,t)T. Then

∆Y t = αβTY t−1 + εt, (15.5)

where

α =
(

φ1

φ2

)
and β =

(
1
−λ

)
, (15.6)

so that β is the cointegration vector and α specifies the speed of mean-
reversion and is called the loading matrix or adjustment matrix .
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Fig. 15.2. Simulation of an error correction model. 5000 observations were simu-
lated but only every 10th is plotted.

Model (15.5) also applies when there are d series so that Y t and εt d-
dimensional. In this case β and α are each full-rank d× r matrices for some
r ≤ d which is the number of linearly independent cointegration vectors. The
columns of β are the cointegration vectors.

Model (15.5) is a vector AR(1) [that is, VAR(1)] model but, for added
flexibility, can be extended to a VAR(p) model, and there are several ways to
do this. We will use the notation and the second of two forms of the VECM
from the function ca.jo in R’s urca package. This VECM is

∆Y t = Γ 1∆Y t−1 + · · ·+ Γ p−1∆Y t−p+1 + Π Y t−1 + µ + ΦDt + εt, (15.7)

where µ is a mean vector, Dt is a vector of nonstochastic regressors, and

Π = αβT. (15.8)

As before, β and α are each full-rank d×r matrices and α is called the loading
matrix.

It is easy to show that the columns of β are the cointegration vectors.
Since Y t is I(1), ∆Y t on the left-hand side of (15.7) is I(0) and therefore
Π Y t−1 = αβT Y t−1 on the right-hand side of (15.7) is also I(0). It follows
that each of the r components of βT Y t−1 is I(0).

Example 15.3. VECM test on bond yields

A VECM was fit to the bond yields using R’s ca.jo function. The output is
below. The eigenvalues are used to test null hypotheses of the form H0: r ≤ r0.
The values of the test statistics and critical values (for 1%, 5%, and 10%
level tests) are listed below the eigenvalues. The null hypothesis is rejected
when the test statistic exceeds the critical level. In this case, regardless of
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whether one uses a 1%, 5%, or 10% level test, one accepts that r is less than
or equal to 3 but rejects that r is less than or equal to 2, so one concludes
that r = 3. Although five cointegration vectors are printed, only the first three
would be meaningful. The cointegration vectors are the columns of the matrix
labeled “Eigenvectors, normalised to first column.” The cointegration vectors
are determined only up to multiplication by a nonzero scalar and so can be
normalized so that their first element is 1.

######################

# Johansen-Procedure #

######################

Test type: maximal eigenvalue statistic (lambda max),

with linear trend

Eigenvalues (lambda):

[1] 0.03436 0.02377 0.01470 0.00140 0.00055

Values of test statistic and critical values of test:

test 10pct 5pct 1pct

r <= 4 | 2.59 6.5 8.18 11.6

r <= 3 | 6.62 12.9 14.90 19.2

r <= 2 | 69.77 18.9 21.07 25.8

r <= 1 | 113.36 24.8 27.14 32.1

r = 0 | 164.75 30.8 33.32 38.8

Eigenvectors, normalised to first column:

(These are the cointegration relations)

X3mo.l2 X6mo.l2 X1yr.l2 X2yr.l2 X3yr.l2

X3mo.l2 1.000 1.00 1.00 1.0000 1.000

X6mo.l2 -1.951 2.46 1.07 0.0592 0.897

X1yr.l2 1.056 14.25 -3.95 -2.5433 -1.585

X2yr.l2 0.304 -46.53 3.51 -3.4774 -0.118

X3yr.l2 -0.412 30.12 -1.71 5.2322 1.938

Weights W:

(This is the loading matrix)

X3mo.l2 X6mo.l2 X1yr.l2 X2yr.l2 X3yr.l2

X3mo.d -0.03441 -0.002440 -0.011528 -0.000178 -0.000104

X6mo.d 0.01596 -0.002090 -0.007066 0.000267 -0.000170

X1yr.d -0.00585 -0.001661 -0.001255 0.000358 -0.000289

X2yr.d 0.00585 -0.000579 -0.003673 -0.000072 -0.000412

X3yr.d 0.01208 -0.000985 -0.000217 -0.000431 -0.000407

¤
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15.3 Trading Strategies

As discussed previously, price series that are cointegrated can be used in
statistical arbitrage. Unlike pure arbitrage, statistical arbitrage means an op-
portunity where a profit is only likely, not guaranteed. Pairs trading uses pairs
of cointegrated asset prices and has been a popular statistical arbitrage tech-
nique. Pairs trading requires the trader to find cointegrated pairs of assets,
to select from these the pairs that can be traded profitably after accounting
for transaction costs, and finally to design the trading strategy which includes
the buy and sell signals. A full discussion of statistical arbitrage is outside the
scope of this book, but see Section 15.4 for further reading.

Although many firms have been very successful using statistical arbitrage,
one should be mindful of the risks. One is model risk; the error-correction
model may be incorrect. Even if the model is correct, one must use estimates
based on past data and the parameters might change, perhaps rapidly. If sta-
tistical arbitrage opportunities exist, then it is possible that other traders have
discovered them and their trading activity is one reason to expect parameters
to change. Another risk is that one can go bankrupt before a stationary pro-
cess reverts to its mean. This risk is especially large because firms engaging
in statistical arbitrage are likely to be heavily leveraged. High leverage will
magnify a small loss caused when a process diverges even farther from its
mean before reverting. See Sections 2.5.2 and 15.6.3.

15.4 Bibliographic Notes

Alexander (2001), Enders (2004), and Hamilton (1994) contain useful discus-
sions of cointegration. Pfaff (2006) is a good introduction to the analysis of
cointegrated time series using R.

The MLEs and likelihood ratio tests of the parameters in (15.7) were
developed by Johansen (1991, 1995) and Johansen and Juselius (1990).

The applications of cointegration theory in statistical arbitrage are dis-
cussed by Vidyamurthy (2004) and Alexander, Giblin, and Weddington (2001).
Pole (2007) is a less technical introduction to statistical arbitrage.
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15.6 R Lab

15.6.1 Cointegration Analysis of Midcap Prices

The data set midcapD.ts in the fEcofin package has daily returns on 20
midcap stocks in columns 2–21. Columns 1 and 22 contain the date and market
returns, respectively. In this section, we will use returns on the first 10 stocks.
To find the stock prices from the returns, we use the relationship

Pt = P0 exp(r1 + · · ·+ rt),

where Pt and rt are the price and log return at time t. The returns will be used
as approximations to the log returns. The prices at time 0 are unknown, so we
will use P0 = 1 for each stock. This means that the price series we use will be
off by multiplicative factors. This does not affect the number of cointegration
vectors. If we find that there are cointegration relationships, then it would be
necessary to get the price data to investigate trading strategies.

Johansen’s cointegration analysis will be applied to the prices with the
ca.jo function in the urca package. Run

library(fEcofin)
library(urca)
x = midcapD.ts[,2:11]
prices= exp(apply(x,2,cumsum))
options(digits=3)
summary(ca.jo(prices))

Problem 1 How many cointegration vectors were found?
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15.6.2 Cointegration Analysis of Yields

This example is similar to Example 15.3 but uses different yield data. The data
are in the mk.zero2 data set in the fEcofin package. There are 55 maturities
and they are in the vector mk.maturity. We will use only the first 10 yields.
Run

library("fEcofin")
library(urca)
mk.maturity[2:11,]
summary(ca.jo(mk.zero2[,2:11]))

Problem 2 What maturities are being used? Are they short-, medium-, or
long-term, or a mixture of short- and long-term maturities?

Problem 3 How many cointegration vectors were found? Use 1% level tests.

15.6.3 Simulation

In this section, you will run simulations similar to those in Section 2.5.2. The
difference is that now the price process is mean-reverting.

Suppose a hedge fund owns a $1,000,000 position in a portfolio and used
$50,000 of its own capital and $950,000 in borrowed money for the purchase.
If the value of the portfolio falls below $950,000 at the end of any trading day,
then the hedge fund must liquidate and repay the loan.

The portfolio was selected by cointegration analysis and its price is an
AR(1) process,

(Pt − µ) = φ(Pt−1 − µ) + εt,

where Pt is the price of the portfolio at the end of trading day t, µ =
$1,030,000, φ = 0.99, and the standard deviation of εt is $5000. The hedge
fund knows that the price will eventually revert to $1,030,000 (assuming that
the model is correct and, of course, this is a big assumption). It has decided
to liquidate its position on day t if Pt ≥ $1,020,000. This will yield a profit
of at least $20,000. However, if the price falls below $950,000, then it must
liquidate and lose its entire $50,000 investment plus the difference between
$950,000 and the price at liquidation.

In summary, the hedge fund will liquidate at the end of the first day such
that the price is either above $1,020,000 or below $950,000. In the first case,
it will achieve a profit of at least $20,000 and in the second case it will suffer
a loss of at least $50,000. Presumably, the probability of a loss is small, and
we will see how small by simulation.

Run a simulation experiment similar to the one in Section 2.5.2 to answer
the following questions. Use 10,000 simulations.
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Problem 4 What is the expected profit?

Problem 5 What is the probability that the hedge fund will need to liquidate
for a loss?

Problem 6 What is the expected waiting time until the portfolio is liquidated?

Problem 7 What is the expected yearly return on the $50,000 investment?

15.7 Exercises

1. Show that (15.4) implies that Y1,t−1 − λY2,t−1 is an AR(1) process with
coefficient 1 + φ1 − λφ2.

2. In (15.2) and (15.3) there are no constants, so that Y1,t − λY2,t is a sta-
tionary process with mean zero. Introduce constants into (15.2) and (15.3)
and show how they determine the mean of Y1,t − λY2,t.

3. Verify that in Example 15.2 Y1,t − λY2,t is stationary.
4. Suppose that Y t = (Y1,t, Y2,t)T is the bivariate AR(1) process in Example

15.2. Is Y t stationary? (Hint: See Section 10.3.3.)
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