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Portfolio Theory

11.1 Trading Off Expected Return and Risk

How should we invest our wealth? Portfolio theory provides an answer to this
question based upon two principles:

• we want to maximize the expected return; and
• we want to minimize the risk, which we define in this chapter to be the

standard deviation of the return, though we may ultimately be concerned
with the probabilities of large losses.

These goals are somewhat at odds because riskier assets generally have a
higher expected return, since investors demand a reward for bearing risk. The
difference between the expected return of a risky asset and the risk-free rate
of return is called the risk premium. Without risk premiums, few investors
would invest in risky assets.

Nonetheless, there are optimal compromises between expected return and
risk. In this chapter we show how to maximize expected return subject to an
upper bound on the risk, or to minimize the risk subject to a lower bound on
the expected return. One key concept that we discuss is reduction of risk by
diversifying the portfolio.

11.2 One Risky Asset and One Risk-Free Asset

We start with a simple example with one risky asset, which could be a portfo-
lio, for example, a mutual fund. Assume that the expected return is 0.15 and
the standard deviation of the return is 0.25. Assume that there is a risk-free
asset, such as, a 90-day T-bill, and the risk-free rate is 6%, so the return on
the risk-free asset is 6%, or 0.06. The standard deviation of the return on the
risk-free asset is 0 by definition of “risk-free.” The rates and returns here are
annual, though all that is necessary is that they be in the same time units.
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286 11 Portfolio Theory

We are faced with the problem of constructing an investment portfolio that
we will hold for one time period, which is called the holding period and which
could be a day, a month, a quarter, a year, 10 years, and so forth. At the end
of the holding period we might want to readjust the portfolio, so for now we
are only looking at returns over one time period. Suppose that a fraction w
of our wealth is invested in the risky asset and the remaining fraction 1 − w
is invested in the risk-free asset. Then the expected return is

E(R) = w(0.15) + (1− w)(0.06) = 0.06 + 0.09w, (11.1)

the variance of the return is

σ2
R = w2 (0.25)2 + (1− w)2 (0)2 = w2(0.25)2,

and the standard deviation of the return is

σR = 0.25 w. (11.2)

To decide what proportion w of one’s wealth to invest in the risky asset,
one chooses either the expected return E(R) one wants or the amount of risk
σR with which one is willing to live. Once either E(R) or σR is chosen, w can
be determined.

Although σ is a measure of risk, a more direct measure of risk is actual
monetary loss. In the next example, w is chosen to control the maximum size
of the loss.

Example 11.1. Finding w to achieved a targeted value-at-risk

Suppose that a firm is planning to invest $1,000,000 and has capital re-
serves that could cover a loss of $150,000 but no more. Therefore, the firm
would like to be certain that, if there is a loss, then it is no more than 15%,
that is, that R is greater than −0.15. Suppose that R is normally distributed.
Then the only way to guarantee that R is greater than −0.15 with probability
equal to 1 is to invest entirely in the risk-free asset. The firm might instead
be more modest and require only that P (R < −0.15) be small, for example,
0.01. Therefore, the firm should find the value of w such that

P (R < −0.15) = Φ

(−0.15− (0.06 + 0.09 w)
0.25 w

)
= 0.01.

The solution is
w =

−0.21
0.25 Φ−1(0.01) + 0.9

= 0.4264.

In Chapter 19, $150,000 is called the value-at-risk (= VaR) and 1−0.01 =
0.99 is called the confidence coefficient. What was done in this example is to
find the portfolio that has a VaR of $150,000 with 0.99 confidence.

¤
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More generally, if the expected returns on the risky and risk-free assets
are µ1 and µf and if the standard deviation of the risky asset is σ1, then
the expected return on the portfolio is wµ1 + (1 − w)µf while the standard
deviation of the portfolio’s return is |w|σ1.

This model is simple but not as useless as it might seem at first. As dis-
cussed later, finding an optimal portfolio can be achieved in two steps:

1. finding the “optimal” portfolio of risky assets, called the “tangency port-
folio,” and

2. finding the appropriate mix of the risk-free asset and the tangency port-
folio.

So we now know how to do the second step. What we still need to learn
is how find the tangency portfolio.

11.2.1 Estimating E(R) and σR

The value of the risk-free rate, µf , will be known since Treasury bill rates are
published in sources providing financial information.

What should we use as the values of E(R) and σR? If returns on the asset
are assumed to be stationary, then we can take a time series of past returns
and use the sample mean and standard deviation. Whether the stationarity
assumption is realistic is always debatable. If we think that E(R) and σR

will be different from the past, we could subjectively adjust these estimates
upward or downward according to our opinions, but we must live with the
consequences if our opinions prove to be incorrect.

Another question is how long a time series to use, that is, how far back in
time one should gather data. A long series, say 10 or 20 years, will give much
less variable estimates. However, if the series is not stationary but rather has
slowly drifting parameters, then a shorter series (maybe 1 or 2 years) will be
more representative of the future. Almost every time series of returns is nearly
stationary over short enough time periods.

11.3 Two Risky Assets

11.3.1 Risk Versus Expected Return

The mathematics of mixing risky assets is most easily understood when there
are only two risky assets. This is where we start.

Suppose the two risky assets have returns R1 and R2 and that we mix
them in proportions w and 1 − w, respectively. The return on the portfolio
is Rp = wR1 + (1 − w)R2. The expected return on the portfolio is E(RP ) =
wµ1 + (1 − w)µ2. Let ρ12 be the correlation between the returns on the two
risky assets. The variance of the return on the portfolio is



288 11 Portfolio Theory

σ2
R = w2σ2

1 + (1− w)2σ2
2 + 2w(1− w)ρ12 σ1σ2. (11.3)

Note that σR1,R2 = ρ12σ1σ2.

Example 11.2. The expectation and variance of the return on a portfolio with
two risky assets

If µ1 = 0.14, µ2 = 0.08, σ1 = 0.2, σ2 = 0.15, and ρ12 = 0, then

E(RP ) = 0.08 + 0.06w.

Also, because ρ12 = 0 in this example,

σ2
RP

= (0.2)2 w2 + (0.15)2 (1− w)2.

Using differential calculus, one can easily show that the portfolio with the
minimum risk is w = 0.045/0.125 = 0.36. For this portfolio E(RP ) = 0.08 +
(0.06)(0.36) = 0.1016 and σRP

=
√

(0.2)2(0.36)2 + (0.15)2(0.64)2 = 0.12.
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Fig. 11.1. Expected return versus risk for Example 11.2. F = risk-free asset. T =
tangency portfolio. R1 is the first risky asset. R2 is the second risky asset.

The somewhat parabolic curve1 in Figure 11.1 is the locus of values of
(σR, E(R)) when 0 ≤ w ≤ 1. The leftmost point on this locus achieves the
minimum value of the risk and is called the minimum variance portfolio. The
1 In fact, the curve would be parabolic if σ2

R were plotted on the x-axis instead of
σR.
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points on this locus that have an expected return at least as large as the min-
imum variance portfolio are called the efficient frontier. Portfolios on the ef-
ficient frontier are called efficient portfolios or, more precisely, mean-variance
efficient portfolios.2 The points labeled R1 and R2 correspond to w = 1 and
w = 0, respectively. The other features of this figure are explained in Sec-
tion 11.4. ¤

In practice, the mean and standard deviations of the returns can be es-
timated as discussed in Section 11.2.1 and the correlation coefficient can be
estimated by the sample correlation coefficient. Alternatively, in Chapter 17
factor models are used to estimate expected returns and the covariance matrix
of returns.

11.4 Combining Two Risky Assets with a Risk-Free
Asset

Our ultimate goal is to find optimal portfolios combining many risky assets
with a risk-free asset. However, many of the concepts needed for this task can
be first understood most easily when there are only two risky assets.

11.4.1 Tangency Portfolio with Two Risky Assets

As mentioned in Section 11.3.1, each point on the efficient frontier in Fig-
ure 11.1 is (σRP

, E(Rp)) for some value of w between 0 and 1. If we fix w,
then we have a fixed portfolio of the two risky assets. Now let us mix that
portfolio of risky assets with the risk-free asset. The point F in Figure 11.1
gives (σRP , E(R)) for the risk-free asset; of course, σRP = 0 at F. The possible
values of (σRP

, E(Rp)) for a portfolio consisting of the fixed portfolio of two
risky assets and the risk-free asset is a line connecting the point F with a
point on the efficient frontier, for example, the dashed line. The dotted line
connecting F with R2 mixes the risk-free asset with the second risky asset.

Notice that the dashed and dotted line connecting F with the point labeled
T lies above the dashed line connecting F and the typical portfolio. This means
that for any value of σRP

, the dashed and dotted line gives a higher expected
return than the dashed line. The slope of each line is called its Sharpe’s ratio,
named after William Sharpe, whom we will meet again in Chapter 16. If
E(RP ) and σRP are the expected return and standard deviation of the return
on a portfolio and µf is the risk-free rate, then

E(RP )− µf

σRP

(11.4)

2 When a risk-free asset is available, then the efficient portfolios are no longer those
on the efficient frontier but rather are characterized by Result 11.4.1 ahead.
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is Sharpe’s ratio of the portfolio. Sharpe’s ratio can be thought of as a “reward-
to-risk” ratio. It is the ratio of the reward quantified by the “excess expected
return” to the risk as measured by the standard deviation.

A line with a larger slope gives a higher expected return for a given level
of risk, so the larger Sharpe’s ratio, the better regardless of what level of risk
one is willing to accept. The point T on the parabola represents the portfolio
with the highest Sharpe’s ratio. It is the optimal portfolio for the purpose of
mixing with the risk-free asset. This portfolio is called the tangency portfolio
since its line is tangent to the efficient frontier.

Result 11.4.1 The optimal or efficient portfolios mix the tangency portfolio
with the risk-free asset. Each efficient portfolio has two properties:

• it has a higher expected return than any other portfolio with the same or
smaller risk, and

• it has a smaller risk than any other portfolio with the same or higher
expected return.

Thus we can only improve (reduce) the risk of an efficient portfolio by accept-
ing a worse (smaller) expected return, and we can only improve (increase) the
expected return of an efficient portfolio by accepting worse (higher) risk.

Note that all efficient portfolios use the same mix of the two risky assets,
namely, the tangency portfolio. Only the proportion allocated to the tangency
portfolio and the proportion allocated to the risk-free asset vary.

Given the importance of the tangency portfolio, you may be wondering
“how do we find it?” Again, let µ1, µ2, and µf be the expected returns on the
two risky assets and the return on the risk-free asset. Let σ1 and σ2 be the
standard deviations of the returns on the two risky assets and let ρ12 be the
correlation between the returns on the risky assets.

Define V1 = µ1 − µf and V2 = µ2 − µf , the excess expected returns. Then
the tangency portfolio uses weight

wT =
V1σ

2
2 − V2ρ12 σ1σ2

V1σ2
2 + V2σ2

1 − (V1 + V2)ρ12 σ1σ2
(11.5)

for the first risky asset and weight (1− wT ) for the second.
Let RT , E(RT ), and σT be the return, expected return, and standard

deviation of the return on the tangency portfolio. Then E(RT ) and σT can
be found by first finding wT using (11.5) and then using the formulas

E(RT ) = wT µ1 + (1− wT )µ2

and
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σT =
√

w2
T σ2

1 + (1− wT )2σ2
2 + 2wT (1− wT )ρ12σ1σ2 .

Example 11.3. The tangency portfolio with two risky assets

Suppose as before that µ1 = 0.14, µ2 = 0.08, σ1 = 0.2, σ2 = 0.15, and
ρ12 = 0. Suppose as well that µf = 0.06. Then V1 = 0.14 − 0.06 = 0.08 and
V2 = 0.08 − 0.06 = 0.02. Plugging these values into formula (11.5), we get
wT = 0.693 and 1− wt = 0.307. Therefore,

E(RT ) = (0.693)(0.14) + (0.307)(0.08) = 0.122,

and
σT =

√
(0.693)2(0.2)2 + (0.307)2(0.15)2 = 0.146.

¤

11.4.2 Combining the Tangency Portfolio with the Risk-Free Asset

Let Rp be the return on the portfolio that allocates a fraction ω of the in-
vestment to the tangency portfolio and 1 − ω to the risk-free asset. Then
Rp = ωRT + (1− ω)µf = µf + ω(RT −Rf ), so that

E(Rp) = µf + ω{E(RT )− µf} and σRp = ωσT .

Example 11.4. (Continuation of Example 11.2)

What is the optimal investment with σRp = 0.05?

Answer: The maximum expected return with σRp = 0.05 mixes the tangency
portfolio and the risk-free asset such that σRp = 0.05. Since σT = 0.146, we
have that 0.05 = σRp = ω σT = 0.146 ω, so that ω = 0.05/0.146 = 0.343 and
1− ω = 0.657.

So 65.7% of the portfolio should be in the risk-free asset, and 34.3% should
be in the tangency portfolio. Thus (0.343)(69.3%) = 23.7% should be in the
first risky asset and (0.343)(30.7%) = 10.5% should be in the second risky
asset. The total is not quite 100% because of rounding. The allocation is
summarized in Table 11.1. ¤

Example 11.5. (Continuation of Example 11.2)

Now suppose that you want a 10% expected return. Compare

• the best portfolio of only risky assets, and
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Table 11.1. Optimal allocation to two risky assets and the risk-free asset to achieve
σR = 0.05.

Asset Allocation (%)

risk-free 65.7
risky 1 23.7
risky 2 10.5

Total 99.9

• The best portfolio of the risky assets and the risk-free asset.

Answer: The best portfolio of only risky assets uses w solving 0.1 = w(0.14)+
(1− w)(0.08), which implies that w = 1/3. This is the only portfolio of risky
assets with E(Rp) = 0.1, so by default it is best. Then

σRP
=

√
w2(0.2)2 + (1− w)2(0.15)2 =

√
(1/9)(0.2)2 + 4/9(0.15)2 = 0.120.

The best portfolio of the two risky assets and the risk-free asset can be found
as follows. First, 0.1 = E(R) = µf + ω{E(RT ) − µf} = 0.06 + 0.062 ω =
0.06 + 0.425 σR, since σRP

= ω σT or ω = σRP
/σT = σRP

/0.146. This implies
that σRP = 0.04/0.425 = 0.094 and ω = 0.04/0.062 = 0.645. So combining
the risk-free asset with the two risky assets reduces σRP from 0.120 to 0.094
while maintaining E(Rp) at 0.1. The reduction in risk is (0.120 − 0.094)/0.094
= 28%, which is substantial. ¤

Table 11.2. Minimum value of σR as a function of the available assets. In all cases,
the expected return is 0.1. When only the risk-free asset and the second risky asset
are available, then a return of 0.1 is achievable only if buying on margin is permitted.

Available Assets Minimum σR

first risky, risk-free 0.1
2nd risky, risk-free 0.3
Both riskies 0.12
All three 0.094

11.4.3 Effect of ρ12

Positive correlation between the two risky assets increases risk. With positive
correlation, the two assets tend to move together which increases the volatility
of the portfolio. Conversely, negative correlation is beneficial since decreases
risk. If the assets are negatively correlated, a negative return of one tends
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Fig. 11.2. Efficient frontier and tangency portfolio when µ1 = 0.14, µ2 = 0.09,
σ1 = 0.2, σ2 = 0.15, and µf = 0.03. The value of ρ12 is varied from 0.7 to −0.7.

to occur with a positive return of the other so the volatility of the portfolio
decreases. Figure 11.2 shows the efficient frontier and tangency portfolio when
µ1 = 0.14, µ2 = 0.09, σ1 = 0.2, σ2 = 0.15, and µf = 0.03. The value of ρ12 is
varied from 0.7 to −0.7. Notice that Sharpe’s ratio of the tangency portfolio
returns increases as ρ12 decreases. This means that when ρ12 is small, then
efficient portfolios have less risk for a given expected return compared to when
ρ12 is large.

11.5 Selling Short

Often some of the weights in an efficient portfolio are negative. A negative
weight on an asset means that this asset is sold short. Selling short is a way
to profit if a stock price goes down. To sell a stock short, one sells the stock
without owning it. The stock must be borrowed from a broker or another
customer of the broker. At a later point in time, one buys the stock and gives
it back to the lender. This closes the short position.

Suppose a stock is selling at $25/share and you sell 100 shares short. This
gives you $2500. If the stock goes down to $17/share, you can buy the 100
shares for $1700 and close out your short position. You made a profit of $800
(ignoring transaction costs) because the stock went down 8 points. If the stock
had gone up, then you would have had a loss.

Suppose now that you have $100 and there are two risky assets. With your
money you could buy $150 worth of risky asset 1 and sell $50 short of risky
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asset 2. The net cost would be exactly $100. If R1 and R2 are the returns on
risky assets 1 and 2, then the return on your portfolio would be

3
2
R1 +

(
−1

2

)
R2.

Your portfolio weights are w1 = 3/2 and w2 = −1/2. Thus, you hope that
risky asset 1 rises in price and risky asset 2 falls in price. Here, again, we have
ignored transaction costs.

If one sells a stock short, one is said to have a short position in that stock,
and owning the stock is called a long position.

11.6 Risk-Efficient Portfolios with N Risky Assets

In this section, we use quadratic programming to find efficient portfolios with
an arbitrary number of assets. An advantage of quadratic programming is
that it allows one to impose constraints such as limiting short sales.

Assume that we have N risky assets and that the return on the ith risky
asset is Ri and has expected value µi. Define

R =




R1
...

RN




to be the random vector of returns,

E(R) = µ =




µ1
...

µN


 ,

and Σ to be the covariance matrix of R.
Let

w =




w1
...

wN




be a vector of portfolio weights so that w1 + · · ·+ wN = 1Tω = 1, where

1 =




1
...
1




is a column of N ones. The expected return on the portfolio is

N∑

i=1

ωiµi = ωTµ. (11.6)



11.6 Risk-Efficient Portfolios with N Risky Assets 295

Suppose there is a target value, µP , of the expected return on the portfolio.
When N = 2, the target expected returns is achieved by only one portfolio
and its w1-value solves µP = w1µ1 + w2µ2 = µ2 + w1(µ1 − µ2). For N ≥ 3,
there will be an infinite number of portfolios achieving the target µP . The
one with the smallest variance is called the “efficient” portfolio. Our goal is
to find the efficient portfolio.

The variance of the return on the portfolio with weights w is

wTΣw. (11.7)

Thus, given a target µP , the efficient portfolio minimizes (11.7) subject to

wTµ = µP (11.8)

and
wT1 = 1. (11.9)

Quadratic programming is used to minimize a quadratic objective function
subject to linear constraints. In applications to portfolio optimization, the ob-
jective function is the variance of the portfolio return. The objective function
is a function of N variables, such as, the weights of N assets, that are denoted
by an N × 1 vector x. Suppose that the quadratic objective function to be
minimized is

1
2
xTDx− dTx, (11.10)

where D is an N ×N matrix and d is an N × 1 vector. The factor of 1/2 is
not essential but is used here to keep our notation consistent with R. There
are two types of linear constraints on x, inequality and equality constraints.
The linear inequality constraints are

AT
neqx ≥ bneq, (11.11)

where Aneq is an m×N matrix, bneq is an m×1 vector, and m is the number
of inequality constraints. The equality constraints are

AT
eqx = beq, (11.12)

where Aeq is an n×N matrix, beq is an n× 1 vector, and n is the number of
equality constraints. Quadratic programming minimizes the quadratic objec-
tive function (11.10) subject to linear inequality constraints (11.11) and linear
equality constraints (11.12).

To apply quadratic programming to find an efficient portfolio, we use x =
w, D = 2Σ, and d equal to an N×1 vector of zeros so that (11.10) is wTΣw,
the return variance of the portfolio. There are two equality constraints, one
that the weights sum to 1 and the other that the portfolio return is a specified
target µP . Therefore, we define

AT
eq =

(
1T

µT

)
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and

beq =
(

1
µP

)
,

so that (11.12) becomes
(

1Tw
µTw

)
=

(
1

µP

)
,

which is the same as constraints (11.8) and (11.9).
Investors often wish to impose additional inequality constraints. If an in-

vestor cannot or does not wish to sell short, then the constraints

w ≥ 0

can be used. Here 0 is a vector of zeros. In this case Aneq is the N×N identical
matrix and bneq = 0.

To avoid concentrating the portfolio in just one or a few stocks, an investor
may wish to constrain the portfolio so that no wi exceeds a bound λ, for
example, λ = 1/4 means that no more than 1/4 of the portfolio can be in any
single stock. In this case, w ≤ λ1 or equivalently −w ≥ −λ1, so that Aneq

is minus the N ×N identity matrix and bneq = −λ1. One can combine these
constraints with those that prohibit short selling.

To find the efficient frontier, one uses a grid of values of µP and finds
the corresponding efficient portfolios. For each portfolio, σ2

P , which is the
minimized value of the objective function, can be calculated. Then one can
find the minimum variance portfolio by finding the portfolio with the smallest
value of the σ2

P . The efficient frontier is the set of efficient portfolios with
expected return above the expected return of the minimum variance portfolio.
One can also compute Sharpe’s ratio for each portfolio on the efficient frontier
and the tangency portfolio is the one maximizing Sharpe’s ratio.

Example 11.6. Finding the efficient frontier, tangency portfolio, and minimum
variance portfolio using quadratic programming

The following R program uses the returns on three stocks, GE, IBM, and
Mobil, in the CRSPday data set in the Ecdat package. The function solve.QP
in the quadprog package is used for quadratic programming. solve.QP com-
bines AT

eq and AT
neq into a single matrix Amat by stacking AT

eq on top of AT
neq.

The parameter meq is the number of rows of AT
eq. beq and bneq are handled

analogously. In this example, there are no inequality constraints, so AT
neq and

bneq are not needed, but they are used in the next example.
The efficient portfolio is found for each of 300 target values of µP between

0.05 and 0.14. For each portfolio, Sharpe’s ratio is found and the logical vector
ind indicates which portfolio is the tangency portfolio maximizing Sharpe’s
ratio. Similarly, ind2 indicates the minimum variance portfolio. It is assumed
that the risk-free rate is 1.3%/year.
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library(Ecdat)

library(quadprog)

data(CRSPday)

R = 100*CRSPday[,4:6]

mean_vect = apply(R,2,mean)

cov_mat = cov(R)

sd_vect = sqrt(diag(cov_mat))

Amat = cbind(rep(1,3),mean_vect) # set the constraints matrix

muP = seq(.05,.14,length=300) # set of 300 possible target values

# for the expect portfolio return

sdP = muP # set up storage for std dev’s of portfolio returns

weights = matrix(0,nrow=300,ncol=3) # storage for portfolio weights

for (i in 1:length(muP)) # find the optimal portfolios for

# each target expected return

{

bvec = c(1,muP[i]) # constraint vector

result =

solve.QP(Dmat=2*cov_mat,dvec=rep(0,3),Amat=Amat,bvec=bvec,meq=2)

sdP[i] = sqrt(result$value)

weights[i,] = result$solution

}

postscript("quad_prog_plot.ps",width=6,height=5)

plot(sdP,muP,type="l",xlim=c(0,2.5),ylim=c(0,.15),lty=3) # plot

# the efficient frontier (and inefficient portfolios

# below the min var portfolio)

mufree = 1.3/253 # input value of risk-free interest rate

points(0,mufree,cex=4,pch="*") # show risk-free asset

sharpe =( muP-mufree)/sdP # compute Sharpe’s ratios

ind = (sharpe == max(sharpe)) # Find maximum Sharpe’s ratio

options(digits=3)

weights[ind,] # print the weights of the tangency portfolio

lines(c(0,2),mufree+c(0,2)*(muP[ind]-mufree)/sdP[ind],lwd=4,lty=2)

# show line of optimal portfolios

points(sdP[ind],muP[ind],cex=4,pch="*") # show tangency portfolio

ind2 = (sdP == min(sdP)) # find the minimum variance portfolio

points(sdP[ind2],muP[ind2],cex=2,pch="+") # show min var portfolio

ind3 = (muP > muP[ind2])

lines(sdP[ind3],muP[ind3],type="l",xlim=c(0,.25),

ylim=c(0,.3),lwd=2) # plot the efficient frontier

text(sd_vect[1],mean_vect[1],"GE",cex=1.5)

text(sd_vect[2],mean_vect[2],"IBM",cex=1.5)

text(sd_vect[3],mean_vect[3],"Mobil",cex=1.5)

graphics.off()

The plot produced by this program is Figure 11.3. The program prints the
weights of the tangency portfolio, which are
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Fig. 11.3. Efficient frontier (solid), line of efficient portfolios (dashed) connecting
the risk-free asset and tangency portfolio (asterisks), and the minimum variance
portfolio (plus) with three stocks (GE, IBM, and Mobil). The three stocks are also
shown on reward-risk space.

> weights[ind,] # Find tangency portfolio

[1] 0.5512 0.0844 0.3645

¤

Example 11.7. Finding the efficient frontier, tangency portfolio, and minimum
variance portfolio with no short selling using quadratic programming

In this example, Example 11.6 is modified so that short sales are not
allowed. Only three lines of code need to be changed. When short sales are
prohibited, the target expected return on the portfolio must lie between the
smallest and largest expected returns on the stocks. This is enforced by the
following change:

muP = seq(min(mean_vect)+.0001,max(mean_vect)-.0001,length=300)

To enforce no short sales, an Aneq matrix is needed and is set equal to a 3×3
identity matrix:

Amat = cbind(rep(1,3),mean_vect,diag(1,nrow=3))

# set the constraints matrix
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Also, bneq is set equal to a three-dimensional vector of zeros:

bvec = c(1,muP[i],rep(0,3))
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Fig. 11.4. Efficient frontier (solid), line of efficient portfolios (dashed) connecting
the risk-free asset and tangency portfolio (asterisks), and the minimum variance
portfolio (plus) with three stocks (GE, IBM, and Mobil) with short sales prohibited.

The new plot is shown in Figure 11.4. Since the tangency portfolio in Ex-
ample 11.6 had all weights positive, the tangency portfolio is unchanged by
the prohibition of short sales. The efficient frontier is changed since without
short sales, it is impossible to have expected returns greater than the expected
return of GE, the stock with the highest expected return. In contrast, when
short sales are allowed, there is no upper bound on the expected return (or
on the risk).

¤

11.7 Resampling and Efficient Portfolios

When N is small, the theory of portfolio optimization can be applied using
sample means and the sample covariance matrix as in the previous examples.
However, the effects of estimation error, especially with larger values of N , can
result in portfolios that only appear efficient. This problem will be investigated
in this section.
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Example 11.8. The global asset allocation problem

One application of optimal portfolio selection is allocation of capital to dif-
ferent market segments. For example, Michaud (1998) discusses a global asset
allocation problem where capital must be allocated to “U.S. stocks and govern-
ment/corporate bonds, euros, and the Canadian, French, German, Japanese,
and U.K. equity markets.” Here we look at a similar example where we allo-
cate capital to the equity markets of 10 different countries. Monthly returns for
these markets were calculated from MSCI Hong Kong, MSCI Singapore, MSCI
Brazil, MSCI Argentina, MSCI UK, MSCI Germany, MSCI Canada, MSCI
France, MSCI Japan, and the S&P 500. “MSCI” means “Morgan Stanley
Capital Index.” The data are from January 1988 to January 2002, inclusive,
so there are 169 months of data.

Assume that we want to find the tangency portfolio that maximizes
Sharpe’s ratio. The tangency portfolio was estimated using sample means and
the sample covariance as in Example 11.6, and its Sharpe’s ratio is estimated
to be 0.3681. However, we should suspect that 0.3681 must be an overestimate
since this portfolio only maximizes Sharpe’s ratio using estimated parameters,
not the true means and covariance matrix. To evaluate the possible amount of
overestimation, one can use the bootstrap. As discussed in Chapter 6, in the
bootstrap simulation experiment, the sample is the “true population” so that
the sample mean and covariance matrix are the “true parameters,” and the
resamples mimic the sampling process. Actual Sharpe’s ratios are calculated
with the sample means and covariance matrix, while estimated Sharpe’s ratio
use the means and covariance matrix of the resamples.

First, 250 resamples were taken and for each the tangency portfolio was
estimated. Resampling was done by sampling rows of the data matrix as dis-
cussed in Section 7.11. For each of the 250 tangency portfolios estimated from
the resamples, the actual and estimated Sharpe’s ratios were calculated. Box-
plots of the 250 actual and 250 estimated Sharpe’s ratios are in Figure 11.5(a).
In this figure, there is a dashed horizontal line at height 0.3681, the actual
Sharpe’s ratio of the true tangency portfolio. One can see that all 250 es-
timated tangency portfolios have actual Sharpe’s ratios below this value, as
they must since the actual Sharpe’s ratio is maximized by the true tangency
portfolio, not the estimated tangency portfolios.

From the boxplot on the right-hand side of (a), one can see that the esti-
mated Sharpe’s ratios overestimate not only the actual Sharpe’s ratios of the
estimated tangency portfolios but also the somewhat larger (and unattain-
able) actual Sharpe’s ratio of the true (but unknowable) tangency portfolio.

¤

There are several ways to alleviate the problems caused by estimation
error when attempting to find a tangency portfolio. One can try to find more
accurate estimators; the factor models of Chapter 17 and Bayes estimators of
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Fig. 11.5. Bootstrapping estimation of the tangency portfolio and its Sharpe’s ratio.
(a) Short sales allowed. The left-hand boxplot is of the actual Sharpe’s ratios of the
estimated tangency portfolios for 250 resamples. The right-hand boxplot contains the
estimated Sharpe’s ratios for these portfolios. The horizontal dashed line indicates
Sharpe’s ratio of the true tangency portfolio. (b) Same as (a) but with short sales
not allowed.

Chapter 20 (see especially Example 20.12) do this. Another possibility is to
restrict short sales.

Portfolios with short sales aggressively attempt to maximize Sharpe’s ra-
tio by selling short those stocks with the smallest estimated mean returns
and having large long positions in those stocks with the highest estimated
mean returns. The weakness with this approach is that it is particularly sen-
sitive to estimation error. Unfortunately, expected returns are estimated with
relatively large uncertainty. This problem can be seen in Figure 11.6, which
contains KDEs of the bootstrap distributions of the mean returns, and Ta-
ble 11.3, which has 95% confidence intervals for the mean returns. The per-
centile method is used for the confidence intervals, so the endpoints are the
2.5 and 97.5 bootstrap percentiles. Notice for Singapore and Japan, the con-
fidence intervals include both positive and negative values. In the figure and
the table, the returns are expressed as percentage returns.

Example 11.9. The global asset allocation problem: short sales prohibited

This example repeats the bootstrap experimentation of Example 11.8 with
short sales prohibited by using inequality constraints such as in Example 11.7.
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Fig. 11.6. Kernel density estimates of the bootstrap distribution of the sample mean
return for global asset allocation problem. Returns are expressed as percentages.

With short sales not allowed, the actual Sharpe’s ratio of the true tangency
portfolio is 0.3503, which is only slightly less than when short sales are allowed.

Boxplots of actual and apparent Sharpe’s ratios are in Figure 11.5(b).
Comparing Figures 11.5(a) and (b), one sees that prohibiting short sales has
two beneficial effects—Sharpe’s ratios actually achieved are slightly higher
with no short sales allowed compared to having no constraints on short sales.
In fact, the mean of the 250 actual Sharpe’s ratios is 0.3060 with short sales
allowed and 0.3169 with short sales prohibited. Moreover, the overestimation
of Sharpe’s ratio is reduced by prohibiting short sales—the mean apparent
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Table 11.3. 95% percentile-method bootstrap confidence intervals for the mean re-
turns of the 10 countries.

Country 2.5% 97.5%

Hong Kong 0.186 2.709
Singapore −0.229 2.003
Brazil 0.232 5.136
Argentina 0.196 6.548
UK 0.071 1.530
Germany 0.120 1.769
Canada 0.062 1.580
France 0.243 2.028
Japan −0.884 0.874
U.S. 0.636 1.690

Sharpe’s ratio is 0.4524 [with estimation error (0.4524−0.3681) = 0.0843] with
short sales allowed by only 0.4038 [with estimation error (0.4038− 0.3503) =
0.0535] with short sales prohibited. However, these effects, though positive,
are only modest and do not entirely solve the problem of overestimation of
Sharpe’s ratio.

¤

Example 11.10. The global asset allocation problem: Shrinkage estimation and
short sales prohibited

In Example 11.9, we saw that shrinkage estimation can increase Sharpe’s
ratio of the estimated tangency portfolio, but the improvement is only modest.
Further improvement requires more accurate estimation of the mean vector
or the covariance matrix of the returns.

This example investigates possible improvements from shrinking the 10
estimated means toward each other. Specifically, if Y i is the sample mean of
the ith country, Y = (

∑10
i=1 Y i)/10 is the grand mean (mean of the means),

and α is a tuning parameter between 0 and 1, then the estimated mean return
for the ith country is

µ̂i = αY i + (1− α)Y . (11.13)

The purpose of shrinkage is to reduce the variance of the estimator, though
the reduced variance comes at the expense of some bias. Since it is the mean of
10 means, Y is much less variable than any of Y 1, . . . , Y 10. Therefore, Var(µ̂i)
decreases as α is decreased toward 0. However,

E(µ̂i) = αµi +
1− α

10

10∑

i=1

µi (11.14)
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so that, for any α 6= 1, µ̂i is biased, except under the very likely circumstance
that µ1 = · · · = µ10. The parameter α controls the bias–variance tradeoff. In
this example, α = 1/2 will be used for illustration and short sales will not be
allowed.
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Fig. 11.7. Bootstrapping estimation of the tangency portfolio and its Sharpe’s ra-
tio. Short sales not allowed. (a) No shrinkage. The left-hand boxplot is of the actual
Sharpe’s ratios of the estimated tangency portfolios for 250 resamples. The right-
hand boxplot contains the estimated Sharpe’s ratios for these portfolios. The hori-
zontal dashed line indicates Sharpe’s ratio of the true tangency portfolio. (b) Same
as (a) but with shrinkage.

Figure 11.7 compares the performance of shrinkage versus no shrinkage.
Panel (a) contains the boxplots that we saw in panel (b) of Figure 11.5 where
α = 1. Panel (b) has the boxplots when the tangency portfolio is estimated
using α = 1/2. Compared to panel (a), in panel (b) the actual Sharpe’s ratios
are somewhat closer to the dashed line indicating Sharpe’s ratio of the true
tangency portfolio. Moreover, the estimated Sharpe’s ratios in (b) are smaller
and closer to the true Sharpe’s ratios, so there is less overoptimization—
shrinkage has helped in two ways.

The next step might be selection of α to optimize performance of shrinkage
estimation. Doing this need not be difficult, since different values of α can be
compared by bootstrapping.

¤
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There are other methods for improving the estimation of the mean vector
and estimation of the covariance matrix can be improved as well, for example,
by using the factor models in Chapter 17 or Bayesian estimation as in Chap-
ter 20. Moreover, one need not focus on the tangency portfolio but could,
for example, estimate the minimum variance portfolio. Whatever the focus
of estimation, the bootstrap can be used to compare various strategies for
improving the estimation of the optimal portfolio.

11.8 Bibliographic Notes

Markowitz (1952) was the original paper on portfolio theory and was ex-
panded into the book Markowitz (1959). Bodie and Merton (2000) provide
an elementary introduction to portfolio selection theory. Bodie, Kane, and
Marcus (1999) and Sharpe, Alexander, and Bailey (1999) give a more com-
prehensive treatment. See also Merton (1972). Formula (11.5) is derived in
Example 5.10 of Ruppert (2004).

Jobson and Korkie (1980) and Britten-Jones (1999) discuss the statistical
issue of estimating the efficient frontier; see the latter for additional recent
references. Britten-Jones (1999) shows that the tangency portfolio can be
estimated by regression analysis and hypotheses about the tangency portfolio
can be tested by regression F -tests. Jagannathan and Ma (2003) discuss how
imposing constraints such as no short sales can reduce risk.
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11.10 R Lab

11.10.1 Efficient Equity Portfolios

This section uses daily stock prices in the data set Stock FX Bond.csv that
is posted on the book’s website and in which any variable whose name ends
with “AC” is an adjusted closing price. As the name suggests, these prices
have been adjusted for dividends and stock splits, so that returns can be
calculated without further adjustments. Run the following code which will
read the data, compute the returns for six stocks, create a scatterplot matrix
of these returns, and compute the mean vector, covariance matrix, and vector
of standard deviations of the returns. Note that returns will be percentages.

dat = read.csv("Stock_FX_Bond.csv",header=T)
prices = cbind(dat$GM_AC,dat$F_AC,dat$CAT_AC,dat$UTX_AC,

dat$MRK_AC,dat$IBM_AC)
n = dim(prices)[1]
returns = 100*(prices[2:n,]/prices[1:(n-1),] - 1)
pairs(returns)
mean_vect = apply(returns,2,mean)
cov_mat = cov(returns)
sd_vect = sqrt(diag(cov_mat))

Problem 1 Write an R program to find the efficient frontier, the tangency
portfolio, and the minimum variance portfolio, and plot on “reward-risk
space” the location of each of the six stocks, the efficient frontier, the tan-
gency portfolio, and the line of efficient portfolios. Use the constraints that
−0.1 ≤ wj ≤ 0.5 for each stock. The first constraint limits short sales but
does not rule them out completely. The second constraint prohibits more than
50% of the investment in any single stock. Assume that the annual risk-free
rate is 3% and convert this to a daily rate by dividing by 365, since interest
is earned on trading as well as nontrading days.

Problem 2 If an investor wants an efficient portfolio with an expected daily
return of 0.07%, how should the investor allocate his or her capital to the six
stocks and to the risk-free asset? Assume that the investor wishes to use the
tangency portfolio computed with the constraints −0.1 ≤ wj ≤ 0.5, not the
unconstrained tangency portfolio.
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Problem 3 Does this data set include Black Monday?

11.11 Exercises

1. Suppose that there are two risky assets, A and B, with expected returns
equal to 2.3% and 4.5%, respectively. Suppose that the standard devia-
tions of the returns are

√
6% and

√
11% and that the returns on the assets

have a correlation of 0.17.
(a) What portfolio of A and B achieves a 3% rate of expected return?
(b) What portfolios of A and B achieve a

√
5.5% standard deviation of

return? Among these, which has the largest expected return?
2. Suppose there are two risky assets, C and D, the tangency portfolio is

65% C and 35% D, and the expected return and standard deviation of the
return on the tangency portfolio are 5% and 7%, respectively. Suppose also
that the risk-free rate of return is 1.5%. If you want the standard deviation
of your return to be 5%, what proportions of your capital should be in
the risk-free asset, asset C, and asset D?

3. (a) Suppose that stock A shares sell at $75 and stock B shares at $115.
A portfolio has 300 shares of stock A and 100 of stock B. What are
the weights w and 1− w of stocks A and B in this portfolio?

(b) More generally, if a portfolio has N stocks, if the price per share of
the jth stock is Pj , and if the portfolio has nj shares of stock j, then
find a formula for wj as a function of n1, . . . , nN and P1, . . . , PN .

4. Let RP be a return of some type on a portfolio and let R1, . . . ,RN be
the same type of returns on the assets in this portfolio. Is

RP = w1R1 + · · ·+ wNRN

true if RP is a net return? Is this equation true if RP is a gross return?
Is it true if RP is a log return? Justify your answers.

5. Suppose one has a sample of monthly log returns on two stocks with
sample means of 0.0032 and 0.0074, sample variances of 0.017 and 0.025,
and a sample covariance of 0.0059. For purposes of resampling, consider
these to be the “true population values.” A bootstrap resample has sample
means of 0.0047 and 0.0065, sample variances of 0.0125 and 0.023, and a
sample covariance of 0.0058.
(a) Using the resample, estimate the efficient portfolio of these two stocks

that has an expected return of 0.005; that is, give the two portfolio
weights.

(b) What is the estimated variance of the return of the portfolio in part
(a) using the resample variances and covariances?

(c) What are the actual expected return and variance of return for the
portfolio in (a) when calculated with the true population values (e.g.,
with using the original sample means, variances, and covariance)?
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6. Stocks 1 and 2 are selling for $100 and $125, respectively. You own 200
shares of stock 1 and 100 shares of stock 2. The weekly returns on these
stocks have means of 0.001 and 0.0015, respectively, and standard devia-
tions of 0.03 and 0.04, respectively. Their weekly returns have a correlation
of 0.35. Find the covariance matrix of the weekly returns on the two stocks,
the mean and standard deviation of the weekly returns on the portfolio,
and the one-week VaR(0.05) for your portfolio.


	11 Portfolio Theory
	11.1 Trading Off Expected Return and Risk
	11.2 One Risky Asset and One Risk-Free Asset
	11.2.1 Estimating E(R) and σR

	11.3 Two Risky Assets
	11.3.1 Risk Versus Expected Return

	11.4 Combining Two Risky Assets with a Risk-FreeAsset
	11.4.1 Tangency Portfolio with Two Risky Assets
	11.4.2 Combining the Tangency Portfolio with the Risk-Free Asset
	11.4.3 Effect of ρ12

	11.5 Selling Short
	11.6 Risk-Efficient Portfolios with N Risky Assets
	11.7 Resampling and Efficient Portfolios
	11.8 Bibliographic Notes
	11.9 References
	11.10 R Lab
	11.10.1 Efficient Equity Portfolios

	11.11 Exercises


