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Time Series Models: Further Topics

10.1 Seasonal ARIMA Models

Economic time series often exhibit strong seasonal variation. For example,
an investor in mortgage-backed securities might be interested in predicting
future housing starts, and these are usually much lower in the winter months
compared to the rest of the year. Figure 10.1(a) is a time series plot of the
logarithms of quarterly urban housing starts in Canada from the first quarter
of 1960 to final quarter of 2001. The data are in the data set Hstarts in R’s
Ecdat package.
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Fig. 10.1. Logarithms of quarterly urban housing starts in Canada. (a) Time series
plot. (b) ACF. (c) Boxplots by quarter.

Figure 10.1 shows one and perhaps two types of nonstationarity: (1) There
is strong seasonality, and (2) it unclear whether the seasonal subseries revert to
a fixed mean and, if not, then this is a second type of nonstationarity because
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the process is integrated. These effects can also be seen in the ACF plot
in Figure 10.1(b). At lags that are a multiples of four, the autocorrelations
are large, and decay slowly to zero. At other lags, the autocorrelations are
smaller but also decay somewhat slowly. The boxplots in Figure 10.1(c) give
us a better picture of the seasonal effects. Housing starts are much lower in
the first quarter than other quarters, jump to a peak in the second quarter,
and then drop off slightly in the last two quarters.

Other time series might have only seasonal nonstationarity. For example,
monthly average temperatures in a city with a temperate climate will show
a strong seasonal effect, but if we plot temperatures for any single month of
the year, say July, we will see mean-reversion.

10.1.1 Seasonal and nonseasonal differencing

Nonseasonal differencing is the type of differencing that we have been using
so far. The series Yt is replaced by ∆Yt = Yt − Yt−1 if the differencing is first
order, and so forth for higher-order differencing. Nonseasonal differencing does
not remove seasonal nonstationarity and does not alone create a stationary
series; see the top row of Figure 10.2.

To remove seasonal nonstationary, one uses seasonal differencing. Let s be
the period. For example, s = 4 for quarterly data and s = 12 for monthly
data. Define ∆s = 1−Bs so that ∆sYt = Yt − Yt−s.

Be careful to distinguish between ∆s = 1−Bs and ∆s = (1−B)s. ∆s = 1−
Bs is the first-order seasonal differencing operator while ∆s = (1−B)s is the
sth-order nonseasonal differencing operator. For example, ∆2Yt = Yt − Yt−2

but ∆2Yt = Yt − 2Yt−1 + Yt−2.
The series ∆sYt is called the seasonally differenced series. See the middle

row of Figure 10.2 for the seasonally differenced logs of housing starts and its
ACF.

One can combine seasonal and nonseasonal differencing by using, for ex-
ample, for first -rder differences

∆(∆sYt) = ∆(Yt − Yt−s) = (Yt − Yt−s)− (Yt−1 − Yt−s−a).

The order in which the seasonal and nonseasonal difference operators are
applied does not matter, since one can show that

∆(∆sYt) = ∆s(∆Yt).

For a seasonal time series, seasonal differencing is necessary, but whether
also to use nonseasonal differencing will depend on the particular time series.
For the housing starts data, the seasonally differenced series appears station-
ary so only seasonal differencing is absolutely needed, but combining seasonal
and nonseasonal differencing might be preferred since it results in a simpler
model.
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Fig. 10.2. Time series (left column) and ACF plots (right column) of the loga-
rithms of quarterly urban housing starts with nonseasonal differencing (top row),
seasonal differencing (middle row), and both seasonal and nonseasonal differencing
(bottom row). Note: In the ACF plots, lag = 1 means a lag of one year, which is
four observations for quarterly data.

10.1.2 Multiplicative ARIMA Models

One of the simplest seasonal models is the ARIMA{(1, 1, 0)×(1, 1, 0)s} model,
which puts together the nonseasonal ARIMA(1,1,0) model

(1− φB)(∆Yt − µ) = εt (10.1)

and a purely seasonal ARIMA(1,1,0)s model

(1− φ∗Bs)(∆sYt − µ) = εt (10.2)

to obtain the multiplicative model
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(1− φB) (1− φ∗Bs) {∆s(∆Yt)− µ} = εt. (10.3)

Model (10.2) is called “purely seasonal” and has a subscript “s” since it uses
only Bs and ∆s; it is obtained from the ARIMA(1,1,0) by replacing B and
∆ by Bs and ∆s. For a monthly time series (s = 12), model (10.2) gives
12 independent processes, one for Januaries, a second for Februaries, and so
forth. Model (10.3) uses the components from (10.1) to tie these 12 series
together.

The ARIMA{(p, d, q)× (ps, ds, qs)s} process is

(1− φ1 B − · · · − φp Bp) {1− φ∗1 Bs − · · · − φ∗ps
(Bs)ps} {∆d(∆ds

s Yt)− µ}
= (1 + θ1 B + . . . + θq Bq) {1 + θ∗1 Bs + . . . + θqs (Bs)qs} εt. (10.4)

This process multiplies together the AR components, the MA components,
and the differencing components of two processes: the nonseasonal ARIMA
(p, d, q) process

(1− φ1 B − · · · − φp Bp) {(∆dYt)− µ} = (1 + θ1 B + . . . + θq Bq) εt

and the seasonal ARIMA(ps, ds, qs)s process

{1−φ∗1 Bs−· · ·−φ∗ps
(Bs)ps} {(∆ds

s Yt)−µ} = {1+θ∗1 Bs + . . .+θqs (Bs)qs} εt.

Example 10.1. ARIMA{(1, 1, 1)× (0, 1, 1)4} model for housing starts

We return to the housing starts data. The first question is whether to dif-
ference only seasonally, or both seasonally and nonseasonally. The seasonally
differenced quarterly series in the middle row of Figure 10.2 is possibly sta-
tionary, so perhaps seasonal differencing is sufficient. However, the ACF of the
seasonally and nonseasonally differenced series in the bottom row has a sim-
pler ACF than the data that are only seasonally differenced. By differencing
both ways, we should be able find a more parsimonious ARMA model.

Two models with seasonal and nonseasonal differencing were tried, ARI-
MA {(1, 1, 1) × (1, 1, 1)4} and ARIMA {(1, 1, 1) × (0, 1, 1)4}. Both provided
good fits and had residuals that passed the Ljung–Box test. The second of the
two models was selected, because it has one fewer parameter than the first,
though the other model would have been a reasonable choice. The results from
fitting the chosen model are

Call:
arima(x = hst, order = c(1, 1, 1), seasonal
= list(order = c(0, 1, 1), period = 4))

Coefficients:
ar1 ma1 sma1
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0.675 -0.890 -0.822
s.e. 0.142 0.105 0.051

sigma^2 estimated as 0.0261: log-likelihood = 62.9,
aic = -118

Thus, the fitted model is

(1− 0.675 B)Y ∗
t = (1− 0.890 B)(1− 0.822 B4) εt

where Y ∗
t = ∆(∆4Yt) and εt is white noise.

Figure 10.3 shows forecasts from this model for the four years following
the end of the time series.
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Fig. 10.3. Forecasting logarithms of quarterly urban housing starts using the
ARIMA{(1, 1, 1) × (0, 1, 1)4} model. The dashed line connects the data, the dotted
line connects the forecasts, and the solid lines are the forecast limits.

When the size of the seasonal oscillations increases, as with the air passen-
ger data in Figure 9.2, some type of preprocessing is needed before differenc-
ing. Often, taking logarithms stabilizes the size of the oscillations. This can be
seen in Figure 10.4. Box, Jenkins, and Reinsol (2008) obtain a parsimonious
fit to the log passengers with an ARIMA(0, 1, 1)× (0, 1, 1)12 model.

For the housing starts series, the data come as logarithms in the Ecdat
package. If they had come untransformed, then we would have needed to apply
some type of transformation.



262 10 Time Series Models: Further Topics

1950 1952 1954 1956 1958 1960

5.
0

5.
5

6.
0

6.
5

year

lo
g(

pa
ss

en
ge

rs
)

Fig. 10.4. Time series plot of the logarithms of the monthly totals of air passengers
(in thousands).

10.2 Box–Cox Transformation for Time Series

As just discussed, it is often desirable to transform a time series to stabilize the
size of the variability, both seasonal and random. Although a transformation
can be selected by trial-and-error, another possibility is automatic selection
by maximum likelihood estimation using the model

(∆dY
(α)
t − µ) = φ1(∆dY

(α)
t−1 − µ) + · · ·+ φp(∆dY

(α)
t−p − µ)

+ εt + θ1εt−1 + · · ·+ θqεt−q, (10.5)

where ε1, ε2, . . . is Gaussian white noise. Model (10.5) states that after a Box–
Cox transformation, Yt follows an ARIMA model with Gaussian noise that
has a constant variance. The transformation parameter α is considered un-
known and is estimated by maximum likelihood along with the AR and MA
parameters and the noise variance. For notational simplicity, (10.5) uses a
nonseasonal model, but a seasonal ARIMA model could just as easily have
been used.

Example 10.2. Selecting a transformation for the housing starts

Figure 10.5 show the profile likelihood for α for the housing starts series
(not the logarithms). The ARIMA model was ARIMA{(1, 1, 1) × (1, 1, 1)4}.
The figure was created by the BoxCox.Arima function in R’s FitAR package.
This function denotes the transformation parameter by λ. The MLE of α
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is 0.34 and the 95% confidence interval is roughly from 0.15 to 0.55. Thus,
the log transformation (α = 0) is somewhat outside the confidence interval,
but the square-root transformation is in the interval. Nonetheless, the log
transformation worked satisfactorily in Example 10.1 and might be retained.

Without further analysis, it is not clear why α = 0.34 achieves a better fit
than the log transformation. Better fit could mean that the ARIMA model
fits better, that the noise variability is more nearly constant, that the noise
is closer to being Gaussian, or some combination of these effects. It would
be interesting to compare forecasts using the log and square-root transforma-
tions to see in what ways, if any, the square-root transformation outperforms
the log transformation for forecasting. The forecasts would need to be back-
transformed to the original scale in order for them to be comparable. One
might use the final year as test data to see how well housing starts in that
year are forecast.
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Fig. 10.5. Profile likelihood for α (called λ in the legend) in the housing start
example. Values of λ with R(λ) (the profile likelihood) above the horizontal line are
in the 95% confidence limit.

Data transformations can stabilize some types of variation in time se-
ries, but not all types. For example, in Figure 9.2 the seasonal oscillations in
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the numbers of air passengers increase as the series itself increases, and we
can see in Figure 10.4 that a log transformation stabilizes these oscillations.
In contrast, the S&P 500 returns in Figure 4.1 exhibit periods of low and
high volatility even though the returns maintain a mean near 0. Transforma-
tions cannot remove this type of volatility clustering. Instead, the changes of
volatility should be modeled by a GARCH process; this topic is pursued in
Chapter 18.

10.3 Multivariate Time Series

Suppose that for each t, Y t = (Y1,t, . . . , Yd,t) is a d-dimensional random vec-
tor representing quantities that were measured at time t, e.g., returns on d
equities. Then Y 1, Y2 . . . is called a d-dimensional multivariate time series.

The definition of stationarity for multivariate time series is the same as
given before for univariate time series. A multivariate time series said to be
stationary if for every n and m, Y1, . . . , Yn and Y 1+m, . . . , Yn+m have the
same distributions.

10.3.1 The cross-correlation function

Suppose that Yj and Yj′ are the two component series of a stationary multi-
variate time series. The cross-correlation function (CCF) between Yj and Yj′

is defined as
ρYj ,Yj′ (k) = Corr{Yj(t), Yj′(t− k)} (10.6)

and is the correlation between Yj at a time t and Yj′ at k time units earlier.
As with autocorrelation, k is called the lag. However, unlike the ACF, the
CCF is not symmetric in the lag variable k, that is, ρYj ,Yj′ (k) 6= ρYj ,Yj′ (−k).
Instead, as a direct consequence of definition (10.6), we have that ρYj ,Yj′ (k) =
ρYj′ ,Yj (−k).

The CCF can be defined for multivariate time series that are not stationary
but only weakly stationary. A multivariate time series Y 1, . . . is said to be
weakly stationary if the mean and covariance matrix of Y t do not depend on
t and if the right-hand side of (10.6) is independent of t for all j, j′, and k.

Cross-correlations can suggest how the component series might be influ-
encing each other or might be influenced by a common factor. Like all corre-
lations, cross-correlations only show statistical association, not causation, but
causal relationship might be deduced from other knowledge.

Example 10.3. Cross-correlation between changes in CPI (Consumer Price In-
dex) and IP (industrial production)

The cross-correlation function between changes in CPI and changes in IP
is plotted in Figure 10.6, which was created by the ccf function in R. The
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largest absolute cross-correlations are at positive lags and these correlations
are negative. This means that an above-average (below-average) change in
CPI predicts a future change in IP that is below (above) average. As just em-
phasized, correlation does not imply causation, so we cannot say that changes
in CPI cause opposite changes in future IP, but the two series behave as if
this were happening. Correlation does imply predictive ability. Therefore, if
we observe an above-average change in CPI, then we should predict future
changes in IP that will be below average. In practice, we should use the cur-
rently observed changes in both CPI and IP, not just CPI, to predict future
changes in IP. We will discuss prediction using two or more related time series
in Section 10.3.4.
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Fig. 10.6. CCF for ∆CPI and ∆IP. Note the negative correlation at negative lags,
that is, between the CPI and future values of IP.

10.3.2 Multivariate White Noise

A d-dimensional multivariate time series ε1, ε2, . . . is a weak WN(µ, Σ) process
if

1. E(εt) = µ for all t,
2. COV(εt) = Σ for all t, and
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3. for all t 6= t′, all components of εt are uncorrelated with all components
of εt′ .

Notice that if Σ is not diagonal, then there is cross-correlation between
the components of εt because Corr(εj,t, εj′,t) = Σj,j′ ; in other words, there
may be nonzero contemporaneous correlations. However, for all 1 ≤ j, j′ ≤ d,
Corr(εj,t, εj′,t′) = 0 if t 6= t′.

Furthermore, ε1, ε2, . . . is an i.i.d. WN(µ, Σ) process if, in addition to
conditions 1–3, ε1, ε2, . . . are independent and identically distributed. If
ε1, ε2, . . . are also multivariate normally distributed, then they are a Gaus-
sian WN(µ,Σ) process.

10.3.3 Multivariate ARMA processes

A d-dimensional multivariate time series Y 1, . . . is a multivariate ARMA(p, q)
process with mean µ if for p× p matrices Φ1, . . . , Φp and Θ1, . . . , Θq,

Y t −µ = Φ1(Y t−1 −µ) + · · ·+ Φp(Y t−p −µ) + Θ1εt−1 + · · ·+ Θqεt−q + εt,
(10.7)

where ε1, . . . , εn is a multivariate WN(0, Σ) process. Multivariate AR pro-
cesses (the case q = 0) are also called vector AR or VAR processes and are
widely used in practice.

As an example, a bivariate AR(1) process can be written as
(

Y1,t − µ1

Y2,t − µ2

)
=

(
φ1,1 φ1,2

φ2,1 φ2,2

)(
Y1,t−1 − µ1

Y2,t−1 − µ2

)
+

(
ε1,t

ε2,t

)
,

where

Φ = Φ1 =
(

φ1,1 φ1,2

φ2,1 φ2,2

)
.

Therefore,

Y1,t = µ1 + φ1,1(Y1,t−1 − µ1) + φ1,2(Y2,t−1 − µ2) + ε1,t

and
Y2,t = µ2 + φ2,1(Y1,t−1 − µ1) + φ2,2(Y2,t−1 − µ2) + ε2,t,

so that φi,j is the amount of “influence” of Yj,t−1 on Yi,t. Similarly, for a
bivariate AR(p) process, φk

i,j (the i, jth component of Φk) is the influence of
Yj,t−k on Yi,t, k = 1, . . . , p.

For a d-dimensional AR(1), it follows from (10.7) with p = 1 and Φ = Φ1

that
E(Y t|Y t−1) = µ + Φ(Y t−1 − µ). (10.8)

How does E(Y t) depend on the more distant past, say on Y t−2? To answer
this question, we can generalize (10.8). To keep notation simple, assume that
the mean has been subtracted from Y t so that µ = 0. Then
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Y t = ΦY t−1 + εt = Φ{ΦY t−1 + εt−1}+ εt

and, because E(εt−1|Y t−2) = 0 and E(εt|Y t−2) = 0,

E(Y t|Y t−2) = Φ2Y t−2.

By similar calculations,

E(Y t|Y t−k) = ΦkY t−k, for all k > 0. (10.9)

It can be shown using (10.9), that the mean will explode if any of the
eigenvectors of Φ are greater than 1 in magnitude. In fact, an AR(1) process
is stationary if and only if all of the eigenvalues of Φ are less than 1 in absolute
value. The eigen function in R can be used to find the eigenvalues.

Example 10.4. A bivariate AR model for ∆CPI and ∆IP

This example uses the CPI and IP data sets discussed in earlier examples.
Bivariate AR processes were fit to (∆ CPI, ∆ IP) using R’s function ar. AIC
as a function of p is shown below. The two best-fitting models are AR(1) and
AR(5), with the latter being slightly better by AIC. Although BIC is not part
of ar’s output, it can be calculated easily since BIC = AIC + {log(n)− 2}p.
Because {log(n)−2} = 2.9 in this example, it is clear that BIC is much smaller
for the AR(1) model than for the AR(5) model. For this reason and because
the AR(1) model is so much simpler to analyze, we will use the AR(1) model.

p 0 1 2 3 4
AIC 127.99 0.17 1.29 5.05 3.40

5 6 7 8 9 10
0.00 6.87 9.33 10.83 13.19 14.11

The results of fitting the AR(1) model are

Φ̂ =
(

0.767 0.0112
−0.330 0.3014

)

and

Σ̂ =
(

5.68e− 06 3.33e− 06
3.33e− 06 6.73e− 05

)
. (10.10)

ar does not estimate µ, but µ can be estimated by the sample mean, which
is is (0.00173, 0.00591).

It is useful to look at the two off-diagonals of Φ̂. Since Φ1,2 = 0.01 ≈ 0,
Y2,t−1 (lagged IP) has little influence on Y1,t (CPI), and since Φ2,1 = −0.330,
Y1,t−1 (lagged CPI) has a substantial negative effect on Y2,t (IP). It should
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be emphasized that “effect” means statistical association, not necessarily cau-
sation. This agrees with what we found when looking at the CCF for these
series in Example 10.3.

How does IP depend on CPI further back in time? To answer this question
we look at the (1,2) elements of the following powers of Φ:

Φ̂
2

=
(

0.58 0.012
−0.35 0.087

)
, Φ̂

3
=

(
0.44 0.010
−0.30 0.022

)
,

Φ̂
4

=
(

0.34 0.0081
−0.24 0.0034

)
, and Φ̂

5
=

(
0.26 0.0062
−0.18 −0.0017

)
.

What is interesting here is that the (1,2) elements, that is, −0.35, −0.30,
−0.24, and −0.18, decay to zero slowly, much like the CCF. This helps ex-
plain why the AR(1) model fits the data well. This behavior where the cross-
correlations are all negative and decay only slowly to zero is quite different
from the behavior of the ACF of a univariate AR(1) process. For the later,
the correlations either are all positive or else alternate in sign, and in either
case, unless the lag-1 correlation is nearly equal to 1, the correlations decay
rapidly to 0.

In contrast to these negative correlations between ∆ CPI and future ∆ IP,
it follows from (10.10) that the white noise series has a positive, albeit small,
correlation of 3.33/

√
(5.68)(67.3) = 0.17. The white noise series represents

unpredictable changes in the ∆ CPI and ∆ IP series, so we see that the un-
predictable changes have positive correlation. In contrast, the negative corre-
lations between ∆ CPI and future ∆ IP concern predictable changes.

Figure 10.7 shows the ACF of the ∆ CPI and ∆ IP residuals and the CCF
of these residuals. There is little auto- or cross-correlation in the residuals at
nonzero lags, indicating that the AR(1) has a satisfactory fit.

Figure 10.7 was produced by the acf function in R. When applied to a mul-
tivariate time series, acf creates a matrix of plots. The univariate ACFs are
on the main diagonal, the ccf’s at positive lags are above the main diagonal,
and the CCFs at negative values of lag below the main diagonal.

¤

10.3.4 Prediction Using Multivariate AR Models

Forecasting with multivariate AR processes is much like forecasting with
univariate AR processes. Given a multivariate AR(p) time series Y 1, . . . , Y n,
the forecast of Y n+1 is

Ŷ n+1 = µ̂ + Φ̂1(Y n − µ̂) + · · ·+ Φ̂p(Y n+1−p − µ̂),

the forecast of Y n+2 is
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Fig. 10.7. The ACF and CCF for the residuals when fitting a bivariate AR(1)
model to (∆CPI, ∆ IP). Top left: The ACF of ∆CPI residuals. Top right: The CCF
of ∆CPI and ∆IP residuals with positive values of lag. Bottom left: The CCF of
∆CPI and ∆IP residuals with negative values of lag. Bottom right: The ACF of
∆IP residuals.

Ŷ n+2 = µ̂ + Φ̂1(Ŷ n+1 − µ̂) + · · ·+ Φ̂p(Y n+2−p − µ̂),

and so forth, so that for all k,

Ŷ n+k = µ̂ + Φ̂1(Ŷ n+k−1 − µ̂) + · · ·+ Φ̂p(Ŷ n+k−p − µ̂), (10.11)

where we use the convention that Ŷ t = Y t if t ≤ n. For an AR(1) model,
repeated application of (10.11) shows that

Ŷ n+k = µ̂ + Φ̂
k

1(Y n − µ̂). (10.12)

Example 10.5. Using a bivariate AR(1) model to predict CPI and IP

The ∆CPI and ∆IP series were forecast using (10.12) with estimates found
in Example 10.4. Figure 10.8 shows forecasts up to 10 months ahead for both
CPI and IP. Figure 10.9 show forecast limits computed by simulation using
the techniques described in Section 9.12.2 generalized to a multivariate time
series.

¤
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Fig. 10.8. Forecasts of changes in CPI (solid) and changes in IP (dashed) using
a bivariate AR(1) model. The number of time units ahead is k. At k = 0, the last
observed values of the time series are plotted. The two horizontal lines are at the
means of the series, and the forecasts will asymptote to these lines as k →∞.

10.4 Long-Memory Processes

10.4.1 The Need for Long-Memory Stationary Models

In Chapter 9, ARMA processes were used to model stationary time series.
Stationary ARMA processes have only short memories in that their auto-
correlation functions decay to zero exponentially fast. That is, there exist a
D > 0 and r < 1 such that

ρ(k) < D|r|k

for all k. In contrast, many financial time series appear to have long memory
since their ACFs decay at a (slow) polynomial rather than a (fast) exponential
rate, that is,

ρ(k) ∼ Dk−α

for some D and α > 0. A polynomial rate of decay is sometimes called a hy-
perbolic rate. In this section, we will introduce the fractional ARIMA models,
which include stationary processes with long memory.

10.4.2 Fractional Differencing

The most widely used models for stationary, long-memory processes use frac-
tional differencing. For integer values of d we have
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Fig. 10.9. Forecast limits (dashed) for changes in CPI and IP computed by simu-
lation and forecasts (solid). At lag = 0, the last observed changes are plotted so the
widths of the forecast intervals are zero.

∆d = (1−B)d =
d∑

k=0

(
d
k

)
(−B)k. (10.13)

In this subsection, the definition of ∆d will be extended to noninteger values
of d. The only restriction on d will be that d > −1.

Let Γ (t) =
∫∞
0

xt−1e−xdx, for any t > 0, be the gamma function previ-
ously defined by (5.13). Integration by parts shows that

Γ (t) = (t− 1)Γ (t− 1) (10.14)

and simple integration shows that Γ (1) = 1. It follows that for any integer
t, we have Γ (t + 1) = t!. Therefore, the definition of t! can be extended to
all t > 0 if t! is defined as Γ (t + 1) whenever t > 0. Moreover, (10.14) allows
the definition of Γ (t) to be extended to all t except nonnegative integers. For
example, Γ (1/2) = −(1/2) Γ (−1/2), so we can define Γ (−1/2) as −2 Γ (1/2).
However, this device does not work if t is 0 or a negative integer. For example,
Γ (1) = 0Γ (0) does not give us a way to define Γ (0). In summary, Γ (t) can be
defined for all real t except 0,−1,−2, . . . and therefore t! can be defined for
all real values of t except the negative integers.

We can now define (
d
k

)
=

d!
k!(d− k)!

(10.15)

for any d except negative integers and any integer k ≥ 0, except if d is an
integer and k > d, in which case d− k is a negative integer and (d− k)! is not
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defined. In the latter case, we define
(

d
k

)
to be 0, so

(
d
k

)
is defined for all

d except negative integers and for all integer k ≥ 0. Only values of d greater
than −1 are needed for modeling long-memory processes, so we will restrict
attention to this case.

The function f(x) = (1− x)d has an infinite Taylor series expansion

(1− x)d =
∞∑

k=0

(
d
k

)
(−x)k. (10.16)

Since
(

d
k

)
= 0 if k > 0 and d > −1 is integer, when d is an integer we have

(1− x)d =
∞∑

k=0

(
d
k

)
(−x)k =

d∑

k=0

(
d
k

)
(−x)k. (10.17)

The right-hand side of (10.17) is the usual finite binomial expansion for d a
nonnegative integer, so (10.16) extends the binomial expansion to all d > −1.
Since (1− x)d is defined for all d > −1, we can define ∆d = (1−B)d for any
d > −1. In summary, if d > −1, then

∆dYt =
∞∑

k=0

(
d
k

)
(−1)kYt−k. (10.18)

10.4.3 FARIMA Processes

Yt is a fractional ARIMA(p, d, q) process, also called an ARFIMA or FARIMA
(p, d, q) process, if ∆dYt is an ARMA(p, q) process. We say that Yt is a fraction-
ally integrated process of order d or, simply, I(d) process. This is, of course,
the previous definition of an ARIMA process extended to noninteger values
of d. Usually, d ≥ 0, with d = 0 being the ordinary ARMA case, but d could
be negative. If −1/2 < d < 1/2, then the process is stationary. If 0 < d < 1/2,
then it is a long-memory stationary processes.

If d > 1
2 , then Yt can be differenced an integer number of times to become

a stationary process, though perhaps with long-memory. For example, if 1
2 <

d < 1 1
2 , then ∆Yt is fractionally integrated of order d− 1 ∈ (−1

2 , 1
2 ) and ∆Yt.

has long-memory if 1 < d < 11
2 so that d− 1 ∈ (0, 1

2 ).
Figure 10.10 shows time series plots and sample ACFs for simulated

FARIMA(0, d, 0) processes with n = 2500 and d = −0.35, 0.35, and 0.7. The
last case is nonstationary. The R function simARMA0 in the longmemo package
was used to simulate the stationary series. For the case d = 0.7, simARMA0
was used to simulate an FARIMA(0,−0.3, 0) series and this was integrated to
create a FARIMA(0, d, 0) with d = −0.3 + 1 = 0.7. As explained in Section
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Fig. 10.10. Time series plots (left) and sample ACFs (right) for simulated
FARIMA(0, d, 0). The top series is stationary with short-term memory. The middle
series is stationary with long-term memory. The bottom series is nonstationary.

9.9, integration is implemented by taking partial sums, and this was done with
R’s function cumsum.

The FARIMA(0, 0.35, 0) process has a sample ACF with drops below 0.5
almost immediately but then persists well beyond 30 lags. This behavior is
typical of stationary processes with long memory. A short-memory stationary
process would not have autocorrelations persisting that long, and a nonsta-
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tionary processes would not have a sample ACF that dropped below 0.5 so
quickly.

Note that the case d = −0.35 in Figure 10.10 has an ACF with a negative
lag-1 autocorrelation and little additional autocorrelation. This type of ACF
is often found when a time series is differenced once. After differencing, an
MA term is needed to accommodate the negative lag-1 autocorrelated. A more
parsimonious model can sometimes be used if the differencing is fractional.
For example, consider the third series in Figure 10.10. If it is differenced once,
then a series with d = −0.3 is the result. However, if it is differenced with
d = 0.7, then white noise is the result. This can be seen in the ACF plots in
Figure 10.11.
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Fig. 10.11. ACF plots for the simulated FARIMA(0, 0.7, 0) series in Figure 10.10
after differencing using d = 0.7 and 1.

Example 10.6. Inflation rates—FARIMA modeling

This example used the inflation rates that have been studied already in
Chapter 9. From the analysis in that chapter it was unclear whether to model
the series as I(0) or I(1). Maybe it would be better to have a compromise
between these alternatives. Now, with the new tool of fractional integration,
we can try differencing with d between 0 and 1. There is some reason to believe
that fractional differencing is suitable for this example, since the ACF plot in
Figure 9.3 is similar to that of the d = 0.35 plot in Figure 10.10.

The function fracdiff in R’s fracdiff package will fit a FARIMA (p, d, q)
process. The values of p, d, and q must be input; I am not aware of any R
function that will chose p, d, and q automatically in the way this can be
done for an ARIMA process (that is, with d restricted to be an integer) using
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auto.arima. First, a trial value of d was chosen by using fracdiff with
p = q = 0, the default values. The estimate was d̂ = 0.378. Then, the inflation
rates were fractionally differenced using this value of d and auto.arima was
applied to the fractionally differenced series. The result was that BIC selected
p = q = d = 0. The value d = 0 means that no further differencing is applied
to the already fractionally differenced series. Fractional differencing was done
with the diffseries function in R’s fracdiff package.

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

d = 0

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

d = 0.4

0 5 10 15 20 25

−0
.4

0.
2

0.
8

Lag

A
C

F

d = 1

Fig. 10.12. ACF plots for the inflation rates series with differencing using d = 0,
0.4, and 1.

Figure 10.12 has ACF plots of the original series and the series differenced
with d = 0, 0.4 (from rounding 0.378), and 1. The first series has a slowly
decaying ACF typical of a long-memory process, the second series looks like
white noise, and the third series has negative autocorrelation at lag-1 which
indicates overdifferencing.

The conclusion is that a white noise process seems to be a suitable model
for the fractionally differenced series and the original series can be model as
FARIMA(0,0.378,0), or, perhaps, more simply as FARIMA(0,0.4,0).

Differencing a stationary process creates another stationary process, but
the differenced process often has more complex autocorrelation structure com-
pared to the original process. Therefore, one should not overdifference a time
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series. However, if d is restricted to integer values, then often, as in this ex-
ample, overdifferencing cannot be avoided.

¤

10.5 Bootstrapping Time Series

The resampling methods introduced in Chapter 6 are designed for i.i.d. uni-
variate data but are easily extended to multivariate data. As discussed in
Section 7.11, if Y1, . . . , Yn is a sample of vectors, then one resamples the Y i

themselves, not their components, to maintain the covariance structure of the
data in the resamples.

It is not immediately obvious whether one can resample a time series
Y1, Y2, . . . , Yn. A time series is essentially a sample of size 1 from a stochastic
process. Resampling a sample of size 1 in the usual way is a futile exercise—
each resample is the original sample, so one learns nothing by resampling.
Therefore, resampling of a time series requires new ideas.

Model-based resampling is easily adapted to time series. The resamples
are obtained by simulating the time series model. For example, if the model
is ARIMA(p, 1, q), then the resamples start with simulated samples of an
ARMA(p, q) model with MLEs (from the differenced series) of the autoregres-
sive and moving average coefficients and the noise variance. The resamples are
the sequences of partial sums of the simulated ARMA(p, q) process.

Model-free resampling of a time series is accomplished by block resampling,
also called the block bootstrap, which can be implemented using the tsboot
function in R’s boot package. The idea is to break the time series into roughly
equal-length blocks of consecutive observations, to resample the blocks with
replacment, and then to paste the blocks together. For example, if the time
series is of length 200 and one uses 10 blocks of length 20, then the blocks
are the first 20 observations, the next 20, and so forth. A possible resample
is the fourth block (observations 61 to 80), then the last block (observations
181 to 200), then the second block (observations 21 to 40), then the fourth
block again, and so on until there are 10 blocks in the resample.

A major issue is how best to select the block length. The correlations in
the original sample are preserved only within blocks, so a large block size is
desirable. However, the number of possible resamples depends on the number
of blocks, so a large number of blocks is also desirable. Obviously, there must
be a tradeoff between the block size and the number of blocks. A full discussion
of block bootstraping is beyond the scope of this book, but see Section 10.6
for further reading.
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10.6 Bibliographic Notes

Beran (1994) is a standard reference for long-memory processes, and Beran
(1992) is a good introduction to this topic. Most of the time series textbooks
listed in Section 9.15 discuss seasonal ARIMA models. Enders (2004) has a
section of bootstrapping time series and a chapter on multivariate time series.
Reinsel (2003) is an in-depth treatment of multivariate time series; see also
Hamilton (1994) for this topic. Transfer function models are another method
for analyzing multivariate time series; see Box, Jenkins, and Reinsel (2008).
Davison and Hinkley (1997) discuss both model-based and block resampling
of time series and other types of dependent data. Lahiri (2003) provides an
advanced and comprehensive account of block resampling. Bühlmann (2002)
is a review article about bootstrapping time series.
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10.8 R Lab

10.8.1 Seasonal ARIMA Models

This section uses seasonally nonadjusted quarterly data on income and con-
sumption in the UK. Run the following code to load the data and plot the
variable consumption.
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library("Ecdat")
data(IncomeUK)
consumption = IncomeUK[,2]
plot(consumption)

Problem 1 Describe the behavior of consumption. What types of differenc-
ing, seasonal, nonseasonal, or both, would you recommend? Do you recom-
mend fitting a seasonal ARIMA model to the data with or without a log trans-
formation? Consider also using ACF plots to help answer these questions.

Problem 2 Regardless of your answers to Problem 1, find an ARIMA model
that provides a good fit to log(consumption). What order model did you
select? (Give the orders of the nonseasonal and seasonal components.)

Problem 3 Check the ACF of the residuals from the model you selected in
Problem 2. Do you see any residual autocorrelation?

Problem 4 Apply auto.arima to log(consumption) using BIC. What model
is selected?

Problem 5 Forecast log(consumption) for the next eight quarters using the
models you found in Problems 2 and 4. Plot the two sets of forecasts in side-by-
side plots with the same limits on the x- and y-axes. Describe any differences
between the two sets of forecasts.

Note: To predict an arima object (an object returned by the arima func-
tion), use the predict function. To learn how the predict function works
on an arima object, use ?predict.Arima. To forecast an object returned by
auto.arima, use the forecast function in the forecast package. For ex-
ample, the following code will forecast eight quarters ahead using the object
returned by auto.arima and then plot the forecasts.

fitAutoArima = auto.arima(logConsumption,ic="bic")
foreAutoArima = forecast(fitAutoArima,h=8)
plot(foreAutoArima,xlim=c(1985.5,1987.5),ylim=c(10.86,11))

10.8.2 VAR Models

This section uses data on the 91-day Treasury bill, the real GDP, and the
inflation rate. Run the following R code to read the data, find the best-fitting
multivariate AR to changes in the three series, and check the residual corre-
lations.
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data(Tbrate,package="Ecdat")
# r = the 91-day Treasury bill rate
# y = the log of real GDP
# pi = the inflation rate
del_dat = diff(Tbrate)
var1 = ar(del_dat,order.max=4,aic=T)
var1
acf(var1$resid[-1,])

Problem 6 For this problem, use the notation of equation (10.7) with q = 0.

(a) What is p and what are the estimates Φ1, . . . , Φp?
(b) What is the estimated covariance matrix of εt?
(c) If the model fits adequately, then there should be no residual auto- or

cross-correlation. Do you believe that the model does fit adequately?

Problem 7 The last three changes in r, y, and pi are given next. What are
the predicted values of the next set of changes in these series?

r y pi
-1.41 -0.019420 2.31
-0.48 0.015147 -1.01
0.66 0.003303 0.31

10.8.3 Long-Memory Processes

This section uses changes in the square root of the Consumer Price Index.
The following code creates this time series.

data(Mishkin,package="Ecdat")
cpi = as.vector(Mishkin[,5])
DiffSqrtCpi = diff(sqrt(cpi))

Problem 8 Plot DiffSqrtCpi and its ACF. Do you see any signs of long
memory? If so, describe them.

Run the following code to estimate the amount of fractional differencing,
fractionally difference DiffSqrtCpi appropriately, and check the ACF of the
fractionally differenced series.

library("fracdiff")
fit.frac = fracdiff(DiffSqrtCpi,nar=0,nma=0)
fit.frac$d
fdiff = diffseries(DiffSqrtCpi,fit.frac$d)
acf(fdiff)
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Problem 9 Do you see any short- or long-term autocorrelation in the frac-
tionally differenced series?

Problem 10 Fit an ARIMA model to the fractionally differenced series using
auto.arima. Compare the models selected using AIC and BIC.

10.8.4 Model-Based Bootstrapping of an ARIMA Process

This example uses the price of frozen orange juice. Run the following code to
fit an ARIMA model.

library(AER)
library(forecast)
data("FrozenJuice")
price = FrozenJuice[,1]
plot(price)
auto.arima(price,ic="bic")

The output from auto.arima, which is needed for model-based bootstrapping,
is

Series: price
ARIMA(2,1,0)

Coefficients:
ar1 ar2

0.2825 0.0570
s.e. 0.0407 0.0408

sigma^2 estimated as 9.989: log likelihood = -1570.11
AIC = 3146.23 AICc = 3146.27 BIC = 3159.47

Next, we will use the model-based bootstrap to investigate how well BIC
selects the “correct” model, which is ARIMA(2,0,0). Since we will be looking
at the output of each fitted model, only a small number of resamples will be
used. Despite the small number of resamples, we will get some sense of how
well BIC works in this context. To simulate 10 model-based resamples from
the ARIMA(2,0,0) model, run

n=length(price)
sink("priceBootstrap.txt")
set.seed(1998852)
for (iter in 1:10)
{
eps = rnorm(n+20)
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y = rep(0,n+20)
for (t in 3:(n+20))
{
y[t] = .2825 *y[t-1] + 0.0570*y[t-2] + eps[t] }
y = y[101:n+20]
y = cumsum(y)
y = ts(y,frequency=12)
fit=auto.arima(y,d=1,D=0,ic="bic")
print(fit)
}
sink()

The results will be sent to the file priceBootstrap.txt. The first two values
of y are independent and are used to initialize the process. A burn-in period
of 20 is used to remove the effect of initialization. Note the use of cumsum to
integrate the simulated AR(2) process and the use of ts to convert a vector
to a monthly time series.

Problem 11 How often is the “correct” AR(2) model selected?

Now we will perform a bootstrap where the correct model AR(2) is known
and study the accuracy of the estimators. Since the correct model is known, it
can be fit by arima. The estimates will be stored in a matrix called estimates.
In contrast to earlier when model-selection was investigated by resampling,
now a large number of bootstrap samples can be used, since arima is fast and
only the estimates are stored. Run the following:

set.seed(1998852)
niter=250
estimates=matrix(0,nrow=niter,ncol=2)
for (iter in 1:niter)
{
eps = rnorm(n+20)
y = rep(0,n+20)
for (t in 3:(n+20))
{
y[t] = .2825 *y[t-1] + 0.0570*y[t-2] + eps[t] }
y = y[101:n+20]
y = cumsum(y)
y = ts(y,frequency=12)
fit=arima(y,order=c(2,1,0))
estimates[iter,]=fit$coef
}

Problem 12 Find the biases, standard deviations, and MSEs of the estima-
tors of the two coefficients.
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10.9 Exercises
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Fig. 10.13. ACF plots of quarterly data with no differencing, nonseasonal differ-
encing, seasonal differencing, and both seasonal and nonseasonal differencing.

1. Figure 10.13 contains ACF plots of 40 years of quarterly data, with all
possible combinations of first-order seasonal and nonseasonal differencing.
Which combination do you recommend in order to achieve stationarity?
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Fig. 10.14. ACF plots of quarterly data with no differencing, nonseasonal differ-
encing, seasonal differencing, and both seasonal and nonseasonal differencing.

2. Figure 10.14 contains ACF plots of 40 years of quarterly data, with all
possible combinations of first-order seasonal and nonseasonal differencing.
Which combination do you recommend in order to achieve stationarity?
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Fig. 10.15. ACF plots of quarterly data with no differencing, nonseasonal differ-
encing, seasonal differencing, and both seasonal and nonseasonal differencing.

3. Figure 10.15 contains ACF plots of 40 years of quarterly data, with all
possible combinations of first-order seasonal and nonseasonal differencing.
Which combination do you recommend in order to achieve stationarity?

4. In example 10.4, a bivariate AR(1) model was fit to (∆CPI, ∆IP) and

Φ̂ =
(

0.767 0.0112
−0.330 0.3014

)
.

The mean of (∆CPI, ∆IP) is (0.00518, 0.00215) and the last observation
of (∆ CPI, ∆ IP) is (0.00173, 0.00591). Forecast the next two values of
∆ IP. (The forecasts are shown in Figure 10.8, but you should compute
numerical values.)

5. Fit an ARIMA model to income, which is in the first column of the
IncomeUK data set in the Ecdat package. Explain why you selected the
model you did. Does you model exhibit any residual correlation?

6. (a) Find an ARIMA model that provides a good fit to the variable unemp
in the USMacroG data set in the AER package.

(b) Now perform a small model-based bootstrap to see how well auto.
arima can select the true model. To do this, simulate eight data sets
from the ARIMA model selected in part (a) of this problem. Apply
auto.arima with BIC to each of these data sets. How often is the
“correct” amount of differencing selected, that is, d and D are correctly
selected? How often is the “correct” model selected? “Correct” means
in agreement with the simulation model. “Correct model” means both
the correct amount of differencing and the correct orders for all the
seasonal and nonseasonal AR and MA components.

7. This exercise uses the Tbrate data set in the Ecdat package. In Section
9.16.1, nonseasonal models were fit. Now use auto.arima to find a seasonal
model. Which seasonal model is selected by AIC and by BIC? Do you feel
that a seasonal model is needed, or is a nonseasonal model sufficient?
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