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Introduction

This book is about the analysis of financial markets data. After this brief in-
troductory chapter, we turn immediately in Chapters 2 and 3 to the sources
of the data, returns on equities and prices and yields on bonds. Chapter 4
develops methods for informal, often graphical, analysis of data. More formal
methods based on statistical inference, that is, estimation and testing, are in-
troduced in Chapter 5. The chapters that follow Chapter 5 cover a variety of
more advanced statistical techniques: ARIMA models, regression, multivari-
ate models, copulas, GARCH models, factor models, cointegration, Bayesian
statistics, and nonparametric regression.

Much of finance is concerned with financial risk. The return on an invest-
ment is its revenue expressed as a fraction of the initial investment. If one
invests at time t1 in an asset with price Pt1 and the price later at time t2 is
Pt2 , then the net return for the holding period from t1 to t2 is (Pt2−Pt1)/Pt1 .
For most assets, future returns cannot be known exactly and therefore are
random variables. Risk means uncertainty in future returns from an invest-
ment, in particular, that the investment could earn less than the expected
return and even result in a loss, that is, a negative return. Risk is often mea-
sured by the standard deviation of the return, which we also call the volatility.
Recently there has been a trend toward measuring risk by value-at-risk (VaR)
and expected shortfall (ES). These focus on large losses and are more direct
indications of financial risk than the standard deviation of the return. Be-
cause risk depends upon the probability distribution of a return, probability
and statistics are fundamental tools for finance. Probability is needed for risk
calculations, and statistics is needed to estimate parameters such as the stan-
dard deviation of a return or to test hypotheses such as the so-called random
walk hypothesis which states that future returns are independent of the past.

In financial engineering there are two kinds of probability distributions

events. Risk-neutral or pricing probabilities give model outputs that agree

of future events. The statistical techniques in this book can be used to esti-

that can be estimated. Objective probabilities are the true probabilities of

with market prices and reflect the market’s beliefs about the probabilities
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mate both types of probabilities. Objective probabilities are usually estimated
from historical data, whereas risk-neutral probabilities are estimated from the
prices of options and other financial instruments.

Finance makes extensive use of probability models, for example, those
used to derive the famous Black–Scholes formula. Use of these models raises
important questions of a statistical nature such as: Are these models supported
by financial markets data? How are the parameters in these models estimated?
Can the models be simplified or, conversely, should they be elaborated?

After Chapters 4–8 develop a foundation in probability, statistics, and
exploratory data analysis, Chapters 9 and 10 look at ARIMA models for time
series. Time series are sequences of data sampled over time, so much of the
data from financial markets are time series. ARIMA models are stochastic
processes, that is, probability models for sequences of random variables. In
Chapter 11 we study optimal portfolios of risky assets (e.g., stocks) and of
risky assets and risk-free assets (e.g., short-term U.S. Treasury bills). Chapters
12–14 cover one of the most important areas of applied statistics, regression.
Chapter 15 introduces cointegration analysis. In Chapter 16 portfolio theory
and regression are applied to the CAPM. Chapter 17 introduces factor models,
which generalize the CAPM. Chapters 18–21 cover other areas of statistics and
finance such as GARCH models of nonconstant volatility, Bayesian statistics,
risk management, and nonparametric regression.

Several related themes will be emphasized in this book:

Always look at the data According to a famous philosopher and baseball
player, Yogi Berra, “You can see a lot by just looking.” This is certainly
true in statistics. The first step in data analysis should be plotting the data
in several ways. Graphical analysis is emphasized in Chapter 4 and used
throughout the book. Problems such as bad data, outliers, mislabeling of
variables, missing data, and an unsuitable model can often be detected
by visual inspection. Bad data means data that are outlying because of
errors, e.g., recording errors. Bad data should be corrected when possible
and otherwise deleted. Outliers due, for example, to a stock market crash
are “good data” and should be retained, though the model may need to
be expanded to accommodate them. It is important to detect both bad
data and outliers, and to understand which is which, so that appropriate
action can be taken.

All models are false Many statisticians are familiar with the observation
of George Box that “all models are false but some models are useful.” This
fact should be kept in mind whenever one wonders whether a statistical,
economic, or financial model is “true.” Only computer-simulated data
have a “true model.” No model can be as complex as the real world, and
even if such a model did exist, it would be too complex to be useful.

Bias–variance tradeoff If useful models exist, how do we find them? The
answer to this question depends ultimately on the intended uses of the
model. One very useful principle is parsimony of parameters, which means
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that we should use only as many parameters as necessary. Complex models
with unnecessary parameters increase estimation error and make interpre-
tation of the model more difficult. However, a model that is too simple
will not capture important features of the data and will lead to serious
biases. Simple models have large biases but small variances of the esti-
mators. Complex models have small biases but large variances. Therefore,
model choice involves finding a good tradeoff between bias and variance.

Uncertainty analysis It is essential that the uncertainty due to estimation
and modeling errors be quantified. For example, portfolio optimization
methods that assume that return means, variances, and correlations are
known exactly are suboptimal when these parameters are only estimated
(as is always the case). Taking uncertainty into account leads to other
techniques for portfolio selection—see Chapter 11. With complex models,
uncertainty analysis could be challenging in the past, but no longer is
because of modern statistical techniques such as resampling (Chapter 6)
and Bayesian MCMC (Chapter 20).

Financial markets data are not normally distributed Introductory
statistics textbooks model continuously distributed data with the normal
distribution. This is fine in many domains of application where data are
well approximated by a normal distribution. However, in finance, stock
returns, changes in interest rates, changes in foreign exchange rates, and
other data of interest have many more outliers than would occur un-
der normality. For modeling financial markets data, heavy-tailed distri-
butions such as the t-distributions are much more suitable than normal
distributions—see Chapter 5. Remember: In finance, the normal distribu-
tion is not normal.

Variances are not constant Introductory textbooks also assume constant
variability. This is another assumption that is rarely true for financial
markets data. For example, the daily return on the market on Black Mon-
day, October 19, 1987, was −23%, that is, the market lost 23% of its value
in a single day! A return of this magnitude is virtually impossible under
a normal model with a constant variance, and it is still quite unlikely un-
der a t-distribution with constant variance, but much more likely under a
t-distribution model with conditional heteroskedasticity, e.g., a GARCH
model (Chapter 18).
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