

Inductive Databases and
Constraint-Based Data Mining

1 C

Sašo Džeroski • Bart Goethals • Pan e Panov
Editors

Inductive Databases and
Constraint-Based
Data Mining

ISBN 978-1-4419-7737-3 e-ISBN 978-1-4419-7738-0
DOI 10.1007/978-1-4419-7738-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010938297

© Springer Science+Business Media, LLC 201
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors
Sašo Džeroski
Jožef Stefan Institute
Dept. of Knowledge Technologies
Jamova cesta 39
SI-1000 Ljubljana
Slovenia
Saso.Dzeroski@ijs.si

Bart Goethals
University of Antwerp
Mathematics and Computer Science Dept.
Middelheimlaan 1
B-2020 Antwerpen
Belgium
Bart.Goethals@ua.ac.be

Panče Panov
Jožef Stefan Institute
Dept. of Knowledge Technologies
Jamova cesta 39
SI-1000 Ljubljana
Slovenia
Pance.Panov@ijs.si

0

Preface

This book is about inductive databases and constraint-based data mining, emerging
research topics lying at the intersection of data mining and database research. The
aim of the book as to provide an overview of the state-of- the art in this novel and ex-
citing research area. Of special interest are the recent methods for constraint-based
mining of global models for prediction and clustering, the unification of pattern
mining approaches through constraint programming, the clarification of the rela-
tionship between mining local patterns and global models, and the proposed inte-
grative frameworks and approaches for inducive databases. On the application side,
applications to practically relevant problems from bioinformatics are presented.

Inductive databases (IDBs) represent a database view on data mining and knowl-
edge discovery. IDBs contain not only data, but also generalizations (patterns and
models) valid in the data. In an IDB, ordinary queries can be used to access and ma-
nipulate data, while inductive queries can be used to generate (mine), manipulate,
and apply patterns and models. In the IDB framework, patterns and models become
”first-class citizens” and KDD becomes an extended querying process in which both
the data and the patterns/models that hold in the data are queried.

The IDB framework is appealing as a general framework for data mining, be-
cause it employs declarative queries instead of ad-hoc procedural constructs. As
declarative queries are often formulated using constraints, inductive querying is
closely related to constraint-based data mining. The IDB framework is also ap-
pealing for data mining applications, as it supports the entire KDD process, i.e.,
nontrivial multi-step KDD scenarios, rather than just individual data mining opera-
tions.

The interconnected ideas of inductive databases and constraint-based mining
have the potential to radically change the theory and practice of data mining and
knowledge discovery. The book provides a broad and unifying perspective on the
field of data mining in general and inductive databases in particular. The 18 chap-
ters in this state-of-the-art survey volume were selected to present a broad overview
of the latest results in the field.

Unique content presented in the book includes constraint-based mining of global
models for prediction and clustering, including predictive models for structured out-

v

vi Preface

puts and methods for bi-clustering; integration of mining local (frequent) patterns
and global models (for prediction and clustering); constraint-based mining through
constraint programming; integrative IDB approaches at the system and framework
level; and applications to relevant problems that attract strong interest in the bioin-
formatics area. We hope that the volume will increase in relevance with time, as we
witness the increasing trends to store patterns and models (produced by humans or
learned from data) in addition to data, as well as retrieve, manipulate, and combine
them with data.

This book contains sixteen chapters presenting recent research on the topics of
inductive databases and queries, as well as constraint-based data, conducted within
the project IQ (Inductive Queries for mining patterns and models), funded by the EU
under contract number IST-2004-516169. It also contains two chapters on related
topics by researchers coming from outside the project (Siebes and Puspitaningrum;
Wicker et al.)

This book is divided into four parts. The first part describes the foundations
of and frameworks for inductive databases and constraint-based data mining. The
second part presents a variety of techniques for constraint-based data mining or
inductive querying. The third part presents integration approaches to inductive
databases. Finally, the fourth part is devoted to applications of inductive querying
and constraint-based mining techniques in the area of bioinformatics.

The first, introductory, part of the book contains four chapters. Džeroski first
introduces the topics of inductive databases and constraint-based data mining and
gives a brief overview of the area, with a focus on the recent developments within
the IQ project. Panov et al. then present a deep ontology of data mining. Blockeel
et al. next present a practical comparative study of existing data-mining/inductive
query languages. Finally, De Raedt et al. are concerned with mining under compos-
ite constraints, i.e., answering inductive queries that are Boolean combinations of
primitive constraints.

The second part contains six chapters presenting constraint-based mining tech-
niques. Besson et al. present a unified view on itemset mining under constraints
within the context of constraint programming. Bringmann et al. then present a num-
ber of techniques for integrating the mining of (frequent) patterns and classification
models. Struyf and Džeroski next discuss constrained induction of predictive clus-
tering trees. Bingham then gives an overview of techniques for finding segmenta-
tions of sequences, some of these being able to handle constraints. Cerf et al. discuss
constrained mining of cross-graph cliques in dynamic networks. Finally, De Raedt
et al. introduce ProbLog, a probabilistic relational formalism, and discuss inductive
querying in this formalism.

The third part contains four chapters discussing integration approaches to induc-
tive databases. In the Mining Views approach (Blockeel et al.), the user can query
the collection of all possible patterns as if they were stored in traditional relational
tables. Wicker et al. present SINDBAD, a prototype of an inductive database sys-
tem that aims to support the complete knowledge discovery process. Siebes and
Puspitaningrum discuss the integration of inductive and ordinary queries (relational
algebra). Finally, Vanschoren and Blockeel present experiment databases.

Preface vii

The fourth part of the book, contains four chapters dealing with applications in
the area of bioinformatics (and chemoinformatics). Vens et al. describe the use of
predictive clustering trees for predicting gene function. Slavkov and Džeroski de-
scribe several applications of predictive clustering trees for the analysis of gene
expression data. Rigotti et al. describe how to use mining of frequent patterns on
strings to discover putative transcription factor binding sites in gene promoter se-
quences. Finally, King et al. discuss a very ambitious application scenario for in-
ductive querying in the context of a robot scientist for drug design.

The content of the book is described in more detail in the last two sections of the
introductory chapter by Džeroski.

We would like to conclude with a word of thanks to those that helped bring this
volume to life: This includes (but is not limited to) the contributing authors, the
referees who reviewed the contributions, the members of the IQ project and the
various funding agencies. A more complete listing of acknowledgements is given in
the Acknowledgements section of the book.

September 2010 Sašo Džeroski
Bart Goethals
Panče Panov

Acknowledgements

Heartfelt thanks to all the people and institutions that made this volume possible and
helped bring it to life.

First and foremost, we would like to thank the contributing authors. They did a
great job, some of them at short notice. Also, most of them showed extraordinary
patience with the editors.

We would then like to thank the reviewers of the contributed chapters, whose
names are listed in a separate section. Each chapter was reviewed by at least two (on
average three) referees. The comments they provided greatly helped in improving
the quality of the contributions.

Most of the research presented in this volume was conducted within the project
IQ (Inductive Queries for mining patterns and models). We would like to thank ev-
erybody that contributed to the success of the project: This includes the members of
the project, both the contributing authors and the broader research teams at each of
the six participating institutions, the project reviewers and the EU officials handling
the project. The IQ project was funded by the European Comission of the EU within
FP6-IST, FET branch, under contract number FP6-IST-2004-516169.

In addition, we want to acknowledge the following funding agencies:

• Sašo Džeroski is currently supported by the Slovenian Research Agency (through
the research program Knowledge Technologies under grant P2-0103 and the re-
search projects Advanced machine learning methods for automated modelling
of dynamic systems under grant J2-0734 and Data Mining for Integrative Data
Analysis in Systems Biology under grant J2-2285) and the European Commission
(through the FP7 project PHAGOSYS Systems biology of phagosome forma-
tion and maturation - modulation by intracellular pathogens under grant num-
ber HEALTH-F4-2008-223451). He is also supported by the Centre of Excel-
lence for Integrated Approaches in Chemistry and Biology of Proteins (opera-
tion no. OP13.1.1.2.02.0005 financed by the European Regional Development
Fund (85%) and the Slovenian Ministry of Higher Education, Science and Tech-
nology (15%)), as well as the Jozef Stefan International Postgraduate School in
Ljubljana.

ix

x Acknowledgements

• Bart Goethals wishes to acknowledge the support of FWO-Flanders through the
project ”Foundations for inductive databases”.

• Panče Panov is supported by the Slovenian Research Agency through the re-
search projects Advanced machine learning methods for automated modelling of
dynamic systems (under grant J2-0734) and Data Mining for Integrative Data
Analysis in Systems Biology (under grant J2-2285).

Finally, many thanks to our Springer editors, Jennifer Maurer and Melissa
Fearon, for all the support and encouragement.

September 2010 Sašo Džeroski
Bart Goethals
Panče Panov

List of Reviewers

Hendrik Blockeel Katholieke Universiteit Leuven, Belgium
Marko Bohanec Jožef Stefan Institute, Slovenia
Jean-Francois Boulicaut University of Lyon, INSA Lyon, France
Mario Boley University of Bonn and Fraunhofer IAIS, Germany
Toon Calders Eindhoven Technical University, Netherlands
Vineet Chaoji Yahoo! Labs, Bangalore, India
Amanda Clare Aberystwyth University, United Kingdom
James Cussens University of York, United Kingdom
Tomaž Curk University of Ljubljana, Ljubljana, Slovenia
Ian Davidson University of California - Davis, USA
Luc Dehaspe Katholieke Universiteit Leuven, Belgium
Luc De Raedt Katholieke Universiteit Leuven, Belgium
Jeroen De Knijf University of Antwerp, Belgium
Tijl De Bie University of Bristol, United Kingdom
Sašo Džeroski Jožef Stefan Institute, Slovenia
Elisa Fromont University of Jean Monnet, France
Gemma C. Garriga University of Paris VI, France
Christophe Giraud-Carrier Brigham Young University, USA
Jiawei Han University of Illinois at Urbana-Champaign, USA
Hannes Heikinheimo Aalto Universit, Finland
Cristoph Hema In Silico Toxicology, Switzerland
Andreas Karwath Albert-Ludwigs-Universitat, Germany
Jörg-Uwe Kietz University of Zurich, Switzerland
Arno Knobbe University of Leiden, Netherlands
Petra Kralj Novak Jožef Stefan Institute, Slovenia
Stefan Kramer Technische Universität München, Germany
Rosa Meo University of Torino, Italy
Pauli Miettinen Max-Planck-Institut für Informatik, Germany
Siegfried Nijssen Katholieke Universiteit Leuven, Belgium
Markus Ojala Aalto University, Finland
Themis Palpanas University of Trento, Italy

xi

xii List of Reviewers

Panče Panov Jožef Stefan Institute, Ljubljana, Slovenia
Juho Rousu University of Helsinki, Finland
Nikolaj Tatti University of Antwerp, Belgium
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece
Giorgio Valentini University of Milano, Italy
Jan Van den Bussche Universiteit Hasselt, Belgium
Jilles Vreeken University of Utrecht, Netherlands
Kiri Wagstaff California Institute of Technology, USA
Joerg Wicker Technische Universität München, Germany
Gerson Zaverucha Federal University of Rio de Janeiro, Brazil
Albrecht Zimmermann Katholieke Universiteit Leuven, Belgium
Bernard Ženko Jožef Stefan Institute, Slovenia

Contents

Part I Introduction

1 Inductive Databases and Constraint-based

Data Mining: Introduction and Overview . 3
Sašo Džeroski
1.1 Inductive Databases . 3
1.2 Constraint-based Data Mining . 7
1.3 Types of Constraints . 9
1.4 Functions Used in Constraints . 12
1.5 KDD Scenarios . 14
1.6 A Brief Review of Literature Resources . 15
1.7 The IQ (Inductive Queries for Mining Patterns and Models) Project 17
1.8 What’s in this Book . 22

2 Representing Entities in the OntoDM Data Mining Ontology 27
Panče Panov, Larisa N. Soldatova, and Sašo Džeroski
2.1 Introduction . 27
2.2 Design Principles for the OntoDM ontology 29
2.3 OntoDM Structure and Implementation . 33
2.4 Identification of Data Mining Entities . 38
2.5 Representing Data Mining Enitities in OntoDM 46
2.6 Related Work . 52
2.7 Conclusion . 54

3 A Practical Comparative Study Of Data Mining Query Languages . . 59
Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana
Prado, and Céline Robardet
3.1 Introduction . 60
3.2 Data Mining Tasks . 61
3.3 Comparison of Data Mining Query Languages 62
3.4 Summary of the Results . 74
3.5 Conclusions . 76

xiii

xiv Contents

4 A Theory of Inductive Query Answering . 79
Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila
4.1 Introduction . 80
4.2 Boolean Inductive Queries . 81
4.3 Generalized Version Spaces . 88
4.4 Query Decomposition . 90
4.5 Normal Forms . 98
4.6 Conclusions . 100

Part II Constraint-based Mining: Selected Techniques

5 Generalizing Itemset Mining in a Constraint Programming Setting . 107
Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried
Nijssen
5.1 Introduction . 107
5.2 General Concepts . 109
5.3 Specialized Approaches . 111
5.4 A Generalized Algorithm . 114
5.5 A Dedicated Solver . 116
5.6 Using Constraint Programming Systems . 120
5.7 Conclusions . 124

6 From Local Patterns to Classification Models . 127
Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann
6.1 Introduction . 127
6.2 Preliminaries . 131
6.3 Correlated Patterns . 132
6.4 Finding Pattern Sets . 137
6.5 Direct Predictions from Patterns . 142
6.6 Integrated Pattern Mining . 146
6.7 Conclusions . 152

7 Constrained Predictive Clustering . 155
Jan Struyf and Sašo Džeroski
7.1 Introduction . 155
7.2 Predictive Clustering Trees . 156
7.3 Constrained Predictive Clustering Trees and Constraint Types 161
7.4 A Search Space of (Predictive) Clustering Trees 165
7.5 Algorithms for Enforcing Constraints . 167
7.6 Conclusion . 173

8 Finding Segmentations of Sequences . 177
Ella Bingham
8.1 Introduction . 177
8.2 Efficient Algorithms for Segmentation . 182
8.3 Dimensionality Reduction . 183

Contents xv

8.4 Recurrent Models . 185
8.5 Unimodal Segmentation . 188
8.6 Rearranging the Input Data Points . 189
8.7 Aggregate Segmentation . 190
8.8 Evaluating the Quality of a Segmentation: Randomization 191
8.9 Model Selection by BIC and Cross-validation 193
8.10 Bursty Sequences . 193
8.11 Conclusion . 194

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks . . . 199
Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut
9.1 Introduction . 199
9.2 Problem Setting . 201
9.3 DATA-PEELER . 205
9.4 Extracting δ -Contiguous Closed 3-Sets . 208
9.5 Constraining the Enumeration to Extract 3-Cliques 212
9.6 Experimental Results . 217
9.7 Related Work . 224
9.8 Conclusion . 226

10 Probabilistic Inductive Querying Using ProbLog 229
Luc De Raedt, Angelika Kimmig, Bernd Gutmann, Kristian Kersting,
Vı́tor Santos Costa, and Hannu Toivonen
10.1 Introduction . 229
10.2 ProbLog: Probabilistic Prolog . 233
10.3 Probabilistic Inference . 234
10.4 Implementation . 238
10.5 Probabilistic Explanation Based Learning . 243
10.6 Local Pattern Mining . 245
10.7 Theory Compression . 249
10.8 Parameter Estimation . 252
10.9 Application . 255
10.10 Related Work in Statistical Relational Learning 258
10.11 Conclusions . 259

Part III Inductive Databases: Integration Approaches

11 Inductive Querying with

Virtual Mining Views . 265
Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana
Prado, and Céline Robardet
11.1 Introduction . 266
11.2 The Mining Views Framework . 267
11.3 An Illustrative Scenario . 277
11.4 Conclusions and Future Work . 285

xvi Contents

12 SINDBAD and SiQL: Overview, Applications and Future

Developments . 289
Jörg Wicker, Lothar Richter, and Stefan Kramer
12.1 Introduction . 289
12.2 SiQL . 291
12.3 Example Applications . 296
12.4 A Web Service Interface for SINDBAD . 303
12.5 Future Developments . 305
12.6 Conclusion . 307

13 Patterns on Queries . 311
Arno Siebes and Diyah Puspitaningrum
13.1 Introduction . 311
13.2 Preliminaries . 313
13.3 Frequent Item Set Mining . 319
13.4 Transforming KRIMP . 323
13.5 Comparing the two Approaches . 331
13.6 Conclusions and Prospects for Further Research 333

14 Experiment Databases . 335
Joaquin Vanschoren and Hendrik Blockeel
14.1 Introduction . 336
14.2 Motivation . 337
14.3 Related Work . 341
14.4 A Pilot Experiment Database . 343
14.5 Learning from the Past . 350
14.6 Conclusions . 358

Part IV Applications

15 Predicting Gene Function using Predictive Clustering Trees 365
Celine Vens, Leander Schietgat, Jan Struyf, Hendrik Blockeel, Dragi
Kocev, and Sašo Džeroski
15.1 Introduction . 366
15.2 Related Work . 367
15.3 Predictive Clustering Tree Approaches for HMC 369
15.4 Evaluation Measure . 374
15.5 Datasets . 375
15.6 Comparison of Clus-HMC/SC/HSC . 378
15.7 Comparison of (Ensembles of) CLUS-HMC to State-of-the-art

Methods . 380
15.8 Conclusions . 384

Contents xvii

16 Analyzing Gene Expression Data with Predictive Clustering Trees . . 389
Ivica Slavkov and Sašo Džeroski
16.1 Introduction . 389
16.2 Datasets . 391
16.3 Predicting Multiple Clinical Parameters . 392
16.4 Evaluating Gene Importance with Ensembles of PCTs 394
16.5 Constrained Clustering of Gene Expression Data 397
16.6 Clustering gene expression time series data . 400
16.7 Conclusions . 403

17 Using a Solver Over the String Pattern Domain to Analyze Gene

Promoter Sequences . 407
Christophe Rigotti, Ieva Mitašiūnaitė, Jérémy Besson, Laurène Meyniel,
Jean-François Boulicaut, and Olivier Gandrillon
17.1 Introduction . 407
17.2 A Promoter Sequence Analysis Scenario . 409
17.3 The Marguerite Solver . 412
17.4 Tuning the Extraction Parameters . 413
17.5 An Objective Interestingness Measure . 415
17.6 Execution of the Scenario . 418
17.7 Conclusion . 422

18 Inductive Queries for a Drug Designing Robot Scientist 425
Ross D. King, Amanda Schierz, Amanda Clare, Jem Rowland, Andrew
Sparkes, Siegfried Nijssen, and Jan Ramon
18.1 Introduction . 425
18.2 The Robot Scientist Eve . 427
18.3 Representations of Molecular Data . 430
18.4 Selecting Compounds for a Drug Screening Library 444
18.5 Active learning . 446
18.6 Conclusions . 448
Appendix . 452

Author index . 455

Part I

Introduction

Chapter 1

Inductive Databases and Constraint-based

Data Mining: Introduction and Overview

Sašo Džeroski

Abstract We briefly introduce the notion of an inductive database, explain its rela-
tion to constraint-based data mining, and illustrate it on an example. We then discuss
constraints and constraint-based data mining in more detail, followed by a discus-
sion on knowledge discovery scenarios. We further give an overview of recent de-
velopments in the area, focussing on those made within the IQ project, that gave rise
to most of the chapters included in this volume. We finally outline the structure of
the book and summarize the chapters, following the structure of the book.

1.1 Inductive Databases

Inductive databases (IDBs, Imielinski and Mannila 1996, De Raedt 2002a) are an
emerging research area at the intersection of data mining and databases. Inductive
databases contain both data and patterns (in the broader sense, which includes fre-
quent patterns, predictive models, and other forms of generalizations). IDBs em-
body a database perspective on knowledge discovery, where knowledge discovery
processes become query sessions. KDD thus becomes an extended querying process
(Imielinski and Mannila 1996) in which both the data and the patterns that hold (are
valid) in the data are queried.

Roughly speaking, an inductive database instance contains: (1) Data (e.g., a re-
lational database, a deductive database), (2) Patterns (e.g., itemsets, episodes, sub-
graphs, substrings, ...), and (3) Models (e.g., classification trees, regression trees,
regression equations, Bayesian networks, mixture models, ...). The difference be-
tween patterns (such as frequent itemsets) and models (such as regression trees) is
that patterns are local (they typically describe properties of a subset of the data),

Sašo Džeroski
Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
e-mail: saso.dzeroski@ijs.si

3
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_1, © Springer Science+Business Media, LLC 2010

4 Sašo Džeroski

whereas models are global (they characterize the entire data set). Patterns are typi-
cally used for descriptive purposes and models for predictive ones.

A query language for an inductive database is an extension of a database query
language that allows us to: (1) select, manipulate and query data in the database as in
current DBMSs, (2) select, manipulate and query ”interesting” patterns and models
(e.g., patterns that satisfy constraints w.r.t. frequency, generality, etc. or models that
satisfy constraints w.r.t. accuracy, size, etc.), and (3) match patterns or models with
data, e.g., select the data in which some patterns hold, or predict a property of the
data with a model.

To clarify what is meant by the terms inductive database and inductive query, we
illustrate them by an example from the area of bio-/chemo-informatics.

1.1.1 Inductive Databases and Queries: An Example

To provide an intuition of what an inductive query language has to offer, consider the
task of discovering a model that predicts whether chemical compounds are toxic or
not. In this context, the data part of the IDB will consist of one or more sets of com-
pounds. In our illustration below, there are two sets: the active (toxic) and the inac-
tive (non-toxic) compounds. Assume, furthermore, that for each of the compounds,
the two dimensional (i.e., graph) structure of their molecules is represented within
the database, together with a number of attributes that are related to the outcome of
the toxicity tests. The database query language of the IDB will allow the user (say
a predictive toxicology scientist) to retrieve information about the compounds (i.e.,
their structure and properties). The inductive query language will allow the scientist
to generate, manipulate and apply patterns and models of interest.

As a first step towards building a predictive model, the scientist may want
to find local patterns (in the form of compound substructures or molecular frag-
ments), that are ”interesting”, i.e., satisfy certain constraints. An example induc-
tive query may be written as follows: F = {τ|(τ ∈ AZT) ∧ (f req(τ,Active) ≥
15%) ∧ (f req(τ, Inactive) ≤ 5%)}. This should be read as: “Find all molecular
fragments that appear in the compound AZT (which is a drug for AIDS), occur
frequently in the active compounds (≥ 15% of them) and occur infrequently in the
inactive ones (≤ 5% of them).”

Once an interesting set of patterns has been identified, they can be used as de-
scriptors (attributes) for building a model (e.g., a decision tree that predicts activity).
A data table can be created by first constructing one feature/column for each pattern,
then one example/row for each data item. The entry at a given column and row has
value ”true” if the corresponding pattern (e.g., fragment) appears in the correspond-
ing data item (e.g., molecule). The table could be created using a traditional query
in a database query language, combined with IDB matching primitives.

Suppose we have created a table with columns corresponding to the molecular
fragments F returned by the query above and rows corresponding to compounds
in Active

⋃
Inactive, and we want to build a global model (decision tree) that dis-

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 5

tinguishes between active and inactive compounds. The toxicologist may want to
constrain the decision tree induction process, e.g., requiring that the decision tree
contains at most k leaves, that certain attributes are used before others in the tree,
that the internal tests split the nodes in (more or less) proportional subsets, etc. She
may also want to impose constraints on the accuracy of the induced tree.

Note that in the above scenario, a sequence of queries is used. This requires
that the closure property be satisfied: the result of an inductive query on an IDB
instance should again be an IDB instance. Through supporting the processing of
sequences of inductive queries, IDBs would support the entire KDD process, rather
than individual data mining steps.

1.1.2 Inductive Queries and Constraints

In inductive databases (Imielinski and Mannila 1996), patterns become “first-class
citizens” and can be stored and manipulated just like data in ordinary databases.
Ordinary queries can be used to access and manipulate data, while inductive queries
(IQs) can be used to generate (mine), manipulate, and apply patterns. KDD thus
becomes an extended querying process in which both the data and the patterns that
hold (are valid) in the data are queried. In IDBs, the traditional KDD process model
where steps like pre-processing, data cleaning, and model construction follow each
other in succession, is replaced by a simpler model in which all operations (pre-
processing, mining, post-processing) are queries to an IDB and can be interleaved
in many different ways.

Given an IDB that contains data and patterns (or other types of generalizations,
such as models), several different types of queries can be posed. Data retrieval
queries use only the data and their results are also data: no pattern is involved in
the query. In IDBs, we can also have cross-over queries that combine patterns and
data in order to obtain new data, e.g., apply a predictive model to a dataset to ob-
tain predictions for a target property. In processing patterns, the patterns are queried
without access to the data: this is what is usually done in the post-processing stages
of data mining. Inductive (data mining) queries use the data and their results are pat-
terns (generalizations): new patterns are generated from the data: this corresponds
to the traditional data mining step.

A general statement of the problem of data mining (Mannila and Toivonen 1997)
involves the specification of a language of patterns (generalizations) and a set of
constraints that a pattern has to satisfy. The constraints can be language constraints
and evaluation constraints: The first only concern the pattern itself, while the second
concern the validity of the pattern with respect to a given database. Constraints thus
play a central role in data mining and constraint-based data mining (CBDM) is now
a recognized research topic (Bayardo 2002). The use of constraints enables more
efficient induction and focusses the search for patterns on patterns likely to be of
interest to the end user.

6 Sašo Džeroski

In the context of IDBs, inductive queries consist of constraints. Inductive queries
can involve language constraints (e.g., find association rules with item A in the head)
and evaluation constraints, which define the validity of a pattern on a given dataset
(e.g., find all item sets with support above a threshold or find the 10 association rules
with highest confidence).

Different types of data and patterns have been considered in data mining, includ-
ing frequent itemsets, episodes, Datalog queries, and graphs. Designing inductive
databases for these types of patterns involves the design of inductive query lan-
guages and solvers for the queries in these languages, i.e., CBDM algorithms. Of
central importance is the issue of defining the primitive constraints that can be ap-
plied for the chosen data and pattern types, that can be used to compose inductive
queries. For each pattern domain (type of data, type of pattern, and primitive con-
straints), a specific solver is designed, following the philosophy of constraint logic
programming (De Raedt 2002b).

1.1.3 The Promise of Inductive Databases

While knowledge discovery in databases (KDD) and data mining have enjoyed
great popularity and success over the last two decades, there is a distinct lack of
a generally accepted framework for data mining (Fayyad et al. 2003). In partic-
ular, no framework exists that can elegantly handle simultaneously the mining of
complex/structured data, the mining of complex (e.g., relational) patterns and use
of domain knowledge, and support the KDD process as a whole, three of the most
challenging/important research topics in data mining (Yang and Wu 2006).

The IDB framework is an appealing approach towards developing a generally
accepted framework/theory for data mining, as it employs declarative queries in-
stead of ad-hoc procedural constructs: Namely, in CBDM, the conditions/constraints
that a pattern has to satisfy (to be considered valid/interesting) are stated explicitly
and are under direct control of the user/data miner. The IDB framework holds the
promise of facilitating the formulation of an “algebra” for data mining, along the
lines of Codd’s relational algebra for databases (Calders et al. 2006b, Johnson et al.
2000).

Different types of structured data have been considered in CBDM. Besides item-
sets, onther types of frequent/local patterns have been mined under constraints,
e.g., on strings, sequences of events (episodes), trees, graphs and even in a first-
order logic context (patterns in probabilistic relational databases). More recently,
constraint-based approaches to structured prediction have been considered, where
models (such as tree-based models) for predicting hierarchies of classes or se-
quences / time series are induced under constraints.

Different types of local patterns and global models have been considered as well,
such as rule-based predictive models and tree-based clustering models. When learn-
ing in a relational setup, background / domain knowledge is naturally taken into
account. Also, the constraints provided by the user in CBDM can be viewed as a

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 7

form of domain knowledge that focuses the search for patterns / model towards
interesting and useful ones.

The IDB framework is also appealing for data mining applications, as it supports
the entire KDD process (Boulicaut et al. 1999). In inductive query languages, the
results of one (inductive) query can be used as input for another. Nontrivial multi-
step KDD scenarios can be thus supported in IDBs, rather than just single data
mining operations.

1.2 Constraint-based Data Mining

“Knowledge discovery in databases (KDD) is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in data”, state
Fayyad et al. (1996). According to this definition, data mining (DM) is the central
step in the KDD process concerned with applying computational techniques (i.e.,
data mining algorithms implemented as computer programs) to actually find patterns
that are valid in the data. In constraint-based data mining (CBDM), a pattern/model
is valid if it satisfies a set of constraints.

The basic concepts/entities of data mining include data, data mining tasks, and
generalizations (e.g., patterns and models). The validity of a generalization on a
given set of data is related to the data mining task considered. Below we briefly
discuss the basic entities of data mining and the task of CBDM.

1.2.1 Basic Data Mining Entities

Data. A data mining algorithm takes as input a set of data. An individual datum in
the data set has its own structure, e.g., consists of values for several attributes, which
may be of different types or take values from different ranges. We assume all data
items are of the same type (and share the same structure).

More generally, we are given a data type T and a set of data D of this type. It is of
crucial importance to be able to deal with structured data, as these are attracting an
ever increasing amount of attention within data mining. The data type T can thus be
an arbitrarily complex data type, composed from a set of basic/primitive types (such
as Boolean and Real) by using type constructors (such as Tuple, Set or Sequence).

Generalizations. We will use the term generalization to denote the output of dif-
ferent data mining tasks, such as pattern mining, predictive modeling and clustering.
Generalizations will thus include probability distributions, patterns (in the sense of
frequent patterns), predictive models and clusterings. All of these are defined on a
given type of data, except for predictive models, which are defined on a pair of data
types. Note that we allow arbitrary (arbitrarily complex) data types. The typical case
in data mining considers a data type T = Tuple(T1, . . ., k), where each of T1, . . ., Tk
is Boolean, Discrete or Real.

8 Sašo Džeroski

We will discuss briefly here local patterns and global models (predictive models
and clusterings). Note that both are envisaged as first-class citizens of inductive
databases. More detailed discussions of all types of generalizations are given by
Panov et al. (2010/this volume) and Džeroski (2007).

A pattern P on type T is a Boolean function on objects of type T: A pattern on
type T is true or false on an object of type T. We restrict the term pattern here to the
sense that it is most commonly used, i.e., in the sense of frequent pattern mining.
A predictive model M for types Td , Tc is a function that takes an object of type
Td (description) and returns one of type Tc (class/target). We allow both Td and Tc
to be arbitrarily complex data types, with classification and regression as special
cases (when Tc has nominal, respectively numeric values). A clustering C on a set
of objects S of type T is a function from S to {1, . . . ,k}, where k is the number of
clusters (with k ≤ |S|). It partitions a set of objects into subsets called clusters by
mapping each object to a cluster identifier.

Data Mining Tasks. In essence, the task of data mining is to produce a general-
ization from a given set of data. A plethora of data mining tasks has been considered
so far in the literature, with four covering the majority of data mining research: ap-
proximating the (joint) probability distribution, clustering, learning predictive mod-
els, and finding valid (frequent) patterns. We will focus here on the last two of these.

In learning a predictive model, we are given a dataset consisting of example in-
put/output pairs (d,c), where each d is of type Td and each c is of type Tc. We want
to find a model m (mapping from Td to Tc), for which the observed and predicted
outputs, i.e., c and ĉ = m(d), match closely. In pattern discovery, the task is to
find all local patterns from a given pattern language (class) that satisfy the required
conditions. A prototypical instantiation of this task is the task of finding frequent
itemsets (sets of items, such as {bread,butter}), which occur frequently (in a suffi-
ciently high proportion) in a given set of transactions (market baskets) (Aggrawal et
al 1993). In clustering, we are given a set of examples (object descriptions), and the
task is to partition these examples into subsets, called clusters. The notion of a dis-
tance (or conversely, similarity) is crucial here: The goal of clustering is to achieve
high similarity between objects within a cluster (intra-cluster similarity) and low
similarity between objects from different clusters (inter-cluster similarity).

1.2.2 The Task(s) of (Constraint-Based) Data Mining

Having set the scene, we can now attempt to formulate a very general version of
the problem addressed by data mining. We are given a dataset D, consisting of ob-
jects of type T . We are also given a data mining task, such as learning a predictive
model or pattern discovery. We are further given CG a family/class of generaliza-
tions (patterns/models), such as decision trees, from which to find solutions to the
data mining task at hand. Finally, a set of constraints C is given, concerning both the
syntax (form) and semantics (validity) that the generalizations have to satisfy.

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 9

The problem addressed by constraint-based data mining (CBDM) is to find a set
of generalizations G from CG that satisfy the constraints in C: A desired cardinality
on the solution set is usually specified.

In the above formulation, all of data mining is really constraint-based. We argue
that the ‘classical’ formulations of and approaches to data mining tasks, such as
clustering and predictive modelling, are a special case of the above formulation. A
major difference between the ‘classical’ data mining paradigm and the ‘modern’
constraint-based one is that the former typically considers only one quality metric,
e.g., minimizes predictive error or intra-cluster variance, and produces only one
solution (predictive model or clustering).

A related difference concerns the fact that most of the ‘classical’ approaches to
data mining are heuristic and do not give any guarantees regarding the solutions.
For example, a decision tree generated by a learning algorithm is typically not guar-
anteed to be the smallest or most accurate tree for the given dataset. On the other
hand, CBDM approaches have typically been concerned with the development of
so-called ‘optimal solvers’, i.e., data mining algorithms that return the complete set
of solutions that satisfy a given set of constraints or the k best solutions (e.g., the k
itemsets with highest correlation to a given target).

1.3 Types of Constraints

Constraints in CBDM are propositions/statements about generalizations (e.g., pat-
terns or models). In the most basic setting, the propositions are either true or false
(Boolean valued): If true, the generalization satisfies the constraint. In CBDM, we
are seeking generalizations that satisfy a given set of constraints.

Many types of constraints are currently used in CBDM, which can be divided
along several dimensions. Along the first dimension, we distinguish between prim-
itive and composite constraints. Along the second dimension, we distinguish be-
tween language and evaluation constraints. Along the third dimension, we have
Boolean (or hard) constraints, soft constraints and optimization constraints. In this
section, we discuss these dimensions in some detail.

1.3.1 Primitive and Composite Constraints

Recall that constraints in CBDM are propositions on generalizations. Some of these
propositions are atomic in nature (and are not decomposable into simpler proposi-
tions). In mining frequent itemsets, the constraints ”item bread must be contained
in the itemsets of interest” and ”itemsets of interest should have a frequency higher
than 10” are atomic or primitive constraints.

Primitive constraints can be combined by using boolean operators, i.e., nega-
tion, conjunction and disjunction. The resulting constraints are called composite

10 Sašo Džeroski

constraints. The properties of the composite constrains (such as monotonicity/anti-
monotonicity discussed below) depend on the properties of the primitive constraints
and the operators used to combine them.

1.3.2 Language and Evaluation Constraints

Constraints typically refer to either the form / syntax of generalizations or their
semantics / validity with respect to the data. In the first case, they are called language
constraints, and in the second evaluation constraints. Below we discuss primitive
language and evaluation constraints. Note that these can be used to form composite
language constraints, composite evaluation constraints, and composite constraints
that mix language and evaluation primitives.

Language constraints concern the syntax / representation of a pattern/model, i.e.,
refer only to its form. We can check whether they are satisfied or not without access-
ing the data that we have been given as a part of the data mining task. If we are in
the context of inductive databases and queries, post-processing queries on patterns /
models are composed of language constraints.

A commonly used type of language constraints is that of subsumption con-
straints. For example, in the context of mining frequent itemsets, we might be in-
terested only in itemsets where a specific item, e.g., beer occurs (that is itemsets
that subsume beer). Or, in the context of learning predictive models, we may be
interested only in decision trees that have a specific attribute in the root node.

Another type of language constraints involves (cost) functions on patterns / mod-
els. An example of these is the size of a decision tree: We can look for decision
trees of at most ten nodes. Another example would be the cost of an itemset (market
basket), in the context where each item has a price. The cost functions as discussed
here are mappings from the representation of a pattern/model to non-negative reals:
Boolean (hard) language constraints put thresholds on the values of these functions.

Evaluation constraints concern the semantics of patterns / models, in particular
as applied to a given set of data. Evaluation constraints typically involve evaluation
functions, comparing them to constant thresholds. Evaluation functions measure the
validity of patterns/models on a given set of data.

Evaluation functions take as input a pattern or a model and return a real value
as output. The set of data is an additional input to the evaluation functions. For
example, the frequency of a pattern on a given dataset is an evaluation function,
as is the classification error of a predictive model. Evaluation constraints typically
compare the value of an evaluation function to a constant threshold, e.g., minimum
support or maximum error.

Somewhat atypical evaluation constraints are used in clustering. Must-link con-
straints specify that two objects x,y in a dataset should be assigned to the same
cluster by the clustering C, i.e., C(x) = C(y), while cannot-link constraints specify
that x,y should be assigned to different clusters C(x) �= C(y). These constraints do
not concern the overall quality of a clustering, but still concern its semantics.

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 11

Constraints on the pattern / model may also involve some general property of
the pattern / model, which does not depend on the specific dataset considered. For
example, we may only consider predictive models that are convex or symmetric or
monotonic in certain variables. These properties are usually defined over the entire
domain of the model, i.e., the corresponding data type, but may be checked for the
specific dataset at hand.

1.3.3 Hard, Soft and Optimization Constraints

Hard constraints in CBDM are Boolean functions on patterns / models. This means
that a constraints is either satisfied or not satisfied. The fact that constraints actually
define what patterns are valid or interesting in data mining, and that interestingness
is not a dichotomy (Bistarelli and Bonchi 2005), has lead to the introduction of
so-called soft constraints.

Soft constraints do not dismiss a pattern for violating a constraint; rather, the
pattern incurring a penalty for violating a constraint. In the cases where we typically
consider a larger number of binary constraints, such as must-link and cannot-link
constraints in constrained clustering (Wagstaff and Cardie 2000), a fixed penalty
may be assigned for violating each constraint. In case we are dealing with evaluation
constraints that compare an evaluation function to a threshold, the penalty incurred
by violating the constraint may depend on how badly the constraint is violated. For
example, if we have a size threshold of five, and the actual size is six, a smaller
penalty would be incurred as compared to the case where the actual size is twenty.

In the hard constraint setting, a pattern/model is either a solution or not. In the
soft constraint setting, all patterns/models are solutions to a different degree. Pat-
terns with lower penalty satisfy the constraints better (to a higher degree), and pat-
terns that satisfy the constraint(s) completely get zero penalty. In the soft-constraint
version of CBDM, we look for patterns with minimum penalty.

Optimization constraints allow us to ask for (a fixed-size set of) patterns/models
that have a maximal/minimal value for a given cost or evaluation function. Example
queries with such constraints could ask for the k most frequent itemsets or the top
k correlated patterns. We might also ask for the most accurate decision tree of size
five, or the smallest decision tree with classification accuracy of at least 90%.

In this context, optima for the cost/evaluation function at hand are searched for
over the entire class of patterns/models considered, in the case the optimization
constraint is the only one given. But, as illustrated above, optimization constraints
often appear in conjunction with (language or evaluation) Boolean constraints. In
this case, optima are searched for over the patterns/models that satisfy the given
Boolean constraints.

12 Sašo Džeroski

1.4 Functions Used in Constraints

This section discusses the functions used to compose constraints in CBDM. Lan-
guage constraints use language cost functions, while evaluation constraints use eval-
uation functions. We conclude this section by discussing monotonicity, an important
property of such functions, and closedness, an important property of patterns.

1.4.1 Language Cost Functions

The cost functions that are used in language constraints concern the representation
of generalizations (patterns/models/...). Most often, these functions are related to
the size/complexity of the representation. They are different for different classes
of generalizations, e.g., for itemsets, mixture models of Gaussians, linear models or
decision trees. For itemsets, the size is the cardinality of the itemset, i.e., the number
of items in it. For decision trees, it can be the total number of nodes, the number of
leaves or the depth of the tree. For linear models, it can be the number of variables
(with non-zero coefficients) included in the model.

More general versions of cost functions involve costs of the individual language
elements, such as items or attributes, and sum/aggregate these over all elements
appearing in the pattern/model. These are motivated by practical considerations,
e.g., costs for items in an itemset and total cost of a market basket. In the context of
predictive models, e.g., attribute-value decision trees, it makes sense to talk about
prediction cost, defined as the total cost of all attributes used by the model. For
example, in medical applications where the attributes correspond to expensive lab
tests, it might be useful to upper-bound the prediction cost of a decision tree.

Language constraints as commonly used in CBDM involve thresholds on the
values of cost functions (e.g., find a decision tree of size at most ten leaves). They
are typically combined with evaluation constraints, be it threshold or optimization
(e.g., find a tree of size at most 10 with classification error of at most 10% or find
a tree of size at most 10 and the smallest classification error). Also, optimization
constraints may involve the language-related cost functions, e.g., find the smallest
decision tree with classification error lower than 10%.

In the ‘classical’ formulations of and approaches to data mining tasks, scor-
ing functions often combine evaluation functions and language cost functions.
The typical score function is a linear combination of the two, i.e., Score(G,D) =
wE × Evaluation(G. f unction,D) + wL × LanguageCost(G.data), where G is the
generalization (pattern/model) scored and D is the underlying dataset. For predic-
tive modelling, this can translate to Score = wE ×Error+wS×Size.

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 13

1.4.2 Evaluation Functions

The evaluation functions used in evaluation constraints are tightly coupled with the
data mining task at hand. If we are solving a predictive modelling problem, the
evaluation function used will most likely concern predictive error. If we are solv-
ing a frequent pattern mining problem, the evaluation function used will definitely
concern the frequency of the patterns.

For the task of pattern discovery, with the discovery of frequent patterns as the
prototypical instantiation, the primary evaluation function is frequency. Recall that
patterns are Boolean functions, assigning a value of true or false to a data item. For
a dataset D, the frequency of a pattern p is f (p,D) = |{e|e ∈ D, p(e) = true}|.

For predictive models, predictive error is the function typically used in con-
straints. The error function used crucially depends on the type of the target pre-
dicted. For a discrete target (classification), misclassification error/cost can be used;
for a continuous target (regression), mean absolute error can be used.

In general, for a target of type Tc, we need a distance (or cost) function dc on
objects of type Tc to define the notion of predictive error. For a given model m
and a dataset D, the average predictive error of the model is defined as 1/|D| ×
∑e=(a,t)∈D dc(t,m(a)). For each example e = (a, t) in the dataset, which consists of
a descriptive (attribute) part a and target (class) part t, the prediction of the model
m(a) is obtained and its distance to the true class value t is calculated. Analogously,
the notion of mean squared error would be defined as 1/|D| ×∑e=(a,t)∈D d2

c (t,m(a)).
The notion of cost-sensitive prediction has been recently gaining increasing

amounts of attention in the data mining community. In this setting, the errors in-
curred by predicting x instead of y and predicting y instead of x, are typically not the
same. The corresponding misprediction (analogous to misclassification) cost func-
tion is thus not symmetric, i.e., is not a distance. The notion of average misprediction
cost can be defined as above, with the distance d(x,y) replaced by a cost function
c(x,y).

Similar evaluation functions can be defined for probabilistic predictive model-

ing, a subtask of predictive modeling. For the data mining task of clustering, the
quality of a clustering is typically evaluated with intra-cluster variance (ICV) in
partition-based clustering. For density-based clustering, a variant of the task of esti-

mating the probability distribution, scoring functions for distributions / densities
are used, typically based on likelihood or log-likelihood (Hand et al. 2001).

1.4.3 Monotonicity and Closedness

The notion of monotonicity of an evaluation (or cost) function on a class of general-
izations is often considered in CBDM. In mathematics, a function f (x) is monotonic
(monotonically increasing) if ∀x,y : x< y→ f (x)≤ f (y), i.e., the function preserves
the < order. If the function reverses the order, i.e., ∀x,y : x < y→ f (x) ≥ f (y), we
call it monotonically decreasing.

14 Sašo Džeroski

In data mining, in addition to the order on Real numbers, we also have a gen-
erality order on the class of generalizations. The latter is typically induced by a
refinement operator. We say that g1 ≤ref g2 if g2 can be obtained from g1 through a
sequence of refinements (and thus g1 is more general than g2): we will refer to this
order as the refinement order.

An evaluation (or cost) function is called monotonic if it preserves the refinement
order or anti-monotonic if it reverses it. More precisely, an evaluation function f is
called monotonic if ∀g1,g2 : g1 ≤ref g2 → f (g1) ≤ f (g2) and anti-monotonic (or
monotonically decreasing) if ∀g1,g2 : g1 ≤ref g2 → f (g1)≥ f (g2).

Note that the above notions are defined for both evaluation functions / constraints
and for language cost functions / constraints. In this context, the frequency of item-
sets is anti-monotonic (it decreases monotonically with the refinement order). The
total cost of an itemset and the total prediction cost of a decision tree, on the other
hand, are monotonic.

In the CBDM literature (Boulicaut and Jeudy 2005), the refinement order consid-
ered is typically the subset relation on itemsets (≤ref is identical to ⊆). A constraint
C (taken as a Boolean function) is considered monotonic if i1 ≤ref i2 ∧C(i1) im-
plies C(i2). A maximum frequency constraint of the form f req(i) ≤ θ , where θ is
a constant, is monotonic. Similarly, minimum frequency/support constraints of the
form f req(i) ≥ θ , the ones most commonly considered in data mining, are anti-
monotonic. A disjunction or a conjunction of anti-monotonic constraints is an anti-
monotonic constraint. The negation of a monotonic constraint is anti-monotonic and
vice versa.

The notions of monotonicity and anti-monotonicity are important because they
allow for the design of efficient CBDM algorithms. Anti-monotonicity means that
when a pattern does not satisfy a constraint C, then none of its refinements can
satisfy C. It thus becomes possible to prune huge parts of the search space which can
not contain interesting patterns. This has been studied within the learning as search
framework (Mitchell, 1982) and the generic levelwise algorithm from (Mannila and
Toivonen, 1997) has inspired many algorithmic developments.

Finally, let us mention the notion of closedness. A pattern (generalization) is
closed, with respect to a given refinement operator ≤ref and evaluation function f ,
if refining the pattern in any way decreases the value of the evaluation function.
More precisely, x is closed if ∀y,x ≤ref y : f (y) < f (x). This notion has primarily
been considered in the context of mining frequent itemsets, where a refinement adds
an item to an itemset and the evaluation function is frequency. There it plays an
important role in condensed representations (Calders et al. 2005). However, it can
be defined analogously for other types of patterns, as indicated above.

1.5 KDD Scenarios

Real-life applications of data mining typically require interactive sessions and in-
volve the formulation of a complex sequence of inter-related inductive queries (in-

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 15

cluding data mining operations), which we will call a KDD scenario (Boulicaut et
al. 1999). Some of the inductive queries would generate or manipulate patterns, oth-
ers would apply these patterns to a given dataset to form a new dataset, still others
would use the new dataset to to build a predictive model. The ability to formulate
and execute such sequences of queries crucially depends on the ability to use the
output of one query as the input to another (i.e., on compositionality and closure).

KDD scenarios can be described at different levels of detail and precision and
can serve multiple purposes. At the lowest level of detail, the specific data mining
algorithms used and and their exact parameter settings employed would be included,
as well as the specific data analyzed. Moving towards higher levels of abstraction,
details can be gradually omitted, e.g., first the parameter setting of the algorithm,
then the actual algorithm may be omitted but the class of generalizations produced
by it can be kept, and finally the class of generalizations can be left out (but the data
mining task kept).

At the most detailed level of description, KDD scenarios can serve to document
the exact sequence of data mining operations undertaken by a human analyst on a
specific task. This would facilitate, for example, the repetition of the entire sequence
of analyses after an erroneous data entry has been corrected in the source data. At
this level of detail, the scenario is a sequence of inductive queries in a formal (data
mining) query language.

At higher levels of abstraction, the scenarios would enable the re-use of already
performed analyses, e.g., on a new dataset of the same type. To abstract from a se-
quence of inductive queries in a query language, we might move from the specifica-
tion of an actual dataset to a specification of the underlying data type and further to
data types that are higher in a taxonomy/hierarchy of data types. Having taxonomies
of data types, data mining tasks, generalizations and data mining algorithms would
greatly facilitate the description of scenarios at higher abstraction levels: the ab-
straction can proceed along each of the respective ontologies.

We would like to argue that the explicit storage and manipulation of scenarios
(e.g., by reducing/increasing the level of detail) would greatly facilitate their re-use.
This in turn can increase the efficiency of the KDD process as a whole by reducing
human effort in complex knowledge discovery processes. Thus, a major bottleneck
in applying KDD in practice would be alleviated.

1.6 A Brief Review of Literature Resources

The notions of inductive databases and queries were introduced by Imielinski and
Mannila (1996). The notion of constraint-based data mining (CBDM) appears in the
data mining literature for the first time towards the end of the 20th century (Han et al.
1999). A special issue of the SIGKDD Explorations bulletin devoted to constraints
in data mining was edited by Bayardo (2002).

A wide variety of research on IDBs and queries, as well as CBDM, was con-
ducted within two EU-funded projects. The first (contract number FP5-IST 26469)

16 Sašo Džeroski

took place from 2001 to 2004 and was titled cInQ (consortium on discovering
knowledge with Inductive Queries). The second (contract number FP6-IST 516169)
took place from 2005 to 2008 and was titled IQ (Inductive Queries for mining pat-
terns and models).

A series of five workshops titled Knowledge Discovery in Inductive Databases
(KDID) took place in the period of 2002 to 2006, each time in conjunction with the
European Conference on Machine Learning and European Conference on Principles
and Practice of Knowledge Discovery in Databases (ECML/PKDD).

• R. Meo, M. Klemettinen (Eds) Proceedings International Workshop on Knowl-
edge Discovery in Inductive Databases (KDID’02), Helsinki

• J-F. Boulicaut, S. Džeroski (Eds) Proc 2nd Intl Wshp KDID’03, Cavtat
• B. Goethals, A. Siebes (Eds) Proc 3rd Intl Wshp KDID’04, Pisa
• F. Bonchi, J-F. Boulicaut (Eds.) Proc 4th Intl Wshp KDID’05, Porto
• J. Struyf, S. Džeroski (Eds.) Proc 5th Intl Wshp KDID’06, Berlin

This was followed by a workshop titled International Workshop on Constraint-
based mining and learning (CMILE’07) organized by S. Nijssen and L. De Raedt at
ECML/PKDD’07 in Warsaw, Poland.

Revised and extended versions of the papers presented at the last three KDID
workshops were published in edited volumes within the Springer LNCS series:

• B. Goethals, A. Siebes (Eds). Knowledge Discovery in Inductive Databases 3rd
Int. Workshop (KDID’04) Revised Selected and Invited Papers. Springer LNCS
3377, 2005.

• F. Bonchi, J-F. Boulicaut (Eds.) Knowledge Discovery in Inductive Databases 4th
Int. Workshop (KDID’05) Revised Selected and Invited Papers. Springer LNCS
Volume 3933, 2006.

• S. Džeroski and J. Struyf (Eds.) Knowledge Discovery in Inductive Databases 5th
Int. Workshop (KDID’05) Revised Selected and Invited Papers. Springer LNCS
Volume 4747, 2007.

Two edited volumes resulted from the cInQ project.

• R. Meo, P-L. Lanzi, M. Klemettinen (Eds) Database Support for Data Mining
Applications - Discovering Knowledge with Inductive Queries. Springer- LNCS
2682, 2004.

• J-F. Boulicaut, L. De Raedt, and H. Mannila (Eds) Constraint-based mining and
inductive databases. Springer- LNCS 3848, 2005.

The first contains among others revised versions of KDID’02 papers. The second
contains an overview of the major results of the cInQ project and related research
outside the project.

The most recent collection on the topic of CBDM is devoted to constrained clus-
tering.

• S. Basu, I. Davidson, K. Wagstaff (Eds.) Clustering with Constraints. CRC Press,
2008.

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 17

The above review lists the major collections of works on the topic. Otherwise,
papers on IDBs/queries and CBDM regularly appear at major data mining confer-
ences (such as ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), European Conference on Machine Learning and Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD), and SIAM International Conference on Data Mining (SDM)) and
journals (such as Data Mining and Knowledge Discovery). Overview articles on top-
ics such as CBDM and data mining query languages appear in reference works on
data mining (such as the Data Mining and Knowledge Discovery Handbook, edited
by O. Z. Maimon and L. Rokach).

1.7 The IQ (Inductive Queries for Mining Patterns and Models)

Project

Most of the research presented in this volume was conducted within the project IQ
(Inductive Queries for mining patterns and models). In this section, we first discuss
the background of the IQ project, then present its structure and organization. Finally,
we give an overview of the major results of the project.

1.7.1 Background (The cInQ project)

Research on inductive databases and constraint-based data mining was first con-
ducted in an EU-funded project by the cInQ consortium (consortium on discovering
knowledge with Inductive Queries), funded within FP5-IST under contract number
26469, which took place from 2001 to 2004. The project involved the following
institutions: Institut National des Sciences Appliquées (INSA), Lyon (France, coor-
dinator: Jean-Francois Boulicaut), Universitá degli Studi di Torino (Italy, Rosa Meo
and Marco Botta), the Politecnico di Milano (Italy, Pier-Luca Lanzi and Stefano
Ceri), the Albert-Ludwigs- Universitaet Freiburg (Germany, Luc De Raedt), the
Nokia Research Center in Helsinki (Finland, Mika Klemettinen and Heikki Man-
nila), and the Jozef Stefan Institute in Ljubljana (Slovenia, Sašo Džeroski).

A more detailed overview of the results of the cInQ project is given by Bouli-
caut et al. (2005). The major contributions of the project, however, can be briefly
summarized as follows:

• An important theoretical framework was introduced for local/frequent pattern
mining (e.g., itemsets, strings) under constraints (see, e.g., De Raedt 2002a), in
which arbitrary boolean combinations of monotonic and anti-monotonic primi-
tives can be used to specify the patterns of interest.

• Major progress was achieved in the area of condensed representations that com-
press/condense sets of solutions to inductive queries (see, e.g., Boulicaut et al.

18 Sašo Džeroski

2003) enabling one to mine dense and/or highly correlated transactional data
sets, such as WWW usage data or boolean gene expression data, that could not
be mined before.

• For frequent itemsets and association rules, cInQ studied the incorporation of
inductive queries in query languages such as SQL and XQuery, also addressing
the problems of inductive query evaluation and optimization in this context (Meo
et al. 2003).

• The various approaches to mining sets of (frequent) patterns were successfully
used in real-life applications from the field of bio- and chemo-informatics, most
notably for finding frequent molecular fragments (Kramer et al. 2001) and in
gene expression data (Becquet et al. 2002).

However, many limitations of IDBs/queries and CBDM remained to be addressed
at the end of the cInQ project. Most existing approaches to inductive querying and
CBDM focused on mining local patterns for a specific type of data (such as item-
sets) and a specific set of constraints (based on frequency-related primitives). In-
ductive querying of global models, such as mining predictive models or clusterings
under constraints remained largely unexplored. Although some integration of fre-
quent pattern mining into database query languages was attempted, most inductive
querying/CBDM systems worked in isolation and were not integrated with other
data mining tools. No support was available for interactive querying sessions that
involve the formulation of a complex sequence of inter-related inductive queries,
where, e.g., some of the queries generate local patterns and other use these local pat-
terns to build global models. As such support is needed in real-life applications, ap-
plications of IDBs/queries and CBDM to practically important problems remained
limited.

1.7.2 IQ Project Consortium and Structure

The IQ project set out to address the challenges to IDBs/queries and CBDM remain-
ing at the end of the cInQ project, as described above. The project, funded within
FP6-IST under contract number 516169, whose full title was Inductive Queries
for mining patterns and models, took place from 2005 to 2008. The IQ consor-
tium evolved from the cInQ consortium. Its composition was as follows: Jozef
Stefan Institute, Ljubljana, Slovenia (overall project coordinator: Sašo Džeroski),
Albert-Ludwigs-Universitaet Freiburg, Germany and Katholieke Universiteit Leu-
ven, Belgium (principal investigator Luc De Raedt), Institut National des Sciences
Appliquées (INSA), Lyon, France (Jean-Francois Boulicaut), University of Wales
Aberystwyth, United Kingdom (Ross King), University of Helsinki / Helsinki In-
stitute for Information Technology, Finland (Heikki Mannila), and University of
Antwerp, Belgium (Bart Goethals).

The overall goal of the IQ project was to develop a sound theoretical under-
standing of inductive querying that would enable us to develop effective inductive
database systems and to apply them on significant real-life applications. To real-

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 19

ize this aim, the IQ consortium made major developments of the required theory,
representations and primitives for local pattern and global model mining, and inte-
grated these into inductive querying systems, inductive database systems and query
languages, and general frameworks for data mining. Based on these advances, it de-
veloped a number of significant show-case applications of inductive querying in the
area of bioinformatics.

The project was divided into five inter-related workpackages. Applications in
bio- and chemo-informatics were considered, and in particular drug design, gene
expression data analysis, gene function prediction and genome segmentation. These
were a strong motivating factor for all the other developments, most notably pro-
viding insight into the KDD Scenarios, i.e., sequences of (inductive) queries, that
need to be supported. The execution of the scenarios was to be supported by Induc-

tive Querying Systems, designed to answer inductive queries for specific pattern
domains. For the different pattern domains, Database and Integration Issues were
studied as well, including the integration of different pattern domains, integration
with databases, scalability to large databases, and condensed representations. The
results that go beyond those of individual pattern domains, solvers and applications
contribute to a generalized overall Theory of Inductive Querying.

1.7.3 Major Results of the IQ project

In sum, the IQ project has made major progress in several directions. In the first
instance, these include further developments in constraint-based mining of frequent
patterns, as well as advances in mining global models (predictive models and clus-
terings) under constraints. At another level, approaches for mining frequent pat-
terns have been integrated with the mining of predictive models (classification) and
clusterings (bi-clustering or co-clustering) under constraints. In the quest for inte-
gration, inductive query languages, inductive database systems and frameworks for
data mining in general have been developed. Finally, applications in bioinformatics
which use the abovementioned advances have been developed.

Advances in mining frequent patterns have been made along several dimen-
sions, including the generalization of the notion of closed patterns. First, the one-
dimensional (closed sets) and two-dimensional (formal concepts) cases have been
lifted to the case of n-dimensional binary data (Cerf et al. 2008; 2010/this volume).
Second, the notion of closed patterns (and the related notion of condensed repre-
sentations) have been extended to the case of multi-relational data (Garriga et al.
2007). Third, and possibly most important, a unified view on itemset mining un-
der constraints has been formulated (De Raedt et al. 2008; Besson et al. 2010/this
volume) where a highly declarative approach is taken. Most of the constraints used
in itemset mining can be reformulated as sets or reified summation constraints, for
which efficient solvers exist in constraint programming. This means that, once the
constraints have been appropriately formulated, there is no need for special purpose
CBDM algorithms.

20 Sašo Džeroski

Additional contributions in mining frequent patterns include the mining of pat-
terns in structured data, fault-tolerant approaches for mining frequent patterns and
randomization approaches for evaluating the results of frequent pattern mining. New
approaches have been developed for mining frequent substrings in strings (cf. Rig-
otti et al. 2010/this volume), frequent paths, trees, and graphs in graphs (cf., e.g.,
Bringman et al. 2006; 2010/this volume), and frequent multi-relational patterns in
a probabilistic extension of Prolog named ProbLog (cf. De Raedt et al. 2010/this
volume). Fault-tolerant approaches have been developed to mining bi-sets or formal
concepts (cf. Besson et al. 2010/this volume), as well as string patterns (cf. Rigotti et
al. 2010/this volume): The latter has been used to to discover putative transcription
factor binding sites in gene promoter sequences. A general approach to the evalu-
ation of data mining results, including those of mining frequent patterns, has been
developed: The approach is based on swap randomization (Gionis et al. 2006).

Advances in mining global models for prediction and clustering have been
made along two major directions. The first direction is based on predictive clus-
tering, which unifies prediction and clustering, and can be used to build predictive
models for structured targets (tuples, hierarchies, time series). Constraints related to
prediction (such as maximum error bounds), as well as clustering (such as must-link
and cannot link constraints), can be addressed in predictive clustering trees (Struyf
and Džeroski 2010/this volume). Due to its capability of predicting structured out-
puts, this approach has been successfully used for applications such as gene function
prediction (Vens et al. 2010/this volume) and gene expression data analysis (Slavkov
and Džeroski 2010/this volume).

The second direction is based on integrated mining of (frequent) local patterns
and global models (for prediction and clustering). For prediction, the techniques
developed range from selecting relevant patterns from a previously mined set for
propositionalization of the data, over inducing patternbased rule sets, to integrat-
ing pattern mining and model construction (Bringmann et al. 2010/this volume).
For clustering, approaches have been developed for constrained clustering by us-
ing local patterns as features for a clustering process, computing co-clusters by
post-processing collections of local patterns, and using local patterns to characterize
given co-clusters (cf., e.g., Pensa et al. 2008).

Finally, algorithms have also been developed for constrained prediction and clus-
tering that do not belong to the above two paradigms. These include algorithms for
constrained induction of polynomial equations for multi-target prediction (Pečkov
et al. 2007). A large body of work has been devoted to developing methods for the
segmentation of sequences, which can be viewed as a form of constrained cluster-
ing (Bingham 2010/ this volume), where the constraints relate the segments to each
other and make the end result more interpretable for the human eye, and/or make the
computational task simpler. The major application area for segmentation methods
has been the segmentation of genomic sequences.

Advances in integration approaches have been made concerning inductive
query languages, inductive database systems and frameworks for data mining based
on the notions of IDBs and queries, as well as CBDM. Several inductive query lan-
guages have been proposed within the project, such as IQL (Nijssen and De Raedt

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 21

2007), which is an extension of the tuple relational calculus with functions, a typing
system and various primitives for data mining. IQL is expressive enough to support
the formulation of non trivial KDD scenarios, e.g., the formal definition of a typical
feature construction phase based on frequent pattern mining followed by a decision
tree induction phase.

An example of an inductive database system coming out of the IQ project is
embodied within the MiningViews approach (Calders et al. 2006a; Blockeel et al.
2010/this volume). This approach uses the SQL query language to access data, pat-
terns (such as frequent itemsets) and models (such as decision trees): The pattern-
s/models are stored in a set of relational tables, called mining views, which virtu-
ally represent the complete output of the respective data mining tasks. In reality,
the mining views are empty and the database system finds the required tuples only
when they are queried by the user, by extracting constraints from the SQL queries
accessing the mining views and calling an appropriate CBDM algorithm.

A special purpose type of inductive database are experiment databases (Van-
schoren and Blockeel 2010/this volume): These are databases designed to collect the
details of data mining (machine learning) experiments, which run different data min-
ing algorithms on different datasets and tasks, and their results. Like all IDBs, exper-
iment databases store the results of data mining: They store information on datasets,
learners, and models resulting from running those learners on those datasets: The
datasets, learners and models are described in terms of predefined properties, rather
than being stored in their entirety. A typical IDB stores one datasets and the general-
izations derived from them (complete patterns/model), while experiment databases
store summary information on experiments concerning multiple datasets. Inductive
queries on experiment databases analyze the descriptions of datasets and models, as
well as experimental results, in order to find possible relationships between them:
In this context, meta-learning is well-supported.

Several proposals of frameworks for data mining were considered within the
project, such as the data mining algebra of Calders et al. (2006b). Among these,
the general framework for data mining proposed by Džeroski (2007) defines pre-
cisely and formally the basic concepts (entities) in data mining, which are used to
frame this chapter. The framework has also served as the basis for developing On-
toDM, an ontology of data mining (Panov and Džeroski 2010/this volume): While
a number of data mining ontologies have appeared recently, the unique advantages
of OntoDM include the facts that (a) it is deep, (b) it follows best practices from
ontology design and engineering (e.g., small number of relations, alignment with
top-level ontologies), and (c) it covers structured data, different data mining tasks,
and IDB/CBDM concepts, all of which are orthogonal dimensions that can be com-
bined in many ways.

On the theory front, the most important contributions (selected from the above)
are as follows. Concerning frequent patterns, they include the extensions of the no-
tion of closed patterns to the case of n-dimensional binary data and multi-relational
data and the unified view on itemset mining under constraints in a constraint pro-
gramming setting. Concerning global models, they include advances in predictive
clustering, which unifies prediction and clustering and can be used for structured

22 Sašo Džeroski

prediction, as well as advances in integrated mining of (frequent) local patterns and
global models (for prediction and clustering). Finally, oncerning integration, they
include the MiningViews approach and the general framework/ontology for data
mining.

On the applications front, the tasks of drug design, gene expression data anal-
ysis, gene function prediction, and genome segmentation were considered. In drug
design, the more specific task of QSAR (quantitative structure-activity relationships)
modeling was addressed: The topic is treated by King et al. (2010/this volume).
Several applications in gene expression data analysis are discussed by Slavkov and
Džeroski (2010/this volume). In addition, human SAGE gene expression data have
been analyzed (Blachon et al. 2007), where frequent patterns are found first (in a
fault-tolerant manner), clustered next, and the resulting clusters (called also quasi-
synexpression groups) are then explored by domain experts, making it possible to
formulate very relevant biological hypotheses.

Gene function prediction was addressed for several organisms, a variety of
datasets, and two annotation schemes (including the Gene Ontology): This appli-
cation area is discussed by Vens et al. (2010/this volume). Finally, in the con-
text of genome segmentation, the more specific task of detecting isochore bound-
aries has been addressed (Haiminen and Mannila 2007): Simplified, isochores are
large-scale structures on genomes that are visible in microscope images and corre-
spond well (but not perfectly) with GC rich areas of the genome. This problem has
been adressed by techniques such as constrained sequence segmentation (Bingham
2010/this volume).

More information on the IQ project and its results can be found at the
project website http://iq.ijs.si.

1.8 What’s in this Book

This book contains eighteen chapters presenting recent research on the topic of IDB-
s/queries and CBDM. Most of the chapters (sixteen) describe research conducted
within the EU project IQ (Inductive Queries for mining patterns and models), as de-
scribed above. The book also contains two chapters on related topics by researchers
the project (Siebes and Puspitaningrum; Wicker et al.)

The book is divided into four parts. The first part, containing this chapter, is
introductory. The second part presents a variety of techniques for constraint-based
data mining or inductive querying. The third part presents integration approaches to
inductive databases. Finally, the fourth part is devoted to applications of inductive
querying and constraint-based mining techniques in the area of bio- and chemo-
informatics.

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 23

1.8.1 Introduction

The first part contains four chapters. This introductory chapter is followed by the
chapter of Panov and Džeroski that briefly presents a general framework for data
mining and focusses on a detailed presentation of a deep ontology of data mining.
The ontology includes well formalized basic concepts of data mining through which
more advanced notions (such as constraint-based data mining) can be also described.
Unlike other existing data mining ontologies, this ontology is much broader (cover-
ing mining of structured data) and follows best practices in ontology engineering.

An important component of inductive databases are inductive query languages,
also known as data mining query languages. Blockeel et al. present a practical com-
parative study of existing data mining query languages on prototypical tasks of
itemset and association rule mining. The last chapter in this part (by De Raedt et
al.) is concerned with mining under composite constraints, i.e., answering inductive
queries that are arbitrary Boolean combinations of monotonic and anti-monotonic
constraints.

1.8.2 Constraint-based Data Mining: Selected Techniques

The second part contains six chapters presenting constraint-based mining tech-
niques. The first chapter in this part by Besson et al. presents a unified view on
itemset mining under constraints within the context of constraint programming. This
is of great importance, as many approaches exist to constraint-based mining of fre-
quent itemsets, typically designing different mining algorithms to handle different
types of constraints.

Bringmann et al. then present a number of techniques for integrating the min-
ing of (frequent) patterns and classification models. The techniques span the entire
range from approaches that select relevant patterns from a previously mined set for
propositionalization of the data, over inducing patternbased rule sets, to algorithms
that integrate pattern mining and model construction. Struyf and Džeroski next dis-
cuss constrained induction of predictive clustering trees, which includes aspects of
both constrained clustering and constrained predictive modeling.

The three chapters in the second half of this part concern constraint-based min-
ing of structured data. Bingham first gives an overview of techniques for finding
segmentations of sequences, some of these being able to handle constraints. Cerf et
al. discuss constrained mining of cross-graph cliques in dynamic networks. Finally,
De Raedt et al. introduce ProbLog, a probabilistic relational formalism, and discuss
inductive querying in this formalism.

24 Sašo Džeroski

1.8.3 Inductive Databases: Integration Approaches

The third part contains four chapters discussing integration approaches to inductive
databases. These include two inductive querying languages and systems, namely
Mining Views and SINDBAD. They are followed by the presentations of an ap-
proach to solving composite inductive queries and experiment databases that store
the results of data mining experiments.

In the Mining Views approach (Blockeel et al.), the user can query the collection
of all possible patterns as if they were stored in traditional relational tables: This can
be done for itemset mining, association rule discovery and decision tree learning.
Wicker et al. present SINDBAD, a prototype of an inductive database system that
aims to support the complete knowledge discovery process, and currently supports
basic preprocessing and data mining operations that can be combined arbitrarily.

Siebes and Puspitaningrum discuss the integration of inductive and ordinary
queries (relational algebra). They first try to lift relational algebra operators to in-
ductive queries on frequent itemsets. They then use a model learned on a given
database to improve the efficiency of learning a model on a subset of the database
resulting from an ordinary query. Finally, Vanschoren and Blockeel present experi-
ment databases: These are (inductive) databases that log and organize all the details
of one’s machine learning experiments, providing a full and fair account of the con-
ducted research.

1.8.4 Applications

The fourth part of the book, devoted to applications, contains four chapters. All of
them deal with applications in the area of bioinformatics (and chemoinformatics).
The first two describe applications of predictive clustering trees, which allow for
predicting structured outputs.

Vens et al. describe the use of predictive clustering trees for predicting gene func-
tion. This is a problem of hierarchical multi-label classification, where each gene
can have multiple functions, with the functions organized into a hierarchy (such
as the Gene Ontology). Slavkov and Džeroski describe several applications of pre-
dictive clustering trees for the analysis of gene expression data, which include the
prediction of the clinical picture of the patient (multiple parameters) and constrained
clustering of gene expression profiles.

In the next chapter, Rigotti et al. describe how to use mining of frequent patterns
on strings to discover putative transcription factor binding sites in gene promoter
sequences. Finally, King et al. discuss a very ambitious application scenario for
inductive querying in the context of a robot scientist for drug design. To select new
experiments to conduct, the robot scientist would use inductive queries to build
structure-activity models predicting the activity of yet unassessed chemicals from
data collected through experiments already performed.

1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview 25

Acknowledgements This work was carried out within the project IQ (Inductive Queries for Min-
ing Patterns and Models), funded by the European Comission of the EU within FP6-IST, FET
branch, under contract number 516169. Thanks are due to the members of the project for con-
tributing the material surveyed in this chapter and presented in this book.

For a complete list of agencies, grants and institutions currently supporting the Sašo Džeroski,
please consult the Acknowledgements chapter of this volume.

References

1. R. Agrawal, T. Imielinski, and A. Swami (1993). Mining association rules between sets of
items in large databases. In Proc. ACM SIGMOD Conf. on Management of Data, pages 207–
216. ACM Press, New York.

2. R. Bayardo, guest editor (2002). Constraints in data mining. Special issue of SIGKDD Explo-
rations, 4(1).

3. C. Becquet, S. Blachon, B. Jeudy, J-F. Boulicaut, and O. Gandrillon (2002). Strong-
association-rule mining for large-scale gene-expression data analysis: a case study on human
SAGE data. Genome Biology, 3(12):research0067.

4. S. Bistarelli and F. Bonchi (2005). Interestingness is not a Dichotomy: Introducing Softness
in Constrained Pattern Mining. In Proc. 9th European Conf. on Principles and Practice of
Knowledge Discovery in Databases, pages 22–33. Springer, Berlin.

5. S. Blachon, R. G. Pensa, J. Besson, C. Robardet, J.-F. Boulicaut, and O. Gandrillon (2007).
Clustering formal concepts to discover biologically relevant knowledge from gene expression
data. In Silico Biology, 7(4-5): 467-483.

6. J-F. Boulicaut, A. Bykowski, C. Rigotti (2003). Free-sets: a condensed representation of
boolean data for the approximation of frequency queries. Data Mining and Knowledge Dis-
covery, 7(1):5–22.

7. J.-F. Boulicaut, L. De Raedt, and H. Mannila, editors (2005). Constraint-Based Mining and
Inductive Databases. Springer, Berlin.

8. J-F. Boulicaut and B. Jeudy (2005). Constraint-based data mining. In O. Maimon and
L. Rokach, editors, The Data Mining and Knowledge Discovery Handbook, pages 399–416.
Springer, Berlin.

9. J.-F. Boulicaut, M. Klemettinen, and H. Mannila (1999). Modeling KDD processes within the
inductive database framework. In Proc. 1st Intl. Conf. on Data Warehousing and Knowledge
Discovery, pages 293–302. Springer, Berlin.

10. B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijssen (2006) Don’t be afraid of simpler
patterns. In Proc 10th European Conf. on Principles and Practice of Knowledge Discovery in
Databases, pages 55–66. Springer, Berlin.

11. T. Calders, B. Goethals and A.B. Prado (2006a). Integrating pattern mining in relational
databases. In Proc. 10th European Conf. on Principles and Practice of Knowledge Discov-
ery in Databases, pages 454–461. Springer, Berlin.

12. T. Calders, L.V.S. Lakshmanan, R.T. Ng and J. Paredaens (2006b). Expressive power of an
algebra for data mining. ACM Transactions on Database Systems, 31(4): 1169–1214.

13. T. Calders, C. Rigotti and J.-F. Boulicaut (2005). A survey on condensed representations for
frequent sets. In J.-F. Boulicaut, L. De Raedt, and H. Mannila, eds., Constraint-Based Mining
and Inductive Databases, pages 64–80. Springer, Berlin.

14. L. Cerf, J. Besson, C. Robardet, and J-F. Boulicaut (2008). Data-Peeler: Constraint-based
closed pattern mining in n-ary relations. In Proc. 8th SIAM Intl. Conf. on Data Mining, pages
37– 48. SIAM, Philadelphia, PA,

15. L. De Raedt (2002a). A perspective on inductive databases. SIGKDD Explorations, 4(2):
69–77.

26 Sašo Džeroski

16. L. De Raedt (2002b). Data mining as constraint logic programming. In A.C. Kakas and
F. Sadri, editors, Computational Logic: Logic Programming and Beyond – Essays in Hon-
our of Robert A. Kowalski, Part II, pages 113–125. Springer, Berlin.

17. L. De Raedt, T. Guns, and S. Nijssen (2008). Constraint programming for itemset mining.
In Proc. 14th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pages
204–212. ACM Press, New York.

18. S. Džeroski (2007). Towards a general framework for data mining. In 5th Intl. Wshp. on
Knowledge Discovery in Inductive Databases: Revised Selected and Invited Papers, pages
259–300. Springer, Berlin.

19. U. Fayyad, G. Piatetsky-Shapiro and P. Smyth (1996). From data mining to knowledge discov-
ery: An overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 495–515. MIT Press, Cambridge,
MA.

20. U. Fayyad, G. Piatetsky-Shapiro, and R. Uthurusamy (2003). Summary from the KDD-2003
panel – “Data Mining: The Next 10 Years”. SIGKDD Explorations, 5(2):191–196.

21. G. C. Garriga, R. Khardon, and L. De Raedt (2007). On mining closed sets in multirelational
data. In In Proc. 20th Intl. Joint Conf. on Artificial Intelligence, pages 804–809. AAAI Press,
Menlo Park, CA.

22. A. Gionis, H. Mannila, T. Mielikainen, and P. Tsaparas (2006). Assessing data mining results
via swap randomization. In Proc. 12th ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, pages 167–176. ACM Press, New York.

23. N. Haiminen and H. Mannila (2007). Discovering isochores by least-squares optimal segmen-
tation. Gene, 394(1-2):53–60.

24. J. Han, L.V.S. Lakshmanan, R.T. Ng (1999). Constraint-Based Multidimensional Data Mining.
IEEE Computer, 32(8):46-50.

25. D.J. Hand, H. Mannila, and P. Smyth (2001). Principles of Data Mining. MIT Press, Cam-
bridge, MA.

26. T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communica-
tions of the ACM, 39(11):58–64, 1996.

27. T. Johnson, L.V. Lakshmanan and R. Ng (2000). The 3W model and algebra for unified data
mining. In Proc. of the Intl. Conf. on Very Large Data Bases, pages 21–32. Morgan Kaufmann,
San Francisco, CA.

28. S. Kramer, L. De Raedt, C. Helma (2001). Molecular feature mining in HIV data. In Proc. 7th
ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pages 136–143. ACM
Press, New York.

29. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discov-
ery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

30. R. Meo (2003) Optimization of a language for data mining. In Proc. 18th ACM Symposium on
Applied Computing, pages 437–444. ACM Press, New York.

31. T.M. Mitchell (1982). Generalization as search. Artificial Intelligence, 18(2): 203–226.
32. S. Nijssen and L. De Raedt. IQL: a proposal for an inductive query language. In 5th Intl. Wshp.

on Knowledge Discovery in Inductive Databases: Revised Selected and Invited Papers, pages
189–207. Springer, Berlin.

33. A. Pečkov, S. Džeroski, and L. Todorovski (2007). Multi-target polynomial regression with
constraints. In Proc. Intl. Wshp. on Constrained-Based Mining and Learning, pages 61–72.
ECML/PKDD, Warsaw.

34. R.G. Pensa, C. Robardet, and J-F. Boulicaut (2008). Constraint-driven co-clustering of 0/1
data. In S. Basu, I. Davidson, and K. Wagstaff, editors, Constrained Clustering: Advances
in Algorithms, Theory and Applications, pages 145–170. Chapman & Hall/CRC Press, Boca
Raton, FL.

35. K. Wagstaff and C. Cardie (2000). Clustering with instance-level constraints. In Proc. 17th
Intl. Conf. on Machine Learning, pages 1103–1110. Morgan Kaufmann, San Francisco, CA.

36. Q. Yang and X. Wu (2006). 10 Challenging problems in data mining research. International
Journal of Information Technology & Decision Making, 5(4): 597–604.

Chapter 2

Representing Entities in the OntoDM Data

Mining Ontology

Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

Abstract Motivated by the need for unification of the domain of data mining and
the demand for formalized representation of outcomes of data mining investigations,
we address the task of constructing an ontology of data mining. Our heavy-weight
ontology, named OntoDM, is based on a recently proposed general framework for
data mining. It represent entites such as data, data mining tasks and algorithms,
and generalizations (resulting from the latter), and allows us to cover much of
the diversity in data mining research, including recently developed approaches to
mining structured data and constraint-based data mining. OntoDM is compliant to
best practices in ontology engineering, and can consequently be linked to other
domain ontologies: It thus represents a major step towards an ontology of data
mining investigations.

2.1 Introduction

Traditionally, ontology has been defined as the philosophical study of what exists:
the study of kinds of entities in reality, and the relationships that these entities bear to
one another [41]. In recent years, the use of the term ontology has become prominent
in the area of computer science research and the application of computer science
methods in management of scientific and other kinds of information. In this sense,
the term ontology has the meaning of a standardized terminological framework in
terms of which the information is organized.

Panče Panov · Sašo Džeroski
Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
e-mail: (Pance.Panov,Saso.Dzeroski)@ijs.si

Larisa N. Soldatova
Aberystwyth University, Penglais, Aberystwyth, SY23 3DB, Wales, UK
e-mail: lss@aber.ac.uk

27
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_2, © Springer Science+Business Media, LLC 2010

28 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

The ontological problem in general is focused on adopting a set of basic
categories of objects, determining what (kinds of) entities fall within each of these
categories of objects, and determining what relationships hold within and among
different categories in the ontology. The ontological problem for computer science
is identical to many of the problems in philosophical ontology: The success of
constructing such an ontology is thus achievable by applying methods, insights and
theories of philosophical ontology. Constructing an ontology then means designing
a representational artifact that is intended to represent the universals and relations
amongst universals that exist, either in a given domain of reality (e.g the domain of
data mining research) or across such domains.

The engineering of ontologies is still a relatively new research field and some of
the steps in ontology design remain manual and more of an art than craft. Recently,
there has been significant progress in automatic ontology learning [31], applications
of text mining [7], and ontology mapping [29]. However, the construction of a high
quality ontology with the use of automatic and even semi-automatic techniques still
requires manual definition of the key upper level entities of the domain of interest.
Good practices in ontology development include following an upper level ontology
as a template, the use of formally defined relations between the entities, and not
allowing multiple inheritances [44].

In the domain of data mining and knowledge discovery, researchers have tried to
construct ontologies describing data mining entities. These ontologies are developed
to solve specific problems, primarily the task of automatic planning of data mining
workflows [2, 49, 24, 11, 22, 26]. Some of the developments are concerned with
describing data mining services on the GRID [8, 5].

The currently proposed ontologies of data mining are not based on upper level
categories nor do they have use a predefined set of relations based on an upper level
ontology. Most of the semantic representations for data mining proposed so far are
based on so called light-weight ontologies [33]. Light-weight ontologies are often
shallow, and without rigid relations between the defined entities. However, they
are relatively easy to develop by (semi)automatic methods and they still greatly
facilitate several applications. The reason these ontologies are more frequently
developed then heavy-weight ontologies is that the development of the latter is
more difficult and time consuming. In contrast to many other domains, data mining
requires elaborate inference over its entities, and hence requires rigid heavy-weight
ontologies, in order to improve the Knowledge Discovery in Databases (KDD)
process and provide support for the development of new data mining approaches
and techniques.

While KDD and data mining have enjoyed great popularity and success in recent
years, there is a distinct lack of a generally accepted framework that would cover and
unify the data mining domain. The present lack of such a framework is perceived as
an obstacle to the further development of the field. In [52], Yang and Wu collected
the opinions of a number of outstanding data mining researchers about the most
challenging problems in data mining research. Among the ten topics considered
most important and worthy of further research, the development of an unifying

2 Representing Entities in the OntoDM Data Mining Ontology 29

framework for data mining is listed first. One step towards developing a general
framework for data mining is constructing an ontology of data mining.

In this chapter, we present our proposal for an ontology of data mining
(DM) named OntoDM [35, 36]. Our ontology design takes into consideration the
best practices in ontology engineering. We use an upper level ontology - Basic
Formal Ontology (BFO)1 to define the upper level classes. We also use the OBO
Relational Ontology (RO)2 and other related ontologies for representing scientific
investigations, to define the semantics of the relationships between the data mining
entities, and provide is-a completeness and single is-a inheritance for all DM
entities.

The OntoDM ontology is based on a recent proposal for a general framework for
data mining [13]. We have developed our ontology in the most general fashion in
order to be able to represent complex data mining entities. These are becoming more
and more popular in research areas such as mining structured data and constraint-
based mining.

The rest of the chapter is structured as follows. In Section 2.2, we present the
ontology design principles and we put the ontology in context of other ontologies
for representing scientific investigations. Section 2.3 presents the ontology upper
level structure, the ontological relations employed, and the division of OntoDM
into logical modules. In the following section (Section 2.4) we present the basic
entities in data mining, following the basic principles from the proposal of a general
framework for data mining. In Section 2.5, we describe how we represent the data
mining entities in all three modules of the ontology. We conclude the chapter with a
critical overview of related work (Section 2.6), discussion and conclusions (Section
2.7).

2.2 Design Principles for the OntoDM ontology

2.2.1 Motivation

The motivation for developing an ontology of data mining is multi-fold. First,
the area of data mining is developing rapidly and one of the most challenging
problems deals with developing a general framework for mining of structured data
and constraint-based data mining. By developing an ontology of data mining we
are taking one step toward solving this problem. The ontology would formalize the
basic entities (e.g., dataset and data mining algorithm in data mining) and define
the relations between the entities. After the basic entities are identified and logically
defined, we can build upon them and define more complex entities (e.g., constraints,
constraint-based data mining task, data mining query, data mining scenario and data
mining experiment).

1 BFO: http://www.ifomis.org/bfo
2 RO: http://www.obofoundry.org/ro/

30 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

Second, there exist several proposals for ontologies of data mining, but the
majority of them are light-weight, aimed at covering a particular use-case in
data mining, are of a limited scope, and highly use-case dependent. Most of the
developments are with the aim of automatic planning of data mining workflows
[2, 49, 50, 24, 22, 26, 11, 12]. Some of the developments are aimed at describing
of data mining services on the GRID [8, 5]. Data mining is a domain that needs a
heavy-weight ontology with a broader scope, where much attention is paid to the
precise meaning of each entity, semantically rigorous relations between entities and
compliance to an upper level ontology, and compatibility with ontologies for the
domains of application (e.g., biology, environmental sciences).

Finally, an ontology of data mining should define what is the minimum
information required for the description of a data mining investigation. Biology
is leading the way in developing standards for recording and representation of
scientific data and biological investigations [16] (e.g., already more than 50 journals
require compliance of the reporting in papers results of microarray experiments
to the Minimum Information About a Microarray Experiment - MIAME standard
[14]). The researchers in the domain of data mining should follow this good practice
and the ontology of data mining should support the development of standards for
performing and recording of data mining investigations.

To summarize, the major goal of our ontology is to provide a structured
vocabulary of entities sufficient for the description of the scientific domain of data
mining. In order to achieve this goal the ontology should:

• represent the fundamental data mining entities;
• allow support for representing entities for mining structured data at all levels: the

entities representing propositional (single table) data mining should be a special
case (subclass) of a more general framework of mining structured data;

• be extensible, i.e., support representing complex data mining entities using
fundamental data mining entities;

• use an upper level ontology and formally defined relations based on upper-level
classes in order to provide connections to other domain ontologies and provide
reasoning capabilities across domains;

• reuse classes and relations from other ontologies representing scientific
investigations and outcomes of research and

• support the representation of data mining investigations.

2.2.2 OntoDM design principles

The OntoDM ontology design takes into consideration the best practices in ontology
engineering. We use the upper level ontology BFO (Basic Formal Ontology)3 to
define the upper level classes, We use the OBO Relational Ontology (RO)4 and an

3 BFO: http://www.ifomis.org/bfo
4 RO: http://www.obofoundry.org/ro/

2 Representing Entities in the OntoDM Data Mining Ontology 31

extended set of RO relations to define the semantics of the relationships between
the data mining entities: in this way, we achieve is-a completeness and single is-a
inheritance for all data mining entities.

OntoDM aims to follow the OBO Foundry principles5 in ontology engineering
that are widely accepted in the biomedical domain. The main OBO Foundry
principles state that ”the ontology is open and available to be used by all”, ”is in a
common formal language”, ”includes textual definition of all terms”, ”uses relations
which are unambiguously defined”, ”is orthogonal to other OBO ontologies” and
”follows a naming convention” [39]. In this way, OntoDM is built on a sound
theoretical foundation and will be compliant with other (e.g., biological) domain
ontologies. Our ontology will be compatible with other formalisms, and thus widely
available for sharing and reuse of already formalized knowledge.

OntoDM is ”in a common formal language”: it is expressed in OWL-DL, a de-
facto standard for representing ontologies. OntoDM is being developed using the
Protege6 ontology editor. It consists of three main components: classes, relations (a
hierarchical structure of is-a relations and relations other than is-a), and instances.

2.2.3 Ontologies for representing scientific investigations

Concerning the relationship to other ontologies, we note here that there exist
several formalisms for describing scientific investigations and outcomes of research.
Below we review five proposals that are relevant for describing data mining
investigations: the Basic Formal Ontology (BFO) as an upper level ontology, the
Ontology for Biomedical Investigations (OBI)7, the Information Artifact Ontology
(IAO) 8, the Ontology of Scientific Experiments (EXPO) [45] and its extension
LABORS [28] ,and the Ontology of Experiment Actions (EXACT) [43]. In the
design of the OntoDM ontology, we reuse and further extend their structure and
use their philosophy to identify and organize the OntoDM entities in an is-a class
hierarchy, folowing the MIREOT (The Minimum Information to Reference an
External Ontology Term) principle [10].

Basic Formal Ontology - BFO. The philosophy of BFO [20] overlaps in some
parts with the philosophy of other upper level ontologies, such as DOLCE
(Descriptive Ontology for Linguistic and Cognitive Engineering) [19] and SUMO
(Suggested Upper Merged Ontology)[34]. However, BFO is narrowly focused on
the task of providing a genuine upper ontology which can be used in support of
domain ontologies developed for scientific research, as for example in biomedicine.
It is included within the framework of the OBO Foundry.

5 OBO Foundry: http://ontoworld.org/wiki/OBO_foundry
6 Protege: http://protege.stanford.edu
7 OBI: http://purl.obolibrary.org/obo/obi
8 IAO:http://code.google.com/p/information-artifact-ontology/

32 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

BFO recognizes a basic distinction between two kinds of entities: substantial
entities or continuants and processual entities or occurrents. Continuants, represent
entities that endure through time, while maintaining their identity. Occurents
represent entities that happen, unfold and develop in time. The characteristic feature
of occurents, or processual entities, is that they are extended both in space and time.

Ontology of biomedical investigations - OBI. The OBI ontology aims to provide
a standard for the representation of biological and biomedical investigations. The
OBI Consortium is developing a set of universal terms that are applicable across
various biological and technological domains and domain specific terms relevant
only to a given domain. The ontology supports consistent annotation of biomedical
investigations regardless of the particular field of the study [6]. OBI defines an
investigation as a process with several parts, including planning an overall study
design, executing the designed study, and documenting the results.

The OBI ontology employs rigid logic and semantics as it uses an upper level
ontology BFO and the RO relations to define the top classes and a set of relations.
OBI defines occurrences (processes) and continuants (materials, instruments,
qualities, roles, functions) relevant to biomedical domains. The Data Transformation
Branch is an OBI branch with the scope of identifying and representing entities and
relations to describe processes which produce output data given some input data,
and the work done by this branch is directly relevant to the OntoDM ontology.

OBI is fully compliant with the existing formalisms in biomedical domains.
OBI is an OBO Foundry candidate [15]. The OBO Foundry requires all member
ontologies to follow the same design principles, the same set of relations, the same
upper ontology, and to define a single class only once within OBO to facilitate
integration and automatic reasoning.

Information Artifact Ontology - IAO. Due to the limitations of BFO in dealing
with information, an Information Artifact Ontology (IAO) has been recently
proposed as a spin-off of the OBI project. The IAO ontology aims to be a mid-level
ontology, dealing with information content entities (e.g., documents, file formats,
specifications), processes that consume or produce information content entities (e.g.,
writing, documenting, measuring), material bearers of information (e.g., books,
journals) and relations in which one of the relata is an information content entity
(e.g., is-about, denotes, cites). IAO is currently available only in a draft version, but
we have included the most stable and relevant classes into OntoDM.

Ontology of experiments - EXPO and LABORS. The formal definition of
experiments for analysis, annotation and sharing of results is a fundamental part of
scientific practice. A generic ontology of experiments EXPO [45] tries to define the
principal entities for representation of scientific investigations. EXPO defines types
of investigations: EXPO:computational investigation, EXPO:physical investigation
and their principal components: EXPO:investigator, EXPO:method, EXPO:result,
EXPO:conclusion.

The EXPO ontology is of a general value in describing experiments from various
areas of research. This was demonstrated with the use of the ontology for the

2 Representing Entities in the OntoDM Data Mining Ontology 33

description of high-energy physics and phylogenetics investigations. The ontology
uses a subset of SUMO as top classes, and a minimized set of relations in order to
provide compliance with the existing formalisms.

The LABORS ontology is an extension of EXPO for the description of automated
investigations (the Robot Scientist Project 9). LABORS defines research units, such
as investigation, study, test, trial and replicate: These are required for the description
of complex multilayered investigations carried out by a robot [28].

Ontology of experiment actions - EXACT The ontology of experiment actions
(EXACT) [43] aims to provide a structured vocabulary of terms for the description
of protocols in biomedical domains. The main contribution of this ontology is the
formalization of biological laboratory protocols in order to enable repeatability
and reuse of already published experiment protocols. This ontology and the COW
(Combining Ontologies with Workflows) software tool were used as a use case to
formalize laboratory protocols in the form of workflows [30].

2.3 OntoDM Structure and Implementation

The upper level structure of the OntoDM ontology is mapped and aligned closely
to the structure of the OBI ontology, a state-of-the-art ontology for describing
biomedical investigations. In order to describe informational entities, the OBI
ontology uses classes from the IAO ontology. A design decision was made to include
relevant classes from IAO into OntoDM for the same purpose. As both the OBI and
IAO ontologies to use BFO as a top ontology, we decided use BFO top level classes
to represent entities which exist in the real world. In addition, we follow the design
philosophy of EXPO/LABORS to represent mathematical entities.

The OntoDM ontology aims at interoperability among the ontologies: It thus
includes formally defined ontological relations, based on upper level ontology
classes, in order to achieve the desired level of expressiveness and interoperability.
The set of relations is composed of relations from the relational ontology (RO) [42],
a relation from the EXACT ontology [43], and relations from IAO and OBI. All of
the relations used are formally defined on an instance and class level.

In the remainder of this section, we present an overview of the upper level classes,
and the relations used in OntoDM, and then discuss how design decisions on the
structure of the ontology allow us to establish a modular ontology for representing
the domain of data mining. The modular structure of the ontology is a necessity
in order to represent different aspects of the data mining and knowledge discovery
process and to facilitate the different needs of the potential users of the ontology.

9 http://www.aber.ac.uk/compsci/Research/bio/robotsci/

34 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

2.3.1 Upper level is-a hierarchy

In Figure 2.1, we present the upper level OntoDM class hierarchy. Bellow we give
more details on the meaning of each upper level class. The upper level classes are
further extended in the OntoDM ontology.

Continuants. An entity that exists in full at any time in which it exists at all,
persists through time while maintaining its identity, and has no temporal parts
in the BFO ontology is called a BFO:continuant (e.g., a person, a heart). A
BFO:dependent continuant is a continuant that is either dependent on one or other
independent continuant bearers or inheres in or is borne by other entities. Dependent
continuants in BFO can be generically dependend or specifically dependent. A
BFO:generically dependent continuant is a dependent continuant where every
instance of A requires some instance of B, but which instance of B serves can change
from time to time (e.g., a certain PDF file that exists in different and in several hard
drives). For a BFO:specifically dependent continuant, every instance of A requires
some specific instance of B which must always be the same (e.g., the role of being
a doctor, the function of the heart in the body etc.).

The IAO:information content entity (ICE) was recently introduced into IAO
(motivated by the need of OBI) and denotes all entities that are generically dependent
on some artifact and stand in relation of aboutness (is-about) to some entity.
Examples of ICE include data, narrative objects, graphs etc. The introduction of ICE
enables the representation of different ways that information relates to the world,
sufficient for representing scientific investigations (and in case of OBI, specifically
biomedical investigations).

A BFO: Realizable entity (RE) is a specifically dependent continuant and
includes all entities that can be executed (manifested, actualized, realized) in
concrete occurrences (e.g., processes). RE are entities whose instances contain

Fig. 2.1 OntoDM top-
level class hirearchy (is-a
hirearchy). The rectangle
objects in the figure represent
ontology classes. The is-a
relation is represented with a
directed labeled arrow.

2 Representing Entities in the OntoDM Data Mining Ontology 35

periods of actualization, when they are manifested through processes in which their
bearers participate. Examples of RE are plans, roles, functions and dispositions.

An IAO:directive informational entity10 (DIC) is an information content entity
that concerns a realizable entity. DICs are information content entities whose
concretizations indicate to their bearer how to realize them in a process. Examples
of DICs are: objective specification, plan specification, action specification, etc. An
IAO:objective specification describes an intended process endpoint. An IAO:plan
specification includes parts such as: objective specification, action specifications and
conditional specifications. When concretized, it is executed in a process in which the
bearer tries to achieve the objectives, in part by taking the actions specified.

Occurents. An entity that has temporal parts and that happens, unfolds or develops
through time in the BFO ontology is called an BFO:occurent (e.g., the life of an
organism). A BFO:processual entity is an occurrent that exists in time by occurring
or happening, has temporal parts and always involves and depends on some entity.
A BFO: process is a processual entity that is a maximally connected spatiotemporal
whole and has beginnings and endings (e.g., the process of sleeping).

An OBI:planned process is a processual entity that realizes a OBI:plan which
is the concretization of a IAO:plan specification in order to achieve the objectives
IAO:objective specification. Process entities have as participants continuants , and
participants can be also active and in that case they are called agents.

2.3.2 Ontological relations

Relations are the most essential part of a well designed ontology. It is thus crucial
that the relations are logically defined. At every point of ontology development,
from the initial conceptualization, through the construction, to its use, all the
relations introduced should not change their meaning. The consistent use of rigorous
definitions of formal relations is a major step toward enabling the achievement
of interoperability among ontologies in the support of automated reasoning across
data derived from multiple domains. The full set of relations used in the OntoDM
ontology is presented in Table 2.1. Below we give a brief overview of their formal
meaning.

Fundamental relations. The fundamental relations is-a and has-part are used to
express subsumption and part-whole relationships between entities. The relation
has-instance is a relation that connects a class with an instance of that class. The
fundamental relations are formally defined in the Relational Ontology [42], both at
class and instance level.

Information entity relations. We included a primitive relation from IAO (is-
about) that relates an information artifact to an entity. In this ontology we reuse

10 A directive information entity, before the OBI RC1 version, was named informational entity
about a realizable.

36 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

Table 2.1 Relations in OntoDM. The relations are presented with the name of the relation, the
origin of the relation, the domain and range of use and the inverse relation (where defined)

Relation Origin Domain Range Inverse relation

is-a RO entity entity sub-class-of
has-part RO entity entity part-of
has-instance RO entity instance instance-of
has-participant RO BFO:occurent BFO:continuant participates-in
has-agent agent-of
is-about IAO IAO:information BFO:entity

entity
has-information EXACT agent of IAO:information

a process content entity
has-specified OBI BFO:processual BFO:dependent is-specified
input entity continuant input-of
has-specified is-specified
output output-of
inheres-in OBI BFO:dependent BFO:continuant bearer-of

continuant
is-concretization-of OBI BFO:specifically BFO:generically is-concretized-as

dependent dependent
continuant continuant

realizes OBI BFO:process BFO:realizable is-realized-by
entity

achieves-planned- OBI OBI:planned IAO:objective objective-
objective process specification achieved-by

the relation has-information defined in the EXACT ontology [43] to relate an agent
of a process to a certain portion of information (information entity) that is essential
for participating in the process.

Process relations. The relations has-participant and has-agent (both defined in
RO) express the relationship between a process and participants in a process, that
can be passive or active (in case of agents). The relations has-specified-input and
has-specified-output have been recently introduced into the OBI ontology and are
candidate relations for RO. These relations are specializations of the relation has-
participant, and are used for relating a process with special types of participants,
inputs and outputs of the process. We made a design decision to include them in
OntoDM in order to increase the expressiveness and interoperability with the OBI
ontology.

Role and quality relations. The relation between a dependent continuant and an
entity is expressed via the relation inheres-in (defined in the OBI ontology and
candidate for inclusion into RO). This relation links qualities, roles, functions,
dispositions and other dependent continuants to their bearers. It is a super-relation
of the relations role-of and quality-of.

Relations between information entities, realizable entities and processes. The
relation is-concretization-of (introduced by the IAO ontology) expresses the
relationship between a generically dependent continuant (GDC) and a specifically
dependent continuant (SCD). In the OBI ontology, this relation is defined in the
following way: “A GDC may inhere in more than one entity. It does so by virtue

2 Representing Entities in the OntoDM Data Mining Ontology 37

of the fact that there is, for each entity that it inheres, a specifically dependent
‘concretization’ of the GDC that is specifically dependent”.

The relation realizes is used to express the relation between a process and a
function (realizable entity), where the unfolding of the process requires execution
of a function (execution of the realizable entity). The relation achieves-planned-
objective links a planned process with its planned objectives. The planned process
realizes a plan which is a concretization of a plan specification, which has as a part
an objective specification. The objectives listed in the objective specification are
met at the end of the planned process. Both relations were introduced by the OBI
ontology.

2.3.3 Modularity: Specification, implementation, application

In Figure 2.3.3, we present three modules of the ontology capable of describing
three different aspects of data mining. The first module, named ”specification”, is
aimed to contain and represent the informational entities in data mining. Examples
of such entities are: data mining task, algorithm specification, dataset description,
generalization specification etc. The second module, named ”implementation”, is
aimed to describe concrete implementations of algorithms, implementations of
components of algorithms, such as distance functions and generalizations produced
by the mining process. The third module, named ”application”, aims at describing
the data mining process and the participants of the process in the context of data
mining scenarios. Example of processual entities are: the application of an algorithm

Fig. 2.2 Three levels of
description: specification,
implementation and
application. The rectangle
objects in the figure represent
ontology classes. The
ontological relations are
represented with directed
labeled arrows. The relations
that do not have an attached
label are is-a relations.

38 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

implementation (execution of an algorithm) and the application of a predictive
model on new data etc.

The modules are inter connected with the previously introduced relations.
In that fashion, a specification is-concretizied-as an implementation. Next, an
implementation is-realized-by an application. Finally, an application achieves-
planned-objective specification.

It is necessary to have all three aspects represented separately in the ontology
as they have distinctly different nature. This will facilitate different usage of
the ontology. For example, the specification aspect can be used to reason about
components of data mining algorithms; the implementation aspect can be used for
search over implementations of data mining algorithms and to compare various
implementations and the application aspect can be used for constructing data mining
scenarios and workflows, definition of participants of workflows and its parts.

2.4 Identification of Data Mining Entities

One of the fist major steps in domain ontology construction is the identification of
domain terms. In the case of OntoDM, we performed the identification following the
principles from a proposal for general framework for data mining [13]. This enables
us to have a general ontology of data mining, that can cover different aspects of the
data mining domain and allow easy extensions of the ontology with new entities in
a principled way. From the framework proposal, we identified a set of basic terms
of data mining that are used to construct the basic data mining entities that form the
core of our ontology.

The identified terms are used to describe different dimensions of data mining.
These are all orthogonal dimensions and different combinations among these should
be facilitated. Through combination of these basic terms and other support terms
already defined in related ontologies such as BFO, IAO, OBI, EXPO/LABORS,
EXACT one should be able to describe, with principled extensions of the ontology,
most of the diversity present in data mining approaches today. In the remainder of
this section, we present an overview of thegeneral framework for (structured) data
mining [13], describing first the basic principles of the framework, followed by an
overview of basic enities such as data, generalizations, data mining task and data
mining algorithms.

2.4.1 A general framework for data mining: Basic principles

One of the main features of data mining is its concern with analyzing different types
of data. Besides data in the format of a single table, which is most commonly used
in data mining, complex (in most cases structured) data are receiving and increasing
amount of interest. These include data in the form of sequences and graphs, but

2 Representing Entities in the OntoDM Data Mining Ontology 39

also text, images, video, and multi-media data. Much of the current research in data
mining is about mining such complex data, e.g., text mining, link mining, mining
social network data, web mining, multi-media data mining. A major challenge is to
treat the mining of different types of structured data in a uniform fashion.

Many different data mining tasks have been considered so far within the field
of data mining. By far the most common is the task of predictive modeling, which
includes classification and regression. Mining frequent patterns is the next most
popular, with the focus shifting from mining frequent itemsets to mining frequent
patterns in complex data. Clustering, which has strong roots in the statistical
community, is also commonly encountered in data mining, with distance-based and
density-based clustering as the two prevailing forms. A variety of other tasks has
been considered, such as change and deviation detection and others, but it is not
clear whether these are of fundamental nature or can be defined by composing some
of the tasks listed above. The task of a general framework for data mining would
be to define the fundamental (basic) data mining tasks and allow definition of more
complex tasks by combining the fundamental ones.

Finally, different types of generalizations (patterns/models) may be used for the
same data mining task. This is most obvious for predictive modelling, where a
variety of methods/approaches exist, ranging from rules and trees, through support
vector machines, to probabilistic models (such as Naive Bayes or Bayesian networks
for classification). The different types of models are interpreted in different ways,
and different algorithms may exist for building the same kind of model (cf. the
plethora of algorithms for building decision trees).

2.4.2 Data

Data is the most basic data mining entity. A data mining algorithm takes as input
a set of data (dataset). An individual datum (data example) in the dataset has
its own structure, e.g., consists of values for several attributes, which may be of
different types or take values from different ranges. We typically assume that all
data examples are homogeneous (of the same type) and share the same structure.

More generally, we are given a data type T and a set of data D of this type. It is
important to notice, though, that a set of basic/primitive types is typically taken as a
starting point, and more complex data types are built by using type constructors. It is
of crucial importance to be able to deal with structured data, as these are attracting
an increasing attention within data mining.

Assume we are given a set of primitive data types, such as Boolean or Real. Other
primitive data types might include Discrete(S), where S is a finite set of identifiers,
or Integer. In addition, we are given some type constructors, such as Tuple and
Set, that can be used to construct more complex data types from existing ones.
For example, Tuple(Boolean,Real) denotes a data type where each datum consists
of a pair of a Boolean value and a real number, while Set(Tuple(Boolean,Real))
denotes a data type where each datum is a set of such pairs.

40 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

Other type constructors might include Sequence(T), which denotes a sequence of
objects of type T , or LabeledGraph(V L,EL), which denotes a graph where vertex
labels are of type V L and edge labels are of type EL. With these, we can easily
represent the complex data types that are of practical interest. For example, DNA
sequences would be of type Sequence(Discrete({A,C,G,T})), while molecules
would be labeled graphs with vertices representing atoms and edges representing
bonds between atoms: atoms would be labeled with the type of element (e.g.,
nitrogen, oxygen) and edges would be labeled with the type of bond (e.g., single,
double, triple).

2.4.3 Generalizations

Generalization is a broad term that denotes the output of different data mining
tasks, such as pattern mining, predictive modeling and clustering. Generalizations
include probability distributions, patterns (in the sense of frequent patterns) and
global models (predictive models and clusterings). All of these are defined on a
given type of data, except for predictive models, which are defined on a pair of data
types.

Generalizations inherently have a dual nature. They can be treated as data
structures and as such represented, stored and manipulated. On the other hand, they
are functions that take as input data points and map them to probabilities (in the case
of probability distributions), class predictions (in the case of predictive models),
cluster assignments (in the case of clusterings), or Booleans (in the case of local
patterns).

The remainder of this sub-section, we first list the fundamental types of
generalizations in data mining, then describe classes of generalizations (that refer
to the data structure nature) and finally we describe interpreters of generalizations
(that refer to the function nature).

Fundamental types of generalizations. Fundamental types of generalizations
include: probability distributions, patterns, predictive models and clusterings.

A probability distribution D on type T is a mapping from objects of type T to non-
negative Reals, i.e., has the signature d :: T → R0+. For uncountably infinite types,
probability densities are used instead. The sum of all probabilities (the integral of
the probability densities) over T is constrained to amount to one.

A pattern P on type T is a Boolean function on objects of type T , i.e., has the
signature p :: T → bool. A pattern on type T is true or false on an object of type T .
A pattern is defined as a statement (expression) in a given language, that describes
(relationships among) the facts in (a subset of) the data [17].

A predictive model M for types Td , Tc is a function that takes an object of type Td
and returns one of type Tc, i.e., has the signature m :: Td → Tc. Most often, predictive
modelling is concerned with classification, where Tc would be Boolean (for binary
classification), Discrete(S) (for multi-class classification), or regression, where Tc

2 Representing Entities in the OntoDM Data Mining Ontology 41

would be Real. In our case, we allow both Td (description) and Tc (class/target) to
be arbitrarily complex data types.

A clustering C on a set of objects S of type T is a function from S to {1, . . . ,k},
where k is the number of clusters, which has to obey k ≤ |S|. Unlike all the
previously listed types of patterns, a clustering is not necessarily a total function
on T, but rather a partial function defined only on objects from S. Overlapping and
soft clusterings, where an element can (partially) belong to more that one cluster
have the signature T → ({1, . . . ,k} → R0+). In hierarchical clustering, in addition
to the function C, we get a hierarchy on top of the set 1, . . . ,k.

In predictive clustering, C is a total function on T. In addition, we have T=(Td ,Tc)
and we have a predictive model associated with each cluster through a mapping M
:: {1, . . . ,k} → (Td → Tc). Performing the function composition of M and C, i.e.,
applying first C and then M, we get a predictive model on T.

Classes of Generalizations. Many different kinds of generalizations have been
considered in the data mining literature. Classification rules, decision trees and
linear models are just a few examples. We will refer to these as generalization
classes.

A class of generalizations CG on a set on a datatype T is a set of generalizations
on T expressed in a language LG. For each specific type of generalization we
can define a specific generalization class. The languages LG refer to the data
part of the generalizations. They essentially define data types for representing the
generalizations. For example, a class of models CM on types Td , Tc is a set of models
M on types Td , Tc, expressed in a language LM .

Interpreters. There is usually a unique mapping from the data part of a
generalization to the function part. This takes the data part of a generalization as
input, and returns the corresponding function as an output. This mapping can be
realized through a so-called interpreter. The interpreter is crucial for the semantics
of a class of generalzations: a class of generalizations is only completely defined
when the corresponding interpreter is defined (e.g., interpreter for models IM is part
of the definition of the class CM).

For illustration, given a data type T , an example E of type T , and a pattern P
of type p :: T → bool, an interpreter I returns the result of applying P to E, i.e.,
I(P,E) = P(E). The signature of the interpreter is i :: p → T → bool. If we apply
the interpreter to a pattern and an example, we obtain a Boolean value.

2.4.4 Data mining task

In essence, the task of data mining is to produce a generalization from a given set of
data. Here we will focus on four fundamental tasks, according to the generalizations
produced: estimating the (joint) probability distribution, learning predictive models,
clustering and finding valid (frequent) patterns.

42 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

Estimating the (Joint) Probability Distribution. Probably the most general data
mining task [21] is the task of estimating the (joint) probability distribution D over
type T from a set of data examples or a sample drawn from that distribution.

Learning a Predictive Model. In this task, we are given a dataset that consists of
examples of the form (d,c), where each d is of type Td and each c is of type Tc. We
will refer to d as the description and c as the class or target. To learn a predictive
model means to find a mapping from the description to the target, m :: Td → Tc, that
fits the data closely. This means that the observed target values and the target values
predicted by the model, i.e., c and ĉ = m(d), have to match closely.

Clustering The task of clustering in general is concerned with grouping objects
into classes of similar objects [25]. Given a set of examples (object descriptions),
the task of clustering is to partition these examples into subsets, called clusters. The
goal of clustering is to achieve high similarity between objects within individual
clusters (intra-cluster similarity) and low similarity between objects that belong to
different clusters (inter-cluster similarity).

Pattern Discovery. In contrast to the previous three tasks, where the goal is to
build a single global model describing the entire set of data given as input, the task
of pattern discovery is to find all local patterns from a given pattern language that
satisfy the required conditions. A prototypical instantiation of this task is the task
of finding frequent itemsets (sets of items, such as {bread,butter}), which are often
found together in a transaction (e.g., a market basket) [1].

2.4.5 Data mining algorithms

A data mining algorithm is an algorithm (implemented in a computer program),
designed to solve a data mining task. It takes as input a dataset of examples of a
given datatype and produces as output a generalization (from a given class) on the
given datatype. A data mining algorithm can typically handle examples of a limited
set (class) of datatypes: For example, a rule learning algorithm might handle only
tuples of Boolean attributes and a boolean class.

Just as we have classes of datatypes, classes of generalizations and data mining
tasks, we have classes of data mining algorithms. The latter are directly related to
the input and output of the algorithm, but can depend also on the specifics of the
algorithm, such as the basic components of the algorithm (e.g., heuristic function,
search method). For example, for the class of decision tree building algorithms, we
can have two subclasses corresponding to top-down induction and beam-search (cf.
Chapter 7) of this volume).

As stated earlier in this chapter, a very desirable property of a data mining
framework is to treat the mining of different types of structured data in a uniform
fashion. In this context, data mining algorithms should be able to handle as broad
classes of datatypes at the input as possible. We will refer to algorithms that can

2 Representing Entities in the OntoDM Data Mining Ontology 43

handle arbitrary types of structured data at the input as generic. Generic data
mining algorithms would typically have as parameters some of their components,
e.g., a heuristic function in decision tree induction or a distance in distance-based
clustering.

The general framework for data mining proposed by Džeroski [13] discusses
several types of data mining algorithms and components thereof. The basic
components include distances, features, kernels and generality/refinement operators.
The framework proposes that the components of data mining should be treated
as first-class citizens in inductive databases, much like generalizations (including
patterns and models). We follow this approach and represent the entities
corresponding to algorithm components in OntoDM: We thus give a brief overview
thereof below.

Distances. The major components of distance-based algorithms are distance and
prototype functions. A distance function d for type T is a mapping from pairs
of objects of type T to non-negative reals: d :: T × T → R0+. Distances are of
crucial importance for clustering and predictive modelling. In clusters, we want to
minimize the distance between objects in a cluster. In predictive modelling, we need
to compare the true value of the target to the predicted one, for any given example.
This is typically done by finding their distance.

A prototype is a representative of all the objects in a given set S. In the context
of a given distance d, this is the object o that has the lowest average square distance
to all of the objects in S. A prototype function p for objects of type T , takes as input
a set S of objects of type T , and returns an object of type T , i.e., the prototype: p ::
Set(T)→ T.

It is quite easy to formulate generic distance-based algorithms for data mining,
which have the distance as a parameter. For example, hierarchical agglomerative
clustering only makes use of the distances between the objects clustered and
distances between sets of such objects. For a predictive problem of type Ti → T j,
the nearest neighbor method applies as long as we have a distance on Ti.

To make a prediction for a new instance, the distance between the (descriptive
part of) new instance and the training instances is calculated. The target part is
copied from the nearest training instance and returned as a prediction.

To use the k-nearest neighbor algorithm (k-NN), we also need a prototype
function on the target data type: the prediction returned is the prototype of the target
parts of the k nearest (in the description space) instances. In the 1-NN case, we do
not need this prototype function, as the prediction is simply copied from the nearest
neighbor.

Features and feature based representation. Most of data mining algorithms use
a feature based representation. Defining an appropriate set of features for a data
mining problem at hand is still much of an art. However, it is also a step of key
importance for the successful use of data mining.

Suppose d is a datum (structured object) of type T . Note that d can be, e.g., an
image represented by an array of real numbers, or a recording of speech, represented
by a sequence of real numbers. A feature f of objects of type T is a mapping from

44 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

objects of type T to a primitive data type (Boolean, Discrete or Real) and f (d) refers
to the value of the feature for the specific object d.

There are at least three ways to identify features for a given object d of type
T . First, the feature may have been directly observed and thus be a part of the
representation of d. The other two ways are related to background knowledge
concerning the structure of the object or concerning domain knowledge.

Kernels and Kernel Based Algorithms. Technically, a kernel k corresponds to
the inner product in some feature space. The computational attractiveness of kernel
methods[40] (KM) comes from the fact that quite often a closed form of these
feature space inner products exists. The kernel can then be calculated directly, thus
performing the feature transformation only implicitly without ever computing the
coordinates of the data in the ‘feature space’. This is called the kernel trick.

KMs in general can be used to address different tasks of data mining, such
as clustering, classification, and regression, for general types of data, such as
sequences, text documents, sets of points, vectors, images, etc. KMs (implicitly)
map the data from its original representation into a high dimensional feature space,
where each coordinate corresponds to one feature of the data items, transforming the
data into a set of points in a Euclidean / linear space. Linear analysis methods are
then applied (such as separating two classes by a hyperplane), but since the mapping
can be nonlinear, nonlinear concepts can effectively be captured.

At the conceptual level, kernels elegantly relate to both features and distances.
At the practical level, kernel functions have been introduced for different types of
data, such as vectors, text, and images, including structured data, such as sequences
and graphs [18]. There are also many algorithms capable of operating with kernels,
and the most well known of which are SVMs (Support Vector Machines).

Refinement Orders and Search of Generalization Space. The notion of generality
is a key notion in data mining, in particular for the task of pattern discovery. To
find generalizations valid in the data, data mining algorithms search the space
of generalizations defined by the class of generalizations considered, possibly
additionally restricted by constraints. To make the search efficient, the space of
generalizations is typically ordered by a generality or subsumption relation.

The generality relation typically refers to the function part of a generalization.
The corresponding notion for the data part is that of refinement. A typical example
of a refinement relation is the subset relation on the space of itemsets. This relation
is a partial order on itemsets and structures itemsets into a lattice structure, which
is typically explored during the search for, e.g., frequent itemsets. The refinement
relation is typically the closure of a refinement operator, which performs minimal
refinements (e.g., adds one item to an itemset).

The prototypical algorithm for mining frequent patterns starts its search with the
empty pattern (set/sequence/graph), which is always frequent. It then proceeds level-
wise, considering at each level the refinements of the patterns from the previous level
and testing their frequencies. Only frequent patterns are kept for further refinement
as no refinement of an infrequent pattern can be frequent.

2 Representing Entities in the OntoDM Data Mining Ontology 45

2.4.6 OntoDM modeling issues

The identification of domain terms is just the first step in the construction of
a domain ontology. Next, there is a need to revise the terms in the sense of
ontology design principles and form ontological entities. In this phase, one has to
form ontological classes, represent them with their unique characteristics (called
properties), relate them to other classes using ontological relations, and place them
adequately in the is-a hierarchy of classes.

An identified term is not always automatically mapped to an ontological class.
Often a manual adjustment by an ontology engineer is required. For example, the
term “data mining algorithm” can be used in three conceptually different aspects,
which should be modeled separately in the ontology.

The first aspect is a specification of the algorithm. Here an algorithm would be
described with the specification of the inputs and outputs, types of generalizations
produced, data mining tasks it solves, the components of algorthms, parameters
that can be tuned, the publication where the algorithm has been published etc.
The second aspect is a concrete implementation of the algorithm. Here we have
concrete executable version of the algorithm, and several different implementations
can exist based on the same specification. Finally, a third aspect is the application of
an algorithm implementation to a concrete dataset and the production of an output
generalization. Here we deal with the data mining process, where essential entities
are the participants in the process, the sub-processes, and how the sub-processes are
connected between each other (which sub-process preceeds the other) etc.

The same can be exemplified with other entities in the ontology. Let us take,
for example, a predictive model. The first aspect of a predictive model is its
specification. Here we describe general characteristics of the model, what tasks they
are produced from, model structure, parameters of the model structure, the language
in which they are expressed (e.g., language of decision trees). The second aspect is
a concrete (instantiated) model which is the result of execution of an algorithm
implementation (a process) on a dataset. Here the instantiated model has a link
to the dataset that produced it, the process that produced it, the quality measure
instantiations on the data from which the model was produced etc. The final aspect
is the execution of the model on new data, which is itself a process with the goal
prediction. The inputs of the process are the model and the new data; the outputs are
the predictions and the evaluation measures calculated.

Another important aspect in modeling the terms into an ontology is the treatment
of the roles of entities. When modeling, one should define an entity with its purest
properties that would allow us to differentiate it from other entities. But to do this,
one has to abstract the entity from different contexts where the entity can appear.
Modeling of realizations of an entity in different contexts should be done via roles of
entities [33]. A typical example of a role in data mining is an operator. An operator
is a role of an implementation of a data mining algorithm in the context of data
mining workflows.

46 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

2.5 Representing Data Mining Enitities in OntoDM

In this section, we report how the data mining entities discussed above are
represented in the OntoDM ontology. Furthermore, we give an overview and
examples of classes, relations and instances from the specification, implementation
and application module of the ontology. In addition, we provide a discussion of the
advantages of the chosen ontology design patterns.

2.5.1 Specification entities in OntoDM

One of the main goals of the OntoDM ontology is to represent entities for structured
data mining. Our design decisions allow us to treat the traditional single-table data
mining as a special case of structured data mining. Furthermore, the goal is to keep
the design as general as possible, in order to allow easy extensions covering further
new developments in the domain of data mining.

The specification module of OntoDM contains specification entities (classes
and instances) for the domain of data mining. Examples of entities are datatype,
dataset, generalization specification, data mining task specification and data mining
algorithm specification. The specification classes are extensions of the information
content entity class.

Fig. 2.3 Taxonomy and part-whole relations between basic data mining specification classes in
OntoDM. The rectangle objects in the figure represent ontology classes. The ontological relations
are represented with directed labeled arrows. The relations that do not have an attached label are
is-a relations.

2 Representing Entities in the OntoDM Data Mining Ontology 47

In Figure 2.3, we present the is-a hierarchy and the part-whole relations
between the basic data mining entity classes of the specification module. The most
fundamental specification class in OntoDM is the datatype (See Section 2.4.2 for
more details). Next, we have the datatype spec. related to the datatype through
the is-about relation. The datatype spec. has two subclasses at the first level: input
datatype spec. and output datatype spec.. They are used to differentiate between
input and output datatypes in the formal representation of generalizations.

A generalization spec. has as its parts a datatype spec. and generalization
language spec.. It is further sub-classed at the first level with the following classes:
local pattern spec., global model spec. and probability distribution spec.. Having a
generalization language spec. as a part of gives us the opportunity to further develop
the taxonomy of generalizations by forming classes of generalizations (as discussed
in Section 2.4.3).

Next, we have the data mining task spec. which is directly related to the types
of generalizations via a has-part relation. This class is a subclass of IAO:objective
specification. It is further sub-classed with the basic data mining tasks (See Section
2.4.4): local pattern discovery task, predictive modeling task, clustering task and
probability distribution estimation task.

Finnaly, a data mining algorithm spec. has as its parts a data mining task spec.
and data mining algorithm component spec. (See Section 2.4.5). A data mining
algorithm spec. is a sub-class of IAO:plan specification and this is aligned with
the IAO and OBI ontology structure, that is a IAO:plan specification has as its part
IAO:objective specification.

The main advantage of having such a structure of classes (conected via has-part
chains) is the ability to use the transitivity property of the has-part relation. For
example, when we have an instance of data mining algorithm spec., we can use
reasoning to extract the data mining task, which is an objective of the algorithm, the
type of generalization the algorithm gives at its output and the datatype specification
on the input and output side.

In the remaining of this subsection we will discuss in more detail the datatype
entity and the representation of structured datatypes and example of instances of
structured datatypes.

Datatype. Figure 2.4 depicts the representation of datatypes in OntoDM. A
datatype can be a primitive datatype or a structured datatype (See Figure 2.4c).
According to [32], a primitive datatype is “a datatype whose values are regarded
fundamental - not subject to any reduction”. Primitive types can be non-ordered
(e.g., discrete datatype) and ordered (e.g., inst:real datatype, inst:integer datatype).
Furthermore, ordered datatypes can also be ordinal (e.g., inst:boolean datatype).

A structured datatype (or aggregated datatype in [32]) is “one whose values are
made up of a number, in general more than one, of component values, each of
which is a value of another datatype”. A structured datatype has two parts: datatype
component spec. and aggregate datatype constructor spec.. The datatype component
spec. specifies the components of the structured datatype and aggregate datatype
constructor spec. specifies the datatype constructor used to compose the structure.

48 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

Fig. 2.4 Datatype specification in OntoDM: a) taxonomy of type constructors; b) structured
datatype entity; c) taxonomy of datatypes. The rectangle objects in the figure represent ontology
classes. The oval objects represent ontology instances. The ontological relations are represented
with directed labeled arrows. The relations that don’t have an attached label are is-a relations.

Providing an adequate and complete taxonomy of datatypes is a very challenging
task. In the implementation of the OntoDM ontology, we decided to follow the
guidelines from [32] to represent the datatype entity and construct a taxonomy of
datatypes applicable to the domain of data mining. The construction is done in a

2 Representing Entities in the OntoDM Data Mining Ontology 49

general fashion that allows extensions in case new datatypes appear and are not
covered so far. The taxonomy of datatypes is given in Figure 2.4c.

Datatype constructor. The taxonomy of the stuctured datatypes is based on the
taxonomy of datatype constructors (See Figure 2.4a). A datatype constructor spec.
can be non-aggregate or aggregate. A non-agregate datatype constr. is defined
in [32] as “datatypes that are produced from other datatypes by the methods
familiar from languages that include them” (e.g., pointers, procedures, choices).
An aggregate datatype constr. defines the aggregate that is used to combine
the component datatypes. The aggregate type constructors classes can be further
extended using different properties (e.g., ordering of components, homogeneity,
how the components are distinguished - tagging or keying etc).

In this ontology, we distinguish between non-ordered and ordered aggregates.
Non-ordered aggregate constructors (or bags) include: sets, tuples (or records)
and undirected labeled graph. A set constr. is a constructor that does not allow
duplicates. A tuple constr. is an aggregate where each component can be tagged.

A sequence constr. is the simplest ordered aggregate with a strict and unique
ordering of the components. A vector constr. is-a sequence constr., where
components are indexed and the ordering of the index induces the ordering of the
components. In a similar way, using properties of aggregates, we can define other
aggregates like directed labeled graph constr. and its subclasses labeled tree constr.
and labeled DAG constr.. All defined aggregates can be further sub-classed using
constraints such as homogeneity, size (number of components), etc.

How do we define an instance of a structured datatype? Having the
representation of a datatype and datatype constructor we can represent arbitrary
datatype instances. In Fig.2.5a, we show how to represent inst:tuple(boolean,real).
It is an instance of the tuple of primitive datatypes class. inst:tuple(boolean,real)
has two primitive datatype components (boolean and real) and a two element tuple

Fig. 2.5 An example of the structured datatype instances: a) The tuple(boolean,real) instance; b)
The set{tuple(boolean,real)} instance. Dashed lines represent instance level relations and full lines
represent class level relations.

50 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

constructor. In Fig.2.5b, we show how we can construct a more complex structured
datatype using previously defined instances. inst:set{tuple(boolean,real)} has one
component datatype (tuple(boolean,real)) and a homogeneous set constructor.

Dataset. Once we have representation of datatypes, we can represent datasets. A
dataset is a IAO:information content entity and has as part data example. A dataset
spec. is an information entity about a dataset, connected via the is-about relation. It
has as its part a datatype specification, allowing us to have a classification of datasets
using only datatype as a classification criteria.

This class can be further sub-classed with unlabeled dataset spec. class that
has only input datatype specification as its part. We can further extend it with
a special cases of unlabeled datasets: unlabeled propositional dataset spec. class,
where the input specification is a tuple of primitives and transactional dataset spec.
class where the input specification is a set of discrete. A labeled dataset spec. is a
specialization of unlabeled dataset spec. class, where we have additionally defined
output datatype specification.

Fig. 2.6 The dataset entity in OntoDM. The ontological relations are represented with directed
labeled arrows. The relations that don’t have an attached label are is-a relations.

2.5.2 Implementation and application entities in OntoDM

In the previous subsection, we gave an overview of the specification module of
the OntoDM ontology. The specification entities are connected via relations to
their ”counter part” entities in the implementation and application modules. In this
subsection, we briefly describe the two modules and give an illustrative example
how the three modules are interconnected, presenting example instances of classes
on all three levels.

Implementation entities. Entities in the implementation module include
implementations of algorithms, functions, instantiations of predictive models

2 Representing Entities in the OntoDM Data Mining Ontology 51

Fig. 2.7 An example of the connection between the three modules in OntoDM ontology:
specification, implementation and application. The example shows defined instances of classes on
all three levels. The rectangle boxes represent ontology classes. The oval boxes represent instances
of classes. Dashed lines represent instance level relations, while the full lines represent class level
relations. Relations that are not labeled are is-a relations.

resulting from the application of a data mining algorithm implementation on a
concrete dataset. All classes are extensions of BFO:realizable entity (see Figure
2.7). A data mining algorithm implementation is an extension of OBI:plan.
A generalization is an extension of the mapping class. The connection with

52 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

the specification module is made through the relation: an implementation is-
concretization-of specification.

Application entities. Entities in the application module are all extensions of OBI:
planned process (See Figure 2.7). It contains entities representing parts of the
knowledge discovery process, such as execution of DM algorithm implementation
and execution of predictive model. The execution of DM algorithm implementation
is a realization (linked with realizes) of an DM algorithm implementation. Since
the execution of an algorithm is a planned process it has input (dataset), an output
(generalization) and achieves the planned objective data mining task.

Illustrative example. In Figure 2.7, we present example instances in the OntoDM
ontology. The instances are represented as oval objects and the relations between
instances are marked with dashed lines. In this example, we are representing the
clus-HMC algorithm in all three modules. clus-HMC in an algorithm for predicting
structured outputs: it learns decision trees for hierarchical multi-label classification
[48].

The inst:clus-HMC process ID0001 is an instance of a predictive modeling
process. It has as its input a inst:HMC dataset ID0001 and as its output inst:clus-
HMC decision tree ID0001. The inst:HMC dataset ID0001 is an instance of the
dataset class and is connected to the HMC dataset ID0001 spec. via the is-about
relation. The dataset specification contains the input and output datatypes of the
dataset (inst:input tuple of primitives and inst:output DAG). The inst:clus-HMC
decision tree ID0001 is a concretization of inst:clus-HMC decision tree spec. and is
realized by a inst:clus-HMC decision tree execution process in the case we want to
obtain predictions for new examples.

The inst:clus-HMC process ID0001 realizes the inst:clus-HMC algorithm
implementation, which is a concretization of the clus-HMC algorithm specification.
The process achieves the planned objective inst:HMC learning task, which is an
instance of the decision tree learning task class.

2.6 Related Work

The main developments in formal representation of data mining entities in the form
of ontologies take place in the domain of data mining workflow construction, data
mining services, and describing data mining resources on the GRID. Other research
in ontologies for data mining include formal representations of machine learning
experiments in context of experiment databases. Finally, there is an increasing
interest in extracting data mining entities from the data mining literature. In the
remainder of this section, we briefly summarize the contributions in all these
domains.

Data mining workflows. A prototype of an Intelligent Discovery Assistant (IDA)
has been proposed [2], which provides users with systematic enumerations of

2 Representing Entities in the OntoDM Data Mining Ontology 53

valid sequences of data mining operators (called data mining processes). Effective
rankings of the processes by different criteria are also provided in order to facilitate
the choice of data mining processes to execute or solve a concrete data mining
task. This automated system takes an advantage of an explicit ontology of data
mining operators (algorithms). A light-weight ontology is used that contains only
a hierarchy of data mining operators divided into three main classes: preprocessing
operators, induction algorithms and post processing operators. The leaves of the
hierarchy are the actual operators. The ontology does not contain information about
the internal structure of the operators and the taxonomy is produced only according
to the role that the operator has in the knowledge discovery process.

Building upon this work has been proposed [24] in a proposal of an intelligent
data mining assistant that combines planning and meta-learning for automatic
design of data mining workflows. A knowledge driven planner relies on a knowledge
discovery ontology [2], to determine the valid set of operators for each step in the
workflow. A probabilistic meta-learner is proposed for selecting the most appropriate
operators by using relational similarity measures and kernel functions.

The problem of semi-automatic design of workflows for complex knowledge
discovery tasks has also been addressed by Žakova et al. [49, 50]. The idea is to
automatically propose workflows for the given type of inputs and required outputs
of the discovery process. This is done by formalizing the notions of a knowledge
type and data mining algorithm in the form of an ontology (named KD ontology).
The planning algorithm accepts task descriptions expressed using the vocabulary of
the ontology.

Kietz et al. [26, 27] present a data mining ontology for workflow planning.
The ontology is designed to contain all the information necessary to support a
3rd generation KDD Support System. This includes the objects manipulated by
the system, the meta data needed, the operators (i.e., algorithms) used and a goal
description. The vocabulary of the ontology is used further for Hierarchical Task
Network planning (HTN).

Hilario et al. [22] present their vision of a data mining ontology designed
to support meta-learning for algorithm and model selection in the context of
data mining workflow optimization. The ontology (named DMOP) is viewed
as the repository of the intelligent assistant’s data mining expertise, containing
representations of data mining tasks, algorithms and models.

Diamantini and Potena [11] introduce a semantic based, service oriented
framework for tools sharing and reuse, in order to give support for the semantic
enrichment through semantic annotation of KDD (Knowledge Discovery in
Databases) tools and deployment of tools as web services. For describing the
domain, they propose an ontology named KDDONTO [12] which is developed
having in mind the central role of a KDD algorithm and their composition (similar
to the work presented in [2, 49]).

GRID. In the context of GRID programming, Cannataro and Comito [8] propose
a design and implementation of an ontology of data mining. The motivation for
building the ontology comes from the context of the author’s work in Knowledge

54 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

GRID [9]. The main goals of the ontology are to allow the semantic search of data
mining software and other data mining resources and to assist the user by suggesting
the software to use on the basis of the user’s requirements and needs. The proposed
DAMON (DAta Mining ONtology) ontology is built through a characterization of
available data mining software.

Brezany et al. [5] introduce an ontology-based framework for automated
construction of complex interactive data mining workflows as a means of improving
productivity of GRID-enabled data systems. For this purpose they develop a data
mining ontology which is based on concepts from industry standards such as: the
predictive model mark-up language (PMML) 11, WEKA [51] and the Java data
mining API [23].

Experiment databases. As data mining and machine learning are experimental
sciences, insight into the performance of a particular algorithm is obtained by
implementing it and studying how it behaves on different datasets. Blockeel
and Vanschoren [3, 4] (also Vanschoren and Blockeel in this volume) propose
an experimental methodology based on experiment database in order to allow
repeatability of experiments and generalizability of experimental results in machine
learning.

Vanschoren et al. [46] propose an XML based language (named ExpML) for
describing classification and regression experiments. In this process, the authors
identified the main entities for formalizing a representation of machine learning
experiments and implemented it in an ontology (named Exposé) [47]. This ontology
is based on the same design principles as the OntoDM ontology, presented in this
chapter, and further uses and extends some of the OntoDM classes.

Identification of entities from literature. Peng et al. [37] survey a large collection
of data mining and knowledge discovery literature in order to identify and classify
the data mining entities into high-level categories using grounded theory approach
and validating the classification using document clustering. As a result of the
study the authors have identified eight main areas of data mining and knowledge
discovery: data mining tasks, learning methods and tasks, mining complex data,
foundations of data mining, data mining software and systems, high-performance
and distributed data mining, data mining applications and data mining process and
project.

2.7 Conclusion

In this chapter, we have presented the OntoDM ontology for data mining, based on
a recent proposal for a general framework of data mining. OntoDM is developed
as a heavy-weight ontology of the data mining, starting from first principles as laid
out by the framework, and including a significant amount of detail on basic data

11 http://www.dmg.org/

2 Representing Entities in the OntoDM Data Mining Ontology 55

mining entities. Entities represented in OntoDM include data (datatypes, datasets),
data mining tasks (e.g., predictive modeling, clustering), data mining algorithms
and their components, and generalizations (e.g., patterns and models output by data
mining algorithms).

OntoDM is very general and allows us to represent much of the diversity in data
mining research, including recently developed approaches. For example, OntoDM
covers the area of mining structured data, including both the mining of frequent
patterns from structured data and the prediction of structured outputs. Also, entities
from the area of constraint-based data mining and inductive databases are included,
such as evaluation functions, constraints, and data mining scenarios.

In the design of OntoDM, we have followed best practices in ontology
engineering. We reuse upper-level ontology categories and well-defined ontological
relations accepted widely in other ontologies for representing scientific
investigations.Using these design principles we can link the OntoDM ontology to
other domain ontologies (e.g., ontologies developed under the OBO Foundry) and
provides reasoning capabilities across domains. The ontology is divided into three
logical modules (specification, implementation, application).

Consequently, OntoDM can be used to support a broad variety of tasks. For
example, it can be used to search for different implementations of an algorithm,
to support the composition of data mining algorithms from reusable components, as
well as the construction of data mining scenarios and workflows. It can also be used
for representing and annotating data mining investigations.

We are currently working on the further development of several aspects of the
ontology, such as the taxonomies of generalizations, tasks and algorithms. Some
of these will require further development and extension of the general framework
for data mining that we have used a starting point (concerning, e.g., the more
precise representation of DM algorithm components). Next, we plan to populate
the ontology with specific instances of the present classes. Furthermore, we plan
to connect the OntoDM ontology with ontologies of application domains (e.g., The
Ontology for Drug Discovery Investigations [38]) by developing application specific
use cases. Finally, applying the OntoDM design principles on the development of
ontologies for other areas of computer science, is one of the most important long
term objectives of our research.

Availability. The OntoDM ontology is available at: http://kt.ijs.si/
pance_panov/OntoDM/

Acknowledgements Part of the research presented in this chapter was conducted within the
project IQ (Inductive Queries for mining patterns and models) funded by the European Commission
of the EU under contract number FP6-IST 516169. Panče Panov and Sašo Džeroski are currently
supported by the Slovenian Research Agency through the research projects Advanced machine
learning methods for automated modelling of dynamic systems (under grant J2-0734) and Data
Mining for Integrative Data Analysis in Systems Biology (under grant J2-2285). For a complete
list of agencies, grants and institutions currently supporting Sašo Džeroski, please consult the
Acknowledgements chapter of this volume.

56 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in
large databases. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 207–216.
ACM Press, 1993.

2. A. Bernstein, F. Provost, and S. Hill. Toward intelligent assistance for a data mining
process: An ontology-based approach for cost-sensitive classification. IEEE Transactions on
Knowledge and Data Engineering, 17(4):503–518, 2005.

3. H. Blockeel. Experiment databases: A novel methodology for experimental research. In Proc.
4th Intl. Wshp. on Knowledge Discovery in Inductive Databases, LNCS 3933:72–85. Springer,
2006.

4. H. Blockeel and J. Vanschoren. Experiment databases: Towards an improved experimental
methodology in machine learning. In Proc. 11th European Conf. on Principles and Practices
of Knowledge Discovery in Databases, LNCS 4702:6–17. Springer, 2007.

5. P. Brezany, I. Janciak, and A. M. Tjoa. Ontology-Based Construction of Grid Data Mining
Workflows. In H.O. Nigro, S. Gonzales Cisaro and D. Xodo, editors, Data Mining with
Ontologies: Implementations, Findings and Frameworks, pages 182-210, IGI Global, 2007.

6. R. R. Brinkman, M. Courtot, D. Derom, J. M. Fostel, Y. He, P. Lord, J. Malone, H. Parkinson,
B. Peters, P. Rocca-Serra, A. Ruttenberg, S-A. A. Sansone, L. N. Soldatova, C. J. Stoeckert,
J. A. Turner, J. Zheng, and OBI consortium. Modeling biomedical experimental processes
with OBI. Journal of Biomedical Semantics, 1(Suppl 1):S7+, 2010.

7. P. Buitelaar and P. Cimiano, editors. Ontology Learning and Population: Bridging the Gap
between Text and Knowledge. IOS Press, 2008.

8. M. Cannataro and C. Comito. A data mining ontology for grid programming. In Proc. 1st Intl.
Wshop. on Semantics in Peer-to-Peer and Grid Computing, pages 113–134. IWWWC, 2003.

9. M. Cannataro and D. Talia. The knowledge GRID. Communications of the ACM, 46(1):89–93,
2003.

10. M. Courtot, F. Gibson, A. L. Lister, R. R. Brinkman J. Malone, D. Schober, and A. Ruttenberg.
MIREOT: The Minimum Information to Reference an External Ontology Term. In Proc. Intl.
Conf. on Biomedical Ontology, 2009.

11. C. Diamantini and D. Potena. Semantic annotation and services for KDD tools sharing and
reuse. In Proc. IEEE International Conference on Data Mining Workshops, pages 761–770,
IEEE Computer Society, 2008.

12. C. Diamantini, D. Potena, and E. Storti. KDDONTO: An ontology for discovery and
composition of KDD algorithms. In Proc. 2nd Intl. Wshp. on Third Generation Data Mining:
Towards Service-Oriented Knowledge Discovery, pages 13–25. ECML/PKDD 2009.

13. S. Džeroski. Towards a general framework for data mining. In Proc. 5th Intl. Wshp. on
Knowledge Discovery in Inductive Databases, LNCS 4747:259–300, Springer, 2007

14. A. Brazma et al. Minimum information about a microarray experiment (MIAME) - toward
standards for microarray data. Nature Genetics, 29(4):365–371, 2001.

15. B. Smith et al. The OBO foundry: coordinated evolution of ontologies to support biomedical
data integration. Nature Biotechnology, 25(11):1251–1255, 2007.

16. C.F. Taylor et al. Promoting coherent minimum reporting guidelines for biological and
biomedical investigations: the MIBBI project. Nature Biotechnology, 26(8):889–896, 2008.

17. W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in databases:
An overview. In G. Piatetsky-Shapiro and W. J. Frawley, editors. Knowledge Discovery in
Databases, pages 1–30. AAAI/MIT Press, 1991.

18. T. Gaertner. A survey of kernels for structured data. SIGKDD Explorations, 2003.
19. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening ontologies

with DOLCE. In Proc. 13th Intl. Conf. on Knowledge Engineering and Knowledge
Management, Ontologies and the Semantic Web, LNCS 2473:166-181, Springer, 2002.

20. P. Grenon and B. Smith. SNAP and PAN: Towards dynamic spatial ontology. Spatial
Cognition & Computation, 4(1):69 – 104, 2004.

21. D. J. Hand, P. Smyth, and H. Mannila. Principles of Data Mining. MIT Press, 2001.

2 Representing Entities in the OntoDM Data Mining Ontology 57

22. M. Hilario, A. Kalousis, P. Nguyen, and A. Woznica. A data mining ontology for algorithm
selection and Meta-Mining. In Proc. 2nd Intl. Wshp. on Third Generation Data Mining:
Towards Service-Oriented Knowledge Discovery, pages 76–88. ECML/PKDD, 2009.

23. M. F. Hornick, E. Marcadé, and S. Venkayala. Java Data Mining: Strategy, Standard, and
Practice. Morgan Kaufmann, 2006.

24. A. Kalousis, A. Bernstein, and M. Hilario. Meta-learning with kernels and similarity functions
for planning of data mining workflows. In Proc. 2nd Intl. Wshp. on Planning to Learn, pages
23–28. ICML/COLT/UAI, 2008.

25. L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley Interscience, 1990.

26. J. Kietz, F. Serban, A. Bernstein, and S. Fischer. Towards cooperative planning of data mining
workflows. In Proc. 2nd Intl. Wshp. on Third Generation Data Mining: Towards Service-
Oriented Knowledge Discovery, pages 1–13. ECML/PKDD, 2009.

27. J-U. Kietz, A. Bernstein F. Serban, and S. Fischer. Data mining workflow templates for
intelligent discovery assistance and Auto-Experimentation. In Proc. 2nd Intl. Wshop. Third
Generation Data Mining: Towards Service-Oriented Knowledge Discovery, pages 1–12.
ECML/PKDD, 2010.

28. R.D. King, J. Rowland, S. G. Oliver, M. Young, W. Aubrey, E. Byrne, M. Liakata,
M. Markham, P. Pir, L. N. Soldatova, A. Sparkes, K.E. Whelan, and A. Clare. The Automation
of Science. Science, 324(5923):85–89, 2009.

29. A. Lister, Ph. Lord, M. Pocock, and A. Wipat. Annotation of SBML models through rule-
based semantic integration. Journal of Biomedical Semantics, 1(Suppl 1):S3, 2010

30. A. Maccagnan, M. Riva, E. Feltrin, B. Simionati, T. Vardanega, G. Valle, and N. Cannata.
Combining ontologies and workflows to design formal protocols for biological laboratories.
Automated Experimentation, 2:3, 2010.

31. E. Malaia. Engineering Ontology: Domain Acquisition Methodology and Pactice. VDM
Verlag, 2009.

32. B. Meek. A taxonomy of datatypes. SIGPLAN Notes, 29(9):159–167, 1994.
33. R. Mizoguchi. Tutorial on ontological engineering - part 3: Advanced course of ontological

engineering. New Generation Computing, 22(2):193-220, 2004.
34. I. Niles and A. Pease. Towards a standard upper ontology. In Proc. Intl. Conf. Formal Ontology

in Information Systems, pages 2–9. ACM Press, 2001.
35. P. Panov, S. Džeroski, and L. N. Soldatova. OntoDM: An ontology of data mining. In Proc.

IEEE International Conference on Data Mining Workshops, pages 752–760. IEEE Computer
Society, 2008.

36. P. Panov, L. N. Soldatova, and S. Džeroski. Towards an ontology of data mining investigations.
In Proc. 12th Intl. Conf. on Discovery Science, LNCS 5808:257–271. Springer, 2009.

37. Y. Peng, G. Kou, Y. Shi, and Z. Chen. A descriptive framework for the field of data mining and
knowledge discovery. International Journal of Information Technology and Decision Making,
7(4):639–682, 2008.

38. D. Qi, R. King, G. R. Bickerton A. Hopkins, and L. Soldatova. An ontology for description
of drug discovery investigations. Journal of Integrative Bioinformatics, 7(3):126, 2010.

39. D. Schober, W. Kusnierczyk, S. E Lewis, and J. Lomax. Towards naming conventions for use
in controlled vocabulary and ontology engineering. In Proc. BioOntologies SIG, pages 29–32.
ISMB, 2007.

40. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

41. B. Smith. Ontology. In Luciano Floridi, editor, Blackwell Guide to the Philosophy of
Computing and Information, pages 155–166. Oxford Blackwell, 2003.

42. B. Smith, W. Ceusters, B. Klagges, J. Kohler, A. Kumar, J. Lomax, C. Mungall, F. Neuhaus,
A. L. Rector, and C. Rosse. Relations in biomedical ontologies. Genome Biology, 6:R46,
2005.

43. L. N. Soldatova, W. Aubrey, R. D. King, and A. Clare. The EXACT description of biomedical
protocols. Bioinformatics, 24(13):i295-i303, 2008.

58 Panče Panov, Larisa N. Soldatova, and Sašo Džeroski

44. L. N. Soldatova and R. D. King. Are the current ontologies in biology good ontologies? Nature
Biotechnology, 23(9):1095–1098, 2005.

45. L. N. Soldatova and R. D. King. An ontology of scientific experiments. Journal of the Royal
Society Interface, 3(11):795–803, 2006.

46. J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes. Experiment databases: Creating
a new platform for meta-learning research. In Proc. 2nd Intl. Wshp. on Planning to Learn,
pages 10–15. ICML/COLT/UAI, 2008.

47. J. Vanschoren and L. Soldatova. Exposé: An ontology for data mining experiments. In
Proc. 3rd Intl. Wshp. on Third Generation Data Mining: Towards Service-oriented Knowledge
Discovery, pages 31–44. ECML/PKDD, 2010.

48. C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel. Decision trees for hierarchical
multi-label classification. Machine Learning, 73(2):185–214, 2008.

49. M. Žáková, P. Kremen, F. Zelezny, and N. Lavrač. Planning to learn with a knowledge
discovery ontology. In Proc. 2nd Intl. Wshop. Planning to Learn, pages 29–34.
ICML/COLT/UAI, 2008.

50. M. Žáková, V. Podpecan, F. Železný, and N. Lavrač. Advancing data mining workflow
construction: A framework and cases using the orange toolkit. In V. Podpečan, N. Lavrač,
J.N. Kok, and J. de Bruin, editors, Proc. 2nd Intl. Wshop. Third Generation Data Mining:
Towards Service-Oriented Knowledge Discovery, pages 39–52. ECML/PKDD 2009.

51. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
2nd ed., Morgan Kaufmann, 2005.

52. Q. Yang and X. Wu. 10 challenging problems in data mining research. International Journal
of Information Technology and Decision Making, 5(4):597–604, 2006.

Chapter 3

A Practical Comparative Study Of Data Mining

Query Languages

Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado, and
Céline Robardet

Abstract An important motivation for the development of inductive databases and
query languages for data mining is that such an approach will increase the flexibility
with which data mining can be performed. By integrating data mining more closely
into a database querying framework, separate steps such as data preprocessing, data
mining, and postprocessing of the results, can all be handled using one query lan-
guage. In this chapter, we compare six existing data mining query languages, all
extensions of the standard relational query language SQL, from this point of view:
how flexible are they with respect to the tasks they can be used for, and how eas-
ily can those tasks be performed? We verify whether and how these languages can
be used to perform four prototypical data mining tasks in the domain of itemset
and association rule mining, and summarize their stronger and weaker points. Be-
sides offering a comparative evaluation of different data mining query languages,
this chapter also provides a motivation for a following chapter, where a deeper in-
tegration of data mining into databases is proposed, one that does not rely on the
development of a new query language, but where the structure of the database itself
is extended.

Hendrik Blockeel
Katholieke Universiteit Leuven, Belgium and Leiden Institute of Advanced Computer Science,
Universiteit Leiden, The Netherlands e-mail: hendrik.blockeel@cs.kuleuven.be

Toon Calders
Technische Universiteit Eindhoven, The Netherlands e-mail: t.calders@tue.nl

Élisa Fromont · Adriana Prado
Université de Lyon (Université Jean Monnet), CNRS, Laboratoire Hubert Curien, UMR5516, F-
42023 Saint-Etienne, France
e-mail: {elisa.fromont,adriana.bechara.prado}@univ-st-etienne.fr

Bart Goethals
Universiteit Antwerpen, Belgium e-mail: bart.goethals@ua.ac.be

Céline Robardet
Université de Lyon, INSA-Lyon, CNRS, LIRIS, UMR5205, F-69621, France
e-mail: celine.robardet@insa-lyon.fr

59
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_3, © Springer Science+Business Media, LLC 2010

60 Hendrik Blockeel et al.

3.1 Introduction

An important motivation for the development of inductive databases and query lan-
guages for data mining is that such an approach will increase the flexibility with
which data mining can be performed. By integrating data mining more closely into
a database querying framework, separate steps such as data preprocessing, data min-
ing, and postprocessing of the results, can all be handled using one query language.
It is usually assumed that standard query languages such as SQL will not suffice
for this; and indeed, SQL offers no functionality for, for instance, the discovery of
frequent itemsets. Therefore, multiple researchers have proposed to develop new
query languages, or extend existing languages, so that they offer true data mining
facilities. Several concrete proposals have been implemented and evaluated.

In this chapter, we consider four prototypical data mining tasks, and six existing
data mining query languages, and we evaluate how easily the tasks can be performed
using these languages. The six languages we evaluate are the following: MSQL [8],
MINE RULE operator [11], SIQL [17], SPQL [2], and DMX [16]. All six are based
on extending SQL and have special constructs to deal with itemsets and/or associa-
tion rules.

The four tasks with which the expressivity of the languages will be tested can
all be situated in the association rule mining domain. The tasks are “typical” data
mining tasks, in the sense that they are natural tasks in certain contexts, and that
they have not been chosen with a particular data mining query language in mind.
The four tasks are: discretizing a numerical attribute, mining itemsets with a specific
area constraint, and two association rule mining tasks in which different constraints
are imposed on the rules to be discovered. It turns out that the existing languages
have significant limitations with respect to the tasks considered.

Many of the shortcomings of the six languages are not of a fundamental nature
and can easily be overcome by adding additional elements to the query languages.
Yet, when extending a query language, however, there is always the question of how
much it should be extended. One can identify particular data mining problems and
then extend the language so that these problems can be handled; but whenever a new
type of data mining task is identified, a further extension may be necessary, unless
one can somehow guarantee that a language is expressive enough to handle any kind
of data mining problem.

While this chapter offers a comparative evaluation of different data mining query
languages, this comparison is not the main goal; it is meant mostly as an illustra-
tion of the limitations that current languages have, and as a motivation for Chapter
11, where the idea of creating a special-purpose query language for data mining is
abandoned, and the inductive database principle is implemented by changing the
structure of the database itself, adding “virtual data mining views” to it (which can
be queried using standard SQL), rather than by extending the query language.

We dedicate the next section to the description of the chosen data mining tasks.
In Section 3.3, we introduce the data mining query languages and describe how
they can be used for performing these tasks. Next, in Section 3.4, we summarize the

3 A Practical Comparative Study Of Data Mining Query Languages 61

positive and negative points of the languages, with respect to the accomplishment
of the given tasks.

3.2 Data Mining Tasks

Inspired by [3], we verify whether and how four prototypical data mining tasks can
be accomplished using a number of existing data mining query languages. To en-
able a fair comparison between them, we study here data mining tasks which mainly
involve itemsets and association rules, as these patterns can be computed by almost
all of the surveyed proposals. We also focus on intra-tuple patterns (i.e., patterns
that relate values of different attributes of the same tuple), even though some of the
languages considered can also handle inter-tuple patterns (which relate values of at-
tributes of different tuples that are somehow connected) [3]. As the precise structure
of the patterns that can be found typically also differs between query languages, we
will for each task describe precisely what kind of pattern we are interested in (i.e.,
impose specific constraints that the patterns should satisfy).

For ease of presentation, we will assume that the data table Playtennis2 in Fig-
ure 3.1 forms the source data to be mined. The data mining tasks that we will discuss
are the following:

• Discretization task: Discretize attribute Temperature into 3 intervals. The dis-
cretized attribute should be used in the subsequent tasks.

• Area task: Find all intra-tuple itemsets with relative support of at least 20%, size
of at least 2, and area, that is, absolute support × size, of at least 10. The area of
an itemset corresponds to the size of the tile that is formed by the items in the
itemset in the transactions that support it. The mining of large tiles; i.e., itemsets
with a high area is useful in constructing small summaries of the database [4].

Fig. 3.1 The data table
Playtennis2.

Playtennis2
Day Outlook Temperature Humidity Wind Play

D1 Sunny 85 High Weak No
D2 Sunny 80 High Strong No
D3 Overcast 83 High Weak Yes
D4 Rain 70 High Weak Yes
D5 Rain 68 Normal Weak Yes
D6 Rain 65 Normal Strong No
D7 Overcast 64 Normal Strong Yes
D8 Sunny 72 High Weak No
D9 Sunny 69 Normal Weak Yes
D10 Rain 75 Normal Weak Yes
D11 Sunny 75 Normal Strong Yes
D12 Overcast 72 High Strong Yes
D13 Overcast 81 Normal Weak Yes
D14 Rain 71 High Strong No

62 Hendrik Blockeel et al.

• Right hand side task: Find all intra-tuple association rules with relative support
of at least 20%, confidence of at most 80%, size of at most 3, and a singleton
right hand side.

• Lift task: Find, from the result of the right hand side task, rules with attribute
Play as the right hand side that have a lift greater than 1.

While these tasks are only a very small sample from all imaginable tasks, they
form a reasonably representative and informative sample. Discretization is a very
commonly used preprocessing step. The discovery of itemsets and association rules
are common data mining tasks, and the constraints considered here (upper/lower
bounds on support, confidence, size, area, lift) are commonly used in many applica-
tion domains. The fourth task is interesting in particular because it involves what we
could call incremental mining: after obtaining results using a data mining process,
one may want to refine those results, or mine the results themselves. This is one of
the main motivating characteristics of inductive databases: the closure property im-
plies that the results of a mining operation can be stored in the inductive database,
and can be queried further with the same language used to perform the original
mining operation.

3.3 Comparison of Data Mining Query Languages

We include six data mining query languages in our comparison : DMQL [6,
7], MSQL [8], SQL extended with the MINE RULE operator [11], SIQL [17],
SPQL [2], and DMX, the extended version of SQL that is included in Microsoft
SQL server 2005 [16]. As all these languages are quite different, we postpone a de-
tailed discussion of each language until right before the discussion of how it can be
used to perform the four tasks.

3.3.1 DMQL

The language DMQL (Data Mining Query Language) [6, 7] is an SQL-like data
mining query language designed for mining several kinds of rules in relational
databases, such as classification and association rules. It has been integrated into
DBMiner [5], which is a system for data mining in relational databases and data
warehouses.

As for association rules, a rule in this language is a relation between the values of
two sets of predicates evaluated on the database. The predicates are of the form P(X,
y), where P is a predicate that takes the name of an attribute of the source relation,
X is a variable, and y is a value in the domain of this attribute. As an example,
the association rule “if outlook is sunny and humidity is high, you should not play
tennis” is represented in this language by

3 A Practical Comparative Study Of Data Mining Query Languages 63

Outlook(X, ‘Sunny’)∧Humidity(X, ‘High’)⇒ Play(X, ‘No’),

where X is a variable representing the tuples in the source relation that satisfy the
rule.

DMQL also gives the user the ability to define a meta-pattern (template), which
restricts the structure of the rules to be extracted. For example, the meta-pattern

P(X: Playtennis2,y)∧Q(X,w)⇒ Play(X,z)

restricts the structure of the association rules to rules having only the attribute Play
in the right hand side, and any 2 attributes in the left hand side. In addition to the
meta-pattern resource, DMQL has also primitives to specify concept hierarchies on
attributes. These can be used so as to extract generalized association rules [15] as
well as for discretization of numerical attributes.

Next, we present how the tasks described above are executed in DMQL.

Discretization task. In DMQL, a discretization of a numerical attribute can be
defined by a concept hierarchy as follows [7]:

1. define hierarchy temp_h for Temperature
on Playtennis2 as

2. level1: {60..69} < level0:all
3. level1: {70..79} < level0:all
4. level1: {80..89} < level0:all

By convention, the most general concept, all, is placed at the root of the hierarchy,
that is, at level 0. The notation “..” implicitly specifies all values within the given
range. After constructing such hierarchy, it can be used in subsequent mining queries
as we show later on.

Area task. As DMQL was specially designed for extracting rules from databases,
the area task cannot be executed in this language.

Right hand side task. The following DMQL query is how intra-tuple association
rules with a certain minimum support and minimum confidence are extracted in this
language (note that we are not considering the constraint on the maximum size of
the rules nor on their right hand sides yet):

1. use database DB
2. use hierarchy temp_h for attribute Temperature
3. in relevance to Outlook, Temperature,

Humidity, Wind, Play
4. mine associations as MyRules
5. from Playtennis2
6. group by Day
7. with support threshold = 0.20
8. with confidence threshold = 0.80

The language constructs allow to specify the relevant set of data (lines 3 and
5), the hierarchies to be assigned to a specific attribute (line 2, for the attribute

64 Hendrik Blockeel et al.

Temperature), the desired output, that is, the kind of knowledge to be discovered
(line 4), and the constraints minimum support and minimum confidence (lines 7 and
8, respectively), as required by the current task.

DMQL is able to extract both intra- and inter-tuple association rules. For the
extraction of intra-tuple rules (as requested by the current task), the group-by clause
in line 6 guarantees that each group in the source data coincides with a unique tuple.

Concerning the remaining constraints, although it is possible to constrain the size
of the right hand side of the rules using meta-patterns (as shown earlier), we are not
aware of how meta-patterns can be used to constrain the maximum size of the rules,
as also needed by the current task. An alternative solution to obtain the requested
rules is to write two DMQL queries as the one above, the first using the meta-pattern:

P(X: Playtennis2,y)∧Q(X,w)⇒ V(X,z)(rules with size 3)

and the second, using the meta-pattern:

P(X: Playtennis2,y)⇒ V(X,z)(rules with size 2).

A meta-pattern can be used in the query above by simply adding the clause
“matching <meta-pattern>” between lines 4 and 5. We therefore conclude that
the right hand side task can be performed in DMQL.

Lift task. In the system DBMiner [5], the mining results are presented to the user
and an iterative refinement of these results is possible only through graphical tools.
In fact, it is not clear in the literature whether nor how (with respect to the attributes)
the rules are stored into the database. For this reason, we assume here that the mining
results cannot be further queried and, consequently, the lift task cannot be accom-
plished in this language.

3.3.2 MSQL

The language MSQL [8] is an SQL-like data mining query language that focuses
only on mining intra-tuple association rules in relational databases. According to
the authors, the main intuition behind the language design has been to allow the rep-
resentation and manipulation of rule components (left and right hand sides), which,
being sets, are not easily representable in standard SQL [8].

In MSQL, an association rule is a propositional rule defined over descriptors.
A descriptor is an expression of the form (Ai = ai j), where Ai is an attribute in
the database and ai j belongs to the domain of Ai. A conjunctset is defined as a
set containing an arbitrary number of descriptors, such that no two descriptors are
formed using the same attribute. Given this, an association rule in this language is
of the form A ⇒ B, where A is a conjunctset and B a single descriptor. The rule
“if outlook is sunny and humidity is high, you should not play tennis” is therefore
represented in MSQL as

3 A Practical Comparative Study Of Data Mining Query Languages 65

(Outlook = ‘Sunny’)∧ (Humidity = ‘High’)⇒ (Play = ‘No’).

MSQL offers operators for extracting and querying association rules: these are
called GetRules and SelectRules, respectively. Besides, it also provides an encode
operator for discretization of numerical values.
In the following, we show how the given tasks are executed in MSQL.

Discretization task. MSQL offers an encode operator that effectively creates ranges
of values, and assigns integers (an encoded value) to those ranges. The following
MSQL statement creates a discretization for the attribute Temperature, as required.

1. create encoding temp_encoding
on Playtennis2.Temperature as

2. begin
3. (60,69,1), (70,79,2), (80,89,3), 0
4. end

For every set (x,y,z) given in line 3, MSQL assigns the integer z to the range of
values from x to y. In this example, the integer 0 is assigned to occasional values
not included in any of the specified ranges (see end of line 3). The created encod-
ing, called “temp encoding”, can be used in subsequent mining queries as we show
below.

Area task. Similarly to DMQL, MSQL cannot perform the area task, as it was
specially proposed for association rule mining.

Right hand side task. As described earlier, MSQL is able to extract only intra-
tuple association rules, which, in turn, are defined as having a singleton right hand
side. The current task can be completely performed by the operator GetRules, as
follows.

1. GetRules(Playtennis2)
2. into MyRules
3. where length <= 2
4. and support >= 0.20
5. and confidence >= 0.80
6. using temp_encoding for Temperature

In line 1, the source data is defined between parentheses. Constraints on the rules
to be extracted are posed in the where-clause: here, we constrain the size (length) of
the left hand side of the rules, referred to in MSQL as body (line 3), their minimum
support (line 4), and their minimum confidence (line 5). Finally, the using-clause
allows the user to discretize numerical attributes on the fly. In line 6, we specify that
the encoding called “temp encoding” should be applied to the attribute Temperature.

MSQL also allows the user to store the resultant rules in a persistent rule base,
although the format in which the rules are stored is opaque to the user. This storage is
possible by adding the into-clause to the MSQL query, as in line 2. In this example,
the name of the rule base is called “MyRules”.

66 Hendrik Blockeel et al.

Lift task. As previously mentioned, MSQL offers an operator for querying min-
ing results, which is called SelectRules. For example, the following MSQL query
retrieves all rules with attribute Play as the right hand side, referred to in MSQL as
consequent, from the rule base MyRules:

1. SelectRules(MyRules)
2. where Consequent is {(Play=*)}

The operator SelectRules retrieves the rules previously stored in the rule base
MyRules (given in parentheses in line 1) that fulfill the constraints specified in the
where-clause (line 2). These can only be constraints posed on the length of the rules,
the format of the consequent (as in the query above), the format of the body, support
or confidence of the rules. The constraint on lift, required by the current task, cannot
be expressed in this language, which means that the lift task cannot be completely
performed in MSQL.

3.3.3 MINE RULE

Another example is the operator MINE RULE [11] designed as an extension of
SQL, which was also proposed for association rule mining discovery in relational
databases. An interesting aspect of this work is that the operational semantics of
the proposed operator is also presented in [11], by means of an extended relational
algebra. Additionally, in [12], the same authors specified how the operator MINE
RULE can be implemented on top of an SQL server.

As an example, consider the MINE RULE query given below:

1. Mine Rule MyRules as
2. select distinct 1..1 Outlook, Humidity as body,

1..1 Play as head,
support, confidence

3. from Playtennis2
4. group by Day
5. extracting rules with support: 0.20,

confidence: 0.80

This query extracts rules from the source table Playtennis2, as defined in line 3.
The execution of this query creates a relational table called “MyRules”, specified
in line 1, where each tuple is an association rule. The select clause in line 2 defines
the structure of the rules to be extracted: the body has schema {Outlook, Humidity},
while the head has schema {Play}. The notation “1..1” specifies the minimum and
maximum number of schema instantiations in the body and head of the extracted
rules, which is referred to as their cardinalities.

The select-clause also defines the schema of the relational table being created,
which is limited to the body, head, support and confidence of the rules, the last 2
being optional. In the example query above, the schema of table MyRules consists
of all these attributes.

3 A Practical Comparative Study Of Data Mining Query Languages 67

Similar to DMQL, the operator MINE RULE is able to extract both inter- and
intra-tuple association rules. For the extraction of intra-tuple rules, the group-by
clause in line 4 assures that each group in the source data coincides with a unique
tuple. Finally, in line 5, the minimum support and minimum confidence are speci-
fied.
Next, we show how the given tasks are performed with MINE RULE.

Discretization task We assume here that the MINE RULE operator has been in-
tegrated into a database system based on SQL (as discussed in [12]). Given this,
although MINE RULE does not provide any specific operator for discretization
of numerical values, the discretization required by this task can be performed by,
e.g., the SQL CASE expression below. Such an expression is available in a vari-
ety of database systems, e.g., PostgreSQL1, Oracle2, Microsoft SQL Server3 and
MySQL4.

1. create table MyPlaytennis as
2. select Day, Outlook,
3. case

when Temperature between 60 and 69 then ‘[60,69]’
when Temperature between 70 and 79 then ‘[70,79]’
when Temperature between 80 and 89 then ‘[80,89]’
end as Temperature,

4. Humidity, Wind, Play
5. from Playtennis2

The query above creates a table called “MyPlaytennis”. It is in fact a copy of table
Playtennis2 (see line 5), except that the attribute Temperature is now discretized into
3 intervals: [60,69],[70,79], and [80,89] (see line 3).

Area task. Similarly to MSQL, MINE RULE was specially developed for associa-
tion rule discovery. Therefore, the area task cannot be performed with MINE RULE.

Right hand side task. Rules extracted with a MINE RULE query have only
the body and head schemas specified in the query. For example, all rules ex-
tracted with the example MINE RULE query above have the body with schema
{Outlook,Humidity} and head with schema {Play}. To perform this task, which
asks for all rules of size of at most 3 and a singleton right hand side, we would
need to write as many MINE RULE queries as are the possible combinations of dis-
joint body and head schemas. On the other hand, since MINE RULE is also capable
of mining inter-tuple association rules, in particular single-dimensional association
rules5 [3], an alternative solution to obtain these rules is to firstly pre-process ta-
ble MyPlaytennis into a new table, by breaking down each tuple t in MyPlaytennis

1 http://www.postgresl.org/
2 http://www.oracle.com/index.html/
3 http://www.microsoft.com/sqlserver/2008/en/us/default.aspx/
4 http://www.mysql.com/
5 Single-dimensional association rules are rules that contain multiple occurrences of the same
attribute, although over different values.

68 Hendrik Blockeel et al.

Fig. 3.2 Table MyPlayten-
nisTrans: the pre-processed
MyPlaytennis data table cre-
ated before using the MINE
RULE operator.

MyPlaytennisTrans
Day Condition

D1 “Outlook=Sunny”
D1 “Temperature=[80,89]”
D1 “Humidity=High”
D1 “Wind=Weak”
D1 “Play=No”
D2 “Outlook=Sunny”
.

into 5 tuples, each tuple representing one attribute-value pair in t (except the pri-
mary key). A sample of the new table, called “MyPlaytennisTrans”, is depicted in
Figure 3.2.

After the pre-processing step, the right hand side task can now be accomplished
with the following query:

1. Mine Rule MyRules as
2. select distinct 1..2 Condition as body,

1..1 Condition as head,
support, confidence

3. from MyPlaytennisTrans
4. group by Day
5. extracting rules with support: 0.20,

confidence: 0.80

Here, the body and head of the extracted rules are built from the domain of the
attribute Condition (attribute of table MyPlaytennisTrans). The body has cardinality
of at most 2, while head has cardinality 1, as requested by this task.

Figure 3.3 shows the resulting table MyRules and illustrates how an association
rule, e.g., “if outlook is sunny and humidity is high, you should not play tennis” is
represented in this table. 6

MyRules
body head support confidence

{“Outlook=Sunny”,“Humidity=High”} {“Play=No”} 0.21 1
.

Fig. 3.3 The table MyRules created by a MINE RULE query.

6 For ease of presentation, we adopted here the same representation as in [11]. In [12] the authors
suggest that the body and the head itemsets of the generated rules are stored in dedicated tables
and referred to within the rule base table, in this case the table MyRules, by using foreign keys.

3 A Practical Comparative Study Of Data Mining Query Languages 69

Lift task. For the execution of the previous task, the table MyRules, containing
the extracted rules, was created. Note, however, that the table MyRules contains
only the body, head, support and confidence of the rules. Indeed, to the best of our
knowledge (see [3, 9, 11, 12]), the supports of the body and head of the rules are not
stored in the database for being further queried. As a result, measures of interest,
such as lift, cannot be computed from the mining results without looking again at
the source data.

Although there is no conceptual restriction in MINE RULE that impedes the
execution of this task, we assume here that the lift task cannot be performed using
the operator MINE RULE, based on its description given in [3, 9, 11, 12].

3.3.4 SIQL

The system prototype SINDBAD (Structured Inductive Database Development), de-
veloped by Wicker et al. [17], provides an extension of SQL called SIQL (Struc-
tured Inductive Query Language). SIQL offers new operators for several data min-
ing tasks, such as itemset mining, classification and clustering, and also for pre-
processing, such as discretization and feature selection.
In the following, we present how the given tasks are performed in SIQL.

Discretization task. In SIQL, this task can be executed with the following query:

1. configure discretization numofintervals = 3
2. create table MyTable as
3. discretize Temperature in Playtennis2

In this language, all available operators should actually be seen as functions that
transform tables into new tables. The query above, for example, produces a table
called “MyTable”(see line 2), which is a copy of table Playtennis2, except that the
attribute Temperature is now discretized according to the parameter previously con-
figured in line 1. In this example, we discretize the attribute Temperature into 3
intervals, as requested by the discretization task.

Area task. For the frequent itemset mining task, SIQL allows the user to specify
only the minimum support constraint, as follows:

1. configure apriori minSupport = 0.20
2. create table MySets as
3. frequent itemsets in MyTable

This query produces the table MySets (line 2) that contains the Boolean repre-
sentation of the intra-tuple frequent itemsets found in table MyTable (line 3), which
was previously created for the discretization task.7

7 Before the mining can start, table MyTable needs to be encoded in a binary format such that each
row represents a tuple with as many Boolean attributes as are the possible attribute-value pairs.

70 Hendrik Blockeel et al.

Items
item id item

1 〈Outlook, Sunny〉
2 〈Humidity, High〉
.

Itemsets
itemset id item id

1 1
1 2
.

Supports
itemset id support

1 3
.

Fig. 3.4 Materialization of SPQL queries.

Observe that, in this language, the attention is not focused on the use of con-
straints: the minimum support constraint is not posed within the query itself; it needs
to be configured beforehand with the use of the so-called configure-clause (line 1).
The minimum support constraint is therefore more closely related to a function pa-
rameter than to a constraint itself. Additionally, the number of such parameters is
limited to the number foreseen at the time of implementation. For example, the con-
straints on size and area are not possible to be expressed in SIQL. We conclude,
therefore, that the area task cannot be executed in this language.

Right hand side task. Although SIQL offers operators for several different mining
tasks, there is no operator for association rule mining. This means that this task
cannot be executed in SIQL.

Lift task. Due to the reason given above, the lift task is not applicable here.

3.3.5 SPQL

Another extension of SQL has been proposed by Bonchi et al. [2]. The language
is called SPQL (Simple Pattern Query Language) and was specially designed for
frequent itemset mining. The system called ConQueSt has also been developed,
which is equipped with SPQL and a user-friendly interface.

The language SPQL supports a very large set of constraints of different types,
such as anti-monotone [10], monotone [10], succinct [13], convertible [14], and soft
constraints [1]. Additionally, it provides an operator for discretization of numerical
values. Another interesting functionality of SPQL is that the result of the queries
is stored into the database. The storage creates 3 different tables, as depicted in
Figure 3.4. The figure also shows how the itemset (Outlook = ‘Sunny’∧Humidity=
‘High’) is stored in these tables.
Below, we illustrate how the given tasks are executed in SPQL.

Discretization task. In SPQL, this task can be performed as below:

1. discretize Temperature as MyTemperature
2. from Playtennis2
3. in 3 equal width bins
4. smoothing by bin boundaries

3 A Practical Comparative Study Of Data Mining Query Languages 71

In this example, we discretize the attribute Temperature into 3 intervals (bins),
as requested by this task, with the same length (line 3), and we also want the bin
boundaries to be stored as text (line 4) in a new attribute called “MyTemperature”
(specified in line 1).

Area task. In SPQL, the user is allowed to constrain the support and the size of the
frequent itemsets to be mined, as follows:

1. mine patterns with supp >= 3
2. select *
3. from Playtennis2
4. transaction Day
5. item Outlook, MyTemperature, Humidity, Wind, Play
6. constrained by length >= 2

The language allows the user to select the source data (lines from 2 to 5), the
minimum absolute support, which is compulsory to be defined at the beginning of
the query (line 1), and a conjunction of constraints, which is always posed at the end
of the query. In this example, only the constraint on the size (length) of the itemsets
is posed (line 6).

SPQL is able to extract both inter- and intra-tuple itemsets. For the extraction of
intra-tuple itemsets, line 4 guarantees that each group in the source data corresponds
to a unique tuple, while line 5 lists the attributes for exploration.

The constraint on the minimum area (absolute support × size), however, is ap-
parently not possible to be expressed in this language, since the property support
of an itemset cannot be referred to anywhere else but at the beginning of the query.
Besides, it is not clear in [2] whether formulas such as support × length can be
part of the conjunctions of constraints that are specified at the end of the queries.
On the other hand, note that a post-processing query on the tables presented above,
would be an alternative to complete this task. Contrary to SIQL, SPQL also stores
the support of the extracted itemsets, which are crucial to compute their area. We
therefore conclude that the area task can be accomplished by SQPL, provided that a
post-processing query is executed.

Right hand side task. SPQL was specially designed for itemset mining. Conse-
quently, the right hand side task cannot be performed in this language.

Lift task. Given the reason above, the lift task is not applicable.

3.3.6 DMX

Microsoft SQL server 2005 [16] provides an integrated environment for creating
and working with data mining models. It consists of a large set of data mining al-
gorithms for, e.g., association rule discovery, decision tree learning, and clustering.
In order to create and manipulate the so-called data mining models, it offers an ex-
tended version of SQL, called DMX (Microsoft’s Data Mining extensions). DMX

72 Hendrik Blockeel et al.

is composed of data definition language (DDL) statements, data manipulation lan-
guage (DML) statements, functions and operators.

In the following, we show how the given tasks can be performed by this language.
DMX is able to extract both inter- and intra-tuple patterns. We focus here on the kind
of patterns asked by the given tasks.

Discretization task. In DMX, the discretization of numerical values and creation
of a data mining model itself can be done synchronously. This is shown below for
the accomplishment of the right hand side task.

Area task. In DMX, frequent itemsets cannot be extracted independently from as-
sociation rules. Nevertheless, the itemsets computed beforehand to form association
rules can also be queried after mining such rules. Thus, to compute this task, the fol-
lowing steps are necessary. Firstly, a so-called association model has to be created
as follows:

1. create mining model MyRules
2. (Day text, Outlook text,

Temperature text discretized(Equal_Areas,3),
Humidity text, Wind text, Play text)

3. using microsoft_association_rules
(minimum_support = 0.20,
minimum_probability = 0.80,
minimum_itemset_size = 2)

The above DMX query creates a model called “MyRules” that uses the values
of the attributes defined in line 2 to generate association rules. The rules are ex-
tracted by the algorithm “Microsoft Association Rules”, having as parameters mini-
mum support, minimum itemset size, as required by the current task, and also min-
imum probability (the same as confidence, which is set to speed up computation
only, as we are just interested in the itemsets). In addition, the user can specify
which attributes he or she wants to have discretized, as in line 2. In this example,
we specify that the values of the attribute Temperature should be discretized into 3
intervals, as demanded by the discretization task.

Having created the model, it needs to be trained through the insertion of tuples,
as if it was an ordinary table:

1. insert into MyRules
2. (Day, Outlook, Temperature, Humidity, Wind, Play)
3. select Day, Outlook, Temperature,

Humidity, Wind, Play
4. from Playtennis2

When training the model, we explicitly say from where the values of its associ-
ated attributes come (lines 3 and 4).

After training the model, it is necessary to query its content in order to visualize
the computed itemsets. The content of an association model is stored in the database
as shown in Figure 3.5 [16]. It consists of 3 levels. The first level has a single node,
which represents the model itself. The second level represents the frequent itemsets

3 A Practical Comparative Study Of Data Mining Query Languages 73

computed to form the association rules. Each node represents one frequent itemset
along with its characteristics, such as its corresponding support. The last level, in
turn, represents the association rules. The parent of a rule node is the itemset that
represents the left hand side of the rule. The right hand side, which is always a
singleton, is kept in the corresponding rule node.

Fig. 3.5 The content of an as-
sociation model in Microsoft
SQL server 2005.

Each node keeps an attribute called “node type”, which defines the type of the
node. For example, itemset nodes have node type equal to 7, while rule nodes
have node type equal to 8. In addition to the attribute node type, a text descrip-
tion of the itemset is kept in an attribute called “node description”, and its support
in “node support”.8 The description is a list of the items, displayed as a comma-
separated text string, as in ‘Outlook=Sunny, Humidity=High’. In order to query all
itemsets in the model MyRules, along with their corresponding supports, the fol-
lowing DMX query is necessary:

1. select node_description, node_support
2. from MyRules.Content
3. where node_type = 7

In line 1, we select the text description and support of the rules. In line 2, we
specify the model from which the content is to be queried. Finally, as we are only
interested in the itemsets, we filter the nodes by their node types in line 3.

Note, however, that the current task asks for itemsets with size of at least 2 and
area of at least 10. Therefore, a more complex DMX query is needed. As there
is apparently no attribute in an itemset node keeping the size of the corresponding
itemset, one needs to compute their sizes by processing the description of the itemset
in the attribute node description. By doing this, the area of the itemsets can also be
computed. We assume therefore that this task can only be performed in DMX after
the execution of a post-processing query.

Right hand side task. This task can be completely performed in DMX by follow-
ing the same steps of the last task. Firstly, one needs to create a mining model sim-
ilar to the one created above, except that here the parameter minimum itemset size
is replaced with maximum itemset size, which is 3 for this task.

After training the model, we query for association rules as below:

8 The specification of those attributes was found at http://technet.microsoft.com.

74 Hendrik Blockeel et al.

1. select node_description, node_support,
node_probability

2. from MyRules.Content
3. where node_type = 8

For rules, the attribute node description contains the left hand side and the right
hand side of the rule, separated by an arrow, as in ‘Outlook=Sunny, Humidity=High
→ Play = No’. In addition, its support is kept in the attribute called “node support”
and its confidence in “node probability”.9 Thus, the above DMX query executes the
right hand side task.

Lift task. Again, for performing this task, the user has to be aware of the names of
the attributes that are kept in every rule node. The lift of an association rule (referred
to as importance by [16]) is kept in a attribute called “msolap node score”, while
the characteristics of the right hand side of a rule can be found at a nested table
called “node distribution”. 9

The following DMX query performs the lift task:

1. select node_description, node_support,
node_probability,
(select attribute_name
from node_distribution) as a

2. from MyRules.Content
3. where node_type=8
4. and a.attribute_name = ‘Play’
5. and msolap_node_score >= 1

Here, we select from the content of the model MyRules only rules having at-
tribute Play as the right hand side (line 4) that have a lift greater than 1 (line 5), just
as required by this task. Thus, we can conclude that the lift task can be accomplished
by DMX.

3.4 Summary of the Results

We now summarize the results achieved by the proposals presented in this chapter
with respect to the accomplishment of the four given tasks. Table 3.1 shows, for
each of the proposals, the performed tasks.

Discretization Task. Observe that the discretization task could be executed by all
the proposals, although MINE RULE does not offer a specific operator for dis-
cretization. This shows that considerable attention is dedicated to pre-processing
operations.

9 The specification of those attributes was found at http://technet.microsoft.com.

3 A Practical Comparative Study Of Data Mining Query Languages 75

Table 3.1 Results of each proposal for each task. The symbol
√
� means that the task was executed

only after a pre- or post-processing query.

Proposals

DMQL MSQL MINE RULE SIQL SPQL DMX
Discretization task

√ √ √ √ √ √
Area task

√
�

√
�

Right hand side task
√ √ √

�
√

Lift task N/A N/A
√

Area and Right Hand Side Tasks. From the results of the area and right hand
side tasks, two main points can be concluded: firstly, the languages are not flexible
enough to specify the kinds of patterns a user may be interested in. For example,
MSQL and MINE RULE are entirely dedicated to the extraction of association rules,
while SPQL was specially designed for frequent itemset mining. Concerning MINE
RULE, the right hand side task could only be executed with a relatively high number
of queries or after a pre-processing query (which was the approach we took). As for
DMX, although it is able to perform the area task, we observe that there is not a
clear separation between rules and itemsets.

The second point is that little attention is given to the flexibility of ad hoc con-
straints. For example, the constraint on area, which was required by the area task,
could not be expressed in any of the proposals that can perform itemset mining. In
fact, SPQL and DMX could only accomplish this task after the execution of a post-
processing query. Note that the flexibility of these proposals is actually limited to
the type of constraints foreseen by their developers; a new type of constraint in a
mining operation which was not foreseen at the time of implementation will not be
available for the user. In the particular cases of SIQL and DMX, a constraint is more
closely related to a function parameter than to a constraint itself.

Lift Task. As for the lift task, we observed that little support is given to post-
processing of mining results. Concerning DMQL, we are not aware of whether it
considers the closure principle, that is, whether the results can be further queried, as
opposed to the other data mining languages.

As for MSQL, although it gives the user the ability to store the mining rules in
a rule base, the data space is totally opaque to the user. In other words, the rules
can only be queried with the use of the operator SelectRules, and with a limit set of
available constraints. In the case of MINE RULE, as opposed to MSQL, results are
in fact stored in ordinary relational tables, but the format in which they are stored,
with respect to the attributes, is not flexible enough. This restricts the number of
possible constraints the user can express when querying those results.

Finally, observe that DMX is the only proposal that is able to perform the lift
task. On the other hand, the models (and their properties) are stored in a very com-
plex way with this language, making the access and browsing of mining results less
intuitive.

76 Hendrik Blockeel et al.

3.5 Conclusions

Even though most of the limitations of the languages can be solved by minor ex-
tensions to the languages, the need to extend the languages itself is considered a
drawback. In summary, we identify the following list of drawbacks noticed in at
least one of the proposals surveyed in this chapter:

• There is little attention to the closure principle; the output of a mining operation
cannot or only very difficultly be used as the input of another operation. While
the closure principle is very important for the expressiveness of SQL, its data
mining extensions mostly lack this advantage.

• The flexibility to specify different kinds of patterns and ad-hoc constraints is
poor. If the user wants to express a constraint that was not explicitly foreseen by
the developer of the system, he or she will have to do so with a post-processing
query, if possible at all.

• The support for post-processing mining results is often poor due to a counter-
intuitive way of representing mining results. Data mining results are often offered
as static objects that can only be browsed or in a way that does not allow for easy
post-processing.

In Chapter 11, we describe a new inductive database system which is based on
the so-called virtual mining views framework. In addition, we show the advantages
it has in comparison with the proposals described here.

Acknowledgements This work has been partially supported by the projects IQ (IST-FET FP6-
516169) 2005/8, GOA 2003/8 “Inductive Knowledge bases”, FWO “Foundations for inductive
databases”, and BINGO2 (ANR-07-MDCO 014-02). When this research was performed, Hendrik
Blockeel was a post-doctoral fellow of the Research Foundation - Flanders (FWO-Vlaanderen),
Élisa Fromont was working at the Katholieke Universiteit Leuven, and Adriana Prado was working
at the University of Antwerp.

References

1. Bistarelli, S., Bonchi, F.: Interestingness is not a dichotomy: Introducing softness in con-
strained pattern mining. In: Proc. PKDD, pp. 22–33 (2005)

2. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A constraint-
based querying system for exploratory pattern discovery information systems. Information
System (2008). Accepted for publication

3. Botta, M., Boulicaut, J.F., Masson, C., Meo, R.: Query languages supporting descriptive rule
mining: A comparative study. In: Database Support for Data Mining Applications, pp. 24–51
(2004)

4. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Discovery Science, pp. 77–122
(2004)

5. Han, J., Chiang, J.Y., Chee, S., Chen, J., Chen, Q., Cheng, S., Gong, W., Kamber, M., Koper-
ski, K., Liu, G., Lu, Y., Stefanovic, N., Winstone, L., Xia, B.B., Zaiane, O.R., Zhang, S., Zhu,
H.: Dbminer: a system for data mining in relational databases and data warehouses. In: Proc.
CASCON, pp. 8–12 (1997)

3 A Practical Comparative Study Of Data Mining Query Languages 77

6. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query language
for relational databases. In: ACM SIGMOD Workshop DMKD (1996)

7. Han, J., Kamber, M.: Data Mining - Concepts and Techniques, 1st ed. Morgan Kaufmann
(2000)

8. Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data Mining
Knowledge Discovery 3(4), 373–408 (1999)

9. Jeudy, B., Boulicaut, J.F.: Constraint-based discovery and inductive queries: Application to
association rule mining. In: Proc. ESF Exploratory Workshop on Pattern Detection and Dis-
covery in Data Mining, pp. 110–124 (2002)

10. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

11. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules. Data Mining
and Knowledge Discovery 2(2), 195–224 (1998)

12. Meo, R., Psaila, G., Ceri, S.: A tightly-coupled architecture for data mining. In: Proc. IEEE
ICDE, pp. 316–323 (1998)

13. Ng, R., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations
of constrained associations rules. In: Proc. ACM SIGMOD, pp. 13–24 (1998)

14. Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent itemsets with convertible constraints.
In: Proc. IEEE ICDE, pp. 433–442 (2001)

15. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Generation Computer
Systems 13(2–3), 161–180 (1997)

16. Tang, Z.H., MacLennan, J.: Data Mining with SQL Server 2005. John Wiley & Sons (2005)
17. Wicker, J., Richter, L., Kessler, K., Kramer, S.: Sinbad and siql: An inductive databse and

query language in the relational model. In: Proc. ECML-PKDD, pp. 690–694 (2008)

Chapter 4

A Theory of Inductive Query Answering

Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

Abstract We introduce the Boolean inductive query evaluation problem, which is
concerned with answering inductive queries that are arbitrary Boolean expressions
over monotonic and anti-monotonic predicates. Boolean inductive queries can be
used to address many problems in data mining and machine learning, such as local
pattern mining and concept-learning, and actually provides a unifying view on many
machine learning and data mining tasks. Secondly, we develop a decomposition
theory for inductive query evaluation in which a Boolean query Q is reformulated
into k sub-queries Qi = QA ∧QM that are the conjunction of a monotonic and an
anti-monotonic predicate. The solution to each sub-query can be represented using a
version space. We investigate how the number of version spaces k needed to answer
the query can be minimized and define this as the dimension of the solution space
and query. Thirdly, we generalize the notion of version spaces to cover Boolean
queries, so that the solution sets form a closed Boolean-algebraic space under the
usual set operations. The effects of these set operations on the dimension of the
involved queries are studied.

Luc De Raedt
Department of Computer Science, Katholieke Universiteit Leuven
e-mail: luc.deraedt@cs.kuleuven.be

Manfred Jaeger
Department of Computer Science, Aalborg Universitet
e-mail: jaeger@cs.aau.dk

Sau Dan Lee
Department of Computer Science, University of Hong Kong
e-mail: sdlee@cs.hku.hk

Heikki Mannila
Department of Information and Computer Science, Helsinki University of Technology
e-mail: mannila@cs.helsinki.fi

79
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_4, © Springer Science+Business Media, LLC 2010

80 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

4.1 Introduction

Many data mining and learning problems address the problem of finding a set
of patterns, concepts or rules that satisfy a set of constraints. Formally, this can
be described as the task of finding the set of patterns or concepts Th(Q,D ,L)
= {ϕ ∈L | Q(ϕ,D)} i.e., those patterns and concepts ϕ satisfying query Q on a
data set D . Here L is the language in which the patterns or concepts are expressed,
and Q is a predicate or constraint that determines whether a pattern or concept ϕ is
a solution to the data mining task or not [20]. This framework allows us to view the
predicate or the constraint Q as an inductive query [7]. It is then the task of machine
learning or data mining system to efficiently generate the answers to the query. This
view of mining and learning as a declarative querying process is also appealing as
the basis for a theory of mining and learning. Such a theory would be analogous
to traditional database querying in the sense that one could study properties of dif-
ferent pattern languages L , different types of queries (and query languages), as
well as different types of data. Such a theory could also serve as a sound basis for
developing algorithms that solve inductive queries.

It is precisely such a theory that we introduce in this chapter. More specifically,
we study inductive queries that are Boolean expressions over monotonic and anti-
monotonic predicates. An example query could ask for molecular fragments that
have frequency at least 30 percent in the active molecules or frequency at most 5
percent in the inactive ones [15]. This type of Boolean inductive query is amongst
the most general type of inductive query that has been considered so far in the data
mining and the machine learning literature. Indeed, most approaches to constraint
based data mining use either single constraints (such as minimum frequency), e.g.,
[2], a conjunction of monotonic constraints, e.g., [24, 10], or a conjunction of mono-
tonic and anti-monotonic constraints, e.g., [8, 15]. However, [9] has studied a spe-
cific type of Boolean constraints in the context of association rules and itemsets. It
should also be noted that even these simpler types of queries have proven to be use-
ful across several applications, which in turn explains the popularity of constraint
based mining in the literature. Inductive querying also allows one to address the
typical kind of concept-learning problems that have been studied within compu-
tational learning theory [14] including the use of queries for concept-learning [3].
Indeed, from this perspective, there will be a constraint with regard to every positive
and negative instance (or alternatively some constraints at the level of the overall
dataset), and also the answers to queries to oracle (membership, equivalence, etc.)
can be formulated as constraints.

Our theory of Boolean inductive queries is first of all concerned with charac-
terizing the solution space Th(Q,D ,L) using notions of convex sets (or version
spaces [12, 13, 22]) and border representations [20]. This type of representations
have a long history in the fields of machine learning [12, 13, 22] and data mining
[20, 5]. Indeed, within the field of data mining it has been realized that the space of
solutions w.r.t. a monotone constraint is completely characterized by its set (or bor-
der) of maximally specific elements [20, 5]. This property is also exploited by some
effective data mining tools, such as Bayardo’s MaxMiner [5], which output this bor-

4 A Theory of Inductive Query Answering 81

der set. Border sets have an even longer history in the field of machine learning,
where Mitchell recognized as early as 1977 that the space of solutions to a concept-
learning task could be represented by two borders, the so-called S and G-set (where
S represents the set of maximally specific elements in the solution space and G the
set of maximally general ones). These data mining and machine learning viewpoints
on border sets have been unified by [8, 15], who introduced the level-wise version
space algorithm that computes the S and G set w.r.t. a conjunction of monotonic and
anti-monotonic constraints.

In the present chapter, we build on these results to develop a decomposition ap-
proach to solving arbitrary Boolean queries over monotonic and anti-monotonic
predicates. More specifically, we investigate how to decompose arbitrary queries
Q into a set of sub-queries Qk such that Th(Q,D ,L) =

⋃
i Th(Qi,D ,L), and each

Th(Qi,D ,L) can be represented using a single version space. This way we obtain a
query plan, in that to obtain the answer to the overall query Q all of the sub-queries
Qi need to be answered. As these Qi yield version spaces, they can be computed
by existing algorithms such as the level-wise version space algorithm of [8]. A key
technical contribution is that we also introduce a canonical decomposition in which
the number of needed subqueries k is minimal.

This motivates us also to extend the notion of version spaces into generalized
version spaces (GVSes) [18] to encapsulate solution sets to such general queries.
It is interesting that GVSes form an algebraic space that is closed under the usual
set operations: union, intersection and complementation. We prove some theorems
that characterize the effect on the dimensions of such operation. Because GVSes
are closed under these operations, the concept of GVSes gives us the flexibility to
rewrite queries in various forms, find the solutions of subqueries separately, and
eventually combine the solutions to obtain the solution of the original query. This
opens up many opportunites for query optimization.

This chapter is organized as follows. In Section 4.2, we define the inductive query
evaluation problem and illustrate it on the pattern domains of strings and itemsets.
We model the solution sets with GVSes, which are introduced in Section 4.3. In Sec-
tion 4.4, we introduce a decomposition approach to reformulate the original query
in simpler sub-queries. Finally, we give our conclusions in Section 4.6.

4.2 Boolean Inductive Queries

We begin with describing more accurately the notions of patterns and pattern lan-
guages, as we use them in this chapter. We always assume that datasets consist of a
list of data items from a set U , called the domain or the universe of the dataset.

A pattern or concept φ for U is some formal expression that defines a subset φe
of U . When u ∈ φe we say that φ matches or covers u. A pattern language L for
U is a formal language of patterns. The terminology used here is applicable to both
concept-learning and pattern mining. In concept-learning, U would be the space
of examples, 2U the set of possible concepts (throughout, we use 2X to denote the

82 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

powerset of X), and L the set of concept-descriptions. However, for simplicity we
shall throughout the chapter largely employ the terminology of pattern mining. It is,
however, important to keep in mind that it also applies to concept-learning and other
machine learning tasks.

Example 4.2.1 Let I = {i1, . . . , in} be a finite set of possible items, and UI = 2I

be the universe of itemsets over I . The traditional pattern language for this domain
is LI = UI . A pattern φ ∈LI covers the set φe := {H ⊆I | φ ⊆H }.

Instead of using LI one might also consider more restrictive languages, e.g., the
sublanguage LI ,k ⊆LI that contains the patterns in LI of size at most k.

Alternatively, one can also use more expressive languages, the maximally ex-
pressive one being the language 2UI of all subsets of the universe, or as is common
in machine learning the language of conjunctive concepts, LI , which consists of
all conjunctions of literals over I , that is, items or their negation. This language can
be represented using itemsets that may contain items from I = I ∪{¬i|i ∈ I }.
It is easy to see that the basic definitions for itemsets carry over for this language
provided that the universe of itemsets is UI . �

Example 4.2.2 Let Σ be a finite alphabet and UΣ = Σ ∗ the universe of all strings
over Σ . We will denote the empty string with ε . The traditional pattern language in
this domain is LΣ = UΣ . A pattern φ ∈LΣ covers the set φe = {σ ∈ Σ ∗ | φ � σ},
where φ � σ denotes that φ is a substring of σ .

�

One pattern φ for U is more general than a pattern ψ for U , written φ �ψ , if and
only if φe ⊇ ψe. For two itemset patterns φ ,ψ ∈LI , for instance, we have φ � ψ
iff φ ⊆ ψ . For two conjunctive concepts φ ,ψ ∈LC , for instance, we have φ � ψ
iff φ |= ψ . For two string patterns φ ,ψ ∈LΣ we have φ � ψ iff φ � ψ . A pattern
language L ′ is more expressive than a pattern language L , written L ′ �L , iff for
every φ ∈L there exists φ ′ ∈L ′ with φe = φ ′e.

A pattern predicate defines a primitive property of a pattern, often relative to
some data set D (a set of examples). For any given pattern or concept, a pattern
predicate evaluates to either true or false. Pattern predicates are the basic building
blocks for building inductive queries. We will be mostly interested in monotonic and
anti-monotonic predicates. A predicate p is monotonic, if p(φ) and ψ � φ implies
p(ψ), i.e., p is closed under generalizations of concepts. Similarly, anti-monotonic
predicates are defined by closure under specializations.

4.2.1 Predicates

We now introduce a number of pattern predicates that will be used for illustrative
purposes throughout this chapter. Throughout the section we will introduce predi-
cates that have been inspired by a data mining setting, in particular by the system

4 A Theory of Inductive Query Answering 83

MolFea [15], as well as several predicates that are motivated from a machine learn-
ing perspective, especially, by Angluin’s work on learning concepts from queries
[3].

Pattern predicates can be more or less general in that they may be applied to
patterns from arbitrary languages L , only a restricted class of languages, or perhaps
only are defined for a single language. Our first predicate can be applied to arbitrary
languages:

• minimum frequency(p,n,D) evaluates to true iff p is a pattern that occurs in
database D with frequency at least n ∈ N. The frequency f (φ ,D) of a pattern
φ in a database D is the (absolute) number of data items in D covered by φ .
Analogously, the predicate maximum frequency(p,n,D) is defined. minimum
frequency is a monotonic, maximum frequency an anti-monotonic predicate.

These predicates are often used in data mining, for instance, when mining for
frequent itemsets, but they can also be used in the typical concept-learning set-
ting, which corresponds to imposing the constraints minimum frequency(p,|P|,P)
∧ maximum frequency(p,0,N) where P is the set of positive instances and N the set
of negative ones, that is, all positive examples should be covered and none of the
negatives ones.

A special case of these frequency related predicates is the predicate

• covers(p,u) ≡ minimum frequency(p,1,{u}), which expresses that the pattern
(or concept) p covers the example u. covers is monotonic.

This predicate is often used in a concept-learning setting. Indeed, the result of a
membership query (in Angluin’s terminology) is a positive or negative example and
the resulting constraint corresponds to the predicate covers or its negation.

The next predicate is defined in terms of some fixed pattern ψ from a language
L . It can be applied to other patterns for U .

• is more general(p,ψ) is a monotonic predicate that evaluates to true iff p is a
pattern for U with p� ψ . Dual to the is more general predicate one defines the
anti-monotonic is more specific predicate.

The is more general(p,ψ) predicate only becomes specific to the language L
for the fixed universe U through its parameter ψ . By choice of other parameters,
the predicate is more general becomes applicable to any other pattern language L ′.
This type of predicate has been used in a data mining context to restrict the patterns
of interest [15] to specify that patterns should be sub- or superstrings of a particular
pattern. In a concept learning context, these predicates are useful in the context of
learning from queries [3]. This is a framework in which the learner may pose queries
to an oracle. The answers to these queries then result in constraints on the concept.
There are several types of queries that are considered in this framework and that are
related to the is more general and the is more specific predicates:

• a subset, respectively superset query [3], determines whether a particular concept
must cover a subset, respectively a superset, of the positive examples or not. The

84 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

answers to these queries directly correspond to constraints using the predicates
is more specific and is more general.

• an equivalence query determines whether a particular concept-description φ is
equivalent to the target concept or not. This can be represented using the predicate
equivalent(c,φ), which can be defined as follows:

equivalent(c,φ)≡ is more general(c,φ)∧ is more specific(c,φ)

• a disjointness query determines whether or not a particular concept φ overlaps
with the target concept c, that is, whether there are elements in the universe which
are covered by both φ and c. This can be represented using the anti-monotonic
predicate disjoint(c,φ), which evaluates to true iff ce ∩φe = /0. It can be defined
in terms of generality in case the language of concepts L is closed under com-
plement:

disjoint(c,φ)≡ is more specific(c,¬φ)

• an exhaustiveness query determines whether a particular concept φ together with
the target concept c covers the whole universe; this can be written using the
monotonic predicate exhausts(c,φ), which evaluates to true iff ce ∪ φe = U . It
can be defined in terms of generality in case the language of concepts L is
closed under complement:

exhausts(c,φ)≡ is more general(c,¬φ)

The next pattern predicate is applicable to patterns from many different languages
L . It is required, however, that on L the length of a pattern is defined.

• length at most(p,n) evaluates to true for p ∈L iff p has length at most n. Anal-
ogously the length at least(p,n) predicate is defined.

We apply the length at most-predicate mostly to string patterns, where the length
of a pattern is defined in the obvious way (but note that e.g., for itemset patterns
φ ∈LI one can also naturally define the length of φ as the cardinality of φ , and
then apply the length at most-predicate).

4.2.2 Illustrations of Inductive Querying

Let us now also look into the use of these predicates for solving a number of machine
learning and data mining problems. First, we look into association rule mining, for
which we introduce a pattern predicate that is applicable only to itemset patterns
φ ∈LI for some fixed I . The dependence on I again comes through the use of
a parameter, here some fixed element i j ∈I .

• association(p,i j,D) evaluates to true for p ∈LI iff p⇒ i j is a valid association
rule in D, i.e., for all data items d ∈ D: if p ⊆ d then i j ∈ d. association is anti-
monotonic.

4 A Theory of Inductive Query Answering 85

The predicate association—as defined above—allows only valid association rules,
i.e., association rules that have a confidence of 100%. It could also be applied to
string patterns. Then the condition would be that p ⇒ i is valid iff for all strings
d ∈ D : if d ∈ φp then d ∈ φpi, where pi denotes the concatenation of the string p
and the character i.

Secondly, let us investigate the use of constraints in clustering, where must-link
and cannot-link constraints have been used in machine learning. We can phrase a
clustering problem as a concept learning task in our framework by interpreting a
clustering of a set of objects O as a binary relation cl ⊂ O ×O , where cl(o,o′)
means that o and o′ are in the same cluster. Thus, with U = O×O , a clustering is
just a pattern in our general sense (one may use any suitable pattern language that
provides a unique representation for clusterings). According to our general notion
of generality of patterns, a clustering c is more general than another clustering c′ if
ce ⊇ c′e, i.e., if more pairs of objects belong to the same cluster in c as in c′, which, in
turn, means that c can be obtained from c′ by merging of clusters. Furthermore, the
most specific generalizations of c are just the clusterings obtained by merging two
clusters of c, whereas the most general specializations are the clusterings obtained
by splitting one cluster of c into two.

We can now express as a concept learning task the problem of retrieving all
possible clusterings that satisfy certain constraints.

The first two kinds of useful constraints represent generally desirable properties
of clusterings:

• clusters atmost(cl,k) evaluates to true if the clustering cl consists of at most k
clusters. This predicate is monotonic.

• within cluster distance atmost(cl,r) evaluates to true if no two objects with dis-
tance > r are in the same cluster. This predicate is anti-monotonic.

Specific constraints as used in constraint based clustering are now:

• must link(cl,o1,o2), which evaluates to true when the two objects oi are in the
same cluster (monotonic).

• must not link(cl,o1,o2), which evaluates to true when the two objects oi are in
different clusters (anti-monotonic)

Using these predicates, we could for a given dataset retrieve with the query

clusters atmost(cl,5)∧within cluster distance atmost(cl,0.5)∧
must link(cl,o1,o2)

all possible clusterings of at most 5 clusters, such that no clusters contain points
farther apart than 0.5 (in the underlying metric used for the dataset), and such that
the two designated objects o1,o2 are in the same cluster.

Finally, machine learning has also devoted quite some attention to multi-instance
learning. In multi-instance learning examples consist of a set of possible instances
and an example is considered covered by a concept, whenever the concept covers at
least one of the instances in the set. One way of formalizing multi-instance learning

86 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

within our framework is to adapt the notion of coverage to have this meaning. Alter-
natively, a multi-instance learning example could be represented using the predicate
minimum-frequency(c,1,e) where c is the target concept and e is the example, rep-
resented here as a set of its instances. A negative example then corresponds to the
negation of this expression or requiring that maximum-frequency(c,0,e) holds.

4.2.3 A General Framework

In all the preceding examples the pattern predicates have the form
pred(p,params) or pred(p,D,params), where params is a tuple of parameter values,
D is a data set and p is a pattern variable.

We also speak a bit loosely of pred alone as a pattern predicate, and mean by
that the collection of all pattern predicates obtained for different parameter values
params.

We say that pred(p,D,params) is a monotonic predicate, if for all pattern lan-
guages L to which pred(p,D,params) can be applied, and all φ ,ψ ∈L :

φ � ψ ⇒ pred(ψ,D,params)→ pred(φ ,D,params)

We also say that pred is monotonic, if pred(p,D,params) is monotonic for all pos-
sible parameter values params, and all datasets D. Analogously, we define anti-
monotonicity of a predicate by the condition

φ � ψ ⇒ pred(φ ,D,params)→ pred(ψ,D,params).

A pattern predicate pred(p,D,params) that can be applied to the patterns from a
language L defines the solution set

Th(pred(p,D,params),L) = {φ ∈L | pred(φ ,D,params) = true}.

Furthermore, for monotonic predicates m(. . .) these sets will be monotone, i.e.,
for all φ � ψ ∈ L : ψ ∈ Th(m(. . .),L) → φ ∈ Th(m(. . .),L). Similarly, anti-
monotonic predicates define anti-monotone solution sets.

Figure 4.1 illustrates the definitions given so far. It gives a schematic represen-
tation of a universe U and two pattern languages L ,L ′ for U . The � relation
between patterns is represented by lines connecting immediate neighbors in the �
relation, with the more general patterns being above the more specific ones. For
two patterns from L and one pattern from L ′ the subsets of the universe cov-
ered by the patterns are indicated. For the pattern ψ ∈ L and μ ∈ L ′ the figure
shows the interpretation of the pattern predicates is more general(p,ψ), respec-
tively is more general(p,μ) by filled nodes corresponding to patterns for which
these predicates are true.

Example 4.2.3 Consider the string data set D = {abc,abd,cd,d,cd}. Here we
have pattern frequencies f (abc,D) = 1, f (cd,D) = 2, f (c,D) = 3, f (d,D) = 4,

4 A Theory of Inductive Query Answering 87

Fig. 4.1 Pattern languages and pattern predicates

f (abcd,D) = 0. And trivially, f (ε,D) = |D| = 5. Thus, the following predi-
cates evaluate to true: minimum frequency(c,2,D), minimum frequency(cd,2,D),
maximum frequency(abc,2,D).

The pattern predicate m := minimum frequency(p,2,D) defines Th(m,LΣ) =
{ε,a,b,c,d,ab,cd}, and the predicate a := maximum frequency(p,2,D) defines the
infinite set Th(a,LΣ) = LΣ \{ε,c,d}. �

The definition of Th(pred(p,D,params),L) is extended in the natural way to a
definition of the solution set Th(Q,L) for Boolean combinations Q of pattern pred-
icates: Th(¬Q,L) := L \Th(Q,L), Th(Q1∨Q2,L) := Th(Q1,L)∪Th(Q2,L).
The predicates that appear in Q may reference one or more data sets D1, . . . ,Dn. To
emphasize the different data sets that the solution set of a query depends on, we also
write Th(Q,D1, . . . ,Dn,L) or Th(Q,D ,L) for Th(Q,L).

Example 4.2.4 Let D1,D2 be two datasets over the domain of itemsets UI . Let
i ∈ I, and consider the query

Q = association(p, i,D1)∧minimum frequency(p,10,D1)
∧¬association(p, i,D2).

The solution Th(Q,D1,D2,LI) consists of all p ∈LI = 2I for which p⇒ i
is a valid association rule with support at least 10 in D1, but p ⇒ i is not a valid
association rule in D2. �

88 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

We are interested in computing solution sets Th(Q,D ,L) for Boolean queries Q
that are constructed from monotonic and anti-monotonic pattern predicates. As anti-
monotonic predicates are negations of monotonic predicates, we can, in fact, restrict
our attention to monotonic predicates. We can thus formally define the Boolean
inductive query evaluation problem addressed in this chapter.

Given

• a language L of patterns,
• a set of monotonic predicates M = {m1(p,D1,params1), . . . ,

mn(p,Dn,paramsn)},
• a query Q that is a Boolean expression over the predicates in M ,

Find

the set of patterns Th(Q,D1, . . . ,Dn,L), i.e., the solution set of the query Q in the
language L with respect to the data sets D1, . . . ,Dn. Moreover, the representation
of the the solution set should be optimized with regard to understandability and
representation size.

4.3 Generalized Version Spaces

We next investigate the structure of solution sets Th(Q,D ,L) based on the classic
notion of version spaces [22][12].

Definition 4.3.1 Let L be a pattern language, and I ⊆L . If for all φ ,φ ′,ψ ∈L it
holds that φ � ψ � φ ′ and φ ,φ ′ ∈ I implies ψ ∈ I, then I is called a version space
(or a convex set). The set of all version spaces for L is denoted V S 1(L).

A generalized version space (GVS) is any finite union of version spaces. The set
of all generalized version spaces for L is denoted by V S Z(L).

The dimension of a generalized version space I is the minimal k, such that I is
the union of k version spaces.

Version spaces are particularly useful when they can be represented by bound-
ary sets, i.e., by the sets G(Q,D ,L) of their maximally general elements, and
S(Q,D ,L) of their most specific elements. Generalized version spaces can then
be represented simply by pairs of boundary sets for their convex components. Our
theoretical results do not require boundary representations for convex sets. How-
ever, in most cases our techniques will be more useful for pattern languages in
which convexity implies boundary representability. This is guaranteed for finite lan-
guages [12].

4 A Theory of Inductive Query Answering 89

Definition 4.3.2 The dimension of a query Q is the dimension of the generalized
version space Th(Q,D ,L).

Example 4.3.3 Let Σ = {a,b} and LΣ as in Example 4.2.2. Let

Q = length at most(p,1)∨ (is more specific(p,ab)∧ is more general(p,ab)).

When evaluated over LΣ , the first disjunct of Q gives the solution {ε,a,b}, the
second {ab}, so that Th(Q,LΣ) = {ε ,a,b,ab}, which is convex in LΣ . Thus,
dim(Q) = 1 (as Q does not reference any datasets, the maximization over D in
the definition of dimension here is vacuous).

Th(Q,LΣ) can be represented by S(Q,LΣ) = {ab} and G(Q,LΣ) = {ε}.
�

With the following definitions and theorem we provide an alternative characteri-
zation of dimension k sets.

Definition 4.3.4 Let I ⊆L . Call a chain φ1 � φ2 � ·· · � φ2k−1 ⊆L an alternating
chain (of length k) for I if φi ∈ I for all odd i, and φi �∈ I for all even i.

Definition 4.3.5 Let I ⊆L . We define two operators on I,

I− = {φ ∈ I | ∃ψ ∈L \ I,φ ′ ∈ I : φ � ψ � φ ′}
I+ = I \ I−.

Thus, I− is constructed from I by removing all elements that only appear as the
maximal element in alternating chains for I. I+ is the set of such removed elements.
Note that since I− ⊂ I by definition, we have I = I+∪ I− and I+∩ I− = /0.

Theorem 4.3.6 Let I be a generalized version space. Then dim(I) is equal to the
maximal k for which there exists in L an alternating chain of length k for I.

Proof: By induction on k: if I only has alternating chains of length 1, then I ∈
V S 1 and dim(I) = 1 by definition. Assume, then, that k ≥ 2 is the length of the
longest alternating chain for I. As there are chains of length ≥ 2, both I− and I+ are
nonempty.

It is clear from the definition of I− that I− has alternating L -chains of length
k− 1, but not of length k. By induction hypothesis, thus dim(I−) = k− 1. The set
I+, on the other hand, has dimension 1. It follows that dim(I = I+∪ I−) is at most k.
That dim(I) is at least k directly follows from the existence of an alternating chain
φ1 � φ2,� ·· · � φ2k−1 for I, because φ1,φ3, . . . ,φ2k−1 must belong to distinct com-
ponents in every partition of I into convex components. �

The operator I+ allows us to define a canonical decomposition of a generalized
version space. For this, let I be a generalized version space of dimension k. Define

I0 = I+

Ii = (I \ I0∪·· ·∪ Ii−1)
+ (1≤ i≤ k)

90 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

The version spaces Ii then are convex, disjoint, and I = ∪k
i=1Ii.

Our results so far relate to the structure of a fixed generalized version space. Next,
we investigate the behavior of GVSs under set-theoretic operations. Hirsh [13] has
shown that V S 1 is closed under intersections, but not under unions. Our following
results show that V S Z is closed under all set-theoretic operations, and that one
obtains simple bounds on growth in dimension under such operations.

Theorem 4.3.7 Let V ∈ V S Z(L). Then L \V ∈ V S Z(L), and dim(V)− 1 ≤
dim(L \V)≤ dim(V)+1.

Proof: Any alternating chain of length k for L \V defines an alternating chain of
length k− 1 for L . It follows that dim(L \V) ≤ dim(V)+ 1. By a symmetrical
argument dim(V)≤ dim(L \V)+1. �

By definition, generalized version spaces are closed under finite unions, and
dim(V ∪W) ≤ dim(V) + dim(W). Combining this with the dimension bound for
complements, we obtain dim(V ∩W) = dim((V c∪W c)c)≤ dim(V)+dim(W)+3.
However, a somewhat tighter bound can be given:

Theorem 4.3.8 Let V,W ∈ V S Z(L). Then dim(V ∩W)≤ dim(V)+dim(W)−1.

Proof: Let φ1 � φ2,� ·· · � φ2k−1 be an alternating chain for V ∩W . Let IV :=
{i ∈ 1, . . .k− 1 | φ2i �∈ V}, and IW := {i ∈ 1, . . .k− 1 | φ2i �∈W}. Then IV ∪ IW =
{1, . . . ,k−1}. Deleting from the original alternating chain all φ2i,φ2i−1 with i �∈ IV
gives an alternating chain of length | IV |+1 for V . Thus, | IV | ≤ dim(V)−1. Simi-
larly, | IW | ≤ dim(W)−1. The theorem now follows with | IV |+ | IW | ≥ k−1. �

4.4 Query Decomposition

In the previous section we have studied the structure of the solution sets Th(Q,D ,L).
We now turn to the question of how to develop strategies for the computation of so-
lutions so that, first, the computations for complex Boolean queries can be reduced
to computations of simple version spaces using standard level-wise algorithms, and
second, the solutions obtained have a parsimonious representation in terms of the
number of their convex components, and/or the total size of the boundaries needed
to describe the convex components.

A first approach to solving a Boolean query Q using level-wise algorithms is
to transform Q into disjunctive normal form (DNF). Each disjunct then will be a
conjunction of monotonic or anti-monotonic predicates, and thus define a convex
solution set. The solution to the query then is simply the union of the solutions of
the disjuncts. This approach, however, will often not lead to a parsimonious repre-
sentation: the number of disjuncts in Q’s DNF can far exceed the dimension of Q, so
that the solution is not minimal in terms of the number of convex components. The

4 A Theory of Inductive Query Answering 91

solutions of the different disjunctions also may have a substantial overlap, which
can lead to a greatly enlarged size of a boundary representation.

In this section we introduce two alternative techniques for decomposing a Boolean
query into one-dimensional sub-queries. The first approach is based on user-defined
query plans which can improve the efficiency by a reduction to simple and easy to
evaluate convex sub-queries. The second approach, which we call the canonical de-
composition, is fully automated and guaranteed to lead to solutions given by convex
components that are minimal in number, and non-overlapping.

4.4.1 Query Plans

The solution set Th(Q,D ,L) can be constructed incrementally from basic convex
components using algebraic union, intersection and complementation operations.
Using Theorems 4.3.7 and 4.3.8 one can bound the number of convex components
needed to represent the final solution. For any given query, usually multiple such
incremental computations are possible. A query plan in the sense of the following
definition represents a particular solution strategy.

Definition 4.4.1 A query plan is a Boolean formula with some of its subqueries
marked using the symbol ︸︷︷︸. Furthermore, all marked subqueries are the conjunc-
tion of a monotonic and an anti-monotonic subquery.

Example 4.4.2 Consider the query

Q1 = (a1∨a2)∧ (m1∨m2).

Since this is a conjunction of a monotonic and an anti-monotonic part, it can be
solved directly, and (a1∨a2)∧ (m1∨m2)︸ ︷︷ ︸ is the corresponding query plan.

A transformation of Q1 into DNF gives

(a1∧m1)∨ (a1∧m2)∨ (a2∧m1)∨ (a2∧m2),

for which (a1∧m1)︸ ︷︷ ︸∨(a1∧m2)︸ ︷︷ ︸∨(a2∧m1)︸ ︷︷ ︸∨(a2∧m2)︸ ︷︷ ︸ is the only feasible query

plan, which now requires four calls to the basic inductive query solver.
�

For any inductive query Q, we can rewrite it in many different forms. One can
thus construct a variety of different query plans by annotating queries that are log-
ically equivalent to Q. The question then arises as to which query plan is optimal,
in the sense that the resources (i.e., memory and cpu-time) needed for computing
its solution set are as small as possible. A general approach to this problem would
involve the use of cost estimates that for each call to a conjunctive solver and op-
eration. One example of a cost function for a call to a conjunctive solver could be
Expected Number of Scans of Data × Size of Data Set. Another one could be the

92 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

Expected Number of Covers Tests. In this chapter, we have studied the query opti-
mization problem under the assumption that each call to a conjunctive solver has
unit cost and that the only set operation allowed is union. Under this assumption,
decomposing a query Q into k subqueries of the form Qa,i ∧Qm,i (with Qa,i anti-
monotonic and Qm,i monotonic) and dim(Q) = k is an optimal strategy. We will
leave open the challenging question as to which cost-estimates to use in practice.
However, what should be clear is that given such cost-estimates, one could optimize
inductive queries by constructing all possible query plans and then selecting the best
one. This is effectively an optimization problem, not unlike the query optimization
problem in relational databases.

The optimization problem becomes even more interesting in the light of inter-
active querying sessions [4], which should be quite common when working with
inductive databases. In such sessions, one typically submits a rough query to get
some insight in the domain, and when the results of this query are available, the
user studies the results and refines the query. This often goes through a few itera-
tions until the desired results are obtained.

4.4.2 Canonical Decomposition

As in the simple DNF decomposition approach, Q will be decomposed into k sub-
queries Qi such that Q is equivalent to Q1∨·· ·∨Qk, and each Qi is convex. Further-
more, the Qi will be mutually exclusive.

We develop this technique in two stages: in the first stage we do not take the con-
crete pattern language L into account, and determine Qi such that Th(Q,D ,L) =
∪Th(Qi,D ,L) for all L to which the predicates in Q can be applied. This step only
uses the monotonicity of the predicates and the Boolean structure of Q. In a second
step we refine the approach in order to utilize structural properties of L that can
reduce the number of components Qi needed to represent Th(Q,D ,L).

Applied to the query from Example 4.3.3, for instance, the first step will result
in a decomposition of Q into two components (essentially corresponding to the two
disjuncts of Q), which yields a bound of 2 for the dimension of Th(Q,D ,L) for all
L . The second step then is able to use properties of LΣ in order to find the tighter
bound 1 for the dimension of Th(Q,LΣ).

The idea for both stages of the decomposition is to first evaluate Q in a reduced
pattern language L ′, so that the desired partition ∨Qi can be derived from the struc-
ture of Th(Q,L ′). The solution set Th(Q,L ′) does not depend on the datasets D
that Q references, and the complexity of its computation only depends on the size
of Q, but not on the size of any datasets.

In the following we always assume that Q is a query that contains n distinct
predicates m1, . . . ,mn, and that the mi are monotonic for all pattern languages L
for which Q can be evaluated (recall that we replace anti-monotonic predicates by
negated monotonic ones).

4 A Theory of Inductive Query Answering 93

Definition 4.4.3 Let M (Q) = {m1, . . . ,mn}, LM (Q) = 2M (Q), and for μ ∈LM (Q):

μe := {M ⊆M (Q) |M ⊆ μ}.

The predicates mi are interpreted over LM (Q) as

Th(mi,LM (Q)) := {μ ∈LM (Q) | mi ∈ μ}.

Thus, the definitions of LM (Q) and μe are similar to the ones for itemsets with
M (Q) the set of possible items (cf. Example 4.2.1). Alternatively, each μ ∈LM (Q)

can be viewed as an interpretation for the propositional variables M (Q) (see also
Section 4.5). However, the inclusion condition in the definition of μe here is the
converse of the inclusion condition in Example 4.2.1. In particular, here, μ ′ � μ iff
μ ′ ⊇ μ . The predicates mi are interpreted with respect to LM (Q) like the predicates
is more general(p,{mi}). By the general definition, with Th(mi,LM (Q)) (1 ≤ i ≤
k) also Th(Q,LM (Q)) is defined.

Theorem 4.4.4 Let L be a pattern language for which the predicates mi in Q are
monotone. The dimension of Th(Q,D ,L) is less than or equal to the dimension of
Th(Q,LM (Q)).

Proof: Let L be given and D be any dataset. Define a mapping

hD : L → LM (Q)

φ �→ {m ∈M (Q) | φ ∈ Th(m,D ,L)} (4.1)

First we observe that hD is order preserving:

φ � ψ ⇒ hD (φ)� hD (ψ). (4.2)

This follows from the monotonicity of the predicates m, because φ � ψ and
ψ ∈ Th(m,D ,L) implies φ ∈ Th(m,D ,L), so that hD (φ) is a superset of hD (ψ),
which, in the pattern language LM (Q) just means hD (φ)� hD (ψ).

Secondly, we observe that hD preserves solution sets:

φ ∈ Th(Q,D ,L) ⇔ hD (φ) ∈ Th(Q,LM (Q)). (4.3)

To see (4.3) one first verifies that for i = 1, . . . ,n:

φ ∈ Th(mi,D ,L) ⇔ mi ∈ hD (φ) ⇔ hD (φ) ∈ Th(mi,LM (Q)).

Then (4.3) follows by induction on the structure of queries Q constructed from the
mi.

Now suppose that φ1 � ·· · � φ2k−1 ⊆L is an alternating chain of length k for
Th(Q,D ,L). From (4.2) it follows that hD (φ1) � ·· · � hD (φ2k−1) ⊆LM (Q), and
from (4.3) it follows that this is an alternating chain of length k for Th(Q,LM (Q)).
From Theorem 4.3.6 it now follows that the dimension of Th(Q,D ,L) is at most

94 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

the dimension of Th(Q,LM (Q)). �

Example 4.4.5 Let Σ = {a,b, . . . ,z}. Let

m1 = not-is more specific(p,ab)
m2 = not-is more specific(p,cb)
m3 = not-length at least(p,4)
m4 = minimum frequency(p,3,D)

These predicates are monotonic when interpreted in the natural way over pattern
languages for the string domain. The first three predicates are the (monotonic) nega-
tions of the (anti-monotonic) standard predicates introduced in Section 4.2 (note that
e.g., not-is more specific is distinct from is more general). Let

Q = ¬m1∧¬m2∧ (¬m3∨m4). (4.4)

Figure 4.2 (a) shows LM (Q) for this query. The solution set Th(Q,LM (Q)) is
{ /0,{m4},{m3,m4}}, which is of dimension 2, because /0 � {m3} � {m3,m4} is a
(maximal) alternating chain of length 2. �

Fig. 4.2 Pattern languages LM (Q) and LM (Q),L

Given Q we can construct LM (Q) and Th(Q,LM (Q)) in time O(2n). We can then
partition Th(Q,LM (Q)) into a minimal number of convex components I1, . . . , Ik by
iteratively removing from Th(Q,LM (Q)) elements that are maximal in alternating
chains. More precisely, let:

4 A Theory of Inductive Query Answering 95

R0 := Th(Q,LM (Q))
Ii+1 := R+

i
Ri+1 := R−i

(4.5)

for i = 1,2, . . . ,k. The Ih are defined by their sets of maximal and minimal elements,
G(Ih) and S(Ih), and define queries Qh with the desired properties:

Theorem 4.4.6 Let Th(Q,LM (Q)) = I1∪·· ·∪ Ik with convex Ih.
Given an element μ from LM (Q) define

QM,μ =
∧

m∈μ
m and QA,μ =

∧
m�∈μ

¬m

For h = 1, . . . ,k let

Qh,M =
∨

μ∈S(Ih)

QM,μ and Qh,A =
∨

μ∈G(Ih)

QA,μ .

Finally, let Qh = Qh,M ∧Qh,A.
Then Th(Qh,D ,L) is convex for all L and D , and Th(Q,D ,L) =

Th(∨k
h=1Qh,D ,L) = ∪k

h=1Th(Qh,D ,L).

Proof: The Qh are constructed so that

Th(Qh,LM (Q)) = Ih (h = 1, . . . ,k).

Using the embedding hD from the proof of Theorem 4.4.4 we then obtain for φ ∈L :

φ ∈ Th(Q,D ,L)⇔ hD (φ) ∈ Th(Q,LM (Q))

⇔ hD (φ) ∈ Th(∨k
h=1Qh,LM (Q))

⇔ φ ∈ Th(∨k
h=1Qh,D ,L)

⇔ φ ∈ ∪k
h=1Th(Qh,D ,L)

�

Example 4.4.7 (continued from Example 4.4.5) Using (4.5) we obtain the partition
of Th(Q,LM (Q))

I1 = {{m4},{m3,m4}}, I2 = { /0},
so that

G(I1) = {{m3,m4}} S(I1) = {{m4}}
G(I2) = { /0} S(I2) = { /0}.

These boundary sets define the queries

Q1 = (¬m1∧¬m2)∧m4
Q2 = (¬m1∧¬m2∧¬m3∧¬m4)

96 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

When we view Q,Q1,Q2 as propositional formulas over propositional variables
m1, . . . ,m4, we see that Q ↔ Q1 ∨Q2 is a valid logical equivalence. In fact, one
can interpret the whole decomposition procedure we here developed as a method
for computing a certain normal form for propositional formulas. We investigate this
perspective further in Section 4.5. �

Example 4.4.8 (continued from Example 4.4.2) Introducing m̃1 = ¬a1, m̃2 = ¬a2,
we can express query Q1 from Example 4.4.2 using monotone predicates only as

Q̃1 = (¬m̃1∨¬m̃2)∧ (m1∨m2)

The boundary sets of the single convex component I of Q̃1 are

G(I) = {{m̃1,m1,m2},{m̃2,m1,m2}} S(I) = {{m1},{m2}}.

The query construction of Theorem 4.4.6 yields the sub-queries QA = ¬m̃1 ∨¬m̃2
and QM = m1 ∨m2, i.e., the same decomposition as given by the query plan in
Example 4.4.2.

Now consider the query

Q′ = m1∨ (m2∧¬m3).

This query has dimension two, and can be solved, for example, using the query plan
m1︸︷︷︸∨(m2∧¬m3)︸ ︷︷ ︸.

The canonical decomposition gives the following boundary sets for two convex
components:

G(I1) = {{m1,m2,m3}} S(I1) = {{m1}}
G(I2) = {{m2}} S(I2) = {{m2}},

which leads to the sub-queries

Q′1 = m1, Q′2 = ¬m1∧¬m3∧m2.

Thus, the we obtain a different solution strategy than from the simple query plan,
and the solution will be expressed as two disjoint convex components, whereas the
query plan would return overlapping convex components. �

When we evaluate the query Q from Example 4.4.5 for LΣ , we find that
Th(Q,D ,LΣ) actually has dimension 1. The basic reason for this is that in LΣ
there does not exist any pattern that satisfies ¬m1∧¬m2∧m3∧¬m4, i.e., that corre-
sponds to the pattern {m3} ∈LM (Q) that is the only “witness” for the non-convexity
of Th(Q,LM (Q)). To distinguish patterns in LM (Q) that we need not take into ac-
count when working with a pattern language L , we introduce the concept of L -
admissibility:

Definition 4.4.9 Let L be a pattern language. A pattern μ ∈LM (Q) is called L -
admissible if there exists φ ∈ L and datasets D such that μ = hD (φ), where hD

4 A Theory of Inductive Query Answering 97

is as defined by (4.1). Let LM (Q),L ⊆ LM (Q) be the language of L -admissible
patterns from LM (Q). As before, we define

Th(mi,LM (Q),L) = {μ ∈LM (Q),L | mi ∈ μ}.

An alternative characterization of admissibility is that μ is L -admissible if there
exists D such that

Th(
∧

mi∈μ
mi∧

∧
m j �∈μ

¬m j,D ,L) �= /0.

Theorem 4.4.10 Let L and Q be as in Theorem 4.4.4. The dimension of Th(Q,D ,L)
is less than or equal to the dimension of Th(Q,LM (Q),L).

Proof: The proof is as for Theorem 4.4.4, by replacing LM (Q) with LM (Q),L

throughout. We only need to note that according to the definition of admissibil-
ity, the mapping hD defined by (4.1) actually maps L into LM (Q),L , so that hD

still is well-defined. �

Example 4.4.11 (continued from Example 4.4.7) Consider the language LΣ . Of the
patterns in LM (Q) two are not LΣ -admissible: as
is more specific(p,ab) ∧ is more specific(p,cb) implies length at least(p,4), we
have that Th(¬m1∧¬m2∧m3∧m4,D ,LΣ) = Th(¬m1∧¬m2∧m3∧¬m4,D ,LΣ) =
/0 for all D , so that the two patterns {m3} and {m3,m4} from LM (Q) are not LΣ -
admissible.

Figure 4.2 (b) shows LM (Q),LΣ . Now Th(Q,LM (Q),LΣ) = { /0,{m4}} has dimen-
sion 1, so that by Theorem 4.4.10 Th(Q,D ,LΣ) also has dimension 1.

With Theorem 4.4.6 we obtain the query

Q1 = ¬m1∧¬m2∧¬m3

with Th(Q,D ,LΣ) = Th(Q1,D ,LΣ).
�

Table 4.1 summarizes the decomposition approach to inductive query evaluation
as derived from Theorems 4.4.10 and 4.4.6. A simplified procedure based on Theo-
rems 4.4.4 and 4.4.6 can be used simply by omitting the first step.

Assuming that L -admissibility is decidable in time exponential in the size s of
the query (for the pattern languages and pattern predicates we have considered so
far this will be the case), we obtain that steps 1–4 can be performed naively in time
O(2s). This exponential complexity in s we consider uncritical, as the size of the
query will typically be very small in comparison to the size of D , i.e., s� |D |, so
that the time critical step is step 5, which is the only step that requires inspection of
D .

Theorem 4.4.10 is stronger than Theorem 4.4.4 in the sense that for given L it
yields better bounds for the dimension of Th(Q,D ,L). However, Theorem 4.4.4
is stronger than Theorem 4.4.10 in that it provides a uniform bound for all pat-
tern languages for which the mi are monotone. For this reason, the computation

98 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

Table 4.1 The schema of the Query Decomposition Approach

Input:

• Query Q that is a Boolean combination of monotone predicates: M (Q) = {m1, . . . ,mn}
• datasets D
• pattern language L

Step 1: Construct LM (Q),L : for each μ ⊆M (Q) decide whether μ is L -admissible.
Step 2: Construct Th(Q,LM (Q),L): for each μ ∈LM (Q),L decide

whether μ ∈ Th(Q,LM (Q),L).
Step 3: Determine convex components: compute partition Th(Q,LM (Q),L) = I1∪·· ·∪ Ik

into a minimal number of convex components.
Step 4: Decompose Q: compute queries Q1, . . . ,Qk.
Step 5: For i = 1, . . . ,k determine Th(Qi,D ,L) by computing the boundaries G(Qi,D ,L)

and S(Qi,D ,L).

of Th(Q,D ,L) using the simpler approach given by Theorems 4.4.4 and 4.4.6
can also be of interest in the case where we work in the context of a fixed lan-
guage L , because the solutions computed under this approach are more robust in
the following sense: suppose we have computed Th(Q,D ,L) using the decompo-
sition provided by Theorems 4.4.4 and 4.4.6, i.e., by the algorithm shown in Ta-
ble 4.1 omitting step 1. This gives us a representation of Th(Q,D ,L) by boundary
sets G(Qh,D ,L),S(Qh,D ,L). If we now consider any refinement L ′ �L , then
our boundary sets still define valid solutions of Q in L ′, i.e., for all ψ ∈ L ′, if
φ � ψ � φ ′ for some φ ∈ S(Qh,D ,L),φ ′ ∈ G(Qh,D ,L), then ψ ∈ Th(Q,D ,L ′)
(however, the old boundary may not completely define Th(Q,D ,L ′), as the maxi-
mal/minimal solutions of Qh in L need not be maximal/minimal in L ′). A similar
preservation property does not hold when we compute Th(Q,D ,L) according to
Theorem 4.4.10.

4.5 Normal Forms

In this section we analyze some aspects of our query decomposition approach from a
propositional logic perspective. Central to this investigation is the following concept
of certain syntactic normal forms of propositional formulas.

Definition 4.5.1 Let Q be a propositional formula in propositional variables
m1, . . . ,mn. We say that Q belongs to the class Θ1 if Q is logically equivalent to
a formula of the form (

h∨
i=1

Mi

)
∧
(

k∨
j=1

A j

)
, (4.6)

4 A Theory of Inductive Query Answering 99

where Mi’s are conjunctions of positive atoms and A j’s are conjunctions of negative
atoms. We say that Q belongs to the class Θk if Q is equivalent to the disjunction of
k formulas from Θ1.

The formulas Qh defined in Theorem 4.4.6 are in the class Θ1 when read as
propositional formulas in m1, . . . ,mn, and were constructed so as to define convex
sets. The following theorem provides a general statement on the relation between
the Θk-normal form of a query and its dimension. As such, every formula belongs
to some Θk, as can easily be seen from the disjunctive normal forms.

Theorem 4.5.2 Let Q be a query containing pattern predicates m1, . . . ,mn. The fol-
lowing are equivalent:

(i) When interpreted as a Boolean formula over propositional variables m1, . . . ,mn,
Q belongs to Θk.

(ii) The dimension of Q with respect to any pattern language L for which
m1, . . . ,mn are monotone is at most k.

Proof: (i)⇒(ii): We may assume that Q is written in Θk-normal form, i.e., as a
disjunction of k subformulas of the form (4.6). As both unions and intersections
of monotone sets are monotone, we obtain that the left conjunct of (4.6) defines
a monotone subset of L (provided the mi define monotone sets in L). Similarly,
the right conjunct defines an anti-monotone set. Their conjunction, then, defines a
convex set, and the disjunction of k formulas (4.6) defines a union of k convex sets.

(ii)⇒(i): This follows from the proofs of Theorems 4.4.4 and 4.4.6: let L =
LM (Q). We can view LM (Q) as the set of all truth assignments to the variables mi
by letting for μ ∈LM (Q):

μ : mi �→
{

true mi ∈ μ
false mi �∈ μ

Then for all μ and all Boolean formulas Q̃ in m1, . . . ,mn:

μ ∈ Th(Q̃,LM (Q)) ⇔ μ : Q̃ �→ true.

Therefore

μ : Q �→ true ⇔ μ ∈ Th(Q,LM (Q))

⇔ μ ∈ ∪k
h=1Th(Qh,LM (Q))

⇔ μ : ∨k
h=1Qh �→ true

�

In the light of Theorem 4.5.2 we can interpret the decomposition procedure de-
scribed by Theorems 4.4.4 and 4.4.6 as a Boolean transformation of Q into Θk-
normal form. This transformation takes a rather greedy approach by explicitly con-
structing the exponentially many possible truth assignments to the propositional

100 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

variables in Q. It might seem possible to find a more efficient transformation based
on purely syntactic manipulations of Q. The following result shows that this is un-
likely to succeed.

Theorem 4.5.3 The problem of deciding whether a given propositional formula Q
belongs to Θ1 is co-NP complete.

Proof: The class Θ1 is in co-NP: let Q be a formula in variables m1, . . . ,mn. From
Theorems 4.4.4 and 4.5.2 we know that Q �∈Θ1 iff the dimension of Th(Q,LM (Q))
is at least 2. This, in turn, is equivalent to the existence of an alternating chain of
length 2 for Th(Q,LM (Q)). The existence of such a chain can be determined in non-
deterministic polynomial time by guessing three elements μ1,μ2,μ3 ∈LM (Q), and
checking whether μ1� μ2� μ3 and μ1,μ3 ∈ Th(Q,LM (Q)) and μ2 �∈ Th(Q,LM (Q)).

To show co-NP hardness we reduce the satisfiability problem to the complement
of Θ1. For this let F be a propositional formula in propositional variables m1, . . . ,mk.
Define

Q := (F ∧¬x1∧¬y1)∨ (m1∧m2∧·· ·∧mk ∧ x1∧ y1),

(where x1,y1 are new propositional variables). Then Th(Q,LM (Q)) has dimension
≥ 2 (i.e., Q �∈Θ1) iff F is satisfiable: If F is not satisfiable, then (F ∧¬x1 ∧¬y1)
is not satisfiable. So, Q can only be satisfied when all variables mi, x1, y1 are true.
Consequently, Th(Q,LM (Q)) has only one element, namely {m1, . . . ,mk,x1,y1} and
dim(Th(Q,LM (Q))) = 1. On the other hand, if F is satisfiable, then Th(Q,LM (Q))
contains a set φ ⊆ {m1, . . . ,mk}, and then φ ⊆ φ ∪{x1} ⊆ {m1, . . . ,mk,x1,y1} is an
alternating chain of length 2, because φ ∪{x1} �∈ Th(Q,LM (Q)).

�

The sub-queries to which the original query Q is reduced not only are known to
have convex solution sets Th(Qh,D ,L), they also are of a special syntactic form
Qh = Qh,M ∧Qh,A, where Qh,M defines a monotone set Th(Qh,M,D ,L), and Qh,A
defines an anti-monotone set Th(Qh,A,D ,L). This factorization of Qh facilitates
the computation of the border sets G(Qh,D ,L) and S(Qh,D ,L), for which the
level wise version space algorithm [8, 15] can be used.

4.6 Conclusions

We have described an approach to inductive querying, which generalizes both the
pattern discovery problem in data mining and the concept-learning problem in ma-
chine learning. The method is based on the decomposition of the answer set to a col-
lection of components defined by monotonic and anti-monotonic predicates. Each
of the components is a convex set or version space, the borders of which can be
computed using, for instance, the level wise version space algorithm or—for the
pattern domain of strings—using the VSTmine algorithm [17], which employs a
data structure called the version space tree.

4 A Theory of Inductive Query Answering 101

The work presented is related to several research streams within data mining and
machine learning. In machine learning, there has been an interest in version spaces
ever since Tom Mitchell’s seminal Ph.D. thesis [21]. The key complaint about stan-
dard version spaces was for a long time that it only allowed one to cope with es-
sentially conjuctive concept-learning, that is, the induced concepts or patterns need
to be conjuctive (which holds also for item sets). There has been quite some work
in the machine learning literature on accomodating also disjunctive concepts (as
is required in a general rule- or concept-learning setting), for instance, [26, 27].
While such disjunctive version space techniques sometimes also work with mul-
tiple borders set and version spaces, the way that this is realized differs from our
approach. Indeed, in a disjunctive version space, a single solution consists of a dis-
junction of patterns, of which each pattern must belong to a single version space
in the traditional sense. This differs from our approach in which each member of
a single version space is a solution in itself. Algebraic properties of version spaces
have also been investigated in the machine learning literature by, for instance, Haym
Hirsh [11] who has investigated the properties of set theoretic operations on version
spaces, and [16] who have developed a special version space algebra to represent
functions, and used it for programming by demonstration.

In data mining, the structure on the search space was already exploited by early
algorithms for finding frequent itemsets and association rules [1] leading soon to
the concept of border sets [20]. Whereas initially the focus was on the use of the
most specific borders, this was soon extended towards using also the most general
borders to cope with multiple data sets, with conjunctive inductive queries or emerg-
ing patterns [8, 19]. The resulting version space structure was further analyzed by,
for instance, Bucila et al. [6] for the case of itemsets. Each of these developments
has resulted in new algorithms and techniques for finding solutions to increasingly
complex inductive queries. The contribution of our work is that it has generalized
this line of ideas in accomodating also non-convex solution sets, that is, generalized
version spaces. It also allows one to cope with arbitrary Boolean inductive queries.
Finally, as already mentioned in the introduction, the present paper also attempts
to bridge the gap between the machine learning and data mining perspective both
at the task level – through the introduction of Boolean inductive querying – and at
the representation level – through the introduction of generalized version spaces to
represent solution sets.

The results we have presented in this chapter are by no means complete, a lot of
open problems and questions remain. A first and perhaps most important question
is as to an experimental evaluation of the approach. Although some initial results in
this direction have been presented in [17, 25, 18], the results are not yet conclusive
and a deeper and more thorough evaluation is needed. A second question is con-
cerned with further extending the framework to cope with other primitives, which
are neither monotonic nor anti-monotonic. A typical example of such primitives are
the questions that ask for the top-k patterns w.r.t. a particular optimization function
such as χ2. This is known as correlated pattern mining [23]. A third question is
how to perform a more quantitative query optimization, which would estimate the
resources needed to execute particular query plan.

102 Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

Although there are many remaining questions, the authors hope that the intro-
duced framework provides a sound theory for studying these open questions.

Acknowledgements This work was partly supported by the European IST FET project cInQ.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of as-
sociation rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 307–328. MIT Press, 1996.

2. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in
large databases. In Peter Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, pages 207–216, Washington,
D.C., U.S.A., 25–28 May 1993.

3. D. Angluin. Queries and concept-learning. Machine Learning, 2:319–342, 1987.
4. E. Baralis and G. Psaila. Incremental refinement of mining queries. In M. K. Mohania and

A. Min Tjoa, editors, Proceedings of the First International Conference on Data Warehousing
and Knowledge Discovery (DaWaK’99), volume 1676 of Lecture Notes in Computer Science,
pages 173–182, Florence, Italy, August 30–September 1 1999. Springer.

5. R. Bayardo. Efficiently mining long patterns from databases. In Proceedings of ACM SIG-
MOD Conference on Management of Data, 1998.

6. C. Bucilă, J. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning algorithm for item-
sets with constraints. Data Min. Knowl. Discov., 7(3):241–272, 2003.

7. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations: Newsletter of the
Special Interest Group on Knowledge Discovery and Data Mining, ACM, 4(2):69–77, January
2003.

8. L. De Raedt and S. Kramer. The levelwise version space algorithm and its application to
molecular fragment finding. In IJCAI01: Seventeenth International Joint Conference on Arti-
ficial Intelligence, August 4–10 2001.

9. B. Goethals and J. Van den Bussche. On supporting interactive association rule mining. In
Proceedings of the Second International Conference on Data Warehousing and Knowledge
Discovery, volume 1874 of Lecture Notes in Computer Science, pages 307–316. Springer,
2000.

10. J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based multidimensional data mining.
IEEE Computer, 32(8):46–50, 1999.

11. H. Hirsh. Incremental Version-Space Merging: A General Framework for Concept Learning.
Kluwer Academic Publishers, 1990.

12. H. Hirsh. Theoretical underpinnings of version spaces. In Proceedings of the Twelfth In-
ternational Joint Conference on Artificial Intelligence (IJCAI91), pages 665–670. Morgan
Kaufmann Publishers, 1991.

13. H. Hirsh. Generalizing version spaces. Machine Learning, 17(1):5–46, 1994.
14. M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. MIT, 1994.
15. S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data. In KDD-2001:

The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. Association for Computing Machinery, August 26–29 2001. ISBN: 158113391X.

16. T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. Programming by demonstration using
version space algebra. Mach. Learn., 53(1-2):111–156, 2003.

17. S. D. Lee. Constrained Mining of Patterns in Large Databases. PhD thesis, Albert-Ludwigs-
University, 2006.

4 A Theory of Inductive Query Answering 103

18. S. D. Lee and L. De Raedt. An algebra for inductive query evaluation. In X. Wu, A. Tuzhilin,
and J. Shavlik, editors, Proceedings of The Third IEEE International Conference on Data Min-
ing (ICDM’03), pages 147–154, Melbourne, Florida, USA, November 19–22 2003. Sponsored
by the IEEE Computer Society.

19. J. Li, K. Ramamohanarao, and G. Dong. The space of jumping emerging patterns and its incre-
mental maintenance algorithms. In ICML ’00: Proceedings of the Seventeenth International
Conference on Machine Learning, pages 551–558, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

20. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discov-
ery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

21. T.M. Mitchell. Version Spaces: An Approach to Concept Learning. PhD thesis, Stanford
University, 1978.

22. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226, 1980.
23. S. Morishita and J. Sese. Traversing itemset lattice with statistical metric pruning. In Pro-

ceedings of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 226–236. ACM Press, 2000.

24. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning op-
timizations of constrained associations rules. In Proceedings ACM-SIGMOD Conference on
Management of Data, pages 13–24, 1998.

25. L. De Raedt, M. Jaeger, S. D. Lee, and H. Mannila. A theory of inductive query answering.
In Proceedings of the 2002 IEEE International Conference on Data Mining, pages 123–130,
2002.

26. G. Sablon, L. De Raedt, and M. Bruynooghe. Iterative versionspaces. Artificial Intelligence,
69:393–409, 1994.

27. M. Sebag. Delaying the choice of bias: A disjunctive version space approach. In Proceedings
of the 13th International Conference on Machine Learning, pages 444–452, 1996.

Part II

Constraint-based Mining:
Selected Techniques

Chapter 5

Generalizing Itemset Mining in a Constraint

Programming Setting

Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

Abstract In recent years, a large number of algorithms have been proposed for find-
ing set patterns in boolean data. This includes popular mining tasks based on, for
instance, frequent (closed) itemsets. In this chapter, we develop a common frame-
work in which these algorithms can be studied thanks to the principles of constraint
programming. We show how such principles can be applied both in specialized and
general solvers.

5.1 Introduction

Detecting local patterns has been studied extensively during the last decade (see,
e.g., [18] and [22] for dedicated volumes). Among others, many researchers have
considered the discovery of relevant set patterns (e.g., frequent itemsets and associ-
ation rules, maximal itemsets, closed sets) from transactional data (i.e., collections
of transactions that are collections of items). Such data sets are quite common in
many different application domains like, e.g., basket data analysis, WWW usage
mining, biomedical data analysis. In fact, they correspond to binary relations that

Jérémy Besson
Vilnius University, Faculty of Mathematics and Informatics
Naugarduko St. 24, LT-03225 Vilnius, Lithuania
e-mail: contact.jeremy.besson@gmail.com

Jean-François Boulicaut
Université de Lyon, CNRS, INRIA
INSA-Lyon, LIRIS Combining, UMR5205, F-69621, France
e-mail: jean-francois.boulicaut@insa-lyon.fr

Tias Guns · Siegfried Nijssen
Department of Computer Science
Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
e-mail: firstname.lastname@cs.kuleuven.be

107
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_5, © Springer Science+Business Media, LLC 2010

108 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

encode whether a given set of objects satisfies a given set of Boolean properties or
not.

In the last few years, it appears that such 0/1 data mining techniques have reached
a kind of ripeness from both an algorithmic and an applicative perspective. It is
now possible to process large amounts of data to reveal, for instance, unexpected
associations between subsets of objects and subsets of properties which they tend
to satisfy. An important breakthrough for the frequent set mining technology and its
multiple uses has been the understanding of efficient mechanisms for computing the
so-called condensed representations on the one hand, and the huge research effort
on safe pruning strategies when considering user-defined constraints on the other
hand.

Inspired by the pioneering contribution [23], frequent closed set mining has been
studied extensively by the data mining community (see, e.g., the introduction to
the FIMI Workshop [16]). A state-of-the-art algorithm like LCM [27] appears to
be extremely efficient and it is now possible, for relevant frequency thresholds, to
extract every frequent closed set from either sparse or dense data. The analogy be-
tween Formal Concept Analysis (see, e.g., [15]) and frequent closed set mining is
well understood and this has motivated the design of new algorithms for comput-
ing closed sets and concept lattices. Closed set mining has been also studied as
a very nice example of a condensed representation for frequency queries and this
topic has motivated quite a large number of contributions the last 5 years (see [10]
for a survey). In the same time, the active use of user-defined constraints has been
studied a lot (see, e.g., [8, 2, 5]). Most of the recent set pattern mining algorithms
can exploit constraints that are not limited to the simple cases of monotonic and/or
anti-monotonic ones as described in, for instance, [9]. New concepts have emerged
like “flexible constraints” [25], “witnesses” [19] or “soft constraints” [4]. Also, the
specific problems of noisy data sets has inspired a constraint-based mining view on
fault-tolerance (see, e.g., [24, 28, 3]).

While a few tens of important algorithms have been proposed, we lack a clear ab-
straction of their principles and implementation mechanisms. We think that a timely
challenge is to address this problem. Our objective is twofold. First, we want to elu-
cidate the essence of the already published pattern discovery algorithms which pro-
cess binary relations. Next, we propose a high-level abstraction of them. To this end,
we adopt a constraint programming approach which both suits well with the type of
problems we are interested in and can help to identify and to describe all basic steps
of the constraint-based mining algorithms. Algorithms are presented without any
concern about data structures and optimization issues. We would like to stay along
the same lines of [21] which introduced in 1997 the level-wise algorithm. This was
an abstraction of severals algorithms already published for frequent itemset mining
(typically APRIORI) as well as several works around inclusion dependencies and
functional dependencies. The generality of the levelwise algorithm inspired a lot
of work concerning the use of the border principle and its relations with classical
version spaces, or the identification of fundamental mechanisms of enumeration and
pruning strategies. Even though this appears challenging, we consider this paper as a

5 Generalizing Itemset Mining in a Constraint Programming Setting 109

major step towards the definition of a flexible, generic though efficient local pattern
mining algorithm.

To illustrate the general approach, we will describe two instances of it: one is
a specialized, but sufficiently general pattern mining solver in which pattern min-
ing constraints are the main primitives; the other involves the use of existing con-
straint programming systems, similar to [13]. Both approaches will be illustrated
on a problem of fault tolerant mining to make clear the possible advantages and
disadvantages.

The rest of this article is organized as follows. The next section introduces some
notations and the needed concepts. Section 3 discusses the principles of several
specialized algorithms that have been proposed to support set pattern discovery from
0/1 data. Then, we propose in Section 4 an abstraction of such algorithms. Given
such a generalization, both the dedicated solver (Section 5) and an implementation
scheme within constraint programming systems (Section 6) are given. Section 7
briefly concludes.

5.2 General Concepts

Let T = {t1, . . . , tm} and I = {i1, . . . , in} be two sets of respectively transactions
and items. Let r be a boolean matrix in which rti ∈ {0,1}, for t ∈ T and i ∈ I .
An illustration is given in Figure 5.1 for the sets T = {t1, t2, t3, t4, t5} and I =
{i1, i2, i3, i4}.

Fig. 5.1 Boolean matrix
where T = {t1, t2, t3, t4, t5}
and I = {i1, i2, i3, i4}

i1 i2 i3 i4
t1 1 1 1 1
t2 0 1 0 1
t3 0 1 1 0
t4 0 0 1 0
t5 0 0 0 0

In such data sets, we are interested in finding local patterns. A local pattern P
is a pair of an itemset and a transaction set, (X ,Y), which satisfies user-defined
local constraints C (P). We can consider two types of constraints. First, we have
constraints on the pattern types, which refers to how the pattern is defined with
respect to the input data set. Second, we have constraints on the pattern form, which
do not take into account the data. Hence the constraint C can be expressed in the
form of a conjunction of two constraints C (P) = Ctype(P)∧C f orm(P); Ctype and
C f orm can themselves be conjunctions of constraints, i.e., Ctype ≡ C1−type ∧ ·· · ∧
Ck−type and C f orm ≡ C1− f orm∧·· ·∧Cl− f orm.

The typical pattern type constraints are given below.

Definition 5.1 (Main Pattern Types). Let P = (X ,Y) ∈ 2T ×2I be a pattern.

110 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

(a) P is an itemset with its support set, satisfying Citemset(P), iff the constraint
(X = {x ∈T | ∀y ∈ Y, rxy = 1}) is satisfied.

(b) P is a maximal itemset, satisfying Cmax−itemset(P), iff Citemset(P) is satisfied and
there does not exist any itemset P′ = (X ′,Y ′) satisfying Citemset(P′) such that
X ′ ⊆ X and Y ⊂Y ′. Note that Citemset is usually substituted with a conjunction of
more complex constraints1 with respect to additional constraints on the patterns
P′.

(c) P is a formal concept, satisfying C f c(P), iff Citemset(P) is satisfied and there does
not exist any itemset P′ = (X ′,Y ′) such that X = X ′ and Y ⊂ Y ′.

These constraints are related to each other:

Cmax−itemset(P) =⇒ C f c(P) =⇒ Citemset(P)

Example 5.1. Referring to Figure 5.1, (t1t2, i4) and (t1, i2i3i4) are examples of item-
sets with their support sets in r1. (t1t2, i2i4) and (t1t3, i2i3) are two examples of for-
mal concepts in r1.

The most well-known form constraints are given in Figure 5.2. The first one is
usually called the minimum frequency constraint on itemsets. The second one im-
poses that both sets of the pattern have a minimal size. The third one is called the
“minimal area constraint” and ensures that extracted patterns cover a minimal num-
ber of “1” values of the boolean matrix. The next constraint requires that the mean
of positive real values associated to each item of the itemset is greater than a given
threshold. Constraint Cmembership imposes that patterns contain certain elements, for
instance a ∈T and b ∈I . Emerging patterns satisfying Cemerging must be frequent
with respect to a transaction set and infrequent with respect to another one. Cdivision
is another example of a form constraint.

There is a wide variety of combinations of constraints that one could wish to
express. For instance, we may want to find itemsets with their support sets (pattern
type), for which the support set is greater than 10% (pattern form); or we may wish
to find the formal concepts (pattern type) containing at least 3 items and 4 transac-
tions (pattern form) or a fault-tolerant pattern (pattern type) having an area of size at
least 20 (pattern form). Fault-tolerant extensions of formal concepts were previously
studied in [30, 12, 20, 3], and will be discussed later in more detail.

Fig. 5.2 Examples of interest-
ing pattern form constraints
on patterns.

C f orm(X ,Y)
Csize ≡ |X |> α

Cmin rect ≡ |X |> α ∧|Y |> β
Carea ≡ |X |× |Y |> α
Cmean ≡ ∑t∈X Val+(t)/|X |> α

Cmembership ≡ a ∈ X ∧b ∈ Y
Cemerging ≡ |X ∩E1|> α ∧|X ∩E2|< β
Cdivision ≡ |X |/|Y > α

1 Indeed, if we would only consider the Citemset constraint, the only maximal itemset is the itemset
containing all items.

5 Generalizing Itemset Mining in a Constraint Programming Setting 111

As a further example, if the items represent the books of “Antoine De Saint-
Exupery” and the transactions people who have read some of these books (a ‘1’
value in the boolean matrix), we may want the groups of at least three peo-
ple who have read at least three books in common including “The little prince”.
This extraction task can be declaratively defined by the means of the constraint
CEP =Ctype∧C f orm where Ctype =C f c and C f orm =Cmin rect ∧Cmembership (|X |> 3,
|Y |> 3 and “The little prince” ∈ Y).

For the development of algorithms it is important to study the properties of
the constraints. Especially monotonic, anti-monotonic and convertible constraints
play a key role in any combinatorial pattern mining algorithm to achieve extraction
tractability.

Definition 5.2 ((Anti)-monotonic Constraints). A constraint C (X ,Y) is said to
be anti-monotonic with respect to an argument X iff ∀X ,X ′,Y such that X ⊆ X ′:
¬C (X ,Y) =⇒ ¬C (X ′,Y). A constraint is monotonic with respect to an argu-
ment X iff ∀X ,X ′,Y such that X ⊇ X ′: ¬C (X ,Y) =⇒ ¬C (X ′,Y) We will use
the term “(anti)-monotonic” to refer to a constraint which is either monotonic or
anti-monotonic.

Example 5.2. The constraint Csize is monotonic. Indeed, if a set X does not satisfy
Csize then none of its subsets also satisfies it.

Some constraints are neither monotonic nor anti-monotonic, but still have good
properties that can be exploited in mining algorithms. One such class is the class
of “convertible constraints” that can be used to safely prune a search-space while
preserving completeness.

Definition 5.3 (Convertible Constraints). A constraint is said to be convertible
with respect to X iff it is not (anti)-monotonic and if there exists a total order on the
domain of X such that if a pattern satisfies the constraint, then every prefix (when
sorting the items along the chosen order) also satisfies it. This definition implies that
whenever a pattern does not satisfy the constraint, then every other pattern with this
pattern as a prefix does not satisfy the constraint either.

Example 5.3. Constraint Cmean of Figure 5.2 is a convertible constraint where Val+ :
T →R associates a positive real value to every transaction. Let the relation order
≤conv such that ∀ t1, t2 ∈T , we have t1 ≤conv t2 ⇔Val+(t1)≤Val+(t2). Thus when
the transaction set {ti, t j, ..., tk} ordered by ≤conv does not satisfy Cmean then all the
ordered transaction sets {ti, t j, ..., tl} such that tk ≤conv tl do not satisfy Cmean either.

5.3 Specialized Approaches

Over the years, several algorithms have been proposed to find itemsets under con-
straints. In this section, we review some important ones. In the next section we will
generalize these methods.

112 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

In all well-known itemset mining algorithms, it is assumed that the constraint
Citemset must be satisfied. Hence, for any given set of items Y , it is assumed we can
unambiguously compute its support set X . Most were developed with unbalanced
market-basket data sets in mind, in which transactions contain few items, but items
can occur in many transactions. Hence, they search over the space of itemsets Y and
propose methods for deriving support(Y) for these itemsets.

The most famous algorithm for mining itemsets with high support is the Apri-
ori algorithm [1]. The Apriori algorithm lists patterns increasing in itemset size. It
operates by iteratively generating candidate itemsets and determining their support
sets in the data. For an itemset Y candidates of size |Y |+ 1 are generated by creat-
ing sets Y ∪{e} with e �∈ Y . For example, from the itemset Y = {i2, i3} the itemset
candidate Y ′ = {i2, i3, i4} is generated. All candidates of a certain size are collected;
the support sets of these candidates are computed by traversing the boolean matrix
in one pass. Exploiting the anti-monotonicity of the size constraint, only patterns
whose support set exceeds the required minimum size, are extended again, and so
on.

While Apriori searches breadth-first, alternative methods, such as Eclat [29] and
FPGrowth [17], traverse the search space depth-first, turning the search into an enu-
meration procedure which has an enumeration search tree. Each node in the enumer-
ation tree of a depth-first algorithm corresponds to a pattern (support(Y),Y). For
each node in the enumeration tree we compute a triple 〈Y,support(Y),CHILD∪Y 〉,
where CHILD is the set of items i such that support(Y ∪{i})≥ size. Hence, CHILD
contains all items i that can be added to Y such that the resulting itemset is still fre-
quent. A child 〈support(Y ′),Y ′, IN′ ∪Y ′〉 in the enumeration tree is obtained by (i)
adding an item i ∈ CHILD to Y ; (ii) computing the set X ′ = support(Y ′); and (iii)
computing the set IN′ of items i′ from the items i∈ IN for which support(Y ′ ∪{i})≥
size. The main efficiency of the depth-first algorithms derives from the fact that
the sets support(Y ′) and CHILD can be computed incrementally. In our example,
the support set of itemset Y ′ = {i2, i3, i4} can be computed from the support set of
Y = {i2, i3} by support(Y ′) = {t1, t3}∩support(i4) = {t1, t3}∩{t1, t2}= {t1}, hence
only scanning support(i4) (instead of support(i2), support(i3) and support(i4)). The
CHILD′ set is incrementally computed from the CHILD set, as the monotonicity of
the size constraint entails that elements in CHILD′ must also be in CHILD. Com-
pared to the level-wise Apriori algorithm, depth-first algorithms hence require less
memory to store candidates.

The most well-known algorithm for finding formal concepts is Ganter’s algo-
rithm [14], which presents the first formal concept mining algorithm based on a
depth-first enumeration as well as an efficient way to handle the closure constraint
C f c by enabling “jumps” between formal concepts. Each itemset is represented in
the form of a boolean vector. For instance if |I | = 4 then the pattern (1,0,1,0)
stands for the pattern {i1, i3} (“1” for presence and “0” for absence). Formal con-
cepts are enumerated in the lexicographic order of the boolean vectors. For example
with three items I = {i1, i2, i3}, itemsets are ordered in the following way: /0, {i3}
,{i2}, {i2, i3}, {i1}, {i1, i3}, {i1, i2} and {i1, i2, i3}. Assume that we have given two
boolean vectors A = (a1, · · · ,am), B = (b1, · · · ,bm), both representing itemsets, then

5 Generalizing Itemset Mining in a Constraint Programming Setting 113

Ganter defines (i) an operator A+
i = (a1, · · · ,ai−1,1,0, · · · ,0); (ii) a relation A <i B

which holds iff ai < bi and ∀ j < i : a j = ai; and (iii) an operator A⊕ i = (A+
i)
′′,

where ′′ is the closure operator, which adds items included in all transactions cov-
ered by (A+

i). These operators allow us to enumerate the formal concepts in a given
order: the smallest formal concept after A is A⊕ i where i is the largest integer satis-
fying A ≤i A⊕ i. This principle is called prefix preserving closure (PPC) extension
[26].

In the example of Figure 5.2, if we consider the pattern {i2, i3} corresponding to
the boolean vector A = (0,1,1,0), i = 1 is the largest integer satisfying A ≤i A⊕ i.
Thus from the itemset {i2, i3} we can “jump” to the formal concept {i1, i2, i3, i4}=
A⊕1.

A disadvantage with this method is that an itemset A and its successor B in the
lexicographic order may be completely different, i.e., A∩B = /0. This means that
there is no way to use information of a pattern (A in the example) to compute its
successor (B in the example). This may be a problem when we are computing formal
concepts in large boolean matrices.

This efficiency problem was addressed in algorithms that combine the frequent
itemset mining problem with formal concept analysis (usually called frequent closed
itemset miners). Most algorithms for mining closed itemsets borrow ideas both from
Ganter’s algorithm and depth-first itemset miners like LCM [26]. Similar to depth-
first itemset miners, they traverse the search-space depth first, and incrementally
compute both support and itemsets; to restrict the search space to formal concepts,
they apply Ganter’s enumeration order; the main idea is to recursively consider only
those candidate itemsets which are PPC extensions.

To address the problem of extracting maximal itemset mining under constraints,
the DualMiner algorithm was proposed in [9]. It extends the depth-first frequent
itemset mining approach to deal with maximality and monotonic constraints on the
itemsets. When we need to satisfy monotonic itemset constraints, no longer every
node in the enumeration tree corresponds to a pattern; for instance, if we have the
constraint |Y | ≥ 3, all itemsets of size < 3 are no longer patterns, although we might
need to traverse these nodes to reach patterns that do satisfy the constraints. The
first modification proposed in DualMiner is to test for each node in the enumeration
tree if Y ∪CHILD satisfies the monotonic constraint on the itemset: in our example,
assume that |Y ∪CHILD| < 3 for a certain node in the enumeration tree, then we
no longer need to search further below this node, as none of the itemsets we will be
creating can satisfy the monotonic constraint, as they are subsets of Y ∪CHILD. To
speed-up the search for maximal itemsets a similar observation is used: assume that
we find that Y ∪CHILD satisfies the anti-monotonic constraint on the itemsets, then
we can skip the enumeration of all itemsets Y ′ for which Y ⊆ Y ′ ⊂ Y ∪CHILD, as
they cannot be maximal.

One way to think of this algorithm is that every node in its enumeration tree
corresponds to a tuple 〈support(�I),⊥I ,support(⊥I),�I 〉 such that all patterns
(X ,Y) found below that node will have ⊥I ⊆ Y ⊆ �I and support(�I) ⊆ X ⊆
support(⊥I). The pair 〈⊥I ,�I 〉 represents a search space (also called a subal-
gebra, or a sublattice). The set �I is defined to be the set {i |C (support(⊥I ∪

114 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

{i}),⊥I ∪{i})}, for constraints that are monotonic in X or anti-monotonic in Y .
The sets �I and ⊥I are used as witnesses: we use them to either prune an entire
search tree, or to jump to a maximal solution.

This idea was generalized in [19, 25, 6]. In [19] it was shown how to com-
pute witnesses for the more difficult “variance” constraint, a problem that remained
opened for several years in the data mining community. Soulet et al. [25] extend the
idea to deal with more difficult constraints such as the area constraint, which take
into account both support sets and itemsets. For example, if we want to compute
all the patterns (X ,Y) satisfying Citemset with an area greater than 3 (Carea where
α = 3), knowing that⊥I ⊆Y ⊆�I and hence support(�I)⊆ X ⊆ support(⊥I),
then we can bound the area of (X ,Y) by |support(�I)| × |⊥I | ≤ |X | × |Y | ≤
|support(⊥I)| × |�I |. If |support(⊥I)| × |�I | < 4, any pattern of the current
search space has an area lower than 4, and one can safely stop considering item-
sets below (X ,Y). A more sophisticated extension was proposed by Bonchi et al.
based on the ExAnte property [6, 7]. The ExAnte property states that if a transac-
tion does not satisfy an easily computable monotonic itemset constraint (such as
that the itemset has at least size 3), then this transaction can never be in support(X)
(as the transaction can only be in the support set of itemsets with less than 3 items).
Hence, we can remove this transaction from consideration. The consequence of this
removal is that we are reducing the support counts of all items included in the trans-
action, which may turn some of them infrequent. Removing infrequent items from
consideration, some transactions may no longer satisfy the constraint on the item-
sets, and can be removed again; this procedure can be repeated till we reach a fixed
point in which both support sets and itemsets do not change any more.

Originally, this was proposed as a pre-processing procedure that can be applied
on any dataset to obtain a smaller dataset [6]. However, later it was observed that
we can perform such pruning in every node of the enumeration tree of a depth-first
itemset miner [7]. Essentially, in every node of the enumeration tree, we have a tuple

〈support(�I),⊥I ,�T ,�I ,〉

where �T denotes the set of transactions that can still be covered by a pattern.
Compared to the DualMiner and other itemset miners, the key observation is that we
also evaluate constraints on the transactions, and allow these evaluations to change
the set �I ; no longer do we implicitly assume the set �T to equal support(⊥I).

5.4 A Generalized Algorithm

We propose to generalize the various approaches that have been sketched in the
previous section. It is based on a depth-first search in which every node of the enu-
meration tree has a tuple

SP = 〈⊥,�〉= 〈⊥T ∪⊥I ,�T ∪�I 〉,

5 Generalizing Itemset Mining in a Constraint Programming Setting 115

Table 5.1 Skeleton of a binary backtracking algorithm

SEARCH(A search-space 〈⊥,�〉, a data set r and a constraint C on 2T ×2I)

repeat for variables e ∈I ∪T with e �∈ ⊥ and e ∈ � till fixpoint: (Propagation)
if ¬U pperC (〈⊥∪{e},�〉) then 〈⊥,�〉← 〈⊥,�\{e}〉
if ¬U pperC (〈⊥,�\{e}〉) then 〈⊥,�〉← 〈⊥∪{e},�〉

if U pperC (〈⊥,�〉) then (Consistency check)
if ⊥=� then

PRINT〈⊥,�〉 (Solution found)
else

Let e ∈I ∪T with e �∈ ⊥ and e ∈ �
SEARCH(〈⊥,�\{e}〉,r,C)
SEARCH(〈⊥∪{e},�〉,r,C)

such that below this node we will only find patterns P = (X ,Y) in which⊥T ⊆ X ⊆
�T and ⊥I ⊆ Y ⊆ �I . We will abbreviate this to P ∈ SP; one can say that sets
⊥T and �T define the domain of X , and sets ⊥I and �I the domain of Y .

Constraints express properties that should hold between X and Y . During the
search, this means that if we change the domain for X , this can have an effect on the
possible domain for Y , and the other way around. This idea of propagating changes
in the domain of one set to the domain of another set, is essential in constraint
programming. The general outline of the search that we wish to perform for itemset
mining is given in Table 5.1.

Table 5.1 presents a skeleton of a binary depth-first search algorithm. According
to the data set and the constraint C , the domains are first of all reduced through
propagation. If the domain is still consistent then the enumeration process keeps
going. If a solution is found, it is printed. Otherwise the algorithm selects an element
to be enumerated and generates two new nodes (with the function Search). Finally,
the algorithm is recursively called on the two newly generated nodes. Let us now
study in more details what we mean by propagation and consistency.

Definition 5.4 (Constraint Upper bounds). Let SP be the search-space and C
a constraint over 2T × 2I . Then an upper-bound of C on SP is a predicate
UpperC (SP) such that if there exists P ∈ SP for which C (P) is true, then predi-
cate U pperC (SP) is true; furthermore, if ⊥=�, it should hold that UpperC (SP) =
C (⊥). Informally, if SP violates an upper-bound of C then SP is not consistent, i.e.,
no valid pattern can be generated from this search-space.

From constraint upper-bounds UpperC and search-space lower- and upper-bounds
SP = 〈⊥,�〉, propagation can be applied thanks to the following observation:

• if an element e ∈ (�\⊥), once added to the lower-bound of its set, violates the
predicate UpperC (〈⊥∪{e},�〉), then C can never be satisfied if e is included in
the solution and e should be remove from the upper-bound of the set.

116 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

• if an element e∈ (�\⊥), once removed from the upper-bound of its set, violates
the predicate UpperC (〈⊥,�\ {e}〉), then C can never be satisfied if e is not
included in the solution, and e should be added to the lower-bound of the set.

Our algorithm generalizes methods such as Eclat, DualMiner and ExAnte. It main-
tains all bounds that are also maintained in such algorithms; if a constraint Citemset is
enforced, its propagation ensures that the bounds for the transaction set correspond
to the appropriate support set, as in these algorithms. The iterative application of
propagation is borrowed from the ExAnte algorithm if monotonic constraints on the
itemsets are used.

Even though the algorithm in Table 5.1 shows how we would like to perform
the search, there are multiple ways of formalizing itemset mining problems and
implementing propagation, pruning and search. We present two ways to deal with
such issues in the next two sections.

5.5 A Dedicated Solver

5.5.1 Principles

Our first option is to build a dedicated, but still generic enough algorithm for itemset
mining. In such a system, the key idea is that the system provides for the search, as
indicated before, but the user has the ability to plug in algorithms for evaluating
the constraints. These algorithms can be implemented in arbitrary programming
languages, and our main problem here is to decide how the search procedure may
exploit such plug in algorithms.

Let us first consider the simple case, in which we assume that we have an algo-
rithm for evaluating a constraint C (X ,Y) which is (anti-)monotonic in each of its
parameters.

Definition 5.5 (Upperbound for (Anti-)Monotonic Constraints). Let C be an
(anti)-monotonic constraint both on itemsets and transaction sets, i.e., the so-called
bisets. The following is a valid upper bound:

UpperC (SP) = C (M1(SP),M2(SP)),

where M1(SP) equals �T (resp. ⊥T) if C is monotonic (resp. anti-monotonic) on
the transaction set. M2(SP) is defined similarly for itemsets.

Example 5.4. The constraint Cdivision(X ,Y) ≡ |X |/|Y | > α is monotonic on X and
anti-monotonic on Y with respect to the inclusion order. Indeed let X1 ⊆ X2 ∈ T
and Y1 ⊆ Y2 ∈I , we have Cdivision(X1,Y)⇒ Cdivision(X2,Y) and Cdivision(X ,Y2)⇒
Cdivision(X ,Y1). Finally, the upperbound of Cdivision is
UpperCdivision

(SP) = |�T |/|⊥I |> α .

5 Generalizing Itemset Mining in a Constraint Programming Setting 117

It is possible to exploit such an observation to call the constraint evaluation algo-
rithm when needed. We can generalize this to constraints which are not monotonic
or anti-monotonic in each of its parameters. Let us start with the definition of a
function PC which is a simple rewriting of C .

Definition 5.6 (PC). Let C (X ,Y) be a constraint on 2T ×2I . We denote by PC

the constraint obtained from C by substituting each instance of X (resp. Y) in C
with an other parameter Xi (resp. Yi) in the constraint PC .

For example, if we want to compute bisets satisfying Cmean, i.e., a mean above a
threshold α on a criterion Val+ : T → R

+:

Cmean(X)≡ ∑x∈X Val+(x)
|X | > α.

The argument X appears twice in the expression of Cmean. To introduce the notion of
piecewise monotonic constraint, we have to rewrite such constraints using a different
argument for each occurrence of the same argument. For example, the previous
constraint is rewritten as:

PCmean(X1,X2)≡ ∑x∈X1
Val+(x)
|X2| > α.

Another example is the constraint specifying that bisets must contain a proportion
of a given biset (E,F) larger than a threshold α:

Cintersection(X ,Y)≡ |X ∩E|× |Y ∩F |
|X |× |Y | > α.

This constraint is rewritten as

PCintersection(X1,X2,Y1,Y2)≡ |X1∩E|× |Y1∩F |
|X2|× |Y2| > α

We can now define the class of piecewise (anti)-monotonic constraints for which
we can define an UpperC predicate, which allows us to push the constraint in the
generic algorithm:

Definition 5.7 (Piecewise (Anti)-Monotonic Constraint). A constraint C is piece-
wise (anti)-monotonic if its associated constraint PC is either monotonic or anti-
monotonic on each of its arguments. We denote by Xm (respectively Ym) the set of
arguments Xi (resp. Yi) of PC for which PC is monotonic. In the same way Xam
(respectively Yam) denotes the set of arguments Xi (resp. Yi) of PC for which PC

is anti-monotonic.

Example 5.5. The constraint Cmean(X)≡∑i∈X Val+(i)/|X |> α , which is not (anti)-
monotonic, is piecewise (anti)-monotonic. We can check that
PCmean ≡∑i∈X1

Val+(i)/|X2|> α is (anti)-monotonic for each of its arguments, i.e.,
X1 and X2.

118 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

We can now define upper-bounds of piece-wise (anti)-monotonic constraints. An
upper-bound of a piecewise (anti)-monotonic constraint C is:

UpperC (SP) = PC (P1, · · · ,Pm),

where

Pi =�T if Pi ∈Xm

Pi =⊥T if Pi ∈Xam

Pi =�I if Pi ∈ Ym

Pi =⊥I if Pi ∈ Yam

Example 5.6. We have PC1(X1,X2) ≡ ∑i∈X1
Val+(i)/|X2| > α where Xm = {X1}

and Xam = {X2}. Thus we obtain Upper(C1)≡

∑
i∈�T

Val+(i)
|⊥T | > α.

For PC2(X1,X2,Y1)≡ |X1∪E| ∗ |Y1|/|X2|> α , we have Xm = {X1}, Ym = {Y1}
and Xam = {X2}. Thus an upper-bound of C2 is U pper(C2)≡

|�T ∪E| ∗ |�I |
|⊥T | > α.

In [25], the authors present a method to compute the same upper-bounds of con-
straints, but built from a fixed set of primitives. Notice also that [11] provides an
in-depth study of piecewise (anti-)monotonicity impact when considering the more
general setting of arbitrary n−ary relation mining.

Overall, in this system, a user would implement a predicate PC , and specify for
each parameter of this predicate if it is monotone or anti-monotone.

5.5.2 Case study on formal concepts and fault-tolerant patterns

Let us now illustrate the specialized approach on concrete tasks like formal concept
analysis and fault-tolerant pattern mining. In the next section, the same problems
will be addressed using an alternative approach.

We first show that C f c, the constraint which defines formal concepts, is a piece-
wise (anti)-monotonic constraint. Then, we introduce a new fault-tolerant pattern
type that can be efficiently mined thanks to the proposed framework.

We can rewrite C f c (see Section 5.2) to get PC f c :

PC f c(X1,X2,X3,Y1,Y2,Y3) =

5 Generalizing Itemset Mining in a Constraint Programming Setting 119

∧
t∈X1

∧
i∈Y1

rti∧
t∈T \X2

∨
i∈Y2

¬rti∧
i∈I \Y3

∨
t∈X3

¬rti

Analysing the monotonicity of PCCF we can check that C f c is a piecewise (anti)-
monotonic constraint where Xm = {X2}, Xam = {X1,X3}, Ym = {Y3} and Yam =
{Y1,Y2}. Finally we can compute an upper-bound of C f c:

U pperC f c(SP) = PCCF (⊥T ,�T ,⊥T ,⊥I ,⊥I ,�I) =

∧
t∈⊥T

∧
i∈⊥I

rti∧
t∈T \�T

∨
i∈⊥I

¬rti∧
i∈I \�I

∨
t∈⊥T

¬rti

Besides the well-known and well-studied formal concepts, there is an impor-
tant challenge which concerns the extraction of combinatorial fault-tolerant patterns
(see, e.g., [24, 3]). The idea is to extend previous patterns to enable some false val-
ues (seen as exceptions) in patterns. We present here the pattern type introduced in
[3].

Definition 5.8 (Fault-tolerant pattern). A biset (X ,Y) is a fault-tolerant pattern iff
it satisfies the following constraint CDRBS:
ZT (t,Y) = |{i ∈ Y | ¬rti}|
ZI (i,X) = |{t ∈ X | ¬rti}|

CDRBS(X ,Y)≡

⎧⎪⎪⎨
⎪⎪⎩

∧
t∈X ZT (t,Y)≤ α∧
i∈Y ZI (i,X)≤ α∧
t∈T \X

∧
t ′∈X ZT (t ′,Y)≤ZT (t,Y)∧

i∈I \Y
∧

i′∈Y ZI (i′,X)≤ZI (i,X)

α stands for the maximal number of tolerated false values per row and per column in
the pattern. The two last constraints ensure that elements not included in the patterns
contain more false values than those included.

Example 5.7. (t1t2t3, i2i3i4) and (t1t2t3t4, i2i3) are examples of fault-tolerant patterns
in r1 with α = 1.

We now need to check whether CDRBS can be exploited within our generic algo-
rithm, i.e., whether it is a piece-wise anti-monotonic constraint. Applying the same
principles as described before, we can compute the predicate PCDRBS as following:

PCDRBS(X1, · · · ,X6,Y1, · · · ,Y6) =∧
t∈X1

ZT (t,Y1)≤ α∧
i∈Y2

ZI (i,X2)≤ α∧
t∈T \X3

∧
t ′∈X4

ZT (t ′,Y3)≤ZT (t,Y4)∧
i∈I \Y5

∧
i′∈Y6

ZI (i′,X5)≤ZI (i,X6)

120 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

According to Definition 5.7, CDRBS is a piecewise (anti)-monotonic constraint where
Xm = {X3,X6}, Xam = {X1,X2,X4,X5}, Ym = {Y4,Y5} and Yam = {Y1,Y2,Y3,Y6}.

Finally we can compute an upper-bound of CDRBS:
U pperC f c(SP) =

∧
i∈⊥T

ZT (i,⊥I)≤ α∧
i∈⊥I

ZI (i,⊥T)≤ α∧
t∈T \�T

∧
t ′∈⊥T

ZT (t ′,⊥I)≤ZT (t,�I)∧
i∈I \�I

∧
i′∈⊥I

ZT (i′,⊥T)≤ZI (i,�T)

5.6 Using Constraint Programming Systems

5.6.1 Principles

An alternative approach is to require that the user specifies constraints in a constraint
programming language. The constraint programming system is responsible for de-
riving bounds for the specified constraints. This approach was taken in [13], where it
was shown that many itemset mining tasks can be specified using primitives that are
available in off-the-shelf constraint programming systems. The essential constraints
that were used are the so-called reified summation constraints:

(V ′ = 1)⇐∑
k

αkVk ≥ θ (5.1)

and
(V ′ = 1)⇒∑

k
αkVk ≥ θ , (5.2)

where V ′, V1 . . .Vn are variables with domains {0,1} and αk is a constant for each
variable Vk within this constraint.

The essential observation in this approach is that an itemset Y can be represented
by a set of boolean variables Ii where Ii = 1 iff item i∈Y . Similarly, we can represent
a transaction set X using a set of boolean variables Tt where Tt = 1 iff t ∈ X .

For instance, the Citemset constraint can be specified using the conjunction of the
following constraints:

Tt = 1 ⇔ ∑
i∈I

Ii(1− rti) = 0, for all t ∈T

This constraint states that a transaction t is in the support set of an itemset if and only
if all items in the itemset (Ii = 1) are not missing in the transaction ((1− rti) = 0).

As it turns out, many constraint programming systems by default provide propa-
gators for these reified summation constraints, by maintaining domains for boolean
variables instead of domains for itemsets and transactions. Let⊥V denote the lowest

5 Generalizing Itemset Mining in a Constraint Programming Setting 121

element in the domain of a variable, and �V denote the highest element. Then for
the reified summation constraint of equation (5.2) a propagor computes whether the
following condition is true:

∑
αk<0

αk⊥Vk + ∑
αk>0

αk�Vk < θ ;

if this condition holds, the sum cannot reach the desired value even in the most
optimistic case, and hence the precondition V ′ = 1 cannot be true. Consequently
value 1 is removed from the domain of variable V ′.

In our running example, if we have transaction 3 with items {i2, i3}, this transac-
tion is represented by the constraint

T3 = 1⇔ I1 + I4 = 0.

If we set the domain of item I1 to 1 (or, equivalently, include item i1 in ⊥I), this
constraint will be false for T3 = 1. Hence, the evaluation of U pperCitemset when t3 ∈
⊥T is false, and transaction t3 will be removed from the domain of �T .

Consequently, by formalizing the Citemset constraint using reified implications,
we achieve the propagation that we desired in our generalized approach. The search,
the propagators and the evaluation of constraints are provided by the constraint pro-
gramming system; however, the constraints should be specified in the constraint
programming language of the system, such as the reified summation constraint.

5.6.2 Case study on formal concepts and fault-tolerant patterns

Let us reconsider the constraints proposed in Section 5.5.2, starting with the con-
straints that define the formal concepts. Below we show that each of these con-
straints can be rewritten to an equivalent reified summation constraint:∧

i∈I \I

∨
t∈T

¬rti ⇔ (∀i ∈I : (¬Ii)⇒ (∃t : Tt ∧¬rti))

⇔
(
∀i ∈I : (Ii = 0)⇒

(
∑

t
Tt(1− rti)> 0

))

⇔
(
∀i ∈I : (Ii = 1)⇐

(
∑

t
Tt(1− rti) = 0

))

∧
t∈T \T

∨
i∈I

¬rti ⇔
(
∀t ∈T : (Tt = 1)⇐

(
∑

i
Ii(1− rti) = 0

))

122 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen∧
t∈T \T

∧
i∈I

rti ⇔ (∀t ∈T , i ∈I : ¬Tt ∨¬Ii∨ rti)

⇔ (∀t ∈T : ¬Tt ∨ (∀i ∈I : ¬Ii∨ rti))

⇔ (∀t ∈T : Tt ⇒ (∀i ∈I : ¬(Ii∧¬rti)))

⇔
(
∀t ∈T : (Tt = 1)⇒

(
∑

i
Ii(1− rti) = 0

))

This rewrite makes clear that we can also formulate the formal concept analysis
problem in constraint programming systems. The bounds computed by the CP sys-
tem correspond to those computed by the specialized approach, and the propagation
is hence equivalent.

The second problem that we consider is that of mining fault-tolerant formal con-
cepts. We can observe that ZT (t,Y) = ∑i Ii(1− rti) and ZI (i,X) = ∑t Tt(1− rti).
Hence,

∧
t∈X

ZT (t,Y)≤ α ⇔
(
∀t ∈T : Tt = 1⇒∑

i
Ii(1− rti)≤ α

)

and ∧
i∈Y

ZI (i,X)≤ α ⇔
(
∀i ∈I : Ii = 1⇒∑

t
Tt(1− rti)≤ α

)
.

Note that these formulas are generalizations of the formulas that we developed for
the traditional formal concept analysis, the traditional case being α = 0.

We can also reformulate the other formulas of fault-tolerant itemset mining.

∧
t∈T \X

∧
t ′∈X

ZT (t ′,Y)≤ZT (t,Y)⇔
(
∀t, t ′ ∈T : (Tt = 0∧Tt ′ = 1)⇔∑

i
Ii(1− rt ′i)≤∑

i
Ii(1− rti)

)

However, this formulation yields a number of constraints that is quadratic in the
number of transactions. Additionally, it is not in the desired form with one variable
on the left-hand side.

A formulation with a linear number of constraints can be obtained by further
rewriting, defining an additional constraint over an additional variable βT :

βT = max
t ∑

i
Ii(1− rti)Tt .

This corresponds to the maximum number of 1s missing within one row of the
formal concept. Then the following linear set of constraints is equivalent to the
previous quadratic set:

5 Generalizing Itemset Mining in a Constraint Programming Setting 123

∀t ∈T : Tt = 1⇐∑
i

Ii(1− rti)≤ βT .

As we can see, this constraint is very similar to the constraint for usual formal con-
cepts, the main difference being that βT is not a constant, but a variable whose
domain needs to be computed. Most constraint programming systems provide the
primitives that are required to compute the domain of βT .

Observe that adding the reverse implication would be redundant, given how βT

is defined. To enforce sufficient propagation, it may be useful to pose additional,
redundant constraints, i.e., the conjunction of the following:

β ′T = min
t ∑

i
Ii(1− rti(1−Tt))

∀t ∈T : Tt = 1⇒∑
i

Ii(1− rti)≤ β ′T .

This constraint considers the number of 1s missing in rows which are (certainly)
not part of the formal concept. Its propagators ensure that we can also determine
that certain transactions should not be covered in order to satisfy the constraints.
Similarly, we can express the constraints over items. Our overall set of constraints
becomes:

∀t ∈T : Tt = 1 ⇐ ∑
i

II(1− rti)≤ βT

∀t ∈T : Tt = 1 ⇒ ∑
i

Ii(1− rti)≤min(α,β ′T)

∀i ∈I : Ii = 1 ⇐ ∑
t

Tt(1− rti)≤ βI

∀i ∈I : Ii = 1 ⇒ ∑
t

Tt(1− rti)≤min(α,β ′I)

βT = max
t ∑

i
Ii(1− rti)Tt

β ′T = min
t ∑

i
Ii(1− rti(1−Tt))

βI = max
i

∑
t

Tt(1− rti)Ii

β ′I = min
i ∑

t
Tt(1− rti(1− Ii))

Clearly, implementing these fault tolerance constraints using CP systems requires
the use of a large number of lower-level constraints, such as reified sum con-
straints, summation constraints, minimization constraints and maximization con-
straints, which need to be provided by the CP system. To add these constraints in
a specialized system, they need to be implemented in the lower-level language in
which the system is implemented itself.

124 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

5.7 Conclusions

Over the years many specialized constraint-based mining algorithms have been pro-
posed, but a more general perspective is overall missing. In this work we studied the
formalization of fundamental mechanisms that have been used in various itemset
mining algorithms and aimed to describe high-level algorithms without any details
about data structures and optimization issues.

Our guiding principles in this study were derived from the area constraint pro-
gramming. Key ideas in constraint programming are declarative problem specifica-
tion and constraint propagation. To allow for declarative problem specification, con-
straint programming systems provide users a modeling language with basic primi-
tives such as inequalities, sums, and logic operators. For each of these primitives,
the system implements propagators; propagators can be thought of as algorithms for
computing how the variables in a constraint interact with each other.

Within this general framework, there are still many choices that can be made. We
investigated two options. In the first option, we developed a methodology in which
data mining constraints are added as basic primitives to a specialized CP system.
Advantages of this approach are that users do not need to study lower level model-
ing primitives (such as summation constraints), that users are provided with a clear
path for adding primitives to the system, and that it is possible to optimize the prop-
agation better. To simplify the propagation for new constraints, we introduced the
class of piecewise (anti-)monotonic constraints. For constraints within this class it
is not needed that a new propagator is introduced in the system; it is sufficient to
implement an algorithm for evaluating the constraint. This simplifies the extension
of the specialized system with new constraints significantly and makes it possible
to add constraints within this class in an almost declarative fashion. However, ex-
tending the system with other types of constraints is a harder task that requiring
study.

The second option is to implement data mining constraints using lower level
modeling primitives provided by existing CP systems. The advantage of this ap-
proach is that it is often not necessary to add new primitives to the CP system itself;
it is sufficient to formalize a problem using a set of lower level modeling primitives
already present in the system. It is also clear how different types of constraints can
be combined and how certain non piecewise monotonic constraints can be added.
The disadvantage is that it is less clear how to optimize the constraint evaluation, if
needed, or how to add constraints that cannot be modeled using the existing primi-
tives in the CP system. This means that the user may still have to implement certain
constraints in a lower level programming language. Furthermore, the user needs to
have a good understanding of lower level primitives available in CP systems and
needs to have a good understanding of the principles of propagation, as principles
such as piecewise monotonicity are not used.

Comparing these two approaches, we can conclude that both have advantages
and disadvantages; it is likely to depend on the requirements of the user which one
is to be preferred.

5 Generalizing Itemset Mining in a Constraint Programming Setting 125

As indicated, there are several possibilities for extending this work. On the sys-
tems side, one could be interested in bridging the gap between these two approaches
and build a hybrid approach that incorporates the specialized approach in a general
system. This may allow to optimize the search procedure better, where needed.

On the problem specification side, we discussed here only how to apply both
approaches to pattern mining. It may be of interest to study alternative problems,
ranging from pattern mining problems such as graph mining, to more general prob-
lems such as clustering. In these problem settings, it is likely that a hybrid approach
will be needed that combines the general approach of constraint programming with
more efficient algorithms developed in recent years for specialized tasks. We hope
that this work provides inspiration for the development of such future approaches.

Acknowledgements This work has been partly funded by EU contract IST-FET IQ FP6-516169,
and ANR BINGO2 (MDCO 2007-2010). Most of this research has been done while J. Besson was
affiliated to INSA Lyon.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast discovery of asso-
ciation rules. In Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI
Press, 1996.

2. S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Advances in Algorithms, The-
ory and Applications. Chapman & Hall/CRC Press, Data Mining and Knowledge Discovery
Series, 2008.

3. J Besson, C. Robardet, and J-F. Boulicaut. Mining a new fault-tolerant pattern type as an al-
ternative to formal concept discovery. In ICCS’06: Proc. Int. Conf. on Conceptual Structures,
volume 4068 of LNCS. Springer, 2006.

4. S. Bistarelli and F. Bonchi. Interestingness is not a dichotomy: Introducing softness in con-
strained pattern mining. In PKDD’05: Proc. 9th European Conf. on Principles and Practice
of Knowledge Discovery in Databases, volume 3721 of LNCS, pages 22–33. Springer, 2005.

5. Francesco Bonchi, Fosca Giannotti, Claudio Lucchese, Salvatore Orlando, Raffaele Perego,
and Roberto Trasarti. A constraint-based querying system for exploratory pattern discovery.
Information Systems, 34(1):3–27, 2009.

6. Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino Pedreschi. Adaptive con-
straint pushing in frequent pattern mining. In PKDD’03: Proc. 7th European Conf. on Princi-
ples and Practice of Knowledge Discovery in Databases, volume 2838 of LNCS, pages 47–58.
Springer, 2003.

7. Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino Pedreschi. Examiner: Op-
timized level-wise frequent pattern mining with monotone constraint. In ICDM 2003: Proc.
3rd International Conf. on Data Mining, pages 11–18. IEEE Computer Society, 2003.

8. Jean-François Boulicaut, Luc De Raedt, and Heikki Mannila, editors. Constraint-Based Min-
ing and Inductive Databases, volume 3848 of LNCS. Springer, 2005.

9. C. Bucila, J. E. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning algorithm for
itemsets with constraints. Data Mining and Knowledge Discovery Journal, 7(4):241–272,
Oct. 2003.

10. Toon Calders, Christophe Rigotti, and Jean-François Boulicaut. A survey on condensed rep-
resentations for frequent sets. In Constraint-based Mining and Inductive Databases, volume
3848 of LNCS, pages 64–80. Springer, 2005.

126 Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen

11. L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut. Closed patterns meet n-ary relations.
ACM Trans. on Knowledge Discovery from Data, 3(1), March 2009.

12. Hong Cheng, Philip S. Yu, and Jiawei Han. Ac-close: Efficiently mining approximate closed
itemsets by core pattern recovery. In ICDM, pages 839–844, 2006.

13. Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint programming for itemset mining.
In KDD’08: Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
pages 204–212, 2008.

14. B. Ganter. Two basic algorithms in concept analysis. Technical report, Germany Darmstadt :
Technisch Hochschule Darmstadt, Preprint 831, 1984.

15. Bernhard Ganter, Gerd Stumme, and Rudolph Wille. Formal Concept Analysis, Foundations
and Applications, volume 3626 of LNCS. Springer, 2005.

16. B. Goethals and M. J. Zaki, editors. Frequent Itemset Mining Implementations, volume 90.
CEUR-WS.org, Melbourne, Florida, USA, December 2003.

17. Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without can-
didate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery,
8(1):53–87, 2004.

18. David J. Hand, Niall M. Adams, and Richard J. Bolton, editors. Pattern Detection and Dis-
covery, ESF Exploratory Workshop Proceedings, volume 2447 of LNCS. Springer, 2002.

19. Daniel Kifer, Johannes E. Gehrke, Cristian Bucila, and Walker M. White. How to quickly find
a witness. In Constraint-Based Mining and Inductive Databases, pages 216–242, 2004.

20. Jinze Liu, Susan Paulsen, Xing Sun, Wei Wang, Andrew B. Nobel, and Jan Prins. Mining
approximate frequent itemsets in the presence of noise: Algorithm and analysis. In SDM,
2006.

21. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discov-
ery. In Data Mining and Knowledge Discovery journal, volume 1(3), pages 241–258. Kluwer
Academic Publishers, 1997.

22. Katharina Morik, Jean-François Boulicaut, and Arno Siebes, editors. Local Pattern Detection,
International Dagstuhl Seminar Revised Selected Papers, volume 3539 of LNCS. Springer,
2005.

23. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

24. Jian Pei, Anthony K. H. Tung, and Jiawei Han. Fault-tolerant frequent pattern mining: Prob-
lems and challenges. In DMKD. Workshop, 2001.

25. A. Soulet and B. Crémilleux. An efficient framework for mining flexible constraints. In
PaKDD’05: Pacific-Asia Conf. on Knowledge Discovery and Data Mining, volume 3518 of
LNCS, pages 661–671. Springer, 2005.

26. T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient mining algorithms for frequen-
t/closed/maximal itemsets. In FIMI’04, Proceedings of the IEEE ICDM Workshop on Fre-
quent Itemset Mining Implementations, volume 126 of CEUR Workshop Proceedings. CEUR-
WS.org, 2004.

27. T. Uno, M. Kiyomi, and H. Arimura. LCM ver.3: collaboration of array, bitmap and prefix
tree for frequent itemset mining. In OSDM’05: Proc. 1st Int. Workshop on Open Source Data
Mining, pages 77–86. ACM Press, 2005.

28. C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent itemsets
in high dimensions. In SIGKDD, pages 194–203, San Francisco, California, USA, August
2001. ACM Press.

29. Mohammed J. Zaki. Scalable algorithms for association mining. IEEE Trans. Knowl. Data
Eng., 12(3):372–390, 2000.

30. Mengsheng Zhang, Wei Wang, and Jinze Liu. Mining approximate order preserving clusters
in the presence of noise. In ICDE, pages 160–168, 2008.

Chapter 6

From Local Patterns to Classification Models

Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

Abstract Using pattern mining techniques for building a predictive model is cur-
rently a popular topic of research. The aim of these techniques is to obtain classi-
fiers of better predictive performance as compared to greedily constructed models,
as well as to allow the construction of predictive models for data not represented in
attribute-value vectors. In this chapter we provide an overview of recent techniques
we developed for integrating pattern mining and classification tasks. The range of
techniques spans the entire range from approaches that select relevant patterns from
a previously mined set for propositionalization of the data, over inducing pattern-
based rule sets, to algorithms that integrate pattern mining and model construction.
We provide an overview of the algorithms which are most closely related to our
approaches in order to put our techniques in a context.

6.1 Introduction

In many applications rule-based classification models are beneficial, as they are not
only accurate but also interpretable. Depending on the application, these rules are
propositional, i.e. of the kind

if income of a customer is high and loans is low
then predict the customer is good,

or relational or graph based, i.e. of the kind

if carbon is connected to a nitrogen in a molecule
then predict the molecule is active.

Björn Bringmann · Siegfried Nijssen · Albrecht Zimmermann
Department of Computer Science
Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
e-mail: firstname.lastname@cs.kuleuven.be

127
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_6, © Springer Science+Business Media, LLC 2010

128 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

Finding such rules is a challenge for which many algorithms have been proposed.
Initially, most of these approaches were greedy [13, 28]; due to the use of heuristics,
however, these algorithms may end up in a local optimum instead of a global one.
In particular on structured domains, such as the example in chemoinformatics listed
above, certain rules are hard to find by growing rules in small steps. For instance, in
molecules, a benzene ring (a ring of 6 carbons) is an important structure with special
properties; however, only after adding 6 bonds in a graph does this structure emerge.
A greedy algorithm is not likely to find this structure automatically. Algorithms
that are not greedy, but instead investigate a larger search space or even provide
optimal solutions according to well-chosen criteria, may hence be preferable in these
applications.

However, given the large search space of rules in most applications, making an
exhaustive search feasible is a major challenge. To address this challenge, pattern
mining algorithms may be useful. Pattern mining is one of the most studied topics
in data mining and focuses mostly on the exhaustive enumeration of structures in
databases. A pattern can be thought of as the antecedent of a rule. Even though
patterns were originally studied for descriptive tasks [2], an obvious question is
how to exploit them also in predictive tasks, where the aim is to exhaustively search
through a space of rule antecedents.

Even once we have found a set of patterns (or rules), as mined by pattern mining
techniques, these do not immediately correspond to a good classifier. The next ques-
tion is how we can select and combine patterns for accurate classification models.
This is the problem that we study in this chapter.

The probably most simple approach for using patterns in classification models is
as follows:

• a pattern mining technique is used to find a large set of patterns;
• a new feature table is created, in which every column corresponds to a pattern,

and each row corresponds to an element of the data set;
• a model is learned on this new table, where any learning algorithm can be used

that can deal with binary data.

The process is illustrated in Figure 6.1. It is conceptually simple to use as the learn-
ing algorithm is treated as a black box. A deeper understanding of classification
algorithms is not needed, thus making this approach very useful for non-computer
scientists, such as biologists or chemists. Particularly in applications with structured
data, such as (bio-)chemistry, this strategy turned out to be attractive and was among
the first pattern-based classification approaches [25]. It was used successfully to
classify sequences [25, 24], graph structures [24, 15, 20, 8] and also attribute-value
data [14]. Its popularity today is attested by the continued use in recent publications
[11, 7] as well as a workshop devoted to this topic [21].

Many extensions to the basic procedure are possible. The main complication that
was already faced in the early days of pattern-based classification was the large num-
ber of patterns produced by pattern mining algorithms [27]. At the time few learning
algorithms were commonly known that could deal with large feature spaces (for in-
stance, SVMs for regression were only introduced by Vapnik in 1996, in the same

6 From Local Patterns to Classification Models 129

year that the term ‘frequent itemset’ was introduced). It was necessary to reduce the
number of patterns as much as possible. Two approaches can be taken to achieve
this.

The direct approach, in which the classifier construction and the feature selection
are combined: the selection procedure is made such that the selected patterns are
directly inserted in a rule-based classifier [27].

The indirect approach, in which the feature selection is separated from the clas-
sifier construction [25]. This step is also indicated in Figure 6.1.

An advantage of the direct approach is that it no longer treats the classifier
as a black box. One of the potential advantages of using patterns –interpretable
classifiers– is hence not negated in this approach.

This chapter provides an overview of several recent approaches towards classi-
fication based on patterns, with a focus on methods that we proposed recently. The
chapter is subdivided in sections that roughly correspond to the steps illustrated in
Figure 6.1.

The first step in the process is the pattern mining step. The constraint which has
traditionally been used to determine if a pattern is relevant and should be passed on

⇒

Fig. 6.1 The stepwise approach to use patterns in classification models.

130 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

to the next phase, is the minimum support constraint. If the patterns are used for
classification purposes, frequent features may however not always be relevant; for
instance, consider a pattern which covers all elements of a data set, and hence will
never distinguish classes from each other. An alternative is to search for only those
patterns which show a correlation with the target attribute. Section 6.3 discusses
correlation constraints that can be applied to individual patterns to determine their
relevance, and how to enforce them during mining, based on the solution proposed
in [29].

Once a pattern mining technique has generated patterns, it is often the case that
these patterns are correlated among each other. Section 6.4 discusses indirect meth-
ods for selecting a subset of useful patterns from a given set of patterns, and places
two techniques that we recently proposed [35, 7] in a wider context [22, 23, 4].
These methods are independent of the classifier that is applied subsequently.

Given that patterns can be seen as rules, several algorithms have been proposed
that take a set of patterns as input and use these patterns as rules to build a rule-based
classification model

Subsequently, Section 6.5 discusses direct methods for selecting patterns from a
pre-computed set of patterns. Next to traditional methods [27, 26] we summarize a
method we proposed [39].

All approaches mentioned so far assume that the patterns, and the corresponding
feature table, are created in a separate, first step. However, in more recent papers a
tight integration has been studied, in which the learning algorithm calls the pattern
mining algorithm iteratively as required to create new features, and the construction
of a feature table is not a separate phase. In addition to discussing approaches we
proposed [9, 31, 6], Section 6.6 also presents an argument for upgrading the third
technique described in Section 6.4 [22] to the integrated setting.

An overview of the methods is provided in Table 6.1.
First, however, Section 6.2 briefly reviews the basic principles of pattern mining,

and introduces the notation that we will be using.

Table 6.1 Comparison of pattern set mining techniques discussed in this chapter.

Classifier Construction
Indirect Direct
(Separate from pat. selection) (Integrated with pat. selection)

Separate Pattern Mining Section 6.4 Section 6.5
(Post-processing patterns) • Exhaustive search • CBA

• The chosen few • CMAR
• Maximally informative sets • CtC

Integrated Pattern Mining Section 6.6
(Iterative pattern mining) • Maximally informative sets • FitCare

• DL8
• Tree2

6 From Local Patterns to Classification Models 131

6.2 Preliminaries

We assume given a data set D consisting of tuples (x,y), where y ∈ C is a class
label and x ∈A is a description of an element of the data set. In the simplest case,
this description is a tuple of binary attributes, that is, A = {0,1}n; however, x may
also be more complex, for instance, a labeled graph (V,E,Σ ,λ), where V is a set of
nodes, E ⊆V ×V is a set of edges, and λ is a function from V to labels in Σ .

We can partition a dataset according to the class labels; that is, for a given c ∈ C ,
we define that Dc = {(x,y)|(x,y) ∈D ,y = c}.

A pattern π is a function from A to {0,1}. There are many types of patterns. The
simplest type of pattern is an itemset. An itemset is represented by a set I⊆{1, . . .n}.
When an itemset is applied to a binary vector x, it predicts 1 iff for all i ∈ I: xi = 1.
We usually say that pattern I is included in element x. Also patterns can be more
complex, for instance, graphs G. Usually, a graph G predicts 1 for a graph that is an
element of the data set iff G is subgraph isomorphic with this graph.

Given a dataset D and a pattern π , by π(D) we denote the set of transactions
containing the pattern, i.e. π(D) = {(x,y) |π(x) = 1,(x,y) ∈D}.

A pattern mining algorithm is an algorithm that enumerates all patterns satis-
fying certain constraints within a certain pattern language L . The most popu-
lar constraint is the minimum support constraint. The support of a pattern is the
number of elements in a data set that includes the pattern, i.e., if π is a pattern,
its support is |π(D)|. A pattern is frequent for minimum support threshold θ iff
|π(D)| ≥ θ . Examples of pattern languages are itemsets (L = 2I) and graphs
(L = {G |G is a graph}).

If we associate to a pattern a class label c ∈ C we obtain a class association rule
π ⇒ c. The support of a class association rule is defined as

|{(x,y) ∈Dc |π(x) = 1}| .

To find all patterns satisfying a constraint ϕ in a space of patterns P , algorithms
have been developed which traverse the search space in an efficient way. Despite
the large diversity in methods that exist for many pattern domains, they have certain
properties in common.

First, they all assume that there is a generality order# between the patterns. This
order satisfies the property that

∀x : π1(x) = 1∧π2 � π1 → π2(x) = 1.

In other words, if a pattern is included in an element of the data set, all its general-
izations are also included in it.

Consequently, for the minimum support constraint we have that

|π1(D)| ≥ θ ∧π2 � π1 ⇒ |π2(D)| ≥ θ

for any possible dataset. Any constraint which has a similar property is called anti-
monotonic. While anti-monotonic constraints were the first ones used and exploited

132 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

for efficient mining, current pattern mining algorithms exist also for non-monotonic
constraints such as average value of items in a set or minimum χ2-score.

All descendants of a pattern in the pattern generality order are called its refine-
ments or specializations. Pattern mining algorithms search for patterns by repeatedly
and exhaustively refining them, starting from the most general one(s). Refinements
are not generated for patterns that do not satisfy the anti-monotonic constraint. By
doing so some patterns are never generated; these patterns are pruned.

In the case of itemsets, the subset relation is a suitable generality order. Assuming
itemsets are sets I ⊆ {1, . . . ,n}, the children of an itemset I can be generated by
adding an element 1≤ i≤ n to I, creating sets I∪{i}. For the subset partial order it
holds that

I1 ⊆ I2 ⇒ |I1(D)| ≥ |I2(D)|.
Frequent itemset mining algorithms traverse the generality order either breadth-first
(like APRIORI [2]) or depth-first (like ECLAT [38] and FP-GROWTH [19]). When it
is found for an itemset I that |I(D)| < θ , the children of I are not generated as all
supersets can only be infrequent too.

Similar observations can be exploited for graphs, where usually the subset rela-
tion is replaced with the subgraph isomorphism relation.

Frequent pattern mining algorithms for many types of datastructures exist, among
which sequences, trees, and relational queries; essential in all these algorithms is that
they traverse the pattern space in such a way that the generality order is respected.

We will see in the next section how we can search for patterns under other types
of constraints.

In this paper, we will often be using a set of patterns P = {π1, . . . ,πn} to create a
new binary dataset from a dataset D = {(x,y)}:

{(zP
x ,y) = (π1(x), . . .πn(x),y) |(x,y) ∈D}.

In this new dataset, every attribute corresponds to a pattern; an attribute has value 1
if the element of the data set includes the pattern.

6.3 Correlated Patterns

In traditional frequent pattern mining the class labels, if present, are ignored. We
will refer to a pattern mining technique which takes the class labels into account as
a correlated pattern mining technique, but many alternative names have also been
proposed, among others emerging pattern mining [16], contrast pattern mining [3]
and discriminative pattern mining [10, 11] and as subgroup discovery in the first
paper in [37]. We will use the notation we proposed in [33].

In statistics, correlation describes a linear dependency between two variables; in
our case the class value and the occurrence of a pattern. While in theory more than
two possible class values could be handeled, we will restrict ourselves to the binary
setting. The aim of correlated pattern mining is to extract patterns π from a data

6 From Local Patterns to Classification Models 133

set whose occurrences are significantly correlated with the class value y. The main
motivation for this approach is that patterns which do not have significant correlation
with the target attribute, are not likely to be useful as features for classifiers.

Correlated pattern mining techniques use correlation scores that are computed
from contingency tables. Every transaction is either covered by a pattern or not;
furthermore, the transaction is either positive or negative. This gives us four disjunct
possibilities for each transaction, which can be denoted in a 2×2 contingency table
such as Table 6.2. Statistical measures are employed to calculate a correlation score
between the class value and the pattern at hand from the number of transactions for
each of the four possibilities. Correlated pattern mining aims for the extraction of

Table 6.2 Example of a contingency table.

Covered by pattern Not covered by pattern

Positive example p = |π(D+)| P− p = |D \π(D+)| P

Negative example n = |π(D−)| N−n = |D \π(D−)| N

p+n P+N− p−n N +P

patterns that have a high correlation with the target attribute. There are two settings
that have been considered:

• find all patterns that reach at least a user-defined score;
• find the k patterns scoring best on the given data set.

We will first provide on how to compute patterns in these settings, before discussing
the advantages and disadvantages.

6.3.1 Upper Bound

Obviously it is not efficient to enumerate all possible patterns to find the desired
subset. As noted before, the property allowing for an efficient enumeration of all
frequent patterns is the anti-monotonicity of the frequency constraint. In correlated
pattern mining, we would like to exploit a similar anti-monotonic constraint. Unfor-
tunately, interesting correlation scores are usually not anti-monotonic. A correlation
score should at least have the following properties:

(A) a pattern which covers negative and positive elements of the data set in equal
proportion as occurs in the full data should not be considered a correlated pattern;

(B) a pattern which covers many elements of one class, and none of the other, should
be considered correlated.

As a pattern of type (B) can be a refinement of a pattern of type (A) useful
correlation measures cannot be anti-monotonic. Hence,

134 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

π � π ′ �⇒ score(π)≥ score(π ′)

The main approaches proposed to solve this problem involve introducing an upper
bound. An upper bound is an anti-monotonic measure which bounds the correlation
values that refinements of a pattern can reach. Hence, an upper bound allows for an
efficient search;

π � π ′ ⇒ bound(π)≥ bound(π ′) with bound(π)≥ score(π ′)

The bound allows us to find all correlated patterns exceeding a minimum cor-
relation score in a similar way as we can find frequent patterns; i.e. branches of
the search tree are pruned using the anti-monotonic bound constraint, instead of the
minimum support constraint. In contrast to frequent pattern mining, not all patterns
that exceed the score are output. Only patterns that exceed the threshold on the orig-
inal score function are part of the result.

6.3.2 Top-k Correlated Pattern Mining

In order to search for the top-k patterns, a naı̈ve approach would be to simply select
these patterns in a post-processing step for a given (low) threshold. However, an
important question is if we can find the top-k patterns more efficiently if we search
for top-k patterns during the mining step.

It turns out that the bounds discussed in the previous section can be used rela-
tively easily to find the top-k patterns. The main idea is to update the correlation
treshold θ during the search starting from the lowest possible threshold. A tempo-
rary list of the top-k patterns is maintained during the search. Every time a enumer-
ated pattern π exceeds the score of the worst scoring pattern in the top-k list, this
newly found pattern π is inserted into the list, which is cropped to the current top-k
patterns found. As long as the length of the list is still below the desired k, patterns
are simply added. Once the list reaches the desired size of k patterns the threshold
used for pruning is always updated to the score of the worst pattern in the list. This
threshold is used as a constraint on the bound value of patterns. Thus, while the
mining process goes on, the pruning-threshold continues to rise and consequently
improves the pruning-power. The final list contains the top-k patterns.1

Note that due to the changing threshold the search strategy can influence the
enumerated candidates in the top-k setting. This has been investigated and exploited
in e.g. [8].

Both constraints – the top-k and the minimum score – can be combined by setting
the initial threshold to a user defined threshold. As a result, the patterns extracted
will be the k best scoring patterns exceeding the initial user-defined threshold.

1 The list can be shorter if there were less than k patterns exceeding the lowest threshold.

6 From Local Patterns to Classification Models 135

6.3.3 Correlation Measures

As said before, in correlated pattern mining we need a non-trivial upper bound to
allow for pruning2. This upper bound should be as tight as possible to achieve the
maximum amount of pruning.

In this chapter, we will use the PN-space based methodology of [33] to introduce
the bounds. The use of bounds in a correlated pattern mining setting was first pro-
posed in [3]; however, we present the bounds introduced in [29] as they are more
tight.

As stated earlier, instances in the data set are associated with class labels. We
consider a binary class setting with positive labeled instances D+ and negative la-
beled instances D− such that D+∪D− = D while D+ and D− are disjunct.

Any pattern π covers p = |π(D+)| of the positive instances and n = |π(D−)| of
the negative instances and can be represented as point in a pn-space, as illustrated in
Figure 6.2. Accordingly the total frequency of the pattern π is |π(D)|= |π(D+)|+
|π(D−)|. The upper bound has to be defined such that for any specialisation π ′ # π
the inequality boundD (π) ≥ scoreD (π ′) holds, and the bound is anti-monotonic.
Due to the anti-monotonicity any specialisation π ′ # π can only cover a subset of
π such that π ′(D+) ⊆ π(D+) and π ′(D−) ⊆ π(D−). Therefore any π ′ can only
reach values located in the grey area defined by π (Figure 6.2). As a result we need
to define the upper bound to be greater or equal to the maximum score over all
p′ ≤ p = |π(D+)| and n′ ≤ n = |π(D−)|,

boundD (p,n)≥ max
p′≤p,n′≤n

scoreD (p′,n′)

If the correlation measure is convex, the calculation of the upper bound is
straightforward. Convex functions are known to reach their extreme values at the
borders. Thus, only the scores of these borders have to be computed - the maximum
of which specifies the upper bound.

Morishita and Sese [29] introduce the general idea and discuss two popular and
frequently used convex functions, χ2 and information gain (IG). While in these
cases convexity is exploited, in general, any function that allows for an efficient cal-

Fig. 6.2 The pn-space with
patterns a, b, and x covering
different parts of the data set.

�

�

2 There is always a trivial upper bound that does not allow for any pruning and thus is worthless

136 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

culation of an upper bound in a restricted domain can be used to guide the search [5].
One example is the non-convex Hellinger distance. As it still reaches its extrema at
the borders, the upper bound can be calculated in the very same way as for χ2 or
Information Gain.

Next to the technique introduced above, other methods to extract correlated pat-
terns based on ‘pure’ frequent-pattern mining have been proposed. [33] shows that
separate mining on each class with a threshold derived from the desired minimum
correlation and post-processing can be done efficiently to obtain the desired result.
Alternatively, given a threshold on correlation, the minimum of the class-specific
support thresholds can be used as a support threshold on the entire dataset. This
approach was essentially proposed in [10, 11]; note however that this class-ignorant
pruning strategy is suboptimal compared to the approach which takes class labels
into account.

6.3.4 Type I Errors

All methods discussed evaluate a correlation score for every pattern. For instance,
we used χ2 to evaluate how much each pattern correlates with a class attribute.
In statistics a common recommendation is that if the χ2 value exceeds 3.84, the
correlation is significant. Does this mean that it is always correct to use 3.84 as
threshold?

Unfortunately, this is not the case. In statistics it is well-known that if we re-
peatedly evaluate a significance test, chances are very high that we will incorrectly
reject the null hypotheses in some of these tests. This kind of error is called a type
I error. Given the large number of patterns considered, type I errors are very likely
in pattern mining. How to deal with them is an issue, which has not received much
attention.

A common way to deal with type I errors is the direct adjustment approach,
which modifies the minimum correlation score depending on the number of hy-
potheses evaluated: the more hypotheses considered, the higher the correlation
threshold should be.

In bound-based pattern mining, it is however not clear how this method should be
applied correctly. Intuitively, one would say that the choice of threshold should be
independent from the algorithm used, and hence, independent from the number of
patterns enumerated by the search process of the algorithm. However, normalizing
by the total size of the search space is not always an option, as some pattern domains
(such as graphs) are infinitely large.

Given these problems, until now most direct adjustment approaches take a prac-
tical approach. In [3] the score of a pattern is normalized by the number of frequent
patterns of the same size; [36] presents an attempt to make this approach more cor-
rect by including the total size of the search space; this approach is only applicable
on itemset domains however.

6 From Local Patterns to Classification Models 137

An alternative approach is the holdout approach. In this case, the dataset is split
in two parts. A large set of patterns is first mined in the first part; this set of patterns
is evaluated in the second part to determine which are relevant. The advantage is
that it is justified in this case to normalize the correlation threshold by the number
of patterns returned in the first phase. The approach, however, is not applicable in
direct top-k pattern mining [36].

6.3.5 Closed and Free Pattern Mining

Pattern sets can often be redundant (see Section 6.4). One such redundancy is caused
by considering patterns that are neither closed nor free. The principles of closedness
and freeness were originally proposed for unlabeled data sets, in which case a pat-
tern π was called closed iff there was no pattern π ′ � π such that π(D) = π ′(D);
a pattern was called free iff there was no pattern π ′ � π such that π(D) = π ′(D).
Restricting the set of patterns to closed or free ones can often already reduce the
number of patterns under consideration significantly and is hence one of the most
common approaches to restricting the initial set of patterns.

The extension of this principle to labeled data is possible in multiple ways. The
most straightforward approach is to ignore the class labels. However, assume we
have two patterns with these properties:

|π(D+)|= |π ′(D+)|, |π(D−)|< |π ′(D−)| and |π(D−)|/|D−|< |π(D+)|/|D+|,

where the last condition states that π is more correlated with the positive class than
with the negative, then any sensible correlation score would determine that π ′ is
less correlated. This shows that one can also consider a pattern uninteresting if it
is closed or free on only one of the two classes. An approach for finding closed
patterns, given support thresholds for two classes, was studied in [18]. An alternative
approach is to perform top-k free pattern mining [8], essentially by not inserting
patterns in the queue of the search procedure which are not free compared to the
patterns already in the queue.

6.4 Finding Pattern Sets

The preceding section did not only cover top k-correlated pattern mining, but also
algorithms to derive all correlated patterns. As we have argued in the introduction,
in classifier building an optional second step is often useful in which a set of patterns
is filtered. The main goals of this filtering are to remove redundancy, and to bring
the potentially large amount of patterns down to a reasonable number. Achieving
these goals will benefit both machine learning techniques that use the patterns ei-
ther directly or indirectly (through data propositionalization) and human users that

138 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

want to inspect the patterns or the models created from said patterns. For machine
learning techniques, a large amount of redundant features means that selecting the
relevant features in the process of building a model becomes harder, not to mention
the increased computational complexity that goes with it. For humans there is sim-
ply the question of human perception – no one can be expected to make sense of
hundreds or even thousands of patterns, especially if some of them are largely re-
dundant. In this section we focus on stand-alone techniques that have been proposed
for selecting patterns from a set. Techniques which directly use patterns as rules in
classifiers are discussed in Section 6.5.

6.4.1 Constrained Pattern Set Mining

There is actually a straightforward way of selecting subsets of (potentially correlat-
ing) patterns from an existing large set of mined patterns: search for subsets under
constraints as done in pattern mining algorithms. In the same way as itemsets can be
enumerated in a principled way, pattern sets can be assembled. Of these sets, only
those are kept that satisfy certain properties, e.g. regarding the redundancy among
patterns in the set, the size of the pattern set, or in- or exclusion of particular patterns.

This idea was formalized and the framework and preliminary results were pub-
lished in [35]. The main insight lies in the fact that the problem of pattern set mining
is dual to the problem of pattern mining: while all items of an itemset have to occur
in an element of the data set to match, for pattern sets the most intuitive interpre-
tation is to match an element of the data set if any member pattern of the pattern
set occurs in the element. This duality leads to an exact reversal of the direction of
the (anti-)monotonicity property, which means that the pruning strategies behind the
pattern mining algorithms can also be applied in pattern set mining. For instance,
the maximum frequency constraint (which is monotonic in itemset mining), is anti-
monotonic in pattern set mining, and can be used to prune the search space when
growing pattern sets. Useful constraints for pattern set mining were defined, such
as pairwise redundancy constraints, which allow the user to effectively control the
level of redundancy that holds in the data set and together with size constraints al-
lows the selection of compact, informative pattern subsets. These constraints also
fulfill the anti-monotonicity property. Finally, the dual nature of the problem allows
for the lower bounding of interestingness measures such as χ2 and the effective
upper bounding of accuracy, something that is not possible with individual patterns.

The experimental results reported in [35] show the effectiveness of the approach,
demonstrated in pattern selection for classifier building, but also the limitations in
that pattern set mining faces quite a few of the challenges that local pattern mining
encounters. Specifically, depending on the selectiveness of the constraints, many
pattern sets satisfy them and enumerating them can quickly exhaust computational
resources, given the large amount of patterns forming the basic elements of the lan-
guage. These observations point towards two promising avenues: 1) it is often not
necessary to return all pattern sets, a view corresponding to top-k mining for local

6 From Local Patterns to Classification Models 139

patterns. Also, 2) the set returned does not have to be the optimal one if optimal-
ity can be traded off against efficiency in a reasonable manner. The following two
approaches follow these directions.

6.4.2 The Chosen Few

The method we introduced in [7] focusses on optimizing a single pattern set heuris-
tically. The main point of this work is that if two pattern sets partition the data in the
same manner, the smaller one of those is considered preferable, carrying the same
information as the larger one while being easier to peruse by humans and easier
to process by machine learning techniques. Given a set of patterns, instances from
which they have been mined can be described in terms of the patterns in the set that
are present in the instance and in terms of those are absent. Instances agreeing on all
patterns’ presence form an equivalence class or block; the set of all blocks makes
up the partition on the data. In terms of machine learning techniques, for instance,
all instances from a particular block appear equal to the algorithm since they are
encoded in an indistinguishable manner.

Given a set of patterns, and the partition it induces, adding a new pattern to the
set can either increase the number of blocks or leave it unchanged. In the latter case,
this pattern is clearly redundant, since it can be expressed either by another pattern,
by its complement, or by a combination of patterns. In processing the full result set
of a local pattern mining operation, it can hence be useful to reject patterns that do
not change the partition, whittling the pattern set down to a smaller number of pat-
terns carrying the same amount of information. While it could be argued that there
is information which is not recovered by the partition alone, this is not true for all
machine learning techniques; in principle, if this is useful, many machine learning
techiques could deduce one feature from the others. While the minimal number of
patterns needed is logarithmic in the number of blocks in the partition, typically
more patterns are actually needed. Deciding on the minimal set of patterns needed
to induce the same partition as the original result set is computationally rather ex-
pensive, however, setting the stage for the application of heuristic techniques, for
which we developed two alternative approaches.

The first of the two algorithms, BOUNCER, uses a user-defined order and consid-
ers each pattern exactly once for potential inclusion. This order is augmented by a
measure which evaluates the contribution of a pattern in terms of the granularity of
the partition. Using a threshold on the minimal contribution a pattern has to make,
the first pattern encountered that exceeds this threshold is added to the set, before
patterns that appear later in the order are evaluated further. The combination of the
order, the selection of the first pattern for inclusion and the, necessarily, local quality
measures allows the efficient mining of locally optimal pattern sets. Notwithstand-
ing their local optimality, the resulting pattern sets were shown to improve on the set
of all patterns in terms of utility as features for classification. The size and quality of
the pattern sets is strongly influenced by the order and the measure used, however.

140 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

Table 6.3 A data set of 10 elements with the coverage of four different patterns.

Elements

π1

π2

π3 Ê

π4

Heuristically optimizing a pattern set will of course have drawbacks that balance
the faster execution. Consider the example in Table 6.3: has an joint entropy
of 1, the highest entropy for a single pattern, and would therefore be chosen first.
The joint entropy of the set { , , } is 2.72193, however, the highest possible
with three patterns, and this does not include the highest-scoring individual pattern
at all.

While the adoption of a global optimality criterion would prove to be impossi-
ble for non-exhaustive search, the heuristic nature of BOUNCER can be improved
by changing the used order and the selection of the pattern used for inclusion. This
is implemented in the PICKER∗ algorithm, in which an upper bound on the con-
tribution of individual patterns to the set is calculated and the patterns ordered in
descending value of this upper bound. By traversing and evaluating patterns until
none of the remaining upper bound values exceeds the contribution of the currently
best pattern anymore, a closer approximation of global optimality can be expected.
Recalculating the upper bounds and reordering the patterns potentially leads to sev-
eral evaluations of each individual pattern, as opposed to BOUNCER’s approach.
The resulting pattern sets do not show the fluctuation in cardinality that different
orders caused and in most cases improve on the quality of pattern sets mined by
using a user-defined order. Both techniques are able to handle a far larger amount of
patterns than the complete method introduced in the preceding section.

6.4.3 Turning Pattern Sets Maximally Informative by
Post-Processing

While the approaches in the previous section greedily compute a set of patterns
aimed to be diverse, no global optimization criterion is used to measure this diver-
sity. In [22, 23, 4] measures were studied which can be used to measure diversity
of a set of patterns. Nevertheless, the BOUNCER algorithm is related to algorithms
which optimize under such global measures.

We can distinguish two types of measures. First, there are measures that do not
take into account the class labels, such as joint entropy [22]. By picking a set of
patterns P we can construct a new representation for the original data, in which
for every element (x,y) we have a new binary feature vector zP

x (see Section 6.2).

6 From Local Patterns to Classification Models 141

Ideally, in this new representation we can still distinguish two different elements
from each other by having different feature vectors. However, in case this is not
possible, one may prefer a set of patterns in which any two elements are not likely
to have the same feature vector. One way to measure this is by using joint entropy,

H(P) = ∑
b∈{0,1}|P|

−p(b) log p(b),

where
p(b) = |{(x,y)|zP

x = b}|/|D |.
Hence p(b) denotes the fraction of elements of the data set that have a certain fea-
ture vector b once we have chosen a set of patterns P, and we consider such fractions
for all possible feature vectors. Joint entropy has desirable properties for measuring
diversity: the larger the number of vectors b occurring in the data, and the more bal-
anced they occur, the higher the entropy value is. When the entropy is maximized,
the patterns are chosen such that elements of the data set are maximally distinguish-
able from each other.

Another class of measures are the supervised measures. An example of such a
measure is [4]:

Q(P) = |{(x,x′)|(x,y) ∈D+,(x′,y′) ∈D− : zP
x = zP

x′ }|.

This measure calculates the number of pairs of elements in different classes that
have the same feature vector when patterns in P are used to build feature vectors.

A set of k patterns that maximizes a global measure is called a maximal informa-
tive k-pattern set. To compute such a pattern set, two kinds of approaches have been
studied:

• complete approaches [22], which enumerate the space of subsets up to size k,
possibly pruning some branches if a bound allows to decide that no solutions can
be found. Such an algorithm would be capable of finding the set { , , }
from Example 6.3.

• a greedy approach, which iteratively adds the pattern that improves the criterion
most, and stops when the desired pattern set size is reached [22, 4].

The first approach is very similar to the pattern set mining approach of Section 6.4,
while the second approach is similar to the approach of Section 6.4.2. Indeed, one
can show that the pattern that is added to a pattern set in each iteration by the
PICKER∗ algorithm is within bounded distance from the pattern chosen by an en-
tropy measure when using difference in entropy as distance measure.

One could wonder how well some of these greedy algorithms are performing:
how close to the optimum do they get? In this regard, an interesting property of
some optimization criteria is submodularity. A criterion F(P) is submodular iff for
all P′ ⊆ P and patterns π it holds that

F(P′ ∪{π})−F(P′)≥ F(P∪{π})−F(P),

142 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

in other words: there are diminished returns when a pattern is inserted later in a
set. For a submodular criterion, it can be shown that the greedy algorithm (op-
erating similar to BOUNCER) is approximates the true optimum: let Popt be the
optimal pattern set of size k, then the greedy algorithm will find a set for which
F(P) ≥ (1− 1

e)F(Popt) ≈ 0.63F(Popt) [30]. Both Q(P) and H(P) are submod-
ular, and hence the greedy algorithm achieves provably good results. Finally, as
BOUNCER approximates the choices made by a greedy algorithm that uses entropy
as an optimization criterion, also BOUNCER is guaranteed to approximate a global
optimum under the joint entropy criterion.

6.5 Direct Predictions from Patterns

Most of the methods discussed in the previous section can be seen as feature se-
lection methods. They ignore the fact that features are actually patterns, and do not
construct classifiers. In this section, we study techniques that construct a classifier
while taking into account that the used components are in fact patterns. These algo-
rithms are rule-based, combining rules of the form pattern⇒ class-label.

The technique of associative classification was first proposed in the work in-
troducing the CBA algorithm [27] in 1998, quickly followed by the CMAR [26]
approach in 2001 that extended both the pattern selection step and the actual classi-
fication model of CBA (and arguably improved on them). We will therefore discuss
these approaches first.

A potential limitation of both of these approaches was however that they were
centered on the classical minimum-support, minimum-confidence framework. In
recent years, a consensus has developed that these patterns are not necessarily best
suited to the task of classification. We developed a new method, called CTC [39],
which uses other measures as a starting point. We will discuss it in the third part of
this section and elaborate on the differences.

6.5.1 CBA

As mentioned above, CBA was the first algorithm to use the minimum-support,
minimum-confidence association rule framework for constructing classifiers, coin-
ing the term associative classification. The main difference to traditional rule-based
machine learning approaches lies in that first a large set of reasonably accurate rules
are mined from the data, and in a second step a subset of those is selected that
forms the final classifier. The mining step itself is performed using the well-known
APRIORI algorithm.

6 From Local Patterns to Classification Models 143

Table 6.4 CBA/CMAR illustrative example

Elements

π1

π2

π3

In CBA, patterns are used to build class association rules π ⇒ c, and patterns π
need to satisfy a minimum relative support constraint supportrel(π ⇒ c) = |π(Dc)|

|D | ≥
θs and a minimum confidence constraint confidence(π ⇒ c) = |π(Dc)|

|π(D)| ≥ θc.
The resulting set of all class association rules (CARs) that satisfy the constraints,

which we will refer to as S, is then ordered according to a <CBA relation. Given two
CARs car1 : π1 ⇒ c1, car2 : π2 ⇒ c2, the relation <CBA between those two rules is

1. Let w.l.o.g. confidence(car1)> confidence(car2) then car1 <CBA car2
2. If confidence(car1) = confidence(car2), let w.l.o.g.

supportrel(car1)> supportrel(car2) then car1 <CBA car2
3. If confidence(car1 = confidence(car2), and supportrel(car1) = supportrel(car2),

let w.l.o.g. |π1|< |π2| then car1 <CBA car2

The last check holds since both π1 and π2 are simply sets of items whose cardi-
nality can be measured. If even the last check fails, the tie is broken arbitrarily. The
order used by CBA can thus be summarized as “higher confidence is preferable”,
“in case of equal confidence, higher support is preferable”, and “all things being
equal, shorter patterns are preferable”.

Using this order, S is turned into an ordered set. Starting from the minimal rule
according to this order, rather similar to the kind of pattern selection encountered
in Section 6.4.2, S is traversed and each rule in turn considered for inclusion in the
final classifier. For each rule, all elements in the data set it matches are collected, and
it is evaluated whether the rule predicts at least one of those elements’ class label
correctly. If it does, it is included in the final classifier and all covered elements are
discarded; if not, the rule is discarded. For classifying an unlabeled element, the
minimal rule according to <CBA is used to predict its class label.

To illustrate this, consider the small example in Table 6.4: ⇒ Dark predicts
the dark class with a confidence of 1.0 and is therefore ranked first. ⇒ Dark and
⇒ Light have the same confidence (0.66) albeit for different classes, and since

’s support is higher, it is ranked before .
CBA will select as the highest-ranked pattern and remove the elements of

the data set it covers (and) from future consideration. The second pattern
still covers and correctly predicts elements of the data set and thus gets selected,

removing all elements it covers, i.e. all remaining elements. Since this leaves no
elements that could predict correctly, it is discarded. This also illustrates one of
the weaknesses of the CBA approach: after removing and , in fact shows

144 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

a confidence of 0.5 on the remaining elements and should be selected instead of
it. Since CBA estimates support and confidence only once – on the training data –
however, it makes a sub-optimal decision.

The usual setting for the support threshold θs is 0.01, and for the minimum con-
fidence θc 0.5. While the second threshold can be justified as only accepting rules
that predict their class label more often than not, the first threshold is somewhat ar-
bitrary (and has been shown empirically not to give the best results) [12]. It also has
to be pointed out that the selection and classification techniques are rather ad hoc,
one-shot techniques. On the other hand, the resulting classifier uses an easily inter-
pretable model – a list of rules ordered according to easily understandable criteria:
high confidence characterizes rules that are usually correct in their prediction, high
support means that they can be expected not to describe spurious phenomena, and
short rules adhere to the principle of Occam’s razor.

6.5.2 CMAR

CMAR [26] attempted to improve especially on CBA’s ad hoc aspects, as well
as somewhat on assembling the set of rules who are considered for inclusion in the
classifier in the first place. The mining of CARs is performed essentially in the same
way. Rules are also ordered according to <CBA, but since confidence alone can be a
misleading quality measure for rules, CMAR uses the χ2 statistic to discard rules
that do not correlate positively. To give an intuition what this means, consider
from Table 6.4 which covers all elements. While this pattern satisfies the minimum
confidence constraint, its χ2-score is 0, denoting that there is actually no correlation
with the target class.

The same database coverage approach that was used in CBA is also used in
CMAR. There is a notable difference however: instead of removing an element
once it is covered by a single rule that was included in the final classifier, there has
to be more than one such rule. This would be expected to make classification of
unseen elements of the data set more reliable since not only one rule would match
it. It is suggested in [26] that four rules have to cover an element before it is removed
from the data set – there is however no discussion of why this would be a suitable
threshold value.

Let us revisit the CBA example (Table 6.4). If the database coverage threshold
is set to 2 then selecting does not lead to the exclusion of . More important,
however, is that, as mentioned above, would be discarded before the database
coverage pruning even commences.

The second difference lies in the actual classification process. Instead of using
the minimal rule according to <CBA, the order is discarded, and for each unseen el-
ement all the rules are collected that cover it, which should lead to the more reliable
classification mentioned above. Additionally, if rules disagree on the class label to
be assigned, the impact that each particular rule has on the final decision is based on
the rule’s quality, measured by trading off its actual χ2 value against the “maximal”

6 From Local Patterns to Classification Models 145

one it could have attained. This weighted voting strategy is however once again cho-
sen ad hoc – based on empirical performance as the authors admit. So for the sake of
classification robustness, CMAR replaces CBA’s model with a more complex one,
albeit still based on confident, frequent rules. The threshold values used for mining
are the same as in CBA and also the same for all rules mined.

6.5.3 CTC

Considering the order that is imposed on patterns (rules) in both the CBA and
CMAR techniques, a notion of importance or desirability emerges: high confidence
is valued, leading to rules that are probably useful for classification, but so is large
support, leading to rules that can be expected to hold not only on the training data.

Also, as seen in the case of the CMAR approach, a pattern having (relatively)
high confidence in connection with a class label does not necessarily correlate posi-
tively with the class, if said class label is rather frequent in the first place. Similarly,
a frequent rule does not automatically translate into a significant one, especially if
the class predicted is the majority class. In CMAR, found rules were subjected to
evaluation by the χ2 statistic and only those accepted that correlated positively.

The χ2-statistic trades off support against confidence, so to speak, valuing less
confident rules highly, if they have only enough support, combining in this way
the two criteria of importance expressed in the order used by CBA. An interesting
question arising at this point is “Why use minimum-support, minimum-confidence
rules at all?”, especially if they are not used in a winner-takes-all way, as in CBA,
but by weighted voting. Using the principles explained in Section 6.3 it is easily
possible to directly mine strongly class-correlating predictive patterns, without the
detour of mining (and pruning) frequent patterns and assessing their significance
after enumerating them. The CTC [39] – correlating tree patterns for classification
– approach does just that, using the pattern language of labeled rooted trees3, min-
ing χ2-quantified patterns instead of ad hoc decided-upon support and confidence
thresholds.

There are several important differences between CBA and CMAR on the one
hand, and CTC on the other hand.

In CBA and CMAR, first all rules are mined that satisfy certain minimum thresh-
olds, and then the database coverage step is used to select patterns. CTC combines
these two steps. To achieve this, an order similar to <CBA is used, with a slight
change in significance measure:

1. Let w.l.o.g. χ2
D (|π1(D

+)|, |π1(D
−)|) > χ2

D (|π2(D
+)|, |π2(D

−)|) then π1 <CtC
π2

2. If χ2
D (|π1(D

+)|, |π1(D
−)|) = χ2

D (|π2(D
+)|, |π2(D

−)|), let w.l.o.g. |π1| < |π2|
then π1 <CtC π2

3 The extension to other pattern domains is straightforward.

146 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

Support has been replaced by χ2 as a significance measure and confidence is not
referenced at all anymore. For a two-class problem, obviously if w.l.o.g. |π(D+)| ≥
|π(D−)| then necessarily con f idence(π ⇒+)≥ 0.5, and the strength of prediction
is traded off against coverage of the pattern in the significance measure already.

Folding the two criteria into a single one has an interesting side-effect. The
choices for the support threshold θs and the confidence threshold θc interact to have
an effect on the number of rules mined. Increasing the minimum support but low-
ering the minimum confidence can lead to more rules, for example. It is not clear,
however, how many rules will be mined, which gets exacerbated by the use of the
data set coverage threshold in CMAR. Using χ2, on the other hand, allows to make
this explicit – CTC takes a single parameter with a clear meaning, k, the number of
rules, instead of two or three more opaque ones.

CTC uses the principles described in Section 6.3 to compute the top−k patterns
in this order, for example the 1000 highest-scoring patterns. Hence, the selection is
not performed after but during mining. This set is used directly for classification,
without further pattern selection.

This has two advantages:

1. Far fewer rules are mined. In fact, most frequent, confident rules do not turn out
to be significant.

2. A less complex voting scheme is necessary. CMAR’s voting approach is out-
performed by the comparably simple average strength, i.e. confidences for each
class are added up, and a simple majority vote, i.e. each rule predicts its majority
class.

In other words, compared to CBA and CMAR, both the heuristic pruning
scheme and the ad hoc (or empirically found) classification technique are replaced
by more straight-forward and arguably better-founded solutions.

6.6 Integrated Pattern Mining

A common feature of the approaches discussed till now is that they assume that a
set of patterns is computed once, either based on a threshold, or on the size of the
resulting pattern set, such as in top-k mining. There is no strong interaction between
which patterns are mined and how the model is constructed afterwards. The alter-
native is to perform integrated pattern mining, i.e. patterns are mined, potentially
refined or re-mined, while the classifier or pattern set is constructed, interleaving the
mining and the model formation step, without creating an initial pattern set first.

In this section, we will first describe two updates of techniques discussed in the
previous section to perform integrated mining; subsequently, we discuss techniques
for building one particular type of model, i.e. a decision tree, using integrated mining
techniques.

6 From Local Patterns to Classification Models 147

6.6.1 FITCARE

Until now we mostly illustrated methods on binary prediction problems. Good per-
formance on binary problems does not always imply a good performance on multi-
class problems however. Turning multi-class problems into binary ones usually
strongly increases the computational resources needed. Either a number of 1-vs-
all settings has to be addressed that is equal to the number of classes in the data,
or an even greater amount of 1-vs-1 settings. The FITCARE algorithm, on the other
hand, was developed specifically for good performance on multi-class problems.

We observed in Section 6.5 that high confidence is not necessarily a good mea-
sure for class correlation if the class is a majority class in the first place. The FIT-
CARE algorithm [9] takes this one step further. It extends the observation that CAR-
miners usually focus on one-against-all settings, i.e. the confidence of a rule has
to be higher w.r.t. the target class than w.r.t. the union of all other classes where
it applies, towards the problem of badly skewed data sets. In such data sets, high-
confidence, high-support rules will be rules correctly classifying the majority class
– yet still covering and effectively misclassifying instances from minority classes.
Instead of the usual global minimum frequency and confidence thresholds, a new
definition of interesting CARs is proposed based on a distinct support threshold for
every class. Given this vector of thresholds (θs1 , . . . ,θs|C |), a CAR π ⇒ c is interest-
ing if

1. |π(Dc)|
|Dc| ≥ θc

2. ∀c′ �= c : |π(D
c′)|

|Dc′ | < θc′

3. ∀π ⊂ π ′,∃c′ �= c : |π(D
c′)|

|Dc′ | ≥ θc′

The advantage of this technique lies in the fact that the vector of thresholds allows
for far better fine-tuning of the differentiating power of a CAR between any two
classes, finer than emerging patterns or class-correlating patterns can. The drawback
is however, that for any given class yi, |C | parameters have to be adjusted – the
minimum threshold on the class itself and the |C |−1 maximum thresholds for the
other classes. These O(|C |2) parameters make up the threshold matrix Γ whose
entries have to be estimated, making the process more expensive than the approaches
we have seen so far. This is however traded off against having to break multi-class
problems down into several binary problems, as explained above. Using several
constraints and a hill-climbing approach, in which pattern mining is repeated, it
is possible to estimate these values efficiently. The final matrix is used to extract a
set of CARs for each target class in turn. The resulting CARs are

1. highly discriminative between classes, therefore making strongly conflicting pre-
dictions unlikely, and

2. highly probable to cover all instances of each target class, thus making default
classifications less common.

148 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

The resulting rules are once again combined using a rather complex weighted vot-
ing scheme that takes into account the reliability of rules when it comes to their
contribution to the final prediction. While this is a technique we have seen both in
CMAR and in CTC, the focus is now neither on fulfilling a rule’s nor on its global
confidence but rather on its relative support in the target class. This should, given
well-estimated parameters, lead to very small contributions of rules in classes that
are not their target class, even if they have globally high support.

6.6.2 Mining Maximally Informative Pattern Sets Directly

In Section 6.4.3 we discussed methods for selecting a subset of k patterns that max-
imize a global optimization criterion. In these methods it was assumed that we start
the search from a set of patterns. However, it is also possible to find such sets without
first having to mine an initial set of patterns.

The main trick is to change the greedy step in the greedy algorithm of Sec-
tion 6.4.3. Instead of iteratively picking from a pre-computed set the pattern which
maximizes the optimization criterion, we use branch-and-bound search to determine
the pattern that locally optimizes the measure. This branch and bound search em-
ploys similar ideas as those used to find correlated patterns (see Section 6.3).

We will illustrate this for the example of entropy. Assume we have a pattern
set with entropy H(P), then we are looking for the pattern π which maximizes
H(P∪{π}), or equivalently, H(P∪{π})−H(P). H(π|P) = H(P∪{π})−H(P) is
known as the conditional entropy of π given P, and can be written as

H(π|P) = ∑
b∈{0,1}|P|

p(b)H(π|P = b)

where H(π|P = b) = ∑a∈{0,1}−p(π = a|P = b) log p(π = a|P = b) and p(π =
a|P = b) denotes the fraction of elements of the data set characterized by b also
having π(x) = a.

The challenge when searching for a pattern that maximizes this score is to deter-
mine a bound on the scores of refinements of a pattern; such a bound could allow us
to prune parts of the search space that are not promising.

In the case of entropy, we can use the observation that overall entropy is maxi-
mized when we maximize the entropy H(π|b) in each bin b. Given a pattern π , what
is the highest entropy we can achieve in this bin for a pattern π ′ that is a refinement
of π? We can distinguish two cases.

• the pattern covers more than half of the elements in the bin b; then the highest
entropy we might obtain for this bin is obtained by covering half of the elements.
Hence, the highest entropy is 1.

• the pattern covers less than half of the elements, the best we can hope for is not
to lose any of these elements by refining the pattern. Hence, the best we can hope
to obtain is H(π|P = b).

6 From Local Patterns to Classification Models 149

Combining these observations we achieve the following bound on the quality of any
refinement π ′ of a pattern π:

H(π ′|P)≤ ∑
b ∈ {0,1}|P|

p(π = 1|P = b)≥ 0.5

p(b)+ ∑
b ∈ {0,1}|P|,

p(π = 1|P = b)< 0.5

p(b)H(π|P = b).

This bound can be used to prune unpromising branches of a pattern search and
makes it possible to find patterns directly without having to post-process a pre-
calculated set of patterns.

Combining this result with that of Section 6.4.3, it follows that we can find a
provably good maximally informative pattern set by a combination of branch and
bound search and a greedy algorithm.

Similar observations also apply to other measures; for instance, it was also ap-
plied in [4] for the supervised Q(P) measure (see Section 6.4.3).

6.6.3 DL8

One of the most popular predictive models is the decision tree. A decision tree is a
tree in which each internal node is labeled with a test on an attribute and each leaf
is labeled with a prediction [28]. A prediction for a particular element (x,y) can be
obtained by sorting it down the tree starting from the root. The left-hand branch of a
node is taken if the specified test on the element of the data set is true; otherwise the
right-hand branch is taken. Note that if all attributes are binary, it suffices to label
internal nodes with attributes; an element of the data set will be sorted down the left-
hand branch of a node labeled with attribute i if its value for xi is true; otherwise it
is sorted down the right-hand branch.

Many algorithms have been developed for learning decision trees from train-
ing data. Most of these algorithms employ the principle of heuristic top-down tree
construction [28, 34]: starting from an empty tree, iteratively a leaf of the tree is
replaced with a test node. A test is chosen by using a heuristic such as information
gain. The advantage of this method is that it is fast and usually obtains sufficiently
good results. However, it is not guaranteed to be optimal in many ways: given a
bound on tree size, the heuristic method may not find the tree that is either most
accurate or most cost-effective, in a setting of cost-based learning. In [31, 32] an
algorithm, called DL8, was proposed that addresses the problem of finding optimal
decision trees by exploiting a connection between pattern sets and decision trees.

The DL8 algorithm is based on exploiting the relationships between paths in
decision trees and itemsets. To make this relationship clear we need to extend tradi-
tional itemsets to include negative items. Traditionally, an itemset I ⊆ {1, . . . ,n}
occurs in an element x of length n iff for all j ∈ I: x j = 1. Assume now that
I ⊆ {1, . . . ,n,¬1, . . . ,¬n}. Then we can define that an itemset occurs in an element
iff for all positive j ∈ I: x j = 1 and for all negative ¬ j ∈ I: x j = 0.

150 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

Fig. 6.3 An example decision
tree corresponding to the
three itemsets {B}, {¬B,C},
{¬B,¬C}

B

C1

1 0

1 0

1 0

This extension allows us to represent every path in a decision tree as an item-
set. For example, consider the decision tree in Figure 6.3. We can determine the
leaf to which an element belongs by checking which of the itemsets {B}, {¬B,C}
and {¬B,¬C} matches. We denote the set of the itemsets corresponding to the
leaves of a tree T with leaves(T). Similarly, the itemsets that correspond to paths in
the tree are denoted with paths(T). In this case, paths(T) = { /0,{B}, {¬B}, {¬B,
C},{¬B,¬C}}. A further illustration of the relation between itemsets and decision
trees is given in Figure 6.4. In this figure, every node represents an itemset; an edge
denotes a subset relation. Highlighted is one possible decision tree.

Given this correspondence, learning a decision tree can be seen as finding a set
of class association rules, where the rules should include both positive and negative
items and the set of rules should fulfill properties that ensure that it can be repre-
sented as a tree.

In the basic setting, the DL8 algorithm can be seen as a post-processing algorithm
that can be applied on a lattice of itemsets. For the problem of finding a tree T
which minimizes error errorT (T) on a set of examples T , the main property that
is exploited by the algorithm is that the error of a decision tree equals the sum of
the errors of the left-hand and right-hand subtree of the root of this tree. Hence,
we can solve the problem of finding an accurate decision tree by independently and
recursively searching the best left-hand and right-hand subtrees of each possible
root. By storing the best tree for every itemset, we can avoid that we need to consider
every itemset more than once, and the computation is linear in the size of the itemset
lattice.

{}

 A?

{A}

 B?

A

{B}

B

{C}

C

{¬ A}

 C?

¬A

{¬ B}

¬B

{¬ C}

¬C

{AB}

B

{A¬ B}

 C?

¬B

{AC}

C

{A¬ C}

¬C A

{¬ AB}

¬A

{BC}

C

{¬ C}

¬C A

{¬ AC}

¬A B

{¬ BC}

¬B B

{¬ A¬ B}

¬B C

{¬ A¬ C}

¬C A ¬A C

{¬ B¬ C}

¬C A ¬A B ¬B

{ABC}

C

{AB¬ C}

¬C

{A¬ BC}

C

{A¬ B¬ C}

¬C

{¬ ABC}

C

{¬ AB¬ C}

¬C

{¬ A¬ BC}

C

{¬ A¬ B¬ C}

¬CB ¬B B ¬B B ¬B B ¬BA ¬A A ¬A A ¬A A ¬A

Fig. 6.4 An itemset lattice for items {A,¬A,B,¬B,C,¬C}.

6 From Local Patterns to Classification Models 151

Fig. 6.5 A decision-tree to
separate light and dark struc-
tures based on the shapes.

In [31, 32] several extensions are discussed of this general idea:

• the use of condensed representations to limit the number of itemsets that need to
be considered;

• how to deal with other constraints and optimisation criteria than minimum sup-
port and error, for instance, cost-based constraints;

• how to integrate the decision tree construction with the pattern mining.

This last point is important, as by integrating the pattern mining in the tree construc-
tion, a smaller number of patterns needs to be considered and less information of the
lattice needs to be stored. Overall, the integrated pattern miner searches for patterns
once, but does so as guided by the decision tree construction procedure.

6.6.4 TREE2

In the preceding discussion on DL8, decision trees were described that iteratively
split data on a binary attribute to build an effective classifier. If data is described
in terms of attribute values or binary attributes denoting, for instance, an item’s
presence or absence, this is a straightforward way of building a decision tree. Once
more complex data such as trees or graphs needs to be analysed a simple split based
on, for instance, the presence or absence of an atom in a molecule will lead to
unwieldy classifiers which are unlikely to perform well.

A possible alternative lies in mining a set of patterns, encoding data in terms of
their presence or absence and building the decision tree from this re-encoded data.
However, we would need to select a constraint under which such patterns need to be
mined. Instead of choosing this constraint ad-hoc, we can also integrate the pattern
mining step in the decision tree learning algorithm, such that we directly mine for
the pattern that the decision tree learning algorithm would select as the best test in
post-processing.

To illustrate this, consider the example in Figure 6.5: mining allows to split
the data set into two subsets which each consist 75% of one class, a clear improve-
ment over the original 50–50 split. On these subsets, two more patterns can be
mined, and , resulting in three pure leaves out of four in total. Especially

152 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

mining on the full data would probably require very lenient constraints since
it matches only one of eight elements, leaving the unmatched subset still very “im-
pure”.

This is the approach taken in the TREE2 algorithm [6]. TREE2 employs top-1
mining to find the best class-correlating subtree in each iteration, splits the data
in covered and uncovered parts, and re-iterates pattern mining for each of these
two sets of data points recursively. In this way, ad-hoc thresholds are avoided, and
compact trees of truly meaningful patterns can be induced, improving on the post-
processing method of building decision trees from a set of pre-mined patterns.

6.7 Conclusions

In this chapter we provided an overview of methods we recently proposed for using
patterns in classification tasks. We showed that there exists a large variety in meth-
ods, ranging from strict step-wise approaches to approaches in which pattern mining
and model construction is integrated. We put these methods in context by providing
extensive descriptions of related methods.

Despite the amount of work we reported on, this overview is far from complete.
Providing a detailed overview of all approaches for pattern-based classification is
beyond the scope of this chapter, and is left as future work. Other possibilities for
future work include a more detailed invesigation of the merits of algorithms for
pattern-based classification. We are not aware that a systematic experimental com-
parison has been carried out for all pattern-based classification methods. Finally,
most methods until now concentrate on rule-based classification. An interesting
question is for instance how patterns can be used in graphical models.

References

1. Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005), 27-30
November 2005, Houston, Texas, USA. IEEE Computer Society, 2005.

2. Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri
Verkamo. Fast discovery of association rules. In Advances in Knowledge Discovery and
Data Mining, pages 307–328. AAAI/MIT Press, 1996.

3. Stephen D. Bay and Michael J. Pazzani. Detecting change in categorical data: Mining contrast
sets. In KDD, pages 302–306, 1999.

4. Karsten Borgwardt, Xifeng Yan, Marisa Thoma, Hong Cheng, Arthur Gretton, Le Song, Alex
Smola, Jiawei Han, Philip Yu, and Hans-Peter Kriegel. Combining near-optimal feature selec-
tion with gSpan. In Samuel Kaski, S.V.N. Vishwanathan, and Stefan Wrobel, editors, MLG,
2008.

5. Björn Bringmann. Mining Patterns in Structured Data. PhD thesis, K.U.Leuven, September
2009. De Raedt, Luc (supervisor).

6. Björn Bringmann and Albrecht Zimmermann. Tree2 - decision trees for tree structured data.
In Alı́pio Jorge, Luı́s Torgo, Pavel Brazdil, Rui Camacho, and João Gama, editors, PKDD,
volume 3721 of Lecture Notes in Computer Science, pages 46–58. Springer, 2005.

6 From Local Patterns to Classification Models 153

7. Björn Bringmann and Albrecht Zimmermann. One in a million: picking the right patterns.
Knowl. Inf. Syst., 18(1):61–81, 2009.

8. Björn Bringmann, Albrecht Zimmermann, Luc De Raedt, and Siegfried Nijssen. Don’t be
afraid of simpler patterns. In Fürnkranz et al. [17], pages 55–66.

9. Loı̈c Cerf, Dominique Gay, Nazha Selmaoui, and Jean-François Boulicaut. A parameter-free
associative classification method. In Il-Yeol Song, Johann Eder, and Tho Manh Nguyen, edi-
tors, DaWaK, volume 5182 of Lecture Notes in Computer Science, pages 293–304. Springer,
2008.

10. Hong Cheng, Xifeng Yan, Jiawei Han, and Chih-Wei Hsu. Discriminative frequent pattern
analysis for effective classification. In ICDE, pages 716–725. IEEE, 2007.

11. Hong Cheng, Xifeng Yan, Jiawei Han, and Philip S. Yu. Direct discriminative pattern mining
for effective classification. In ICDE, pages 169–178. IEEE, 2008.

12. Frans Coenen and Paul Leng. Obtaining best parameter values for accurate classification. In
ICDM [1], pages 597–600.

13. William W. Cohen. Fast effective rule induction. In In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

14. Mukund Deshpande and George Karypis. Using conjunction of attribute values for classifica-
tion. In CIKM, pages 356–364. ACM, 2002.

15. Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis. Frequent
substructure-based approaches for classifying chemical compounds. IEEE Trans. Knowl. Data
Eng., 17(8):1036–1050, 2005.

16. Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Discovering trends and
differences. In KDD, pages 43–52, 1999.

17. Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors. Knowledge Discovery
in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings, volume
4213 of Lecture Notes in Computer Science. Springer, 2006.

18. Gemma C. Garriga, Petra Kralj, and Nada Lavrac. Closed sets for labeled data. In Fürnkranz
et al. [17], pages 163–174.

19. Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation.
In Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, SIGMOD Conference,
pages 1–12. ACM, 2000.

20. Jeroen Kazius, Siegfried Nijssen, Joost N. Kok, Thomas Bäck, and Adriaan P. IJzerman. Sub-
structure mining using elaborate chemical representation. Journal of Chemical Information
and Modeling, 46(2):597–605, 2006.

21. Arno Knobbe, Bruno Crémilleux, Johannes Fürnkranz, and Martin Scholz. From local pat-
terns to global models: the LeGo approach to data mining. In Johannes Fürnkranz and Arno
Knobbe, editors, LeGo’08, Proceedings of the ECML PKDD 2008 Workshop ‘From Local
Patterns to Global Models’, pages 1–16, 2008.

22. Arno J. Knobbe and Eric K. Y. Ho. Maximally informative k-itemsets and their efficient dis-
covery. In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors,
KDD, pages 237–244. ACM, 2006.

23. Arno J. Knobbe and Eric K. Y. Ho. Pattern teams. In Fürnkranz et al. [17], pages 577–584.
24. Stefan Kramer and Luc De Raedt. Feature construction with version spaces for biochemical

applications. In Carla E. Brodley and Andrea Pohoreckyj Danyluk, editors, ICML, pages
258–265. Morgan Kaufmann, 2001.

25. Neal Lesh, Mohammed Javeed Zaki, and Mitsunori Ogihara. Mining features for sequence
classification. In KDD, pages 342–346, 1999.

26. Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient classification based on
multiple class-association rules. In Nick Cercone, Tsau Young Lin, and Xindong Wu, editors,
ICDM, pages 369–376. IEEE Computer Society, 2001.

27. Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule mining.
In KDD, pages 80–86, 1998.

28. T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

154 Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann

29. Shinichi Morishita and Jun Sese. Traversing itemset lattice with statistical metric pruning. In
PODS, pages 226–236. ACM, 2000.

30. G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing
submodular set functions. Mathematical Programming, 14:265–294, 1978.

31. Siegfried Nijssen and Élisa Fromont. Mining optimal decision trees from itemset lattices. In
Pavel Berkhin, Rich Caruana, and Xindong Wu, editors, KDD, pages 530–539. ACM, 2007.

32. Siegfried Nijssen and Elisa Fromont. Optimal constraint-based decision tree induction from
itemset lattices. Data Mining and Knowledge Discovery, 2010. (In press).

33. Siegfried Nijssen and Joost N. Kok. Multi-class correlated pattern mining. In Francesco
Bonchi and Jean-François Boulicaut, editors, KDID, volume 3933 of Lecture Notes in Com-
puter Science, pages 165–187. Springer, 2005.

34. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
35. Luc De Raedt and Albrecht Zimmermann. Constraint-based pattern set mining. In SDM.

SIAM, 2007.
36. Geoffrey I. Webb. Layered critical values: a powerful direct-adjustment approach to discover-

ing significant patterns. Machine Learning, 71(2-3):307–323, 2008.
37. Stefan Wrobel. An algorithm for multi-relational discovery of subgroups. In Henryk Jan

Komorowski and Jan M. Zytkow, editors, PKDD, volume 1263 of Lecture Notes in Computer
Science, pages 78–87. Springer, 1997.

38. Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. New al-
gorithms for fast discovery of association rules. In KDD, pages 283–286, 1997.

39. Albrecht Zimmermann and Björn Bringmann. CTC - correlating tree patterns for classifica-
tion. In ICDM [1], pages 833–836.

Chapter 7

Constrained Predictive Clustering

Jan Struyf and Sašo Džeroski

Abstract In this chapter, we extend predictive clustering by introducing constraints
on the clusters and predictive models. A domain expert is usually not only interested
in the most compact clusters or the most accurate model; other factors, such as
model size and prediction cost, may also be important. We will see how such factors
can be controlled by means of constraints. In predictive clustering trees, constraints
can be imposed both from the clustering and the prediction point of view. We present
an overview of various constraint types and look into algorithms for enforcing them.

7.1 Introduction

We consider predictive clustering [8], which is an approach to prediction that is
based on clustering methods. The inductive step in predictive clustering creates a
clustering. To make a prediction for a new data instance, the instance is first assigned
to a cluster; the prediction is then computed from that cluster. Section 7.2 reviews
clustering and predictive clustering and shows why decision trees, and more gener-
ally predictive clustering trees, naturally fit the framework of predictive clustering.
It also describes a general algorithm for building clustering trees and lists a number
of specific instantiations of predictive clustering.

After reviewing clustering and predictive clustering, we introduce constrained
predictive clustering (Section 7.3). This extends predictive clustering by allowing

Jan Struyf
Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium
e-mail: Jan.Struyf@struyf-ye.org

Sašo Džeroski
Department of Knowledge Technologies, Jožef Stefan Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia
e-mail: Saso.Dzeroski@ijs.si

155
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_7, © Springer Science+Business Media, LLC 2010

156 Jan Struyf and Sašo Džeroski

user-defined constraints on the clustering. We discuss the constraints that are most
relevant to predictive clustering. An important property of such constraints is anti-
monotonicity. Anti-monotonicity is discussed in Section 7.4, where we define a
search space of clustering trees. This search space, which is structured by the sub-
tree relation, is traversed by the algorithms that construct (predictive) clustering
trees (PCTs).

Finally, the chapter looks into algorithms for building PCTs that satisfy the given
constraints (Section 7.5). We describe two approaches: (1) a two-phase approach
that consists of tree induction followed by post pruning, and (2) an approach that is
based on beam search. We summarize the results that have been obtained with these
algorithms and refer to the relevant specific literature for details.

7.2 Predictive Clustering Trees

7.2.1 Clustering and Intra-cluster Variance

The task in clustering is to partition a given set of data instances into subsets called
clusters such that the instances in each cluster are similar. The similarity require-
ment is usually formulated in terms of a distance measure; it then translates for ex-
ample into requiring for each cluster a small average pairwise distance between the
instances. This is illustrated in Fig. 7.1.a. Here, the data are points in a two dimen-
sional space and the clustering partitions these points into two clusters C1 and C2.
Points in a given cluster are similar because they are close in terms of the Euclidean
distance.
We define clustering formally as follows:

Definition 7.1 (Clustering). Given an instance space Z, a training dataset1 T ⊆ Z,
and a loss function l : (Z→N)×2Z →R, with N the natural numbers, 2Z the power
set of Z, and R the real numbers, find a cluster assignment function c : Z → N such
that c minimizes l(c,T).

The cluster assignment function in Def. 7.1 represents the clustering: cluster Ci is
the set of instances {x | x ∈ T,c(x) = i}. Its range is the set of natural numbers. As
a result, Def. 7.1 allows clusterings with an arbitrary number of clusters. Later, we
will see that clustering size constraints can be used to limit the number of clusters.

The loss function represents the similarity requirement. We define it as a function
that takes a clustering c and a dataset T as input and that computes how dissimilar
the instances of T are in each cluster induced by c on T . In this chapter, we will
mainly consider intra-cluster variance as loss function, which is defined as follows.

1 For convenience, we slightly abuse notation and define the training dataset as a subset of the
instance space. Note that in practice, the training set is often not a set but rather a bag in which the
same instance may appear multiple times.

7 Constrained Predictive Clustering 157

Definition 7.2 (Intra-cluster variance). Given an instance space Z, a training set
T ⊆ Z, a distance measure d on Z, and a cluster assignment function c, the intra-
cluster variance according to d is ICVd(c,T) = ∑i

|Ci|
|T |Vard(Ci), with Ci = {x|x ∈

T,c(x) = i}.
We take a general approach in which cluster variance can be measured according

to any distance measure and also consider two alternative definitions of variance:
the first is computed as the average pairwise distance between cluster members
(Def. 7.3), and the second is computed as the average distance between a cluster
member and the cluster centroid (Def. 7.5).

Definition 7.3 (Variance based on pairwise distances). Given an instance space
Z, a cluster C⊆ Z, and a distance measure d on Z, the variance according to d based
on pairwise distances Vard

pairw(C) is 1
2|C|2 ∑x∈C ∑y∈C d2(x,y).

Definition 7.4 (Cluster centroid). Given an instance space Z, a cluster C ⊆ Z,
and a distance measure d on Z, the centroid of C according to d is centrd(C) =
argminy∈Z ∑x∈C d2(x,y).

Definition 7.5 (Variance based on centroid). Given an instance space Z, a cluster
C ⊆ Z, and a distance measure d on Z, the variance according to d based on the
cluster centroid is Vard

centr(C) is 1
|C| ∑x∈C d2(x,centrd(C)).

For the case that the data instances are vectors in R
n and the distance measure d is

the Euclidean distance, the cluster centroid is the vector mean of the data instances,
and Def. 7.5 coincides with the traditional definition of variance used in statistics.
In this case Def. 7.3 also yields the same result as Def. 7.5.

For other distance measures, the centroid can often only be approximated by
applying, e.g., gradient descent to the expression in Def. 7.4. In such cases, we
may want to compute the variance with Def. 7.3 [16]. We may also replace the
cluster centroid with the cluster medoid, which is the instance in the cluster with the
smallest average distance to the other instances.

7.2.2 Clustering Trees

Clustering trees [6] are decision trees that are used for clustering (Fig. 7.1.b). Each
node of a clustering tree represents one cluster: the top node corresponds to a cluster
containing all available data, and each test in the tree partitions the local instances
into sub-clusters based on the outcome of the test. As such, a clustering tree repre-
sents a hierarchy of clusters. A non-hierarchical (flat) clustering can be obtained by
only considering the tree leaves.

A clustering tree can serve as a cluster assignment function: a new instance can
be assigned to a cluster by sorting it down the tree until it arrives in a leaf. Fig. 7.1.b
illustrates this for a non-hierarchical clustering. Here, each leaf corresponds to one
cluster and to one value for the cluster assignment function c(x).

158 Jan Struyf and Sašo Džeroski

0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10

(a)

x
2

x1

C1

C2

c(x) =

{
1 if d(x, centr(C1)) <

d(x, centr(C2))
2 otherwise

(b)

x
2

x1

x1 < 5

yes

1 x2 < 5

yes

2

no

3

no

c(x) =

(c)

x
2

x1

(b)

x1 < 5

yes no

1

[]

x2 < 5

yes

2

[]

no

3

[]

c(x) =

p(x) =

Fig. 7.1 (a) Clustering. (b) Clustering tree. (c) Predictive clustering tree (in this case a traditional
classification tree).

Clustering trees belong to the class of conceptual clustering methods [22]. In
conceptual clustering, each cluster has a conceptual description in terms of the prop-
erties that the instances in the cluster have. For example, cluster C2 in Fig. 7.1.b is
described by x0 ≥ 5∧x1 < 5. Conceptual clustering is important if the user wants to
gain insight into the meaning of the clusters. On the other hand, the conceptual de-
scriptions constrain the clustering, which may result in a larger intra-cluster variance
compared to non-conceptual methods [16].

7.2.3 Predictive Clustering and Predictive Clustering Trees

Predictive clustering [8] is an approach to prediction that is based on clustering
methods. The central idea is to induce a clustering and to use this clustering to make
a prediction for a new instance by assigning the instance to a cluster and then making
a prediction from that cluster. The underlying assumption is that if the instances in
a cluster are similar, their target values will also be similar, and that the target value
of a new instance can be accurately predicted from those of the other instances in
the cluster.
We define prediction and predictive clustering as follows:

Definition 7.6 (Prediction). Given an instance space Z = X ×Y , with X the input
subspace of Z and Y the output subspace of Z, a training set T ⊆ Z, and a loss
function l : (X →Y)×2Z →R, find a predictive model f : X →Y , such that l(f ,T)
is minimal.

7 Constrained Predictive Clustering 159

Definition 7.7 (Predictive clustering). Predictive clustering is a prediction ap-
proach in which f (x) is of the form p(c(x),x), with c : X →N the cluster assignment
function, and p : N×X → Y the prediction function.

Fig. 7.1.c illustrates these definitions for the case of a traditional classification tree
[11]. Here, the input space is R

2, and the output space is the set of class labels
{%,�}. Given a training set of labeled instances, the goal is to find a cluster as-
signment function and a prediction function that minimize the loss function (e.g.,
training set error). Similar to Fig. 7.1.b, the cluster assignment function is repre-
sented as a tree in which each leaf corresponds to a cluster. After an instance is
assigned to a cluster, the prediction function is used to predict a class for the in-
stance. In classification trees, the prediction function is a constant for each cluster;
in model trees it is a linear model [25].

A predictive clustering tree is a predictive clustering model in which the cluster
assignment function is represented as a decision tree. The previous example there-
fore shows that classification trees and model trees are special cases of predictive
clustering trees. Viewed in this way, predictive clustering is not a new machine
learning method, but rather a framework in which known methods can be explained.
Other known learning methods, such as decision rules, can also be cast in the predic-
tive clustering framework [35]. Predictive clustering also leads to new approaches;
we will list some in Section 7.2.5.

7.2.4 Learning (Predictive) Clustering Trees

Clustering trees and predictive clustering trees can be constructed with almost the
same algorithm. From here on, we will refer to both with (predictive) clustering
trees or PCTs. As originally explained by [6], the algorithm is a standard “top-down
induction of decision trees” algorithm, similar to that of CART [11], but with a more
general heuristic.

Table 7.1 lists the PCT algorithm. It takes as input a training set T . The main loop
(Table 7.1, BESTTEST) searches for the best acceptable attribute-value test that can
be put in a node. If such a test t∗ can be found then the algorithm creates a new
internal node labeled t∗ and calls itself recursively to construct a subtree for each
subset in the partition P∗ induced by t∗ on the training instances. To select the best
test, the algorithm scores the tests by the reduction in variance they induce on the
instances. Maximizing variance reduction locally minimizes intra-cluster variance.

The function ACCEPTABLE is used to test if an attribute-value test is acceptable.
It may test different conditions, such as that the clusters in P are sufficiently large,
and that the variance reduction induced by the test is significant (e.g., in terms of
a statistical F-test). If ACCEPTABLE fails for all possible attribute-value tests, then
the algorithm creates a leaf and labels it with a cluster identifier, and, in the case
of predictive clustering trees, with a value for the prediction function. This value
is usually the projection of the cluster centroid on the output space, but in general
depends on the application domain as we discuss in the next section.

160 Jan Struyf and Sašo Džeroski

Table 7.1 The top-down induction algorithm for PCTs. T denotes the training instances, t an
attribute-value test, P the partition induced by t on T , and h the heuristic value of t, which is
computed based on distance d. centrd(T) is defined in Def. 7.4, and Vard(T) can be computed
with Def. 7.3 or Def. 7.5 (depending on the application domain). projY (·) projects its argument on
the output space Y . The superscript ‘∗’ indicates the current best test and its corresponding partition
and heuristic.
procedure Clus(T) returns tree

1: (t∗,P∗) = BestTest(T)
2: if t∗ �= none
3: for each Tk ∈ P∗

4: treek = Clus(Tk)

5: return node(t∗,
⋃

k{treek})
6: else
7: i = new cluster identifier
8: p = projY (centrd(T))

9: return leaf

([
i
p

])

procedure BestTest(T)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t
3: P = partition induced by t on T

4: h = Vard(T)−∑
Tk∈P

|Tk|
|T | Var

d(Tk)

5: if (h > h∗)∧Acceptable(t,P)
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗,P∗)

7.2.5 Instantiations of (Predictive) Clustering Trees

We list a number of instantiations of PCTs, each of which can be obtained by se-
lecting a particular distance measure d.

• Clustering trees [6] are obtained by instantiating d to the Euclidean distance over
the instance space Z =R

n. In this case, there is no prediction function. Depending
on the application, other distance measures may be used as well. For example,
[16] show how PCTs can be used for time series data analysis. They employ a
qualitative distance measure [30] and compute variance based on pairwise dis-
tances (Def. 7.3).

• Regression trees [11] instantiate d to the Euclidean distance restricted to the
target attribute. The heuristic then becomes the traditional variance reduction
heuristic used in CART [11], and the prediction function returns for a given leaf
the local training instances’ mean target value.

• Classification trees [11] instantiate d to the Euclidean distance in a transformed
space. For an m class problem, this space is Rm and a class i instance is mapped to
the unit vector in dimension i. It can be shown that the resulting heuristic (using
Def. 7.3) is the Gini gain [26]. The prediction function returns for a given leaf
the majority class of the local instances.

• Multi-target or multi-task learning [12] is learning a model that predicts multiple
output attributes. PCTs can be trivially applied to multi-target learning [6, 7]. To
predict m numeric attributes, the only difference with regression trees is that d is
now defined on R

m instead of R. Multi-target classification [20] and multi-target
mixed classification and regression can be implemented in a similar way. Fig. 7.2
shows an example of a multi-target PCT.

• Hierarchical multi-label classification is a classification task in which instances
may belong to multiple classes and the classes are structured in a class hierarchy.

7 Constrained Predictive Clustering 161

- -

-

-
-
-
-

- -

-
-
-
-

-

Soil Type >1

Silage/Hay

Age > 0

yes

0.04
0.30
0.08
0.85

no

0.24
0.24
7.20
0.29

yes

Time ≥ May

Deep Tillage > 0.25

Crop = Rape

yes

0.32
0.07
0.58
2.12

no

0.20
0.38
0.14
0.28

yes

Crop = Oates/clover/grass

yes

0.06
0.32
3.31
0.27

Crop = Winter barley

yes

0.05
2.62
0.25
0.62

no

0.03
0.04
0.08
0.11

no

no

yes no

0.33
0.56
0.21
0.27

no

yes

Age > 7

yes

3.26
2.55
1.13
2.28

no

0.14
0.72
0.21
0.31

no

Fig. 7.2 A multi-target PCT predicting the normalized abundances of four organism groups (the
mites Cryptostigmata, Prostigmata, Astigmata, and Mesostigmata) in agricultural soil from agri-
cultural events and soil biological parameters [15]. A multi-target PCT provides insight in the
relations between the target attributes and makes common factors that are relevant to all targets
explicit.

Chapter 15, which is based on [32], explains this approach in detail using gene
function prediction as a case study.

The PCT framework is implemented in the CLUS system, which is available as
open source software at http://dtai.cs.kuleuven.be/clus/. CLUS im-
plements algorithms for constructing PCTs and also for building predictive cluster-
ing rule sets [35]. The constrained PCT induction algorithms based on post-pruning
and beam search, which are discussed later in this chapter, are also available in
CLUS. Of the constraints that we will see, CLUS implements cluster size, clustering
size, global loss, depth, syntactic, and instance level constraints (Section 7.3).

7.3 Constrained Predictive Clustering Trees and Constraint

Types

So far, clustering and predictive clustering have been defined as an unconstrained
optimization problem. That is, the goal is to find the clustering or the predictive
clustering model that minimizes a given loss function. From here on, we consider
the case where the domain expert is interested in controlling, besides loss, also other
properties of the model. To do so, we add constraints to the optimization problem.
The goal then becomes to find the model that minimizes the loss function among
the models that satisfy the given constraints.

Example 7.1. Consider the task of learning a multi-target PCT. The domain expert
may not only be interested in finding the most accurate tree; the tree also needs

162 Jan Struyf and Sašo Džeroski

to be sufficiently interpretable. To this end, the domain expert could impose a size
constraint on the tree, for example, that it must not contain more than 10 leaves.
The constrained optimization problem then becomes to find the most accurate PCT
among all trees with at most 10 leaves. The PCT in Fig. 7.2 was constructed given
this constraint.

In general, a constraint or a conjunction of several constraints can be written as a
Boolean function over the space of candidate trees. If the function evaluates to true
for a given tree, we say that the tree satisfies the constraints; if it evaluates to false,
then the tree does not satisfy the constraints.

The size constraint from Ex. 7.1 is only one of the many possible types of con-
straints that may be useful when constructing PCTs. We now present an overview of
useful constraints, which distinguishes cluster level constraints, constraints on clus-
terings, and constraints on clustering models. We discuss a number of examples of
each type.

7.3.1 Cluster Level Constraints

We first consider constraints on individual clusters, which we will call cluster level
constraints. A cluster level constraint is a Boolean function that takes a cluster (a
set of instances) as input and outputs true if the cluster satisfies the constraint. A
set of clusters satisfies a cluster level constraint if each cluster in the set satisfies the
constraint.
We now present some examples of cluster level constraints.

Cluster size constraint. Cluster level constraints can be constructed by upper or
lower bounding a certain numeric property of a cluster. The most simple instantia-
tion of this is a lower bound (or upper bound) on the number of instances in a cluster.
For example, enforcing a lower bound on the cluster size is useful in k-means clus-
tering to avoid empty or very small clusters [10], or in PCTs to ensure that each
leaf contains enough instances to obtain a good estimate of the centroid. Cluster
size constraints can also be used to enforce k-anonymity in privacy preserving data
mining [17].

Local loss constraint. Often, the global loss function minimized by the clustering
algorithm is additive: the loss of the clustering is the sum of the local losses of
the clusters in the clustering. This is for example the case for intra-cluster variance
(Def. 7.2). The local loss constraint upper bounds the local loss per cluster instance
(e.g., the cluster’s variance). It can be used to ensure that the created clusters are
sufficiently compact. For classification trees, other local loss functions are used,
such as the proportion of misclassified training instances or 1−χ2 [24].

ε-constraint. The ε-constraint [13] ensures that for each instance in a cluster, there
is another instance that is sufficiently close to it, that is, ∀x1 ∈C,∃x2 ∈C,x1 �= x2 :
d(x1,x2)≤ ε .

7 Constrained Predictive Clustering 163

7.3.2 Constraints on Clusterings

We now consider constraints on a set of clusters.

Clustering size constraint. This type of constraints upper or lower bounds the
number of clusters in the clustering. Typically, each leaf of a PCT is a cluster. In
this case, the tree size constraint from Ex. 7.1 is a clustering size constraint. One
can also fix the number of clusters to a particular value. For example, the k-means
algorithm enforces the constraint that the number of clusters is precisely equal to its
parameter k.

Minimum separation (δ -constraint). Minimum separation [13] ensures that for
each pair of instances from different clusters, their distance is at least δ , that is,
∀C1,C2,C1 �=C2,x1 ∈C1,x2 ∈C2 : d(x1,x2)≥ δ . For example, in object recognition
tasks, minimum separation can be used to specify a minimum distance between
recognized objects.

Instance level constraint. Must-link and cannot-link constraints are constraints
about pairs of instances and are therefore called instance level constraints [33]. A
must-link constraint ML(x1,x2) specifies that instances x1 and x2 must belong to the
same cluster, and a cannot-link CL(x1,x2) specifies that x1 and x2 must not be placed
in the same cluster.

Instance level constraints provide information about the assignment of instances
to clusters and can be used to address, among others, semi-supervised learning
tasks. To this end, labeled instance pairs of the same class are must-linked and la-
beled instance pairs of different classes are cannot-linked. [13] show that ε- and
δ -constraints can be converted into instance level constraints.

Balancedness constraint. This constraint ensures that all clusters are of similar
size [36]. It is useful, e.g., in marketing applications where one wants to segment
the customers in groups of roughly the same size.

Global loss constraint. Normally, the constrained clustering algorithm minimizes
the global loss while taking into account the given constraints. Alternatively, one
may also minimize a different property of the clustering and constrain the global
loss. For example, one could search for the clustering with the smallest number of
clusters that has a global loss of at most ε , where ε is chosen by the domain expert.
When constructing a classification tree, this translates into finding the smallest tree
that has at least a given accuracy. Such constraints are studied by [18] and [28].

Cluster level constraints for hierarchical clusterings. For hierarchical cluster-
ings, such as clusterings created by clustering trees or hierarchical agglomerative
clustering, additional constraints on the structure of the hierarchy may be useful.

• Depth constraint This constraint upper bounds the depth of the hierarchy. An
extreme instantiation of this constraint is to upper bound the depth of the tree to
one. In this case, one obtains so-called decision stumps, which are often used in
ensemble learning [27].

164 Jan Struyf and Sašo Džeroski

• Balancedness constraint This constraint ensures that each internal node of the
hierarchy partitions the local instances into subsets of similar size. In this way, it
is a recursive application of the balancedness constraint introduced above. Math-
ematically, it can be written as a lower bound on the entropy of the partition [24].
Another type of balancedness constraint for hierarchical clusterings is to ensure
that for each internal hierarchy node, all subtrees have a similar number of nodes.

7.3.3 Constraints on Clustering Models

We now list constraints that restrict the syntax of PCTs.

Prediction cost constraint. If attributes represent quantities that need to be mea-
sured for a new instance at prediction time, then a certain cost may be associated to
these measurements (e.g., the cost of a lab test in a medical diagnosis application).
Models that predominantly test low cost attributes may in such cases be desired
[31, 21]. Such models can be constructed by specifying an upper bound on the pre-
diction cost of the model, which is the sum of the measurement costs of all attributes
that are required to make a prediction. For a PCT, these are all the attributes that are
tested on a path from the tree root to the leaf where the instance is sorted into. Al-
ternatively, one may also constrain the total cost of all attributes used in the model.
The former is a cluster level version of the constraint, while the latter is a global
constraint.

Syntactic constraint. Syntactic constraints directly restrict the syntactical part of
the model. A syntactic constraint could require that the tree structure is of the form
“node(X < y1,node(c < y2,Tr1,Tr2),Tr3),X ∈ {a,b}”, that is, a tree in which the
root node tests on attribute a or b, and the left subtree of the root tests on attribute c
(assuming a binary tree and that y1 and y2 are numeric values). Syntactic constraints
are useful when the domain expert has a preference for certain model structures.
For example, he or she could specify (part of) the structure of a PCT and the system
could fill in the PCT’s parameters, such as the thresholds used in tests on numeric
attributes, or it could further refine the given tree. Syntactic constraints require a lan-
guage to specify valid syntactic structures, which should ideally be declarative. [2]
show how (stochastic) logic programs can be used to this end. Declarative language
biases [23] used in inductive logic programming are also examples of syntactic con-
straints.

7.3.4 Hard Versus Soft Constrained Clustering

The constrained (predictive) clustering tasks defined above are hard constrained: the
solution has to satisfy all the given constraints. Nevertheless, sometimes it may be

7 Constrained Predictive Clustering 165

impossible to satisfy all the constraints. In soft constrained clustering, satisfying all
the constraints is no longer required.

A first approach to soft constrained clustering is to replace the constraints in the
constrained optimization problem by a penalty term in the objective function that
counts the number of violated constraints. That is, the objective function is written
as α · Loss + (1− α) · (Number of constraints violated), with α a parameter that
specifies the relative importance of one unit of loss versus violating one additional
constraint. Because this approach only takes the number of violated constraints into
account, it is useful in applications with many constraints. For example, [4] have
applied such an approach to k-means clustering with instance level constraints.

A second approach takes the degree to which a constraint is violated into ac-
count. Consider the constraint that there can be at most five clusters. A cluster-
ing with 20 clusters violates this constraint to a larger degree than one with only
six clusters. A soft constrained clustering algorithm should trade-off the degree to
which constraints are violated versus the loss of the clustering. This can again be
accomplished by replacing the constraints by a penalty term in the objective func-
tion. Alternatively, it can be accomplished by casting the soft constrained clustering
problem into a probabilistic framework [5, 3, 2].

In this chapter, we will present algorithms and corresponding experimental re-
sults for both hard constrained PCTs and soft constrained PCTs. In particular, we
will treat the clustering size constraint as a hard constraint in Section 7.5.1. Next, we
present an algorithm that performs soft instance level constrained clustering (Sec-
tion 7.5.2).

7.4 A Search Space of (Predictive) Clustering Trees

We now define a search space of PCTs, structured by the subtree relationship. Then
we define anti-monotonic constraints. The constrained induction algorithms that we
cover in the chapter exploit this property. For ease of notation, we only consider
binary trees.

Definition 7.8 (Subtree order). Given two trees Tr1 and Tr2,

Tr1 ≤ Tr2 ⇔
⎧⎨
⎩

Tr1 = leaf(·), or
(Tr1 = node(X1,Tr1l ,Tr1r)∧Tr2 = node(X2,Tr2l ,Tr2r)∧

X1 = X2∧Tr1l ≤ Tr2l ∧Tr1r ≤ Tr2r)

The subtree order is a partial order: it is possible that neither Tr1 ≤ Tr2 nor Tr1 ≥
Tr2 holds, e.g., for trees with a different attribute-value test in the top node.

Definition 7.9 (Refinement operator). A refinement operator ρ is a function that
maps a tree Tr to a set of trees ρ(Tr) (the refinement set), such that each tree in
ρ(Tr) is obtained by replacing precisely one of the leaves of Tr by a new internal
node with two new leaves. Each tree in ρ(Tr) is called a refinement of Tr.

166 Jan Struyf and Sašo Džeroski

...

...

...

...

...

(a) (b) (c)A > a0

B > b0

yes no

yes no

A > a0

C > c0

yes no

yes no

re
fi
n
e
m
e
n
ts

o
f
le
ft

le
a
f

A > a0

yes

B > b0

yes no

no

re
fi
n
e
m
e
n
ts

o
f
ri
g
h
t
le
a
f

A > a0

yes no

≤

≤

A > a0

B > b0

C > c0

yes no

yes no

yes no

A > a0

B > b0

yes

C > c0

yes no

no

yes no

A > a0

B > b0

yes no

yes

C > c0

yes no

no

≤

≤
≤

Fig. 7.3 Subtree order on trees. (a) A decision stump. (b) The refinements of tree (a). (c) The
refinements of the top-most tree in (b).

A refinement operator returns the immediate successors with regard to the subtree
order. That is, for each refinement Trref in ρ(Tr), it holds that Tr is a subtree of
Trref, and that there is no other tree “in between” Tr and Trref (i.e., ¬∃Tr′,Tr′ �=
Tr,Tr′ �= Trref,Tr≤ Tr′ ≤ Trref). Fig. 7.3 illustrates the concepts of subtree order and
refinement operator.

Definition 7.10 (Anti-monotonic2 constraint). A constraint cons : T → {true,
false}, with T the set of all possible PCTs, is anti-monotonic with respect to ≤
if and only if ∀Tri,Tr j : (Tri ≤ Tr j ∧ cons(Tr j))→ cons(Tri).

If one considers an increasing sequence of trees according to the refinement or-
der (e.g., going from (a) to (c) in Fig. 7.3) then the value of an anti-monotonic con-
straint can only decrease along the sequence, that is, change from true to false. This
observation can be exploited as follows: If a given tree violates an anti-monotonic
constraint, then it is not useful to consider refinements of this tree because any re-
finement will also violate the constraint (because of its anti-monotonicity).

We list a number of useful anti-monotonic constraints on PCTs.

1. An upper bound on tree size (Ex. 7.1).
2. A lower bound on cluster size.

2 The term anti-monotonic comes from order theory and is sometimes also called order-reversing.
It is the opposite of monotonic or order-preserving. (http://en.wikipedia.org/wiki/
Monotonic_function.)

7 Constrained Predictive Clustering 167

3. An upper bound on tree depth.
4. An upper bound on the prediction cost.
5. A hierarchical balancedness constraint.
6. A must-link constraint (if each leaf is a cluster).
7. An ε- and a δ -constraint (if each leaf is a cluster).
8. A syntactic constraint of the form Tr≥ Trcons (subtree constraint).
9. A conjunction of anti-monotonic constraints.

10. A disjunction of anti-monotonic constraints.

7.5 Algorithms for Enforcing Constraints

Many of the anti-monotonic constraints mentioned in the previous section can be en-
forced in the PCT induction algorithm (Table 7.1) by simply checking them in the
ACCEPTABLE function. As pointed out in the previous section, if an anti-monotonic
constraint does not hold, then it will also not hold if the tree is expanded further.
Therefore, anti-monotonic constraints can be used as stopping criteria in the func-
tion ACCEPTABLE.

For constraints that take the entire tree into account, such as an upper bound
on tree size, simple top-down induction (Table 7.1) in combination with a stopping
criterion based on the constraint is not a good method. It will result in a tree that
satisfies the constraint, but the tree will be imbalanced and may have a far from
optimal loss because of the depth-first construction. For example, assume that the
algorithm first constructs the left subtree and then the right subtree. If the size bound
is the only check in ACCEPTABLE then the resulting tree will always be a “chain” in
which only the left child of a node is a test node and the right child is always a leaf
(the chain will continue to grow until the maximum size is reached). To avoid this
problem, algorithms such as top-down induction in combination with post-pruning
(Section 7.5.1), or beam search (Section 7.5.2) are used.

7.5.1 Post Pruning

This approach first top-down induces a large tree (while ignoring the size constraint)
and then runs the algorithm from Table 7.2, which computes a minimum loss subtree
with at most k nodes, with k the size upper bound. This algorithm was formulated for
classification trees by [18] and is based on earlier work by [9] and [1]. [28] extend
the algorithm to multi-target PCTs.

The algorithm first calls COMPUTELOSS to find out which nodes are to be in-
cluded in the solution and then it calls PRUNERECURSIVE to remove the other
nodes. COMPUTELOSS employs dynamic programming to compute in loss[Tr,k]

168 Jan Struyf and Sašo Džeroski

Table 7.2 The constrained tree pruning algorithm PRUNETOSIZEK(Tr, k). Tr is the decision tree
that is to be pruned. k is the upper bound on the tree’s size. Trl and Trr are the left and right subtrees
of Tr. Kl [Tr,k] stores the maximum size of the left subtree in the minimum loss subtree of at most
k nodes rooted at Tr. The corresponding minimum loss is stored in loss[Tr,k].

procedure PruneToSizeK(Tr, k)

1: ComputeLoss(Tr, k)

2: PruneRecursive(Tr, k)

procedure PruneRecursive(Tr, k)

1: if Tr is a leaf

2: return

3: if k < 3 or Kl[Tr, k] = −1

4: remove children of Tr

5: else

6: kl = Kl[Tr, k]

7: kr = k − kl − 1

8: PruneRecursive(Trl, kl)

9: PruneRecursive(Trr, kr)

procedure ComputeLoss(Tr, k)

1: if computed[Tr, k]

2: return loss[Tr, k]

3: Kl[Tr, k] = −1

4: loss[Tr, k] = leaf loss(Tr)

5: if k ≥ 3 and Tr is not a leaf

6: for kl = 1 to k − 2

7: kr = k − kl − 1

8:
e = ComputeLoss(Trl, kl)+

ComputeLoss(Trr, kr)

9: if e < loss[Tr, k]

10: loss[Tr, k] = e

11: Kl[Tr, k] = kl

12: computed[Tr, k] = true

13: return loss[Tr, k]

the loss of the minimum loss subtree rooted at node Tr containing at most k nodes.
This subtree is either the tree in which Tr is pruned to a leaf or a tree in which Tr has
two children (we consider binary trees) Trl and Trr such that Trl (Trr) is a minimum
loss subtree of size at most kl (kr) and kl + kr = k−1. The algorithm computes the
minimum over these possibilities in the for loop starting on line 6. The possibility
that Tr is pruned to a leaf is taken into account by initializing the loss in line 4 of
the algorithm to the loss that would be incurred if node Tr is replaced by a leaf (e.g.,
the leaf’s variance multiplied by the proportion of instances that are sorted into the
leaf). The flag computed[Tr,k] is used to avoid repeated computation of the same
information.

After COMPUTELOSS completes, Kl [Tr,k] stores the maximum size of the left
subtree in the minimum loss subtree of at most k nodes rooted at Tr. Note that if
Kl [Tr,k] =−1, then this subtree consists of only the leaf Tr. PRUNERECURSIVE is
called next to prune nodes that do not belong to the minimum loss subtree.

The algorithm can minimize any loss function that is additive, or that is a mono-
tonically increasing function of an additive loss. Additive means that if a dataset is
partitioned into a number of subsets, the loss of the whole set is equal to the sum
of the losses of the subsets. Loss functions such as intra-cluster variance (Def. 7.2),
mean absolute error, root mean squared error, and classification error all have this
property.

PRUNETOSIZEK was used by [15] to construct interpretable PCTs (multi-target
regression trees) in the context of an ecological application where the goal is to pre-
dict the abundances of organism groups that are present in agricultural soil. Fig. 7.2
shows such a tree where the number of leaves was constrained to 10. Fig. 7.4 illus-
trates the size/accuracy trade-off of the constructed trees. [28] provide more such
experimental results for other application domains. They conclude that multi-target

7 Constrained Predictive Clustering 169

Fig. 7.4 Tree size versus
cross-validated error trade-off
for a four target PCT on the
same data as was used to learn
the tree in Fig. 7.2.

0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125
Size upper bound k (nodes)

Root mean squared error

Pearson correlation

PCTs often attain a better interpretability/accuracy trade-off than traditional single-
target regression trees.

7.5.2 Beam Search

[19] propose the PCT induction algorithm CLUS-BS shown in Table 7.3, which
implements a beam search. The beam is a set of trees ordered by their heuristic
value, and contains at most b trees, with b the beam width. CLUS-BS starts with a
beam that contains precisely one tree: a leaf covering all the training data.

Each main loop iteration creates a new beam by refining the trees in the current
beam. That is, the algorithm iterates over the trees in the current beam and computes
for each tree its set of refinements. A refinement is a copy of the given tree in which
one particular leaf is replaced by a new internal node with a particular attribute-value
test and two new leaves (Fig. 7.3).

A tree has |L| · |M| refinements, with L its set of leaves, and M the available
attribute-value tests. Instead of creating a separate refinement, e.g., for each possible
split point of a numeric attribute, CLUS-BS only creates a refinement for the best
split (according to its heuristic), that is, |M| is equal to the number of attributes. This
limits the number of refinements and increases the diversity of the beam. CLUS-BS
only retains refinements that satisfy the given anti-monotonic constraints (tested in
the function ACCEPTABLE).

CLUS-BS computes for each generated refinement a heuristic score. The heuris-
tic function used to compute this score differs from the one used in top-down induc-
tion (Table 7.1). The heuristic function in the latter is local, i.e., it only depends on
the instances local to the node that is being constructed. In CLUS-BS, the heuristic
is global and measures the quality of the entire tree. The reason is that beam search
needs to compare different trees, whereas top-down induction only needs to rank
different tests for the same tree node. CLUS-BS uses the following heuristic:

170 Jan Struyf and Sašo Džeroski

Table 7.3 The beam search algorithm CLUS-BS. T denotes the training instances, B denotes the
beam, and b denotes the beam width.

procedure Clus-BS(T ,b)

1: j = 0
2: Trj = leaf ([i, p]) � i = cluster identifier, p = predicted value
3: Bj = { (h(Trj , T), Trj) } � h = heuristic estimate of the quality of Trj
4: repeat
5: j = j + 1
6: Bj = Bj−1

7: for each Tr ∈ Bj−1

8: for each Trcand ∈ ρ(Tr) � ρ = refinement operator (Def. 9)
9: if Acceptable(Trcand)
10: hcand = h(Trcand, T)
11: hworst = max(h,Tr)∈Bj

h
12: if (hcand < hworst) ∨ (|Bj | < b)
13: Bj = Bj ∪ { (hcand,Trcand) }
14: if (|Bj | > b)
15: Bj = Bj \ { (hworst,Trworst) } � (hworst,Trworst) ∈ Bj

16: until Bj = Bj−1

17: return Bj

h(Tr,T) =

(
∑

leaf l ∈ Tr

|Tl |
|T |Vard(Tl)

)
+α · size(Tr) , (7.1)

with T all training data and Tl the instances sorted into leaf l. It has two components:
the first one is the intra-cluster variance of the leaves of the tree, and the second one
is a size penalty. The latter biases the search to smaller trees and can be seen as a
soft version of a size constraint. Since the heuristic value of a tree is proportional to
its loss, CLUS-BS searches for the tree that minimizes the heuristic.

After the heuristic value of a tree is computed, CLUS-BS compares it to the value
of the worst tree in the beam. If the new tree is better, or if there are fewer than b
trees (b is the beam width), then CLUS-BS adds the new tree to the beam, and if
this exceeds the beam width, then it removes the worst tree from the beam. The
algorithm ends when the beam no longer changes. This either occurs if none of the
refinements of a tree in the beam is better than the current worst tree, or if none of
the trees in the beam yields any acceptable refinements.

Eq. 7.1 is similar to the heuristic used in top-down induction. Assume that there
are no constraints, α = 0 and b= 1. In this case, the tree computed by CLUS-BS will
be identical to the tree constructed with top-down induction. The only difference is
the order in which the leaves are refined: top-down induction refines depth-first,
whereas CLUS-BS with b = 1 refines best-first. Because CLUS-BS refines best-
first, it becomes possible to enforce an upper bound on tree size in the function
ACCEPTABLE: the best-first search will not generate a degenerate tree as top-down
induction does in this case (start of Section 7.5).

[19] present an experimental evaluation that compares CLUS-BS to top-down in-
duction with PRUNETOSIZEK. This shows that CLUS-BS can generate more accu-

7 Constrained Predictive Clustering 171

rate trees than top-down induction, mainly because it is less susceptible to myopia.
The same paper furthermore investigates how soft similarity constraints can be used
to enforce that the trees in the beam are sufficiently diverse; this may allow one to
construct an accurate classifier ensemble from the trees in the beam.

7.5.3 Instance Level Constraints

CLUS-BS can be applied for soft constrained clustering in which the constraints are
instance level (IL) constraints (must- and cannot-links) by adding a penalty for vio-
lating constraints to the heuristic. As proposed by [29], the heuristic then becomes

h(Tr) =
1− γ

Vard(T)

(
∑

leaf l ∈ Tr

|Tl |
|T |Vard(Tl)

)
+ γ · |violated(Tr, IL,T)|

|IL| , (7.2)

with Tr the clustering tree for which the heuristic is to be computed, T the set of
instances, IL the set of IL constraints, and Tl the instances in leaf l of Tr. The first
term is the normalized intra-cluster variance of the tree and the second term is the
proportion of IL constraints that is violated by the tree. The heuristic trades-off both
terms by means of a parameter γ .

7.5.3.1 Disjunctive Clustering Trees

A disadvantage of a clustering tree, in which each leaf represents a cluster, is that
the description of each cluster is restricted to a conjunction of attribute-value tests.
This corresponds to rectangular clusters in the two-dimensional case (Fig. 7.1.b). In
many practical problems this assumption is too strong. For example, if clustering
with IL constraints is applied to a semi-supervised learning problem, and we know
in advance that there are only three classes, then this would restrict the model to a
tree with only three leaves. Such a small tree may not be able to accurately model
the training data.

Guided by this motivation, [29] propose to adapt clustering trees so that they
support disjunctive cluster descriptions. To this end, they define the cluster as-
signment function so that it can assign the same cluster identifier to multiple
leaves. We call a clustering tree with a cluster assignment function that has this
property a disjunctive clustering tree. For example, the L-shaped cluster C2 in
Fig. 7.5.a is represented by two leaves in Fig. 7.5.b and its disjunctive description is
x2 ≤ 103.5∨ (x2 > 103.5∧ x1 > 113.5). Note that this is similar to how classifica-
tion trees represent disjunctive concepts, but here the labels are not given in the data
(only IL constraints are given).

When CLUS-BS creates a refined tree, it should decide which cluster identifiers
to assign to the two new leaves that are added to the tree. In principle, this can

172 Jan Struyf and Sašo Džeroski

(a) (c)

(b)

(d)

0

50

100

150

200

250
x
2

0 25 50 75 100 125 150 175 200

x1

C1 C2

C
L

CL

CL

C
L M
L M

L

ML

x2 > 103.5

x1 > 113.5

yes

2

no

1

yes no

2

c(x) =

0.85

0.90

0.95

1.00

R
a
n
d

in
d
e
x

0 100 200 300 400 500

Iris data (vs. COPKM)

Clus All

Clus CV

COPKM All

COPKM CV

0.80

0.85

0.90

R
a
n
d

in
d
e
x

0 100 200 300 400 500

Ecoli data (vs. COPKM)

0.85

0.90

0.95

1.00

R
a
n
d

in
d
e
x

0 100 200 300 400 500

Constraints

Iris data (vs. MPCKM)

MPCKM All

MPCKM CV

0.75

0.80

0.85

0.90

R
a
n
d

in
d
e
x

0 100 200 300 400 500

Constraints

Ecoli data (vs. MPCKM)

Fig. 7.5 (a) Dataset with instance level constraints. (b) Disjunctive clustering tree for (a). (c) Com-
parison of CLUS-BS (b = 1) and COPKM on datasets with artificially generated constraints (on all
data ‘All’, and cross-validated ‘CV’). (d) Similar comparison between CLUS-BS and MPCKM.

be solved by trying all possible pairs of cluster identifiers and picking the one that
yields the best heuristic value. It turns out that this can be done more efficiently.
In particular, it is possible to compute for a given numeric attribute, the heuristic
of each possible split point and the corresponding best cluster identifiers for the
new leaves, in one pass over the instances and constraints. After sorting the in-
stances by the value of the numeric attribute, the computational cost of such a pass
is O(|Tl |(|C|+ |A|) + |IL|), with C the set of clusters and A the set of attributes.
Details of this optimization can be found in [29].

7.5.3.2 Results

Fig. 7.5.c shows a comparison of CLUS-BS to COPKM [34], a well known ex-
tension of k-means that performs hard IL constrained clustering. The data are UCI
classification tasks in which the class labels have been replaced by a random set

7 Constrained Predictive Clustering 173

of IL constraints that is consistent with the classes. A detailed description of the
experimental setup and results can be found in [29].

If COPKM finds a solution, then this solution is always consistent with the con-
straints (it performs hard constrained clustering). This means that, given sufficient
constraints, its training set Rand index is equal to one (Fig. 7.5.c, COPKM, all data).
The Rand index measures how well the induced clusters match the original classes
in the dataset.

CLUS-BS, which performs soft constrained clustering, does not have this guar-
antee (CLUS, all data). However, when using constrained clustering for semi-
supervised learning, generalization performance to unconstrained instances may be
more relevant. The cross-validated results (Fig. 7.5.c, CV) indicate that CLUS-BS
has a better generalization performance than COPKM, and more extensive exper-
iments also confirm this (See [29]). This effect can be explained by the high bias
of COPKM (it creates spherical clusters). Because it supports disjunctive concepts,
CLUS-BS is not limited to rectangular clusters and can approximate complex clus-
ter shapes. Another reason is that CLUS-BS has the option to ignore some of the
constraints [14].

Fig. 7.5.d compares CLUS-BS to MPCKM [4], a k-means extension that per-
forms both soft constraint satisfaction and metric learning. MPCKM performs best
on Iris, while CLUS-BS performs best on Ecoli. In a larger study, we observed 3
wins for CLUS-BS, 3 wins for MPCKM, and 3 draws. So, in terms of wins/losses
both perform equally well, and which system should be preferred depends on the
data set at hand and on whether or not one needs conceptual cluster descriptions.

7.6 Conclusion

This chapter reviewed (predictive) clustering trees (PCTs), which are a generally
applicable (to both prediction and clustering tasks) and easily interpretable type of
models. We described the basic top-down induction algorithm for such trees and
showed how it can be instantiated to specific tasks, among others, to multi-task
learning. We then addressed the central topic of this chapter, i.e., constrained (pre-
dictive) clustering. We presented a review of the constraint types that are most rel-
evant to predictive clustering. Next, we discussed the search space of PCTs, which
is traversed by the tree induction algorithms, the subtree order, and anti-monotonic
constraints. Finally, we covered two approaches to build trees that satisfy a given set
of constraints: top-down induction followed by post-pruning, and beam search. The
beam search approach to PCT induction can be applied to instance level constrained
clustering. We have illustrated the methods with selected experimental results and
provided pointers to the relevant literature for more detailed results.

We have thus shown that PCTs can be used effectively in prediction and clus-
tering applications where constraints are available and interpretable models are re-
quired.

174 Jan Struyf and Sašo Džeroski

The PCT paradigm generalizes prediction and clustering. Consequently both
constraints that apply to prediction (e.g., error and size constraints) and constraints
that apply to clustering (e.g., instance level constraints) can be taken into account
when learning PCTs.

PCTs allow for predicting structured outputs (vectors, hierarchical classes, time
series). The present work – constrained induction of PCTs – carries over to those
settings. In this sense, this is one of the first works considering constrained struc-
tured prediction.

Future work could investigate other types of constraints (e.g., constraints specific
to structured prediction) and algorithms for enforcing them.

Acknowledgements The authors are grateful to Celine Vens for providing feedback on an earlier
draft of this chapter. Part of the research presented in this chapter was conducted within the project
IQ (Inductive Queries for mining patterns and models) funded by the European Commission of the
EU under contract number FP6-IST 516169. For a complete list of agencies, grants and institutions
currently supporting Sašo Džeroski, please consult the Acknowledgements chapter of this volume.

References

1. H. Almuallim. An efficient algorithm for optimal pruning of decision trees. Artificial Intelli-
gence, 83(2):347–362, 1996.

2. N. Angelopoulos and J. Cussens. Exploiting informative priors for Bayesian classification and
regression trees. In 19th Int’l Joint Conf. on Artificial Intelligence, pages 641–646, 2005.

3. S. Basu, M. Bilenko, and R.J. Mooney. A probabilistic framework for semi-supervised clus-
tering. In 10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pages
59–68, 2004.

4. M. Bilenko, S. Basu, and R.J. Mooney. Integrating constraints and metric learning in semi-
supervised clustering. In 21st Int’l Conf. on Machine Learning, pages 81–88, 2004.

5. S. Bistarelli and F. Bonchi. Extending the soft constraint based mining paradigm. In 5th Int’l
Workshop on Knowledge Discovery in Inductive Databases, pages 24–41, 2007.

6. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees. In 15th Int’l
Conf. on Machine Learning, pages 55–63, 1998.

7. H. Blockeel, S. Džeroski, and J. Grbović. Simultaneous prediction of multiple chemical pa-
rameters of river water quality with Tilde. In 3rd European Conf. on Principles of Data Mining
and Knowledge Discovery, pages 32–40, 1999.

8. Hendrik Blockeel. Top-down Induction of First Order Logical Decision Trees. PhD thesis,
K.U. Leuven, Dep. of Computer Science, Leuven, Belgium, 1998.

9. M. Bohanec and I. Bratko. Trading accuracy for simplicity in decision trees. Machine Learn-
ing, 15(3):223–250, 1994.

10. P.S. Bradley, K.P. Bennett, and A. Demiriz. Constrained k-means clustering. Technical Report
MSR-TR-2000-65, Microsoft Research, 2000.

11. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

12. Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
13. I. Davidson and S.S. Ravi. Clustering with constraints: Feasibility issues and the k-means

algorithm. In SIAM Int’l Data Mining Conf., 2005.
14. I. Davidson, K. Wagstaff, and S. Basu. Measuring constraint-set utility for partitional cluster-

ing algorithms. In 10th European Conf. on Principles and Practice of Knowledge Discovery
in Databases, pages 115–126, 2006.

7 Constrained Predictive Clustering 175

15. D. Demšar, S. Džeroski, P. Henning Krogh, T. Larsen, and J. Struyf. Using multiobjective clas-
sification to model communities of soil microarthropods. Ecological Modelling, 191(1):131–
143, 2006.

16. S. Džeroski, I. Slavkov, V. Gjorgjioski, and J. Struyf. Analysis of time series data with predic-
tive clustering trees. In 5th Int’l Workshop on Knowledge Discovery in Inductive Databases,
pages 47–58, 2006.

17. A. Friedman, Schuster A., and R. Wolff. k-anonymous decision tree induction. In 10th Euro-
pean Conf. on Principles and Practice of Knowledge Discovery in Databases, pages 151–162,
2006.

18. M. Garofalakis, D. Hyun, R. Rastogi, and K. Shim. Building decision trees with constraints.
Data Mining and Knowledge Discovery, 7(2):187–214, 2003.

19. D. Kocev, J. Struyf, and S. Džeroski. Beam search induction and similarity constraints
for predictive clustering trees. In 5th Int’l Workshop on Knowledge Discovery in Inductive
Databases, pages 134–151, 2007.

20. D. Kocev, C. Vens, J. Struyf, and S. Džeroski. Ensembles of multi-objective decision trees. In
18th European Conf. on Machine Learning, pages 624–631, 2007.

21. C. X. Ling, Q. Yang, J. Wang, and S. Zhang. Decision trees with minimal costs. In 21 Int’l
Conf on Machine Learning, pages 544–551, 2004.

22. R.S. Michalski and R.E. Stepp. Learning from observation: Conceptual clustering. In Machine
Learning: An Artificial Intelligence Approach, volume 1. Tioga Publishing Company, 1983.

23. C. Nédellec, H. Adé, F. Bergadano, and B. Tausend. Declarative bias in ILP. In Advances in
Inductive Logic Programming, volume 32 of Frontiers in Artificial Intelligence and Applica-
tions, pages 82–103. IOS Press, 1996.

24. S. Nijssen and E. Fromont. Optimal constraint-based decision tree induction from itemset
lattices. Data Mining and Knowledge Discovery, 21(1):9–51, 2010.

25. J.R. Quinlan. Learning with continuous classes. In 5th Australian Joint Conf. on Artificial
Intelligence, pages 343–348. World Scientific, 1992.

26. L.E. Raileanu and K. Stoffel. Theoretical comparison between the Gini index and information
gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1):77–93, 2004.

27. R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning, 37(3):297–336, 1999.

28. J. Struyf and S. Džeroski. Constraint based induction of multi-objective regression trees. In
4th Int’l Workshop on Knowledge Discovery in Inductive Databases, pages 222–233, 2006.

29. J. Struyf and S. Džeroski. Clustering trees with instance level constraints. In 18th European
Conf. on Machine Learning, pages 359–370, 2007.

30. L. Todorovski, B. Cestnik, M. Kline, N. Lavrač, and S. Džeroski. Qualitative clustering of
short time-series: A case study of firms reputation data. In Integration and Collaboration
Aspects of Data Mining, Decision Support and Meta-Learning, pages 141–149, 2002.

31. P. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree
induction algorithm. J. of Artificial Intelligence Research, 2:369–409, 1995.

32. C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel. Decision trees for hierarchical
multi-label classification. Machine Learning, 73(2):185–214, 2008.

33. K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In 17th Int’l Conf. on
Machine Learning, pages 1103–1110, 2000.

34. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with
background knowledge. In 18th Int’l Conf. on Machine Learning, pages 577–584, 2001.

35. B. Ženko and S. Džeroski. Learning classification rules for multiple target attributes. In
Advances in Knowledge Discovery and Data Mining, pages 454–465, 2008.

36. S. Zhong and J. Ghosh. Scalable, balanced model-based clustering. In SIAM Int’l Conf. on
Data Mining, pages 71–82, 2003.

Chapter 8

Finding Segmentations of Sequences

Ella Bingham

Abstract We describe a collection of approaches to inductive querying systems for
data that contain segmental structure. The main focus in this chapter is on work
done in Helsinki area in 2004-2008. Segmentation is a general data mining tech-
nique for summarizing and analyzing sequential data. We first introduce the basic
problem setting and notation. We then briefly present an optimal way to accomplish
the segmentation, in the case of no added constraints. The challenge, however, lies
in adding constraints that relate the segments to each other and make the end result
more interpretable for the human eye, and/or make the computational task simpler.
We describe various approaches to segmentation, ranging from efficient algorithms
to added constraints and modifications to the problem. We also discuss topics be-
yond the basic task of segmentation, such as whether an output of a segmentation
algorithm is meaningful or not, and touch upon some applications.

8.1 Introduction

Segmentation is a general data mining technique for summarizing and analyzing
sequential data. It gives a simplified representation of data, giving savings in stor-
age space and helping the human eye to better catch an overall picture of the data.
Segmentation problems arise in many data mining applications, including bioinfor-
matics, weather prediction, telecommunications, text processing and stock market
analysis, to name a few.

The goal in segmentation is to decompose the sequence, such as a time series or
a genomic sequence, into a small number of homogeneous non-overlapping pieces,
segments, such that the data in each segment can be described accurately by a

Ella Bingham
Helsinki Institute for Information Technology, University of Helsinki and Aalto University School
of Science and Technology
e-mail: ella.bingham@hiit.fi

177
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_8, © Springer Science+Business Media, LLC 2010

178 Ella Bingham

simple model. In many applications areas, this is a natural representation and re-
veals the high-level characteristics of the data by summarizing large scale variation.
For example, in a measurement time series, each segment s j could have a different
mean parameter μ j such that the measurement values x in segment s j are modeled
as x = μ j +noise.

Segmentation algorithms are widely used for extracting structure from sequences;
there exist a variety of applications where this approach has been applied [3, 4, 6,
23, 29, 30, 32, 37, 38]. Sequence segmentation is suitable in the numerous cases
where the underlying process producing the sequence has several relatively stable
states, and in each state the sequence can be assumed to be described by a simple
model. Naturally, dividing a sequence into homogeneous segments does not yield a
perfect description of the sequence. Instead, a simplified representation of the data
is obtained — and this is often more than welcome.

One should note that in statistics the question of segmentation of a sequence or
time series is often called the change-point problem.

If no constraints are made between different segments, finding the optimal seg-
mentation can be done for many model families by using simple dynamic program-
ming [2] in O(n2k) time, where n is the length of the sequence and k is the number
of segments. Thus one challenge lies in adding constraints that relate the segments
to each other and make the end result more interpretable for the human eye. Another
challenge is to make the computational task simpler. We will discuss both of these
challenges in this chapter, and many more.

This chapter is a survey of segmentation work done in the Helsinki area: at
Helsinki Institute for Information Technology, which is a joint research institute of
University of Helsinki and Aalto University (part of it formerly known as Helsinki
University of Technology), roughly between the years 2004 and 2008.

Notation. We assume that our data is a d-dimensional sequence T consisting of n
observations, that is, T = 〈t1, . . . , tn〉where ti ∈R

d . A k-segmentation S of T is a par-
tition of 〈1,2, . . . ,n〉 into k non-overlapping contiguous subsequences (segments),
S = 〈s1, . . . ,sk〉 such that si = 〈tb(i), . . . ,
tb(i+1)−1〉 where b(i) is the beginning of the i:th segment. In its simplest case, seg-
mentation collapses the values within each segment s into a single value μs which
is e.g. the mean value of the segment. We call this value the representative of the
segment. Collapsing points into representatives results in a loss of accuracy in the
sequence representation. This loss of accuracy is measured by the reconstruction
error

Ep(T,S) = ∑
s∈S

∑
t∈s
||t−μs||p.

The segmentation problem is that of finding the segmentation minimizing this re-
construction error. In practice we consider the cases p = 1,2. For p = 1, the optimal
representative of each segment is the median of the points in the segment, for p = 2
it is the mean of the points.

Depending on the constraints one imposes on the representatives, one can con-
sider several variants of the segmentation problem, and we will discuss many of

8 Finding Segmentations of Sequences 179

them later in this chapter. Also, instead of representing the data points in a segment
by a single representative, one can consider simple functions of the data points. Ex-
tensions of the methods presented in this chapter into functional representatives is
often straightforward.

Figure 8.1 shows an example of a signal and its segmentation. In this simple
case, the segments are represented by the mean values of the points belonging to a
segment.

0 50 100 150 200 250 300 350 400
−6

−4

−2

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400
−6

−4

−2

0

2

4

6

8

10

12

14

Fig. 8.1 Left: a signal. Right: the result of segmenting into k = 4 segments. The vertical bars show
the segment boundaries (b(1) = 0, b(2) = 100, b(3) = 150, b(4) = 300). The horizontal lines show
the representatives of the segments which in this case are the mean values of the points in each
segment: μ1 = 10.12, μ2 = 3.85, μ3 = 0.00, μ4 = 5.97.

Optimal segmentation. Let us start by giving the optimal algorithm for solving
the plain segmentation problem. Let Sn,k denote the set of all k-segmentations of
sequences of length n. For some sequence T and error measure Ep, we define the
optimal segmentation as

Sopt(T,k) = arg min
S∈Sn,k

Ep(T,S).

We sometimes write E(S) instead of Ep(T,S) as the dependence of the data T is
obvious, and p is often clear from the context. Finding the optimal segmentation
Sopt for a given T of length n and for given k and Ep can be done in time O(n2k) [2]
by a standard dynamic programming (DP) algorithm. The dynamic programming
algorithm proceeds in an incremental fashion, using a table A of size n× k, where
the entry A[i, �] denotes the error of segmenting the sequence T [1, i] using at most �
segments. Here T [1, i] denotes the subsequence of T that contains all points between
1 and i: T [1, i] = 〈t1, . . . , ti〉. Let E(Sopt(T [j, i],1)) be the minimum error that can
be obtained for the subsequence T [j, i] when representing it as one segment. The
computation of the entries of table A is based on the equation ([17, 25] etc.)

A[i, �] = min
1≤ j≤i

(A[j−1, �−1]+E(Sopt(T [j, i],1)))

180 Ella Bingham

The table is first initialized with entries A[i,1] = E(Sopt(T [1, i],1)) for all i =
1, . . . ,n. The best k-segmentation is found by storing the choices for j at each step
in the recursion in another table B, and by reconstructing the sequence of choices
starting from B[n,k]. Note that the table B also gives the optimal k-segmentations
for all k′ < k, which can be reconstructed by starting from B[n,k′].

The resulting segmentation is optimal in the sense that the representation error
(8.1) between the original sequence and a piecewise constant representation with k
segments is minimized. A piecewise constant representation is one in which the rep-
resentatives of the segments are constants (in practice, means or medians of the data
points in the segment). In fact, the above algorithm can be used to compute opti-
mal k-segmentations with piecewise polynomial models. In a piecewise polynomial
representation, a polynomial of a given degree is fitted to each segment separately.

We note that the dynamic programming algorithm can also be used in the case
of weighted sequences in which each point is associated with a weight. Then the
representatives are defined to be the weighted representatives.

Related work. There is a large body of work in segmentation algorithms for se-
quential data. Terzi and Tsaparas [43] have found three main approaches to seg-
mentation in the literature:

1. Heuristics for solving a segmentation problem faster than the optimal dynamic
programming algorithm, with promising experimental results but no theoretical
guarantees about the quality of the result.

2. Approximation algorithms with provable error bounds, that is, theoretical upper
bounds for the error compared to the optimal error.

3. New variations of the basic segmentation problem, imposing some modifications
or constraints on the structure of the representatives of the segments.

The majority of the papers published on segmentation fall into Category 1, fast
heuristics. The most popular of these algorithms are the top-down and bottom-up
greedy algorithms. The top-down greedy algorithm is used in e.g. [4, 11, 29, 40]
and briefly discussed in [43]: The algorithm starts with an unsegmented sequence
and introduces a new boundary at every greedy step. That is, in the i-th step the
algorithm introduces the i-th segment boundary by splitting one of the existing i
segments into two. The new boundary is selected in such a way that it minimizes
the overall error. No changes are made to the existing i− 1 boundary points. The
splitting is repeated until the number of segments reaches k. The running time of the
algorithm is O(nk).

In the bottom-up greedy algorithm, each point initially forms a segment of its
own. At each step, two consecutive segments that cause the smallest increase in
the error are merged. The algorithm stops when k segments are formed. The time
complexity of the bottom-up algorithm is O(n logn). The algorithm performs well in
terms of error and it has been used widely in time-series segmentation [18, 35, 43].

Yet another fast heuristics is presented by Himberg et al [23]: two slightly dif-
ferent randomized algorithms that start with a random k-segmentation. At each step
they pick one segment boundary (randomly or in some order) and search for the
best position to put it back. This is repeated until the representation error converges.

8 Finding Segmentations of Sequences 181

Both algorithms run in time O(In) where I is the number of iterations needed until
convergence.

For the algorithms in Category 1 there is empirical evidence that their perfor-
mance is often very good in practice. However, there are no guarantees of their
worst-case error ratio. This is in contrast to algorithms in Category 2 for which
error bounds can be shown. In Category 2, an interesting contribution is that of
Guha et al [16]: a fast segmentation algorithm with provable error bounds. Terzi
and Tsaparas [43] have a similar motivation but different point of view, and we will
take a closer look at this in Section 8.2. Category 3, variations of the basic segmen-
tation problem, is studied extensively, and several approaches will be described in
the following sections.

Online versions of the segmentation problem have also been studied ([26, 36] and
others). In this setting, new observations arrive continuously in a streaming manner,
making the data a streaming time series.

An interesting restriction on the segmentation problem in the online case is to
require more accuracy in the representation of new observations, as opposed to those
which arrived further away in the past. This representation is called amnesic as the
fidelity of approximation decreases with time, and we are willing to answer queries
about the recent past with greater precision. Palpanas et al [36] use a piecewise
linear segmentation method to this end. The error of the approximation is always
kept under some user-specified, time-dependent threshold.

An abstract framework for the study of streaming time series is recently given by
Gandhi et al [12]. They present theoretical results for the space-quality approxima-
tion bounds. Both data streams, amnesic approximations and out-of-order streams
are discussed in their paper. The case of out-of-order time series will also be dis-
cussed in Section 8.6 but only in the case of non-streaming, offline segmentation.

A task related to segmentation is time series approximation or summarization.
Similarly to the task of segmentation, the goal here is again to simplify the repre-
sentation of a sequence. Classical signal processing approaches to time series ap-
proximation include Discrete Fourier Transform, Discrete Cosine Transform and
Discrete Wavelet Transform; common to these tree methods is that a segment-wise
presentation is not sought but the characteristics of the sequence are represented us-
ing an existing “dictionary” of finer and coarser building blocks. Instead, methods
such as Piecewise Aggregate Approximation [46], Adaptive Piecewise Constant Ap-
proximation [8], Piecewise Linear Approximation [7, 28] and Piecewise Quadratic
Approximation [22] etc. are segmentation methods, and the representatives of the
segments are simple functions of the data points in the segment. An interesting
comparison on all of these methods is given in Palpanas et al. [36], by measuring
their reconstruction accuracy on several real world data sets. A perhaps surprising
result was that there was little difference between all the approaches; similar re-
sults have been reported elsewhere, too [8, 27, 45]. The take-home message in this
respect is that we should not choose the representation method based on approxi-
mation fidelity but rather on other features [36]. This is a guiding principle behind
the methods described in this chapter, too.

182 Ella Bingham

An alternative approach to analyzing sequential data is a Hidden Markov Model
(HMM): the observed data is generated by an unknown process that takes several
(unobserved) states, and different states output different observations. Churchill [9]
was among the first to apply HMMs to sequence segmentation.

Organization. In this chapter, we describe various approaches to segmentation,
ranging from efficient algorithms to added constraints and beyond. We start with
an efficient approximation algorithm with provable error bounds in Section 8.2. In
Sections 8.3 to 8.5 we discuss three different constraints to make the segmentation
result more tractable. Sections 8.6 and 8.7 discuss interesting variations in the basic
problem setting. Sections 8.8 to 8.10 touch upon other topics related to segmenta-
tion, such as determining the goodness of an output of a segmentation algorithm,
model selection issues, and bursty event sequences. Finally, Section 17.7 gives a
brief conclusion.

8.2 Efficient Algorithms for Segmentation

In the general case, an optimal segmentation for a sequence can be found using
dynamic programming [2] in O(n2k) time, where n is the length of the sequence
and k is the number of segments. In practice, sequences are typically very long,
and a quadratic algorithm is seldom adequate. Faster heuristics with O(n logn) or
O(n) running time have been presented (see Section 16.1), but there are often no
guarantees of the quality of the solutions they produce.

Instead, Terzi and Tsaparas [43] have presented a constant-factor approximation
algorithm whose optimal running time is O(n4/3k5/3), called the divide and segment
(DnS) algorithm. The error of the segmentation it produces is provably no more
than 3 times that of the optimal segmentation; we thus say that the approximation
ratio is 3. The main idea of the algorithm is to divide the problem into smaller
subproblems, solve the subproblems optimally and combine their solutions to form
the final solution:

• The algorithm starts by partitioning the sequence T into m disjoint subsequences
Ti (of equal length, typically).

• Then each Ti is segmented optimally by dynamic programming, yielding a seg-
mentation Si and a set Mi of k weighted points Mi = 〈μi1, . . . ,μik〉: these are the
representatives of the segments (means or medians), weighted by the length of
the segment they represent.

• All the mk representatives of the m subsequences are concatenated to form the
weighted sequence T ′ = 〈μ11, . . . ,μ1k,μ21, . . . ,μmk〉, and dynamic programming
is then applied on T ′, outputting the final segmentation.

Assuming that the subsequences are of equal length, the running time of the al-
gorithm depends on m, the number of subsequences. The optimal running time is
2n4/3k5/3 and it is achieved at m = (n/k)2/3 [43].

8 Finding Segmentations of Sequences 183

Terzi and Tsaparas [43] also explore several more efficient variants of the algo-
rithm and quantify the accuracy/efficiency tradeoff. More specifically, they present
a recursive application of the DnS algorithm, resulting in a faster algorithm with
O(n log logn) running time and O(logn) approximation ratio. All presented algo-
rithms can be made to use a sublinear amount of memory, making them applicable
to the case when the data needs to be processed in a streaming fashion (not stored
in main memory). Assuming that one has an estimate of n, the size of the sequence,
then the algorithm processes the points in batches of size n/m. For each such batch
it computes the optimal k-segmentation, and stores the representatives. The space
required is M = n/m+mk and this is minimized for m =

√
n/k, resulting in space

M = 2
√

nk.
Extensive experiments on both real and synthetic datasets demonstrate that in

practice their algorithms perform significantly better than the worst-case theoretical
upper bounds, in terms of reconstruction error. Also, the algorithms perform con-
sistently better than fast heuristic algorithms, and the computational costs are com-
parable [43]. The synthetic datasets are generated by first fixing the dimensionality
of the data (d = 1,5,10) and the segment boudaries (k = 10), and then drawing the
mean of each segment in each dimension from a Uniform distribution, and adding
Gaussian noise whose standard deviation varies from 0.05 to 0.9. The real datasets
balloon, darwin, winding, xrates and phone are from the UCR Time Series Data
Mining Archive1.

8.3 Dimensionality Reduction

Let us then start discussing the various constraints and modifications we add to the
problem of segmentation to make the end result more tractable. The first natural
constraint that we wish to incorporate in the segmentation arises from dimensional-
ity reduction in multidimensional time series: the multidimensional mean parame-
ters μ j of the segments should lie within a subspace whose dimensionality is smaller
than that of the original space.

Bingham et al. [5] have stated the problem as follows. Given a multidimensional
time series, find a small set of latent variables and a segmentation of the series such
that the data in each segment can be explained well by some (linear) combination
of the latent variables. We call this problem the basis segmentation problem.

Our problem formulation allows decomposing the sequences into segments in
which the data points are explained by a model unique to the segment, yet the whole
sequence can be explained adequately by the vectors of the basis.

Following the notation presented in Section 16.1, our data is a sequence consist-
ing of n observations of d-dimensional vectors. For convenience, we now stack the
vectors into a matrix X that contains in its rows the n observations, each of which

1 http://www.cs.ucr.edu/˜eamonn/TSDMA/

184 Ella Bingham

is d-dimensional, so X is an n×d matrix. As previously, the n observations will be
partitioned into k segments S = 〈s1, . . . ,sk〉.

We will consider basis-vector representations of the data. We denote by V =
{v1, . . . ,vm} the set of m basis vectors v� ∈ R

d , � = 1, . . . ,m. The number of basis
vectors m is typically significantly smaller than the dimensionality d of the data
points. In matrix form, V is an m×d matrix containing the basis vectors as its rows.
Also, for each segment S j we have a set of coefficients a j� ∈ R for �= 1, . . . ,m that
tell us how to represent the data using the basis vectors in V . In matrix notation,
A = (a j�) is a k×m matrix of coefficients. V and A will be found by Principal
Component Analysis (PCA, discussed more in the sequel).

We approximate the sequence with piecewise constant linear combinations of the
basis vectors, i.e., all observations in segment s j are represented by a single vector

u′j =
m

∑
�=1

a j�v�. (8.1)

The problem we consider is the following.

Problem 8.1. Denote by j(i) ∈ {1, . . . ,k} the segment to which point i belongs.
Given a sequence T = 〈t1, . . . , tn〉, and integers k and m, find a basis segmentation
(S,V,A) that uses k segments and a basis of size m, so that the reconstruction error

E(T ;S,V,A) =
n

∑
i=1
||ti−u′j(i)||2

is minimized. The constant vector u′j(i) for approximating segment S j is given by
Equation (8.1).

To solve the basis segmentation problem, we combine existing methods for se-
quence segmentation and for dimensionality reduction: (i) k-segmentation by dy-
namic programming, discussed in Section 16.1, and (ii) Principal Component Anal-
ysis (PCA), one of the most commonly used methods for dimensionality reduction.
Given a matrix Z of size n× d with data points as rows, the goal in PCA is to find
a subspace of dimension r < d so that the residual error of the points of Z projected
onto the subspace is minimized. The PCA algorithm computes a matrix Y of rank r,
and the decomposition Y = AV of Y into the orthogonal basis V of size r, such that

Y = argmin
rank(Y ′)≤r

||Z−Y ′||

which holds for all matrix norms induced by Lp vector norms. PCA is typically
accomplished by Singular Value Decomposition (SVD) on the data matrix Z. The
basis vectors v1, . . . ,vm are the right singular vectors of the data matrix.

We suggest three different algorithms for solving the basis segmentation prob-
lem, all of which combine k-segmentation and PCA in different ways:

• Seg-PCA: First partition into k segments in the full d-dimensional space, to ob-
tain segments S = 〈s1, . . .sk,〉 and d-dimensional vectors u1, . . . ,uk representing

8 Finding Segmentations of Sequences 185

the points in each segment. Then consider the set US = {(u1, |s1|), . . . ,(uk, |sk|)}
where each vector u j is weighted by |s j|, the length of segment s j. Perform PCA
on the set of weighted points US, outputting for each segment vector u j an ap-
proximate representation u′j as in (8.1). Bingham et al [5] show that the Seg-PCA
algorithm yields a solution to the basis segmentation problem such that the recon-
struction error is at most 5 times the reconstruction error of the optimal solution.
Experiments demonstrate that in practice, the approximation ratios are smaller
than 5.

• Seg-PCA-DP: First segment into k segments, then find a basis of size m for the
segment means, similarly to above. Then refine the segmentation boundaries by
using the discovered basis by a second application of dynamic programming. As
the first two steps of the algorithm are identical to the Seg-PCA algorithm, and
the last step can only improve the cost of the solution, the same approximation
ratio of 5 holds also for Seg-PCA-DP.

• PCA-Seg: First do PCA to dimension m on the whole data set. Then obtain the
optimal segmentation of the resulting m-dimensional sequence. This gives com-
putational savings, as the segmentation is not performed on a high-dimensional
space.

Experiments on synthetic and real datasets show that all three algorithms discover
the underlying structure in the data [5]. Prototype implementations are available to
the public at http://www.cs.helsinki.fi/hiit_bru/software/.

A somewhat related problem setting, restricting the complexity of the represen-
tatives of the segments, will be considered in the next section.

8.4 Recurrent Models

Whereas in Section 8.3 we represented the segments as different combinations of a
small set of global basis vectors, we now wish to use a small set of models to predict
the data values in the segments.

Often in a sequence with segmental structure, similar types of segments occur
repeatedly: different models are suitable in different segments. For example, high
solar radiation implies clear skies, which in the summer means warm temperatures
and in the winter cold ones. As another example, the inheritance mechanism of re-
combinations in chromosomes mean that a genome sequence can be explained by
using a small number of ancestral models in a segment-wise fashion. In these ex-
amples, the model used to explain the target variable changes relatively seldom, and
has a strong effect on the sequence. Moreover, the same models are used repeatedly
in different segments: the summer model works in any summer segment, and the
same ancestor contributes different segments of the genome.

In an earlier contribution by Gionis and Mannila [13], the idea for searching for
recurrent models was used in the context of finding piecewise constant approxima-
tions in the so called (k,h) segmentation problem. In their paper it was assumed that
the sequence can be segmented into k pieces, of which only h are distinct. In other

186 Ella Bingham

words, there are h hidden sources such that the sequence can be written as a concate-
nation of k > h pieces, each of which stems from one of the h sources. This problem
was shown to be NP-hard, and approximate algorithms were given [13]. The “Seg-
ments2Levels” algorithm runs in time O(n2(k+h)) and gives a 3-approximation for
p = 1,2 for dimension 1. For higher dimensions, the approximation guarantees are
3+ε for p = 1 and α +2 for p = 2 where α is the best approximation factor for the
k-means problem. The “ClusterSegments” algorithm yields approximation ratios 5
and

√
5 for p = 1 and 2, respectively; the running time is again O(n2(k+ h)). The

“Iterative” algorithm is inspired by the EM algorithm and provides at least as good
approximations as the two previous ones. Its running time is O(In2(k+h)) where I
is the number of iterations.

The goal in (k,h) segmentation is similar to, although the technique is different
from, using a Hidden Markov Model (HMM) to sequence segmentation, originally
proposed by Churchill [9].

In a new contribution by Hyvönen et al [25], this approach was used to arbitrary
predictive models, which requires considerably different techniques than those in
(k,h) segmentation [13]. To find such recurrent predictive models, one must be able
to do segmentation based not on the target to be predicted itself, but on which model
can be used to predict the target variable, given the input measurements. The appli-
cation areas discussed above, the temperature prediction task and ancestral models
in a genome sequence, call for such a recurrent predictive model.

Given a model class M , the task is to search for a small set of h models from
M and a segmentation of the sequence T into k segments such that the behavior of
each segment is explained well by a single model. It is assumed that h < k, i.e., the
same model will be used for multiple segments. More precisely, the data D = (T,y)
consist of a multidimensional sequence T = 〈t1, . . . , tn〉, ti ∈ R

d and corresponding
scalar outcome values y = 〈y1, . . . ,yn〉, yi ∈R. We denote a subsequence of the input
sequence between the i-th and j-th data point as D[i, j]. A model M is a function
M : Rd → R that belongs to a model class M . Given a subsequence D[i, j] and a
model M ∈M the prediction error of M on D[i, j] is defined as

E(D[i, j],M) =
j

∑
�=i
||M(t�)− y�||2. (8.2)

For many commonly used model classes M one can compute in polynomial time
the model M∗ ∈M that minimizes the error in (8.2). For example, for the class of
linear models, the optimal model can be found using least squares. For probabilistic
models one can estimate the maximum likelihood model. For some model classes
such as decision trees, finding the optimal model is computationally difficult, but
efficient heuristics exist. It is thus assumed that one can always find a good model
for a given subsequence.

One should note that the task of predicting a given output value yi for a multi-
dimensional observation ti using a model M ∈M is now different from the basic
segmentation task in which the “output” or the representative of the segment is not

8 Finding Segmentations of Sequences 187

given beforehand. In the latter, the task is to approximate the sequence rather than
predict.

Now, let us first define the “easy” problem:

Problem 8.2. Given an input sequence D, a model class M , and a number k, parti-
tion D into k segments D1, . . . ,Dk and find corresponding models M1, . . . ,Mk ∈M
such that the overall prediction error ∑k

j=1 E(D j,Mj) is minimized.

The above problem allows for different models in each of the k segments. Our
interest, however, is in the recurrent predictive modeling problem which is a more
demanding task in that it only allows for a small number of h distinct models, h < k.
Thus, some of the models have to be used in more than one segment. More formally,
we define the following problem.

Problem 8.3. Consider a sequence D, a model class M , and numbers k and h, h< k.
The task is to find a k-segmentation of D into k segments D1, . . . ,Dk, h models
M1, . . . ,Mh ∈M , and an assignment of each segment j to a model Mm(j), m(j) ∈
{1, . . . ,h} so that the prediction error ∑k

j=1 E(D j,Mm(j)) is minimized.

For any but the simplest model class the problem of finding the best h models is
an NP-hard task, so one has to resort to approximate techniques.

Given a sequence D and a class of models M , dynamic programming [2] is
first used to find a good segmentation of the sequence into k segments. Thus each
segment will have its unique predictive model. The method for finding the model
describing a single segment depends, of course, on the model class M . After that,
from the k models found in the segmentation step, one selects a smaller number of h
models that can be used to model well the whole sequence. In case parameters k and
h can be fixed in advance, selecting a smaller number of models is treated as a clus-
tering problem, and solved using the k-median [31] or k-means algorithm. Finally,
an iterative improvement algorithm that is a variant of the EM algorithm is applied:
iteratively fit the current models more accurately in the existing segments, and then
find a new segmentation given the improved models. The iteration continues until
the error of the solution does not improve any more.

In the more general case, the parameters k and h are not given, but need to be
determined from the data. This model selection problem is addressed using the
Bayesian Information Criterion (BIC). Selecting a smaller number of models is
again a clustering problem, and using the facility location approach [24] one only
has to iterate over the number of segments k: For each value of k, the correspond-
ing value of h that minimizes the BIC score is automatically selected by the facility
location algorithm.

In [25] the method of recurrent models was applied to two sets of real data, mete-
orological measurements, and haplotypes in the human genome. The experimental
results showed that the method produces intuitive results. For example, in a tem-
perature prediction task, the meteorological time series consisting of 4 consecutive
winters and 3 summers was first found to contain k = 7 segments — not perhaps
surprisingly — and these 7 segments were found to be generated by h = 2 recurring
models, a winter model and a summer model.

188 Ella Bingham

8.5 Unimodal Segmentation

We will discuss another restriction of the basic segmentation problem. In unimodal
segmentation, the representatives of the segments (for example, means or medians)
are required to follow a unimodal curve: the curve that is formed by all representa-
tives of the segments has to change curvature only once. That is, the representatives
first increase until a certain point and then decrease during the rest of the sequence,
or the other way round. A special case is a monotonic curve. Examples of unimodal
sequences include (i) the size of a population of a species over time, as the species
first appears, then peaks in density and then dies out or (ii) daily volumes of network
traffic [18].

In contrast to other segmentation methods discussed in this chapter, the sequence
now takes scalar values instead of multidimensional values. Haiminen and Gionis
[18] show how this problem can be solved by combining the classic “pool adjacent
violators” (PAV) algorithm [1] and the basic dynamic programming algorithm [2]
(see Section 16.1). The time complexity of their algorithm is O(n2k) which is the
same as in the unrestricted k-segmentation using dynamic programming.

Haiminen and Gionis [18] also describe a more efficient greedy-merging heuris-
tic that is experimentally shown to give solutions very close to the optimal, and
whose time complexity is O(n logn): the expensive dynamic programming step is
replaced with a greedy merging process that starts with m segments and iteratively
merges the two consecutive segments that yield the least error, until reaching k seg-
ments.

The authors in [18] also give two tests for unimodality of a sequence. The first ap-
proach compares the error of an optimal unimodal k-segmentation to the error of an
optimal unrestricted k-segmentation. If the sequence exhibits unimodal behaviour,
then the error of its unimodal segmentation does not differ very much from the error
of its unrestricted segmentation — in other words, requiring for unimodality did not
hurt. Instead, if the sequence is not unimodal in nature, then forcing the segments to
follow a unimodal curve will increase the representation error. The authors compute
the ratio between the error of unrestricted k-segmentation and the error of unimodal
segmentation and find a data-dependent threshold value that helps to differentiate
between unimodal and non-unimodal sequences.

The second approach for testing for unimodality is to randomly permute the uni-
modal segments in the data, and to see if the error of unimodal k-segmentation on
the permuted sequence is comparable to the error on the original sequence — the
random permutation will destroy the unimodal structure of the sequence, if such
exists. If the original sequence was indeed unimodal, then the error of the permuted
sequences should be larger in a statistically significant way.

After discussing three different restrictions on the representatives of the segments
in Sections 8.3, 8.4 and 8.5, we then turn to other modifications of the basic problem
of sequence segmentation in the next section.

8 Finding Segmentations of Sequences 189

8.6 Rearranging the Input Data Points

The majority of related work on segmentation primarily focuses on finding a seg-
mentation S of a sequence T taking for granted the order of the points in T . However,
more often than not, the order of the data points of a sequence is not clear-cut but
some data points actually appear simultaneously or their order is for some other
reason observed only approximately correctly. In such a case it might be beneficial
to allow for a slight rearrangement of the data points, in order to achieve a better
segmentation. This was studied by Gionis and Terzi [15]: in addition to partition-
ing the sequence they also apply a limited amount of reordering, so that the overall
representation error is minimized.

The focus now is to find a rearrangement of the points in T such that the seg-
mentation error of the reordered sequence is minimized. The operations used to re-
arrange an input sequence consist of bubble-sort swaps and moves (single-element
transpositions). The task is to find a sequence of operations O minimizing the re-
construction error on the reordered input sequence TO:

O = argmin
O′

E(Sopt(TO′ ,k))

where Sopt(T,k) is the optimal segmentation of T into k segments, and there is an
upper limit on the number of operations: |O| ≤C for some integer constant C.

The problem of segmentation with rearrangements is shown to be NP-hard to
solve or even approximate. However, efficient algorithms are given in [15], com-
bining ideas from linear programming, dynamic programming and outlier-detection
algorithms in sequences. The algorithms consist of two steps. In the first step, and
optimal segmentation S of the input sequence T into k segments is found. In the
second step, a good set of rearrangements is found, such that the total segmentation
error or the rearranged sequence is minimized. The latter step, the rearrangement,
can be done in several ways, and the authors discuss the task in detail. In one pos-
sible formulation, the rearrangement task is a generalization of the well known NP-
hard Knapsack problem for which a pseudopolynomial-time algorithm is admittable
[44]. For the special case of bubble-sort swaps only, or moves only, a polynomial-
time algorithm for the rearrangement is obtained. The authors also present a greedy
heuristic with time complexity O(Ink) where I is the number of iterations of the
greedy algorithm in [15].

The problem formulation has applications in segmenting data collected from a
sensor network where some of the sensors might be slightly out of sync, or in the
analysis of newsfeed data where news reports on a few different topics are arriving
in an interleaved manner. The authors show experiments on both synthetic data sets
and on several real datasets from the UCR time series archive2.

2 http://www.cs.ucr.edu/˜eamonn/TSDMA

190 Ella Bingham

8.7 Aggregate Segmentation

Whereas in Section 8.6 we refined the input data, we now turn our attention to the
output of one or more segmentation algorithms.

A sequence can often be segmented in several different ways, depending on the
choice of the segmentation algorithm, its error function, and in some cases, its ini-
tialization. The multitude of segmentation algorithms and error functions naturally
raises the question: given a specific dataset, what is the segmentation that best cap-
tures the underlying structure of the data?

Thus a natural question is, given a number of possibly contradicting segmenta-
tions, how to produce a single aggregate segmentation that combines the features of
the input segmentations.

Mielikäinen et al [33] adopt a democratic approach that assumes that all segmen-
tations found by different algorithms are correct, each one in its own way. That is,
each one of them reveals just one aspect of the underlying true segmentation. There-
fore, they aggregate the information hidden in the segmentations by constructing a
consensus output that reconciles optimally the differences among the given inputs.

Their approach results in a proof that for a natural formalization of this task,
there is an optimal polynomial-time algorithm, and a faster heuristic that has good
practical properties. The algorithms were demonstrated in two applications: cluster-
ing the behavior of mobile-phone users, and summarizing different segmentations
of genomic sequences.

More formally, the input is a set of m different segmentations S1, . . . ,Sm, and
the objective is to produce a single segmentation Ŝ that agrees as much as possible
with the input segmentations. The number of segments in Ŝ is learned during the
process. In the discrete case a disagreement between two segmentations S and S′ is
defined as a pair of points (x,y) placed in the same segment by S but in different
segments by S′, or vice versa. Denoting the total number of disagreements between
the sequences S and S′ by DA(S,S′), the formal objective is to minimize

m

∑
j=1

DA(S j, Ŝ),

the grand total number of disagreements between the input segmentations S j and
the output segmentation Ŝ. In the continuous case, disagreements are defined simi-
larly for intervals instead of discrete points. The polynomial-time exact algorithm is
based on the technique of dynamic programming [2], and the approximation algo-
rithm on a greedy heuristic.

Segmentation aggregation can prove useful in many scenarios. We list some of
them below, suggested by Mielikäinen et al [33].

In the analysis of genomic sequences of a population one often assumes that
the sequences can be segmented into blocks such that in each block, most of the
haplotypes fall into a small number of classes. Different segmentation algorithms
have successfully been applied to this task, outputting slightly or completely differ-

8 Finding Segmentations of Sequences 191

ent block structures; aggregating these block structures hopefully sheds light on the
underlying truth.

Segmentation aggregation adds to the robustness of segmentation results: most
segmentation algorithms are sensitive to erroneous or noisy data, and thus combin-
ing their results diminishes the effect of missing or faulty data.

Segmentation aggregation also gives a natural way to cluster segmentations: the
representative of a cluster of segmentations is then the aggregate of the cluster. Fur-
thermore, the disagreement distance is now a metric, allowing for various distance-
based data mining techniques, together with approximation guarantees for many of
them.

Other scenarios where segmentation aggregation can prove useful include seg-
mentation of multidimensional categorical data and segmentation of multidimen-
sional data having both nominal and numerical dimensions; summarization of event
sequences; and privacy-preserving segmentations [33].

In this section we assessed and improved the quality of the output of the segmen-
tation by aggregating the output of several segmentation methods. A related point
of view is to assess the quality of the segmentations by measuring their statistical
significance — this nontrivial task will be considered in Section 8.8.

8.8 Evaluating the Quality of a Segmentation: Randomization

An important question is how to evaluate and compare the quality of segmentations
obtained by different techniques and alternative biological features. Haiminen et al
[20] apply randomization techniques to this end.

Consider a segmentation algorithm that given as input a sequence T outputs a
segmentation P. Assume that we a priori know a groundtruth segmentation S∗ of T .
Then, we can say that segmentation P is good if P is similar to S∗. In more exact
terms, P is a good segmentation if the entropy of P given S∗, H(P | S∗), and the
entropy of S∗ given P, H(S∗ | P), are small. However, a natural question is, how
small is small enough?

Before we proceed, let us give some more details on the notation. Consider a
segmentation P consisting of k segments P = 〈p1, . . . , pk〉. If we randomly pick a
point t on the sequence, then the probability t ∈ pi is Pr(pi) = |pi|/n where n is the
length of the sequence. The entropy of a segmentation P is now

H(P) =−
k

∑
i=k

Pr(pi) logPr(pi).

The maximum value that the entropy of a segmentation can have is logn, and this
value is achived when all segments are of equal length and thus the probabilities of
a random point belonging to any of the segments are equal.

Consider now a pair of segmentations P and Q of sequence S. Assume that P and
Q have kp and kq segments, respectively: P = 〈p1, . . . , pkp〉 and Q = 〈q1, . . . ,qkq〉.

192 Ella Bingham

The conditional entropy [10] of P given Q is defined as

H(P | Q) =
kq

∑
j=1

Pr(q j)H(P | q j)

= −
kq

∑
j=1

Pr(q j)
kp

∑
i=1

Pr(pi | q j) logPr(pi | q j)

= −
kq

∑
j=1

kp

∑
i=1

Pr(pi,q j) logPr(pi | q j)

That is, the conditional entropy of segmentation P given segmentation Q is the ex-
pected amount of information we need to identify the segment of P into which a
point belongs, given that we know the segment of this point in Q.

Haiminen et al [20] give an efficient algorithm for computing the conditional
entropies between two segmentations: Denote by U the union of two segmentations
P and Q, that is, the segmentation defined by the segment boundaries that appear in
P or in Q. The conditional entropy of P given Q can be computed as H(P | Q) =
H(U)−H(Q). The algorithm runs in time O(kp + kq).

Let us now return to our original problem setting: Assuming we know a groundtruth
segmentation S∗ of T , then P is a good segmentation if H(P | S∗) and H(S∗ | P) are
small. But how small is small enough? Or, is there a threshold in the values of the
conditional entropies below which we can characterize the segmentation P as being
correct or interesting? Finally, can we set this threshold universally for all segmen-
tations?

The generic methodology of randomization techniques (see [14], [34] among
others) that are devised to answer these questions is the following. Given a seg-
mentation P and a ground-truth segmentation S∗ of the same sequence, we first
compute H(P | S∗) and H(S∗ | P). We compare the values of these conditional en-
tropies with the values of the conditional entropies H(R | S∗) and H(S∗ | R) for a
random segmentation R. We conclude that P is similar to S∗, and thus interesting, if
the values of both H(P | S∗) and H(S∗ | P) are smaller than H(R | S∗) and H(S∗ | R),
respectively, for a large majority of random segmentations R. Typically, 10 000 or
100 000 random segmentations are drawn, and if H(P | S∗) < H(R | S∗) in all but
a couple of cases, then P is deemed interesting. The percentage of cases violating
H(P | S∗) < H(R | S∗) can be interpreted as a p value, and a small value denotes
statistical significance.

The example applications in [20] include isochore detection and the discovery
of coding-noncoding structure. The authors obtain segmentations of relevant se-
quences by applying different techniques, and use alternative features to segment
on. They show that some of the obtained segmentations are very similar to the un-
derlying true segmentations, and this similarity is statistically significant. For some
other segmentations, they show that equally good results are likely to appear by
chance.

8 Finding Segmentations of Sequences 193

8.9 Model Selection by BIC and Cross-validation

One of the key questions in segmentation is choosing the number of segments to use.
Important features of the sequence may be lost when representing it with too few
segments, while using too many segments yields uninformative and overly complex
segmentations.

Choosing the number of segments is essentially a model selection task. Haimi-
nen and Mannila [19] present extensive experimental studies on two standard model
selection techniques, namely Bayesian Information Criterion (BIC) and cross-
validation (CV).

Bayesian Information Criterion (BIC) seeks a balance between model complex-
ity and the accuracy of the model by including a penalty term for the number of
parameters. BIC is defined as [39] BIC =−2lnL+K lnN +C where L is the maxi-
mized likelihood of the model with K free parameters, N is the sample size and C is
a small constant that is often omitted. The model with the smallest BIC is optimal
in terms of complexity.

Cross-validation is an intuitive iterative method for model selection: A subset of
the data is used to train the model. The goodness of fit on the remaining data, also
called test data, is then evaluated. This is repeated for a number of times, in each of
which the data are randomly split into a training set and test set. In an outer loop, the
complexity of the model (here, the number of segments) is varied. When the model
complexity is unnecessarily high, the model overfits the training data and fails to
represent the test data. Alternatively, if the model complexity is too low, the test
data cannot be faithfully represented either. CV is a very general method in that no
assumptions regarding the data are made, and any cost function can be used. The
use of CV has been discussed by e.g. Stone [42] and Smyth [41].

The results in [19] show that these methods often find the correct number of
piecewise constant segments on generated real-valued, binary, and categorical se-
quences. Also segments having the same means but different variances can be iden-
tified. Furthermore, they demonstrate the effect of linear trends and outliers on the
results; both phenomena are frequent in real data.

The results indicate that BIC is fairly sensitive to outliers, and that CV in general
is more robust. Intuitive segmentation results are given for real DNA sequences with
respect to changes in their codon, G+C, and bigram frequencies, as well as copy-
number variation from CGH data.

8.10 Bursty Sequences

In the earlier sections, we have assumed some specific constraints on the segments,
making the problem more applicable to the human eye. Haiminen et al [21] have also
studied constraining the nature of the sequence itself, outside the task of segmenting
the sequence. An intuitive subset of sequences is one in which bursts of activity
occur in time, and a natural question then is, how to formally define and measure

194 Ella Bingham

this. The problem setting applies to event sequences: Given a set of possible event
types, an event sequence is a sequence of pairs (r, t), where r is an event type and t is
the occurrence location, or time, of the event. Moreover, a bursty event sequence is
one in which “bursts” of activity occur in time: different types of events often occur
close together.

Bursty sequences arise, e.g., when studying potential transcription factor binding
sites (events) of certain transcription factors (event types) in a DNA sequence. These
events tend to occur in bursts. Tendencies for co-occurrence of binding sites of two
or more transcription factors are interesting, as they may imply a co-operative role
between the transcription factors in regulatory processes.

Haiminen et al [21] measure the co-occurrence of event types r and r′ either by
(i) dividing the sequence into non-overlapping windows of a fixed length w and
counting the number of windows that contain at least one event of type r and at
least one event of type r′, or by (ii) counting the number of events of type r that are
followed by at least one event of type r′ within distance w, or by (iii) counting the
number of events of type r that are followed or preceded by at least one event of
type r′ within distance w.

In order to determine the significance of a co-occurrence score, we need a null
model to estimate the distribution of the score values and then decide the signifi-
cance of an individual value. Haiminen et al [21] define three such null models that
apply to any co-occurrence score, extending previous work on null models. These
models range from very simple ones to more complex models that take the bursti-
ness of sequences into account. The authors evaluate the models and techniques
on synthetic event sequences, and on real data consisting of potential transcription
factor binding sites.

8.11 Conclusion

In this chapter, we have discussed several variants of the problem of sequence seg-
mentation. An optimal segmentation method, applicable when no specific restric-
tions are assumed, is segmentation using dynamic programming [2]. However, this
is computationally burdensome for very long sequences. Also, it is often the case
that by adding some constraints on the output segmentation, or by making small
modifications to the problem, the output of the segmentation is more interpretable
for the human eye. This chapter is a survey of different approaches for segmentation
suggested by researchers at Helsinki Institute for Information Technology during the
years 2004 to 2008.

In Section 8.2 we described an efficient segmentation method, with a proven
quality of the solution it provides when representing the original data [43]. We then
discussed three constraints on the problem setting of segmentation, to make the
end result more tractable, in Sections 8.3 to 8.5. Using these constraints we wish to
restrict the values that the representatives (that is, means or medians, typically) of the
segments can assume. First, the representatives of multidimensional segments can

8 Finding Segmentations of Sequences 195

be presented as different combinations of a small set of basis vectors [5]. Secondly,
a small set of models can be used to predict the data values in the segments [25].
Thirdly, one can require the representatives of the sequences to follow a unimodal
or monotonic curve [18].

Then, instead of constraints on the representatives per se, we discussed small
modifications to the basic problem setting in Sections 8.6 and 8.7: By allowing small
reorderings of the data points in a sequence, we can decrease the reconstruction error
of the segmentation, and in some application areas these reorderings are very natural
[15]. In some cases there is a need to choose between several different outputs of
segmentation algorithms, and a way to overcome this is to combine the outputs
into one aggregate segmentation [33]. A very important and nontrivial task is to
characterize the quality of a segmentation in statistical terms, and randomization
provides an answer here [20] (Section 8.8). Choosing the number of segments is
a question of model selection, and experimental results were discussed in Section
8.9 [19]. Finally in Section 8.10, instead of constraining the representatives of the
sequences, we constrained the nature of the sequence itself, when determining when
an event sequence is bursty or not [21].

Acknowledgements The author would like to thank Aristides Gionis, Niina Haiminen, Heli Hi-
isilä, Saara Hyvönen, Taneli Mielikäinen, Evimaria Terzi, Panayiotis Tsaparas and Heikki Mannila
for their work in the papers discussed in this survey. The comments given by the anonymous re-
viewers have greatly helped to improve the manuscript.

References

1. Miriam Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and Edward Silverman. An empiri-
cal distribution function for sampling with incomplete information. Annals of Mathematical
Statistics, 26(4):641–647, 1955.

2. Richard Bellman. On the approximation of curves by line segments using dynamic program-
ming. Communications of the ACM, 4(6), 1961.

3. K.D. Bennett. Determination of the number of zones in a biostratigraphical sequence. New
Phytologist, 132(1):155–170, 1996.

4. Pedro Bernaola-Galván, Ramón Román-Roldán, and José L. Oliver. Compositional segmen-
tation and long-range fractal correlations in dna sequences. Phys. Rev. E, 53(5):5181–5189,
1996.

5. Ella Bingham, Aristides Gionis, Niina Haiminen, Heli Hiisilä, Heikki Mannila, and Evimaria
Terzi. Segmentation and dimensionality reduction. In 2006 SIAM Conference on Data Mining,
pages 372–383, 2006.

6. Harmen J. Bussemaker, Hao Li, and Eric D. Siggia. Regulatory element detection using a
probabilistic segmentation model. In Proceedings of the Eighth International Conference on
Intelligent Systems for Molecular Biology, pages 67–74, 2000.

7. A. Cantoni. Optimal curve fitting with piecewise linear functions. IEEE Transactions on
Computers, C-20(1):59–67, 1971.

8. K. Chakrabarti, E. Keogh, S. Mehrotra, and M. J. Pazzani. Locally adaptive dimensionality
reduction for indexing large time series databases. ACM Transactions on Database Systems,
27(2):188–228, 2002.

9. G.A. Churchill. Stochastic models for heterogenous dna sequences. Bulletin of Mathematical
Biology, 51(1):79–94, 1989.

196 Ella Bingham

10. Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley, 1991.
11. David Douglas and Thomas Peucker. Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. Canadian Cartographer, 10(2):112–122,
1973.

12. Sorabh Gandhi, Luca Foschini, and Subhash Suri. Space-efficient online approximation of
time series data: Streams, amnesia, and out-of-order. In Proceedings of the 26th IEEE Inter-
national Conference on Data Engineering (ICDE), 2010.

13. Aristides Gionis and Heikki Mannila. Finding recurrent sources in sequences. In Proceedings
of the Sventh Annual International Conference on Computational Biology (RECOMB 2003),
2003.

14. Aristides Gionis, Heikki Mannila, Taneli Mielikäinen, and Panayiotis Tsaparas. Assessing
data mining results via swap randomization. ACM Transactions on Knowledge Discovery
from Data (TKDD), 1(3), 2007. Article No. 14.

15. Aristides Gionis and Evimaria Terzi. Segmentations with rearrangements. In SIAM Data
Mining Conference (SDM) 2007, 2007.

16. S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In Symposium on the Theory
of Computing (STOC), pages 471–475, 2001.

17. Niina Haiminen. Mining sequential data — in search of segmental structure. PhD Thesis,
Department of Computer Science, University of Helsinki, March 2008.

18. Niina Haiminen and Aristides Gionis. Unimodal segmentation of sequences. In ICDM ’04:
Proceedings of the Fourth IEEE International Conference on Data Mining, pages 106–113,
2004.

19. Niina Haiminen and Heikki Mannila. Evaluation of BIC and cross validation for model selec-
tion on sequence segmentations. International Journal of Data Mining and Bioinformatics.
In press.

20. Niina Haiminen, Heikki Mannila, and Evimaria Terzi. Comparing segmentations by applying
randomization techniques. BMC Bioinformatics, 8(171), 23 May 2007.

21. Niina Haiminen, Heikki Mannila, and Evimaria Terzi. Determining significance of pairwise
co-occurrences of events in bursty sequences. BMC Bioinformatics, 9:336, 2008.

22. Trevor Hastie, R. Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer, 2001.

23. J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmäki, and H. T.T. Toivonen. Time series seg-
mentation for context recognition in mobile devices. In Proceedings of the 2001 IEEE Inter-
national Conference on Data Mining, pages 203–210, 2001.

24. Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Program-
ming, 22(1):148–162, 1982.

25. Saara Hyvönen, Aristides Gionis, and Heikki Mannila. Recurrent predictive models for se-
quence segmentation. In The 7th International Symposium on Intelligent Data Analysis, Lec-
ture Notes in Computer Science. Springer, 2007.

26. Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for seg-
menting time series. In Proceedings of the 2001 IEEE International Conference on Data
Mining, pages 289–296, 2001.

27. Eamonn Keogh and S. Kasetty. On the need for time series data mining benchmarks: A survey
and empirical demonstration. In Proceedings of the ACM SIGKDD ’02, pages 102–111, July
2002.

28. Eamonn Keogh and Michael J. Pazzani. An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback. In Proceedings of
the ACM SIGKDD ’98, pages 239–243, August 1998.

29. Victor Lavrenko, Matt Schmill, Dawn Lawrie, Paul Ogilvie, David Jensen, and James Allan.
Mining of concurrent text and time series. In In proceedings of the 6th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining Workshop on Text Mining,
pages 37–44, 2000.

30. W. Li. DNA segmentation as a model selection process. In Proceedings of the Fifth Annual
International Conference on Computational Biology (RECOMB 2001), pages 204 – 210, 2001.

8 Finding Segmentations of Sequences 197

31. Jyh-Han Lin and Jeffrey Scott Vitter. ε-approximations with minimum packing constraint
violation. In Proc. ACM Symposium on Theory of Computing (STOC’92), pages 771–781,
1992.

32. Jun S. Liu and Charles E. Lawrence. Bayesian inference on biopolymer models. Bioinformat-
ics, 15(1):38–52, 1999.

33. Taneli Mielikäinen, Evimaria Terzi, and Panayiotis Tsaparas. Aggregating time partitions.
In The Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2006), pages 347–356, 2006.

34. Markus Ojala, Niko Vuokko, Aleksi Kallio, Niina Haiminen, and Heikki Mannila. Random-
ization of real-valued matrices for assessing the significance of data mining results. In Proc.
SIAM Data Mining Conference (SDM’08), pages 494–505, 2008.

35. T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel. Online amnesic ap-
proximation of streaming time series. In ICDE 2004: Proceedings of the 20th International
Conference on Data Engineering, pages 338–349, 2004.

36. Themis Palpanas, Michail Vlachos, Eamonn Keogh, and Dimitrios Gunopulos. Stream-
ing time series summarization using user-defined amnesic functions. IEEE Transactions on
Knowledge and Data Engineering, 20(7):992–1006, 2008.

37. V.E. Ramensky, V.J. Makeev, M.A. Roytberg, and V.G. Tumanyan. DNA segmentation
through the Bayesian approach. Journal of Computational Biology, 7(1-2):215–231, 2000.

38. Marko Salmenkivi, Juha Kere, and Heikki Mannila. Genome segmentation using piecewise
constant intensity models and reversible jump MCMC. Bioinformatics (European Conference
on Computational Biology), 18(2):211–218, 2002.

39. G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

40. Hagit Shatkay and Stanley B. Zdonik. Approximate queries and representations for large
data sequences. In ICDE ’96: Proceedings of the Twelfth International Conference on Data
Engineering, pages 536–545, 1996.

41. P. Smyth. Model selection for probabilistic clustering using cross-validated likelihood. Statis-
tics and Computing, 9:63–72, 2000.

42. M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society: Series B, 36(2):111–147, 1974.

43. Evimaria Terzi and Panayiotis Tsaparas. Efficient algorithms for sequence segmentation. In
2006 SIAM Conference on Data Mining, pages 314–325, 2006.

44. V. Vazirani. Approximation algorithms. Springer, 2003.
45. Y.-L. Wu, D. Agrawal, and A. El Abbadi. A comparison of DFT and DWT based similarity

search in time series databases. In Proceedings of the Ninth ACM International Conference
on Information and Knowledge Management (CIKM’00), pages 488–495, November 2000.

46. B. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary LP-norms. In Proceedings
of the 26th International Conference on Very Large Databases (VLDB’00), pages 385–394,
September 2000.

Chapter 9

Mining Constrained Cross-Graph Cliques in

Dynamic Networks

Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

Abstract Three algorithms — CUBEMINER, TRIAS, and DATA-PEELER — have
been recently proposed to mine closed patterns in ternary relations, i.e., a gener-
alization of the so-called formal concept extraction from binary relations. In this
paper, we consider the specific context where a ternary relation denotes the value of
a graph adjacency matrix (i. e., a Vertices×Vertices matrix) at different timestamps.
We discuss the constraint-based extraction of patterns in such dynamic graphs. We
formalize the concept of δ -contiguous closed 3-clique and we discuss the availabil-
ity of a complete algorithm for mining them. It is based on a specialization of the
enumeration strategy implemented in DATA-PEELER. Indeed, the relevant cliques
are specified by means of a conjunction of constraints which can be efficiently ex-
ploited. The added-value of our strategy for computing constrained clique patterns
is assessed on a real dataset about a public bicycle renting system. The raw data
encode the relationships between the renting stations during one year. The extracted
δ -contiguous closed 3-cliques are shown to be consistent with our knowledge on
the considered city.

9.1 Introduction

Mining binary relations (often encoded as Boolean matrices) has been intensively
studied. For instance, a popular application domain concerns basket data analysis
and mining tasks on Transactions × Products relations. In a more general setting,
binary relations may denote relationships between objects and a given set of prop-
erties giving Objects × Properties matrices. Many knowledge discovery processes
from potentially large binary relations have been considered. We are interested in

Loı̈c Cerf · Bao Tran Nhan Nguyen · Jean-François Boulicaut
Université de Lyon, CNRS, INRIA
INSA-Lyon, LIRIS Combining, UMR5205, F-69621, France
e-mail: {lcerf,jboulica}@liris.cnrs.fr,baonhan@pmail.ntu.edu.sg

199
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_9, © Springer Science+Business Media, LLC 2010

200 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

descriptive approaches that can be based on pattern discovery methods. Pattern types
can be frequent itemsets (see, e. g., [1, 22]), closed itemsets or formal concepts (see,
e. g., [15, 25, 5]), association rules (see, e. g., [2]) or their generalizations like, e. g.,
[3]. Interestingly, when looking at the binary relation as the encoding of a bi-partite
graph (resp. a graph represented by its adjacency matrix), some of these patterns can
be interpreted in terms of graph substructures. A typical example that is discussed in
this chapter concerns the analogy between formal concepts and maximal bi-cliques
(resp. cliques).

Constraint-based mining is a popular framework for supporting relevant pattern
discovery thanks to user-defined constraints (see, e. g., [6]). It provides more in-
teresting patterns when the analyst specifies his/her subjective interestingness by
means of a combination of primitive constraints. This is also known as a key is-
sue to achieve efficiency and tractability. Some constraints can be deeply pushed
into the extraction process such that it is possible to get complete (every pattern
which satisfies the user-defined constraint is computed) though efficient algorithms.
As a result, many efficient algorithms are available for computing constrained pat-
terns from binary relations. Among others, this concerns constraint-based mining of
closed patterns from binary relations (see, e. g., [23, 28, 4, 25, 26]).

It is clear that many datasets of interest correspond to n-ary relations where n≥ 3.
For instance, a common situation is that space and time information are available
such that we get the generic setting of Objects × Properties × Dates × Places 4-
ary relations. In this chapter, we consider the encoding of dynamic graphs in terms
of collections of adjacency matrices, hence a ternary relation Vertices × Vertices
× Date. The discovery of closed patterns from ternary relations has been recently
studied. From a semantics perspective, such patterns are a straightforward extension
of formal concepts. Computing them is however much harder. To the best of our
knowledge, the extension towards higher arity relations has given rise to three pro-
posals, namely CUBEMINER [17] or TRIAS [16] for ternary relations, and DATA-
PEELER for arbitrary n-ary relations [10, 11]. A major challenge is then to exploit
user-defined constraints during the search of application relevant closed patterns. We
assume that the state-of-the-art approach is the DATA-PEELER enumeration strategy
which can mine closed patterns under a large class of constraints called piecewise
(anti)-monotone constraints [11].

In this chapter, we consider that data (i. e., a ternary relation) denote a dynamic
graph. We assume that the encoded graphs have a fixed set of vertices and that di-
rected links can appear and/or disappear at the different timestamps. Furthermore,
we focus on clique patterns which are preserved along almost-contiguous times-
tamps. For instance, it will provide interesting hypothesis about sub-networks of
stations within a bicycle renting system.

We have three related objectives.

• First, we want to illustrate the genericity of the DATA-PEELER algorithm. We
show that relevant pattern types can be specified as closed patterns that fur-
ther satisfy other user-defined constraints in the ternary relation that denotes the
dynamic graph. We study precisely the pattern type of δ -contiguous closed 3-
cliques, i. e., maximal sets of vertices that are linked to each other and that run

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 201

along some “almost” contiguous timestamps. To denote a clique pattern, a closed
pattern will have to involve identical sets of vertices (using the so-called symme-
try constraint). Notice that being a closed pattern will be also expressed in terms
of two primitive constraints (namely the connection and closedness constraints)
that are efficiently processed by the DATA-PEELER enumeration. We do not pro-
vide all the details about the algorithm (see [11] for an in-depth presentation)
but its most important characteristics are summarized and we formalize the con-
straint properties that it can exploit efficiently. Doing so, we show that the quite
generic framework of arbitrary n-ary relation mining can be used to support spe-
cific analysis tasks in dynamic graphs.

• Next, our second objective is to discuss the specialization of the algorithm to
process more efficiently the conjunction of the connection, closedness, symme-
try and contiguity constraints, i. e., what can be done to specialize the generic
mechanisms targeted to closed pattern discovery from arbitrary n-ary relations
when we are looking for preserved cliques in Vertices × Vertices × Date ternary
relations. This technical contribution enables to discuss efficiency issues and op-
timized constraint checking.

• Last but not the least, we show that this algorithmic contribution can be used in
concrete applications. Graph mining is indeed a popular topic. Many researchers
consider graph pattern discovery from large collections of graphs while others
focus on data analysis techniques for one large graph. In the latter case, especially
in the context of dynamic graphs, we observe two complementary directions of
research. On one hand, global properties of such graphs are studied like power-
law distribution of node degree or diameters (see, e. g., [20]). On another hand,
it is possible to use pattern discovery techniques to identify local properties in
the graphs (see, e. g., [27]). We definitively contribute to this later approach. We
compute δ -contiguous closed 3-cliques in a real-life dynamic graph related to
bicycle renting in a large European city. We illustrate that these usage patterns
can be interpreted thanks to domain knowledge and that they provide a feedback
on emerging sub-networks.

The rest of the paper is organized as follows. We formalize the mining task and
we discuss the type of constraints our algorithm handles in Sect. 9.2. In Section 9.3,
we summarize the fundamental mechanisms used in the DATA-PEELER algorithm.
Section 9.4 details how the δ -contiguity constraint is enforced. Section 9.5 describes
the strategy for computing closed 3-cliques by pushing various primitive constraints
into the enumeration strategy. Section 9.6 provides an experimental validation on a
real dataset. Related work is discussed in Sect. 9.7, and Sect. 9.8 briefly concludes.

9.2 Problem Setting

Let T ∈R
|T | a finite set of timestamps. Let N a set of nodes. A (possibly directed)

graph is uniquely defined by its adjacency matrix A∈{0,1}N ×N . A dynamic graph
involving the nodes of N along T is uniquely defined by the |T |-tuple (At)t∈T

202 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

A0 A0.5 A2 A3

Fig. 9.1 Example of a dynamic directed graph (N = {a,b,c,d}, T = {0,0.5,2,3})

gathering the adjacency matrices of the graph at every timestamp t ∈ T . Visually,
such a stack of adjacency matrices can be seen as a |T |× |N |× |N | cube of 0/1
values. We write at,n1,n2 = 1 (resp. at,n1,n2 = 0) when, at the timestamp t, a link from
n1 to n2 is present (resp. absent).

Example 9.1. Figure 9.1 depicts a dynamic directed graph involving four nodes a,
b, c and d. Four snapshots of this graph are available at timestamps 0, 0.5, 2 and 3.
Table 9.1 gives the related 4-tuple (A0,A0.5,A2,A3).

Visually, a closed 3-set (T,N1,N2) ∈ 2T ×2N ×2N appears as a combinatorial
sub-cube of the data (modulo arbitrary permutations on any dimension) satisfying
both the connection and the closedness primitive constraints. Informally, it means
that T ×N1×N2 only contains ’1’ values (connection), and any “super-cube” of
(T,N1,N2) violates the connection constraint (closedness). Let us define them more
formally.

Definition 9.1 (Cconnected). A 3-set (T,N1,N2) is said connected, denoted
Cconnected(T,N1,N2), iff ∀(t,n1,n2) ∈ T ×N1×N2,at,n1,n2 = 1.

Definition 9.2 (Cclosed). It is said that a 3-set (T,N1,N2) is closed, denoted

Cclosed(T,N1,N2), iff

⎧⎪⎨
⎪⎩
∀t ∈T \T,¬Cconnected({t},N1,N2)

∀n1 ∈N \N1,¬Cconnected(T,{n1},N2)

∀n2 ∈N \N2,¬Cconnected(T,N1,{n2})
.

A closed 3-set can now be formally defined.

Table 9.1 (A0,A0.5,A2,A3) related to the dynamic graph depicted Fig. 9.1

a b c d a b c d a b c d a b c d
a 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1
b 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1
c 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
d 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1

A0 A0.5 A2 A3

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 203

Definition 9.3 (Closed 3-set). (T,N1,N2) is a closed 3-set iff it satisfies the con-
junction Cconnected(T,N1,N2)∧Cclosed(T,N1,N2).

Example 9.2. ({0,2,3},{a,b,c,d},{d}) is a closed 3-set in the toy dataset from
Table 9.1: ∀(t,n1,n2) ∈ {0,2,3} × {a,b,c,d} × {d}, we have at,n1,n2 = 1, and⎧⎪⎨
⎪⎩
∀t ∈ {0.5},¬Cconnected({t},{a,b,c,d},{d})
∀n1 ∈ /0,¬Cconnected({0,2,3},{n1},{d})
∀n2 ∈ {a,b,c},¬Cconnected({0,2,3},{a,b,c,d},{n2})

.

({2,3},{a,c,d},{a,c,d}) and ({0,3},{b,d},{b,d}) are two other closed 3-sets.
({0.5,2,3},{c,d},{c,d}) is not a closed 3-set because it violates Cclosed. Indeed
Cconnected({0.5,2,3},{c,d},{a}) holds, i. e., the third set of the pattern can be ex-
tended with a.

Given δ ∈R+, a δ -contiguous 3-set is such that it is possible to browse the whole
subset of timestamps by jumps from one timestamp to another without exceeding a
delay of δ for each of these jumps.

Definition 9.4 (δ -contiguity). A 3-set (T,N1,N2) is said δ -contiguous, denoted
Cδ -contiguous(T,N1,N2), iff ∀t ∈ [min(T),max(T)],∃t ′ ∈ T s.t. |t− t ′| ≤ δ .

Notice that t does not necessarily belong to T (if |T | ≥ 2, [min(T),max(T)] is
infinite). Cconnected ∧Cδ -contiguous being stronger than Cconnected alone, a related and
weaker closedness constraint can be defined. Intuitively, a δ -closed 3-set is closed
w.r.t. both N sets and to the timestamps of T in the vicinity of those inside the 3-
set. Hence, a timestamp that is too far away (delay exceeding δ) from any timestamp
inside the 3-set, cannot prevent its δ -closedness.

Definition 9.5 (δ -closedness). It is said that a 3-set (T,N1,N2) is δ -closed, denoted
Cδ -closed(T,N1,N2), iff⎧⎪⎨
⎪⎩
∀t ∈T \T,(∃t ′ ∈ T s. t. |t− t ′| ≤ δ ⇒¬Cconnected({t},N1,N2))

∀n1 ∈N \N1,¬Cconnected(T,{n1},N2)

∀n2 ∈N \N2,¬Cconnected(T,N1,{n2})
.

Definition 9.6 (δ -contiguous closed 3-set). (T,N1,N2) is a δ -contiguous closed 3-
set iff it satisfies the conjunction Cconnected∧Cδ -contiguous∧Cδ -closed.

A δ -contiguous closed 3-set is an obvious generalization of a closed 3-set. In-

deed, ∀δ ≥max(T)−min(T),

{
Cδ -contiguous ≡ true
Cδ -closed ≡ Cclosed

.

Example 9.3. ({2,3},{a,b,c,d},{d}) is a 1.75-contiguous closed 3-set in the toy
dataset from Table 9.1. However, it is neither 0.5-contiguous (the timestamps 2 and
3 are not close enough) nor 2-closed (0 can extend the set of timestamps). This
illustrates the fact that the number of δ -contiguous closed 3-sets is not monotone in
δ .

204 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

We want to extract sets of nodes that are entirely interconnected. In this context,
a 3-set (T,N1,N2) where N1 �= N2 is irrelevant and a symmetry constraint must be
added.

Definition 9.7 (Symmetry). A 3-set (T,N1,N2) is said symmetric, denoted
Csymmetric(T,N1,N2), iff N1 = N2.

Again, let us observe that Cconnected∧Cδ -contiguous∧Csymmetric being stronger than
Cconnected∧Cδ -contiguous, a related and weaker closedness constraint can be defined.
Intuitively, if not both the row and the column pertaining to a node n can simultane-
ously extend a 3-set without breaking Cconnected, the closedness is not violated.

Definition 9.8 (Symmetric δ -closedness). It is said that a 3-set (T,N1,N2) is sym-
metric δ -closed, denoted Csym-δ -closed(T,N1,N2), iff{
∀t ∈T \T,(∃t ′ ∈ T s. t. |t− t ′| ≤ δ ⇒¬Cconnected({t},N1,N2))

∀n ∈N \ (N1∩N2),¬Cconnected(T,N1∪{n},N2∪{n}) .

Definition 9.9 (δ -contiguous closed 3-clique). It is said that (T,N1,N2) is a δ -
contiguous closed 3-clique iff it satisfies Cconnected ∧ Cδ -contiguous ∧ Csymmetric ∧
Csym-δ -closed.

Example 9.4. Two out of the three closed 3-sets illustrating Ex. 9.2 are symmetric:
({2,3},{a,c,d},{a,c,d}) and ({0,3},{b,d},{b,d}). In Ex. 9.2, it was shown that
({0.5,2,3},{c,d},{c,d}) is not closed w.r.t. Cclosed. However it is symmetric 1.75-
closed. Indeed, the node a cannot simultaneously extend its second and third sets of
elements without violating Cconnected.

Problem Setting. Assume (At)t∈T ∈ {0,1}T ×N ×N and δ ∈ R+. This chap-
ter deals with computing the complete collection of the δ -contiguous closed 3-
cliques which hold in this data. In other terms, we want to compute every 3-set
which satisfies the conjunction of the four primitive constraints defined above, i. e.,
Cconnected ∧Cδ -contiguous ∧Csymmetric ∧Csym-δ -closed. In practical settings, such a col-
lection is huge. It makes sense to constrain further the extraction tasks (i. e., to also
enforce a new user-defined constraint C) to take subjective interestingness into ac-
count and to support the focus on more relevant cliques. Thus, the problem becomes
the complete extraction of the δ -contiguous closed 3-cliques satisfying C .

Instead of writing, from scratch, an ad-hoc algorithm for computing constrained
δ -contiguous closed 3-cliques, let us first specialize the generic closed n-set extrac-
tor DATA-PEELER [10, 11]. Its principles and the class of constraints it can exploit
are stated in the next section. In Sect. 9.4, we study its adaptation to δ -contiguous
closed 3-set mining, and Sect. 9.5 presents how to force the closed 3-sets to be
symmetric and symmetric δ -closed.

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 205

9.3 DATA-PEELER

9.3.1 Traversing the Search Space

DATA-PEELER [11] aims to extract a complete collection of constrained closed n-
sets from an n-ary relation. This section only outlines the basic principles for enu-
merating the candidates in the particular case n = 3. The interested reader would re-
fer to [11] for detailed explanations. To emphasize the generality of DATA-PEELER,
the three sets T , N and N are, here, replaced by D1, D2 and D3. Indeed, when
extracting closed 3-sets, there is no need for D1 to contain real numbers, and for D2

and D3 to be identical. These three sets must only be finite.
Like many complete algorithms for local pattern detection, DATA-PEELER is

based on enumerating candidates in a way that can be represented by a binary tree
where:

• at every node, an element e is enumerated;
• every pattern extracted from the left child does contain e;
• every pattern extracted from the right child does not contain e.

This division of the extraction into two sub-problems partitions the search space,
i. e., the union of the closed 3-sets found in both enumeration sub-tree are exactly
the closed 3-sets to be extracted from the parent node (correctness) and each of
these closed 3-sets is found only once (uniqueness). In the case of DATA-PEELER,
the enumerated element e can always be freely chosen among all the elements (from
all three sets D1, D2 and D3) remaining in the search space.

Three 3-sets U = (U1,U2,U3), V = (V 1,V 2,V 3) and S = (S 1,S 2,S 3), are
attached to every node. The 3-set U ∈ 2D1 × 2D2 × 2D3

contains the elements that
are contained in any closed 3-set extracted from the node. The 3-set V ∈ 2D1 ×
2D2 × 2D3

contains the elements that may be present in the closed 3-sets extracted
from the node, i. e., the search space. The 3-set S ∈ 2D1 ×2D2 ×2D3

contains the
elements that may prevent the 3-sets, extracted from this node, from being closed. To
simplify the notations we will often assimilate a 3-set (S1,S2,S3) with S1∪S2∪S3.
For example, given two 3-set A = (A1,A2,A3) and B = (B1,B2,B3) and an element
e (e ∈D1∪D2∪D3), we write:

• e ∈ A instead of e ∈ A1∪A2∪A3

• A\{e} instead of

⎧⎪⎨
⎪⎩
(A1 \{e},A2,A3) if e ∈D1

(A1,A2 \{e},A3) if e ∈D2

(A1,A2,A3 \{e}) if e ∈D3

• A∪B instead of (A1∪B1,A2∪B2,A3∪B3)

Figure 9.2 depicts the enumeration. The 3-sets attached to a child node are com-
puted from its parent’s analogous 3-sets, the enumerated element and the data (for
the left children only). In particular, in the left child, DATA-PEELER ensures that U
can receive any element from V without breaking Cconnected. Hence, at every node,

206 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

U
V
S

Parent node

U ∪ {e}
{v ∈ V \ {e}|Cconnected(U ∪ {e} ∪ {v})}

{s ∈ S|Cconnected(U ∪ {e} ∪ {s})}
Left child

e ∈ U

U
V \ {e}
S ∪ {e}

Right child

e �∈ U

Fig. 9.2 Enumeration of any element e ∈V

the 3-set U is connected, i. e., Cconnected(U). To ensure that the extracted 3-sets are
closed, DATA-PEELER checks, at every node, whether the 3-set U∪V is closed, i. e.,
Cclosed(U ∪V). To do so, DATA-PEELER checks whether ∀s ∈S ,¬Cconnected(U ∪
V ∪ {s}). If not, every 3-set descendant from this node is not closed. Indeed,
∀V ′ ⊆V,∃s ∈S |Cconnected(U ∪V ∪{s})⇒∃s ∈S |Cconnected(U ∪V ′ ∪{s}). In this
case DATA-PEELER safely prunes the sub-tree rooted by the node.

The enumeration tree is traversed in a depth first way. At the root node, U =
(/0, /0, /0), V = (D1,D2,D3) ans S = (/0, /0, /0). At a given node, if V = (/0, /0, /0) then
this node is a leaf and U is a closed 3-set. The algorithm in Table 9.2 sums up
DATA-PEELER’s principles.

Table 9.2 DATA-PEELER

Input: U,V,S
Output: All closed 3-sets containing the elements in U and, possibly, some elements in V and
satisfying C
if C may be satisfied by a 3-set descending from this node
∧Cclosed(U ∪V) then

if V = (/0, /0, /0) then

output(U)
else

Choose e ∈V
DATA-PEELER(U ∪{e},{v ∈ V \{e}|Cconnected(U ∪{e}∪{v})}},{s ∈S |Cconnected(U ∪
{e}∪{s})})
DATA-PEELER(U,V \{e},S ∪{e})

end if

end if

C is a user-defined constraint which allows to focus on relevant patterns while
decreasing the extraction time by pruning enumeration sub-trees. To be able to ef-
ficiently check whether a 3-set descendant from a node satisfies C , C must be a
piecewise (anti)-monotone constraint.

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 207

9.3.2 Piecewise (Anti)-Monotone Constraints

DATA-PEELER can efficiently check any piecewise (anti)-monotone constraint C .
By “efficiently”, we mean it sometimes can, from the 3-sets U and V attached to a
node (no access to the data), affirm that the enumeration sub-tree rooted by this node
is empty of (not necessarily connected or closed) 3-sets satisfying C . When the node
is a leaf, it, not only sometimes, but always can check a piecewise (anti)-monotone
constraint, hence ensuring the correctness, i. e., every extracted closed 3-set verifies
C . Let us first define the monotonicity and anti-monotonicity per argument.

Definition 9.10 ((Anti)-monotonicity per argument). A constraint C is said mono-
tone (resp. anti-monotone) w.r.t. the ith argument iff it is monotone (resp. anti-
monotone) when all its arguments but the ith are considered constant.

Example 9.5. Consider the following constraint, which forces the patterns to cover
at least eight 3-tuples in the relation:

A 3-set (D1,D2,D3) is 8-large⇔ |D1×D2×D3| ≥ 8 .

It is monotone on the first argument. Indeed, ∀(D1,D1′,D2,D3)∈ 2D1×2D1×2D2×
2D3

,D1 ⊆ D1′ ⇒ (|D1×D2×D3| ≥ 8⇒ |D1′ ×D2×D3| ≥ 8). It is monotone on
the second and on the third argument too.

When a constraint C is either monotone or anti-monotone on every argument,
DATA-PEELER can efficiently check it. At a given node, it replaces the ith argument
by:

• Ui∪V i if C is monotone on this argument;
• Ui if C is anti-monotone on this argument.

In this way, a 3-set (D1,D2,D3) is obtained (∀i ∈ {1,2,3},Di ∈ {Ui,Ui ∪V i}). If
C (D1,D2,D3) then at least this 3-set, descendant from the current node, verifies C .
Otherwise the sub-tree rooted by the current node can safely be pruned: it does not
contain any 3-set satisfying C .

Example 9.6. Given the two 3-sets U = (U1,U2,U3) and V = (V 1,V 2,V 3) attached
to a node, DATA-PEELER checks the 8-large constraint (defined in Ex. 9.5), by test-
ing whether |U1∪V 1|× |U2∪V 2|× |U3∪V 3| ≥ 8.

The class of piecewise (anti)-monotone constraints contains every constraint
which is either monotone or anti-monotone on each of its arguments. But it con-
tains many other useful constraints. The definition of piecewise (anti)-monotonicity
relies on attributing a separate argument to every occurrence of every variable and,
then, proving that the obtained constraint is (anti)-monotone w.r.t. each of its argu-
ments.

Definition 9.11 (Piecewise (anti)-monotonicity). A constraint C is piecewise (anti)-
monotone iff the rewritten constraint C ′, attributing a separate argument to every
occurrence of every variable in the expression of C , is (anti)-monotone w.r.t. each
of its arguments.

208 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

To illustrate this class of constraints, the particular context where D1 = T ∈ R
|T |
+

is chosen:

Example 9.7. Consider the following constraint C16−small-in-average:

C16−small-in-average(T,D2,D3)⇔ T �= /0∧ ∑t∈T t
|T | ≤ 16 .

This constraint is both monotone and anti-monotone on the second and the third
argument (neither D2 nor D3 appearing in the expression of the constraint) but it is
neither monotone nor anti-monotone on the first argument. However, giving three
different variables T1, T2 and T3 to each of the occurrences of T creates this new
constraint which is monotone on the first and third arguments (T1 and T3) and anti-
monotone on the second one (T2):

C ′
16−small-in-average(T1,T2,T3,D2,D3)≡ T1 �= /0∧ ∑t∈T2

t
|T3| ≤ 16 .

Therefore C16−small-in-average is piecewise (anti)-monotone.

DATA-PEELER can efficiently check any piecewise (anti)-monotone constraint.
First, it considers the analogous constraint where every occurrence of the three origi-
nal attributes is given a different variable. Then, it applies the rules stated previously,
i. e., at a given node, it replaces the ith argument by:

• Ui∪V i if C is monotone on this argument;
• Ui if C is anti-monotone on this argument.

The built assertion is false if, in the enumeration sub-tree that would derive from the
node, there is no 3-set satisfying the original constraint. Notice that, in this general
setting, the reverse may be false, i. e., the assertion can hold even if no 3-set descen-
dant from the node that verifies the original constraint. Therefore, it can be written
that DATA-PEELER relaxes the constraint to efficiently check it.

9.4 Extracting δ -Contiguous Closed 3-Sets

9.4.1 A Piecewise (Anti)-Monotone Constraint. . .

The constraint Cδ -contiguous (see Def. 9.4) is piecewise (anti)-monotone.

Proof. Let C ′
δ -contiguous the following constraint:

C ′
δ -contiguous(T1,T2,T3,N1,N2)

≡ ∀t ∈ [min(T1),max(T2)],∃t ′ ∈ T3 s.t. |t− t ′| ≤ δ .

The three arguments T1, T2 and T3 substitute the three occurrences of T (in the
definition of Cδ -contiguous). C ′

δ -contiguous is monotone in on its third argument and anti-

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 209

monotone on its first and second arguments (T ⊆ T1 ⇒min(T)≥min(T1) and T ⊆
T2 ⇒ max(T) ≤ max(T2)). Moreover, since the two last arguments of C ′

δ -contiguous
do not appear in its expression, this constraint is both monotone and anti-monotone
on them. Therefore, by definition, Cδ -contiguous is piecewise (anti)-monotone. &'

9.4.2 . . . Partially Handled in Another Way

Given the 3-sets U = (UT ,UN 1
,UN 2

) and V = (V T ,V N 1
,V N 2

) attached to the
current enumeration node, the proof of Sect. 9.4.1 suggests to check whether it is
possible to browse all elements in [min(UT),max(UT)]∩(UT ∪V T) by jumps of,
at most, δ .

By also taking a look “around” [min(UT ,max(UT)] ∩ (UT ∪V T), DATA-
PEELER can do better than just telling whether there is no hope in extracting δ -
contiguous 3-sets from the current enumeration node. It can prevent the traversal of
some of such nodes. More precisely, DATA-PEELER removes from V T the elements
that would, if enumerated, generate left children violating Cδ -contiguous. To do so, the
delay between t = min(UT) and before(t) = max({t ′ ∈V T |t ′ < t}) is considered.
If it is strictly greater than δ then every element in {t ′ ∈V T |t ′ < t} can be removed
from V T . Otherwise, the process goes on with t = before(t) until a delay greater
than δ is found or until t = min(V T) (in this case no element from V T lesser than
min(UT) is removed). In a reversed way, the elements in V T that are too great to
be moved to UT without violating Cδ -contiguous are removed as well. Algorithm 9.3
gives a more technical definition of DATA-PEELER’s way to purge V T thanks to
Cδ -contiguous.

In the same way, some elements of S T may be too far away from the extrema
of UT ∪V T to prevent the δ -closedness of any descending 3-set. These elements
are those that cannot be added to UT without making the current enumeration
node violate Cδ -contiguous. Hence, DATA-PEELER removes these elements by ap-
plying a procedure PURGE S T to every enumeration node. It is very similar to
PURGE V T (see Alg. 9.3) except that it is S T which is browsed backward from
before(min(UT ∪V T)) and forward from after(max(UT ∪V T)).

Example 9.8. Considering the extraction of 1-contiguous 3-sets from the example
dataset defined by Table 9.1, if the first enumerated element is 0.5, Fig. 9.3 de-
picts the root enumeration node and its two children. In the left child, PURGE V T

removes 2 and 3 from its attached V T set because 2−0.5 > 1.

These purges of V and S remind the way DATA-PEELER handles Cconnected.
Cconnected is anti-monotone on all its arguments, whereas Cδ -contiguous is only piece-
wise (anti)-monotone. Hence some enumeration nodes violating Cδ -contiguous may be
generated despite the calls of PURGE V T (whereas a generated enumeration node
always complies with Cconnected). As a consequence, checking, at every enumera-
tion node, whether Cδ -contiguous holds remains necessary. For the same reason, some

210 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

Table 9.3 PURGE V T

Input: UT ,V T

if UT �= /0 then

V T ← sort(V T)
t ←min(UT)
if t > min(V T) then

before(t)←max({t ′ ∈V T |t ′ < t}) {Binary search in V T }
while before(t) �= min(V T)∧ t−before(t)≤ δ do

t ← before(t)
before(t)← previous(V T , t) {V T is browsed backward}

end while

if t−before(t)> δ then

V T ←V T \ [min(V T),before(t)]
end if

end if

t ←max(UT)
if t < max(V T) then

after(t)←min({t ′ ∈V T |t ′ > t}) {Binary search in V T }
while after(t) �= max(V T)∧ after(t)− t ≤ δ do

t ← after(t)
after(t)← next(V T , t) {V T is browsed forward}

end while

if after(t)− t > δ then

V T ←V T \ [after(t),max(V T)]
end if

end if

end if

elements in the 3-sets V and/or S attached to both left and right children may be
purged thanks to Cδ -contiguous (whereas Cconnected cannot reduce the search space of
a right child).

U = (∅, ∅, ∅)
V = ({0, 0.5, 2, 3}, {a, b, c, d}, {a, b, c, d})

S = (∅, ∅, ∅)

U = ({0.5}, ∅, ∅)
V = ({0, 2, 3}, {a, b, c, d}, {a, b, c, d})

S = (∅, ∅, ∅)

0.5 ∈ U

U = ({0.5}, ∅, ∅)
V = ({0}, {a, b, c, d}, {a, b, c, d})

S = (∅, ∅, ∅)

Call of Purge V T Call of Purge ST

U = (∅, ∅, ∅)
V = ({0, 2, 3}, {a, b, c, d}, {a, b, c, d})

S = ({0.5}, ∅, ∅)

0.5 /∈ U

U = (∅, ∅, ∅)
V = ({0, 2, 3}, {a, b, c, d}, {a, b, c, d})

S = ({0.5}, ∅, ∅)

Call of Purge V T Call of Purge ST

Fig. 9.3 Enumeration of 0.5 ∈ V during the extraction of 1-contiguous 3-sets from the example
dataset defined by Table 9.1

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 211

9.4.3 Enforcing the δ -Closedness

The constraint Cδ -closed (see Def. 9.5) is piecewise (anti)-monotone.

Proof. Let C ′
δ -closed the following constraint:

C ′
δ -closed(T1,T2,T3,T4,N1

1 ,N
1
2 ,N

1
3 ,N

2
1 ,N

2
2 ,N

2
3)

≡

⎧⎪⎨
⎪⎩
∀t ∈T \T1,(∃t ′ ∈ T2 s.t. |t− t ′| ≤ δ ⇒¬Cconnected({t},N1

1 ,N
2
1))

∀n1 ∈N \N1
2 ,¬Cconnected(T3,{n1},N2

2)

∀n2 ∈N \N2
3 ,¬Cconnected(T4,N1

3 ,{n2})
.

C ′
δ -closed is anti-monotone on its second argument and monotone on all its other

arguments. Therefore, by definition, Cδ -closed is piecewise (anti)-monotone. &'
A way to enforce Cδ -closed follows from the proof of its piecewise (anti)-

monotonicity: an enumeration node, i. e., its attached U = (UT ,UN 1
,UN 2

) and
V = (V T ,V N 1

,V N 2
), may lead to some δ -closed 3-set if (UT ∪V T ,UN 1 ∪

V N 1
,UN 2 ∪V N 2

):

• cannot be extended by any element in T \ (UT ∪V T) distant, by at most δ ,
from an element in UT ;

• cannot be extended by any element in N \ (UN 1 ∪V N 1
);

• cannot be extended by any element in N \ (UN 2 ∪V N 2
).

As done for Cclosed, to avoid useless (and costly) tests, DATA-PEELER main-
tains the 3-set S = (S T ,S N 1

,S N 2
) containing only the elements that may

prevent the closure of the 3-sets descending from the current enumeration node,
i. e., the previously enumerated elements and not those that were removed from
V thanks to Cconnected ∧Cδ -contiguous. Moreover, as explained in Sect. 9.4.2, DATA-
PEELER purges S before checking Cδ -closed. Since it is used in conjunction
with Cδ -contiguous, Cδ -closed can be more strongly enforced: no element in S T ∩
[min(UT)−δ ,max(UT)+δ] is allowed to extend (UT ∪V T ,UN 1∪V N 1

,UN 2∪
V N 2

). Indeed, an element in S T ∩ [min(UT)−δ ,max(UT)+δ] may be distant,
by strictly more than δ , from any element in UT but this will never be the case
at the leaves descending from the current enumeration since UT must then be δ -
contiguous. All in all, DATA-PEELER prunes the sub-tree descending from the cur-
rent enumeration node if (UT ∪V T ,UN 1 ∪V N 1

,UN 2 ∪V N 2
) can be extended by

any element in S T ∩ [min(UT)−δ ,max(UT)+δ], S N 1
or S N 2

.

212 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

9.5 Constraining the Enumeration to Extract 3-Cliques

9.5.1 A Piecewise (Anti)-Monotone Constraint. . .

In a 3-clique, both subsets of N are identical. An equivalent definition to the
symmetry constraint (Def. 9.7) would be as follows: Csymmetric(T,N1,N2) ≡ N1 ⊆
N2∧N2 ⊆ N1. In this form, a piecewise (anti)-monotone constraint is identified.

Proof. Let C ′
symmetric the following constraint:

C ′
symmetric(T,N

1
1 ,N

1
2 ,N

2
1 ,N

2
2)≡ N1

1 ⊆ N2
1 ∧N2

2 ⊆ N1
2 .

N1
1 and N1

2 substitute the two occurrences of N1 (in the alternative definition of
Csymmetric). In the same way, N2

1 and N2
2 substitute the two occurrences of N2.

C ′
symmetric is monotone on its third and fourth arguments (N1

2 and N2
1) and anti-

monotone on its second and fifth arguments (N1
1 and N2

2). Moreover, since the first
argument (T) does not appear in the expression of C ′

symmetric, this constraint is both
monotone and anti-monotone on this argument. Therefore, by definition, Csymmetric
is piecewise (anti)-monotone. &'

Being piecewise (anti)-monotone, the symmetry constraint can be efficiently ex-
ploited by DATA-PEELER. However, the enumeration tree can be further reduced if
this constraint is enforced when choosing the element to be enumerated.

9.5.2 . . . Better Handled in Another Way

In this section, a distinction between the “first” set of nodes (i. e., the rows of the
adjacency matrices) and the “second” one (i. e., the columns of the adjacency ma-
trices) must be made. They are respectively named N 1 and N 2. Intuitively, when
an element n1 from V 1 ⊆N 1 is chosen to be present (respectively absent) in any
3-clique extracted from the node (see Sect. 9.3.1), the element n2 from V 2 ⊆N 2

standing for the same node should be enumerated just after and only to be present
(respectively absent) too. Thus, the enumeration tree is not a binary tree anymore
(some enumeration nodes only have one child).

When handled as a piecewise (anti)-monotone constraint, the symmetry con-
straint leads to many more enumeration nodes. When n2 is chosen to be enumer-
ated, the left (respectively right) child where n2 is present (respectively absent) is
generated even if its counterpart n1 in the other set was previously set absent (re-
spectively present). Then the symmetry constraint prunes the sub-tree rooted by this
node. Since there is no reason for n2 to be enumerated just after n1, the intuition tells
us that the number of such nodes, whose generation could be avoided by modifying
the enumeration (as explained in the previous paragraph), increases exponentially
with the average number of enumeration nodes between the enumeration of n1 and

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 213

U = (T1, N1 ∪ {n1}, N1)
V = (T2, N2 ∪ {m1}, N2 ∪ {n2,m2})

n1 ∈ U

U = (T1, N1 ∪ {n1}, N1 ∪ {m2})
V = (T2, N2 ∪ {m1}, N2 ∪ {n2})

m2 ∈ U

U = (T1, N1 ∪ {n1}, N1 ∪ {m2, n2})
V = (T2, N2 ∪ {m1}, N2)

n2 ∈ U

? ∈ U ? /∈ U

U = (T1, N1 ∪ {n1}, N1 ∪ {m2})
V = (T2, N2 ∪ {m1}, N2)

¬Csymmetric

n2 /∈ U

U = (T1, N1 ∪ {n1}, N1)
V = (T2, N2 ∪ {m1}, N2 ∪ {n2})

m2 /∈ U

U = (T1, N1 ∪ {n1}, N1 ∪ {n2})
V = (T2, N2 ∪ {m1}, N2)

n2 ∈ U

? ∈ U ? /∈ U

U = (T1, N1 ∪ {n1}, N1)
V = (T2, N2 ∪ {m1}, N2)

¬Csymmetric

n2 /∈ U

Fig. 9.4 Symmetry handled as an ordinary piecewise (anti)-monotone constraint

that of n2. This is actually not a theorem because Csym-δ -closed or C may prune
some descendant sub-trees before n2 is enumerated. Anyway, in practical settings,
handling the symmetry constraint via a modification of the enumeration usually is
much more efficient than via the general framework for piecewise (anti)-monotone
constraints.

Figures 9.4 and 9.5 informally depict these two approaches (the probable diminu-
tions of the V sets in the left children and the possible pruning due to Cclosed or C
are ignored). T1 and T2 are subsets of T . N1 and N2 are subsets of N . In both ex-
amples, the elements m2 and n2 of N 2 are enumerated. The resulting nodes are, of
course, the same (the dotted nodes being pruned). However this result is straight-
forward when the enumeration constraint is handled through a modification of the
enumeration (Fig. 9.5), whereas it usually requires more nodes when it is handled
as an ordinary piecewise (anti)-monotone constraint (Fig. 9.4). The number of ad-
ditional nodes in the latter case grows exponentially with the number of elements
enumerated between n1 and n2 (e. g., m1 could be enumerated in between).

Fig. 9.5 Symmetry handled
by a modified enumeration

U = (T1, N1 ∪ {n1}, N1)
V = (T2, N2 ∪ {m1}, N2 ∪ {n2,m2})

n1 ∈ U

U = (T1, N1 ∪ {n1}, N1 ∪ {n2})
V = (T2, N2 ∪ {m1}, N2 ∪ {m2})

n2 ∈ U

U = (T1, N1 ∪ {n1}, N1 ∪ {n2,m2})
V = (T2, N2 ∪ {m1}, N2)

m2 ∈ U

m1 ∈ U

U = (T1, N1 ∪ {n1}, N1 ∪ {n2})
V = (T2, N2 ∪ {m1}, N2)

m2 /∈ U

m1 /∈ U

214 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

9.5.3 Constraining the Enumeration

Let N 1 = (n1
i)i=1...|N | and N 2 = (n2

i)i=1...|N | its counterpart, i. e., ∀i = 1 . . . |N |,
n1

i and n2
i stand for the same node. (T,N1,N2) being symmetric is a constraint that

can be expressed as this list of, so called, enumeration constraints:

n1
1 ∈ N1 ⇒ n2

1 ∈ N2 n2
1 ∈ N2 ⇒ n1

1 ∈ N1

n1
2 ∈ N1 ⇒ n2

2 ∈ N2 n2
2 ∈ N2 ⇒ n1

2 ∈ N1

...
...

n1
i ∈ N1 ⇒ n2

i ∈ N2 n2
i ∈ N2 ⇒ n1

i ∈ N1

...
...

n1
|N | ∈ N1 ⇒ n2

|N | ∈ N2 n2
|N | ∈ N2 ⇒ n1

|N | ∈ N1

These constraints belong to a more general class of constraints:

Definition 9.12 (Enumeration constraint). An enumeration constraint Cenum is
such that, given a 3-set (T,N1,N2), Cenum(T,N1,N2)≡ ∃k ∈ N|a1∧a2∧·· ·∧ak ⇒
ak+1, where ∀i = 1 . . .k+ 1,ai is of the form e ∈ A or e �∈ A, e being an arbitrary
element from an arbitrary dimension A ∈ {T,N1,N2}.
Example 9.9. Here are three examples of enumeration constraints that can be en-
forced on any 3-set (T,N1,N2):

• t1 ∈ T ⇒ t8 /∈ T
• t1 /∈ T ∧n1

1 ∈ N1 ⇒ t2 ∈ T
• true⇒ t1 /∈ T (k = 0 in Def. 9.12)

Notice that the last constraint is not equivalent to removing the element t1 from the
data. Indeed, a closed 3-set in the data set deprived of t1 may not be closed in the
data set containing t1. Hence it must not be extracted (and it is actually not extracted
when the constraint enumeration is used).

Before choosing the element to be enumerated (see algorithm in Table 9.2),
DATA-PEELER browses the set of enumeration constraint, and tests whether the
left parts of them are true or not. Considered as constraints, these left parts are,
again, piecewise (anti)-monotone. Indeed, when there is a term of the form e ∈ A
(respectively e /∈ A), the left part of the constraint is anti-monotone (respectively
monotone) in this occurrence of A. Given the 3-sets U and V attached to the current
enumeration node, three cases may arise:

1. The left part will never be fulfilled in the sub-tree rooted by the current enumer-
ation node:

• if an element in the left part is to be present but it is neither in U not in V .
• if an element in the right part is to be absent but it is in U .

2. The left part is fulfilled by at least one (but not every) node descending from the
current enumeration node.

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 215

3. The left part is fulfilled by every node descending from the current enumeration
node:

• if an element in the left part is to be present, it is in U .
• if an element in the left part is to be absent, it is neither in U nor in V .

DATA-PEELER reacts differently at each of these cases:

1. This enumeration constraint is removed from the set of enumeration constraints
when traversing the sub-tree rooted by the current enumeration node. Indeed, it
never applies in this sub-tree. Uselessly checking it for every descendant enu-
meration node would only decrease the performances of DATA-PEELER.

2. This enumeration constraint is kept.
3. The right part of this enumeration constraint is considered.

When the right part of an enumeration constraint is considered, three new cases
may arise:

3.1 The right part is already fulfilled:

• if the element in the right part is to be present, it is already in U .
• if is to be absent, it is already neither in U nor in V .

3.2 The right part can be fulfilled: the element in the right part is in V .
3.3 The right part cannot be fulfilled:

• if the element in the right part is to be present, it is neither in U nor in V .
• if it is to be absent, it is in U .

DATA-PEELER reacts differently at each of these cases:

3.1 This enumeration constraint is removed from the set of enumeration constraints
when traversing the sub-tree rooted by the current enumeration node. Indeed, it is
satisfied for all 3-sets in this sub-tree. Uselessly checking it for every descendant
enumeration node would only decrease the performances of DATA-PEELER.

3.2 The element on the right part of the constraint can be enumerated as specified
(one child only).

3.3 The sub-tree rooted by the current enumeration node is pruned. Indeed, none of
the 3-sets in this sub-tree verifies the constraint.

In Case 3.2, we write “the element can be enumerated” because, at a given enu-
meration node, several enumeration constraint may be in this case but only one can
be applied.

9.5.4 Contraposition of the Enumeration Constraints

If an enumeration constraint holds, its contraposition, logically, holds too. In the
general case (conjunction of terms in the left part), the contraposition of an enumer-
ation constraint is not an enumeration constraint (disjunction of terms in the right

216 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

Table 9.4 APPEND CONTRAPOSITION

Input: Set E of enumeration constraints
Output: Set E enlarged with contrapositions
E ′ ← E
for a1∧a2∧·· ·∧ak ⇒ ak+1 ∈ E do

if k = 1 then

E ′ ← E ′ ∪{¬a2 ⇒¬a1}
end if

end for

return E ′

part). In the particular case of enumeration constraints of the form a1 ⇒ a2 (see
Def. 9.12), e. g., those generated from Csymmetric (see Sect. 9.5.3), their contraposi-
tions are enumeration constraints too. Thus, DATA-PEELER enforces a larger set of
enumeration constraints (the original set of enumeration constraints and the contra-
positions of those of the form a1 ⇒ a2) for even faster extractions. The algorithm in
Table9.4 gives a more technical definition of how this larger set is computed.

Example 9.10. Among the enumeration constraints of Ex. 9.9, only the first one (t1 ∈
T ⇒ t8 /∈ T) admits a contraposition (t8 ∈ T ⇒ t1 /∈ T) that is, itself, an enumeration
constraint.

9.5.5 Enforcing the Symmetric δ -Closedness

The constraint Csym-δ -closed (see Def. 9.8) is piecewise (anti)-monotone.

Proof. Let C ′
sym-δ -closed the following constraint:

C ′
sym-δ -closed(T1,T2,T3,N1

1 ,N
1
2 ,N

1
3 ,N

2
1 ,N

2
2 ,N

2
3)

≡
{
∀t ∈T \T1,(∃t ′ ∈ T2 s.t. |t− t ′| ≤ δ ⇒¬Cconnected({t},N1

1 ,N
2
1))

∀n ∈N \ (N1
2 ∩N2

2),¬Cconnected(T,N1
3 ∪{n},N2

3 ∪{n})
.

C ′
sym-δ -closed is anti-monotone on its second argument (T2) and monotone on all its

other arguments. Therefore, by definition, Csym-δ -closed is piecewise (anti)-monotone.
&'

A way to enforce Cδ -closed follows from the proof of its piecewise (anti)-
monotonicity: an enumeration node, i. e., its attached U = (UT ,UN 1

,UN 2
) and

V = (V T ,V N 1
,V N 2

), may lead to some δ -closed 3-set if (UT ∪V T ,UN 1 ∪
V N 1

,UN 2 ∪V N 2
):

• cannot be extended by any element in T \ (UT ∪V T) distant, by at most δ ,
from an element in UT ;

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 217

• cannot be simultaneously extended by any element in N \ (UN 1 ∪V N 1
) (row

of the adjacency matrices) and its related element in N \(UN 2 ∪V N 2
) (column

of the adjacency matrices).

In a similar way to what was done with Cδ -closed (see Sect. 9.4.3), DATA-PEELER

maintains the 3-set S = (S T ,S N 1
,S N 2

) containing only the elements that may
prevent the closure of the 3-sets descending from the current enumeration node and
prunes the sub-tree descending from it if (UT ∪V T ,UN 1 ∪V N 1

,UN 2 ∪V N 2
) can

be extended by any element in S T ∩ [min(UT)− δ ,max(UT)+ δ] or by any el-
ement in S N 1

and its related element in S N 2
. Thus, when S N 1

(respectively
S N 2

) is purged from an element (because it cannot extend (UT ∪V T ,UN 1 ∪
V N 1

,UN 2 ∪V N 2
) without violating Cconnected), the related element in S N 2

(re-
spectively S N 1

) is removed as well.
An overall view of the complete extraction of the δ -contiguous closed 3-cliques

under constraint can now be presented. The details and justifications of how every
identified constraint is handled are present within the two previous sections, hence
proving its correctness. The algorithm in Table 9.5 is the main procedure solving the
problem presented in Sect. 9.2. It calls the algorithm presented in Table 9.6 which
can be regarded as a specialization of the algorithm in Table 9.2.

Table 9.5 MAIN

Input: (At)t∈T ∈ {0,1}T ×N ×N , δ ∈ R+ and a user-defined piecewise (anti)-monotone con-
straint C
Output: All δ -contiguous closed 3-cliques in (At)t∈T satisfying C
E ← Set of enumeration constraints pertaining to Csymmetric (see Sect. 9.5.3)
E ′ ← APPEND CONTRAPOSITION(E)
DATA-PEELER((/0, /0, /0),(T ,N ,N),(/0, /0, /0))

9.6 Experimental Results

The experiments were performed on an AMD Sempron
TM

2600+ computer with
512 MB of RAM and running a GNU/Linux

TM
operating system. DATA-PEELER

was compiled with GCC 4.3.2.

9.6.1 Presentation of the Vélo’v Dataset

Vélo’v is a bicycle rental service run by the city of Lyon, France. 338 Vélov stations
are spread over this city. At any of these stations, the users can take a bicycle and

218 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

Table 9.6 DATA-PEELER specialization

Input: U,V,S
Output: All δ -contiguous closed 3-cliques containing the elements in U and, possibly, some
elements in V and satisfying C
PURGE V T

PURGE S T

if C ∧Cδ -contiguous∧Csym-δ -closed may be satisfied by a 3-set descending from this node then

Process E ′ as detailed in Sect. 9.5.3
if Case 3.3 was never encountered then

if V = (/0, /0, /0) then

output(U)
else

if Case 3.2 was encountered with an enumeration constraint concluding on ak+1 (see
Def. 9.12) then

if ak+1 is of the form e ∈ A then

DATA-PEELER(U ∪ {e},{v ∈ V \ {e}|Cconnected(U ∪ {e} ∪ {v})},{s ∈
S |Cconnected(U ∪{e}∪{s})})

else

ak+1 is of the form e �∈ A
DATA-PEELER(U,V \{e},S ∪{e})

end if

else

Choose e ∈V
DATA-PEELER(U ∪ {e},{v ∈ V \ {e}|Cconnected(U ∪ {e} ∪ {v})}},{s ∈
S |Cconnected(U ∪{e}∪{s})})
DATA-PEELER(U,V \{e},S ∪{e})

end if

end if

end if

end if

return it to any other station. Whenever a bicycle is rented or returned, this event is
logged. We focus here on the data generated during the year 2006. These data are
aggregated to obtain one graph per period of time (we chose a period of 30 minutes).
For instance, one of these graphs presents the activity of the network during an aver-
age Monday of 2006 between nine o’clock and half past nine. The set of nodes N of
such a graph corresponds to the Vélo’v stations. Its edges are labelled with the total
number of rides in 2006 between the two linked stations (whatever their orientation)
during the considered period of time. Setting a threshold allows to select the most
significant edges. Many statistical tests can be used to fix this threshold (which can
be different between the graphs). We opted for the rather simple procedure below.

α-binarization Given a graph whose edges are labelled by values quantifying
them, let m be the maximum of these values. Given a user-defined real number
α ∈ [0,1] (common to all graphs), the threshold is fixed to (1−α)×m.

Once the thresholds set, all edges linked to some station may be considered insignif-
icant. Such an infrequently used station is removed from the dynamic graph. In our
experiments, 204 stations remained after an α-binarization with α = 0.8. Unless an

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 219

experiment requires different datasets (scalability w.r.t. the density), every experi-
ment uses this extraction context.

To filter out the 3-cliques corresponding to frequent rides between two stations
only, a monotone constraint pertaining to the number of stations is enforced: the
3-cliques must involve at least 3 nodes to be extracted.

9.6.2 Extracting Cliques Via Enumeration Constraints

To confirm that the use of enumeration constraints actually helps in reducing the ex-
traction time, three different strategies for 3-clique extraction are empirically com-
pared:

1. DATA-PEELER extracts all closed 3-sets. Among them, the 3-cliques are col-
lected by post-processing: all closed 3-sets are browsed and those that are not
symmetric are filtered out. Notice that this strategy is correct for this application
because the considered dynamic graph is undirected, hence, a 3-set that does not
satisfy Cδ -closed will not satisfy Csym-δ -closed either.

2. DATA-PEELER handles the symmetry constraint via “classical” piecewise (anti)-
monotone constraints (see Sect. 9.5.1).

3. DATA-PEELER handles the symmetry constraint via enumeration constraints (see
Sect. 9.5.2).

Figure 9.6 depicts the extraction times of these three strategies under different
minimal size constraints on the number of time periods to be present (abscissa). In
this experiment the second strategy is only slightly faster than the extraction of all
closed 3-sets (notice however that the required post-treatment is not included in the
plotted results), whereas the use of enumeration constraints significantly reduces the
extraction time.

This advantage grows with the density of the dataset. To test this, another bina-
rization is used. It directly controls the number of edges kept in the dynamic graph:

Fig. 9.6 Extraction times for
different strategies (variable
minimal size constraint)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

ex
tr

ac
tio

n
tim

e
(s

)

minimal number of time periods

Vélo’v network activity mining

No symmetry constraint (need for post−processing)
Symmetry via piecewise (anti)−monotonic constraint

Symmetry via enumeration constraints

220 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

Fig. 9.7 Extraction times for
different strategies (variable
density)

 10

 100

 1000

 10000

 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

ex
tr

ac
tio

n
tim

e
(s

)

beta

Vélo’v network activity mining

No symmetry constraint (need for post−processing)
Symmetry via piecewise (anti)−monotonic constraint

Symmetry via enumeration constraints

β -binarization Given a graph whose edges are labelled by values quantifying
them and a user-defined real number β ∈ [0,1] (common to all graphs), the edges
labelled with the β ×|N 2| highest values are kept.

Figure 9.7 shows how handling the symmetry via enumeration constraints more and
more reduces the extraction time when β grows. As explained earlier, the number of
nodes may be changed when we increase the number of edges. In this experiment,
it varies between 201 (when β = 0.0038) and 240 (when β = 0.01). In addition
to the minimal size constraint on the number of stations (at least three) involved
in every extracted pattern, each of these patterns is, here, forced to gather at least
two periods of time too. When β = 0.0091, it takes almost two hours to extract all
1,033,897 closed 3-sets. Among them, the post-process would retain the 18,917 ones
that are symmetric. In contrast, these cliques are directly extracted in less than 20
minutes when the symmetry constraint is enforced as a piecewise (anti)-monotone
constraint. The use of enumeration constraints provides the best performance: the
extraction takes about four minutes.

Adding, to the set of enumeration constraints generated from the symmetry con-
straint, their contrapositions (see Sect. 9.5.4), is believed to improve the extraction
time. However the cost of checking the application (or the non application) of a
larger set of enumeration constraints brings an overhead. The following experiment
confirms the advantage in using a larger set of enumeration constraints.

For each node n (more precisely, for each n1 ∈ N 1 or n2 ∈ N 2), one of the
following sets of enumeration constraints is sufficient to enforce the symmetry con-
straint:

Set 1 Set 2 Set 3
(contraposition of Set 1) (union of Set 1 and Set 2)

n1 ∈N 1 ⇒ n2 ∈N 2

n1 ∈N 1 ⇒ n2 ∈N 2 n2 ∈N 2 ⇒ n1 ∈N 1 n1 /∈N 1 ⇒ n2 /∈N 2

n2 ∈N 2 ⇒ n1 ∈N 1 n2 /∈N 2 ⇒ n1 /∈N 1 n2 /∈N 2 ⇒ n1 /∈N 1

n1 /∈N 1 ⇒ n2 /∈N 2

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 221

Fig. 9.8 Running time with
different sets of enumeration
constraints

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16

ex
tr

ac
tio

n
tim

e
(s

)

minimal number of time periods

Vélo’v network activity mining

Set 1
Set 2
Set 3

The results are plotted in Figs. 9.8 and 9.9. The experimental context is perfectly
identical to that of the experiment depicted in Fig. 9.6. The running times obtained
with Set 2 are lower than those obtained with Set 1 because the closed 3-cliques
involve small proportions of the nodes in N . That is why what is not in the patterns
more frequently triggers enumeration constraints. Anyway, the fastest extractions
are obtained with the largest set of enumeration constraints. It may look odd that,
while being faster, the extractions performed with Set 2 generates many more enu-
meration nodes than those generated with Set 1. The difference between the costs
of generating left enumeration nodes and right enumeration nodes explain it. In-
deed, although more enumeration nodes are traversed when using Set 2, these nodes
mainly are right nodes (the constraints in Set 2 conclude on such nodes), whereas
the constraints in Set 1 impose the creation of left enumeration nodes. The left enu-
meration nodes do not prune much the search space (hence their numbers) but are
very cheap to generate since the cost only is that of moving an element from a vector
to another (see Fig 9.2).

Fig. 9.9 Number of enumera-
tion nodes with different sets
of enumeration constraints

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2 4 6 8 10 12 14 16

nu
m

be
r

of
 e

nu
m

er
at

io
n

no
de

s

minimal number of time periods

Vélo’v network activity mining

Set 1
Set 2
Set 3

222 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

Fig. 9.10 Number of δ -
contiguous closed 3-sets

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8

nu
m

be
r

of
 d

el
ta

−
co

nt
in

uo
us

 c
lo

se
d

3−
cl

iq
ue

s

delta (hour)

Vélo’v network activity mining

At least 1 time period
At least 2 time periods
At least 3 time periods
At least 4 time periods
At least 5 time periods
At least 6 time periods
At least 7 time periods
At least 8 time periods

9.6.3 Extraction of δ -Contiguous Closed 3-Cliques

Figure 9.10 depicts the number of δ -contiguous closed 3-cliques when δ varies
between 0 and 8 hours. Different minimal size constraints, on the number of time
periods to be present in any extracted pattern, are used. When this minimal size is set
to 1, the number of δ -contiguous closed 3-cliques decreases while δ increases. This
means that this dynamic graph contains many 3-cliques with one time period only.
When δ grows, some of these 3-cliques are merged, thus gathering more time peri-
ods. That is why, when the patterns are constrained to gather at least two (or more)
time periods, the size of the collection of δ -contiguous closed 3-cliques increases
with δ . These behaviors are data-dependent. For example, under a size constraint
greater or equal to 2, it is possible to find datasets where, when δ increases, the size
of the collection would first increase (the involved timestamps were too distant to
be extracted with smaller δ s) and then decrease (the patterns found with smaller δ s
merge).

Fig. 9.11 Running time
 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8

ex
tr

ac
tio

n
tim

e
(s

)

delta (hour)

Vélo’v network activity mining

At least 1 time period
At least 2 time periods
At least 3 time periods
At least 4 time periods
At least 5 time periods
At least 6 time periods
At least 7 time periods
At least 8 time periods

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 223

Figure 9.11 shows that smaller δ s mean smaller extraction times. Hence, if a
dynamic graph gathers many timestamps, enforcing a δ -contiguity helps a lot in
making the knowledge extraction tractable. Furthermore this performance gain, that
occurs when δ decreases, is greater when the minimal size constraints (on the num-
ber of timestamps) is smaller. Thus the performance gain is even more useful to
compensate the difficulty to extract patterns that contain few timestamps. In the
figure, the divergence of the curves, when δ increases, illustrates this interesting
property.

9.6.4 Qualitative Validation

To assess, by hand, the quality of the extracted δ -contiguous closed 3-cliques, the
returned collection must be small. Hence stronger constraints are enforced. The
minimal number of Vélov stations that must be involved in a δ -contiguous closed
3-clique is raised to 6 and the minimal number of periods to 4. With δ = 0.5 hours,
only three patterns are returned. Two of them take place during the evening (they
start at half past 19) and gather stations that are in the center of Lyon (the “2nd
and 3rd arrondissement”). They differ by one station (one station is present in the
first 0.5-contiguous closed 3-clique and absent from the other and vice versa) and
one of them runs during one more time period. An agglomerative post-process, such
as [12], would certainly merge these two patterns. The third 0.5-contiguous closed
3-clique is displayed in Fig 9.12. The circles stand for the geographical positions
of the Vélov stations. The larger and filled circles are the stations involved in the
shown pattern. The disposition of the stations follows one of the main street in Lyon:
“Cours Gambetta”. Obviously it is much used by the riders during the evening. The
outlying Vélov station is, overall, the most frequently used one: “Part-Dieu/Vivier-
Merle”. At this place, the rider finds the only commercial center in Lyon, the main
train station, etc.

Extracting, with the same minimal size constraints, the 1-contiguous closed 3-
cliques provides a collection of nine patterns. Among them, the three 0.5-contiguous
closed 3-cliques are found unaltered; some slight variations of them are found (one
or two stations are changed); one pattern takes place during the morning (to ob-
tain patterns involving night periods the constraints must be weakened a lot: nightly
rides do not comply much with a model). The majority of the extracted 1-contiguous
closed 3-cliques involves Vélov stations in the “2nd and 3rd arrondissement”. Fig-
ure 9.13 depicts one of them. The disposition of the stations follows the street con-
necting the two most active districts in Lyon: “Rue de la Part-Dieu”. The outlying
Vélov station is, overall, one of the most frequently used: “Opéra”. At this place,
the rider can find, not only the opera, but also the town hall, the museum of fine
arts, a cinema, bars, etc. For the maintenance of the Vélov network, these examples
of constrained cliques correspond to relevant sub-networks. More generally, we be-
lieve that preserved clique patterns are a priori interesting (i. e., independently from

224 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

Fig. 9.12 A 0.5-contiguous
closed 3-clique with T =
{18.5,19,19.5,20,20.5}

the application context). The possibility to exploit other user-defined constraints
supports the discovery of actionable patterns.

Fig. 9.13 A 1-contiguous
closed 3-clique with T =
{16,17,17.5,18.5}

9.7 Related Work

The harder problem of extracting a complete collection of closed 3-sets directly
from real-valued tensors (e. g., rough kinetic microarray datasets) is not discussed
here. To the best of our knowledge, DATA-PEELER only faces two competitors
able to extract all closed 3-sets from ternary relations: CUBEMINER [17] and
TRIAS [16]. None of them have the generality of DATA-PEELER. In particular, they

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 225

cannot deal with n-ary relations and cannot enforce any piecewise (anti)-monotone
constraints. This latter drawback makes them harder to specialize in the extraction
of δ -contiguous closed 3-cliques. Furthermore, [11] shows that DATA-PEELER out-
performs both of them by orders of magnitude. The interested reader will refer to
the “Related Work” section of that article for a detailed analysis of what makes
DATA-PEELER more efficient than both CUBEMINER and TRIAS.

Extracting every clique in a single graph is a classical problem [7] and algorithms
with polynomial delay were designed to extract the maximal (i. e., closed) ones
(e. g., [19]). Collections of large graphs were built to help in understanding genetics.
These graphs commonly have tens of thousands of nodes and are much noisy. For
about four years, extracting knowledge by crossing such graphs has been a hot topic.
For example, there is a need to extract patterns that remain valid across several co-
expression graphs obtained from microarray data or to cross the data pertaining to
physical interactions between molecules (e. g., protein-protein, protein-gene) with
more conceptual data (e. g., co-expression of genes, co-occurrence of proteins in the
literature). One of the most promising pattern helping in these tasks is the closed
3-clique or, better, the closed quasi-3-clique. CLAN [27] is able to extract closed 3-
cliques from collections of large and dense graphs. Crochet+ [18], Cocain* [29] and
Quick [21] are the state-of-the-art extractors of closed quasi-3-cliques. They all use
the same definition of noise tolerance: every node implied in a pattern must have,
in every graph independently from the others, a degree exceeding a user-defined
proportion of the maximal degree it would reach if the clique was exact.

As detailed in [9], DATA-PEELER can be generalized towards the tolerance of
noise. Combining it with the present work enables the extraction of closed quasi-
3-cliques. However the chosen definition for noise tolerance being defined on any
n-ary relation, it is different from that of the approaches cited in the previous para-
graph. Indeed this tolerance applies to every node across all graph (to be part of
a quasi-3-clique, a node must be globally much connected to the other nodes of
the pattern) and to the graphs themselves. As a consequence our approach does not
scale well to graphs connecting thousands of nodes but it can extract closed quasi-
3-cliques in large collections of smaller graphs, whereas the previously presented
approaches cannot (or they must be used with a very strong minimal size constraint
on the number of involved graphs). When the graphs are collected along an or-
dered dimension (typically the time), the use of the δ -contiguity constraint further
increases this difference. Notice that the previous approaches focus on collections
of undirected graphs, whereas our approach works on (possibly) directed graphs.

The δ -contiguity stems from an analogous constraint, called max-gap constraint,
initially applied to sequence mining. It was introduced in the GSP approach [24].
The way the δ -contiguity is enforced in our approach (see Sect. 9.4) is similar to that
of this seminal article. The min-gap and the window size constraints [24] uses could
as well be enforced in our approach. Nevertheless, in [24], these constraints mod-
ify the enumeration order, whereas, in our approach, they reduce the search space
and let the enumeration strategy unaltered. Furthermore, the nature of the mined
patterns is much different. In the context of [24], the considered datasets are multi-
ple sequences of itemsets and the extracted patterns are sub-sequences of itemsets

226 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

whose order (but not position in time) is to be respected in all (1-dimensional) sup-
porting sequences. In our approach, the supporting domain contains (2-dimensional)
graphs and their position in time must be aligned.

Notice that the max-gap constraint was used in other contexts too. For example,
[8] enforces it to extract episodes (repetition of sub-sequences in one sequence) and
[14] somehow aggregates the two tasks by extracting, under a max-gap constraint,
frequent sub-sequences whose support is the sum of the number of repetitions in
all sequences of the dataset. Finally let us notice that an extended abstract of this
chapter was previously published [13].

9.8 Conclusion

This chapter focuses on specializing the DATA-PEELER closed n-set extractor
to mine δ -contiguous closed 3-cliques. All the additional constraints imposed to
achieve this goal were piecewise (anti)-monotone. Hence, in its original form,
DATA-PEELER could handle them all. However, to be able to extract δ -contiguous
closed 3-cliques from large dynamic graphs (e. g., hundreds of nodes and of times-
tamps), ad-hoc strategies must be used. Interestingly, the idea is the same for all of
them (and for the connection constraint too): they must be used as soon as possible in
the enumeration tree. The symmetry constraint has even been split into many small
constraints that are individually exploited as soon as possible. These constraints are
particular since they change the structure of the enumeration which does not fol-
low a binary tree anymore. This chapter focuses on the extraction of δ -contiguous
closed 3-cliques. However, DATA-PEELER is not restricted to it. It can mine closed
n-sets (or cliques) with n an arbitrary integer greater or equal to 2, it can force the
contiguity of the patterns on several dimensions at the same time (possibly with dif-
ferent δ values), etc. Furthermore, DATA-PEELER can mine closed n-sets adapted
to any specific problem that can be expressed in terms of piecewise (anti)-monotone
constraints.

Acknowledgements This work has been partly funded by EU contract IST-FET IQ FP6-516169,
and ANR BINGO2 (MDCO 2007-2010). Tran Bao Nhan Nguyen has contributed to this study
thanks to a Research Attachment programme between the Nanyang Technological University (Sin-
gapore), where he is an undergraduate student, and INSA-Lyon. Finally, we thank Dr. J. Besson
for exciting discussions.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In: SIGMOD’93: Proc. SIGMOD Int. Conf. on Management of Data, pp.
207–216. ACM Press (1993)

9 Mining Constrained Cross-Graph Cliques in Dynamic Networks 227

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of associa-
tion rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT
Press (1996)

3. Antonie, M.L., Zaı̈ane, O.R.: Mining positive and negative association rules: An approach for
confined rules. In: PKDD’04: Proc. European Conf. on Principles and Practice of Knowledge
Discovery in Databases, pp. 27–38. Springer (2004)

4. Besson, J., Robardet, C., Boulicaut, J.F., Rome, S.: Constraint-based formal concept mining
and its application to microarray data analysis. Intelligent Data Analysis 9(1), 59–82 (2005)

5. Boulicaut, J.F., Besson, J.: Actionability and formal concepts: A data mining perspective. In:
ICFCA’08: Proc. Int. Conf. on Formal Concept Analysis, pp. 14–31. Springer (2008)

6. Boulicaut, J.F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and Inductive
Databases, LNCS, vol. 3848. Springer (2006)

7. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commu-
nications of the ACM 16(9), 575–576 (1973)

8. Casas-Garriga, G.: Discovering unbounded episodes in sequential data. In: PKDD’03: Proc.
European Conf. on Principles and Practice of Knowledge Discovery in Databases, pp. 83–94.
Springer (2003)

9. Cerf, L., Besson, J., Boulicaut, J.F.: Extraction de motifs fermés dans des relations n-aires
bruitées. In: EGC’09: Proc. Journées Extraction et Gestion de Connaissances, pp. 163–168.
Cepadues-Editions (2009)

10. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: DATA-PEELER: Constraint-based closed
pattern mining in n-ary relations. In: SDM’08: Proc. SIAM Int. Conf. on Data Mining, pp.
37–48. SIAM (2008)

11. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed patterns meet n-ary relations. ACM
Trans. on Knowledge Discovery from Data 3(1) (2009)

12. Cerf, L., Mougel, P.N., Boulicaut, J.F.: Agglomerating local patterns hierarchically with AL-
PHA. In: CIKM’09: Proc. Int. Conf. on Information and Knowledge Management, pp. 1753–
1756. ACM Press (2009)

13. Cerf, L., Nguyen, T.B.N., Boulicaut, J.F.: Discovering relevant cross-graph cliques in dynamic
networks. In: ISMIS’09: Proc. Int. Symp. on Methodologies for Intelligent Systems, pp. 513–
522. Springer (2009)

14. Ding, B., Lo, D., Han, J., Khoo, S.C.: Efficient mining of closed repetitive gapped subse-
quences from a sequence database. In: ICDE’09: Proc. Int. Conf. on Data Engineering. IEEE
Computer Society (2009)

15. Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis, Foundations and Applications.
Springer (2005)

16. Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS–an algorithm for min-
ing iceberg tri-lattices. In: ICDM’06: Proc. Int. Conf. on Data Mining, pp. 907–911. IEEE
Computer Society (2006)

17. Ji, L., Tan, K.L., Tung, A.K.H.: Mining frequent closed cubes in 3D data sets. In: VLDB’06:
Proc. Int. Conf. on Very Large Data Bases, pp. 811–822. VLDB Endowment (2006)

18. Jiang, D., Pei, J.: Mining frequent cross-graph quasi-cliques. ACM Trans. on Knowledge
Discovery from Data 2(4) (2009)

19. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent
sets. Information Processing Letters 27(3), 119–123 (1988)

20. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and shrinking
diameters. ACM Trans. on Knowledge Discovery from Data 1(1) (2007)

21. Liu, G., Wong, L.: Effective pruning techniques for mining quasi-cliques. In: ECML
PKDD’08: Proc. European Conf. on Machine Learning and Knowledge Discovery in
Databases - Part II, pp. 33–49. Springer (2008)

22. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed representations. In:
KDD, pp. 189–194 (1996)

23. Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for mining frequent closed itemsets.
In: SIGMOD’00: Workshop on Research Issues in Data Mining and Knowledge Discovery,
pp. 21–30. ACM Press (2000)

228 Loı̈c Cerf, Bao Tran Nhan Nguyen, and Jean-François Boulicaut

24. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance im-
provements. In: EDBT’96: Proc. Int. Conf. on Extending Database Technology, pp. 3–17.
Springer (1996)

25. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept
lattices with TITANIC. Data & Knowledge Engineering 42(2), 189–222 (2002)

26. Uno, T., Kiyomi, M., Arimura, H.: LCM ver.3: Collaboration of array, bitmap and prefix tree
for frequent itemset mining. In: OSDM’05: Proc. Int. Workshop on Open Source Data Mining,
pp. 77–86. ACM Press (2005)

27. Wang, J., Zeng, Z., Zhou, L.: CLAN: An algorithm for mining closed cliques from large
dense graph databases. In: ICDE’06: Proc. Int. Conf. on Data Engineering, pp. 73–82. IEEE
Computer Society (2006)

28. Zaki, M.J., Hsiao, C.J.: CHARM: An efficient algorithm for closed itemset mining. In:
SDM’02: Proc. SIAM Int. Conf. on Data Mining. SIAM (2002)

29. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Out-of-core coherent closed quasi-clique mining
from large dense graph databases. ACM Trans. on Database Systems 32(2), 13–42 (2007)

Chapter 10

Probabilistic Inductive Querying Using ProbLog

Luc De Raedt, Angelika Kimmig, Bernd Gutmann, Kristian Kersting, Vı́tor Santos
Costa, and Hannu Toivonen

Abstract We study how probabilistic reasoning and inductive querying can be com-
bined within ProbLog, a recent probabilistic extension of Prolog. ProbLog can be re-
garded as a database system that supports both probabilistic and inductive reasoning
through a variety of querying mechanisms. After a short introduction to ProbLog,
we provide a survey of the different types of inductive queries that ProbLog sup-
ports, and show how it can be applied to the mining of large biological networks.

10.1 Introduction

In recent years, both probabilistic and inductive databases have received consider-
able attention in the literature. Probabilistic databases [1] allow one to represent and
reason about uncertain data, while inductive databases [2] aim at tight integration of
data mining primitives in database query languages. Despite the current interest in
these types of databases, there have, to the best of the authors’ knowledge, been no
attempts to integrate these two trends of research. This chapter wants to contribute to

Luc De Raedt · Angelika Kimmig · Bernd Gutmann
Department of Computer Science
Katholieke Universiteit Leuven, Belgium
e-mail: {firstname.lastname}@cs.kuleuven.be

Kristian Kersting
Fraunhofer IAIS, Sankt Augustin, Germany
e-mail: kristian.kersting@iais.fraunhofer.de

Vı́tor Santos Costa
Faculdade de Ciências, Universidade do Porto, Portugal
e-mail: vsc@dcc.fc.up.pt

Hannu Toivonen
Department of Computer Science, University of Helsinki, Finland
e-mail: hannu.toivonen@cs.helsinki.fi

229
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_10, © Springer Science+Business Media, LLC 2010

230 Luc De Raedt et al.

a better understanding of the issues involved by providing a survey of the develop-
ments around ProbLog [3]1, an extension of Prolog, which supports both inductive
and probabilistic querying. ProbLog has been motivated by the need to develop in-
telligent tools for supporting life scientists analyzing large biological networks. The
analysis of such networks typically involves uncertain data, requiring probabilistic
representations and inference, as well as the need to find patterns in data, and hence,
supporting data mining. ProbLog can be conveniently regarded as a probabilistic
database supporting several types of inductive and probabilistic queries. This paper
provides an overview of the different types of queries that ProbLog supports.

A ProbLog program defines a probability distribution over logic programs (or
databases) by specifying for each fact (or tuple) the probability that it belongs to
a randomly sampled program (or database), where probabilities are mutually inde-
pendent. The semantics of ProbLog is then defined by the success probability of a
query, which corresponds to the probability that the query succeeds in a randomly
sampled program (or database). ProbLog is closely related to other probabilistic log-
ics and probabilistic databases that have been developed over the past two decades
to face the general need of combining deductive abilities with reasoning about un-
certainty, see e.g. [4, 5, 6, 7, 8]. The semantics of ProbLog is studied in Section 10.2.
In Section 10.10, we discuss related work in statistical relational learning.

We now give a first overview of the types of queries ProbLog supports. Through-
out the chapter, we use the graph in Figure 1(a) for illustration, inspired on the ap-
plication in biological networks discussed in Section 10.9. It contains several nodes
(representing entities) as well as edges (representing relationships). Furthermore,
the edges are probabilistic, that is, they are present only with the probability indi-
cated.

Probabilistic Inference What is the probability that a query succeeds?
Given a ProbLog program and a query, the inference task is to compute the suc-
cess probability of the query, that is, the probability that the query succeeds in
a randomly sampled non-probabilistic subprogram of the ProbLog program. As
one example query, consider computing the probability that there exists a proof
of path(c,d) in Figure 1(a), that is, the probability that there is a path from c
to d in the graph, which will have to take into account the probabilities of both
possible paths. Computing and approximating the success probability of queries
will be discussed in Section 10.3.

Most Likely Explanation What is the most likely explanation for a query?
There can be many possible explanations (or reasons) why a certain query may
succeed. For instance, in the path(c,d) example, there are two explanations, cor-
responding to the two different paths from c to d. Often, one is interested in the
most likely such explanations, as this provides insight into the problem at hand
(here, the direct path from c to d). Computing the most likely explanation real-
izes a form of probabilistic abduction, cf. [9], as it returns the most likely cause
for the query to succeed. This task will be discussed in Section 10.3.1.

1 http://dtai.cs.kuleuven.be/problog/

10 Probabilistic Inductive Querying Using ProbLog 231

a b
0.7

c

0.8 0.6

d

0.9

e

0.8

0.5

(a)

cd

ce

1

ed

0

(b)

Fig. 10.1 (a) Example of a probabilistic graph: edge labels indicate the probability that the edge is
part of the graph. (b) Binary Decision Diagram (cf. Sec. 10.4.3) encoding the DNF formula cd ∨
(ce∧ed), corresponding to the two proofs of query path(c,d) in the graph. An internal node labeled
xy represents the Boolean variable for the edge between x and y, solid/dashed edges correspond to
values true/false.

The above two types of queries are probabilistic, that is, they use standard prob-
abilistic inference methods adapted to the context of the ProbLog framework. The
types of queries presented next are inductive, which means that they start from one
or more examples (typically, ground facts such as path(c,d)) describing particular
relationships, and perform inferences about other examples or about patterns hold-
ing in the database.

Analogy and Similarity Based Reasoning via Generalized Explanations
Which examples are most similar to a given example?
In explanation based learning the goal is to find a generalized explanation for
a particular example in the light of a background theory. Within ProbLog, the
traditional approach on explanation based learning is put into a new probabilis-
tic perspective, as in a probabilistic background theory, choosing the most likely
explanation provides a fundamental solution to the problem of multiple expla-
nations, and furthermore, the found explanation can be used to retrieve and rank
similar examples, that is, to reason by analogy. The most likely explanation thus
acts as a kind of local pattern that is specific to the given example(s), thereby al-
lowing the user to get insight into particular relationships. In our example graph,
given the definition of path in the background theory and an example such as
path(c,d), probabilistic explanation based learning finds that a direct connection
is the most likely explanation, which can then be used to retrieve and rank other
directly connected examples. This type of query is discussed in Section 10.5.

Local Pattern Mining Which queries are likely to succeed for a given set of exam-
ples?
In local pattern mining the goal is to find those patterns that are likely to succeed
on a set of examples, that is, instances of a specific relation key. This setting is
a natural variant of the explanation based learning setting, but without the need
for a background theory. The result is a kind of probabilistic relational associa-
tion rule miner. On our example network, the local pattern miner could start, for
instance, from the examples key(c,d) and key(a,c) and infer that there is a direct

232 Luc De Raedt et al.

connection that is likely to exist for these examples. Again, resulting patterns
can be used to retrieve similar examples and to provide insights into the likely
commonalities amongst the examples. Local pattern mining will be covered in
Section 10.6.

Theory Compression Which small theory best explains a set of examples?
Theory compression aims at finding a small subset of a ProbLog theory (or net-
work) that maximizes the likelihood of a given set of positive and negative ex-
amples. This problem is again motivated by the biological application, where
scientists try to analyze enormous networks of links in order to obtain an un-
derstanding of the relationships amongst a typically small number of nodes. The
idea now is to compress these networks as much as possible using a set of posi-
tive and negative examples. The examples take the form of relationships that are
either interesting or uninteresting to the scientist. The result should ideally be a
small network that contains the essential links and assigns high probabilities to
the positive and low probabilities to the negative examples. This task is analo-
gous to a form of theory revision [10, 11] where the only operation allowed is
the deletion of rules or facts. Within the ProbLog theory compression framework,
examples are true and false ground facts, and the task is to find a subset of a given
ProbLog program that maximizes the likelihood of the examples. In the example,
assume that path(a,d) is of interest and that path(a,e) is not. We can then try to
find a small graph (containing k or fewer edges) that best matches these observa-
tions. Using a greedy approach, we would first remove the edges connecting e to
the rest of the graph, as they strongly contribute to proving the negative example,
while the positive example still has likely proofs in the resulting graph. Theory
compression will be discussed in Section 10.7.

Parameter Estimation Which parameters best fit the data?
The goal is to learn the probabilities of facts from a given set of training ex-
amples. Each example consists of a query and target probability. This setting
is challenging because the explanations for the queries, namely the proofs, are
unknown. Using a modified version of the probabilistic inference algorithm, a
standard gradient search can be used to find suitable parameters efficiently. We
will discuss this type of query in Section 10.8.

To demonstrate the usefulness of ProbLog for inductive and probabilistic query-
ing, we have evaluated the different types of queries in the context of mining a
large biological network containing about 1 million entities and about 7 million
edges [12]. We will discuss this in more detail in Section 10.9.

This paper is organized as follows. In Section 10.2, we introduce the semantics of
ProbLog and define the probabilistic queries; Section 10.3 discusses computational
aspects and presents several algorithms (including approximation and Monte Carlo
algorithms) for computing probabilities of queries, while the integration of ProbLog
in the well-known implementation of YAP-Prolog is discussed in Section 11.3.1.
The following sections in turn consider each of the inductive queries listed above.
Finally, Section 10.9 provides a perspective on applying ProbLog on biological net-
work mining, Section 10.10 positions ProbLog in the field of statistical relational
learning, and Section 10.11 concludes.

10 Probabilistic Inductive Querying Using ProbLog 233

10.2 ProbLog: Probabilistic Prolog

In this section, we present ProbLog and its semantics and then introduce two types
of probabilistic queries: probabilistic inference, that is, computing the success prob-
ability of a query, and finding the most likely explanation, based on the explanation
probability.

A ProbLog program consists of a set of labeled facts pi :: ci together with a
set of definite clauses. Each ground instance (that is, each instance not containing
variables) of such a fact ci is true with probability pi, where all probabilities are
assumed mutually independent. To ensure a natural interpretation of these random
variables, no two different facts ci, c j are allowed to unify, as otherwise, proba-
bilities of ground facts would be higher than the individual probability given by
different non-ground facts. The definite clauses allow the user to add arbitrary back-
ground knowledge (BK).2 For ease of exposition, in the following we will assume
all probabilistic facts to be ground.

Figure 1(a) shows a small probabilistic graph that we use as running example in
the text. It can be encoded in ProbLog as follows:

0.8 :: edge(a,c). 0.7 :: edge(a,b). 0.8 :: edge(c,e).
0.6 :: edge(b,c). 0.9 :: edge(c,d). 0.5 :: edge(e,d).

Such a probabilistic graph can be used to sample subgraphs by tossing a coin for
each edge. A ProbLog program T = {p1 :: c1, · · · , pn :: cn}∪BK defines a probability
distribution over subprograms L⊆ LT = {c1, · · · ,cn}:

P(L|T) = ∏ci∈L pi ∏ci∈LT \L(1− pi).

We extend our example with the following background knowledge:

path(X,Y) :− edge(X,Y).
path(X,Y) :− edge(X,Z),path(Z,Y).

We can then ask for the probability that there exists a path between two nodes,
say c and d, in our probabilistic graph, that is, we query for the probability that a
randomly sampled subgraph contains the edge from c to d, or the path from c to d
via e (or both of these). Formally, the success probability Ps(q|T) of a query q in a
ProbLog program T is defined as

Ps(q|T) = ∑L⊆LT ,∃θ :L∪BK|=qθ P(L|T) . (10.1)

2 While in early work on ProbLog [3] probabilities were attached to arbitrary definite clauses and
all groundings of such a clause were treated as a single random event, we later on switched to a
clear separation of logical and probabilistic part and random events corresponding to ground facts.
This is often more natural and convenient, but can still be used to model the original type of clauses
(by adding a corresponding probabilistic fact to the clause body) if desired.

234 Luc De Raedt et al.

In other words, the success probability of query q is the probability that the query q
is provable in a randomly sampled logic program.

In our example, 40 of the 64 possible subprograms allow one to prove path(c,d),
namely all those that contain at least edge(c,d) (cd for short) or both edge(c,e)
and edge(e,d), so the success probability of that query is the sum of the prob-
abilities of these programs: Ps(path(c,d)|T) = P({ab,ac,bc,cd,ce,ed}|T)+ . . .+
P({cd}|T) = 0.94.

As a consequence, the probability of a specific proof, also called explanation,
corresponds to that of sampling a logic program L that contains all the facts needed
in that explanation or proof. The explanation probability Px(q|T) is defined as the
probability of the most likely explanation or proof of the query q

Px(q|T) = maxe∈E(q) P(e|T) = maxe∈E(q) ∏
ci∈e

pi, (10.2)

where E(q) is the set of all explanations for query q [13].
In our example, the set of all explanations for path(c,d) contains the edge from

c to d (with probability 0.9) as well as the path consisting of the edges from c to e
and from e to d (with probability 0.8 ·0.5 = 0.4). Thus, Px(path(c,d)|T) = 0.9.

The ProbLog semantics is an instance of the distribution semantics [14], where
the basic distribution over ground facts is defined by treating each such fact as an
independent random variable. Sato has rigorously shown that this class of programs
defines a joint probability distribution over the set of possible least Herbrand mod-
els of the program, where each possible least Herbrand model corresponds to the
least Herbrand model of the background knowledge BK together with a subprogram
L ⊆ LT ; for further details we refer to [14]. Similar instances of the distribution
semantics have been used widely in the literature, e.g. [4, 5, 6, 7, 8]; see also Sec-
tion 10.10.

10.3 Probabilistic Inference

In this section, we present various algorithms and techniques for performing prob-
abilistic inference in ProbLog, that is computing the success probabilities and most
likely explanations of queries. We will discuss the implementation of these methods
in Section 11.3.1.

10.3.1 Exact Inference

As computing the success probability of a query using Equation (10.1) directly is
infeasible for all but the tiniest programs, ProbLog uses a method involving two
steps [3]. The first step computes the proofs of the query q in the logical part of the
theory T , that is, in LT ∪BK. The result will be a DNF formula. The second step

10 Probabilistic Inductive Querying Using ProbLog 235

?- path(c,d).

:- edge(c,d). :- edge(c,A),path(A,d).

cd

:- path(d,d).

cd ce

:- edge(d,d). :- edge(d,B),path(B,d).

:- path(e,d).

:- edge(e,d).

ed

:- edge(e,C),path(C,d).

:- path(d,d).

:- edge(d,d). :- edge(d,D),path(D,d).

ed

Fig. 10.2 SLD-tree for query path(c,d).

employs Binary Decision Diagrams [15] to compute the probability of this formula.
Comparable first steps are performed in pD [6], PRISM [8] and ICL [16], however,
as we will see below, these systems differ in the method used to tackle the second
step. Let us now explain ProbLog’s two steps in more detail.

The first step employs SLD-resolution [17], as in Prolog, to obtain all dif-
ferent proofs. As an example, the SLD-tree for the query ?- path(c,d). is de-
picted in Figure 10.2. Each successful proof in the SLD-tree uses a set of facts
{p1 :: d1, · · · , pk :: dk} ⊆ T . These facts are necessary for the proof, and the proof is
independent of other probabilistic facts in T .

Let us now introduce a Boolean random variable bi for each fact pi :: ci ∈ T ,
indicating whether ci is in logic program, that is, bi has probability pi of being true.
The probability of a particular proof involving facts {pi1 :: di1 , · · · , pik :: dik} ⊆ T is
then the probability of the conjunctive formula bi1 ∧ ·· ·∧bik . Since a goal can have
multiple proofs, the success probability of query q equals the probability that the
disjunction of these conjunctions is true. This yields

Ps(q|T) = P

⎛
⎝ ∨

e∈E(q)

∧
bi∈cl(e)

bi

⎞
⎠ (10.3)

where E(q) denotes the set of proofs or explanations of the goal q and cl(e) denotes
the set of Boolean variables representing ground facts used in the explanation e.
Thus, the problem of computing the success probability of a ProbLog query can
be reduced to that of computing the probability of a DNF formula. The formula
corresponding to our example query path(c,d) is cd∨ (ce∧ed), where we use xy as
Boolean variable representing edge(x,y).

Computing the probability of DNF formulae is an #P-hard problem [18], as the
different conjunctions need not be independent. Indeed, even under the assump-
tion of independent variables used in ProbLog, the different conjunctions are not
mutually exclusive and may overlap. Various algorithms have been developed to
tackle this problem, which is known as the disjoint-sum-problem. The pD-engine

236 Luc De Raedt et al.

HySpirit [6] uses the inclusion-exclusion principle, which is reported to scale to
about ten proofs. PRISM [8] and PHA [7] avoid the disjoint-sum-problem by re-
quiring proofs to be mutually exclusive, while ICL uses a symbolic disjoining tech-
nique with limited scalability [16]. As the type of application considered here often
requires dealing with hundreds or thousands of proofs, the second step of our imple-
mentation employs Binary Decision Diagrams (BDDs) [15], an efficient graphical
representation of a Boolean function over a set of variables which scales to tens
of thousands of proofs; we will discuss the details in Section 10.4.3. Nevertheless,
calculating the probability of a DNF formula remains a hard problem and can thus
become fairly expensive, and finally infeasible. For instance, when searching for
paths in graphs or networks, even in small networks with a few dozen edges there
are easily O(106) possible paths between two nodes. ProbLog therefore includes
several approximation methods for the success probability. We will come back to
these methods from Section 10.3.2 onwards.

Compared to probabilistic inference, computing the most likely explanation is
much easier. Indeed, calculating the explanation probability Px corresponds to com-
puting the probability of a conjunctive formula only, so that the disjoint-sum-
problem does not arise. While one could imagine to use Viterbi-like dynamic pro-
gramming techniques on the DNF to calculate the explanation probability, our ap-
proach avoids constructing the DNF – which requires examining a potentially high
number of low-probability proofs – by using a best-first search, guided by the proba-
bility of the current partial proof. In terms of logic programming [17], the algorithm
does not completely traverse the entire SLD-tree to find all proofs, but instead uses
iterative deepening with a probability threshold α to find the most likely one. Algo-
rithm in Table 10.1 provides the details of this procedure, where stop is a minimum
threshold to avoid exploring infinite SLD-trees without solution and resolutionStep
performs the next possible resolution step on the goal and updates the probability p
of the current derivation and its explanation expl accordingly; backtracking reverts
these steps to explore alternative steps while at the same time keeping the current
best solution (max,best) and the current threshold α .

10.3.2 Bounded Approximation

The first approximation algorithm for obtaining success probabilities, similar to the
one proposed in [3], uses DNF formulae to obtain both an upper and a lower bound
on the probability of a query. It is related to work by [9] in the context of PHA, but
adapted towards ProbLog. The algorithm uses an incomplete SLD-tree, i.e. an SLD-
tree where branches are only extended up to a given probability threshold3, to obtain
DNF formulae for the two bounds. The lower bound formula d1 represents all proofs
with a probability above the current threshold. The upper bound formula d2 addi-
tionally includes all derivations that have been stopped due to reaching the threshold,

3 Using a probability threshold instead of the depth bound of [3] has been found to speed up
convergence, as upper bounds are tighter on initial levels.

10 Probabilistic Inductive Querying Using ProbLog 237

Table 10.1 Calculating the most likely explanation by iterative deepening search in the SLD-tree.

function BESTPROBABILITY(query q)

α := 0.5; max =−1; best := f alse; expl := /0; p = 1; goal = q;
while α > stop do

repeat

(goal, p,expl) := resolutionStep(goal, p,expl)
if p < α then

backtrack resolution
end if

if goal = /0 then

max := p; best := expl; α := p; backtrack resolution
end if

until no further backtracking possible
if max >−1 then

return (max,best)
else

α := 0.5 ·α
end if

end while

as these still may succeed. The algorithm proceeds in an iterative-deepening manner,
starting with a high probability threshold and successively multiplying this thresh-
old with a fixed shrinking factor until the difference between the current bounds
becomes sufficiently small. As d1 |= d |= d2, where d is the Boolean DNF formula
corresponding to the full SLD-tree of the query, the success probability is guaran-
teed to lie in the interval [P(d1),P(d2)].

As an illustration, consider a probability bound of 0.9 for the SLD-tree in Fig-
ure 10.2. In this case, d1 encodes the left success path while d2 additionally encodes
the path up to path(e,d), i.e. d1 = cd and d2 = cd∨ ce, whereas the formula for the
full SLD-tree is d = cd∨ (ce∧ ed).

10.3.3 K-Best

Using a fixed number of proofs to approximate the success probability allows for
better control of the overall complexity, which is crucial if large numbers of queries
have to be evaluated e.g. in the context of parameter learning, cf. Section 10.8.
[19] therefore introduce the k-probability Pk(q|T), which approximates the success
probability by using the k best (that is, most likely) explanations instead of all proofs
when building the DNF formula used in Equation (10.3):

Pk(q|T) = P

⎛
⎝ ∨

e∈Ek(q)

∧
bi∈cl(e)

bi

⎞
⎠ (10.4)

238 Luc De Raedt et al.

where Ek(q) = {e ∈ E(q)|Px(e) ≥ Px(ek)} with ek the kth element of E(q) sorted
by non-increasing probability. Setting k = ∞ and k = 1 leads to the success and
the explanation probability respectively. Finding the k best proofs can be realized
using a simple branch-and-bound approach extending the algorithm presented in
Table10.1; cf. also [7].

To illustrate k-probability, we consider again our example graph, but this time
with query path(a,d). This query has four proofs, represented by the conjunctions
ac∧cd, ab∧bc∧cd, ac∧ce∧ed and ab∧bc∧ce∧ed, with probabilities 0.72, 0.378,
0.32 and 0.168 respectively. As P1 corresponds to the explanation probability Px, we
obtain P1(path(a,d)) = 0.72. For k = 2, overlap between the best two proofs has
to be taken into account: the second proof only adds information if the first one is
absent. As they share edge cd, this means that edge ac has to be missing, leading
to P2(path(a,d)) = P((ac∧cd)∨ (¬ac∧ab∧bc∧cd)) = 0.72+(1−0.8) ·0.378 =
0.7956. Similarly, we obtain P3(path(a,d)) = 0.8276 and Pk(path(a,d)) = 0.83096
for k ≥ 4.

10.3.4 Monte Carlo

As an alternative approximation technique without BDDs, [20] propose a Monte
Carlo method. The algorithm repeatedly samples a logic program from the ProbLog
program and checks for the existence of some proof of the query of interest. The
fraction of samples where the query is provable is taken as an estimate of the query
probability, and after each m samples the 95% confidence interval is calculated.
Although confidence intervals do not directly correspond to the exact bounds used in
bounded approximation, the same stopping criterion is employed, that is, the Monte
Carlo simulation is run until the width of the confidence interval is at most δ . Such
an algorithm (without the use of confidence intervals) was suggested already by
Dantsin [4], although he does not report on an implementation. It was also used in
the context of networks (not Prolog programs) by [12].

10.4 Implementation

This section discusses the main building blocks used to implement ProbLog on top
of the YAP-Prolog system [21] as introduced in [20]. An overview is shown in Fig-
ure 10.3, with a typical ProbLog program, including ProbLog facts and background
knowledge (BK), at the top.

The implementation requires ProbLog programs to use the problog module.
Each program consists of a set of labeled facts and of unlabeled background knowl-
edge, a generic Prolog program. Labeled facts are preprocessed as described below.
Notice that the implementation requires all queries to non-ground probabilistic facts
to be ground on calling.

10 Probabilistic Inductive Querying Using ProbLog 239

Fig. 10.3 ProbLog Im-
plementation: A ProbLog
program (top) requires the
ProbLog library which in turn
relies on functionality from
the tries and array libraries.
ProbLog queries (bottom-left)
are sent to the YAP engine,
and may require calling the
BDD library CUDD via Sim-
pleCUDD.

Yap Prolog

ProbLog Program

BackgroundFacts

Queries

ProbLog Library

Array LibraryTrie Library

SimpleCUDD

Trie2BDD Script

In contrast to standard Prolog queries, where one is interested in answer substi-
tutions, in ProbLog one is primarily interested in a probability. As discussed before,
two common ProbLog queries ask for the most likely explanation and its probabil-
ity, and the probability of whether a query would have an answer substitution. In
Section 10.3, we have discussed two very different approaches to the problem:

• In exact inference (Section 10.3.1), k-best (Section 10.3.3) and bounded ap-
proximation (Section 10.3.2), the engine explicitly reasons about probabilities
of proofs. The challenge is how to compute the probability of each individual
proof, store a large number of proofs, and compute the probability of sets of
proofs.

• In Monte Carlo (Section 10.3.4), the probabilities of facts are used to sample
from ProbLog programs. The challenge is how to compute a sample quickly, in
a way that inference can be as efficient as possible.

ProbLog programs execute from a top-level query and are driven through a ProbLog
query. The inference algorithms discussed in Section 10.3 can be abstracted as fol-
lows:

• Initialize the inference algorithm;
• While probabilistic inference did not converge:

– initialize a new query;
– execute the query, instrumenting every ProbLog call in the current proof. In-

strumentation is required for recording the ProbLog facts required by a proof,
but may also be used by the inference algorithm to stop proofs (e.g., if the
current probability is lower than a bound);

– process success or exit substitution;

• Proceed to the next step of the algorithm: this may be trivial or may require
calling an external solver, such as a BDD tool, to compute a probability.

Notice that the current ProbLog implementation relies on the Prolog engine to effi-
ciently execute goals. On the other hand, and in contrast to most other probabilistic
language implementations, in ProbLog there is no clear separation between logical
and probabilistic inference: in a fashion similar to constraint logic programming,
probabilistic inference can drive logical inference.

240 Luc De Raedt et al.

From a Prolog implementation perspective, ProbLog poses a number of interest-
ing challenges. First, labeled facts have to be efficiently compiled to allow mutual
calls between the Prolog program and the ProbLog engine. Second, for exact infer-
ence, k-best and bounded approximation, sets of proofs have to be manipulated and
transformed into BDDs. Finally, Monte Carlo simulation requires representing and
manipulating samples. We discuss these issues next.

10.4.1 Source-to-source transformation

We use the term expansion mechanism to allow Prolog calls to labeled facts,
and for labeled facts to call the ProbLog engine. As an example, the program:

0.715 :: edge(′PubMed 2196878′,′ MIM 609065′).
0.659 :: edge(′PubMed 8764571′,′ HGNC 5014′). (10.5)

would be compiled as:

edge(A,B) :− problog edge(ID,A,B,LogProb),
grounding id(edge(A,B),ID,GroundID),
add to proof(GroundID,LogProb).

problog edge(0,′ PubMed 2196878′,′ MIM 609065′,−0.3348).
problog edge(1,′ PubMed 8764571′,′ HGNC 5014′,−0.4166).

(10.6)

Thus, the internal representation of each fact contains an identifier, the original ar-
guments, and the logarithm of the probability4. The grounding id procedure
will create and store a grounding specific identifier for each new grounding of
a non-ground probabilistic fact encountered during proving, and retrieve it on re-
peated use. For ground probabilistic facts, it simply returns the identifier itself. The
add to proof procedure updates the data structure representing the current path
through the search space, i.e., a queue of identifiers ordered by first use, together
with its probability.

10.4.2 Tries

Manipulating proofs is critical in ProbLog. We represent each proof as a queue con-
taining the identifier of each different ground probabilistic fact used in the proof,
ordered by first use. The implementation requires calls to non-ground probabilis-
tic facts to be ground, and during proving maintains a table of groundings used

4 We use the logarithm to avoid numerical problems when calculating the probability of a deriva-
tion, which is used to drive inference.

10 Probabilistic Inductive Querying Using ProbLog 241

within the current query together with their identifiers. In our implementation, the
queue is stored in a backtrackable global variable, which is updated by calling
add to proof with an identifier for the current ProbLog fact. We thus exploit
Prolog’s backtracking mechanism to avoid recomputation of shared proof prefixes
when exploring the space of proofs. Storing a proof is simply a question of adding
the value of the variable to a store.

Storing and manipulating proofs is critical in ProbLog. When manipulating
proofs, the key operation is often insertion: we would like to add a proof to an
existing set of proofs. Some algorithms, such as exact inference or Monte Carlo,
only manipulate complete proofs. Others, such as bounded approximation, require
adding partial derivations too. The nature of the SLD-tree means that proofs tend to
share both a prefix and a suffix. Partial proofs tend to share prefixes only. This sug-
gests using tries [22] to maintain the set of proofs. We use the YAP implementation
of tries for this task, based itself on XSB Prolog’s work on tries of terms [23].

10.4.3 Binary Decision Diagrams

To efficiently compute the probability of a DNF formula representing a set of
proofs, our implementation represents this formula as a Binary Decision Diagram
(BDD) [15]. Given a fixed variable ordering, a Boolean function f can be repre-
sented as a full Boolean decision tree, where each node on the ith level is labeled
with the ith variable and has two children called low and high. Leaves are labeled by
the outcome of f for the variable assignment corresponding to the path to the leaf,
where in each node labeled x, the branch to the low (high) child is taken if variable x
is assigned 0 (1). Starting from such a tree, one obtains a BDD by merging isomor-
phic subgraphs and deleting redundant nodes until no further reduction is possible.
A node is redundant if the subgraphs rooted at its children are isomorphic.

Figure 10.1b shows the BDD corresponding to cd∨ (ce∧ ed), the formula of the
example query path(c,d). Given a BDD, it is easy to compute the probability of
the corresponding Boolean function by traversing the BDD from the root node to a
leaf. At each inner node, probabilities from both children are calculated recursively
and combined afterwards as shown in algorithm in Table 10.2. In practice, memo-
rization of intermediate results is used to avoid the recomputation at nodes that are
shared between multiple paths, resulting in a time and space complexity linear in
the number of nodes in the BDD.

We use SimpleCUDD [24]5 as a wrapper tool for the BDD package CUDD6 to
construct and evaluate BDDs. More precisely, the trie representation of the DNF is
translated to a BDD generation script, which is processed by SimpleCUDD to build
the BDD using CUDD primitives. It is executed via Prolog’s shell utility, and results
are reported via shared files.

5 http://people.cs.kuleuven.be/˜theofrastos.mantadelis/tools/
simplecudd.html
6 http://vlsi.colorado.edu/˜fabio/CUDD

242 Luc De Raedt et al.

Table 10.2 Calculating success probability by traversing BDD.

function PROBABILITY(BDD node n)

If n is the 1-terminal return 1
If n is the 0-terminal return 0
let h and l be the high and low children of n
prob(h) :=PROBABILITY(h)
prob(l) :=PROBABILITY(l)
return pn · prob(h)+(1− pn) · prob(l)

During the generation of the code, it is crucial to exploit the structure sharing
(prefixes and suffixes) already in the trie representation of a DNF formula, otherwise
CUDD computation time becomes extremely long or memory overflows quickly.
Since CUDD builds BDDs by joining smaller BDDs using logical operations, the
trie is traversed bottom-up to successively generate code for all its subtrees. Two
types of operations are used to combine nodes. The first creates conjunctions of leaf
nodes and their parent if the leaf is a single child, the second creates disjunctions of
all child nodes of a node if these child nodes are all leaves. In both cases, a subtree
that occurs multiple times in the trie is translated only once, and the resulting BDD
is used for all occurrences of that subtree. Because of the optimizations in CUDD,
the resulting BDD can have a very different structure than the trie.

10.4.4 Monte Carlo

Monte Carlo execution is quite different from the approaches discussed before, as
the two main steps are (a) generating a sample program and (b) performing standard
refutation on the sample. Thus, instead of combining large numbers of proofs, we
need to manipulate large numbers of different programs or samples.

One naive approach would be to generate a complete sample, and to check for
a proof within the sample. Unfortunately, the approach does not scale to large
databases, even if we try to reuse previous proofs: just generating a sample can
be fairly expensive, as one would need to visit every ProbLog fact at every sample.
In fact, in our experience, just representing and generating the whole sample can
be a challenge for large databases. To address this first problem, we rely on YAP’s
efficient implementation of arrays as the most compact way of representing large
numbers of nodes. Moreover, we take advantage of the observation that often proofs
are local, i.e. we only need to verify whether facts from a small fragment of the
database are in the sample, to generate the sample lazily. In other words, we verify
if a fact is in the sample only when we need it for a proof. Samples are thus repre-
sented as a three-valued array, originally initialized to 0, that means sampling was
not asked yet; 1 means that the fact is in the sampled program, and 2 means not in
sample. Note that as fact identifiers are used to access the array, the approach cannot
directly be used for non-ground facts, whose identifiers are generated on demand.

10 Probabilistic Inductive Querying Using ProbLog 243

The current implementation of Monte Carlo therefore uses the internal database to
store the result of sampling different groundings of such facts.

The tight integration of ProbLog’s probabilistic inference algorithms in the state-
of-the-art YAP-Prolog system discussed here includes several improvements over
the initial implementation used in [3], thereby enabling the use of ProbLog to ef-
fectively query Sevon’s Biomine network [12] containing about 1,000,000 nodes
and 6,000,000 edges. For experimental results obtained using the various methods
in the context of this network as well as for further implementation details, we refer
to [25].

10.5 Probabilistic Explanation Based Learning

In this section, we address the question of finding examples that are similar or anal-
ogous to a given example. To this end, we combine two types of queries, namely
finding the most likely (generalized) explanation for an example and reasoning by
analogy, which is the process of finding (and possibly ranking) examples with a
similar explanation. ProbLog’s probabilistic explanation based learning technique
(PEBL) [13] employs a background theory that allows to compute a most likely
explanation for the example and to generalize that explanation. It thus extends the
concept of explanation based learning (EBL) to a probabilistic framework. Proba-
bilistic explanation based learning as introduced here is also related to probabilistic
abduction, as studied by Poole [7]. The difference with Poole’s work however is that
we follow the deductive view of EBL to compute generalized explanations and also
apply them for analogical reasoning.

The central idea of explanation based learning [26, 27] is to compute a gen-
eralized explanation from a concrete proof of an example. Explanations use only
so-called operational predicates, i.e. predicates that capture essential characteristics
of the domain of interest and should be easy to prove. Operational predicates are
to be declared by the user as such. The problem of probabilistic explanation based
learning can be sketched as follows.

Given a positive example e (a ground fact), a ProbLog theory T , and declarations
that specify which predicates are operational,
Find a clause c such that T |= c (in the logical sense, so interpreting T as a Prolog
program), body(c) contains only operational predicates, there exists a substitu-
tion θ such that head(c)θ = e and body(c)θ is the most likely explanation for e
given T .

Following the work by [28, 29], explanation based learning starts from a defi-
nite clause theory T , that is a pure Prolog program, and an example in the form
of a ground atom p(t1, ..., tn). It then constructs a refutation proof of the exam-
ple using SLD-resolution. Explanation based learning will generalize this proof
to obtain a generalized explanation. This is realized performing the same SLD-
resolution steps as in the proof for the example, but starting from the variabelized

244 Luc De Raedt et al.

goal, i.e. p(X1, ...,Xn) where the Xi are different variables. The only difference is
that in the general proof atoms q(s1, ...,sr) for operational predicates q in a goal
?− g1, ...,gi,q(s1, ...,sr),gi+1, ...,gn are not resolved away. Also, the proof proce-
dure stops when the goal contains only atoms for operational predicates. The re-
sulting goal provides a generalized explanation for the example. In terms of the
SLD-resolution proof tree, explanation based learning cuts off branches below op-
erational predicates. It is easy to implement the explanation based proof procedure
as a meta-interpreter for Prolog [28, 29].

Reconsider the example of Figure 10.1a, ignoring the probability labels for now.
We define edge/2 to be the only operational predicate, and use path(c,d) as
training example. EBL proves this goal using one instance of the operational pred-
icate, namely edge(c,d), leading to the explanation edge(X,Y) for the gen-
eralized example path(X,Y). To be able to identify the examples covered by
such an explanation, we represent it as so-called explanation clause, where the
generalized explanation forms the body and the predicate in the head is renamed
to distinguish the clause from those for the original predicate. In our example, we
thus get the explanation clause exp path(X,Y)← edge(X,Y). Using the sec-
ond possible proof of path(c,d) instead, we would obtain exp path(X,Y)←
edge(X,Z), edge(Z,Y).

PEBL extends EBL to probabilistic logic representations, computing the gener-
alized explanation from the most likely proof of an example as determined by the
explanation probability Px(q|T) (10.2). It thus returns the first explanation clause in
our example.

As we have explained in Section 10.3.1, computing the most likely proof for
a given goal in ProbLog is straightforward: instead of traversing the SLD-tree in
a left-to-right depth-first manner as in Prolog, nodes are expanded in order of the
probability of the derivation leading to that node. This realizes a best-first search
with the probability of the current proof as an evaluation function. We use iterative
deepening in our implementation to avoid memory problems. The PEBL algorithm
thus modifies the algorithm in Table 10.1 to return the generalized explanation based
on the most likely proof, which, as in standard EBL, is generated using the same
sequence of resolution steps on the variabelized goal. As for the k-probability (Sec-
tion 10.3.3), a variant of the algorithm can be used to return the k most probable
structurally distinct explanations.

The probabilistic view on explanation based learning adopted in ProbLog offers
natural solutions to two issues traditionally discussed in the context of explanation
based learning [26, 30]. The first one is the multiple explanation problem, which
is concerned with choosing the explanation to be generalized for examples having
multiple proofs. The use of a sound probabilistic framework naturally deals with
this issue by selecting the most likely proof. The second problem is that of gener-
alizing from multiple examples, another issue that received considerable attention
in traditional explanation based learning. To realize this in our setting, we modify
the best-first search algorithm so that it searches for the most likely generalized ex-
planation shared by the n examples e1, ...,en. Including the variabelized atom e, we
compute n+1 SLD-resolution derivations in parallel. A resolution step resolving an

10 Probabilistic Inductive Querying Using ProbLog 245

atom for a non-operational predicate in the generalized proof for e is allowed only
when the same resolution step can also be applied to each of the n parallel deriva-
tions. Atoms corresponding to operational predicates are – as sketched above – not
resolved in the generalized proof, but it is nevertheless required that for each occur-
rence of these atoms in the n parallel derivations, there exists a resolution derivation.

Consider again our running example, and assume that we now want to construct
a common explanation for path(c,d) and path(b,e). We thus have to simul-
taneously prove both examples and the variabelized goal path(X,Y). After re-
solving all three goals with the first clause for path/2, we reach the first instance
of the operational predicate edge/2 and thus have to prove both edge(c,d) and
edge(b,e). As proving edge(b,e) fails, the last resolution step is rejected and
the second clause for path/2 used instead. Continuing this process finally leads to
the explanation clause exp path(X,Y)← edge(X,Z),edge(Z,Y).

At the beginning of this section, we posed the question of finding examples that
are similar or analogous to a given example. The explanation clause constructed by
PEBL provides a concrete measure for analogy or similarity based reasoning: ex-
amples are considered similar if they can be explained using the general pattern that
best explains the given example, that is, if they can be proven using the explana-
tion clause. In our example, using the clause exp path(X,Y)← edge(X,Y)
obtained from path(c,d), five additional instances of exp path(X,Y) can be
proven, corresponding to the other edges of the graph. Furthermore, such similar
examples can naturally be ranked according to their probability, that is, in our ex-
ample, exp path(a,c) and exp path(c,e)would be considered most similar
to path(c,d), as they have the highest probability.

We refer to [13] for more details as well as experiments in the context of biolog-
ical networks.

10.6 Local Pattern Mining

In this section, we address the question of finding queries that are likely to succeed
on a given set of examples. We show how local pattern mining can be adapted to-
wards probabilistic databases such as ProbLog. Even though local pattern mining is
related to probabilistic explanation based learning, there are some important differ-
ences. Indeed, probabilistic explanation based learning typically employs a single
positive example and a background theory to compute a generalized explanation of
the example. Local pattern mining, on the other hand, does not rely on a background
theory or declarations of operational predicates, uses a set of examples – possibly
including negative ones – rather than a single one, and computes a set of patterns (or
clauses) satisfying certain conditions. As in probabilistic explanation based learn-
ing, the discovered patterns can be used to retrieve and rank further examples, again
realizing a kind of similarity based reasoning or reasoning by analogy.

Our approach to probabilistic local pattern mining [31] builds upon multi-
relational query mining techniques [32], extending them towards probabilistic

246 Luc De Raedt et al.

databases. We use ProbLog to represent databases and queries, abbreviating vec-
tors of variables as X. We assume a designated relation key containing the set of
tuples to be characterized using queries, and restrict the language L of patterns to
the set of conjunctive queries r(X) defined as

r(X) :−key(X), l1, ..., ln (10.7)

where the li are positive atoms. Additional syntactic or semantic restrictions, called
bias, can be imposed on the form of queries by explicitly specifying the language L ,
cf. [33, 34, 32]. Query Mining aims at finding all queries satisfying a selection pred-
icate φ . It can be formulated as follows, cf. [32, 34]:

Given a language L containing queries of the form (10.7), a database D includ-
ing the designated relation key, and a selection predicate φ

Find all queries q ∈L such that φ(q,D) = true.

The most prominent selection predicate is minimum frequency, an anti-monotonic
predicate, requiring a minimum number of tuples covered. Anti-monotonicity is
based on a generality relation between patterns. We employ OI-subsumption [35], as
the corresponding notion of subgraph isomorphism is favorable within the intended
application in network mining.

Correlated Pattern Mining [36] uses both positive and negative examples, given
as two designated relations key+ and key− of the same arity, to find the top k patterns,
that is, the k patterns scoring best w.r.t. a function ψ . The function ψ employed is
convex, e.g. measuring a statistical significance criterion such as χ2, cf. [36], and
measures the degree to which the pattern is statistically significant or unexpected.
Thus correlated pattern mining corresponds to the setting

φ(q,D) = q ∈ argk max
q∈L

ψ(q,D) . (10.8)

Consider the database corresponding to the graph in Figure 1(a) (ignoring probabil-
ity labels) with key+ = {a,c} and key− = {d,e}. A simple correlation function is
ψ(q,D) = COUNT(q+(∗))−COUNT(q−(∗)), where COUNT(q(∗)) is the num-
ber of different provable ground instances of q and qx denotes query q restricted to
keyx. We obtain ψ(Q1,D) = 2−0 = 2 and ψ(Q2,D) = 1−1 = 0 for queries

(Q1) q(X) :−key(X),edge(X ,Y),edge(Y,Z).

(Q2) q(X) :−key(X),edge(X ,d).

Multi-relational query miners such as [32, 34] often follow a level-wise approach
for frequent query mining [37], where at each level new candidate queries are gen-
erated from the frequent queries found on the previous level. In contrast to Apriori,
instead of a “joining” operation, they employ a refinement operator ρ to compute
more specific queries, and also manage a set of infrequent queries to take into ac-
count the specific language requirements imposed by L . To search for all solutions,
it is essential that the refinement operator is optimal w.r.t. L , i.e. ensures that there
is exactly one path from the most general query to every query in the search space.

10 Probabilistic Inductive Querying Using ProbLog 247

Table 10.3 Counts on key+ and key− and ψ-values obtained during the first level of mining in the
graph of Figure 1(a). The current minimal score for best queries is 1, i.e. only queries with ψ ≥ 1
or c+ ≥ 1 will be refined on the next level.

query c+ c− ψ
1 key(X),edge(X,Y) 2 1 1

2 key(X),edge(X,a) 0 0 0
3 key(X),edge(X,b) 1 0 1

4 key(X),edge(X,c) 1 0 1

5 key(X),edge(X,d) 1 1 0
6 key(X),edge(X,e) 1 0 1

7 key(X),edge(Y,X) 1 2 - 1
8 key(X),edge(a,X) 1 0 1

9 key(X),edge(b,X) 1 0 1

10 key(X),edge(c,X) 0 2 -2
11 key(X),edge(d,X) 0 0 0
12 key(X),edge(e,X) 0 1 -1

This can be achieved by restricting the refinement operator to generate queries in a
canonical form, cf. [34].

Morishita and Sese [36] adapt Apriori for finding the top k patterns w.r.t. a bound-
able function ψ , i.e. for the case where there exists a function u (different from a
global maximum) such that ∀g,s ∈L : g � s→ ψ(s) ≤ u(g). Again, at each level
candidate queries are obtained from those queries generated at the previous level
that qualify for refinement, which now means they either belong to the current k best
queries, or are still promising as their upper-bound is higher than the value of the
current k-th best query. The function ψ(q,D) =COUNT(q+(∗))−COUNT(q−(∗))
used in the example above is upper-boundable using u(q,D)=COUNT(q+(∗)). For
any g� s, ψ(s)≤ COUNT(s+(∗))≤ COUNT(g+(∗)), as COUNT(s−(∗))≥ 0 and
COUNT is anti-monotonic. To illustrate this, assume we mine for the 3 best corre-
lated queries in our graph database. Table 10.3 shows counts on key+ and key− and
ψ-values obtained during the first level of mining. The highest score achieved is 1.
Queries 1, 3, 4, 6, 8, 9 are the current best queries and will thus be refined on the
next level. Queries 5 and 7 have lower scores, but upper bound c+ = 1, implying that
their refinements may still belong to the best queries and have to be considered on
the next level as well. The remaining queries are pruned, as they all have an upper
bound c+ = 0 < 1, i.e. all their refinements are already known to score lower than
the current best queries.

The framework for query mining as outlined above can directly be adapted to-
wards probabilistic databases. The key changes involved are 1) that the database D
is probabilistic, and 2) that the selection predicate φ or the correlation measure ψ
is based on the probabilities of queries. In other words, we employ a probabilistic
membership function. In non-probabilistic frequent query mining, every tuple in the
relation key either satisfies the query or not. So, for a conjunctive query q and a
0-1 membership function M(t|q,D), we can explicitly write the counting function
underlying frequency as a sum:

248 Luc De Raedt et al.

f req(q,D) = ∑
t∈key

M(t|q,D)

On a more general level, this type of function can be seen as aggregate of the mem-
bership function M(t|q,D).

To apply the algorithms sketched above with a probabilistic database D , it suf-
fices to replace the deterministic membership function M(t|q,D) with a probabilis-
tic variant. Possible choices for such a probabilistic membership function P(t|q,D)
include the success probability Ps(q(t)|D) or the explanation probability Px(q(t)|D)
as introduced for ProbLog in Equations (10.1) and (10.2). Note that using such
query probabilities as probabilistic membership function is anti-monotonic, that is,
if q1 � q2 then P(t|q1,D) ≥ P(t|q2,D). Again, a natural choice of selection predi-
cate φ is the combination of a minimum threshold with an aggregated probabilistic
membership function:

agg(q,D) = AGGt∈key P(t|q,D). (10.9)

Here, AGG denotes an aggregate function such as ∑, min, max or ∏, which is
to be taken over all tuples t in the relation key. Choosing ∑ with a determinis-
tic membership relation corresponds to the traditional frequency function, whereas
∏ computes a kind of likelihood of the data. Note that whenever the membership
function P is anti-monotone, selection predicates of the form agg(q,D) > c (with
agg ∈ {∑,min,max,∏}) are anti-monotonic with regard to OI-subsumption, which
is crucial to enable pruning.

When working with both positive and negative examples, the main focus lies on
finding queries with a high aggregated score on the positives and a low aggregated
score on the negatives. Note that using unclassified instances key corresponds to
the special case where key+ = key and key− = /0. In the following, we will there-
fore consider instances of the selection function (10.9) for the case of classified
examples key+ and key− only. Choosing sum as aggregation function results in a
probabilistic frequency p f (10.10) also employed by [38] in the context of item-set
mining, whereas product defines a kind of likelihood LL (10.11). Notice that using
the product in combination with a non-zero threshold implies that all positive exam-
ples must be covered with non-zero probability. We therefore introduce a softened
version LLn (10.12) of the likelihood, where n < |key+| examples have to be cov-
ered with non-zero probability. This is achieved by restricting the set of tuples in
the product to the n highest scoring tuples in key+, thus integrating a deterministic
(anti-monotonic) selection predicate into the probabilistic one. More formally, the
three functions used are defined as follows:

p f (q,D)=∑
t∈key+

P(t|q,D)− ∑
t∈key−

P(t|q,D) (10.10)

LL(q,D)=∏
t∈key+

P(t|q,D) · ∏
t∈key−

(1−P(t|q,D)) (10.11)

LLn(q,D)=∏
t∈key+n

P(t|q,D) · ∏
t∈key−

(1−P(t|q,D)) (10.12)

10 Probabilistic Inductive Querying Using ProbLog 249

Here, key+n contains the n highest scoring tuples in key+. In correlated query mining,
we obtain an upper bound on each of these functions by omitting the scores of
negative examples, i.e. the aggregation over key−.

Consider again our graph database, now with probabilities. Using Px as prob-
abilistic membership function, the query q(X) : −key(X),edge(X ,Y) gets proba-
bilistic frequency p f (q,D) = Px(a|q,D)+Px(c|q,D)−(Px(d|q,D)+Px(e|q,D)) =
0.8+0.9−(0+0.5)= 1.2 (with upper bound 0.8+0.9= 1.7), likelihood LL(q,D)=
0.8 ·0.9 · (1−0) · (1−0.5) = 0.36 (with upper bound 0.8 ·0.9 = 0.72), and softened
likelihood LL1(q,D) = 0.9 · (1−0) · (1−0.5) = 0.9 (with upper bound 0.9).

For further details and experiments in the context of the biological network of
Section 10.9, we refer to [31].

10.7 Theory Compression

In this section, we investigate how to obtain a small compressed probabilistic
database that contains the essential links w.r.t. a given set of positive and nega-
tive examples. This is useful for scientists trying to understand and analyze large
networks of uncertain relationships between biological entities as it allows them to
identify the most relevant components of the theory.

The technique on which we build is that of theory compression [39], where the
goal is to remove as many edges, i.e., probabilistic facts as possible from the theory
while still explaining the (positive) examples. The examples, as usual, take the form
of relationships that are either interesting or uninteresting to the scientist. The result-
ing theory should contain the essential facts, assign high probabilities to the positive
and low probabilities to the negative examples, and it should be a lot smaller and
hence easier to understand and to employ by the scientists than the original theory.

As an illustrative example, consider again the graph in Figure 1(a) together with
the definition of the path predicate given earlier. Assume now that we just confirmed
that path(a,d) is of interest and that path(a,e) is not. We can then try to find a small
graph (containing k or fewer edges) that best matches these observations. Using a
greedy approach, we would first remove the edges connecting e to the rest of the
graph, as they strongly contribute to proving the negative example, while the positive
example still has likely proofs in the resulting graph.

Before introducing the ProbLog theory compression problem, it is helpful to con-
sider the corresponding problem in a purely logical setting, i.e., ProbLog programs
where all facts are part of the background knowledge. In this case, the theory com-
pression task coincides with a form of theory revision [10, 11] where the only op-
eration allowed is the deletion of rules or facts: given a set of positive and negative
examples in the form of true and false facts, find a theory that best explains the
examples, i.e., one that scores best w.r.t. a function such as accuracy. At the same
time, the theory should be small, that is it should contain at most k facts. So, logical
theory compression aims at finding a small theory that best explains the examples.
As a result the compressed theory should be a better fit w.r.t. the data but should also

250 Luc De Raedt et al.

be much easier to understand and to interpret. This holds in particular when starting
with large networks containing thousands of nodes and edges and then obtaining a
small compressed graph that consists of say 20 edges only. In biological databases
such as the ones considered in this chapter, scientists can easily analyze the inter-
actions in such small networks but have a very hard time with the large networks.
The ProbLog Theory Compression Problem is now an adaptation of the traditional
theory revision (or compression) problem towards probabilistic Prolog programs.
Intuitively, we are interested in finding a small number of facts (at most k many)
that maximizes the likelihood of the examples. More formally:

Given a ProbLog theory S, sets P and N of positive and negative examples in the
form of independent and identically-distributed (iid) ground facts, and a constant
k ∈ N,

Find a theory T ⊆ S of size at most k (|T | ≤ k) that has a maximum likelihood L
w.r.t. the examples E = P∪N, i.e., T = argmaxT⊆S∧|T |≤k L (E|T), where

L (E|T) = ∏
e∈P

P(e|T) ·∏
e∈N

(1−P(e|T)) (10.13)

In other words, we use a ProbLog theory T to specify the conditional class distribu-
tion, i.e., the probability P(e|T) that any given example e is positive7. Because the
examples are assumed to be iid the total likelihood is obtained as a simple product.

Despite its intuitive appeal, using the likelihood as defined in Eq. (10.13) has
some subtle downsides. For an optimal ProbLog theory T , the probability of the
positives is as close to 1 as possible, and for the negatives as close to 0 as possible.
In general, however, we want to allow for misclassifications (with a high cost in
order to avoid overfitting) to effectively handle noisy data and to obtain smaller
theories. Furthermore, the likelihood function can become 0, e.g., when a positive
example is not covered by the theory at all. To overcome these problems, we slightly
redefine P(e|T) in Eq. (10.13) as

P̂(e|T) = max
(

min[1− ε,P(e|T)],ε) (10.14)

for some constant ε > 0 specified by the user.
The compression approach can efficiently be implemented following a two-steps

strategy as shown in algorithm in Table 10.4. In a first step, we compute the BDDs
for all given examples. Then, we use these BDDs in a second step to greedily remove
facts. This compression approach is efficient since the (expensive) construction of
the BDDs is performed only once per example.

More precisely, the algorithm starts by calling the approximation algorithm
sketched in Section 10.3.2, which computes the DNFs and BDDs for lower and
upper bounds (for-loop). In the second step, only the lower bound DNFs and BDDs
are employed because they are simpler and, hence, more efficient to use. All facts
used in at least one proof occurring in the (lower bound) BDD of some example con-

7 Note that this is slightly different from specifying a distribution over (positive) examples.

10 Probabilistic Inductive Querying Using ProbLog 251

Table 10.4 ProbLog theory compression

functionCOMPRESS(S = {p1 :: c1, . . . , pn :: cn}, E, k, ε)

for e ∈ E do

Call APPROXIMATE(e,S,δ) to get DNF(low,e) and BDD(e)
where DNF(low,e) is the lower bound DNF formula for e
and BDD(e) is the BDD corresponding to DNF(low,e)

end for

R := {pi :: ci | bi (indicator for fact i) occurs in a DNF(low,e)}
BDD(E) :=

⋃
e∈E{BDD(e)}

improves := true
while (|R|> k or improves) and R �= /0 do

ll := LIKELIHOOD(R,BDD(E),ε)
i := argmaxi∈R LIKELIHOOD(R−{i},BDD(E),ε)
improves := (ll ≤ LIKELIHOOD(R−{i},BDD(E),ε))
if improves or |R|> k then

R := R−{i}
end if

end while

Return R

stitute the set R of possible revision points. All other facts do not occur in any proof
contributing to probability computation and hence can immediately be removed.

After the set R of revision points has been determined and the other facts removed
the ProbLog theory compression algorithm performs a greedy search in the space of
subsets of R (while-loop). At each step, the algorithm finds that fact whose deletion
results in the best likelihood score, and then deletes it. As explained in more details
in [39], this can efficiently be done using the BDDs computed in the preprocessing
step: set the probability of the node corresponding to the fact to 0 and recompute
the probability of the BDD. This process is continued until both |R| ≤ k and deleting
further facts does not improve the likelihood.

Theory compression as introduced here bears some relationships to the PTR ap-
proach by [40], where weights or probabilities are used as a kind of bias during the
process of revising a logical theory. ProbLog compression is also somewhat related
to Zelle and Mooney’s work on Chill [41] in that it specializes an overly general the-
ory but differs again in the use of a probabilistic framework. In the context of prob-
abilistic logic languages, PFORTE [42] is a theory revision system using BLPs [43]
that follows a hill-climbing approach similar to the one used here, but with a wider
choice of revision operators.

For more details including experiments showing that ProbLog compression is not
only of theoretical interest but is also applicable to various realistic problems in a
biological link discovery domain we refer to [39].

252 Luc De Raedt et al.

10.8 Parameter Estimation

In this section, we address the question of how to set the parameters of the ProbLog
facts in the light of a set of examples. These examples consist of ground queries
together with the desired probabilities, which implies that we are dealing with
weighted examples such as 0.6 : locatedIn(a,b) and 0.7 : interacting(a,c) as used
by Gupta and Sarawagi [44] and Chen et al. [45]. The parameter estimation tech-
nique should then determine the best values for the parameters. Our approach as im-
plemented in LeProbLog [19, 46] (Least Square Parameter Estimation for ProbLog)
performs a gradient-based search to minimize the error on the given training data.
The problem tackled can be formalized as regression task as follows:

Given a ProbLog database T with unknown parameters and a set of training ex-
amples {(qi, p̃i)}M

i=1, M > 0, where each qi ∈H is a query or proof and p̃i is the
k-probability of qi,

Find the parameters of the database T that minimize the mean squared error:

MSE(T) =
1
M ∑1≤i≤M

(
Pk(qi|T)− p̃i

)2
. (10.15)

Gradient descent is a standard way of minimizing a given error function. The
tunable parameters are initialized randomly. Then, as long as the error did not con-
verge, the gradient of the error function is calculated, scaled by the learning rate
η , and subtracted from the current parameters. To get the gradient of the MSE, we
apply the sum and chain rule to Eq. (10.15). This yields the partial derivative

∂MSE(T)
∂ p j

=
2
M ∑

1≤i≤M

(
Pk(qi|T)− p̃i

)︸ ︷︷ ︸
Part 1

· ∂ Pk(qi|T)
∂ p j︸ ︷︷ ︸
Part 2

. (10.16)

where part 1 can be calculated by a ProbLog inference call computing (10.4). It does
not depend on j and has to be calculated only once in every iteration of a gradient
descent algorithm. Part 2 can be calculated as following

∂Pk(qi|T)
∂ p j

= ∑
S⊆LT
S|=qi

δ jS ∏
cx∈S
x �= j

px ∏
cx∈LT \S

x �= j

(1− px) , (10.17)

where δ jS := 1 if c j ∈ S and δ jS :=−1 if c j ∈ LT \S. It is derived by first deriving the
gradient ∂P(S|T)/∂ p j for a fixed subset S ⊆ LT of facts, which is straightforward,
and then summing over all subsets S where qi can be proven.

To ensure that all p j stay probabilities during gradient descent, we reparameterize
the search space and express each p j ∈]0,1[in terms of the sigmoid function p j =
σ(a j) := 1/(1+ exp(−a j)) applied to a j ∈ R. This technique has been used for
Bayesian networks and in particular for sigmoid belief networks [47]. We derive the
partial derivative ∂Pk(qi|T)/∂a j in the same way as (10.17) but we have to apply

10 Probabilistic Inductive Querying Using ProbLog 253

Table 10.5 Evaluating the gradient of a query efficiently by traversing the corresponding BDD,
calculating partial sums, and adding only relevant ones.

function GRADIENT(BDD b, fact to derive for n j)

(val,seen) = GRADIENTEVAL(root(b),n j)
If seen = 1 return val ·σ(a j) · (1−σ(a j))
Else return 0

function GRADIENTEVAL(node n, target node n j)

If n is the 1-terminal return (1,0)
If n is the 0-terminal return (0,0)
Let h and l be the high and low children of n
(val(h),seen(h)) = GRADIENTEVAL(h,n j)
(val(l),seen(l)) = GRADIENTEVAL(l,n j)
If n = n j return (val(h)− val(l),1)
ElseIf seen(h) = seen(l) return (σ(an) · val(h)+(1−σ(an)) · val(l),seen(h)))
ElseIf seen(h) = 1 return (σ(an) · val(h),1)
ElseIf seen(l) = 1 return ((1−σ(an)) · val(l),1)

the chain rule one more time due to the σ function

σ(a j) · (1−σ(a j)) · ∑
S⊆LT
L|=qi

δ jS ∏
cx∈S
x �= j

σ(ax) ∏
cx∈LT \S

x �= j

(1−σ(ax)).

We also have to replace every p j by σ(p j) when calculating the success probabil-
ity. We employ the BDD-based algorithm to compute probabilities as outlined in
algorithm in Table 10.2. In the following, we update this towards the gradient and
introduce LeProbLog, the gradient descent algorithm for ProbLog.

The following example illustrates the gradient calculation on a simple query.

Example 10.1 (Gradient of a query). Consider a simple coin toss game: One can
either win by getting heads or by cheating as described by the following theory:

?? :: heads. ?? :: cheat succesfully.
win :−cheat successfully.
win :−heads.

Suppose we want to estimate unknown fact probabilities (indicated by the symbol
??) from the training example P(win) = 0.3.

As a first step the fact probabilities get initialized with some random probabili-
ties:

0.6 :: heads. 0.2 :: cheat succesfully.
win :−cheat successfully.
win :−heads.

In order to calculate the gradient of the MSE (cf. Equation (10.16)), the algorithm
evaluates the partial derivative for every probabilistic fact and every training exam-

254 Luc De Raedt et al.

Fig. 10.4 Intermediate results when calculating the gradient ∂P(win)/∂heads using the algorithm
in Table 10.5. The result is read off at the root node of the BDD.

ple. Figure 10.4 illustrates the calculation of the partial derivate ∂P(win)/∂heads
using the algorithm in Table 10.5.

As described in Section 10.3, BDDs can be used to efficiently calculate the suc-
cess probability of a query, solving the disjoint-sum problem arising at summing
over probabilities in an elegant way. The algorithm in Table 10.2 can be modified
straightforwardly such that it calculates the value of the gradient (10.17) of a suc-
cess probability. The algorithm in Table 10.5 shows the pseudocode. Both algo-
rithms have a time and space complexity of O(number of nodes in the BDD) when
intermediate results are cached.

To see why this algorithm calculates the correct output let us first consider a
full decision tree instead of a BDD. Each branch in the tree represents a product
n1 · n2 · . . . · ni, where the ni are the probabilities associated to the corresponding
variable assignment of nodes on the branch. The gradient of such a branch b with
respect to n j is gb = n1 ·n2 · . . .n j−1 ·n j+1 · . . . ·ni if n j is true, and−gb if n j is false in
b. As all branches in a full decision tree are mutually exclusive, the gradient w.r.t. n j
can be obtained by simply summing the gradients of all branches ending in a leaf
labeled 1. In BDDs however, isomorphic sub-parts are merged, and obsolete parts
are left out. This implies that some paths from the root to the 1-terminal may not
contain n j, therefore having a gradient of 0. So, when calculating the gradient on
the BDD, we have to keep track of whether n j appeared on a path or not. Given that
the variable order is the same on all paths, we can easily propagate this information
in our bottom-up algorithm. This is exactly what is described in the algorithm in
Table 10.5. Specifically, GRADIENTEVAL(n,n j) calculates the gradient w.r.t. n j in
the sub-BDD rooted at n. It returns two values: the gradient on the sub-BDD and a
Boolean indicating whether or not the target node n j appears in the sub-BDD. When
at some node n the indicator values for the two children differ, we know that n j does
not appear above the current node, and we can drop the partial result from the child
with indicator 0. The indicator variable is also used on the top level: GRADIENT

10 Probabilistic Inductive Querying Using ProbLog 255

returns the value calculated by the bottom-up algorithm if n j occurred in the BDD
and 0 otherwise.

LeProbLog combines the BDD-based gradient calculation with a standard gradi-
ent descent search. Starting from parameters a = a1, . . . ,an initialized randomly, the
gradient Δa = Δa1, . . . ,Δan is calculated, parameters are updated by subtracting the
gradient, and updating is repeated until convergence. When using the k-probability
with finite k, the set of k best proofs may change due to parameter updates. After
each update, we therefore recompute the set of proofs and the corresponding BDD.

One nice side effect of the use of ProbLog is that it naturally combines learning
from entailment and learning from proofs, two learning settings that so far have been
considered separately. So far, we have assumed that the examples were ground facts
together with their target probability. It turns out that the sketched technique also
works when the examples are proofs, which correspond to conjunctions of proba-
bilistic facts, and which can be seen as a conjunction of queries. Therefore, LeP-
robLog can use examples of both forms, (atomic) queries and proofs, at the same
time. For further details and experimental results in the context of the biological
network application, we refer to [19, 46].

10.9 Application

As an application of ProbLog, consider link mining in large networks of biological
entities, such as genes, proteins, tissues, organisms, biological processes, and molec-
ular functions. Life scientist utilize such data to identify and analyze relationships
between entities, for instance between a protein and a disease.

Molecular biological data is available from public sources, such as Ensembl8,
NCBI Entrez9, and many others. They contain information about various types
of objects, such as the ones mentioned above, and many more. Information about
known or predicted relationships between entities is also available, e.g., that gene A
of organism B codes for protein C, which is expressed in tissue D, or that genes E
and F are likely to be related since they co-occur often in scientific articles. Mining
such data has been identified as an important and challenging task (cf. [48]).

A collection of interlinked heterogeneous biological data can be conveniently
seen as a weighted graph or network of biological concepts, where the weight
of an edge corresponds to the probability that the corresponding nodes are re-
lated [12]. A ProbLog representation of such a graph can simply consist of prob-
abilistic edge/2 facts, though finer grained representations using relations such as
codes/2, expresses/2 are also possible.

We have used the Biomine dataset [12] in our applications. It is an integrated
index of a number of public biological databases, consisting of about 1 million ob-

8 http://www.ensembl.org
9 http://www.ncbi.nlm.nih.gov/Entrez/

256 Luc De Raedt et al.

jects and about 7 million relations. In this dataset, weights are associated to edges,
indicating the probability that the corresponding nodes are related10.

We next outline different ways of using ProbLog to query the Biomine dataset.
We only assume probabilistic edge/3 facts, where the third term indicates the edge
type, and a simple background theory that contains the type of individual nodes as
node/2 facts and specifies an acyclic, indirected (symmetric) path/2 relation.

Probabilistic inference (Section 10.3) Assume a life scientist has hypothesized
that ROBO1 gene is related to Alzheimer disease (AD). The probability that they
are related is computed by ProbLog query ?- path(’ROBO1’, ’AD’). The results is
0.70, indicating that—under all the assumptions made by ProbLog, Biomine and
the source databases—they might be related. Assuming the life scientist has 100
candidate genes for Alzheimer disease, ProbLog can easily be used to rank the genes
by their likelihood of being relevant for AD.

Most likely explanation (Section 10.3.1) Obviously, our life scientist would not
be happy with the answer 0.70 alone. Knowing the possible relation is much more
interesting, and could potentially lead to novel insight.

When including node type information in the definition of a path between
two nodes, the best (most likely) proof of path(’ROBO1’,’AD’) obtained by
ProbLog is

node(’ROBO1’, gene),
edge(’ROBO1’, ’SLIT1’, interacts-with),
node(’SLIT1’, gene),
edge(’SLIT1’, ’hsa10q23.3-q24’, is-located-in),
node(’hsa10q23.3-q24’, genomic-context),
edge(’hsa10q23.3-q24’, ’hsa10q24’, contains),
node(’hsa10q24’, genomic-context),
edge(’hsa10q24’, ’AD’, is-related-to),
node(’AD’, phenotype).

In other words, ROBO1 interacts with SLIT1, which is located in a genomic area
related to AD. This proof has probability 0.14.

Most likely generalized explanation (Section 10.5) Explanations obtained by
probabilistic explanation based learning within ProbLog are on a more general level,
that is, they replace constants occurring in a concrete proof by variables. By defining
predicates related to node and edge types as operational, the proof above is general-
ized to explanation exp path(A, B) ←

node(A, gene), edge(A, C, interacts-with),
node(C, gene), edge(C, D, is-located-in),
node(D, genomic-context), edge(D, E, contains),
node(E, genomic-context),
edge(E, B, is-related-to), node(B, phenotype).

10 [12] view this strength or probability as the product of three factors, indicating the reliability,
the relevance as well as the rarity (specificity) of the information.

10 Probabilistic Inductive Querying Using ProbLog 257

Table 10.6 Additional explanation clauses for path(A,B), connecting gene A to phenotype B,
obtained from different examples.

e path(A,B) ← node(A,gene), edge(A,C,belongs to),
node(C,homologgroup), edge(B,C,refers to), node(B,phenotype),
nodes distinct([B,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,codes for), node(C,protein),
edge(D,C,subsumes), node(D,protein), edge(D,E,interacts with),
node(E,protein), edge(B,E,refers to), node(B,phenotype),
nodes distinct([B,E,D,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,participates in),
node(C,pathway), edge(D,C,participates in), node(D,gene),
edge(D,E,codes for), node(E,protein), edge(B,E,refers to),
node(B,phenotype), nodes distinct([B,E,D,C,A]).

e path(A,B) ← node(A,gene), edge(A,C,is found in),
node(C,cellularcomponent), edge(D,C,is found in),
node(D,protein), edge(B,D,refers to),
node(B,phenotype), nodes distinct([B,D,C,A]).

Table 10.6 shows four other explanations obtained for relationships between a
gene (such as ROBO1) and a phenotype (such as AD). These explanations are all
semantically meaningful. For instance, the first one indicates that gene A is related
to phenotype B if A belongs to a group of homologous (i.e., evolutionarily related)
genes that relate to B. The three other explanations are based on interaction of pro-
teins: either an explicit one, by participation in the same pathway, or by being found
in the same cellular component.

Such an explanation can then be used to query the database for a list of other
genes connected to AD by the same type of pattern, and to rank them according to
the probability of that connection, which may help the scientist to further examine
the information obtained.

While the linear explanation used for illustration here could also be obtained
using standard shortest-path algorithms, PEBL offers a more general framework for
finding explanations where the structure is defined by background knowledge in the
form of an arbitrary logic program.

Theory compression (Section 10.7) The most likely explanation for path(’ROBO1’,
’AD’) is just a single proof and does not capture alternative proofs, not to mention
the whole network of related and potentially relevant objects. Theory compression
can be used here to automatically extract a suitable subgraph for illustration. By defi-
nition, the extracted subgraph aims at maximizing the probability of path(’ROBO1’,
’AD’), i.e., it contains the most relevant nodes and edges.

Looking at a small graph of, say 12 nodes, helps to give an overview of the most
relevant connections between ROBO1 and AD. Such a look actually indicates that
the association of AD to genomic context hsa10q24 is possibly due to the PLAU
gene, which is suspected to be associated with late-onset Alzheimer disease. The
life scientist could now add path(’ROBO1’, ’hsa10q24’) as a negative example, in
order to remove connections using the genomic context from the extracted graph.

258 Luc De Raedt et al.

Local pattern mining (Section 10.6) Given a number of genes he considers rele-
vant for the problem at hand, our life scientist could now be interested in relation-
ships these genes take part in with high probability. Local pattern mining offers a
way to query ProbLog for such patterns or subgraphs of relationships without rely-
ing on predefined specific connections such as path.

Parameter estimation (Section 10.8) Imagine our life scientist got information
on new entities and links between them, for example performing experiments or
using information extraction techniques on a collection of texts. However, he does
not know all the probabilities that should be attached to these new links, but only
the probabilities of some of the links, of some specific paths, and of some pairs of
entities being connected by some path. He could now use this knowledge as training
examples for LeProbLog to automatically adjust the parameters of the new network
to fit the available information.

10.10 Related Work in Statistical Relational Learning

In this section, we position ProbLog in the field of statistical relational learning [49]
and probabilistic inductive logic programming [50]. In this context, its distinguish-
ing features are that it is a probabilistic logic programming language based on Sato’s
distribution semantics [14], that it also can serve as a target language into which
many of the other statistical relational learning formalisms can be compiled [51]
and that several further approaches for learning ProbLog are being developed. Let
us now discuss each of these aspects in turn.

First, ProbLog is closely related to some alternative formalisms such as PHA
and ICL [7, 16], pD [6] and PRISM [8] as their semantics are all based on Sato’s
distribution semantics even though there exist also some subtle differences. How-
ever, ProbLog is – to the best of the authors’ knowledge – the first implementation
that tightly integrates Sato’s original distribution semantics [14] in a state-of-the-art
Prolog system without making additional restrictions (such as the exclusive expla-
nation assumption made in PHA and PRISM). As ProbLog, both PRISM and the
ICL implementation AILog2 use a two-step approach to inference, where proofs
are collected in the first phase, and probabilities are calculated once all proofs are
known. AILog2 is a meta-interpreter implemented in SWI-Prolog for didactical pur-
poses, where the disjoint-sum-problem is tackled using a symbolic disjoining tech-
nique [16]. PRISM, built on top of B-Prolog, requires programs to be written such
that alternative explanations for queries are mutually exclusive. PRISM uses a meta-
interpreter to collect proofs in a hierarchical datastructure called explanation graph.
As proofs are mutually exclusive, the explanation graph directly mirrors the sum-
of-products structure of probability calculation [8]. ProbLog is the first probabilistic
logic programming system using BDDs as a basic datastructure for probability cal-
culation, a principle that receives increased interest in the probabilistic logic learn-
ing community, cf. for instance [52, 53].

10 Probabilistic Inductive Querying Using ProbLog 259

Furthermore, as compared to SLPs [54], CLP(BN) [55], and BLPs [43],
ProbLog is a much simpler and in a sense more primitive probabilistic program-
ming language. Therefore, the relationship between probabilistic logic program-
ming and ProbLog is, in a sense, analogous to that between logic programming and
Prolog. From this perspective, it is our hope and goal to further develop ProbLog
so that it can be used as a general purpose programming language with an efficient
implementation for use in statistical relational learning [49] and probabilistic pro-
gramming [50]. One important use of such a probabilistic programming language
is as a target language in which other formalisms can be efficiently compiled. For
instance, it has already been shown that CP-logic [56], a recent elegant probabilis-
tic knowledge representation language based on a probabilistic extension of clausal
logic, can be compiled into ProbLog [52] and it is well-known that SLPs [54] can be
compiled into Sato’s PRISM, which is closely related to ProbLog. Further evidence
is provided in [51].

Another, important use of ProbLog is as a vehicle for developing learning and
mining algorithms and tools [13, 39, 19, 31], an aspect that we have also discussed
in the present paper. In the context of probabilistic representations [49, 50], one
typically distinguishes two types of learning: parameter estimation and structure
learning. In parameter estimation in the context of ProbLog and PRISM, one starts
from a set of queries and the logical part of the program and the problem is to
find good estimates of the parameter values, that is, the probabilities of the prob-
abilistic facts in the program. In the present paper and [19], we have discussed a
gradient descent approach to parameter learning for ProbLog in which the exam-
ples are ground facts together with their target probability. In [57], an approach to
learning from interpretations based on an EM algorithm is introduced. There, each
example specifies a possible world, that is, a set of ground facts together with their
truth value. This setting closely corresponds to the standard setting for learning in
statistical relational learning systems such as Markov Logic [58] and probabilistic
relational models [59]. In structure learning, one also starts from queries but has to
find the logical part of the program as well. Structure learning is therefore closely
related to inductive logic programming. An initial approach to learning the structure,
that is, the rules of a ProbLog program has recently been introduced in [60].

10.11 Conclusions

In this chapter, we provided a survey of the developments around ProbLog, a simple
probabilistic extension of Prolog based on the distribution semantics. This combina-
tion of definite clause logic and probabilities leads to an expressive general frame-
work supporting both inductive and probabilistic querying. Indeed, probabilistic ex-
planation based learning, local pattern mining, theory compression and parameter
estimation as presented in this chapter all share a common core: they all use the
probabilistic inference techniques offered by ProbLog to score queries or examples.
ProbLog has been motivated by the need to develop intelligent tools for support-

260 Luc De Raedt et al.

ing life scientists analyzing large biological networks involving uncertain data. All
techniques presented here have been evaluated in the context of such a biological
network; we refer to [3, 13, 31, 39, 19] for details.

Acknowledgements We would like to thank our co-workers Kate Revoredo, Bart Demoen, Ri-
cardo Rocha and Theofrastos Mantadelis for their contributions to ProbLog. This work is partially
supported by IQ (European Union Project IST-FET FP6-516169) and the GOA project 2008/08
Probabilistic Logic Learning. Angelika Kimmig and Bernd Gutmann are supported by the Re-
search Foundation-Flanders (FWO-Vlaanderen).

References

1. Suciu, D.: Probabilistic databases. SIGACT News 39(2) (2008) 111–124
2. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Commun. ACM

39(11) (1996) 58–64
3. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its application

in link discovery. In Veloso, M., ed.: IJCAI. (2007) 2462–2467
4. Dantsin, E.: Probabilistic logic programs and their semantics. In Voronkov, A., ed.: Proc. 1st

Russian Conf. on Logic Programming. Volume 592 of LNCS. (1992) 152–164
5. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB.

(2004) 864–875
6. Fuhr, N.: Probabilistic Datalog: Implementing logical information retrieval for advanced ap-

plications. Journal of the American Society for Information Science 51(2) (2000) 95–110
7. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64

(1993) 81–129
8. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling.

J. Artif. Intell. Res. (JAIR) 15 (2001) 391–454
9. Poole, D.: Logic programming, abduction and probability. New Generation Computing 11

(1993) 377–400
10. Wrobel, S.: First order theory refinement. In De Raedt, L., ed.: Advances in Inductive Logic

Programming. IOS Press, Amsterdam (1996) 14 – 33
11. Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause domain theo-

ries. Machine Learning 19(2) (1995) 95–131
12. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in graphs

derived from biological databases. In: DILS. Volume 4075 of LNCS., Springer (2006) 35–49
13. Kimmig, A., De Raedt, L., Toivonen, H.: Probabilistic explanation based learning. In Kok,

J.N., Koronacki, J., de Mantaras, R.L., Matwin, S., Mladenic, D., Skowron, A., eds.: 18th Eu-
ropean Conference on Machine Learning (ECML). Volume 4701 of LNCS., Springer (2007)
176–187

14. Sato, T.: A statistical learning method for logic programs with distribution semantics. In
Sterling, L., ed.: ICLP, MIT Press (1995) 715–729

15. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
puters 35(8) (1986) 677–691

16. Poole, D.: Abducing through negation as failure: stable models within the independent choice
logic. Journal of Logic Programming 44(1-3) (2000) 5–35

17. Lloyd, J.W.: Foundations of Logic Programming. 2. edn. Springer, Berlin (1989)
18. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on

Computing 8(3) (1979) 410–421
19. Gutmann, B., Kimmig, A., De Raedt, L., Kersting, K.: Parameter learning in probabilis-

tic databases: A least squares approach. In Daelemans, W., Goethals, B., Morik, K., eds.:

10 Probabilistic Inductive Querying Using ProbLog 261

Proceedings of the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2008), Part I. Volume 5211 of LNCS (Lec-
ture Notes In Computer Science)., Antwerp, Belgium, Springer Berlin/Heidelberg (September
2008) 473–488

20. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the Efficient Execu-
tion of ProbLog Programs. In de la Banda, M.G., Pontelli, E., eds.: International Conference
on Logic Programming. Number 5366 in LNCS, Springer (December 2008) 175–189

21. Santos Costa, V.: The life of a logic programming system. In de la Banda, M.G., Pontelli, E.,
eds.: Logic Programming, 24th International Conference, ICLP 2008, Udine, Italy, December
9-13 2008, Proceedings. Volume 5366 of Lecture Notes in Computer Science., Springer (2008)
1–6

22. Fredkin, E.: Trie Memory. Communications of the ACM 3 (1962) 490–499
23. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access Mecha-

nisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (January 1999) 31–54
24. Mantadelis, T., Demoen, B., Janssens, G.: A simplified fast interface for the use

of CUDD for binary decision diagrams (2008) http://people.cs.kuleuven.be/
˜theofrastos.mantadelis/tools/simplecudd.html.

25. Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R.: On the implementation
of the probabilistic logic programming language ProbLog. Theory and Practice of Logic
Programming (TPLP) (2010) to appear; https://lirias.kuleuven.be/handle/
123456789/259607.

26. Mitchell, T.M., Keller, R.M., Kedar-Cabelli, S.T.: Explanation-based generalization: A unify-
ing view. Machine Learning 1(1) (1986) 47–80

27. DeJong, G., Mooney, R.J.: Explanation-based learning: An alternative view. Machine Learn-
ing 1(2) (1986) 145–176

28. Hirsh, H.: Explanation-based generalization in a logic-programming environment. In: IJ-
CAI’87: Proceedings of the 10th international joint conference on Artificial intelligence, San
Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1987) 221–227

29. Van Harmelen, F., Bundy, A.: Explanation-based generalisation = partial evaluation. Artificial
Intelligence 36(3) (1988) 401–412

30. Langley, P.: Unifying themes in empirical and explanation-based learning. In: Proceedings
of the sixth international workshop on Machine learning, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc. (1989) 2–4

31. Kimmig, A., De Raedt, L.: Local query mining in a probabilistic Prolog. In Boutilier, C., ed.:
International Joint Conference on Artificial Intelligence. (2009) 1095–1100

32. Dehaspe, L., Toivonen, H., King, R.D.: Finding frequent substructures in chemical com-
pounds. In Agrawal, R., Stolorz, P., Piatetsky-Shapiro, G., eds.: Proceedings of the 4th ACM-
SIGKDD International Conference on Knowledge Discovery and Data Mining, AAAI Press
(1998) 30–36

33. Tsur, S., Ullman, J.D., Abiteboul, S., Clifton, C., Motwani, R., Nestorov, S., Rosenthal, A.:
Query flocks: A generalization of association-rule mining. In: SIGMOD Conference. (1998)
1–12

34. De Raedt, L., Ramon, J.: Condensed representations for inductive logic programming. In
Dubois, D., Welty, C.A., Williams, M.A., eds.: Proceedings of the 9th International Confer-
ence on Principles and Practice of Knowledge Representation. AAAI Press (2004) 438–446

35. Esposito, F., Fanizzi, N., Ferilli, S., Semeraro, G.: Ideal refinement under object identity.
In Langley, P., ed.: Proceedings of the 17th International Conference on Machine Learning,
Morgan Kaufmann (2000) 263–270

36. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning. In: Proceed-
ings of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, ACM Press (2000) 226–236

37. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery 1(3) (1997) 241–258

262 Luc De Raedt et al.

38. Chui, C.K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In Zhou, Z.H.,
Li, H., Yang, Q., eds.: PAKDD. Volume 4426 of Lecture Notes in Computer Science., Springer
(2007) 47–58

39. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing proba-
bilistic Prolog programs. Machine Learning 70(2-3) (2008) 151–168

40. Koppel, M., Feldman, R., Segre, A.M.: Bias-driven revision of logical domain theories. J.
Artif. Intell. Res. (JAIR) 1 (1994) 159–208

41. Zelle, J., Mooney, R.: Inducing deterministic Prolog parsers from treebanks: A machine learn-
ing approach. In: Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI-94). (1994) 748–753

42. Paes, A., Revoredo, K., Zaverucha, G., Santos Costa, V.: Probabilistic first-order theory revi-
sion from examples. In Kramer, S., Pfahringer, B., eds.: ILP. Volume 3625 of Lecture Notes
in Computer Science., Springer (2005) 295–311

43. Kersting, K., De Raedt, L.: Basic principles of learning bayesian logic programs. [50] 189–
221

44. Gupta, R., Sarawagi, S.: Creating probabilistic databases from information extraction models.
In: VLDB. (2006) 965–976

45. Chen, J., Muggleton, S., Santos, J.: Learning probabilistic logic models from probabilistic
examples (extended abstract). In: ILP. (2007) 22–23

46. Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter estimation in ProbLog from
annotated queries. Technical Report CW 583, Department of Computer Science, Katholieke
Universiteit Leuven, Belgium (April 2010)

47. Saul, L., Jaakkola, T., Jordan, M.: Mean field theory for sigmoid belief networks. JAIR 4

(1996) 61–76
48. Perez-Iratxeta, C., Bork, P., Andrade, M.: Association of genes to genetically inherited dis-

eases using data mining. Nature Genetics 31 (2002) 316–319
49. Getoor, L., Taskar, B., eds.: Statistical Relational Learning. The MIT press (2007)
50. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Inductive Logic

Programming — Theory and Applications. Volume 4911 of Lecture Notes in Artificial Intel-
ligence. Springer (2008)

51. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A., Landwehr,
N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I., Vennekens, J.: Towards
digesting the alphabet-soup of statistical relational learning. In Roy, D., Winn, J., McAllester,
D., Mansinghka, V., Tenenbaum, J., eds.: Proceedings of the 1st Workshop on Probabilistic
Programming: Universal Languages, Systems and Applications, Whistler, Canada (December
2008)

52. Riguzzi, F.: A top down interpreter for LPAD and CP-logic. In: AI*IA 2007: Artificial
Intelligence and Human-Oriented Computing. Volume 4733 of LNCS. (2007)

53. Ishihata, M., Kameya, Y., Sato, T., ichi Minato, S.: Propositionalizing the EM algorithm by
BDDs. In Železný, F., Lavrač, N., eds.: Proceedings of Inductive Logic Programming (ILP
2008), Late Breaking Papers, Prague, Czech Republic (September 2008) 44–49

54. Muggleton, S.: Stochastic logic programs. In De Raedt, L., ed.: ILP. (1995)
55. Santos Costa, V., Page, D., Cussens, J.: Clp(bn): Constraint logic programming for proba-

bilistic knowledge. In: In Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI03, Morgan Kaufmann (2003) 517–524

56. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions.
In Demoen, B., Lifschitz, V., eds.: ICLP. Volume 3132 of LNCS., Springer, Heidelberg (2004)
431–445

57. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic programs
from interpretations. Technical Report CW 584, Department of Computer Science, Katholieke
Universiteit Leuven, Belgium (April 2010)

58. Domingos, P., Lowd, D.: Markov Logic: an interface layer for AI. Morgan & Claypool (2009)
59. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In

Džeroski, S., Lavrač, N., eds.: Relational Data Mining. Springer (2001) 307–335
60. De Raedt, L., Thon, I.: Probabilistic rule learning. Technical Report CW 580, Department of

Computer Science, Katholieke Universiteit Leuven, Belgium (April 2010)

Part III

Inductive Databases:
Integration Approaches

Chapter 11

Inductive Querying with

Virtual Mining Views

Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado, and
Céline Robardet

Abstract In an inductive database, one can not only query the data stored in the
database, but also the patterns that are implicitly present in these data. In this chap-
ter, we present an inductive database system in which the query language is tradi-
tional SQL. More specifically, we present a system in which the user can query the
collection of all possible patterns as if they were stored in traditional relational ta-
bles. We show how such tables, or mining views, can be developed for three popular
data mining tasks, namely itemset mining, association rule discovery and decision
tree learning. To illustrate the interactive and iterative capabilities of our system,
we describe a complete data mining scenario that consists in extracting knowledge
from real gene expression data, after a pre-processing phase.

Hendrik Blockeel
Katholieke Universiteit Leuven, Belgium
Leiden Institute of Advanced Computer Science, Universiteit Leiden, The Netherlands
e-mail: hendrik.blockeel@cs.kuleuven.be

Toon Calders
Technische Universiteit Eindhoven, The Netherlands
e-mail: t.calders@tue.nl

Élisa Fromont · Adriana Prado
Université de Lyon (Université Jean Monnet), CNRS, Laboratoire Hubert Curien, UMR5516,
F-42023 Saint-Etienne, France
e-mail: {elisa.fromont,adriana.bechara.prado}@univ-st-etienne.fr

Bart Goethals
Universiteit Antwerpen, Belgium
e-mail: bart.goethals@ua.ac.be

Céline Robardet
Université de Lyon, INSA-Lyon, CNRS, LIRIS, UMR5205, F-69621, France
e-mail: celine.robardet@insa-lyon.fr

265
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_11, © Springer Science+Business Media, LLC 2010

266 Hendrik Blockeel et al.

11.1 Introduction

Data mining is an interactive process in which different tasks may be performed
sequentially. In addition, the output of those tasks may be repeatedly combined to be
used as input for subsequent tasks. For example, one could (a) first learn a decision
tree model from a given dataset and, subsequently, mine association rules which
describe the misclassified tuples with respect to this model or (b) first look for an
interesting association rule that describes a given dataset and then find all tuples that
violate such rule.

In order to effectively support such a knowledge discovery process, the integra-
tion of data mining into database systems has become necessary. The concept of
Inductive Database Systems has been proposed in [1] so as to achieve such integra-
tion. The idea behind this type of system is to give to the user the ability to query
not only the data stored in the database, but also patterns that can be extracted from
these data. Such database should be able to store and manage patterns as well as
provide the user with the ability to query them.

In this chapter, we show how such an inductive database system can be im-
plemented in practice, as studied in [2, 3, 4, 5, 6, 7]. To allow the users to
query patterns as well as standard data, several researchers proposed extensions
to the popular query language SQL as a natural way to express such mining
queries [8, 9, 10, 11, 12, 13]. As opposed to those proposals, we present here an
inductive database system in which the query language is traditional SQL. We pro-
pose a relational database model based on what we call virtual mining views. The
mining views are relational tables that virtually contain the complete output of data
mining tasks. For example, for the itemset mining task, there is a table called Sets
virtually storing all itemsets. As far as the user is concerned, all itemsets are stored
in table Sets and can be queried as any other relational table. In reality, however,
table Sets is empty. Whenever a query is formulated selecting itemsets from this ta-
ble, the database system triggers an itemset mining algorithm, such as Apriori [14],
which computes the itemsets in the same way as normal views in databases are only
computed at query time. The user does not notice the emptiness of the tables; he or
she can simply assume their existence and query accordingly. Therefore, we prefer
to name these special tables virtual mining views.

In this chapter, we show how such tables, or virtual mining views, can be de-
veloped for three popular data mining tasks, namely itemset mining, association
rule discovery and decision tree learning. To make the model as generic as possi-
ble, the output of these tasks are represented by a unifying set of mining views. In
Section 11.2, we present these mining views in detail.

Since the proposed mining views are empty, they need to be filled (materialized)
by the system once a query is posed over them. The mining process itself needs
to be performed by the system in order to answer such queries. Note that the user
may impose certain constraints in his or her queries, asking for only a subset of all
possible patterns. As an example, the user may query from the mining view Sets
all frequent itemsets with a certain support. Therefore, the entire set of patterns
does not always need to be stored in the mining views, but only those that satisfy

11 Inductive Querying withVirtual Mining Views 267

the constrains imposed by the user. In [2], Calders et al. present an algorithm that
extracts from a query a set of constraints relevant for association rules to be pushed
into the mining algorithm. We have extended this constraint extraction algorithm to
extract constraints from queries over decision trees. The reader can refer to [7] for
the details on the algorithm.

All ideas presented here, from querying the mining views and extracting con-
straints from the queries to the actual execution of the data mining process itself
and the materialization of the mining views, have been implemented into the well-
known open source database system PostgreSQL1. Details of the implementation
are given in Section 11.3.

We have therefore organized the rest of this chapter in the following way. The
next section is dedicated to the virtual mining views framework. We also present
how the 4 prototypical tasks described in Chapter 3 can be executed by SQL queries
over the mining views. The implementation of the system along with an extended il-
lustrative data mining scenario is presented in Section 11.3. Finally, the conclusions
of this chapter are presented in Section 11.4, stressing the main contributions and
pointing to related future work.

11.2 The Mining Views Framework

In this section, we present the mining views framework in detail. This framework
consists of a set of relational tables, called mining views, which virtually represent
the complete output of data mining tasks. In reality, the mining views are empty and
the database system finds the required tuples only when they are queried by the user.

11.2.1 The Mining View Concepts

We assume to be working in a relational database which contains the table
T (A1, . . . ,An), having only categorical attributes. We denote the domain of Ai by
dom(Ai), for all i = 1 . . . n. A tuple of T is therefore an element of dom(Ai)× . . .×
dom(An). The active domain of Ai of T , denoted by adom(Ai,T), is defined as the
set of values that are currently assigned to Ai, that is, adom(Ai,T) := {t.Ai | t ∈ T}.

In the mining views framework, the patterns extracted from table T are generi-
cally represented by what we call concepts. We denote a concept as a conjunction
of attribute-value pairs that is definable over table T . For example,

(Outlook = ‘Sunny’∧Humidity = ‘High’∧Play = ‘No’)

is a concept defined over the classical relational data table Playtennis [24], a sample
of which is illustrated in Figure 11.1.

1 http://www.postgresl.org/

268 Hendrik Blockeel et al.

Fig. 11.1 The data table
Playtennis.

Playtennis
Day Outlook Temperature Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
.

To represent each concept as a database tuple, we use the symbol ‘?’ as the wild-
card value and assume it does not exist in the active domain of any attribute of T .

Definition 11.1. A concept over table T is a tuple (c1, . . . ,cn) with ci ∈ adom(Ai) ∪
{‘?’}, for all i=1 . . .n.

Following Definition 11.1, the example concept above is represented by the tuple

(‘?’, ‘Sunny’, ‘?’, ‘?’, ‘High’, ‘?’, ‘No’).

We are now ready to introduce the mining view T Concepts. In the proposed
framework, the mining view T Concepts(cid,A1, . . . ,An) virtually contains all con-
cepts that are definable over table T . We assume that these concepts can be sorted
in lexicographic order and that an identifier can unambiguously be given to each
concept.

Definition 11.2. The mining view T Concepts(cid,A1, . . . ,An) contains one tuple
(cid,c1, . . . ,cn) for every concept defined over table T . The attribute cid uniquely
identifies the concepts.

In fact, the mining view T Concepts represents exactly a data cube [25] built
from table T , with the difference that the wildcard value “ALL” introduced in [25]
is replaced by the value ‘?’. By following the syntax introduced in [25], the min-
ing view T Concepts would be created with the SQL query shown in Figure 11.2
(consider adding the identifier cid after its creation).

1. create table T_Concepts
2. select A1, A2,..., An
3. from T
4. group by cube A1, A2,..., An

Fig. 11.2 The data cube that represents the contents of the mining view T Concepts.

11 Inductive Querying withVirtual Mining Views 269

11.2.2 Representing Patterns and Models as Sets of Concepts

We now explain how patterns extracted from the table Playtennis can be represented
by the concepts in the mining view Playtennis Concepts. In the remainder of this
section, we refer to table Playtennis as T and use the concepts in Figure 11.3 for the
illustrative examples.

11.2.2.1 Itemsets and Association Rules

As itemsets in a relational database are conjunctions of attribute-value pairs, they
can be represented as concepts. Itemsets are represented in the proposed framework
by the mining view:

T Sets(cid,supp,sz).

The view T Sets contains a tuple for each itemset, where cid is the identifier
of the itemset (concept), supp is its support (the number of tuples satisfied by the
concept), and sz is its size (the number of attribute-value pairs in which there are no
wildcards).

Similarly, association rules are represented by the view:

T Rules(rid,cida,cidc,cid,conf).

T Rules contains a tuple for each association rule that can be extracted from table
T . We assume that a unique identifier, rid, can be given to each rule. The attribute
rid is the rule identifier, cida is the identifier of the concept representing its left hand
side (referred to here as antecedent), cidc is the identifier of the concept representing
its right hand side (referred to here as consequent), cid is the identifier of the union
of the last two, and conf is the confidence of the rule.

Fig. 11.3 A sample
of the mining view
Playtennis Concepts, which
is used for the illustrative
examples in Section 11.2.2.

Playtennis Concepts
cid Day Outlook Temperature Humidity Wind Play

. .
101 ? ? ? ? ? Yes
102 ? ? ? ? ? No
103 ? Sunny ? High ? ?
104 ? Sunny ? High ? No
105 ? Sunny ? Normal ? Yes
106 ? Overcast ? ? ? Yes
107 ? Rain ? ? Strong No
108 ? Rain ? ? Weak Yes
109 ? Rain ? High ? No
110 ? Rain ? Normal ? Yes
. .

270 Hendrik Blockeel et al.

Fig. 11.4 Mining views for
representing itemsets and as-
sociation rules. The attributes
cida, cidc, and cid refer to
concepts given in Figure 11.3.

T Sets
cid supp sz

102 5 1
103 3 2
104 3 3
.

T Rules
rid cida cidc cid conf

1 103 102 104 100%
.

Figure 11.4 shows the mining views T Sets and T Rules, and illustrates how
the rule “if outlook is sunny and humidity is high, you should not play tennis” is
represented in these views by using three of the concepts given in Figure 11.3.

In Figure 11.5, queries (A) and (B) are example mining queries over itemsets and
association rules, respectively. Query (A) asks for itemsets having support of at least
3 and size of at most 5, while query (B) asks for association rules having support
of at least 3 and confidence of at least 80%. Note that these two common data
mining tasks and the well known constraints “minimum support” and “minimum
confidence” can be expressed quite naturally with SQL queries over the mining
views.

(A) (B)

select C.*, S.supp, S.sz
from T_Concepts C, T_Sets S
where C.cid = S.cid
and S.supp >= 3
and S.sz <= 5
and C.Outlook = ’Sunny’

select Ante.*, Cons.*,
S.supp, R.conf

from T_Sets S, T_Rules R,
T_Concepts Ante,
T_Concepts Cons

where R.cid = S.cid
and Ante.cid = R.cida
and Cons.cid = R.cidc
and S.supp >= 3
and R.conf >= 80

Fig. 11.5 Example queries over itemsets and association rules.

11.2.2.2 Decision Trees

A decision tree learner typically learns a single decision tree from a dataset. This
setting strongly contrasts with discovery of itemsets and association rules, which is
set-oriented: given certain constraints, the system finds all itemsets or association
rules that fit the constraints. In decision tree learning, given a set of (sometimes
implicit) constraints, one tries to find one tree that fulfills the constraints and, besides

11 Inductive Querying withVirtual Mining Views 271

that, optimizes some other criteria, which are again not specified explicitly but are a
consequence of the algorithm used.

In the inductive databases context, we treat decision tree learning in a somewhat
different way, which is more in line with the set-oriented approach. Here, a user
would typically write a query asking for all trees that fulfill a certain set of con-
straints, or optimizes a particular condition. For example, the user might ask for the
tree with the highest training set accuracy among all trees of size of at most 5. This
leads to a much more declarative way of mining for decision trees, which can eas-
ily be integrated into the mining views framework. The set of all trees predicting a
particular target attribute Ai from other attributes is represented by the view:

T Trees Ai(treeid,cid).

The mining view T Trees Ai is such that, for every decision tree predicting a
particular target attribute Ai, it contains as many tuples as the number of leaf nodes
it has. We assume that a unique identifier, treeid, can be given to each decision
tree. Each decision tree is represented by a set of concepts cid, where each concept
represents one path from the root to a leaf node.

Additionally, a view representing several characteristics of a tree learned for one
specific target attribute Ai is defined as:

T Treescharac Ai(treeid,acc,sz).

It contains a tuple for every decision tree in T Trees Ai, where treeid is the deci-
sion tree identifier, acc is its corresponding accuracy, and sz is its size in number of
nodes.

Figure 11.6 shows how a decision tree that predict the attribute Play of table T
is represented in the mining views T Trees Play and T Treescharac Play by using
the concepts in Figure 11.3.

In Figure 11.7, we present some example mining queries over decision trees.
Query (C) creates a table called “BestTrees” with all decision trees that predict the
attribute Play, having maximal accuracy among all possible decision trees of size of

Outlook

sunny�
���

�

���� overcast rain
����

��
��

Humidity

high
��
�

��
� normal

��
�

��
��

�������	Yes Windy

strong��
�

��
� weak

��
�

��
�

�������	No �������	Yes �������	No �������	Yes

T Trees Play
treeid cid

1 104
1 105
1 106
1 107
1 108
.

T Treescharac Play
treeid acc sz

1 100% 8
.

Fig. 11.6 Mining views representing a decision tree which predicts the attribute Play. Each at-
tribute cid of view T Trees Play refers to a concept given in Figure 11.3.

272 Hendrik Blockeel et al.

at most 5. Query (D) asks for decision trees having a test on “Outlook=Sunny” and
on “Wind=Weak”, with a size of at most 5 and an accuracy of at least 80%.

(C) (D)

create table BestTrees as
select T.treeid, C.*, D.*
from T_Concepts C,

T_Trees_Play T,
T_Treescharac_Play D

where T.cid = C.cid
and T.treeid = D.treeid
and D.sz <= 5
and D.acc =
(select max(acc)
from T_Treescharac_Play
where sz <= 5)

select T1.treeid,
C1.*, C2.*

from T_Trees_Play T1,
T_Trees_Play T2,
T_Concepts C1,
T_Concepts C2,
T_Treescharac_Play D

where C1.Outlook = ‘Sunny’
and C2.Wind = ‘Weak’
and T1.cid = C1.cid
and T2.cid = C2.cid
and T1.treeid = T2.treeid
and T1.treeid = D.treeid
and D.sz <= 5
and D.acc >= 80

Fig. 11.7 Example queries over decision trees.

Prediction. In order to classify a new tuple using a learned decision tree, one sim-
ply searches for the concept in this tree (path) that is satisfied by the new tuple.
More generally, if we have a test set S, all predictions of the tuples in S are obtained
by equi-joining S with the semantic representation of the decision tree given by its
concepts. We join S to the concepts of the tree by using a variant of the equi-join
that requires that either the values are equal, or there is a wildcard value.

Consider the table BestTrees created after the execution of query (C), in Fig-
ure 11.7. Figure 11.8 shows a query that predicts the attribute Play for all unclassi-
fied tuples in an example table Test Set(Day,Outlook,Temperature,
Humidity,Wind) by using the tree in table BestTrees that has identification num-
ber 1.

(E)

select S.*, T.Play
from Test_Set S,

BestTrees T
where (S.Day = T.Day or T.Day = ’?’)
and (S.Outlook = T.Outlook or T.Outlook = ’?’)
and (S.Temperature = T.Temperature or T.Temperature = ’?’)
and (S.Humidity = T.Humidity or T.Humidity = ’?’)
and (S.Wind = T.Wind or T.Wind = ’?’)
and T.treeid = 1

Fig. 11.8 An example prediction query.

11 Inductive Querying withVirtual Mining Views 273

11.2.3 Putting It All Together

For every data table T (A1, . . . ,An) in the database, with T having only categorical
attributes, the virtual mining views framework consists of a set of relational tables,
called virtual mining views, which virtually contain the complete output of data
mining tasks executed over T . These mining views are the following:

• T Concepts(cid,A1,. . . ,An).
• T Sets(cid,supp,sz).
• T Rules(rid,cida,cidc,cid,conf).
• T Trees Ai(treeid,cid), for all i=1 . . .n.
• T Treescharac Ai(treeid, acc, sz), for all i=1 . . .n.

As shown in the examples given in this section, in order to retrieve patterns over
table T , the user simply needs to write SQL queries over the proposed mining views.
The semantics of these queries is the same as that of queries over traditional rela-
tional tables. For more example queries over the mining views, we refer the reader
to [7].

Another important thing to note is that if the user wants to mine itemsets, as-
sociation rules, or learn a decision tree from only a portion of table T , he or she
should first create a new table T ′ from T , applying the appropriate selections and
(or) projections. Then, the mining views associated with T ′, which are automatically
created, will represent the patterns extracted from that corresponding portion of the
data.

11.2.4 Mining Views vs. Data Mining Tasks

We now present how the 4 prototypical tasks described in Chapter 3 can be executed
by SQL queries over the mining views.

11.2.4.1 Discretization task: Discretize attribute Temperature into 3 intervals.

The discretized attribute should be used in the subsequent tasks

Since the data mining query language is SQL, our approach does not offer any new
operator for pre-processing tasks. The discretization task can thus be performed by
creating a new table called “MyPlaytennis” with the SQL CASE query introduced
in Chapter 3 (when presenting the MINE RULE operator).

274 Hendrik Blockeel et al.

11.2.4.2 Area task: Find all intra-tuple itemsets with relative support of at

least 20%, size of at least 2, and area, that is, absolut support × size,

of at least 10.

The area task can be performed with an SQL query involving the mining views
MyPlaytennis Concepts and MyPlaytennis Sets, which are created automatically af-
ter the creation of table MyPlaytennis for the discretization task. The query is shown
below. Notice that the property area can be constrained quite naturally in our frame-
work (see line 6), due to the flexibility of ad hoc querying.

1. select C.*, S.supp, S.sz,
S.supp * S.sz as area

2. from MyPlaytennis_Sets S,
MyPlaytennis_Concepts C

3. where C.cid = S.cid
4. and S.supp >= 3
5. and S.sz >= 2
6. and S.supp * S.sz >= 10

11.2.4.3 Right hand side task: Find all intra-tuple association rules with

relative support of at least 20%, confidence of at most 80%, size of at

most 3, and a singleton right hand size.

Since the next task (lift task) requires a post-processing query over the results output
by this one, it is necessary to store these results so that they can be further queried.
The SQL query to perform the right hand side task is the following:

1. create table MyRules as
2. select Ant.Day as DayA, ... ,Ant.Play as PlayA,

Con.Day as DayC, ..., Con.Play as PlayC,
R.conf, SCon.supp/14 as suppC

3. from MyPlaytennis_Sets S, MyPlaytennis_Rules R,
MyPlaytennis_Concepts Ant,
MyPlaytennis_Concepts Con,
MyPlaytennis_Sets SCon

4. where R.cid = S.cid
5. and Ant.cid = R.cida
6. and Con.cid = R.cidc
7. and S.supp >= 3
8. and R.conf >= 80
9. and S.sz <= 3
10. and SCon.cid = R.cidc
11. and SCon.sz = 1

11 Inductive Querying withVirtual Mining Views 275

The query above creates a new table called “MyRules”. We also store in this table
the confidence of the rules along with the relative supports of their consequents,
since they are necessary to perform the lift task (the number 14, which is used to
compute the relative supports of the consequents, refers to the total number of tuples
in table MyPlaytennis). Observe that the mining views framework does not restrain
the user from any format in which the rules are to be stored, thanks again to the
flexibility of ad hoc querying.

11.2.4.4 Lift task: Find, from the result of the right hand side task, rules with

attribute Play as consequent that have a lift greater than 1.

In order to perform the lift task, one needs to query table MyRules, created for the
previous task. The query in question is the one depicted below:

1. select M.*, (M.conf/100)/M.suppC as lift
2. from MyRules M
3. where M.PlayC <> ’?’
4. and (M.conf/100)/M.suppC >=1

Note that the two constraints required by the lift task can be expressed quite
naturally in our framework. In line 3, we assure that the rules in the result have the
attribute Play as consequent, i.e., it is not a wildcard value. In line 4, we compute
the property lift of the rules.

11.2.5 Conclusions

Observe that the mining views framework is able to perform all data mining tasks
described in Chapter 3 without any type of pre- or post-processing, as opposed to
the other proposals. Also note that the choice of the schema for representing item-
sets and association rules implicitly determines the complexity of the queries a user
needs to write. For instance, by adding the attributes sz and supp to the mining views
T Sets, the area constraint can be expressed quite naturally in our framework. With-
out these attributes, one could still obtain their values. Nevertheless, it would imply
that the user would have to write more complicated queries.

The addition of the attribute cid in the mining view T Rules can be justified by
the same argument. Indeed, one of the 3 concept identifiers for an association rule,
cid, cida or cidc is redundant, as it can be determined from the other two. However,
this redundancy eases query writing. Still with regard to the mining view T Rules,
while the query for association rule mining seems to be more complex than the
queries for the same purpose in other data mining query languages (e.g., in MSQL),
one could easily turn it into a view definition so that association rules can be mined
with simple queries over that database view.

276 Hendrik Blockeel et al.

It is also important to notice that some types of tasks are not easily expressed
with the mining views. For example, if the tuples over which the data mining tasks
are to be executed come from different tables in the database, a new table containing
these tuples should be created before the mining can start. In DMQL, MINE RULE,
SPQL the relevant set of tuples can be specified in the query itself. In the case of
DMX, this can be done while training the model. Another example is the extrac-
tion of inter-tuple patterns, which are possible to be performed with DMQL, MINE
RULE, SPQL, and DMX. To mine inter-tuple patterns in the mining views frame-
work, one would need to first pre-process the dataset that is to be mined, by changing
its representation: the relevant attributes of a group of tuples should be added to a
single tuple of a new table. Constraints on the corresponding groups of tuples being
considered, which are allowed to be specified in the proposals mentioned above, can
be specified in a post-processing step over the results. Our proposal is more related
to MSQL and SIQL, as they also only allow the extraction of intra-tuple patterns
over a single relation.

Some data mining tasks that can be performed in SIQL and DMX, such as clus-
tering, cannot currently be executed with the proposed mining views. On the other
hand, note that one could always extend the framework by defining new mining
views that represent clusterings, as studied in [7]. In fact, one difference between
our approach and those presented in Chapter 3 is the fact that to extend the formal-
ism, it is necessary to define new mining views or simply add new attributes to the
existing ones, whereas in other formalisms one would need to extend the language
itself.

To finalize, although the mining views do not give the user the ability to express
every type of query the user can think of (similarly to any relational database), the
set of mining tasks that can be executed by the system is consistent and large enough
to cover several steps in a knowledge discovery process.

We now list how the mining views overcome the drawbacks found in at least one
of the proposals surveyed in chapter 3:

Satisfaction of the closure principle. Since, in the proposed framework, the data
mining query language is standard SQL, the closure principle is clearly satisfied.

Flexibility to specify different kinds of patterns. The mining views framework
provides a very clear separation between the patterns it currently represents,
which in turn can be queried in a very declarative way (SQL queries). In ad-
dition to itemsets, association rules and decision trees, the flexibility of ad hoc
querying allows the user to think of new types of patterns which may be derived
from those currently available. For example, in [7] we show how frequent closed
itemsets [26] can be extracted from a given table T with an SQL query over the
available mining views T Concepts and T Sets.

Flexibility to specify ad hoc constraints. The mining views framework is meant
to offer exactly this flexibility: by virtue of a full-fledged query language that
allows of ad hoc querying, the user can think of new constraints that were not
considered at the time of implementation. An example is the constraint lift, which
could be computed by the framework for the execution of the lift task.

11 Inductive Querying withVirtual Mining Views 277

Intuitive way of representing mining results. In the mining views framework,
patterns are all represented as sets of concepts, which makes the framework as
generic as possible, not to mention that the patterns are easily interpretable.

Support for post-processing of mining results. Again, thanks to the flexibility
of ad hoc querying, post-processing of mining results is clearly feasible in the
mining views framework.

11.3 An Illustrative Scenario

One of the main advantages of our system is the flexibility of ad hoc querying, that
is, the user can iteratively specify new types of constraints and query the patterns
in combination with the data themselves. In this section, we illustrate this feature
with a complete data mining scenario that consists in extracting knowledge from
real gene expression data, after an extensive pre-processing phase. Differently to
the scenario presented in [6], here we do not learn a classifier, but mine for non-
redundant correct association rules.

We begin by presenting how the implementation of our inductive database system
was realized. Next, the aforementioned scenario is presented.

11.3.1 Implementation

Our inductive database system was developed into the well-known open source
database system PostgreSQL2, which is written in C language. Every time a data
table is created into our system, its mining views are automatically created. Accord-
ingly, if this data table is removed from the system, its mining views are deleted as
well.

The main steps of the system are illustrated in Figure 11.9. When the user writes
a query, PostgreSQL generates a data structure representing its corresponding re-
lational algebra expression. A call to our Mining Extension was added to Post-
greSQL’s source code after the generation of this data structure. In the Mining Ex-
tension, which was implemented in C language, we process the relational algebra
structure. If it refers to one or more mining views, we then extract the constraints
(as described in detail in [7]), trigger the data mining algorithms and materialize the
virtual mining views with the obtained mining results. Just after the materialization
(i.e., upon return from the miningExtension() call), the work-flow of the database
system continues and the query is executed as if the patterns or models were there
all the time. We refer the reader to [5, 7] for more details on the implementation and
efficiency evaluation of the system.

2 http://www.postgresl.org/

278 Hendrik Blockeel et al.

Fig. 11.9 The proposed inductive database system implemented into PostgreSQL.

Additionally, we adapted the web-based administration tool PhpPgAdmin3 so as
to have a user-friendly interface to the system.

11.3.2 Scenario

The scenario presented in this section consists in extracting knowledge from the
gene expression data which resulted from a biological experimentation concern-
ing the transcription of Plasmodium Falciparum [27] during its reproduction cycle
(IDC) within the human blood cells.

The Plasmodium Falciparum is a parasite that causes human malaria. The data
gather the expression profiles of 472 genes of this parasite in 46 different biological
samples.4 Each gene is known to belong to a specific biological function. Each
sample in turn corresponds to a time point (hour) of the IDC, which lasts for 48
hours. During this period, the merozoite (initial stage of the parasite) evolves to
3 different identified stages: Ring, Trophozoite, and Schizont. In addition, due to
reproduction, one merozoite leads to up to 32 new ones during each cycle, after
which a new developmental cycle is started. Figure 11.10 shows the percentage of
parasites (y-axis) that are at the Ring (black curve), Trophozoite (light gray curve),
or Schizont (dark gray curve) stage, at every time point of the IDC (x-axis).

These data were stored into 3 different tables in our system, as illustrated in
Figure 11.11. They are the following:

• GeneFunctions(function id, function): represents the biological functions.
There are in total 12 different functional groups.

• Samples(sample name, stage): represents the samples themselves. Two data
points are missing, namely the 23rd and 29th hours. We added to this table the

3 http://phppgadmin.sourceforge.net/
4 The data is available at http://malaria.ucsf.edu/SupplementalData.php

11 Inductive Querying withVirtual Mining Views 279

Fig. 11.10 Major develop-
mental stages of Plasmodium
Falciparum parasite (Figure
from [27]). The three curves,
in different levels of gray,
represent the percentage of
parasites (y-axis) that are at
the Ring (black), Trophozoite
(light gray), or Schizont stage
(dark gray), at every time
point of the IDC (x-axis).

attribute called stage, the values of which are based on the curves illustrated in
Figure 11.10: this new attribute discriminates the samples having at least 75% of
the parasites in the Ring (stage=1), Trophozoite (stage=2) or Schizont (stage=3)
stage. Samples that contain less than 75% of any parasite stage were assigned to
stage 4, a “non-identified” stage. Thus, for our scenario, stage 1 corresponds to
time points between 1 and 16 hours; stage 2 corresponds to time points between
18 and 28 hours; and stage 3 gathers time points between 32 and 43 hours.

• Plasmodium(gene id, function id, tp 1, tp 2,. . . , tp 48): represents, for each of
the genes, its corresponding function and its expression profile. As proposed
in [27], we take the logarithm to the base 2 of the raw expression values.

Plasmodium
gene id function id tp 1 tp 2 . . . tp 48

1 12 -0.13 0.12 . . . 0.11
2 12 0.24 0.48 . . . -0.03
.
472 5 1.2 0.86 ... 1.15
GeneFunctions

function id function

1 Actin myosin mobility
2 Cytoplasmic translation machinery
.
12 Transcription machinery

Samples
sample name stage

tp 1 1
tp 2 1
.

tp 48 4

Fig. 11.11 The Plasmodium data.

Having presented the data, we are now ready to describe the goal of our scenario.
In gene expression analysis, a gene is said to be highly expressed, according to
a biological sample, if there are many RNA transcripts in the considered sample.
These RNA transcripts can be translated into proteins, which can, in turn, influence
the expression of other genes. In other words, it can make other genes also highly
expressed. This process is called gene regulation [27].

In this context, analogously to what the biologists have studied in [27], we want
to characterize the parasite’s different stages by identifying the genes that are active

280 Hendrik Blockeel et al.

during each stage. More precisely, we want to identify, for each different stage, the
functional groups whose genes have an unusual high level of expression or, as the bi-
ologists say, are overexpressed in the corresponding set of samples. By considering
the samples corresponding to a specific stage and the genes that are overexpressed
within those samples, we might have insights into the regulation processes that oc-
cur during the development of the parasite. As pointed out in [27], understanding
these regulation processes would provide the foundation for future drug and vaccine
development efforts toward eradication of the malaria.

Observe that decision trees are not appropriate for the analysis we want to per-
form; they are most suited for predicting, which is not our intention here. Therefore,
in our scenario we mine for association rules. A couple of pre-processing steps have
to be performed initially, such as the discretization of the expression values. These
steps are described in detail in the first 3 subsequent subsections. The remaining
subsections show how the desired rules can be extracted from the data.

11.3.2.1 Step 1: Pre-processing 1

Since our intention is to characterize the parasite’s stages by means of the functional
groups and not of the individual genes themselves, we first create a view on the data
that groups the genes by the function they belong to. The corresponding pre-process
query is shown below:5

1. create view PlasmodiumAvg as
2. select G.function,
3. avg(p.tp_1) as tp_1,
4. ...,
5. avg(p.tp_48) as tp_48
6. from Plasmodium P, GeneFunctions G
7. where P.function_id = G.function_id
8. group by G.function

The view called “PlasmodiumAvg” calculates, for every different functional
group, the average expression profile (arithmetic mean) over all time points (see
lines from 2 to 5).

11.3.2.2 Step 2: Pre-processing 2

Since we want the functional groups as components of the desired rules (antecedents
and/or consequents), it is therefore necessary to transpose the view PlasmodiumAvg,
which was created in the previous step. In other words, we need a new view in which

5 For the sake of readability, ellipsis were added to some of the SQL queries presented in this
section and in the following ones, which represent sequences of attribute names, attribute values,
clauses etc.

11 Inductive Querying withVirtual Mining Views 281

the gene functional groups are the columns and the expression profiles are the rows.
To this end, we use the PostgreSQL function called crosstab6. As crosstab requires
the data to be listed down the page (not across the page), we first create a view on
PlasmodiumAvg, called “PlasmodiumAvgTemp”, which lists data in such format.
The corresponding queries are shown below.

1. create view PlasmodiumAvgTemp as
2. select function as tid, ‘tp_1’ as item,

tp_1 as val
3. from PlasmodiumAvg
4. union
5. ...
6. union
7. select function as tid, ‘tp_48’ as item,

tp_48 as val
8. from PlasmodiumAvg

9. create view PlasmodiumTranspose as
10. select * from crosstab
11. (‘select item, tid, val from PlasmodiumAvgTemp

order by item’,
‘select distinct tid from PlasmodiumAvgTemp

order by item’)
12. as (sample_name text, Actin_myosin_mobility real,

...,
Transcription_machinery real)

11.3.2.3 Step 3: Pre-processing 3

Having created the transposed view PlasmodiumTranspose, the third and last pre-
processing step is to discretize the gene expression values so as to encode the ex-
pression property of each functional group of genes.

In gene expression data analysis, a gene is considered to be overexpressed if
its expression value is high with respect to its expression profile. One approach to
identify the level of expression of a gene is the method called x% cut-off, which was
proven to be successful in [28]: a gene is considered overexpressed if its expression
value is among the x% highest values of its expression profile, and underexpressed
otherwise. With x=50, a gene is tagged as overexpressed if its expression value is
above the median value of its profile.

As in this scenario the data are log transformed (very high expression values are
deemphasized), the distribution of the data is symmetrical and, therefore, median
expression values are very similar to mean values. As computing the mean value is
straightforward in SQL and as we are not dealing with genes independently, but with

6 We refer the reader to http://www.postgresql.org/docs/current/static/
tablefunc.html for more details on the crosstab function.

282 Hendrik Blockeel et al.

groups of genes, we use a slight adaptation of the 50% cut-off method: we encode
the overexpression property by comparing it to the mean value observed for each
group, rather than the median. We first create a view, called “PlasmodiumTrans-
poseAvg”, which calculates, for every group of genes, its mean expression value.
This computation is performed by the following query:

1. create view PlasmodiumTransposeAvg as
2. select avg(Actin_myosin_mobility) as avg_Actin_mm,
3. ...
4. avg(Transcription_machinery) as avg_Tran_m
5. from PlasmodiumTranspose

Afterwards, we create the new table named “PlasmodiumSamples” applying the
aforementioned discretization rule. The query that performs this discretization step
is shown below. Notice that the attribute stage is also added to the new table Plas-
modiumSamples (see line 2).

1. create table PlasmodiumSamples as
2. select P.sample_name, S.stage,
3. case when P.Actin_myosin_mobility > avg_Actin_mm
4. then ‘overexpressed’
5. else
6. ‘underexpressed’
7. end as Actin_myosin_mobility,
8. ...
9. case when P.Transcription_machinery > avg_Tran_m

10. then ‘overexpressed’
11. else
12. ‘underexpressed’
13. end as Transcription_machinery
14. from PlasmodiumTranspose P,

PlasmodiumTransposeAvg,
Samples S

15. where P.sample_name = S.sample_name
16. order by S.stage

11.3.2.4 Step 2: Mining over Association Rules

After creating the table PlasmodiumSamples, in this new step, we search for the
desired rules. The corresponding query is shown below:

11 Inductive Querying withVirtual Mining Views 283

1. create table RulesStage as
2. select R.rid, S.sz, S.supp, R.conf,

CAnt.stage as stage_antecedent
CCon.*

3. from PlasmodiumSamples_Sets S,
PlasmodiumSamples_Sets SAnt,

PlasmodiumSamples_Concepts CAnt,
PlasmodiumSamples_Concepts CCon,
PlasmodiumSamples_Rules R

4. where R.cid = S.cid
5. and CAnt.cid = R.cida
6. and CCon.cid = R.cidc
7. and S.supp >= 10
8. and R.conf = 100
9. and R.cida = SAnt.cid

10. and SAnt.sz = 1
11. and CAnt.stage <> ‘?’
12. order by Ant.stage

As we want to characterize the parasite’s stages themselves by means of the gene
functions, we look for rules having only the attribute stage as the antecedent (see
lines 9, 10 and 11) and gene function(s) in the consequent. Additionally, since we
want to characterize the stages without any uncertainty, we only look for correct
association rules, that is, rules with a confidence of 100% (see line 8). Finally, as the
shortest stage is composed of 10 time points in total (not considering the dummy
stage), we set 10 as the minimum support (line 7). The 381 resultant rules are even-
tually stored in the table called “RulesStage” (see line 1).

11.3.2.5 Step 3: Post-processing

The previous query has generated many redundant rules [29]: for each different
antecedent, all rules have the same support and 100% confidence. Notice, however,
that as we are looking for all gene groups that are overexpressed according to a given
stage, it suffices to analyze, for each different stage (antecedent of the rules), only
the rule that has maximal consequent. Given this, all one has to do is to select, for
each different stage, the longest rule. The corresponding query is presented below.
The sub-query, in lines from 3 to 5, computes, for every antecedent (stage), the
maximal consequent size.

284 Hendrik Blockeel et al.

1. select R.*
2. from RulesStage R,
3. (select max(sz) as max_sz,

stage_antecedent
4. from RulesStage
5. group by stage_antecedent) R1
6. where R.sz = R1.max_sz
7. and R.stage_antecedent = R1.stage_antecedent

The 3 rules output by the last query are presented in Figure 11.12. As shown in
Figure 11.13, they are consistent with the conclusion drawn in the corresponding
biological article [27]. Each graph in Figure 11.13, from B to M, corresponds to the
average expression profile of the genes of a specific functional group (the names of
the functions are shown at the bottom of the figure). The functions are ordered, from
left to right, with respect to the time point when there is a peak in their expression
profiles (the peak value is shown in parentheses) and they are assigned to the para-
site’s stage during which this peak occurs (the name of the stages are presented at
the top of the figure). Observe that, according to Figure 11.13, the functions Early
ring transcripts and Transcription machinery are related to the early Ring and Ring
stages, which is in fact indicated by the first extracted rule. The Glycolytic pathway,
Ribonucleotide synthesis, Deoxynucleotide synthesis, DNA replication, and Protea-
some are related to the early Trophozoite and the Trophozoite stages, which is also
consistent with the second extracted rule. Finally, Plastid genome, Merozoite Inva-
sion, and Actin myosin mobility have been associated to the Schizont stage by the
biologists, which is indeed consistent with the third extracted rule.

antecedent (stage) consequent
overexpressed underexpressed

Ring

Early ring transcripts Deoxynucleotide synthesis
Transcription machinery DNA replication machine

Plastid genome
TCA cycle

Trophozoite

Glycolytic pathway Actin myosin motors
Ribonucleotide synthesis Early ring transcripts
Deoxynucleotide synthesis Merozoite invasion
DNA replication
Proteasome

Schizont
Plastid genome Cytoplasmic translation machinery
Merozoite invasion Ribonucleotide synthesis
Actin myosin mobility Transcription machinery

Fig. 11.12 Correct association rules with maximum consequent.

11 Inductive Querying withVirtual Mining Views 285

Fig. 11.13 The temporal ordering of functional groups of genes (an adapted figure from [27]).
Each graph, from B to M, corresponds to the average expression profile of the genes of a specific
functional group. The biologists of [27] have assigned each functional group to the parasite’s stage
in which it achieves its highest expression value.

11.4 Conclusions and Future Work

In this chapter, we described an inductive database system in which the query lan-
guage is SQL. More specifically, we presented a system in which the user can query
the collection of all possible patterns as if they were stored in traditional relational
tables. The development of the proposed system was motivated by the need to (a)
provide an intuitive framework that covers different kinds of patterns in a generic
way and, at the same time, allows of (b) ad hoc querying, (c) definition of meaning-
ful operations and (d) querying of mining results.

As for future work, we identify the following three directions:

• Currently, the mining views are in fact empty and only materialized upon request.
Therefore, inspired by the work of Harinarayan et al. [30], the first direction for
further research is to investigate which mining views (or which parts of them)
could actually be materialized in advance. This would speed up query evaluation.

• Our system deals with intra-tuple patterns only. To mine inter-tuple patterns, one
would need to first pre-process the dataset that is to be mined, by changing its
representation. Although this is not a fundamental problem, this pre-processing
step may be laborious. For example, in the context of market basket analysis, a
table would need to be created in which each transaction is represented as a tuple
with as many boolean attributes as are the possible items that can be bought by
a customer. An interesting direction for future work would then be to investigate
how inter-tuple patterns can be integrated into the system.

• Finally, the prototype developed so far covers only itemset mining, association
rules and decision trees. An obvious direction for further work is to extend it
with other models, taking into account the exhaustiveness nature of the queries
the users are allowed to write.

Acknowledgements This work has been partially supported by the projects IQ (IST-FET FP6-
516169) 2005/8, GOA 2003/8 “Inductive Knowledge bases”, FWO “Foundations for inductive
databases”, and BINGO2 (ANR-07-MDCO 014-02). When this research was performed, Hendrik

286 Hendrik Blockeel et al.

Blockeel was a post-doctoral fellow of the Research Foundation - Flanders (FWO-Vlaanderen),
Élisa Fromont was working at the Katholieke Universteit Leuven, and Adriana Prado was working
at the University of Antwerp.

References

1. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communications
of the ACM 39 (1996) 58–64

2. Calders, T., Goethals, B., Prado, A.: Integrating pattern mining in relational databases. In:
Proc. ECML-PKDD. (2006) 454–461

3. Fromont, E., Blockeel, H., Struyf, J.: Integrating decision tree learning into inductive
databases. In: ECML-PKDD Workshop KDID (Revised selected papers). (2007) 81–96

4. Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A.: Mining views: Database
views for data mining. In: ECML-PKDD Workshop CMILE. (2007)

5. Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A.: Mining views: Database
views for data mining. In: Proc. IEEE ICDE. (2008)

6. Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A.: An inductive database proto-
type based on virtual mining views. In: Proc. ACM SIGKDD. (2008)

7. Prado, A.: An Inductive Database System Based on Virtual Mining Views. PhD thesis,
University of Antwerp, Belgium (December 2009)

8. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query language
for relational databases. In: ACM SIGMOD Workshop DMKD. (1996)

9. Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data Mining
Knowledge Discovery 3(4) (1999) 373–408

10. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules. Data Mining
and Knowledge Discovery 2(2) (1998) 195–224

11. Wicker, J., Richter, L., Kessler, K., Kramer, S.: Sinbad and siql: An inductive databse and
query language in the relational model. In: Proc. ECML-PKDD. (2008) 690–694

12. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A constraint-
based querying system for exploratory pattern discovery information systems. Information
System (2008) Accepted for publication.

13. Tang, Z.H., MacLennan, J.: Data Mining with SQL Server 2005. John Wiley & Sons (2005)
14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB.

(1994) 487–499
15. Botta, M., Boulicaut, J.F., Masson, C., Meo, R.: Query languages supporting descriptive rule

mining: A comparative study. In: Database Support for Data Mining Applications. (2004)
24–51

16. Han, J., Kamber, M.: Data Mining - Concepts and Techniques, 1st ed. Morgan Kaufmann
(2000)

17. Han, J., Chiang, J.Y., Chee, S., Chen, J., Chen, Q., Cheng, S., Gong, W., Kamber, M., Koper-
ski, K., Liu, G., Lu, Y., Stefanovic, N., Winstone, L., Xia, B.B., Zaiane, O.R., Zhang, S., Zhu,
H.: Dbminer: a system for data mining in relational databases and data warehouses. In: Proc.
CASCON. (1997) 8–12

18. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Generation Computer
Systems 13(2–3) (1997) 161–180

19. Meo, R., Psaila, G., Ceri, S.: A tightly-coupled architecture for data mining. In: Proc. IEEE
ICDE. (1998) 316–323

20. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery 1(3) (1997) 241–258

21. Ng, R., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations
of constrained associations rules. In: Proc. ACM SIGMOD. (1998) 13–24

11 Inductive Querying withVirtual Mining Views 287

22. Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent itemsets with convertible constraints.
In: Proc. IEEE ICDE. (2001) 433–442

23. Bistarelli, S., Bonchi, F.: Interestingness is not a dichotomy: Introducing softness in con-
strained pattern mining. In: Proc. PKDD. (2005) 22–33

24. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
25. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.: Data cube: A

relational aggregation operator generalizing group-by, cross-tab, and sub-total. Data Mining
and Knowledge Discovery (1996) 152–159

26. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for
association rules. In: Proc. ICDT. (1999) 398–416

27. Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E.D., Zhu, J., DeRisi, J.L.: The transcriptome
of the intraerythrocytic developmental cycle of plasmodium falciparum. PLoS Biology 1(1)
(2003) 1–16

28. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong association rule
mining for large-scale gene-expression data analysis: a case study on human SAGE data.
Genome Biology 12 (2002)

29. Zaki, M.J.: Generating non-redundant association rules. In: Proc. ACM SIGKDD. (2000)
34–43

30. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Proc.
ACM SIGMOD. (1996) 205–216

Chapter 12

SINDBAD and SiQL: Overview, Applications

and Future Developments

Jörg Wicker, Lothar Richter, and Stefan Kramer

Abstract The chapter gives an overview of the current state of the SINDBAD sys-
tem and planned extensions. Following an introduction to the system and its query
language SiQL, we present application scenarios from the areas of gene expres-
sion/regulation and small molecules. Next, we describe a web service interface to
SINDBAD that enables new possibilities for inductive databases (distributing tasks
over multiple servers, language and platform independence, ...). Finally, we discuss
future plans for the system, in particular, to make the system more ’declarative’ by
the use of signatures, to integrate the useful concept of mining views into the system,
and to support specific pattern domains like graphs and strings.

12.1 Introduction

Many of the recent proposals for inductive databases and constraint-based data min-
ing focus on single pattern domains (such as itemsets or molecular fragments) or
single tasks, such as pattern discovery or decision tree induction [20, 5, 7, 19, 13].
Although the closure property is fulfilled by many of those approaches, the possibil-
ities of combining various techniques in multi-step and compositional data mining
are rather limited.

In this chapter, we give an overview of the SINDBAD project that explores a
different avenue. SINDBAD stands for structured inductive database development,
with structured in the sense of SQL – structured query language. The project aims
at the development of a prototype of an inductive database system that supports
the most basic preprocessing and data mining operations, such that they can be
combined more or less arbitrarily. One explicit goal of the project is to support

Jörg Wicker · Lothar Richter · Stefan Kramer
Technische Universität München, Institut für Informatik I12, Boltzmannstr. 3,
D-85748 Garching b. München, Germany
e-mail: {joerg.wicker,lothar.richter,stefan.kramer}@in.tum.de

289
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_12, © Springer Science+Business Media, LLC 2010

290 Jörg Wicker, Lothar Richter, and Stefan Kramer

the complete knowledge discovery process, from preprocessing to post-processing.
Since it is at the moment far from clear what the requirements of a full-fledged
inductive database will be, it is our belief that we can only find out by building
prototype systems.

The research described here follows ideas worked out at the Dagstuhl perspec-
tives workshop “Data Mining: The Next Generation” [1], where a system of types
and signatures of data manipulation and mining operators was proposed to support
compositionality in the knowledge discovery process. At the workshop, the idea of
using the data as the bridge between the various operators was explicitly articulated.
In this work, the main idea was to use the simplest possible signature (mapping
tables onto tables) as a starting point for the exploration of more complex scenarios.

We started out with concrete scenarios for multi-step, compositional data mining
and then identified the building blocks necessary for supporting them. The SIND-
BAD project started in 2004 as a students project of a group of six students. Since
then, several diploma theses and follow-up student projects continued the develop-
ment of the system.

For the development, various paradigms could have been adopted. In SINDBAD,
we chose the relational model, as it possesses several desirable properties. First, clo-
sure can easily be achieved. Second, it allows handling collections of tuples conve-
niently and in a declarative manner. Third, the technology scales up well, and highly
optimized implementations are available. Fourth, systems supporting (variants of)
SQL are well-known and established, making it easier to get users acquainted with
new querying facilities. Thus, we took the same approach as Meo et al. [20] and
devised an extension of SQL, but for the most basic pre-processing and data mining
techniques, discretization, feature selection, pattern discovery, clustering and clas-
sification. Similar approaches have been taken by Imielinski and Virmani [16] and
Han et al. [15].

For a comprehensive discussion of these query languages and the current lack
of preprocessing and post-processing primitives, we refer the reader to a survey
by Boulicaut and Masson [17]. Another, more recent approach based on the rela-
tional model by Blockeel et al. [2, 3, 4] focuses on the automatic generation of
mining views, in which the relevant parts are materialized on demand when a model
is queried. The focus of the work is on the storage model and evaluation logic of
data mining results. In contrast to mining views, SINDBAD uses an own query lan-
guage, SiQL, to execute the mining operations. Mining views only use standard
SQL queries to generate models and apply them (for details see section 12.5.2).
SINDBAD also differs from related work [5] in – among other things – the support
of pre-processing features. Also, it should be viewed as a prototype to be used for
the exploration of concepts and requirements on such systems.

This chapter is organized as follows: After sketching the main ideas of the in-
ductive query language, we present details of the SINDBAD implementation. Sub-
sequently, we show how the query language can be used in three typical multi-step
data mining scenarios [22, 25]. After this, we present an extension of SINDBAD,
SINDBAD SAILS which implements a Web Service interface to SINDBAD [24]. In

12 SINDBAD and SiQL: Overview, Applications and Future Developments 291

the subsequent section, we discuss the plans for future developments and extensions
of SINDBAD, before we come to our conclusions.

12.2 SiQL

SiQL (structured inductive database query language), the query language of the
SINDBAD system, is a straightforward extension of SQL. Instead of just adding
complicated data mining operators to SQL, we focused on incorporating small, but
extensible and adjustable operators that can be combined to build more complex
functions. The query language supports the knowledge discovery process by a suc-
cessive transformation of data. As each pre-processing and data mining operator
returns a table, the queries can be nested arbitrarily, and the kind of compositional-
ity needed in multi-step data mining can be achieved easily. As most queries return a
table, these queries can be arbitrarily nested with SQL queries. For example, instead
of table names, the query can be given a SELECT statement. Also, the result of a
mining operation can be directly used in a SQL query.

The mining operators were designed in analogy to relational algebra and SQL:
For instance, we made heavy use of the extend-add-as operator which adds the re-
sults of a data mining operation in terms of new columns to a relation (see below).
Also, we devised a feature-select clause in analogy to the select clause. It selects cer-
tain features which fulfill a given condition, for example an information gain above
a certain threshold or the best features with respect to the correlation coefficient to
a given column.

12.2.1 Preliminaries

For every relation, we assume that an attribute heading as well as non-deletable and
non-mutable tuple identifiers are given. Since in many of the envisaged applications
rows and columns should be interchangeable, we included an operator for transpos-
ing a table. Table transposition is only possible if all attributes are of the same type.
If a table is transposed, the tuple identifiers become attributes, and vice versa. If
tables are joined, the new tuple identifiers are concatenations of the tuple identifiers
of the tuples from the joined tables.1

Most of the query operators below can be parametrized. Parameters can be either
passed directly, or set in a so-called configure clause (see Table 12.1). For the sake of
simplicity, we did not include the parameters in the following definitions in Backus-
Naur Form (BNF), and assume the parameters are set in a configure clause.

1 For a more formal discussion of the operators, we have to refer to a previous paper [18].

292 Jörg Wicker, Lothar Richter, and Stefan Kramer

Table 12.1 Main parameters to be set in a configure clause.

<configure-clause> ::=
configure <group-expression-value>;

<group-expression-value> ::=
knn_k=<integer> |
kmed_k=<integer> |
apriori_minSupport=<float> |
discretization_<disc-method-value> |
sampling_method=<sampling-method-value> |
sampling_percentage=<double> |
sampling_class_column=<string>

<disc-method-value> ::=
numofintervals=<integer> |
method=(frequency|width|manual) |
classColumn=<string>

<sampling-method-value> ::=
holdout |
leave-one-out

12.2.2 Main Ideas

Adopting the relational model, queries are mappings from relations onto a relation.
We designed an extension of SQL (a superset of SQL) to support different kinds
of preprocessing and data mining operations. Since every operator returns a table,
queries can be arbitrarily nested. If we would like to work with more complex data,
e.g., chemical compounds or substructures, we might handle tables of SMILES or
SMARTS strings [6]. The mining operators were designed in analogy to relational
algebra and SQL: For instance, we made heavy use of the extend-add-as operator
and devised a feature-select clause in analogy to the select clause.

The results of mining operations applied to tables are again tables. For instance,
the discretization and feature selection operators return modified tables. More im-
portantly, the classification from a nearest-neighbor query can be added to a table
as a new attribute. Similarly, clustering results (cluster membership) can simply be
added to a table as a new attribute. The frequent itemsets are stored in a table, each
itemset in one row, the columns in the same schema as the input relation. The values
are Boolean giving information if the item is present in the itemset.

Since one goal of the project was to explore the power of compositionality in data
mining, we chose the most basic building blocks and implemented one fundamental
technique per category. For discretization, we implemented: equal-frequency/equal
width, for feature selection: a filter approach based on information gain or variance,
for pattern discovery: APriori, for clustering: k-Medoids and for classification: k-
Nearest Neighbor, for model learning: a propositional FOIL [21] variant. The re-
sulting rule set is stored in a table. The columns representing literals, each row one

12 SINDBAD and SiQL: Overview, Applications and Future Developments 293

rule. This makes it possible to execute queries on the results of the mining oper-
ations. The goal is to support the whole knowledge discovery process, including
pre-processing steps as discretization and feature selection. However, it is not our
ambition to re-implement every technique ourselves, but to make the system exten-
sible by design.

External tools can easily be integrated by declaring wrappers for exporting and
importing tables as plug-ins. Still, every analysis step can be performed via queries
from a command line interface. For instance, once a wrapper for molecular data is
written and declared as a plug-in, we might run an external graph mining tool and
import the results, e.g., a table of frequent or significant molecular substructures, or
a table of the occurrences of substructures in small molecules.

12.2.3 The extend add as Query

We adopted the extend operator to add the results of the various data mining op-
erations as new attributes to a relation. The extend operator, one of the simplest
extensions of the original relational algebra proposal, adds computational capabili-
ties to the algebra [6]. It computes a function for each tuple and adds the result as the
value of a new attribute. Although the same functionality can be achieved with SQL,
the introduction of the extend query makes it easier to execute complex operations
on the data. The most general form of an extend clause is given as follows:

<extend-clause> ::= extend <relation>
add <function>

as <att>

As an example, consider we want to add a new attribute gmwt to a table p,
defined as the attribute weight multiplied by 454 [6]:

extend p add (weight*454) as gmwt

In SQL, extending a table by computed attributes can easily be achieved by
the first part of a select statement (SELECT AS). All the data mining operations
would then be treated in the same way as aggregate functions (e.g., SELECT ...,
KMEDOIDS(*) AS ... FROM ...). Somewhat related, but conceptually dif-
ferent, is the ALTER TABLE operator in today’s SQL systems that changes the
structure of existing tables (ALTER TABLE ... ADD ...).

In SINDBAD, by contrast, the extend operator is modified in several ways and
used directly in the query language. The complete syntax of the new operators in
BNF is shown in Table 12.2. The operators support a variety of pre-processing and
data mining operations.

Now we are going to explain some of the extension functions in more detail.
kmedoid provides distance-based clustering, which can come in two flavors. If com-
bined with membership, the new attribute values are the identifiers (integers greater
than or equal to one) of the clusters the respective example falls into, whereas in

294 Jörg Wicker, Lothar Richter, and Stefan Kramer

Table 12.2 The extend clause was adapted for clustering, sampling and k-Nearest Neighbor pre-
diction. The last two clauses are variants of k-medoids and k-NN that might be useful in practice:
The k-medoid clause returns a relation with the medoids only. The k-NN clause retrieves the clos-
est instances from a relation for a given instance. Thus, the results of k-medoids or k-NN can be
stored directly in an own table without adding it to the input relation.

<extend-clause> ::=
extend <relation> add
(
kmedoid membership as <att> |
kmedoid centers as <att> |
knn prediction of <att> from <relation> as <att> |
sample membership as <att> |
distances from <relation> [as <prefix-att>] |
covered by <relation> [as <prefix-att>] |
external <external-program> [<relation>]

[as <prefix-att>]
)

<kmedoid-clause> ::= kmedoid relation <relation>

<knn-clause> ::= <singleton-relation> knns from <relation>

combination with centers the value of the attribute indicates whether it is a medoid
or not (one for centers, zero otherwise). Another, less space-intensive way is to use
the k-medoid clause from Table 12.2, only returning a table of medoids. Even sim-
pler, one could only return a table with the keys of the medoids. Another possibility
(not implemented yet) is to return both cluster membership and centers to facilitate
an easy reconstruction of clusters.2

A simple prediction method is included by knn prediction of. The class identified
by the first attribute in the clause is predicted on the basis of training examples (the
relation specified after the from keyword), and the resulting prediction is stored in
the new attribute specified following as.

Particularly useful for testing purposes is the sample membership operation,
which allows the user to split the set of examples into test and training set, simply
indicated by zero or one values of the added attribute. Cross-validation is currently
not supported, but will be integrated into one of the next versions of SINDBAD.

If distances to certain examples (one to many) are desired, they can be easily
created by the distances from operation, which adds the distances from the examples
in the given relation as new attributes, either with attribute names generated from
the examples’ identifiers or with a specified name prefix.

2 Note that the user perspective need not coincide with the implementation perspective. We might
use a very compact representation of clusters internally and present them to the user in a seemingly
space-intensive way. Further, the main idea of SINDBAD is to transform data successively, and not
to create too many extra tables containing results in various forms.

12 SINDBAD and SiQL: Overview, Applications and Future Developments 295

Table 12.3 The feature select clause, reminiscent of the select clause in SQL.

<feature-select-clause> :: =
feature select <conditions-on-tuples>
from <relation>
where <fs-condition>

<fs-condition> ::= ((variance | infogain <att>)
((<|>|=|<=|>=) <real> |
in top <integer>) |
<attribute-condition-expression>)

To use the frequent itemsets generated by the APriori algorithm (see below), the
covered by operation was included, that maps the occurrence of itemsets back to the
examples.

The genuine extensibility of the system comes into play with the external key-
word. This is not merely an operator transforming the data, but rather indicates an
external plug-in to the system, whose results are used as input for the new values of
the attribute.

12.2.4 The feature select Query

In Table 12.3, several variants of feature selection are offered, which is an indispens-
able step in the knowledge discovery process. Feature selection can be done accord-
ing to various criteria. These criteria are specified in the <fs-condition>. Feature
selection can be done either by applying hard thresholds for variance or information
gain, or by relative thresholds (in top). Alternatively, simple string matching over
the attributes’ names can be applied, where the keyword attribute is used to refer to
attribute names (see Table 12.4).

Table 12.4 Various other operators, for discretization, pattern discovery, table transposition and
projection on another table’s attributes.

<disc-clause> ::= discretize (* | <att-list>)
in <relation>

<pattern-disc-clause> ::= frequent itemsets
in <relation>

<transpose-clause> ::= transpose <relation>

<project-onto-clause> ::= project <relation>
onto <relation> attributes

296 Jörg Wicker, Lothar Richter, and Stefan Kramer

In a way, the feature-select clause resembles the select clause “rotated by 90
degrees”. However, in the feature-select clause, we can apply criteria for attributes
to be included, and need not specify explicit lists of attributes.3

12.2.5 Parsing and Executing SiQL Queries

The SINDBAD prototype is implemented in Java. For parsing the queries, we used
the lexical analyzer generator JFlex4 and the parser generator Cup5. The implemen-
tation supports arbitrarily nested queries. In the future, we are planning to integrate a
full-fledged analysis of parse trees, opening possibilities for query optimization. The
system is built on top of PostgreSQL6, an open source relational database manage-
ment system. The queries are analyzed, the SQL parts of the query are redirected
to PostgreSQL, the SiQL queries are handled by the Java implementation. Most
of the inductive queries are broken down and translated into a larger number of
less complex non-inductive queries. The implementation of data mining features as
PostgreSQL functions seems to be critical for performance.

12.3 Example Applications

In this section, we will highlight some of the main features of SINDBAD in three
real-world applications [22, 25]. In the first application, we test it on the gene ex-
pression data from Golub et al. [14], which contains the expression levels of genes
from two different types of leukemia. In the second application, the task is to predict
gene regulation dependent on the presence of binding sites and the state of regula-
tors [12]. The third application is to predict anti-HIV activity for more than 40,000
small molecules [19].

12.3.1 Gene Expression Analysis

We aim at finding a classifier that predicts the cancer type either acute myeloid
leukemia (AML) or acute lymphoblastic leukemia (ALL) based on gene expres-
sion monitoring by DNA microarrays. Table 12.5 shows how the AML/ALL gene
expression dataset is analyzed step by step. The input relation contains attributes

3 In principle, it would be desirable to support arbitrary Boolean expressions (analogously to the
select clause [6], pp. 973-976), composed of syntactic criteria regarding the attribute name as well
as criteria regarding the variance or information gain of the attribute.
4 http://jflex.de/
5 http://www2.cs.tum.edu/projects/cup/
6 http://www.postgresql.org/

12 SINDBAD and SiQL: Overview, Applications and Future Developments 297

stating the expression levels of the genes (that is, one attribute per gene) and one
class attribute, which gives the actual tumor subtype (AML or ALL) of the cell.
Table 12.6 shows the input and output of the system without displaying the actual
relations.

First, the dataset is loaded, discretized and divided into a training and a test set
(queries (10) to (13)). Note that the discretization and labeling as training or test
example is done in the second query. The sample membership statement con-
ceptually splits a set of examples into two subsets, simply indicated by an additional
attribute containing either the value zero or one. The following two queries split the
table into two tables based on the previously added information. Queries (14) per-
form class-sensitive feature selection. As a result, we reduce the dataset to the fifty
genes with maximal information gain with respect to the tumor subtype to be pre-
dicted. Since the test set should have the same attributes as the training set, we
project the former onto the attributes of the latter in query (15).

Next, we query for frequent itemsets, that is, co-expressed genes. The co-
expressed genes are used to transform the data, because individual genes are usually
only predictive in conjunction with other genes. In the following queries, one new
attribute per frequent itemset is added to training (17) and test table (18), which
specifies which gene occurs in which frequent item set. Then, it uses feature se-
lection to remove the original expression attributes. In this way, each example is
represented only by attributes indicating co-expression with other genes. Finally,
query (19) induces a k-nearest neighbor classifier on the training table and applies
it to the examples in the test table. The predictions are added to the test table as val-
ues of the new attribute predicted tumor subtype. More generally, the k-nn
clause adds the values of a predicted attribute to a given test set on the basis of a
target attribute of a given training set:

extend <testset>
add knn prediction

of <targetatt>
from <trainset>

as <predictatt>

12.3.2 Gene Regulation Prediction

In the following, we briefly demonstrate multi-relational clustering and classifica-
tion on gene regulation data [12]. Gene expression is the complex process of conver-
sion of genetic information into resulting proteins. It mainly consists of two steps:
transcription and translation. Transcription is the copying of a DNA-template in
mRNA mediated by special proteins, so called transcription factors. Translation is
the protein formation based on the information coded in the mRNA.

The data used here in this work reflects regulatory dependencies involved in the
step of transcription. The task on this data is to learn a model that predicts the level
of gene expression, i.e., to learn under which experimental conditions a gene is up-

298 Jörg Wicker, Lothar Richter, and Stefan Kramer

Table 12.5 Sample run of SINDBAD on leukemia gene expression dataset

(10) create table expression_profiles as
import ALLAML.arff;

(11) create table train_test_expression_profiles as
extend (discretize * in expression_profiles)
add sample membership as test_flag;

(12) create table train_expression_profiles as
select * from
train_test_expression_profiles
where test_flag = true;

(13) create table test_expression_profiles as
select * from

train_test_expression_profiles
where test_flag = false;

(14) create table reduced_train_expression_profiles as
feature select * from
train_expression_profiles
where infogain tumor_subtype in top 50;

(15) create table reduced_test_expression_profiles as
project test_expression_profiles onto
reduced_train_expression_profiles attributes;

(16) create table coexpressed_genes as
frequent itemsets in reduced_train_expression_profiles;

(17) create table train_set as
feature select * from
(extend reduced_train_expression_profiles
add covered by coexpressed_genes as fp)

where attribute like ’fp%’ or
attribute = ’tumor_subtype’;

(18) create table test_set as
feature select * from
(extend reduced_test_expression_profiles
add covered by coexpressed_genes as fp)

where attribute like ’fp%’ or
attribute = ’tumor_subtype’;

(19) create table classified_test_expression_profiles as
extend test_set
add knn prediction of tumor_subtype
from train_set

as predicted_tumor_subtype;

12 SINDBAD and SiQL: Overview, Applications and Future Developments 299

Table 12.6 Sample outputs of SINDBAD models and patterns from leukemia gene expression
dataset

(1) select * from coexpressed_genes;

sindbadrownames | gene_id72 | gene_id77 | gene_id716 | ...
-----------------+-----------+-----------+------------+----

itemset1 | f | t | t | ...
itemset2 | t | f | f | ...
... | ... | ... | ... | ...

(2) select predicted_tumor_subtype from
classified_test_expression_profiles;

predicted_tumor_subtype

ALL
AML
AML
...

or down-regulated. The expression level of a gene depends on certain experimental
conditions and properties of the genes such as the presence of transcription factor
binding sites, functional categorizations, and protein-protein interactions.

The data is represented in five relations (see Table 12.7). The main table stores
the gene identifiers and their expression level, as well as an identifier of the exper-
imental condition. The experimental conditions are given in two separate relations,
information about the genes and their interactions to each other.

Table 12.7 Relational schema of gene regulation data. The relation gene is the main table and
connects genes with experimental setups and expression levels. The fun cat relation gives the
functional category membership of a gene according to the FunCat database. The third relation,
has tfbs indicates occurrence of transcription factor binding sites in respective genes, whereas
in the regulators table experimental conditions and activated regulators are given. The last
table p p interaction gives the gene product interaction data.

gene(fun_cat(p_p_interaction(
gene_id, gene_id, gene1_id,
cond_id, fun_cat_id) gene2_id)
level)

has_tfbs(regulators(
gene_id, cond_id,
yaac3_01, ybl005w,
yacc1_01, ycl067c,
yacs1_07, ydl214c,
yacs2_01, ydr277c,
...) ...)

300 Jörg Wicker, Lothar Richter, and Stefan Kramer

Given this input, we can compute the similarity of gene-condition pairs using
multi-relational distance measures. The results of k-medoids clustering is shown in
Table 12.8.

The results of k-nearest neighbor classification is shown in Table 12.9. The tar-
get attribute in this case is the increase or decrease in expression level. The class
attribute is set to +1 if the expression is above a certain threshold, and−1 if it is be-
low. A gene in an experiment is represented by the functional category membership
of a gene according to FunCat, occurrence of certain transcription factor binding
sites, the experimental conditions causing the gene to over- or under-express, acti-
vated regulators and gene product interactions.

K-nearest neighbor is configured for k = 10 and the “majority wins” strategy
for prediction. This is a good example for the advantage of the support of multi-
relational distance measures over simple propositional distance measures. Multi-
relational distances make it possible to analyze complex data with algorithms de-
signed for propositional data in an easy and transparent way without further mod-
ifications. Six multi-relational distance measures are currently implemented: sin-
gle linkage, complete linkage, average linkage, sum of minimum distances, Haus-
dorff distance and matching distance. Which is used in the query can be set using a
configure clause. The connections between the tables are read from the database
schema. Each connection is represented by key constraints in PostgreSQL.

Table 12.8 k-Medoids for gene regulation prediction. The resulting table shows in column 2 the
gene identifiers, in column 3 the experimental conditions, followed by the change of expression
level and the cluster membership in columns 3 and 4.

(20) configure kmedoids_k = 5;

(21) configure multirelational_recursion_depth = 3;

(22) configure multirelational_exclude_tables = ’’;

(23) configure distance_between_instances = ’euclidean’;

(24) configure distance_between_instance_sets =’single_linkage’;

(25) extend gene add k medoid membership of gene;

(26) show table gene;

row|gene_id|cond_id |level|cluster|
1 |YAL003W|2.5mM DTT 120 m dtt-1 |-1 |2 |
2 |YAL005C|2.5mM DTT 180 m dtt-1 |-1 |3 |
3 |YAL005C|1.5 mM diamide (20 m) |+1 |5 |
4 |YAL005C|1.5 mM diamide (60 m) |+1 |1 |
5 |YAL005C|aa starv 0.5 h |-1 |2 |
...|... |... |... |... |

12 SINDBAD and SiQL: Overview, Applications and Future Developments 301

Table 12.9 k-nearest neighbor for gene regulation prediction. This resulting table, column 2 and 3
are the same as in Table 12.8 followed by the predicted class label in column 4.

(30) configure KNearestNeighbour_K = 10;

(31) extend gene_test add knn prediction
of level from gene_train;

(32) show table gene_test;

row|gene_id|cond_id |class|
1 |YBL064C|aa starv 1 h |+1 |
2 |YDL170W|YPD 3 d ypd-2 |-1 |
3 |YER126C|Heat shock 40 minutes hs -1 |-1 |
4 |YJL109C|dtt 240 min dtt-2 |+1 |
5 |YKL180W|Nitrogen Depletion 1 d |+1 |
...|... |... |... |

12.3.3 Structure-Activity Relationships

In the last application, we predict the anti-HIV activity of small molecules using the
NCI Developmental Therapeutics Program HIV data [19]. Here, the AIDS antivi-
ral screen data of the National Cancer Institute7 is used. The data is a collection of
about 43,000 chemical structures, which are labeled according to how effectively
they protect human CEM cells from HIV-1 infection [23]. We search the data for
rules describing a compound’s activity against HIV. Hence, the data is prepared
and randomly split into test and training set. We chose a representation where each
attribute in the training and test relation specifies whether or not a chemical sub-
structure occurs in a substance. The attributes are named f1 to f688, each of them
representing a chemical substructure occurring in the antiviral screen data. The num-
bers refer to the order of their detection by the tree mining algorithm which searched
these frequent subtrees in the data set.

An additional attribute gives the target label, that is, the compound’s effective-
ness in protecting against HIV. In Table 12.10, a protocol of the analysis steps is
shown. In the first few queries the datasets are prepared and the FOIL rule induction
algorithm [21] is configured (40)-(46). In the main step, rules are learned (47) and
displayed (48). The sample rule refers to substructures 683, 262, 219, and 165 to
predict a compound as active. Finally, the rule set is applied to a test set, adding its
predictions as an additional attribute (49).

7 http://dtp.nci.nih.gov/docs/aids/aids_screen.html

302 Jörg Wicker, Lothar Richter, and Stefan Kramer

Table 12.10 Rule learning applied to the NCI HIV data.

(40) configure sampling_method = ’holdout’;

(41) configure sampling_percentage = ’0.25’;

(42) configure sampling_classcolumn =
’activity’;

(43) create table hiv_train_test as
extend hiv
add sample membership as test_flag;

(44) create table testset as
select * from hiv
where test_flag = false;

(45) create table trainset as
select * from hiv
where test_flag = true;

(46) configure foil_mdl = ’true’;

(47) create table hiv_rules as learn rules
for activity in trainset;

(48) show table hiv_rules;

(activity = true <- f1 = true AND
f3 = true AND f4 = true AND
f165 = true)
...

(49) extend testset add
model prediction of
hiv_rules
as learned_activity;

Table 12.11 Learned rule from the NCI HIV data set in the PostgreSQL table.

(1) select * from hiv_rules;

activity | f1 | f2 | f3 | f4 | ...
----------+-----+-----+-----+-----+----

true | t | | t | t | ...
... | ... | ... | ... | ... | ...

12 SINDBAD and SiQL: Overview, Applications and Future Developments 303

12.4 A Web Service Interface for SINDBAD

To show the benefits of using an inductive database for service-oriented knowledge
discovery, in this section, we present a Web Service interface to SINDBAD [24]. Us-
ing this interface, all features of SINDBAD can be made available on a dedicated
server. In this way, SINDBAD data mining services can be started from arbitrary
clients. It is possible to distribute tasks over multiple servers to decrease the load
on each machine. Another effect is the availability of features of SINDBAD in many
different programming languages and on many different platforms. Thus, machine
learning and data mining methods can be combined easily with native program-
ming language constructs, such as conditional statements or loops, without having
to install specialized libraries or software packages.

12.4.1 Web Services

A Service-Oriented Architecture (SOA) is a design paradigm for distributed com-
putational resources, described by their capabilities and typically made accessible
on the Internet [9]. Encapsulating functionality in an SOA, parts of a software sys-
tem can be reused regardless of specific requirements on the underlying system,
programming language or location of the provided service.

One possible implementation of an SOA is a Web Service. Web Services are
offered on the Internet and can be accessed by the Simple Object Access Protocol
(SOAP). The specification of a Web Service is split into three parts:

1. SOAP (Simple Object Access Protocol), an XML-based message format for the
communication and embedding into transport protocols,

2. WSDL (Web Service Description Language), an XML-based description lan-
guage to describe the Web Service, its interfaces and parameters, and

3. UDDI (Universal Description, Discovery and Integration Protocol) (optional),
the directory service for Web Services, specifying the standardized directory
structure for administration and search for Web Service meta-data.

12.4.2 Motivation

Building a Web Service on top of an inductive database offers many advantages:
First of all, it is possible to run the (in most cases) computationally intensive op-
erations on separate systems and distribute work that can be done simultaneously.
As the computations are carried out on the server, the hardware requirements on the
client are not very high. While this feature can be achieved by other implementa-
tions than a Web Service interface, common implementations in most cases require
certain packages or software on the client machines. When using Web Services, this

304 Jörg Wicker, Lothar Richter, and Stefan Kramer

does not necessarily apply. In some cases it is beneficial to install packages to handle
the access to the service. This depends on the used programming language on the
clients. However, as the implementation of the service and the client are completely
independent, it is up to the user which language, packages or software is used.

The distinction between the implementation of the data mining and preprocessing
algorithms on the server running SINDBAD and the implementation of the user code
on the client side makes it easier to use the data mining algorithms. The users do not
need to know the details of the algorithms: They just need to submit the data in the
right format and send it to the server.

The advantage of inductive databases compared to other possible implementa-
tions is due to the status of patterns and models in such systems. Just as regular data
items, patterns and models are viewed as first-class objects in inductive databases.
Taking advantage of a service-oriented architecture, it is possible to transfer data,
patterns and models from one inductive database to another. In this way, distribut-
ing data mining tasks and integrating methods and results from multiple servers
becomes an easy task.

Finally, the use of data mining and machine learning features in programming
languages has not received much attention so far. Whereas machine learning is con-
sidered important in the context of reasoning, or more generally, artificial intelli-
gence systems [8], the use of inductive queries in regular computer programs has
not yet been discussed in the literature. The approach differs from R and MATLAB
implementations and interfaces, and older libraries like MLC++, in its additional
layers of abstraction (Web Service and SiQL). This level of abstraction in terms
of well-defined interfaces can also be useful in workflow systems like KNIME8,
where components of workflows could be replaced as long as the interface is the
same. Using SINDBAD SAILS, it is easily possible to use basic machine learning
and data mining in (almost) arbitrary programming languages, without the need to
install specialized software.

12.4.3 Features

A SINDBAD SAILS call can be split in several steps. Data mining methods are trans-
lated into SiQL queries and executed by the underlying SINDBAD database. The
generated queries are passed to SINDBAD via command line, the output of SIND-
BAD is parsed for thrown exceptions and problems.Methods for uploading the data
on and downloading results from the server are provided. The input for the algo-
rithms is either uploaded from a given URL or a result of a former query on the
database is used. The data is processed by the preprocessing and data mining algo-
rithms and the results are stored on the server. They can be downloaded or used in
further computations. Additionally, each intermediate result can be obtained from
the server.

8 http://www.knime.org

12 SINDBAD and SiQL: Overview, Applications and Future Developments 305

A sample call in Java is shown in Table 12.12. To connect to the Web Service,
the Axis package of Apache is used9. First, a connection to the Web Service is
established. Then the task is set to frequent itemset mining, which is done by the
APriori algorithm. Finally, an URL of the data is sent to the service for download.
With this URL, the minimum support and the level of detail for the results is passed
to SINDBAD. If any errors occur during the execution of the APriori algorithm,
an exception is thrown, containing a detailed error message from SINDBAD. The
example is given in Java, but similar programs can be written in almost any other
programming language.

Table 12.12 Simple Java example program using the Web Service interface of SINDBAD. In the
example, the Axis package of Apache is used to establish a connection to the Web Service.

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.QName;
public class SoapClient
{

public static void main(String[] args) throws Exception
{

String endpoint = "http://sindbad.in.tum.de/soap";
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(

new java.net.URL(endpoint));
call.setOperationName("frequentItemsets");
Object[] returnset =

(Object[]) call.invoke(
new Object[]{

’http://wwwkramer.in.tum.de/soybean.arff’,
’0.5’,
’low’});

}
}

12.5 Future Developments

12.5.1 Types and Signatures

As mentioned above, the Dagstuhl perspectives workshop [1] introduced the concept
of signatures of KDD operations. The signature of an operator prescribes the types
of its inputs and its outputs. One obvious use of signatures in an inductive database

9 http://ws.apache.org/axis/

306 Jörg Wicker, Lothar Richter, and Stefan Kramer

is to prevent data mining operations being applied to data not suitable for them
(for instance, itemset data cannot be discretized). Signatures can be used to help
the user avoid wrong combinations of operations. To structure the data processing
and mining operations conceptually, signatures can be organized in a hierarchy. The
hierarchy starts with a general declaration at the top level, which becomes more
specific on the lower levels. For instance, a signature may describe a mapping from
data and patterns onto patterns, which is specialized for itemsets on a lower level.

At the workshop, three possible ways to organize data processing and mining
operations were discussed:

Generic base operations Mappings from data and patterns to data and patterns
Type of data Pattern domains, for instance, items, strings, graphs, ...
Type of operation For instance, clustering, classification, ...

All these concepts are conceivable to be included in SINDBAD. A hierarchy could
be built with signatures for generic base operations on the top level. These could
ensure that queries are only applied to the right type of input. Thus, data mining
algorithms could only be applied to data, and patterns could only be used in post-
processing in combination with data. On a lower level, signatures for the type of
operation could provide better control over the specific data mining algorithms. For
instance, the input data for the APriori algorithm need to be a relation holding item-
sets.

12.5.2 Integration of Mining Views

Blockeel et al. presented an approach to integrate constraint-based data mining into
a relational database [3]. Using the concept of mining views, they propose a schema
to consistently represent a large number of models in a relational database. The
approach is implemented in PostgreSQL using a virtual Concepts table. Using this
table, constraints can be formulated using SQL queries. Association rule mining and
decision tree learning have already been implemented within this framework. The
implementation provides fast querying over the data and patterns.

Considering the implementation and its concepts, it appears to be feasible and
reasonable to include mining views into SINDBAD. Nevertheless, there are still some
open questions to be addressed. For instance, it is not clear whether it is preferable to
include new query primitives for these functions or if everything should be accessed
via SQL as proposed by Blockeel and co-authors. Introducing new query primitives
could improve the user interface to this structure. The SQL queries to access the
mining views tend to become quite complex. Also, good interoperability between
the existing algorithms in SINDBAD and mining views needed to be elaborated.

12 SINDBAD and SiQL: Overview, Applications and Future Developments 307

12.5.3 String Mining

Although SINDBAD is intended as a general-purpose tool, it is still desirable to offer
extensions for specific data types and pattern domains like strings (sequences) and
graphs. These extensions are particularly useful in bioinformatics and cheminfor-
matics applications. In preliminary work, we have already developed a basic concept
for the integration of string mining algorithms and data structures into SINDBAD. As
a use case, we focused on DNA and protein sequences. As it turns out, this requires
only minor modifications for some of the operators, while it takes major changes for
others. Minor modifications are needed, for instance, for the distance-based methods
in SINDBAD. Here, only the definition of the distance measures needs to be adapted.
For pattern mining, the query language is more or less the same as before, but imple-
mentations of suitable algorithms [10, 11] have to be incorporated. Major changes
are required to handle operations that are specific to certain pattern domains, for
instance, alignments (pairwise or multiple) or sequence profiles. Nevertheless, there
are still open questions regarding such an effort. First of all, we have to develop an
efficient way to store and access very large sequence data in our approach to induc-
tive databases. For this purpose, efficient index structures for strings and sequences
like suffix arrays could be taken into account, as done by Fischer et al. [10, 11].
Second, it has to be figured out whether and how string mining could be fit into the
infrastructure of a relational database system.

12.6 Conclusion

The chapter gave an overview of the SINDBAD system, summarized a few recent use
cases [22, 25], gave an overview of a web service based architecture for SINDBAD
[24], and discussed possible extensions. The query language of the systems, SiQL,
is an extension of SQL for inductive databases in the tradition of Imielinski and
Virmani [16], Han et al. [15] and Meo et al. [20]. For a detailed comparison with
commercial systems like MS SQL Server 2005, we refer to a previous article [18].
In short, SINDBAD focuses of the successive transformation of data, whereas SQL
Server focuses almost exclusively on prediction. One of the main purposes of the
SINDBAD system is to elucidate the requirements for inductive database systems
in the relational model. Moreover, SINDBAD should be viewed as an integration
effort, to provide various basic building blocks that can be plugged together almost
arbitrarily in complex application scenarios. As the project progresses, we hope to
be able to provide the research prototype as an open source implementation and
come up with a (tentative) list of requirements on inductive database systems.

308 Jörg Wicker, Lothar Richter, and Stefan Kramer

References

1. R. Agrawal, T. Bollinger, C.W. Clifton, S. Dzeroski, J.-C. Freytag, J. Gehrke, J. Hipp, D.A.
Keim, S. Kramer, H.-P. Kriegel, B. Liu, H. Mannila, R. Meo, S. Morishita, R.T. Ng, J. Pei,
P. Raghavan, R. Ramakrishnan, M. Spiliopoulou, J. Srivastava, V. Torra, and A. Tuzhilin. Data
mining: The next generation. Report based on a Dagstuhl perspectives workshop organized
by R. Agrawal, J-C. Freytag, and R. Ramakrishnan, 2005.

2. H. Blockeel, T. Calders, É. Fromont, B. Goethals, and A. Prado. Mining views: Database
views for data mining. In Proceedings of the International Workshop on Constrained-Bawsed
Mining andLearning, 2007.

3. H. Blockeel, T. Calders, É. Fromont, B. Goethals, and A. Prado. Mining views: Database
views for data mining. In Proceedings of the IEEE International Conference on Data Engi-
neering, 2008.

4. H. Blockeel, T. Calders, E. Fromont, B. Goethals, A. Prado, and C. Robardet. An inductive
database prototype based on virtual mining views. In KDD ’08: Proceeding of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 1061–
1064, New York, NY, USA, 2008. ACM.

5. M. Botta, Boulicaut J.-F., C. Masson, and R. Meo. Query languages supporting descriptive
rule mining: A comparative study. In Database Support for Data Mining Applications, pages
24–51, 2004.

6. C. J. Date. An Introduction to Database Systems. Addison Wesley, 4th edition, 1986.
7. L. De Raedt and S. Kramer. The levelwise version space algorithm and its application to

molecular fragment finding. In Proc. 17th International Joint Conference on Artificial Intel-
ligence (IJCAI 2001, Seattle, USA), pages 853–862. Morgan Kaufmann, San Francisco, CA,
USA, 2001.

8. P. Domingos. Structured machine learning: Ten problems for the next ten years. In Proceed-
ings of Seventeenth International Conference on Inductive Logic Programming, Corvallis,
Oregon, 2007. Springer.

9. C. Ferris, D. Booth, M. Champion, H. Haas, D. Orchard, E. Newcomer, and F. McCabe. Web
services architecture. W3C note, W3C, 2004. http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/.

10. J. Fischer, V. Heun, and S. Kramer. Fast frequent string mining using suffix arrays. In Pro-
ceedings of the Fifth IEEE International Conference on Data Mining. IEEE Computer Society
Press, 2005.

11. J. Fischer, V. Heun, and S. Kramer. Optimal string mining under frequency constraints. In
Proceedings of the 10th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD 2006), pages 139–150, 2006.

12. S. Fröhler and S. Kramer. Inductive logic programming for gene regulation prediction. Ma-
chine Learning, 70(2-3):225–240, 2008.

13. M. Garofalakis, D. Hyun, R. Rastogi, and K. Shim. Efficient algorithms for constructing deci-
sion trees with constraints. In KDD ’00: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 335–339, New York, NY, USA,
2000. ACM.

14. T.R. Golub, D.K. Slonim, P. Tamayo, P. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L.
Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander. Molecular classifica-
tion of cancer: class discovery and class prediction by gene expression monitoring. Science,
286(5439):531–7, 1999.

15. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining query language
for relational databases. In SIGMOD’96 Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD’96), Montreal, Canada, 1996.

16. T. Imielinski and A. Virmani. MSQL: A query language for database mining. Data Min.
Knowl. Discov, 3(4):373–408, 1999.

17. Boulicaut J.-F. and C. Masson. Data mining query languages. In O. Maimon and L. Rokach,
editors, The Data Mining and Knowledge Discovery Handbook, pages 715–727. Springer,
2005.

12 SINDBAD and SiQL: Overview, Applications and Future Developments 309

18. S. Kramer, V. Aufschild, A. Hapfelmeier, A. Jarasch, K. Kessler, S. Reckow, J. Wicker, and
L. Richter. Inductive databases in the relational model: The data as the bridge. In Francesco
Bonchi and Jean-François Boulicaut, editors, Proceedings of the Fourth International Work-
shop on Knowledge Discovery in Inductive Databases (KDID 2005), volume 3933 of Lecture
Notes in Computer Science, pages 124–138. Springer, 2005.

19. S. Kramer, L. De De Raedt, and C. Helma. Molecular feature mining in HIV data. In Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-01), pages 136–143, 2001.

20. R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules. Data
Mining and Knowledge Discovery, 2(2):195–224, 1998.

21. J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239, 1990.
22. L. Richter, J. Wicker, K. Kessler, and S. Kramer. An inductive database and query language

in the relational model. In Proceedings of the 10th International Conference on Extending
Database Technology (EDBT 2008), pages 740–744. ACM Press, 2008.

23. O.S. Weislow, R. Kiser, D.L. Fine, J.P. Bader, R.H. Shoemakerand, and M.R. Boyd. New
soluble formazan assay for HIV-1 cytopathic effects: application to high flux screening of
synthetic and natural products for aids antiviral activity. Journal of the National Cancer Insti-
tute, 81:577–586, 1989.

24. J. Wicker, C. Brosdau, L. Richter, and S. Kramer. SINDBAD SAILS: A service architec-
ture for inductive learning schemes. In Nada Lavrač, Joost Kok, Jeroen de Bruin, and Vid
Podpečan, editors, Proceedings of the First Workshop on Third Generation Data Mining: To-
wards Service-Oriented Knowledge Discovery, 2008.

25. J. Wicker, L. Richter, K. Kessler, and S. Kramer. SINDBAD and SiQL: An inductive database
and query language in the relational model. In Walter Daelemans, Bart Goethals, and Katha-
rina Morik, editors, Machine Learning and Knowledge Discovery in Databases, European
Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings,
Part II, pages 690–694. Springer, 2008.

Chapter 13

Patterns on Queries

Arno Siebes and Diyah Puspitaningrum

Abstract One of the most important features of any database system is that it sup-
ports queries. For example, in relational databases one can construct new tables
from the stored tables using relational algebra. For an inductive database, it is rea-
sonable to assume that the stored tables have been modelled. The problem we study
in this chapter is: do the models available on the stored tables help to model the
table constructed by a query? To focus the discussion, we concentrate on one type
of modelling, i.e., computing frequent item sets. This chapter is based on results
reported in two earlier papers [12, 13]. Unifying the approaches advocated by those
papers as well as comparing them is the main contribution of this chapter.

13.1 Introduction

By far the most successful type of DBMS is relational. In a relational database, the
data is stored in tables and a query constructs a new table from these stored tables
using, e.g., relational algebra [5]. While querying an inductive relational database,
the user will, in general, not only be interested in the table that the query yields,
but also -if not more- in particular models induced from that result-table. Since
inductive databases have models as first-class citizens -meaning they can be stored
and queried- it is reasonable to assume that the original, stored, tables are already
modelled. Hence, a natural question is: does knowing a model on the original tables
help in inducing a model on the result of a query?

Slightly more formally, let MDB be the model we induced from database DB and
let Q be a query on DB. Does knowing MDB help in inducing a model MQ on Q(DB),
i.e., on the result of Q when applied to DB. For example, if MDB is a classifier and

Arno Siebes · Diyah Puspitaningrum
Department Of Information and Computing Sciences, Universiteit Utrecht, The Netherlands
e-mail: {arno,diyah}@cs.uu.nl

311
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_13, © Springer Science+Business Media, LLC 2010

312 Arno Siebes and Diyah Puspitaningrum

Q selects a subset of DB, does knowing MDB help the induction of a new classifier
MQ on the subset Q(DB)?

This formulation is only slightly more formal as the term “help” is a non-
technical and, thus, ill-defined concept. In this chapter, we will formalise “help”
in two different ways. Firstly, in the sense that we can compute MQ directly from
MDB without consulting either DB or Q(DB). While this is clearly the most elegant
way to formalise “help”, it puts such stringent requirements on the class of mod-
els we consider that the answer to our question becomes no for many interesting
model-classes; we’ll exhibit one in this chapter.

Hence, secondly, we interpret “help”, far less ambitiously, as meaning “speeding-
up” the computation of MQ. That is, let A lg be the algorithm used to induce MDB
from DB, i.e., A lg(DB) =MDB. We want to transform A lg into an algorithm A lg∗,
which takes MDB as extra input such that

A lg∗(Q(DB),MDB)≈A lg(Q(DB))

Note that we do not ask for exactly the same model, approximately the same answer
is acceptable if the speed-up is considerable. In fact, for many application areas,
such as marketing, a good enough model rather than the best model is all that is
required.

The problem as stated is not only relevant in the context of inductive databases,
but also in existing data mining practice. In the data mining literature, the usual
assumption is that we are given some database that has to be mined. In practice,
however, this assumption is usually not met. Rather, the construction of the mining
database is often one of the hardest parts of the KDD process [9]. The data often
resides in a data warehouse or in multiple databases, and the mining database is
constructed from these underlying databases.

From most perspectives, it is not very interesting to know whether one mines a
specially constructed database or an original database. For example, if the goal is to
build the best possible classifier on that data set, the origins of the database are of
no importance whatsoever.

It makes a difference, however, if the underlying databases have already been
modelled. Then, like with inductive databases, one would hope that knowing such
models would help in modelling the specially constructed mining database. For ex-
ample, if we have constructed a classifier on a database of customers, one would
hope that this would help in developing a classifier for the female customers only.

In other words, the problem occurs both in the context of inductive databases and
in the everyday practice of data miners. Hence, it is a relevant problem, but isn’t it
trivial? After all, if MDB is a good model on DB, it is almost always also a good
model on a random subset of DB; almost always, because a random subset may be
highly untypical. The problem is, however, not trivial because queries in general do
not compute a random subset. Rather, queries construct a very specific result.

For the usual “project-select-join” queries, there is not even a natural way in
which the query-result can be seen as subset of the original database. Even if Q is
just a “select”-query, the result is usually not random and MDB can even be highly

13 Patterns on Queries 313

misleading on Q(DB). This is nicely illustrated by the well-known example of Simp-
son’s Paradox on Berkeley’s admission data [3]. Overall, 44% of the male applicants
were admitted, while only 35% of the females were admitted. Four of the six depart-
ments, however, have a bias that is in favour of female applicants. While the overall
model may be adequate for certain purposes, it is woefully inadequate for a query
that selects a single department.

In other words, we do address a relevant and non-trivial problem. Addressing
the problem, in either sense of “help”, for all possible model classes and/or algo-
rithms is, unfortunately, too daunting a task for this chapter. In the sense of “direct
construction” it would require a discussion of all possible model classes, which is
too large a set to consider (and would result in a rather boring discussion). In the
“speed-up and approximation” sense it would require either a transformation of all
possible induction algorithms or a generic transformation that would transform any
such algorithm to one with the required properties. The former would, again, be far
too long, while a generic transformation is unlikely to exist.

Therefore we restrict ourselves to one type of model, i.e., frequent item sets [1]
and one induction algorithm, i.e., our own KRIMP algorithm [14]. The structure of
this chapter is as follows. In the next section, Section 13.2, we introduce our data,
models -that is code-tables-, and the KRIMP algorithm. Next, in Section 13.3 we
investigate the “direct computation” interpretation of “help” in the context of fre-
quent item set mining. This is followed in Section 13.4 by the introduction of a
transformed variant of KRIMP for the “speed-up” interpretation of “help”. In Sec-
tion 13.5, we discuss and compare these two approaches. The chapter ends with
conclusions and prospects for further research.

13.2 Preliminaries

In this section we give a brief introduction to the data, models, and algorithms as
used in this chapter.

13.2.1 Data

In this chapter we restrict ourselves to databases with categorical data only, the
biggest impact being that we do not consider real-valued attributes. Moreover, rather
than using the standard representation for relational databases, we represent them as
transaction databases familiar from item set mining. After briefly introducing such
databases, we will briefly discuss how a (categorical) relational database can be
transformed into such a transaction database. Moreover, for each relational algebra
operator, we will briefly discuss how they should be interpreted in the transaction
setting.

314 Arno Siebes and Diyah Puspitaningrum

13.2.1.1 Transaction Databases

The problem of frequent item set mining [1] can be described as follows. The basis
is a set of items I , e.g., the items for sale in a store; |I |= n. A transaction t is a set
of items, i.e., t ∈P(I) in which P(X) denotes the power set of X . For example,
t represents the set of items a client bought at the store. A table (normally called a
database) over I is simply a bag of transactions, e.g., the different sale transactions
in the store on a given day.

A transaction database is a set of transaction tables that is related through the
familiar key-foreign key mechanism known from the relational model [5]. With-
out loss of generality we assume that there is at most one key-foreign key relation
between any two tables. That is, we assume that the join between two tables is un-
ambiguous without explicit key-foreign key identification.

An item set I ⊂ I occurs in a transaction t ∈ T iff I ⊆ t. The support of I in
T , denoted by supT (I) is the number of transactions in the table in which t occurs.
The problem of frequent item set mining is: given a threshold min-sup, determine
all item sets I such that supT (I)≥min-sup. These frequent item sets represent, e.g.,
sets of items customers buy together often enough.

Based on the A Priori property,

I ⊆ J ⇒ supT (I)≥ supT (J),

reasonably efficient frequent item set miners exist.

13.2.1.2 Relational Databases as Transaction Databases

Transforming a relational database into a transaction database is straight-forward.
Let T be a table in the relational database DB, having (non-key) attributes A1, . . . ,Ak.
Let the (finite!) domain of Ai be Di = {di,1, . . .di,mi}. Then we define the set of
items IT,i = {Ai = di,1, . . . ,Ai = di,mi}. Moreover, define IT =

⋃
i∈{1,...,k}IT,i and,

obviously, I =
⋃

T∈DB IT .
The “transactified” table T ′ is then defined over the items in IT . The “transacti-

fied” version t ′ ∈ T ′ of a t ∈ T is given by:

“Ai = d′′i, j ∈ t ′ ⇔ t.Ai = di, j

The keys and foreign keys of T are simply copied in T ′.
Note that this is not the most efficient way to encode a relational database as a

transaction database. However, the efficiency of this encoding is irrelevant in this
chapter. Moreover, while being inefficient, it is the most intuitive encoding; which
is far more important for the purposes of this chapter.

From now on, we assume that all our databases are transaction databases.

13 Patterns on Queries 315

13.2.1.3 Relational Algebra on Transaction Databases

To investigate models on the results of queries, we have to make our query language
precise. Since we focus on relational databases -albeit in their “transactified” form- a
relational query language is the obvious choice. Of these query languages, relational
algebra is the most suited. More precisely, we focus on the usual “select-project-
join” queries. That is, on the selection operator σ , the projection operator π , and the
(equi-)join operator ��; see [5].

We interpret these operators on transactions in the intuitive way. That is, σ selects
those transactions that satisfy the selection predicate. The projection π returns that
part of each transaction that is specified by the projection predicate. That is, we do
not take the original relational representation into account. More in particular, this
means that we, e.g., project on Ai = di, j rather than on Ai. The former is more natural
in the transaction context and the latter can easily be simulated by the former.

Finally the join is computed using key-foreign key relations only. That is, �� itself
does not have items -attribute-value pairs- in its predicate. The reason is that such
further selections can easily be accomplished using σ

Two final remarks on the queries in this chapter are the following, Firstly, as usual
in the database literature, we use bag semantics. That is, we do allow duplicates
tuples in tables and query results.

Secondly, as mentioned in the introduction, the mining database is constructed
from DB using queries. Given the compositionality of the relational algebra, we may
assume, again without loss of generality, that the analysis database is constructed
using one query Q. That is, the analysis database is Q(DB), for some relational
algebra expression Q. Since DB is fixed, we will often simply write Q for Q(DB);
that is, we will use Q to denote both the query and its result.

13.2.2 Models

In this paper we consider two different types of models. The first is simply the set
of all frequent item sets. The second are the models as computed by our KRIMP
algorithm [14]. Since this later kind of model is less well-known, we provide a brief
review of thses models.

The models computed by KRIMP consist of two components. First a constant -the
same for all possible models- component, the COVER algorithm. Second a variable
-database dependent- component, a code table.

Given a prefix code C a code table CT over I and C is a two-column table
containing item sets and codes such that:

• each I ∈P(I) and each C ∈ C occurs at most once in CT
• all the singleton item sets occur in CT
• The item sets in the code table are ordered descending on 1) item set length and

2) support size and 3) lexicographically.

316 Arno Siebes and Diyah Puspitaningrum

Slightly abusing notation we say I ∈CT and C ∈CT .
To encode a database with a code table, each transaction is partitioned into item

sets in the code table:

COVER(CT, t)
If there exists I ∈CT such that I ⊆ t

Then Res := {I} where I is the first such element
If t \ I �= /0

Then Res := Res∪COVER(CT, t \ I)
Else Fail

Return Res

D can be encoded by CT using COVER in the obvious way:

• compute the cover of each transaction t ∈ D
• replace each I ∈ COVER(CT, t) by its code and concatenate these codes

Decoding is similarly easy because C is a prefix code:

• determine the codes in the code string
• take the union of the item sets that belong to these codes

Defined in this way, not all code tables are equally satisfying as a model of a given
database DB. For, CT may assign very long codes to things that occur very often in
DB, while it may assign very short codes to rare things. This is clearly unsatisfactory.
We want the encoding to be optimal given the item sets in the code table.

The usage of an I ∈CT while coding DB is defined by:

usage(I) = |{t ∈ DB|I ∈ COVER(CT, t)}|

Usage yields a probability distribution on the I ∈CT :

P(I) =
usage(I)

∑J∈CT usage(J)

A Shannon code, which always exists [7], for CT is a prefix code with:

length(code(I)) =− log(P(I))

Such a code is optimal in the sense that the more often a code is used, the shorter
its length is. From now on we assume that the code tables we consider have such
Shannon-codes for database DB.

13.2.3 Algorithms

To induce the frequent item sets used in Section 13.3 we simply use one of the well-
known frequent item set miners. For the code tables used in Section 13.4 we use our

13 Patterns on Queries 317

KRIMP algorithm, since this is not as well-known, we provide a brief introduction
here. For a more detailed description please refer to [14].

13.2.3.1 MDL for Code Tables

Even if all code tables we consider have Shannon optimal codes, not all such code
tables are equally good models for DB. For example, there is one that contains the
singleton item sets only. This is a model that specifies nothing about the correlation
between the various items. To determine the best code table, we use the Minimum
Description Length principle (MDL).

MDL [10] embraces the slogan Induction by Compression. It can be roughly
described as follows.

Given a set of models1 H , the best model H ∈H is the one that minimises

L(H)+L(D|H)

in which

• L(H) is the length, in bits, of the description of H, and
• L(D|H) is the length, in bits, of the description of the data when encoded with

H.

One can paraphrase this by: the smaller L(H)+L(D|H), the better H models D. In
our terminology we want the code table that compresses DB best.

We already know how to compute the size of the compressed database. Simply
encode DB and add the lengths of all the codes, which are Shannon optimal. That
is,

L(DB|CT) =− ∑
I∈CT : f req(I)�=0

usage(I) log(P(I))

Note that the stipulation f req(I) �= 0 is only there because we require that all sin-
gleton item sets are present in CT . All other item sets are only present in CT if they
are actually used.

Similarly, we already know the size in bits of the second column of CT , it is
simply the sum of the sizes of all codes in DB. So, we only have to determine the
size in bits of the first column, i.e,. of all the item sets in CT .

To determine that size we encode those item sets with the code table for DB that
consists of the singleton item sets only.

• this means we can reconstruct D up to the actual label of the i ∈I .

This is actually a good feature. It means, among other things, that the model we find
does not depend on the actual language used to describe the data.

The size of the left-hand column is the sum of these encoded sizes, The size of
CT , denoted by L(CT) is simply the sum of the sizes of the two columns. Hence,
for a given database DB we have:

1 MDL-theorists tend to talk about hypothesis in this context, hence the H ; see [10] for the details.

318 Arno Siebes and Diyah Puspitaningrum

L (CT,DB) = L(CT)+L(DB|CT)

Note that we omit the size of COVER as it is the same for all databases and code
tables. That is, it is just an additive constant, which does not influence the search for
the optimal model.

13.2.3.2 KRIMP

Unfortunately, finding the best code table is too expensive. Therefore we use a
heuristic algorithm called KRIMP. KRIMP starts with a valid code table (only the
collection of singletons) and a sorted list of candidates (frequent item sets). These
candidates are assumed to be sorted descending on 1) support size, 2) item set length
and 3) lexicographically. Each candidate item set is considered by inserting it at the
right position in CT and calculating the new total compressed size. A candidate
is only kept in the code table iff the resulting total size is smaller than it was be-
fore adding the candidate. If it is kept, all other elements of CT are reconsidered
to see if they still positively contribute to compression. The whole process is illus-
trated in Figure 13.1; see [14]. If we assume a fixed minimum support threshold
for a database, KRIMP has only one essential parameter: the database. For, given
the database and the (fixed) minimum support threshold, the candidate list is also
specified. Hence, we will simply write CTDB and KRIMP(DB), to denote the code
table induced by KRIMP from DB. Similarly CTQ and KRIMP(Q) denote the code
table induced by KRIMP from the result of applying query Q to DB.

Fig. 13.1 KRIMP in action

13 Patterns on Queries 319

13.3 Frequent Item Set Mining

The goal of this section is to investigate whether we can determine the set of frequent
item sets on Q(DB) without consulting Q(DB). Rather, we are given the frequent
item sets on DB and the query Q and from that only we should determine the fre-
quent item sets on Q(DB). That is, we want to lift the relational operators to sets of
frequent item sets.

13.3.1 Selection

The relational algebra operator σ (select) is a mapping:

σ : B(D)→B(D)

in which B(D) denotes all possible bags over domain D.
Lifting means that we are looking for an operator σ(D,A lg) that makes the diagram

in Figure 13.2 commute: Such diagrams are well-known in , e.g., category theory
[2] and the standard interpretation is:

A lg◦σ = σ(D,A lg) ◦A lg

In other words, first inducing the model using algorithm A lg followed by the appli-
cation of the lifted selection operator σ(D,A lg) yields the same result as first applying
the standard selection operator σ followed by induction with algorithm A lg.

In fact, we are willing to settle for commutation of the diagram in a loose sense:
That is, if we are able to give reasonable support bounds for those item sets whose
support we can not determine exactly, we are satisfied.

For frequent item sets the three basic selections are σI=0, σI=1, and σI1=I2 . More
complicated selections can be made by conjunctions of these basic comparisons. We
look at the different basic selections in turn.

First consider σI=0. If it is applied to a table, all transactions in which I occurs
are removed from that table. Hence, all item sets that contain I get a support of
zero in the resulting table. For those item sets in which I doesn’t occur, we have to
compute which part of their support consists of transactions in which I does occur
and subtract that number. Hence, for support for item sets J, we have:

Fig. 13.2 Lifting the selection
operator

M
σ(D,A lg)� M

B(D)

A

�
lg

σ� B(D)

A

�
lg

320 Arno Siebes and Diyah Puspitaningrum

supσI=0(T)(J) =

{
0 if I ∈ J,
supT (J)− supT (J∪{I}) otherwise.

If we apply σI=1 to the table, all transactions in which I doesn’t occur are re-
moved from the table. In other words, the support of item sets that contain I doesn’t
change. For those item sets that do not contain I, the support is given by those trans-
actions that also contained I. Hence, we have:

supσI=1(T)(J) =

{
supT (J) if I ∈ J,
supT (J∪{I}) otherwise.

If we apply σI1=I2 to the table, the only transactions that remain are those that
either contain both I1 and I2 or neither. In other words, for frequent item sets that
contain both, the support remains the same. For all others, the support changes.
For those item sets J that contain just one of the Ii the support will be the support of
J∪{I1, I2}. For those that contain neither of the Ii, we have to correct for those trans-
actions that contain one of the Ii in their support. If we denote this by supT (J¬I1¬I2)
(a support that can be easily computed) We have:

supσI1=I2 (T)
(J) =

{
supT (J∪{I1, I2}) if {I1, I2}∩ J �= /0,
supT (J¬I1¬I2) otherwise.

Clearly, we can also “lift” conjunctions of the basic selections, simply processing
one at the time. So, in principle, we can lift all selections for frequent item sets. But
only in principle, because we need the support of item sets that are not necessarily
frequent. Frequent item sets are a lossy model (not all aspects of the data distribution
are modelled) and that can have its repercussions: in general the lifting will not be
commutative. In our loose sense of “commutativity”, the situation is slightly better.
For, we can give reasonable bounds for the resulting supports; for those supports we
do not know are bounded (from above) by min-sup.

We haven’t mentioned constraints [11] so far. Constraints in frequent item set
mining are the pre-dominant way to select a subset of the frequent item sets. In
general the constraints studied do not correspond to selections on the database. The
exception is the class of succinct anti-monotone constraints introduced in [11]. For
these constraints there is such a selection (that is what succinct means) and the
constraint can be pushed into the algorithm. This means we get the commutative
diagram in Figure 13.3. Note that in this case we know that the diagonal arrow

Fig. 13.3 Lifting selections
for succinct constraints

M
σ(D,A lg)� M

B(D)

A

�
lg

σ�

A
lgσ

�

B(D)

A

�
lg

13 Patterns on Queries 321

Fig. 13.4 Lifting projections

M
πA lg

D1 � M

B(D)

A lg

�

πD1� B(D1)

A lg

�

makes the bottom right triangle commute in the strict sense of the word. For the
upper left triangle, as well as the square, our previous analysis remains true.

13.3.2 Project

For the projection operator π , we have a new domain D1 such that D = D1×D2.
Projection on D1 has thus as signature:

πD1 : B(D)→B(D1)

Hence, we try to find an operator πA lg
D1

that makes the diagram in Figure 13.4 com-
mute. Note that D1 is spanned by the set of variables (or items) we project on.

We project on a set of items J ⊆I , let J ⊆I be a frequent item set. There are
three cases to consider:

1. if J ⊆J , then all transactions in the support of J will simply remain in the table,
hence J will remain frequent.

2. if J∩J �= /0, then J∩J is also frequent and will remain in the set of frequent
item sets.

3. if J∩J = /0, then its support will vanish.

In other words, if F denotes the set of all frequent item sets, then:

πJ (F) = {J ∈F |J ⊆J }

Clearly, this method of lifting will make the diagram commute in the strict sense if
we use absolute minimal frequency. In other words, for projections, frequent item
sets do capture enough of the underlying data distribution to allow lifting.

13.3.3 EquiJoin

The equijoin has as signature:

��: B(D1)×B(D2)→B(D1 �� D2)

322 Arno Siebes and Diyah Puspitaningrum

Fig. 13.5 Lifting the equijoin

M ×M
��

A lg � M

B(D1)×B(D2)

A lg×A lg

�

��� B(D1 �� D2)

A lg

�

Hence, the diagram we want to make commute is given in Figure 13.5. The join can
be computed, though not very efficiently, starting with the Cartesian product of the
two tables. Since in extreme cases, the equi-join equals the Cartesian product, we
discuss that operator.

Let J1 be a frequent item set for the first table and J2 for the second. The fre-
quency of the pair on the Cartesian product of the two tables is simply given by:

supT1×T2(J1,J2) = supT1(J1)× supT2(J2)

While this is easy to compute, it means again that in general we will not be able
to compute all frequent item sets on the Cartesian product without consulting the
database. Even if we set the minimal frequency to the product of the two minimal
frequencies, the combination of an infrequent item set on one database with a fre-
quent one on the other may turn out to be frequent.

In other words, we cannot even make the diagram commute in the approximate
sense of the word. For, the bound is given by max{|T1| × (min-sup − 1), |T2| ×
(min-sup −1)}, which is hardly a reasonable bound.

Given that the number of joins possible in a database is limited and known be-
forehand, we may make our lives slightly easier. That is, we may allow ourselves to
do some pre-computations.

Assume that we compute the tables T 2
1 = πT1(T1 �� T2) and T 1

2 = πT2(T1 �� T2)
and their frequent item sets, say F 2

1 and F 1
2 , off-line. Are those sets enough to lift

the join? For the extreme case, the Cartesian product, the answer is clearly: yes. By
“blowing” up the original tables we add enough information to compute the support
of any item set in the join iff that item set exceeds the minimal support.

Unfortunately, the same is not true for the join in general. Since we cannot see
from either F 2

1 or F 1
2 which combinations of frequent item sets will actually occur

in (T1 �� T2). That is, we can only compute a superset of the frequent item sets on
the join.

Hence, the only way to lift the join is to compute and store the frequent item sets
on all possible joins. While this is doable given the limited number of possible joins,
this can hardly count as lifting.

13 Patterns on Queries 323

13.3.4 Discussion

The fact that lifting the relational algebra operators to sets of frequent item sets
is only partially possible should hardly come as a surprise: the min-sup constraint
makes this into an inherently lossy model. For models that do try to capture the
complete distribution, such as Baysian networks, one would expect far better results;
see [12] for a discussion of lifting for such networks.

13.4 Transforming KRIMP

Recall from the Introduction that the problem we investigate in this Section is that
we want to transform an induction algorithm A lg into an algorithm A lg∗ that takes
at least two inputs, i.e, both Q and MDB, such that:

1. A lg∗ gives a reasonable approximation of A lg when applied to Q, i.e.,

A lg∗(Q,MDB)≈MQ

2. A lg∗(Q,MDB) is simpler to compute than MQ.

The second criterion is easy to formalise: the runtime of A lg∗ should be shorter
than that of A lg. The first one is harder. What do we mean that one model is an
approximation of another? Moreover, what does it mean that it is a reasonable ap-
proximation?

Before we discuss how KRIMP can be transformed and provide experimental
evidence that our approach works, we first formalise this notion of approximation.

13.4.1 Model Approximation

The answer to the question of how to formalise that one model approximates another
depends very much on the goal. If A lg induces classifiers, approximation should
probably be defined in terms of prediction accuracy, e.g., on the Area Under the
ROC-curve (AUC).

KRIMP computes code tables. Hence, the quick approximating algorithm we are
looking for, KRIMP∗ in the notation used above, also has to compute code tables.
So, one way to define the notion of approximation is by comparing the resulting
code tables. Let CTKRIMP be the code table computed by KRIMP and similarly, let
CTKRIMP∗ denote the code table computed by KRIMP∗ on the same data set. The
more similar CTKRIMP∗ is to CTKRIMP, the better KRIMP∗ approximates KRIMP.

While this is intuitively a good way to proceed, it is far from obvious how to
compare two code tables. Fortunately, we do not need to compare code tables di-
rectly. KRIMP is based on MDL and MDL offers another way to compare models,

324 Arno Siebes and Diyah Puspitaningrum

i.e., by their compression-rate. Note that using MDL to define “approximation” has
the advantage that we can formalise our problem for a larger class of algorithms
than just KRIMP. It is formalised for all algorithms that are based on MDL. MDL is
quickly becoming a popular formalism in data mining research, see, e.g., [8] for an
overview of other applications of MDL in data mining.

What we are interested in is comparing two algorithms on the same data set, i.e.,
on Q(DB). Slightly abusing notation, we will write L (A lg(Q)) for L(A lg(Q))+
L(Q(DB)|A lg(Q)), similarly, we will write L (A lg∗(Q,MDB)). Then, we are in-
terested in comparing L (A lg∗(Q,MDB)) to L (A lg(Q)). The closer the former is
to the latter, the better the approximation is.

Just taking the difference of the two, however, can be quite misleading. Take, e.g.,
two databases db1 and db2 sampled from the same underlying distribution, such that
db1 is far bigger than db2. Moreover, fix a model H. Then necessarily L(db1|H) is
bigger than L(db2|H). In other words, big absolute numbers do not necessarily mean
very much. We have to normalise the difference to get a feeling for how good the
approximation is. Therefore we define the asymmetric dissimilarity measure (ADM)
as follows [15].

Definition 13.1. Let H1 and H2 be two models for a dataset D. The asymmetric
dissimilarity measure ADM(H1,H2) is defined by:

ADM(H1,H2) =
|L (H1)−L (H2)|

L (H2)

Note that this dissimilarity measure is related to the Normalised Compression Dis-
tance [4]. The reason why we use this asymmetric version is that we have a “gold
standard”. We want to know how far our approximate result A lg∗(Q,MDB) devi-
ates from the optimal result A lg(Q).

The remaining question is, of course, what ADM scores indicate a good approx-
imation? In a previous paper [15], we took two random samples from data sets, say
D1 and D2. Code tables CT1 and CT2 were induced from D1 and D2 respectively.
Next we tested how well CTi compressed D j. For the four data sets also used in this
paper, Iris, Led7, Pima and, PageBlocks, the “other” code table compressed 16%
to 18% worse than the “own” code table; the figures for other data sets are in the
same ball-park. In other words, an ADM score of 0.2 is in-line with the “natural
variation” in a data set. If it gets much higher, it shows that the two code tables are
rather different.

Clearly, ADM(A lg∗(Q,MDB),A lg(Q)) does not only depend on A lg∗ and on
A lg, but also very much on Q. We do not seek a low ADM on one particular Q,
rather we want to have a reasonable approximation on all possible queries. Re-
quiring that the ADM is equally small on all possible queries seems too strong a
requirement. Some queries might result in a very untypical subset of DB, the ADM
is probably higher on the result of such queries than it is on queries that result in
more typical subsets. Hence, it is more reasonable to require that the ADM is small
most of the time. This is formalised through the notion of an (ε,δ)-approximation

13 Patterns on Queries 325

Definition 13.2. Let DB be a database and let Q be a random query on DB. More-
over, let A lg1 and A lg2 be two data mining algorithms on DB. Let ε ∈ R be the
threshold for the maximal acceptable ADM score and δ ∈ R be the error tolerance
for this maximum. A lg1 is an (ε,δ)-approximation of A lg2 iff

P(ADM(A lg1(Q),A lg2(Q))> ε)< δ

13.4.2 Transforming KRIMP

Given that KRIMP results in a code table, there is only one sensible way in which
KRIMP(DB) can be re-used to compute KRIMP(Q): provide KRIMP only with the
item sets in CTDB as candidates. While we change nothing to the algorithm, we’ll
use the notation KRIMP∗ to indicate that KRIMP got only code table elements as
candidates. So, e.g., KRIMP∗(Q) is the code table that KRIMP induces from Q(DB)
using the item sets in CTDB only.

Given our general problem statement, we now have to show that KRIMP∗ satisfies
our two requirements for a transformed algorithm. That is, we have to show for a
random database DB:

• For reasonable values for ε and δ , KRIMP∗ is an (ε,δ)-approximation of KRIMP,
i.e, for a random query Q on DB:

P(ADM(KRIMP∗(Q),KRIMP(Q))> ε)< δ

Or in MDL-terminology:

P

(|L (KRIMP∗(Q))−L (KRIMP(Q))|
L (KRIMP(Q))

> ε
)
< δ

• Moreover, we have to show that it is faster to compute KRIMP∗(Q) than it is to
compute KRIMP(Q).

Neither of these two properties can be formally proven, if only because KRIMP and
thus KRIMP∗ are both heuristic algorithms. Rather, we report on extensive tests of
these two requirements.

13.4.3 The Experiments

In this subsection, we describe our experimental set-up. First we briefly describe the
data sets we used. Next we discuss the queries used for testing. Finally we describe
how the tests were performed.

326 Arno Siebes and Diyah Puspitaningrum

13.4.3.1 The Data Sets

To test our hypothesis that KRIMP∗ is a good and fast approximation of KRIMP, we
have performed extensive tests mostly on 6 well-known UCI [6] data sets and one
data set from the KDDcup 2004.

In particular, we have used the data sets connect, adult, chessBig, letRecog,
PenDigits and mushroom from UCI. These data sets were chosen because they are
well suited for KRIMP. Some of the other data sets in the UCI repository are simply
too small for KRIMP to perform well. MDL needs a reasonable amount of data to
be able to function. Some other data sets are very dense. While KRIMP performs
well on these very dense data sets, choosing them would have turned our extensive
testing prohibitively time-consuming.

Since all these data sets are single table data sets, they do not allow testing with
queries involving joins. To test such queries, we used tables from the “Hepatitis
Medical Analysis”2 of the KDDcup 2004. From this relational database we selected
the tables bio and hemat. The former contains biopsy results, while the latter con-
tains results on hematological analysis. The original tables have been converted to
item set data and rows with missing data have been removed.

13.4.3.2 The Queries

To test our hypothesis, we need to consider randomly generated queries. On first
sight this appears a daunting task. Firstly, because the set of all possible queries is
very large. How do we determine a representative set of queries? Secondly, many of
the generated queries will have no or very few results. If the query has no results,
the hypothesis is vacuously true. If the result is very small, MDL (and thus KRIMP)
doesn’t perform very well.

To overcome these problems, we restrict ourselves to queries that are built by
using selections (σ), projections (π), and joins (��) only. The rationale for this choice
is twofold. Firstly, simple queries will have, in general, larger results than more
complex queries. Secondly, we have seen in Section 13.3 that lifting these operators
is already a problem.

13.4.3.3 The Experiments

The experiments preformed for each of the queries on each of the data sets were
generated as follows.

Projection: The projection queries were generated by randomly choosing a set
X of n items, for n ∈ {1,3,5,7,9}. The generated query is then πX . That is,
the elements of X are projected out of each of the transactions. For example,
π{I1,I3}({I1, I2, I3}) = {I2}. For this case, the code table elements generated on

2 http://lisp.vse.cz/challenge/

13 Patterns on Queries 327

the complete data set were projected in the same way. For each value of n, 10
random sets X were generated on each data set.
As an aside, note that the rationale for limiting X to maximally 9 elements is that
for larger values too many result sets became too small for meaningful results.

Selection: The random selection queries were again generated by randomly choos-
ing a set X of n items, with n∈ {1,2,3,4}. Next for each random item Ii a random
value vi (0 or 1) in its domain Di was chosen. Finally, for each Ii in X a random
θi ∈ {=, �=} was chosen. The generated query is thus σ(

∧
Ii∈X Iiθivi). As in the

previous case, we performed 10 random experiments on each of the data sets for
each of the values of n.

Project-Select: The random project-select queries generated are essentially com-
binations of the simple projection and selection queries as explained above. The
only difference is that we used n ∈ {1,3} for the projection and n ∈ {1,2} for
the selections. That is we select on 1 or 2 items and we project away either 1 or
3 items. The size of the results is, of course, again the rationale for this choice.
For each of the four combinations, we performed 100 random experiments on
each of the data sets: first we chose randomly the selection (10 times for each
selection), for each such selection we performed 10 random projections.

Project-Select-Join: Since we only use one “multi-relational” data set and there
is only one possible way to join the bio and hemat tables, we could not do ran-
dom tests for the join operator. However, in combination with projections and
selections, we can perform random tests. These tests consist of randomly gener-
ated project-select queries on the join of bio and hemat. In this two-table case,
KRIMP∗ got as input all pairs (I1,I2) in which I1 is an item set in the code
table of the “blown-up” version of bio, and I2 is an item set in the code table
of the “blown-up” version of hemat. Again we select on 1 or 2 items and we
project away either 1 or 3 items. And, again, we performed again 100 random
experiments on the database for each of the four combinations; as above.

13.4.4 The Results

In this subsection we give an overview of the results of the experiments described in
the previous section. Each test query is briefly discussed in its own subsubsection.

13.4.4.1 Projection Queries

In Figure 13.6 the results of the random projection queries on the letRecog data set
are visualised. The marks in the picture denote the averages over the 10 experiments,
while the error bars denote the standard deviation. Note that, while not statistically
significant, the average ADM grows with the number of attributes projected away.
This makes sense, since the more attributes are projected away, the smaller the result

328 Arno Siebes and Diyah Puspitaningrum

Fig. 13.6 Projection results
on letRecog

set becomes. On the other data sets, KRIMP∗ performs similarly. Since this is also
clear from the project-select query results, we do not provide all details here.

13.4.4.2 Selection Queries

The results of the random selection queries on the penDigits data set are visualised
in Figure 13.7. For the same reason as above, it makes sense that the average ADM
grows with the number of attributes selected on. Note, however, that the ADM aver-
ages for selection queries seem much larger than those for projection queries. These
numbers are, however, not representative for the results on the other data sets. It
turned out that penDigits is actually too small and sparse to test KRIMP∗ seriously.
In the remainder of our results section, we do not report further results on penDig-
its. The reason why we report on it here is to illustrate that even on rather small
and sparse data sets KRIMP∗ still performs reasonably well. On all other data sets
KRIMP∗ performs far better, as will become clear next.

Fig. 13.7 Selection results on
penDigits

13 Patterns on Queries 329

Table 13.1 The results of Project-Select Queries

ADM ± STD connect adult chessBig letRecog mushroom

Select 1 Project out 1 0.1 ± 0.01 0.1 ± 0.01 0.04 ± 0.01 0.1 ± 0.01 0.3 ± 0.02
Project out 3 0.1 ± 0.02 0.1 ± 0.01 0.04 ± 0.03 0.1 ± 0.01 0.3 ± 0.16

Select 2 Project out 1 0.2 ± 0.01 0.1 ± 0.01 0.1 ± 0.03 0.04 ± 0.01 0.2 ± 0.04
Project out 3 0.2 ± 0.02 0.1 ± 0.01 0.1 ± 0.03 0.04 ± 0.01 0.2 ± 0.05

13.4.4.3 Project-Select Queries

The results of the projection-select queries are given in Table 13.1. All numbers are
the average ADM score ± the standard deviation for the 100 random experiments.
All the ADM numbers are rather small, only for mushroom do they get above 0.2.

Two important observations can be made from this table. Firstly, as for the pro-
jection and selection queries reported on above, the ADM scores get only slightly
worse when the query results get smaller: “Select 2, Project out 3” has slightly worse
ADM scores than “Select 1, Project out 1”. Secondly, even more importantly, com-
bining algebra operators only degrades the ADM scores slightly. This can be seen
if we compare the results for “Project out 3” on letRecog in Figure 13.6 with the
“Select 1, Project out 3” and “Select 2, Project out 3” queries in Table 13.1 on the
same data set. These results are very comparable, the combination effect is small and
mostly due to the smaller result sets. While not shown here, the same observation
holds for the other data sets.

To give insight in the distribution of the ADM scores of the “Select 2, Project
out 3” queries on the connect data set are given in Figure 13.8. From this figure we
see that if we choose ε = 0.2, δ = 0.08. In other words, KRIMP∗ is a pretty good
approximation of KRIMP. Almost always the approximation is less than 20% worse
than the optimal result. The remaining question is, of course, how much faster is
KRIMP∗? This is illustrated in Table 13.2.

Fig. 13.8 Histogram of 100
Project-Select Queries on
connect

330 Arno Siebes and Diyah Puspitaningrum

Table 13.2 Relative number of candidates for KRIMP∗

Relative #candidates connect adult chessBig letRecog mushroom

Select 1 Project out 1 0.01 ± 0.001 0.01 ± 0.002 0.21 ± 0.012 0.01 ± 0.001 0.01 ± 0.001
Project out 3 0.01 ± 0.001 0.01 ± 0.004 0.26 ± 0.031 0.02 ± 0.004 0.01 ± 0.001

Select 2 Project out 1 0.01 ± 0.001 0.03 ± 0.003 0.76 ± 0.056 0.02 ± 0.002 0.03 ± 0.002
Project out 3 0.01 ± 0.002 0.03 ± 0.008 0.96 ± 0.125 0.02 ± 0.004 0.03 ± 0.003

Table 13.2 gives the average number of candidates KRIMP∗ has to consider rel-
ative to those that the full KRIMP run has to consider. Since, both KRIMP∗ and
KRIMP are linear in the number of candidates, this table shows that the speed-up is
considerable; a factor of 100 is often attained; except for chessBig were the query
results get small and, thus, have few frequent item sets. The experiments are those
that are reported on in Table 13.1.

13.4.4.4 Select-Project-Join Queries

The results for the select-project-join queries are very much in line with the results
reported on above. In fact, they are even better. Since the join leads to rather large
results, the ADM score is almost always zero: in only 15 of the 400 experiments the
score is non-zero (average of non-zero values is 1%). The speed-up is also in line
with the numbers reported above, a factor of 100 is again often attained.

13.4.5 Discussion

As noted in the previous section, the speed-up of KRIMP∗ is easily seen. The number
of candidates that KRIMP∗ has to consider is often a factor 100 smaller than those
that the full KRIMP run has to consider. Given that the algorithm is linear in the
number of candidates, this means a speed-up by a factor 100. In fact, one should
also note that for KRIMP∗, we do not have to run a frequent item set miner. In other
words, in practice, using KRIMP∗ is even faster than suggested by the Speed-up
scores.

But, how about the other goal: how good is the approximation? That is, how
should one interpret ADM scores? Except for some outliers, ADM scores are be-
low 0.2. That is, a full-fledged KRIMP run compresses the data set 20% better than
KRIMP∗. As noted when we introduced the ADM score, this about as good as one
can expect, such a percentage shows the natural variation in the data. Hence, given
that the average ADM scores are often much lower we conclude that the approxi-
mation by KRIMP∗ is good.

In other words, the experiments verify our hypothesis: KRIMP∗ gives a fast and
good approximation of KRIMP. The experiments show this for simple “project-
select-join” queries, but as noticed with the results of the “project-select” queries,

13 Patterns on Queries 331

the effect of combining algebra operators is small. If the result set is large enough,
the approximation is good.

13.5 Comparing the two Approaches

In this chapter, we introduced two ways in which the models present in an inductive
database DB help in computing the models on the results of a query Q on the data in
that database. The first, if applicable, gives results without consulting Q(DB). The
result is computed directly from the models MT induced on the tables used by Q. For
the relational algebra we formalised this by lifting the relational algebra operators
to the set of all models.

The second approach does allow access to Q(DB). The induction algorithm A lg
is transformed into an algorithm A lg∗ that takes at least two inputs, i.e, both Q and
MDB, such that:

1. A lg∗ gives a reasonable approximation of A lg when applied to Q, i.e.,

A lg∗(Q,MDB)≈MQ

2. A lg∗(Q,MDB) is simpler to compute than MQ.

The first requirement was formalised using MDL into the requirement:

P

(|L (A lg∗(Q))−L (A lg(Q))|
L (A lg(Q))

> ε
)
< δ

for reasonably small ε and δ . The second requirement was simply interpreted as a
significant speed-up in computation.

Clearly, when applicable, the first approach is to be preferred above the second
approach. Firstly because it doesn’t even require the computation of Q(DB), and is,
hence, likely to be much faster. Secondly, because an algebraic structure on the set
of all models opens up many more possible applications.

In this chapter, we investigated both approaches on item sets. More precisely,
we investigated lifting the relational algebra operators to sets of frequent item sets.
Moreover, we transformed our KRIMP algorithm to investigate the second approach.

As noted already in Section 13.3, lifting the relational algebra operators to sets
of frequent item sets has its problems. Only for the projection it works well. For the
selection operator we get a reasonable approximation. Reasonable in the sense that
we can put a bound on the error of the approximated support; an upper bound that
is determined by the minimal support threshold. Since this bound is an upperbound,
this means that we may declare too many item sets to be frequent. If we declare an
item set to be infrequent, it is infrequent on the result of the selection.

The join operator, unfortunately, can not be lifted at all. Not even if we provide
extra information by giving access to the frequent item sets on the “blown-up” ver-
sion of the underlying tables. In that case, we again only have an upperbound on

332 Arno Siebes and Diyah Puspitaningrum

the support. That is, again, we declare too many item sets to be frequent. In the case
of the join, however, there is no bound on the error. For, if I1 has a high support
on T 2

1 = πT1(T1 �� T2), say n1, while I2 has a high support on T 1
2 = πT2(T1 �� T2),

say n2, then the computed upperbound on the support of (I1, I2) on T1 �� T2 will be
n1× n2, while there may be no transaction in T1 �� T2 which actually supports this
pair! Again, if we declare an item set to be infrequent on the join, it is infrequent.

Again as noted before, the reason for this failure is that sets of frequent item sets
are an inherently lossy model. As our analysis above shows, this loss of information
makes us overestimate the support of item sets on Q(DB), in the case of the join
with an unbounded error.

The transformation of KRIMP proved to be far more successful. The algorithm
KRIMP∗, which is simply KRIMP with a restricted set of candidates proved in the ex-
periments to be much faster and provide models which approximate the true model
very well. Given the lack of success for frequent item sets, this is a surprising result.

For, from earlier research [15] we know that the code tables produced by KRIMP
determine the support of all item sets rather accurately. More precisely, in that paper
we showed that these code tables can be used to generate a new code table. The
support of an arbitrary frequent item set in this generated database, say DBgen, is
almost always almost equal to the support of that item set in the original database,
say DBorig. As usual, this sentence is probably more clear in its mathematical for-
mulation:

P
(|supDBorig(I)− supDBgen(I)|> ε

)
< δ

This surprise raises two immediate questions:

1. Why does transforming KRIMP work and
2. Can we transform frequent item set mining?

The reason that transforming KRIMP work is firstly exactly the fact that it deter-
mines the support of all item sets so well. Given a code table, which KRIMP∗ pro-
duces, we know the support of these item sets. Clearly, as for the set of frequent
item sets, this means that we will overestimate the support of item sets on the re-
sult of a query. However, different from the lifting approach, we do allow access to
the query result and, hence, the overestimation can be corrected. This is the second
reason why transforming KRIMP works.

This reasoning makes the question “Can we transform item set mining?” all the
more relevant. Unfortunately, the answer to this question is probably not. This can
be easily seen from the join. The input for the transformed item set miner would be
the joined tables as well as the Cartesian product of the sets of frequent item sets
on the “blown-up” individual tables. This set of candidate frequent item sets will be
prohibitively large, far larger than the final set of item sets that is frequent on the
join. Hence, checking all these candidates will be more expensive than computing
only the frequent ones efficiently.

Pruning the set of candidates while searching for the frequent ones requires a data
structure that stores all candidates. Whenever, we can prune, a set of candidates
has to be physically deleted from this data structure. The normal item set miners
do not even generate most of these pruned candidates. In this approach we would

13 Patterns on Queries 333

first generate and then delete them. In other words, it is highly unlikely that this
approach will have a performance similar to the best item set miners. Let alone that
it will be significantly more efficient than these algorithms, as is required by the
transformation approach.

In turn, this reasoning points to the third reason why transforming KRIMP works.
The code tables KRIMP produces are small, far smaller than the set of frequent
item sets. Hence, checking the support of all candidates suggested by KRIMP is not
detrimental for the efficiency of KRIMP∗.

From this discussion we can derive the following succinct all-encompassing rea-
son why transforming KRIMP works. KRIMP produces, relatively, small code tables
that capture the support of all item sets rather well, such that checking the set of all
suggested candidates is rather cheap.

Note that the comparison of the two approaches for a single case, i.e., that of
item sets does not imply at all that the second approach is inherently superior to the
first one. In fact, we already argued at the start of this section that the first approach,
if applicable, is to be preferred above the second one. Moreover, in [12] we argued
that the first approach is applicable for the discovery of Bayesian networks from
data. In other words, the first approach is a viable approach.

A conclusion we can, tentatively, draw from the discussion in this section is that
for either approach to work, the models should capture the data distribution well.

13.6 Conclusions and Prospects for Further Research

In this chapter we introduced a problem that has received little attention in the lit-
erature on inductive databases or in the literature on data mining in general. This
question is: does knowing models on the database help in inducing models on the
result of a query on that database?

We gave two approaches to solve this problem, induced by two interpretations of
“help”. The first, more elegant, one produces results without access to the result of
the query. The second one does allow access to this result.

We investigated both approaches for item set mining. It turned out that the first
approach is not applicable to frequent item set mining, while the second one pro-
duced good experimental results for our KRIMP algorithm. In Section 13.5 we dis-
cussed this failure and success. The final tentative conclusion of this discussion is:
for either approach to work, the models should capture the data distribution well.

This conclusion points directly to other classes of models that may be good can-
didates for either approach, i.e., those models that capture a detailed picture of the
data distribution. One example are Bayesian networks already discussed in [12].
Just as interesting, if not even more, are models based on bagging or boosting or
similar approaches. Such models do not concentrate all effort on the overall data
distribution, but also take small selections with their own distribution into account.
Hence, for such models one would expect that, e.g., lifting the selection operator
should be relatively straight forward.

334 Arno Siebes and Diyah Puspitaningrum

This is an example for a much broader research agenda: For which classes of
models and algorithms do the approaches work? Clearly, we have only scratched
the surface of this topic. Another, similarly broad, area for further research is: Are
there other, better, ways to formalise “help”?

References

1. Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri
Verkamo. Fast discovery of association rules. In Advances in Knowledge Discovery and
Data Mining, pages 307–328. AAAI, 1996.

2. Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures. MIT Press, 1991.
3. P.J. Bickel, E.A. Hammel, and J.W. O’Connell. Sex bias in graduate admissions: Data from

berkeley. Science, 187(4175):398–404, 1975.
4. Rudi Cilibrasi and Paul Vitanyi. Automatic meaning discovery using google. In IEEE Trans-

actions on Knowledge and Data Engineering, volume 19, pages 370–383. 2007.
5. E.F. Codd. A relational model of data for large shared data banks. Communications of the

ACM, 13(6):377–387, 1970.
6. Frans Coenen. The LUCS-KDD discretised/normalised ARM and CARM data library:

http://www.csc.liv.ac.uk/˜frans/ KDD/Software/LUCS KDD DN/. 2003.
7. T.M. Cover and J.A. Thomas. Elements of Information Theory, 2nd ed. John Wiley and Sons,

2006.
8. C. Faloutsos and V. Megalooikonomou. On data mining, compression and kolmogorov com-

plexity. In Data Mining and Knowledge Discovery, volume 15, pages 3–20. Springer Verlag,
2007.

9. Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining to
knowledge discovery: An overview. 1996.

10. Peter D. Grünwald. Minimum description length tutorial. In P.D. Grünwald and I.J. Myung,
editors, Advances in Minimum Description Length. MIT Press, 2005.

11. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proc. ACM SIGMOD conference,
1998.

12. Arno Siebes. Data mining in inductive databases. In Francesco Bonchi and Jean-François
Boulicaut, editors, Knowledge Discovery in Inductive Databases, 4th International Workshop,
KDID 2005, Revised Selected and Invited Papers, volume 3933 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2005.

13. Arno Siebes and Diyah Puspitaningrum. Mining databases to mine queries faster. In Wray L.
Buntine, Marko Grobelnik, Dunja Mladenic, and John Shawe-Taylor, editors, Proceedings
ECML PKDD 2009, Part II, volume 5782 of Lecture Notes in Computer Science, pages 382–
397. Springer, 2009.

14. Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item sets that compress. In Proceed-
ings of the SIAM Conference on Data Mining, pages 393–404, 2006.

15. Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Preserving privacy through data
generation. In Proceedings of the IEEE International Conference on Data Mining, pages
685–690, 2007.

Chapter 14

Experiment Databases

Joaquin Vanschoren and Hendrik Blockeel

Abstract Next to running machine learning algorithms based on inductive queries,
much can be learned by immediately querying the combined results of many prior
studies. Indeed, all around the globe, thousands of machine learning experiments
are being executed on a daily basis, generating a constant stream of empirical infor-
mation on machine learning techniques. While the information contained in these
experiments might have many uses beyond their original intent, results are typically
described very concisely in papers and discarded afterwards. If we properly store
and organize these results in central databases, they can be immediately reused for
further analysis, thus boosting future research. In this chapter, we propose the use of
experiment databases: databases designed to collect all the necessary details of these
experiments, and to intelligently organize them in online repositories to enable fast
and thorough analysis of a myriad of collected results. They constitute an additional,
queriable source of empirical meta-data based on principled descriptions of algo-
rithm executions, without reimplementing the algorithms in an inductive database.
As such, they engender a very dynamic, collaborative approach to experimentation,
in which experiments can be freely shared, linked together, and immediately reused
by researchers all over the world. They can be set up for personal use, to share re-
sults within a lab or to create open, community-wide repositories. Here, we provide
a high-level overview of their design, and use an existing experiment database to an-
swer various interesting research questions about machine learning algorithms and
to verify a number of recent studies.

Joaquin Vanschoren · Hendrik Blockeel
Department of Computer Science, Katholieke Univeristeit Leuven, Leuven, Belgium
e-mail: firstname.lastname@cs.kuleuven.be

335
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_14, © Springer Science+Business Media, LLC 2010

336 Joaquin Vanschoren and Hendrik Blockeel

14.1 Introduction

“Study the past”, Confucius said, “if you would divine the future”. This applies to
machine learning and data mining as well: when developing new machine learning
algorithms, we wish to know which techniques have been successful (or not) on cer-
tain problems in the past, and when analyzing new datasets, we assess the potential
of certain machine learning algorithms, parameter settings and preprocessing steps
based on prior experience with similar problems.

Since machine learning algorithms are typically heuristic in nature, much of this
information is extracted from experiments. Much like in many other empirical sci-
ences, we collect empirical evidence of the behavior of machine learning algorithms
by observing their performance on different datasets. If we have a hypothesis about
how algorithms will perform under certain conditions, we test this by running con-
trolled experiments, hopefully discovering empirical laws that contribute to a better
understanding of learning approaches. Additionally, exploratory studies also probe
many algorithms to study their behavior or to assess their utility on new datasets.

As such, all around the globe, thousands of machine learning experiments are
being executed on a daily basis, generating a constant stream of empirical informa-
tion on machine learning techniques. Unfortunately, most of these experiments are
interpreted with a single focus of interest, described only concisely in papers and
discarded afterwards, while they probably have many uses beyond their original in-
tent. If we properly store and organize these results, they can be immediately reused
by other researchers and accelerate future research. But in order to make this possi-
ble, we need a system that can store descriptions of data mining run, including the
learners and datasets used, and the models produced.

In this chapter, we present experiment databases (ExpDBs): databases designed
to collect all necessary details of machine learning experiments, and to intelligently
organize them in online repositories to enable fast and thorough analysis of a myriad
of collected results. They engender a much more dynamic, collaborative approach
to experimentation, in which experiments can be freely shared, linked together, and
immediately reused by researchers all over the world, simply by querying them. As
we shall see, the use of such public repositories is common practice in many other
scientific disciplines, and by developing similar repositories for machine learning,
we similarly aim to create an “open scientific culture where as much information as
possible is moved out of people’s heads and labs, onto the network and into tools
that can help us structure and filter the information” [26].

ExpDBs thus constitute an additional, queriable source of empirical meta-data,
generated by many different researchers. They are a kind of inductive databases in
that they store models which can be queried afterwards; however, they differ from
regular inductive databases in a number of ways.

First, an inductive database (IDB) stores a single dataset, together with models
that may have been produced from that dataset by running inductive queries, and
with properties of those models. An experiment database (ExpDB), on the other
hand, stores multiple datasets, multiple learners, and multiple models resulting from
running those learners on those datasets.

14 Experiment Databases 337

Second, rather than storing the datasets, learners, and models themselves, an Ex-
pDB may in practice store only descriptions (in terms of predefined properties) of
them. In a regular IDB, this would not make sense, as the model itself is what the
user is interested in.

Finally, in an IDB, one typically queries the data, or the set of models stored
in the database (as in the virtual mining views approach, see Chapter 11), to get
a model as a result. In an ExpDB, one typically queries the datasets, models, and
experimental results in order to find possible relationships between their properties.

In the following sections, we discuss the main benefits of experiment databases in
Sect. 14.2 and present related work in other scientific disciplines in Sect. 14.3. Next,
we provide a high-level overview of their design in Sect. 14.4. Finally, we illustrate
their use in Sect. 14.5 by querying an existing experiment database to answer various
interesting questions about machine learning algorithms and to verify a number of
recent studies.

This chapter is based on prior work on experiment databases [6, 40, 42, 43].

14.2 Motivation

Thousands of machine learning research papers contain extensive experimental
evaluations of learning algorithms. However, it is not always straightforward to in-
terpret these published results and use them as stepping stones for further research:
they often lack the details needed to reproduce or reuse them, and it is often difficult
to see how generally valid they are.

14.2.1 Reproducibility and Reuse

Indeed, while much care and effort goes into machine learning studies, they are usu-
ally conducted with a single focus of interest and summarize the empirical results
accordingly. The individual experiments are usually not made publicly available,
thus making it impossible to reuse them for further or broader investigation. More-
over, because of space restrictions imposed on publications, it is often practically
infeasible to publish all details of the experimental setup, making it, in turn, very
hard for other researchers to reproduce the experiments and verify if the results are
interpreted correctly. This lack of reproducibility has been warned against repeat-
edly [21, 34, 29, 17], and some conferences have started to require that all submitted
research be fully reproducible [24], adding notices to the ensuing publications stat-
ing whether or not the results could be verified.

338 Joaquin Vanschoren and Hendrik Blockeel

14.2.2 Generalizability and Interpretation

A second issue is that of generalizability: in order to ensure that results are gen-
erally valid, the empirical evaluation must cover many different conditions such
as various parameter settings and various kinds of datasets, e.g., differing in size,
skewness, noisiness or with or without being preprocessed with basic techniques
such as feature selection. Unfortunately, many studies limit themselves to algorithm
benchmarking, often exploring only a small set of different conditions. It has long
been recognized that such studies are in fact only ‘case studies’ [1], and should be
interpreted with caution.

A number of studies have illustrated that sometimes, overly general conclusions
can be drawn. In time series analysis research, for instance, it has been shown that
many studies were biased toward the datasets being used, leading to contradictory
results [21]. Furthermore, Perlich et al. [30] describe how the relative performance
of logistic regression and decision trees depends strongly on the size of dataset sam-
ples, which is often not taken into account. Finally, it has been shown that the relative
performance of lazy learning and rule induction is easily dominated by the effects
of parameter optimization, data sampling and feature selection [19]. These studies
underline that there are good reasons to thoroughly explore different conditions, or
at least to clearly state under which conditions certain conclusions may or may not
hold.

14.2.3 Experiment Databases

The idea of (inductive) databases that log and organize all the details of one’s ma-
chine learning experiments, providing a full and fair account of conducted research,
was first proposed by one us (Blockeel) [5] as an elegant way to remedy the low re-
producibility and generalizability of many machine learning experiments. Still, this
work did not present details on how to construct such a database.

Blockeel and Vanschoren [6] provided the first implementation of an experiment
database for supervised classification, and further work details how to query this
database to gain insight into the performance of learning algorithms [39, 43].

14.2.3.1 Collaborative Experimentation

However, given the amount of effort invested in empirical assessment, and the po-
tential value of machine learning results beyond the summarized descriptions found
in most papers, it would be even more useful to employ such databases to create
searchable, community-wide repositories, complete with tools to automatically pub-
lish experimental results online. Such repositories would be a tremendously valuable
source of unambiguous information on all known algorithms for further investiga-
tion, verification and comparison.

14 Experiment Databases 339

It engenders a more dynamic, collaborative form of experimentation, in which as
many experiments as possible are reused from previous studies, and in return, any
additional experiments are again shared with the community [40]. The experiment
databases discussed in this chapter allow exactly this: they offer a formal experi-
ment description language (see Sect. 14.4) to import large numbers of experiments
directly from data mining tools, performed by many different researchers, and make
them immediately available to everyone. They can be set up for personal use, to
share results within a lab and to create open, community-wide repositories.

14.2.3.2 Automatic Organization

Most importantly, they also make it easy to reuse all stored experiments by auto-
matically organizing them. Every new experiment is broken down to its components
(such as the algorithm, parameter settings and dataset used), and its results are re-
lated to the exact configuration of those components. It then only takes a query (e.g
in SQL) to ask for all results under specific conditions. For instance, requesting the
parameter settings of an algorithm and its performance results allows to track the
general effect of each parameter. Additionally requesting the dataset size allows to
highlight what influence that may have on those parameters. As will be illustrated
in Sect. 14.5, such queries allow to quickly peruse the results under different condi-
tions, enabling fast and thorough analysis of large numbers of collected results. The
expressiveness of database query languages warrants that many kinds of hypothesis
can be tested by writing only one or perhaps a few queries, and the returned results
can be interpreted unambiguously, as all conditions under which they are valid are
stated in the query itself.

As such, instead of setting up new experiments for each question one may be in-
terested in, often a laborious procedure involving the manual collection of datasets
and algorithms and the manual organization of results, one could simply write a
query to retrieve the results of hundreds of algorithms on perhaps thousands of
datasets, thus obtaining much more detailed results in a matter of seconds.

14.2.3.3 Meta-learning

Experiment databases also serve as a great platform for meta-learning studies [38,
41], i.e. to search for useful patterns in algorithm behavior. To this end, it is helpful
to link the empirical results to known properties of datasets [25, 31], as well as
properties of algorithms, such as the type of model used, or whether they produce
high bias or variance error [20]. As such, all empirical results, past and present, are
immediately linked to all known theoretical properties of algorithms and datasets,
providing new grounds for deeper analysis.

Previous meta-learning projects, especially the StatLog [25] and METAL [8]
projects, also collected large numbers of machine learning experiments with the goal
of using this meta-data to discover patterns in learning behavior, but these reposito-

340 Joaquin Vanschoren and Hendrik Blockeel

ries were not developed to ensure reproducibility, were not open to new results, nor
facilitated thorough querying.

14.2.3.4 e-Sciences

As will be discussed in Sect. 14.3, many scientific fields have developed online in-
frastructures to share and combine empirical results from all over the world, thus
enabling ever larger studies and speeding up research. In the resulting deluge of
combined experimental results, machine learning techniques have proven very suc-
cessful, discovering useful patterns and speeding up scientific progress. Still, in an
apparent contradiction, machine learning experiments themselves are currently not
being documented and organized well enough to engender the same automatic dis-
covery of insightful patterns that may speed up the design of better algorithms or
the selection of algorithms to analyze new collections of data. We aim to solve this
contradiction.

14.2.4 Overview of Benefits

We can summarize the benefits of sharing machine learning experiments and storing
them in public databases as follows:

Reproducibility The database stores all details of the experimental setup, thus
attaining the scientific goal of truly reproducible research.

Reference All experiments, including algorithms and datasets, are automatically
organized in one resource, creating a useful ‘map’ of all known approaches, their
properties, and results on how well they fared on previous problems. This also
includes negative results, which usually do not get published in the literature. As
such, we get a detailed overview of how algorithms from many studies perform
relative to one another, and many aspects of learning behavior, that may only be
known to some experts, can be instantly explored by writing a query.

Visibility It adds visibility to (better) algorithms that the user may not have been
aware of.

Reuse It saves time and energy, as previous experiments can be readily reused.
Especially when benchmarking new algorithms on commonly used datasets,
there is no need to run older algorithms over and over again, as their evaluations
are likely to be available online. This would also improve the quality of many
algorithm comparisons, because the original authors probably know best how to
tune their algorithms, and because one can also easily take the stored dataset
properties into account to find out how they affect the relative performance of
algorithms.

Larger studies It enables larger and more generalizable studies. Studies covering
many algorithms, parameter settings and datasets are hugely expensive to run, but
could become much more feasible if a large portion of the necessary experiments

14 Experiment Databases 341

are available online. Even if many experiments are missing, one can use the ex-
isting experiments to get a first idea, and run additional experiments to fill in the
blanks. And even when all the experiments have yet to be run, the automatic stor-
age and organization of experimental results markedly simplify conducting such
large scale experimentation and thorough analysis thereof.

Integration The formalized descriptions of experiments also allow the integra-
tion of such databases in data mining tools, for instance, to automatically log and
share every experiment in a study or to reuse past experiments to speed up the
analysis of new problems.

14.3 Related Work

The idea of sharing empirical results is certainly not new: it is an intrinsic aspect
of many sciences, especially e-Sciences: computationally intensive sciences, which
use the internet as a global, user-driven collaborative workspace.

14.3.1 e-Sciences

In all these scientific fields, both the need for reproducibility and the recognition of
the potential value of empirical results beyond the summarized descriptions found in
most papers, has led to the creation of online, public infrastructures for experiment
exchange. Although these infrastructures have evolved somewhat differently in each
field, they do share the same three components:

A formal representation language To enable a free exchange of experimental
data, a standard and formal representation language needs to be agreed upon.
Such a language may also contain guidelines about the information necessary to
ensure reproducibility.

Ontologies Defining a coherent and unambiguous description language is not
straightforward. It requires a careful analysis of the concepts used within a do-
main and their relationships. This is formally represented in ontologies [12]: ma-
chine manipulable models of a domain providing a controlled vocabulary, clearly
describing the interpretation of each concept.

A searchable repository To reuse experimental data, we need to locate it first.
Experiment repositories therefore still need to organize all data to make it easily
retrievable.

Bioinformatics. Expression levels of thousands of genes, recorded to pinpoint
their functions, are collected through high-throughput screening experiments called
DNA-microarrays. To allow verification and reuse of the obtained data in further
studies, microarray databases [35] were created to collect all such experiments.
Experiment submission is even a condition for publication in several journals [4].

342 Joaquin Vanschoren and Hendrik Blockeel

To support the sharing of these results, a set of guidelines was drawn up regard-
ing the required Minimal Information About a Microarray Experiment (MIAME
[9]). Moreover, a MicroArray Gene Expression Markup Language (MAGE-ML)
was conceived so that data could be exchanged uniformly, and an ontology (MAGE-
MO) was designed [35] to provide a controlled core vocabulary, in addition to more
specific ontologies, such as the Gene Ontology [2]. Their success has instigated
similar approaches in related fields, such as proteomics [44] and mass spectrometry
data analysis. One remaining drawback is that experiment description is still par-
tially performed manually. Still, some projects are automating the process further.
The Robot Scientist [23] stores all experiments automatically, including all physi-
cal aspects of their execution and the hypotheses under study. It has autonomously
made several novel scientific discoveries.

Astronomy. A similar evolution has taken place in the field of astronomy. Astro-
nomical observations from telescopes all over the world are collected in so-called
Virtual Observatories [36]. This provides astronomers with an unprecedented cat-
alog - a World-Wide Telescope - to study the evolving universe. An extensive list
of different protocols supports the automatic sharing of observations, such as XML
formats for tabular information (VOTable) [27] and astronomical image data (FITS,
including meta-data on how the image was produced), as well an Astronomical Data
Query Language (ADQL) [45] and informal ontologies [13]. The data is stored in
databases all over the world and is queried for by a variety of portals [32], now seen
as indispensable to analyze the constant flood of data.

Physics. Various subfields of physics also share their experimental results in com-
mon repositories. Low-energy nuclear reaction data can be expressed using the
Evaluated Nuclear Data File (ENDF) format and collected into searchable ENDF
libraries.1 In high-energy particle physics, the HEPDATA2 website scans the litera-
ture and downloads the experimental details directly from the machines performing
the experiments. Finally, XML-formats and databases have been proposed for high-
energy nuclear physics as well [10].

14.3.2 Extension to Machine Learning

We will use the same three components to develop a similar infrastructure for the
exchange of machine learning experiments. While different kinds of machine learn-
ing experiments exist, we can similarly express their structure and vocabulary to
describe, share and organize them in a uniform fashion.

Moreover, experiments in machine learning should be much easier to manipulate.
First, compared to the in vitro experiments in bioinformatics, the exchange of the in
silico experiments in machine learning can be automated completely. Indeed, a great

1 http://www.nndc.bnl.gov/exfor/endf00.jsp
2 http://durpdg.dur.ac.uk/hepdata/

14 Experiment Databases 343

deal of experimentation is performed through data mining workbenches and smaller
software tools. As such, experiments could be exported at the click of a button.

Second, in contrast to scientific equipment, we can store datasets and algorithms
into the database as well, cross-linked with existing repositories for datasets [3] and
machine learning algorithms [34]. As such, all information necessary to reproduce
the stored experiments can be found easily.

14.4 A Pilot Experiment Database

In this section, we provide a high-level outline of how we designed our current ex-
periment database, which, although built to extend easily to other tasks, is focused
on supervised classification. A detailed discussion is outside the scope of this chap-
ter: we will only highlight the most important aspects of its design and how it can
be used in data mining research. All further details, including detailed design guide-
lines, database models, ontologies and XML definitions, can be found on the ExpDB
website: http://expdb.cs.kuleuven.be

Fig. 14.1 An online infrastructure for experiment exchange.

344 Joaquin Vanschoren and Hendrik Blockeel

14.4.1 Conceptual Framework

An overview of how experiment databases are used in practice is shown in Fig. 14.1.
The five boxed components include the three components also used in e-Sciences:
an ontology of domain concepts involved in running data mining experiments, a
formal experiment description language (ExpML) and an experiment database to
store and organize all experiments (ExpDB). In addition, two interfaces are defined:
an application programming interface (API) to automatically export experiments
from data mining software tools, and a query interface to browse the results of all
stored experiments. Each is briefly discussed below.

14.4.1.1 Software Interface

First, to facilitate the automatic exchange of data mining experiments, an appli-
cation programming interface (API) is provided that builds uniform, manipulable
experiment instances (java objects) out of all necessary details and exports them
as descriptions in ExpML language or directly stores them in a database. The top
of Fig. 14.1 shows some of the inputs. One can describe new algorithms, datasets,
evaluation metrics and so on, and in turn use them in the description of new ex-
periments. New elements are described by (among others) name, version, download
url and a list of predefined properties, e.g. the number of examples or the skewness
of the class attribute in datasets or the type of model used by learning algorithms.
The API can also calculate dataset properties for new datasets. Additionally, source
code, executable versions of the algorithms or entire datasets can also be stored,
although in some situations this may not always be feasible. Finally, the results of
the algorithm evaluation and the produced models (or only their predictions) can be
described as well.

Software agents such as data mining workbenches (shown on the right hand side
in Fig. 14.1) or custom algorithm implementations can then call methods from the
API to create new experiment instances, add the used algorithms, parameters, and
all other details as well as the results, and then stream the completed experiments
to online ExpDBs to be stored. A multi-tier approach can also be used: a personal
database can collect preliminary experiments, after which a subset can be forwarded
to lab-wide or community-wide databases.

The ExpDB website currently offers a Java API, including working examples to
illustrate its use. It also links to the WEKA platform, allowing the execution and
automatic storage of experiments on WEKA algorithms. Further extensions to other
platforms, such as KNIME and Rapidminer are also planned.

This approach is quite different from other, more recent proposals for experiment
databases, such as MLComp.3 They require algorithms to be uploaded into the sys-
tem, and scripts to be written that interface with the algorithm execution system.

3 http://mlcomp.org

14 Experiment Databases 345

14.4.1.2 The Exposé Ontology

The vocabulary and structure of the ExpML files and database model is provided by
an ontology of data mining experimentation, called Exposé. It provides a formal do-
main model that can be adapted and extended on a conceptual level, thus fostering
collaboration between many researchers. Moreover, any conceptual extensions to
the domain model can be translated consistently into updated or new ExpML defini-
tions and database models, thus keeping them up to date with recent developments.

Exposé is built using concepts from several other data mining ontologies. First,
OntoDM [28] (See Chap. 2) is a general ontology for data mining which tries to
relate various data mining subfields. It provides the top-level classes for Exposé,
which also facilitates the extension of Exposé to other subfields covered by On-
toDM. Second, EXPO [33] models scientific experiments in general, and provides
the top-level classes for the parts involving experimental designs and setups. Finally,
DMOP [16] models the internal structure of learning algorithms, providing detailed
concepts for general algorithm definitions. Exposé unites these three ontologies and
adds many more concepts regarding specific types of experiments, evaluation tech-
niques, evaluation metrics, learning algorithms and their specific configurations in
experiments. In future work, we also wish to extend it to cover preprocessing tech-
niques in more depth, for instance using the KD ontology [46] and DMWF ontology
[22], which model the wider KD process. The full OWL-DL4 description can be
found online.

Exposé defines various kinds of experiments, such as ‘learner evaluations’, which
apply a learning algorithm with fixed parameter settings on a static dataset, and eval-
uate it using a specific performance estimation method (e.g., 10-fold cross valida-
tion) and a range of evaluation metrics (e.g., predictive accuracy). As shown at the
top of Fig. 14.2, experiments are described as workflows, with datasets as inputs and
evaluations or models as outputs, and can contain sub-workflows of preprocessing
techniques. Algorithms can also be workflows, with participants (components) such
as kernels, distance functions or base-learners fulfilling a certain role. The top of
Fig. 14.3 clarifies the structure of workflows: they can have several inputs and out-
puts, and consist of participants (operators), which in turn can also have multiple in-
and outputs. Exposé also differentiates between general algorithms (e.g., ‘decision
trees’), versioned implementations (e.g., weka.J48) and applications (weka.J48 with
fixed parameters). Finally, the context of sets of experiments can also be described,
including conclusions, the employed experimental designs, and the papers in which
they are used so they can be easily looked up afterwards.

4 http://www.w3.org/TR/owl-guide/

346 Joaquin Vanschoren and Hendrik Blockeel

experiment
workflow

composite
experiment

singular
experiment

learner
evaluation

learning algorithm
application

has participant

performance
estimation
application

has participant

has specified

output

machine
is executed

on

dataset

has specified output

model
evaluation

result

data processing
workflow

data processing
application

has participant

has specified input

experimental
design

has participant

experimental
variable

has participant has participant

parameter
setting

operator
model evaluation

function application

has participant

prediction
result

model

has specified

output

has specified

output

evaluation

prediction

has part

has part

algorithm
application

planned
process

function application

algorithm
implementation

simulation
KD workflow

has specified

input

has description

information
content entity

has description

has specified output

function
implementation

has participant

algorithm
component role

role
algorithm role

function role kernel

base-learner

realizes

realizes

realizes

has participant

has specified input

has participant

realizes

has participant

<dataset id="d1" name="kr-vs-kp" url="http://...">
<target_feature name="class" index="-1" /> </dataset>
<data_processing_workflow id="op1" input_data="d1">
<data_processing_appl id="op2" input_data="d1">
<data_processing_impl name="weka.AttributeSelection" version="1.7"/>
<function_appl role="feature_subset_evaluator">
<function_impl name="weka.CfsSubsetEval" version="1.26" />

</function_appl> ...
</data_processing_appl>
</data_processing_workflow>
<dataset id="d2" name="kr-vs-kp-AttrSel..." url="http://..." output_of="op1,op2">
<target_feature name="class" index="-1"/> </dataset>
<learner_evaluation id="op3" input_data="d2" series="exp1" exp_id="445080">
<learner_appl id="op4">
<learner_impl name="weka.Bagging" version="1.31.2.2"/>
<parameter_setting name="P" value="100"/>
<parameter_setting name="I" value="10"/>
<learner_appl role="base-learner">
<learner_impl name="weka.REPTree" version="1.19.2.2"/>
<parameter_setting name="M" value="2"/> ...

</learner_appl>
</learner_appl>
<performance_estimation_appl id="op5" input_data="d2">
<performance_estimation_impl name="weka.crossValidateModel" version="1.53"/>
<parameter_setting name="numfolds" value="10"/> ...
</performance_estimation_appl>
<model_evaluation_function_appl name="predictive_accuracy">
<model_evaluation_function_impl name="weka.pctCorrect" version="1.53"/>

</model_evaluation_function_appl> ...
</learner_evaluation>
<model_evaluation_result id="e1" output_of="op3,op5">
<machine>vic_ni-09-10</machine>
<evaluation name="build_cputime" value="2.25"/>
<evaluation name="predictive_accuracy" value="0.991"/>...
</model_evaluation_result>
<prediction_result id="p1" output_of="op3">
<prediction instance="0000" value="won">
<probability outcome="won" value="0.985"/>
<probability outcome="nowin" value="0.015"/> ...

</prediction_result>

Fig. 14.2 Experimental workflows in Exposé (top) and ExpML (below).

14 Experiment Databases 347

 op1

d1

data processing workflow

op2 d2

kr-vs-kp-

AttrSel...
kr-vs-kp

 op3

learner evaluation

e1

model evaluation result

p1

prediction result

data processing

appl

op5

performance

estimation

appl

op4

learner appl

in op1 op2 out

has output

has output

has input

has participanthas participant

has input has output

has input

Fig. 14.3 Structure of a workflow (top) and an example (below, also see Fig. 14.2)

14.4.1.3 The ExpML Experiment Markup Language

Using the Exposé ontology as our core vocabulary, we can define a formal markup
language for describing experiments, called ExpML. It is complementary to PMML5,
which allows to exchange predictive models, but not detailed experimental setups
nor evaluations. It is derived by translating the ontological classes and properties
(relationships) to XML elements and syntax. This translation process is especially
useful because it allows ontological extensions (e.g. to new machine learning tasks)
to be translated into updated ExpML definitions.

Because ontological relationships are more expressive than XML syntax, dif-
ferent relationships between these concepts need to be translated quite differently.
Table 14.1 provides a short overview of these relationships and their XML equiv-
alent. Figure 14.2 illustrates this process, showing a real experiment (experiment
445080 in our experiment database) expressed in ExpML. The structure of this par-
ticular experiment is shown at the bottom of Fig. 14.3. We assign an id to each
operator and in- or output (e.g. datasets). For each operator, we state its inputs in an
input data attribute, and for each output, we state the operator that generated
that output in an output of attribute. As shown in the ExpML code, a dataset
with id=‘d1’ is used as the input of workflow ‘op1’ and data processing opera-

Table 14.1 Translating ontological properties to XML syntax.

Ontological property XML syntax
has-part, pas-participant target: subelement of source
has-description (required) attribute
has-quality subelement called property
is-concretization-of implementation of attribute
has-component target: subelement of source with role attribute
has-specified-input input given id, referenced in input data attribute
has-specified-output source given id, referenced in output of attribute

5 See http://www.dmg.org/pmml-v3-2.html

348 Joaquin Vanschoren and Hendrik Blockeel

tor ‘op2’. The resulting dataset ‘d2’ is references as both the output of the operator
‘op1’ and workflow ‘op2’.

Our data processing sub-workflow contains a single participant: a data processing
application, i.e. a feature selection algorithm. It also requires an input, which will
be the same dataset as before, and has a participant: an algorithm impl. It can
also have multiple parameter settings and component settings, which will become
XML subelements. Each component setting has a participant assumed to fulfill each
of these roles. In the ontology, a realizes relationship indicates which processes can
fulfill them. In the ExpML code, a function appl element is shows, with a
role attribute signaling the role it is fulfilling.

In the second half of the workflow (see Figure 14.3), the generated dataset serves
as the input for a learner evaluation, which will in turn produce a model evaluation
result and a prediction result. The evaluation consists of a learning algorithm ap-
plication complete with parameter and component settings (in this case including a
base learner application with its own parameter settings), the performance estima-
tion technique (10-fold cross-validation) and a list of evaluation functions to assess
the produced models, each pointing to their precise implementations.

The output of the experiment is shown next, consisting of all evaluation results
(also stating the machine used in order to interpret cpu time) and all predictions,
including the probabilities for each class. Although omitted for brevity, evaluation
error margins are stored as well. Storing predictions is especially useful if we want
to apply new evaluation metrics afterwards without rerunning all prior experiments.

14.4.1.4 The Experiment Databases (ExpDBs)

Finally, all submitted ExpML descriptions are interpreted and automatically stored
into (relational) databases. The database model, also based on Exposé, is very
fine-grained, so that queries can be written about any aspect of the experimental
setup, evaluation results, or properties of involved components (e.g., dataset size).
A working implementation in MySQL, containing over 650,000 experiments, can
be queried online.

14.4.1.5 Query Interfaces

The database can be accessed through two query interfaces: an online interface on
the homepage itself and an open-source desktop application. Both allow to launch
queries written in SQL (many examples of SQL queries are supplied, including the
ones used in Sect. 14.5), or composed in a graphical query interface, and can show
the results in tables or graphical plots. The desktop application offers a wider range
of plots, including self-organizing maps.

14 Experiment Databases 349

14.4.2 Using the Database

The three arrows emanating from the ExpDB at the bottom of Fig. 14.1 show dif-
ferent ways to tap into the stored information:

Querying This allows a researcher to formulate questions about the stored ex-
periments, and immediately get all results of interest. Such queries could, for
instance, be aimed at discovering ways in which an algorithm can be improved
(e.g., see Sect. 14.5.2.1), after which that algorithm can be refined and tested
again, thus completing the algorithm development cycle.

Mining A second use is to automatically look for patterns in algorithm perfor-
mance by mining the stored results and theoretical meta-data. The insights pro-
vided by such meta-models can then be used to design better algorithms or to
assist in knowledge discovery applications [8].

Integration Data mining toolboxes could also interface with ExpDBs directly,
for instance to download the results of experiments that have been run before by
a different user of that toolbox.

14.4.3 Populating the Database

The current database is populated with very diverse experiments to test algorithms
under different conditions. First, we entered 54 classification algorithms from the
WEKA platform together with all their parameters, 45 implementations of eval-
uation measures, 87 datasets from the UCI repository [3], 56 data characteristics
calculated for each dataset, and two data preprocessors: correlation-based feature
selection [14], and a subsampling procedure.

Next, three series of experiments were performed, in which a number of algo-
rithms were explored more thoroughly than others:

• The first series simply ran all algorithms with default parameter settings.
• The second series varied each parameter, with at least 20 different values, of a

selection of popular algorithms: SMO (a support vector machine (SVM) trainer),
MultilayerPerceptron, J48 (C4.5), 1R, RandomForest, Bagging and Boosting.
Moreover, different SVM kernels were used with their own parameter ranges,
and all learners were used as base-learners for ensemble learners. We used a one-
factor-at-a-time design to vary multiple parameters: each parameter (including
the choice of base-learner or kernel) is varied in turn while keeping all others at
default.

• Finally, the third series of experiments used a random sampling design to uni-
formly cover the entire parameter space (with at least 1000 settings) of an even
smaller selection of algorithms: J48, Bagging and 1R.

All parameter settings were run on all datasets, and repeated 20 times with dif-
ferent random seeds for all algorithms that have them. In all cases, all 45 evaluation

350 Joaquin Vanschoren and Hendrik Blockeel

metrics were calculated in a 10-fold cross-validation procedure, with the same folds
for each dataset. A large portion was additionally evaluated with a bias-variance
analysis.

Quality Control. It is worth noting that, in the collaborative context, some form
of quality control must be implemented to avoid contamination by bad (perhaps
even fraudulent) ExpML descriptions. One solution, used in several repositories in
bio-informatics, is to attach a trustworthiness value to the source of certain results.
Experiments submitted from a trusted tool may be labeled very trustworthy, while
custom submissions might get a lower value until the results are verified. Alterna-
tively, if the database system can automatically run the algorithms in question, it
could rerun all submitted experiments to verify the results.

14.5 Learning from the Past

In this section, we use the existing experiment database to illustrate how easily the
results of previously stored experiments can be exploited for the discovery of new
insights into a wide range of research questions, as well as to verify a number of
recent studies. These illustrations can also be found in Vanschoren et al. [43]. Simi-
lar to Van Someren [37], we distinguish between three types of studies, increasingly
making use of the available meta-level descriptions, and offering increasingly gen-
eralizable results:

1. Model-level analysis. These studies evaluate the produced models through a
range of performance measures, but typically consider only individual datasets
and algorithms. They typically try to identify HOW a specific algorithm per-
forms, either on average or under specific conditions.

2. Data-level analysis. These studies investigate how known or measured data prop-
erties, not individual datasets, affect the performance of specific algorithms. They
identify WHEN (on which kinds of data) an algorithm can be expected to behave
a certain way.

3. Method-level analysis. These studies don’t look at individual algorithms, but take
general properties of the algorithms (eg. their bias-variance profile) into account
to identify WHY an algorithm behaves a certain way.

14.5.1 Model-level Analysis

In the first type of study, we are interested in how individual algorithms perform
on specific datasets. This type of study is typically used to benchmark, compare
or rank algorithms, but also to investigate how specific parameter settings affect
performance.

14 Experiment Databases 351

learner

l

[name]

learner impl

li

learner appl

la

experiment

e

evaluation

v

[evalue]

evaluation metric impl

mi

evaluation metric

m

dataset

d lettername

true

is original

predictive accuracy

name

learner

l

[name]

learner impl

li

learner component

lc

kernel appl

ka

kernel impl

ki

kernel

k

[name]

learner appl

la

kernel
role

learner

l

[name]

learner impl

li

learner component

lc

learner appl

la2

learner impl

li2

learner

l2

[name]

learner appl

la

base learner
role

Fig. 14.4 A graph representation of our query. The top shows the main query, and below are two
subqueries selecting the used kernels (left) and the base-learners of an ensemble method (right).

14.5.1.1 Comparing Algorithms

To compare the performance of all algorithms on one specific dataset, we write a
query that simply selects the name of the algorithm used and the predictive accuracy
recorded in all stored experiments on, for instance, the dataset ‘letter’. A graph
representation of this query is shown in Fig. 14.4. It joins the tables (nodes in the
graph) of the learning algorithm, dataset, and evaluation based on the experiment
in which they are used. It also selects the algorithm name and its evaluation (in
brackets), and adds constraints (in ellipses) on the dataset name and the evaluation
metric used. is original indicates that the dataset is not preprocessed. For
more detail, we can also select the kernel in the case of a SVM and the base-learner
in the case of an ensemble. This is done in the subqueries shown in the bottom of
Fig. 14.4. We order the results by their performance and plot the results in Fig. 14.5.

Since the returned results are always as general as the query allows, we now have
a complete overview of how each algorithm performed. Next to their optimal per-
formance, it is also immediately clear how much variance is caused by suboptimal
parameter settings (at least for those algorithms whose parameters were varied).
For instance, when looking at SVMs, it is clear that especially the RBF-kernel is
of great use here (indeed, RBF kernels are popular in letter recognition problems),
while the polynomial kernel is much less interesting. However, there is still much
variation in the performance of the SVM’s, so it might be interesting to investigate
this in more detail. Also, while most algorithms vary smoothly as their parame-
ters are altered, there seem to be large jumps in the performances of SVMs and
RandomForests, which are, in all likelihood, caused by parameters that heavily af-

352 Joaquin Vanschoren and Hendrik Blockeel

Fig. 14.5 Performance of algorithms on dataset ‘letter’.

fect their performance. Moreover, when looking at bagging and boosting, it is clear
that some base-learners are much more interesting than others. For instance, it ap-
pears that while bagging and boosting do give an extra edge to the nearest neighbor
and logistic regression algorithms, the effect is rather limited. Conversely, bagging
RandomTree seems to be hugely profitable, but this does not hold for boosting. It
also seems more rewarding to fine-tune RandomForests, MultiLayerPerceptrons and
SVMs than to bag or boost their default setting. Still, this is only one dataset, fur-
ther querying is needed. Given the generality of the results, each query is likely to
highlight things we were not expecting, providing interesting cases for further study.

14.5.1.2 Investigating Parameter Effects

First, we examine the effect of the parameters of the RBF kernel. Based on the first
query, we can focus on the SVM’s results by adding a constraint. Then we simply
ask for the value of the parameter we are interested in. By selecting the value of
the gamma parameter and plotting the results, we obtain Fig. 14.6. We constrain the
datasets to a selection with the same default accuracy (10%).

On the ‘mfeat morphological’ (and ‘pendigits’) dataset, performance increases
when increasing gamma up to a point, after which it slowly declines. The other
curves show that the effect on accuracy on other datasets is very different: perfor-
mance is high for low gamma values, but quickly drops down to the default accu-
racy for higher values. Looking at the number of attributes in each dataset (shown
in parentheses) we can observe some correlation.

14 Experiment Databases 353

learner impl

li

learner component

lc

kernel appl

ka

kernel impl

ki

learner appl

la

param setting

lps

[evalue]

parameter

lp

kernel
role

weka-SMO
name

weka-RBF
name

gamma name

Fig. 14.6 The effect of parameter gamma of the RBF-kernel in SVMs on a number of different
datasets, with their number of attributes shown in parentheses, and the accompanying query graph.

A possible explanation for this lies in the fact that this SVM implementation nor-
malizes all attributes into the interval [0,1]. Therefore, the maximal squared distance
between two examples, ∑(ai−bi)

2 for every attribute i, is equal to the number of
attributes. Since the RBF-kernel computes e(−γ∗∑(ai−bi)

2), the kernel value will go to
zero very quickly for large gamma-values and a large number of attributes, making
the non-zero neighborhood around a support vector very small. Consequently, the
SVM will overfit these support vectors, resulting in low accuracies. This suggests
that the RBF kernel should take the number of attributes into account to make the
default gamma value more suitable across a range of datasets. It also illustrates how
the experiment database allows the investigation of algorithms in detail and assist
their development.

14.5.1.3 General Comparisons

By simply dropping the constraints on the datasets used, the query will return the
results over a large number of different problems. Furthermore, to compare algo-
rithms over a range of performance metrics, instead of only considering predictive
accuracy, we can use a normalization technique used by Caruana and Niculescu-
Mizil [11]: normalize all performance metrics between the baseline performance
and the best observed performance over all algorithms on each dataset. Using the
aggregation functions of SQL, we can do this normalization on the fly, as part of the
query.

We can now perform a very general comparison of supervised learning algo-
rithms. We select all algorithms whose parameters were varied (see Sect. 14.4.3)
and, though only as a point of comparison, logistic regression, nearest neighbors
(kNN), naive Bayes and RandomTree with their default parameter settings. As for
the performance metrics, we selected predictive accuracy, F-measure, precision and
recall, the last three of which were averaged over all classes. We then queried for

354 Joaquin Vanschoren and Hendrik Blockeel

Fig. 14.7 Ranking of algorithms over all datasets on different performance metrics.

the maximal (normalized) performance of each algorithm for each metric on each
dataset, averaged each of these scores over all datasets, and finally ranked all classi-
fiers by the average of predictive accuracy, precision and recall.6 The results of this
query are shown in Fig. 14.7.

The overall best performing algorithms are mostly bagged and boosted ensem-
bles. Especially bagged and boosted trees perform very well, in agreement with
the previous results [11]. In Fig. 14.7 these are grouped as Trees* since they per-
form very similarly, and include C4.5, PART, Ripper, NaiveBayesTree, REPTree
and similar tree-based learners. Another shared conclusion is that boosting full trees
performs dramatically better than boosting stumps (see Boosting-DStump) or boost-
ing random trees. While C45 seems to perform slightly better than RandomForests
on predictive accuracy, this is only the case for multi-class datasets. When constrain-
ing the results to binary datasets (not shown here), RandomForests do outperform
C45 on all metrics.

Furthermore, since this study contains many more algorithms, we can make a
number of additional observations. For instance, the bagged versions of most strong
learners (SVM, C45, RandomForest, etc.) seem to improve primarily on precision
and recall, while the original base-learners (with optimized parameters) perform bet-
ter on predictive accuracy. Apparently, tuning the parameters of these strong learners
has a much larger effect on accuracy than on the other metrics, for which it is better
to employ bagging than parameter tuning, at least on multi-class datasets.

6 Since all algorithms were evaluated over all of the datasets (with 10-fold cross-validation), we
could not optimize their parameters on a separate calibration set for this comparison. To limit the
effect of overfitting, we only included a limited set of parameter settings, all of which fairly close
to the default setting. Nevertheless, these results should be interpreted with caution as they might
be overly optimistic.

14 Experiment Databases 355

14.5.2 Data-level Analysis

While the queries in the previous section allow the examination of the behavior of
learning algorithms to a high degree of detail, they give no indication of exactly
when (on which kind of datasets) certain behavior is to be expected. In order to ob-
tain results that generalize over different datasets, we need to look at the properties
of each individual dataset, and investigate how they affect learning performance.

14.5.2.1 Data Property Effects

In a first such study, we examine what causes the ‘performance jumps’ that we
noticed with the RandomForest algorithm in Fig. 14.5. Querying for the effects of
the number of trees in the forest and the dataset size yields Fig. 14.8.

This shows that predictive accuracy increases with the number of trees, usually
leveling off between 33 and 101 trees.7 One dataset, monks problems 2, is a no-
table exception: obtaining less than 50% accuracy on a binary problem, it actually
performs worse as more trees are included. We also see that on large datasets, the
accuracies for a given forest size vary less since the trees become more stable on
large datasets, thus causing clear performance jumps on very large datasets. How-
ever, for very small datasets, the benefit of using more trees is overpowered by the
randomization occurring in the trees (the algorithm considers K random features at
each node).

Fig. 14.8 The effect of dataset size and the number of trees for random forests. The dataset names
are omitted since they are too small to be printed legibly.

7 We used a geometric progression (1,3,11,33,101) of the number of trees, choosing for odd num-
bers to break ties while voting.

356 Joaquin Vanschoren and Hendrik Blockeel

Fig. 14.9 Learning curves on
the Letter-dataset.

14.5.2.2 Preprocessing Effects

We can also study the effect of preprocessing methods. For instance, to investigate if
the results in Fig. 2 are also valid on smaller samples, we can query for the results on
downsampled versions of the dataset, yielding a learning curve for each algorithm,
as shown in Fig. 14.9. This provides further evidence that the ranking of algorithms
depends on the size of the dataset sample [30]. While logistic regression is initially
stronger than J48, the latter keeps on improving when given more data. Also note
that RacedIncrementalLogitBoost has a particularly steep learning curve, crossing
two other curves, and that the performance of the HyperPipes algorithm actually
worsens given more data, which suggests it was ‘lucky’ on the smaller samples.

14.5.2.3 Mining for Patterns in Learning Behavior

Instead of studying different dataset properties independently, we could also use
data mining techniques to relate the effect of many different properties to an al-
gorithm’s performance. For instance, when looking at Fig. 14.7, we see that OneR
performs obviously much worse than the other algorithms. Still, some earlier stud-
ies, most notably one by Holte [18], found very little performance differences be-
tween OneR and the more complex J48. To study this discrepancy in more detail,
we can query for the default performance of OneR and J48 on all UCI datasets, and
plot them against each other, as shown in Fig. 14.10(a). This shows that on some
datasets, the performances are similar (crossing near the diagonal), while on others,
J48 is the clear winner. Discretizing these results into three classes as shown in Fig.
14.10(a), and querying for the characteristics of each dataset, we can train a meta-
decision tree predicting on which kinds of datasets J48 has the advantage (see Fig.
14.10(b)). From this we learn that a high number of class values often leads to a
large win of J48 over OneR. Indeed, the original study [18] only had one dataset
with that many classes.

14 Experiment Databases 357

(a) (b)
Fig. 14.10 (a) J48’s performance against OneR’s for all datasets, discretized into 3 classes. (b) A
meta-decision tree predicting algorithm superiority based on data characteristics.

14.5.3 Method level analysis

While the results in the previous section are clearly more generalizable towards the
datasets used, they don’t explain why algorithms behave a certain way. They only
consider individual algorithms and thus do not generalize over different techniques.
Hence, we need to include algorithm properties in our queries as well.

14.5.3.1 Bias-variance Profiles

One very interesting property of an algorithm is its bias-variance profile [20]. Since
the database contains a large number of bias-variance decomposition experiments,
we can give a realistic, numerical assessment of how capable each algorithm is in
reducing bias and variance error. In Fig. 14.11 we show, for each algorithm, the pro-
portion of the total error that can be attributed to bias error, using default parameter
settings and averaged over all datasets.

The algorithms are ordered from large bias (low variance), to low bias (high vari-
ance). NaiveBayes is, as expected, one of the algorithms with the strongest variance
management (it avoids overfitting), but poor bias management (the ability to model
complex target concepts). RandomTree, on the other hand, has very good bias man-
agement, but generates more variance error. When looking at ensemble methods, it
shows that bagging reduces variance, as it causes REPTree to shift significantly to
the left. Conversely, boosting reduces bias, shifting DecisionStump to the right in
AdaBoost and LogitBoost.

358 Joaquin Vanschoren and Hendrik Blockeel

Fig. 14.11 Average percentage of bias-related error for each algorithm over all datasets.

14.5.3.2 Bias-variance Effects

As a final study, we investigate the claim by Brain and Webb [7] that on large
datasets, the bias-component of the error becomes the most important factor, and
that we should use algorithms with high bias management to tackle them. To verify
this, we look for a connection between the dataset size and the proportion of bias
error in the total error of a number of algorithms, using the previous figure to select
algorithms with very different bias-variance profiles. By plotting the percentage of
bias error generated on each dataset against the size of that dataset we obtain Fig.
14.12. Datasets or similar size are grouped for legibility. It shows that bias error is of
varying significance on small datasets, but steadily increases in importance on larger
datasets, for all algorithms. This validates the previous study on a much larger set of
datasets. In this case (on UCI datasets), bias becomes the most important factor on
datasets larger than 50000 examples, no matter which algorithm is used. As such, it
is indeed advisable to look to algorithms with good bias management when dealing
with large datasets, as variance becomes a less important factor.

14.6 Conclusions

Experiment databases are databases specifically designed to collect all the details
on large numbers of past experiments, possibly performed by many different re-
searchers, and make them immediately available to everyone. They ensure that ex-
periments are repeatable and automatically organize them so that they can be easily
reused in future studies.

In this chapter, we have provided a high-level overview of their design. Similar
to experiment repositories actively used in e-Sciences, it consists of an ontologi-

14 Experiment Databases 359

Fig. 14.12 Average percentage of bias-related error in algorithms vs dataset size.

cal domain model, which is in turn used to create a formal experiment description
language and a detailed database model.

We also used an existing experiment database to illustrate how easily the results
of previously stored experiments can be exploited to gain new insight: we performed
elaborate algorithms comparisons, investigated the effects of algorithm parameters
and data properties, suggested algorithm improvements, built meta-models of al-
gorithm performance, and studied the bias-variance profiles of learning algorithms,
each time by writing only a single query.

Experiment databases offer the possibility to truly unite the results of many in-
dividual machine learning studies, enhance cooperation, and facilitate large-scale
empirical studies. As such, we are confident that they can contribute greatly to the
vigor of machine learning research.

Our database is available online at http://expdb.cs.kuleuven.be

Acknowledgements Hendrik Blockeel was a Postdoctoral Fellow of the Fund for Scientific Re-
search - Flanders (Belgium) (F.W.O.-Vlaanderen) at the time of this work, and this research is fur-
ther supported by GOA 2003/08 “Inductive Knowledge Bases” and F.W.O.-Vlaanderen G.0108.06
“Foundations of Inductive Databases for Data Mining”.

References

1. Aha, D.: Generalizing from case studies: A case study. Proceedings of the Ninth International
Conference on Machine Learning pp. 1–10 (1992)

2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene
ontology: tool for the unification of biology. nature genetics 25, 25–29 (2000)

3. Asuncion, A., Newman, D.: UCI machine learning repository. University of California, School
of Information and Computer Science (2007)

360 Joaquin Vanschoren and Hendrik Blockeel

4. Ball, C., Brazma, A., Causton, H., Chervitz, S.: Submission of microarray data to public repos-
itories. PLoS Biology 2(9), e317 (2004)

5. Blockeel, H.: Experiment databases: A novel methodology for experimental research. Lecture
Notes in Computer Science 3933, 72–85 (2006)

6. Blockeel, H., Vanschoren, J.: Experiment databases: Towards an improved experimental
methodology in machine learning. Lecture Notes in Computer Science 4702, 6–17 (2007)

7. Brain, D., Webb, G.: The need for low bias algorithms in classification learning from large
data sets. PKDD ’02: Proceedings of the 6th European Conference on Principles of Data
Mining and Knowledge Discovery pp. 62—73 (2002)

8. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to data min-
ing. Springer (2009)

9. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach,
J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C.,
Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-
Kremer, S., Stewart, J., Taylor, R., Vingron, J.V.M.: Minimum information about a microarray
experiment. nature genetics 29, 365 – 371 (2001)

10. Brown, D., Vogt, R., Beck, B., Pruet, J.: High energy nuclear database: a testbed for nuclear
data information technology. International Conference on Nuclear Data for Science and Tech-
nology p. Article 250 (2007)

11. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms.
Proceedings of the 23rd International Conference on Machine Learning (ICML’06) pp. 161–
168 (2006)

12. Chandrasekaran, B., Josephson, J.: What are ontologies, and why do we need them? IEEE
Intelligent systems 14(1), 20–26 (1999)

13. Derriere, S., Preite-Martinez, A., Richard, A.: UCDs and ontologies. ASP Conference Series
351, 449 (2006)

14. Hall, M.: Correlation-based feature selection for machine learning. Ph.D dissertation Hamil-
ton, NZ: Waikato University, Department of Computer Science (1998)

15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The weka data
mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)

16. Hilario, M., Kalousis, A., Nguyen, P., Woznica, A.: A data mining ontology for algorithm
selection and meta-mining. Proceedings of the ECML/PKDD09 Workshop on 3rd generation
Data Mining (SoKD-09) pp. 76–87 (2009)

17. Hirsh, H.: Data mining research: Current status and future opportunities. Statistical Analysis
and Data Mining 1(2), 104–107 (2008)

18. Holte, R.: Very simple classification rules perform well on most commonly used datasets.
Machine Learning 11, 63–91 (1993)

19. Hoste, V., Daelemans, W.: Comparing learning approaches to coreference resolution. there is
more to it than bias. Proceedings of the Workshop on Meta-Learning (ICML-2005) pp. 20–27
(2005)

20. Kalousis, A., Hilario, M.: Building algorithm profiles for prior model selection in knowledge
discovery systems. Engineering Intelligent Systems 8(2) (2000)

21. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: A survey and
empirical demonstration. Data Mining and Knowledge Discovery 7(4), 349–371 (2003)

22. Kietz, J., Serban, F., Bernstein, A., Fischer, S.: Towards cooperative planning of data mining
workflows. Proceedings of the Third Generation Data Mining Workshop at the 2009 European
Conference on Machine Learning (ECML 2009) pp. 1–12 (2009)

23. King, R., Rowland, J., Oliver, S., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham,
M., Pir, P., Soldatova, L., Sparkes, A., Whelan, K., Clare, A.: The automation of science.
Science 324(3)(5923), 85–89 (2009)

24. Manolescu, I., Afanasiev, L., Arion, A., Dittrich, J., Manegold, S., Polyzotis, N., Schnaitter,
K., Senellart, P., Zoupanos, S.: The repeatability experiment of SIGMOD 2008. ACM SIG-
MOD Record 37(1) (2008)

25. Michie, D., Spiegelhalter, D., Taylor, C.: Machine learning, neural and statistical classification.
Ellis Horwood (1994)

14 Experiment Databases 361

26. Nielsen, M.: The future of science: Building a better collective memory. APS Physics 17(10)
(2008)

27. Ochsenbein, F., Williams, R., Davenhall, C., Durand, D., Fernique, P., Hanisch, R., Giaretta,
D., McGlynn, T., Szalay, A., Wicenec, A.: Votable: tabular data for the virtual observatory.
Toward an International Virtual Observatory. Springer pp. 118–123 (2004)

28. Panov, P., Soldatova, L., Džeroski, S.: Towards an ontology of data mining investigations.
Discovery Science (DS09). Lecture Notes in Artificial Intelligence 5808, 257–271 (2009)

29. Pedersen, T.: Empiricism is not a matter of faith. Computational Linguistics 34, 465–470
(2008)

30. Perlich, C., Provost, F., Simonoff, J.: Tree induction vs. logistic regression: A learning-curve
analysis. The Journal of Machine Learning Research 4, 211–255 (2003)

31. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learn-
ing algorithms. Proceedings of the Seventeenth International Conference on Machine Learn-
ing pp. 743–750 (2000)

32. Schaaff, A.: Data in astronomy: From the pipeline to the virtual observatory. Lecture Notes in
Computer Science 4832, 52–62 (2007)

33. Soldatova, L., King, R.: An ontology of scientific experiments. Journal of the Royal Society
Interface 3(11), 795–803 (2006)

34. Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Muller,
K., Pereira, F., Rasmussen, C.E., Ratsch, G., Scholkopf, B., Smola, A., Vincent, P., Weston, J.,
Williamson, R.: The need for open source software in machine learning. Journal of Machine
Learning Research 8, 2443–2466 (2007)

35. Stoeckert, C., Causton, H., Ball, C.: Microarray databases: standards and ontologies. nature
genetics 32, 469–473 (2002)

36. Szalay, A., Gray, J.: The world-wide telescope. Science 293, 2037–2040 (2001)
37. Van Someren, M.: Model class selection and construction: Beyond the procrustean approach

to machine learning applications. Lecture Notes in Computer Science 2049, 196–217 (2001)
38. Vanschoren, J., Van Assche, A., Vens, C., Blockeel, H.: Meta-learning from experiment

databases: An illustration. Proceedings of the 16th Annual Machine Learning Conference
of Belgium and The Netherlands (Benelearn07) pp. 120–127 (2007)

39. Vanschoren, J., Blockeel, H.: Investigating classifier learning behavior with experiment
databases. Data Analysis, Machine Learning and Applications: 31st Annual Conference of
the Gesellschaft für Klassifikation pp. 421–428 (2008)

40. Vanschoren, J., Blockeel, H.: A community-based platform for machine learning experimen-
tation. Lecture Notes in Artificial Intelligence 5782, 750–754 (2009)

41. Vanschoren, J., Blockeel, H., Pfahringer, B.: Experiment databases: Creating a new platform
for meta-learning research. Proceedings of the ICML/UAI/COLT Joint Planning to Learn
Workshop (PlanLearn08) pp. 10–15 (2008)

42. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Organizing the world’s machine
learning information. Communications in Computer and Information Science 17, 693–708
(2008)

43. Vanschoren, J., Pfahringer, B., Holmes, G.: Learning from the past with experiment databases.
Lecture Notes in Artificial Intelligence 5351, 485–492 (2008)

44. Vizcaino, J.A., Cote, R., Reisinger, F., Foster, J.M., Mueller, M., Rameseder, J., Hermjakob,
H., Martens, L.: A guide to the proteomics identifications database proteomics data repository.
Proteomics 9(18), 4276–4283 (2009)

45. Yasuda, N., Mizumoto, Y., Ohishi, M., amd T Budavári, W.O., Haridas, V., Li, N., Malik, T.,
Szalay, A., Hill, M., Linde, T., Mann, B., Page, C.: Astronomical data query language: Simple
query protocol for the virtual observatory. ASP Conference Proceedings 314, 293 (2004)

46. Žáková, M., Kremen, P., Železný, F., Lavrač, N.: Planning to learn with a knowledge discovery
ontology. Second planning to learn workshop at the joint ICML/COLT/UAI Conference pp.
29–34 (2008)

Part IV

Applications

Chapter 15

Predicting Gene Function using

Predictive Clustering Trees

Celine Vens, Leander Schietgat, Jan Struyf, Hendrik Blockeel, Dragi Kocev, and
Sašo Džeroski

Abstract In this chapter, we show how the predictive clustering tree framework can
be used to predict the functions of genes. The gene function prediction task is an
example of a hierarchical multi-label classification (HMC) task: genes may have
multiple functions and these functions are organized in a hierarchy. The hierarchy
of functions can be such that each function has at most one parent (tree structure) or
such that functions may have multiple parents (DAG structure).

We present three predictive clustering tree approaches for the induction of deci-
sion trees for HMC, as well as an empirical study of their use in functional genomics.
We show that the predictive performance of the best of the approaches outperforms
C4.5H, a state-of-the-art decision tree system used in functional genomics, while
yielding equally interpretable results.

By upgrading our method to an ensemble learner, the predictive performances
outperform those of a recently proposed statistical learning method. The ensemble
method also scales better and is easier to use. Our evaluation makes use of precision-
recall-curves. We argue that this is a better evaluation criterion than previously used
criteria.

Celine Vens · Leander Schietgat · Jan Struyf · Hendrik Blockeel
Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium
e-mail: {Celine.Vens,Leander.Schietgat,Jan.Struyf,Hendrik.
Blockeel}@cs.kuleuven.be

Dragi Kocev · Sašo Džeroski
Department of Knowledge Technologies, Jožef Stefan Institute,
Jamova cesta 39, 1000 Ljubljana, Slovenia
e-mail: {Dragi.Kocev,Saso.Dzeroski}@ijs.si

365
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_15, © Springer Science+Business Media, LLC 2010

366 Celine Vens et al.

15.1 Introduction

The completion of several genome projects in the past decade has generated the
full genome sequence of many organisms. Identifying genes in the sequences and
assigning biological functions to them has now become a key challenge in mod-
ern biology. This last step is often guided by automatic discovery processes, which
interact with the laboratory experiments.

More precisely, biologists have a set of possible functions that genes may have,
and these functions are organized in a hierarchy (see Fig. 15.1 for an example). It is
known that a single gene may have multiple functions. Machine learning techniques
are used to predict these gene functions. Afterwards, the predictions with highest
confidence can be tested in the lab.

There are two characteristics of the function prediction task that distinguish it
from common machine learning problems: (1) a single gene may have multiple
functions; and (2) the functions are organized in a hierarchy: a gene that is related
to some function is automatically related to all its parent functions (this is called
the hierarchy constraint). This particular problem setting is known as hierarchical
multi-label classification (HMC).

Several methods can be distinguished that handle HMC tasks. A first approach
transforms an HMC task into a separate binary classification task for each class in
the hierarchy and applies a known classification algorithm. We refer to it as the
SC (single-label classification) approach. This technique has several disadvantages.
First, it is inefficient, because the learner has to be run |C| times, with |C| the number
of classes, which can be hundreds or thousands in this application. Second, from the
knowledge discovery point of view, the learned models identify features relevant for
one class, rather than identifying features with high overall relevance. Finally, the
hierarchy constraint is not taken into account, i.e., it is not automatically imposed
that an instance belonging to a class should belong to all its superclasses.

A second approach is to adapt the SC method, so that this last issue is dealt with.
Some authors have proposed to hierarchically combine the class-wise models in the
prediction stage, so that a classifier constructed for a class c can only predict posi-
tive if the classifier for the parent class of c has predicted positive [4]. In addition,
one can also take the hierarchy constraint into account during training by restrict-

1 METABOLISM
1.1 amino acid metabolism
1.1.3 assimilation of ammonia, metabolism of the glutamate group
1.1.3.1 metabolism of glutamine
1.1.3.1.1 biosynthesis of glutamine
1.1.3.1.2 degradation of glutamine
...
1.2 nitrogen, sulfur, and selenium metabolism
...
2 ENERGY
2.1 glycolysis and gluconeogenesis
...

Fig. 15.1 A small part of the hierarchical FunCat classification scheme [34].

15 Predicting Gene Function using Predictive Clustering Trees 367

ing the training set for the classifier for class c to those instances belonging to the
parent class of c [11, 12]. This approach is called the HSC (hierarchical single-label
classification) approach throughout the text.

A third approach is to develop learners that learn a single multi-label model that
predicts all the classes of an example at once [16, 7]. In this way, the hierarchy
constraint can be taken into account and features can be identified that are relevant
to all classes. We call this the HMC approach.

In this work, we do not only consider tree structured class hierarchies, such as the
example shown in Fig. 15.1, but also support more complex hierarchies structured
as directed acyclic graphs (DAGs), where classes may have multiple parents. The
latter occurs for example in the widely used Gene Ontology classification scheme
[2].

Given our target application of functional genomics, we focus on decision tree
methods, because they yield models that are interpretable for domain experts. Deci-
sion trees are well-known classifiers, which can handle large datasets, and produce
accurate results. In Chapter 7 decision trees have been placed in the predictive clus-
tering tree (PCT) context. We show how the three HMC approaches outlined above
can be set in the PCT framework.

An experimental comparison shows that the approach that learns a single model
(the HMC approach) outperforms the other approaches on all fronts: predictive per-
formance, model size, and induction time. We show that the results obtained by this
method also outperform previously published results for predicting gene functions
in S. cerevisiae (baker’s or brewer’s yeast) and A. thaliana. Moreover, we show
that by upgrading our method to an ensemble technique, classification accuracy im-
proves further. Throughout these comparisons, we use precision-recall curves to
evaluate predictive performance, which are better suited for this type of problems
than commonly used measures such as accuracy, precision and ROC curves.

The text is organized as follows. We start by discussing previous work on HMC
approaches in gene function prediction in Section 15.2. Section 15.3 presents the
three PCT approaches for HMC in detail. In Section 15.4, we describe the precision-
recall based performance measures. Section 15.5 presents the classification schemes
and datasets used in the empirical study described in Section 15.6 and Section 15.7.
Finally, we conclude in Section 15.8.

15.2 Related Work

A number of HMC approaches have been proposed in the area of functional ge-
nomics. Several approaches predict functions of unannotated genes based on known
functions of genes that are nearby in a functional association network or protein-
protein interaction network [46, 13, 29, 15, 35, 30, 45]. These approaches are based
on label propagation, whereas the focus of this work is on learning global predictive
models.

368 Celine Vens et al.

Deng et al. [20] predict gene functions with Markov random fields using protein
interaction data. They learn a model for each gene function separately and ignore
the hierarchical relationships between the functions. Lanckriet et al. [32] represent
the data by means of a kernel function and construct support vector machines for
each gene function separately. They only predict top-level classes in the hierarchy.
Lee et al. [33] have combined the Markov random field approach of [20] with the
SVM approach of [32] by computing diffusion kernels and using them in kernel
logistic regression.

Obozinski et al. [36] present a two-step approach in which SVMs are first learned
independently for each gene function separately (allowing violations of the hier-
archy constraint) and are then reconciliated to enforce the hierarchy constraint.
Barutcuoglu et al. [4] have proposed a similar approach where unthresholded sup-
port vector machines are learned for each gene function separately (allowing vio-
lations of the hierarchy constraint) and then combined using a Bayesian network
so that the predictions are consistent with the hierarchical relationships. Guan et
al. [27] extend this method to an ensemble framework that is based on three classi-
fiers: a classifier that learns a single support vector machine for each gene function,
the Bayesian corrected combination of support vector machines mentioned above,
and a classifier that constructs a single support vector machine per gene function
and per data source and forms a Naive Bayes combination over the data sources.
Valentini and Re [48] also propose a hierarchical ensemble method that uses prob-
abilistic support vector machines as base learners and combines the predictions by
propagating the weighted true path rule both top-down and bottom-up through the
hierarchy, which ensures consistency with the hierarchy constraint.

Rousu et al. [41] present a more direct approach that does not require a second
step to make sure that the hierarchy constraint is satisfied. Their approach is based
on a large margin method for structured output prediction [44, 47]. Such work de-
fines a joint feature map Ψ(x,y) over the input space X and the output space Y . In
the context of HMC, the output space Y is the set of all possible subtrees of the
class hierarchy. Next, it applies SVM based techniques to learn the weights w of
the discriminant function F(x,y) = 〈w,Ψ(x,y)〉, with 〈·, ·〉 the dot product. The dis-
criminant function is then used to classify a (new) instance x as argmaxy∈Y F(x,y).
There are two main challenges that must be tackled when applying this approach
to a structured output prediction problem: (a) defining Ψ , and (b) finding an effi-
cient way to compute the argmax function (the range of this function is Y , which is
of size exponential in the number of classes). Rousu et al. [41] describe a suitable
Ψ and propose an efficient method based on dynamic programming to compute the
argmax. Astikainen et al. [3] extend this work by applying two kernels for structured
output to the prediction of enzymatic reactions.

If a domain expert is interested in knowledge that can provide insight in the
biology behind the predictions, a disadvantage of using support vector machines is
the lack of interpretability: it is very hard to find out why a support vector machine
assigns certain classes to an example, especially if a non-linear kernel is used.

Clare [16] presents an HMC decision tree method in the context of predicting
gene functions of S. cerevisiae. She adapts the well-known decision tree algorithm

15 Predicting Gene Function using Predictive Clustering Trees 369

C4.5 [39] to cope with the issues introduced by the HMC task. First, where C4.5
normally uses class entropy for choosing the best split, her version uses the sum of
entropies of the class variables. Second, she extends the method to predict classes
on several levels of the hierarchy, assigning a larger cost to misclassifications higher
up in the hierarchy. The resulting tree is transformed into a set of rules, and the
best rules are selected, based on a significance test on a validation set. Note that
this last step violates the hierarchy constraint, since rules predicting a class can be
dropped while rules predicting its subclasses are kept. The non-hierarchical version
of her method was later used to predict gene functions for A. thaliana [17]. Here the
annotations are considered one level at the time, which also results in violations of
the hierarchy constraint.

Geurts et al. [25] recently presented a decision tree based approach related to
predictive clustering trees. They start from a different definition of variance and
then kernelize this variance function. The result is a decision tree induction system
that can be applied to structured output prediction using a method similar to the
large margin methods mentioned above [47, 44]. Therefore, this system could also
be used for HMC after defining a suitable kernel. To this end, an approach similar
to that of Rousu et al. [41] could be used.

Blockeel et al. [7, 5] proposed the idea of using predictive clustering trees [6]
for HMC tasks. This work [7] presents the first thorough empirical comparison be-
tween an HMC and SC decision tree method in the context of tree shaped class
hierarchies. Vens et al. [49] extend the algorithm towards hierarchies structured as
DAGs and show that learning one decision tree for predicting all classes simulta-
neously, outperforms learning one tree per class (even if those trees are built taking
into account the hierarchy). In Schietgat et al. [42], the predictive performance of the
HMC method and ensembles thereof is compared to results reported in the biomed-
ical literature. The latter two articles form the basis for this chapter.

15.3 Predictive Clustering Tree Approaches for HMC

We start this section by defining the HMC task more formally (Section 15.3.1). Next,
we instantiate three decision tree algorithms for HMC tasks in the PCT framework:
an HMC algorithm (Section 15.3.2), an SC algorithm (Section 15.3.3), and an HSC
algorithm (Section 15.3.4).

15.3.1 Formal Task Description

We define the task of hierarchical multi-label classification as follows:

Given:

• an instance space X ,

370 Celine Vens et al.

• a class hierarchy (C,≤h), where C is a set of classes and ≤h is a partial order
representing the superclass relationship (for all c1,c2 ∈C: c1 ≤h c2 if and only if
c1 is a superclass of c2),

• a set T of examples (xk,Sk) with xk ∈ X and Sk ⊆C such that c ∈ Sk ⇒∀c′ ≤h c :
c′ ∈ Sk, and

• a quality criterion q (which typically rewards models with high predictive accu-
racy and low complexity).

Find: a function f : X → 2C (where 2C is the power set of C) such that f maximizes
q and c ∈ f (x) ⇒ ∀c′ ≤h c : c′ ∈ f (x). We call this last condition the hierarchy
constraint.

In our work, the function f is represented with predictive clustering trees.

15.3.2 Clus-HMC: An HMC Decision Tree Learner

The approach that we present is based on decision trees and is set in the predic-
tive clustering tree (PCT) framework [6], see Chapter 7. This framework views a
decision tree as a hierarchy of clusters: the top-node corresponds to one cluster con-
taining all training examples, which is recursively partitioned into smaller clusters
while moving down the tree. PCTs can be applied to both clustering and prediction
tasks. The PCT framework is implemented in the CLUS system, which is available
at http://dtai.cs.kuleuven.be/clus.

Before explaining the approach in more detail, we show an example of a (partial)
predictive clustering tree predicting the functions of S. cerevisiae using homology
data from Clare [16] (Fig. 15.2). The homology features are based on a sequence
similarity search for each gene in yeast against all the genes in SwissProt. The func-
tions are taken from the FunCat classification scheme [34]. Each internal node of
the tree contains a test on one of the features in the dataset. Here, the attributes are
binary and have been obtained after preprocessing the relational data with a fre-
quent pattern miner. The root node, for instance, tests whether there exists a Swis-
sProt protein that has a high similarity (e-value < 1.0 · 10−8) with the gene under
consideration G, is classified into the rhizobiaceae group and has references to the
database Interpro. In order to predict the functions of a new gene, the gene is routed
down the tree according to the outcome of the tests. When a leaf node is reached,
the gene is assigned the functions that are stored in it. Only the most specific func-
tions are shown in the figure. In the rest of this section, we explain how the PCT is
constructed. A detailed explanation is given in Vens et al. [49].

PCTs [6] are explained in Chapter 7 and can be constructed with a standard “top-
down induction of decision trees” (TDIDT) algorithm, similar to CART [10] or C4.5
[39]. The algorithm (see Fig. 7.1) takes as input a set of training instances (i.e., the
genes and their annotations). It searches for the best acceptable test that can be put
in a node. If such a test can be found then the algorithm creates a new internal
node and calls itself recursively to construct a subtree for each subset (cluster) in

15 Predicting Gene Function using Predictive Clustering Trees 371

Fig. 15.2 Example of a predictive clustering tree, where the functions of a gene G are predicted,
based on homology data.

the partition induced by the test on the training instances. To select the best test,
the algorithm scores the tests by the reduction in variance (which is to be defined
further) they induce on the instances. Maximizing variance reduction maximizes
cluster homogeneity and improves predictive performance. If no acceptable test can
be found, that is, if no test significantly reduces variance, then the algorithm creates
a leaf and labels it with a representative case, or prototype, of the given instances.

To apply PCTs to the task of hierarchical multi-label classification, the variance
and prototype are instantiated as follows [49].

First, the set of labels of each example is represented as a vector with binary
components; the i’th component of the vector is 1 if the example belongs to class ci
and 0 otherwise. It is easily checked that the arithmetic mean of a set of such vectors
contains as i’th component the proportion of examples of the set belonging to class
ci. We define the variance of a set of examples as the average squared distance
between each example’s class vector vk and the set’s mean class vector v, i.e.,

Var(S) =
∑k d(vk,v)2

|S| .

In HMC applications, it is generally considered more important to avoid making
mistakes for terms at higher levels of the hierarchy than for terms at lower levels. For
example in gene function prediction, predicting an “energy” gene function (i.e. Fun-
Cat class 1, see Fig. 15.1) while the gene is involved in “metabolism” (FunCat class
2) is worse than predicting “biosynthesis of glutamine” (FunCat class 1.1.3.1.1) in-
stead of “degradation of glutamine” (FunCat class 1.1.3.1.2). To that aim, we use a
weighted Euclidean distance

372 Celine Vens et al.

Fig. 15.3 (a) A toy hierarchy.
Class label names reflect the
position in the hierarchy,
e.g., ‘2/1’ is a subclass of
‘2’. (b) The set of classes
{1,2,2/2}, indicated in bold in
the hierarchy, and represented
as a vector.

1 2

2.1 2.2

3 1 (1) 2 (2)

2.1 (3) 2.2 (4)

3 (5)

(a) (b)

vi = [1,
(1)

1,
(2)

0,
(3)

1,
(4)

0
(5)

]

d(v1,v2) =
√

∑
i

w(ci) · (v1,i− v2,i)2,

where vk,i is the i’th component of the class vector vk of an instance xk, and the
class weights w(c) decrease with the depth of the class in the hierarchy. We choose
w(c) = w0 · avg w(par j(c)), where par j(c) denotes the j’th parent of class c (the
top-level classes have an artificial root class with weight w(root) = 1) and 0 < w0 <
1. Note that our definition of w(c) allows the classes to be structured in a DAG,
as is the case with the Gene Ontology. Consider for example the class hierarchy
shown in Fig. 15.3, and two examples (x1,S1) and (x2,S2) with S1 = {1,2,2/2} and
S2 = {2}. Using a vector representation with consecutive components representing
membership of class 1, 2, 2/1, 2/2 and 3, in that order,

d([1,1,0,1,0], [0,1,0,0,0]) =
√

w0 +w2
0.

The heuristic for choosing the best test for a node of the tree is then maximization
of the variance reduction as discussed before, with the above definition of variance.

Second, a classification tree stores in a leaf the majority class for that leaf; this
class will be the tree’s prediction for examples arriving in the leaf. But in our case,
since an example may have multiple classes, the notion of “majority class” does
not apply in a straightforward manner. Instead, the mean v̄ of the class vectors of the
examples in that leaf is stored. Recall that v̄i is the proportion of examples in the leaf
belonging to ci. An example arriving in the leaf can therefore be predicted to belong
to class ci if v̄i is above some threshold ti, which can be chosen by a domain expert.
To ensure that the predictions fulfil the hierarchy constraint (whenever a class is
predicted its superclasses are also predicted), it suffices to choose ti ≤ t j whenever
ci is a superclass of c j. The PCT that is shown in Fig. 15.2 has a threshold of ti = 0.4
for all i.

We call the resulting instantiation of the PCT algorithm in the CLUS system
CLUS-HMC.

15.3.3 Clus-SC: Learning a Separate Tree for Each Class

The second approach that we consider builds a separate tree for each class in the hi-
erarchy. Each of these trees is a single-label binary classification tree. Assume that

15 Predicting Gene Function using Predictive Clustering Trees 373

the tree learner takes as input a set of examples labeled positive or negative. To con-
struct the tree for class c with such a learner, we label the class c examples positive
and all the other examples negative. The resulting tree predicts the probability that
a new instance belongs to c. We refer to this method as single-label classification
(SC).

In order to classify a new instance, SC thresholds the predictions of the different
single-label trees, similar to CLUS-HMC. Note, however, that this does not guaran-
tee that the hierarchy constraint holds, even if the thresholds are chosen such that
ti ≤ t j whenever ci ≤h c j.

The class-wise trees can be constructed with any classification tree induction al-
gorithm. Note that CLUS-HMC reduces to a single-label binary classification tree
learner when applied to such data; its class vector then reduces to a single compo-
nent and its heuristic reduces to CART’s Gini index [10]. We can therefore use the
same induction algorithm (CLUS-HMC) for both the HMC and SC approaches.
This makes the results easier to interpret. It has been confirmed [7] that on binary
classification tasks, CLUS-HMC performs comparably to state-of-the-art decision
tree learners. We call the SC approach with CLUS-HMC as decision tree learner
CLUS-SC.

15.3.4 Clus-HSC: Learning a Separate Tree for Each Hierarchy
Edge

Building a separate decision tree for each class has several disadvantages, such as
the possibility of violating the hierarchy constraint. In order to deal with this issue,
the CLUS-SC algorithm can be adapted as follows.

For a non top-level class c in a tree structured hierarchy, it holds that an instance
can only belong to c if it belongs to c’s parent par(c). An alternative approach to
learning a tree that directly predicts c, is therefore to learn a tree that predicts c given
that the instance belongs to par(c). Learning such a tree requires fewer training
instances: only the instances belonging to par(c) are relevant. The subset of these
instances that also belong to c become the positive instances and the other instances
(those belonging to par(c) but not to c) the negative instances. The resulting tree
predicts the conditional probability P(c | par(c)). W.r.t. the top-level classes, the
approach is identical to CLUS-SC, i.e., all training instances are used.

To make predictions for a new instance, we use the product rule P(c) =
P(c | par(c)) ·P(par(c)) (for non top-level classes). This rule applies the trees re-
cursively, starting from the tree for a top-level class. For example, to compute the
probability that the instance belongs to class 2.2, we first use the tree for class 2
to predict P(2) and next the tree for class 2.2 to predict P(2.2 | 2). The resulting
probability is then P(2.2) = P(2.2 | 2) ·P(2). For DAG structured hierarchies, the
product rule can be applied for each parent class separately, and will yield a valid
estimate of P(c) based on that parent. To obtain an estimate of P(c) based on all
parent classes, we aggregate over the parent-wise estimates. In order to fulfil the

374 Celine Vens et al.

hierarchy constraint, we use as aggregate function the minimum of the parent-wise
estimates, i.e., P(c) = min j P(c | par j(c)) ·P(par j(c)).

Again, these probabilities are thresholded to obtain the predicted set of classes.
As with CLUS-HMC, to ensure that this set fulfills the hierarchy constraint, it suf-
fices to choose a threshold ti ≤ t j whenever ci ≤h c j. We call the resulting algorithm
CLUS-HSC (hierarchical single-label classification).

15.3.5 Ensembles of Predictive Clustering Trees

Ensemble methods are learning methods that construct a set of classifiers for a given
prediction task and classify new examples by combining the predictions of each
classifier. In this chapter, we consider bagging, an ensemble learning technique that
has primarily been used in the context of decision trees.

Bagging [8] is an ensemble method where the different classifiers are constructed
by making bootstrap replicates of the training set and using each of these replicates
to construct one classifier. Each bootstrap sample is obtained by randomly sampling
training instances, with replacement, from the original training set, until an equal
number of instances is obtained. The individual predictions given by each classifier
can be combined by taking the average (for numeric targets) or the majority vote (for
nominal targets). Breiman [8] has shown that bagging can give substantial gains
in predictive performance of decision tree learners. Also in the case of learning
PCTs for predicting multiple targets at once, decision tree methods benefit from the
application of bagging [31]. However, it is clear that, by using bagging on top of the
PCT algorithm, the learning time of the model increases significantly, resulting in
a clear trade-off between predictive performance and efficiency to be considered by
the user.

The algorithm for bagging the PCTs takes an extra parameter k as input that de-
notes the number of trees in the ensemble. In order to make predictions, the average
of all class vectors predicted by the k trees in the ensemble is computed, and then
the threshold is applied as before. This ensures that the hierarchy constraint holds.

In the experiments, we will use bagged CLUS-HMC trees. We call the resulting
instantiation of the bagging algorithm around the CLUS-HMC algorithm CLUS-
HMC-ENS.

15.4 Evaluation Measure

We will report our predictive performance results with precision-recall curves. Pre-
cision is the probability that a positive prediction is correct, and recall is the proba-
bility that a positive instance is predicted positive. Remember that every leaf in the
tree contains a vector v̄ with for each class the probability that the instance has this
class. When decreasing CLUS-HMC’s prediction threshold ti from 1 to 0, an in-

15 Predicting Gene Function using Predictive Clustering Trees 375

creasing number of instances is predicted as belonging to class ci, causing the recall
for ci to increase whereas precision may increase or decrease (with normally a ten-
dency to decrease). Thus, a tree with specified threshold has a single precision and
recall, and by varying the threshold a precision-recall curve (PR curve) is obtained.
Such curves allow us to evaluate the predictive performance of a model regardless
of t. In the end, a domain expert can choose a threshold according to the point on
the curve which is most interesting to him.

Our decision to conduct a precision-recall based evaluation is motivated by the
following three observations: (1) precision-recall evaluation was used in earlier ap-
proaches to gene function prediction [20, 15], (2) it allows one to simultaneously
compare classifiers for different classification thresholds, and (3) it suits the charac-
teristics of typical HMC datasets, in which many classes are infrequent (i.e., typi-
cally only a few genes have a particular function). Viewed as a binary classification
task for each class, this implies that for most classes the number of negative in-
stances by far exceeds the number of positive instances. We are more interested in
recognizing the positive instances (i.e., that a gene has a given function), rather than
correctly predicting the negative ones (i.e., that a gene does not have a particular
function). ROC curves [38] are less suited for this task, exactly because they reward
a learner if it correctly predicts negative instances (giving rise to a low false posi-
tive rate). This can present an overly optimistic view of the algorithm’s performance
[19].

Although a PR curve helps in understanding the predictive behavior of the model,
a single performance score is more useful to compare models. A score often used
to this end is the area between the PR curve and the recall axis, the so-called “area
under the PR curve” (AUPRC). The closer the AUPRC is to 1.0, the better the model
is.

With hundreds of classes, each of which has its own PR curve, there is the ques-
tion of how to evaluate the overall performance of a system. We can construct a
single “average” PR curve for all classes together by transforming the multi-label
problem into a binary single-label one, i.e., by counting instance-class-couples in-
stead of instances [49]. An instance-class couple is (predicted) positive if the in-
stance has (is predicted to have) that class, it is (predicted) negative otherwise. The
definition of precision and recall is then as before. We call the corresponding area
the “area under the average PR curve” (AU(PRC)).

15.5 Datasets

Gene functions are categorized into ontologies for several reasons. First, they pro-
vide biologists with a controlled vocabulary; second, they reflect biological interde-
pendences; and third, they ease the use of computational analysis. In this work, we
consider two such ontologies: the Functional Catalogue and the Gene Ontology.

The MIPS Functional Catalogue (FunCat, http://mips.gsf.de/
projects/funcat) [34] is a tree structured vocabulary with functional descrip-

376 Celine Vens et al.

Table 15.1 Saccharomyces cerevisiae data set properties: number of instances |D|, number of
attributes |A|.

Data set |D| |A| Data set |D| |A|
D1 Sequence [16] (seq) 3932 478 D7 DeRisi et al. [21] (derisi) 3733 63
D2 Phenotype [16] (pheno) 1592 69 D8 Eisen et al. [22] (eisen) 2425 79
D3 Secondary structure [16] (struc) 3851 19628 D9 Gasch et al. [24] (gasch1) 3773 173
D4 Homology search [16] (hom) 3867 47034 D10 Gasch et al. [23] (gasch2) 3788 52
D5 Spellman et al. [43] (cellcycle) 3766 77 D11 Chu et al. [14] (spo) 3711 80
D6 Roth et al. [40] (church) 3764 27 D12 All microarray [16] (expr) 3788 551

tions of gene products, consisting of 28 main categories. A small part of it is shown
in Fig.15.1.

The structure of the Gene Ontology (GO, http://www.geneontology.
org) [2] scheme differs substantially from FunCat, as it is not strictly hierarchical
but organized as directed acyclic graphs, i.e. it allows more than one parent term per
child. Another difference of the GO architecture is that it is organized as three sepa-
rate ontologies: biological process, molecular function, and cellular localization. As
can be seen in Table 15.3, GO has much more terms than FunCat.

Next to using two different classification schemes, we predict gene functions
of two organisms: Saccharomyces cerevisiae and Arabidopsis thaliana, two of
biology’s classic model organisms. We use datasets described in [4], [16], and
[17], with different sources of data that highlight different aspects of gene func-
tion. All datasets are available at the following webpage: http://dtai.cs.
kuleuven.be/clus/hmc-ens.

15.5.1 Saccharomyces cerevisiae datasets

The first dataset we use (D0) was described by Barutcuoglu et al. [4] and is a com-
bination of different data sources. The input feature vector for a gene consists of
pairwise interaction information, membership to colocalization locale, possession
of transcription factor binding sites and results from microarray experiments, yield-
ing a dataset with in total 5930 features. The 3465 genes are annotated with function
terms from a subset of 105 nodes from the Gene Ontology’s biological process hi-
erarchy.

We also use the 12 yeast datasets (D1−D12) from [16] (Table 15.1). The datasets
describe different aspects of the genes in the yeast genome. They include five types
of bioinformatics data: sequence statistics, phenotype, secondary structure, homol-
ogy, and expression. The different sources of data highlight different aspects of gene
function. The genes are annotated with functions from the FunCat classification
schemes. Only annotations from the first four levels are given.

15 Predicting Gene Function using Predictive Clustering Trees 377

Table 15.2 Arabidopsis thaliana data set properties: number of instances |D|, number of attributes
|A|.

Data set |D| |A| Data set |D| |A|
D13 Sequence (seq) 3719 4450 D14 Expression (exprindiv) 3496 1251
D15 SCOP superfamily (scop) 3097 2003 D16 Secondary structure (struc) 3719 14804
D17 InterProScan data (interpro) 3719 2815 D18 Homology search (hom) 3473 72870

D1 (seq) records sequence statistics that depend on the amino acid sequence of
the protein for which the gene codes. These include amino acid frequency ratios,
sequence length, molecular weight and hydrophobicity.

D2 (pheno) contains phenotype data, which represents the growth or lack of
growth of knock-out mutants that are missing the gene in question. The gene is
removed or disabled and the resulting organism is grown with a variety of media to
determine what the modified organism might be sensitive or resistant to.

D3 (struc) stores features computed from the secondary structure of the yeast
proteins. The secondary structure is not known for all yeast genes; however, it can be
predicted from the protein sequence with reasonable accuracy, using Prof [37]. Due
to the relational nature of secondary structure data, Clare performed a preprocessing
step of relational frequent pattern mining; D3 includes the constructed patterns as
binary attributes.

D4 (hom) includes for each yeast gene, information from other, homologous
genes. Homology is usually determined by sequence similarity; here, PSI-BLAST
[1] was used to compare yeast genes both with other yeast genes and with all genes
indexed in SwissProt v39. This provided for each yeast gene a list of homologous
genes. For each of these, various properties were extracted (keywords, sequence
length, names of databases they are listed in, ...). Clare preprocessed this data in a
similar way as the secondary structure data to produce binary attributes.

D5, . . . ,D12. Many microarray datasets exist for yeast and several of these were
used [16]. Attributes for these datasets are real valued, representing fold changes in
expression levels.

15.5.2 Arabidopsis thaliana datasets

We use six datasets from [17] (Table 15.2), originating from different sources: se-
quence statistics, expression, predicted SCOP class, predicted secondary structure,
InterPro and homology. Each dataset comes in two versions: with annotations from
the FunCat classification scheme and from the Gene Ontology’s molecular function
hierarchy. Again, only annotations for the first four levels are given. We use the
manual annotations for both schemes.

D13 (seq) records sequence statistics in exactly the same way as for S. cerevisiae.
D14 (exprindiv) contains 43 experiments from NASC’s Affymetrix service “Affy-

378 Celine Vens et al.

Table 15.3 Properties of the two classification schemes for the updated yeast datasets. |C| is the
average number of classes actually used in the data sets (out of the total number of classes defined
by the scheme). |S| is the average number of labels per example, with between parentheses the
average number counting only the most specific classes of an example.

FunCat GO

Scheme version 2.1 (2007/01/09) 1.2 (2007/04/11)
Yeast annotations 2007/03/16 2007/04/07
Total classes 1362 22960
Data set average |C| 492 (6 levels) 3997 (14 levels)
Data set average |S| 8.8 (3.2 most spec.) 35.0 (5.0 most spec.)

watch” (http://affymetrix.arabidopsis.info/AffyWatch.html),
taking the signal, detection call and detection p-values. D15 (scop) consists of SCOP
superfamily class predictions made by the Superfamily server [26]. D16 (struc)
was obtained in the same way as for S. cerevisiae. D17 (interpro) includes features
from several motif or signature finding databases, like PROSITE, PRINTS, Pfam,
ProDom, SMART and TIGRFAMs, calculated using the EBI’s stand-alone Inter-
ProScan package [51]. To obtain features, the relational data was mined in the same
manner as the structure data. D18 (hom) was obtained in the same way as for S. cere-
visiae, but now using SWISSPROT v41.

15.6 Comparison of Clus-HMC/SC/HSC

In order to compare the three PCT approaches for HMC tasks, we use the 12 yeast
data sets D1 to D12 from Clare [16], but with new and updated class labels. We
construct two versions of each data set. The input attributes are identical in both
versions, but the classes are taken from the two different classification schemes
FunCat and GO (we use GO’s “is-a” relationship between terms). GO has an or-
der of magnitude more classes than FunCat for our data sets: the FunCat datasets
have 1362 classes on average, spread over 6 levels, while the GO datasets have
3997 classes, spread over 14 levels, see Table 15.3. The 24 resulting datasets can be
found on the following webpage: http://dtai.cs.kuleuven.be/clus/
hmcdatasets.html.

CLUS-HMC was run as follows. For the weights used in the weighted Euclidean
distance in the variance calculation, w0 was set to 0.75. The minimal number of
examples a leaf has to cover was set to 5. The F-test stopping criterion takes a
“significance level” parameter s, which was optimized as follows: for each out of
6 available values for s, CLUS-HMC was run on 2/3 of the training set and its PR
curve for the remaining 1/3 validation set was constructed. The s parameter yielding
the largest area under this average validation PR curve was then used to train the
model on the complete training set. The results for CLUS-SC and CLUS-HSC were

15 Predicting Gene Function using Predictive Clustering Trees 379

Table 15.4 Predictive performance (AU(PRC)) of CLUS-HMC, CLUS-SC and CLUS-HSC.

FunCat labels GO labels

Data set HMC HSC SC HMC HSC SC

seq 0.211 0.091 0.095 0.386 0.282 0.197
pheno 0.160 0.152 0.149 0.337 0.416 0.316
struc 0.181 0.118 0.114 0.358 0.353 0.228
hom 0.254 0.155 0.153 0.401 0.353 0.252
cellcycle 0.172 0.111 0.106 0.357 0.371 0.252
church 0.170 0.131 0.128 0.348 0.397 0.289
derisi 0.175 0.094 0.089 0.355 0.349 0.218
eisen 0.204 0.127 0.132 0.380 0.365 0.270
gasch1 0.205 0.106 0.104 0.371 0.351 0.239
gasch2 0.195 0.121 0.119 0.365 0.378 0.267
spo 0.186 0.103 0.098 0.352 0.371 0.213
expr 0.210 0.127 0.123 0.368 0.351 0.249

Average: 0.194 0.120 0.118 0.365 0.361 0.249

obtained in the same way as for CLUS-HMC, but with a separate run for each class
(including separate optimization of s for each class).

Each algorithm was trained on 2/3 of each data set and tested on the remaining
1/3.

Table 15.4 shows the AU(PRC) of the three decision tree algorithms. Table 15.5
shows summarizing Wilcoxon outcomes comparing the AU(PRC) of CLUS-HMC
to CLUS-SC and CLUS-HSC1. We see that CLUS-HMC performs better than
CLUS-SC and CLUS-HSC, both for FunCat and GO. We see also that CLUS-HSC
performs better than CLUS-SC on FunCat and on GO.

Table 15.6 shows the average number of leaves in the trees. We see that the SC
trees are smaller than the HMC trees, because they each model only one class. Nev-
ertheless, the total size of all SC trees is on average a factor 398 (FunCat) and 1392
(GO) larger than the corresponding HMC tree. This difference is bigger for GO
than for FunCat because GO has an order of magnitude more classes and therefore
also an order of magnitude more SC trees. Comparing HMC to HSC yields similar
conclusions.

Observe that the HSC trees are smaller than the SC trees. We see two reasons
for this. First, HSC trees encode less knowledge than SC ones because they are
conditioned on their parent class. That is, if a given feature subset is relevant to all

1 Given a pair of methods X and Y , the input to the Wilcoxon test is the test set performance
(AUPRC) of the two methods on the 12 data sets. The null-hypothesis is that the median of the
performance difference Zi = Yi−Xi is zero. Briefly, the test orders the Zi values by absolute value
and then assigns them integer ranks such that the smallest |Zi| is ranked 1. It then computes the
rank sum of the positive (W+) and negative (W−) Zi. If W+ >W−, then Y is better than X because
the distribution of Z is skewed to the right. Let S = min(W+,W−). The p-value of the test is the
probability of obtaining a sum of ranks (W+ or W−) smaller than or equal to S, given that the
null-hypothesis is true. In the results, we report the p-value together with W+ and W−.

380 Celine Vens et al.

Table 15.5 Comparison of the AU(PRC) of CLUS-HMC, CLUS-SC and CLUS-HSC. A ‘⊕’
(‘)’) means that the first method performs better (worse) than the second method according to
the Wilcoxon signed rank test. The table indicates the rank sums and corresponding p-values. Dif-
ferences significant at the 0.01 level are indicated in bold.

HMC vs. SC HMC vs. HSC HSC vs. SC

Score p Score p Score p

FunCat ⊕78/0 4.9 ·10−4 ⊕78/0 4.9 ·10−4 ⊕62/16 7.7 ·10−2

GO ⊕78/0 4.9 ·10−4 ⊕43/35 7.9 ·10−1 ⊕78/0 4.9 ·10−4

classes in a sub-lattice of the hierarchy, then CLUS-SC must include this subset in
each tree of the sub-lattice, while CLUS-HSC only needs them in the trees for the
sub-lattice’s most general border. Second, HSC trees use fewer training examples
than SC trees, and tree size typically grows with training set size.

We also measure the total induction time for all methods. CLUS-HMC requires
on average 3.3 (FunCat) and 24.4 (GO) minutes to build a tree. CLUS-SC is a factor
58.6 (FunCat) and 129.0 (GO) slower than CLUS-HMC. CLUS-HSC is faster than
CLUS-SC, but still a factor 6.3 (FunCat) and 55.9 (GO) slower than CLUS-HMC.

Table 15.6 Average tree size (number of tree leaves) for FunCat and GO datasets. For CLUS-SC
and CLUS-HSC we report both the total number of leaves in the collection of trees, and the average
number of leaves per tree.

CLUS-HMC CLUS-SC CLUS-HSC

Total Average Total Average

FunCat 19.8 7878 15.9 3628 7.3
GO 22.2 30908 7.6 16988 3.0

15.7 Comparison of (Ensembles of) CLUS-HMC to

State-of-the-art Methods

15.7.1 Comparison of CLUS-HMC to Decision Tree based
Approaches

The previous section clearly showed the superiority of CLUS-HMC over CLUS-
HSC and CLUS-SC. We now investigate how this method performs compared to
state-of-the-art decision tree methods for functional genomics. As explained in Sec-
tion 15.2, Clare [16] has presented an adaptation of the C4.5 decision tree algorithm
towards HMC tasks. We compare our results to the results reported by Clare and

15 Predicting Gene Function using Predictive Clustering Trees 381

Fig. 15.4 Left: Average pre-
cision/recall over all classes
for C4.5H, CLUS-HMC and
CLUS-HMC-ENS on D4 with
FunCat annotations. Right:
Precision-recall curve for
class 29 on D4 with FunCat
annotations.

King [18] on S. cerevisiae (D1 to D12), and by Clare et al. [17] on A. thaliana D13

to D18. The datasets that we use in this evaluation are exactly those datasets that are
used in the mentioned articles. For the 18 datasets that are annotated with FunCat
classes, we will compare to the hierarchical extension of C4.5 [18], which we will
refer to as C4.5H. For the 6 datasets with GO annotations, we will use the non-
hierarchical version [17], as C4.5H cannot handle hierarchies structured as a DAG.
We refer to this system as C4.5M. For CLUS-HMC, all parameters were set as in
the previous experiment.

For evaluating their systems, Clare et al. [17] report average precision. Indeed,
as the biological experiments required to validate the learned rules are costly, it is
important to avoid false positives. However, precision is always traded off by recall:
a classifier that predicts one example positive, but misses 1000 other positive ex-
amples may have a precision of 1, although it can hardly be called a good classifier.
Therefore, we also computed the average recall of the models obtained by C4.5H/M.
These models were presented as rules derived from the trees, which enables us to
plot only one point in PR space.

For each of the datasets these PR points are plotted against the average PR curves
for CLUS-HMC. As we are comparing curves with points, we speak of a “win” for
CLUS-HMC when its curve is above C4.5H/M’s point, and of a “loss” when it
is below the point. Under the null hypothesis that both systems perform equally
well, we expect as many wins as losses. We observed that only in one case out of
24, C4.5H/M outperforms CLUS-HMC. For all other cases there is a clear win for
CLUS-HMC. Representative PR curves can be found in Fig. 15.4 (left) and 15.5.
For each of these datasets, we also compared the precision of C4.5H/M and CLUS-
HMC, at the recall obtained by C4.5H/M. The results can be found in Fig. 15.6.
The average gain in precision w.r.t. C4.5H/M is 0.209 for CLUS-HMC. Note that
these figures also contain the results for the ensemble version of CLUS-HMC (see
further).

Every leaf of a decision tree corresponds to an if ... then ... rule. When comparing
the interpretability and precision/recall of these individual rules, CLUS-HMC also
performs well. For instance, take FunCat class 29, with a prior frequency of 3%.
Figure 15.4 (right) shows the PR evaluation for the algorithms for this class using
homology dataset D4. The PR point for C4.5H corresponds to one rule, shown in
Fig. 15.7. This rule has a precision/recall of 0.55/0.17. CLUS-HMC’s most precise
rule for 29 is shown in Fig. 15.8. This rule has a precision/recall of 0.90/0.26.

382 Celine Vens et al.

We can conclude that if interpretable models are to be obtained, CLUS-HMC is
the system that yields the best predictive performance. Compared with other existing
methods, we are able to obtain the same precision with higher recall, or the same
recall with higher precision. Moreover, the hierarchy constraint is always fulfilled,
which is not the case for C4.5H/M.

15.7.2 Comparison of Ensembles of CLUS-HMC to an SVM
based Approach

As explained in Sect. 15.3.5, we have extended CLUS-HMC to an ensemble induc-
tion algorithm (referred to as CLUS-HMC-ENS) in order to increase its predictive
performance. More precisely, we built a bagging procedure around the PCT induc-
tion algorithm, each bag containing 50 trees in all experiments. As can be seen in
Figures 15.4, 15.5, and 15.6, the improvement in predictive performance that is ob-
tained by using ensembles carries over to the HMC setting.

We now compare CLUS-HMC-ENS to Bayesian-corrected SVMs [4]. This
method was discussed in Sect. 15.2, and we refer to it as BSVM.

Barutcuoglu et al. [4] have used one dataset (D0) to evaluate their method. It is a
combination of different data sources. The input feature vector for each S. cerevisiae
gene consists of pairwise interaction information, membership to colocalization lo-
cale, possession of transcription factor binding sites, and results from microarray
experiments. The genes are annotated with function terms from a subset of 105
nodes from the Gene Ontology’s biological process hierarchy. They report class-
wise area under the ROC convex hull (AUROC) for these 105 functions. Although
we have argued that precision-recall based evaluation is more suited for HMC prob-
lems, we adopt the same evaluation metric for this comparison. We also use the
same evaluation method, which is based on out-of-bag estimates [9].

Fig. 15.9 compares the classwise out-of-bag AUROC estimates for CLUS-HMC-
ENS and BSVM outputs. CLUS-HMC-ENS scores better on 73 of the 105 functions,
while BSVM scores better on the remaining 32 cases. According to the (two-sided)
Wilcoxon signed rank test [50], the performance of CLUS-HMC-ENS is signifi-
cantly better (p = 4.37 ·10−5).

Fig. 15.5 Left: Average pre-
cision/recall over all classes
for C4.5H, CLUS-HMC and
CLUS-HMC-ENS on D16
with FunCat annotations.
Right: Average curve for
C4.5M, CLUS-HMC and
CLUS-HMC-ENS on D13
with GO annotations.

15 Predicting Gene Function using Predictive Clustering Trees 383

Fig. 15.6 Precision of the
C4.5H/M, CLUS-HMC
and CLUS-HMC-ENS algo-
rithms, at the recall obtained
by C4.5H/M on FunCat (FC)
and Gene Ontology (GO)
annotations. The dark grey
surface represents the gain in
precision obtained by CLUS-
HMC, the light grey surface
represents the gain for CLUS-
HMC-ENS. D14(FC) was not
included, since C4.5H did not
find significant rules.

Moreover, CLUS-HMC-ENS is faster than BSVM. Run times are compared for
one of the previously used datasets having annotations from Gene Ontology’s com-

if the ORF is NOT homologous to another yeast protein (e≥ 0.73)
and homologous to a protein in rhodospirillaceae (e < 1.0 ·10−8)

and NOT homologous to another yeast protein (5.0 ·10−4 < e <
3.3 ·10−2) and homologous to a protein in anabaena (e≥ 1.1)

and homologous to another yeast protein (2.0 ·10−7 < e < 5.0 ·10−4)
and homologous to a protein in beta subdivision (e < 1.0 ·10−8)

and NOT homologous to a protein in sinorhizobium with keyword
transmembrane (e≥ 1.1)

and NOT homologous to a protein in entomopoxvirinae with dbref pir
(e≥ 1.1)

and NOT homologous to a protein in t4-like phages with molecular weight
between 1485 and 38502 (4.5 ·10−2 < e < 1.1)

and NOT homologous to a protein in chroococcales with dbref prints
(1.0 ·10−8 < e < 4.0 ·10−4)

and NOT homologous to a protein with sequence length between 344 and 483
and dbref tigr (e < 1.0 ·10−8)

and homologous to a protein in beta subdivision with sequence length between
16 and 344 (e < 1.0 ·10−8)

then class 29/0/0/0 ”transposable elements, viral and plasmid proteins”

Fig. 15.7 Rule found by C4.5H on the D4 homology dataset.

if the ORF is NOT homologous to a protein in rhizobiaceae group
with dbref interpro (e < 1.0 ·10−8)

and NOT homologous to a protein in desulfurococcales (e < 1.0 ·10−8)
and homologous to a protein in ascomycota with dbref transfac

(e < 1.0 ·10−8)
and homologous to a protein in viridiplantae with sequence length ≥ 970

(e < 1.0 ·10−8)
and homologous to a protein in rhizobium with keyword plasmid

(1.0 ·10−8 < e < 4.0 ·10−4)
and homologous to a protein in nicotiana with dbref interpro (e < 1.0 ·10−8)
then class 29/0/0/0 ”transposable elements, viral and plasmid proteins”

Fig. 15.8 Rule found by CLUS-HMC on the D4 homology dataset.

384 Celine Vens et al.

Fig. 15.9 Class-wise out-of-
bag AUROC comparison be-
tween CLUS-HMC-ENS and
Bayesian-corrected SVMs.

plete biological process hierarchy (in particular, we used D16 from Sect. 15.7.1,
which is annotated with 629 classes). Run on a cluster of AMD Opteron processors
(1.8 - 2.4GHz, ≥2GB RAM), CLUS-HMC-ENS required 34.8 hours, while SVM-
light [28], which is the first step of BSVM, required 190.5 hours for learning the
models (i.e., CLUS-HMC-ENS is faster by a factor 5.5 in this case).

15.8 Conclusions

An important task in functional genomics is to assign a set of functions to genes.
These functions are typically organized in a hierarchy: if a gene has a particular
function, it automatically has its superfunctions. This setting where instances can
have multiple classes and where these classes are organized in a hierarchy is called
hierarchical multi-label classification (HMC) in machine learning.

In this chapter, we have presented three instantiations of the predictive clustering
tree framework for HMC: (1) an algorithm that learns a single tree that predicts all
classes at once (CLUS-HMC), (2) an algorithm that learns a separate decision tree
for each class (CLUS-SC), and (3) an algorithm that learns and applies such single-
label decision trees in a hierarchical way (CLUS-HSC). The three algorithms are
designed for problems where the class hierarchy is either structured as a tree or as a
directed acyclic graph (DAG).

An evaluation of these approaches on functional genomics datasets shows that
CLUS-HMC outperforms the other approaches on all fronts: predictive perfor-
mance, model size, and induction times. We also show that CLUS-HMC outper-
forms a known decision tree learner (C4.5H). Moreover, it is possible to maximize
predictive performance by constructing an ensemble of CLUS-HMC-trees. We show
that the latter outperforms an approach based on SVMs, while still being efficient
and easy to use.

Our evaluation makes use of precision-recall curves, which give the domain ex-
pert more insight into the relation between precision and recall. We argued that

15 Predicting Gene Function using Predictive Clustering Trees 385

PR-based evaluation measures are best suited for HMC problems, since they do not
reward the negative predictions, i.e., predicting an example not to have particular
labels (like ROC curves do).

We conclude that predictive clustering tree based methods are currently the most
efficient, easy-to-use, and flexible approach to gene function prediction, flexible in
the sense that they cover the spectrum from highly interpretable to highly accurate
models.

Acknowledgements Part of the research presented in this chapter was conducted within the
project IQ (Inductive Queries for mining patterns and models) funded by the European Com-
mission of the EU under contract number FP6-IST 516169.

Celine Vens is a postdoctoral fellow of the Research Foundation - Flanders (FWO-Vlaanderen).
Leander Schietgat is supported by a PhD grant of the Institute for the Promotion of Innova-
tion through Science and Technology in Flanders (IWT-Vlaanderen) and the ERC Starting Grant
240186: Mining Graphs and Networks: a Theory-based approach. Dragi Kocev and Sašo Džeroski
are currently supported by the project PHAGOSYS Systems biology of phagosome formation and
maturation - modulation by intracellular pathogens funded by the European Commission of the
EU under contract number FP7-HEALTH 223451. For a complete list of agencies, grants and insti-
tutions currently supporting Sašo Džeroski, please consult the Acknowledgements chapter of this
volume.

The authors would like to thank Amanda Clare and Zafer Barutcuoglu for providing them with
the datasets and the anonimous reviewers for providing many useful suggestions. This research was
conducted utilizing high performance computational resources provided by K.U.Leuven, http:
//ludit.kuleuven.be/hpc.

References

1. Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.: Gapped
BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic
Acids Research 25: 3389–3402 (1997)

2. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K.,
Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,
J., Richardson, J., Ringwald, M., Rubin, G., Sherlock, G.: Gene Ontology: Tool for the unifi-
cation of biology. The Gene Ontology Consortium. Nature Genetics 25(1): 25–29 (2000)

3. Astikainen, K., L., H., Pitkanen, E., S., S., Rousu, J.: Towards structured output prediction of
enzyme function. BMC Proceedings 2(Suppl 4): S2 (2008)

4. Barutcuoglu, Z., Schapire, R., Troyanskaya, O.: Hierarchical multi-label prediction of gene
function. Bioinformatics 22(7): 830–836 (2006).

5. Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., Struyf, J.: Hierarchical multi-
classification. In: Proc. Wshp on Multi-RelationalData Mining, pp. 21–35. ACM SIGKDD
(2002)

6. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proc. of
the 15th Intl Conf. on Machine Learning, pp. 55–63. Morgan Kaufmann (1998)

7. Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees for hierarchical
multilabel classification: A case study in functional genomics. In: Proc. of the 10th European
Conf. on Principles and Practices of Knowledge Discovery in Databases, LNCS, vol. 4213,
pp. 18–29. Springer (2006)

8. Breiman, L.: Bagging predictors. Machine Learning 24(2): 123–140 (1996)
9. Breiman, L.: Out-of-bag estimation. Technical Report, Statistics Department, University of

California (1996)

386 Celine Vens et al.

10. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.
Wadsworth, Belmont (1984)

11. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classifi-
cation. Journal of Machine Learning Research 7: 31–54 (2006)

12. Cesa-Bianchi, N., Valentini, G.: Hierarchical cost-sensitive algorithms for genome-wide gene
function prediction. In Proc. 3rd Intl Wshp on Machine Learning in Systems Biology, JMLR:
Workshop and Conference Proceedings 8: 14–29 (2010)

13. Chen, Y., Xu, D.: Global protein function annotation through mining genome-scale data in
yeast saccharomyces cerevisiae. Nucleic Acids Research 32(21): 6414–6424 (2004)

14. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P., Herskowitz, I.: The
transcriptional program of sporulation in budding yeast. Science 282: 699–705 (1998)

15. Chua, H., Sung, W., Wong, L.: Exploiting indirect neighbours and topological weight to pre-
dict protein function from protein-protein interactions. Bioinformatics 22(13): 1623–1630
(2006)

16. Clare, A.: Machine Learning and Data Mining for Yeast Functional Genomics. Ph.D. thesis,
University of Wales, Aberystwyth (2003)

17. Clare, A., Karwath, A., Ougham, H., King, R.D.: Functional bioinformatics for Arabidopsis
thaliana. Bioinformatics 22(9): 1130–1136 (2006)

18. Clare, A., King, R.D.: Predicting gene function in Saccharomyces cerevisiae. Bioinformatics
19(Suppl. 2): 42–49 (2003).

19. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In Proc.
of the 23rd Intl Conf. on Machine Learning, pp. 233–240. ACM Press (2006)

20. Deng, M., Zhang, K., Mehta, S., Chen, T., Sun, F.: Prediction of protein function using protein-
protein interaction data. In Proc. of the IEEE Computer Society Bioinformatics Conf., pp.
197–206. IEEE Computer Society Press (2002)

21. DeRisi, J., Iyer, V., Brown, P.: Exploring the metabolic and genetic control of gene expression
on a genomic scale. Science 278: 680–686 (1997)

22. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide
expression patterns. In Proc. National Academy of Sciences of USA 95(14): 14863–14868
(1998)

23. Gasch, A., Huang, M., Metzner, S., Botstein, D., Elledge, S., Brown, P.: Genomic expression
responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p.
Molecular Biology of the Cell 12(10): 2987–3000 (2001)

24. Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., Brown,
P.: Genomic expression program in the response of yeast cells to environmental changes.
Molecular Biology of the Cell 11: 4241–4257 (2000)

25. Geurts, P., Wehenkel, L., d’Alché Buc, F.: Kernelizing the output of tree-based methods. In
Proc. of the 23rd Intl Conf. on Machine learning, pp. 345–352. ACM Press (2006).

26. Gough, J., Karplus, K., Hughey, R., Chothia, C.: Assignment of homology to genome se-
quences using a library of hidden markov models that represent all proteins of known struc-
ture. Molecular Biology 313(4): 903–919 (2001)

27. Guan, Y., Myers, C., Hess, D., Barutcuoglu, Z., Caudy, A., Troyanskaya, O.: Predicting gene
function in a hierarchical context with an ensemble of classifiers. Genome Biology 9(Suppl
1): S3 (2008)

28. Joachims, T.: Making large-scale SVM learning practical. In: B. Scholkopf, C. Burges,
A. Smola (eds.) Advances in Kernel Methods – Support Vector Learning. MIT Press (1999)

29. Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., Kasif, S.: Whole-genome
annotation by using evidence integration in functional-linkage networks. Proc. National
Academy of Sciences of USA 101(9): 2888–2893 (2004)

30. Kim, W., Krumpelman, C., Marcotte, E.: Inferring mouse gene functions from genomic-scale
data using a combined functional network/classification strategy. Genome Biology 9(Suppl 1):
S5 (2008)

31. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Ensembles of multi-objective decision trees.
In: Proc. of the 18th European Conf. on Machine Learning,LNCS, vol. 4701, pp. 624–631.
Springer (2007)

15 Predicting Gene Function using Predictive Clustering Trees 387

32. Lanckriet, G.R., Deng, M., Cristianini, N., Jordan, M.I., Noble, W.S.: Kernel-based data fusion
and its application to protein function prediction in yeast. In Proc. of the Pacific Symposium
on Biocomputing, pp. 300–311. World Scientific Press (2004)

33. Lee, H., Tu, Z., Deng, M., Sun, F., Chen, T.: Diffusion kernel-based logistic regression models
for protein function prediction. OMICS 10(1): 40–55 (2006)

34. Mewes, H., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., Frishman, D.: MIPS:
A database for protein sequences and complete genomes. Nucleic Acids Research 27: 44–48
(1999)

35. Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., Morris, Q.: GeneMANIA: a real-time
multiple association network integration algorithm for predicting gene function. Genome Bi-
ology 9(Suppl 1): S4 (2008)

36. Obozinski, G., Lanckriet, G., Grant, C., Jordan, M., Noble, W.: Consistent probabilistic out-
puts for protein function prediction. Genome Biology 9(Suppl 1): S6 (2008)

37. Ouali, M., King, R.: Cascaded multiple classifiers for secondary structure prediction. Protein
Science 9(6): 1162–76 (2000)

38. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: comparison un-
der imprecise class and cost distributions. In Proc. of the Third Intl Conf. on Knowledge
Discovery and Data Mining, pp. 43–48. AAAI Press (1998)

39. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
40. Roth, F., Hughes, J., Estep, P., Church, G.: Fining DNA regulatory motifs within unaligned

noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology
16: 939–945 (1998)

41. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical
multilabel classification models. Journal of Machine Learning Research 7: 1601–1626 (2006)

42. Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Džeroski, S.: Predicting gene func-
tion using hierarchical multi-label decision tree ensembles. BMC Bioinformatics 11:2 (2010)

43. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D.,
Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccha-
romyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9: 3273–3297
(1998)

44. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. Advances in Neural In-
formation Processing Systems 16. MIT Press (2003)

45. Tian, W., Zhang, L., Tasan, M., Gibbons, F., King, O., Park, J., Wunderlich, Z., Cherry,
J., Roth, F.: Combining guilt-by-association and guilt-by-profiling to predict saccharomyces
cerevisiae gene function. Genome Biology 9(Suppl 1): S7 (2008)

46. Troyanskaya, O., Dolinski, K., Owen, A., Altman, R., D., B.: A bayesian framework for com-
bining heterogeneous data sources for gene function prediction (in saccharomyces cerevisiae).
Proc. National Academy of Sciences of USA 100(14): 8348–8353 (2003)

47. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured
and interdependent output variables. Journal of Machine Learning Research 6: 1453–1484
(2005)

48. Valentini, G., Re, M.: Weighted true path rule: a multilabel hierarchical algorithm for gene
function prediction. In Proc. of the 1st Intl Wshp on Learning from Multi-Label Data, pp.
133–146. ECML/PKDD (2009)

49. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical
multi-label classification. Machine Learning 73(2): 185–214 (2008)

50. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1: 80–83 (1945)
51. Zdobnov, E., Apweiler, R.: Interproscan - an integration platform for the signature-recognition

methods in interpro. Bioinformatics 17(9): 847–848 (2001)

Chapter 16

Analyzing Gene Expression Data with Predictive

Clustering Trees

Ivica Slavkov and Sašo Džeroski

Abstract In this work we investigate the application of predictive clustering trees
(PCTs) for analysing gene expression data. PCTs provide a flexible approach for
both predictive and descriptive analysis, both often used on gene expression data.
To begin with, we use gene expression data for building predictive models for asso-
ciated clinical data, where we compare single-target with multi-target models. Re-
lated to this, random forests of PCTs (single and multi-target) are used to assess the
importance of individual genes w.r.t. the clinical parameters. For a more descriptive
analysis, we perform a so-called constrained clustering of expression data. Also, we
extend the descriptive analysis to take into account a temporal component, by using
PCTs for finding descriptions of short time series of gene expression data.

16.1 Introduction

Central to our interest is gene expression data, which in recent years is widespread
in medical studies. Gene expression data record the activity of each gene in the cell.
A tissue sample is taken from a patient and the overall gene expression levels are
measured, most often by using microarrays.

In a typical gene expression dataset, each data instance is a single patient and
each data attribute (feature) is the expression level of a gene. To both of these di-
mensions (instance and attribute) one can relate additional information. Patients can
be related to a clinical record containing multiple clinical parameters, while each
gene can be annotated with different descriptions of its function. This allows for
many practically relevant and biologically interesting data analysis scenarios.

Ivica Slavkov · Sašo Džeroski
Department of Knowledge Technologies, Jožef Stefan Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia
e-mail: {ivica.slavkov,saso.dzeroski}@ijs.si

389
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_16, © Springer Science+Business Media, LLC 2010

390 Ivica Slavkov and Sašo Džeroski

We can divide the analysis scenarios into predictive and descriptive. The predic-
tive scenarios include building predictive models from gene expression data w.r.t.
individual clinical parameters. Also, for the purpose of biomarker discovery, indi-
vidual gene importance is assessed, related to the clinical parameters. The descrip-
tive analysis of gene expression data aims at discovering common descriptions of
patient or gene groups with similar expression profiles.

In our work, we consider the application of predictive clustering trees (PCTs)
[1] for both descriptive and predictive analysis of gene expression data. PCTs are
a part of the predictive clustering framework, which unifies predictive modelling
and clustering [1]. PCTs have been developed to work with different types of data,
like multiple numeric or nominal attributes [15], hierarchies [16] and also time se-
ries data [3]. Taking into consideration this generality of PCTs, we present several
application of PCTs for gene expression data analysis.

The predictive scenarios involve building PCTs from gene expression data w.r.t.
the related clinical records. This includes both building PCTs related to individual
clinical parameters (single-target) and building multi-target PCTs, which take into
account all of the clinical parameters at the same time.

Besides building PCTs for predicting the clinical parameters, it is biologically
relevant to evaluate the individual importance of genes with relation to them. For
this purpose we use random forests (RFs) of PCTs. We also compare single-target
with multi-target feature importance.

For descriptive analysis, we use PCTs to perform constrained clustering on the
gene expression profiles. Constrained clustering discovers compact groups of gene
expression data, which are not only similar but also completely explained (covered)
by their descriptions, i.e., constraints. This is unlike classical clustering, where first
the gene expression data is grouped by the similarity of the expression values and
then the cluster descriptions are derived.

As descriptions we consider information related to both patient and gene dimen-
sions of the gene expression data. The patient clinical data is used as a starting point
for constrained clustering of the gene expression profiles, or to simulate itemset-
constrained clustering [11]. As a result we get clusters of patients with similar gene
expression profiles, described by either individual clinical parameters or a combi-
nation thereof. When performing constrained clustering on the gene dimension of
the expression data, we use gene functional annotation from the Gene Ontology [4].
In this case, instead of clusters of patients, we obtain clusters of genes having sim-
ilar expression which are explained by the genes sharing similar function, similar
location or by being involved in similar biological processes.

The remainder of this chapter is organised as follows. We first present in Sec-
tion 16.2 an overview of all the gene expression datasets used in our work. In Sec-
tion 16.3, we discuss and compare single with multi-target PCTs for predicting pa-
tient clinical data from gene expression data. We use random forests of multi-target
PCTs for evaluating individual gene importance in Section 16.4. The descriptive
scenarios of analysis of gene expression data are covered in Section 16.5 and Sec-
tion 16.6. Finally, in Section 17.7, we summarise and present the conclusions.

16 Analyzing Gene Expression Data with PCTs 391

16.2 Datasets

In this section, we give a brief overview of all the datasets used in our different
analysis scenarios. The datasets contain gene expression levels measurements. They
originate from studies investigating different diseases in humans or response of
model organisms to different kinds of stress. The datasets have also been gener-
ated by using different microarray platforms. Below we give a description of each
dataset separately, as well as of the additional information related to patients and
genes.

16.2.1 Liver cancer dataset

We use a liver cancer dataset previously used in [11]. It contains expression levels
measured by ATAC-PCR for 213 patients and 1993 genes. The expression data also
has patient clinical information related to it.

The patients clinical data contains the patients diagnosis (tumor presence) and
other information related to the liver status like cirrhosis, hepatitis infection and
the general status of liver function (abnormal). The patient data also contains more
general patient information like the patients age and gender.

16.2.2 Huntington’s disease dataset

Huntington’s disease is an autosomal dominant neurodegenerative disorder charac-
terised by progressive motor impairment, cognitive decline, and various psychiatric
symptoms. Its typical age of onset is in the third to fifth decade.

The dataset contains microarray data and basic patient records. The microarray
data was obtained by using the Affymetrix HG.U133A chip, measuring the expres-
sion levels for 54.675 probes for 27 patients [12]. The patient records consist of three
attributes: huntington disease status (presymptomatic (9 patients), symptomatic (5
patients) and controls (13)), age and gender.

16.2.3 Neuroblastoma dataset

Neuroblastoma is the most common extracranial solid tumour of childhood. A large
proportion (88%) of neuroblastoma patients are 5 years or younger.

Gene expression was measured for 63 primary neuroblastomas. The Affymetrix
U95Av2 microarrays were used, which measure the expression levels for a total
of 12625 probes (genes). These data are included in the 68 patients analysed by
Schramm et al. [10].

392 Ivica Slavkov and Sašo Džeroski

The patient data include information about the clinical course of the disease, in
particular whether the tumour re-occurs after a prolonged period of time (relapse)
or not (no event). Additional clinical information includes data about the possible
chromosomal aberrations present in a patient. In particular, amplification (multiple
copies) of the MYCN gene, as well as deletions (losses) in the 1p chromosomal
region.

16.2.4 Yeast time series expression data

We use the time-series expression data from the study conducted by Gasch et al. [5].
The dataset records the changes in expression levels of yeast (Saccharomyces cere-
visiae) genes, under diverse environmental stresses. The gene expression levels of
around 5000 genes are measured at different time points using microarrays. Various
sudden changes in environmental conditions are tested, ranging from heat shock to
amino acid starvation for a prolonged period of time.

The datasets consist of time series of gene expression levels and gene descrip-
tions [13]. As gene descriptions we use annotations for each yeast gene from the
Gene Ontology [4] (version June, 2009). To limit the number of features, we set a
minimum frequency threshold: each included GO term must appear in the annota-
tions for at least 50 of the 5000 genes.

16.3 Predicting Multiple Clinical Parameters

Medical studies involving microarray data usually have one clinical parameter of
interest. For example, it is important to identify a gene expression profile specific
to patients having cancer, as compared to healthy individuals. Although for each
patient there is additional clinical data (e.g., age), this information is usually not of
primary interest and is not directly used in the predictive modelling process.

In this section we aim to demonstrate the advantage of building predictive models
for multiple clinical parameters at the same time, as compared to building models for
single clinical parameters separately. To build models for multiple target parameters,
we use predictive clustering trees (PCTs). We consider the Huntington disease and
Neuroblastoma datasets.

16.3.1 Huntington disease progress

In the case of the Huntington disease (HD), a useful gene expression profile is one
that distinguishes between either of the following: a subject has HD or is healthy
(control); the stage of the disease of HD patients (whether the patient is presymp-

16 Analyzing Gene Expression Data with PCTs 393

Table 16.1 Predictive accuracy estimates of single- and multi-target PCTs constructed for the HD
dataset, derived by 10-fold cross-validation

Targets HD Stage {HD, Stage}
Accuracy 51% 41% 74%, 74%

tomatic or symptomatic). First, we constructed single target PCTs for each of these
two possible targets individually. The targets are Huntington disease vs. control as
a target attribute and ”Stage” (with three possible values: presymtpomatic, symp-
tomatic and controls).

For comparison, we then constructed a single predictive model (PCT) by con-
sidering both of the targets simultaneously. The class labels that are outuput from
the multi-target model can be used to predict whether a patient has Huntington dis-
ease and also to determine the stage of progression of the disease. We evaluated
the models predictive performance with leave-one-out cross validation and give a
comparison below.

Table 16.1 gives the classification accuracy of the constructed predictive mod-
els. It shows that the multi-target model outperforms the single-target ones in terms
of predictive accuracy. From the application point of view, the multi-target model
performs better because the two classes are correlated. When constructing the mod-
els, the algorithm is constrained to prefer putting presymtpomatic and symptomatic
patients in one cluster and controls in the other.

16.3.2 Neuroblastoma recurrence

We perform a similar analysis with the Neuroblastoma dataset and its associated
clinical data. For this data, we have only one real target of interest from the clinical
record, namely Neuroblastoma (NB) status. This is a clinical parameter which indi-
cates whether NB patients have a re-occurrence of the tumour or not. It is important
to have a predictive model for this, so that the course of therapy for a patient can be
decided.

In our experiments, we considered additional clinical parameters, namely whether
a patient has multiple copies of the MYCN gene or deletions on the 1p chromosome.
Both parameters are related to tumour aggressiveness and have been previously used
for predictive modelling [8], but only as descriptive attributes and not as targets for
prediction.

We constructed a single-target PCT only for NB status, as it was the only pa-
rameter of interest. We compared this model to multi-target models by considering
three different combinations of NB status with the other two parameters. Namely,
we combine NB status with MYCN amplification or 1p deletion, as well as with
both parameters.

394 Ivica Slavkov and Sašo Džeroski

Fig. 16.1 As any decision tree model, a PCT can be easily interpreted. The first node of the tree,
with attribute 40235 at (TNK2, ”tyrosine kinase, non-receptor, 2”), splits the samples into two
groups. In the first group, there are patients without event and with no deletion of the 1p chromo-
some region. The remaining group is split by a node containing 34480 at (CDH16, ”cadherin 16,
KSP-cadherin”) of the PCT that essentially distinguishes between patients that have/do not have a
1p deletion. The last node containing g32415 at (IFNA5, ”interferon, alpha 5”) further differenti-
ates between the patients with 1p deletion that had a relapse or are without event.

An illustrative example is presented in Figure 16.1. The accuracy results are sum-
marised in Table 16.2. As in the case with Huntington’s disease, it can be seen that
including 1p deletion and MYCN amplification on the target side during modelling
drastically improves the predictive performance of the PCTs.

Table 16.2 Predictive accuracy estimates of single- and multi-target PCTs constructed for the NB
dataset derived by 10-fold cross validation

Targets NB {NB, 1p} {NB, MYCN} {NB, 1p, MYCN}
Accuracy 74.6% 90.5% 84.1% 74.6%

16.4 Evaluating Gene Importance with Ensembles of PCTs

When examining the relation of gene expression data to clinical parameters, besides
building predictive models (Section 16.3), it is also biologically relevant to deter-
mine the individual importance of each gene w.r.t the clinical parameter(s) of inter-
est. From a biological perspective, this is the initial step in the process of biomarker
discovery. In machine learning terminology, this is equivalent to the process of fea-
ture ranking and selection.

Typically, the ranking is produced with respect to a single target variable. Follow-
ing the intuition from Section 16.3, we investigate feature ranking by considering

16 Analyzing Gene Expression Data with PCTs 395

multiple targets simultaneously. In particular, to determine the feature importance
we use Random Forests [2] (RFs) of PCTs [6].

Below, we first describe the methodology used for feature ranking. In partic-
ular, we describe feature ranking with random forests and then discuss how this
methodology can be extended for multi-target feature ranking. We then describe the
application of multi-target ranking with RFs of PCTs to the Neuroblastoma dataset.

16.4.1 Feature ranking with multi-target Random Forests

Typical feature ranking methods consider the relation between each feature and the
target separately. They rank the features based on the strength of their relation to
the target. More recent methods also consider interactions among the features them-
selves. One such method is based on the ensemble learning approach of random
forests.

Random forests [2] is an ensemble learning method. It learns base classifiers on
bootstrap replicates of the dataset, by using a randomised decision tree algorithm.
For each bootstrap replicate, there is a corresponding out-of-bag (OOB) dataset.
This OOB dataset contains only the instances from the original data that do not
appear in the bootstrap replicate. These OOB datasets are used to determine the
feature importance as proposed in [2].

Table 16.3 The algorithm for feature ranking via random forests. I is the set of the training
instances, F is the number of features, k is the number of trees in the forest, and fsub is the size of
the feature subset that is considered at each node during tree construction.

First, for each bootstrap replicate, a random tree is built and its predictive perfor-
mance (e.g., misclassification rate) is measured on the corresponding OOB dataset.
Then, for each feature in turn, the values for the instances in the OOB dataset are
randomly permuted. Again, the predictive performance of the random trees are cal-
culated for the permuted OOB data. Finally, the importance of a feature is computed
as the average increase of the error rate of the permuted OOB datasets compared to

396 Ivica Slavkov and Sašo Džeroski

the error rate of the original OOB datasets. The rationale behind this is that if a
feature is important for the target concept(s) it should have an increased error rate
when its values are randomly permuted in the OOB dataset. The full procedure is
described in Table 16.3.

The above methodology for feature rankings, works for single-target rankings
by using a single-target decision trees for the random forests. We have extended it
in [6] to work for multiple targets by using multi-target PCTs as base classifiers in
the random forests. When working with multiple targets, the feature importance is
simply calculated as an average percent increase of the error rate over all targets.

16.4.2 Gene importance in Neuroblastoma

We apply the proposed method for feature ranking with multiple targets to the Neu-
roblastoma microarray dataset. For targets, we consider the NB status, 1p deletion
and MYCN amplification. We produce ranked lists of genes with respect only to NB
status and also by considering all of the target variables simultaneously.

Fig. 16.2 In this figure we compare two error curves constructed from ranked gene lists by using a
single-target (NB status) and multi-target RF of PCTs. Each point of the curves represents an error
estimate of a predictive model built with the corresponding set of genes. The genes in the gene sets
are incrementally added from the previously generated ranked lists of genes.

We compare the ranked lists by using the so-called error curves, as proposed in
[14]. These error curves give us an intuition of how the error of predictive models
changes, as we incrementally add more and more genes from the previously gen-

16 Analyzing Gene Expression Data with PCTs 397

erated ranked list of genes. A ranked list of genes is better than another one if the
corresponding error curve drops to a lower error and/or drops faster.

In Figure 16.2, we present a comparison between the error curves of the single-
target and multi-target ranked lists of genes. When considering multiple targets si-
multaneously, the highly ranked genes can be used to construct better predictive
models than the highly ranked genes in the single-target scenario. Besides the boost
in predictive performance, it is important to note that the same set of genes produced
by the multi-target approach can be used for predicting all of the different clinical
variables instead of having a different set of genes for each one.

16.5 Constrained Clustering of Gene Expression Data

In Sections 16.3 and Section 16.4 our main focus was on using PCTs for predic-
tive modelling of gene expression data with relation to clinical data. Considering
that PCTs unify prediction and clustering, we now turn to investigate the clustering
aspect of PCTs and its application to the descriptive analysis of gene expression
data.

We use PCTs to perform constrained clustering, where only clusters that can be
described by using a given vocabulary are considered. We consider the direct use
of PCTs to cluster gene expression data and also the combination of frequent pat-
tern mining and PCTs. In both cases, we consider cluster descriptions (constraints)
related to the patient dimension of the data, i.e., the clinical data.

16.5.1 Predictive clustering of gene expression profiles

We first consider a simple scenario of constrained clustering of gene expression data
by using the ability for multi-target modelling of PCTs. As targets for constructing
PCTs, we use the gene expression data of the liver cancer dataset and as descriptive
vocabulary the related patient record.

As a result we get a PCT, which can be considered as hierarchical clustering of
the gene expression data. In Figure 16.3, we present a PCT of the gene expression
profiles of the liver cancer dataset. Each leaf of the PCT is a cluster of patients who
share a similar gene expression profile. The cluster descriptions can be obtained by
following the path from the root of the tree to the corresponding leaf (cluster). It
should be noted that these clusters are non-overlapping, unlike the clusters obtained
in the following section by simulation of the so-called itemset constrained cluster-
ing.

398 Ivica Slavkov and Sašo Džeroski

Tumor

yes no

V irusC

yes no

Male

yes no

ChildA

yes no

C1 C2 C3 C4

ExceptTumor

yes no

C5 C6

Fig. 16.3 Constrained clustering of the gene expression profiles of the liver cancer dataset by
using a single PCT

16.5.2 Itemset constrained clustering

The basic intuition behind itemset constrained clustering (IC-clustering) is to use
itemsets as constraints when performing clustering of the gene expression data. In
our specific application, the itemsets are produced from the patients clinical data. In-
stead of using a dedicated algorithm, we decompose the IC-clustering algorithm into
several steps. These steps are executed with already known modelling approaches
(e.g., PCTs) and their corresponding implementations, which in the end results in
an overall IC-clustering simulation.

In short, the IC-clustering algorithm can be described as in Table 16.4. As input
it requires minimum cluster size, which translates into a frequency constraint on the
itemsets. After searching the space of possible clusters described by the itemsets, it
outputs a list of N itemsets sorted by interclass variance of the clusters. Essentially,
the IC-clustering algorithm can be decomposed into a frequent itemsets mining al-
gorithm and a cluster evaluation algorithm.

Considering Table 16.4, we simulate IC-clustering in two steps. In the first step,
we find frequent itemsets in the associated patient clinical data. By specifying the
minimum support of the frequent itemsets, we also simulate the parameter C (mini-
mum cluster size) in the IC-clustering algorithm. Between step one and two, there is
an intermediary step, where we modify the gene expression dataset by including the
produced frequent itemsets as patient features. This means that for each itemset we

Table 16.4 A simplified description of the IC-clustering algorithm
Input: Minimum cluster size C

1. Search for a feature itemset that splits the tuples into two clusters

2. Compute the interclass variance between the clusters

Output: List of the top N itemsets sorted by interclass variance

16 Analyzing Gene Expression Data with PCTs 399

Fig. 16.4 A sample PCT stub
is presented in this figure.
In its single decision node
(rectangle), it contains a
description ”{tumour, man}”
which is true only for the
”yes” branch of the PCT stub.
The instances which fall into
this leaf represent the actual
cluster of interest and their
expression values are used
to calculate the interclass
variance.

{ tumour, man}

yes no

Cluster

Interclass Variance

Cluster
Description

add a binary feature, which is true for those patients (instances) which are described
by all of the clinical features contained in the frequent itemset. For example, a fre-
quent itemset {male, has tumour}, will be true only for those patients (instances) of
the dataset which are male and have tumour, but not for those that are only male or
only have tumour.

On this modified dataset, we proceed with step two of the IC-clustering simula-
tion, by inducing a beam of PCT stubs with width N. A PCT stub contains only a
single node, i.e., performs only a single split of the data according to some feature
value. An illustrative example can be seen on Figure 16.4.

The single decision nodes of the PCT stubs contain descriptive attributes that are
chosen from the set of frequent itemset features. To calculate the interclass variance
of the clusters, we use the multi-target ability of the PCTs, with all of the genes
expression values as targets. We use the beam-search version of PCTs, as described
by Struyf and Džeroski [7], which at all times keeps a set of partially built candidate
trees.

The results from the simulation of the IC-clustering can be seen in Table 16.5.
The specific dataset that was used was the liver cancer dataset, from the original
publication of IC-clustering by Morishita et al.[11]. The clusters and their clinical
descriptions are identical to the ones published in [11]. As noted by Morishita et al.,
IC-clustering (its simulation in this case) reveal interesting compact clusters with

Table 16.5 Results from the simulation of IC-clustering

Itemset constraint Cluster size Interclass variance

{tumour} 107 3126.9
{except tumour, normal liver function} 88 2534.7
{except tumor, HBV-} 88 2397.3
{tumor, man} 86 2181.5
{except tumor, HBV-, normal liver function} 74 2098.9
{except tumor, man} 83 2037.87
{except tumor, no cirrhosis} 68 1979.74
.
{tumor, not over 65 years old} 55 1587.7

400 Ivica Slavkov and Sašo Džeroski

descriptions like {tumour, man} which are overlooked by conventional clustering
methods, such as k-means clustering.

16.6 Clustering gene expression time series data

In this section, we continue exploring the use of PCTs for descriptive analysis of
gene expression data. Instead of using patient data, here we consider descriptions
related to the gene dimension of the expression data, more specifically gene ontol-
ogy descriptions. We analyse the previously described yeast time-course expression
dataset. Clustering the temporal gene expression profiles requires for PCTs to be
adapted to work with time-series data on the target side. This was first done by
Džeroski et al. [3] and we discuss it in more detail in Section 16.6.1. The specific
analysis scenario, the results and their interpretation are given in Section 16.6.2.

16.6.1 PCTs for clustering short time-series

In order for PCTs to handle time-course data on the target side, three things have
to be adapted. These are the distance measure used for calculating the difference
between the time-series, the cluster centroid (prototype) calculation, and the cluster
quality estimation.

16.6.1.1 Qualitative distance measure

For our application (i.e., clustering short time course gene expression data), the
differences in scale and size are not of great importance; only the shape of the time
series matters. Namely, we are interested in grouping together time-course profiles
of genes that react in the same way to a given condition, regardless of the intensity
of the up- or down-regulation.

For that reason, we use the qualitative distance measure(QDM) proposed by
Todorovski et al. [17]. It is based on a qualitative comparison of the shape of the
time series. Consider two time series X and Y . Then choose a pair of time points
i and j; observe the qualitative change of the value of X and Y at these points.
There are three possibilities: increase (Xi > Xj), no-change (Xi ≈ Xj), and decrease
(Xi <Xj). dqual is obtained by summing the difference in qualitative change observed
for X and Y for all pairs of time points, i.e.,

dqual(X ,Y) =
n−1

∑
i=1

n

∑
j=i+1

2 ·Diff (q(Xi,Xj),q(Yi,Yj))

N · (N−1)
, (16.1)

16 Analyzing Gene Expression Data with PCTs 401

with Diff (q1,q2) a function that defines the difference between different qualitative
changes (16.6). Roughly speaking, dqual counts the number of disagreements in the
direction of change of X and Y .

Table 16.6 The definition of Diff (q1,q2).

Diff (q1,q2) increase no-change decrease
increase 0 0.5 1
no-change 0.5 0 0.5
decrease 1 0.5 0

16.6.1.2 Computing the cluster centroid and variance

The definition of the cenroid c of a cluster C is directly related to the calculation of
the cluster variance. The variance of a cluster C can be defined based on a distance
measure as:

Var(C) =
1
|C| ∑

X∈C
d2(X ,c) (16.2)

To cluster time series, d should be a distance measure defined on time series, such
as the previously defined QDM.

The centroid c can be computed as argminq ∑X∈C d2(X ,q). The centroid c can be
either calculated from the time-series in the cluster or it can be one of the time series
from the cluster, which minimises the variance. Because there is no closed form for
the centroid for the QDM distance, we choose the second option for calculating the
cluster centroid.

For computational reasons, we re-define and approximate the calculation of the
variance by means of sampling as:

Var(C) =
1

2|C|m ∑
X∈C

(
∑

Y∈ sample(C,m)

d2(X ,Y)

)
, (16.3)

with sample(C,m) a random sample without replacement of m elements from C,
where |C| ≥ m.

The PCT induction algorithm places cluster centroids in its leaves, which can be
inspected by the domain expert and used as predictions. For these centroids, we use
the representation discussed above.

16.6.1.3 Estimating cluster centroid error

Although in this application we use PCTs for descriptive analysis, we can still make
predictions with them just like with regular decision trees [9]. They sort each test

402 Ivica Slavkov and Sašo Džeroski

instance into a leaf and assign as prediction the label of that leaf. PCTs label their
leaves with the training set centroids of the corresponding clusters.

We use the predictive performance of PCTs as a way to assess how well the
cluster centroid approximates the time-series in that cluster. The error measure we
use is the root mean squared error (RMSE), which is defined as:

RMSE(I,T) =

√
1
|I| ∑

X∈ I
d2(T (X),series(X)) , (16.4)

with I the set of test instances, T the PCT that is being tested, T (X) the time series
predicted by T for instance X , series(X) the actual series of X , and d the QDM
distance.

16.6.2 Explained groups of yeast time-course gene expression
profiles

We perform constrained clustering with Gene Ontology terms as descriptions (con-
straints) and with time-series of the expression data on the target side. The whole
process of generating compact clusters of genes, with GO terms as descriptions, be-
gins with inducing PCTs and then discerning the descriptions by following just the
positive (yes) branches of the PCT. This is graphically illustrated in Figure 16.5 and
described in more detail by Slavkov et al. in [13].

Fig. 16.5 Using a PCT to cluster time series of gene expression data, describing response to stress
in yeast (diamide exposure).

On the left side of Figure 16.5, we present a sample PCT. For practical purposes,
we show a small tree with just 5 leaves, obtained when yeast is exposed to diamide.

16 Analyzing Gene Expression Data with PCTs 403

We also show the cluster centroids for each of the leaves, and their related cluster
sizes and the root mean squared error (RMSE). We use the RMSE as an estimate
of how well the cluster centroids represent all of the instances in the cluster, i.e., as
an estimate of cluster quality. Visually, the cluster prototypes can be represent by
using a heatmap. Each row in the heatmap represents a cluster prototype: the more
intense the colours, the larger the up- or down-regulation of the genes contained in
that cluster.

The associated cluster descriptions in Figure 16.5, can be easily obtained from
the PCT by following the path from the root of the tree to a leaf. For exam-
ple, if we want to derive the description of cluster C2, we begin from the root
GO term “GO:004408”, we follow the “no” branch, obtaining the description
“GO:0044085 = no”. We then add the “GO:0006412 = yes” and “GO:0044429 = yes”
by following the “yes” branches ending up at cluster C2. So, the final description of
cluster C2 is the following conjunction: “GO:0044085 = no AND GO:0006412 = yes
AND GO:0044429 = yes”. This can be interpreted as follows: genes that are anno-
tated by both “GO:0006412” and “GO:0044429”, but not by “GO:0044085” are
contained in cluster C2 and have a temporal profile represented by the prototype of
cluster C2. It should be noted here that for our application only the positive branches
of the tree are semantically meaningful in a biological context.

In Figure 16.5, clusters C1 to C4 show significant temporal changes in gene ex-
pression and have a relatively low error. C1 includes genes with an immediate re-
sponse to stress, while C3 and C4 include down-regulated genes with a short time
lag in response. C2 includes genes that are up-regulated under diamide exposure.
All cluster prototypes show that the changes of gene expression levels are transient,
i.e., after the initial stress response and cell adaptation, the cell continues with its
regular function. The size of C5 indicates that the bulk of genes fall into this cluster.
It includes genes that do not have a coordinated stress response and major changes
in gene expression.

The application of PCTs for descriptive analysis of time course data is investi-
gated in detail in [13]. The results of the descriptive analysis of yeast exposed to
different environmental stresses are consistent with previously published work [5].

16.7 Conclusions

In recent years, gene expression data has become common in almost all medical
studies. Its advantage is that it measures the level of activity (least approximately)
of all known genes in the human genome. This data, together with all of the addi-
tional knowledge about gene functions and specific disease mechanisms allows for
a plethora of possible data analysis scenarios.

We roughly divided these scenarios into predictive and descriptive and consid-
ered some which are common for gene expression data analysis. We considered the
analysis scenarios in the context of the predictive clustering framework [1]. More

404 Ivica Slavkov and Sašo Džeroski

specifically, we used predictive clustering trees (PCTs). We demonstrated that PCTs
are general enough to be used in all of the considered scenarios.

The predictive scenarios were investigated in Section 16.3 and Section 16.4.
First, we considered an application scenario of building PCTs for diagnosis from
gene expression data. We considered two specific instances of the scenarios for two
different diseases: Huntington’s disease and Neuroblastoma. In both, we compared
single-target with multi-target PCTs, thus utilising the whole clinical information
available while constructing the models. The accuracy estimates show a distinct ad-
vantage of using multiple clinical parameters as targets when constructing the PCTs.

In the predictive scenarios context, we also extended the use of PCTs towards
evaluating individual feature importance w.r.t multiple targets. We performed ex-
periments with the Neuroblastoma gene expression dataset, where on the target side
we considered three parameters NB status, 1p deletion and MYCN amplification.
Our results show that the multi-target approach is beneficial as compared to the
single-target variable approach. The produced ranked list of genes is more accu-
rate in terms of predictive performance and it can be applied to each of the target
variables separately.

Descriptive scenarios of analysis involved constrained clustering of the gene ex-
pression profiles, by using constraints both on the patient and gene dimension of the
gene expression datasets. In Section 16.5 we investigated the use of patient clini-
cal data as constraints for clustering the gene expression data. We first considered
the use of a single PCT for constrained clustering, where as a result we got a hier-
archy of clusters of patients described by individual clinical parameters. Also, we
performed simulation of itemset-constrained clustering [11], where the clusters of
patients were described by frequent patterns of the patient clinical parameters.

Section 16.6 investigates the use of PCTs for constrained clustering of gene ex-
pression time-course data. PCTs had to be adapted so they can handle the temporal
aspect of the data, by using a qualitative distance measure. The constraints used for
the clustering were on the gene dimension of the time series data and composed of
gene ontology terms. The detailed results [13] were consistent with previous knowl-
edge about yeast stress response [5], which demonstrates the utility of PCTs for
time-series analysis.

Further work would include the use of PCTs in other domains, for example anal-
ysis of the human immune response to infections with M. leprae and M. tubercu-
losis. Also, predictive clustering rules (PCRs) have been developed by Ženko et al.
in [18], which have been adapted for multi-target modelling, rule ensembles learn-
ing and time-series analysis. Applying them to the descriptive analysis scenarios
can prove to be more helpful, as PCRs (unlike PCTs) output clusters which can be
overlapping and are thus similar to IC-clustering.

In summary, all previously described scenarios demonstrated that PCTs are flex-
ible enough to be used for various gene expression data analysis tasks. Taking into
account the generality of the predictive clustering framework, they can be used to
perform the most common predictive and descriptive gene expression analysis tasks.
They also open up the possibility of additional scenarios which are not immediately

16 Analyzing Gene Expression Data with PCTs 405

obvious, like multi-target predictive models which take into account the whole clin-
ical data of a patient.

Acknowledgements The authors would like to acknowledge Dragi Kocev for his work on multi-
target feature ranking. Part of the research presented in this chapter was conducted within the
projects E.E.T. Pipeline (European Embryonal Tumour Pipeline) and IQ (Inductive Queries for
mining patterns and models), funded by the European Commission of the EU under contract num-
bers FP6-IST 516169 and FP6-LSHC 037260, respectively. Ivica Slavkov and Sašo Džeroski are
currently supported by the project PHAGOSYS Systems biology of phagosome formation and mat-
uration - modulation by intracellular pathogens funded by the European Commission of the EU
under contract number FP7-HEALTH 223451. For a complete list of agencies, grants and insti-
tutions currently supporting Sašo Džeroski, please consult the Acknowledgements chapter of this
volume.

References

1. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees. In Proc.15th
Int’l Conf. on Machine Learning, pages 55–63. Morgan Kaufman, 1998.

2. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
3. S. Džeroski, V. Gjorgjioski, I. Slavkov, and J. Struyf. Analysis of time series data with predic-

tive clustering trees. In 5th Int’l Workshop on Knowledge Discovery in Inductive Databases:
Revised Selected and Invited Papers, pages 63–80, Springer Berlin, 2007.

4. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K.,
Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,
J., Richardson, J., Ringwald, M., Rubin, G., Sherlock, G.: Gene Ontology: Tool for the unifi-
cation of biology. The Gene Ontology Consortium. Nature Genetics 25(1): 25–29, 2000

5. A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, M. Eisen, G. Storz, D. Botstein, and
P. Brown. Genomic expression program in the response of yeast cells to environmental
changes. Molecular Biology of the Cell, 11:4241–4257, 2000.

6. D. Kocev, I. Slavkov, and S. Džeroski. More is better: ranking with multiple targets for
biomarker discovery. In Proc. 2nd Int’l Wsp on Machine Learning in Systems Biology, page
133, University of Liege 2008.

7. D. Kocev, J. Struyf, and S. Džeroski. Beam search induction and similarity constraints
for predictive clustering trees. In 5th Int’l Workshop on Knowledge Discovery in Inductive
Databases: Revised Selected and Invited Papers, pages 134–151. Springer, Berlin 2007.

8. J. M. Maris. The biologic basis for neuroblastoma heterogeneity and risk stratification. Cur-
rent Opinion in Pediatrics, 17(1):7–13, 2005.

9. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA
1993.

10. A. Schramm, J. H. Schulte, L. Klein-Hitpass, W. Havers, H. Sieverts, B. Berwanger, H. Chris-
tiansen, P. Warnat, B. Brors, J. Eils, R. Eils, and A. Eggert. Prediction of clinical outcome and
biological characterization of neuroblastoma by expression profiling. Oncogene, 7902–7912,
2005.

11. J. Sese, Y. Kurokawa, M. Monden, K. Kato, and S. Morishita. Constrained clusters of gene
expression profiles with pathological features. Bioinformatics, 20:3137–3145, 2004.

12. I. Slavkov, S. Džeroski, B. Peterlin, and L. Lovrečić. Analysis of huntington’s disease gene
expression profiles using constrained clustering. Informatica Medica Slovenica, 11(2):43–51,
2006.

13. I. Slavkov, V. Gjorgjioski, J. Struyf, and S. Džeroski. Finding explained groups of time-course
gene expression profiles with predictive clustering trees. Molecular bioSystems, 6(7):729–740,
2010.

406 Ivica Slavkov and Sašo Džeroski

14. I. Slavkov, B. Ženko, and S. Džeroski. Evaluation method for feature rankings and their
aggregations for biomarker discover. In Proc. 3rd Intl Wshp on Machine Learning in Systems
Biology, JMLR: Workshop and Conference Proceedings 8: 122–135 (2010)

15. J. Struyf and S. Džeroski. Constraint based induction of multi-objective regression trees. In
4th Int’l Workshop on Knowledge Discovery in Inductive Databases: Revised Selected and
Invited Papers, pages 222–233. Springer, Berlin 2006.

16. J. Struyf, S. Dzeroski, H. Blockeel, and A. Clare. Hierarchical multi-classification with pre-
dictive clustering trees in functional genomics. In 12th Portuguese Conference on Artificial
Intelligence, pages 272–283. Springer 2005.

17. L. Todorovski, B. Cestnik, M. Kline, N. Lavrač, and S. Džeroski. Qualitative clustering of
short time-series: A case study of firms reputation data. In Proc. Wshp on Integration and
Collaboration Aspects of Data Mining, Decision Support and Meta-Learning, pages 141–149,
ECML/PKDD 2002.

18. B. Ženko, S. Džeroski, and J. Struyf. Learning predictive clustering rules. In 4th Int’l Work-
shop on Knowledge Discovery in Inductive Databases: Revised Selected and Invited Papers,
pages 234–250. Springer, Berlin 2005.

Chapter 17

Using a Solver Over the String Pattern Domain

to Analyze Gene Promoter Sequences

Christophe Rigotti, Ieva Mitašiūnaitė, Jérémy Besson, Laurène Meyniel,
Jean-François Boulicaut, and Olivier Gandrillon

Abstract This chapter illustrates how inductive querying techniques can be used
to support knowledge discovery from genomic data. More precisely, it presents a
data mining scenario to discover putative transcription factor binding sites in gene
promoter sequences. We do not provide technical details about the used constraint-
based data mining algorithms that have been previously described. Our contribution
is to provide an abstract description of the scenario, its concrete instantiation and
also a typical execution on real data. Our main extraction algorithm is a complete
solver dedicated to the string pattern domain: it computes string patterns that satisfy
a given conjunction of primitive constraints. We also discuss the processing steps
necessary to turn it into a useful tool. In particular, we introduce a parameter tun-
ing strategy, an appropriate measure to rank the patterns, and the post-processing
approaches that can be and have been applied.

17.1 Introduction

Understanding the regulation of gene expression remains one of the major chal-
lenges in molecular biology. One of the elements through which the regulation

Christophe Rigotti · Laurène Meyniel · Jean-François Boulicaut
Laboratoire LIRIS CNRS UMR 5205, INSA-Lyon, 69621 Villeurbanne, France
e-mail: christophe.rigotti@insa-lyon.fr,laurene.meyniel@wanadoo.fr,
jean-francois.boulicaut@insa-lyon.fr

Ieva Mitašiūnaitė · Jérémy Besson
Faculty of Mathematics and Informatics, Vilnius University, Lithuania
e-mail: ieva.mitasiunaite@gmail.com,contact.jeremy.besson@gmail.com

Olivier Gandrillon
Centre de Génétique Moléculaire et Cellulaire CNRS UMR 5534,
Université Claude Bernard Lyon I, 69622 Villeurbanne, France
e-mail: gandrillon@cgmc.univ-lyon1.fr

407
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_17, © Springer Science+Business Media, LLC 2010

408 Christophe Rigotti et al.

works is the initiation of the transcription by the interaction between short DNA se-
quences (called gene promoters) and multiple activator and repressor proteins called
Transcription Factors (TFs). These gene promoter elements are located in sequences
called promoter sequences, that are DNA sequences close to the sequences that en-
code the genes. In fact, on a promoter sequence various compounds can bind, having
then an impact on the activation/repression of the gene associated to this promoter
sequence, but among these compounds, the TFs are known to play a very impor-
tant role. Therefore, many researchers are working on TFs and Transcription Factor
Binding Sites (TFBSs). These are subsequences of the promoter sequences where
the TFs are likely to bind. In practice, identifying patterns corresponding to putative
TFBSs help the biologists to understand which TFs are involved in the regulation of
the different genes.

In this study, we report our contribution to gene promoter sequence analysis
and TFBS discovery by means of generic constraint-based data mining techniques
over strings. Indeed, we consider that the promoter sequences are sequences of nu-
cleotides represented by the symbols A, C, G and T (i.e., a data sequence is a string
over the alphabet {A,C,G,T} and a pattern is a substring in such sequences). Con-
trary to many approaches that support motif discovery in promoter sequences, we
do not take into account domain knowledge about that quite specific type of strings.
Instead, we use a generic solver over the string pattern domain.

The recent advances in constraint-based mining (see [2] and [7] for an overview),
and more generally the current developments in the domain of inductive querying
(i.e., the vision proposed in [10]), lead to the design of many mining tools based on
the constraint paradigm. We have now at hand scalable complete solvers, in partic-
ular over the string domain, that can be used to find substring patterns in sequences.
However, this is far from being sufficient to tackle a real application. In this chapter,
we present all the necessary processing, beyond the pattern extraction, that is needed
to support knowledge discovery from a biological perspective, hopefully leading to
the discovery of new putative TFBSs. First, we describe the corresponding data
mining abstract scenario, and then we give its concrete instantiation. Finally, we il-
lustrate its execution by means of a typical case study. We also give technical details
about aspects that are important to run the scenario in practice. This includes, in
particular, the tuning of the parameters in the early exploratory mining stage, the
ranking of the patterns using a measure adapted to the domain, and the designed
pattern post-processing technique to exhibit putative TFBSs.

Methodological and technical details about the method and the algorithms can
be found in several papers. The Marguerite solver over the string pattern domain
has been described in details in [14, 15]. A concrete instance of the scenario is
described in the journal publication [16]. This is also where our measure of interest,
the so-called TZI measure, is studied in depth. Our parameter tuning method has
been introduced in [1]. Last by not least, the Ph.D. thesis [13] considers all these
issues in detail.

The rest of the chapter is organized as follows. In Section 17.2, we present the
scenario both at an abstract and instantiated level. Then, in Section 17.3, we describe
the kind of patterns and the constraints that are handled by the solver. The parameter

17 Mining String Patterns to Analyze Gene Promoter Sequences 409

tuning strategy is discussed in Section 17.4 and the dedicated measure to rank the
patterns is introduced in Section 17.5. Then, a typical example of a real execution of
the scenario is presented in Section 17.6. Finally, we conclude with a short summary
in Section 17.7.

17.2 A Promoter Sequence Analysis Scenario

Let us present the scenario which has been designed and used in our case study. First,
we describe it in abstract terms and then we explain how it has been instantiated into
a concrete scenario.

17.2.1 A generic scenario

This abstract view describes the main steps of the general process that has been
studied. It can be decomposed as a workflow containing the following sequence of
operations:

• Use the results of SAGE experiments [21] to select two groups of genes, one
group corresponding to genes active in a context (called the positive context), and
the second group corresponding to genes active in an opposite context (called the
negative context). These positive vs. negative issues are application dependent.
Notice that SAGE is one technology for recording gene expression values in
biological samples and that other popular approaches could be used, e.g., mi-
croarrays.

• Retrieve from a gene database the promoter sequences of the selected genes.
Construct two sets D+ and D− of promoter sequences: one for the genes active
in the positive context (D+), and the other for the genes active in the negative
context (D−).

• Perform a differential extraction of substrings between datasets D+ and D−, to
find substrings frequent in D+ and not frequent in D−.

• Compute for each extracted substring a dedicated interestingness measure.
• Select some of the patterns, according to their ranking on the measure value

and/or to their support in D+ and/or support in D−.
• Perform a complementary post-processing:

– Cluster the set of selected patterns (pairwise alignment).
– In each cluster, perform a multiple alignment of the patterns in the cluster, to

obtain a consensus motif (centroid) for each cluster.
– Search these consensus motifs in a database of known TF binding sites (e.g.,

Trans f ac R© database [12]), to look for their corresponding TFs and the known
functions of these TFs (if any).

410 Christophe Rigotti et al.

Fig. 17.1 Workflow of the abstract scenario.

The workflow of the whole process is depicted in Figure 17.1. Notice that nu-
merous efforts have given rise to a variety of computational methods to discover pu-
tative TFBSs in sets of promoters of co-regulated genes (see [16] for an overview).
Among them two families can be distinguished: statistical or stochastic approaches,
and combinatorial approaches [20]. Concerning the family of statistical and stochas-
tic approaches, a recent review of the most widely used algorithms exhibits rather
limited results [19]. The scenario presented in this chapter uses a combinatorial
approach, and its main originality w.r.t. the other combinatorial algorithms, which
allow to extract patterns from several datasets (e.g., SPEXS [3] or DRIM [9]), is
that the maximal support threshold is set explicitly. This is particularly interesting,
when there is a clear semantic cut between a positive and negative datasets, i.e.,
the negative dataset has an opposite biological sense (presence/absence of a mu-
tation; addition or not of a given drug, etc.), and does not just represent random
background.

17.2.2 Instantiation of the abstract scenario

We focus the search on putative TFBSs that could be used to regulate the transcrip-
tion of the genes associated to promoter sequences of the positive dataset (D+) while
they are not likely to have an important impact on the regulation of the genes associ-
ated to the other set. To collect the sets D+ and D−, the method starts with a classical

17 Mining String Patterns to Analyze Gene Promoter Sequences 411

operation used in molecular biology: the search for differentially expressed genes1,
using SAGE experiments. This allows to obtain two groups of genes from which
we derive two sets of associated promoter sequences using a promoter database. To
look for putative TFBSs regulating the overexpressed genes, we choose the first set
(the promoters of the overexpressed genes) to be used as a positive set, and the sec-
ond set as a negative one2. The promoter sequences are sequences of compounds
called bases. There are four different bases, commonly represented by the symbols
A, C, G and T, and a sequence is simply represented by a string over the alphabet
{A,C,G,T}. Then the method consists in finding patterns that are substrings occur-
ring in at least αmin promoters from the positive set and in at most αmax promoters
from the negative set, where the parameter αmin (resp. αmax) is supposed to be a large
(resp. small) threshold value. Typical sizes of the promoter sequences are about a
few thousands of symbols, and the positive and negative datasets contain each a few
tens of such sequences.

We consider two kinds of patterns: Exact Matching Patterns (EMPs) and Soft
Matching Patterns (SMPs). Both are strings of bases, but they differ in the way their
supports are defined. The support of an EMP in a dataset is the number of sequences
of the dataset that contain at least one exact occurrence of this EMP. Let αdist be a
given threshold, termed the soft matching threshold, then the support of a SMP is the
number of sequences containing at least one soft occurrence of the pattern, where a
soft occurrence is a part of the sequence different from the pattern in at most αdist
positions (i.e., the Hamming distance between this part of the sequence and the
pattern is at most αdist). Both SMPs and EMPs are necessary: SMPs allow to gather
the degenerated TFBSs while EMPs are dedicated to pick out the conserved ones.

The two kinds of patterns are extracted using a solver over the string pattern do-
main called Marguerite (see Section 17.3). This tool performs a differential extrac-
tion of patterns between the two sets of sequences D+ and D−. To run an extraction,
the user has to set the four following constraints: L the length of the patterns, αmin
their minimal support in D+, αmax their maximal support in D−, and αdist the soft
matching threshold (for SMPs). Marguerite is complete in the sense that it finds
all possible patterns satisfying the constraints according to the user setting. In the
case of SMPs, the solver enforces an additional constraint: the patterns must have
at-least one exact occurrence in D+. This additional constraint enables to focus on
SMPs that appear at-least one time in a non-degenerated way. Concerning the use
of the solver, setting four parameters is not an easy task, so we developed and used
a dedicated parameter tuning tool (see Section 17.4).

In order to assess the significance of a pattern we used the notion of Twilight
Zone (TZ) [11] to build a Twilight Zone Indicator (TZI). A twilight zone is a zone
in a parameter space, where we are likely to obtain patterns produced by the random
background. For a pattern φ of length L, the indicator T ZI(φ) is an estimate of the

1 It consists in comparing two biological situations, Sit1 and Sit2, in order to obtain two groups of
genes: one that is up-regulated, and the other one that is down-regulated, when going from Sit1 to
Sit2.
2 Notice that if we exchange the positive and negative datasets, then we could find putative TFBSs
regulating the underexpressed genes.

412 Christophe Rigotti et al.

minimum number of patterns of length L, due to the random background, that are
likely to be extracted together with φ , in the most stringent conditions (i.e., with the
strongest constraints, that still lead to the extraction of φ). The computation of the
TZI is detailed in Section 17.5. It is based on the same hypothesis made in [11]: the
data sequences are composed of independent and uniformly distributed nucleotides,
and the possible overlap of the occurrences of the patterns is considered to have a
limited impact on the number of extracted patterns. In addition, we suppose that the
positive and the negative datasets are independent.

During the next step, the biologist browses and ranks the patterns (according to
the TZI measure, and to the support of the patterns in D+ and D−) and then he/she
selects some promising ones.

On these selected patterns, the following post-processing is applied (see Sec-
tion 17.6.3). First the similar patterns are grouped by performing a hierarchical clus-
tering. Then, for each cluster we compute the average of the TZI of the patterns in
the cluster, and in each cluster, the patterns are aligned with a multiple alignment
tool (MultAlin [5]) to build a consensus pattern of the cluster. Finally, the concen-
sus patterns are checked w.r.t. the Trans f ac R© [12] database, to find out if they are
known TFBSs, close to some known TFBSs or unknown.

17.3 The Marguerite Solver

We introduce the solver Marguerite which supports inductive querying on strings.
It has been used in the scenario described in this chapter. We define more pre-
cisely the patterns and constraints handled by this solver. More details can be found
in [14, 15].

Let Σ be a finite alphabet (in the scenario Σ = {A,C,G,T}), then a string φ over
Σ is a finite sequence of symbols from Σ . The language of patterns L is Σ ∗, i.e, the
set of all strings over Σ . A string dataset D is a multi-set3 of strings from Σ ∗. The
length of a string φ is denoted |φ |. A substring φ ′ of φ is a sequence of contiguous
symbols in φ .

An exact occurrence of a pattern φ is simply a substring of a string in D that is
equal to φ . The exact support of φ , denoted suppE(φ ,D), is the number of strings in
D that contain at least one exact occurrence of φ . Notice that multiple occurrences
of a pattern in the same string do not change its support.

Let αdist be a positive integer, then an (αdist)-soft occurrence of a pattern φ
is a substring φ ′ of a string in D, having the same length as φ and such that
hamming(φ ,φ ′) ≤ αdist , where hamming(φ ,φ ′) is the Hamming distance between
φ and φ ′ (i.e., the number of positions where φ and φ ′ are different). The (αdist)-
soft support of φ is the number of strings in D that contain at least one (αdist)-soft
occurrence of φ . It is denoted suppS(φ ,D,αdist).

3 The dataset may contain several times the same string.

17 Mining String Patterns to Analyze Gene Promoter Sequences 413

Example 17.1. If D = {atgcaaac,acttggac,gatagata, tgtgtgtg,gtcaactg}, then we
have suppE(gac,D) = 1 since only string acttggac contains gac, and we also have
suppS(gac,D,1) = 3 because acttggac, gatagata and gtcaactg contain some 1-soft
occurrences of gac.

Definition 17.1 (Frequency constraints). In the case of the exact support, given
a threshold value f , the minimal (resp. maximal) frequency constraint is MinFr(φ ,
D, f)≡ suppE(φ ,D)≥ f (resp. MaxFr(φ ,D, f)≡ suppE(φ ,D)≤ f). For the (αdist)-
soft support, the constraints are defined as MinFr(φ ,D, f) ≡ suppS(φ ,D,αdist) ≥
f ∧ suppE(φ ,D)≥ 1 and MaxFr(φ ,D, f)≡ suppS(φ ,D, αdist)≤ f .

Notice that, in the case of the soft support, our definition of MinFr enforces the
presence of at least one exact occurrence, in order to discard patterns that only occur
as degenerated instances.

The generic conjunction of constraints handled by Marguerite is:
C ≡ MinFr(φ ,D+,αmin)∧MaxFr(φ ,D−,αmax)∧ |φ | = L, where D+ and D− are
string databases, αmin and αmax are frequency thresholds, and L is a user defined
pattern length.

The algorithms used by Marguerite [14, 15] are based on the generic algorithm
FAVST [6], designed for the efficient extraction of strings under combination of
constraints, taking advantage of the so-called Version Space Tree (VST) [8] data
structure. Marguerite extends FAVST to degenerated patterns discovery through
similarity and soft-support constraints. It is implemented in C/C ++ and can be
used to compute both Exact Matching Patterns (EMPs) and Soft Matching Patterns
(SMPs) in a complete way (i.e., all patterns satisfying the constraints are outputted).

17.4 Tuning the Extraction Parameters

In an exploratory data mining task based on pattern extraction, one of the most
commonly used parameter tuning strategies, in the early exploration stage, is to run
a few experiments with different settings, and to simply count the number of patterns
that are obtained. Then, using some domain knowledge, the user tries to guess some
potentially interesting parameter settings. After that stage, the user enters a more
iterative process, in which she/he also looks at the patterns themselves and at their
scores (according to various quality measures), and uses her/his knowledge of the
domain to focus on some patterns and/or to change the parameters by some local
variations of their values.

To support this early exploratory stage, so that the user can guess promising ini-
tial parameter settings, we decided to probe the parameter space in a more system-
atic way, so that it could be possible to provide graphics that depict the extraction
landscape, i.e., the number of patterns that will be obtained for a wide range of pa-
rameter values. This idea is very simple, and many (if not all) of the practitioners

414 Christophe Rigotti et al.

have one day written their own script/code to run such sets of experiments. How-
ever, in many cases, the cost of running real extractions for hundreds of different
parameter settings is clearly prohibitive.

Instead of running real experiments, a second way is to develop an analytical
model, that estimates the number of patterns satisfying the constraint C , with respect
to the distribution of the symbols and the structure (number of strings and size) of
the datasets, and with respect to the values of the parameters used in C . In this
approach, an important effort has to be made on the design of the model, and in
most cases this is a non-trivial task. For instance, to the best of our knowledge,
in the literature there is no analytical model of the number of patterns satisfying
C ≡ MinFr(φ ,D+,αmin)∧MaxFr(φ ,D−,αmax)∧ |φ | = L when soft-occurrences
are used to handle degenerated patterns (even in the simple case where αdist = 1).
Designing an analytical model to handle this case is certainly not straightforward,
in particular because of the specific symbol distribution that has to be incorporated
in the model.

We developed a third approach based on the following key remark. When a pat-
tern φ is given, together with the distribution of the symbols, the structure of the
datasets and the values of the parameters in C , we can compute P(φ sat. C) the
probability that φ satisfies C in this dataset. In most cases, designing a function to
compute P(φ sat. C) is rather easy in comparison to the effort needed to exhibit an
analytical model that estimates the number of patterns satisfying the constraint C .
Having at hand a function to compute P(φ sat. C), the next step is then to estimate
the total number of patterns that will be extracted, but without having to compute
P(φ sat. C) for all patterns in the pattern space. Therefore, we propose a simple
pattern space sampling approach, that leads to a fast and accurate estimate of the
number of patterns that will be extracted. Finally, we can compute such an estimate
for a large number of points in the parameter space and provide views of the whole
extraction landscape.

To determine P(φ sat. C), we first compute the different frequencies of occur-
rence of the symbols. We consider that all occurrences of the symbols are inde-
pendent, and then, for a given pattern φ we can easily compute the probability
that φ occurs in a string of a given length. If we suppose that all strings in the
dataset have the same length, the probability to appear in each string is the same,
and we can use a binomial law to obtain the probability for this pattern to sat-
isfy the constraint MinFr(φ , D+,αmin) and the probability to satisfy the constraint
MaxFr(φ ,D−,αmax). Finally, if we suppose that the datasets D+ and D− are inde-
pendent, we can multiply these two probabilities to obtain P(φ sat. C).

Let SC be the set of patterns in L that satisfy the constraint C ≡ MinFr(φ ,
D+, αmin)∧MaxFr(φ ,D−,αmax)∧|φ |= L, using P(φ sat. C) we can estimate |SC |
by sampling the pattern space as follows. Let us associate to each pattern φ a ran-
dom variable Xφ , such that Xφ = 1 when φ satisfy C and Xφ = 0 otherwise. Then
|SC | = ∑φ∈L Xφ . Considering the expected value of |SC |, by linearity of the ex-
pectation operator we have E(|SC |) = ∑φ∈L E(Xφ). Since E(Xφ) = 1× P(Xφ =
1)+0×P(Xφ = 0), then E(|SC |) = ∑φ∈L P(φ sat. C). Let SL be the set of patterns

17 Mining String Patterns to Analyze Gene Promoter Sequences 415

in L that satisfy |φ | = L. As P(φ sat. C) = 0 for all patterns that do not satisfy
|φ |= L, we have E(|SC |) = ∑φ∈SL P(φ sat. C).

Computing this sum over SL could be prohibitive, since we want to obtain the
values of E(|SC |) for a large number of points in the parameter space. Thus we
estimate E(|SC |) using only a sample of the patterns in SL. Let Ssamp be such a
sample, then we use the following value as an estimate of E(|SC |):

|SL|
|Ssamp| × ∑

φ∈Ssamp

P(φ sat. C)

In practice, many techniques can be used to compute the sample. In our experi-
ments, we use the following process:

• Step 1: build an initial sample Ssamp of SL (sampling with replacement) of size
5% of |SL| and compute the estimate of E(|SC |).

• Step 2: go on sampling with replacement to add 1000 elements to Ssamp. Compute
the estimate, and if the absolute value of the difference between the new estimate
and the previous one is greater than 5% of the previous estimate, then iterate on
Step 2.

17.5 An Objective Interestingness Measure

The notion of Twilight Zone (TZ) [11] has been originally proposed to character-
ize the subtle motifs, i.e., motifs that can not be distinguished (no statistically signif-
icant difference) from random patterns (patterns due to the random background). In
this context, the TZ was defined as the set of values of the scoring function for which
we can expect to have some random patterns exhibiting such score values. Let us
consider the notion of extraction parameters in a broad sense, including structural
properties of the dataset (e.g., number of sequences, length of the sequences) and
mining constraints (e.g., selection threshold according to one or several measures,
length of the patterns). Then, the TZ can be seen as a region (or a set of regions)
in the parameter space, where we are likely to obtain random patterns among the
extracted patterns, these random pattern having scores as good (or event better) than
the true patterns.

We can now define a Twilight Zone Indicator (TZI) to rank the patterns in the case
of differential extractions. Let φ be a pattern, occurring in support+(φ) sequences
of the positive dataset, and in support−(φ) sequences of the negative dataset. Then,
TZI(φ) is an estimate of the number of random patterns, having the same length as
φ , that will be extracted using αmin = support+(φ) and αmax = support−(φ), i.e.,
using the most selective constraints that still permit to obtain φ (since for larger αmin
and/or lower αmax threshold values, φ will not satisfy the constraints and will not be
retained during the extraction). The higher is T ZI(φ), the deeper is φ in the twilight
zone, and thus likely to be retrieved among a larger collection of patterns due to

416 Christophe Rigotti et al.

the random background that cannot statistically be distinguished from φ . Then, in
practice, we will select patterns having a low TZI, to expect to have patterns that are
not due to the random background.

At first glance, the number of patterns satisfying αmin = support+(φ) and
αmax = support−(φ) could be obtained using the sampling based technique pre-
sented in Section 17.4. Unfortunately, if this approach can help the user to find es-
timates of the number of patterns in wide ranges of parameter values, the extracted
patterns themselves can represent many much more (support+,support−) pairs,
than the number of (αmin,αmax) pairs considered during the parameter setting stage.
For instance, it can make sense for the expert to explore the αmin setting between
20 and 40, while real patterns that are extracted using αmin ∈ [20,40] could have
support larger than 40, and not only in [20,40]. In order to avoid the cost of com-
puting the sampling based estimate for each extracted pattern, we now discuss an
alternative way to obtain such an estimate. This second estimate is less accurate, in
the sense that it does not take into account the difference among the frequencies of
the symbols, but it uses a direct analytical estimate, i.e., without sampling. It can be
much more relevant in practice.

We consider that all the sequences have the same length, denoted G. In this con-
text, we want to estimate the number of SMP patterns of length L that will be ex-
tracted under the thresholds αmin, αmax and αdist . Let us notice that estimating the
number of EMP is a particular case, where αdist is set to 0. As in [11], we suppose
that the data sequences are composed of independent and uniformly distributed sym-
bols, having the same occurrence probability, and that the overlapping of the occur-
rences of the patterns has a negligible impact on the number of patterns extracted
(since L � G). Additionally, as in the previous section, we suppose that the two
datasets are independent.

Occurrences at a given position. The data sequences are gene promoter se-
quences. On such a given vocabulary, we have 4L different possible strings of length
L. The hypotheses made on the distribution of the symbols imply that the probability
that a pattern φ of length L has an exact occurrence starting at a given position in a
sequence4 is:

P(exact occ. of φ at one position) = 1
4L .

From an exact occurrence of φ , one can construct the soft occurrences of φ within
an Hamming distance αdist by placing k substitutions in

(L
k

)
possible ways, with

k ∈ {0, . . .αdist}. Since we have 4 symbols, then for each position were we have a
substitution, we have 3 different possible substitutions. Thus, for a pattern φ , there
are ∑αdist

k=0

(L
k

)×3k strings that are soft occurrences of φ . Then, the probability that a
pattern has a soft occurrence starting at a given position in a sequence is:

P(soft occ. of φ at one position) =
∑

αdist
k=0

(L
k

)
×3k

4L .

4 Except the last L−1 positions.

17 Mining String Patterns to Analyze Gene Promoter Sequences 417

In the following, we also need the probability that a pattern φ has a strict soft
occurrence starting at a given position (a strict soft occurrence of φ is a soft occur-
rences of φ that is not an exact occurrence). In this case we have simply:

P(strict soft occ. of φ at one position) =
∑

αdist
k=1

(L
k

)
×3k

4L .

Occurrences in a random sequence. In a sequence, there are (G−L+1) possible
positions to place the beginning of an occurrence of φ . Since L�G, for the sake of
simplicity, we approximate a number of possible positions by G. Then, considering
that the occurrence overlap has a negligible impact, the probability that there is no
soft occurrence of φ in a random sequence is:

P(no soft occ. of φ in a seq.) = (1−P(soft occ. of φ at one position))G.

The probability that there is at least one soft occurrence of φ in a sequence is:

P(exists soft occ. of φ in a seq.) = 1− (1−P(soft occ. of φ at one position))G.

Similarly, the probability that there is at least one strict soft occurrence of φ is:

P(exists strict soft occ. of φ in a seq.) =
1− (1−P(strict soft occ. of φ at one position))G.

Finally, the probability that there is at least one exact occurrence is:

P(exists exact occ. of φ in a seq.) = 1− (1− 1
4L)

G.

Minimum support constraint. To determine P(φ sat. min. supp.), i.e., the proba-
bility of φ to satisfy the minimum support constraint, let us define X as the number
of sequences, in the positive dataset, that contains at least one exact occurrence of
φ . The probability P(φ sat. min. supp.) can be decomposed using the conditional
probability of φ sat. min. supp. given the value of X, as follows:

P(φ sat. min. supp.) =
N+

∑
i=1

(P(X = i)×P(φ sat. min. supp.|X = i)) (17.1)

Notice that the sum starts at i = 1, and not at i = 0, since the pattern must have at
least one exact occurrence in the positive dataset (see Section 17.3).

The variable X follows a binomial distribution B(N+, P(exists exact occ. of φ
in a seq.)), where N+ is the number of sequences in the positive dataset. Thus we
have:

P(X = i) =
(N+

i

)×P(exists exact occ. of φ in a seq.)i

×(1−P(exists exact occ. of φ in a seq.))N+−i.

P(φ sat. min. supp.|X = i) is the probability that φ satisfies the minimum support
constraint, given that exactly i sequences contain at least one exact occurrence of φ .
This also means that (N+ − i) sequences do not have any exact occurrence of a
pattern. Then, according to i, there are two cases:

1. If i ≥ αmin then P(φ sat. min. supp.|X = i)) = 1 since the constraint is already
satisfied by the i sequences that contain each at least one exact occurrence of φ .

418 Christophe Rigotti et al.

2. If i < αmin then P(φ sat. min. supp.|X = i) is equal to the probability that at least
(αmin− i) of the (N+− i) remaining sequences contain at least one strict soft
occurrence. This number of sequences that contain at least one strict soft occur-
rence of φ also follows a binomial distribution B(N+− i,P(exists strict soft occ.
of φ in a seq.)). Then we have:

P(φ sat. min. supp.|X = i)) = ∑N+−i
z=αmin−i(

(N+−i
z

)
×P(exists strict soft occ. of φ in a seq.)z

×(1−P(exists strict soft occ. of φ in a seq.))N+−i−z).

It means that we can provide P(φ sat. min. supp.) by computing the sum in Equa-
tion 17.1 and P(φ sat. min. supp.|X = i) according to the two cases above.

Maximum Support constraint. Let Y be the number of sequences that support
φ in the negative dataset. A pattern φ satisfies the maximum support constraint
with threshold αmax if Y ≤ αmax. The variable Y follows a binomial distribution
B(N−, P(exists soft occ. of φ in a seq.)), where N− is the number of sequences
in the negative dataset. Then the probability that φ satisfies the maximum support
constraint is:

P(φ sat. max. supp.) = ∑αmax
z=0

(N−
z

)
×P(exists soft occ. of φ in a seq.)z

×(1−P(exists soft occ. of φ in a seq.))N−−z.

Conjunction of Minimum Support and Maximum Support constraints. Given
our hypothesis that the positive and negative datasets are independent, the probabil-
ity that a pattern satisfies a conjunction of minimum support and maximum support
constraints is:

P(φ sat. min. and max. supp.) = P(φ sat. min. supp.)×P(φ sat. max. supp.).

Number of expected patterns and Twilight Zone Indicator. Let ENP(
L,αmin,αmax,αdist) be the Expected Number of Patterns of length L that will be
extracted under the thresholds αmin, αmax and αdist . Since there are 4L possible pat-
terns of length L, and given the hypothesis that the overlapping of the occurrences
of the patterns has a negligible impact on the number of extracted patterns, we can
approximate ENP(L,αmin,αmax,αdist) by P(φ sat. min. and max. supp.)×4L.

Finally, let φ be a pattern, occurring in support+(φ) sequences of the positive
dataset, and in support−(φ) sequences of the negative dataset for a given αdist
threshold. Then, TZI(φ) is defined as ENP(|φ |,support+(φ), support−(φ),αdist).

17.6 Execution of the Scenario

In this section, we present a typical concrete execution of the whole scenario, in
the context of the study of the TFs and TFBSs involved in the activation/repression
of genes in reaction to the presence of the v-erbA oncogene, a chemical compound
involved in the cell self-renewal process.

17 Mining String Patterns to Analyze Gene Promoter Sequences 419

17.6.1 Data preparation

Using the SAGE technique [21], we identified two sets of genes: a set R of 29 genes
repressed by v-ErbA and a set A of 21 genes activated by v-ErbA. Then, we collected
the promoter sequences of all these genes (taking 4000 bases for each promoter).
These promoter sequences have been extracted as described in [4]. Finally, we have
built two datasets: D+ (resp. D−) containing the promoter sequences of the genes of
set R (resp. A).

These two datasets represent two biologically opposite situations. As a result, we
assume that computing string patterns that have a high support in D+ and a small
support in D− is a way to identify putative binding sites of transcription factors
involved in this activation/repression process induced by v-ErbA.

17.6.2 Parameter tuning

Patterns having slightly degenerated occurrences can be interesting in our context.
Therefore, we look for SMP patterns using αdist = 1 for the soft support definition.
The estimates are computed according to the sampling technique presented in Sec-
tion 17.4 with respective frequencies of 0.23, 0.26, 0.27, 0.24 for symbols A, C, G
and T. Representative graphics depicting portions of the extraction landscape, are
presented in Figure 17.2, on the right.

A typical use of such graphics is, for instance, to look for points, in the parameter
space, corresponding to a large support on D+, but a low support on D−, a large
pattern size, and a rather small number of expected patterns. Such a point can be
used as an initial guess of the parameters to perform the extractions. For instance,
we may consider pattern size = 10, minimal support on D+ of 15, and maximal
support on D− of 5. The graphic in the middle on the right for Figure 17.2 indicates
that, for this setting, only about 1 pattern is expected.

Additionally, in Figure 17.2 on the left, we give the real numbers of extracted
patterns. In practice, these graphics are not easily accessible, since in these experi-
ments the running time of a single extraction with Marguerite (on a Linux platform
with an Intel 2Ghz processor and 1Gb of RAM) ranges from tens of minutes to sev-
eral hours5, while for an estimate (graphics on the right) only a few tens of seconds
is needed. Even though the global trends correspond to the estimates on the right,
there are differences in some portions of the parameter space. For example, for the
setting pattern size = 10, minimal support = 15, and maximal support = 5, we have
about 100 extracted patterns while we expected only one. Such a difference suggests
that these 100 patterns capture an underlying structure of the datasets, and that they
are not simply due to the random background.

5 Notice that for experiments using EMP (exact support) on these datasets, with similar parameter
values, the running time is only about a few tens of seconds to a few minutes.

420 Christophe Rigotti et al.

Fig. 17.2 Expected and real numbers of extracted patterns. The minimal support αmin corresponds
to the horizontal axis, and the number of patterns corresponds to the vertical axis (log scale).

17.6.3 Post-processing and biological pattern discovery

Hierarchical clustering of SMPs. The hierarchical clustering of the SMPs pat-
terns is performed using the hclust function of the package stat of the R environ-
ment [18]. The proximity between clusters is computed using the complete linkage
method. To improve the quality and efficiency of the clustering, we process the
SMPs by groups of patterns having the same length. To construct a distance matrix,
we estimate the dissimilarity of each pair of SMPs as follows. For each pair, we
compute its optimal pairwise global alignment [17] with the following parameters:

17 Mining String Patterns to Analyze Gene Promoter Sequences 421

the score for a mismatch is 1, the score for a match is 0, the insertions and dele-
tions inside an alignment are not allowed, the terminal gaps are not penalized, and
the length of an alignment (terminal gaps are not included in the alignment length)
must be at least a half of the length of the patterns in the pair. Finally, the dissimilar-
ity of a pair of SMPs is simply the score of its best alignment (i.e., alignment having
the lowest score).

Finding a consensus pattern within a cluster. To find the consensus pattern of
each cluster of SMPs we align the patterns in each cluster using the multiple align-
ment tool MultAlin [5]. We use the following alignment scoring parameters: gap
creation and extension penalty is −5, terminal gaps are not penalized, score for a
match is 2, and score for any mismatch is 0. Once a consensus SMP is computed we
consult Trans f ac R© [12] to check whether it is a known TFBS. Figure 17.3 gives
an example of a cluster, whose consensus SMP that has been selected because of
its rather low TZI value (i.e., not likely to be due to the random background), and
that is reported by Trans f ac R© as a binding site of the TF c-Myb-isomorf1. In the
consensus pattern in this figure, the bases that are highly conserved appear as upper-
case letters in the consensus, and the weakly conserved ones appear as lowercase.
Positions with no conserved bases are indicated as dots.

Fig. 17.3 A cluster of SMPs
and its consensus computed
by a multiple alignment.

 .CGGCCGTT... 23.94

 .GCGCCGTT... 0.68

 ...GCCGTTAT. 4.4

 CCGTTCGT 4.4

 ...GCCGTTCG. 23.75

 CCGTTAGG 0.68

 TTGGCCGT.... 23.75

 ...GCCGTAAC. 107.37

 ..TGCCGTAA.. 0.58

Consensus ...gCCGTt...

Transfac: c-Myb-isoform1

Mean of TZI: 21.06

Biological interpretation. The application of the scenario therefore allowed us to
identify a c-Myb binding site as a signature motif of many newly identified v-ErbA
repressed target genes compared with v-ErbA activated target genes. This suggests a
potential role for c-Myb in the v-ErbA induced transformation. To determine the role
of c-Myb in this transformation process, we used a gene reporter assay to test the
ability of v-ErbA to transactivate c-Myb [4]. This experiment demonstrated that v-
ErbA can indeed functionally interacts directly or indirectly with the transcriptional
activity of endogenous c-Myb in T2ECs, constituting an experimental validation of
the in silico extracted motif.

422 Christophe Rigotti et al.

17.7 Conclusion

In this chapter, we presented a complete scenario that has been designed and used
to support knowledge discovery from promoter sequences. Indeed, it can be applied
to suggest putative TFBSs. The description of this application has been made at
different levels: the corresponding abstract scenario, its concrete instantiation and a
typical execution on a real dataset. To perform the main extraction step, we propose
to use a solver developped for inductive querying over the string pattern domain.
We also discussed all the additional processing required to use a solver, i.e., a data
mining algorithm, in such a realistic context. This includes a parameter tuning tool,
a support to pattern ranking and typical post-processing facilities dedicated to this
kind of discovery task.

Acknowledgements This work has been partly funded by EU contract IST-FET IQ FP6-516169
(Inductive Queries for Mining Patterns and Models) and by the French contract ANR-07-MDCO-
014 Bingo2 (Knowledge Discovery For and By Inductive Queries). We would like to thank
Stéphane Schicklin for his contribution to pattern matching against the Trans f ac R© database, and
the anonymous reviewers for their helpful comments and suggestions.

References

1. Besson, J., Rigotti, C., Mitasiunaité, I., Boulicaut, J.F.: Parameter tuning for differential min-
ing of string patterns. In: Proceedings IEEE Workshop DDDM’08 co-olocated with ICDM’08,
pp. 77–86 (2008)

2. Boulicaut, J.F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and Inductive
Databases, LNCS, vol. 3848. Springer (2005). 400 pages

3. Brazma, A., Jonassen, I., Vilo, J., Ukkonen, E.: Predicting gene regulatory elements in silico
on a genomic scale. Genome Res. 8(11), 1202–1215 (1998)

4. Bresson, C., Keime, C., Faure, C., Letrillard, Y., Barbado, M., Sanfilippo, S., Benhra, N.,
Gandrillon, O., Gonin-Giraud, S.: Large-scale analysis by SAGE revealed new mechanisms
of v-erba oncogene action. BMC Genomics 8(390) (2007)

5. Corpet, F.: Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 16(22),
10,881–10,890 (1988)

6. Dan Lee, S., De Raedt, L.: An efficient algorithm for mining string databases under con-
straints. In: Proceedings KDID’04, pp. 108–129. Springer (2004)

7. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2), 69–77 (2003)
8. De Raedt, L., Jaeger, M., Lee, S.D., Mannila, H.: A theory of inductive query answering. In:

Proceedings IEEE ICDM’02, pp. 123–130 (2002)
9. Eden, E., Lipson, D., Yogev, S., Yakhini, Z.: Discovering motifs in ranked lists of DNA se-

quences. PLOS Computational Biology 3(3), 508–522 (2007)
10. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. CACM 39(11),

58–64 (1996)
11. Keich, U., Pevzner, P.A.: Subtle motifs: defining the limits of motif finding algorithms. Bioin-

formatics 18(10), 1382–1390 (2002)
12. Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas,

D., Kel, A.E., Kel-Margoulis, O.V., Kloos, D.U., Land, S., Lewicki-Potapov, B., Michael, H.,
Münch, R., Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S., E., Wingender: Transfac :
transcriptional regulation, from patterns to profiles. Nucl. Acids Res. 31(1), 374–378 (2003)

17 Mining String Patterns to Analyze Gene Promoter Sequences 423

13. Mitasiunaite, I.: Mining string data under similarity and soft-frequency constraints: Applica-
tion to promoter sequence analysis. Ph.D. thesis, INSA Lyon (2009)

14. Mitasiunaite, I., Boulicaut, J.F.: Looking for monotonicity properties of a similarity constraint
on sequences. In: Proceedings of ACM SAC’06 Data Mining, pp. 546–552 (2006)

15. Mitasiunaite, I., Boulicaut, J.F.: Introducing softness into inductive queries on string
databases. In: Databases and Information Systems IV, Frontiers in Artificial Intelligence and
Applications, vol. 155, pp. 117–132. IOS Press (2007)

16. Mitasiunaite, I., Rigotti, C., Schicklin, S., Meyniel, L., j. F. Boulicaut, Gandrillon, O.: Extract-
ing signature motifs from promoter sets of differentially expressed genes. In Silico Biology
8(43) (2008)

17. Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

18. The R Project for Statistical Computing: http://www.r-project.org/
19. Tompa, M., Li, N., Bailey, T.L., Church, G.M., Moor, B.D., Eskin, E., Favorov, A.V., Frith,

M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G., Pesole, G.,
RÃ c©gnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng, Z.,
Workman, C., Ye, C., Zhu, Z.: Assessing computational tools for the discovery of transciption
factor binding sites. Nat. Biotechnol. 23(1), 137–144 (2005)

20. Vanet, A., Marsan, L., Sagot, M.F.: Promoter sequences and algorithmical methods for identi-
fying them. Res. Microbiol. 150(9-10), 779–799 (1999)

21. Velculescu, V.E., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene expression.
Science 270(5235), 484–487 (1995)

Chapter 18

Inductive Queries for a Drug Designing Robot

Scientist

Ross D. King, Amanda Schierz, Amanda Clare, Jem Rowland, Andrew Sparkes,
Siegfried Nijssen, and Jan Ramon

Abstract It is increasingly clear that machine learning algorithms need to be inte-
grated in an iterative scientific discovery loop, in which data is queried repeatedly
by means of inductive queries and where the computer provides guidance to the
experiments that are being performed. In this chapter, we summarise several key
challenges in achieving this integration of machine learning and data mining algo-
rithms in methods for the discovery of Quantitative Structure Activity Relationships
(QSARs). We introduce the concept of a robot scientist, in which all steps of the
discovery process are automated; we discuss the representation of molecular data
such that knowledge discovery tools can analyse it, and we discuss the adaptation
of machine learning and data mining algorithms to guide QSAR experiments.

18.1 Introduction

The problem of learning Quantitative Structure Activity Relationships (QSARs) is
an important inductive learning task. It is central to the rational design of new drugs
and therefore critical to improvements in medical care. It is also of economic im-

Ross D. King · Amanda Clare · Jem Rowland · Andrew Sparkes
Department of Computer Science, Llandinam Building,
Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, United Kingdom
e-mail: rdk@aber.ac.uk,afc@aber.ac.uk,jjr@aber.ac.uk,nds@aber.ac.uk

Amanda Schierz
2DEC, Poole House, Bournemouth University, Poole, Dorset, BH12 5BB, United Kingdom
e-mail: aschierz@bournemouth.ac.uk

Siegfried Nijssen · Jan Ramon
Departement Computerwetenschappen, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001, Leuven, Belgium
e-mail: siegfried.nijssen@cs.kuleuven.be,jan.ramon@cs.kuleuven.be

425
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0_18, © Springer Science+Business Media, LLC 2010

426 Ross D. King et al.

portance to the pharmaceutical industry. The QSAR problem is as follows: given
a set of molecules with associated pharmacological activities (e.g., killing cancer
cells), find a predictive mapping from structure to activity, which enables the de-
sign of a new molecule with maximum activity. Due to its importance, the problem
has received a lot of attention from academic researchers in data mining and ma-
chine learning. In these approaches, a dataset is usually constructed by a chemist by
means of experiments in a wet laboratory and machine learners and data miners use
the resulting datasets to illustrate the performance of newly developed predictive
algorithms. However, such an approach is divorced from the actual practice of drug
design, where cycles of QSAR learning and new compound synthesis are typical.
Hence, it is necessary that data mining and machine learning algorithms become a
more integrated part of the scientific discovery loop. In this loop, algorithms are not
only used to find relationships in data, but also provide feedback as to which experi-
ments should be performed and provide scientists with interpretable representations
of the hypotheses under consideration.

Ultimately, the most ambitious goal one could hope to achieve is the development
of a robot scientist for drug design, which integrates the entire iterative scientific
loop in an automated machine, i.e., the robot not only performs experiments, but also
analyses them and proposes new experiments. Robot Scientists have the potential to
change the way drug design is done, and enable the rapid adoption of novel machine-
learning/data-mining methodologies for QSAR. They however pose particular types
of problems, several of which involve machine learning and data mining. These
challenges are introduced further in Section 18.2.

The point of view advocated in this book is that one way to support iterative
processes of data analysis, is by turning isolated data mining tools into inductive
querying systems. In such a system, a run of a data mining algorithm is seen as
calculating an answer to a query by a user, whether this user is a human or a com-
puterized system, such as a robot scientist. Compared to traditional data mining
algorithms, the distinguishing feature of an inductive querying system is that it pro-
vides the user considerably more freedom in formulating alternative mining tasks,
often by means of constraints. In the context of QSAR, this means that the user is
provided with more freedom in how to deal with representations of molecular data,
can choose the constraints under which to perform a mining task, and has freedom
in how the results of a data mining algorithm are processed.

This chapter summarizes several of the challenges in developing and using in-
ductive querying systems for QSAR. We will discuss in more detail three technical
challenges that are particular to iterative drug design: the representation of molecu-
lar data, the application of such representations to determine an initial set of com-
pounds for use in experiments, and mechanisms for providing feedback to machines
or human scientists performing experiments.

A particular feature of molecular data is that, essentially, a molecule is a struc-
ture consisting of atoms connected by bonds. Many well-known machine learning
and data mining algorithms assume that data is provided in a tabular (attribute-
value) form. To be able to learn from molecular data, we either need strategies for
transforming the structural information into a tabular form or we need to develop

18 Inductive Queries for a Drug Designing Robot Scientist 427

algorithms that no longer require data in such form. This choice of representation
is important both to obtain reasonable predictive accuracy and to make the inter-
pretation of models easier. Furthermore, within an inductive querying context, one
may wish to provide users with the flexibility to tweak the representation if needed.
These issues of representation will be discussed in more detail in the Section 18.3.

An application of the use of one representation is discussed in Section 18.4, in
which we discuss the selection of compound libraries for a robot scientist. In this
application, it turns out to be of particular interest to have the flexibility to include
background knowledge in the mining process by means of language bias. The goal
in this application is to determine the library of compounds available to the robot:
even though the experiments in a robot scientist are automated, in its initial runs it
would not be economical to synthesise compounds from scratch and the use of an
existing library is preferable. This selection is, however, important for the quality
of the results and hence a careful selection using data mining and machine learning
tools is important.

When using the resulting representation in learning algorithms, the next chal-
lenge is how to improve the selection of experiments based on the feedback of these
algorithms. The algorithms will predict that some molecules are more active than
others. One may choose to exploit this result and perform experiments on predicted
active molecules to confirm the hypothesis; one may also choose to explore fur-
ther and test molecules about which the algorithm is unsure. Finding an appropriate
balance between exploration and exploitation is the topic of Section 18.5 of this
chapter.

18.2 The Robot Scientist Eve

A Robot Scientist is a physically implemented laboratory automation system that
exploits techniques from the field of artificial intelligence to execute cycles of sci-
entific experimentation. A Robot Scientist automatically originates hypotheses to
explain observations, devises experiments to test these hypotheses, physically runs
the experiments using laboratory robotics, interprets the results to change the prob-
ability that the hypotheses are correct, and then repeats the cycle (Figure 18.1). We
believe that the development of Robot scientists will change the relationship be-
tween machine-learning/data-mining and industrial QSAR.

The University of Aberystwyth demonstrated the utility of the Robot Scientist
“Adam”, which can automate growth experiments in yeast. Adam is the first ma-
chine to have autonomously discovered novel scientific knowledge [34]. We have
now built a new Robot Scientist for chemical genetics and drug design: Eve. This
was physically commissioned in the early part of 2009 (see Figure 18.2). Eve
is a prototype system to demonstrate the automation of closed-loop learning in
drug-screening and design. Eve’s robotic system is capable of moderately high-
throughput compound screening (greater than 10,000 compounds per day) and is

428 Ross D. King et al.

Fig. 18.1 The Robot Scientist hypothesis generation, experimentation, and knowledge formation
loop.

designed to be flexible enough such that it can be rapidly re-configured to carry out
a number of different biological assays.

One goal with Eve is to integrate an automated QSAR approach into the drug-
screening process. Eve will monitor the initial mass screening assay results, generate
hypotheses about what it considers would be useful compounds to test next based
on the QSAR analysis, test these compounds, learn from the results and iteratively
feed back the information to more intelligently home in on the best lead compounds.

Eve will help the rapid adoption of novel machine-learning/data-mining method-
ologies to QSAR in two ways:

1. It tightly couples the inductive methodology to the testing and design of new
compounds, enabling chemists to step back and concentrate on the chemical and
pharmacological problems rather than the inductive ones.

2. It enables inductive methodologies to be tested under industrially realistic condi-
tions.

Fig. 18.2 Photographs of Eve, a Robot Scientist for chemical genetics and drug design.

18.2.1 Eve’s Robotics

Eve’s robotic system contains various instruments including a number of liquid han-
dlers covering a diverse range of volumes, and so has the ability to prepare and

18 Inductive Queries for a Drug Designing Robot Scientist 429

execute a broad variety of assays. One of these liquid handlers uses advanced non-
contact acoustic transfer, as used by many large pharmaceutical companies. For
observation of assays, the system contains two multi-functional microplate readers.
There is also a cellular imager that can be used to collect cell morphological in-
formation, for example to see how cells change size and shape over time after the
addition of specific compounds.

18.2.2 Compound Library and Screening

In drug screening, compounds are selected from a “library” (a set of stored com-
pounds) and applied to an “assay” (a test to determine if the compound is active
– a “hit”). This is a form of “Baconian” experimentation – what will happen if I
execute this action [45]. In standard drug screening there is no selection in the or-
dering of compounds to assay: “Start at the beginning, go on until you get to the
end: then stop” (Mad Hatter, Lewis Carroll). In contrast, Eve is designed to test an
active learning approach to screening.

Eve is initially using an automation-accessible compound library of 14,400
chemical compounds, the Maybridge ‘Hit-Finder’ library (http://www.
maybridge.com). This compound library is cluster-based and was developed
specifically to contain a diverse range of compounds. We realise this is not a large
compound library – a pharmaceutical company may have many hundreds of thou-
sands or even millions of compounds in its primary screening library. Our aim is to
demonstrate the proof-of-principle that incorporating intelligence within the screen-
ing process can work better than the current brute-force approach.

18.2.3 QSAR Learning

In the typical drug design process, after screening has found a set of hits, the next
task is to learn a QSAR. This is initially formed from the hits, and then new com-
pounds are acquired (possibly synthesised) and used to test the model. This process
is repeated until some particular criterion of success is reached, or too many re-
sources are consumed to make it economical to continue the process. If the QSAR
learning process has been successful, a “lead” compound is the result which can
then go for pharmacological testing. In machine learning terms such QSAR learn-
ing is an example of “active learning” - where statistical/machine learning methods
select examples they would like to examine next in order to optimise learning [12].
In pharmaceutical drug design the ad hoc selection of new compounds to test is
done by QSAR experts and medicinal chemists based on their collective experience
and intuition – there is a tradition of tension between the modellers and the syn-
thetic chemists about what to do next. Eve aims to automate this QSAR learning.
Given a set of “hits” from Baconian screening, Eve will switch to QSAR modelling.

430 Ross D. King et al.

Eve will employ both standard attribute based, graph based, and ILP based QSAR
learning methods to model relationships between chemical structure and assay ac-
tivity (see below). Little previous work has been done on combining active learning
and QSARs, although active learning is becoming an important area of machine
learning.

18.3 Representations of Molecular Data

Many industrial QSAR methods are based around using tuples of attributes or fea-
tures to describe molecules [19, 43]. An attribute is a proposition which is either true
or false about a molecule, for example, solubility in water, the existence of a ben-
zene ring, etc. A list of such propositions is often determined by hand by an expert,
and the attributes are measured or calculated for each molecule before the QSAR
analysis starts. This representational approach typically results in a matrix where the
examples are rows and the columns are attributes. The procedure of turning molec-
ular structures into tuples of attributes is sometimes called propositionalization.

This way of representing molecules has a number of important disadvantages.
Chemists think of molecules as structured objects (atom/bond structures, connected
molecular groups, 3D structures, etc.). Attribute-value representations no longer ex-
press these relationships and hence may be harder to reason about. Furthermore, in
most cases some information will be lost in the transformation. How harmful it is to
ignore certain information is not always easy to determine in advance.

Another important disadvantage of the attribute-based approach is that is compu-
tationally inefficient in terms of space, i.e., to avoid as much loss of information as
possible, an exponential number of attributes needs to be created. It is not unusual
in chemoinformatics to see molecules described using hundreds if not thousands of
attributes.

Within the machine learning and data mining communities, many methods have
been proposed to address this problem, which we can categorize along two dimen-
sions. In the first dimension, we can distinguish machine learning and data mining
algorithms based on whether they compute features explicitly, or operate on the data
directly, often by having implicit feature spaces.

Methods that compute explicit feature spaces are similar to the methods tradition-
ally used in chemoinformatics for computing attribute-value representations: given
an input dataset, they compute a table with attribute-values, on which traditional
attribute-value machine learning algorithms can be applied to obtain classification
or regression models. The main difference with traditional methods in chemoinfor-
matics is that the attributes are not fixed in advance by an expert, but instead the
data mining algorithm determines from the data which attributes to use. Compared
with the traditional methods, this means that the features are chosen much more
dynamically; consequently smaller representations can be obtained that still capture
the information necessary for effective prediction.The calculation of explicit feature

18 Inductive Queries for a Drug Designing Robot Scientist 431

spaces is one of the most common applications of inductive queries, and will hence
receive special attention in this chapter.

Methods that compute implicit feature spaces or operate directly on the structured
data are more radically different: they do not compute a table with attribute-values,
and do not propositionalize the data beforehand. Typically, these methods either
directly compute a distance between two molecule structures, or greedily learn rules
from the molecules. In many such models the absence or presence of a feature in the
molecule is still used in order to derive a prediction; the main difference is that both
during learning and prediction the presence of these features is only determined
when really needed; in this sense, these algorithms operate on an implicit feature
space, in which all features do not need to be calculated on every example, but only
on demand as necessary. Popular examples of measures based on implicit feature
spaces are graph kernels.

For some methods it can be argued that they operate neither on an implicit nor
on an explicit feature space. An example is a largest common substructure distance
between molecules. In this case, even though the conceptual feature space consists
of substructures, the distance measure is not based on determining the number of
common features, but rather on the size of one such feature; this makes it hard to
apply most kernel methods that assume implicit feature spaces.

The second dimension along which we can categorise methods is the kind of
features that are used, whether implicit or explicit:

1. Traditional features are typically numerical values computed from each molecule
by an apriori fixed procedure, such as structural keys or fingerprints, or features
computed through comparative field analysis.

2. Graph-based features are features that check the presence or absence of a sub-
graph in a molecule; the features are computed implicitly or explicitly through
a data mining or machine learning technique; these techniques are typically re-
ferred to as Graph Mining techniques.

3. First-order logic features are features that are represented in a first-order logic
formula; the features are computed implicitly or explicitly through a data mining
or machine learning technique. These techniques have been studied in the area
of Inductive Logic Programming (ILP).

We will see in the following sections that these representations can be seen as
increasing in complexity; many traditional features are usually easily computed,
while applying ILP techniques can demand large computational resources. Graph
mining is an attempt to find a middle ground between these two approaches, both
from a practical and a theoretical perspective.

432 Ross D. King et al.

18.3.1 Traditional Representations

The input of the analysis is usually a set of molecules stored in SMILES, SDF or
InChi notation. In these files, at least the following information about a molecule is
described:

1. Types of the atoms (Carbon, Oxygen, Nitrogen);
2. Types of the bonds between the atoms (single, double).

Additionally, these formats support the representation of:

1. Charges of atoms (positively or negatively charged, how much?);
2. Aromaticity of atoms or bond (an atom part of an aromatic ring?);
3. Stereochemistry of bonds (if we have two groups connected by one bond, how

can the rotation with respect to each other be categorized?);

Further information is available in some formats, for instance, detailed 3D infor-
mation of atoms can also be stored in the SDF format. Experimental measurements
may also be available, such as the solubility of a molecule in water. The atom-bond
information is the minimal set of information available in most databases.

The simplest and oldest approach for propositionalizing the molecular structure
is the use of structural keys, which means that a finite amount of features are spec-
ified beforehand and computed for every molecule in the database. There are many
possible structural keys, and it is beyond the scope of this chapter to describe all of
these; examples are molecular weight, histograms of atom types, number of hetero-
atoms, or more complex features, such as the sum of van der Waals volumes. One
particular possibility is to provide an a priori list of substructures (OH groups, aro-
matic rings, ...) and either count their occurrences in a molecule, or use binary fea-
tures that represent the presence or absence of each a priori specified group.

Another example of a widely used attribute-based method is comparative field
analysis (CoMFA) [7]. The electrostatic potential or similar distributions are esti-
mated by placing each molecule in a 3D grid and calculating the interaction be-
tween a probe atom at each grid point and the molecule. When the molecules are
properly aligned in a common reference frame, each point in space becomes com-
parable and can be assigned an attribute such that attribute-based learning methods
can be used. However, CoMFA fails to provide accurate results when the lack of
a common skeleton prevents a reasonable alignment. The need for alignment is a
result of the attribute-based description of the problem.

It generally depends on the application which features are most appropriate. Par-
ticularly in the case of substructures, it may be undesirable to provide an exhaus-
tive list beforehand by hand. Fingerprints were developed to alleviate this prob-
lem. Common fingerprints are based on the graph representation of molecules: a
molecule is then seen as a labelled graph (G,V,λ ,Σ) with nodes V and edges E;
labels, as defined by a function λ from V ∪E to Σ , represent atom types and bond
types. A fingerprint is a binary vector of a priori fixed length n, which is computed
as follows:

18 Inductive Queries for a Drug Designing Robot Scientist 433

1. All substructures of a certain type occurring in the molecule are enumerated (usu-
ally all paths up to a certain length);

2. A hashing algorithm is used to transform the string of atom and bond labels on
each path into an integer number k between 1 and n;

3. The kth element of the fingerprint is incremented or set to 1.

The advantage of this method is that one can compute a feature table in a sin-
gle pass through a database. There is a large variety of substructures that can be
used, but in practice paths are only considered, as this simplifies the problems of
enumerating substructures and choosing hashing algorithms. An essential property
of fingerprints is thus that multiple substructures can be represented by a single fea-
ture, and that the meaning of a feature is not always transparent. In the extreme case,
one can choose n to be the total number of possible paths up to a certain length; in
this case, each feature would correspond to a single substructure. Even though the-
oretically possible, this approach may be undesirable, as one can expect many paths
not to occur in a database at all, which leads to useless attributes. Graph mining, as
discussed in the next section, proposes a solution to this sparsity problem.

18.3.2 Graph Mining

The starting point of most graph mining algorithms is the representation of molecules
as labelled graphs. In most approaches no additional information is assumed – con-
sequently, the nodes and edges in the graphs are often labelled only with bond and
atom types. These graphs can be used to derive explicit features, or can be used
directly in machine learning algorithms.

18.3.2.1 Explicit Features

Explicit features are usually computed through constraint-based mining (inductive
querying) systems, and will hence be given special attention.

The most basic setting of graph mining is the following.

Definition 18.1 (Graph Isomorphism). Graphs G = (V,E,λ ,Σ) and
G′ = (V ′,E ′,λ ′,Σ ′) are called isomorphic if there exists a bijective function f
such that: ∀v ∈ V : λ (v) = λ ′(f (v)) and E = {{ f (v1), f (v2)}|{v1,v2} ∈ E ′} and
∀e ∈ E : λ (e) = λ ′(f (e)).

Definition 18.2 (Subgraph). Given a graph G = (V,E,λ ,Σ), G′ = (V ′,E ′,λ ′,Σ ′)
is called a subgraph of G iff V ′ ⊆ V ,E ′ ⊆ E, ∀v ∈ V ′ : λ ′(v) = λ (v) and ∀e ∈ E ′ :
λ ′(e) = λ (e).

Definition 18.3 (Subgraph Isomorphism). Given two graphs G = (V,E,λ ,Σ) and
G′ = (V ′,E ′,λ ′,Σ ′), G is called subgraph isomorphic with G′, denoted by G′ � G,
iff there is a subgraph G′′ of G′ to which G is isomorphic.

434 Ross D. King et al.

Definition 18.4 (Frequent Subgraph Mining). Given a dataset of graphs D , and a
graph G, the frequency of G in D , denoted by freq(G,D), is the cardinality of the
set {G′ ∈ D |G′ � G}. A graph G is frequent if freq(G,D) ≥ minsup, for a prede-
fined threshold minsup. The frequent (connected) subgraph mining is the problem
of finding a set of frequent (connected) graphs F such that for every possible fre-
quent (connected) graph G there is exactly one graph G′ ∈ F such that G′ and G are
isomorphic.

We generate as features those subgraphs which are contained in a certain mini-
mum number of examples in the data. In this way, the eventual feature representation
of a molecule is dynamically determined depending on the database it occurs in.

There are now many algorithms that address the general frequent subgraph min-
ing problem; examples include AGM [27], FSG [30], gSpan [54], MoFA [1], FFSM
[24] and Gaston [47]. Some of the early algorithms imposed restrictions on the types
of structures considered [35, 36].

If we set the threshold minsup very low, and if the database is large, even if
finite, the number of subgraphs can be very large. One can easily find more frequent
subgraphs than examples in the database. Consequently, there are two issues with
this approach:

1. Computational complexity: considering a large amount of subgraphs could re-
quire large computational resources.

2. Usability: if the number of features is too large, it could be hard to interpret a
feature vector.

These two issues are discussed below.

Complexity. Given that the number of frequent subgraphs can be exponential for
a database, we cannot expect the computation of frequent subgraphs to proceed in
polynomial time. For enumeration problems it is therefore common to use alterna-
tive definitions of complexity. The most important are:

1. Enumeration with polynomial delay. A set of objects is enumerated with polyno-
mial delay if the time spent between listing every pair of objects is bounded by a
polynomial in the size of the input (in our case, the dataset).

2. Enumeration with incremental polynomial time. Objects are enumerated in in-
cremental polynomial time if the time spent between listing the k and (k+ 1)th
object is bounded by a polynomial in the size of the input and the size of the
output till the kth object.

Polynomial delay is more desirable than incremental polynomial time. Can fre-
quent subgraph mining be performed in polynomial time?

Subgraph mining requires two essential capabilities:

1. Being able to enumerate a space of graphs such that no two graphs are isomor-
phic.

2. Being able to evaluate subgraph isomorphism to determine which examples in a
database contain an enumerated graph.

18 Inductive Queries for a Drug Designing Robot Scientist 435

Table 18.1 The number of graphs with certain properties in the NCI database

Graph property Number
All graphs 250251
Graphs without cycles 21963
Outerplanar graphs 236180
Graphs of tree width 0, 1 or 2 243638
Graphs of tree width 0, 1, 2 or 3 250186

The theoretical complexity of subgraph mining derives mainly from the fact that
the general subgraph isomorphism problem is a well-known NP complete problem,
which in practice means that the best known algorithms have exponential complex-
ity. Another complicating issue is that no polynomial algorithm is known to deter-
mine if two arbitrary graphs are isomorphic, even though this problem is not known
to be NP complete.

However, in practice it is often feasible to compute the frequent subgraphs in
molecular databases, as witnessed by the success of the many graph miners men-
tioned earlier. The main reason for this is that most molecular graphs have properties
that make them both theoretically and practically easier to deal with. Types of graphs
that have been studied in the literature include;

1. Planar graphs, which are graphs that can be drawn on a plane without edges
crossing each other [14];

2. Outerplanar graphs, which are planar graphs in which there is a Hamilton cycle
that walks only around one (outer) face [40];

3. Graphs with bounded degree and bounded tree width, which are tree-like graphs1

in which the degree of every node is bounded by a constant [44].

Graphs of these kinds are common in molecular databases (see Table 18.1, where
we calculated the number of occurrences of certain graph types in the NCI database,
a commonly used benchmark for graph mining algorithms).

No polynomial algorithm is however known for (outer)planar subgraph isomor-
phism, nor for graphs of bounded tree width without bounded degree and bounded
size. However, in recent work we have shown that this does not necessarily imply
that subgraph mining with polynomial delay or in incremental polynomial time is
impossible:

1. If subgraph isomorphism can be evaluated in polynomial time for a class of
graphs, then we showed that there is an algorithm for solving the frequent sub-
graph mining algorithm with polynomial delay, hence showing that the graph
isomorphism problem can always be solved efficiently in pattern mining [48].

2. Graphs with bounded tree width can be enumerated in incremental polynomial
time, even if no bound on degree is assumed [22].

1 A formal definition is beyond the scope of this chapter.

436 Ross D. King et al.

3. For the block-and-bridges subgraph isomorphism relation between outerplanar
graphs (see next section), we can solve the frequent subgraph mining problem in
incremental polynomial time [23].

These results provide a theoretical foundation for efficient graph mining in molecu-
lar databases.

Usability. The second problem is that under a frequency threshold, the number
of frequent subgraphs is still very large in practice, which affects interpretability
and efficiency, and takes away one of the main arguments for using data mining
techniques in QSAR.

One can distinguish at least two approaches to limit the number of subgraphs that
is considered:

1. Modify the subgraph isomorphism relation;
2. Apply additional constraints to subgraphs.

We will first look at the reasons for changing the subgraph isomorphism relation.

Changing Isomorphism. Assume we have a molecule containing Pyridine, that is,
an aromatic 6-ring in which one atom is a nitrogen. How many subgraphs are con-
tained in this ring only? As it turns out, Pyridine has 2+2+3+3+4+3=17 different
subgraphs next to Pyridine itself (ignoring possible edge labels):

N C
C-C N-C
C-C-C N-C-C C-N-C
C-C-C-C N-C-C-C C-N-C-C
C-C-C-C-C N-C-C-C-C C-N-C-C-C C-C-N-C-C
N-C-C-C-C-C C-N-C-C-C-C C-C-N-C-C-C

It is possible that each of these subgraphs has a different support; for example, some
of these subgraphs also occur in Pyrazine (an aromatic ring with two nitrogens).
The support of each of these subgraphs can be hard to interpret without visually
inspecting their occurrences in the data. Given the large number of subgraphs, this
can be infeasible.

Some publications have argued that the main source of difficulty is that we allow
subgraphs which are not rings to be matched with rings, and there are applications
in which it could make more sense to treat rings as basic building blocks. This can
be formalized by adding additional conditions to subgraph isomorphism matching:

1. In [20] one identifies all rings up to length 6 in both the subgraph and the database
graph; only a ring is allowed to match with a ring.

2. In [23] a block and bridge preserving subgraph isomorphism relation is defined,
in which bridges in a graph may only be matched with bridges in another graph,
and edges in cycles may only be matched with edges in cycles; a bridge is an
edge that is not part of a cycle.

Comparing both approaches, in [20] only rings up to length 6 or considered; in [23]
this limitation is not imposed.

18 Inductive Queries for a Drug Designing Robot Scientist 437

Most subgraph mining algorithms need to be changed significantly to deal with
a different definition of subgraph isomorphism. To solve this [20, 23] introduce
procedures to deal with ring structures.

We are not aware of an experimental comparison between these approaches.

Additional Constraints. The use of constraints is a general methodology to obtain
a smaller set of more meaningful subgraphs [35, 36]. One can distinguish two types
of constraints:

1. Structural constraints;
2. Data based constraints.

Minimum frequency is one example of a constraint based on data. Many other sub-
graph types have been proposed based on data constraints:

1. Maximally frequent subgraphs, which are subgraphs such that every supergraph
in a database is infrequent [35, 36, 25];

2. Closed subgraphs, which are subgraphs such that every supergraph has a different
frequency [55].

3. Correlated subgraphs, which are subgraphs whose occurrences have a significant
correlation with a desired target attribute [4];

4. Infrequent subgraphs [35, 36].

These constraints can be combined. For instance, one can be interested in finding
subgraphs that occur frequently in molecules exhibiting a desired property, but not
in other molecules.

In practice, these constraints are often not sufficient to obtain small representa-
tions. Additional inductive queries can be used to reduce the set of patterns further.
A more detailed overview of approaches to obtain smaller sets of patterns is given
by Bringmann et al. in Chapter 6 of this volume.

An issue of special interest in QSAR applications is which graph types lead to
the best results: even though molecules contain cycles, is it really necessary to find
cyclic patterns? Experiments investigating this issue can be found in [46, 4, 53]. The
conclusion that may be drawn from these investigations is that in many approaches
that use patterns, paths perform equally well as graphs; naı̈ve use of cyclic patterns
can even lead to significantly worse results.

18.3.2.2 Implicit Features and Direct Classification

The alternative to graph mining is to learn classifiers directly on the graph data.
The most popular approaches are based on the computation of a distance between
every pair of graphs in the data. Such distance functions can be used in algorithms
that require distance functions, such as k-nearest neighbour classification, or support
vector machines (SVMs). In SVMs a special type of distance function is needed, the
so-called kernel function.

438 Ross D. King et al.

One popular type of kernel is the decomposition kernel, in which the distance
is defined by an implicit feature space. If this implicit feature space is finite, the
kernel value between molecules can in principle be computed by first computing
two feature vectors for the pair, and then computing a distance from these feature
vectors; the advantage of kernels is that in practice only the (weighted) number of
substructures that two particular graphs have in common is computed.

The most commonly used graph kernels are based on the idea of random walks:
given two molecules, we count the number of walks that both molecules have in
common. Note that walks differ from paths as walks are allowed to visit the same
node more than once. If a maximum walk length is given, we could represent two
molecules by binary feature vectors with one bit for each possible walk. In practice,
though, it is more efficient to scan the two molecules in parallel to make sure we
search for common walks. This methodology has further possible advantages. For
instance, if we give all walks in graphs a weight which (carefully) shrinks with the
length of the walk, a kernel can be defined in which we sum the infinite number
of such common weighted walks. This number is efficiently computable without
explicitly enumerating all walks [17]. Many kernel methods have the advantage
that they deal easily with possibly infinite representations of structures in a feature
space. An early overview of graph kernels can be found in [16], while a more recent
overview of walk-based kernels can be found in [52].

Another type of distance function is obtained by computing the largest common
subgraph of two graphs. The assumption is here that the larger the subgraph is that
two molecules have in common, the more similar they are. It is easy to see that
this problem is at least as hard as computing subgraph isomorphism. However, the
problem may become easier for the types of graphs identified in the previous section.
In [51] it was shown how to compute the largest common subgraph in polynomial
time for outer-planar graphs under the block-and-bridges subgraph relation.

18.3.2.3 Extended Graph Representations

So far we have considered representations in which nodes correspond to atoms and
edges to bonds. This limits the types of knowledge that can be used in the classifica-
tion. It may be desirable to extend the representation: in some cases it is necessary
to classify atom types, e.g. halogen (F, Cl, Br, I); to say an atom in an aromatic ring
but not specify the atom type; to extend the notion of bond from that of a covalent
bond to include non-covalent ones, e.g. hydrogen bonds; etc.

To deal with such issues of ambiguity the common solution is to assume given
a hierarchy of edge and node labels. In this hierarchy more general labels, such as
‘halogen’ and ‘hydrogen donor’, are included, as well as the generalization relation-
ships. There are two ways to use these hierarchies:

1. We change the subgraph isomorphism operator, such that more general labels are
allowed to match with their specialisations [20, 26];

2. We exploit the fact that in some hierarchies every atom has at most one gener-
alization, by changing the graph representation of the data: we replace the atom

18 Inductive Queries for a Drug Designing Robot Scientist 439

type label with the parent label in the hierarchy, and introduce a new node, which
is labeled with the original atom type. Optionally, we add additional nodes la-
beled with other attributes, such as charges [31].

These approaches have mainly been investigated when computing explicit fea-
tures. An essential problem is then in both approaches the increased number of
patterns. Without additional constraints we could find patterns such as C-Aromatic-
C-Aromatic-C in aromatic rings, that is, patterns in which the labels iterate between
specific and general labels. The approaches listed above differ in their approach to
avoid or limit such patterns.

18.3.3 Inductive Logic Programming

In QSAR applications such as toxicity and mutagenicity prediction, where structure
is important, Inductive Logic Programming is among the more powerful approaches,
and has found solutions not accessible to standard statistical, neural network, or
genetic algorithms [8, 13, 32, 33]. The main distinguishing feature of ILP is that
data and models are represented in first order logic (FOL). The classical atom/bond
representation in first-order logic is based on the molecular structure hypothesis.
Atoms are represented in the form: atom(127,127_1,c,22,0.191), stating
that the first atom in compound 127 is a carbon atom of type 22 (aromatic) with
a positive charge of 0.191. Similarly, bond(127,127_1,127_6,7) states that
there is a type 7 bond (here aromatic) between the first and sixth atom in compound
127. Bonds are represented in a similar fashion.

When only atoms, bonds and their types are represented in FOL facts, the result-
ing representation is essentially a graph. The main advantage of ILP is the possibility
of including additional information, such as charges, and of including background
knowledge in the form of computer programs. One example of this is to define a
distance measure which enables three-dimensional representations with rules in the
form: “A molecule is active if it has a benzene ring and a nitro group separated
by a distance of 4 ± 0.5◦A”. The key advantage of this approach to representing
three-dimensional structures is that it does not require an explicit alignment of the
molecules. It is also straightforward to include more than one conformation of each
compound which allows the consideration of conformation flexibility which is often
a major drawback by conventional QSAR/SAR methodologies.

Since chemists often study molecules in terms of molecular groups, the atom-
/bond representation can be extended with programs that define such high-level
chemical concepts. Contrary to propositional algorithms and graph mining, ILP can
learn rules which use structural combinations of these multiple types of concepts.

A downside of ILP is the lack of results with respect to efficient theoretical com-
plexity. As shown in the previous section, for many classes of graphs efficient min-
ing algorithms are known. As a result, graph mining is usually efficient, both in
theory and in practice. For ILP algorithms no similar theoretical results are avail-

440 Ross D. King et al.

able and the algorithms typically require more computational power, both in theory
and in practice.

The number of ILP algorithms is very large, and the discussion of this area is
beyond the scope of this article. We will limit our discussion here to the relation-
ship between graph mining and ILP algorithms, and approaches that we will need
later in this chapter. For a more complete discussion of ILP see [10]. An important
aspect of ILP algorithms is the background knowledge used. We will conclude this
section with a discussion of the details of a library of background knowledge for
SAR applications that we recently developed, and is important in allowing users to
formulate alternative inductive queries.

18.3.3.1 Explicit Features

A problem similar to the frequent subgraph mining problem can be formulated in
ILP. The data is conceived as a set of definite clauses and facts, for instance:

halogen(X,Y) :- atom(X,Y,f,_,_).
halogen(X,Y) :- atom(X,Y,cl,_,_).
...
atom(127,127_1,c,22,0.191).
atom(127,127_2,c,22,0.191).
bond(127,127_1,127_2,single).

The database is usually represented as a program in Prolog. The clauses can
be thought of as background knowledge, while the facts describe the original data.
Assume now we are given the following clause, which is not part of the database:

f1(X) :- molecule(X),halogen(X,Y),atom(X,Z,c,_,_),
bond(X,Y,Z,_).

Then for a given constant, for instance 127 in our example, we can evaluate using
a Prolog engine whether f1(127) is true. If this is the case, we may see f1 as a
feature which describes molecule 127. We may call a clause frequent if it evaluates
to true for a sufficient number of examples. The problem of finding frequent clauses
is the problem that was addressed in the WARMR algorithm [9].

Definition 18.5 (Frequent Clause Mining). Given clause C = h(X) :- b, where
b is the body of the clause C, and a Prolog database D with constants C, the
frequency of clause C in D , denoted by freq(C,D), is the cardinality of the set
{c ∈ C |D ∪{C} |= h(c)}; in other words, the number of constants for which we
can prove the head of the clause using a Prolog engine, assuming C were added to
the data. A clause C is frequent if freq(C,D)≥minsup, for a predefined threshold
minsup. Assume given a language L of clauses. The frequent clause mining is the
problem of finding a set of clauses F such that for every possible frequent clause C
in L there is exactly one clause C′ ∈F such that C′ and C are equivalent.

It is of interest here to point towards the differences between frequent graph
mining and frequent clause mining.

18 Inductive Queries for a Drug Designing Robot Scientist 441

The first practical difference is that most algorithms require an explicit definition
of the space of clauses C to be considered. This space is usually defined in a bias
specification language. In such a bias specification language, it can be specified for
instance that only clauses starting with a molecule predicate will be considered, and
next to this predicate only atom and bond predicates may be used. Note that such
clauses would essentially represent graphs. The bias specification language can be
considered a part of the language of an inductive querying system and provides users
the possibility to carefully formulate data mining tasks.

The second difference is the use of traditional Prolog engines to evaluate the
support of clauses. Prolog engines are based on a technique called resolution. There
is an important practical difference between resolution and subgraph isomorphism,
as typically used in graph mining algorithms. Assume we are given a clause over
only atoms and bonds, for instance,

h(X) :- molecule(X), atom(X,Y,c,_,_),bond(X,Y,Z1,_),
bond(X,Y,Z2,_)

then this clause is equivalent to the following clause:

h(X) :- molecule(X), atom(X,Y,c,_,_),bond(X,Y,Z1,_)

The reason is that if constants are found for which the second clause succeeds, we
can use the same constants to satisfy the first clause, as there is no requirement
that Z1 and Z2 are different constants. On the other hand, when using subgraph
isomorphism, two atoms in a subgraph may never be matched to the same atom in a
molecule.

The use of resolution has important consequences for the procedure that is used
for eliminating equivalent clauses. Whereas in graph mining, it is possible to avoid
equivalent subgraphs during the search, it can be proved that there are languages of
clauses for which this is impossible; the only solution in such cases is to first gener-
ate a highly redundant set of clauses, and eliminate duplicates in a post-processing
step.

To address this problem, an alternative to resolution was proposed, in which two
different variables are no longer allowed to be resolved to the same constant. This
approach is known as theta-subsumption under Object Identity [10].

Similar constraints as proposed in graph mining, can also be applied when mining
clauses. However, this has not yet been extensively applied in practice.

18.3.3.2 Implicit Features and Direct Classification

The alternative to separate feature construction and learning phases is also in ILP to
learn a model directly from the data. Contrary to the case of graphs, however, the
use of distance functions has only received limited attention in the ILP literature;
see [15] for a kernel on logical representations of data and [11] for a distance based
on the least general generalization of two sets of literals. The application of these
methods on molecular data is yet unexplored; one reason for this is the expected

442 Ross D. King et al.

prohibitive complexity of these methods, in particular when one wishes to include
background knowledge in the lgg based methods.

On the other hand, a very common procedure in ILP is to greedily learn a rule-
based or tree-based classifier directly from training data; examples of such algo-
rithms include FOIL, Tilde and Progol [10]. In graph mining such approaches are
rare; the main reason for this is that greedy heuristics are expected to be easily mis-
led when the search proceeds in very “small”, uninformative steps, as common in
graph mining when growing fragments bond by bond.

To illustrate one such greedy algorithm, we will discuss the Tilde algorithm here
[2]. Essentially, Tilde starts from a similar database as WARMR, and evaluates the
support of a clause in a similar way as WARMR; however, as the algorithm is aware
of the class labels, it can compute a score for each clause that evaluates how well
it separates examples of one or more two classes from each other. For instance, the
clause

h(X) :- molecule(X), benzene(X,Y)

may hold for 15 out of 20 constants identifying positive molecules, and only 15 out
of 30 negative molecules; from these numbers we may compute a score, such as
information gain:

(−0.4log0.4−0.6log0.6)
−0.3(−0.5log0.5−−0.5log0.5)−0.7(−0.25log0.25−0.75log0.75)

Here the first term denotes the information of the original class distribution (20/50
positives, 30/50 negatives), the second term denotes the information of the examples
for which the query succeeds, and the third term denotes the information of the
examples for which it fails.

Using such a score, we can compare several alternative clauses. In Tilde clauses
are grown greedily, i.e. for a given clause, all possible literals are enumerated that
can be added to it, and only the extended clause that achieves the best score is chosen
for further extension. If the improvement is too small, the molecules are split in
two sets based on whether the clause succeeds. For these two sets of examples, the
search for clauses recursively continues. The end result of this procedure constitutes
a tree in which internal nodes are labeled with clauses; we can label a leaf by the
majority class of the examples ending up in the leaf. This tree can be used directly
for classification.

The problem of learning accurate decision trees has been studied extensively, and
many techniques, such as pruning, can also be applied on relational decision trees
[2]. The main downside of algorithms such as Tilde is that the greedy procedure
will prevent large carbon-based substructures from being found automatically, as
the intermediate steps through which the greedy search would have to go usually do
not score exceptionally well on commonly used heuristics. Hence, it is advisable in
ILP to specify larger substructures in advance by means of background clauses.

18 Inductive Queries for a Drug Designing Robot Scientist 443

Fig. 18.3 Chemical structure
of 8-nitroquinoline

18.3.3.3 A Library of Chemical Knowledge for Relational QSAR

An important benefit of ILP algorithms is the ability to incorporate background
knowledge, for instance, to represent special groups in molecules. The availability
of such background knowledge in a data mining system may allow data analysts
to query a database from additional perspectives, as will be illustrated in the next
section when studying the problem of selecting a library for use in a robot scientist.

To exploit this benefit, it is essential that a comprehensive library of background
knowledge is available. We developed a chemical structure background-knowledge-
for-learning (Molecular Structure Generator MSG). This consists of a large library
of chemical substructures, rings and functional groups, including details of isomers
and analogues.

This library consists of three main parts (see Appendix 1): a functional group
library, a ring library, and a polycycle library. We encoded the standard functional
groups have been pre-coded in the library (Appendix 1, Table 5). The ring library
consists of predominantly 3, 4, 5 and 6 length rings. Rings that are identified but
do not have specific chemical names are given a standard label, e.g., other six ring.
Unnamed rings of up to 15 atoms in length are pre-coded in this way. Appendix
1, Table 4 shows the specific rings that are in the library. Rings with isomers
have been defined individually but they will have a corresponding parent predi-
cate held in the library, for eg, isomer parent(1,3-cyclohexadiene, cyclohexadiene);
isomer parent(1,4-cyclohexadiene, cyclohexadiene). This will mean that inductions
may be made over either the specific isomer or for the whole family.

The polycycle library consists of predominantly 2 and 3 ring polycycles that
have been pre-coded and held in the MSG Prolog library. Polycycles that are not
specifically named have been given an other label, i.e., other carbon. All polycycles
will be identified regardless if specifically named in the library. Appendix 1, Table
6 shows the specific polycyles that are in the library. Structures are built up from
substructures, e.g., an anthracene would have facts for 3 benzene rings, 2 fused pair
naphthalenes and a polycycle anthracene; an aryl-nitro structure would have facts
for a nitro and an aromatic ring. The data have been fully normalised according to
Boyce-Codd relational data standards [5]. The example of the representation of the
molecule 8-nitroquinoline is shown in Figure 18.3 and Table 18.2.

444 Ross D. King et al.

18.4 Selecting Compounds for a Drug Screening Library

This MSG library will be used to generate ILP representations of the compounds
that will be screened by Eve. To test the efficacy of the representation and the
method, this library was used to aid the decision-making process for the selection
of a compound library to be used with Eve.

The two main criteria for selecting compounds for screening libraries are that
they resemble existing approved pharmaceuticals, and that they are structurally di-
verse. The requirement for a compound in a screening-library to resemble existing
pharmaceutically active compounds maximizes the a priori probability of an in-
dividual compound being active and non-toxic because existing pharmaceutically-
active compounds have this property. The requirement for diversity is usually justi-
fied by the fact that structurally similar compounds tend to exhibit similar activity -
a structurally diverse set of compounds should cover the activity search space and
therefore contain fewer redundant compounds [39].

Drug-like properties are usually defined in terms of ADME - Absorption, Distri-
bution, Metabolism, and Excretion - and describe the action of the drug within an
organism, such as intestinal absorption or blood-brain-barrier penetration. One of
the first methods, and still the most popular, to model the absorption property was
the “Rule of 5” [41] which identifies the compounds where the probability of useful
oral activity is low. The “rule of 5” states that poor absorption or permeation is more
likely when:

1. There are more than 5 Hydrogen-bond donors
2. The Molecular Weight is over 500.
3. The LogP (partition coefficient) is over 5 (or MLogP is over 4.15).
4. There are more than 10 Hydrogen-bond acceptors

The negation of the Lipinski rules are usually used as the main selection criteria
for the compounds to include in a screening-library. Though these rules are not

Table 18.2 Ground background knowledge generated for 8-nitroquinoline

ring length(2,1,6).
aromatic ring(2,1).
carbon ring(2,1).
ring(2,1,benzene).
ring atom(2,1,1).
ring atom(2,1,2).
ring atom(2,1,3).
ring length(2,2,6).
n containing(2,2).
aromatic ring(2,2).
hetero ring(2,2).
ring(2,2,pyridine).
ring atom(2,2,3).

ring atom(2,2,4).
ring atom(2,2,5).
ring atom(2,2,6).
ring atom(2,2,7).
ring atom(2,2,8).
fused ring pair(2,3,1).
fused ring pair share atom(2,3,8).
polycycle(2,4,quinoline).
hetero poly(2,4).
poly no rings(2,4,2).
polycycle pair(2,4,3).
group(2,5,nitro).
group atom(2,5,11).

group atom(2,5,13).
r atom(2,5,9).
group(2,6,aryl nitro).
part of group structure(2,6,1).
part of group structure(2,6,5).
count ring(2,benzene,1).
count ring(2,pyridine,1).
count poly(2,quinoline,1).
count group(2,nitro,1).
count group(2,aryl nitro,1).
parent(2,6,nitro).
nextto(2,1,2,fused).
nextto(2,1,5,bonded).

18 Inductive Queries for a Drug Designing Robot Scientist 445

definitive, the properties are simple to calculate, and provide a good guideline for
drug-likeness.

We have taken an operational approach to determining the drug-likeness of com-
pounds [50]. The basic idea is to use machine learning techniques to learn a discrim-
ination function to distinguish between pharmaceutically-active compounds and
compounds in screening-libraries. If it is possible to discriminate pharmaceutically-
active compounds from compounds in a screening-library then the compounds in
the library are considered not drug-like; conversely, if they cannot be discriminated
then the compounds are drug-like.

Two compound-screening libraries were chosen for analysis – the target-based
NatDiverse collection from Analyticon Discovery (Version 070914) and the diversity-
based HitFinder (Version 5) collection from Maybridge. The libraries from these
companies are publicly available and this was the main reason for their inclusion
in this research. The HitFinder collection includes 14,400 compounds represent-
ing the drug-like diversity of the Maybridge Screening Collection (≈60,000 com-
pounds). Compounds have generally been selected to be non-reactive and meet-
ing Lipinski’s Rule of 5. AnalytiCon Discovery currently offers 13 NatDiverse li-
braries which are tailor-made synthetic nitrogen-containing compounds. The total
number of compounds is 17,402. The approved pharmaceuticals dataset was ob-
tained from the KEGG Drug database and contains 5,294 drugs from the United
States and Japan. The data was represented using the Molecular Structure Genera-
tor, mentioned above, and the ILP decision tree learner Tilde, was used to learn the
discrimination functions between the set of approved pharmaceuticals and the two
compound screening-libraries.

Three tests per dataset were carried out – one based on structural information
only, another on quantitative attributes only, and the other based on both structural
information and the quantitative attributes. The complete datasets were split into a
training and validation set and an independent test set. A ten-fold cross-validation
was used for Tilde to learn the decision trees. For each of the three scenarios, the ten-
fold cross-validation was carried out with identical training and validation sets. For
each scenario, the classification tree that provided the best accuracy when applied to
the validation set was applied to the independent test set, see Table 3. The indepen-
dent test results are good and consistent with validation results. They indicate that
the inclusion of quantitative attributes resulted in increasing the classification accu-
racy only slightly. The best accuracy was achieved by the decision trees when the
data is represented by both structures and properties. These decision trees were rep-
resented as a set of Prolog rules and the most accurate rules were selected to build
the smallest decision list that had a minimum accuracy of 85%. A complication is
the the problem of uneven class distributions (approximately 3:1, screening-library:
approved pharmaceuticals).

The classification system had more difficulty discriminating approved pharma-
ceuticals from the diversity-based HitFinder library than the target-based NATDi-
verse library. However, the ILP method had 91% success in classifying compounds
in the HitFinder library and 99% in classifying compounds from the NATDiverse
collection when applied to an independent test set. These discrimination functions

446 Ross D. King et al.

Table 18.3 Accuracy of the classification trees when applied to the independent test set

Testing Dataset Accuracy True Neg-

atives

True Pos-

itives

HitFinder / App structures only 90% 92% 74%
NAT / App structures only 99% 99% 96%
HitFinder / App properties only 83% 90% 62%
NAT / App properties only 89% 92% 74%
HitFinder / App structures & properties 91% 93% 75%
NAT / App structures & properties 99% 99% 97%

were expressed in easy to understand rules, are relational in nature and provide use-
ful insights into the design of a successful compound screening-library.

Given a set of rules that can discriminate between drugs and non-drug com-
pounds, the question arises how best to use them in the drug design process. The
simplest way to use them would be as filters, and to remove from consideration
any compound classed as being non-drug-like. This is what is generally done with
the original Lipinski rules - any compounds that satisfy the rules are removed from
drug libraries. This approach is non-optimal because such rules are soft,as they are
probabilistic and can be contravened under some circumstances. However, new data
mining research such as multi-target learning research [56] has originated better
ways of using prior rules than simply using them as filters. We believe that such
approaches could be successfully applied to the drug design problem.

18.5 Active learning

In many experiment-driven research areas, it is important to select experiments as
optimally as possible in order to reduce the number and the costs of the experiments.
This is in particular true for high-throughput screening in the drug discovery pro-
cess, as thousands of compounds are available for testing. QSAR methods can help
to model the results obtained so far. When fit into an active learning strategy, they
can be used to predict the expected benefit one can obtain from experiments.

However, in QSAR applications there is an important difference with classical
active learning approaches. Usually, one is not interested to get an accurate model
for all molecules. It is only important to distinguish the best molecules (and there-
fore to have an accurate model for the good ones). So instead of active learning
where one chooses experiments to improve the global performance of the learned
model, in these applications an active optimization approach is desired where one
chooses experiments to find the example with the highest target value.

There may be two major reasons why an experiment is interesting. First, one
may believe that the molecule being tested has a high probability of being active.
In that case, one exploits the available experience to gain more value. Second, the

18 Inductive Queries for a Drug Designing Robot Scientist 447

molecule may be dissimilar to the bulk of the molecules tried so far. In that case, the
experiment is explorative and one gains new experience from it.

18.5.1 Selection strategies

Different example selection strategies exist. In geostatistics, they are called infill
sampling criteria [49].

In active learning, in line with the customary goal of inducing a model with max-
imal accuracy on future examples, most approaches involve a strategy aiming to
greedily improve the quality of the model in regions of the example space where
its quality is lowest. One can select new examples for which the predictions of the
model are least certain or most ambiguous. Depending on the learning algorithm,
this translates to near decision boundary selection, ensemble entropy reduction, ver-
sion space shrinking, and others. In our model, it translates to maximum variance
on the predicted value, or argmax(var(t)).

Likely more appropriate for our optimization problem is to select the example
that the current model predicts to have the best target value, or argmax(t̄). We will
refer to this as the maximum predicted strategy. For continuous domains, it is well
known that it is liable to get stuck in local minima.

A less vulnerable strategy is to always choose the example for which the opti-
mistic guess is maximal. In reinforcement learning, one has shown that with this
strategy the regret is bounded (Explicit Explore or Exploit, [37]). In that case, the
idea is to not (re)sample the example in the database where the expected reward t̄is
maximal, but the example where t̄ + b× var(t)is maximal. The parameter b is the
level of optimism. In this paper we do not consider repeated measurements, unlike
reinforcement learning, where actions can be reconsidered. This optimistic strategy
is similar to Cox and John’s lower confidence bound criterion [6]. It is obvious that
the maximum predicted and maximum variance strategies are special cases of the
optimistic strategy, with b = 0 and b = ∞ respectively. In a continuous domain, this
strategy is not guaranteed to find the global optimum because its sampling is not
dense [28].

Another strategy is to select the example that has the highest probability of im-
proving the current solution [38]. One can estimate this probability as follows.

Let the current step be N, the value of the set of k best examples be ‖TN‖best−k
and the k-th best example be x(k,N) with target value t(k,N). When we query example
xN+1, either tN+1 is smaller than or equal to t#(k,N), or tN+1 is greater. In the first case,
our set of k best examples does not change, and ‖TN+1‖best−k = ‖TN‖best−k. In the
latter case, xN+1 will replace the k-th best example in the set and the solution will
improve. Therefore, this strategy selects the example xN+1 that maximizes P(tN+1 >
t(k,N)). We can evaluate this probability by computing the cumulative Gaussian

P(tN+1 > t(k,N)) =
∫

N(t̄,var(t))dt. (18.1)

448 Ross D. King et al.

In agreement with [42], we call this the most probable improvement (MPI) strategy.
Yet another variant is the strategy used in the Efficient Global Optimization

(EGO) algorithm [29]. EGO selects the example it expects to improve most upon
the current best, i.e. the one with highest

E[max(0,t− t(k,N))] =
∫
(t− t(k,N))N(t̄,var(t))dt. (18.2)

This criterion is called maximum expected improvement (MEI).

18.5.2 Effects of properties of experimental equipment

Most approaches assume an alternation between the algorithm proposing one single
experiment and the environment performing one experiment producing a definite
answer to the proposed question. After a number of iterations, the algorithm con-
verges then to one optimal solution. However, in practice such a procedure is not
always acceptable.

First, in some cases, not all parameters are evaluated during the first stage of
experimentation. E.g. in the drug discovery process, active compounds may be re-
jected at a later stage due to other adverse properties such as toxicity, and therefore
one prefers to discover in the first stage several dissimilar candidates instead of one
optimal one.

Second, in many applications among which high throughput screening, the
equipment can perform several experiments at the same time. E.g. several com-
pounds can be tested on a single plate, or the experiments happen in a pipeline such
that several experiments are under way before the result of the first one is known.
In such cases, the algorithm has to choose several experiments without knowing the
result of all earlier experiments. Therefore, apart from exploitation and exploration,
the algorithm also needs diversification.

Third, noise is a common factor in real-world experiments. It means that results
are not always exact or trustworthy. Depending on the domain, one may want to per-
form the same experiment several times, or design different experiments to jointly
measure a set of related values.

18.6 Conclusions

In this chapter we have first introduced the challenges involved in automating the
discovery process of new drugs, of which the development of a robot scientist is
the arguably the most ambitious. We have provided a more detailed discussion of
several of the challenges particular to iterative drug discovery: the representation of
molecular data, the use of active learning and the development of libraries that serve
as input for the former two tasks.

18 Inductive Queries for a Drug Designing Robot Scientist 449

Even though we made an attempt to provide a reasonably complete summary of
the areas and issues involved, the overview in this chapter is far from complete. An
important element which is missing from this chapter is an all-encompassing exper-
imental comparison of the representation methods presented (both ILP and graph
mining), as well as detailed recommendations with respect to which algorithms to
use for which types of data, under which types of constraints or under which type
of language bias. Desirable as this may be, to the best of our knowledge no such
comparison is currently available in the literature and most studies have focused on
a subset of methods and limited types of data (mostly NCI, see [53, 4] for instance).
This type of analysis could be a useful topic for further research, for which we hope
that this chapter provides some useful hints.

References

1. C. Borgelt and M.R. Berthold. Mining molecular fragments: Finding relevant substructures of
molecules. In ICDM, pages 51–58. IEEE Computer Society, 2002.

2. H. Blockeel, L. De Raedt. Top-Down Induction of First-Order Logical Decision Trees. Artif.
Intell. 101(1-2): 285-297 (1998).

3. H. Blockeel, S. Dzeroski, B. Kompare, S. Kramer, B. Pfahringer, and W. Van Laer. Experi-
ments in predicting biodegradability. In Appl. Art. Int. 18, pages 157–181, 2004.

4. B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijssen. Don’t be afraid of simpler
patterns. In J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, PKDD, volume 4213 of
Lecture Notes in Computer Science, pages 55–66. Springer, 2006.

5. E.F. Codd. Recent Investigations into Relational Data Base Systems. IBM Research Report
RJ1385 (April 23rd, 1974). Republished in Proc. 1974 Congress (Stockholm, Sweden, 1974).
New York, N.Y.: North-Holland, 1974.

6. Dennis D. Cox and Susan John. SDO: a statistical method for global optimization. In Multi-
disciplinary design optimization (Hampton, VA, 1995), pages 315–329. SIAM, 1997.

7. R.D. III Cramer, D.E. Patterson, and Bunce J.D. Comparative Field Analysis (CoMFA). The
effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110: 5959–5967,
1988.

8. L. Dehaspe, H. Toivonen, and R.D. King. Finding frequent substructures in chemical com-
pounds. In: The Fourth International Conference on Knowledge Discovery and Data Mining.
AAAI Press, Menlo Park, Ca. 30-36, 1998.

9. L. Dehaspe, L. De Raedt. Mining Association Rules in Multiple Relations. In: ILP 1997:
125-132.

10. L. De Raedt. Statistical and Relational Learning. Springer, 2008.
11. L. De Raedt, J. Ramon. Deriving distance metrics from generality relations. Pattern Recogni-

tion Letters 30(3): 187-191 (2009).
12. R.O.Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, 2001.
13. D. Enot and R.D. King. Application of inductive logic programming to structure-based drug

design. Proceedings of the 7th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), 2003.

14. D. Eppstein. Subgraph isomorphism in planar graphs and related problems. In Symposium on
Discrete Algorithms, pages 632-640, 1995.

15. P. Frasconi, A. Passerini. Learning with Kernels and Logical Representations. Probabilistic
Inductive Logic Programming, 2008: 56-91.

16. T. Gärtner. A survey of kernels for structured data. SIGKDD Explorations, 5(18.1):49–58,
2003.

450 Ross D. King et al.

17. T. Gärtner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In B. Schölkopf and M.K. Warmuth, editors, COLT, volume 2777 of Lecture
Notes in Computer Science, pages 129–143. Springer, 2003.

18. J. Gasteiger and T. Engel. Chemoinformatics: A Textbook. Wiley-VCH, 2003.
19. C. Hansch, P.P. Malony, T. Fujiya, and R.M. Muir. Correlation of biological activity of phe-

noxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194,
178-180, 1965.

20. H. Hofer, C. Borgelt, and M.R. Berthold. Large scale mining of molecular fragments with
wildcards. In M.R. Berthold, H-J. Lenz, E. Bradley, R. Kruse, and C. Borgelt, editors, IDA,
volume 2810 of Lecture Notes in Computer Science, pages 376–385. Springer, 2003.

21. C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining and machine learning tech-
niques for the identification of mutagenicity inducing substructures and structure activity re-
lationships of noncongeneric compounds. In Journal of Chemical Information and Computer
Systems 44, pages 1402–1411, 2004.

22. T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs of bounded
treewidth. In W. Daelemans, B. Goethals, and K. Morik, editors, ECML/PKDD (18.1), volume
5211 of Lecture Notes in Computer Science, pages 520–535. Springer, 2008.

23. T. Horváth, J. Ramon, and S. Wrobel. Frequent subgraph mining in outerplanar graphs. In
KDD, pages 197–206. ACM, 2006.

24. J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence of
isomorphism. In Proceedings of the Third IEEE International Conference on Data Mining
(ICDM), pages 549–552. IEEE Press, 2003.

25. Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining maximal frequent subgraphs
from graph databases. In Won Kim, Ron Kohavi, Johannes Gehrke, and William DuMouchel,
editors, KDD, pages 581–586. ACM, 2004.

26. Akihiro Inokuchi. Mining generalized substructures from a set of labeled graphs. In ICDM,
pages 415–418. IEEE Computer Society, 2004.

27. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In Proceedings of the 4th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD), volume 1910 of Lecture Notes
in Artificial Intelligence, pages 13–23. Springer-Verlag, 2000.

28. D.R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal
of Global Optimization, 21:345–383, 2001.

29. D.R. Jones and M. Schonlau. Efficient global optimization of expensive black-box functions.
Journal of Global Optimization, 13(4):455–492, December 1998.

30. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of the First
IEEE International Conference on Data Mining (ICDM), pages 313–320. IEEE Press, 2001.

31. J. Kazius, S. Nijssen, J.N. Kok, T. Bäck, and A. IJzerman. Substructure mining using elaborate
chemical representation. In Journal of Chemical Information and Modeling 46, 2006.

32. R.D. King, S. Muggleton, R.A Lewis, and M.J.E Sternberg. Drug design by machine learn-
ing: The use of inductive logic programming to model the structure-activity relationships of
trimethoprim analogues binding to dihydrofolate reductase. Proc. Nat. Acad. Sci. U.S.A. 89,
11322-11326, 1992.

33. R.D. King, S. Muggleton, A. Srinivasan, and M.J.E. Sternberg. Structure-activity relation-
ships derived by machine learning: The use of atoms and their bond connectivities to predict
mutagenicity by inductive logic programming. Proc. Nat. Acad. Sci. USA 93, 438-442, 1996.

34. R.D. King, J. Rowland, S.G. Oliver, M. Young, W. Aubrey, E. Byrne, M. Liakata, M.
Markham, P. Pir, L.N. Soldatova, A. Sparkes, K.E. Whelan, A. Clare. The Automation of
Science. Science. Vol. 324, no. 5923, pp. 85 - 89.

35. S. Kramer and L. De Raedt. Feature construction with version spaces for biochemical appli-
cations. In ICML, pages 258–265. Morgan Kaufmann, 2001.

36. S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in hiv data. In KDD, pages
136–143, 2001.

37. M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. In Proc.
15th International Conf. on Machine Learning, pages 260–268. Morgan Kaufmann, 1998.

18 Inductive Queries for a Drug Designing Robot Scientist 451

38. H.J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve
in the presence of noise. Journal of Basic Engineering, pages 97–106, March 1964.

39. A.R. Leach, and V.J. Gillet. An Introduction to Chemoinformatics, Kluwer, 2003.
40. A. Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theoret-

ical Computer Science 63, 295-302, 1989.
41. C.A. Lipinski, F. Lombardo, B.W. Dominy, and P. J. Feeney. Experimental and computational

approaches to estimate solubility and permeability in drug discovery and development settings.
Adv. Drug Delivery Rev., 23(1-3), pp. 3-25, 1997.

42. D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait optimization with
gaussian process regression. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pages 944–949, 2007.

43. Y.C. Martin. Quantitative Drug Design: A Critical Introduction, Marcel Dekker, 1978.
44. J. Matousek and R. Thomas. On the complexity of finding iso- and other morphisms for partial

k−trees. Discrete mathemathics, 108(1-3), 343-364, 1992.
45. P.B. Medewar. Advice to a Young Scientist. BasicBooks. 1979.
46. S. Nijssen. Mining interpretable subgraphs. In Proceedings of the International Workshop on

Mining and Learning with Graphs (MLG), 2006.
47. S. Nijssen and J.N. Kok. A quickstart in frequent structure mining can make a difference. In

Proceedings of the 2004 International Conference on Knowledge Discovery and Data Mining
(KDD), pages 647–652. ACM Press, 2004.

48. J. Ramon and S. Nijssen. Polynomial-delay enumeration of monotonic graph classes. Journal
of Machine Learning Research, 2009.

49. M. J. Sasena. Flexibility and Efficiency Enhancements for Constrained Global Design Opti-
mization with Kriging Approximations. PhD thesis, University of Michigan, 2002.

50. A. Schierz, and R.D. King. Drugs and Drug-like compounds: Discriminating Approved Phar-
maceuticals from Screening Library Compounds. In Pattern Recognition in Bioinformatics,
pages 331-343, 2009.

51. L. Schietgat, J. Ramon, M. Bruynooghe, H. Blockeel. An Efficiently Computable Graph-
Based Metric for the Classification of Small Molecules. In Discovery Science 2008: 197-209.

52. S. V. N. Vishwanathan, N.N. Schraudolph, I.R. Kondor, and K.M. Borgwardt. Graph Kernels.
Journal of Machine Learning Research, 2009.

53. N. Wale and G. Karypis. Comparison of descriptor spaces for chemical compound retrieval
and classification. In ICDM, pages 678–689. IEEE Computer Society, 2006.

54. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. of the Second
IEEE International Conference on Data Mining (ICDM), pages 721–724. IEEE Press, 2002.

55. X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In KDD, pages 286–
295. ACM, 2003.

56. B. Zenko, and S. Dzeroski. Learning Classification Rules for Multiple Target Attributes. In
PAKDD, pages 454-465, 2008.

452 Ross D. King et al.

Appendix

Table 4 Specific ring structures pre-coded in the MSG library

cyclopropane 2,3-dihydropyrrole benzene
cyclopropene 2,5-dihydropyrrole pyridine
aziridine 3,4-dihydropyrrole 1,2-dihydropyridine
diaziridine pyrrolidine 1,4-dihydropyridine
azirine furan tetrahydropyridine
diazirine 1,3-dihydrofuran piperidine
oxirane 2,5-dihydrofuran 4H-pyran
dioxirane oxolane 2H-pyran
oxirene 1,2-dioxolane dihydropyran
thiirane 1,3-dioxolane aromatic pyran
dithiirane dioxole oxane
thiirene imidazole thiane
oxathiirane imidazolidine dihydrothiopyran
oxaziridine dihydroimidazole pyridazine
thiaziridine pyrazole 1,2-diazinane
dioxathiirane pyrazoline 1,3-diazinane
cyclobutane 1,2,3-triazole tetrahydropyridazine
cyclobutene 1,2,4-triazole pyrimidine
cyclobutadiene dihydrotriazole dihydropyrimidine
azetidine tetrazole 3H-pyrimidine
2,3-dihydroazete 1,3-oxazole pyrazine
oxetane 1,2-oxazole tetrahydropyrazine
1,2-dioxetane dihydrooxazole piperazine
1,3-dioxetane 1,3,4-oxadiazole morpholine
thietane 1,2,5-oxadiazole 1,3-oxazinane
1,2-dithietane 1,2,4-oxadiazole 1,2-oxazinane
1,3-dithietane thiazole dihydro-1,2-oxazin
cyclopentane 1,3,4-thiadiazole dihydro-1,3-oxazin
cyclopentene 1,2,5-thiadiazole 1,3-oxazin
cyclopentadiene 1,2,3-thiadiazole 1,3-thiazinane
thiolane 1,2,4-thiadiazole thiomorpholine
1,2-dithiolane dihydrothiazole 1,3-dithiane
1,3-dithiolane thiazolidine 1,4-dithiane
1,2-dithiole isothiazole 1,4-dioxane
1,3-dithiole cyclohexane 1,3-dioxane
thiophene cyclohexene 1,2-dioxane
2,3-dihydrothiophene 1,3-cyclohexadiene 1,4-dioxene
2,5-dihydrothiophene 1,4-cyclohexadiene dihydrodioxin
pyrrole triazine

cycloheptane

18 Inductive Queries for a Drug Designing Robot Scientist 453

Table 5 Specific functional groups pre-coded in the library

alkyl halide aryl-thioether methoxy
aryl-halide carboxylic acid chain ether
carboxylic-acid halide ester aryl ether
hydroxyl amide imine
alcohol other carbonyl nitro
hetero aryl alcohol 0H-amine aryl nitro
phenols 1H-amine nitroso
aldehyde 2H-amine aromatic nitroso
ketone ammonium azo
thiol aromatic amine aromatic azo
sulfonic acid hydroxylamine aliphatic chain length 5
sulfonyl phosphoric acid butyl
sulfone phosphate propyl
sulfonamide phosphonate ethyl
cyclic thioether phosphinate norm methyl
chain thioether cyclic ether haloalkane methyl
methylene single haloalkane methylene
methylene double heteroatoms single bonded
methylene valence
aliphatic halide

Table 6 Specific polycyclic structures pre-coded in the MSG library

benzocyclobutene acridine pyrrolizine
benzofuran perimidine pyridopyrimidine
indole beta carboline oxanthrene
isoindole pteridine chromene
benzothiophene phenoxazine isochromene
benzimidazole phenothiazine naphthalene
indazole phenazine pentalene
benzoxazole phenanthroline indene
benzisoxazole naphthyridine as-indacene
benzothiazole carbazole s-indacene
purine phthalazine biphenylene
quinoline 1H-quinolizine acenaphthylene
isoquinoline 9H,4H- quinolizine fluorene
quinoxaline 2H-quinolizine phenalene
quinazoline indolizine phenanthrene
cinnoline pyrrolopyridine anthracene

Author index

B

Besson, Jérémy 106, 409
Bingham, Ella 178
Blockeel, Hendrik 59, 266, 337, 366
Boulicaut, Jean-François 106, 200, 409
Bringmann, Björn 128

C

Calders, Toon 59, 266
Cerf, Loı̈c 200
Clare, Amanda 426
Costa, Vı́tor Santos 231

D

Džeroski, Sašo 2, 27, 157, 366, 390
De Raedt, Luc 78, 231

F

Fromont, Élisa 59, 266

G

Gandrillon, Olivier 409
Goethals, Bart 59, 266
Guns, Tias 106
Gutmann, Bernd 231

J

Jaeger, Manfred 78

K

Kersting, Kristian 231
Kimmig, Angelika 231
King, Ross D. 426
Kocev, Dragi 366
Kramer, Stefan 290

L

Lee, Sau Dan 78

M

Mannila, Heikki 78
Meyniel, Laurène 409
Mitašiūnaitė, Ieva 409

N

Nhan Nguyen, Bao Tran 200
Nijssen, Siegfried 106, 128, 426

P

Panov, Panče 27
Prado, Adriana 59, 266
Puspitaningrum, Diyah 312

R

Ramon, Jan 426
Richter, Lothar 290
Rigotti, Christophe 409
Robardet, Céline 59, 266
Rowland, Jem 426

S

Schierz, Amanda 426
Schietgat, Leander 366
Siebes, Arno 312
Slavkov, Ivica 390
Soldatova, Larisa N. 27
Sparkes, Andrew 426
Struyf, Jan 157, 366

T

Toivonen, Hannu 231

V

Vanschoren, Joaquin 337
Vens, Celine 366

455
S. Džeroski et al. (eds.), Inductive Databases and Constraint-Based Data Mining,
DOI 10.1007/978-1-4419-7738-0, © Springer Science+Business Media, LLC 2010

456

W

Wicker, Jörg 290

Z

Zimmermann, Albrecht 128

	Preface
	Acknowledgements
	List of Reviewers
	Contents
	Part I Introduction
	Chapter 1 Inductive Databases and Constraint-based Data Mining: Introduction and Overview
	1.1 Inductive Databases
	1.1.1 Inductive Databases and Queries: An Example
	1.1.2 Inductive Queries and Constraints
	1.1.3 The Promise of Inductive Databases

	1.2 Constraint-based Data Mining
	1.2.1 Basic Data Mining Entities
	1.2.2 The Task(s) of (Constraint-Based) Data Mining

	1.3 Types of Constraints
	1.3.1 Primitive and Composite Constraints
	1.3.2 Language and Evaluation Constraints
	1.3.3 Hard, Soft and Optimization Constraints

	1.4 Functions Used in Constraints
	1.4.1 Language Cost Functions
	1.4.2 Evaluation Functions
	1.4.3 Monotonicity and Closedness

	1.5 KDD Scenarios
	1.6 A Brief Review of Literature Resources
	1.7 The IQ (Inductive Queries for Mining Patterns and Models) Project
	1.7.1 Background (The cInQ project)
	1.7.2 IQ Project Consortium and Structure
	1.7.3 Major Results of the IQ project

	1.8 What’s in this Book
	1.8.1 Introduction
	1.8.2 Constraint-based Data Mining: Selected Techniques
	1.8.3 Inductive Databases: Integration Approaches
	1.8.4 Applications

	References

	Chapter 2 Representing Entities in the OntoDM Data Mining Ontology
	2.1 Introduction
	2.2 Design Principles for the OntoDM ontology
	2.2.1 Motivation
	2.2.2 OntoDM design principles
	2.2.3 Ontologies for representing scientific investigations

	2.3 OntoDM Structure and Implementation
	2.3.1 Upper level is-a hierarchy
	2.3.2 Ontological relations
	2.3.3 Modularity: Specification, implementation, application

	2.4 Identification of Data Mining Entities
	2.4.1 A general framework for data mining: Basic principles
	2.4.2 Data
	2.4.3 Generalizations
	2.4.4 Data mining task
	2.4.5 Data mining algorithms
	2.4.6 OntoDM modeling issues

	2.5 Representing Data Mining Enitities in OntoDM
	2.5.1 Specification entities in OntoDM
	2.5.2 Implementation and application entities in OntoDM

	2.6 Related Work
	2.7 Conclusion
	References

	Chapter 3 A Practical Comparative Study Of Data Mining Query Languages
	3.1 Introduction
	3.2 Data Mining Tasks
	3.3 Comparison of Data Mining Query Languages
	3.3.1 DMQL
	3.3.2 MSQL
	3.3.3 MINE RULE
	3.3.4 SIQL
	3.3.5 SPQL
	3.3.6 DMX

	3.4 Summary of the Results
	3.5 Conclusions
	References

	Chapter 4 A Theory of Inductive Query Answering
	4.1 Introduction
	4.2 Boolean Inductive Queries
	4.2.1 Predicates
	4.2.2 Illustrations of Inductive Querying
	4.2.3 A General Framework

	4.3 Generalized Version Spaces
	4.4 Query Decomposition
	4.4.1 Query Plans
	4.4.2 Canonical Decomposition

	4.5 Normal Forms
	4.6 Conclusions
	References

	Part II Constraint-based Mining: Selected Techniques
	Chapter 5 Generalizing Itemset Mining in a Constraint Programming Setting
	5.1 Introduction
	5.2 General Concepts
	5.3 Specialized Approaches
	5.4 A Generalized Algorithm
	5.5 A Dedicated Solver
	5.5.1 Principles
	5.5.2 Case study on formal concepts and fault-tolerant patterns

	5.6 Using Constraint Programming Systems
	5.6.1 Principles
	5.6.2 Case study on formal concepts and fault-tolerant patterns

	5.7 Conclusions
	References

	Chapter 6 From Local Patterns to Classification Models
	6.1 Introduction
	6.2 Preliminaries
	6.3 Correlated Patterns
	6.3.1 Upper Bound
	6.3.2 Top-
	Correlated Pattern Mining
	6.3.3 Correlation Measures
	6.3.4 Type I Errors
	6.3.5 Closed and Free Pattern Mining

	6.4 Finding Pattern Sets
	6.4.1 Constrained Pattern Set Mining
	6.4.2 The Chosen Few
	6.4.3 Turning Pattern Sets Maximally Informative by Post-Processing

	6.5 Direct Predictions from Patterns
	6.5.1
	6.5.2
	6.5.3

	6.6 Integrated Pattern Mining
	6.6.1
	6.6.2 Mining Maximally Informative Pattern Sets Directly
	6.6.3
	6.6.4

	6.7 Conclusions
	References

	Chapter 7 Constrained Predictive Clustering
	7.1 Introduction
	7.2 Predictive Clustering Trees
	7.2.1 Clustering and Intra-cluster Variance
	7.2.2 Clustering Trees
	7.2.3 Predictive Clustering and Predictive Clustering Trees
	7.2.4 Learning (Predictive) Clustering Trees
	7.2.5 Instantiations of (Predictive) Clustering Trees

	7.3 Constrained Predictive Clustering Trees and Constraint Types
	7.3.1 Cluster Level Constraints
	7.3.2 Constraints on Clusterings
	7.3.3 Constraints on Clustering Models
	7.3.4 Hard Versus Soft Constrained Clustering

	7.4 A Search Space of (Predictive) Clustering Trees
	7.5 Algorithms for Enforcing Constraints
	7.5.1 Post Pruning
	7.5.2 Beam Search
	7.5.3 Instance Level Constraints

	7.6 Conclusion
	References

	Chapter 8 Finding Segmentations of Sequences
	8.1 Introduction
	8.2 Efficient Algorithms for Segmentation
	8.3 Dimensionality Reduction
	8.4 Recurrent Models
	8.5 Unimodal Segmentation
	8.6 Rearranging the Input Data Points
	8.7 Aggregate Segmentation
	8.8 Evaluating the Quality of a Segmentation: Randomization
	8.9 Model Selection by BIC and Cross-validation
	8.10 Bursty Sequences
	8.11 Conclusion
	References

	Chapter 9 Mining Constrained Cross-Graph Cliques in Dynamic Networks
	9.1 Introduction
	9.2 Problem Setting
	9.3 DATA-PEELER
	9.3.1 Traversing the Search Space
	9.3.2 Piecewise (Anti)-Monotone Constraints

	9.4 Extracting
	Contiguous Closed
	Sets
	9.4.1 A Piecewise (Anti)-Monotone Constraint. . .
	9.4.2 . . . Partially Handled in Another Way
	9.4.3 Enforcing the
	Closedness

	9.5 Constraining the Enumeration to Extract
	Cliques
	9.5.1 A Piecewise (Anti)-Monotone Constraint. . .
	9.5.2 . . . Better Handled in Another Way
	9.5.3 Constraining the Enumeration
	9.5.4 Contraposition of the Enumeration Constraints
	9.5.5 Enforcing the Symmetric
	Closedness

	9.6 Experimental Results
	9.6.1 Presentation of the V´elo’v Dataset
	9.6.2 Extracting Cliques Via Enumeration Constraints
	9.6.3 Extraction of
	Contiguous Closed 3-Cliques
	9.6.4 Qualitative Validation

	9.7 Related Work
	9.8 Conclusion
	References

	Chapter 10 Probabilistic Inductive Querying Using ProbLog
	10.1 Introduction
	10.2 ProbLog: Probabilistic Prolog
	10.3 Probabilistic Inference
	10.3.1 Exact Inference
	10.3.2 Bounded Approximation
	10.3.3 K-Best
	10.3.4 Monte Carlo

	10.4 Implementation
	10.4.1 Source-to-source transformation
	10.4.2 Tries
	10.4.3 Binary Decision Diagrams
	10.4.4 Monte Carlo

	10.5 Probabilistic Explanation Based Learning
	10.6 Local Pattern Mining
	10.7 Theory Compression
	10.8 Parameter Estimation
	10.9 Application
	10.10 Related Work in Statistical Relational Learning
	10.11 Conclusions
	References

	Part III Inductive Databases: Integration Approaches
	Chapter 11 Inductive Querying with Virtual Mining Views
	11.1 Introduction
	11.2 The Mining Views Framework
	11.2.1 The Mining View Concepts
	11.2.2 Representing Patterns and Models as Sets of Concepts
	11.2.3 Putting It All Together
	11.2.4 Mining Views vs. Data Mining Tasks
	11.2.5 Conclusions

	11.3 An Illustrative Scenario
	11.3.1 Implementation
	11.3.2 Scenario

	11.4 Conclusions and Future Work
	References

	Chapter 12 SINDBAD and SiQL: Overview, Applications and Future Developments
	12.1 Introduction
	12.2 SiQL
	12.2.1 Preliminaries
	12.2.2 Main Ideas
	12.2.3 The
	Query
	12.2.4 The
	Query
	12.2.5 Parsing and Executing SiQL Queries

	12.3 Example Applications
	12.3.1 Gene Expression Analysis
	12.3.2 Gene Regulation Prediction
	12.3.3 Structure-Activity Relationships

	12.4 A Web Service Interface for
	12.4.1 Web Services
	12.4.2 Motivation
	12.4.3 Features

	12.5 Future Developments
	12.5.1 Types and Signatures
	12.5.2 Integration of Mining Views
	12.5.3 String Mining

	12.6 Conclusion
	References

	Chapter 13 Patterns on Queries
	13.1 Introduction
	13.2 Preliminaries
	13.2.1 Data
	13.2.2 Models
	13.2.3 Algorithms

	13.3 Frequent Item Set Mining
	13.3.1 Selection
	13.3.2 Project
	13.3.3 EquiJoin
	13.3.4 Discussion

	13.4 Transforming
	13.4.1 Model Approximation
	13.4.2 Transforming
	13.4.3 The Experiments
	13.4.4 The Results
	13.4.5 Discussion

	13.5 Comparing the two Approaches
	13.6 Conclusions and Prospects for Further Research
	References

	Chapter 14 Experiment Databases
	14.1 Introduction
	14.2 Motivation
	14.2.1 Reproducibility and Reuse
	14.2.2 Generalizability and Interpretation
	14.2.3 Experiment Databases
	14.2.4 Overview of Benefits

	14.3 Related Work
	14.3.1 e-Sciences
	14.3.2 Extension to Machine Learning

	14.4 A Pilot Experiment Database
	14.4.1 Conceptual Framework
	14.4.2 Using the Database
	14.4.3 Populating the Database

	14.5 Learning from the Past
	14.5.1 Model-level Analysis
	14.5.2 Data-level Analysis
	14.5.3 Method level analysis

	14.6 Conclusions
	References

	Part IV Applications
	Chapter 15 Predicting Gene Function using Predictive Clustering Trees
	15.1 Introduction
	15.2 Related Work
	15.3 Predictive Clustering Tree Approaches for HMC
	15.3.1 Formal Task Description
	15.3.2 Clus-HMC: An HMC Decision Tree Learner
	15.3.3 Clus-SC: Learning a Separate Tree for Each Class
	15.3.4 Clus-HSC: Learning a Separate Tree for Each Hierarchy Edge
	15.3.5 Ensembles of Predictive Clustering Trees

	15.4 Evaluation Measure
	15.5 Datasets
	15.5.1 Saccharomyces cerevisiae datasets
	15.5.2 Arabidopsis thaliana datasets

	15.6 Comparison of Clus-HMC/SC/HSC
	15.7 Comparison of (Ensembles of) CLUS-HMC to State-of-the-art Methods
	15.7.1 Comparison of

	CLUS-HMC
	to Decision Tree based Approaches
	15.7.2 Comparison of Ensembles of

	CLUS-HMC
	to an SVM based Approach

	15.8 Conclusions
	References

	Chapter 16 Analyzing Gene Expression Data with Predictive Clustering Trees
	16.1 Introduction
	16.2 Datasets
	16.2.1 Liver cancer dataset
	16.2.2 Huntington’s disease dataset
	16.2.3 Neuroblastoma dataset
	16.2.4 Yeast time series expression data

	16.3 Predicting Multiple Clinical Parameters
	16.3.1 Huntington disease progress
	16.3.2 Neuroblastoma recurrence

	16.4 Evaluating Gene Importance with Ensembles of PCTs
	16.4.1 Feature ranking with multi-target Random Forests
	16.4.2 Gene importance in Neuroblastoma

	16.5 Constrained Clustering of Gene Expression Data
	16.5.1 Predictive clustering of gene expression profiles
	16.5.2 Itemset constrained clustering

	16.6 Clustering gene expression time series data
	16.6.1 PCTs for clustering short time-series
	16.6.2 Explained groups of yeast time-course gene expression profiles

	16.7 Conclusions
	References

	Chapter 17 Using a Solver Over the String Pattern Domain to Analyze Gene Promoter Sequences
	17.1 Introduction
	17.2 A Promoter Sequence Analysis Scenario
	17.2.1 A generic scenario
	17.2.2 Instantiation of the abstract scenario

	17.3 The
	Solver
	17.4 Tuning the Extraction Parameters
	17.5 An Objective Interestingness Measure
	17.6 Execution of the Scenario
	17.6.1 Data preparation
	17.6.2 Parameter tuning
	17.6.3 Post-processing and biological pattern discovery

	17.7 Conclusion
	References

	Chapter 18 Inductive Queries for a Drug Designing Robot Scientist
	18.1 Introduction
	18.2 The Robot Scientist Eve
	18.2.1 Eve’s Robotics
	18.2.2 Compound Library and Screening
	18.2.3 QSAR Learning

	18.3 Representations of Molecular Data
	18.3.1 Traditional Representations
	18.3.2 Graph Mining
	18.3.3 Inductive Logic Programming

	18.4 Selecting Compounds for a Drug Screening Library
	18.5 Active learning
	18.5.1 Selection strategies
	18.5.2 Effects of properties of experimental equipment

	18.6 Conclusions
	References
	Appendix

	Author index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

