
Chapter 3

SLP models with recourse

For various SLP models with recourse, we present in this chapter properties which
are relevant for the particular solution methods developed for various model types,
to be discussed later on.

3.1 The general multi-stage SLP

As briefly sketched in Section 1.1 an SLP with recourse is a dynamic decision model
with T ≥ 2 stages, as illustrated in Fig. 3.1,
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Fig. 3.1 Dynamic decision structure.

where for feasibility sets, emerging stagewise during the horizon T = {1,2, · · · ,T},

Bt(x1, · · · ,xt−1;ξ2, · · · ,ξt), t ∈T ,

we take successively

– a first stage decision x1 ∈B1 ⊂�n1 ; then, after observing the realization of a
random variable (or vector) ξ2,

– a second stage decision x2(x1;ξ2)∈B2(x1;ξ2)⊂�n2 ; then after observing the
realization of a further random variable (or vector) ξ3,
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192 3 SLP models with recourse

– a third stage decision x3(x1,x2;ξ2,ξ3) ∈ B3(x1,x2;ξ2,ξ3) ⊂�n3 ; and so on
until, after observing the realization of ξT , finally

– a T -th stage decision
xT (x1, · · · ,xT−1;ξ2, · · · ,ξT ) ∈BT (x1, · · · ,xT−1;ξ2, · · · ,ξT )⊂�nT .

Here the feasibility set Bt(x1, · · · ,xt−1;ξ2, · · · ,ξt) for xt is given by (random) linear
constraints, depending on the previous decisions x1, · · · ,xt−1 and the observations of
ξ2, · · · ,ξt .

For each stage t the decision xt(x1, · · · ,xt−1;ξ2, · · · ,ξt) involves the t-th stage
objective value cT

t (ξ2, · · · ,ξt)xt(x1, · · · ,xt−1;ξ2, · · · ,ξt), and the goal is to minimize
the expected value of the sum of these T objectives.

More precisely, with any set Ω �= /0, some σ -algebra G of subsets of Ω and
a probability measure P : G → [0,1], the general model may be stated as follows:
Given the probability space (Ω ,G ,P), random vectors ξt :Ω −→�rt , and the prob-
ability distribution�ξ induced by ξ = (ξT

2 , · · · ,ξT
T )

T :Ω −→�R, R= r2+ · · ·+rT ,

on the Borel σ -field of�R, with ζt = (ξT
2 , · · · ,ξT

t )
T being the state variable at stage

t, the multi-stage stochastic linear program (MSLP) reads as

min{cT
1 x1 +�

T

∑
t=2

cT
t (ζt)xt(ζt)}

A11x1 = b1

At1(ζt)x1 +
t

∑
τ=2

Atτ(ζt)xτ(ζτ) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where xt :�r2+···+rt −→�nt is to be Borel measurable, implying that xt(ζt(·)) :
Ω −→�nt is Ft -measurable, with Ft = σ(ζt) ⊂ G , the σ -algebra in Ω gener-
ated at stage t by {ζ−1

t [M] | M ∈ �r2+···+rt}. With ζ1 ≡ ξ1 = const and there-
fore F1 = { /0,Ω}, it follows that Ft ⊂ Ft+1 for t = 1, · · · ,T − 1, such that
F = {F1,F2, · · · ,FT} is a filtration. With xt(ζt(·)) being Ft -measurable for
t = 1, · · · ,T , the policy {xt(ζt(·)); t = 1, · · · ,T} is said to be F -adapted or else
nonanticipative.

The ξt :Ω −→�rt as random vectors defined on the probability space {Ω ,G ,P}
are obviously G -measurable. According to the definition in (2.6) on page 73, we
say that ξt ∈ L 2

rt := L 2
rt (Ω ,G ,�rt ) if, in addition, the ξt are square integrable,

i.e. if
∫
Ω
‖ξt(ω)‖2P(dω) exists. In particular, for any arbitrary Ft -simple function

γt(ω) := ∑K
i=1 gi · χMi(ω) with gi ∈�rt , χMi(ω) = 1 if ω ∈ Mi and χMi(ω) = 0

otherwise, Mi ∈Ft , Mi ∩Mj = /0 for i �= j, and ∪K
i=1Mi = Ω , it obviously follows

that γt ∈L 2
rt (Ω ,�rt ).

Assumption 3.1. Let

– ξt ∈L 2
rt := L 2

rt (Ω ,G ,�rt ) ∀t,
– Atτ(·),bt(·),ct(·) be linear affine in ζt (and therefore Ft -measurable), where

Atτ(·) is a mt ×nτ -matrix.
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Due to this assumption, also the elements of Atτ(·),bt(·),ct(·) are square-integrable
with respect to P. Hence, requiring that ξt ∈L 2

rt ∀t holds, Schwarz’s inequality (see
e.g. Zaanen [353]) implies in particular that�[cT

t (ζt)xt(ζt)], t = 2, · · · ,T , exist, such
that problem (3.1) is well defined.
Sometimes the following reformulation of (3.1) may be convenient: Given

– a probability space (Ω ,G ,P);
– Ft , t = 1, · · · ,T, being σ -algebras such that Ft ⊂ G ∀t and Ft ⊂ Ft+1 for

t = 1, · · · ,T −1 (i.e. {Ft | t = 1, · · · ,T} being a filtration);
– F := {F1, · · · ,FT}, where possibly, but not necessarily, FT = G ;
– Xt a linear subspace of L 2

nt (with respect to (Ω ,G ,P)), including the set of
Ft -simple functions;

– Mt the set of Ft -measurable functions Ω −→�nt and hence, Xt ∩Mt being a
closed linear subspace of Xt ;

then problem (3.1) may be restated as

min�

{
T

∑
t=1

cT
t xt

}

t

∑
τ=1

Atτxτ = bt a.s.

xt ≥ 0 a.s.
xt ∈ Xt ∩Mt

⎫⎪⎪⎬
⎪⎪⎭

t = 1, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

with Atτ ,bt ,ct assumed to be Ft -measurable for 1≤ τ ≤ t, t = 1, · · · ,T , and to have
finite second moments, as implied by Assumption 3.1. (remember: F1 = { /0,Ω},
such that A11,b1,c1 are constant).

Following S.E. Wright [347] various aggregated problems may be derived from
(3.2) by using coarser information structures, chosen as subfiltrations F̂ = {F̂t},
F̂t ⊂ F̂t+1, such that F̂t ⊆ Ft , ∀t, instead of the original filtration F = {Ft},
Ft ⊂Ft+1, t = 1, · · · ,T −1.
Denoting problem (3.2) as P(F ,F ), we then may consider

– the decision-aggregated problem P(F̂ ,F ),

min�

{
T

∑
t=1

ctxt

}

t

∑
τ=1

Atτxτ = bt a.s.

xt ≥ 0 a.s.
xt ∈ Xt ∩ M̂t

⎫⎪⎪⎬
⎪⎪⎭

t = 1, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where M̂t is the set of F̂t -measurable functions Ω −→�nt , thus requiring that
x = (xT

1 , · · · ,xT
T )

T is F̂ -adapted;
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– the constraint-aggregated problem P(F ,F̂ ),

min�

{
T

∑
t=1

ctxt

}

�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
= �

{
bt

∣∣∣ F̂t

}
a.s.

xt ≥ 0 a.s.
xt ∈ Xt ∩Mt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t = 1, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

i.e. x is F -adapted as in (3.2), and the constraints are stated in conditional
expectation given F̂t ;

– and the fully aggregated problem P(F̂ ,F̂ ) defined as:

min�

{
T

∑
t=1
�[ct | F̂t ]xt

}

�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
= �

{
bt

∣∣∣ F̂t

}
a.s. ∀t

xt ≥ 0 a.s. ∀t
xt ∈ Xt ∩ M̂t ∀t .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

Observe that by Assumption 3.1. the expected values

�

{
t

∑
τ=1

Atτxτ

}
and �{bt}

exist and hence, the conditional expectations in (3.4) and (3.5),

�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
and �

{
bt

∣∣∣ F̂t

}
,

are a.s. uniquely determined and F̂t -measurable due to the Radon-Nikodym theo-
rem (see e.g. Halmos [131]).

Denoting for the above problems P(F ,F ), P(F̂ ,F ), P(F ,F̂ ), P(F̂ ,F̂ )

– their feasible sets by B(F ,F ), B(F̂ ,F ), B(F ,F̂ ) and B(F̂ ,F̂ ), and
– their optimal values by inf(P(F ,F )), inf(P(F̂ ,F )), inf(P(F ,F̂ )) and

inf(P(F̂ ,F̂ )),

respectively, and with the usual convention that inf{ϕ(x) | x∈B}= ∞ if B = /0, the
following relations between the above problems are mentioned in S.E. Wright [347]:

Proposition 3.1. For the feasible sets of the above problems hold the inclusions
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B(F ,F )⊇B(F̂ ,F ) B(F ,F )⊆B(F ,F̂ )

B(F̂ ,F )⊆B(F̂ ,F̂ ) B(F ,F̂ )⊇B(F̂ ,F̂ ) ,

implying for the corresponding optimal values the inequalities

inf(P(F ,F̂ )) ≤ inf(P(F ,F )) ≤ inf(P(F̂ ,F ))

inf(P(F ,F̂ )) ≤ inf(P(F̂ ,F̂ )) ≤ inf(P(F̂ ,F )) .

Proof: The above inclusions result from the following observations:

B(F ,F )⊇B(F̂ ,F ): Any {xt} ∈B(F̂ ,F ) satisfies the constraints of (3.3) and

hence in particular the conditions xt ∈ Xt ∩ M̂t ∀t. Since F̂t ⊆Ft ∀t, we then have
xt ∈ Xt ∩Mt ∀t, such that {xt} ∈B(F ,F ).

B(F ,F )⊆B(F ,F̂ ): Any {xt} ∈B(F ,F ) is F -adapted and satisfies all other

constraints in (3.2), in particular the random vectors
t

∑
τ=1

Atτxτ and bt , measurable

w.r.t. Ft , coincide almost surely, such that for any sub–σ–algebras F̂t ⊆Ft their

conditional expectations�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
and�

{
bt

∣∣∣ F̂t

}
, being a.s. uniquely

determined and F̂t -measurable as mentioned above, coincide a.s. as well. Hence we
have {xt} ∈B(F ,F̂ ).

The two remaining inclusions,

B(F̂ ,F )⊆B(F̂ ,F̂ ) and B(F ,F̂ )⊇B(F̂ ,F̂ ),

as well as the inequalities for the optimal values, are now obvious. �

Remark 3.1. Concerning the fully aggregated problem (3.5) we have the following
facts:

• If F is infinite, i.e. at least one of the σ -algebras Ft = σ(ζt), t = 1, · · · ,T ,
is not finitely generated (equivalently, at least one random vector ζt has not a
finite discrete distribution), and F̂ is finite, then P(F̂ ,F̂ ) with finitely many
constraints and variables is clearly simpler to deal with than P(F ,F );

• for a sequence {F̂ ν} of (finite) filtrations with successive refinements, i.e.
F̂ ν

t ⊆ F̂ ν+1
t ∀t, under appropriate assumptions, e.g. for a corresponding se-

quence of measures Pν on F̂ ν
T converging weakly to P (see Billingsley [20]),

we may expect convergence of the optimal values of (3.5) to that one of (3.2);
• according to Prop. 3.1., in general there is no definite relationship between the

optimal values of (3.5) and of (3.2), as remarked for instance by Wright [347]
(p. 900); however there are special problem classes—in particular in the two-
stage case—and particular assumptions for the multi-stage case implying that
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inf(P(F̂ ,F̂ )) yields a lower bound for inf(P(F ,F )), which can be used in
designing solution methods, as we shall see later. �

First we shall deal with two-stage SLP’s. Under various assumptions on the model
structure and the underlying probability distributions, we shall reveal properties of
the recourse function and its expectation which turn out to be useful when design-
ing solution methods. Unfortunately, not all of these results can be generalized to
corresponding statements for multi-stage SLP’s in general.

3.2 The two-stage SLP: Properties and solution appraoches

In the previous section, for the T -stage SLP we had the following general proba-
bilistic setup: On some probability space (Ω ,G ,P) a sequence of random vectors
ξt : Ω −→�rt , t = 2, · · · ,T, was defined, such that ξ = (ξT

2 , · · · ,ξT
T )

T induced the
probability distribution �ξ on the Borel σ -field of �r2+···+rT . Then the random
vectors ζt = (ξT

2 , · · · ,ξT
t )

T, t = 2, · · · ,T, implied the filtration F = {F2, · · · ,FT}
in G with Ft = σ(ζt). Restricting ourselves in this section to the case T = 2 allows
for the following simplification of this setup.

Assume some probability space (Ω ,F ,P) together with a random vector ξ :
Ω →�r to be given, such that F = σ(ξ ). Then ξ induces the probability measure
�ξ on�r, the Borel σ -algebra in�r, according to�ξ (B) = P(ξ−1[B]) ∀B ∈�r.

Besides deterministic arrays A ∈�m1×n1 , b ∈�m1 , and c ∈�n1 , for the first
stage, let the random arrays T (ξ ) ∈�m2×n1 , W (ξ ) ∈�m2×n2 , h(ξ ) ∈�m2 , and
q(ξ ) ∈�n2 , be defined for the second stage as:

T (ξ ) = T +
r

∑
j=1

T j ξ j ; T, T j ∈�m2×n1 deterministic,

W (ξ ) = W +
r

∑
j=1

W j ξ j ; W, W j ∈�m2×n2 deterministic,

h(ξ ) = h+
r

∑
j=1

h j ξ j ; h, h j ∈�m2 deterministic,

q(ξ ) = q+
r

∑
j=1

q j ξ j ; q, q j ∈�n2 deterministic.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

Then, with ξ ∈L 2
r due to Assumption 3.1. and according to (3.2), the general two-

stage SLP with random recourse is formulated as

min�ξ
{

cTx+qT(ξ )y(ξ )
}

Ax = b
T (ξ )x + W (ξ )y(ξ ) = h(ξ ) a.s.

x ≥ 0
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y ∩M,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)
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where Y —corresponding to (3.2)—is a linear subspace of L 2
n2

(with respect to
(Ω ,F ,P)), including the set of F -simple functions; and M is the set of F -
measurable functions Ω −→�n2 . To avoid unnecessary formalism, we may just
assume, that Y = L 2

n2
which obviously contains the F -simple functions and satis-

fies Y ⊂M.
Hence problem (3.7) is equivalent to

min�ξ
{

cTx+qT(ξ )y(ξ )
}

Ax = b
T (ξ )x + W (ξ )y(ξ ) = h(ξ ) a.s.

x ≥ 0
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

A brief sketch on modeling situations leading to variants of the general two-stage
SLP (3.8) is given in Chapter 1 on page 4.

Remark 3.2. Instead of the constraints {Ax = b, x ≥ 0} in (3.8) we also could
consider constraints of the form {Ax ∝ b, l ≤ x≤ u} as in (1.1) on page 1, and the
constraints {W (ξ )y(ξ ) = h(ξ )−T (ξ )x, y(ξ ) ≥ 0 a.s.} of (3.8) could be replaced
as well by {W (ξ )y(ξ ) ∝ h(ξ )− T (ξ )x, l̃ ≤ y(ξ ) ≤ ũ a.s.}. However, in order to
have a unified presentation, for two-stage programs we stay with the formulation
chosen in (3.8). �

Except for particular cases where it is stated explicitly otherwise, instead of (3.6)
we shall restrict ourselves to W (·) ≡W , i.e. to fixed recourse. In general, problem
(3.8) contains implicitly the recourse function

Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ )) := inf
y

qT(ξ )y(ξ )

T (ξ )x + W (ξ )y(ξ ) = h(ξ ) a.s.
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.9)

To simplify the notation, we shall enter into the recourse function Q(x; ·) of (3.9),
in addition to the first stage decision variable x, only those parameter arrays be-
ing random in the model under consideration. For instance, Q(x;T (ξ ),h(ξ )) indi-
cates that T (·), h(·) are random arrays defined according to (3.6) whereas W (·) ≡
W, q(·) ≡ q; and Q(x;h(ξ )) stands for h(·) being a random vector due to (3.6) and
T (·)≡ T, W (·)≡W, q(·)≡ q being deterministic data.

Furthermore, in applications of this model, the selection of a decision x̂ feasible
for the first stage constraints Ax = b, x ≥ 0, appears to be meaningful only if it
allows almost surely to satisfy the second stage constraints W (ξ )y(ξ ) = h(ξ )−
T (ξ )x̂, y(ξ )≥ 0 a.s., since otherwise, according to the usual convention, we should
get for the recourse function
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Q(x̂;T (ξ ),h(ξ ),W (ξ ),q(ξ )) =
= inf

y∈Y
{qT(ξ )y(ξ ) |W (ξ )y(ξ ) = h(ξ )−T (ξ )x̂, y(ξ )≥ 0 a.s.}=+∞

with some positive probability. This implies

– either Q(x̂) :=�ξ [Q(x̂;T (ξ ),h(ξ ),W (ξ ),q(ξ ))] = +∞ ,
– or else the expected recourse Q(x̂) to be undefined if with positive probability

Q(x̂;T (ξ ),h(ξ ),W (ξ ),q(ξ )) =−∞ results simultaneously.

Clearly in anyone of these situations x̂ is not to be chosen since neither an infinite
nor an undefined objective value corresponds to our aim to minimize the objective
of (3.8). Hence, in general we may be faced with so-called induced constraints on
x, meaning that we require

x̂ ∈ K := {x | x ∈�n1 ; Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ ))<+∞ a.s.} .

For Ξ = supp�ξ—the support of �ξ , i.e. the smallest closed set in �r such that
�ξ (Ξ) = 1—being an infinite set, K is described in general by an infinite set of
constraints, which is not easy to deal with. If however Ξ is either finite, i.e. Ξ =
{ξ 1, · · · ,ξρ}, or else a convex polyhedron given by finitely many points as Ξ =
conv{ξ 1, · · · ,ξρ} (see Chapter 1, Def. 1.3. on page 10), then the induced constraints
imply x ∈ K with

K := {x | T (ξ j)x+W (ξ j)y j = h(ξ j), y j ≥ 0, j = 1, · · · ,ρ} ,

and, with B1 := {x | Ax = b, x≥ 0} ⊂�n1 , the first stage decisions have to satisfy
x ∈ B1 ∩K. A more detailed discussion of induced constraints may be found in
Rockafellar–Wets [285] and in Walkup–Wets [340] (see also Kall [154], Ch. III).

3.2.1 The complete fixed recourse problem (CFR)

If for a particular application it does not seem appropriate, that the future outcomes
of ξ affect the set of feasible first stage decisions, given as

B1 = {x | Ax = b , x≥ 0}, (3.10)

we might require at least relatively complete recourse:

∀x ∈B1 =⇒{y |W (ξ )y = h(ξ )−T (ξ )x, y≥ 0} �= /0 a.s. . (3.11)

Due to the Farkas lemma, Chapter 1, Prop. 1.13. on page 15, condition (3.11) is
equivalent to:

∀x ∈B1 holds :
[
W T(ξ )u≤ 0 =⇒ (h(ξ )−T (ξ )x)Tu≤ 0 a.s.

]
.
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Hence the requirement of relatively complete recourse is a joint restriction on B1
and on the range of h(ξ ),T (ξ ),W (ξ ) for ξ ∈ Ξ , simultaneously, which may be
difficult to verify, in general.

Therefore, in applications it is often preferred to assume complete fixed recourse
(CFR), which requires for W (ξ )≡W the following condition:

{z | z =Wy, y≥ 0}=�m2 . (3.12)

If this condition is satisfied, then for any x̂ feasible according to an arbitrary set of
first stage constraints in (3.8), and for any realization ξ̂ of the random vector ξ , the
second stage constraints in (3.9) are feasible. Furthermore, complete fixed recourse
is a condition on the matrix W only, and may easily be checked due to

Lemma 3.1. A matrix W ∈�m2×n2 satisfies the complete recourse condition (3.12)
if and only if

– rank(W ) = m2, and
– for an arbitrary set {Wi1 ,Wi2 , · · · ,Wim2

} of linearly independent columns of W,
the linear constraints

Wy = 0
yik ≥ 1 , k = 1, · · · ,m2 ,

y ≥ 0

⎫⎬
⎭ (3.13)

are feasible.

Proof: Assume that W is a complete recourse matrix. Then from (3.12) follows that
rank(W ) = m2 necessarily holds.

Furthermore, for some selection {Wi1 ,Wi2 , · · · ,Wim2
} of linearly independent

columns of W , let

ẑ =−
m2

∑
k=1

Wik .

By our assumption on W , we have {y |Wy = ẑ, y ≥ 0} �= /0. Hence, with the index
set { j1, · · · , jn2−m2} chosen such that

{i1, i2, · · · , im2}∩{ j1, · · · , jn2−m2} = /0
and {i1, i2, · · · , im2}∪{ j1, · · · , jn2−m2} = {1, · · · ,n2} ,

there exists a feasible solution ŷ of

m2

∑
k=1

Wik ŷik +
n2−m2

∑
l=1

Wjl ŷ j l = ẑ

= −
m2

∑
k=1

Wik

ŷi ≥ 0 , i = 1, · · · ,n2.

Hence, with
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yν =

{
ŷν +1 , ν = i1, i2, · · · , im2 ,
ŷν , ν = j1, j2, · · · , jn2−m2 ,

the constraints (3.13) are necessarily satisfied.

Assume now that the conditions of this lemma hold. Choose an arbitrary z̄∈�m2 .
Then the linear equation

m2

∑
k=1

Wik yik = z̄

has a unique solution {ȳi1 , · · · , ȳim2
}. If ȳik ≥ 0 for k = 1, · · · ,m2, we have a feasible

solution for the recourse equation Wy= z̄. Otherwise, set γ :=min{ȳi1 , · · · , ȳim2
}< 0.

Let ỹ be a feasible solution of (3.13). Then for

ŷν =

{
ȳν − γ ỹν , ν = i1, i2, · · · , im2 ,
−γ ỹν , ν = j1, j2, · · · , jn2−m2 ,

follows

Wŷ =
m2

∑
k=1

Wik ŷik +
n2−m2

∑
l=1

Wjl ŷ jl

=
m2

∑
k=1

Wik (ȳik − γ ỹik)︸ ︷︷ ︸
≥0

+
n2−m2

∑
l=1

Wjl (−γ ỹ jl )︸ ︷︷ ︸
≥0

= z̄− γ
n2

∑
r=1

Wrỹr

︸ ︷︷ ︸
=0

such that ŷ is a feasible solution of Wy = z̄, y≥ 0. �

Hence, to verify complete fixed recourse, we only have to determine rank(W )
and—if rank(W ) = m2 is satisfied—to check the feasibility of (3.13) by apply-
ing any algorithm for finding a feasible basic solution of this system, as e.g. the
method described in Section 1.2.4 on page 19. Throughout our discussion of two-
stage SLP’s we shall make the

Assumption 3.2. The recourse matrix W satisfies the complete fixed recourse con-
dition (3.12).

Even for the complete fixed recourse case if, with C P being the polar cone of
C = {y |Wy = 0, y≥ 0}, it happens that

Ξ ∩{ξ | −q(ξ ) ∈ C P} �= Ξ ,

then, due to Prop. 1.6. in Chapter 1 (p. 11) {ξ | −q(ξ ) ∈ C P} �= /0 is closed, such
that the definition of the support Ξ implies�ξ (Ξ ∩{ξ | −q(ξ ) ∈ C P})< 1.

Hence, with Ξ0 = Ξ \{ξ | −q(ξ ) ∈ C P}, by Prop. 1.7. in Chapter 1 (p. 12) fol-
lows Q(x;T (ξ ),h(ξ ),q(ξ ))=−∞ for ξ ∈Ξ0 with probability�ξ (Ξ0)> 0, yielding
Q(x) =−∞ ∀x ∈B1.
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Therefore, for allowing the objective of (3.8) to discriminate among various first
stage feasible solutions, we need to assume that −q(ξ ) ∈ C P ∀ξ ∈ Ξ , i.e. using the
Farkas lemma (Chapter 1, Prop. 1.13. on page 15) we add to Assumption 3.2. the
further

Assumption 3.3. The recourse matrix W together with q(·) satisfy

{u |W Tu≤ q(ξ )} �= /0 ∀ξ ∈ Ξ . (3.14)

Observe that due to (3.14) the requirement that−q(ξ ) ∈ C P∀ξ ∈ Ξ is equivalent to
dual feasibility of the recourse problem, a.s.

Lemma 3.2. Given Assumptions 3.2. and 3.3., for any x ∈�n1 there exists an opti-
mal recourse y(·) ∈ Y such that Q(x;T (ξ ),h(ξ ),q(ξ )) = qT(ξ )y(ξ ).

Proof: Due to Assumptions 3.2. and 3.3. the LP

minqT(ξ )y
s.t. Wy = h(ξ )−T (ξ )x

y ≥ 0

⎫⎬
⎭ (3.15)

is solvable for all ξ ∈Ξ . Let B(ν), ν = 1, · · · ,K, denote all bases out of W (i.e. all the
regular m2×m2-submatrices of W ). Partitioning W into the basic part B(ν) and the
nonbasic part N(ν) and correspondingly restating q(ξ ) ∼= (qB(ν) (ξ ),qN(ν) (ξ )) and
y ∼= (yB(ν) ,yN(ν) ), we know from Prop. 1.3. in Chapter 1 (p. 9) that with the convex
polyhedral set

Aν := {ξ | B(ν)−1
(h(ξ )−T (ξ )x)≥ 0, qT

B(ν) (ξ )B(ν)−1
N(ν)−qT

N(ν) (ξ )≤ 0}

y(ξ )∼=
(

yB(ν) (ξ ) = B(ν)−1
(h(ξ )−T (ξ )x),yN(ν) (ξ ) = 0

)
solves (3.15) for any ξ ∈

Aν . Furthermore, from (3.6) follows y(·) ∈ L 2
n2
(Aν ,�

r,�n2) for ν = 1, · · · .K.

Since—due to the solvability of (3.15) for all ξ ∈ Ξ—we have that
K⋃

ν=1

Aν ⊃ Ξ ,

this inclusion also holds for
K⋃

ν=1

ˆAν with the sets ˆAν being defined as ˆA1 = A1 and

ˆAν = Aν \⋃ν−1
μ=1 Aμ for ν = 2, · · · ,K.

Therefore, {Ξ ∩ ˆAν | ν = 1, · · · ,K} is a (disjoint) partition of Ξ with y(·) accord-
ing to

y(ξ )∼=
(

yB(ν) (ξ ) = B(ν)−1
(h(ξ )−T (ξ )x),yN(ν) (ξ ) = 0

)
for ξ ∈ ˆAν
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a solution of (3.15), being piecewise linear in ξ and hence belonging to Y , and
yielding Q(x;T (ξ ),h(ξ ),q(ξ )) = qT(ξ )y(ξ ). �

The above convex polyhedral sets Aν depend, by definition, on x, and so do the
pairwise disjoint sets ˆAν , which we may indicate by denoting them as ˆAν(x). Then
for some given x(i), i = 1,2, and any ξ ∈ Ξ there exist νi ∈ {1, · · · ,K} such that
ξ ∈ ˆAνi(x

(i)) and hence

Q(x(i);T (ξ ),h(ξ ),q(ξ )) = qT
B(νi)

(ξ )B(νi)
−1
(h(ξ )−T (ξ )x(i))

= ανi(ξ )+d(νi)
T
(ξ )x(i) ,

where ανi(ξ ) = qT
B(νi)

(ξ )B(νi)
−1

h(ξ ) ∈ L1

and −d(νi)(ξ ) = (qT
B(νi)

(ξ )B(νi)
−1

T (ξ ))T ∈ L1 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.16)

Since, due to the simplex criterion, u(νi) = B(νi)
−1T

qB(νi) (ξ ), i = 1,2, are dual
feasible with respect to (3.15), it follows for i �= j

ανi(ξ )+d(νi)
T
(ξ )x( j) = (h(ξ )−T (ξ )x( j))Tu(νi)

≤ (h(ξ )−T (ξ )x( j))Tu(ν j)

= αν j(ξ )+d(ν j)
T
(ξ )x( j)

= Q(x( j);T (ξ ),h(ξ ),q(ξ )) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

Now we are ready to show that (3.8) under appropriate assumptions is a mean-
ingful optimization problem.

Theorem 3.1. Let the Assumptions 3.2. and 3.3. be satisfied. Then the recourse
function Q(x;T (ξ ),h(ξ ),q(ξ )) is

a) finitely valued ∀x ∈B1, ξ ∈ Ξ ,
b) convex in x ∀ξ ∈ Ξ , and
c) Lipschitz continuous in x ∀ξ ∈ Ξ with a Lipschitz constant D(ξ ) ∈L 1

1 .

Proof:

a) The LP defining the recourse function Q(x;T (ξ ),h(ξ ),q(ξ )) is given by
(3.15) as

min{qT(ξ )y |Wy = h(ξ )−T (ξ )x, y≥ 0} ,
which due to Assumption 3.2. is primal feasible for arbitrary x ∈�n1 and ξ ∈
�

r, and according to Assumption 3.3. is also dual feasible ∀ξ ∈ Ξ ; therefore
it is solvable for all x ∈B1 and for all ξ ∈ Ξ , such that

Q(x;T (ξ ),h(ξ ),q(ξ )) is finitely valued ∀x ∈B1 and ∀ξ ∈ Ξ .

b) Hence for an arbitrary ξ̂ ∈ Ξ and some x(1),x(2) ∈B1 there exist y(i) for i =
1,2 such that
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Q(x(i);T (ξ̂ ),h(ξ̂ ),q(ξ̂ )) = qT(ξ̂ )y(i), where

Wy(i) = h(ξ̂ )−T (ξ̂ )x(i), y(i) ≥ 0.

Then for x̃ = λx(1) + (1−λ )x(2) with some λ ∈ (0,1) it follows that

ỹ = λy(1) + (1−λ )y(2) is feasible for Wy = h(ξ̂ )−T (ξ̂ )x̃, y≥ 0 .

Hence

Q(x̃;T (ξ̂ ),h(ξ̂ ),q(ξ̂ ))≤ qT(ξ̂ )ỹ = λqT(ξ̂ )y(1) + (1−λ )qT(ξ̂ )y(2) ,

showing the convexity of Q(x;T (ξ̂ ),h(ξ̂ ),q(ξ̂ )) in x.
c) For any two x(1) �= x(2) and any ξ ∈ Ξ , according to (3.16) there exist νi ∈

{1, · · · ,K}, i = 1,2, such that

Q(x(i);T (ξ ),h(ξ ),q(ξ )) = ανi(ξ )+d(νi)
T
(ξ )x(i) ,

and due to (3.17) holds

[αν1(ξ )+d(ν1)
T
(ξ )x(2)]− [αν1(ξ )+d(ν1)

T
(ξ )x(1)]

= d(ν1)
T
(ξ )(x(2)− x(1))

≤ Q(x(2);T (ξ ),h(ξ ),q(ξ ))−Q(x(1);T (ξ ),h(ξ ),q(ξ ))

≤ [αν2(ξ )+d(ν2)
T
(ξ )x(2)]− [αν2(ξ )+d(ν2)

T
(ξ )x(1)]

= d(ν2)
T
(ξ )(x(2)− x(1)) ,

such that

|Q(x(2);T (ξ ),h(ξ ),q(ξ ))−Q(x(1);T (ξ ),h(ξ ),q(ξ ))|
≤ max

i∈{1,2}
|d(νi)

T
(ξ )(x(2)− x(1))| ≤ max

i∈{1,2}
‖d(νi)(ξ )‖‖(x(2)− x(1))‖ .

Hence, with D(ξ ) = max
i∈{1,···,K}

‖d(νi)(ξ )‖ ∈ L1—due to (3.16)—follows the

proposition. �

Due to Chapter 1, Def. 1.10. (p. 54) a vector g ∈�n is a subgradient of a convex
function ϕ :�n −→� at a point x if it satisfies

gT(z− x)≤ ϕ(z)−ϕ(x) ∀z ,

and the subdifferential ∂ϕ(x) is the set of all subgradients of ϕ at x. In particular for
linear programs we have

Lemma 3.3. Assume that the LP
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min{cTx | Ax = b, x≥ 0}

is solvable ∀b ∈�m. Then its optimal value ϕ(b) (obviously convex in b) is sub-
differentiable at any b, and the subdifferential is given as ∂ϕ(b) = argmax{bTu |
ATu≤ c}, the set of optimal dual solutions at b.

Proof: For a given b̂ let û ∈ argmax{b̂ Tu | ATu≤ c}, such that ϕ(b̂) = b̂ Tû. Hence
û is also feasible for the LP ϕ(b̃) = max{b̃ Tu | ATu≤ c} for an arbitrary b̃ such that
b̃ Tû≤ ϕ(b̃) holds. Hence

ûT(b̃ − b̂)≤ ϕ(b̃)−ϕ(b̂)

showing that argmax{b̂ Tu | ATu≤ c} ⊂ ∂ϕ(b̂).
Assume now that g ∈ ∂ϕ(b̂) for some b̂ . Therefore, for any b holds

gT(b− b̂)≤ ϕ(b)−ϕ(b̂) .

With x̂ ∈ argmin{cTx | Ax = b̂ , x≥ 0} and x(i) = x̂+ ei(≥ 0), i = 1, · · · ,n, (ei the i-
th unit vector), by our assumption, for all b(i) = Ax(i), the LP’s ϕ(b(i)) = min{cTx |
Ax = b(i), x≥ 0} are solvable. Obviously we have ϕ(b(i))≤ cTx(i) such that

gTAei = gTA(x(i)− x̂) = gT(b(i)− b̂)
≤ ϕ(b(i))−ϕ(b̂)
≤ cTx(i)− cTx̂ = cTei, i = 1, · · · ,n,

implying ATg ≤ c, the dual feasibility of g. Then, due to the weak duality theorem
(Chapter 1, Prop. 1.9., page 13), we have gTb̂ −ϕ(b̂) ≤ 0. Assume that with some
α < 0 holds gTb̂ −ϕ(b̂)≤ α . For b̃ = 0 obviously follows ϕ(b̃) = 0 such that the
subgradient inequality, valid for all b, yields

0 = gTb̃ −ϕ(b̃)≤ gTb̂ −ϕ(b̂)≤ α < 0 .

This contradiction, implied by the assumption gTb̂ − ϕ(b̂) ≤ α < 0, shows that
gTb̂ = ϕ(b̂) and hence ∂ϕ(b̂)⊂ argmax{b̂ Tu | ATu≤ c} . �

Now we get immediately

Theorem 3.2. Let the Assumptions 3.2. and 3.3. be satisfied. Then the recourse
function Q(x;T (ξ ),h(ξ ),q(ξ )) is subdifferentiable in x for any ξ ∈ Ξ . For any x̂
holds (the subscript at ∂ indicating the variable of subdifferentiation)

∂xQ(x̂;T (ξ ),h(ξ ),q(ξ )) =
= {−T T(ξ )û | û ∈ argmax{(h(ξ )−T (ξ )x̂)Tu |W Tu≤ q(ξ )}} ∀ξ ∈ Ξ .

Proof: For an arbitrary ξ ∈ Ξ define b(x;ξ ) := h(ξ )−T (ξ )x. Introducing

ψ(b(x;ξ );ξ ) := Q(x;T (ξ ),h(ξ ),q(ξ ))
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= min{qT(ξ )y |Wy = b(x;ξ ), y≥ 0},

from Lemma 3.3 follows for the subdifferential of ψ(·;ξ ) at b(x̂;ξ )

∂bψ(b(x̂;ξ );ξ ) = argmax{bT(x̂;ξ )u |W Tu≤ q(ξ )}.

Then from Prop. 1.25. in Chapter 1 (p. 55) we know that

∂xQ(x̂;T (ξ ),h(ξ ),q(ξ )) = −T T(ξ )∂bψ(b(x̂;ξ );ξ )
= −T T(ξ )argmax{bT(x̂;ξ )u |W Tu≤ q(ξ )}.

�

Theorem 3.3. Since ξ ∈L 2
r (i.e. ξ square-integrable with respect to �ξ ), the ex-

pected recourse Q(x) is

a) finitely valued ∀x ∈B1 , and
b) a convex and Lipschitz continuous function in x.

Hence, (3.8) is a convex optimization problem with a Lipschitz continuous objective
function.

Proof:

a) Let x̂ ∈�n1 be fixed. Due to Assumptions 3.2. and 3.3., for any ξ ∈ Ξ there
exists an optimal feasible basic solution of the recourse program (3.15), i.e.
there is an (m2×m2)-submatrix B of W such that

B−1(h(ξ )−T (ξ ))x̂ ≥ 0 and

Q(x̂;T (ξ ),h(ξ ),q(ξ )) = qB(ξ )TB−1(h(ξ )−T (ξ )x̂)

}
, (3.18)

where the components of the m2 – subvector qB(ξ ) of q(ξ ) correspond to the
columns in B selected from W , as mentioned in Chapter 1, Prop. 1.2. (p. 9).
Together with the simplex criterion, Prop. 1.3. in Chapter 1 (p. 9), such a
particular basis is feasible and optimal on a polyhedral subset ΞB ⊂ Ξ , a so-
called decision region (also: stability region).
According to (3.6) and (3.18), the recourse function Q(x̂;T (ξ ),h(ξ ),q(ξ )) is,
in general, a quadratic function in ξ for ξ ∈ ΞB, such that, due to the assump-

tion that ξ ∈ L2, the integral
∫
ΞB

Q(x̂;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) exists. By the

Assumptions 3.2. and 3.3., the support Ξ is contained in the union of finitely
many decision regions, which implies that also

Q(x̂) =
∫
Ξ

Q(x̂;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) exists.

b) In Theorem 3.1., for any ξ ∈ Ξ , the recourse function Q(x;T (ξ ),h(ξ ),q(ξ ))
has been shown to be convex and Lipschitz continuous in x, with a Lipschitz
constant D(ξ ) ∈L 1

1 .
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Hence the convexity of Q(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) is obvious.

And for any two x(1) and x(2) we have

|Q(x(1))−Q(x(2))|
≤
∣∣∣∣
∫
Ξ
{Q(x(1);T (ξ ),h(ξ ),q(ξ ))−Q(x(2);T (ξ ),h(ξ ),q(ξ ))}�ξ (dξ )

∣∣∣∣
≤
∫
Ξ

∣∣∣Q(x(1);T (ξ ),h(ξ ),q(ξ ))−Q(x(2);T (ξ ),h(ξ ),q(ξ ))
∣∣∣�ξ (dξ )

≤
∫
Ξ

D(ξ )‖x(1)− x(2)‖�ξ (dξ ) = D‖x(1)− x(2)‖

with the Lipschitz constant D =
∫
Ξ D(ξ )�ξ (dξ ). �

Corollary 3.1. Given that the random entries q(ξ ) and (h(ξ ),T (ξ )) are stochasti-
cally independent, then with ξ ∈L 1

r (instead of ξ ∈L 2
r as before), the conclusions

of Th. 3.3. hold true, as well.

Proof: Only the existence of Q(x) =
∫
Ξ Q(x;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) has to be

proved, which follows, with ξ ∈L 1
r (Ω ,�r), from the independence of q(ξ ) and

(h(ξ ),T (ξ )) according to

∫
ΞB

Q(x;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) =

=
∫
ΞB

qB(ξ )TB−1(h(ξ )−T (ξ )x)�ξ (dξ )

=

(∫
ΞB

qB(ξ )�ξ (dξ )
)T(∫

ΞB

B−1(h(ξ )−T (ξ )x)�ξ (dξ )
)
.

�

Remark 3.3. In Theorem 3.2. the subdifferential of the recourse function at any x̂
under the Assumptions 3.2. and 3.3. was derived as

∂xQ(x̂;T (ξ ),h(ξ ),q(ξ )) =
= {−T T(ξ )û | û ∈ argmax{(h(ξ )−T (ξ )x̂)Tu |W Tu≤ q(ξ )}} ∀ξ ∈ Ξ .

It can be shown, that then Q(·) is subdifferentiable at x̂ and

∂Q(x̂) =
∫
Ξ
∂xQ(x̂;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ), (3.19)



3.2 The two-stage SLP 207

where this integral is understood as the set
{∫

Ξ
G(ξ )�ξ (dξ )

}
for all functions

G(·) being measurable selections from ∂xQ(x̂;T (·),h(·),q(·)) such that the integral∫
Ξ
‖G(ξ )‖�ξ (dξ ) exists.

Finally, Q(·) is differentiable at x̂ if and only if ∂xQ(x̂;T (·),h(·),q(·)) is a singleton
a.s. with respect to�ξ .

To prove statements of this type involves several technicalities, like the existence
of measurable selections from subdifferentials or equivalently, from solution sets
of optimization problems, integrability statements like Lebesgue’s bounded con-
vergence theorem, and so on. Under specific assumptions, these problems were
considered for instance in Kall [152], Kall–Oettli [170], Rockafellar [280] (see
also Kall [154]), and the general case is dealt with in Ch. 2 of Ruszczyński–
Shapiro [295], where a sketch of a proof is presented.

Due to the fact that (sub)gradient methods will—in general—not be a central
part of our discussion of solution approaches for recourse problems later on, we
omit a proof of the interchangeability of subdifferentiation and integration, as stated
in (3.19). �

3.2.1.1 CFR: Direct bounds for the expected recourse Q(x)

Finally, assume that q(ξ )≡ q, i.e. q(·) is deterministic. Then we have

Proposition 3.2. Given the Assumptions 3.2. and 3.3. (the latter one now reading
as {u |W Tu≤ q} �= /0), Q(x;T (·),h(·)) is a convex function in ξ for any x ∈�n1 .

Proof: According to (3.6) for any fixed x ∈�n1 the right–hand–side of the LP

Q(x;T (ξ ),h(ξ )) := min{qTy |Wy = h(ξ )−T (ξ )x, y≥ 0}

is linear in ξ , which implies the asserted convexity. �

In this case we have a lower bound for Q(x), frequently used in solution methods,
which is based on Jensen’s inequality [148]:

Lemma 3.4. Let ξ ∈�r be a random vector with probability distribution�ξ such
that �ξ [ξ ] exists, and assume ϕ : �r −→� to be a convex function. Then the
following inequality holds true:

ϕ(�ξ [ξ ])≤�ξ [ϕ(ξ )] . (3.20)

Proof: Due to Chapter 1, Prop. 1.25. (p. 55), at any ξ̂ ∈�r there exists a nonempty,
convex, compact subdifferential ∂ϕ(ξ̂ ). Hence for any linear affine function �(·) out
of the family L̃ξ̂ for some ξ̂ ∈�r with
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L̃ξ̂ := {l(·) | l(ξ ) := ϕ(ξ̂ )+gT
ξ̂ (ξ − ξ̂ ), gξ̂ ∈ ∂ϕ(ξ̂ )} , ξ̂ ∈�r ,

the set of linear support functions to ϕ(·) at ξ̂ , we have the subgradient inequality

�(ξ ) = ϕ(ξ̂ )+gT
ξ̂ (ξ − ξ̂ )≤ ϕ(ξ ) ∀ξ ∈�r .

By integration with respect to�ξ follows

�ξ [�(ξ )] = �(�ξ [ξ ]) = ϕ(ξ̂ )+gT
ξ̂ (�ξ [ξ ]− ξ̂ )≤�ξ [ϕ(ξ )]

such that �(�ξ [ξ ]) yields a lower bound for�ξ [ϕ(ξ )].

Since�ξ [ξ ] ∈�r, due to the subgradient inequality, at any ξ̂ ∈�r holds

�(�ξ [ξ ]) = ϕ(ξ̂ )+gT
ξ̂ (�ξ [ξ ]− ξ̂ )≤ ϕ(�ξ [ξ ]) ∀�(·) ∈ L̃ξ̂ .

Hence, in {L̃ξ̂ , ξ̂ ∈�r}, the set of all possible linear support functions to ϕ(·), we
get

argmax
ξ̂
{�(�ξ [ξ ]) | �(·) ∈ L̃ξ̂ , ξ̂ ∈�r}=�ξ [ξ ] .

Therefore, among all linear support functions to ϕ(·) we get the greatest lower
bound for �ξ [ϕ(ξ )] by choosing ξ̂ =�ξ [ξ ], i.e. �(ξ ) = ϕ(�ξ [ξ ])+ gT

�ξ [ξ ]
(ξ −

�ξ [ξ ]), yielding
�(�ξ [ξ ]) = ϕ(�ξ [ξ ])≤�ξ [ϕ(ξ )] .

�

Whereas under the assumptions of Lemma 3.4 we know for sure that the in-
tegral

∫
�

r ϕ(ξ )�ξ (dξ ) is bounded below, it cannot be excluded in general that
�ξ [ϕ(ξ )] = +∞ holds. In contrast, under our assumptions for Prop. 3.2. we know
from Cor. 3.1. that Q(x) = �ξ [Q(x;T (ξ ),h(ξ ))] is finite for all x ∈�n1 . From
Prop. 3.2. and Lemma 3.4 follows immediately the Jensen lower bound for the ex-
pected recourse:

Theorem 3.4. Given the Assumptions 3.2. and 3.3., with ξ̄ =�ξ [ξ ], the expected
recourse Q(x) =�ξ [Q(x;T (ξ ),h(ξ ))] is bounded below due to

Q(x;T (ξ̄ ),h(ξ̄ ))≤Q(x) . (3.21)

Observe that in this case the lower bound for the expected recourse is defined by
the one-point distribution �η with �η({η | η = ξ̄}) = 1, which does not depend
on the particular recourse function, since

∫
Q(x;T (η),h(η))�η(dη) = Q(x;T (ξ̄ ),h(ξ̄ ))≤Q(x)
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holds true for any function Q(x;T (·),h(·)) being convex in ξ .
Concerning upper bounds for the expected recourse, the situation is more diffi-

cult. The first attempts to derive upper bounds for the expectation of convex func-
tions of random variables are assigned to Edmundson [83] and Madansky [210].
Hence, the basic relation is referred to as Edmundson–Madansky inequality (E–M):

Lemma 3.5. Let τ be a random variable with supp�τ ⊆ [α,β ] ⊂� such that the
expectation μ = �τ [τ] ∈ [α,β ]. Then, for any convex function ψ : [α,β ] −→�
holds

�τ [ψ(τ)]≤�τ̂ [ψ(τ̂)] , (3.22)

where τ̂ is the discrete random variable with the two-point distribution

�τ̂({τ̂ | τ̂ = α}) = β −μ
β −α , �τ̂({τ̂ | τ̂ = β}) = μ−α

β −α . (3.23)

Proof: With λτ =
β − τ
β −α we have λτα+(1−λτ)β = τ ∀τ ∈ [α,β ] and λτ ∈ [0,1].

Due to the convexity of ψ follows

ψ(τ) = ψ(λτα+(1−λτ)β )≤ λτψ(α)+(1−λτ)ψ(β ) ∀τ ∈ [α,β ]

and therefore, integrating both sides of this inequality with respect to�τ ,

�τ [ψ(τ)]≤ β −μ
β −α ·ψ(α)+

μ−α
β −α ·ψ(β ) =�τ̂ [ψ(τ̂)] .

�

3.2.1.2 CFR: Moment problems and bounds for Q(x)

It is worthwhile to observe the following relation to the theory of moment problems
and semi-infinite programs.

Under the assumptions of Lemma 3.5 consider, with P the set of probability
measures on [α,β ], as primal (P) the problem

sup
�∈P

{∫ β

α
ψ(ξ )�(dξ )

∣∣∣
∫ β

α
ξ�(dξ ) = μ,

∫ β

α
�(dξ ) = 1

}
, (3.24)

a so-called moment problem, and as its dual problem (D)

inf
y∈�2

{y1 +μy2 | y1 +ξy2 ≥ ψ(ξ ) ∀ξ ∈ [α,β ]}, (3.25)

the corresponding semi-infinite program.
Since, as required by the constraints of (D), a linear affine function majorizes

a convex function on an interval if and only if it does so on the endpoints, (D) is
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equivalent to

min
y∈�2

{y1 +μy2 | y1 +αy2 ≥ ψ(α), y1 +βy2 ≥ ψ(β )} .

Due to the fact that α ≤ μ ≤ β this LP is solvable, and hence so is its dual (P),
which now reads as

max
pα ,pβ
{ψ(α)pα +ψ(β )pβ | pα + pβ = 1, α pα +β pβ = μ; pα , pβ ≥ 0}

and has, as the unique solution of its constraints, the distribution of τ̂ as given in
(3.23). It is worth mentioning that in this case the solution of the moment prob-
lem (P), i.e. the E–M distribution yielding the upper bound, is independent of the
particular choice of the convex function ψ : [α,β ]−→�.

Suppose now that we have a random vector ξ ∈�r. Then, as mentioned in Kall–
Stoyan [171], Lemma 3.5 can immediately be generalized as follows:

Lemma 3.6. Let supp�ξ ⊂ Ξ = ∏r
i=1[αi,βi]⊂�r and assume the components of

ξ to be stochastically independent. With μ =�ξ [ξ ] ∈ Ξ let�ηi , i = 1, · · · ,r, be the
two-point distributions defined on [αi,βi] as

�ηi({ηi | ηi = αi}) = βi−μi

βi−αi
, �ηi({ηi | ηi = βi}) = μi−αi

βi−αi
. (3.26)

Then for the random vector η ∈�r with the probability distribution given as

�η =�η1 ×�η2 ×·· ·×�ηr on Ξ =
r

∏
i=1

[αi,βi] (3.27)

it follows for any convex function ϕ : Ξ −→� that

�ξ [ϕ(ξ )]≤�η [ϕ(η)] . (3.28)

Proof: With �ξi the marginal distribution of �ξ for ξi ∈ [αi,βi], the assumed
stochastic independence of the components of ξ implies that

�ξ =�ξ1
×�ξ2

×·· ·×�ξr .

Hence the asserted inequality (3.28) follows immediately from Lemma 3.5 by in-
duction to r, using the fact that the product measures�ξ and�η allow for iterated
integration, as known from Fubini’s theorem (see Halmos [131]). �

Also in this case we may assign a moment problem, with P the set of all product
measures on Ξ = ∏r

i=1Ξi = ∏r
i=1[αi,βi], stated as (P)

sup
�∈P

{∫
Ξ
ϕ(ξ )Pξ1

(dξ1) · · ·Pξr(dξr)

∣∣∣∣∣
∫
Ξi
ξiPξi(dξi) = μi,∫

Ξi
Pξi(dξi) = 1,

∀i
}
, (3.29)
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and its dual semi-infinite program (D)

inf
y∈�2r

{
r

∑
i=1

(yi
1 +μiyi

2) | yi
1 +ξiyi

2 ≥ ϕ̃i(ξi) ∀ξi ∈ Ξi∀i
}

(3.30)

where with Ξ/Ξi := Ξ1×·· ·×Ξi−1×Ξi+1×·· ·×Ξr

ϕ̃i(ξi) =∫
Ξ/Ξi

ϕ(ξ1, · · · ,ξr)�ξ1
(dξ1) · · ·�ξi−1

(dξi−1)�ξi+1
(dξi+1) · · ·�ξr(dξr)

is obviously a convex function in ξi. Therefore again, the constraints of (D) are
satisfied if and only if they hold in the endpoints αi and βi of all intervals Ξi. Hence
(D) is equivalent to

inf
y∈�2r

{
r

∑
i=1

(yi
1 +μiyi

2) | yi
1 +αiyi

2 ≥ ϕ̃i(αi), yi
1 +βiyi

2 ≥ ϕ̃i(βi) ∀i
}
,

which due to μi ∈ [αi,βi] is solvable again and hence so is its dual, the moment
problem

max

{
r

∑
i=1

(ϕ̃i(αi)pi
αi
+ ϕ̃i(βi)pi

βi
)

}

s.t. αi pi
αi
+βi pi

βi
= μi, pi

αi
+ pi

βi
= 1 ∀i.

Since the only feasible solution of its constraints coincides with the two-point mea-
sures (3.26), the product measure (3.27) solving the moment problem (P) is inde-
pendent of the particular convex function ϕ , again.

For later use we just mention the following fact, which due to the above results
is evident:

Corollary 3.2. Let supp�ξ ⊂ Ξ = ∏r
i=1[αi,βi]⊂�r with μ =�ξ [ξ ] and assume

the function ϕ : Ξ −→� to be convex separable, i.e. ϕ(ξ ) =
r

∑
i=1

ϕi(ξi). Then, with

the distributions�ηi given in (3.26), it follows that

�ξ [ϕ(ξ )] =
r

∑
i=1
�ξ [ϕi(ξi)]≤

r

∑
i=1
�ηi [ϕi(ηi)] . (3.31)

We shall refer to (3.22), (3.28) and (3.31) as the E–M inequality. For the expected
recourse we then get the E–M upper bound:

Theorem 3.5. Assume that the components of ξ are stochastically independent and
that supp�ξ ⊂ Ξ = ∏r

i=1[αi,βi] with μ =�ξ [ξ ] ∈ Ξ . Given the Assumptions 3.2.
and 3.3., with the E–M distribution defined by (3.26) and (3.27) the expected re-
course Q(x) =�ξ [Q(x;T (ξ ),h(ξ ))] is bounded above according to
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Q(x)≤�η [Q(x;T (η),h(η))] . (3.32)

According to Lemma 3.6 and Cor. 3.2. we have the E–M inequality for multi-
dimensional distributions either for random vectors with independent components
or for convex integrands being separable. However this upper bound does not remain
valid for arbitrary integrands and dependent components, in general, as shown by
the following example:

Example 3.1. Let ξ be the discrete random vector in�2 with the

distribution of ξ :

realizations: (0,0) (1,0) (0,1) (1,1)
probabilities: 0.1 0.2 0.1 0.6

yielding the expectation ξ̄ = (0.8,0.7). This implies the

marginal distributions of ξ1 and ξ2:

realizations: 0 1
probabilities�ξ1

: 0.2 0.8
probabilities�ξ2

: 0.3 0.7

being obviously stochastically dependent. Using these marginal distributions to
compute the E–M distribution according to Th. 3.5., we get the

E–M distribution of η:

realizations: (0,0) (1,0) (0,1) (1,1)
probabilities: 0.06 0.24 0.14 0.56

with the expectation η̄ = (0.8,0.7). Then for any convex function ϕ(·, ·) such that

ϕ(0,0) = ϕ(1,0) = ϕ(0,1) = 0 and ϕ(1,1) = 1

we get �ξ [ϕ(ξ )] = 0.6 and �η [ϕ(η)] = 0.56. Hence, in this case, with the E–M
distribution (3.27) as derived for the independent case, the E–M inequality (3.28)
does not hold. �

To generalize the E–M inequality for random vectors with dependent components
and supp�ξ ⊂ Ξ = ∏r

i=1[αi,βi], and for arbitrary convex integrands, according to
Frauendorfer [102] we may proceed as follows:

Assume first that for some ξ ∈Ξ we have the random vector ζ with the one-point
distribution�ζ ({ζ | ζ = ξ}) = 1. Obviously the components of ζ are stochastically
independent, and for ηi(ξi) with the two-point distributions
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�ηi(ξi)({ηi | ηi = αi}) = βi−ξi

βi−αi

�ηi(ξi)({ηi | ηi = βi}) =
ξi−αi

βi−αi

⎫⎪⎪⎬
⎪⎪⎭

(3.33)

holds
�ηi(ξi) [ηi] = ξi =�ζi [ζi] . (3.34)

Hence for the probability measure

�η(ξ ) =�η1(ξ1)×�η2(ξ2)×·· ·×�ηr(ξr) on Ξ =
r

∏
i=1

[αi,βi] , (3.35)

defined on the vertices vν of Ξ , ν = 1, · · · ,2r, we have the probabilities

�η(ξ )(v
ν) = ∏

i∈Iν

βi−ξi

βi−αi
·∏

i∈Jν

ξi−αi

βi−αi
,

where Iν = {i | vνi = αi} and Jν = {1, · · · ,r} \ Iν (with ∏
i∈ /0
{·} = 1). Thus we get

immediately

Lemma 3.7. For any convex function ϕ : Ξ −→�, Jensen’s inequality implies

ϕ(�ζ [ζ ]) = ϕ(ξ ) ≤
∫
Ξ
ϕ(η(ξ ))�η(ξ )(dη)

=
2r

∑
ν=1

ϕ(vν)�η(ξ )(v
ν) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.36)

Hence, with the probability measure� defined on the vertices vν of Ξ by

�(vν) =
∫
Ξ
�η(ξ )(v

ν)�ξ (dξ )

=
∫
Ξ

∏
i∈Iν

βi−ξi

βi−αi
·∏

i∈Jν

ξi−αi

βi−αi
�ξ (dξ ) ,

⎫⎪⎪⎬
⎪⎪⎭

(3.37)

we get the generalized E–M inequality

�ξ [ϕ(ξ )]≤
2r

∑
ν=1

ϕ(vν)�(vν) . (3.38)

Remark 3.4. Observe that for stochastically independent components of ξ , due to
(3.37) we get for the generalized E–M distribution

�(vν) = ∏
i∈Iν

βi−μi

βi−αi
·∏

i∈Jν

μi−αi

βi−αi
,
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such that in this case� coincides with the E–M distribution�η for the independent
case as derived in (3.26) and (3.27). �

Hence Theorem 3.5. may be generalized as follows:

Theorem 3.6. Assume that supp�ξ ⊂Ξ =∏r
i=1[αi,βi] such that also μ =�ξ [ξ ]∈

Ξ . Under the Assumptions 3.2. and 3.3. and with the generalized E–M distribu-
tion � as defined in (3.37), according to (3.38) the expected recourse Q(x) =
�ξ [Q(x;T (ξ ),h(ξ ))] is bounded above as

Q(x) ≤
∫
Ξ

Q(x;T (η),h(η))�(dη)

=
2r

∑
ν=1

Q(x;T (vν),h(vν))�(vν) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.39)

For any Λ ⊂ {1, · · · ,r} let m̂Λ (ξ ) := ∏
k∈Λ

ξk and denote the joint mixed moments of

{ξk | k ∈Λ} as μΛ :=
∫
Ξ

m̂Λ (ξ )�ξ (dξ ) for all Λ ⊂ {1, · · · ,r} (with m̂ /0(ξ )≡ 1 and

μ /0 = 1).
Then we have, for any vertex vν of Ξ , that m̂Λ (vν) = ∏

k∈Λ∩Iν

αk · ∏
k∈Λ∩Jν

βk, and

from (3.34) and (3.35) follows

∫
Ξ

m̂Λ (η)�η(ξ )(dη) = m̂Λ (ξ ) =
2r

∑
ν=1

m̂Λ (vν) ·�η(ξ )(v
ν) , (3.40)

such that (3.37) and (3.40) imply

2r

∑
ν=1

m̂Λ (vν)�(vν) =
∫
Ξ

2r

∑
ν=1

m̂Λ (vν)�η(ξ )(v
ν)�ξ (dξ )

=
∫
Ξ

m̂Λ (ξ )�ξ (dξ ) = μΛ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.41)

Hence the upper bound distribution � of Lemma 3.7 preserves all joint moments
of the original distribution �ξ , suggesting to consider, for P being the set of all
probability measures on Ξ , the moment problem (P)

γ(P) :=

sup
�∈P

{∫
Ξ
ϕ(ξ )�(dξ )

∣∣∣
∫
Ξ

m̂Λ (ξ )�(dξ ) = μΛ ∀Λ ⊂ {1, · · · ,r}
}
. (3.42)

For the dual of this problem we assign the variables y0 to Λ = /0 (μ /0 = 1) and yΛ to
any nonempty subset Λ ⊂ {1, · · · ,r}. This yields the semi-infinite program (D)
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δ (D) := inf

{
y0 + ∑

Λ �= /0
μΛ yΛ

∣∣∣y0 + ∑
Λ �= /0

m̂Λ (ξ )yΛ ≥ ϕ(ξ ) ∀ξ ∈ Ξ
}
. (3.43)

Requiring the constraints of (D) to hold only at the vertices of Ξ yields the mod-
ified problem (D̃)

δ (D̃) := inf

{
y0 + ∑

Λ �= /0
μΛ yΛ

∣∣∣y0 + ∑
Λ �= /0

m̂Λ (vν)yΛ ≥ ϕ(vν), ν = 1, · · · ,2r

}

and its dual (P̃), the moment problem searching for a measure � in PextΞ , the set
of probability distributions on the vertices of Ξ , becomes

γ(P̃) := sup
PextΞ

{
2r

∑
ν=1

ϕ(vν)pν
∣∣∣

2r

∑
ν=1

m̂Λ (vν)pν = μΛ ∀Λ ⊂ {1, · · · ,r}
}
.

Due to (3.41) the upper bound distribution� of Lemma 3.7 is feasible for this mo-
ment problem (P̃). Furthermore, since the matrix of the system of linear constraints
of (P̃), i.e.

H := (m̂Λ (vν); ν = 1, · · · ,2r, Λ ⊂ {1, · · · ,r}),
is regular, as shown in Kall [157], the generalized E–M distribution� is the unique
solution of (P̃) and independent of ϕ . Finally, according to linear programming du-
ality and since PextΞ ⊂P we have

δ (D̃) = γ(P̃)≤ γ(P) .

On the other hand for any ξ ∈ Ξ , given the regularity of H, the linear system

2r

∑
ν=1

m̂Λ (vν)qν(ξ ) = m̂Λ (ξ ), Λ ⊂ {1, · · · ,r} (3.44)

has the unique solution {qν(ξ ) = �η(ξ )(vν); ν = 1, · · · ,2r} due to (3.40), being
continuous in ξ . Then for any� feasible in (P) follows

∀Λ ⊂ {1, · · · ,r} : μΛ =
∫
Ξ

m̂Λ (ξ )�(dξ )

=
∫
Ξ

2r

∑
ν=1

m̂Λ (vν)qν(ξ )�(dξ )

=
2r

∑
ν=1

m̂Λ (vν)q̂ν with q̂ν =
∫
Ξ

qν(ξ )�(dξ ) .

Hence {q̂ν ; ν = 1, · · · ,2r} is a probability distribution on the vertices of Ξ which is

feasible for the moment problem (P). Since (3.44) also includes
2r

∑
ν=1

vνqν(ξ ) = ξ ,
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by the convexity of ϕ follows for the objective of (P)

2r

∑
ν=1

ϕ(vν)q̂ν =
∫
Ξ

2r

∑
ν=1

ϕ(vν)qν(ξ )�(dξ )≥
∫
Ξ
ϕ(ξ )�(dξ ) .

Therefore we have
γ(P̃)≥ γ(P) =⇒ γ(P̃) = γ(P) ,

such that the generalized E–M distribution� solves the moment problem (P), and
as shown in Kall [157], it is the unique solution of (P).

Remark 3.5. In the above cases we could reduce particular moment problems (P),
as e.g. (3.42), stated on P , the set of all probability measures on some support Ξ , to
moment problems (P̃) on Pd, some sets of probability measures with finite discrete
supports Ξd ⊂ Ξ , such that a solution of (P̃) was simultaneously a solution of (P).

This observation is not surprising in view of a very general result, mentioned in
Kemperman [181] and assigned to Richter [276] and Rogosinski [289], stated as
follows:

“Let f1, · · · , fN be integrable functions on the probability space (Ω ,G ,P). Then
there exists a probability measure P̃ with finite support in Ω such that

∫
Ω

fi(ω)P(dω) =
∫
Ω

fi(ω)P̃(dω) , i = 1, · · · ,N.

Even card(supp P̃)≤ N +1 may be achieved.”

Hence we can take advantage of the theory of semi-infinite programming. With

S, an arbitrary (usually infinite) index set, and
a : S−→�n, b : S−→�, c ∈�n arbitrary,

the problem
v(P) := inf{cTy | aT(s)y≥ b(s) ∀s ∈ S}

is called a (primal) semi-infinite program. Its dual program requires, for some si ∈
S, i = 1, · · · ,q≥ 1, to determine a positive finite discrete measure μ with μ(si) = xi
as a solution of the generalized moment problem

v(D) := sup

{
q

∑
i=1

b(si)xi |
q

∑
i=1

a(si)xi = c, xi ≥ 0, si ∈ S, q≥ 1

}
.

Whereas weak duality, i.e. v(D) ≤ v(P), is evident, a detailed discussion of state-
ments on (strong) duality as well as on existence of solutions for these two problems
under various regularity assumptions may be found in textbooks like Glasshoff–
Gustafson [126] and Goberna–López [128] (or in reviews as e.g. in Kall [158]).

Moment problems have been considered in detail in probability theory (see
e.g. Krein–Nudel’man [196]) and in other areas of applied mathematics (like e.g.
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Karlin–Studden [176]), and a profound geometric approach was presented in Kem-
perman [181].

In connection with stochastic programs with recourse moment problems were
investigated to find upper bounds for the expected recourse, also under assumptions
on the set Ξ containing supp�ξ and moment conditions being different from those
mentioned above.

For instance, for a convex function ϕ , Ξ being a (bounded) convex polyhedron,
and the feasible set of probability measures P given by the moment conditions∫
Ξ
ξ�(dξ ) = ξ̄ (= �ξ [ξ ]), the moment problem sup

�∈P

∫
Ξ
ϕ(ξ )�(dξ ) turns out

to be the linear program to determine an optimal discrete measure on the vertices
of Ξ where, in contrast to the above E–M measures, the solution depends on ϕ in
general (see e.g. Dupačová [74, 75]).

Furthermore, for a lower semi-continuous proper convex function ϕ and Ξ being
an arbitrary closed convex set, and again with

P =

{
�

∣∣∣
∫
Ξ
ξ�(dξ ) = ξ̄

}
,

the moment problem sup
�∈P

∫
Ξ
ϕ(ξ )�(dξ ), considered by Birge–Wets [28], am-

ounts to determine a finite discrete probability measure � on extΞ and a finite
discrete nonnegative measure ν on ext rcΞ (with rcΞ the recession cone of Ξ , see
Rockafellar [281]), which for infinite sets extΞ and ext rcΞ appears to be a dif-
ficult task, whereas it seems to become somewhat easier if Ξ is assumed to be a
convex polyhedral set as discussed e.g. in Edirisinghe–Ziemba [81], Gassmann–
Ziemba [122], Huang–Ziemba–Ben-Tal [144]). Also in these cases, the solutions of
the moment problems, i.e. the optimal measures, depend on ϕ , in general. For the
special situation where ϕ is convex and Ξ is a regular simplex, i.e.

Ξ = conv{v0,v1, · · · ,vr} ⊂�r , rank(v1− v0,v2− v0, · · · ,vr− v0) = r,

mentioned in Birge–Wets [27] and later investigated and used extensively by Frauen-
dorfer [103], the moment problem under the above first order moment conditions
has the unique solution of a regular system of linear equations, independent of ϕ
again.

Finally, for Ξ =�r with
∫
Ξ
ξ�ξ (dξ ) = μ and

∫
Ξ
‖ξ‖2

�ξ (dξ ) = ρ , (with ‖ · ‖
the Euclidean norm) moment problems with the nonlinear moment conditions

∫
Ξ
ξ�(dξ ) = μ and

∫
Ξ
‖ξ‖2

�(dξ ) = ρ

have been discussed, first for simplicial recourse functions ϕ by Dulá [73], and
then for more general nonlinear recourse functions in Kall [159]. In these cases,
the solutions of the moment problems depend on ϕ , in general. Under appropriate
assumptions on the recourse functions these moment problems turn out to be non-
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smooth optimization problems, solvable with bundle-trust methods as described in
Schramm–Zowe [299], for instance.

We have sketched possibilities to derive upper bounds for the expected recourse
using results from the theory on semi-infinite programming and moment problems.
Similarly, the theory on partial orderings of spaces of probability measures, as de-
scribed in Stoyan [313] and Müller–Stoyan [237], could be used. Attempts in this
direction may be found e.g. in Frauendorfer [103] and in Kall–Stoyan [171]. �

3.2.1.3 CFR: Approximation by successive discretization

Assuming that, for the given random vector ξ , we have supp�ξ ⊂Ξ =∏r
i=1[αi,βi],

due to Jensen and Edmundson–Madansky there follow for any convex function ϕ
and ξ̄ =�ξ [ξ ] the bounds

ϕ(ξ̄ )≤�ξ [ϕ(ξ )]≤�η [ϕ(η)] =
∫
Ξ
ϕ(η)�(dη) , (3.45)

where η has the discrete distribution � defined on the vertices of Ξ , as described
in Lemma 3.7. Hence these bounds result from finitely many arithmetic operations

provided the joint moments μΛ :=
∫
Ξ

m̂Λ (ξ )�ξ (dξ ) =�ξ [m̂Λ (ξ )] are known for

all Λ ⊂ {1, · · · ,r}.
The following observation is the basis of a method of discrete approximations

(of the distribution) to solve complete recourse problems.
Assume that,with half-open or closed intervals Ξk as the cells, a partition X of

the interval Ξ is given satisfying

X = {Ξk; k = 1, · · · ,K}, such that Ξk ∩Ξ� = /0 , k �= � , and
K⋃

k=1

Ξk = Ξ . (3.46)

Then there follows

Lemma 3.8. Under the above assumptions holds, with πk =�ξ (Ξk), for the lower
bounds of�ξ [ϕ(ξ )]

ϕ(ξ̄ ) ≤
K

∑
k=1

πkϕ(�ξ [ξ | ξ ∈ Ξk])

≤
K

∑
k=1

πk�ξ [ϕ(ξ ) | ξ ∈ Ξk]

= �ξ [ϕ(ξ )]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.47)

whereas for the upper bounds we get the inequalities



3.2 The two-stage SLP 219

�ξ [ϕ(ξ )] =
K

∑
k=1

πk�ξ [ϕ(ξ ) | ξ ∈ Ξk]

≤
K

∑
k=1

πk

∫
Ξk

ϕ(η)�k(dη)

≤
∫
Ξ
ϕ(η)�(dη) ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.48)

where�k is the E–M distribution on Ξk yielding μk
Λ :=�ξ [m̂Λ (ξ ) | ξ ∈ Ξk] for all

Λ ⊂ {1, · · · ,r} and k = 1, · · · ,K, and� is the E–M distribution on Ξ as described
in Lemma 3.7.

Proof: For any�ξ -integrable function ψ : Ξ −→�p, p ∈�, we have the equality

K

∑
k=1

πk�ξ [ψ(ξ ) | ξ ∈ Ξk] =�ξ [ψ(ξ )] . (3.49)

Hence, with ψ the identity, we have
K

∑
k=1

πk�ξ [ξ | ξ ∈ Ξk] = ξ̄ . Then, the convexity

of ϕ implies the first inequality of (3.47), whereas the second one follows from
the fact that Jensen’s inequality holds true for conditional expectations, as well (see
Pfanzagl [253]).

The first equation in (3.48) follows from (3.49) with ψ = ϕ . The following in-
equality holds true due to the fact, that the E–M inequality is valid for conditional
expectations, as well. For the probability measure�k holds for all Λ ⊂ {1, · · · ,r}

∫
Ξk

m̂Λ (ξ )�k(dξ ) = μk
Λ =�ξ [m̂Λ (ξ ) | ξ ∈ Ξk], k = 1, · · · ,K,

such that with ψ = m̂Λ due to (3.49)

K

∑
k=1

∫
Ξk

πkm̂Λ (ξ )�k(dξ ) =
K

∑
k=1

πk�ξ [m̂Λ (ξ ) | ξ ∈ Ξk] =�ξ [m̂Λ (ξ )] = μΛ .

Hence, the probability measure
K

∑
k=1

πk�k is feasible for the moment problem (3.42)

which is solved by�, thus implying the last inequality of (3.48). �

Hence, with any arbitrary convex function ϕ : Ξ −→� on the interval Ξ ⊂�r,
for any probability distribution �ξ on Ξ and for each choice of a partition X =
{Ξk; k = 1, · · · ,K} of Ξ , we have bounds on�ξ [ϕ(ξ )] by

– a discrete random vector η with distribution�ηX
yielding

∫
Ξ
ϕ(η)�ηX

(dη)≤�ξ [ϕ(ξ )] ,

the Jensen lower bound due to (3.47), and
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– a discrete random vector η with distribution�ηX
yielding

�ξ [ϕ(ξ )]≤
∫
Ξ
ϕ(η)�ηX

(dη) ,

the (generalized) E–M upper bound according to (3.48) (with the measure

�ηX
=

K

∑
k=1

πk�k in the above notation).

Let a further partition Y = {ϒl ; l = 1, · · · ,L} of Ξ be a refinement of X , i.e. each
cell of X is the union of one or several cells of Y , then as an immediate conse-
quence of Lemma 3.8 follows

Corollary 3.3. Under the above assumptions, the partition Y of Ξ being a refine-
ment of the partition X implies

∫
Ξ
ϕ(η)�ηX

(dη)≤
∫
Ξ
ϕ(η)�ηY

(dη)≤�ξ [ϕ(ξ )]

and
�ξ [ϕ(ξ )]≤

∫
Ξ
ϕ(η)�ηY

(dη)≤
∫
Ξ
ϕ(η)�ηX

(dη)

and hence an increasing lower and a decreasing upper bound.

Proof: Since Y is a refinement of X , for Y �= X there is at least one cell Ξk
of X being partitioned into some cells ϒlk1, · · · ,ϒlksk of Y , such that sk > 1 and

sk⋃
ν=1

ϒlkν = Ξk. Observing that with plkν =�ξ (ϒlkν) holds

�ξ [ξ | ξ ∈ Ξk] =
1
πk

sk

∑
ν=1

plkν�ξ [ξ | ξ ∈ϒlkν ] ,

due to
sk

∑
ν=1

plkν = πk the convexity of ϕ implies

ϕ(�ξ [ξ | ξ ∈ Ξk])≤ 1
πk

sk

∑
ν=1

plkνϕ(�ξ [ξ | ξ ∈ϒlkν ]) .

Therefore, this increases in (3.47) the k-th term

πkϕ(�ξ [ξ | ξ ∈ Ξk]) to
sk

∑
ν=1

plkνϕ(�ξ [ξ | ξ ∈ϒlkν ]) .
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In a similar way, the monotone decreasing of the upper bound may be shown, fol-
lowing the arguments in the proof of Lemma 3.8. �

Hence, refining the partitions of Ξ successively improves the approximation of
�ξ [ϕ(ξ )], by the Jensen bound from below and by the E–M bound from above.
Defining in some partition X = {Ξk; k = 1, · · · ,K} of Ξ the diameter of any cell
Ξk ∈X as

diamΞk := sup{‖ξ −η‖ | ξ , η ∈ Ξk}
and then introducing the grid width of this partition X as

gridX := max
k=1,···,K

diamΞk ,

we may prove convergence of the above bounds to �ξ [ϕ(ξ )] under appropriate
assumptions (see Kall [153]).

Lemma 3.9. Let supp�ξ ⊆ Ξ = ∏r
i=1[αi,βi] and ϕ : Ξ −→� be continuous. As-

sume a sequence {X ν} of successively refined partitions of Ξ to be given such that
lim
ν→∞

gridX ν = 0. Then, for {�ηX ν } and {�ηX ν } the corresponding sequences of

Jensen distributions and E–M distributions, respectively, follows

lim
ν→∞

∫
Ξ
ϕ(ξ )�ηX ν (dξ ) = lim

ν→∞

∫
Ξ
ϕ(ξ )�ηX ν (dξ ) =

∫
Ξ
ϕ(ξ )�ξ (dξ ) .

Proof: Due to our assumptions ϕ is uniformly continuous on Ξ implying

∀ε > 0 ∃δε > 0 such that |ϕ(ξ )−ϕ(η)|< ε ∀ξ ,η ∈ Ξ : ‖ξ −η‖< δε .

According to the assumptions on {X ν} there exists some ν(δε) such that
gridX ν < δε ∀ν > ν(δε) . Hence, for ν > ν(δε) and any cell Ξν

k ∈ X ν holds
|ϕ(ξ )−ϕ(η)| < ε ∀ξ ,η ∈ Ξν

k . The Jensen distribution �ηX ν assigns the proba-

bility πνk =�ξ (Ξν
k ) =

∫
Ξν

k

�ξ (dξ ) to the realization ξ̄ νk =�ξ [ξ | ξ ∈ Ξν
k ] . Hence

we get
∣∣∣
∫
Ξ
ϕ(ξ )�ηX ν (dξ )−

∫
Ξ
ϕ(ξ )�ξ (dξ )

∣∣∣

=
∣∣∣

Kν

∑
k=1

∫
Ξν

k

(ϕ(ξ̄ νk )−ϕ(ξ ))�ξ (dξ )
∣∣∣

≤
Kν

∑
k=1

∫
Ξν

k

|ϕ(ξ̄ νk )−ϕ(ξ )|�ξ (dξ )≤
Kν

∑
k=1

ε ·πνk = ε

such that
∫
Ξ
ϕ(ξ )�ηX ν (dξ )−→

∫
Ξ
ϕ(ξ )�ξ (dξ ) .
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The convergence of the E–M bound may be shown similarly. �

This result gives rise to introduce the following convergence concepts:

Definition 3.1. A sequence of probability measures�ν
ξ on�r (the Borel σ -algebra

on�r) is said to converge weakly to the measure �ξ if for the corresponding dis-
tribution functions Fν and F, respectively, holds

lim
ν→∞

Fν (ξ ) = F(ξ ) for every continuity point ξ of F .

Definition 3.2. Let {ψ; ψν , ν ∈�} be a set of functions on �r. The sequence
{ψν , ν ∈�} is said to epi-converge to ψ if for any ξ ∈�r

– there exists a sequence {ην −→ ξ} such that limsup
ν→∞

ψν(ην)≤ ψ(ξ ),

– for all sequences {ην −→ ξ} holds ψ(ξ )≤ liminf
ν→∞

ψν(ην).

Lemma 3.9 ensures that the sequences of measures {�ηX ν } and {�ηX ν }
converge weakly to �ξ , as shown in Billingsley [20, 21]. Under the Assump-
tions 3.2. and 3.3., for the recourse function Q(x;T (ξ ),h(ξ )) (with ξ ∈ Ξ , the
above interval) and for any sequence of probability measures �ν

ξ on Ξ converg-
ing weakly to �ξ , it follows that the approximating expected recourse functions

Qν(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ))�ν
ξ (dξ ) epi-converge to the true expected recourse

Q(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ))�ξ (dξ ), as has been shown e.g. in Wets [343]; re-

lated investigations are found in Robinson–Wets [279] and Kall [156]. The epi-
convergence of the Qν has the following desirable consequence:

Theorem 3.7. Assume that {Qν} epi-converges to Q . Then, with some convex
polyhedral set X ⊂�n, for the two-stage SLP with recourse we have

limsup
ν→∞

[inf
X
{cTx+Qν(x)}]≤ inf

X
{cTx+Q(x)}.

If
x̂ν ∈ argmin

X
{cTx+Qν(x)} ∀ν ∈� ,

then for any accumulation point x̂ of {x̂ν} it follows that

cTx̂+Q(x̂) = min
X
{cTx+Q(x)};

and for any subsequence {x̂νκ} ⊂ {x̂ν} with lim
κ→∞

x̂νκ = x̂ we have

cTx̂+Q(x̂) = lim
κ→∞
{cTx̂νκ +Q(x̂νκ )}.

A proof of this statement may be found for instance in Wets [343] (see also
Kall [155]).
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Due to this result discrete approximation algorithms (DAPPROX) for the solution
of two-stage SLP’s with recourse may be designed, based on successive partitions
{X ν} of Ξ , yielding lower bounds

Qν
LB(x) =

∫
Ξ

Q(x;T (ξ ),h(ξ ))�ηX ν (dξ ) (3.50)

and upper bounds

Qν
UB(x) =

∫
Ξ

Q(x;T (ξ ),h(ξ ))�ηX ν (dξ ) (3.51)

for Q(·) =�ξ [Q(·;T (ξ ),h(ξ ))] due to Jensen and Edmundson–Madansky, respec-
tively. In other words, a solution of

γ̂ := min
X
{cTx+Q(x)} (3.52)

may be approximated by an approach like

DAPPROX: Approximating CFR solutions

With Ξ an interval and supp�ξ ⊂Ξ , let X 1 := {Ξ} be the first (trivial) partition of
Ξ and�η

X 1 ,�η
X 1

the corresponding Jensen– and E–M – distributions determin-

ing, due to (3.50) and (3.51), the approximating expected recourse functions Q1
LB(x)

and Q1
UB(x).

With ν = 1 iterate the cycle of the following steps I.–III. until achieving the
required accuracy ε > 0 of an approximate solution.

I. Analyze the approximating problems

a) γ̂LB := min
X
{cTx+Qν

LB(x)} and b) γ̂UB := min
X
{cTx+Qν

UB(x)} .

{Observe that, since �ηX ν and �ηX ν are finite discrete distributions,
problems a) and b) are LP’s with decomposition structures.}

II. If the prescribed accuracy is achieved, stop the procedure; otherwise, go
on to step III.
{As an example, with a solution x̂ν of problem I.a) and its optimal value
γ̂νLB, the error estimate γ̂− γ̂νLB≤ cTx̂+Qν

UB(x̂
ν)− γ̂νLB =: δν might be used

to check whether δν ≤ ε , if this corresponds to the required accuracy.}
III. To improve the approximation, choose a partition X ν+1 as an appropriate

refinement of X ν . With the corresponding Jensen– and E–M – distribu-
tions�η

X ν+1 and�η
X ν+1

, defining Qν+1
LB (x) and Qν+1

UB (x) due to (3.50)
and (3.51), let ν := ν+1 and return to step I. above.
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{As mentioned above, due to the finite discrete Jensen– and E–M – distributions
the problems I.a) and I.b) generated in each cycle are LP’s with decomposition
structure as shown in (1.10) on page 4. For the error estimate mentioned at II.
the LP I.a) has to be solved, suggesting to apply an appropriate decomposition
algorithm. In general and due to many experiments, QDECOM (see p. 47) can be
considered as a proven reliable solver for this purpose. Nevertheless, keep in mind
Remark 1.2. (p. 48).} �

Obviously, this conceptual description of DAPPROX gives rise to quite a va-
riety of algorithms, depending on various strategies of refining the partitions. For
instance, the selection of the particular cells to be refined is relevant for the effec-
tiveness of the method. Or for a cell Ξν

k ∈X ν to be refined, in order to maintain
the assumed interval structure of the successive partitions, through this cell we need
a cut being perpendicular to one of the coordinate axes; but which coordinate axis
is to be preferred, and where is the cut to be located? These and further strategies,
playing a significant role for the efficiency of DAPPROX–solvers implementations,
will be discussed later in Section 4.7.2.

Exercises

3.1. Consider the two–stage SLP

max{2x1 + x2 +
3

∑
k=1

pkqTy(k)}
x1 +x2 ≤ 10
x1 +2x2 −y(k)1 +y(k)2 +2y(k)3 = h(k)1

x1 −x2 +2y(k)1 +3y(k)2 +y(k)3 = h(k)2 k = 1,2,3,
x j, y(k)ν ≥ 0 ∀ j, k, ν

with q = (−2,−3,−2)T, h(1) = (5,4)T, h(2) = (3,5)T, h(3) = (2,2)T.

(a) Has the problem the (relatively) complete recourse property?
(b) If not, determine the induced constraints for (x1, x2)

T (see page 198).
(c) Compute the first stage solution and its first stage objective of the problem.

You may verify your answers to items (a) and (c) using SLP-IOR.

3.2. Change the recourse matrix W of exercise 3.1 to the new recourse matric

W̃ =

(−1 1 −1
2 3 −5

)
;

(a) check the complete recourse property;
(b) compute the first stage solution (including its objective) and compare it to the

result of exercise 3.1.
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You may use SLP-IOR to confirm your answers.

3.3. Let the function ψ : [−1,1]× [0,2] −→� be defined as ψ(ξ ,η) := ϕ(ξ ) +

θ(η) with ϕ(ξ ) :=
{−ξ for −1≤ ξ ≤− 1

4
0.5+ξ for − 1

4 ≤ ξ ≤ 1
and θ(η) := 2η . Assume ξ and

η to be independent random variables with the densities gξ (ζ )≡
1
2

for ζ ∈ [−1,1]

and hη(ζ ) =
e−ζ

1− e−2 . Due to the independence of ξ and η holds

�[ψ(ξ ,η)] =
∫ 2

0

∫ 1

−1
ψ(ξ ,η)dξdη

=
∫ 1

−1
ϕ(ξ )dξ +

∫ 2

0
θ(η)dη = 0.781250+1.373929 = 2.155179 .

(a) Compute (ξ̄ , η̄) =�[(ξ ,η)] and Jensen’s bound ψ(ξ̄ , η̄) = ϕ(ξ̄ )+θ(η̄).
(b) Compute the E–M upper bound of�[ψ(ξ ,η)].
(c) Subdivide the support Ξ = [−1,1]× [0,2] into two rectangles,

(c1) either by dividing the ξ -interval I(ξ ) = [−1,1] at ξ̄ into I(ξ )1 and I(ξ )2

(c2) or by dividing the η-interval I(η) = [0,2] at η̄ into I(η)1 and I(η)2 .

Compute alternatively the two new Jensen bounds of �[ψ(ξ ,η)], as either
lb|ξ̄ :=�ξ (I

(ξ )
1 ) ·ϕ(�ξ [ξ | I(ξ )1 ])+�ξ (I

(ξ )
2 ) ·ϕ(�ξ [ξ | I(ξ )2 ])+θ(�η [η ]),

or else
lb|η̄ := ϕ(�ξ [ξ ])+�η(I

(η)
1 ) ·θ(�η [η | I(η)1 ])+�η(I

(η)
2 ) ·θ(�η [η | I(η)2 ]).

(d) How do the new Jensen bounds lb|ξ̄ and lb|η̄ compare to the first bound

ψ(ξ̄ , η̄), and how much does the above error estimate decrease at best?

3.4. Concerning the moment problem (3.24) and its dual, the semi-infinite program
(3.25), it was claimed, that

(a) a linear affine function majorizes a convex function ψ(·) on an interval, if and
only if it does so at the endpoints of the interval;

(b) due to the relation α ≤ μ ≤ β (with the natural assumption that α < β ) the
LP corresponding to (3.25) (due to (a)) is solvable and hence its dual, the LP
equivalent to the moment problem (3.24), is uniquely solvable.

Show that these claims hold true.

3.5. Let F be a convex function on a convex polyhedron B = conv{z(1), · · · ,z(k)},
the support of some distribution �ζ with expectation EX [ζ ] = μ ∈B. There is a
lower bound for F̄ =

∫
B F(z)�ζ (dz) given by F(μ) due to Jensen, and as mentioned

on page 217 referring to Dupačová, an upper bound can be determined by solving
an LP, which maximizes EX [F ] on the class P̃ of dicrete distributions on the vertices
of B, satisfying the moment conditions ∑i pi · z(i) = μ, ∑i pi = 1, pi ≥ 0 ∀i.
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As an example, define B := {ξ | ξ1 +2ξ2 ≤ 10 , 2ξ1 +ξ2 ≤ 8 , ξi ≥ 0}. Assume
some distribution�ξ on B with first moments μ =�[ξ ] = (2; 2)T. Finally define

on B a function F(ξ ) = ξTMξ + cTξ with M =

(
3 2
2 7

)
and c = (−18;−46)T.

(a) Is F(ξ ) a convex function on B (and why)? If so:
(b) Compute the Jensen lower bound of EX [F(ξ )] re�ξ .
(c) Find an upper bound of EX [F(ξ )] re �ξ as an LP-solution as described

above.

3.6. Consider the recourse problem

minx {cTx+�[Q(x; ξ ,η)] | Ax≤ b , x≥ 0} where
Q(x;ξ ,η) := miny {qTy |Wy = h(ξ ,η)−T x , y≥ 0} with

the data: c = (3,5)T; b = (18,18)T; q = (2,3,2,1)T; h = (12+ ξ ,22+η)T; the

arrays A =

(
1 3
3 2

)
; W =

(
1 1 1 −3
2 1 −4 2

)
; T =

(
2 2
5 3

)
; and the random variables

ξ and η , with ξ distributed with density ϕ(ζ ) = λ · e−λζ/(1− e9λ ) (exponential,
conditional to the interval [0,9], or else truncated at the confidence interval of p̂ =
0.95), and η distributed as U [−10,10] (uniform).

(a) Is this problem of complete fixed recourse?
(b) Compute on the support Ξ = [0,9]× [−10,10] of (ξ ,η) the lower (Jensen)

and upper (E–M) bound for the optimal value and the resulting error estimate.
(c) Compute (e.g with SLP-IOR) the corresponding bounds for partitioning the

support Ξ into two (dividing the η-interval) and four subintervals (dividing
the ξ– and the η-interval once, each).

3.2.2 The simple recourse case

For the special complete recourse case with q(ξ ) ≡ (q+T
,q−T

)T and W = (I,−I),
we get the generalized simple recourse (GSR) function

QG(x,ξ ) := min q+Ty+ + q−Ty−
Iy+ − Iy− = h(ξ )−T (ξ )x
y+, y− ≥ 0 .

⎫⎬
⎭ (3.53)

Given that ξ is a random vector in �R such that �ξ [ξ ] exists, we have the
expected generalized simple recourse (EGSR)

QG(x) :=�ξ [Q
G(x,ξ )] , (3.54)

yielding the two-stage SLP with generalized simple recourse (GSR)
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min{cTx+QG(x)}
Ax = b

x ≥ 0 .

⎫⎬
⎭ (3.55)

Before dealing with GSR problems, it is meaningful to discuss first the original
version of simple recourse problems, as first analyzed in detail by Wets [342].

3.2.2.1 The standard simple recourse problem (SSR)

In contrast to (3.53) it is now assumed in addition that T (ξ ) ≡ T . Then it is obvi-
ously meaningful to let h(ξ ) ≡ ξ ∈�m2 such that instead of (3.53) the standard
simple recourse (SSR) function is given as

Q(x;ξ ) := min q+Ty+ + q−Ty−
Iy+ − Iy− = ξ −T x
y+, y− ≥ 0 .

⎫⎬
⎭ (3.56)

This implies the expected simple recourse Q(x) =�ξ [Q(x;ξ )].
Obviously, problem (3.56) is always feasible; and it is solvable iff its dual pro-

gram
max(ξ −T x)Tu

u ≤ q+

u ≥ −q−

⎫⎬
⎭ (3.57)

is feasible, which in turn is true iff q++q− ≥ 0. Considering (3.57), we get imme-
diately the optimal recourse value as

Q(x,ξ ) =
m2

∑
i=1

[(ξ −T x)i]
+q+i +

m2

∑
i=1

[(ξ −T x)i]
−q−i (3.58)

where, for ρ ∈�,

[ρ]+ =

{
ρ if ρ > 0
0 else and [ρ]− =

{−ρ if ρ < 0
0 else.

This optimal recourse value Q(x,ξ ) is achieved in (3.56) by choosing

y+i = [(ξ −T x)i]
+ and y−i = [(ξ −T x)i]

−, i = 1, · · · ,m2. (3.59)

Introducing χ := T x, we get from (3.59) the optimal value of (3.56) as

Q̃(χ,ξ ) :=
m2

∑
i=1

{
q+i [ξi−χi]

+ +q−i [ξi−χi]
−}

=:
m2

∑
i=1

Q̃i(χi,ξi)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.60)
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with

Q̃i(χi,ξi) = q+i [ξi−χi]
+ +q−i [ξi−χi]

−

= min{q+i y+i +q−i y−i | y+i − y−i = ξi−χi; y+i ,y
−
i ≥ 0} . (3.61)

Hence the recourse function Q(x,ξ ) of (3.56) may be rewritten as a function
Q̃(χ,ξ ) being separable in (χi,ξi), implying the expected recourse Q(x) to be
equivalent to a function Q̃(χ), separable in χi (see Wets [342]), according to

Q̃(χ) =
m2

∑
i=1

Q̃i(χi) , where

Q̃i(χi) := �ξ [Q̃i(χi,ξi)] =�ξi [Q̃i(χi,ξi)] , i = 1, · · · ,m2 ,

⎫⎪⎬
⎪⎭ (3.62)

such that (3.55) may now be rewritten as

min{cTx+
m2

∑
i=1

Q̃i(χi)}
Ax = b
T x −χ = 0

x ≥ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.63)

with
In this case, as indicated by the operator �ξi , to compute the expected simple

recourse we may restrict ourselves to the marginal distributions of the single com-
ponents ξi instead of the joint distribution of ξ = (ξ1, · · · ,ξm2)

T. From (3.61) obvi-
ously follows that Q̃i(·,ξi) is a convex function in χi (and hence in x) for any fixed
value of ξi. Hence, the expected recourse Q̃i(·) is convex in χi as well.

If �ξ happens to be a finite discrete distribution with the marginal distribution
of any component given by pi j =�ξ ({ξ | ξi = ξ̂i j}), j = 1, · · · ,ki, then (3.63) is
equivalent to the linear program

min{cTx+
m2

∑
i=1

ki

∑
j=1

pi j(q+i y+i j +q−i y−i j)}
Ax = b
T x −χ = 0

y+i j −y−i j = ξ̂i j−χi ∀i, j

x, y+i j , y−i j ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.64)

which due to its special data structure can easily be solved.
If, on the other hand, �ξ or at least some of its marginal distributions �ξi are

of the continuous type, the corresponding expected recourse Q̃i(·) and hence the
program (3.63) may be expected to be nonlinear. Nevertheless, the simple recourse
functions Q̃i(χi,ξi) and their expectations Q̃i(χi) have some special properties, ad-
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vantageous in solution procedures and not shared by complete recourse functions
in general. To point out these particular properties we introduce simple recourse
type functions (referred to as SRT functions) and discuss some of their properties
advantageous for their approximation.

Definition 3.3. For a real variable z, a random variable ξ with distribution �ξ ,
and real constants α, β , γ with α+β ≥ 0, the function ϕ(·, ·) given by

ϕ(z,ξ ) := α · [ξ − z]+ +β · [ξ − z]−− γ

is called a simple recourse type function (see Fig. 3.2).
Then,�ξ [ξ ] provided to exist,

Φ(z) :=�ξ [ϕ(z,ξ )] =
∫ ∞

−∞
(α · [ξ − z]+ +β · [ξ − z]−)�ξ (dξ )− γ

is the expected SRT function (ESRT function).

z

ϕ(z,ξ)

z = ξ

Fig. 3.2 SRT function.

Obviously, the functions Q̃i(χi,ξi) and Q̃i(χi) considered above are SRT and
ESRT functions, respectively; however, SRT functions may also appear in models
different from (3.61)–(3.63), as we shall see later.

From Definition 3.3. follows immediately

Lemma 3.10. Let ϕ(·, ·) be a SRT function and Φ(·) the corresponding expected
SRT function. Then

• ϕ(z, ·) is convex in ξ for any fixed z ∈�;
• ϕ(·,ξ ) is convex in z for any fixed ξ ∈�;
• Φ(·) is convex in z.

Since (3.61)–(3.63) describes a particular complete fixed recourse problem, we
know already from Section 3.2.1 that, ξ provided to be integrable and q++q− ≥ 0,
the functions Q̃i(χi,ξi) and Q̃i(χi) are SRT and ESRT functions, respectively.
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Assuming μ :=�ξ [ξ ] to exist, Jensen’s inequality for SRT functions obviously
holds:

ϕ(z,μ) = ϕ(z,�ξ [ξ ])≤�ξ [ϕ(z,ξ )] =Φ(z) .

Furthermore, for ξ being integrable (with Fξ the distribution function of ξ ), the
asymptotic behaviour of the ESRT function may immediately be derived:

Lemma 3.11. For

Φ(z) := �ξ [ϕ(z,ξ )]

=
∫ ∞

−∞
(α · [ξ − z]+ +β · [ξ − z]−)dFξ (ξ )− γ

=

{
α ·

∫ ∞

z
[ξ − z]dFξ (ξ )+β ·

∫ z

−∞
[z−ξ ]dFξ (ξ )

}
− γ

holds:

Φ(z)−ϕ(z,μ) =Φ(z)− [α · (μ− z)− γ]−→ 0 as z→−∞

and analogously

Φ(z)−ϕ(z,μ) =Φ(z)− [β · (z−μ)− γ]−→ 0 as z→+∞ .

In particular follows:

If
{
�ξ (ξ < a) = 0
�ξ (ξ > b) = 0 then Φ(z) =

{
α · (μ− z)− γ = ϕ(z,μ) for z≤ a
β · (z−μ)− γ = ϕ(z,μ) for z≥ b .

Hence we have, as mentioned above,

ϕ(z,μ)≤Φ(z) ∀z

and, furthermore (see Fig. 3.3),

a := infsupp�ξ >−∞ =⇒ Φ(z) = ϕ(z,μ) ∀z≤ a

b := supsupp�ξ <+∞ =⇒ Φ(z) = ϕ(z,μ) ∀z≥ b .

Consider now an interval I = {ξ | a < ξ ≤ b} �⊇ supp�ξ —implying at least one
of the bounds a,b to be finite—with �ξ (I) > 0. Then Jensen’s inequality holds as
well for the corresponding conditional expectations.

Lemma 3.12. With μ |I =�ξ [ξ | ξ ∈ I] and
Φ |I (z) =�ξ [ϕ(z,ξ ) | ξ ∈ I], for all z ∈� holds

ϕ(z,μ |I)≤Φ |I (z) =
1

�ξ (I)

∫ b

a
ϕ(z,ξ )dFξ (ξ ) .

As shown in Kall-Stoyan [171], in analogy to Lemma 3.11 follows also
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  z

z = μ

a b

Φ(z)

ϕ(z,μ)

Fig. 3.3 SRT and expected SRT function (supp�ξ bounded).

Lemma 3.13. For any finite a and/or b, for I = (a,b] holds

Φ |I (z) =
{
ϕ(z,μ |I) for z≤ a
ϕ(z,μ |I) for z≥ b .

If in particular J := supp�ξ = [a,b] is a finite interval, then Lemma 3.11 yields

Φ(z) =Φ |J(z) = ϕ(z,μ |J) = ϕ(z,μ) for z≤ a or z≥ b , (3.65)

and for z∈ (a,b) Jensen’s inequality implies ϕ(z,μ)≤Φ(z). To get an upper bound
for z ∈ (a,b) and hence an estimate for Φ(z), the E–M inequality may be used:

Φ |J(z) =Φ(z)≤ b−μ
b−a

ϕ(z,a)+
μ−a
b−a

ϕ(z,b) =
b−μ |J
b−a

ϕ(z,a)+
μ |J−a
b−a

ϕ(z,b) .

Analogously, for an interval I = {ξ | a < ξ ≤ b} �⊇ supp�ξ and z ∈ int I follows

ϕ(z,μ |I)≤Φ |I(z)≤
b−μ |I
b−a

ϕ(z,a)+
μ |I−a
b−a

ϕ(z,b) . (3.66)

If ϕ(z, ·) happens to be linear on I, the lower and upper bounds of these inequalities
coincide such that Φ |I(z) = ϕ(z,μ |I) ∀z. If, on the other hand, ϕ(z, ·) is nonlinear
(convex) in I, the approximation of Φ |I(ẑ) for any ẑ ∈ (a,b) due to (3.66) can be
improved as follows: Partition I = (a,b] at a1 := ẑ into the two intervals I1 := (a0,a1]
and I2 := (a1,a2], where a0 := a and a2 := b. Observing that, with πI =�ξ (I) and

pν :=�ξ (Iν), ν = 1,2, we have
p1

πI
· μ |I1 +

p2

πI
· μ |I2 = μ |I as well as for arbitrary

�ξ -integrable functions ψ(·) the relation

�ξ [ψ(ξ ) | ξ ∈ I ] =
p1

πI
·�ξ [ψ(ξ ) | ξ ∈ I1]+

p2

πI
·�ξ [ψ(ξ ) | ξ ∈ I2] , (3.67)
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Lemma 3.12 implies

Lemma 3.14. Due to the convexity of ϕ(z, ·), we have

a) for arbitrary z ∈ (a0,a2)

ϕ(z,μ |I) = ϕ(z,
p1

πI
·μ |I1 +

p2

πI
·μ |I2)

≤ p1

πI
·ϕ(z,μ |I1)+

p2

πI
·ϕ(z,μ |I2)

≤ p1

πI
·Φ |I1 (z)+

p2

πI
·Φ |I2 (z)

= Φ |I(z) ;

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.68)

b) for aκ ∈ {a0,a1,a2}

Φ |Iν (aκ) = ϕ(aκ ,μ |Iν ) for ν = 1,2

Φ |I(aκ) =
2

∑
ν=1

pν
πI
Φ |Iν (aκ) =

2

∑
ν=1

pν
πI
ϕ(aκ ,μ |Iν ).

⎫⎪⎬
⎪⎭ (3.69)

Proof: The above relations are consequences of previously mentioned facts:

a) The two equations reflect (3.67), the first inequality follows from the convexity
of ϕ(z, ·), and the second inequality applies Lemma 3.12.

b) The first two equations apply Lemma 3.13, the last equation uses (3.67) again.

�

Based on Lemmas 3.12–3.14, similar to the general complete recourse case, approx-
imation schemes with successively refined discrete distributions may be designed.

3.2.2.2 SSR: Approximation by successive discretization

Eq. (3.68) yields with ϕ�(z,μ |I1 ,μ |I2) =
p1

πI
ϕ(z,μ |I1) +

p2

πI
ϕ(z,μ |I2) ≤ Φ |I(z) an

increased lower bound of Φ |I(z) as

ϕ�(z,μ |I1 ,μ |I2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(z,μ |I) for z ∈ (−∞,μ |I1)∪ (μ |I2 ,∞){(
p1

πI
β − p2

πI
α
)

z− p1

πI
βμ |I1 +

p2

πI
αμ |I2 − γ

}

for z ∈ [μ |I1 ,μ |I2 ] ,

(3.70)

and instead of the general upper bound (3.66) of Φ |I(z), with ẑ= a1 (3.69) yields the

exact value Φ |I(ẑ) =
p1

πI
ϕ(ẑ,μ |I1)+

p2

πI
ϕ(ẑ,μ |I2) = ϕ�(ẑ,μ |I1 ,μ |I2) (see Fig. 3.4).

If, on the other hand, the partition I = (a0,a1]∪ (a1,a2] = I1 ∪ I2 is given, from
Lemma 3.13 and 3.14 together with (3.67) follows
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Φl I (z)

z = μ

a0 a1 a2μ l I1
μ l I2

ϕ*
(z,
μ l I 1

 ,μ
 l I 2

)
 l I

Fig. 3.4 Expected SRT function: Increasing lower bounds.

Φ |I(z) =
p1

πI
ϕ(z,μ |I1)+

p2

πI
ϕ(z,μ |I2) for z≤ a0 or z≥ a2 or z = a1 ; (3.71)

hence Φ |I(z) >
p1

πI
ϕ(z,μ |I1) +

p2

πI
ϕ(z,μ |I2) may occur only if z ∈ int I1 ∪ int I2 ,

which implies that Φ |Iν (z) > ϕ(z,μ |Iν ) for z ∈ int Iν with ν = 1 or ν = 2 . Then
we may derive the following rather rough error estimate:

Lemma 3.15. For z ∈ int Iν , ν = 1,2, we have the parameter-free error estimate
Δν(z) satisfying

0≤ Δν(z) :=Φ |Iν −ϕ(z,μ |Iν )≤
1
2
(α+β )

aν −aν−1

2
.

Proof: Using the relations ϕ(z,μ |Iν ) = α[μ |Iν − z]+ +β [μ |Iν − z]−− γ from Defini-
tion 3.3. as well as the relations

Φ |Iν (aν−1) = ϕ(aν−1,μ |Iν ) and Φ |Iν (aν) = ϕ(aν ,μ |Iν )
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from Lemma 3.14, and furthermore the convexity of Φ |Iν according to Lemma 3.10,
we get for z = λaν−1 +(1−λ )aν with λ ∈ (0,1)

Δν(z) = Φ |Iν (z)−ϕ(z,μ |Iν )
≤ λΦ |Iν (aν−1)+(1−λ )Φ |Iν (aν)−ϕ(z,μ |Iν )
= λΦ |Iν (aν−1)+(1−λ )Φ |Iν (aν)

−
{
[α(μ |Iν − z)− γ] if z < μ |Iν
[β (z−μ |Iν )− γ] if z≥ μ |Iν

= λ [α(μ |Iν −aν−1)− γ]+ (1−λ )[β (aν −μ |Iν )− γ]

−
{
[α(μ |Iν − z)− γ] if z < μ |Iν
[β (z−μ |Iν )− γ] if z≥ μ |Iν .

Assuming

z≤ μ |Iν ⇐⇒ λ ≥ aν −μ |Iν
aν −aν−1

and 1−λ ≤ μ |Iν −aν−1

aν −aν−1

it follows that

Δν(z) ≤ λ [α(μ |Iν −aν−1)− γ]+ (1−λ )[β (aν −μ |Iν )− γ]
−[α(μ |Iν −λaν−1− (1−λ )aν)− γ]

= (1−λ )(α+β )(aν −μ |Iν )

≤ μ |Iν −aν−1

aν −aν−1
(α+β )(aν −μ |Iν ),

the maximum of the last term being assumed for μ |Iν =
aν−1 +aν

2
such that

Δν(z)≤ 1
2
(α+β )

aν −aν−1

2
.

For z≥ μ |Iν the result follows analogously. �

Taking the probabilities pν associated with the partition intervals Iν into account
yields an improved (global) error estimate:

Lemma 3.16. Given the interval partition {Iν ; ν = 1,2} of I and z ∈ Iκ , then the
(global) error estimate Δ(z) satisfies

0≤ Δ(z) =Φ |I(z)−
2

∑
ν=1

pν
πI

ϕ(z,μ |Iν )≤
1
2

pκ
πI

(α+β )
aκ −aκ−1

2

for z ∈ int Iκ , whereas for z �∈ (int I1∪ int I2) we have Δ(z) = 0.
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Proof: For z ∈ Iκ Lemma 3.13 yields Φ |Iν (z)−ϕ(z,μ |Iν ) = 0 for ν �= κ; hence from
Lemmas 3.14 and 3.15 follows for z ∈ int Iκ

Δ(z) = Φ |I(z)−
2

∑
ν=1

pν
πI

ϕ(z,μ |Iν )

=
2

∑
ν=1

pν
πI

(Φ |Iν (z)−ϕ(z,μ |Iν ))

=
pκ
πI

(Φ |Iκ (z)−ϕ(z,μ |Iκ ))

≤ 1
2

pκ
πI

(α+β )
aκ −aκ−1

2
,

and for z �∈ (int I1∪ int I2) from (3.71) follows that Δ(z) = 0. �

Due to (3.60) and (3.63) the simple recourse function Q̃(χ,ξ ) =
m2

∑
i=1

Q̃(i)(χi,ξi)

as well as the expected simple recourse function Q̃(χ) =
m2

∑
i=1

Q̃(i)(χi) are sepa-

rable, and their additive components Q̃(i)(χi,ξi) and Q̃(i)(χi) are SRT and ESRT
functions, respectively. Therefore, the properties derived for these functions allow
for modifications of the discrete approximation algorithms of the type DAPPROX,
as described on page 223 for the more general complete recourse case. This leads
for the standard simple recourse case to special algorithms (named SRAPPROX),
being more efficient than the general DAPPROX approach since, for an interval
I(i) ⊃ supp�ξi , at any partitioning point ξ̂i := χ̂i ∈ int I(i), instead of the E–M up-

per bound of Q̃
(i)
|I (χ̂) its exact value is—due to (3.71) and Lemma 3.14—easily

computed.

SRAPPROX: Approximating SSR solutions

Assume that supp�ξ ⊂Ξ :=
m2

∏
i=1

I(i) for some intervals I(i) = (a(i),b(i)] , i= 1, · · · ,m2.

For each component ξi of ξ choose as a first partition X (i) = {I(i)} corresponding
for Ξ ⊂�m2 to the first partition X = {X (1)×X (2)×·· ·×X (m2)}. For the triv-
ial discrete ditribution πi1 = �ξi({ξi ∈ I(i)1 }) = 1 ∀i, with I(i)1 = (a(i)0 ,a(i)1 ] = I(i)

and with Q̃(i)(χi,ξi) = q+i [ξi − χi]
+ + q−i [ξi − χi]

− due to (3.61), it follows for
μ |I(i)1

:=�ξi [ξi | ξi ∈ I(i)1 ] that Q̃(i)(χi,μ |I(i)1
)≤ Q̃

(i)

|I(i)1

(χi) =�ξi [Q̃i(χi,ξi) | ξi ∈ I(i)1 ].

With Ki = 1 ∀i iterate the following cycle:

I. Find a solution (x̂, χ̂) of
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min{cTx+
m2

∑
i=1

Ki

∑
ν=1

πiν Q̃(i)(χi,μ |I(i)ν
) | Ax = b, T x−χ = 0, x≥ 0}.

If χ̂i �∈ ∪Ki
ν=1int I(i)ν for all i∈{1, · · · ,m2}, then (x̂, χ̂) solves problem (3.63)

due to Lemma 3.13 and (3.67) and hence stop; otherwise continue.
II. With I(i)ν = (a(i)ν−1,a

(i)
ν ], ν = 1, · · · ,Ki, let Λ := {i | χ̂i ∈ int I(i)νi for one νi}.

For i ∈ Λ split up I(i)νi as I(i)νi = (a(i)νi−1, χ̂i]∪ (χ̂i,a
(i)
νi ] =: I(i)νi1

∪ I(i)νi2
and de-

termine the conditional expectations μ |I(i)νi j
:=�ξi [ξi | ξi ∈ I(i)νi j], j = 1,2.

Due to Lemma 3.14 this implies for Q̃
(i)

|I(i)νi

(χ̂i) a lower bound �
(i)
νi and the

exact value, respectively, to be given as

�
(i)
νi = Q̃(i)(χ̂i,μ |I(i)νi

)≤ Q̃
(i)

|I(i)νi

(χ̂i)

Q̃
(i)

|I(i)νi

(χ̂i) =
2

∑
j=1

pi j

πνi

Q̃(i)(χ̂i,μ
(i)
|Iνi j

)

with pi j =�ξi({ξi ∈ I(i)νi j}), j = 1,2.

If for δ (i) := πνi · (Q̃(i)

|I(i)νi

(χ̂i)− �
(i)
νi ) follows that δ (i) < ε ∀i ∈ Λ with ε a

prescribed tolerance, then stop with the required accuracy achieved;
otherwise continue with Λ̃ := {i ∈Λ | δ (i) ≥ ε}.

III. For (some) i ∈ Λ̃ extend X (i) to the new partition Y (i) by splitting up
the interval I(i)νi into the two subintervals I(i)νi j with πνi j := pi j, j = 1,2, and

adjust Ki := Ki + 1. With the new data I(i)νi j , πνi j , μ |I(i)νi j
(for j = 1,2) and

Ki, update the extended partitions to X (i) := Y (i) and return to step I.
�

This conceptual algorithm does, in contrast to DAPPROX, leave no choice of
where to split an interval I(i)νi , i ∈ Λ̃ , as long as the true value Q̃

(i)

|I(i)νi

(χ̂i), and thus

also the exact value of Q̃(i)(χ̂i), are of interest. On the other hand there are various
strategies for the selection of components i ∈ Λ̃ , for which the respective subinter-
vals I(i)νi are splitted up. A detailed description of an executable version of SRAP-
PROX, including the presentation of the implemented algorithm, can be found in
Section 4.7.2 of the next chapter.
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3.2.2.3 The multiple simple recourse problem

The simple recourse function (3.56) was extended by Klein Haneveld [188] to the
multiple simple recourse function. Here, instead of (3.61), for any single recourse
constraint the following value is to be determined:

ψ(z,ξ ) := min

{
K

∑
k=1

q+k y+k +
K

∑
k=1

q−k y−k

}

K

∑
k=1

y+k −
K

∑
k=1

y−k = ξ − z

y+k
y−k
≤
≤

uk−uk−1
lk− lk−1

}
, k = 1, · · · ,K−1,

y+k , y−k ≥ 0, k = 1. · · · ,K,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.72)

where
u0 = 0 < u1 < · · · < uK−1
l0 = 0 < l1 < · · · < lK−1 ,

and
q+k ≥ q+k−1 , q−k ≥ q−k−1 , k = 2, · · · ,K ,

with q+1 ≥−q−1 and q+K +q−K > 0 (to ensure convexity and prevent from linearity of
this modified recourse function).

According to these assumptions, for any value of τ := ξ − z it is obvious to
specify a feasible solution of (3.72), namely for any κ ∈ {1, · · · ,K} (with uK = ∞
and lK = ∞)

τ ∈ [uκ−1,uκ) =⇒

⎧⎪⎪⎨
⎪⎪⎩

y+k = uk−uk−1 , 1≤ k ≤ κ−1
y+κ = τ−uκ−1
y+k = 0 ∀k > κ
y−k = 0 k = 1, · · · ,K ;

τ ∈ (−lκ ,−lκ−1] =⇒

⎧⎪⎪⎨
⎪⎪⎩

y+k = 0 k = 1, · · · ,K
y−k = lk− lk−1 , 1≤ k ≤ κ−1
y−κ = τ− lκ−1
y−k = 0 ∀k > κ .

Furthermore, this feasible solution is easily seen to be optimal along the following
arguments:

– Due to the increasing marginal costs (for surplus as well as for shortage), as-
suming τ ∈ [uκ−1,uκ) and y−k = 0 ∀k, it is certainly meaningful to exhaust the
available capacities for the variables y1, · · · ,yκ−1 first. The same argument holds
true if τ ∈ (−lκ ,−lκ−1] and y+k = 0 ∀k.

– Assuming a feasible solution of (3.72) with some y+k1
as well as some y−k2

si-
multaneously being greater than some δ > 0, allows to reduce these variables to
ŷ+

k1
= y+k1

−δ and ŷ−k2
= y−k2

−δ , yielding a new feasible solution with the objec-
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tive changed by (−δ ) · (q+k1
+ q−k2

) with (q+k1
+ q−k2

) ≥ 0 due to the assumptions.
Therefore, the modified feasible solution is at least as good as the original one as
far as minimization of the objective is concerned.

Hence, for τ = ξ − z ∈ [uκ−1,uκ) with κ ∈ {1, · · · ,K} we get

ψ(z,ξ ) =

{
K

∑
k=1

q+k y+k +
K

∑
k=1

q−k y−k

}

=
κ−1

∑
k=1

q+k (uk−uk−1)+q+κ (τ−uκ−1)

=
κ−1

∑
k=1

q+k uk−
κ−2

∑
k=0

q+k+1uk +q+κ (τ−uκ−1)

=
κ−2

∑
k=1

(q+k −q+k+1)uk +q+κ−1uκ−1−q+1 u0 +q+κ (τ−uκ−1)

=
κ−1

∑
k=0

(q+k −q+k+1)uk +q+κ τ with u0 = 0 , q+0 = 0 .

Defining
α0 := q+1 , αk := q+k+1−q+k , k = 1, · · · ,K−1 ,

it follows immediately that

q+k =
k

∑
ν=1

αν−1 for k = 1, · · · ,K

such that

ψ(z,ξ ) =−
κ−1

∑
k=0

αkuk +
κ−1

∑
k=0

αk · τ =
κ−1

∑
k=0

αk(τ−uk) =
K−1

∑
k=0

αk[τ−uk]
+ .

Analogously, for τ = ξ − z ∈ (−lκ ,−lκ−1] with κ ∈ {1, · · · ,K} we get

ψ(z,ξ ) =
K−1

∑
k=0

βk[τ+ lk]−

with β0 := q−1 , βk := q−k+1−q−k , k = 1, · · · ,K−1, such that in general

ψ(z,ξ ) =
K−1

∑
k=0

αk[τ−uk]
+ +

K−1

∑
k=0

βk[τ+ lk]− .

Due to the assumptions on (3.72), we have α0 +β0 ≥ 0 as well as
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αk ≥ 0 , βk ≥ 0 , ∀k ∈ {1, · · · ,K−1} and
K−1

∑
k=0

(αk +βk) = q+K +q−K > 0 .

Hence, whereas the SRT function

ϕ(z,ξ ) := α · [ξ − z]+ +β · [ξ − z]−− γ

according to Definition 3.3. represents the optimal objective value with a simple re-
course constraint and implies for some application constant marginal costs for short-
age and surplus, respectively, we now have the objective’s optimal value for a so-
called multiple simple recourse constraint, allowing to model increasing marginal
costs for shortage and surplus, respectively, which may be more appropriate for par-
ticular real life problems.

To study properties of this model in more detail it is meaningful to introduce
multiple simple recourse type functions (referred to as MSRT functions) as follows.

Definition 3.4. For real constants {αk,βk,uk, lk;k = 0, · · · ,K−1} and γ , such that
α0 +β0 ≥ 0 and

αk ≥ 0, βk ≥ 0 for k = 1, · · · ,K−1 with
K−1

∑
k=0

(αk +βk)> 0 ,

u0 = 0 < u1 < · · · < uK−1 ,
l0 = 0 < l1 < · · · < lK−1 ,

the function ψ(·, ·) given by

ψ(z,ξ ) :=
K−1

∑
k=0
{αk · [ξ − z−uk]

+ +βk · [ξ − z+ lk]−}− γ

is called a multiple simple recourse type function (see Fig. 3.5).

Ψ(z) = �ξ [ψ(z,ξ )]

=
∫ ∞

−∞

K−1

∑
k=0
{αk · [ξ − z−uk]

+ +βk · [ξ − z+ lk]−}dFξ (ξ )− γ

is the expected MSRT function.

Remark 3.6. In this definition the number of “shortage pieces” and of “surplus
pieces” is assumed to coincide (with K). Obviously this is no restriction. If, for
instance, we had for the number L of “surplus pieces” that L < K, with the trivial
modification

lk = lk−1 +1, βk = 0 for k = L, · · · ,K−1

we would have that
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ψ(z,ξ ) :=
K−1

∑
k=0

αk · [ξ − z−uk]
+ +

L−1

∑
k=0

βk · [ξ − z+ lk]−}− γ

=
K−1

∑
k=0
{αk · [ξ − z−uk]

+ +βk · [ξ − z+ lk]−}− γ .

�

ξ − z-l1
-l2-l3

u1 u2 u3

α1 + α2 + α3

α1

α1 + α2

β1 + β2 + β3

β1

β1 + β2

ψ(z,ξ)

Fig. 3.5 MSRT function.

For the expected MSRT function we have

Ψ(z)+ γ =

=
K−1

∑
k=0

{
αk

∫ ∞

−∞
[ξ − z−uk]

+dFξ (ξ )+βk

∫ ∞

−∞
[ξ − z+ lk]−dFξ (ξ )

}

=
K−1

∑
k=0

{
αk

∫ ∞

z+uk

(ξ − z−uk)dFξ (ξ )+βk

∫ z−lk

−∞
(z− lk−ξ )dFξ (ξ )

}

=
K−1

∑
k=0

αk

∫ ∞

z
(η− z)dFξ (η+uk)+

K−1

∑
k=0

βk

∫ z

−∞
(z−ζ )dFξ (ζ − lk)

=
K−1

∑
k=0

αk

∫ ∞

−∞
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫ ∞

−∞
(ξ − z)− dFξ (ξ − lk) ,

using the substitutions η = ξ −uk and ζ = ξ + lk (and ξ = η and ξ = ζ in the last
expression).



3.2 The two-stage SLP 241

The last one of the above relations forΨ(z)+ γ , i.e.

Ψ(z)+ γ =
K−1

∑
k=0

αk

∫ ∞

−∞
(ξ − z)+ dFξ (ξ +uk)

+
K−1

∑
k=0

βk

∫ ∞

−∞
(ξ − z)− dFξ (ξ − lk) ,

(3.73)

indicates a formal similarity with an expected SRT function using a positive mixture
of the distribution functions Fξ (ξ +uk) and Fξ (ξ − lk), k = 0, · · · ,K−1,

H(ξ ) =
K−1

∑
k=0

αkFξ (ξ +uk)+
K−1

∑
k=0

βkFξ (ξ − lk) .

Due to Definition 3.4., H(·) is monotonically increasing, right-continuous, and sat-
isfies

H(ξ )≥ 0 ∀ξ , lim
ξ→−∞

H(ξ ) = 0, and lim
ξ→∞

H(ξ ) =
K−1

∑
k=0

(αk +βk)> 0 ,

such that standardizing H(·), i.e. dividing by W :=
K−1

∑
k=0

(αk +βk), yields a new dis-

tribution function as the mixture

G(ξ ) :=
H(ξ )

W
=

K−1

∑
k=0

αkFξ (ξ +uk)+
K−1

∑
k=0

βkFξ (ξ − lk)

W
. (3.74)

Assuming now thatΨ(·) may be represented as an expected SRT function using the
distribution function G(·) we get, with constants A, B and C to be determined later,
using the trivial relations ρ+ = ρ +ρ− and ρ− = −ρ +ρ+, and writing

∫
instead

of
∫ ∞
−∞ for simplicity,

Ψ(z)+C = A
∫
(ξ − z)+ dG(ξ )+B

∫
(ξ − z)− dG(ξ )

=
A
W

{
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)+ dFξ (ξ − lk)

}

+
B
W

{
K−1

∑
k=0

αk

∫
(ξ − z)− dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

}

=
A
W

{
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)dFξ (ξ − lk)

+
K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

}
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+
B
W

{
K−1

∑
k=0

αk

∫
(z−ξ )dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

+
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)

}

=
A
W

{
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk(μ+ lk− z)

+
K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

}

+
B
W

{
K−1

∑
k=0

αk(z−μ+uk)+
K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

+
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)

}
.

Hence we have

Ψ(z)+C =

=
A+B

W

K−1

∑
k=0

{
αk

∫
(ξ − z)+ dFξ (ξ +uk)+βk

∫
(ξ − z)− dFξ (ξ − lk)

}

+
A
W

K−1

∑
k=0

βk(μ+ lk− z)+
B
W

K−1

∑
k=0

αk(z−μ+uk) .

To get coincidence with equation (3.73) we ought to have, with Wα =
K−1

∑
k=0

αk and

Wβ =
K−1

∑
k=0

βk,

A+B
W

= 1 and

A
W

(
Wβ (μ− z)+

K−1

∑
k=0

βklk

)
+

B
W

(
Wα (z−μ)+

K−1

∑
k=0

αkuk

)
= C .

To assure that the left-hand side of the last equation is constant (in z), we have the
condition

A ·Wβ −B ·Wα = 0 ,

which together with A+B =W =Wα +Wβ implies that

A =Wα and B =Wβ ,

such that
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C =

Wα

K−1

∑
k=0

βklk +Wβ

K−1

∑
k=0

αkuk

W
.

Hence, for the multiple simple recourse problem (with one recourse constraint)

min{cTx+Ψ(z)}
Ax = b
tTx −z = 0

x ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

(3.75)

we have derived in an elementary way the following result, deduced first in Van
der Vlerk [334], based on a statement proved in Klein Haneveld–Stougie–Van der
Vlerk [189]:

Theorem 3.8. The multiple simple recourse problem (3.75) with the expected MSRT
function

Ψ(z) = (3.76)

=
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

is equivalent to the simple recourse problem with the expected SRT function

Ψ(z) = (3.77)(
K−1

∑
k=k

αk

)∫
(ξ − z)+ dG(ξ )+

(
K−1

∑
k=k

βk

)∫
(ξ − z)− dG(ξ )−C

using the distribution function

G(ξ ) =

K−1

∑
k=0

αkFξ (ξ +uk)+
K−1

∑
k=0

βkFξ (ξ − lk)

K−1

∑
k=0

(αk +βk)

(3.78)

and the constant

C =

(
K−1

∑
k=0

αk

)
K−1

∑
k=0

βklk +

(
K−1

∑
k=0

βk

)
K−1

∑
k=0

αkuk

K−1

∑
k=0

(αk +βk)

. (3.79)

As shown in Van der Vlerk [334], if Fξ represents a finite discrete distribution
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{(ξν , pν); ν = 1, · · · ,N} with pν > 0 ∀ν ,
N

∑
ν=1

pν = 1, (3.80)

then G corresponds to a finite discrete distribution with at most N · (2K− 1) pair-
wise different realizations (with positive probabilities). This distribution, disregard-
ing possible coincidences of some of its realizations, according to (3.78) and (3.80)
is given by the following set of realizations and their corresponding probabilities

ξν , πν 0 =
(α0 +β0)pν

γ
; ν = 1, · · · ,N; (κ = 0);

ξν −uκ , π−ν κ =
ακ pν
γ

; ν = 1, · · · ,N; κ = 1, · · · ,K−1;

ξν + lκ , π+
ν κ =

βκ pν
γ

; ν = 1, · · · ,N; κ = 1, · · · ,K−1;

with γ =
K−1

∑
k=0

(αk +βk) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.81)

3.2.2.4 The generalized simple recourse problem (GSR)

GSR functions according to (3.53) on page 226 are defined as

QG(x,ξ ) := min q+Ty+ + q−Ty−
Iy+ − Iy− = h(ξ )−T (ξ )x
y+, y− ≥ 0 .

⎫⎬
⎭

In contrast to (3.60) and (3.62) on page 227, neither GSR functions nor the corre-
sponding EGSR functions QG(x) := �ξ [QG(x,ξ )] can be converted in a similar
manner into separable functions in (χi,ξi) and in (χi), respectively.

Requiring Assumption 3.3., and hence in this case presuming that q++q− ≥ 0,
implies problem (3.53) to have the optimal value

QG(x,ξ ) =
m2

∑
i=1

QG
i (x,ξ

(i)) with

QG
i (x,ξ

(i)) = q+i [(ηi(x,ξ (i))]+ +q−i [(ηi(x,ξ (i))]− , i = 1, · · · ,m2 ,

⎫⎪⎬
⎪⎭ (3.82)

where η(x,ξ ) = h(ξ )−T (ξ )x, and ξ (i) is the subvector of ξ with those components
(of ξ ) affecting (hi(ξ )−Ti(ξ )x), the i-th row of (h(ξ )−T (ξ )x).

Observing that

ηi(x,ξ ) = [ηi(x,ξ )]+− [ηi(x,ξ )]− =⇒ [ηi(x,ξ )]+ = ηi(x,ξ )+ [ηi(x,ξ )]−
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and denoting by �ξ (i) integration with respect to the marginal distribution �ξ (i) of

ξ (i), it follows with q = q++q− and (h,T ) =�ξ [(h(ξ ),T (ξ )], that

QG(x) =�ξ [Q
G(x,ξ )] =

m2

∑
i=1
�ξ (i) [Q

G
i (x,ξ

(i))] =
m2

∑
i=1

QG
i (x), (3.83)

where

QG
i (x) = �ξ (i) [Q

G
i (x,ξ

(i))]

= q+i �ξ (i)

[
[(ηi(x,ξ (i))]+

]
+q−i �ξ (i)

[
[(ηi(x,ξ (i))]−

]

= q+i �ξ (i) [(ηi(x,ξ (i))]

+q+i �ξ (i)

[
[(ηi(x,ξ (i))]−

]
+q−i �ξ (i)

[
[(ηi(x,ξ (i))]−

]

= q+i (hi−T ix)+qi�ξ (i)

[
[(ηi(x,ξ (i))]−

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

As shown in Corollary 3.1. (p. 206) the expected recourse QG
i (x) is a convex func-

tion ∀q≥ 0, and hence also�ξ (i)

[
[(ηi(x,ξ (i))]−

]
is convex in x.

By defining S(i)(x) := {ξ (i) | ηi(x,ξ (i))< 0} for arbitrary x ∈�n, it follows

�ξ (i)

[
[(ηi(x,ξ (i))]−

]
=

∫
S(i)(x)

−ηi(x,ξ (i))�ξ (i) (dξ
(i))

=

∫
S(i)(x)

(Ti(ξ )x−hi(ξ ))�ξ (i) (dξ
(i))

and, with fixed x̃, arbitrary x, and with S(i)(x) the complement of S(i)(x), for

Li(x ; x̃) :=
∫

S(i)(x̃)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

=
∫

S(i)(x̃)∩S(i)(x)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

+
∫

S(i)(x̃)∩S(i)(x)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

︸ ︷︷ ︸
≤0

≤
∫

S(i)(x)
−ηi(x,ξ (i))�ξ (i) (dξ

(i)) =�ξ (i)

[
[(ηi(x,ξ (i))]−

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.84)

Hence, the function
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Li(x ; x̃) =
∫

S(i)(x̃)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

=

∫
S(i)(x̃)

(Ti(ξ (i))x−hi(ξ (i)))�ξ (i) (dξ
(i))

=

{∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i))

}
x−

∫
S(i)(x̃)

hi(ξ (i))�ξ (i) (dξ
(i))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.85)

is a lower bound for�ξ (i)

[
[(ηi(x,ξ (i))]−

]
, due to (3.85) linear affine in x, and sharp

for x = x̃, since Li(x̃ ; x̃) =�ξ (i)

[
[(ηi(x̃,ξ (i))]−

]
by (3.84). Due to q≥ 0 follows that

Li(x ; x̃) := q+i (hi−T ix)+qiLi(x ; x̃)

≤ q+i (hi−T ix)+qi�ξ (i)

[
[(ηi(x,ξ (i))]−

]
= QG

i (x) .

}
(3.86)

Furthermore Li(x̃ ; x̃) = QG
i (x̃), since Li(x̃ ; x̃) =�ξ (i)

[
[(ηi(x̃,ξ (i))]−

]
, such that

QG
i (x)−QG

i (x̃)≥
≥ Li(x ; x̃)−Li(x̃ ; x̃)

= q+i T i(x̃− x)+qi {Li(x ; x̃)−Li(x̃ ; x̃)}
=

{
−q+i T i +qi

∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i))

}
(x− x̃),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.87)

thus yielding a linear support function of QG
i (·) at x̃ as

Li(x ; x̃) = QG
i (x̃)+gi(x̃)(x− x̃) = Li(x̃ ; x̃)+gi(x̃)(x− x̃) (3.88)

with gi(x̃) a subgradient (row vector) of QG
i (·) at x̃ given as

gi(x̃) :=−q+i T i +qi

∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i)) ∈ ∂QG

i (x̃).

Assume the first stage feasible set

B1 := {x | Ax = b , x≥ 0}

to be nonempty and compact. As mentioned above QG
i (·), and thus also the related

EGSR function QG(·) = ∑m2
i=1 QG

i (·), are convex functions and hence, according to
Prop. 1.24. (p. 54), continuous. Therefore, Θ̂ := minx∈B1 QG(x) exists.

Then problem (3.55) (see p. 227) can be written as

min{cTx+QG(x) | x ∈B1}

or equivalently as

min{cTx+Θ | x ∈B1 , QG(x)−Θ ≤ 0}. (3.89)
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Obviously, Θ ≥ Θ̂ , and a fortiori Θ ≥ Θ̂ − γ with some γ > 0, holds for all (x,Θ)
being feasible in (3.89). On the other hand, to add the constraint Θ ≤ Θ̂ + γ has no
impact on the solution of problem (3.89). Thus

B+ := {(xT,Θ)T | x ∈B1 , Θ̂ − γ ≤ Θ̂ ≤Θ ≤ Θ̂ + γ} ⊂�n+1,

instead of B1 ⊂�n, is nonempty and compact again. Hence with z := (xT,Θ)T, the
contraint function F(z) := QG(x)−Θ (convex in z as well), and with the objective
dTz := (cT,1)z = cTx+Θ , the program (3.89) has the same set of solutions as

min{dTz | z ∈B+ , F(z)≤ 0}. (3.90)

Finally, since QG(·) =
m2

∑
i=1

QG
i (·) due to (3.83), from (3.88) follows obviously that

g(x̃) =
m2

∑
i=1

gi(x̃) ∈ ∂QG(x̃) at any arbitrary x̃, such that the function F(·) has at any

z̃ = (x̃T,Θ̃)T a subgradient (row vector), given as

f (z̃) := (g(x̃),−1)

=

(
m2

∑
i=1

gi(x̃),−1

)

=

(
m2

∑
i=1

{
−q+i T i +qi

∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i))

}
,−1

)
∈ ∂F(z̃) .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.91)

With these requisites the following procedure can be formulated:

GSR-CUT: Approximating GSR solutions by successive cuts

Find a solution x̂ of the LP min{cTx | x ∈B1}.
With û(1) := x̂ and J := 1 go to Step I..

I. Find a solution (x̂T,Θ̂)T of the LP

min{cTx+Θ}
x ∈ B1

m2

∑
i=1

Li(x ; û( j)) ≤ Θ , j = 1, · · · ,J,

⎫⎪⎪⎬
⎪⎪⎭

(3.92)

and denote this solution as ẑ(J) := (x̂T,Θ̂)(J)T.
II. If

Δ := F(ẑ(J)) =
m2

∑
i=1

QG
i (x̂)−Θ̂ =

m2

∑
i=1

Li(x̂ ; x̂)−Θ̂ ≤ 0 ,
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stop (in practice: if Δ ≤ ε with a prescribed tolerance ε , stop);

else, with J := J+1 and û(J) := x̂, return to Step I..

�

Remark 3.7. The following observations on the above procedure GSR-CUT may
be useful:

1) Due to (3.87), the Li(x ; û( j)) are linear support functions of QG
i (x) at û( j),

and their gradients ∇x Li(x ; û( j)) coincide due to (3.88) with the subgradients
of QG

i (û
( j)) given as gi(û( j)) ∈ ∂QG

i (û
( j)).

2) It follows immediately that, due to (3.91),

m2

∑
i=1

Li(x ; û( j))−Θ =

= {QG(û( j))−Θ̂ ( j)}+g(û( j))(x− û( j))+(−1)(Θ −Θ̂ ( j))

= F(ẑ( j))+ f (ẑ( j))(z− ẑ( j))

is a linear support function of F(z) = QG(x)−Θ at ẑ( j) = (x̂( j)T,Θ̂ ( j))T, and
since by (3.92) obviously holds Θ̂ (J) = max1≤ j≤J L (x̂(J); û( j)) for all J, from
the compactness of B1, the continuity of QG(·) as well as the uniform bound-
edness of the subgradients g(·) ∈ ∂QG(·) (see the proof of Prop. 1.29., p. 61),
follows the existence of an appropriate compact (polyhedral) set B+ ⊂�n+1

such that ẑ( j) ∈B+ for all solutions of (3.92) generated within the above it-
eration. In other words, in the above iteration we deal simultaneously with
problem (3.89) as well as with problem (3.90).

3) The standard convergence statements—convergence of ϕJ = cTx̂(J)+Θ̂ (J), the
optima of (3.92), to the optimal value of (3.89), and any accumulation point of
iterates {ẑ(J)}, generated by (3.92), being a solution of (3.89)—follow imme-
diately from Prop. 1.29. (p. 61), observing that procedure GSR-CUT is just the
application of Kelley’s cutting plane method (on page 61) to problem (3.90).

4) In (3.92) the evaluation of Li(x ; û( j)) = q+i hi − (q+i T i)x + qiLi(x ; û( j)) re-
quires according to (3.6) (p. 196) for hi and T i the expectations �ξ (i) [ξ

(i)]
and due to (3.85) in particular the computation of the integrals
{∫

S(i)(û( j))
Ti(ξ (i))�ξ (i) (dξ

(i))

}
and

{
−
∫

S(i)(û( j))
hi(ξ (i))�ξ (i) (dξ

(i))

}
.

Since in general for multivariate distributions of continuous type (described
by densities) there is no algebraic formula for these integrals, they need to be
approximated by some simulation approach, e.g. an appropriate variant of the
Monte Carlo method.
For a finite discrete distribution �ξ (i) (ξ

(i) = ξ (i)ν) = p(i)ν , ν = 1, · · · ,N(i),

the sets S(i)(û( j)) := {ξ (i) | ηi(û( j),ξ (i)) < 0} are replaced by the index sets



3.2 The two-stage SLP 249

K(i)(û( j)) := {ν | ηi(û( j),ξ (i)ν) < 0}, thus yielding �ξ (i) [ξ
(i)] =

N(i)

∑
ν=1

p(i)ν ξ (i)ν

and

Li(x ; û( j)) = q+i hi− (q+i T i)x+qi ∑
ν∈K(i)(û( j))

p(i)ν {hi(ξ (i)ν)−Ti(ξ (i)ν)x}.

�

Exercises

3.7. Consider the following two simple recourse problems:

min{cTx+�[qTy(ζ )]} with c = (3,1,2,4)T, q = (2,1,1,3,2,1,2,1)T

Ax ≤ b with A =

(
2 1 3 5
3 4 3 2

)
, b =

(
32
35

)

T x + Wy(ζ ) = h(ζ ) a.s. with T =

⎛
⎜⎜⎝

2 0 3 2
3 5 0 2
0 2 4 0
2 1 0 3

⎞
⎟⎟⎠ , h(ζ ) =

⎛
⎜⎜⎝

25+ξ1
15+ξ2
17+ξ3
23+ξ4

⎞
⎟⎟⎠

x, y(ζ ) ≥ 0 a.s.

where ζ with independent components has either a uniform or a normal distribution as

U {[−5,5]× [−7,7]× [−3,3]× [−8,8]} or
N {(0;2),(0;1.5),(0;2.2),(0;1.7)} with truncation probabilities of 0.999, each.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.93)

Solve both problems using SLP-IOR, applying SRAPPROX as well as DAPPROX.

(a) For each of the two problems compare, as indicators for the efficiency of
the two solvers, the number of iterations as well as the number of splits (or
subintervals, respectively) used by SLP-IOR to get the solutions with the pre-
set accuracy.

(b) How do you explain the difference with respect to the above indicators, in
particular the remarkable discrepancy of the numbers of splits/subintervals?

3.8. For the SRT function ϕ(z, ξ ) :=α[ξ−z ]++β [ξ−z ]−, α+β ≥ 0, and the cor-

responding ESRT function Φ(z) = α(ξ̄ − z)− (α+β )
∫ z

−∞
(ξ − z)�ξ (dξ ) assume

the distribution�ξ to be bounded to the interval [a,b ].

(a) Show that then the integral Ψ(z) :=
∫ z

−∞
(z− ξ )�ξ (dξ ) may be computed

with Θ(z1,z2,z3) := z3 +
∫
ξ≤a+z2

(z2 +a−ξ )�ξ (dξ ) as

Ψ(z) := minΘ(z1,z2,z3) subject to:

−z1 + z2 + z3 = z− ξ̄ , z1 ≥ ξ̄ −a, z2 ≤ b−a, (z1,z2,z3)≥ 0

}
. (3.94)
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(b) How doesΨ(z) and hence the ESRT function Φ(z) look like, if �ξ is given
as U {[a,b]}?

3.9. Assume for (3.93) of Exercise 3.7 the uniform distributions mentioned for the
right-hand sides hi(ζi) and formulate problem (3.93) according to the result of the
previous exercise as a quadratic program. If you have access to any convex pro-
gramming software package, than solve the quadratic program and compare the
solution with that one you have got with SLP-IOR applying SRAPPROX (and/or
DAPPROX).

3.2.3 CVaR and recourse problems

Assume the result of some process to be a loss, modelled as a random variable
ϑ ∈L 1

1 with a distribution function Fϑ (z). As mentioned in Section 2.1, an exam-
ple from finance could be a portfolio optimization problem with tT(ξ )x as random
return of a portfolio x ∈�n (usually represented as the mixture of different assets)
compared to h(ξ ), the random return of some benchmark portfolio. In this case ϑ :=
(tT(ξ )x−h(ξ )) is considered as loss if ϑ− > 0. With the α–VaR (value at risk) να ,
defined in Section 2.3 (p. 137) as να := να(ϑ) := min{z | Fϑ (z) ≥ α}, α ∈ (0,1),
the α–CVaR (conditional value at risk) νc

α := νc
α(ϑ)was introduced in Section 2.4.3

(p. 152) as

νc
α(ϑ) := να +

1
1−α�ϑ [(ϑ −να)+] = min

z

{
z+

1
1−α�ϑ [(ϑ − z)+]

}
. (3.95)

It is well known, that—in spite of the naming—for the α–CVaR holds the inequality
νc
α(ϑ)≥�ϑ [ϑ | ϑ ≥ να ], where equality can only be ensured for continuous distri-

bution functions Fϑ (·). Nevertheless, νc
α(ϑ) is widely used in finance applications

as risk measure. Whereas the VaR να(ϑ) is by definition the (smallest) threshold for
a realization ϑ̂ not being exceeded with a probability of at least α , for continuous
distributions the α–CVaR νc

α(ϑ) is then the conditional expectation of ϑ given that
ϑ ≥ ϑ̂ . Moreover, due to Prop. 2.48. the α–CVaR satisfies the axioms for coherent
risk measures presented in Artzner, Delbaen et al. [7], which is in general not true
for the α–VaR. A more detailed discussion of the concept of CVaR can be found in
Rockafellar–Uryasev [283].

Due to (3.95), computing the α–CVaR νc
α(ϑ) can be considered as solving a

single-stage stochastic program. However, νc
α(ϑ) can also be considered as the op-

timal value of a particular two-stage stochastic program with simple recourse.

Proposition 3.3. The α–CVaR as defined in (3.95) is the optimal value of the SSR
problem

νc
α = min

z
(z+�ϑ [Q(z;ϑ)], (3.96)

where
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Q(z ;ϑ) = min
η

{
1

1−α η
∣∣∣∣z+η ≥ ϑ , η ≥ 0

}
.

Proof: Obviously holds

(ϑ − z)+ = min
η
{η | η ≥ ϑ − z , η ≥ 0}= (1−α)Q(z ;ϑ) ,

thus yielding the proposition and allowing for the interpretation, that after the first-
stage decision on z a realization of ϑ has to be observed before taking the second-
stage decision on η . �

Assuming now that, instead of ϑ : Ω −→�, a random vector ξ : Ω −→ Ξ ⊂�r is
given with Ξ = suppξ , and f (x,ξ ) : X×Ξ −→� is defined as decision-dependent
(loss) function, where

– X ⊂�n is a closed convex set of feasible decisions,
– f (·,ξ ) is continuous in x ∀ξ ∈ Ξ ,
– f (x, ·) is ξ–measurable ∀x ∈ X , and
– �ξ [| f (x,ξ )|]< ∞ ∀x ∈ X .

With the distribution function Φ(x,z) :=�({ξ | f (x,ξ )≤ z}) the α–VaR of f (x,ξ )
is να(x) = min{z | Φ(x,z) ≥ α}, yielding in analogy to (3.95) the α–CVaR of
f (x,ξ ) as

νc
α(x) := min

z

{
z+

1
1−α�ξ [( f (x,ξ )− z)+]

}
.

If in addition to the above assumptions f (·,ξ ) is convex in x ∀ξ ∈ Ξ , then it follows
that νc

α(x) is convex in x as well. In this case Prop. 3.3. is modified to

Proposition 3.4. For f (·,ξ ) convex ∀ξ ∈ Ξ the α–CVaR denoted as νc
α(x) is a

convex function in x, computable as the optimal value of the convex CFR program

νc
α(x) := min

z∈�
{z+�ξ [Q(x,z ;ξ )]

with Q(x,z ;ξ ) := min
η∈�

{
1

1−α η
∣∣∣∣z+η ≥ f (x,ξ ), η ≥ 0

}
,

⎫⎪⎬
⎪⎭ (3.97)

or equivalently, the optimum of

νc
α(x) := min

z∈�,η(x,z ;·)∈L 1
1

{
z+�ξ

[
1

1−α η(x,z ;ξ )
]}

z+η(x,z ;ξ ) ≥ f (x,ξ ) a.s.
η(x,z ;ξ ) ≥ 0 a.s.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.98)

Proof: Introducing x as a parameter and replacing ϑ by f (x ;ξ ), (3.97) follows im-
mediately from (3.96). The integrability of f (x ;ξ ) with respect ot ξ implies the well
known fact, that for each (x,z) there exists an η(x,z ; ·) ∈L 1

1 such that η(x,z ;ξ ) =
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(1−α)Q(x,z ;ξ ) a.s. Finally, the convexity of Q(x,z ;ξ ) in (x,z) ∀ξ ∈ Ξ follows
trivially from (3.97), implying the convexity of �ξ [Q(x,z ;ξ )] in x for any fixed z
and thus the convexity of νc

α(x) in x. �

To be more specific, assume that X := {x | Ax = b, x ≥ 0} �= /0 is compact, and
that the loss function is defined as f (x,ξ ) := λ (h(ξ )−tT(ξ )x) with some coefficient
λ > 0. As an interpretation, think of a linear production function, transforming a
vector x of input factors with a random vector t(ξ ) of productivities into a random
output tT(ξ )x; on the other hand let h(ξ ) be a random demand to be covered by that
output, such that, given that h(ξ )− tT(ξ )x > 0, the above loss function f (x,ξ ) is
just proportional to this excess demand.

Different types of models may be set up in this situation, as for instance:

1) In addition to the linear constraints of an LP a further constraint, restricting

the α–CVaR νc
α(x) := νc

α( f (x ,ξ )) = min
z

{
z+

1
1−α�ξ [( f (x,ξ )− z)+]

}
of

the above loss function, may be inserted yielding the model

mincTx
s.t. Ax = b

νc
α(x) ≤ γ

x ≥ 0 ,

which according to (2.152), (2.153) on pages157/157 coincides with the con-
vex NLP

mincTx
s.t. Ax = b

z+
1

1−α�ξ [(λ (h(ξ )− tT(ξ )x)− z)+] ≤ γ
x ≥ 0,

a single stage problem.

2) Extending instead the linear term of an LP’s objective by adding the α–CVaR
νc
α(x) := νc

α( f (x ,ξ )) of the loss f (x ;ξ ) yields the NLP

min{cTx+νc
α(x)}

s.t. Ax = b
x ≥ 0 ,

which due to Prop. 3.4. can be restated as
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min{cTx+ z+�ξ [Q(x,z ;ξ )]}
Ax = b
x ∈�n

+ , z ∈�
where

Q(x,z ;ξ ) := min
η∈�

{
1

1−α η
∣∣∣∣z+η ≥ f (x,ξ ), η ≥ 0

}

= min
η∈�

{
1

1−α η
∣∣∣∣λ tT(ξ )x+ z+η ≥ λh(ξ ), η ≥ 0

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.99)

a particular two-stage generalized simple recourse SLP with the first stage
variables x ∈�n and z ∈� and the recourse variable η (which, as mentioned
above, can be chosen for each (x,z) as a function η(x,z ; ·) ∈L 1

1 ); in (2.150)
on page 156 this model was derived for the special case of a finite discrete
probability distribution.
Solution methods of the GSR-CUT type were considered for this problem by
Klein Haneveld and van der Vlerk [191] and by Künzi–Bay and Mayer [198],
assuming ξ to have a finite discrete distribution; since in this case (3.99) is
a special LP with decomposition structure, in accordance with Remark 1.2.
(p. 48) the main concern of the authors was to find appropriate cut generation
strategies for the corresponding decomposition algorithm to be as efficient as
possible.

Due to the above discussion on general GSR-Cut procedures, for continuous
distributions the cutting plane methods described on page 247 can be designed
to solve (3.99) as well.

3) For the two-stage model (3.99) it is assumed that the first-stage decision on
x implies the deterministic first-stage outcome cTx, and that the loss f (x ,ξ ),
given the first-stage decision x, is the random second-stage outcome deter-
mined by the realization of ξ (unknown when deciding on x). To take into
account the risk (due to the random loss f (x ,ξ )), this model aims at determin-
ing a minimizer x̂ for the overall objective given as the sum of the first-stage
outcome cTx with the α–CVaR of the second-stage outcome f (x ,ξ ).
Another two-stage model is based on the following view: With a convex poly-
hedral set X ⊂�n

+ of feasible first-stage decisions x, causing cTx as the de-
terministic part of of the first-stage outcome, and with a very general recourse
function

Q(x ;ξ ) := min
y
{qT(ξ )y | T (ξ )x+W (ξ )y = h(ξ ) , y≥ 0}, (3.100)

as the random part of the first-stage outcome, the overall first-stage objective
is defined as

f (x ;ξ ) := cTx+Q(x ;ξ ).

Now the decision maker wants to find any x̂ ∈ X which minimizes some mix-
ture of the mean of this outcome and some risk measure of it, e.g. the α–CVaR
of f . Thus, observing that due to Prop. 2.48. (page 177) the α–CVaR is trans-
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lation invariant, with some λ > 0 the problem to solve would be

min
x∈X
{�ξ [ f (x ;ξ )]+λνc

α( f (x ;ξ ))}=
= min

x∈X
{(1+λ )cTx+�ξ [Q(x ;ξ )]+λνc

α(Q(x ;ξ ))}.

This can be rewritten as the two-stage SLP

min
x,η ,y,θ

[
(1+λ )cTx+�ξ [q

T(ξ )y(ξ )]+λ
(
η+

1
1−α�ξ [θ(ξ )]

)]

x ∈ X , η ∈�
y(·) ∈L 2

n2
, θ(·) ∈L 1

1
W (ξ )y(ξ ) = h(ξ )−T (ξ )x a.s.

θ(ξ ) ≥ qT(ξ )y(ξ )−η a.s.
y(ξ ) ≥ 0 a.s.
θ(ξ ) ≥ 0 a.s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.101)

with first-stage variables (x,η) and second-stage decisions (y(ξ ),θ(ξ )), or
more precisely y(ξ ), since due to the objective of (3.101) automatically
θ(ξ ) = (qT(ξ )y(ξ )−η)+ a.s. will result. At present, it seems unlikely to
find an efficient solver for the above problem in this generality for continuous
distributions �ξ . Obviously one might think of approximating solutions via
constructing sequences of discrete distributions�ν

ξ , weakly converging to�ξ
and thus taking advantage of known results on the use of epi-convergence in
optimization, as presented for instance in Pennanen [251, 252], Robinson and
Wets [279], Wets [343], and Kall [156]. However, since in this generality the
recourse function Q(x ;ξ ) is not convex in ξ , neither Jensen’s inquality nor the
Edmundson–Madansky inequality apply. Hence, there seems to be no efficient
tool to check the approximation error (as e.g. in DAPPROX) and thus to ver-
ify a prescribed accuracy during such an iterative procedure. Obviously this
would change substantially, if for the recourse (3.100) holds q(ξ )≡ q ∈�n2

and W (ξ )≡W , a constant (m2×n2)–matrix, thus allowing for an approxima-
tion via successive discretization.

In the general case the situation becomes much better manageable for finite
discrete distributions of ξ given by �ξ (ξ = ξi) = pi , i = 1, · · · ,N. Then
(3.101) reads as

min
x,η ,y,θ

[
(1+λ )cTx+

N

∑
i=1

pi ·qi
Tyi +λ

(
η+

1
1−α

N

∑
i=1

pi ·θi

)]

x ∈ X , η ∈�
Wiyi = hi−Tix i = 1, · · · ,N
θi ≥ qi

Tyi−η i = 1, · · · ,N
yi ≥ 0 i = 1, · · · ,N
θi ≥ 0 i = 1, · · · ,N.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.102)
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This model, a linear program with decomposition structure, was recently an-
alyzed by Noyan [246], providing two variants of appropriate cuts within de-
composition procedures for solving this problem efficiently.

3.2.4 Some characteristic values for two-stage SLP’s

Among various paradigms of modeling two-stage stochastic linear programs we
have discussed so far the general (two-stage) stochastic program with recourse with
the optimal value RS given due to (3.8), (3.9) as

RS := min
x

{
cTx+�ξ [Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ ))]

}

s.t. Ax = b
x ≥ 0 ,

⎫⎪⎬
⎪⎭ (3.103)

where
Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ )) := infqT(ξ )y(ξ )

s.t. W (ξ )y(ξ ) = h(ξ )−T (ξ )x a.s.
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y

with Y =L 2
n2

. As in (3.6), we assume that the random parameters in these problems
are defined as linear affine mappings on Ξ =�r by

T (ξ ) = T +
r

∑
j=1

T j ξ j ; T, T j ∈�m2×n1 deterministic,

W (ξ ) = W +
r

∑
j=1

W j ξ j ; W, W j ∈�m2×n2 deterministic,

h(ξ ) = h+
r

∑
j=1

h j ξ j ; h, h j ∈�m2 deterministic,

q(ξ ) = q+
r

∑
j=1

q j ξ j ; q, q j ∈�n2 deterministic.

Remark 3.8. Whereas by the modeling paradigm of problem (3.103), the second
stage decision on y(ξ ) is to be taken after observing the realization of ξ , and know-
ing the first stage decision on x, which was taken before having knowledge of the
realization of ξ—one possible interpretation being (see Fig. 3.1, p. 191) that, in
time, the decision on the first stage variables x is taken before the observation of a
realization of ξ , and the second stage variables y(ξ ) are determined afterwards—
other paradigms could be either to replace the random vector ξ in advance by its
expectation ξ , thus yielding the expected value problem (3.104), or else to delay the
first stage decision until a realization of ξ is known, such that now the second stage
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decision y(·) as well as the first stage decision x(·) depend on ξ , which leads to the
wait-and-see model (3.105). �

As just mentioned, replacing the random vector ξ by its expectation ξ̄ =�ξ [ξ ],
yields instead of RS the optimal value EV of the expected value problem,

EV := min
x,y
{cTx+qT(ξ̄ )y}

s.t. Ax = b
T (ξ̄ )x +W (ξ̄ )y = h(ξ̄ )

x, y ≥ 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.104)

Except for the first moment ξ̄ , this model does not take at all into account the distri-
bution of ξ . Hence the solution will always be the same, no matter of the distribution
being discrete or continuous, skew or symmetric, flat or concentrated, as long as the
expectation remains the same. In other words, the randomness of ξ does not play an
essential role in this model.

In contrast to the recourse model (3.103), in the wait-and-see model both, the
decisions on the first stage variables x and the second stage variables y, are taken
simultaneously only when the outcome of ξ is known, with the optimal values of
the family of LP’s

∀ξ ∈ Ξ : γ(ξ ) := min
x,y
{cTx+qT(ξ )y}

s.t. Ax = b
T (ξ )x +W (ξ )y = h(ξ )

x, y ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.105)

the so-called wait-and-see value WS is the expected value

WS :=�ξ [γ(ξ )] . (3.106)

Finally, with the first stage solution fixed as any optimal first stage solution x̂
of the EV problem (3.104), we may ask for the objective’s value of (3.103), the
expected result of the EV solution

EEV :=
= cTx̂+�ξ [miny{qT(ξ )y |W (ξ )y = h(ξ )−T (ξ )x̂, y≥ 0}] . (3.107)

Observe that, in contrast to the values RS, EV , and WS, the value EEV may not be
uniquely determined by (3.107): If the expected value problem (3.104) happens to
have two different solutions x̂ �= x̃, this may lead to EEV (x̂) �= EEV (x̃).

For the above values assigned in various ways to the two-stage stochastic pro-
gramming situations mentioned, several relations are known which, essentially, can
be traced back to Madansky [211].

Proposition 3.5. For an arbitrary recourse problem (3.103) and the associated
problems (3.106) and (3.107) the following inequalities hold:
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WS≤ RS≤ EEV . (3.108)

Furthermore, with the recourse function Q(x;T (ξ ),h(ξ )), allowing only for the
matrix T (·) and the right–hand–side h(·) to contain random data, it follows that

EV ≤ RS≤ EEV . (3.109)

Proof: Let x� be an optimal first stage solution of (3.103). Then obviously the in-
equality

γ(ξ )≤ cTx�+Q(x�;T (ξ ),h(ξ ),W (ξ ),q(ξ )) ∀ξ ∈ Ξ
holds, and therefore

WS =�ξ [γ(ξ )]≤ {cTx�+�ξ [Q(x�;T (ξ ),h(ξ ),W (ξ ),q(ξ ))]}= RS .

The second inequality in (3.108) is obvious.

To show the second part, for any fixed x̃ the recourse function

Q(x̃;T (ξ ),h(ξ )) = min{qTy |Wy = h(ξ )−T (ξ )x̃ , y≥ 0}

is convex in ξ . In particular, for the optimal first stage solution x� of (3.103) follows
with Jensen’s inequality and the definition (3.104) of EV , that

RS = cTx�+�ξ [Q(x�;T (ξ ),h(ξ ))]
≥ cTx�+Q(x�;T (ξ̄ ),h(ξ̄ ))
≥ EV

which implies (3.109). �

Proposition 3.6. Given the recourse function Q(x;h(ξ )) (i.e. only the right–hand–
side h(·) is random) it follows that

EV ≤WS .

Proof: For the wait-and-see situation we have

γ(ξ ) = min
x,y
{cTx+qTy | Ax = b, T x+Wy = h(ξ ); x,y≥ 0} ,

which is obviously convex in ξ . Then by Jensen’s inequality follows

γ(ξ̄ ) = EV ≤�ξ [γ(ξ )] =WS .

�

For more general recourse functions the inequality of Prop. 3.6. cannot be ex-
pected to hold true; for a counterexample see Birge–Louveaux [26].
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Furthermore, in Avriel–Williams [9] the expected value of perfect information
EV PI was introduced as

EV PI := RS−WS (3.110)

and may be understood in applications as the maximal amount a decision maker
would be willing to pay for the exact information on future outcomes of the random
vector ξ . Obviously due to Prop. 3.5. we have EV PI ≥ 0. However, to compute
this value exactly would require by (3.110) to solve the original recourse problem
(3.103) as well as the wait-and-see problem (3.106), both of which may turn out to
be hard tasks. Hence the question of easier computable and still sufficiently tight
bounds on the EV PI was widely discussed. As may be expected, the results on
bounding the expected recourse function mentioned earlier are used for this purpose
as well as approaches especially designed for bounding the EV PI as presented e.g.
in Huang–Vertinsky–Ziemba [143] and some of the references therein.

Finally, the value of the stochastic solution was introduced in Birge [22] as the
quantity

V SS := EEV −RS , (3.111)

which in applications may be given the interpretation of the expected loss for ne-
glecting stochasticity in determining the first stage decision, as mentioned with the
EV solution of (3.104). Obviously it measures the extra cost for using, instead of the
“true” first stage solution for the recourse problem (3.103), the first stage solution
of the expected value problem (3.104). Also in this case Prop. 3.5. implies V SS≥ 0.

If in the problem at hand there is no randomness around, in other words if with
some fixed ξ̂ ∈�r we have�ξ (ξ = ξ̂ ) = 1, then obviously follows EV PI =V SS =
0. In turn, if one of these characteristic values is strictly positive, it is often consid-
ered as a “measure of the degree of stochasticity” of the recourse problem. However,
one must be careful with this interpretation; it should be observed that examples can
be given for which either EV PI = 0 and V SS > 0 or, on the other side, EV PI > 0 and
V SS = 0 (see Birge–Louveaux [26]). Hence, the impact of stochasticity to the EV PI
and the V SS may be rather different. Although these values are not comparable in
general, there are at least some joint bounds:

Proposition 3.7. With the recourse function Q(x;T (ξ ),h(ξ )), allowing only for the
matrix T (·) and the right–hand–side h(·) to contain random data, the value of the
stochastic solution has the upper bound

V SS≤ EEV −EV . (3.112)

With the recourse function Q(x;h(ξ )), i.e. with only the right–hand–side h(·) being
random, the expected value of perfect information is bounded above as

EV PI ≤ EEV −EV . (3.113)

Proof: Due to (3.109) in Prop. 3.5., we have RS≥ EV and therefore

V SS = EEV −RS≤ EEV −EV .
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From Prop. 3.6. we know that with the recourse function Q(x;h(ξ )) holds EV ≤
WS. Hence, together with Prop. 3.5. we get

EV PI = RS−WS≤ EEV −EV .

�

The above bounds are due to Avriel–Williams [9] for the EV PI and Birge [22]
for the V SS.

In the literature, you may occasionally find statements claiming that the bounds
given in (3.112) and (3.113) hold true without the restrictions made in Prop. 3.7..
There are obvious reasons to doubt those claims. Concerning V SS the above argu-
ment for (3.109) using Jensen’s inequality fails as soon as we loose the convexity
of the recourse function in ξ for any fixed x̃. For the EV PI we present again the
following example (as mentioned in Kall [154]):

Example 3.2. With X =�+ let c = 2, W = (1,−1), q = (1,0)T and

�ξ {(T (1),h(1)) = (1,2)}=�ξ {(T (2),h(2)) = (3,12)}= 1
2
.

Then we have T̄ = 2, h̄ = 7 and

EV = min{2x+ y1 | 2x+ y1− y2 = 7; x≥ 0, y≥ 0}= 7 with x̂ =
7
2
.

With
Q(x̂;T (1),h(1)) = min

y
{y1 | y1− y2 = 2− x̂, y≥ 0}= 0

and
Q(x̂;T (2),h(2)) = min

y
{y1 | y1− y2 = 12−3x̂, y≥ 0}= 3

2

follows

EEV = 2 · 7
2
+

1
2
· 3

2
= 7.75

and hence EEV −EV = 0.75. On the other hand we get RS as optimal value from

min{2 · x+0.5 · y(1)1 +0.5 · y(2)1 }
1 · x+ 1 · y(1)1 −1 · y(1)2 = 2
3 · x+ 1 · y(2)1 −1 · y(2)2 = 12

x, y(1), y(2) ≥ 0 ,

yielding RS = 7 with x� = 2, y(2)1 = 6. To get the WS we compute

γ1 := min{2 · x+ y1 | 1 · x+1 · y1−1 · y2 = 2; x, y≥ 0}= 2

and
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γ2 := min{2 · x+ y1 | 3 · x+1 · y1−1 · y2 = 12; x, ,y≥ 0}= 8

yielding WS = 0.5 ·2+0.5 ·8 = 5 such that

EV PI = RS−WS = 2 > EEV −EV = 0.75 .

�

3.3 The multi-stage SLP

According to (3.1) on page 192 the general MSLP may be stated as

min{cT
1 x1 +�

T

∑
t=2

cT
t (ζt)xt(ζt)}

A11x1 = b1

At1(ζt)x1 +
t

∑
τ=2

Atτ(ζt)xτ(ζτ) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.114)

where on a given probability space (Ω ,G ,P) random vectors ξt : Ω −→ �rt

are defined, with ξ = (ξT
2 , · · · ,ξT

T )
T inducing the probability distribution �ξ on

�
r2+···+rT , and ζt = (ξT

2 , · · · ,ξT
t )

T the state variable at stage t.

Remark 3.9. Not to overload the notation, for the remainder of this section, in-
stead of ξ = (ξT

2 , · · · ,ξT
T )

T and ζt = (ξT
2 , · · · ,ξT

t )
T, we shall write ξ = (ξ2, · · · ,ξT )

and ζt = (ξ2, · · · ,ξt), understanding that ξ = (ξ2, · · · ,ξT ) ∈ �r2+···+rT and ζt =
(ξ2, · · · ,ξt) ∈�r2+···+rt , as before. �

Furthermore, the (random) decisions xt(·) are required to be Ft -measurable,
with Ft = σ(ζt) ⊂ G . Since {F1, · · · ,FT} is a filtration, this implies the nonan-
ticipativity of the feasible policies {x1(·), · · · ,xT (·)}. Finally, Assumption 3.1.,
page 192, prescribes the square-integrability of ξt(·) w.r.t. P for t = 1, · · · ,T , and
Atτ(·),bt(·),ct(·) are assumed to be linear affine in ζt . In addition, we have required
the square-integrability of the decisions xt(·).

Obviously, for ξ having a non-discrete distribution, to solve problem (3.114)
means to determine decision functions xt(·) (instead of decision variables) satisfy-
ing infinitely many constraints, which appears to be a very hard task to achieve, in
general. The problem becomes more tractable for the case of ξ having a finite dis-
crete distribution, a situation found or assumed in most applications of this model.
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3.3.1 MSLP with finite discrete distributions

Let ξ : Ω −→�R, R =
T

∑
t=2

rt , be a random vector with a finite discrete distribution,

having the realizations ξ̂ 1, ξ̂ 2, · · · , ξ̂ S with the probabilities q1,q2, · · · ,qS, respec-
tively.

Anyone of these realizations is also denoted as a scenario ξ̂ s = (ξ̂ s
2 , · · · , ξ̂ s

T )

with the probability �ξ{ξ = ξ̂ s} = qs, s ∈ S := {1, · · · ,S}. Then the time dis-
crete stochastic process {ζt ; t = 2, · · · ,T} with discretely distributed state variables
ζt may be assigned to a scenario tree as follows:

– The (deterministic) state of the system at stage 1 is assigned to node 1, the
unique root of the tree.

– Among all scenarios ξ̂ s, s = 1, · · · ,S, there are a finite number k2 having
pairwise different realizations ζ̂ s

2 of the stage 2 state variables, denoted as
ζ̂ ρ(n)

2 = ξ̂ ρ(n)
2 , n = 2, · · · ,1+ k2, and assigned to the nodes numbered as n =

2, · · · ,1+k2 =: K2. Here ρ(n) refers to the first of the scenarios ξ̂ s, s= 1, · · · ,S,
passing through the particular state ζ̂ s

2 . Node 1 is connected by an arc to each
of the k2 nodes in stage 2 due to the fact, that the corresponding states in stage
2 are realized by at least one scenario.

– Having assigned, according to all scenarios, up and until stage t < T the nodes
and arcs to all states and implied transitions between consecutive states (i.e.
given a scenario ξ̂ s = (ξ̂ s

2 , · · · , ξ̂ s
t−1, ξ̂

s
t , · · · , ξ̂ s

T ), implies a transition from state

ζ̂ s
t−1 = (ξ̂ s

2 , · · · , ξ̂ s
t−1) to ζ̂ s

t = (ξ̂ s
2 , · · · , ξ̂ s

t ) at least once), we consider for each

scenario ξ̂ s the state ζ̂ s
t+1 = (ξ̂ s

2 , · · · , ξ̂ s
t+1). Again, in stage t + 1 there is a

finite number kt+1 of different states denoted as ζ̂ ρ(n)
t+1 , n = Kt + 1, · · · ,Kt +

kt+1 =: Kt+1, and assigned to the nodes Kt + 1, · · · ,Kt + kt+1 =: Kt+1 (with
ρ(n) referring again to the first scenario passing through this particular state).
Finally, we insert the arcs from stage t to stage t + 1 according to the implied
transitions.

With this scenario tree, representing graphically the possible developments of the
stochastic process {ξ2, · · · ,ξT} over time, we may combine probabilistic informa-
tion to get a complete description of the process (see Fig. 3.6).

To this end, we may identify the leaf nodes of the tree (the stage T nodes)
KT−1 + 1, · · · ,KT with the scenarios ξ̂ s, s = 1, · · · ,S, and assign to these nodes the
probabilities qs of the respective scenario. Hence we have first the probabilities to
reach the leaf nodes n = KT−1 +1, · · · ,KT as pn = qn−KT−1 .

For all other nodes, i.e. for n ≤ KT−1, we then compute the probabilities pn to
pass through these nodes: Given node n, by the above construction of the scenario
tree we know the stage tn of this node as well as its corresponding state ζ̂ ρ(n)

tn ;

then with S (n) = {s | ζ̂ s
tn = ζ̂ ρ(n)

tn } we have {ξ̂ s | s ∈S (n)}, the set of scenarios
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passing through this state, called the scenario bundle of node n, and we get pn, the
total probability of this scenario bundle, as pn = ∑

s∈S (n)
qs.
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Fig. 3.6 Four-stage scenario tree representing a stochastic process.

After the above description of a scenario tree it seems to be meaningful to introduce
the following collection of specific variables and sets for discussing various issues
on scenario trees. These entities have shown to be useful when dealing with rather
complex problems defined on scenario trees, like e.g. multi-stage SLP’s with finite
discrete distributions, as to be discussed next. There we shall make use of the fol-
lowing

Notation for scenario trees:

(N ,A ) : rooted tree with nodes N ⊂� (n = 1 the unique root),
and A the set of arcs.
The nodes n ∈N are assigned to stages t = 1, · · · ,T ,
with n = 1 in stage t = 1, and with kt > 0 nodes for

t = 2, · · · ,T , and |N |= 1+
T

∑
t=2

kt .

The arcs in A connect selected nodes of stage t and
stage t +1, t = 1, · · · ,T −1, such that each node in
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some stage t < T has at least one immediate successor,
and each node in some stage t > 1 has exactly one
immediate predecessor.
Any path n1, · · · ,nT , with n1 = 1, tnt = t for t ≥ 2,
and (nt ,nt+1) ∈A for t = 1, · · · ,T −1, corresponds
one-to-one to the scenario ξ̂ s, s ∈S = {1, · · · ,S},
identified with the leaf node nT .

qs, s ∈S : qs =�ξ{ξ = ξ̂ s}, the probability of scenario ξ̂ s, and
hence the probability to reach the leaf node identified
with this scenario;

tn : the stage of node n ∈N ;

ρ(n) : the smallest s ∈S such that scenario ξ̂ ρ(n) passes
through the state ζ̂ s

tn assigned to node n;

ζ̂ n : ζ̂ n := ζ̂ ρ(n)
tn , the state in stage tn uniquely assigned to n;

D(t)⊂N : the set of nodes in stage t with |D(t)|= kt ;

hn : parent node (immediate predecessor) of n ∈N , n≥ 2;

H (n)⊂N : set of nodes in the unique path from n ∈N through the
successive predecessors back to the root, ordered by
stages, the history of n (including n);

S (n) : S (n) = {s | ζ̂ s
tn = ζ̂ ρ(n)

tn }, the index set identifying the
scenario bundle of node n;

pn : pn = ∑
s∈S (n)

qs, the probability to pass node n;

C (n)⊂N : the set of children (immediate successors) of node n;

Gs(n)⊆N : the future of node n along scenario ξ̂ s : s ∈S (n),
including node n, i.e. the nodes ntn = n, · · · ,nT
provided the path {n1, · · · ,ntn , · · · ,nT} corresponds to
scenario ξ̂ s (hence Gs(n) = /0 if s �∈S (n));

G (n)⊆N : the future of n ∈N , G (n) =
⋃

s∈S (n)

Gs(n);

qn→m : qn→m =
pm

pn
∀m ∈ G (n), the conditional probability to

reach node m given node n (provided that pn > 0).

To keep the following problem formulations simple, we introduce

Assumption 3.4. For any MSLP with a finite discrete distribution of the scenarios
ξ holds

qs =�ξ{ξ = ξ̂ s}> 0 ∀s ∈S . (3.115)
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By construction the following facts are obvious:

– Through each node passes at least one scenario, i.e. S (n) �= /0 ∀n ∈N ;
– given any stage t, each scenario passes through exactly one node in stage t, i.e.⋃

n∈D(t)

S (n) = S and S (n)∩S (m) = /0 ∀n,m ∈D(t) : n �= m .

Hence, it follows in general that

∑
n∈D(t)

pn = 1, t = 1, · · · ,T, (3.116)

and due to Assumption 3.4. holds

pn = ∑
s∈S (n)

qs > 0 ∀n ∈N . (3.117)

For the general MSLP (3.114), the decisions xt(ζt) in stage t are required to be
Ft -measurable with Ft = σ(ζt) ⊂ G . For ξ having a finite discrete distribution,
σ(ζt) is generated by the kt atoms ζ−1

t [ζ̂ ρ(n)
tn ], n = Kt−1 +1, · · · ,Kt . Then xt(·) has

to be constant on each of these atoms or equivalently, to each node n we have to
determine the decision vector xn := xtn(ζ̂ n). Observing that the expected values

� [cT
t (ζt)xt(ζt)] may now be written as

Kt

∑
n=Kt−1+1

pncT
tn(ζ̂

n)xn, problem (3.114) for a

discrete distribution reads as

min ∑
m∈N

pmcT
tm(ζ̂

m)xm

∑
m∈H (n)

Atntm(ζ̂
n)xm = btn(ζ̂ n) ∀n ∈N

xm ≥ 0 ∀m ∈N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.118)

with p1 = 1 and cT
t1(ζ̂

1) = c1, At1t1(ζ̂
1) = A11, bt1(ζ̂

1) = b1 being constant.
With an obvious simplification of the notation problem (3.118) may be rewritten
equivalently as

min ∑
m∈N

pmcT
tm(m)xm

∑
m∈H (n)

Atntm(n)xm = bn ∀n ∈N

xm ≥ 0 ∀m ∈N .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.119)

As the dual LP of (3.119) we have

max ∑
n∈N

bT
n un

∑
n∈G (m)

AT
tntm(n)un ≤ pmctm(m) ∀m ∈N .

⎫⎪⎪⎬
⎪⎪⎭

(3.120)
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Remark 3.10. If in particular, ∀n ∈N \{1} and for each node m ∈H (n) : tm <

tn−1, we have that Atntm(n) = Atntm(ζ̂ n) = 0, then with W1 := A11 and

Tn := Atntn−1(n) and Wn := Atntn(n) ∀n ∈N \{1}

problem (3.119) reads as

min ∑
m∈N

pmcT
tm(m)xm

W1x1 = b1
Tnxhn +Wnxn = bn ∀n ∈N \{1}

xn ≥ 0 ∀n ∈N .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.121)

Hence we have the same problem structure as assumed when discussing the nested
decomposition in section 1.2.7 of Chapter 1, in particular the structure of problem
(1.29) on page 33.

The general MSLP problem (3.114) can always be transformed to an equivalent
problem where Atτ = 0 holds for τ < t− 1, thus assuming the following staircase
form

min{cT
1 x1 +�

T

∑
t=2

cT
t (ζt)zt(ζt)}

W1z1 = b1
Tt(ζt)zt−1(ζt−1) +Wt(ζt)zt(ζt) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.122)

formally corresponding to (3.121), where now zt is an n1 + . . .+ nt–dimensional
variable and Tt and Wt have mt +n1 + . . .+nt rows. For specifying the transforma-
tion which maps (3.114) into (3.122) we will employ double indices. The transfor-
mation is as follows. Let

zT
t (ζt) = (zt,1(ζt), · · · ,zt,t−1(ζt),zt,t(ζt))

with zt,τ being an nτ–dimensional variable, τ = 1, . . . , t, and with ztt corresponding
to xt in (3.114). The matrices are defined as follows. Let W1 = A1,1. For 1 < t < T
we define

Tt(ζt) =

⎛
⎜⎜⎜⎝

At,1(ζt) . . . At,t−1(ζt)
I

. . .
I

⎞
⎟⎟⎟⎠

and
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Wt(ζt) =

⎛
⎜⎜⎜⎝

0 . . . 0 At,t(ζt)
−I 0

. . .
...

−I 0

⎞
⎟⎟⎟⎠

and for t = T let

TT (ζT ) = (AT,1(ζT ), . . . AT,T−1(ζT )) and WT (ζT ) = AT T (ζT ).

Loosely speaking, the auxiliary variables (zt,1, . . . ,zt,t−1) serve for “forwarding”
the solution to later stages. As an example let us consider an MSLP with T = 4 and
let us drop in the notation the dependency on ζt . The original structure is

A11x1 = b1

A21x1 +A22x2 = b2

A31x1 +A32x2 +A33x3 = b3

A41x1 +A42x2 +A43x3 +A44x4 = b4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

which transforms into

A11z11 = b1
A21z11 +A22z22 = b2

z11 −z21 = 0
A31z21 +A32z22 +A33z33 = b3

z21 −z31 = 0
z22 −z32 = 0

A41z31 +A42z32 +A43z33 +A44z44 = b4

In the literature, multi-stage SLP’s are often presented just in the so-called stair-
case formulation (3.121). Although problems of this form, at the first glance, look
simpler than problems in the lower block triangular formulation like (3.119), this
does not imply a computational advantage in general. Indeed, if the staircase for-
mulation results from the above transformation of (3.114) into (3.122), then the
numbers of variables and of constraints are increased. �

3.3.2 MSLP with non-discrete distributions

In Section 3.2.1 we have discussed two-stage SLP’s with complete fixed recourse
and with bounded distributions, i.e. with supp�ξ ⊆ Ξ = ∏r

i=1[αi,βi]. In particu-
lar, we considered the recourse function Q(x;T (ξ ),h(ξ )), which according to our
notation (see page 197) implies for the second stage problem (3.9) that only T (·)
and h(·) (or some elements of these arrays) are random. In this case, we could
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apply Jensen’s inequality to get in Theorem 3.4. a lower bound for the expected

recourse Q(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ))�ξ (dξ ) as Q(x;T (ξ̄ ),h(ξ̄ )) ≤ Q(x), where

ξ̄ := �ξ [ξ ]. In other words, introducing the Jensen distribution �η as the one-
point distribution with�η{η =�ξ [ξ ]}= 1, the Jensen inequality can formally be
written as ∫

Ξ
Q(x;T (η),h(η))�η(dη)≤Q(x) .

On the other hand, we have derived particular discrete probability distributions
�η on the vertices vν of Ξ , the E–M distribution for stochastically independent
components of ξ in Lemma 3.6 and the generalized E–M distribution for stochas-
tically dependent components of ξ in Lemma 3.7, respectively, which were shown
to solve two special types of moment problems. According to Theorems 3.5. and
3.6., using these distributions the E–M inequality provides an upper bound for the
expected recourse as

Q(x) ≤
∫
Ξ

Q(x;T (η),h(η))�η(dη)

=
2r

∑
ν=1

Q(x;T (vν),h(vν))�η(v
ν) .

For any disjoint interval partition X = {Ξk; k = 1, · · · ,K} of Ξ , we apply
Jensen’s inequality for the conditional expectations, meaning to introduce on the set
of conditional expectations {ξ̄k :=�ξ [ξ | ξ ∈ Ξk] | k = 1, · · · ,K} the correspond-
ing discrete distribution �ηX

, defined by �ηX
{ξ̄k} = �ξ{Ξk}, and to compute∫

Ξ
Q(x;T (η),h(η))�ηX

(dη) to get a lower bound for Q(x). Similarly, we apply

the E–M inequality using the distribution�ηX
=

K

∑
k=1
�ξ{Ξk} ·�ηΞk

, where�ηΞk

is either the E–M distribution or else the generalized E–M distribution solving the
corresponding conditional moment problems, conditioned with respect to the cell
Ξk ∈X . This way, according to Lemma 3.8 we get an increased lower bound as
well as a decreased upper bound.

For any sequence of appropriately refined interval partitions {X ν} the corre-
sponding sequences of discrete distributions {�ηX ν } and {�ηX ν } of Jensen dis-
tributions and E–M distributions, respectively, are shown in Lemma 3.9 to converge
weakly to the original distribution�ξ . For the corresponding sequences {Q̃ν} and
{Q̂ν} of Jensen lower bounds and E–M upper bounds, respectively, of the expected
recourse function Q, this implies epi-convergence of both sequences to Q. This
convergence behaviour, however, provides due to Theorem 3.7. promising condi-
tions to design approximation schemes for the solution of two-stage SLP’s with
complete fixed recourse.
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The question arises whether we may expect a similar approach to be applica-
ble for the solution of multi-stage SLP’s with more than two stages. To get a first
impression let us take a look at a rather simple three-stage example.

Example 3.3. Consider the complete fixed recourse problem

V � := min{2x+�[y1(ξ2)+2y2(ξ2)]+�[z1(ξ2,ξ3)+ z2(ξ2,ξ3)]}
s.t. x + y1(ξ2) − y2(ξ2) = ξ2

x + y1(ξ2) − y2(ξ2) + z1(ξ2,ξ3) − z2(ξ2,ξ3) = ξ3

x, y1, y2, z1, z2 ≥ 0

with ζ := (ξ2,ξ3)
T having the (joint) probability distribution �ζ on supp�ζ :=

Ξ = [0,1]× [0,1], given by the density

f (ξ2,ξ3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+ ε for 0≤ ξ2,ξ3 ≤ 0.5
1+ ε for 0.5≤ ξ2,ξ3 ≤ 1
1− ε for 0≤ ξ2 < 0.5 < ξ3 ≤ 1
1− ε for 0≤ ξ3 < 0.5 < ξ2 ≤ 1
0 else ,

where ε is some constant such that ε ∈ (−1,+1).

Ξ3
1

Ξ3
2

1 − ε

1 − ε
1 + ε

1 + ε

1 + ε

1 + ε

0 1

1

Ξ2

Fig. 3.7 supp�ζ = Ξ 2×Ξ 3 = Ξ 2× (Ξ 3
1 ∪Ξ 3

2 ) with density f (ξ2,ξ3).

For the marginal distribution of ξ2 we obviously get the marginal density as
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f2(ξ2) =
∫ 1

0
f (ξ2,ξ3)dξ3 =

{
1 for ξ2 ∈ [0,1]
0 else,

such that the corresponding distribution�ξ2
is U [0,1], the uniform distribution on

the interval [0,1]. According to the definition of f (ξ2,ξ3), for ξ3 follows the same
marginal distribution.

Considering, for instance, the interval Ξ̃ := {[0,0.5]× [0,0.5]} ⊂�2, we get

�ζ (Ξ̃) =
∫
Ξ̃

f (ζ )dζ =
1
4
(1+ ε) ,

whereas for the marginal distributions in U [0,1] follows

�ξ2
([0,0.5]) ·�ξ3

([0,0.5]) =
1
4
.

Hence, for ε �= 0 the random variables ξ2 and ξ3 are dependent.
Due to the objective of our recourse problem, for any given first stage solution

x≥ 0 the second stage solution yi(ξ2), i= 1,2, minimizing the second stage objective
y1(ξ2)+2y2(ξ2), has to satisfy the rules

a) ξ2 < x =⇒ y1(ξ2) = 0, y2(ξ2) = x−ξ2
b) ξ2 ≥ x =⇒ y1(ξ2) = ξ2− x, y2(ξ2) = 0.

Minimizing the third stage objective z1(ξ2,ξ3)+ z2(ξ2,ξ3) then yields, for both of
the cases a) and b) above,

x+ y1(ξ2)− y2(ξ2)≤ ξ3 =⇒ z1(ξ2,ξ3) = ξ3−ξ2, z2(ξ2,ξ3) = 0
x+ y1(ξ2)− y2(ξ2)> ξ3 =⇒ z1(ξ2,ξ3) = 0, z2(ξ2,ξ3) = ξ2−ξ3 .

Observe that a first stage decision x < 0 is not feasible. On the other hand, x > 1
cannot be optimal, since this would increase unnecessarily the overall objective,
more precisely the first stage cost 2x plus the expected second stage cost�[y1(ξ2)+
2y2(ξ2)] due to a) by at least 2(x−1)+2�[(x−ξ2)]> 4(x−1). Hence we compute
the objective value, for 0≤ x≤ 1, as

V (x) = 2x+
∫ x

ξ2=0
2(x−ξ2)dξ2 +

∫ 1

ξ2=x
(ξ2− x)dξ2+

+
∫
Ξ
|ξ3−ξ2| f (ξ2,ξ3)dξ2dξ3

= 2x+
3
2

x2− x+
1
2
+
∫
Ξ
|ξ3−ξ2| f (ξ2,ξ3)dξ2dξ3 .

For the last integral we get
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∫
Ξ
|ξ3−ξ2| f (ξ2,ξ3)dξ2dξ3 =

∫ 1

ξ2=0

∫ 1

ξ3=ξ2

(ξ3−ξ2) f (ξ2,ξ3)dξ2dξ3

︸ ︷︷ ︸
A

+
∫ 1

ξ3=0

∫ 1

ξ2=ξ3

(ξ2−ξ3) f (ξ2,ξ3)dξ2dξ3

︸ ︷︷ ︸
B

,

where A = B for symmetry reasons (see Fig. 3.7). For A, the integral taken over the
triangle above the line ξ3 = ξ2 in Fig. 3.7, we get by integration of (ξ3−ξ2) f (ξ2,ξ3)

A =
1
2
(1+ ε)

1
24

+
1
2
(1− ε)1

4
+

1
2
(1+ ε)

1
24

=
2− ε

12

such that A+B =
2− ε

6
and hence

V (x) =
3
2

x2 + x+
1
2
+

2− ε
6

=
3
2

x2 + x+
5− ε

6
.

Obviously, min
x≥0

V (x) is achieved at x̂ = 0 such that the optimal value of our problem

turns out to be
V � = min

x≥0
V (x) =

5− ε
6

.

Let us now discretize the distributions of ξ2 in stage two and ζ = (ξ2,ξ3)
T in

stage three by choosing the partitions X 2 of Ξ 2 and X 3 of Ξ 2×Ξ 3, respectively,
as follows:

Stage 2: X 2 = {Ξ 2} yielding for ξ2 the realization

ξ̄2 =�ξ2
[ξ2] =

1
2

with p2 =�({ξ2 ∈ [0,1]}) = 1;

Stage 3: X 3 =

{
Ξ 2×

[
0,

1
2

)
,Ξ 2×

[
1
2
,1
]}

yielding for ξ3 the realizations

ξ̄31 =�

[
ξ3 | ξ2 ∈ [0,1],ξ3 ∈

[
0,

1
2

)]
= �

[
ξ3 | ξ3 ∈

[
0,

1
2

)]
=

1
4

ξ̄32 =�

[
ξ3 | ξ2 ∈ [0,1],ξ3 ∈

[
1
2
,1
]]

= �

[
ξ3 | ξ3 ∈

[
1
2
,1
]]

=
3
4

with

p31 = �

({
ξ3 ∈

[
0,

1
2

)})
=

1
2

and

p32 = �

({
ξ3 ∈

[
1
2
,1
]})

=
1
2
.

Then the discretized problem reads as
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V := min
{

2x+ y1 +2y2 +
1
2
(z1

1 + z1
2)+

1
2
(z2

1 + z2
2)

}

s.t. x +y1− y2 =
1
2

x +y1− y2 +z1
1− z1

2 =
1
4

x +y1− y2 +z2
1− z2

2 =
3
4

x,y1,y2,z1
1,z

1
2,z

2
1,z

2
2 ≥ 0 .

Also in this case the optimum is achieved for x̃ = 0 with V =
3
4

. Comparing this

value with the optimum V � =
5− ε

6
of the original problem, we see that

V

⎧⎪⎨
⎪⎩
≤V � if ε ≤ 1

2

>V � if ε >
1
2
.

In conclusion, even for a rather simple situation like three stages, randomness in the
right–hand–sides only, and complete fixed recourse, we cannot expect in general
to get a lower bound of the optimum by discretization of the distributions in an
analogous manner as in the two-stage case. �

This example as well as the following considerations are essentially based on
discussions related to an idea, originally due to S. Sen, concerning refinements
of discretizations in order to improve discrete approximations for MSLP prob-
lems. The outcome of these endeavours was reported in Fúsek–Kall–Mayer–Sen–
Siegrist [108].

Obviously, with appropriate successive refinements of partitions X t
ν of the sets

[Ξ 2×·· ·×Ξ t ] ⊇ supp�ζt , t = 2, · · · , t; ν = 1,2, · · ·, we may expect weak conver-
gence of the associated discrete distributions {�ηtX t

ν
} and hence epi-convergence

of the related objective functions of the general MSLP (3.114), as shown by Pen-
nanen [251, 252]. Thus Th. 3.7. (page 222) suggests that a solution could be ap-
proximated by this kind of successive discretization of the distributions. However it
seems difficult to control this procedure since, in difference to the two-stage case,
for the general MSLP we do not have error bounds on the optimal value. According
to Ex. 3.3., even for the much simpler problem
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min{cT
1 x1 +�

T

∑
t=2

cT
t xt(ζt)}

A11x1 = b1

At1x1 +
t

∑
τ=2

Atτxτ(ζτ) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.123)

with complete fixed recourse and only the right–hand–sides being random, we can-
not expect to get at least lower bounds, in general.

Nevertheless, we shall discuss first, for the purpose of defining a fully aggregated
problem instead of the MSLP (3.114), how an arbitrary finite subfiltration F̂ and
the corresponding scenario tree can be generated. Again, we assume the supports
of the stagewise distributions to be bounded. Hence there exist intervals Ξ t ⊂�rt

such that supp�ξt ⊆ Ξ t , t = 2, · · · ,T . Then we proceed as follows:

Subfiltration and the corresponding scenario tree

– With Ω (1) :=Ω and F̂1 := {Ω , /0} define N1 := {1}.
– For the stages ν = 1, · · · ,T −1 repeat:

Let Nν+1 := /0.
Then for each node n in stage ν (i.e. tn = ν) and some rn ≥ 1:
Define a finite set Cn of children of n such that |Cn| = rn and, for any m with
m �= n, tm = tn = ν , that Cm ∩Cn = /0 as well as Cn ∩Nμ = /0 ∀μ ≤ ν holds.
Furthermore, let Nν+1 := Nν+1 ∪Cn and associate individually with the set
Cn := {k(n)1 , · · · ,k(n)rn } a partition of Ξν+1 into subintervals as

Ξν+1 =
rn⋃

l=1

Ξν+1
k(n)l

. (3.124)

– To generate the subfiltration, for t = 2, · · · ,T repeat:
For each n ∈ Nt and hn ∈ Nt−1, its unique parent node, and Ξ t

n the subin-
terval corresponding to node n in the partition of Ξ t associated with Chn , let
Ω (n) :=Ω (hn)∩ξ−1

t [Ξ t
n].

Define the subfiltration F̂ by F̂t := σ{Ω (n) | n ∈ Nt}, t = 2, · · · ,T , with
σ{Ω (n) | n ∈Nt} the σ -algebra generated by the sets Ω (n), n ∈Nt .

– The defining elements of the discretely distributed stochastic process corre-
sponding to the above finite subfiltration, i.e. the realizations ζ̂ n at node n and
their probabilities pn, may be assigned to the nodes as follows:
For any n ∈N \{1} let H (n) = {�1 = 1, · · · , �tn−1, �tn = n} be the history of
node n. By the above construction, each node �ν ∈H (n) corresponds uniquely
to a particular subinterval Ξν

lν of Ξν . Then for the discrete process we choose

the state ζ̂ n at node n and the corresponding probability pn as
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ζ̂ n = �
[
ζtn | ζtn ∈∏tn

ν=2Ξ
ν
�ν

]

pn = �ζtn

({
ζtn ∈∏tn

ν=2Ξ
ν
�ν

})
.

⎫⎪⎬
⎪⎭ (3.125)

Using this discrete process we may then replace the general MSLP (3.114), defined
with respect to the filtration F , by the fully aggregated problem with respect to the
subfiltration F̂ , as represented by the LP (3.118).

Whereas, according to Ex. 3.3., for problem (3.123) we cannot expect to achieve
lower bounds for the optimal value by discretization of the underlying stochastic
process in general, the situation will be better if Assumption 3.1. is modified as
follows:

Assumption 3.5. Let

– only the right–hand–sides bt be random (and linear affine in ζt );
– the distributions of ξt be bounded within some intervals Ξ t ⊂�rt ,

i.e. supp�ξt ⊆ Ξ t ;
– the random vectors ξ2, · · · ,ξT be stochastically independent;
– the Att be complete fixed recourse matrices ∀t.
With H (n) = {�1 = 1, · · · , �tn−1, �tn = n} the history of node n as before, the as-
sumed stochastic independence of ξ2, · · · ,ξT implies the distribution (3.125) to be
modified to

ζ̂ n = �
[
ζtn | ζtn ∈∏tn

ν=2Ξ
ν
�ν

]

= �

⎡
⎢⎣
ξ2 | ξν ∈ Ξν

�ν
, ν = 2, · · · , tn

...
...

ξtn | ξν ∈ Ξν
�ν
, ν = 2, · · · , tn

⎤
⎥⎦

=

⎛
⎜⎝
�[ξ2 | ξ2 ∈ Ξ 2

�2
]

...
�[ξtn | ξtn ∈ Ξ tn

�tn
]

⎞
⎟⎠

pn = �ζtn

({
ζtn ∈∏tn

ν=2Ξ
ν
�ν

})
=

tn

∏
ν=2
�ξν (Ξ

ν
�ν ) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.126)

Hence we replace problem (3.123) by the fully aggregated problem

min ∑
m∈N

pmcT
tmxm

∑
m∈H (n)

Atntmxm = btn(ζ̂ n) ∀n ∈N

xm ≥ 0 ∀m ∈N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.127)

using the distribution (3.126). Then we get
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Lemma 3.17. Let problem (3.123) satisfy Assumption 3.5.. Then for any subfiltra-
tion F̂ constructed as above, the optimal value of the aggregated problem (3.127)
is a lower bound of the optimum in (3.123).

Proof: It is well known that problem (3.123) can be formulated as a recursive se-
quence of optimization problems (see Olsen [247] and Rockafellar–Wets [286]). For
this purpose we use the following notation:

zt := {x1, · · · ,xt} for the sequence of decision vectors up to stage t;
ζt := (ξ2, · · · ,ξt) for the state variable at stage t, as before;
ζ̂t for any realization of ζt ;
Ξ t

n ⊆ Ξ t for node n in stage t due to (3.124), and ξ̄ n
t :=�[ξt | ξt ∈ Ξ t

n].

Now the above mentioned recursion may be formulated as follows:

Let ΦT+1(zT ; ζ̂T )≡ 0 ∀zT , ζ̂T . Determine iteratively for t = T,T −1, · · · ,2, and for
all nodes n in stage tn = t, using the assumed stagewise independence by applying
Fubini’s theorem (see Halmos [131]),

rt(zt−1; ζ̂t) := min
xt
{cT

t xt +Φt+1(zt ; ζ̂t)}

s.t. Attxt = bt(ζ̂t)−
t−1

∑
τ=1

Atτxτ , xt ≥ 0

Φt(zt−1; ζ̂t−1) := �[rt(zt−1;ζt) | ζt−1 = ζ̂t−1]

= �ξt [rt(zt−1; ζ̂t−1,ξt)]

= ∑
ν∈Chn

�ξt (Ξ
t
ν)�ξt [r(zt−1; ζ̂t−1,ξt) | ξt ∈ Ξ t

ν ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.128)

which finally yields

r1 = min
x1
{cT

1 x1 +Φ2(x1; ζ̂1)}

s.t. A11x1 = b1(ζ̂1)≡ b1, x1 ≥ 0 ,

the optimal value of (3.123), with ζ̂1 being the realization of ξ1 ≡ const due to the
fact that in the first stage there is only one (deterministic) state. The notation “�ξt ”
just indicates that the integral is taken with respect to�ξt only.

If Φt+1(zt , ζ̂t) is jointly convex in (zt , ζ̂t), as is trivially true for ΦT+1, then it
follows immediately, that

rt(zt−1; ζ̂t) = min
xt
{cT

t xt +Φt+1(zt ; ζ̂t)}

s.t. Attxt = bt(ζ̂t)−
t−1

∑
τ=1

Atτxτ , xt ≥ 0
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is jointly convex in (zt−1; ζ̂t) (recall that bt(ζ̂t) is linear affine in ζ̂t ). Thus, from
(3.128) follows that

Φt(zt−1; ζ̂t−1) =�ξt [rt(zt−1; ζ̂t−1,ξt)]

is jointly convex in (zt−1; ζ̂t−1) as well. Hence, by Jensen’s inequality holds

rt(zt−1; ζ̂t−1,�[ξt ])≤�ξt [rt(zt−1; ζ̂t−1,ξt)] =Φt(zt−1; ζ̂t−1) . (3.129)

In analogy to (3.128), for the discretized problem (3.127) withΨT+1 ≡ 0 we define
for t = T,T −1, · · · ,2, and for all nodes n in stage tn = t, the recursion

qt(zt−1; ζ̂t−1, ξ̄ n
t ) := min

xt
{cT

t xt +Ψt+1(zt ; ζ̂t−1, ξ̄ n
t )}

s.t. Attxt = bt(ζ̂t−1, ξ̄ n
t )−

t−1

∑
τ=1

Atτxτ , xt ≥ 0

Ψt(zt−1; ζ̂t−1) := ∑
ν∈Chn

�ξt (Ξ
t
ν)qt(zt−1; ζ̂t−1, ξ̄ νt ) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.130)

we’ll get
q1 := min

x1
{cT

1 x1 +Ψ2(x1; ζ̂1)}

s.t. A11x1 = b1(ζ̂1)≡ b1, x1 ≥ 0

as the optimal value of (3.127).
Provided that Ψt+1(zt ; ζ̂t) ≤ Φt+1(zt ; ζ̂t), as it is obviously the case for t = T ,

we conclude from (3.128) and (3.130), using Jensen’s inequality (3.129) (for condi-
tional expectations), that

qt(zt−1; ζ̂t−1, ξ̄ n
t ) ≤ rt(zt−1; ζ̂t−1, ξ̄ n

t )

≤ �ξt [rt(zt−1; ζ̂t−1,ξt) | ξt ∈ Ξ t
n]

and hence

Ψt(zt−1; ζ̂t−1) := ∑
ν∈Chn

�ξt (Ξ
t
ν)qt(zt−1; ζ̂t−1, ξ̄ νt )

≤ ∑
ν∈Chn

�ξt (Ξ
t
ν)�ξt [rt(zt−1; ζ̂t−1,ξt) | ξt ∈ Ξ t

ν ]

= Φt(zt−1; ζ̂t−1),

such that finally

q1 := min
x1∈B
{cT

1 x1 +Ψ2(x1; ζ̂1)} ≤ min
x1∈B
{cT

1 x1 +Φ2(x1; ζ̂1)}=: r1
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with B := {x1 | A11x1 = b1(ζ̂1)≡ b1, x1 ≥ 0}. �

As seen above, with Assumption 3.5., and observing Assumption 3.4. when gen-
erating a finite subfiltration F̂ and the corresponding scenario tree for problem
(3.123), as described on page 272, we get the fully aggregated problem (see (3.127))

min ∑
m∈N

pmcT
tmxm

∑
m∈H (n)

Atntmxm = bn ∀n ∈N

xm ≥ 0 ∀m ∈N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.131)

with bn = btn(ζ̂ n) and pn > 0 ∀n ∈N .

As the dual LP of (3.131) we have

max ∑
n∈N

bT
n un

∑
n∈G (m)

AT
tntmun ≤ pmctm ∀m ∈N .

⎫⎪⎪⎬
⎪⎪⎭

(3.132)

With the substitution un = pnπn (3.132) is equivalent to

max ∑
n∈N

pnbT
nπn

∑
n∈G (m)

qm→nAT
tntmπn ≤ ctm ∀m ∈N

⎫⎪⎪⎬
⎪⎪⎭

(3.133)

with qm→n the conditional probability to reach node n given node m.
For {x̂m, π̂n} to be a primal-dual pair of optimal solutions, according to Chapter

1, Prop. 1.12., the complementarity conditions

(ctm − ∑
n∈G (m)

qm→nAT
tntm π̂n)

Tx̂m = 0 ∀m ∈N (3.134)

have to hold (with qm→m = 1).

Discretization under special assumptions

Under Assumption 3.5. on problem (3.123) and Assumption 3.4. on the discretized
distributions (implying positive probabilities for all scenarios generated) we shall
discuss now, how a successive refinement of the partitions and hence a correspond-
ingly growing scenario tree can be designed, such that the approximation of (3.123)
by the generated problem (3.131) is improved.

To begin with, let F̂ be the coarse subfiltration with each F̂t being generated
by the elementary events {ξ−1

τ [Ξτ ], /0 | τ = 1, · · · , t} i.e. by {Ω , /0} . Then for node
n = t holds tn = n = t and Ξ tn

n = Ξ t , such that by (3.126) follows ζ̂ n = ζ̂ t =�[ζt ],
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yielding the aggregated problem

min
T

∑
t=1

ctxt

t

∑
τ=1

Atτxτ = bt(ζ̂ t) ∀t
xt ≥ 0 ∀t .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.135)

The corresponding basic scenario tree is shown in Fig. 3.8.

1 2 t-1 t t+1 t+2 T

Fig. 3.8 Basic scenario tree.

In the coarse subfiltration, F̂t was generated by {Ω , /0} ∀t ∈ {1, · · · ,T}. Let this sub-
filtration be refined into F̃ by partitioning Ξ t for a particular t > 1 into two subin-
tervals Ξ t

1,Ξ
t
2 (whereas in all other stages the trivial partitions {Ξ s, s �= t}remain

unchanged). Then it follows that

F̃s is generated by

⎧⎨
⎩
{Ω , /0} for s < t
{Ω ,ξ−1

t [Ξ t
1],ξ

−1
t [Ξ t

2], /0} for s = t
{Ω ,ξ−1

t [Ξ t
1],ξ

−1
t [Ξ t

2],ξ
−1
s [Ξ s], /0} for s > t .

The modification of the scenario tree, corresponding to splitting node n= t, is shown
in Fig. 3.9.

1 2 t-1

t t+1 t+2 T

t t+1 t+2 T

A

B

Fig. 3.9 Basic scenario tree: First split.

Obviously we have now two branches from stage t onwards, corresponding to
the subintervals Ξ t

1 and Ξ t
2 of the partition of Ξ t . Denoting the nodes of the two

scenarios as (t,A), t = 1, · · · ,T , and (t,B), t = 1, · · · ,T , the respective components
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ζ̂ (s,A)
τ of ζ̂ (s,A), s = 2, · · · ,T, are, due to (3.126), determined as

ζ̂ (s,A)
τ =

{
�[ξτ ] for τ �= t
�[ξt | ξt ∈ Ξ t

1] for τ = t ,

and analogously for ζ̂ (s,B), s = 2, · · · ,T, follows

ζ̂ (s,B)
τ =

{
�[ξτ ] for τ �= t
�[ξt | ξt ∈ Ξ t

2] for τ = t .

The corresponding node probabilities are

p(s,A) =
{

1 if s < t
�ξt (Ξ

t
1) if s≥ t and p(s,B) =

{
1 if s < t
�ξt (Ξ

t
2) if s≥ t .

Hence the new aggregated problem is

min

{
t−1

∑
τ=1

cT
τ x(τ,A) +

T

∑
τ=t

cT
τ
[
p(τ,A)x(τ,A) + p(τ,B)x(τ,B)

]}

s

∑
τ=1

Asτx(τ,A) = bs(ζ̂ (s,A)) ∀s
s

∑
τ=1

Asτx(τ,B) = bs(ζ̂ (s,B)) ∀s≥ t

x(s,B) = x(s,A) ∀s < t

x(s,A),x(s,B) ≥ 0 ∀s .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.136)

Assume now that T = (N ,A ) is the scenario tree associated with problem
(3.131). To split in this tree some node i > 1 into the nodes i1 and i2, or equiv-
alently to subdivide the corresponding Ξ ti

i ⊆ Ξ ti into two subintervals Ξ ti
i1

and Ξ ti
i2

(observing Assumption 3.4.), we have to run the following node splitting procedure:

Cut and paste

S1 Partition Ξ ti
i into Ξ ti

i1
and Ξ ti

i2
; compute

p̃iν =�ξti
(Ξ ti

iν ), ν = 1,2,

rν =
p̃iν
p̂i

, ν = 1,2, with p̂i =�ξti
(Ξ ti

i ),

biν =�ξti
[b̃i(ξti) | ξti ∈ Ξ ti

iν ], ν = 1,2, with b̃i(ξti) := bti(ζ̂ hi ,ξti),

such that r1 + r2 = 1 and r1bi1 + r2bi2 = bi .
S2 Let T1 = (N1,A1) with N1 ⊂ N , A1 ⊂ A be the maximal subtree of

T = (N ,A ) rooted at node i ∈N .
Let T2 = (N2,A2) be a copy of T1, with its root denoted as j �∈N and all
other node labels modified such that N2∩N = /0, A2∩A = /0.
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Assign to the nodes of T2 the same quantities as associated with the corre-
sponding nodes of T1.

S3 With H (i) the history of node i in T , and H̃ (n) the history within Tν for
n ∈Nν , ν = 1,2 respectively, update the values of the subtrees T1 and T2 as
follows:

T1 : Set b(1)i := bi1 , and for n ∈ G (i)\{i}, the future of i in T1, let
b(1)n := btn(ζ̂ n), with ζ̂ n computed according to (3.126), with the his-
tory of n being composed as {H (hi), i,H̃ (n)};
multiply the node probabilities by r1.

T2 : Set b(2)j = bi2 , and for m ∈ G ( j)\{ j}, the future of j in T2, let

b(2)m := btm(ζ̂m), with ζ̂m computed according to (3.126), with the
history of m being composed as {H (hi), j,H̃ (m)}, implying that
b(2)m equals the right–hand–side for the corresponding node in N1;
multiply the node probabilities by r2.
(Observe that H (hi) = H (h j) will be enforced in step S4.)

S4 Introduce a new edge from the parent node hi of i to the node j, the root of
T2, thus pasting T2 to T and yielding the new tree.

T + = (N +,A +), with
N + = N ∪N2 and
A + = A ∪A2∪{(hi, j)} .

In Fig. 3.10 one cycle of this procedure is illustrated.

1 2

i

hi

j

Fig. 3.10 Cut and paste.

It is easy to see that with the above procedure of cut and paste the optimal values
of the related primal LP’s are non-decreasing.

Proposition 3.8. With V being the optimal value of the fully aggregated problem
(3.131) corresponding to the scenario tree T , and V+ being the optimal value for
the corresponding LP on T + as generated by cut and paste, it follows that V+ ≥V .

Proof: Let {un, n ∈N } be a solution of the dual program (3.132) associated with
T . To each node n ∈N2 assign the vector un as determined for the corresponding
node n ∈N1 .
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Now define for n ∈N +, with rν from step S1,

ũn :=

⎧⎨
⎩

r1un if n ∈N1
r2un if n ∈N2

un else.

In order to show that {ũn, n ∈ N +} is a feasible solution to the dual program
(3.132) associated with T +, we have to distinguish the following cases:

1) m ∈N1

∑
n∈G (m)

AT
tntm ũn = r1

(
∑

n∈G (m)

AT
tntmun

)

≤ r1 pmctm = p̃mctm

with p̃m as defined in step S3 for m ∈N1.
2) m ∈N2

The analogous argument holds, with r2 instead of r1 .
3) m ∈N + \ (N1∪N2) =: ΔN

∑
n∈G (m)

AT
tntm ũn =

= ∑
n∈G (m)∩ΔN

AT
tntmun + ∑

n∈G (m)∩N1

(r1 + r2)AT
tntmun

≤ pmctm .

Hence, {ũn, n∈N +} is feasible for the dual program (3.132) corresponding to T +

and, with the right–hand–sides b̃n updated according to step S3, yields the objective
value

∑
n∈N +

b̃T
n ũn = ∑

n∈ΔN

bT
n un + ∑

m∈N1

(r1b(1)m + r2b(2)m )Tun

= ∑
n∈N

bT
n un .

This shows that the objective of the feasible solution {ũn, n ∈N +} for T + coin-
cides with the optimal value for T , such that V+ ≥V obviously has to hold. �

Corollary 3.4. Let V̂ be the optimal value of problem (3.123). If Assumption 3.5.
is satisfied, then each method, splitting succesively any nodes (except the root) in
the scenario tree according to the cut and paste procedure, converges to a value
V � ≤ V̂ .

Proof: Under the given assumptions, the optimal objective values of the aggregated
problems are

– monotonically nondecreasing according to Prop. 3.8., and
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– they are lower bounds of the optimal value of (3.123) due to Lemma 3.17. �

Although this cut and paste procedure seems to have a promising behaviour, we are
still left with two open questions:

1) Is there any criterion (even a heuristic one, maybe) for deciding on the next
node to be split?

2) Given this criterion, may it happen that for the limit V � in Corollary 3.4.
holds V � < V̂ ?

As to the first question, for a fixed node n > 1 let {x̂m | m ∈H (n)\{n}} and {π̂m |
m ∈ G (n)} be parts of solutions of (3.131) and (3.133), respectively, and consider
the LP

ϕn(bn) := min(ctn − ∑
m∈G (n)

qn→mAT
tmtn π̂m)

Txn

Atntnxn = bn− ∑
m∈H (n)\{n}

Atntm x̂m

xn ≥ 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.137)

Since {x̂k; k ∈N } solves (3.131), in particular x̂n is feasible in (3.137). Further-
more, the {π̂�; � ∈ N } being optimal in (3.133) and x̂n ≥ 0 due to (3.137), we
conclude, observing (3.134), that

0≤ (ctn − ∑
m∈G (n)

qn→mAT
tmtn π̂m)

Tx̂n = 0 ,

showing that x̂n with the optimal value ϕn(bn) = 0 solves the LP (3.137). Using
(3.126) we have that ζ̂ n = (ζ̂ hn ,�[ξtn | ξtn ∈ Ξ tn

n ]) . Replacing bn = btn(ζ̂ n) by the
random b̃n(ξtn) := btn(ζ̂ hn ,ξtn), it is obvious that the optimal value

ϕn(b̃n(ξtn)) := min(ctn − ∑
m∈G (n)

qn→mAT
tmtn π̂m)

Txn

Atntnxn = b̃n(ξtn)− ∑
m∈H (n)\{n}

Atntm x̂m

xn ≥ 0 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.138)

is a convex function in ξtn , such that due to Jensen

�[ϕn(b̃n(ξtn)) | ξtn ∈ Ξ tn
n ] ≥ ϕn(b̃n(�[ξtn | ξtn ∈ Ξ tn

n ])

= ϕn(btn(ζ̂ hn ,�[ξtn | ξtn ∈ Ξ tn
n ])

= ϕn(btn(ζ̂ n))
= ϕn(bn) = 0 ,

and we have the lower bound ln = 0 for �[ϕn(b̃n(ξtn)) | ξtn ∈ Ξ tn
n ] . On the other

hand, according to Lemma 3.7 (on page 213), we can determine the E–M upper
bound un for �[ϕn(b̃n(ξtn)) | ξtn ∈ Ξ tn

n ] . If, with some prescribed tolerance Δ > 0,
the splitting criterion
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un− ln > Δ (3.139)

is satisfied, we may decide to split node n as described in the cut and paste proce-
dure, in order to increase the lower bound and thereby to improve the approximative
solution. Observe however, that this criterion (un− ln > Δ ) to increase the lower
bound and thereby to improve the solution in a particular node, is based on a heuris-
tic argument. But it is one positive answer to the first question, at least. Moreover,
test runs with this criterion did work out surprisingly well.

To come to the second question, consider the following example:

Example 3.4. Assume the following problem to be given:

min{x1 + x2 +�[y1 + y2 + z1 + z2]}
x1− x2 = 0

x1 +2x2 + 3y1−3y2 = ξ2
x1 +3x2 + y1− y2 + 4z1−4z2 = ξ3

xi,yi,zi ≥ 0 ,

where ξ2 ∼U [0,6] and ξ3 ∼U [1,1.5], with U being the uniform distribution. The
fully aggregated problem with �[ξ2] = 3 and �[ξ3] = 1.25 as right–hand–sides is
easily seen to have the optimal solution

(x̂1, x̂2, ŷ1, ŷ2, ẑ1, ẑ2) = (0,0,1,0,
1
16

,0)

with the optimal value

V =
17
16

and the dual solution

π̂T =

(
1
4
,

1
4
,

1
4

)
.

Considering problem (3.138) for n = 2, we find that ϕ2(b̃2(ξt2))≡ 0 for ξ2 ∈ [0,6],
i.e. ϕ2 is linear on Ξ 2 implying that u2− l2 = 0. Analogously ϕ3(b̃3(ξt3)) ≡ 0 for
ξ3 ∈ [1,1.5] such that also ϕ3 is linear on Ξ 3 and therefore u3− l3 = 0. Hence the
above splitting criterion (3.139) cannot be satisfied, and the procedure would stop
with the above solution, with V � =V .

However, subdividing Ξ 2 = [0,6] into the intervals [0,3) and [3,6] and solving
the corresponding LP, would yield the optimal value

V+ =
18
16

>V ,

and the same result would be achieved with splitting, instead of Ξ 2, the interval
Ξ 3 = [1,1.5] into [1,1.25) and [1.25,1.5]. �

Hence, in this example the procedure, using the above splitting criterion (3.139),
had to be finished with un− ln = 0 for all nodes n > 1, although there was a substan-
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tial difference V̂ −V � > 0. This fact could (and can in general) only be discovered
by analyzing (sub)sets of nodes simultaneously in detail. In other words: For the
approach using the splitting criterion (3.139) so far there is not known any sim-
ple stopping rule stating the (near-)optimality of the present iterative solution for
problem (3.123).
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