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Preface

The beginning of stochastic programming, and in particular stochastic linear pro-
gramming (SLP), dates back to the 50’s and early 60’s of the last century. Pioneers
who—at that time—contributed to the field, either by identifying SLP problems
in particular applications, or by formulating various model types and solution ap-
proaches for dealing adequately with linear programs containing random variables
in their right–hand–side, their technology matrix, and/or their objective’s gradient,
have been among others (in alphabetical order):

E.M.L. Beale [12], proposing a quadratic programming approach to solve special
simple recourse stochastic programs;
A. Charnes and W.W. Cooper [41], introducing a particular stochastic program with
chance constraints;
G.B. Dantzig [49], formulating the general problem of linear programming with un-
certain data and
G.B. Dantzig and A. Madansky [53], discussing at an early stage the possibility to
solve particular two-stage stochastic linear programs;
G. Tintner [326], considering stochastic linear programming as an appropriate ap-
proach to model particular agricultural applications; and
C. van de Panne and W. Popp [333], considering a cattle feed problem modeled with
probabilistic constraints.

In addition we should mention just a few results and methods achieved be-
fore 1963, which were not developed in connection with stochastic programming,
but nevertheless turned out to play an essential role in various areas of our field.
One instance is the Brunn-Minkowski inequality based on the investigations of H.
Brunn [36] in 1887 and H. Minkowski [235] in 1897, which comes up in connec-
tion with convexity statements for probabilistic constraints, as mentioned e.g. in
A. Prékopa [266]. Furthermore, this applies in particular to the discussion about
bounds on distribution functions, based on inequalities published by G. Boole in
1854 and by C.E. Bonferroni in 1937 (for the references see A. Prékopa [266]),
and on the other hand, about bounds on the expectation of a convex function of a
random variable, leading to a lower bound by the inequality of J.L. Jensen [148],
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and to the Edmundson–Madansky upper bound due to H.P. Edmundson [83] and A.
Madansky [210].

Among the concepts of solution approaches, developed until 1963 for linear or
nonlinear programming problems, the following ones, in part after appropriate mod-
ifications, still serve as basic tools for dealing with SLP problems:

Besides Dantzig’s simplex method and the Dantzig–Wolfe decomposition, de-
scribed in detail in G.B. Dantzig [50], the dual decomposition proposed by
J.F. Benders [14], cutting plane methods as introduced by J.E. Kelley [180], and
feasible direction methods proposed and discussed in detail by G. Zoutendijk [355],
may be recognized even within today’s solution methods for various SLP prob-
lems. Of course, these methods and in particular their implementations have been
revised and improved meanwhile, and in addition we know of many new solution
approaches, some of which will be dealt with in this book.

The aim of this volume is to draw a bow from solution methods of (determin-
istic) mathematical programming, being of use in SLP as well, through theoretical
properties of various SLP problems which suggest in many cases the design of par-
ticular solution approaches, to solvers, understood as implemented algorithms for
the solution of the corresponding SLP problems.

Obviously we are far from giving a complete picture on the present knowledge
and computational possibilities in SLP. First we had to omit the area of stochastic
integer programming (SILP), since following the above concept would have im-
plied to give first a survey on those integer programming methods used in SILP;
this would go beyond the limits of this volume. However the reader may get a first
flavour of SILP by having a look for instance into the articles of W.K. Klein Han-
eveld, L. Stougie, and M.H. van der Vlerk [189], W. Römisch and R. Schultz [288],
M.H. van der Vlerk [335], and the recent survey of S. Sen [301].

And, as the second restriction, in presenting detailed descriptions we have essen-
tially confined ourselves to those computational methods for solving SLP problems
belonging to one of the following categories:
Either information on the numerical efficiency of a corresponding solver is reported
in the literature based on reasonable test sets (not just three examples or less!) and
the solver is publicly available;
or else, corresponding solvers have been attached to our model management system
SLP-IOR, either implemented by ourselves or else provided by their authors, such
that we were able to gain computational experience on the methods presented, based
on running the corresponding solvers on randomly generated test batteries of SLP’s
with various characteristics like problem size, matrix entries density, probability
distribution, range and sign of problem data, and some others.

Finally, we owe thanks to many colleagues for either providing us with their
solvers to link them to SLP-IOR, or for their support in implementing their methods
by ourselves. Further, we gratefully acknowledge the critical comments of Simon
Siegrist at our Institute. Obviously, the remaining errors are the sole responsibility
of the authors. Last but not least we are indebted to the publisher for an excellent co-
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operation. This applies in particular to the publisher’s representative, Gary Folven,
to whom we are also greatly obliged for his patience.

Zürich, Peter Kall
September 2004 János Mayer

Comments on the 2nd edition

Since fall 2004, when we finished the 1st edition of this volume, the scope of fea-
tures for the field of stochastic optimization has broadened substantially, extending
the variety of model types considered and the corresponding solvers designed, as
well as spreading the areas of application and the related models.

Just to mention a few of these recent activities, we list the following topics:

– Risk measures and dominance concepts.
There is an ongoing discussion on using various kinds of risk measures as well
as stochastic dominance concepts within stochastic optimization models. Par-
ticular concepts of dealing with risk are for instance the ICC, the Integrated
Chance Constraints (joint as well as individual ICC) due to W.K. Klein Han-
eveld and M.H. van der Vlerk [191]. Furthermore, CVaR, the Conditional
Value at Risk, as analyzed e.g. in T.R. Rockafellar and S.P. Uryasev [283],
is increasingly included into stochastic optimization problems, either within
constraints or else (additively) in the objective. On the other side, stochastic
dominance of first or higher order as discussed for instance in D. Dentcheva
and A. Ruszczyński [66] receives more attention in modeling risky situations.
More generally, the class of polyhedral risk measures, favourable for stochas-
tic programs with risk measures in the objective, is analyzed in A. Eichhorn
and W. Römisch [84].

— Increasing consideration of risk in applications.
The above mentioned risk measures and dominance concepts got a wider im-
pact in modeling stochastic programs for real situations in various areas, thus
aiming towards more realistic results for the respective problems.
As examples for using risk measures in stochastic programming models
within finance we just mention the investigations of Klein Haneveld – Streut-
ker – Van der Vlerk [190] dealing with ICC in ALM (asset liability man-
agement), A. Künzi-Bay [197] aiming for CVaR minimization in multi-
stage ALM models for Swiss pension funds, Mansini – Ogryczak – Sper-
anza [215] involving the CVaR in portfolio optimization, or Dentcheva and
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Ruszczyński [67] considering portfolio optimization with dominance con-
straints.
To give just one example of risk considerations in energy problems, we men-
tion the thesis of M. Densing [64] discussing a coherent multi-period risk
measure, as generalization of the one-period CVaR, to be used for a hydro-
electric power plant dispatch problem incorporated into a multi-stage stochas-
tic program.
Another broad area of applications is concerned with comparing efficiency
among finitely many similar ventures called DMU (decision making unit)
and modelled in the frame of DEA, i.e. Data Envelopment Analysis. Origi-
nally stated as models combining inputs and outputs by deterministic linear
constraints for any particular DMU to check whether it is efficient (non dom-
inated), this setup became questionable for various applications, and the first
DEA models incorporating—at least partly—chance conctraints were dis-
cussed (where obviously efficiency with respect to chance constraints had to
be defined appropriately). For this setup there are many references; a recent
one is e.g. Talluri – Narasimhan – Nair [323]. A more general view was taken
in the thesis of S. von Bergen [339], considering to model the case of stochas-
tic outputs via constraints on special risk functions, which encompass chance
constraints, ICC constraints and CVaR constraints, at least. Efficiency was
redefined, taking into account the risk function formulation of the model con-
straints, yielding conditions being verifiable by solving two-phase nonlinear
programs.

— Growing need for stochastic optimization in engineering
Formerly the attention of engineers regarding randomness was focused mainly
on analyzing reliability of systems or structures. Meanwhile, an increasing
interest in stochastic optimization models and methods can be observed in
various fields of engineering, like for instance in structural optimization or in
robot control. The reader may get an impression of the particular approaches
in this area of applications in the recent volume of K. Marti [225].

— Tools for modelling SLP problems and links to solvers
In principle there are two kinds of modelling tools:

– Systems, controlled by programming languages, containing declarations
of data structures and model types, typically used in SLP, including the
syntax to specify the particular problem features (like various single-
stage versions, multi-stage recourse including the recourse type, etc.)
and to manipulate probability distributions used in the current model on
the one hand, and on the other hand

– menu-driven systems, for instance with pull down menus, allowing to
declare model types and data structures, to edit data (arrays), to specify
the random model data and edit the corresponding distributions, etc.

As to the first variant, following earlier work of H.J. Gassmann, K. Fourer, et
al. on languages usable in addition to AMPL (A Mathematical Programming
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Language of Fourer – Gay – Kernighan [97]), there have been recently some
further attempts as e.g. the paper of Colombo – Grothey – Hogg – Wooksend
– Gondzio [45] and the language StAMPL (A filtration-oriented modeling
tool for multistage stochastic recourse problems) of Fourer – Lopes [99].
Concerning the second variant, we have continued to work on our system
SLP-IOR, extending its features. In this context, in his thesis M.T. Bielser [19]
designed a programming language SEAL (Stochastic Extensions for Alge-
braic Languages) which is aimed to create (as its output) the information nec-
essary to supply to SLP-IOR as input for starting up the system.

Fortunately it is not necessary to deal in detail with all these results (and others)
—although containing very interesting considerations—in this edition, since the ma-
terial presented should be sufficient to follow most of the recent developments.

Following a suggestion of F.S. Hillier, we have added exercises at the end of
several sections, where we thought it could be helpful. At the end of the volume the
reader finds hints for dealing with them in the Chapter Exercises: Hints for answers.

In this context we considered it as meaningful to provide access for the reader to
the features of our model management system; we therefore prepared an executable
version “SLP-IOR” (student version) for open access (download), for which on the
COSP web page http://stoprog.org (see section Software & TestSets) the
corresponding link can be found. Questions or comments concerning this software
are welcome to mayer@ior.uzh.ch.

Finally, we are greatly indebted

− to many colleagues for pointing out various mistakes and/or inaccuracies in
the system SLP-IOR as well as in the 1st edition of this book,

− to Fred S. Hillier, the editor of this series of books, for his encouragement to
prepare the 2nd edition of this volume,

− to Neil Levine and his colleagues for their support on behalf of the publisher,
− and not least to Silvia von Bergen, formerly assistant at our Institute, for the

careful reading of parts of the manuscript and for several helpful comments.

Nevertheless, the sole responsibility for any inconsistencies lies with the authors.

Zürich, P. K.
July 2010 J. M.
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Notations

One–stage models: Joint chance constraints

A,B,C, · · · : arrays (usually given real matrices)

a,b,c, · · · : arrays (usually given real vectors)

x,y,z, · · · : arrays (usually real or integer variable vectors)

(Ω ,F ,P) : probability space

� : set of natural numbers

(�r,�r) : �
r endowed with the Borel σ -algebra�r

ξ : Ω →�r : random vector, i.e. a Borel measurable mapping,
such that ξ−1[M] ∈F ∀M ∈�r,
inducing the probability measure�ξ on�r

according to�ξ (M) = P(ξ−1[M]) ∀M ∈�r

T (ξ ), h(ξ ) : random array and random vector, respectively,
defined as:

T (·) :�r→�m2×n1 : T (ξ ) = T +
r

∑
j=1

T j ξ j ; T, T j ∈�m2×n1 fix

h(·) :�r→�m2 : h(ξ ) = h+
r

∑
j=1

h j ξ j ; h, h j ∈�m2 fix

ξ : expectation

�ξ [ξ ] =
∫
�

r ξ�ξ (dξ ) =
∫
Ω
ξ (ω)dP

T , h : expectations�ξ [T (ξ )] = T (ξ ) and
�ξ [h(ξ )] = h(ξ ), respectively

ξ̂ : realization of random ξ

xvii
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T̂ , ĥ : realizations T (ξ̂ ), h(ξ̂ ), respectively

One–stage models: Separate chance constraints

ti(·) : i-th row of T (·)
hi(·) : i-th component of h(·)

Two–stage recourse models

W (ξ ), q(ξ ) : random array and random vector, respectively,
defined as:

W (·) :�r→�m2×n2 : W (ξ ) =W +
r

∑
j=1

W j ξ j ; W, W j ∈�m2×n2

q(·) :�r→�n2 : q(ξ ) = q+
r

∑
j=1

q j ξ j ; q, q j ∈�n2

W , q : expectations�ξ [W (ξ )] =W (ξ ) and
�ξ [q(ξ )] = q(ξ ), respectively

Λ , m̂Λ (ξ ) : m̂Λ (ξ ) := ∏
k∈Λ

ξk for Λ ⊂ {1, · · · ,r}, (m̂ /0(ξ )≡ 1)

μΛ : μΛ :=
∫
Ξ

m̂Λ (ξ )�ξ (dξ ) , ∀Λ , joint mixed moments

Multi–stage recourse models

ξ : Ω →�R : random vector ξ = (ξ 2, · · · ,ξ T ) with

ξt : Ω →�rt , t = 2, · · · ,T and
T

∑
t=2

rt = R

ζt : Ω →�Rt : the state of the process at stage t, defined as
random vector ζt = (ξ 2, · · · ,ξ t), t ≥ 2, or else

ζt = (η1, · · · ,ηRt ) with Rt =
t

∑
τ=2

rτ , with the

corresponding marginal distribution of ξ

At τ(·) :�Rt →�mt×nτ : At τ(ζt) = At τ +
t

∑
κ=2

Rκ

∑
ν=Rκ−1+1

At τ ν ην ,

where At τ , At τ ν ∈�mt×nτ and R1 = 0,
with 1≤ τ ≤ t and 2≤ t ≤ T

bt(·) :�Rt →�mt : bt(ζt) = bt +
t

∑
κ=2

Rκ

∑
ν=Rκ−1+1

bt ν ην ,

where bt , bt ν ∈�mt and 2≤ t ≤ T

ct(·) :�Rt →�nt : ct(ζt) = ct +
t

∑
κ=2

Rκ

∑
ν=Rκ−1+1

ct ν ην ,
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where ct , ct ν ∈�nt and 2≤ t ≤ T

Multi–stage recourse models: Discrete distribution

ξ : Ω →�R : random vector with discrete distribution
{(ξ̂ s,qs);s = 1, · · · ,S}, i.e.
scenarios ξ̂ s = (ξ̂ s

2 , · · · , ξ̂ s
T ) = (η̂ s

1 , · · · , η̂ s
R)

with�ξ (ξ = ξ̂ s) = qs, s ∈S := {1, · · · ,S}
ζt : Ω →�Rt : discrete set {ζ̂ s

t = (ξ̂ s
2 , · · · , ξ̂ s

t ); s ∈S } of
states defining kt ≥ 1 different equivalence
classes Uν

t ⊆S , with si,s j ∈Uν
t ⇔ ζ̂ si

t = ζ̂ s j
t

and an associated set of different states at
stage t which may be defined by
St := {ρ | ρ minimal in one of the Uν

t }
as {ζ̂ ρ

t | ρ ∈St} with the distribution
�ξ (ζt = ζ̂ ρ

t ) = πt ρ = ∑
s∈S
{qs | ζ̂ s

t = ζ̂ ρ
t }

(see Fig. 1 with e.g. S2 = {1,6,11})
Multi–stage recourse models: The scenario tree

(N ,A ) : tree with nodes N ⊂�, where n = 1 is the

(unique) root and |N |=
T

∑
t=2
|St |+1

tn : the stage to which n ∈N belongs;
there is a bijection

(t{·},ρ(·)) : {N −{1}}→
T⋃

t=2

{(t,St)}
such that n↔ (tn,ρ(n)), n≥ 2;
hence we assign with any node n≥ 2

ζ̂ n : ζ̂ n = ζ̂ ρ(n)
tn with {ζ̂ ρ(n)

tn , ρ(n) ∈Stn} uniquely
determined by n ∈N (state in node n)

D(t)⊂N : set of nodes in stage t, 1≤ t ≤ T

hn : the parent node of node n ∈N , n≥ 2
(immediate predecessor)

H (n)⊂N : set of nodes in the path from n ∈N to the root,
ordered by stages, including n (history of n)

S (n)⊂ {1, · · · ,S} : S (n) = {s ∈S | ζ̂ s
tn = ζ̂ n}, i.e. the index set

of those scenarios, for which the scenario path
contains n ∈N . S (n) and the related set of
scenarios are called the scenario bundle of
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the corresponding node n

pn : probability of S (n):
pn =�ξ (ζtn = ζ̂ n) = πtn ρ(n)

C (n)⊂N : set of children (immediate successors) of n

Gs(n)⊆N : future of node n along scenario s ∈S (n),
including n (and hence Gs(n) = /0 if s �∈S (n))

G (n)⊆N : G (n) =
⋃

s∈S (n)

Gs(n), the future of n ∈N
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Fig. 1 Scenario tree: Assigning states to nodes.



Chapter 1

Basics

1.1 Introduction

Linear programs have been studied in many aspects during the last 60 years. They
have shown to be appropriate models for a wide variety of practical problems and, at
the same time, they became numerically tractable even for very large scale instances.
As standard formulation of a linear program—acronym: LP—we find problems like

mincTx
subject to Ax ∝ b

l ≤ x ≤ u,

⎫⎬
⎭ (1.1)

with the matrix A ∈�m×n, the objective’s gradient c ∈�n, the right–hand–side
b ∈�m, and the lower and upper bounds l ∈�n and u ∈�n, respectively. If some
xi is unbounded below and/or above, this corresponds to li = −∞ and/or ui = ∞.
A,b,c, l,u are assumed to be known fixed data in the above model. The relation
‘∝’ is to be replaced row-wise by one of the relations ‘≤’ , ‘=’ , or ‘≥’ . Then the
task is obviously to find the—or at least one—optimal feasible solution x ∈�n.
Alternatively, we often find also the LP-formulation

mincTx
subject to Ax ∝ b

x ≥ 0,

⎫⎬
⎭ (1.2)

under the analogous assumptions as above. For these two LP types it holds obviously
that, given a problem of one type, it may be reformulated into an equivalent problem
of the other type. More precisely,

— given the LP in the formulation (1.2), by introducing the lower bounds
l = (0, · · · ,0)T and the upper bounds u = (∞, · · · ,∞)T (in computations rather
markers u = (M, · · · ,M)T with a sufficiently large number M, e.g. M = 1020,
just to indicate unboundedness), the problem is trivially of the type (1.1); and

1P. Kall, J. Mayer, Stochastic Linear Programming, 2nd edition, International Series in 
Operations Research & Management Science 156, DOI 10.1007/978-1-4419-7729-8_1, 
© Springer Science+Business Media, LLC 2011



2 1 Basics

— having the LP of type (1.1), introducing variables x+ ∈�n
+, x− ∈�n

+, insert-
ing x = x+−x−, x+ ≥ 0,x− ≥ 0, introducing the slack variables y ∈�n

+ and
z ∈�n

+, and restating the conditions l ≤ x≤ u equivalently as

x+− x− −y = l
x+− x− +z = u

y ≥ 0
z ≥ 0,

the problem is transformed into the type (1.2).

In the same way it follows that every LP may be written as

mincTx
subject to Ax = b

x ≥ 0,

⎫⎬
⎭ (1.3)

i.e. as a special variant of (1.2).

Numerical methods known to be efficient in solving LP’s belong essentially to
one of the following classes:

— Pivoting methods, in particular the simplex and/or the dual simplex method;
— interior point methods for LP’s with very sparse matrices;
— decomposition, dual decomposition and regularized decomposition approa-

ches for LP’s with special block structures of their coefficient matrices A.

In real life problems the fundamental assumption for linear programming, that
the problem entries—except for the variables x—be known fixed data, does often
happen not to hold. It either may be the case that (some of) the entries are con-
structed as statistical estimates from some observed real data, i.e. from some sam-
ples, or else that we know from the model design that they are random variables
(like capacities, demands, productivities or prices). The standard approach to re-
place these random variables by their mean values—corresponding to the choice
of statistical estimates mentioned before—and afterwards to solve the resulting LP
may be justified only under special conditions; in general, it can easily be demon-
strated to be dramatically wrong.

Assume, for instance, as a model for a diet problem the LP

mincTx
s. t. Ax ≥ b

T x ≥ h
x ≥ 0,

⎫⎪⎪⎬
⎪⎪⎭

(1.4)

where x represents the quantities of various foodstuffs, and c is the corresponding
price vector. The constraints reflect chemical or physiological requirements to be
satisfied by the diet. Let us assume that the elements of A and b are fixed known data,
i.e. deterministic, whereas at least some of the elements of T and/or h are random
with a known joint probability distribution, which is not influenced by the choice of
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the decision x. Further, assume that the realizations of the random variables in T and
h are not known before the decision on the diet x is taken, i.e. before the consumption
of the diet. Then (1.4) is basically a stochastic linear program—acronym: SLP—for
which it is not yet clear how a “solution” should be defined.

Replacing the random T and h by their expectations T and h and solving the
resulting LP

mincTx
s. t. Ax ≥ b

T x ≥ h
x ≥ 0,

⎫⎪⎪⎬
⎪⎪⎭

(1.5)

can result in a diet x̂ violating the constraints in (1.4) very likely and hence with a
probability much higher than feasible for the diet to serve successfully its medical
purpose. Therefore, the medical experts would rather require a decision on the diet
which satisfies all constraints jointly with a rather high probability, as 95% say, such
that the problem to solve were

mincTx
s. t. Ax ≥ b

P(T x≥ h) ≥ 0.95
x ≥ 0,

⎫⎪⎪⎬
⎪⎪⎭

(1.6)

a single-stage stochastic linear program—acronym: SSLP—with joint probabilistic
constraints. Here we had at the starting point the LP (1.4) as model for our diet
problem. However, the (practical) requirement to satisfy—besides the deterministic
constraints Ax ≥ b—also the reliability constraint P(T x ≥ h) ≥ 0.95, yields with
(1.6) a nonlinear program—acronym: NLP. This is due to the fact, that in general
the probability function G(x) := P(T x≥ h) is clearly nonlinear.

As another example, let some production problem be formulated as

mincTx
s. t. Ax = b

T x = h
x ≥ 0,

⎫⎪⎪⎬
⎪⎪⎭

(1.7)

where T and h may contain random variables (productivities, demands, capacities,
etc.) with a joint probability distribution (independent again of the choice of x), and
the decision on x has to be taken before the realization of the random variables is
known. Consequently, the decision x will satisfy the constraints Ax = b, x ≥ 0; but
after the observation of the random variables’ realization it may turn out that T x �= h,
i.e. that part of the target (like satisfying the demand for some of the products, ca-
pacity constraints, etc.) is not properly met. However, it may be necessary—by a
legal commitment, the strong intention to maintain goodwill, or similar reasons—to
compensate for the deficiency, i.e. for h− T x, after its observation. One possibil-
ity to cope with this obligation may be the introduction of recourse by defining the
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constraints Wy = h− T x, y ≥ 0, for instance as model of an emergency produc-
tion process or simply as the measurement of the absolute values of the deficiencies
(represented by W = (I,−I), with I the identity matrix). Let us assume W to be
deterministic, and assume the recourse costs to be given as linear by qTy, say. Obvi-
ously we want to achieve this compensation with minimal costs. Hence we have the
recourse problem

Q(x;T,h) := minqTy
s. t. Wy = h−T x

y ≥ 0.

⎫⎬
⎭ (1.8)

For any x, feasible to the first stage constraints Ax = b, x≥ 0, the recourse func-
tion, i.e. the optimal value Q(x;T,h) of the second stage problem (1.8), depends
on T and h and is therefore a random variable. In many applications, e.g. in cases
where the production plan x has to be implemented periodically (daily or weekly,
for instance), it may be meaningful to choose x in such a way that the average over-
all costs, i.e. the sum of the first stage costs cTx and the expected recourse costs
�Q(x;T,h), are minimized. Hence we have the problem

mincTx+�Q(x;T,h)
s. t. Ax = b

x ≥ 0,

⎫⎬
⎭ (1.9)

a two-stage stochastic linear program—acronym: TSLP—with fixed recourse.
Also in this case, although our starting point was the LP (1.7), the resulting prob-

lem (1.9) will be an NLP if the random variables in T and h have a continuous-type
joint distribution (i.e. a distribution defined by a density function).

If, however, the random variables in T and h have a joint discrete distribution,
defined by the realizations (T j,h j) with the probabilities p j, j = 1, · · · ,S (with p j >

0 and
S

∑
j=1

p j = 1), problem (1.9) is easily seen to be equivalent to

mincTx+
S

∑
j=1

p jqTy j

s. t. Ax = b
T jx +Wy j = h j, j = 1, · · · ,S

x ≥ 0
y j ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.10)

such that under the discrete distribution assumption we get an LP again, with the
special data structure indicated in Fig. 1.1.

In applications we observe an increasing need to deal with a generalization of
the two-stage SLP with recourse (1.9) and (1.10), respectively. At this point we just
give a short description as follows: In a first stage, a decision x1 is chosen to be
feasible with respect to some deterministic first stage constraints. Later on, after the
realization of a random vector ξ2, a deficiency in some second stage constraints has
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Fig. 1.1 Dual decomposition structure.

to be compensated for by an appropriate recourse decision x2(ξ2). Then after the
realization of a further random vector ξ3, the former decisions x1 and x2(ξ2) may
not be feasible with respect to some third stage constraints, and a further recourse
decision x3(ξ2,ξ3) is needed, and so on, until a final stage T is reached. Again, we
assume that, besides the first stage costs cT

1 x1, the recourse decisions xt(ζt), t ≥ 2,
imply additional linear costs cT

t xt(ζt), where ζt = (ξ2, · · · ,ξt). Then the multi-stage
SLP—acronym: MSLP—with fixed recourse is formulated as

min

{
cT

1 x1 +�ζT

[
T

∑
t=2

cT
t xt(ζt)

]}

subject to

A11x1 = b1

At1(ζt)x1 +
t

∑
τ=2

Atτ(ζt)xτ(ζτ) = bt(ζt), a.s., t = 2, · · · ,T
x1 ≥ 0, xt(ζt) ≥ 0, a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.11)

where, in general, we shall assume Att(ζt), t ≥ 2, the matrices on the diagonal,
to be deterministic, i.e. Att(ζt) ≡ Att . It will turn out that, for general probability
distributions, this problem—an NLP again—is much more difficult than the two-
stage SLP (1.9), and methods to approximate a solution are just at their beginning
phase, at best. However, under the assumption of discrete distributions of the random
vectors ζt , problem (1.11) can also be reformulated into an equivalent LP, which in
general is of (very) large scale, but again with a special data structure to be of use
for solution procedures.

From this short sketch of the subject called SLP, which is by far not complete with
respect to the various special problem formulations to be dealt with, we may already
conclude that a basic toolkit of linear and nonlinear programming methods cannot
be waived if we want to deal with the computational solution of SLP problems. To
secure the availability of these resources, in the following sections of this chapter
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we shall remind to basic properties of and solution methods for LP’s and NLP’s as
they are used or referred to in the SLP context, later on.

In Chapter 2, we present various Single–stage SLP models (like e.g. problem
(1.6) on page 3) and discuss their theoretical properties, relevant for their computa-
tional tractability, as convexity statements, for instance.

In Chapter 3 follows an anlogous discussion of Multi–stage SLP models (like
problem (1.9) in particular, and problem (1.11) in general), focussed among others
on properties allowing for the construction of particular approximation methods for
computing (approximate) solutions.

For some of the models discussed before, Chapter 4 will present solution meth-
ods, which have shown to be efficient in extensive computational experiments.

Exercises

1.1. Convert the following two LP’s to the standard formulation used in (1.3):

(a) mindTy (b) max f Tx−gTy
Ax− y ≥ b Ax+By ≤ d

x ≥ 0 Cx = e
x ≤ 0

1.2. For the linear program—think of a production problem with the quantities x,y
of two factors used to fabricate two products to meet their demand, aiming to mini-
mize production costs 3x+2y—

min3x+2y
s.t. 2x+ y ≥ 4

x+ y ≥ ξ
x, y ≥ 0,

the demand ξ of the second product is only known to vary randomly in the in-
terval [2,4]. Due to the lack of more precise information, ξ is assumed to be uni-
formly distributed, implying the density ϕ(ξ ) ≡ 1

2 , ξ ∈ [2,4], and the mean value
ξ =�[ξ ] = 3.

(a) Determine (e.g. graphically) the solution (x̂, ŷ) of the above LP assuming that
for the second product at least the mean demand ξ is to be met. Compute the
expected supply shortage�[(ξ − x̂− ŷ)+] = 1

2
∫ 4

3 (ξ − x̂− ŷ)dξ .
(b) Consider instead this production problem under the condition that the random

demand of the second product has to be met at least with a probability of
p = 95%. Determine the optimal factor combination and the minimal costs.

(c) Assume now, that the expected supply shortage of the second product is re-
stricted to 0.05 ·ξ . Formulate the production model accordingly.
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1.2 Linear Programming Prerequisites

In this section we briefly present the basic concepts in linear programming and, for
various types of solution methods, the conceptual algorithms.

As mentioned on page 2 we may use the following standard formulation of an
LP:

mincTx
s. t. Ax = b

x ≥ 0.

⎫⎬
⎭ (1.3)

With A being an (m×n)-matrix, and b and c having corresponding dimensions, we
know from linear algebra that the system of equations

Ax = b is solvable if and only if rank(A,b) = rank(A).

Therefore, solvability of the system Ax = b implies that

• either rank(A) = m,
• or the system contains redundant equations which may be omitted, such that

for the remaining system Ãx = b̃ we have the same set of solutions as for the
original system, and that, for the (m1 × n)-matrix Ã, m1 < m, the condition
rank(Ã) = m1 holds.

Observing this well known fact, we henceforth assume without loss of generality,
that rank(A) = m (≤ n) for the (m×n)-matrix A.

1.2.1 Algebraic concepts and properties

Solving the LP (1.3) obviously requires to find an extreme (minimal in our formu-
lation) value of a linear function on a feasible set described as the intersection of a
linear manifold, {x |Ax= b}, and finitely many halfspaces, {x | x j ≥ 0}, j = 1, · · · ,n,
suggesting that this problem may be discussed in algebraic terms.

Definition 1.1. Any feasible solution x̂ of (1.3) is called a feasible basic solution if,
for I(x̂) = {i | x̂ > 0}, the set {Ai, i ∈ I(x̂)} of columns in A is linearly independent.

According to this definition, for any feasible basic solution x̂ of (1.3) holds

x̂i > 0 for i ∈ I(x̂), x̂ j = 0 for j �∈ I(x̂), and ∑
i∈I(x̂)

Aix̂i = b.

Furthermore, with |I(x̂)| being the cardinality of this set (i.e. the number of its el-
ements), if |I(x̂)| < m such that the basic solution x̂ contains less than m strictly
positive components, then due to our rank assumption on A there is a superset IB(x̂)
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with IB(x̂) ⊃ I(x̂) and |IB(x̂)| = m such that the column set {Ai, i ∈ IB(x̂)} is lin-
early independent or equivalently, that the (m×m)-matrix B = (Ai | i ∈ IB(x̂)) is
nonsingular. Introducing, with IB(x̂) = {i1, · · · , im} and IN(x̂) = {1, · · · ,n}\ IB(x̂) =
{ j1, · · · , jn−m}, the vectors x{B} ∈�m —the basic variables— and x{N} ∈�n−m

—the nonbasic variables—according to

x{B}k = xik , ik ∈ IB(x̂) for k = 1, · · · ,m;

x{N}l = x jl , j l ∈ IN(x̂) for l = 1, · · · ,n−m,

then, with the (m× (n−m))-matrix N = (A j | j ∈ IN(x̂)) the system Ax = b is, up to
a possible rearrangement of columns and variables, equivalent to the system

Bx{B}+Nx{N} = b.

Therefore, up to the mentioned rearrangement of variables, the former feasible basic
solution x̂ corresponds to (x̂{B} = B−1b ≥ 0, x̂{N} = 0), and the submatrix B of A
is called a feasible basis . With the same rearrangement of the components of the
vector c into the two vectors c{B} and c{N} we may rewrite problem (1.3) as

minc{B}T
x{B}+ c{N}T

x{N}

s. t. Bx{B} + Nx{N} = b
x{B} ≥ 0

x{N} ≥ 0.

Solving the system of equations for x{B} we get x{B} = B−1b−B−1Nx{N} such
that — with γB := c{B}T

B−1b the objective value of the feasible basic solution
(x̂{B} = B−1b≥ 0, x̂{N} = 0)—problem (1.3) is equivalent to

minγB +
(

c{N}T− c{B}T
B−1N

)
x{N}

s. t. x{B} = B−1b−B−1Nx{N} ≥ 0
x{N} ≥ 0.

⎫⎪⎪⎬
⎪⎪⎭

(1.12)

For computational purposes (1.12) is usually represented by the simplex tableau

ζ dT

β D
=

ζ δ1 · · · δn−m
β1 α11 · · · α1n−m
...

...
...

βm αm1 · · · αmn−m

(1.13)

such that the objective and the equality constraints of (1.12) are rewritten as

z := ζ − dTx{N}

x{B} = β − D x{N}

}
(1.14)

with ζ = γB = c{B}T
B−1b, β = (β1, · · · ,βm)

T = B−1b, and furthermore
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D =

⎛
⎜⎝
α11 · · · α1n−m
...

...
am1 · · · amn−m

⎞
⎟⎠= B−1N

and
dT = (δ1, · · · ,δn−m) =

(
c{B}T

B−1N− c{N}T
)
=
(

c{B}T
D− c{N}T

)
. Although

not written down explicitly, we assume that also for the reformulation (1.13) and
(1.14) the nonnegativity constraints x{B} ≥ 0, x{N} ≥ 0 have to hold.

To justify the simplex algorithm as a solution method for (1.3) the following
statements are essential.

Proposition 1.1. Provided that the LP (1.3) is feasible, i.e. that the feasible set
B := {x | Ax = b, x≥ 0} �= /0, there exists at least one feasible basic solution.

Proposition 1.2. If the LP (1.3) is solvable with the optimal value γ̂ , then there

exists at least one feasible basis B̂, yielding c{B̂}
T

B̂−1b = γ̂ .

Definition 1.2. Assume that rank(A) = m. If for a feasible basis B and the cor-
responding feasible basic solution x̂ with (x̂{B} = B−1b, x̂{N} = 0) it happens that
|I(x̂)| < m, i.e. that less than m of the basic variables are strictly positive, then the
basic solution x̂ is called degenerate.

Finally, if we have a feasible basis B such that dT ≤ 0, than obviously this basis
is optimal, i.e. (x̂{B} = β , x̂{N} = 0) solves (1.3), since by (1.14) z = ζ −dTx{N} ≥
ζ ∀x{N} ≥ 0. On the other hand, assume that (1.3) is solvable, and that in addition
all feasible basic solutions are nondegenerate. Then for an optimal feasible basis B,
existing due to Prop. 1.2., dT ≤ 0 has to hold due to the following argument:

If, for any feasible basis, d j > 0 would hold for some j ∈ {1, · · · ,n−m}, due to
β > 0 by the assumed nondegeneracy, we could choose x{N} = τe j (e j the j-th unit
vector in�n−m) with some τ > 0, such that according to (1.14) would follow

x{B} = β − τDe j = β − τD j ≥ 0 and z = ζ − τdTe j = ζ −d j < ζ .

Hence, the basis at hand would not be optimal.
Even without the nondegeneracy assumption the above optimality condition, also

known as the simplex criterion, can be shown to hold true.

Proposition 1.3. The LP (1.3) is solvable if and only if there exists an optimal fea-
sible basis B such that the condition

dT =
(

c{B}
T

B−1N− c{N}
T)

=
(

c{B}
T

D− c{N}
T)≤ 0 (1.15)

is satisfied.

The proof of the above statements may be found in the literature, among others
in Dantzig [50], Maros [219], or Vanderbei [337].



10 1 Basics

1.2.2 Geometric interpretation

Besides the algebraic formulation of LP’s, it is sometimes intuitively helpful to have
in mind their geometric interpretation. To this end we need the concepts of a convex
polyhedron and of a convex polyhedral cone.

Definition 1.3. Given finitely many vectors x(1), · · · ,x(r) ∈ �n, then their convex
hull

P = conv{x(1), · · · ,x(r)}
:= {x | x =

r

∑
j=1

λ jx( j) with
r

∑
j=1

λ j = 1, λ j ≥ 0 ∀ j}

is called a convex polyhedron, and their positive hull

C = pos{x(1), · · · ,x(r)} := {y | y =
r

∑
j=1

μ jx( j) with μ j ≥ 0 ∀ j}

is called a convex polyhedral cone.
Finally, P+C = {z | z = x+y : x ∈P, y ∈ C } is called a convex polyhedral set.

	

 � �

	

 � �

	

 � �

	

 � �

	

  �

	

 � �

	

 � �

Fig. 1.2 Polyhedron P̂ = conv{x(1), · · · ,x(7)}.

To generate the polyhedron P̂ of Fig. 1.2, the elements x(6) and x(7) are obviously
redundant, i.e. omitting these elements would result in the same polyhedron P̂ ,
whereas no one of the elements x(1), · · · ,x(5) can be deleted without changing the
polyhedron essentially. The simple reason is that a polyhedron is uniquely deter-
mined by its vertices.



1.2 Linear Programming Prerequisites 11

Definition 1.4. Given a convex polyhedron P , an element y ∈P is a vertex if
and only if there are no two further elements v,w ∈P such that v �= y �= w and
y = λv+(1−λ )w, λ ∈ (0,1).

Similarly, for a convex polyhedral cone not all of the generating elements men-
tioned in Def. 1.3. might be really needed to represent the cone. More precisely,
whenever one of the generating elements equals a nonnegative linear combination
of the other generating elements, it can be deleted without changing the cone.

With the LP (1.3) the set C = {y | Ay = 0, y≥ 0} can be associated.

Proposition 1.4. The set C = {y | Ay = 0, y≥ 0} is a convex polyhedral cone,

– generated either trivially by {0}, if C = {0},
– or, if ∃y∈C : y �= 0, generated for instance by {y(1), · · · ,y(s)}, the set of feasible

basic solutions of the system

Ay = 0
eTy = 1 {with eT = (1, · · · ,1)},

y ≥ 0.

With these concepts we may describe the feasible set

B = {x | Ax = b, x≥ 0} (1.16)

as follows:

Proposition 1.5. For the feasible set B �= /0 holds

B = P +C = {z | z = x+ y with x ∈P and y ∈ C },

where C = {y | Ay = 0, y ≥ 0} and P = conv{x(1), · · · ,x(r)}, with {x(1), · · · ,x(r)}
being the set of feasible basic solutions of B.

The set of feasible basic solutions of B can be shown to coincide with the set of
vertices of P (and B). The proofs of these statements may be found in the standard
LP literature, or else in Kall–Wallace [172].

Definition 1.5. For any nonempty set M ⊂�n its polar cone is the set

M P := {z ∈�n | zTx≤ 0 ∀x ∈M } .

An obvious consequence of this definition is

Proposition 1.6. For any nonempty set M ⊂�n its polar cone M P ⊂�n is a
closed convex cone, i.e. M P �= /0 is a closed set such that for any two z(i) ∈M P, i =
1,2, holds λ1z(1) +λ2z(2) ∈M P ∀λi ≥ 0. In particular, for any convex polyhedral
cone C its polar cone C P is a convex polyhedral cone as well.
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Proof: Obviously, 0 ∈ M P and hence M P �= /0 is a convex cone. For {z(ν) ∈
M P, ν ∈ IN} converging to ẑ we have for any arbitrary x̂ ∈M that z(ν)

T
x̂≤ 0 ∀ν ∈

IN and hence ẑTx̂ = lim
ν→∞

z(ν)
T

x̂≤ 0, such that ẑ ∈M P, i.e. M P is closed.

If C is a convex polyhedral cone generated by {d(1), · · · ,d(r)}, with the matrix
D = (d(1), · · · ,d(r)) the polar cone of C is given as C P = {z | DTz ≤ 0} which, in
analogy to Prop. 1.4., is a convex polyhedral cone. �

According to Proposition 1.5., using the set of feasible basic solutions
{x(1), · · · ,x(r)}, i.e. the vertices of P , and the generating set {y(1), · · · ,y(s)} of C as
described in Prop. 1.4., the LP (1.3) can now be rewritten as

min
r

∑
i=1

λi cTx(i) +
s

∑
j=1

μ j cTy( j)

s. t.
r

∑
i=1

λi = 1

λi ≥ 0 ∀ i
μ j ≥ 0 ∀ j.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.17)

This representation implies the following extension of Prop. 1.2..

Proposition 1.7. Provided that B �= /0, the LP (1.3) is solvable if and only if cTy≥
0 ∀y ∈ C , i.e. −c ∈ C P; in this case an optimal solution can be chosen as a vertex
x(i0) of B (a feasible basic solution of B) such that cTx(i0) = min

i∈{1,···,r}
cTx(i).

Proof: The assumption, that cTy ≥ 0 ∀y ∈ C , is equivalent to the requirement that
cTy( j) ≥ 0, j = 1, · · · ,s. If this condition is violated for at least one y( j) (e.g. for j1),
then according to (1.17) for μ j1 → ∞ follows for the objective z→−∞, such that
the LP is unsolvable.
If, on the other hand, the condition is satisfied, then—to solve (1.17)—we would
choose μ j = 0 ∀ j, which implies the assertion immediately. �

As a consequence we get

Proposition 1.8. If B �= /0, and if cTx ≥ γ ∀x ∈ B for some γ ∈�, then the LP
min{cTx | x ∈B} is solvable.

Proof: For any fixed x̂∈B and an arbitrary y∈C it holds true that x̂+μy∈B ∀μ >
0, and by assumption we have cTx̂+μcTy≥ γ , which implies that cTy≥ 0 is satisfied
for each y ∈ C ; hence the assertion follows from Prop. 1.7.. �

1.2.3 Duality statements

To the primal LP in its standard formulation



1.2 Linear Programming Prerequisites 13

mincTx
s. t. Ax = b

x ≥ 0

⎫⎬
⎭ (1.3)

another LP, called its dual, is assigned as

maxbTu
s. t. ATu ≤ c.

}
(1.18)

The technical rules according to which the dual LP (1.18) is constructed from the
primal LP (1.3) may roughly be stated as follows: To the equality constraints Ax = b
in (1.3) correspond the free variables u ∈�m in (1.18); to the nonnegative variables
x ∈�n

+ correspond the inequality contraints ATu ≤ c with the transpose of A as
the matrix of coefficients; the right–hand–side b of the primal program yields the
objective’s gradient of the dual program, whereas the objective’s gradient c of the
primal LP turns into the right–hand–side of the dual LP; finally, to the minimization
in (1.3) corresponds the maximization in (1.18).

Rewriting (1.18) into the standard form, we want to solve the problem

γ := max{bTu+−bTu−}=−min{−bTu++bTu−}
s.t. ATu+ −ATu− +v = c

u+, u−, v ≥ 0.

To this LP we assign analogously the dual LP

−maxcTz
s. t. Az ≤ −b
−Az ≤ b

z ≤ 0

which, using x :=−z, yields

−max−cTx = mincTx
s. t. Ax = b

x ≥ 0

coinciding with (1.3) again. Hence, the dual of the dual LP is the primal program
again and we therefore can speak of a pair of dual LP’s.

There are further relations between the primal and the dual LP which are less
obvious. First, we have the weak duality theorem.

Proposition 1.9. For any pair of feasible solutions x̃ and ũ of (1.3) and (1.18),
respectively, it holds that bTũ≤ cTx̃.

Proof: According to the assumed feasibilities Ax̃ = b, x̃≥ 0, and ATũ≤ c it follows
that

bTũ = (Ax̃)Tũ = x̃T(ATũ)≤ x̃Tc.
�
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Moreover, there is the following relation between pairs of dual LP’s.

Proposition 1.10. If both of the dual LP’s (1.3) and (1.18) are feasible, then both
of them are solvable.

Proof: Let û be feasible for (1.18). Then, by the weak duality theorem, cTx ≥
bTû ∀x ∈ B. Hence Prop. 1.8. yields the solvability of (1.3). The solvability of
(1.18) follows analogously. �

Finally, we have the strong duality theorem.

Proposition 1.11. If the primal problem is solvable, then so is the dual problem,
and the optimal values of the two problems coincide.

Proof: According to Prop. 1.3. the LP (1.3) is solvable if and only if there exists an
optimal feasible basis B such that the simplex criterion (1.15)

dT =
(

c{B}
T

B−1N− c{N}
T)

=
(

c{B}
T

D− c{N}
T)≤ 0

is satisfied. Since, up to a rearrangement of columns of A, we have that (B,N) = A,
it follows that for û = B−1Tc{B} it holds that

BTû = c{B}

NTû ≤ c{N}.

Hence, û is feasible for the dual program, and its (dual) objective value is

bTû = bTB−1T
c{B} = c{B}

T
B−1b,

thus coinciding with the primal optimal value. �

Proposition 1.12. Both of the pair of dual LP’s (1.3) and (1.18) are solvable if
and only if there exist feasible solutions x� and u� such that the complementarity
conditions

x�T(ATu�− c) = 0 (1.19)

hold. Then, x� and u� are primal and dual optimal solutions, respectively.

Proof: If both of the LP’s are solvable then there exist optimal feasible solutions x�

and u� such that, by feasibility and strong duality,

0 = cTx�−bTu� = cTx�− x�TATu� = x�T(c−ATu�).

On the other hand, from feasibility, complementarity and weak duality follows

0≤ cTx�−bTu� = x�T(c−ATu�) = 0
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and hence the optimality of x� and u�. �

The strong duality theorem implies a necessary and sufficient condition for the
feasibility of a system of linear constraints, the Farkas lemma:

Proposition 1.13. It holds

{x | Ax = b, x≥ 0} �= /0 if and only if ATu≤ 0 implies bTu≤ 0.

Proof: Assume that Ax̂ = b holds for some x̂ ≥ 0. Then for any ũ with ATũ ≤ 0
follows

bTũ = (Ax̂)Tũ = (x̂TAT)ũ = x̂T(ATũ)≤ 0.

On the other hand, assume that ATu≤ 0 always implies bTu≤ 0. For an arbitrary
û �= 0 define c := ATû. Then Prop. 1.7. implies that the LP max{bTu | ATu ≤ c} is
solvable. By the strong duality theorem, Prop. 1.11., its dual, min{cTx | Ax = b, x≥
0}, is then solvable as well, and hence feasible. �

Finally we mention, for later use, that the simplex criterion (1.15) is associated
with a dual feasible basic solution.

Proposition 1.14. Assume that from the LP (1.3) with some (not necessarily feasi-
ble) basis B the simplex tableau (1.13) has been derived, which satisfies the simplex
criterion dT =

(
c{B}T

B−1N− c{N}T
)
≤ 0. Then with the primal basis B a dual fea-

sible basis, i.e. a feasible basis of the dual program (1.18), is associated.

Proof: Using the basis B, the matrix of the primal LP can be rewritten as A = (B,N).
Then the dual constraints read as

{
BTu ≤ c{B}

NTu ≤ c{N}

}
or else

⎧⎨
⎩

BTu + Imv = c{B}

NTu + In−mw = c{N}
v, w ≥ 0

⎫⎬
⎭

with unit matrices Im and In−m of the indicated order. With û = BT−1c{B} it follows
immediately, that, with v̂ = 0 and ŵ = c{N} −NTû≥ 0 due to the simplex criterion,
BTû = c{B} and NTû+ In−mŵ = c{N}. Hence

(
BT 0
NT In−m

)

is a dual feasible basis. �

Due to this relationship, any simplex tableau (1.13) for the primal LP (1.3),
whether feasible or not, is called dual feasible if the simplex criterion (1.15) is
satisfied.
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1.2.4 The Simplex method

With this background we formulate the

Simplex Algorithm

S 1 Initialization
Find a feasible basis B for the LP (1.3).

S 2 Optimality Test

If dT =
(

c{B}T
B−1N− c{N}T

)
≤ 0, then stop (B is optimal). Otherwise,

continue.
S 3 Choice of Pivot Column

Choose ρ ∈ {1, · · · ,n−m} such that dρ > 0, and let Dρ be the corre-
sponding column of D. If Dρ ≤ 0, then stop (LP (1.3) is unsolvable, since
x{B} = B−1b−Dρx{N}ρ ≥ 0 ∀x{N}ρ ≥ 0 and hence inf{cTx | x ∈B}=−∞);
otherwise continue.

S 4 Choice of Pivot Row
The maximal increase τ ≥ 0 for x{N}ρ such that x{B} = β −Dρτ ≥ 0 re-
mains satisfied implies choosing a row μ such that

βμ
αμρ

= min
{

βi

αiρ

∣∣∣∣ i ∈ {1, · · · ,m}; αiρ > 0
}
.

S 5 Pivot Step

Exchange the roles of x{B}μ and x{N}ρ such that x{B}μ becomes nonbasic and

x{N}ρ becomes basic, i.e. transform B and N into B̃ and Ñ according to

B = (Ai1 , · · · ,Aiμ , · · · ,Aim) −→ B̃ = (Ai1 , · · · ,A jρ , · · · ,Aim)

N = (A j1 , · · · ,A jρ , · · · ,A jn−m) −→ Ñ = (A j1 , · · · ,Aiμ , · · · ,A jn−m).

With B := B̃ and N := Ñ, and the implied adjustments of x{B}, x{N}, ζ , β ,
d and D, as well as of IB(x) and IN(x), return to step S 2.

�

Remark 1.1. In case that—in step S 3—Dρ ≤ 0, we may compute a generating el-
ement of the cone C = {y | Ay = 0, y ≥ 0} from the present tableau as follows:
Rearranging the components of y into (y{B},y{N}), analogously to the correspond-
ing rearrangement of the components of x, we get for ŷ{B} =−Dρ and ŷ{N} = 1 ·eρ
that (ŷ{B}, ŷ{N}) ≥ 0 and Bŷ{B}+Nŷ{N} = −BDρ +Nρ = 0 due to Dρ = B−1Nρ .
Hence, ŷ is a (nontrivial) generating element of the cone C = {y | Ay = 0, y ≥ 0}
according to Prop. 1.4. (p. 11). �
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Denoting one sequence of the steps S 2 – S 5 as a cycle, or else as a pivot step, we
may easily prove

Proposition 1.15. Provided that, after step S 1, we have a first feasible basis, and
that all feasible basic solutions of LP (1.3) are nondegenerate, the simplex algorithm
will terminate after finitely many cycles, either with an optimal feasible basis or with
the information that inf{cTx | x ∈B}=−∞.

Proof: As long as Dρ �≤ 0 in step S 3, we shall get in step S 4 that
βμ
αμρ

> 0 due to

the assumed nondegeneracy. Observing that

βμ
aμρ

= max{τ | β − τDρ ≥ 0}=: τ̂

we see that the pivot step in S 5 yields

x{B} = β − τ̂Dρ , x{N}ρ = τ̂, and in particular z = ζ − τ̂dρ < ζ , (1.20)

according to the choice of ρ in step S 3. Finally, since Dρ = B−1Nρ is equivalent

with the solution of BDρ =
m

∑
i=1

Biαiρ = Nρ , where Nρ depends nontrivially on the

column Bμ (it holds aμρ > 0), it is well known from linear algebra that replacing
column Bμ by the column Nρ as in step S 5, yields again a basis B̃ which is feasible
due to the rule for selecting the pivot row in step S 4. Hence, after one cycle we get
another feasible basic solution with a strictly decreased objectiv value. Therefore,
no feasible basis can show up more than once in this procedure, and the number of
feasible bases of an LP is obviously finite. �

The nondegeneracy assumption is crucial for this proof. If there exist degenerate
feasible basic solutions, it can happen in some finite sequence of cycles, that τ̂ = 0
for each cycle, and hence the objective is not decreased (in contrast to (1.20)), and
that at the end of this sequence we get the same basis with which the sequence
began. Obviously, this may be repeated infinitely often, without any decrease of
the objective and with nonoptimal bases. We then say that the procedure is cycling.
However, even if degenerate feasible basic solutions exist, we can avoid cycling of
the simplex algorithm by introducing additional rules in S 3 and/or S 4, the choice of
the pivot column and/or the pivot row. Common approaches are lexicographic rules
applied in every pivot step,

– either to the choice of variables entering the basis (S 3) as well as of vari-
ables leaving the basis (S 4), if they are not uniquely determined; the strategy to
choose in either case the variable with the smallest index, is called Bland’s rule,

– or else to the choice of the variables leaving the basis (S 4) only, called the
lexicographic method.

Proposition 1.16. Provided that, after step S 1, we have a first feasible basis, and
that either the lexicographic method or Bland’s rule is used if the respective choice
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of variables in step S 3 and/or S 4 is not uniquely determined, the simplex algorithm
will terminate after finitely many cycles, either with an optimal feasible basis or
with the information that inf{cTx | x ∈B}=−∞.

For the proof of Prop. 1.16. see e.g. Vanderbei [337], Theorem 3.2 and Theorem
3.3.

Obviously the pivot step S 5 implies an update of the simplex tableau (1.13)
which may be easily derived from the equivalent system (1.14) as follows: For sim-
plicity rewrite the tableau (1.13) as

ζ δ1 · · · δn−m
β1 α11 · · · α1n−m
...

...
...

βm αm1 · · · αmn−m

=

α00 α01 · · · α0n−m
α10 α11 · · · α1n−m
...

...
...

αm0 αm1 · · · αmn−m

and hence the system (1.14), with x{B}0 := z, as

x{B}0 = α00 −
n−m

∑
j=1

α0 jx
{N}
j

x{B}1 = α10 −
n−m

∑
j=1

α1 jx
{N}
j

...

x{B}m = αm0 −
n−m

∑
j=1

αm jx
{N}
j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.14)

In S 5 the μ-th equation (μ ≥ 1), x{B}μ = αμ0−
n−m

∑
j=1

αμ jx
{N}
j , is solved for x{N}ρ

(ρ ≥ 1)—requiring that αμρ �= 0 as given by S 4—and the resulting expression for
x{N}ρ is inserted into all other relations of (1.14). Under the assumption that (1.13)
is a primal feasible tableau (i.e. αi0 ≥ 0 ∀i ≥ 1), μ and ρ are chosen in S 3 and S 4

in such a way, that α0ρ > 0 and that with the increase of x{N}ρ to
αμ0

αμρ
≥ 0 all basic

variables stay nonnegative, and in particular x{B}μ → 0. The exchange of x{N}ρ and

x{B}μ yields a new tableau with the elements α�
i j; i = 0, · · · ,m; j = 0, · · · ,n−m, to be

computed as
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α�
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
αμρ

i = μ, j = ρ

αμ j

αμρ
i = μ, j �= ρ

− αiρ

αμρ
i �= μ, j = ρ

αi j− αiρ αμ j

αμρ
i �= μ, j �= ρ .

(1.21)

Instead of the primal pivot step, where with a primal feasible tableau we look for
a pivot column ρ violating the simplex criterion and then for a pivot row μ such
that the exchange of x{N}ρ and x{B}μ yields again a primal feasible tableau, we also
may consider the reverse situation: Given a dual feasible tableau, i.e. α0 j ≤ 0, j =
1, · · · ,n−m, we may look for a pivot row μ violating primal feasibility, i.e. αμ0 < 0,
and then for a pivot column ρ such that after the exchange of x{B}μ and x{N}ρ we
get again a dual feasible tableau. Since the related transformation of the tableau is
obviously given again by (1.21), according to these formulae it is obvious that now
necessarily αμρ < 0 has to hold to maintain α�

0ρ ≤ 0, and that furthermore, to ensure
also α�

0 j ≤ 0 for all other j ≥ 1, the pivot column ρ has to be chosen such that

α0ρ

αμρ
= min

{
α0 j

αμ j

∣∣∣∣ j ∈ {1, · · · ,n−m}; αμ j < 0
}
.

Transforming now the tableau according to (1.21) terminates a dual pivot step.
At this point we may present one method, out of several others described in the

literature, to realize S 1 of the simplex algorithm as follows:

a) Solve the system Ax = b successively for m variables yielding, with some
basis B, the tableau

α10 α11 · · · α1n−m
...

...
...

αm0 αm1 · · · αmn−m

corresponding to x{B} = B−1b− B−1Nx{N}. If B−1b ≥ 0, this tableau is
primal feasible, and we just have to fill in its first row, c{B}T

B−1b and
c{B}T

B−1N− c{N}T
. Otherwise:

b) Define the first row as (0,−eT) (with eT = (1, · · · ,1)) corresponding to
the artificial objective z = eTx{N} =: hTx, for which we now have a dual
feasible tableau. As long as this tableau is primal infeasible, continue with
dual pivot steps (if necessary with one of the additional lexicographic rules
mentioned earlier).

c) When a primal feasible tableau—with the feasible basis B̂, the correspond-
ing nonbasic part N̂ of A, and the artificial objective—has been found, then

replace the first row of the tableau by c{B̂}
T

B̂−1b and c{B̂}
T

B̂−1N̂− c{N̂}
T

.
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If B = {x | Ax = b, x ≥ 0} �= /0 then, due to Prop. 1.7., our artificial problem
min{hTx | x ∈B} is solvable such that the above procedure will yield a first pri-
mal feasible tableau for our original problem min{cTx | x ∈B} after finitely many
dual pivot steps.

1.2.5 The dual Simplex method

As mentioned in Prop. 1.14., a (primal) simplex tableau for the primal LP (1.3)
being dual feasible is strongly related to a feasible basic solution of the dual LP
(1.18). Hence, applying successively dual pivot steps to dual feasible tableaus of the
primal LP (1.3) leads to

The Dual Simplex Algorithm

S 1 Initialization
Find a dual feasible primal tableau (with primal basis B) for the LP (1.3).

S 2 Feasibility Test
If β = B−1b ≥ 0, then stop (B is an optimal feasible basis). Otherwise,
continue.

S 3 Choice of Pivot Row
Choose μ ∈ {1, · · · ,m} such that βμ < 0 and the corresponding μ-th row
of D, i.e. αμ· = (αμ1, · · · ,αμ n−m). If αμ· ≥ 0, then stop (LP (1.3) is un-
solvable, since B = /0). Otherwise, continue.

S 4 Choice of Pivot Column
The maximal increase τ ≥ 0 for x{B}μ , such that dT− τ ·αμ· ≤ 0 remains
satisfied, implies choosing a column ρ such that

dρ
αμρ

= min
{

d j

αμ j

∣∣∣∣ j ∈ {1, · · · ,n−n}; αμ j < 0
}
.

S 5 Pivot Step

Exchange the roles of x{B}μ and x{N}ρ such that x{B}μ becomes nonbasic and

x{N}ρ becomes basic, i.e. transform B and N into B̃ and Ñ according to

B = (Ai1 , · · · ,Aiμ , · · · ,Aim) −→ B̃ = (Ai1 , · · · ,A jρ , · · · ,Aim)

N = (A j1 , · · · ,A jρ , · · · ,A jn−m) −→ Ñ = (A j1 , · · · ,Aiμ , · · · ,A jn−m).

With B := B̃ and N := Ñ, and the implied adjustments of x{B}, x{N}, ζ , β ,
d and D, as well as of IB(x) and IN(x), return to step S 2.

�
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Proposition 1.17. Given a first dual feasible tableau after step S 1, the dual simplex
algorithm—if necessary with the dual version of one of the lexicographic rules men-
tioned above—yields after finitely many dual pivot steps either the optimal primal
solution or else the information, that B = /0.

Proof: By Prop. 1.14. any dual feasible primal tableau—with A = (B,N)—corresp-
onds for the dual LP

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minbTu

subject to

BTu ≤ c{B}

NTu ≤ c{N}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

or else

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minbTu

subject to

BTu + Imv = c{B}

NTu + In−mw = c{N}
v, w ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

to the dual feasible basis
(

BT 0
NT In−m

)
with the inverse

(
BT−1 0

−NTBT−1 In−m

)
.

Hence we have for the dual constraints
(

u
w

)
=

(
BT−1 0

−NTBT−1 In−m

)(
c{B}

c{N}

)
−
(

BT−1 0
−NTBT−1 In−m

)(
v
0

)

or else, together with the objective η = bTu and, as before, B−1b= β and B−1N =D,

η = βTc{B} − βTv
u = BT−1c{B} − BT−1v
w = −DTc{B}+ c{N} − (−DT)v ≥ 0
v ≥ 0.

From these formulae we see immediately that

– with dual feasibility after step S 1, i.e. −DTc{B}+ c{N} ≥ 0, from β ≥ 0
follows dual optimality for v = 0 (S 2);

– with βμ < 0 and DT
μ ≥ 0, the dual nonbasic variable vμ can grow arbitrarily

and hence the objective η → ∞ on the dual feasible set such that according
to the weak duality theorem Prop. 1.9. there cannot exist any primal feasible
solution (S 3);

– the requirement to maintain dual feasibility, i.e. w≥ 0 when increasing the
nonbasic vμ , results in the rule for choosing the pivot column (S 4).



22 1 Basics

Observing that now αμρ < 0 implies again, as in the proof of Prop. 1.15., that the
exchange of the nonbasic column Nρ with the basic column Bμ yields a basis again,
dual feasible by construction. �

Given the LP (1.3) with the (m× n)-matrix A, the question may arise why we
deal with the dual simplex method, carried out on the primal simplex tableau, in-
stead of just applying the simplex method to the dual LP (1.18) and its associated
tableau. One rather heuristic argument is the size of the tableaus which have to be
updated in every pivot step: Whereas the primal tableau is of the order m× (n−m),
we obviously have for the dual tableau the order n×m, exceeding the former num-
ber of elements to be transformed by m2, which can be large for realistic problems.
In addition, professional implementations of the simplex method do not perform the
pivot transformations on the respective simplex tableaus but essentially just on the
corresponding basis inverses (in appropriate representations, e.g. in product form).
But the basis inverses are of order (m×m) for the primal basis and of (n× n) for
the dual, the latter being substantially greater if, as it is commonly the case in appli-
cations, n� m.

Although these considerations are not a strict argument for the advantage of the
above dual simplex algorithm, they may serve as a heuristic explanation for the
dual simplex method, as presented in this section, being often observed to be more
efficient than the primal method. For more details on the implementation of the
simplex method (and its different variants) we may refer for instance to Maros [219].

Exercises

1.3. How can you prove Prop. 1.1. (page 9)?

1.4. Find an argument showing that Prop. 1.2. (page 9) holds.

1.5. Consider the LP

(PP)

γ := min{−10x1−2x2}
s.t. −x1 + 2x2 ≥ −4
−3x1 + 9x2 ≥ −12

x j ≥ 0 j = 1,2

as primal together with its dual program (DP). What can be said

(a) about the feasibility of this dual pair of LP’s;
(b) about the solvability of (PP) and (DP)?

1.6. For any LP one of the following cases applies:

– FS: “feasible and finitely solvable”,
– FU : “feasible and unbounded”, and
– NF : “infeasible”.
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For any pair (PP) and (DP) of dual LP’s mark with YES and/or NO the possible
and impossible situations, respectively.

(DP) FS FU NF
(PP)

FS

FU

NF

Argue either with statements presented in Subsect. 1.2.3 or with examples to back
your answers.

1.7. Use the simplex algorithm to compute a solution (x̂1, x̂2) of the following LP.
(Observe that in this case, with the slack variables as basic variables, a first feasible
simplex tableau is immediately given!)

(PP)

γ := max{2x1 + x2}
s.t. x1 + x2 ≤ 2

3x1 + x2 ≤ 3
x2 ≤ 2
x j ≥ 0 j = 1,2 .

With this solution (x̂1, x̂2), use the complementarity conditions to determine a solu-
tion of (DP), the corresponding dual LP.

To verify your results, edit this model in SLP-IOR and run any LP solver (at your
disposal with SLP-IOR).

1.8. Consider the LP

(PP)

γ := min{−x1 + x2}
s.t. x1 + 2x2 ≥ 3

2x1 + x2 ≤ 4
x j ≥ 0 j = 1,2 .

(a) Augment the system of constraints by slack variables yi ≥ 0, i = 1,2. Choos-
ing x1 and y1 as basic variables and solving the system for x1, y1 (as dependent
variables) yields a dual feasible primal tableau.

(b) Beginning with this tableau, apply the dual simplex method to get a solution
of (PP).

1.2.6 Dual decomposition method

As mentioned in the Introduction, in case of a discrete distribution we get for the
two-stage SLP with recourse the LP (1.10) with the special data structure illustrated
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in Fig. 1.1 on page 5. This structure may be used according to an idea first pre-
sented in Benders [14], originally applied to mixed-integer NLP’s. For simplicity
we present the procedure for the special case of S = 1 realizations in (1.10), i.e. for

min{cTx+qTy}
s. t. Ax = b

T x +Wy = h
x ≥ 0

y ≥ 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.22)

The extension of the method for S > 1 realizations is then immediate, although
several variants and tricks can be involved.

We assume that the LP (1.22) is solvable and, in addition, that the first stage
feasible set {x | Ax = b, x ≥ 0} is bounded. According to Prop. 1.7. the solvability
of (1.22) implies that

{(x,y) | Ax = b, T x+Wy = h, x≥ 0, y≥ 0} �= /0

and

cTξ +qTη ≥ 0 ∀(ξ ,η) ∈ {(ξ ,η) | Aξ = 0, Tξ +Wη = 0, ξ ≥ 0, η ≥ 0},

and therefore in particular, for ξ = 0,

qTη ≥ 0 ∀η ∈ {η |Wη = 0, η ≥ 0},

such that the second stage optimum, also called the recourse function,

f (x) := min{qTy |Wy = h−T x, y≥ 0}

is finite if the recourse constraints are feasible. Otherwise, we define the recourse
function as f (x) = ∞ if {y |Wy = h−T x, y≥ 0}= /0. Then we have

Proposition 1.18. The recourse function f (x), defined on the bounded set {x | Ax =
b, T x+Wy = h, x≥ 0, y≥ 0} �= /0, is piecewise linear, convex, and bounded below.

Proof: By our assumptions, with B1 = {x |Ax= b, x≥ 0} it follows that B :=B1∩
{x | ∃y≥ 0 : Wy = h−T x} �= /0 is bounded. Since {x | ∃y≥ 0 : Wy = h−T x} �= /0 is
the projection of the convex polyhedral set {(x,y) | T x+Wy = h, y ≥ 0} in (x,y)-
space into x-space, it is convex polyhedral. Hence, B as the intersection of a convex
polyhedron with a convex polyhedral set is a convex polyhedron, and it holds for
x ∈B

f (x) = q{BW }T
B−1

W (h−T x) if B−1
W (h−T x)≥ 0,

where BW (out of W ) is an appropriate optimal basis, chosen from the finitely many
feasible bases of W . Hence, f (x) is piecewise linear and bounded below in x ∈
B. Finally, with x1 ∈ B and x2 ∈ B such that f (xi), i = 1,2, is finite, and with
corresponding recourse solutions y1,y2 satisfying
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f (xi) = qTyi, i = 1,2, and Wyi = h−T xi, yi ≥ 0, i = 1,2,

for arbitrary λ ∈ (0,1) and x̃ = λx1 +(1−λ )x2 it follows that

λy1 +(1−λ )y2 ∈ {y |Wy = h−T x̃, y≥ 0}

and hence that

f (x̃) = min{qTy |Wy = h−T x̃, y≥ 0}
≤ qT(λy1 +(1−λ )y2) = λ f (x1)+(1−λ ) f (x2),

demonstrating the convexity of f (x) on its effective domain dom f = B. �

Obviously, with the recourse function f (x), the LP (1.22) can be rewritten equiv-
alently as the NLP

min{cTx+ f (x)}
s. t. Ax = b

x ≥ 0,

restricting x implicitly to the effective domain of f , or else as

min{cTx+θ}
s. t. Ax = b

θ − f (x) ≥ 0
x ≥ 0.

⎫⎪⎪⎬
⎪⎪⎭

(1.23)

However, this may not yet help a lot since, in general, we do not know the (con-
vex polyhedral) recourse function f (x) explicitly. To say it in other terms: f (x)
being bounded below, piecewise linear and convex on B implies the existence of
finitely many linear functions ϕν(x), ν = 1, · · · ,L, such that, on dom f =B, it holds
that f (x) = max

ν∈{1,···,L}
ϕν(x). Hence, to reduce the feasible set of (1.23) to the effec-

tive domain B of f , it may be necessary to add some further linear constraints
ψ1(x), · · · ,ψK(x) (observe that the polyhedron B is defined by finitely many lin-
ear constraints) to achieve feasibility of the recourse problem, such that instead of
(1.23) we get the equivalent LP

min{cTx+θ}
s. t. Ax = b

θ −ϕν(x) ≥ 0 ν = 1, · · · ,L
ψμ(x) ≥ 0 μ = 1, · · · ,K

x ≥ 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.24)

Also in this case, we do not know in advance the linear constraints needed for the
complete coincidence of this problem with the original LP (1.22). Therefore, the
idea of the following procedure—also called Benders decomposition— is to gener-
ate successively those additional constraints needed to approximate (and finally to
hit) the solution of the original LP (1.22).
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The Dual Decomposition Algorithm

S 1 Initialization
Find a lower bound θ0 for

min{qTy | Ax = b, T x+Wy = h, x≥ 0, y≥ 0}

and solve the LP

min{cTx+θ | Ax = b, x≥ 0, θ ≥ θ0}

yielding the solution (x̂, θ̂). Define

B0 = {(x,θ) | Ax = b, x≥ 0, θ ∈�} and

B1 = {�n×{θ} | θ ≥ θ0}.
S 2 Evaluate the recourse function

To get f (x̂) = min{qTy |Wy = h−T x̂, y≥ 0}, solve the dual LP

f (x̂) = max{(h−T x̂)Tu |W Tu≤ q}.

If f (x̂) = +∞, then go to step S 3, else to S 4.
S 3 The feasibility cut

x̂ is infeasible for (1.22). In this case by Prop. 1.7. (p. 12) there exists an
unbounded growth direction ũ (to be revealed in step S 3 of the simplex
algorithm as one of the finitely many generating elements of the cone {u |
W Tu ≤ 0}; see Remark 1.1. on page 16) such that W Tũ ≤ 0 and (h−
T x̂)Tũ > 0, whereas for any feasible x of (1.22) there exists some y ≥ 0
such that Wy= h−T x. Multiplying this equation by ũ yields the inequality

ũT(h−T x) = ũTWy≤ 0,

which has to hold for any feasible x but is violated by x̂. Therefore we
redefine B1 := B1 ∩{(x,θ) | ũT(h−T x) ≤ 0} such that the infeasible x̂
is cut off, and go on to step S 5.

S 4 The optimality cut
Since f (x̂) is finite, by Prop. 1.3. there exists for the recourse problem a
dual optimal feasible basic solution û, determined in step S 2 above, such
that

f (x̂) = (h−T x̂)Tû,

whereas for any arbitrary x we have

f (x) = sup{(h−T x)Tu |W Tu≤ q}
≥ (h−T x)Tû.
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Therefore, the inequality θ − f (x) ≥ 0 in (1.23) implies the linear con-
straint

θ ≥ ûT(h−T x).

If this constraint is satisfied for (x̂, θ̂), i.e. if f (x̂)≤ θ̂ , stop the procedure,
since x� := x̂ is an optimal first stage solution; otherwise redefine the set
of constraints as B1 := B1 ∩{(x,θ) | θ ≥ ûT(h−T x)}, thus cutting off
the nonoptimal (x̂, θ̂), and go on to step S 5.

S 5 Solve the updated LP, called the master program,

min{cTx+θ | (x,θ) ∈B0∩B1}

yielding the optimal solution (x̃, θ̃).
With (x̂, θ̂) := (x̃, θ̃) return to step S 2.

Proposition 1.19. Given the above assumptions, the dual decomposition algorithm
yields an optimal first stage solution x� of (1.22) after finitely many cycles.

Proof: According to Prop. 1.18. the lower bound θ0 of S 1 exists (for instance, by
weak duality for any (w,u) ∈ {(w,u) | ATw+T Tu≤ 0, W Tu≤ q}, the value bTw+
hTu could be chosen as θ0).

Due to the solvability of (1.22) the dual constraints W Tu ≤ q are feasible and
independent of x. Hence the dual representation of f (x̂) in S 2 is always feasible
implying that f (x̂) is either finite or equal to +∞, the latter indicating primal infea-
sibility.

If f (x̂) = +∞, such that x̂ is infeasible for (1.22), due to Prop. 1.7. there is a
ũ : W Tũ ≤ 0 and (h− T x̂)Tũ > 0. We may assume that ũ is one of finitely many
generating elements of the cone {u |W Tu≤ 0}, as we get it in step S 3 of the simplex
algorithm (see Remark 1.1. on page 16). Since the cone {u |W Tu ≤ 0} is finitely
generated, we shall add at most finitely many constraints of the type ũT(h−T x)≤ 0
before we have finite recourse in all further cycles.

If f (x̂) = (h−T x̂)Tû is finite, we assume û to be an optimal dual feasible basic
solution (as delivered by the simplex algorithm). Since there are only finitely many
dual feasible basic solutions and hence finitely many constraints of the type θ ≥
ûT(h−T x) to be added at most, after finitely many cycles, with the solution of the
updated LP in S 5, we must get in the subsequent step S 4 that θ̂ ≥ ûT(h−T x̂) =
f (x̂). Due to the facts that

a) the feasible set of (1.23) is contained in the feasible set B0∩B1 of the last
master program in the previous step S 5, solved by (x̂, θ̂), and that

b) this solution (x̂, θ̂) is obviously feasible for (1.23),

it follows for any solution (x�,θ �) of (1.23) that

cTx�+θ � = cTx�+ f (x�)
≥ cTx̂+ θ̂ due to a)
≥ cTx�+θ � due to b).
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Hence, x̂ is a first stage solution of (1.22). �

Observe that whenever we have that x̂ ∈ dom f with the stopping criterion not
satisfied, we have to add in S 4 a linear constraint of the type θ ≥ φ(x) := γ̂+ ĝTx,
where γ̂ = ûTh and ĝ =−T Tû ∈ ∂ f (x̂), the subdifferential of f in x̂ (see Def. 1.10.
on page 54 below). Hence φ(x) is a linear lower bound of f in x ∈ dom f such that
φ(x̂) = f (x̂). This is illustrated in Fig. 1.3.

x1

f(x)

φ(x)

x2x3

Fig. 1.3 Dual decomposition: Optimality cuts.

Let us consider now, instead of (1.22), the two-stage SLP (1.10) with S > 1 real-
izations, given as

mincTx+
S

∑
j=1

p jqTy j

s. t. Ax = b
T jx +Wy j = h j, j = 1, · · · ,S

x ≥ 0
y j ≥ 0, j = 1, · · · ,S.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

This is equivalent to the NLP

min{cTx+
S

∑
j=1

p jθ j}
s. t. Ax = b

θ j− f j(x) ≥ 0, j = 1, · · · ,S
x ≥ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.25)
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with the recourse functions

f j(x) = min{qTy j |Wy j = h j−T jx, y j ≥ 0}, j = 1, · · · ,S.

Then we can modify the above dual decomposition algorithm as follows:

Dual Decomposition – Multicut Version

S 1 Initialization
Find, for j = 1, · · · ,S, lower bounds θ̃ j for

min{qTy j | Ax = b, T jx+Wy j = h j, x≥ 0, y j ≥ 0}

and, with p= (p1, · · · , pS)
T, θ = (θ1, · · · ,θS)

T and θ̃ = (θ̃1, · · · , θ̃S)
T solve

the LP
min{cTx+ pTθ | Ax = b, x≥ 0, θ ≥ θ̃},

yielding the solution (x̂, θ̂). Define

B0 = {(x,θ) | Ax = b, x≥ 0, θ ∈�S} and
B1 = {�n×{θ} | θ ≥ θ̃}.

S 2 Evaluate the recourse functions
To get f j(x̂) = min{qTy j |Wy j = h j−T jx̂, y j ≥ 0}, solve the dual LP’s

f j(x̂) = max{(h j−T jx̂)Tu j |W Tu j ≤ q}, j = 1, · · · ,S.

If J := { j | f j(x̂) = +∞} �= /0, then go to step S 3, else to S 4.

S 3 Feasibility cuts
We have f j(x̂) = +∞ for j ∈ J �= /0 implying that x̂ is infeasible for (1.25).
In this case by Prop. 1.7. there exist unbounded growth directions ũ j, j ∈
J (to be revealed in step S 3 of the simplex algorithm; see Remark 1.1.
on page 16) such that ∀ j ∈ J holds W Tũ j ≤ 0 and (h j − T jx̂)Tũ j > 0,
whereas for any feasible x of (1.25) there exist some y j ≥ 0 such that
Wy j = h j−T jx. Multiplying these equations by ũ j yields the inequalities

ũ jT(h j−T jx) = ũ jTWy j ≤ 0,

which have to hold for any feasible x but are violated by x̂ for j ∈ J.
Therefore we redefine B1 := B1 ∩ {(x,θ) | ũ jT(h j − T jx) ≤ 0, j ∈ J}
such that the infeasible x̂ is cut off, and go on to step S 5.

S 4 Optimality cuts
Since f j(x̂) is finite for all j = 1, · · · ,S, by Prop. 1.3. there exist for the
recourse problems dual optimal feasible basic solutions û j, determined in
step S 2 above, such that

f j(x̂) = (h j−T jx̂)Tû j,
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whereas for any arbitrary x we have

f j(x) = sup{(h j−T jx)Tu j |W Tu j ≤ q}
≥ (h j−T jx)Tû j.

Therefore, the inequalities θ j− f j(x) ≥ 0 in (1.25) imply the linear con-
straints

θ j ≥ û jT(h j−T jx).

If these constraints are satisfied for (x̂, θ̂), i.e. if f j(x̂) ≤ θ̂ j ∀ j, stop the
procedure, since x� := x̂ is an optimal first stage solution; otherwise, if
f j(x̂) > θ̂ j for j ∈ J �= /0, redefine the set of constraints as B1 := B1 ∩
{(x,θ) | θ j ≥ û jT(h j − T jx) for j ∈ J}, thus cutting off the nonoptimal
(x̂, θ̂), and go on to step S 5.

S 5 Solve the updated master program

min{cTx+θ | (x,θ) ∈B0∩B1}

yielding the optimal solution (x̃, θ̃).
With (x̂, θ̂) := (x̃, θ̃) return to step S 2.

This multicut version of the dual decomposition method for solving the two-stage
SLP (1.10) or its equivalent NLP (1.25) is due to Birge and Louveaux (see Birge–
Louveaux [25]). Similarly to Prop. 1.19., the multicut method can also be shown to
yield an optimal first stage solution after finitely many cycles.

Instead of introducing S variables θ j as in the multicut version, we may also get
along with just one additional variable θ : Instead of (1.25) we deal, again equiva-
lently to the SLP (1.10), with the NLP

min{cTx+θ}
s. t. Ax = b

θ −
S

∑
j=1

p j f j(x) ≥ 0,

x ≥ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.26)

In step S 3 we add feasibility cuts to B1 as long as we find f j(x̂) = +∞ for at
least one j. In step S 4, where all recourse function values are finite with f j(x̂) =
(h j−T jx̂)Tû j, we

– either add the optimality cut θ ≥
S

∑
j=1

p jû jT(h j−T jx) to B1 if

θ̂ <
S

∑
j=1

p jû jT(h j−T jx̂), and then go on to the master program in step S 5;
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– or else, if θ̂ ≥
S

∑
j=1

p jû jT(h j − T jx̂), we stop with x̂ as an optimal first stage

solution.

This L−shaped method was introduced by Van Slyke–Wets [336]. Both variants of
Benders’ decomposition are described in detail in Birge–Louveaux [26].

1.2.7 Nested decomposition

This section is devoted to an extension of the dual decomposition method to multi–
stage SLP problems (MSLP’s). In (1.11) on page 5, we have introduced a general
MSLP with fixed recourse. Now we will allow randomness of the recourse matrices
and objective coefficients, too. Due to Remark 3.10., pages 265–266, we may restrict
MSLP’s to the widely used staircase formulation:

min

{
cT

1 x1 +�ζT

[
T

∑
t=2

cT
t (ζt)xt(ζt)

]}

W1x1 = b1
T2(ζ2)x1 + W2(ζ2)x2(ζ2) = b2(ζ2), a.s.,
T3(ζ3)x2(ζ2) + W3(ζ3)x3(ζ3) = b3(ζ3), a.s.,
...
TT (ζT )xT−1(ζT−1) + WT (ζT )xT (ζT ) = bT (ζT ), a.s.,

x1, xt(ζt) ≥ 0, a.s. ∀ t ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.27)

where ξ2, · · · ,ξT and therefore also ζt = (ξ2, · · · ,ξt), t = 2, · · · ,T, are random vec-
tors with given distributions. Furthermore, since in stage t with 2 ≤ t ≤ T the con-
straint

Tt(ζt)xt−1(ζt−1)+Wt(ζt)xt(ζt) = bt(ζt)

has to hold a.s., it should be obvious that for almost every realization ζ̂t = (ζ̂t−1, ξ̂t),
with xt−1(·) being the decision xt−1(ζ̂t−1) taken for the corresponding sub–path
of ζ̂t , the decision xt(ζ̂t) in stage t has to satisfy the constraints Wt(ζ̂t)xt(ζ̂t) =

bt(ζ̂t)−Tt(ζ̂t)xt−1(ζ̂t−1), xt(ζ̂t)≥ 0.
If in particular the random vector ξ := (ξ2, · · · ,ξT ) (and hence all the vectors ξt

and ζt ) has a finite discrete distribution, defined by realizations and corresponding
probabilities as {ξ̂ s, �ξ (ξ = ξ̂ s) = qs; s ∈S := {1, · · · ,S}}, we can represent the
process {ζt ; t = 2, · · · ,T} on a scenario tree as follows:
Node n = 1 in stage 1 corresponds to the assumed deterministic state at the begin-
ning of the process;
in stage 2 we have the nodes n = 2, · · · ,K2, each one corresponding to one of the
different sub–paths ζ̂ ρ(n)

2 contained in the scenarios ξ̂ 1, · · · , ξ̂ S, endowed with the
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probability pn = ∑
s∈S

{
qs | ζ̂ s

2 = ζ̂ ρ(n)
2

}
;

in stage 3 there are then the nodes n = K2 + 1, · · · ,K3 corresponding to one of
the different sub–paths ζ̂ ρ(n)

3 contained in {ξ̂ s; s ∈ S }, with the probabilities

pn = ∑
s∈S

{
qs | ζ̂ s

3 = ζ̂ ρ(n)
3

}
; and so on. As an example of a scenario tree see the

four-stage case in Fig. 1.4 with 10 scenarios.
Scenarios are the different realizations of ζT , they correspond to the root–to–

leaf paths in the tree. The superscript ρ(n) denotes the first scenario which passes
through node n, in a fixed ordering of scenarios. In Fig. 1.4 we have, e.g., ρ(2) = 1
and ρ(8) = 8. For further details on this notation see the section about notations.

By construction, any node n in some stage tn ≥ 2 has exactly one predecessor
(node) hn in stage tn − 1, whereas each node n in stage tn < T has a nonempty
finite set C (n) of successors (nodes in stage tn + 1), also called the children of
n. For any node n in stage tn ≥ 2 (i.e. Ktn−1 < n ≤ Ktn ) we shall use the short-
hand Tn,Wn,xn,bn,cn instead of Ttn(ζ̂

ρ(n)
tn ), Wtn(ζ̂

ρ(n)
tn ), xtn(ζ̂

ρ(n)
tn ), btn(ζ̂

ρ(n)
tn ), and

ctn(ζ̂
ρ(n)

tn ), respectively.

�

�

�

�

�

�

�
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Fig. 1.4 Four-stage scenario tree.

For later use we introduce some further notations. N denotes the set of nodes
of the scenario tree and Nt stands for the set of nodes in stage t, i.e., N1 = {1} and
Nt = {Kt−1 +1, . . . ,Kt} for t > 1. The set of nodes of the subtree rooted at n ∈N
will be denoted by G (n). In our example in Fig. 1.4 we have, e.g., N3 = {4, . . . ,9}
and G (2) = {2;4, . . . ,6;10, . . . ,14}.
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Now we can rewrite problem (1.27) as the following optimization problem on
the corresponding scenario tree:

min

{
cT

1 x1 +
K2

∑
n=2

pncT
n xn +

K3

∑
n=K2+1

pncT
n xn + · · ·

· · ·+
KT

∑
n=KT−1+1

pncT
n xn

}

W1x1 = b1
Tnx1+ Wnxn = bn, n = 2, · · · ,K2

Tnxhn+ Wnxn = bn, n = K2 +1, · · · ,K3
. . .
Tnxhn+ Wnxn = bn, n = KT−1 +1, · · · ,KT

xn≥ 0, n = 1, · · · ,KT .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.28)

The above problem can compactly be written as follows:

F1 = min cT
1 x1 + ∑

ν∈N \{1}
pνcT

νxν

s.t. W1x1 = b1

Tνxhν +Wνxν = bν , ν ∈N \{1}
xν ≥ 0, ν ∈N .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.29)

For the ease of presentation we make the following assumption:

Assumption 1.1. There exist individual upper bounds xn ≤Un, Un ≥ 0, ∀n ∈N .

Note that Un does also depend on n ∈N , i.e., multistage models involving individ-
ual stochastic upper bounds are incorporated in the above formulation.

Assumption 1.1., implying that (1.29) is either infeasible or otherwise has an op-
timal solution, may be included into (1.29) by adding the constraints yν ≥ 0,
Iνxν+yν =Uν , ∀ν ∈N (Iν identity matrices of the order ord Iν = dimxν) . Aggre-
gating the sets {xν , ν ∈N } and {yν , ν ∈N } into one vector x and y each, and
consequently condensing all the equality constraints into the two blocks Ax = b and
Ix+ y = U , a further straightforward implication of assumption 1.1. is that (1.29)
is dual feasible: considering the resulting (condensed) primal–dual pair of LP prob-
lems ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min cTx
s.t. Ax = b

Ix + y =U
x ≥ 0

y ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎨
⎪⎩

max bTv +UTw

s.t. ATv + w ≤ c
w ≤ 0,

⎫⎪⎬
⎪⎭ (1.30)
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it is obvious that, to an arbitrarily chosen v, there exists w such that (v,w) is a feasible
solution of the dual.

Problem (1.28) corresponds to the following sequence of programs: For node
n = 1

F1 = mincT
1 x1 +

K2

∑
n=2

pnFn(x1)

W1x1 = b1
x1 ≥ 0;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.31)

then for each node in stage 2, i.e., for n ∈N2 = {2, · · · ,K2}

Fn(x1) = mincT
n xn + ∑

m∈C (n)

pm

pn
Fm(xn)

Wnxn = bn−Tnx1
xn ≥ 0;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.32)

and in general for any node n ∈Nt = {Kt−1 +1, . . . ,Kt} in stage tn ∈ {3, · · · ,T −1}

Fn(xhn) = mincT
n xn + ∑

m∈C (n)

pm

pn
Fm(xn)

Wnxn = bn−Tnxhn

xn ≥ 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.33)

Finally, for nodes n in stage tn = T , i.e., n ∈NT = {KT−1 +1, · · · ,KT}, we get

Fn(xhn) = mincT
n xn

Wnxn = bn−Tnxhn

xn ≥ 0.

⎫⎪⎬
⎪⎭ (1.34)

For n with tn = T it is obvious from (1.34) that Fn(xhn) is piecewise linear and
convex in xhn for all n ∈ {KT−1 + 1, · · · ,KT} (see Prop. 1.18., p. 24). Then, going
backwards through stages T − 1,T − 2, · · · ,2, it follows immediately from (1.33),
that the additive terms ∑

m∈C (n)

pm

pn
Fm(xn) are piecewise linear and convex in xn im-

plying that also the functions Fn(xhn) are piecewise linear and convex, such that by

(1.32) also the additive term
K2

∑
n=2

pnFn(x1) in (1.31) is piecewise linear and convex in

x1.
Note that for tn > 1 the NLP (1.33) can also be written in the following equivalent

LP form:



1.2 Linear Programming Prerequisites 35

Fn(xhn) = min cT
n xn + ∑

ν∈G (n)\{n}

pν
pn

cT
νxν

s.t. Wnxn = bn−Tnxhn

Tνxhν +Wνxν = bν , ν ∈ G (n)\{n}
xν ≥ 0, ν ∈ G (n),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.35)

with the parameter vector xhn and optimal–value function Fn. As usual, Fn(xhn) :=
+∞ is taken in the infeasible case. The LP problem (1.35) will be called a descendant
recourse problem and will be denoted by LPDesc(n,xhn). In this context, (1.33) is
the recursive NLP formulation of LPDesc(n,xhn). For the sake of uniform notation
we introduce a virtual node, indexed by 0, as the ancestor of the root node. Since the
virtual node merely serves for simplifying notation, it is not added to N . We define
a matrix T1 as an (m1×1) zero matrix (a column vector), where m1 is the number of
rows of W1. Interpreting xh1 as an arbitrary number, the original multistage problem
(1.29) is included into this notation, resulting in a constant optimal–value function
F1(xh1)≡ F1.

Assumption 1.1. implies that LPDesc(n,xhn) is either infeasible, or otherwise
it has an optimal solution, furthermore, it is dual feasible for all n ∈N and all xhn .

For a fixed xhn and tn < T , (1.35) is the LP–equivalent of a (T − tn + 1)–stage
recourse problem, corresponding to the following scenario tree: take the subtree of
the original scenario tree, which is rooted at n ∈N , and divide by pn all probabil-
ities associated with the nodes of the subtree. In particular, for tn = T − 1 the LP
problems LPDesc(n,xhn) are LP equivalents of two–stage recourse problems. For
n ∈NT n is a leaf of the scenario tree and the LP LPDesc(n,xhn) is an ordinary
one–stage LP problem. Nevertheless, for the sake of simplicity, we call also these
LP’s descendant recourse problems.

Above we have derived the piecewise linearity of Fn(xhn) using backward induc-
tion. An alternative way of showing this consists of considering the LP (1.35) for
which Prop. 1.18. (p. 24) directly applies.

Consider problem (1.33) for some n with tn < T . In analogy to (1.23) on page
25, we introduce an upper bound θn to replace the additive term ∑

m∈C (n)

pm

pn
Fm(xn)

in the objective function. Due to the piecewise linearity of the latter term, the upper
bound θn has to satisfy some additional linear constraints

dT
nkxn +θn ≥ δnk,k = 1, · · · ,Sn .

In addition, some further linear constraints

aT
n jxn ≥ αn j, j = 1, · · · ,Rn ,

may be necessary to ensure the feasibility (i.e., the finiteness of Fm) of the LP’s for
the nodes m ∈ C (n), such that (1.33) is now replaced by
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Fn(xhn) = mincT
n xn +θn

Wnxn = bn−Tnxhn

aT
n jxn ≥ αn j, j = 1, · · · ,Rn

dT
nkxn +θn ≥ δnk, k = 1, · · · ,Sn

xn ≥ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.36)

As discussed in connection with (1.24) on page 25, the main idea in dual decom-
position is to solve a sequence of successively built relaxed master problems

F̃n(xhn) = mincT
n xn +θn

Wnxn = bn−Tnxhn

aT
n jxn ≥ αn j, j = 1, · · · ,rn

dT
nkxn +θn ≥ δnk, k = 1, · · · ,sn

xn ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.37)

with parameter vector xhn and optimal–value function F̃n. Similarly as for descen-
dant recourse problems, for the root node holds F̃1(xh1)≡ F̃1, with a constant value
F̃1.

The LP (1.37) will be denoted by LPMast(n,xhn) and will be called a re-
laxed master problem. Constraints in the second and third group of constraints
will be called feasibility cuts and optimality cuts, respectively. In the nested de-
composition (ND) algorithm these cuts will be added in a one–by–one manner to
LPMast(n,xhn), as it will be discussed later. rn = 0 or sn = 0 means that the cor-
responding group of constraints is missing. Furthermore, if sn = 0, then we assume
that the variable θn is fixed by an additional constraint θn = 0. Finally, we will
use the above notation also for the leaves (tn = T ), by keeping rn = 0 and sn = 0
throughout.

Due to Assumption 1.1., LPMast(n,xhn) is either infeasible, or otherwise it has
an optimal solution. It is also dual feasible, ∀n ∈N , ∀xhn .

Assume that sn > 0 holds. In this case the third group of inequalities in the relaxed
master problem (1.37) can equivalently be written as the following single inequality
constraint:

θn ≥ max
1≤k≤sn

(δnk−dT
nkxn).

This can be put into the objective function thus leading to an equivalent formulation
of the relaxed master problem

F̃n(xhn) = min
[

cT
n xn + max

1≤k≤sn
(δnk−dT

nkxn)

]

Wnxn = bn−Tnxhn

aT
n jxn ≥ αn j, j = 1, · · · ,rn

xn ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.38)
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as an NLP problem with a piecewise linear convex objective function. Note that
for descendant recourse problems we had both an LP formulation (1.35) and an
NLP formulation (1.33). These have their counterparts (1.37) and (1.38) concerning
relaxed master problems.

In the multistage case with T > 2, for 1≤ tn < T −1 two new features appear in
comparison with the two–stage case, which have to be dealt with. On the one hand,
both the descendant recourse problem (1.33) and the relaxed master problem (1.37)
depend on a parameter vector xhn . On the other hand, the terms Fm in the objective
function in (1.33) are defined by multistage (at least two–stage) problems. We have
to explain how in this situation valid cuts can be constructed.

Let us consider a node n ∈Nt , t < T , and its child–nodes m ∈ C (n). We assume
that the current relaxed master LPMast(n,xhn) has a solution (x̂n, θ̂n). The prob-
lems LPMast(m, x̂n), assigned to the child–nodes m ∈ C (n), are either infeasible
or have an optimal solution.

Feasibility cuts

If LPMast(m, x̂n) is infeasible for an m ∈ C (n) then a feasibility cut will be
added to LPMast(n,xhn). The infeasibility of (1.37) implies the objective of the
corresponding dual

max (bm−Tmx̂n)
Tum +

rm

∑
j=1

αm jvm j +
sm

∑
k=1

δmkwmk

s.t. W T
m um +

rm

∑
j=1

am jvm j +
sm

∑
k=1

dmkwmk ≤ cn

sm

∑
k=1

wmk = 1

vm j ≥ 0, ∀ j

wmk ≥ 0, ∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.39)

to be unbounded from above (note that (1.39) is feasible, due to Assumption 1.1.).
Hence there exists a cone–generating vector (ũm, ṽm) with ṽm ≥ 0 satisfying

W T
m ũm +

rm

∑
j=1

am jṽm j ≤ 0 and

(bm−Tmx̂n)
Tũm +

rm

∑
j=1

αm jṽm j > 0.
(1.40)

In (1.40) w̃mk is missing since any cone–generating (ũm, ṽm, w̃m) of (1.39) has to

satisfy
sm

∑
k=1

w̃mk = 0, w̃mk ≥ 0∀k, such that w̃mk = 0∀k.
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Thus, analogously to Benders’ algorithm, for cutting off x̂n which has led to the
infeasible relaxed master LPMast(m, x̂n), the following feasibility cut is added to
LPMast(n,xhn):

(bm−Tmxn)
Tũm +

rm

∑
j=1

αm jṽm j ≤ 0, (1.41)

or equivalently
aT

mxn ≥ αm (1.42)

where am := T T
n ũm and αn := bT

mũm +
rm

∑
j=1

αm jṽm j hold.

Notice that x̂n is infeasible also for the descendant linear programming problem
LPDesc(n,xhn) (see 1.35) in the following sense: it can not be extended to a fea-
sible solution of this problem. It makes sense therefore to cut off this point.

Definition 1.6. A feasibility cut aT
n jxn ≥ αn j in LPMast(n,xhn) will be called

valid, if for any feasible solution (x̄ν , ν ∈ G (n)) of the descendant recourse problem
LPDesc(n,xhn), the inequality aT

n jx̄n ≥ αn j holds.

Validity of a feasibility cut means for any feasible solution of LPDesc(n,xhn), that
the piece of this solution which corresponds to node n will not be cut off. In context
of the NLP formulation (1.33), the jth feasibility cut in LPMast(n,xhn) is valid, if
and only if for any feasible solution x̄n of (1.33) for which Fm(x̄n) < +∞ holds for
all m ∈ C (n), the inequality aT

n jx̄n ≥ αn j holds.

Proposition 1.20. The following assertions hold:

(i) Let n ∈ N be an arbitrary node. If in LPMast(n,xhn) either rn = 0
holds or otherwise all feasibility cuts are valid then for any feasible so-
lution (x̄ν , ν ∈ G (n)) of LPDesc(n,xhn), x̄n is a feasible solution of
LPMast(n,xhn).

(ii) Let n ∈N and m ∈ C (n) be the nodes which have been considered for
generating the feasibility cut. Provided that in LPMast(m, x̂n) either
rm = 0 holds or otherwise all feasibility cuts are valid, the new cut is a
valid feasibility cut in LPMast(n,xhn).

Proof:

(i): If rn = 0 then (i) is obviously true. Otherwise the assertion is an immediate
consequence of the definition of validity.

(ii): To see this, assume that (x̄ν , ν ∈ G (n)) is a feasible solution of the descen-
dant recourse problem LPDesc(n,xhn). In particular for node m ∈ C (n),
from which the cut has been generated, we have:

Wmx̄m = bm−Tmx̄n

aT
m jx̄m ≥ αm j, j = 1, . . . ,rm

where the second inequality holds for the following reason: (x̄μ ,μ ∈ G (m))
is obviously a feasible solution of LPDesc(m, x̄n) and then the inequality
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follows from the assumption concerning feasibility cuts in LPMast(m, x̂n).
Multiplying by ũm, ṽm, and summing up, we get

(bm−Tmx̄n)
Tũm +

rm

∑
j=1

αm jṽm j ≤ (W T
m ũm +

rm

∑
j=1

am jṽm j)x̄m ≤ 0

where the last inequality follows from (1.40) and from the nonnegativity of
x̄m. This shows (see (1.41)) that for x̄n the newly added inequality holds.

�

Optimality cuts

If LPMast(m, x̂n) has a solution for all m ∈ C (n) then we consider append-
ing an optimality cut to LPMast(n,xhn). Let (x̂m, θ̂m) be an optimal solution of
LPMast(m, x̂n) and (ûm, v̂m, ŵm) be an optimal solution of its dual (1.39), then we
have

F̃m(x̂n) = cT
mx̂m + θ̂m

= (bm−Tmx̂n)
Tûm +

rm

∑
j=1

αm jv̂m j +
sm

∑
k=1

δmkŵmk ,
(1.43)

for all m ∈ C (n). The key observation concerning optimality cuts is the following:
The feasible domain of the dual problem (1.39) does not depend on x̂n. Conse-
quently, due to weak duality in LP, we have that

F̃m(xn)≥ (bm−Tmxn)
Tûm +

rm

∑
j=1

αm jv̂m j +
sm

∑
k=1

δmkŵmk (1.44)

holds for any xn. Therefore we consider adding the following optimality cut to
LPMast(n,xhn):

θn ≥ ∑
m∈C (n)

pm

pn

[
(bm−Tmxn)

Tûm+
rm

∑
j=1

αm jv̂m j+
sm

∑
k=1

δmkŵmk

]
. (1.45)

If the above inequality holds for (x̂n, θ̂n), which is the current solution of
LPMast(n,xhn), then the new constraint would be redundant, otherwise the op-
timality cut will be added to LPMast(n,xhn).

The optimality cut can equivalently be written as

dT
nkxn +θn ≥ δnk, k = sn +1 (1.46)

with
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dnk := ∑
m∈C (n)

pm

pn
T T

m ûm and

δnk := ∑
m∈C (n)

pm

pn

[
bT

mûm +
rm

∑
j=1

αm jv̂m j +
sm

∑
k=1

δmkŵmk

]
.

With the notation just introduced, (1.44) implies that

∑
m∈C (n)

pm

pn
F̃m(xn)≥ δnk−dT

nkxn, ∀xn, (1.47)

holds for k = sn + 1 and for arbitrary xn. In deriving this inequality we have also
used the fact, that for the scenario tree ∑

m∈C (n)
pm = pn holds.

The optimality cut clearly cuts off the current solution (x̂n, θ̂n).

Definition 1.7. An optimality cut dT
nkxn + θn ≥ δnk in LPMast(n,xhn) is called

valid, if the inequality δnk−dT
nkxn ≤ ∑

m∈C (n)

pm

pn
Fm(xn) holds for arbitrary xn.

Comparing the NLP formulations (1.38) and (1.33) of LPMast(n,xhn) and
LPDesc(n,xhn), respectively, we observe the reason for this requirement: We wish
to achieve that the objective function of the relaxed master problem yields a lower
bound to the objective function of the descendant recourse problem.

Proposition 1.21. The following assertions hold:

(i) Let n ∈N be an arbitrary node and assume that all feasibility cuts are
valid in LPMast(n,xhn). If either n ∈NT , or in LPMast(n,xhn) sn > 0
holds and all optimality cuts are valid then F̃n(xhn) ≤ Fn(xhn) holds for
any xhn .

(ii) Let n ∈N be the node considered in the discussion on optimality cuts. If
either n∈NT−1, or for all m∈C (n) sm > 0 holds and all feasibility– and
optimality cuts are valid in LPMast(m, x̂n), then the new cut is a valid
optimality cut in LPMast(n,xhn).

Proof:

(i) : In the case n∈NT the problems LPMast(n,xhn) and LPDesc(n,xhn) are
identical and therefore we have F̃n(xhn) =Fn(xhn) for all xhn . Assume n∈Nt
with t ≤ T −1. Our assumption implies the inequality

cT
n xn + max

1≤k≤sn
(δnk−dT

nkxn)≤ cT
n xn + ∑

m∈C (n)

pm

pn
Fm(xn) (1.48)

for arbitrary xn. We consider the NLP formulations (1.33) and (1.38) of
LPDesc(n,xhn) and LPMast(n,xhn), respectively. If (1.38) is infeasible
(F̃n(xhn) = +∞) then due to Proposition 1.20. (i), LPDesc(n,xhn) is also
infeasible and consequently Fn(xhn) = +∞ holds. Thus we have F̃n(xhn) =
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Fn(xhn) = +∞. Assume that (1.38) is feasible. For any feasible solution in
(1.33), which is infeasible in (1.38), at least one feasibility–cut constraint
in the latter is violated. The validity of this feasibility cut implies that the
right–hand–side in (1.48) is +∞. Thus taking minima on both sides of (1.48)
over the feasible domain of (1.38) results in our inequality.

(ii) : By part (i) of this proposition, our assumption implies that F̃m(xn)≤ Fm(xn)
holds for all m∈C (n) and arbitrary xn. Utilizing (1.47) we get the inequality

δnk−dT
nkxn ≤ ∑

m∈C (n)

pm

pn
F̃m(xn)≤ ∑

m∈C (n)

pm

pn
Fm(xn)

which proves (ii).

�

Now we are prepared to describe the nested decomposition (ND) algorithm. This
consists of carrying out the following three basic operations in an iterative fashion.

Starting with stage t0, a forward pass consists of an attempt of solving all re-
laxed master problems in stages t ≥ t0, in a stage–by–stage manner. The solutions
obtained in stage t are used to set up the relaxed master problems in stage t + 1. A
forward pass terminates either by encountering a node n such that LPMast(n, x̂hn)
is infeasible, or by obtaining a solution x̂n for all nodes n with tn ≥ t0. The solutions
obtained this way are consistent in the following sense: for any node n with tn > t0,
before setting up and solving LPMast(n, x̂hn) the relaxed master problem associ-
ated with the ancestor node has been already solved and the solution of the ancestor
problem is used to set up LPMast(n, x̂hn). In particular, this implies that for any
node n with tn ≥ t0, (x̂ν ,ν ∈ G (n)) is a feasible solution of the descendant recourse
problem LPDesc(n, x̂hn).

Backtracking starts with a node n, for which LPMast(n, x̂hn) is infeasible. The
following steps are carried out along the unique path from n to the root. First a
feasibility cut is added to the ancestor’s relaxed master problem. The relaxed master
of the ancestor is solved next. If this turns out to be infeasible then the procedure
is repeated with the ancestor node being the current node. Backtracking terminates
either by finding a node along the path with a feasible relaxed master problem, or by
reaching the root node with an infeasible associated relaxed master problem. In the
latter case the multistage problem is infeasible, the overall procedure terminates.

A backward pass presupposes that LPMast(n, x̂hn) is feasible with an optimal
solution x̂n for all n ∈N . Starting with t = T − 1, an attempt is made to add opti-
mality cuts to all relaxed master problems in stage t. Relaxed master problems with
added optimality cuts are solved. Afterwards this is repeated with stage t = T − 2,
and so on, in a backward stage–by–stage manner. Since adding an optimality cut
does not render a feasible relaxed master problem infeasible, the backward pass ter-
minates by reaching the root node. If during a whole backward pass no optimality
cuts have been added then the current solution is optimal and the overall procedure
terminates.
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Note that if for any node n with tn < T the solution x̂n changes then the current
solutions (if any) associated with the nodes in G (n) \ {n} become invalid in the
overall procedure, in general. The reason is that changing x̂n implies changing the
parameter in LPMast(m, x̂n) for all m ∈ C (n) which may result in changing the
solution x̂m. This in turn implies changes in the parametrization of the relaxed master
problems associated with the child-nodes of m ∈ C (n), and so on.

Next we formulate the nested decomposition (ND) algorithm.

Nested Decomposition Algorithm

S 0 Initialization
Let rn = 0, sn = 0, γn = False
and add the constraint θn = 0 to LPMast(n,xhn), ∀n ∈N .
Set t := 1 and for formal reasons set x̂h1 = 0.
The Boolean variable γn will be used for the following purpose: γn = True
indicates that the current relaxed master LPMast(n, x̂hn) has a solution and
it is legitimate to use the current solution (x̂n, θ̂n) when node n is encountered
during the subsequent iterations. γn = False indicates that LPMast(n, x̂hn)
is to be solved whenever node n is encountered. (Observe that for n ∈NT
we’ll have rn = sn = 0 as well as θn ≡ 0 throughout the procedure.)

S 1 Select Direction
If t < T then go to S 2 (forward pass), otherwise go to S 3 (backward pass).

S 2 Forward Pass
For n ∈Nt for which γn = False in turn do:

– Solve LPMast(n, x̂hn). If infeasible then store (ũn, ṽn) which fulfills
(1.40) and continue with S 4 (backtracking). Otherwise continue this
loop with the next step.

– Store the solution (x̂n, θ̂n); if t = T then store also the dual solution
(ûn, v̂n, ŵn);

– set γn = True and γν := False for all ν ∈ G (n)\{n};
– take the next node in Nt .

If this loop goes through without jumping to S 4 then proceed as follows: if
t = T then go to S 1, otherwise set t := t +1 and repeat S 2.

S 3 Backward pass
Set γ := True. This Boolean variable is only used in the present backward
pass. γ = True indicates that no optimality cuts have been added so far.
For n ∈Nt−1 in turn do:

– Check whether (1.45) holds for the current solution (x̂n, θ̂n);
– if yes, then take the next node in Nt−1, otherwise
– add an optimality cut:

- Set γ := False;
- if sn = 0 then drop the constraint θn = 0;
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- add the optimality cut (1.46) to LPMast(n, x̂hn) with k := sn + 1;
set sn := sn +1;

- solve LPMast(n, x̂hn) and temporarily store the dual solution
(ûn, v̂n, ŵn).

Note that this loop always goes through: adding an optimality cut does not
render a previously feasible relaxed master problem infeasible. After this
loop has gone through check for optimality: If t = 1 and γ = True then no
optimality cut has been added through a whole backward cycle. In this case
the current solution is optimal, Stop. Otherwise if t > 1 then set t := t − 1
and repeat S 3, else return to S 1.

S 4 Backtracking

– If n = 1 then the multistage problem is infeasible, Stop. Otherwise
– make the predecessor of n the current node, i.e., set m := n and subse-

quently n := hm.
– Add a feasibility cut to LPMast(n, x̂hn) according to (1.42);
– set γν := False for all ν ∈ G (n);
– solve LPMast(n, x̂hn). If infeasible then compute (ũn, ṽn) which fulfills

(1.40) and repeat S 4. Otherwise set γn := True, store a solution (x̂n, θ̂n)
and return to S 1.

Proposition 1.22. The following assertions hold:

(i) The feasibility cuts generated by the algorithm are valid.
(ii) The optimality cuts generated by the algorithm are also valid. Further-

more, F̃n(xhn)≤ Fn(xhn) holds for all n ∈N and all xhn .
(iii) The algorithm terminates in a finite number of iterations.
(iv) If the algorithm terminates in S 4 then the multistage problem is infeasi-

ble; if termination occurs in S 3 then the current solution (x̂n, n ∈N ) is
optimal.

Proof:

(i) Feasibility cuts are generated along backward chains in S 4. If rn = 0 holds
for LPMast(n, x̂hn), belonging to the starting node n of the chain (the node
in the highest stage), then Proposition 1.20. implies that all feasibility cuts
added along the chain are valid. This is the case in the initial phase of the
method. If later on the starting node already has feasibility cuts, they are
valid, therefore again Proposition 1.20. applies thus ensuring the validity of
the newly generated cuts.

(ii) The validity of the optimality cuts follows immediately from Proposi-
tion 1.21.. For the inequality we observe that F̃(xhn) = F(xhn) holds for
the leaves n ∈NT , therefore our inequality follows from Proposition 1.21.
by backward induction.

(iii) Due to the construction of the algorithm, none of the cone–generating ele-
ments and dual feasible basic solutions of LPMast(m, x̂n) (m ∈ C (n)) is
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used repeatedly for adding cuts to LPMast(n,xhn). Consequently, for fi-
nite termination it is sufficient to show that for any node n ∈N there exist
finitely many different cone–generating elements and dual feasible basic so-
lutions of relaxed master problems associated with the child–nodes. This is
a consequence of the fact that the dual feasible region of LPMast(m, x̂n)
does not depend on x̂n (see also the discussion on page 39).
For nodes n with tn = T (leaves), both the set of cone–generating elements
and the set of feasible basic dual solutions are obviously finite. Let us con-
sider a node n with tn = T −1. Both types of cuts for this node are generated
either on the basis of cone–generating elements or on the basis of dual ba-
sic feasible solutions of LPMast(m, x̂n) with m ∈ C (n). Consequently, the
number of different feasibility– and optimality cuts in LPMast(n, x̂hn) is
finite and the set of possible cuts is independent on the specific value of xhn .
This implies that for LPMast(n,xhn) the number of different dual feasi-
ble sets is also finite. Consequently, for each node n with tn = T − 1, the
number of cone–generating elements and dual basic feasible solutions is fi-
nite. These are used for generating cuts for nodes n with tn = T −2. Using
backward induction according to stages, it follows that, for any node n∈N ,
there are finitely many different feasibility– and optimality cuts. This proves
(iii).

(iv) If the algorithm terminates in S 4 then LPMast(1, x̂h1) is infeasible. Then,
due to assertion (i), LPDesc(1, x̂h1) is also infeasible. The latter being the
original multistage problem this proves the first statement.
For any node n ∈N , by successively applying (1.45) and (1.43) we get

F̃n(xhn) = cT
n x̂n + θ̂n

≥ cT
n x̂n + ∑

m∈C (n)

pm

pn
(cT

mx̂m + θ̂m)

≥ cT
n x̂n + ∑

m∈C (n)

pm

pn

(
cT

mx̂m + ∑
μ∈C (m)

pμ
pm

(cT
μ x̂μ + θ̂μ)

)

= cT
n x̂n + ∑

m∈C (n)

pm

pn
cT

mx̂m + ∑
m∈C (n)

∑
μ∈C (m)

pμ
pn

(cT
μ x̂μ + θ̂μ)

... (1.49)

≥ cT
n x̂n + ∑

ν∈G (n)

pν
pn

cT
ν x̂ν

≥ Fn(xhn),

where the last inequality follows from the fact, that ((x̂ν , θ̂ν)), ν ∈G (n)) is a
feasible solution of LPDesc(n, x̂hn). The full proof follows by an obvious
induction. Applying this for n = 1, together with assertion (ii), the result
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follows. The above proof also shows that at optimality (1.45) is fulfilled as
an equality throughout. �

Regarding (1.36) and (1.37), we took the liberty of using in both problems the
same notation for the cuts. For T > 2, however, the nested decomposition method
generates optimality cuts for LPMast(n,xhn) which are not necessarily among the
optimality cuts of LPDesc(n,xhn), not even at points of differentiability of the
objective function in (1.33).

For the dual decomposition method, master problems can be considered as re-
laxations of the full representation (1.24) and the algorithm can be interpreted as
building the set of additional constraints in a step–by–step fashion (see page 25).
As indicated above, this interpretation is no more valid in the multistage case. The
reason is that, for T > 2 and n ∈Nt with 1 ≤ t ≤ T − 2, optimality cuts are based
on relaxed master problems which are themselves in the process of being built up.
Therefore, optimality cuts do not provide necessarily supporting hyperplanes to the
true optimal–value function. An example for this behavior can be found in Birge–
Louveaux [26], Section 7.1. For indicating this distinctive feature, we used the term
“relaxed master problem” whereas in Section 1.2.6 on dual decomposition the term
“master problem” has been employed.

As in the dual decomposition method, after a backward pass the current value of
F̃1 clearly provides a lower bound on the optimal objective value of the multistage
problem. After a complete forward pass, i.e. if during a forward pass all relaxed
master problems turn out to be feasible, the current solution (x̂n,n ∈N ) is a fea-
sible solution of the multistage problem (1.28). Thus, computing the corresponding
objective value results in an upper bound on the optimal objective value of the mul-
tistage problem.

Finally let us remark that, based on Propositions 1.20. and 1.21., several dif-
ferent variants of ND can be built, which differ on the sequencing protocol, the
latter meaning the sequence in which nodes are processed (relaxed master problems
are considered) in the algorithm. The variant which has been discussed in this sec-
tion implements the FFFB (fast–forward–fast–backward) protocol, which has been
found in empirical studies by Gassmann [112] to be the best variant.

Nested decomposition for deterministic LP’s with a staircase structure has been
studied by Abrahamson [2], Dantzig [51], and Wittrock [345], [346]. The general-
ization of the dual decomposition to a nested decomposition scheme for multistage
problems is due to Birge [23]. The method is also called nested L–shaped method,
see Birge–Louveaux [26].

Finally let us mention that multi–cut versions of the ND method can also be built
analogously as for two–stage problems, see Section 1.2.6.
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1.2.8 Regularized decomposition

To reduce the notation, we may write the k-th master problem for the multicut
method as

min

{
cTx+

S

∑
j=1

p jθ j

∣∣∣∣∣(x,θ1, · · · ,θS) ∈Dk

}
, (1.50)

where Dk is the feasible set associated with the set Gk of constraints required in this
master program. Hence, instead of minimizing

Φ(x) = cTx+
S

∑
j=1

p j f j(x)

we minimize, with respect to x,

Φ̂k(x) = cTx+min
θ

{
S

∑
j=1

p jθ j

∣∣∣∣∣(x,θ1, · · · ,θS) ∈Dk

}
,

a piecewise linear function supporting from below the piecewise linear objective
function Φ of our original NLP (1.25). In particular, in the early cycles of the algo-
rithm, this support function Φ̂k is likely not to represent very well the true function
Φ in some neighborhood of the last iterate x̂(k). This may imply, that even for an
x̂(k) close to the overall optimum of (1.25) we get from solving (1.50) an x̂(k+1) far
away from the optimal point. Hence, it is no surprise that, in real size problems, we
often observe an “erratic jumping around” of the subsequent iterates x(�) without
a substantial progress in the objective, even when starting from an overall feasible
iterate x(k) close to the solution of the original NLP (1.25). This undesirable be-
haviour may be improved substantially by regularizing the master program with an
additive quadratic term which shall avoid too big steps away from an overall feasible
approximate solution z(k) within one iteration. Hence, with some control parameter
ρ > 0 and denoting the Euclidean norm as ‖ · ‖, we deal with master programs of
the form

min

{
1

2ρ
‖x− z(k)‖2 + cTx+

S

∑
j=1

p jθ j

∣∣∣∣∣(x,θ1, · · · ,θS) ∈Dk

}
(1.51)

to find a next trial point x(k), for which we have to decide by criteria to be mentioned
in the presentation of the algorithm, whether it is accepted as the next approximate
or whether we continue with the current approximate, z(k).

We restrict ourselves to just giving a sketch of the modified algorithm. For sim-
plicity, degeneracy in the constraints Gk of (1.50) is excluded by assumption, such
that every vertex of the feasible set Dk ⊂�n+S is determined by exactly n+ S ac-
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tive constraints (including the first stage equations Ax = b and active nonnegativity
conditions, i.e. xi = 0 in case). Now we can present a sketch of the

Regularized Decomposition Algorithm QDECOM

S 1 Determine a first approximate z(1), overall feasible for (1.25); let k := 1,
and define D1 as the feasible set determined by the constraint set

G1 := {Ax = b}∪{all optimality cuts at z(1)}.

S 2 Solve (1.51) for x(k) as first stage trial point and θ (k) = (θ (k)
1 , · · · ,θ (k)

S )T as
recourse approximates.

If Φ(z(k)) = Φ̂(x(k)) (= cTx(k) +
S

∑
j=1

p jθ
(k)
j ), then stop; z(k) is an optimal

first stage solution for (1.25). Otherwise continue.
S 3 Delete from the constraint set Gk of (1.51) constraints being inactive at

(x(k),θ (k)), such that no more than n+S constraints are left.
S 4 If x(k) satisfies all first stage constraints (i.e. in particular x(k) ≥ 0), then

go to step S 5; otherwise add to Gk no more than S violated first stage
constraints (nonnegativity conditions xi ≥ 0), yielding Gk+1 ; let z(k+1) :=
z(k), k := k+1, and go to step S 2.

S 5 Determine f j(x(k)), j = 1, · · · ,S.
If f j(x(k)) = +∞ then add a feasibility cut to Gk,
else if f j(x(k))> θ (k)

j then add an optimality cut to Gk.
S 6 If f j(x(k)) = +∞ for at least one j then let z(k+1) := z(k) and go to step S 8;

otherwise go to step S 7.
S 7 If Φ(x(k)) = Φ̂(x(k)),

or else if Φ(x(k)) ≤ μΦ(z(k))+ (1− μ)Φ̂(x(k)) for some parameter μ ∈
(0,1) and exactly n+S constraints were active at (x(k),θ (k)),
then let z(k+1) := x(k);
otherwise, let z(k+1) := z(k).

S 8 Let Gk+1 be the constraint set resulting from Gk after deleting and adding
constraints due to steps S 3 and S 5, respectively. With Dk+1 the corre-
sponding feasible set and k := k+1 return to step S 2.

The parameters ρ > 0 and μ ∈ (0,1) can be chosen adaptively between fixed bounds
in order to improve the progress of the algorithm.

As we see immediately, during this algorithm all approximates z(k) are overall
feasible since the change z(k+1) := x(k) only takes place in step S 7,

— either if Φ(x(k)) = Φ̂(x(k)), which means that the piecewise linear sup-
port Φ̂ of Φ coincides with Φ in x(k), as well as obviously in z(k), such
that, since (x(k),θ (k)) minimizes (1.51), we have the inequality Φ̂(x(k)) ≤
Φ̂(z(k)) implying Φ(x(k)) < +∞ and hence the overall feasibility of x(k),
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and continuing with the unchanged approximate z(k) would block the pro-
cedure;

— or if (x(k),θ (k)) is a vertex of Dk (corresponding to Φ̂ having a kink in x(k))
and the decrease of Φ from z(k) to x(k)

Φ(x(k))−Φ(z(k)) ≤ (1−μ)(Φ̂(x(k))−Φ(z(k)))
= (1−μ)(Φ̂(x(k))− Φ̂(z(k)))< 0

is substantial with respect to the corresponding decrease of Φ̂ and im-
plies, due to Φ(x(k))−Φ(z(k))< 0 and therefore Φ(x(k))<+∞, again the
overall feasibility of x(k). As an example see Fig. 1.3, with the correspon-
dences Φ =̂ f and Φ̂ =̂φ . Here, starting from z(1) = x(1) with the related
optimality cut, we find x(2) according to the feasibility cut being active
there. Then we add a new optimality cut in x(2) due to step S 5, but keep
z(2) := z(1) since Φ(x(2))> Φ(z(1)). Hence we get next the trial point x(3)

which—depending on the choice of μ—could be a candidate for the next
approximate z(3).

The algorithm QDECOM was proposed by Ruszczyński [293], where the details
including the proof of its finiteness can be found. The same author also provided
an implementation of QDECOM which for a very large variety of test problems has
shown to be highly reliable as well as efficient.

Remark 1.2. It should be pointed out that in the above examples of decomposition
algorithms just prototype variants for the generation of cuts were presented. For
particular applications it might however be advantageous to take into consideration
special data structures of the corresponding models when designing the cuts. �

1.2.9 Interior Point Methods

For the primal LP (1.3) and its dual (1.18), introducing for the latter one the slack
variables si ≥ 0, i = 1, · · · ,n, we know from Prop. 1.12. that for a primal-dual pair
of solutions the following system has to be satisfied:

Ax = b
ATu +s = c

x ≥ 0
s ≥ 0

xTs = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.52)

Defining the diagonal matrices X := diag(xi) and S := diag(si), the above system
requires to find a solution (with e = (1, · · · ,1)T) of
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F(x,u,s) :=

⎛
⎝ATu+ Is− c

Ax−b
XSe

⎞
⎠= 0 (1.53)

such that
x≥ 0, s≥ 0. (1.54)

For the Jacobian of F we have

J (x,u,s) =

⎛
⎝ 0 AT I

A 0 0
S 0 X

⎞
⎠

which, due to our general assumption that rank(A) = m (see page 7), is nonsingular
as long as xi > 0, si > 0, i = 1, · · · ,n. Hence, having at hand a primal-dual feasible
pair (x̂, û, ŝ) satisfying the condition

Ax = b, ATu+ s = c, x > 0, s > 0, (1.55)

called strict feasibility or else interior–point condition, we may uniquely determine
the search direction of the Newton method for the solution of the system (1.53) with
the conditions (1.54) by solving the linear equations

F(x̂, û, ŝ)+J (x̂, û, ŝ)

⎛
⎝ Δx
Δu
Δs

⎞
⎠=

⎛
⎝0

0
0

⎞
⎠ (1.56)

or equivalently ⎛
⎝ 0 AT I

A 0 0
Ŝ 0 X̂

⎞
⎠
⎛
⎝ Δx
Δu
Δs

⎞
⎠=

⎛
⎝ 0

0
−X̂ Ŝe

⎞
⎠ . (1.57)

Proposition 1.23. Given the strict feasibility condition (1.55), for any w ∈ �n :
wi > 0 ∀i, there are uniquely determined x,u,s satisfying

Ax = b, x≥ 0, ATu+ s = c, s≥ 0, and xisi = wi, i = 1, · · · ,n.

A proof of this statement may be found in S.J. Wright [348], for instance. Due to
this statement the concept of the central path, playing an important role in the field
of interior point methods, can be introduced.

Definition 1.8. For μ > 0, the primal-dual central path is defined as

C :=

⎧⎨
⎩(x{μ},u{μ},s{μ})

∣∣∣∣∣∣F(x{μ},u{μ},s{μ})=

⎛
⎝ 0

0
μe

⎞
⎠, (x{μ},s{μ})>0

⎫⎬
⎭ .

This definition suggests to drive μ → 0, due to the conjecture that the limit
(x�,u�,s�) = lim

μ→0
(x{μ},u{μ},s{μ}) (if it exists) yields a primal-dual pair of solu-
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tions according to (1.52). Now, starting again with a strictly feasible primal-dual
pair (x̂, û, ŝ), we could, instead of (1.56), design a Newton search direction in order

to drive the system towards the central path for μ̂ =
x̂Tŝ
n

, such that we had to deal
with the system

F(x̂, û, ŝ)+J (x̂, û, ŝ)

⎛
⎝ Δx
Δu
Δs

⎞
⎠=

⎛
⎝ 0

0
μ̂e

⎞
⎠ . (1.58)

Finally, the two approaches (1.56) and (1.58) may be mixed by choosing for the
latter one σμ̂ instead of μ̂ with some σ ∈ [0,1], where σ = 0 corresponds to (1.56),
whereas σ = 1 reflects fully the goal to move towards the central path. Hence the
Newton system becomes

F(x̂, û, ŝ)+J (x̂, û, ŝ)

⎛
⎝ Δx
Δu
Δs

⎞
⎠=

⎛
⎝ 0

0
σμ̂e

⎞
⎠ , (1.59)

and for the corresponding search direction we have to solve the linear equations
⎛
⎝ 0 AT I

A 0 0
Ŝ 0 X̂

⎞
⎠
⎛
⎝ Δx
Δu
Δs

⎞
⎠=

⎛
⎝ 0

0
−X̂ Ŝe+σμ̂e

⎞
⎠ . (1.60)

Thus we have the following conceptual

Primal-Dual (Interior Point) Algorithm

S 1 Find (x0,u0,s0) satisfying the interior–point condition (1.55) and let k :=
0.

S 2 For some σk ∈ [0,1] and μk =
xkTsk

n
solve

⎛
⎝ 0 AT I

A 0 0
Sk 0 Xk

⎞
⎠
⎛
⎝ Δxk

Δuk

Δsk

⎞
⎠=

⎛
⎝ 0

0
−XkSke+σkμke

⎞
⎠ .

S 3 Let
(xk+1,uk+1,sk+1) := (xk,uk,sk)+αk(Δxk,Δuk,Δsk),

where αk is chosen such that (xk+1,sk+1)> 0. If Xk+1Sk+1e < εe for some
small tolerance ε , stop; else return to S 2 with k := k+1.

In practice, the requirement of a strictly feasible (x0,u0,s0) as a first iterate in the
above algorithm may involve severe difficulties. Instead, it is possible—and also
much easier—to start with an infeasible first iterate, more precisely with some
(x̂, û, ŝ) such that (x̂, ŝ) > 0 is satisfied, but the equality constraints are violated,
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i.e. ŵp := Ax̂− b �= 0 and/or ŵd := ATû+ Iŝ− c �= 0. Instead of the system (1.60)
for the search direction we then have to begin the above algorithm in step S 2 with
the system ⎛

⎝ 0 AT I
A 0 0
Ŝ 0 X̂

⎞
⎠
⎛
⎝ Δx
Δu
Δs

⎞
⎠=

⎛
⎝ −ŵd

−ŵp
−X̂ Ŝe+σμ̂e

⎞
⎠ . (1.61)

As soon as the first iterate becomes strictly feasible (equivalently, as soon as we can
choose αk = 1 in step S 3), the subsequent iterates remain strictly feasible, such that
(1.61) coincides with the original search direction (1.60) again. This modification
of the above conceptual algorithm is referred to as infeasible interior point method.

The linear system (1.61) (and (1.60) as well), due to the special structure of its
coefficient matrix, may be reformulated to more compact systems with symmet-
ric nonsingular coefficient matrices. First we eliminate Δs using the last block of
equations of (1.61),

ŜΔx+ X̂Δs =−X̂ Ŝe+σμ̂e ,

yielding
Δs =−Ŝe+σμ̂X̂−1e− X̂−1ŜΔx , (1.62)

such that for the two other blocks of equations of (1.61) we have

ATΔu +Δs = −ŵd
AΔx = −ŵp

and hence due to (1.62)
(

0 A
AT −X̂−1Ŝ

)(
Δu
Δx

)
=

( −ŵp
−ŵd + Ŝe−σμ̂X̂−1e

)
. (1.63)

Hence, to determine the search direction with this so called augmented system, we
first solve (1.63) for Δu and Δx, and then insert Δx in (1.62) to get Δs. With the
notation S

1
2 := diag(

√
si), X

1
2 := diag(

√
xi), the system (1.63) contains, with D :=

Ŝ−
1
2 X̂

1
2 , the nonsingular diagonal matrix −D−2 such that we can eliminate Δx from

ATΔu−D−2Δx =−ŵd + Ŝe−σμ̂X̂−1e

to get
Δx = D2(ATΔu+ ŵd− Ŝe+σμ̂X̂−1e) (1.64)

such that the first block of (1.63)) yields

AΔx = AD2(ATΔu+ ŵd− Ŝe+σμ̂X̂−1e) =−ŵp ,

leading, together with (1.64) and (1.62), to the normal equations system
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AD2ATΔu = −ŵp +A(−Ŝ−1X̂ŵd + X̂e−σμ̂ Ŝ−1e)

Δs = −ATΔu− ŵd

Δx = −Ŝ−1X̂Δs− X̂e+σμ̂ Ŝ−1e .

⎫⎪⎪⎬
⎪⎪⎭

(1.65)

The starting point for the field of interior point methods can be seen in the paper
published by Dikin [70] in 1967 (see also the much later joint publication of this
author and Roos [71] in 1997), although the very wide activity in this area only
boiled up when the paper of Karmarkar [177] had appeared in 1984—accompanied
by a rather unusual amount of public relation!

In particular among primal-dual interior point methods many variants were de-
signed, depending on the adaptive choices of the parameter σ and of the steplengths
αk, and on modifications of the right–hand–sides of (1.61) (or the augmented or nor-
mal equations system derived thereoff), among others. As an alternative to the above
attempt of driving the system towards the central path, we just mention a method
aiming to approach so-called analytic centers, a concept originally introduced by
Sonnevend [312]. For more details on the variety of interior point algorithms we
refer to books especially devoted to this subject, for instance the monographs of
D. den Hertog [134], Roos–Terlaky–Vial [290], Wright [348], and Ye [351], just to
mention a few.

In order to get an efficient method in the frame of interior point algorihms, it
is important to determine efficiently the search directions, to be evaluated in every
iteration step. For this purpose it is certainly advantageous to have the reformulation
(1.65), which amounts essentially to solve a system of linear equations

Mv = r ,

with M = AD2AT being a symmetric positive definite matrix. Therefore, M allows
for a Cholesky factorization M = L ·LT with L being a nonsingular lower triangular
matrix, such that the above linear equations can easily be dealt with by solving
consecutively the two systems

Ly = r and then LTv = y.

In general, interior point methods are said to be efficient for large scale LP’s, in
particular for those with (very) sparse coefficient matrices. However, this statement
requires that with M being sparse also L will be sparse such that solving the two last
systems involving L and LT becomes very cheap. Unfortunately, this consequence
does not always hold. In particular, if M is overall sparse, but nevertheless contains
some dense columns, then very likely an undesired fill in of nonzeros into L may
happen. Hence, several heuristics have been designed to deal with the submatrices
with dense columns separately, in order to maintain efficiency first for the sparse
part and finally also for the rest of the system. The success of these attempts seems
to depend substantially on the data structure of the LP’s considered. For instance,
for two-stage SLP’s with discrete distributions (and S large) we have—according
to Fig. 1.1 on page 5 in the introduction—to expect dense columns in the leading
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band matrix containing the submatrices T 1, · · · ,T S. Based on many of our computa-
tional experiments we have to say that various interior point solvers, including those
general purpose variants implemented in several commercial LP software packages,
either fail with this problem class or else are clearly ruled out by some efficient
implementations based on the simplex method, on Benders’ decomposition as the
L-shaped method, or on regularized decomposition as the algorithm QDECOM pre-
sented in Section 1.2.8. On the other hand, there are interior point implementa-
tions designed especially with attention to the data structure of two-stage SLP’s and
behaving in many cases better than the simplicial or decomposition type methods
tested. To mention just one of these, BPMPD implemented by Mészáros [233] be-
haves impressingly well. Not to be misunderstood: This does not mean that this
solver is always the most efficient. It appears to be true with this class of problems
that there are implemented solvers of various types, designed regarding our data
structure, each of which may outperform the others on various subsets of problem
instances.

Exercises

1.9. The dual decomposition algorithm (page 26) has been discussed under the
Assumption: The LP (1.22) is solvable implying that for the recourse problem
min{qTy |Wy = ζ , y≥ 0} follows its solvability, if it is feasible, and therefore that
{u |W Tu ≤ q} �= /0; furthermore, the first stage feasible set {x | Ax = b, x ≥ 0} is
assumed to be bounded.

(a) Show that the sequence of optimal values {cTx̂ν + θ̂ ν} generated by the suc-
cessive master programs in step S 5 is monotonically increasing.

(b) Under the additional assumption that {y |Wy= ζ , y≥ 0} �= /0 for any arbitrary
ζ , in step S 2 the case f (x̂) = ∞ cannot happen, i.e. the feasibility cuts in step
S 3 are never used. Why?

1.10. Given the LP

(P)

⎧⎨
⎩

min −x1− x2
x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0 .

(a) Do (P) together with its dual program (D) satisfy the interior-point condition
(1.55)?

(b) Determine the central path of the dual pair (P) and (D), given for λ > 0 due
to Def. 1.8. as the set

C =

{
(x(λ ), u(λ ), s(λ ))

∣∣∣∣ Ax(λ ) = b, ATu(λ )+ s(λ ) = c
(x(λ ), s(λ ))> 0, x j(λ ) · s j(λ ) = λ ∀ j

}
.

1.11. Given the interior-point condition (1.55), according to Prop. 1.23. the system
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⎛
⎝ATu+ Is− c

Ax−b
XSe

⎞
⎠=

⎛
⎝ 0

0
μI

⎞
⎠

has the central path {(xT(μ),uT(μ),sT(μ))T | μ > 0} as unique solution.
The mapping (x,u,s) : (0,∞) → �n ×�m ×�n is continuously differentiable.
Why?

1.12. For the symmetric matrix

D =

⎛
⎝ 1 2 1

2 8 2
1 2 2

⎞
⎠

compute the Cholesky factorization D = L ·LT.
Then, with d = (7, 18, 10)T, solve the linear system Dx = d by solving successively
Ly = d and LTx = y .

1.3 Nonlinear Programming Prerequisites

Considering for instance the chance constrained problem (1.6) on page 3 (under
some additional assumptions), or else the regularized master program (1.51) on page
46, we shall encounter NLP’s of the general form

min f (x)

s. t. gi(x) ≤ 0, i = 1, · · · ,m,

}
(1.66)

where we henceforth assume the functions f :�n →� and gi :�n →� to be
convex.

Definition 1.9. A set C ⊆�n is convex if for arbitrary x,y ∈ C and for any λ ∈
[0,1] holds λx+(1−λ )y ∈ C . Then a function ϕ : C →� is convex if

ϕ(λx+(1−λ )y)≤ λϕ(x)+(1−λ )ϕ(y) ∀x,y ∈ C , ∀λ ∈ [0,1] .

This definition implies further properties. First,

Proposition 1.24. If ϕ :�n −→� is convex, then ϕ is continuous.

Furthermore, a convex function need not be differentiable, but it is—under mild
assumptions—subdifferentiable everywhere.

Definition 1.10. A vector g∈�n is a subgradient of a convex function ϕ at x∈�n,
if

gT(z− x)≤ ϕ(z)−ϕ(x) ∀z ∈�n .
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The set of all subgradients of ϕ at x is the subdifferential of ϕ at x, denoted by
∂ϕ(x).
If ∂ϕ(x) �= /0, then ϕ is called subdifferentiable at x.

A typical result for convex functions is referred to as

Proposition 1.25. Given a convex function ϕ :�n −→�, then for any x ∈�n the
set ∂ϕ(x) is nonempty, convex, closed, and bounded.
In addition, ϕ is differentiable in x with the gradient ĝ = ∇ϕ(x) if and only if
∂ϕ(x) = {ĝ}, i.e. ∂ϕ(x) is a singleton.
Finally, given a convex function ψ : �m −→ � and a linear affine mapping
y :�n −→�m defined by y(x) := d +Dx with some d ∈�m and D ∈�m×n, then
f :�n −→� composed as f (x) := ψ(y(x)) is convex, and for its subdifferential
holds the chain rule ∂ f (x) = DT∂ψ(y(x)), or equivalently

h ∈ ∂ f (x)⇐⇒∃g ∈ ∂ψ(y(x)) : h = DTg.

For more detailed statements on subdifferentiability of convex functions we refer to
Rockafellar [281].

Continuing the discussion of problem (1.66), due to the convexity assumption on
gi we have that the feasible set of (1.66)

B := {x | gi(x)≤ 0, i = 1, · · · ,m}

is convex, and that any local minimum at x̂ ∈B is at the same time a global mini-
mum, i.e. f (x̂) = min

x∈B
f (x).

Henceforth, in addition to convexity, we assume the functions describing prob-
lem (1.66), f :�n→� and gi :�n→�, to be continuously differentiable.

The fact of some continuously differentiable function ϕ :�n−→� to be convex
obviously implies the subgradient inequality of Def. 1.10. at any x∈�n to hold with
g = ∇ϕ(x); but now also the reverse conclusion is valid.

Proposition 1.26. ϕ is convex if and only if

(y− x)T∇ϕ(x)≤ ϕ(y)−ϕ(x) ∀x,y ∈�n . (1.67)

Proof: Assume that (1.67) holds true. Then for arbitrary y,z ∈�n, λ ∈ (0,1), and
x = λy+(1−λ )z follows

(y− x)T∇ϕ(x) ≤ ϕ(y)−ϕ(x)
(z− x)T∇ϕ(x) ≤ ϕ(z)−ϕ(x),

implying

(λy+(1−λ )z− x︸ ︷︷ ︸
=0

)T∇ϕ(x)≤ λϕ(y)+(1−λ )ϕ(z)−ϕ(x),

i.e. the convexity of ϕ .
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Assume now ϕ to be convex. Then, for any x,y ∈�n and λ ∈ (0,1), together
with the mean value theorem we get, with θλ ∈ (0,1),

ϕ(y)−ϕ(x) ≥ 1
1−λ {ϕ(x+(1−λ )(y− x))−ϕ(x)}

=
1

1−λ {(1−λ )(y− x)T∇ϕ(x+θλ (1−λ )(y− x))}

= (y− x)T∇ϕ(x+θλ (1−λ )(y− x))

yielding (1.67) for λ → 1. �

To get optimality conditions for the NLP (1.66) assume that we have an optimal
solution x̂ ∈B. Let I(x̂) := {i | gi(x̂) = 0}. For i �∈ I(x̂), i.e. for gi(x̂)< 0, it follows
that gi(x̂+αz)≤ 0 for any z ∈�n if we choose α > 0 small enough. On the other
hand, for z̃ ∈�n with z̃T∇gi(x̂) < 0 ∀i ∈ I(x̂), there exists an α > 0 such that for
i= 1, · · · ,m holds gi(x̂+α z̃)≤ 0 ∀α ∈ (0,α) and hence x̂+α z̃∈B ∀α ∈ (0,α). For
x̂ to be a minimal point of f in B it follows that f (x̂+α z̃)− f (x̂)≥ 0 ∀α ∈ (0,α).
For x̂ to be a solution of (1.66) we have therefore the (necessary) condition

RC � zT∇gi(x̂)< 0 , i ∈ I(x̂) implies that zT∇ f (x̂)≥ 0 .

Hence we know the requirements for all z ∈�n satisfying zT∇gi(x̂) < 0 ∀i ∈ I(x̂),
but for z �= 0 such that zT∇gi(x̂) = 0 for at least one i ∈ I(x̂), it is not clear what we
should expect. For technical reasons which will be apparent below, we strengthen
the above condition RC � slightly and state the somewhat voluntary modification as
regularity condition

RC 0 For any optimal x̂ of (1.66) holds that

zT∇gi(x̂)≤ 0 ∀i ∈ I(x̂) implies zT∇ f (x̂)≥ 0 .

Remark 1.3. Observe that for linear constraints the regularity condition is always
satisfied: Having

gi(x̂) = bi−a(i)
T

x̂ = 0 ∀i ∈ I(x̂)

implies that for any z such that zT∇gi(x̂) =−a(i)
T

z≤ 0 it follows that

gi(x̂+αz) = bi−a(i)
T
(x̂+αz) = bi−a(i)

T
x̂︸ ︷︷ ︸

=0

−α a(i)
T

z≤ 0 ∀α > 0.

Hence, there is an α > 0 such that x̂+αz ∈B ∀α ∈ (0,α), and due to the opti-
mality of x̂ follows f (x̂+αz)− f (x̂)≥ 0; in view of the mean value theorem the last
inequality implies for α ↓ 0, that zT∇ f (x̂)≥ 0, i.e. RC 0 is satisfied.

In the nonlinear case it may happen that the above regularity condition does not
hold. Take for example the elementary problem

min{x ∈�1 | x2 ≤ 0}.
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Since there is only one feasible solution, x̂ = 0, this is also the optimal solution of
the problem. Here zT∇gi(x̂)≤ 0 means that 2 · z · x̂≤ 0, which is true for all z ∈�1

since x̂ = 0, but zT∇ f (x̂) = z ·1 < 0 ∀z < 0, such that RC 0 is violated. �

To check the condition RC 0 seems to be almost impossible, in general, since it
would require to know an optimal solution x̂ ∈B in advance, which usually is not
the case. However, there are various other regularity conditions which are easier to
check and which imply the validity of RC 0. For convex problems (1.66) a very
popular assumption is the Slater condition:

RC 1 For (1.66) there exists a feasible point x̃ such that gi(x̃)< 0 ∀i.
Similarly to Remark 1.3. the Slater condition needs to be required for nonlinear

constraints only, whereas for linear constraints it may be abandonned. Without proof
we mention that, for convex problems, RC 1 implies RC 0.

1.3.1 Optimality Conditions

We just have seen a particular condition, RC 0, which obviously is sufficient for
the optimality of x̂ in (1.66): For any direction z leading from x̂ into B, i.e. for
z∈�n such that x̂+αz∈B for sufficiently small α > 0, and therefore in particular
for which gi(x̂+αz) ≤ 0 = gi(x̂) ∀i ∈ I(x̂), it follows that zT∇gi(x̂) ≤ 0 ∀i ∈ I(x̂),
which by RC 0 implies zT∇ f (x̂) ≥ 0. Hence, from Proposition 1.26. we get
f (x̂+αz)− f (x̂) ≥ αzT∇ f (x̂) ≥ 0 for α > 0 and therefore the optimality of x̂ for
(1.66). However as discussed above, RC 0 is anything but operational for finding
optimal solutions. Nevertheless, it is useful for deriving more tractable optimality
conditions, called the Karush-Kuhn-Tucker conditions (KKT):

Proposition 1.27. Assume that for the convex program (1.66) the Slater condition
RC 1 is satisfied. Then an x̂ ∈B solves (1.66) if and only if there exists an û ∈�m

such that the following conditions hold:

i) ∇ f (x̂)+
m

∑
i=1

ûi∇gi(x̂) = 0

ii) gi(x̂) ≤ 0 ∀i
iii) ûi ·gi(x̂) = 0 ∀i
iv) û ≥ 0 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.68)

Proof: To show that (1.68) is sufficient for x̂ to be a solution of (1.66), we observe
first that by (1.68) ii) the point x̂ is feasible. Further, for all i∈ I(x̂) we have gi(x̂) = 0
and hence for arbitrary y ∈B due to Proposition 1.26.

0≥ gi(y)−gi(x̂)≥ (y− x̂)T∇gi(x̂) ∀i ∈ I(x̂) .
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Using again Proposition 1.26. as well as (1.68) iv) and the complementarity condi-
tions iii), it follows from condition i) in (1.68) that

f (y)− f (x̂)≥ (y− x̂)T∇ f (x̂) =− ∑
i∈I(x̂)

ûi(y− x̂)T∇gi(x̂)≥ 0 ∀y ∈B ,

such that
f (x̂)≤ f (y) ∀y ∈B .

To show the necessity of KKT assume that f (x̂) = min
x∈B

f (x). Since with the as-

sumed Slater condition RC 1 the regularity condition RC 0 holds as well at x̂, we
know that with the active set I(x̂) = {i | gi(x̂) = 0}

zT∇gi(x̂)≤ 0 ∀i ∈ I(x̂) implies zT∇ f (x̂)≥ 0 .

Then from the Farkas lemma (Proposition 1.13., page 15) it follows that

{ûi, i ∈ I(x̂) | ∑
i∈I(x̂)

ûi∇gi(x̂) =−∇ f (x̂), ûi ≥ 0 ∀i ∈ I(x̂)} �= /0 ,

such that with ûi = 0 ∀i �∈ I(x̂) the conditions (1.68) i)–iv) are satisfied. �

Since there are, in addition to (1.66), various other NLP formulations, the KKT
conditions have to be adapted correspondingly. If we have for instance the NLP

min{ f (x) | g(x)≤ 0, x≥ 0} (1.69)

with the vector valued function g(x) = (g1(x), · · · ,gm(x))T and all gi and f being
continuously differentiable and convex as before, we get immediately the KKT con-
ditions

i) ∇ f (x̂)+
m

∑
i=1

ûi∇gi(x̂) ≥ 0

ii) x̂T(∇ f (x̂)+
m

∑
i=1

ûi∇gi(x̂)) = 0

iii) g(x̂) ≤ 0
iv) ûT g(x̂) = 0
v) x̂ ≥ 0

vi) û ≥ 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.70)

To see this, deal with the additional constraints −x≤ 0 just as with g(x)≤ 0. Intro-
ducing additional multipliers w∈�n

+ (for−x≤ 0) and afterwards eliminating them
again leads to the inequalities i) and the additional complementarity conditions ii).

Coming back to the original NLP (1.66), the corresponding KKT conditions
(1.68) have an interpretation which may be of interest also with respect to solution
methods. Defining the Lagrange function to (1.66) as
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L(x,u) := f (x)+
m

∑
i=1

uigi(x) ,

it is obvious that for any fixed ũ≥ 0 the function L(·, ũ) is convex in x. Considering
(1.68) i) we have, with ∇x being the gradient with respect to x,

L(x, û)−L(x̂, û)≥ (x− x̂)T∇xL(x̂, û) = 0 ∀x ∈�n

such that L(x̂, û) = min
x ∈�n

L(x, û). On the other hand, for any fixed x̃ the function

L(x̃, ·) is linear affine and hence concave in u, resulting in the inverse inequality to
(1.67) and implying with ûTg(x̂) = 0 due to (1.68) ii) and iii) that

L(x̂,u)−L(x̂, û) ≤ (u− û)T∇uL(x̂, û)

= (u− û)Tg(x̂) = uTg(x̂)≤ 0 ∀u≥ 0

such that L(x̂, û) = max
u≥0

L(x̂,u).

Hence, the KKT point (x̂, û ≥ 0) of Proposition 1.27. is a saddle point of the
Lagrange function:

L(x̂,u)≤ L(x̂, û)≤ L(x, û) ∀u≥ 0, ∀x ∈�n . (1.71)

From (1.71) we get the following saddle point theorem which may also be inter-
preted as a strong duality theorem for nonlinear programming.

Proposition 1.28. (Saddle point theorem) If for the Lagrange function to (1.66)
there exists a saddle point (x̂, û≥ 0), then

max
u≥0

inf
x∈�n

L(x,u) = min
x∈�n

sup
u≥0

L(x,u), (1.72)

and (x̂, û) solves each of these two problems.

For a proof of this statement see e.g. Luenberger [209].
By definition of L(·, ·) follows min

x
sup
u≥0

L(x,u) = min{ f (x) | g(x) ≤ 0}. There-

fore, min
x

sup
u≥0

L(x,u) is considered as the primal problem, whereas, in contrast,

max
u≥0

inf
x

L(x,u) is its dual.

1.3.2 Solution methods

Several types of solution methods have been proposed for the numerical approx-
imation of solutions for nonlinear programs (1.66). Many of these approaches
may be found in the books of Bazaraa–Shetty [11], Bertsekas [17, 18], Geiger–
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Kanzow [123], and McCormick [232], just to mention a few. Most of the methods
dealt with in this literature belong to one of the following categories:

• cutting plane methods
(e.g. Elzinga–Moore [86], Kelley [180], Kleibohm [187], Veinott [338])

• feasible direction methods (e.g. Topkis–Veinott [329], Zoutendijk [355])
• penalty methods (e.g. Fiacco–McCormick [93])
• Lagrangian methods (e.g. Bertsekas [17]).

In stochastic programming variants of cutting plane methods have first and fore-
most been used so far. The reason for this fact seems to be, that in all other classes
of NLP solution methods, within any iteration there are iterative subcycles requiring
the repeated evaluation of gradients of some modified objective functions contain-
ing integral functions (expected value functions or probability functions) which is
expensive to perform, if not impossible at all.

Therefore, we restrict ourselves to a few prototypes of methods based on cutting
planes (separating hyperplanes). A hyperplane H = {v | aTv = α} with a �= 0 is sep-
arating two nonempty closed convex sets C ⊂�� and D ⊂��, if supC aTv ≤ α ≤
infD aTv; then C and D have at most boundary points in common. The hyperplane H
is said to separate C and D strongly if supC aTv< infD aTv, such that α > supC aTv or
else α < infD aTv, and hence C∩D = /0, hold true. For a singleton D = {û} ∈ bdC,
the Hyperplane H separating C and D is called a supporting hyperplane of C at û.

First, let us consider the following special variant of the NLP (1.66):

min{cTx+Φ(x)}
s.t. x ∈ X ,

where the convex polyhedral set X := {x | Ax = b , x≥ 0} �= /0 is assumed to be com-
pact and Φ :�n −→� is convex and hence continuous. Obviously, this problem
can equivalently be rewritten as

min{cTx+Θ}
s.t. x ∈ X

Φ(x)−Θ ≤ 0 .

⎫⎬
⎭ (1.73)

The last constraint coincides with F(x,Θ) :=Φ(x)−Θ ≤ 0, where F is convex and
continuous in (x,Θ) as well. With Φ continuous and X �= /0 compact, the extrema
Φ̂ = minx∈X Φ(x) and Φ̃ = maxx∈X Φ(x) obviously exist; hence for (x,Θ) feasible
in (1.73) holds Θ ≥ Φ̂ , and bounding Θ above by Θ ≤ Φ̃ + γ , γ > 0, does not
affect the solution set of (1.73). Then, with some L ≤ Φ̂ and M ≥ Φ̃ + γ , the set
Z := {z = (x,Θ) | x ∈ X , L ≤Θ ≤ M} �= /0 is compact in �n+1, and (1.73) has a
solution ẑ = (x̂,Θ̂), solving with dT = (cT,1) and ζ̂ = dTẑ the equivalent problem

min{dTz | z ∈ Z , F(z)≤ 0}. (1.74)
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Under the assumptions made for this problem, i.e. Z ∈�n+1 �= /0 convex polyhe-
dral compact and F :�n+1 −→� convex, the following method was proposed by
Kelley [180] and independently by Cheney–Goldstein [42].

Cutting Planes: Outer Linearization (Kelley)

S 1 With P0 := Z let ẑ0 ∈P0 solve the problem ζ̂0 := minz∈P0 dTz and set
k := 0.

S 2 If F̂k := F(ẑk)≤ 0, stop; ẑk solves (1.74).
S 3 Else, if F̂k = F(ẑk) > 0, choose a subgradient gk ∈ ∂F(ẑk) to define

hk(z) := F̂k +gT
k (z− ẑk) (≤ F(z) ∀z due to Def. 1.10.).

With Pk+1 := Pk ∩{z | hk(z)≤ 0} determine a solution ẑk+1 of ζ̂k+1 :=
minz∈Pk+1 dTz, let k := k+1, and return to step S 2.

�

Proposition 1.29. If the above procedure is not finite, then any accumulation point
z̃ of the sequence {ẑk} solves problem (1.74), yielding its optimal value as ζ̂ = dTz̃,
and for the sequence {ζ̂k} with ζ̂k+1 ≥ ζ̂k ∀k follows that limk→∞ ζ̂k = ζ̂ .

In S 3, by hk(z) ≡ 0 the hyperplane Hk := {z | gT
k z = δk} with δk = gT

k ẑk − F̂k is
defined, and ∀z : F(z) ≤ 0 holds gT

k z ≤ δk < gT
k ẑk. Hence, Hk separates C := {z |

F(z)≤ 0} and D := {ẑk} strongly, and the new constraint gT
k z≤ δk is cutting off ẑk

from the feasibility sets of the following steps. This suggests the term cutting plane
method (see Fig. 1.5).

The proof presented here follows the line of reasoning in Blum–Oettli [30].

Proof: Obviously holds Pk ⊃Pk+1 ⊃ ·· · ⊃ {z | z∈ Z , F(z)≤ 0} for k = 0,1,2, · · ·,
which implies that ζ̂k = dTẑk ≤ ζ̂k+1 = dTẑk+1 ≤ ·· · ≤ ζ̂ . Hence there exists ζ̃ :=
limk→∞ ζ̂k, and ζ̃ ≤ ζ̂ . Furthermore, Pk ⊂ Z∀k and hence ẑk ∈Pk ⊂ Z. Due to the
compactness of Z follows that the sequence {ẑk} has at least one accumulation point
z̃, and some subsequence {ẑκ}⊂ {ẑk} converges to z̃∈ Z. This implies ζ̂κ = dTẑκ→
dTz̃ = ζ̃ = limk→∞ ζ̂k.

For the subsequence {ẑκ} holds F̂ν +gT
ν (ẑκ − ẑν)≤ 0∀κ > ν and therefore F̂ν +

gT
ν (z̃− ẑν) ≤ 0∀ν . The subdifferentials ∂F(z), z ∈ Z, are uniformly bounded (see

Rockafellar [281], Th. 24.7); hence there exists Γ ∈� such that due to Schwarz’
inequality F̂κ ≤ |z̃− ẑκ | ·Γ ∀κ . From F̂κ = F(ẑκ)→ F(z̃) and ẑκ → z̃ follows F(z̃)≤
0 such that z̃ is feasible in (1.74) and ζ̃ ≤ ζ̂ ; however, by the definition of ζ̂ follows
ζ̂ ≤ ζ̃ . �

Let us now consider the original NLP (1.66)

min
x∈�n

{ f (x) | gi(x)≤ 0, i = 1, · · · ,m}
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Fig. 1.5 Kelley’s outer linearization with cutting planes Hk := {z | gT
k z = δk}.

where in addition to the assumptions on pages 54/55 we require that

B = {x | gi(x)≤ 0, i = 1, · · · ,m}

be bounded and that ∃ x̃ ∈ intB, the latter condition being satisfied if there exists a
Slater point x̃, for instance (see RC 1 on page 57). Then, problem (1.66) is equiva-
lent to

minθ
s.t. gi(x) ≤ 0, i = 1, · · · ,m,

f (x) − θ ≤ 0.

⎫⎬
⎭ (1.75)

Obviously the additional condition θ ≤ f (x̃) + γ with some constant γ > 0 does
not change the solution set. Hence, instead of this problem we may consider the
minimization of the linear function ϕ(x,θ) ≡ θ on the bounded convex set B :=
{(x,θ) | x ∈B, f (x) ≤ θ ≤ f (x̃)+ γ}, for which obviously a point (x̂, θ̂) ∈ intB
exists as well. Therefore, we may confine our considerations on NLP’s of the type

min{cTx | x ∈B} (1.76)

with a bounded convex set B containing an interior point x̃. In this situation there
exists a convex polyhedron P such that P ⊃B. In other words, due to Section
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1.2.2 there are linear constraints defining the feasible set P , and it holds

min
x∈P

cTx≤min
x∈B

cTx.

Now we may describe a first method using supporting hyperplanes as proposed
originally by Veinott [338] and discussed later by Kleibohm [187]:

Cutting Planes: Outer Linearization; Fixed Slater Point (Veinott)

S 1 Find a x̃ ∈ intB and a convex polyhedron P0 ⊃B; let k := 0.
S 2 Solve the LP min{cTx | x ∈Pk}, yielding the solution x̂(k).

If x̂(k) ∈B, stop; x̂(k) solves (1.76).
Else, determine z(k) ∈ [x̂(k), x̃]∩ bdB (with [x̂(k), x̃] the straight line be-
tween x̂(k) and x̃, and bdB the boundary of B).

S 3 Determine a supporting hyperplane Hk of B in z(k), i.e. find a(k) ∈�n and
αk = a(k)

T
z(k) such that

Hk := {x | a(k)T
x = αk} and a(k)

T
x̂(k) > αk ≥ a(k)

T
x ∀x ∈B.

Define Pk+1 := Pk ∩{x | a(k)T
x≤ αk}, let k := k+1, and return to step

S 2.

�

As for Kelley’s algorithm, we may not expect the iterates z(k) ∈B or x̂(k) �∈B to
converge, in general. However the following statement is easy to prove.

Proposition 1.30. Under the above assumptions, the accumulation points of {x̂(k)}
as well as of {z(k)} solve (1.76). Furthermore, the objective values {cTx̂(k)} and
{cTz(k)} converge to min{cTx | x ∈B}. Finally, in every iteration we have an error
estimate with respect to the true optimal value δ of (1.76) as

Δk = min
l=1,···,k

cTz(l)− cTx̂(k).

For the proof we refer to the NLP literature mentioned on page 59.

Remark 1.4. Observe that due to Pk+1 ⊂ Pk ∀k it follows cTx̂(k+1) ≥ cTx̂(k)

whereas the sequence {cTz(k)} need not be monotone. However, since z(k) ∈B ∀k,
we have cTz(k) ≥ δ ∀k, whereas cTx̂(k) ≤ δ as long as x̂(k) �∈ B. Obviously, the
above error estimate yields an additional stopping criterion in step S 2 according
to Δk < ε , with a predetermined tolerance ε > 0.

As to the supporting hyperplane Hk: For the feasible set

B = {x | gi(x)≤ 0, i = 1, · · · ,m}= {x | G(x)≤ 0}
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with G(x) := max
1≤i≤m

gi(x) we determine in S 2 the (unique) boundary point z(k) ∈
[x̂(k), x̃]∩{x |G(x)= 0}, and afterwards we define the hyperplane Hk := {x | a(k)T

x=
αk} with a(k) ∈ ∂G(z(k)), which may be chosen e.g. as a(k) = ∇g j(z(k)) for any

j : g j(z(k)) = G(z(k)), and then let αk := a(k)
T

z(k). Due to (1.67), page 55, it follows

a(k)
T

x≤ αk ∀x ∈B, whereas a(k)
T

x̂(k) > αk. Hence,with the inequality a(k)
T

x≤ αk
added in step S 3 all feasible points of B are maintained, and the outer approximate
x̂(k) is cut off (see Fig. 1.6). �
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Fig. 1.6 Three cycles of Veinott’s cutting plane method.

As mentioned already, in stochastic programming several cutting plane methods
are used, as e.g. the above algorithms of Kelley (explicitely) or of Veinott (implic-
itly) to solve recourse problems, or else appropriate types for solving (explicitely)
problems with probabilistic constraints as (1.6), for instance. In the latter case, we
usually have special NLP’s as

mincTx
s.t. a(i)

T
x ≥ bi, i = 1, · · · ,m,

F(x) ≥ α ,

⎫⎬
⎭ (1.77)

where F(x) = P(ω | T x≥ h(ω)) with a given probability distribution P.
We shall briefly describe two further cutting plane approaches specialized to the

problem type (1.77) under the following assumptions:

• F is a concave continuously differentiable function;
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• Blin := {x | a(i)T
x≥ bi, i = 1, · · · ,m} is bounded, and hence this also holds for

B = Blin∩{x | F(x)≥ α};
• ∃xS ∈ Blin being a Slater point for the nonlinear constraint, i.e. satisfying

F(xS)> α .

The following method was originally proposed by Zoutendijk [355] and later on
specialized for chance constrained programs in Szántai [320]. Obviously it is closely
related to the above Veinott approach.

Cutting Planes: Outer Linearization; Moving Slater Points (Zoutendijk)

S 1 Let y(1) := xS, B1 := Blin, and k := 1.
S 2 Solve the LP min{cTx | x ∈Bk} yielding a solution x(k).
S 3 If F(x(k))> α− ε (for some predefined tolerance ε > 0), then stop;

else add a feasibility cut according to the next step.
S 4 Determine z(k) ∈ [y(k),x(k)]∩{x | F(x) = α};

Bk+1 := Bk ∩{x | ∇F(z(k))
T
(x− z(k))≥ 0};

y(k+1) := y(k) +
1

k+1
(z(k)− y(k)); k := k+1; return to step S 2.

�
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Fig. 1.7 Outer linearization with moving Slater points.

Under the above assumptions on problem (1.77) the same statements concerning
convergence and error estimates as in Prop. 1.30. hold true for this algorithm.
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Remark 1.5. Whereas in the previous method the interior point x̃ was kept fixed
throughout the procedure, in this variant the interior point of the set {x | F(x)≥ α}
(originally y(1) = xS) is changed in each cycle as shown in Fig. 1.7. Since for any
convex set D with some y ∈ intD and any z ∈ bdD it follows that λ z+(1−λ )y ∈
intD ∀λ ∈ (0,1), we conclude that in step S 4 with y(k) interior to {x | F(x) ≥
α} and z(k) on its boundary, we get y(k+1) ∈ {x | F(x) > α} and hence again an
interior point. However, these changes of the interior (Slater) points may improve
the convergence rate of the algorithm.

�

Again for problems of the type (1.77) with the above assumptions modified as

• ∃xS ∈ intBlin being a Slater point for the nonlinear constraint, i.e. satisfying
F(xS) > α , let U be such that cTx ≤U ∀x ∈B, and assume (normalize) c to
satisfy ‖c‖= 1,

we present the following method adapted by Mayer [230] from the central cutting
plane method introduced by Elzinga–Moore [86] for general convex nonlinear pro-
grams. Similar methods have been investigated by Bulatov [38] as well as Zou-
tendijk [356] and Zukhovitskii–Primak [358].

A Central Cutting Plane Method (Elzinga–Moore)

S 1 Let y(1) := xS, k := 1, and

P1 := {(xT,η)T | a(i)T
x−‖a(i)‖η ≥ bi ∀i, cTx+η ≤U}.

S 2 Solve the LP max{η | (xT,η)T ∈Pk} yielding (x(k)
T
,η(k))T as a solution.

S 3 If η(k) < ε (ε > 0 a prescribed tolerance), then stop;
otherwise
– if F(x(k))< α , then go to step S 4 to add a feasibility cut;
– else go to step S 5 to add a central (objective) cut.

S 4 Determine z(k) ∈ [y(k),x(k)]∩{x | F(x) = α} and let

Pk+1 := Pk ∩{(xT,η)T | ∇F(z(k))
T
(x− z(k))−‖∇F(z(k))‖η ≥ 0},

y(k+1) := y(k), k := k+1, and go to step S 2.
S 5 Replace the last objective cut by cTx+η ≤ cTx(k) =⇒Pk+1.

If F(x(k))> α , then set y(k+1) := x(k),
else let y(k+1) := y(k).
With k := k+1 go to step S 2.

�

An outer (feasibility) cut according to step S 4 is illustrated in Fig. 1.8 whereas
objective (central) cuts generated in step S 5 are demonstrated in Fig. 1.9.

Remark 1.6. The basic ideas of this algorithm are obviously related to the concept
of Hesse’s normal form of a linear equation: The equation dTx = ρ is said to be in
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Fig. 1.8 Central cutting plane method: Outer cut.

normal form if ‖d‖ = 1. Then, as is well known, σ = dTy−ρ yields with |σ | the
Euclidean distance of y to the hyperplane {x | dTx = ρ}, with σ > 0 if and only if
dTy > ρ .
Hence, for an arbitrary equation aTx= b with a �= 0 the equivalent equation

aT

‖a‖x=

b
‖a‖ is in normal form such that η ≤ aT

‖a‖y− b
‖a‖ or equivalently ‖a‖η ≤ aTy−b

yields an upper bound for the distance η of any y ∈ {y | aTy≥ b} to the hyperplane
{x | aTx = b}. Now it is evident that solving an LP of the form max{η | d(i)T

x−
‖d(i)‖η ≥ ρi, i ∈ I} as in step S 2 yields the center x̂ and the radius η̂ of the largest
ball inscribed into the polyhedron {x | d(i)T

x ≥ ρi, i ∈ I}, as was pointed out in
Nemhauser–Widhelm [238].

�

Therefore, with

Jk := { j ≤ k | iteration j generates a feasibility cut}
Ik := {1, · · · ,k}\ Jk

Uk := min{U,min
i∈ Ik

cTx(i)},

in the k-th cycle of this algorithm we determine the center x(k) and the radius η(k)

of the largest hypersphere inscribed into the polyhedron Pk defined by
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Fig. 1.9 Central cutting plane method: Objective cuts.

a(i)
T

x ≥ bi, i = 1, · · · ,m,
cTx ≤ Uk

∇F(z( j))
T

x ≥ ∇F(z( j))
T

z( j), j ∈ Jk,

⎫⎪⎬
⎪⎭ (1.78)

and, depending on x(k) �∈B or x(k) ∈B, we add a feasibility cut or else a central
cut, respectively.

Proposition 1.31. Under the assumptions for the central cutting plane method
(Elzinga–Moore) holds lim

k→∞
η(k) = 0. If U > min

x∈B
cTx, then every convergent sub-

sequence of {x(k) | k ∈ Ik} converges to a solution of (1.77).

For the proof and for further details on the convergence behaviour of this algo-
rithm we refer to Elzinga–Moore [86].
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Exercises

1.13. Assume that the primal LP ϕ(ζ ) := min{cTx | Ax = ζ , x ≥ 0} is solvable for
all ζ ∈�m. Show, that for an arbitrary ζ0 ∈�m any solution u0 of the dual LP is a
subgradient of ϕ(ζ0), or equivalently, that argmax{ζT

0 u | ATu≤ c} ⊂ ∂ϕ(ζ0).

1.14. Assume an LP of the form min{cTx | Ax ≥ b, x ≥ 0} to be given. What can
be said about vectors x̂ and û satisfying the KKT conditions (1.70) for this linear
program?

1.15. Consider the LP min{cTx | Ax ≥ 0}. Let L(x,u) be the Lagrange function for
this problem and assume (x̂, û) to be a saddle point satisfying (1.72) according to
Prop. 1.28.. What does this mean for the given LP?

1.16. Given the quadratic program

min{x2 +4xy+ y2 | x2 + y2−1≤ 0},

find a solution using the KKT conditions. Is your solution unique? If the KKT con-
ditions have nonoptimal solutions, why does this happen?

1.17. Find a solution (x̂, ŷ, ẑ) of the NLP min{x | x2 + y2 ≤ 1, (y− 2)2 + z2 ≤ 1} .
Can the KKT conditions be satisfied with this solution (x̂, ŷ, ẑ)? If not, why?

1.18. Show for problem (A) : min{ f (x) | gi(x) ≤ 0, i = 1, · · · ,m} and the cor-
responding Lagrangian L(x,u) = f (x)+∑m

i=1 uiġi(x), that the solution x̂ of problem
(P) : minx supu≥0 L(x,u) also solves (A); therefore, (P) is also called in NLP the
primal problem, and the relation (1.72) (page 59) is denoted as strong duality.
Solve the NLP min{cTx | xTx ≤ 1} with c ∈�n \ {0}, and check the validity of
strong duality for this problem.

1.19. Given the NLP min{x+ 5y | x2− 8x− y+ 18 ≤ 0; x,y ≥ 0}. Choose (x̃, ỹ) =
(4,3) as an interior point of the feasible set.

(a) With the first Polyhedron given as P0 = {(x,y)T | x+ y ≤ 10, x ≥ 0, y ≥ 0}
start Veinott’s cutting plane method and carry through 3 cycles; in each cycle
compute the error estimate of Prop. 1.30..

(b) Determine the exact solution of this NLP.



Chapter 2

Single–stage SLP models

2.1 Introduction

In this chapter we consider stochastic programming problems which represent a
single decision stage. The decision is to be made “here and now” and the models
do not account for any corrective (recourse) actions which might be available after
the realization of the random variables in the model becomes known. Such type of
models typically involve, either in the constraints or in the objective function, or in
both of them, random variables of the following form

ζ (x,ξ ) := T (ξ )x−h(ξ ) (2.1)

where ξ : Ω →�r is a random vector on a probability space (Ω ,F ,P). T (ξ ) de-
notes a random s× n matrix, h(ξ ) ∈�s stands for a random vector, both depend-
ing on the random vector ξ . The support of ξ is defined as the smallest closed set
Ξ ⊂�r having the property�(ξ ∈ Ξ ) = 1.

For being more specific, we assume that the dependence is defined in terms of
affine linear relations as follows: for all ξ ∈ Ξ we have

T (ξ ) = T +
r

∑
j=1

Tj ξ j,

h(ξ ) = h+
r

∑
j=1

h j ξ j,

(2.2)

where T, Tj ∈ �s×n are deterministic matrices and h, h j ∈ �s are deterministic
vectors, j = 1, . . . ,r.

In this chapter the particular form (2.2) will not be used explicitly. All we need
is the joint probability distribution of (T (ξ ),h(ξ )) which will be presupposed as
known throughout. As for stochastic programming in general, the basic assumption
is that the probability distribution of (T (ξ ),h(ξ )) does not depend on x. This means
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that our decision has no influence on the probability distribution of the random en-
tries in the model data.

If in the constraints, ζ (x,ξ ) frequently plays the role of a random slack variable
in a random linear inequality. For instance, taking the inequality T (ξ )x≥ h(ξ ), this
inequality can evidently also be written in the form ζ (x,ξ )≥ 0.

For later reference, we write (2.1) also in a row–wise form as

ζi(x;ξ ) := tT
i (ξ )x−hi(ξ ), i = 1, . . . ,s, (2.3)

where the components of the n–dimensional random vector ti(ξ ) are the elements
of the ith row of T (ξ ), i = 1, . . . ,s. Alternatively, (2.1), may be written in a column–
wise fashion as

ζ (x,ξ ) =
n

∑
j=1

Tj(ξ )x j−h(ξ ), (2.4)

where the s–dimensional random vector Tj(ξ ) denotes the jth column of T (ξ ),
j = 1, . . . ,n. Thus ζ (x,ξ ) can be regarded as an affine linear combination of ran-
dom vectors. Our assumption is that the joint probability distribution of these ran-
dom vectors is known. The coefficients in the linear combination are the decision
variables x j, consequently the probability distribution of ζ (x,ξ ) will depend on our
decision. We control the probability distribution of ζ (x,ξ ), by controlling its real-
izations, according to (2.4).

The question arises, what can be stated about the probability distribution of
ζ (x,ξ )? In particular, assuming that the joint probability distribution of
(Tj(ξ ), j = 1, . . . ,n; h(ξ )) belongs to a given parametric family of distributions, for
which families will the affine linear combination ζ (x,ξ ) belong to the same family?
An example of a family, for which the answer is affirmative, is the class of multi-
variate normal distributions. This question will be further pursued in Section 2.2.3,
in connection with separate probability constraints.

Note that a similar question also arises in mathematical statistics regarding linear
statistical models. In that case h(ξ ) represents an error (noise) term, which is usually
assumed as being stochastically independent of the random vectors Tj(ξ ). In math-
ematical statistics we are dealing with a random vector ζ with unknown distribution
and the goal is to choose x in such a way, that the distribution of ζ (x,ξ ) provides a
good approximation to the distribution of ζ in a statistical sense. For achieving this,
the x j’s are considered as random variables. The starting point is a joint sample ac-
cording to the distribution of (ζ ,Tj(ξ ); j = 1, . . . ,n) and assuming the linear model
(2.4), the aim is to construct unbiased estimators for the x j’s.

In stochastic programming we face a different situation. The primary entity is
the given joint distribution of (Tj(ξ ), j = 1, . . . ,n;h(ξ )) and the goal is to achieve a
probability distribution of ζ (x,ξ ) with advantageous properties, whereby x is con-
sidered as being deterministic. To make this precise, we will attach a quantitative
meaning to the term “advantageous” and will arrive this way at a classification
scheme for the different classes of SLP models as follows:
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• First we define a function ρ :ϒ →�1 for evaluating random vectors, where ϒ
is some linear space of s–dimensional random vectors defined on a probability
space (Ω ,F ,P). For instance, ϒ will be frequently chosen as the linear space
of random vectors with finite expected value. For each random vector ϑ ∈ ϒ ,
ρ(ϑ) is interpreted as a quality measure in the corresponding modeling approach.
Depending on the interpretation of ρ(ϑ) as either expressing opportunity or risk,
“advantageous” will mean that higher or lower values of ρ(ϑ) are considered as
preferable, respectively. In the latter case ρ will be called a risk measure. The
probability distribution function of ϑ will be denoted by Fϑ and Θ will denote
the support of ϑ . In the special case s = 1, ϒ is some linear space of random
variables. In the sequel, the term random vector will always mean that s > 1 is
permitted whereas the term random variable will indicate that s = 1 is assumed.

• Based on the chosen function ρ for evaluating random variables, decision vectors
x will be evaluated as follows. We define the corresponding evaluation function
V :�n→�1 by substituting ζ (x,ξ ) into ρ:

V (x) := ρ(ζ (x,ξ )) (2.5)

provided that ζ (x,ξ ) ∈ ϒ holds for all x. V (x) will be interpreted as a quality
measure for x and will be employed for building SLP models. For indicating that
the evaluation involves all components of the random vector simultaneously, we
will call V a joint evaluation function .

• Alternatively, when dealing with constraints, it may make sense to assign qual-
ity measures to the components of ζ (x,ξ ) separately. If ρ is defined for random
variables and ζi(x,ξ ) ∈ϒ holds for all x and all i then Vi(x) := ρ(ζi(x,ξ )) serves
for evaluating x for the ith component of ζ (x,ξ ), i = 1, . . . ,s. Concerning Vi, the
term separate evaluation function will be employed, for pointing out the fact that
the components of the random vector ζ (x,ξ ) are evaluated separately. If s = 1
holds then ζ (x,ξ ) is a random variable and both adjectives “separate” and “joint”
apply. This ambiguity will have no substantial influence on the discussions con-
cerning SLP models.

Having chosen ρ , the evaluation function V is uniquely defined. The different SLP
model classes will correspond to different choices of the quality measure ρ for ran-
dom vectors.

ϒ will be one of the following linear spaces of s–dimensional random vectors:

L 0
s := { the set of all random vectors on (Ω ,F ,P)},

L 1
s := L 1

s (Ω ,F ,P) = {ϑ | ∫
�

s
‖t‖1 dFϑ (t)<+∞},

L 2
s := L 2

s (Ω ,F ,P) = {ϑ | ∫
�

s
‖t‖2

2 dFϑ (t)<+∞},

L ∞
s :=L ∞

s (Ω ,F ,P)= {ϑ | ∃C : �(‖ϑ‖2 >C) = 0},

(2.6)
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where L 1
s is the space of s–dimensional random vectors with finite expected value,

L 2
s stands for the space of random vectors with finite second moments, and L ∞

s

denotes the space of random vectors having a bounded support. ‖t‖2 =
√

∑s
i=1 t2

i is
the Euclidean norm and ‖t‖1 = ∑s

i=1 |ti| holds.
Note that up to this point we have viewed ζ (x,ξ ) = T (ξ )x− h(ξ ) as an affine

linear combination of random vectors. Alternatively, we can also consider ζ (x,ξ )
as a deviation between T (ξ )x and h(ξ ). In mathematical statistics an interpretation
could be fitting T (ξ )x to h(ξ ) in a least squares sense. In this setting, ζ (x,ξ ) would
be an error term. Assuming some distributional properties of the error term and
having a sample for (T (ξ ),h(ξ )), the goal in mathematical statistics is to find a good
fit. In stochastic programming we proceed analogously as before: quality measures
for random variables will be introduced and stochastic programming models will
be built by employing the corresponding evaluation function V . We interpret the
quality measure in this case as deviation measure.

As mentioned above, SLP models will be built by employing evaluation functions
V corresponding to some quality measure ρ . The different SLP model classes will
be discussed in a framework of prototype models. For employing joint– and separate
evaluation functions in the constraints, we consider the models

max cTx
s.t. V (x) ≥ κ

x ∈B

⎫⎬
⎭

max cTx
s.t. Vi(x) ≥ κi,

i = 1, . . . ,s
x ∈ B,

⎫⎪⎪⎬
⎪⎪⎭

(2.7)

where κ and κi are prescribed, i = 1, . . . ,s, and B is a polyhedral set

B = {x | Ax ∝ b, l ≤ x≤ u} (2.8)

with A being an m× n matrix and x, b, l, and u having corresponding dimensions.
The symbol ∝ means that any one of the relations ≤, =, and ≥ is permitted row–
wise.

For models with the evaluation function being in the objective, we consider the
prototype model

max cTx+V (x)
s.t. x ∈B.

}
(2.9)

Alternatively, we will also employ prototype models with reversed direction of the
inequalities in the constraints of (2.7) and with minimization instead of maximiza-
tion in (2.9). To see the reason for this, let us assume first, that for some model class
the evaluation function V is a concave function. In this case, both (2.7) and (2.9) are
convex programming problems. Assume next that for some other SLP model class
V turns out to be a nonlinear convex function. In this case our prototype models be-
come non–convex optimization problems, whereas their counterparts with reversed
inequality constraints and minimization in the objective will be convex program-
ming problems. The point is that the chances for finding efficient algorithms are
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much better for convex optimization problems than for the non–convex case. This
subject will be further pursued in Section 2.6.

From the modeling viewpoint, stochastic programming models can have a com-
posite form, involving several different random vectors of the type (2.1). We have
chosen to work with the above prototype models because they serve well for explain-
ing the basic ideas which can then be applied to composite models in a straightfor-
ward way. For some model classes c = 0 will be required in (2.9). The reason is that,
for those model classes, V has merely some generalized concavity property which
might be destroyed by adding a linear term.

The objective function of (2.9) consists of a sum of two terms whereas in ap-
plications they are usually weighted with respect to each other. Weighting can also
be interpreted in terms of duality. We take as an example the following weighted
version of (2.9):

max cTx+λ V (x)
s.t. x ∈B

}
(2.10)

with a positive weight λ . This can equivalently be written in the form

v(λ ) := max cTx+λ (V (x)−κ)
s.t. x ∈B

}
(2.11)

where−λκ is merely a shift in the optimal objective value. This problem is called a
Lagrangian relaxation of the first optimization problem in (2.7). The corresponding
Lagrange–dual–problem is then

min{v(λ ) | λ ≥ 0}. (2.12)

For the duality relationships between (2.7), (2.11), and (2.12) see Bazaraa and Shetty
[11].

For the sake of simplicity of presentation, we assume in the sequel that positive
weighting factors (if any) are taken into account in the definition of c.

The simplest way for assigning a quality measure to ζ (x,ξ ) is taking the expec-
tation. To see how this works, let us discuss the application of the idea for including
a system of random inequalities ζ (x,ξ )≥ 0 into an SLP model. We choose separate
evaluation for the components of ζ (x,ξ ) and employ the quality measure

ρE(ϑ) :=�[ϑ ], ϑ ∈L
1

1 (2.13)

for the components. Assuming the existence of the expected values of T (ξ ) and
h(ξ ) and setting κi = 0 for all i, this leads to the following formulation of (2.7):

max cTx
s.t. t̄T

i x ≥ h̄i, i = 1, . . . ,n
x ∈B

⎫⎬
⎭ (2.14)
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where t̄i := �ξ [ti(ξ )] and h̄i := �ξ [hi(ξ )] hold, with the components of ti(ξ ) be-
ing the elements of the ith row of T (ξ ). The resulting deterministic LP problem is
called expected value problem. Unfortunately, the expected value problem is fre-
quently used as a substitute for the SLP problem. While in some (rare) situations
this might be appropriate, in general it is a very crude approach: the whole probabil-
ity distribution is collapsed into a one–point distribution. It should by no means be
used as the single way for representing ζ (x,ξ ) in the model. However, accompanied
by a constraint or objective part involving some other quality measure, it can prove
to be an important constituent of the SLP model. For examples of this kind see Sec-
tion 2.7.3. In financial portfolio optimization, the most prominent and widely used
model of the combined type is the model of Markowitz [217], see also Elton et al.
[85].

For discussing the next idea, our starting point is again the system of random
inequalities ζ (x,ξ ) ≥ 0. We interpret this as prescribing the sign of ζ (x,ξ ) and
consider the inclusion of the system of random inequalities

T (ξ )x≥ h(ξ ) (2.15)

into the stochastic programming model. The difficulty is that, besides the decision
vector x, the constraints also depend on the random vector ξ . One of the earliest
proposals for overcoming this difficulty is due to Madansky [212], [213], who sug-
gested a worst–case approach by prescribing the inequalities (2.15) for all ξ ∈ Ξ ,
with Ξ denoting the support of the random vector ξ . We assume that Ξ is a bounded
set. This leads to the following formulation of (2.7):

max cTx
s.t. T (ξ )x ≥ h(ξ ), ξ ∈ Ξ

x ∈B.

⎫⎬
⎭ (2.16)

Madansky termed the solution of this optimization problem as fat solution. The
approach corresponds to the following choice of the quality measure ρfat: ϒ = L ∞

s
is the set of random vectors having a bounded support and

ρfat(ϑ) := min
ϑ̂∈Θ

min
1≤i≤s

ϑ̂i, ϑ ∈L
∞

s , (2.17)

whereΘ is the support of ϑ . The formulation (2.16) corresponds to the model (2.7)
with the inequality constraint chosen as V (x) = ρfat(ζ (x,ξ )) ≥ 0. The feasible do-
main D of (2.16) is the intersection of convex sets and thus it is obviously convex:

D =
⋂
ξ∈Ξ
{x | T (ξ )x≥ h(ξ ), x ∈B}.

In the special case of a finite discrete distribution, Ξ is a finite set and (2.16) reduces
to a linear programming problem. In general, (2.16) may turn out in many cases as
being infeasible, especially if Ξ contains infinitely many points.
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Recently, after the new optimization area of semidefinite programming has
emerged in the 1990s, it became numerically feasible to compute fat solutions also
for bounded domains Ξ containing infinitely many points. The idea is that instead
of considering Ξ as an index set, ξ ∈ Ξ is explicitly handled as a constraint in
(2.16) and ξ is considered as a deterministic variable. For instance, with ellipsoidal
domains Ξ , (2.16) can be reformulated as an equivalent semidefinite programming
problem, see Ben–Tal et al. [15] and the references therein. The cited paper also
presents an extension of this approach to the class of semidefinite programming
problems. Along with the extension, the approach has also been renamed as robust
optimization. There are important application areas where working with fat solu-
tions makes sense. As an example, let us mention structural design for mechanical
structures, see Ben–Tal et al. [15]. Note that the term “robust optimization” is also
used for other model classes; we will return to this point later.

Although in robust optimization, as defined above, Ξ is called the domain of
uncertainty, the approach is only loosely connected to stochastic programming or
to stochastic modeling in general. It can be considered as a kind of worst–case
parametric programming approach. If, as in our case, Ξ is the support of a ran-
dom variable ξ , the probability distribution of ξ does not play any role: the models
will deliver identical results for all random variables having the same support. For
these reasons, the topic of the above kind of robust optimization will not be pur-
sued further in this book. Let us emphasize, however, that robust optimization is
an important alternative modeling approach for dealing with uncertain data. For the
interested reader we recommend the recent book of Ben–Tal et al. [16] and the ref-
erences therein.

A straightforward idea for generalizing (2.16) is to consider x as a feasible so-
lution, if it satisfies all random inequalities for restricted subsets of the support. A
natural idea for imposing such a restriction is to consider subsets with prescribed
probability levels. SLP models of this class have been introduced and first studied
by Charnes and Cooper [41], Miller and Wagner [234] and by Prékopa [258].
The corresponding quality measure is

ρP(ϑ) :=�(ϑ ≥ 0), ϑ ∈L
0

s ,

defined on the set of all random vectors on (Ω ,F ,P). The evaluation function V (x)
(see (2.5) ) will be denoted for this model class by G(x). This leads to the concept
of probability functions, defined as follows:

G(x) :=�ξ ( T (ξ )x≥ h(ξ ) ). (2.18)

Choosing constraints of the form G(x)≥ α , with α being a high probability level
(for instance, α = 0.99), the prototype model (2.7) assumes the form

max cTx
s.t. �ξ ( T (ξ )x≥ h(ξ ) ) ≥ α

x ∈B.

⎫⎬
⎭ (2.19)
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By choosing α = 1 in this model, we obtain a generalization of the concept of a fat
solution, discussed on page 76. In this case x ∈B is considered as feasible, if the
random inequalities hold in an almost sure sense, meaning that they hold except for
a subset of Ω having probability measure zero.

Taking the quality measure separately for the components of ζ (x,ξ ),
the constraints in (2.7) are Gi(x)≥ αi, with the probability functions
Gi(x) := �ξ ( tT

i (ξ )x ≥ hi(ξ ) ). The probability levels αi are specified separately
for the individual rows.

Being in the objective, the probability function will be maximized.
Alternatively, we might be interested in constraints of the form G(x)≤ β , with β

being small (for instance, β = 0.01). In this context, β frequently represents a ruin
probability, meaning, for instance, the probability of financial ruin of a company,
death of a patient, or crashing of a bridge. In such modeling situations, (2.9) would
be formulated with minimizing G in the objective.

Constraints involving probability functions are called chance–constraints or prob-
abilistic constraints. Depending on whether G(x) or Gi(x), i = 1, . . . ,s, is used, the
constraints are called joint or separate constraints, respectively. From another point
of view, a separate constraint is a special case of (2.18) with T (ξ ) consisting of a
single row (s = 1). Models based on probability functions provide a natural way
of building models in several application areas, see Prékopa [266]. Here we just
point out two fields, where probabilities play an important part in planning anyhow:
finance (ruin probability) and electrical power systems engineering (loss–of–load
probability (LOLP)). Stochastic optimization problems involving probability func-
tions will be discussed in detail in Section 2.2.

Let us consider a model involving a probability constraint of the form
G(x) =�ξ ( T (ξ )x ≥ h(ξ ) ) ≥ α , with a high probability level α . For each fixed
x we interpret the event, that some of the random inequalities do not hold, as loss.
Such type of models have the following characteristic feature: On the one hand,
they ensure that a loss may only occur with a small probability (1−α). On the
other hand, losses may occur, and for the case when they occur, the models provide
no control for the modeler on the size of the loss. In modeling situations, where
considering the size of the loss makes sense at all, the second characteristic might
be considered as a drawback. To distinguish between models based on probability
constraints and models which account for the loss size, Klein Haneveld [188] calls
the quality measure based on probability functions qualitative and quality measures
accounting also for the loss size quantitative.

Let us discuss shortly situations where the size of the loss does not matter. As
a hypothetical example let us imagine that a medical treatment is modeled and the
random inequalities in (2.18) express the survival of the patient. Loss means in this
case that the patient dies and the size of the loss is meaningless in the modeling
context. As a more practical example let us consider mechanical truss optimization
problems with a given topology. Such models contain several groups of constraints
modeling the laws of mechanics. Under random loads these models may involve
chance–constraints of the above type (see, for instance, Marti [224] and the refer-
ences therein). The random inequalities in (2.18) express some mechanical require-
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ments; if they do not hold, then the system crashes. The point is that if the system
crashes, then the topology obviously changes and the whole model becomes invalid
(the model crashes too). Therefore, it is pointless to include constraints accounting
for the size of the loss.

For the case when taking into account the loss–size makes sense, several kinds of
remedies have been suggested. It is usually assumed that penalty costs are available
for the losses. Prékopa [266] proposes a combined model, involving both probabilis-
tic constraints and recourse–constraints in a two stage recourse problem, with the
expected penalty costs for the losses included as an additive term into the objective
function. Dert [68] introduces besides the probabilistic constraint binary variables
for indicating the occurrence of losses and uses a penalty term in the objective func-
tion for the expected penalty costs of losses.

For introducing the next model class we assume that negative values of ζ (x,ξ )
represent losses and positive values correspond to gains. For the sake of simplicity
of presentation we also assume that ζ (x,ξ ) is a random variable (s = 1 holds). The
loss as a random variable can then be written as

ζ−(x,ξ ) := ( tT(ξ )x−h(ξ ))−,

where t(ξ ) denotes the single row of T (ξ ), h(ξ ) is a random variable, and
z− = max{0,−z} denotes the negative part of z ∈�.

Using this, the probability constraint G(x)≥ α can be written in expected–value
terms as

G(x)≥ α ⇐⇒ �ξ [χ(ζ−(x,ξ ))]≤ 1−α (2.20)

with χ denoting the indicator function

χ(z) =
{

0 if z≤ 0,
1 if z > 0.

In (2.20) the function χ enforces equality across different loss–sizes. Due to an
idea of Klein Haneveld [188], χ is dropped and the following quality measure is
introduced:

ρ−
sic
(ϑ) :=�[ϑ−], ϑ ∈L

1
1 .

This results in an evaluation function H(x) := �ξ [ζ−(x,ξ )] which is simply the
expected value of the random variable expressing losses. In models based on this
evaluation function, constraints of the form H(x)≤ γ will be employed, where γ is
a prescribed maximal level of tolerable expected loss. Constraints based on H(x)
are called integrated chance constraints. If in the objective, H(x) will be minimized.
The prototype model with integrated chance constraint has the form

min cTx
s.t. �ξ [ζ−(x,ξ ) ] ≤ γ

x ∈B.

⎫⎬
⎭ (2.21)
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For the integrated chance constraints which we have considered so far, only ζ−(x,ξ )
plays a role. It might be desirable to take into account the entire distribution of
ζ (x,ξ ). In fact, the following variant of integrated chance constraints takes into
account also the expected gain ζ+(x,ξ ):

�ξ [ζ−(x,ξ )]≤ α�ξ [|ζ (x,ξ )|]

which can be derived from the quality measure

ρα
sicm

(ϑ) := (1−α)�[ϑ−]−α�[ϑ+], ϑ ∈L
1

1 (2.22)

and leads to a convex programming formulation for α ≤ 1
2 . Integrated chance con-

straints, including joint constraints for the case when ζ (x,ξ ) is a random vector,
will be presented in Section 2.4.1.

The remaining model types, which will be reviewed in the introduction, are
only applicable in the case when ζ (x,ξ ) is a random variable. Thus we have
ζ (x,ξ )= tT(ξ )x−h(ξ ), where the components of the n–dimensional random vector
t(ξ ) are the elements of the single row of T (ξ ).

Motivated by reliability theory, Prékopa [260] has developed a model which is
built by utilizing the conditional expectation of the loss size. The quality measure is
chosen as

ρcexp(ϑ) :=�[−ϑ | ϑ < 0], ϑ ∈L
1

1 .

Consequently, ρcexp(ϑ) is the conditional expectation of the loss, given that a loss
occurs. With the corresponding evaluation function, constraints of the form

�ξ [−ζ (x,ξ ) | ζ (x,ξ )< 0]≤ γ

are included into the model, where the prescribed γ is a maximal tolerable condi-
tional expected loss size. This model will be the subject of Section 2.4.2.

In the following discussion it will be convenient to consider positive values of
ζ (x,ξ ) as losses and negative values as gains. A further idea to include the loss
size and simultaneously also provide control on the probability of loss is utilizing
quantiles. The first stochastic optimization model of this type has been proposed by
Kataoka [178]. For a given 0 < α < 1, we utilize the following quality measure:

ρα
VaR

(ϑ) := ν(ϑ ,α) := min{z | Fϑ (z)≥ α}, ϑ ∈L
0

1 , (2.23)

defined on the set of all random variables on (Ω ,F ,P), and with Fϑ standing for the
probability distribution function of ϑ . In other words, for a given α , ρα

VaR
(ϑ) is the

left endpoint of the closed interval of α–quantiles of ϑ . This leads to the following
evaluation function

v(x,α) := min{z |Ψ(x,z)≥ α},
whereΨ(x, ·) denotes the probability distribution function of ζ (x,ξ ) for each fixed
x, and with α being a prescribed (high) probability level, for instance, α = 0.95.
This quality measure is widely used in the finance industry, it is called Value at
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Risk (VaR) there. We will consider optimization problems involving v(x,α) in Sec-
tion 2.3. In general, it is quite difficult to build numerically tractable optimization
models which are based on VaR. The main difficulty is that v(x,α), as a function of
x, is not convex in general.

An interesting recent approach for building SLP models is due to Rockafellar
and Uryasev [282]. The idea is to combine VaR and the conditional expectation
approach. The following quality measure is chosen:

ρα
CVaR

(ϑ) := min
z

[z+
1

1−α�[(ϑ − z)+] ], ϑ ∈L
1

1 .

The motivation for introducing this quality measure is twofold. On the one hand,
utilizing a well–known fact from probability theory it can be shown that the solution
set of the above minimization problem coincides with the set of α–quantiles of the
distribution of ϑ . On the other hand, under the assumption that ϑ has a continuous
distribution function, we have

ρα
CVaR

(ϑ) =�[ϑ | ϑ ≥ ν(ϑ ,α) ], ϑ ∈L
1

1 ,

where ν(ϑ ,α) is the value at risk (VaR) (see (2.23)). This means that ρα
CVaR

(ϑ) is the
conditional expectation of the loss given that the loss exceeds VaR. The evaluation
function

vc(x,α) := ρα
CVaR

(ζ (x,ξ ))

has nice convexity properties. Therefore, the prototype problems will involve in-
equality constraints of the form vc(x,α)≤ γ and being in the objective, vc(x,α) will
be minimized. A further attractive feature is that, for finite discrete distributions, the
optimization problems can be reduced to linear programming problems. A detailed
discussion of this model class will be the subject of Section 2.4.3.

Finally we consider modeling approaches where ζ (x,ξ ) is interpreted as a devi-
ation between tT(ξ )x and h(ξ ), with the quality measures penalizing this deviation.
Admittedly, most quality measures which have been introduced so far, can also be
interpreted from the purely mathematical viewpoint as measuring deviation. Never-
theless, we have chosen to discuss those quality measures as a separate class, which
correspond to the following modeling attitude: both tT(ξ )x and h(ξ ) represent im-
portant quantities in their own right, and the emphasis in modeling risk is on their
deviation. Deviations are interpreted as risk and therefore the quality measure will
be called a risk measure in this context. As a typical example let us mention port-
folio optimization in finance, where tT(ξ )x represents the random portfolio return
and h(ξ ) models some benchmark return. For this approach see, for instance, Elton
et al. [85] and also Section 2.7.3.

Our first example of a deviation measure is the risk measure

ρQ(ϑ) :=
√
�[ϑ 2], ϑ ∈L

2
1
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defined on the linear space of random variables with finite second moment. The
corresponding evaluation function is

Q(x) =
√
�ξ [(tT(ξ )x−h(ξ ))2].

As a second example we take the mean absolute deviation, with the risk measure

ρA(ϑ) :=�[ |ϑ | ], ϑ ∈L
1

1

and the evaluation function

A(x) =�ξ [ |tT(ξ )x−h(ξ )| ].

Stochastic programming models, based on risk measures of this type, will be the
subject of Section 2.5. Let us mention that stochastic optimization models in this
class are by some authors also termed as robust optimization problems.

The basic question concerning the various quality measures is, how the stochastic
optimization problems, based on these measures, behave from the numerical point
of view. This will be the main subject of the present chapter.

From the point of view of efficient numerical solution, the most desirable prop-
erty of a nonlinear optimization problem is that it should be a convex programming
problem. Regarding the above–formulated prototype problems (2.7) and (2.9), in a
strict sense these would count as convex programming problems under the assump-
tion that V and Vi are concave functions.

For the subsequent discussion we will assume that in the objective function of
(2.9) the additive linear term cTx is missing, that is, we assume that c = 0 holds.
The reason for this assumption is that we will work with functions V having some
generalized concavity properties. For such functions the addition of a linear term
may destroy the generalized concavity property. Examples for this phenomenon will
be presented later on in this section.

We will employ the following generalization of the notion of a convex program-
ming problem: we consider the above–mentioned problems as convex programming
problems, if the feasible domain is convex and if V (x) is a pseudo–concave func-
tion in (2.9). For general properties of optimization problems of this type see, for
instance, Bazaraa and Shetty [11] and Avriel, Diewert, Schaible, and Zang [8].

We proceed with a short discussion concerning some generalizations of concave
functions which will be utilized in this chapter.

Definition 2.11. Let f : C→� be a function defined over the convex set C.

• f is called quasi–concave, if the inequality

f (λx+(1−λ )y)≥min{ f (x), f (y)}

holds, for all x ∈C, y ∈C, and λ ∈ [0,1].
• f is called quasi–convex, if − f is quasi–concave.
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Functions which are both quasi–convex and quasi–concave will be called quasi–
linear. It is easy to see that f is quasi–concave if and only if the upper–level sets

Uγ := {x | f (x)≥ γ} (2.24)

are convex sets, for all γ ∈�. Thus, for ensuring the convexity of the feasible do-
main in (2.7), it will be sufficient to ensure that the function V is quasi–concave.

Definition 2.12. Let f : C→� be a continuously differentiable function defined
over an open convex set C.

• f is called pseudo–concave, if the following implication

∇T f (x)(y− x)≤ 0 =⇒ f (y)≤ f (x)

holds for all x ∈C and y ∈C.
• f is called pseudo–convex, if − f pseudo–concave.

The following facts are easy to check and are left as exercises for the reader: If f
is a concave function, then it is quasi–concave and in the differentiable case it is
also pseudo–concave. Pseudo–concave functions are also quasi–concave, for this
assertion see e.g. Bazaraa and Shetty [11].

From our point of view, for maximization problems with quasi–concave restric-
tions (implying a convex feasible domain) and a pseudo–concave objective function,
the most important properties are the following, see [11]:

• All local optimal solutions are global solutions.
• The Kuhn–Tucker optimality conditions are sufficient conditions of optimality.

Thus, in (2.9), V should be a pseudo–concave function. Note that requiring only
quasi–concavity for V , results in general in non–convex optimization problems.
Such problems may have local maxima which are not global.

A further remark concerns the quasi–concavity requirement for the constraint
function V in (2.7). Although this way the convexity of the feasible domain is en-
sured, quasi–concavity is a rather weak property from the algorithmic point of view.
One of the difficulties is that regularity conditions, which ensure the necessity of
the Kuhn–Tucker conditions, are difficult to check in this case. From the algorith-
mic point of view it is much better, when besides the objective function, the con-
straint functions are pseudo–concave too. This implies, for instance, that the Slater–
regularity can be utilized for enforcing the necessity of the Kuhn–Tucker conditions.

We will need the following fact concerning the pseudo–concavity of fractional
functions:

Proposition 2.32. Let f and g be continuously differentiable functions defined on
�

n and let C ⊂�n be a convex set. We assume that f (x)≥ 0 and g(x)> 0 hold for

all x ∈C. If f is concave and g is convex then h(x) :=
f (x)
g(x)

is pseudo–concave on

C.
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Proof: Let x∈C, y∈C, and assume that ∇Th(x)(y−x)≤ 0 holds. By straightforward
computation this implies

g(x)∇T f (x)(y− x)− f (x)∇Tg(x)(y− x)≤ 0.

Utilizing the concavity of f , the convexity of g, the nonnegativity of f , and the pos-
itivity g, we get the inequality g(x) f (y)− f (x)g(y) ≤ 0 which immediately yields
h(y)−h(x)≤ 0. �

Concerning transformations of pseudo–concave functions, the following fact will
also be needed later on:

Proposition 2.33. Let C be an open convex set and let g be a continuously differen-
tiable pseudo–concave or pseudo–convex function, defined on C. Let f :� �→�
be a continuously differentiable, strictly monotonically increasing function, with
f ′(x) �= 0 for all x ∈�. Then h(x) := f (g(x)) is pseudo–concave or pseudo–convex
on C, respectively.

Proof: For the gradient of h the relation ∇h(x) = f ′(g(x))∇g(x) obviously holds.
We assume that g is pseudo–concave, the proof for the pseudo–convex case runs
analogously. Let x ∈ C, y ∈ C, and ∇Th(x)(y− x) ≤ 0. Utilizing our assumptions,
from this we get ∇Tg(x)(y−x)≤ 0. The pseudo–concavity of g implies g(y)≤ g(x)
and the monotonicity of f finally yields h(y)≤ h(x). �

Unfortunately, the sum of a linear and a pseudo–concave function is not necessar-
ily pseudo–concave. As an example take f1(x) = −x and f2(x) = x+x3. It is easy
to see that both functions are pseudo–concave, whereas their sum
f1(x)+ f2(x) = x3 is not pseudo–concave. As a multivariate example let us take the
function f (x1,x2) = x1+x3

1+x2+x3
2 which is the sum of two pseudo–concave func-

tions. The graph and the contour lines of this function are displayed in Figure 2.1.
The function is clearly not quasi–concave, therefore it is not pseudo–concave, either.

A further important class of generalized concave functions consists of logarith-
mically concave (logconcave) functions.

Definition 2.13. Let f : C→� be a nonnegative function defined over the convex
set C.

• f is called logarithmically concave or logconcave, if the inequality

f (λx+(1−λ )y)≥ [ f (x)]λ [ f (y)](1−λ )

holds, for all x ∈C, y ∈C, and λ ∈ (0,1).
• f is called logarithmically convex or logconvex, if the reverse inequality holds

above.

The definition immediately implies that for logconcave functions the set
C+ := {x | f (x) > 0, x ∈ C} is convex. Observe, that the inequality in Defini-
tion 2.13. holds trivially, if either x �∈ C+ or y �∈ C+. This leads to the following
simple alternative characterization of logconcave functions:
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Fig. 2.1 The sum of two pseudo–concave functions needs not to be pseudo–concave. The picture
shows the graph and the contour lines of the function f (x1,x2) = x1 + x3

1 + x2 + x3
2.

Proposition 2.34. A nonnegative function f is logconcave over the convex set C,
if and only if C+ = {x | f (x) > 0, x ∈ C} is a convex set and log f is a concave
function over C+.

The next property involves products of logconcave functions. Let fi, i = 1, . . . ,r,
be logconcave functions on a convex set C and let C+

i := {x | fi(x) > 0, x ∈C} as

before, for all i. Then the product f (x) =
r

∏
i=1

fi(x) is also logconcave on C. In fact,

let us observe that

C+ := {x | f (x)> 0, x ∈C}=
r⋂

i=1

C+
i

holds. Thus C+ is a convex set and the assertion follows by considering log f on C+.
A further fact concerning logconcave functions, which will be needed later on, is

the following. Let f be a logconcave function on�n. Then g(x) := f (x+ y) is also
logconcave on�n for any fixed y∈�n. Moreover, h(x,y) := f (x+y) is logconcave
on�2n. In fact, for arbitrary u,v ∈�n and λ ∈ (0,1) we have g(λu+(1−λ )v) =
f (λ (u+ y) + (1− λ )(v+ y)) from which the first assertion follows immediately.
The second assertion follows also easily from the definition of logconcavity.

Considering logconvex functions, the definition implies the convexity of the set
C 0 := {x | f (x) = 0, x ∈ C}. Let rintC stand for the relative interior of C (see,
for instance, Rockafellar [281]). It is easy to see, that rintC∩C 0 �= /0 implies that
rintC⊂C 0 holds. Thus, a logconvex function f for which rintC∩C 0 �= /0 holds, can
only have positive values at the (relative) boundary. Such functions are of no interest
to us, therefore we will only consider positive logconvex functions. If f (x) > 0 for
all x∈C, then f is logconvex, if and only if log f is convex. Finally let us remark that
logconvex functions are also convex. This follows immediately from the inequality
between the geometric and arithmetic means, see, for instance, Hardy et al. [132].
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For further properties of logconcave and logconvex functions see, for instance,
Kallberg and Ziemba [173] and Prékopa [266].

In the differentiable case, the class of strictly positive logconcave functions is a
subset of the class of pseudo–concave functions:

Proposition 2.35. Let f be a continuously differentiable, strictly positive, logcon-
cave function over the open convex set C. Then f is pseudo–concave over C.

Proof: Let x∈C, y∈C, λ ∈ [0,1], and assume that ∇T f (x)(y−x)≤ 0 holds. This im-
plies that ∇T log f (x)(y−x) = 1

f (x)∇T f (x)(y−x)≤ 0 also holds. However, log f (x)
being a concave function, it is also pseudo–concave, and consequently we have
log f (y)≤ log f (x), which implies the assertion immediately. �

Let us remark, that the notion of pseudo–concave functions can be extended to
the non–differentiable case, see, for instance, [8]. We will not need this generaliza-
tion in this book.
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Fig. 2.2 The graph of the function x+ x3− z and the set {(x,z) | x+ x3− z≥ 0}.

Finally, let us discuss a popular trick for equivalently reformulating the optimiza-
tion problem (2.9) as follows:

max cTx +z
V (x) −z ≥ 0

s.t. x ∈B.

⎫⎬
⎭ (2.25)

This reformulation is used, for example, if we wish to apply cutting plane meth-
ods for solving (2.9). If V is a concave function, then (2.25) is obviously a convex
programming problem. If, however, V is merely pseudo–concave, then this is in gen-
eral not true. An example involving the pseudo–concave function x+x3 is displayed
in Figure 2.2; x+ x3− z is not quasi–concave and the feasible domain of the corre-
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sponding problem (2.25) is a non–convex set. Thus, the reformulated problem (2.25)
is in general much harder to solve than the problem in the original formulation.

Requiring the stronger property of logconcavity (cf. Proposition 2.35.) does not
help, either. Take ex as an example. This function is obviously logconcave, whereas
ex− z is a nonlinear convex function and the upper level set {(x,z) | ex− z ≥ 0} is
a non–convex set. Thus, ex− z is obviously not logconcave, in fact, it is not quasi–
concave.

As already mentioned above, we will call our optimization problems (2.7) and
(2.9) convex programming problems, if V is pseudo–concave in (2.9) and V is quasi–
concave in (2.7), respectively. Whether or not our optimization problems are of the
convex programming type, depends solely on (generalized) concavity properties of
the function V .

Exercises

2.1. Let f be a concave function defined on an open convex set C. Show that

(a) f is quasi–concave;
(b) if f is differentiable then it is pseudo–concave;
(c) if f (x)> 0 holds for all x ∈C then f is logconcave.

2.2. For each of the following functions determine whether they are quasi–convex,
quasi–concave, pseudo–convex, pseudo–concave, logconvex, or logconcave.
With C =� let f1(x) = ex and f2(x) = x3. With C =�2 let f3(x1,x2) = e−x2

1−x2
2

and let f4 be the indicator function of a set B, with B being a convex proper subset

of�2. Formally, f4(x) =
{

1, if x ∈B,
0, if x �∈B.

2.3. Let f and g be positive logconvex functions defined on the convex set C. Show
that their sum h(x) = f (x)+g(x) is also logconvex over C.

2.2 Models involving probability functions

This section is devoted to pursuing the idea of using probability as a quality measure.
We choose the following quality measure for evaluating random vectors

ρP(ϑ) :=�(ϑ ≥ 0), ϑ ∈L
0

s , (2.26)

which is defined on the set of all random vectors on (Ω ,F ,P). The decision vector
x will be evaluated by the corresponding evaluation function G(x) := ρP(ζ (x,ξ )) :=
�ξ (ζ (x,ξ )≥ 0). The function G will be called a probability function. In a detailed
form we have
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G(x) :=�ξ ( T (ξ )x−h(ξ )≥ 0 ). (2.27)

Let x ∈�n be fixed arbitrarily and let S(x) := {z ∈�r | T (z)x− h(z) ≥ 0}. Due
to our assumptions, T (·) and h(·) are affine linear functions (see (2.2) on page 71).
Consequently, S(x)⊂�r is a polyhedral set and

G(x) =�(ξ ∈ S(x)) (2.28)

holds.
The following prototype problems will be considered:

max cTx
s.t. �ξ ( T (ξ )x−h(ξ )≥ 0 ) ≥ α

x ∈B

⎫⎬
⎭ (2.29)

and
max �ξ ( T (ξ )x−h(ξ )≥ 0 )

s.t. x ∈B,

}
(2.30)

where B is a polyhedral set given, for example, in the standard form

B = {x | Ax = b, l ≤ x≤ u}.

In this section we will assume throughout that B �= /0 holds and that B is bounded.
Both optimization problems (2.29) and (2.30) are non–convex optimization prob-

lems in general. The emphasis in this section will be laid on identifying those sub-
classes, for which (2.29) and (2.30) belong to the class of convex optimization prob-
lems. We will throughout first consider the basic properties of the models above and
will subsequently discuss the analogous results for the models with reversed direc-
tion of the inequality constraint and of optimization, respectively.

Notice that (2.30) is formulated without an additive linear term in the objective
function. In the case, when the probability function is concave, the objective func-
tion in (2.30) would obviously remain concave with an additive linear term. How-
ever, in general, we will only be able to ensure some generalized concavity proper-
ties of probability functions, which are usually lost when adding a linear function to
them.

As already mentioned above, the function G will be called a probability func-
tion. The constraint involving a probability function in (2.29) is called a chance–
constraint or a probabilistic constraint . For constraints involving probability func-
tions the following terminology will be used. In the case of s = 1 the constraint will
be called separate, whereas in the case when s > 1 is permitted, the term joint con-
straint will be used. In this sense, joint constraint stands for the general case, which
specializes to a separate constraint if s = 1 holds. The corresponding probability
functions will be called joint and separate probability functions, respectively. This
terminology has its roots in modeling. Let us consider a joint probability constraint

�ξ ( tT
i (ξ )x≥ hi(ξ ), i = 1, . . . ,s)≥ α,
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where the components of ti(ξ ) are the elements of the ith row of T (ξ ) and let us
assume that s > 1 holds. In this constraint, the underlying event has the follow-
ing interpretation: a system of random inequalities holds, meaning that all of the
inequalities hold simultaneously (they hold jointly). Depending on the modeling
situation, we may wish to consider separately for i = 1, . . . ,s the events that the
ith random inequality tT

i (ξ )x ≥ hi(ξ ) holds. In this case, the joint constraint above
is split into s separate probability constraints, where the probability levels on the
right–hand–side can now be chosen differently for different rows:

�ξ ( tT
i (ξ )x≥ hi(ξ ))≥ αi, i = 1, . . . ,s.

Let us make a further remark concerning terminology. In the literature, model
(2.29) is called either chance constrained or alternatively, probabilistic constrained
model. Both chance and probabilistic have a very general meaning, including virtu-
ally all aspects of randomness. None of them describes with sufficient accuracy the
fact that we are dealing with constraints and objective functions which are defined
via probabilities. In order to contrast models involving probability functions with
other SLP models based on different quality measures, we use a terminology, which
explicitly refers to probability. For this reason, we call G a probability function.
This terminology has been coined by Uryasev, see, for instance, [331]. With our
notations, a probability function in [331] is defined as a function of the following
type:

�ξ ( f (x,ξ )≥ 0),

where f (x, ·) is Borel–measurable for all x. Our case fits this scheme by choosing
f (x,ξ ) = T (ξ )x−h(ξ ). In accordance with this, models like (2.29) and (2.30) will
be generally called SLP models with probability functions.

Next we discuss the reformulation of the constraint G(x) ≥ α , as an equivalent
constraint with reversed inequality. We have

�ξ (ζ (x,ξ )≥ 0)≥ α ⇐⇒ �ξ ( [ min
1≤i≤s

ζi(x,ξ ) ] ≥ 0)≥ α

⇐⇒ �ξ ( [ min
1≤i≤s

ζi(x,ξ ) ] < 0)≤ 1−α

⇐⇒ �ξ ( [ max
1≤i≤s

(ζi(x,ξ )− ) ] > 0)≤ 1−α,
(2.31)

where for any real number z, z− := max{0,−z} denotes the negative part of z. Note
that, in comparison with the original probability function G(x), the probability func-
tion on the left–hand–side of the equivalent reversed inequality is much more diffi-
cult to handle numerically. On the one hand, the underlying event in the probability
function involves a strict inequality. On the other hand, for computing this proba-
bility function for a fixed x, the probability measure of the region�r \S(x) is to be
computed, which is the complement of a polyhedral set and thus it is non–convex in
general (cf. (2.28)). In the special case s = 1 the situation is much simpler: S(x) is a
half–space and thus�r \S(x) becomes an open half–space. (2.31) reduces to
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�ξ (ζ (x,ξ )≥ 0)≥ α ⇐⇒ �ξ (ζ (x,ξ )− > 0)≤ 1−α
⇐⇒ �ξ ( tT(ξ )x−h(ξ )< 0)≤ 1−α,

(2.32)

where the components of t(ξ ) are the elements of the single row of T (ξ ). This
is the straightforward way for reversing a separate probability constraint. We still
have a strict inequality which can be replaced by an inequality involving “≤”, if the
probability distribution function of ζ (x,ξ ) is continuous.

We will also need a reformulation of (2.31) in expectation terms:

�ξ (ζ (x,ξ )≥ 0)≥ α ⇐⇒ �ξ [χ( max
1≤i≤s

ζi(x,ξ )− ) ]≤ 1−α, (2.33)

where χ is the following indicator function

χ(z) =
{

0 if z≤ 0,
1 if z > 0.

For the set of vectors which are feasible with respect to the probability constraint,
we introduce the notation

B(α) = {x | G(x)≥ α } (2.34)

and for the sake of easy reference we formulate our prototype problems (2.29) and
(2.30) also in terms of the probability function G as follows:

max cTx
s.t. G(x) ≥ α

x ∈ B

⎫⎬
⎭ (2.35)

and
max G(x)
s.t. x ∈ B.

}
(2.36)

Remark. Let us consider the case, when one of the rows of the matrix (T (ξ ),h(ξ ))
is constant almost surely, for instance, it is deterministic. Denoting by ti(ξ ) the
random vector with its components being the elements of the ith row of T (ξ ), we
assume without loss of generality that (tT

1 (ξ ),h1(ξ )) = (tT,h) a.s. holds, where
t ∈�n and h ∈� are deterministic. In this case

B(α) = {x |�ξ ( ti(ξ )x≥ hi(ξ ), i = 2, . . . ,s)≥ α }∩{x | tTx≥ h}

holds. This implies, that B(α)∩B remains unchanged if G and B are redefined as
follows:

G(x) :=�ξ ( ti(ξ )x≥ hi(ξ ), i = 2, . . . ,s)

B := B∩{x | tTx≥ h}.
The meaning is the following: essentially deterministic inequalities within a proba-
bility constraint can be removed from this constraint, by appending them to the set
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of deterministic constraints. �

As already discussed in the introductory section 2.1, our optimization problems
will be considered as convex programming problems, if G is pseudo–concave in
(2.36), and if it is quasi–concave in (2.35). It may happen, however, that G is not a
quasi–concave function but nevertheless (2.35) is a convex programming problem.
The point is this. As we have discussed in the introduction to this chapter on page 83,
a function is quasi–concave if and only if all upper level sets are convex. The domain
B(α) defined in (2.34) is clearly an upper level set corresponding to level α . The
convexity of the feasible domain of (2.35) just means that this specific level set is
convex. It will turn out that, for some model classes and probability distributions,
B(α) becomes convex for α large enough. In summary: whether or not (2.35) is a
convex programming problem, may also depend on the prescribed probability level
α .

2.2.1 Basic properties

The purpose of this section is to present some general results which hold without
any assumptions concerning the probability distribution of ξ .

We consider the probability function

G(x) =�ξ ( T (ξ )x≥ h(ξ ) )

as well as the constraint involving this probability function

G(x)≥ α. (2.37)

This constraint requires, that for a feasible x the event

S(x) := {ξ | T (ξ )x≥ h(ξ )} ∈�r

should belong to the set of events Gα having probability measure of at least α

Gα = {A ∈�r |�ξ (A)≥ α }.

For the feasible set, determined by (2.37) and denoted by

B(α) = {x | G(x)≥ α }= {x | S(x) ∈ Gα },

the following representation holds obviously:
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B(α) =
⋃

A∈Gα
{x | S(x) = A}

=
⋃

A∈Gα
{x | ∀ξ ∈ A : T (ξ )x≥ h(ξ )}

=
⋃

A∈Gα

⋂
ξ∈A
{x | T (ξ )x≥ h(ξ )}.

(2.38)

Both from the theoretical point of view concerning the existence of optimal so-
lutions and from the standpoint of numerical solution it is an important question
whether B(α) is a closed set. The answer is affirmative:

Theorem 2.1. The set B(α) is closed.

Proof: For a proof see Kall and Wallace [172], Proposition 1.7. �

Without any assumptions on the probability distribution of ξ , the sole available
result concerning the convexity of B(α) is the following:

Theorem 2.2. Kall ([154]). B(α) is convex for α = 0 and α = 1.

Proof: For α = 0 we clearly have Gα =�r and consequently B(α) =�n holds.
For the case α = 1 we first observe that A ∈ G1 and B ∈ G1 imply A∩ B ∈ G1
(consider the complement of A ∩ B). Now let x ∈ B(1), y ∈ B(1), λ ∈ [0,1],
and z = λx+(1− λ )y. Then we have S(x) ∈ G1 and S(y) ∈ G1 and consequently
S(x)∩ S(y) ∈ G1. For arbitrary fixed ξ ∈�r, the inequalities T (ξ )x ≥ h(ξ ) and
T (ξ )y≥ h(ξ ) obviously imply the inequality T (ξ )z≥ h(ξ ). Thus S(x)∩S(y)⊂ S(z)
holds, implying S(z) ∈ G1. �

In the case of α = 0 the probability constraint is clearly redundant. If α = 1, then
the solution of (2.35) can be interpreted as a “fat solution”, in a probabilistic sense.

Finally let us discuss the reverse inequality G(x)≤ β . We consider now

Hβ = {A ∈�r |�ξ (A)≤ β }

and denoting the feasible set in this case also by B(β ) we have

B(β ) = {x | G(x)≤ β }= {x | S(x) ∈Hβ }.

Analogously as above, we get the following representation:

B(β ) =
⋃

A∈Hβ

⋂
ξ∈A
{x | T (ξ )x≥ h(ξ )}. (2.39)

Considering the analogous assertion to Theorem 2.2., B(1) =�n is obviously
convex and the probability constraint is redundant. B(0) is in general not con-
vex, though. To see this, let us consider the following example with x ∈ �1,
G(x)=�(x≥ ξ1, −x≥ ξ2 ) where ξ has the singular distribution ξ1≡−1, ξ2≡−1.
We have B(0) = (−∞,−1)∪ (1,∞) which is obviously not convex.
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2.2.2 Finite discrete distribution

We consider the case, when ξ has a finite discrete distribution, given by a realization
tableau (

p1 . . . pN

ξ̂ 1 . . . ξ̂N

)
(2.40)

with pi > 0 ∀i and
N
∑

i=1
pi = 1.

The discussion will be focused on the model (2.35), formulated as follows

max cTx
s.t. x ∈ B(α) ∩B

}
(2.41)

with B(α) = {x | G(x)≥ α }.
In the discretely distributed case the representation (2.38) on page 92 specializes

as follows. Let I = {1, . . . ,N}, then we have

B(α) =
⋃
J⊂I

∑
j∈J

p j≥α

⋂
j∈J
{x | T (ξ̂ j)x≥ h(ξ̂ j)}.

(2.42)

For the separate realizations of ξ let us introduce the notation

Kj = {x | T (ξ̂ j)x≥ h(ξ̂ j)}, j = 1, . . . ,N.

These sets are clearly convex polyhedral sets. Employing this notation, the repre-
sentation above can be written in the form

B(α) =
⋃
J⊂I

∑
j∈J

p j≥α

⋂
j∈J

Kj.
(2.43)

Figure 2.3 shows the following example from Kall [154]:

K1 = {x ∈�2 | x1− x2 ≥−2, x2 ≥ 3},
K2 = {x ∈�2 | x1− x2 ≥ 0, 2x1 +3x2 ≤ 25},
K3 = {x ∈�2 | x1 + x2 ≤ 8, −x1 +3x2 ≥ 0}

with corresponding probabilities of realizations p1 = 1
4 , p2 = 1

2 , and p3 = 1
4 . The

probability level in the probability constraint is α = 3
4 . The feasible domain is the

shaded region in the figure, which is obviously non–convex. The following repre-
sentation holds: B(α) = [K1∩K2]∪ [K2∩K3].

A necessary condition for B(α)∩B �= /0 is the following. With the notation
I0 = {i, 1≤ i≤ N | Ki∩B = /0}, B(α)∩B �= /0 obviously implies that

∑
i�∈I0

pi ≥ α
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Fig. 2.3 Feasible domain of an SLP problem with joint probability constraint and finite discrete
distribution.

must hold, otherwise each of the intersections in (2.43) would involve at least one
j ∈ I0, which would lead after intersecting B(α) with B to a union of empty sets.

From (2.43) it is immediately clear, that our optimization problem (2.41) involves
maximizing a linear function over a union of convex polyhedral sets. Thus, in gen-
eral, the optimization problems do not belong to the class of convex optimization
problems. This type of problems is called disjunctive programming problem, see,
for instance, Nemhauser and Wolsey [241].

Utilizing the usual transformation of disjunctive programming, an equivalent
mixed–integer formulation of (2.41) is the following (Raike [274]):

min cTx

s.t. T (ξ̂ k)x + M · (1− zk)1l ≥ h(ξ̂ k), k = 1, . . . ,N

N
∑

i=1
pizi ≥ α

zk ∈ {0,1}, k = 1, . . . ,N

x ∈B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.44)
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where binary variables z j have been introduced, M is a “big enough” constant
and 1lT = (1, . . . ,1). M is chosen in such a way, that M ≥ h(ξ̂ k)− T (ξ̂ k)x holds,
∀x ∈B, k = 1, . . . ,N. Under our assumptions (B �= /0, B bounded), such an M can
be computed, for instance, by solving the following linear programming problems
for k �∈ I0:

Mk = max{γ | γ+T (ξ̂ k)x≥ h(ξ̂ k), x ∈B}
and setting M = max

k �∈I0
Mk.

For the case when only the right–hand–side is stochastic, further equivalent for-
mulations as mixed–integer linear programming problems can be found in Prékopa
[266].

There are some special cases, where the union in (2.42) amounts in a single
convex polyhedral set.

Theorem 2.3. Marti 1971 [222]. Let pi0 = mini∈I pi. Then B(α) is convex for
α > 1− pi0 .

Proof: For the proof see Kall [154]. �

Notice that α > 1− pi0 implies that B(α) = B(1) holds. Consequently, the
constraint involving a probability function (2.37) can be replaced by the system of
linear inequalities

T (ξ̂ i)x≥ h(ξ̂ i), i = 1, . . . ,N. (2.45)

Requiring that the inequalities should hold for all realizations, results in a “fat solu-
tion”.

The result can be sharpened in a further special case:

Theorem 2.4. Kall 1976 [154]. Let pi0 = mini∈I pi and assume that pi0 is uniquely
determined. Let pi1 = mini∈I\{i0} pi. Then B(α) is convex for α > 1− pi1 .

Proof: For the proof see Kall [154]. �

2.2.3 Separate probability functions

This section is devoted to discussing stochastic programming models which involve
separate probability functions. The general prototype formulation of such problems
has the same form as (2.29) and (2.30) with ζ (x,ξ ) now being a random variable
(s = 1). To emphasize one of the typical sources of such problems, we give a formu-
lation for a random vector ζ (x,ξ ) where the evaluation function has been applied
component–wise:
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max cTx

s.t. �ξ ( tT
k (ξ )x≥ hk(ξ ) ) ≥ αk, k = 1, . . . ,s

x ∈ B

⎫⎪⎪⎬
⎪⎪⎭

(2.46)

and
max �ξ ( tT(ξ )x≥ h(ξ ) )

s.t. x ∈ B

}
(2.47)

where the components of the n–dimensional random vector tk(ξ ) are the elements
of the kth row of T (ξ ), ∀k; t(ξ ) is an n-dimensional random vector and hk(ξ ), h(ξ )
are random variables ∀k. The term separate means, as we have discussed previously,
that each of the probability functions appearing in the model formulations involves
a single random inequality.

For the discussions regarding convexity of the feasible domain, it is clearly suf-
ficient to consider a single separate probability function:

G(x) =�ξ (x | t(ξ )Tx≥ h(ξ )).

For the sake of simplicity we introduce the notation η := t(ξ ) and replace the
right–hand–side h(ξ ) by ξ , because only the probability distribution of (t(ξ )T,h(ξ ))
counts anyway. Thus the probability function has the following form:

G(x) =�ξ (x | ηTx−ξ ≥ 0).

With our notation, the definition of ζ (x,ξ ) on page 71 takes the form

ζ (x,η ,ξ ) := ηTx−ξ .

Note that ζ (x,η ,ξ ) is now a random variable.
The goal of this section is to identify subclasses of SLP models with separate

probability functions, which lead to convex programming problems. We will also
give equivalent formulations for these models in algebraic terms, which provide
the basis for the numerical solution of the problems. It will turn out for this class
of models that both type of constraints G(x) ≥ α and G(x) ≤ β can lead, under
appropriate assumptions, to convex optimization problems.

We will proceed as follows. Next we will discuss the special case when only the
right–hand–side is stochastic. This will be followed by considering the case when
(η ,ξ ) has a multivariate normal distribution. Next the results will be generalized to
the class of stable distributions. Finally we discuss a distribution–free approach.

Considering other distributions, we mention that in the case when the compo-
nents of (η ,ξ ) are independent and have exponential distributions, Biswal et al.
[29] have presented an equivalent algebraic formulation as an NLP problem.



2.2 Models involving probability functions 97

Only the right–hand–side is stochastic

We assume that η ≡ t holds, with t being deterministic. In this case the probability
function has the form

G(x) =�ξ (x | tTx≥ ξ ).

For the case of reverse random inequalities tTx≤ ξ we just consider the probability
function corresponding to (−t,−ξ ). Denoting the probability distribution function
of the random variable ξ by Fξ , we have

G(x) = Fξ (t
Tx).

The probability distribution function of a random variable being monotonically in-
creasing, it is both quasi–convex and quasi–concave (it is quasi–linear). It is easy
to see that substituting a linear function into a quasi–convex function results in
a quasi–convex function, the same being true in the quasi–concave case. Conse-
quently, G(x) is both quasi–convex and quasi concave which immediately implies
that both {x | G(x)≥ α} and {x | G(x)≤ β} are convex sets. From the algorithmic
point of view, however, it is desirable to obtain an explicit representation in terms of
inequalities involving algebraic functions. This is easy to achieve in our case.

Considering first the constraint G(x)≥ α , this is obviously equivalent to a linear
constraint:

�ξ (x | tTx≥ ξ )≥ α ⇐⇒ Fξ (t
Tx)≥ α ⇐⇒ tTx≥ Q−ξ (α),

where Q−ξ (α) denotes the left end–point of the closed interval of α–quantiles of Fξ
(for properties of quantiles see, for instance, Cramér [47]).

Turning our attention to the reverse constraint G(x)≤ β we observe that this can
be written as Fξ (tTx) ≤ β . Assuming that Fξ is continuous (for instance, ξ has a
continuous distribution), we obtain again an equivalent linear inequality

�ξ (x | tTx≥ ξ )≤ β ⇐⇒ Fξ (t
Tx)≤ β ⇐⇒ tTx≤ Q+

ξ (β ),

with Q+
ξ (β ) denoting the right end–point of the interval of β–quantiles of Fξ .

For arbitrary distributions, the equivalent reformulation should be set up with
care. If Fξ is continuous at the point Q+

ξ (β ), then the above formulation holds.
If, however, Fξ is discontinuous at Q+

ξ (β ), then the equivalent formulation is the
following

�ξ (x | tTx≥ ξ )≤ β ⇐⇒ Fξ (t
Tx)≤ β ⇐⇒ tTx < Q+

ξ (β ),

with a strict linear inequality implying the numerically unpleasant feature that the
set {x |G(x)≤ β} is an open half–space. This aspect reflects an asymmetry between
the two setups G(x)≥ α and G(x)≤ β of the constraints.
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Having, for instance, a finite discrete distribution for ξ , the theoretically correct
reformulation may consist of the strict inequality above. From the modeling point
of view this is usually not a real problem: the unfavorable event (loss) can mostly
be formulated as a strict inequality�ξ ( tTx < ξ ) and thus we get

�ξ ( tTx < ξ )≤ β ⇐⇒ 1−�ξ ( tTx≥ ξ )≤ β
⇐⇒ F(tTx)≥ 1−β ⇐⇒ tTx≥ Q−ξ (1−β ),

that means, we obtain an equivalent linear constraint.
For discussing the situation concerning the objective function, we consider the

problem (2.36) which in our case has the form

max Fξ (tTx)

s.t. x ∈B.

}
(2.48)

This is a linearly constrained nonlinear programming problem. Let us associate with
(2.48) the following linear programming problem:

max tTx

s.t. x ∈B.

}
(2.49)

If Fξ is strictly monotone, then (2.48) and (2.49) are clearly equivalent. In the gen-
eral case, some care is needed. Provided that (2.49) has an optimal solution, this will
be an optimal solution also for (2.48). Under our assumptions (B �= /0, B bounded)
this is always the case. For an unbounded polyhedral set B it may happen, how-
ever, that (2.49) has an unbounded objective over B, whereas (2.48) has an optimal
solution.

Analogous comments apply in the case when in (2.48) the objective is minimized.

Multivariate normal distribution

In this section we discuss the case, when (ηT,ξ )T has a joint multivariate normal
distribution. For excluding the case already discussed in the previous section, we
assume that η is stochastic, that means, that � ∃d ∈�n : η = d a.s.

Definition 2.14. See, for example, Tong [328]. The r–dimensional random vector ζ
has a multivariate normal distribution, if there exist an (r×s) matrix B and μ ∈�r,
such that

ζ = Bζ̃ +μ (2.50)

holds, where ζ̃ is an s–dimensional random vector with ζ̃i being stochastically in-
dependent and having a standard normal distribution, ∀i.
Note that this definition allows for deterministic components of ζ : if the ith row of
B is zero then we have ζi ≡ μi. From the definition immediately follows that
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• �[ζ ] = μ and
• Σ = BBT, where Σ denotes the covariance matrix of ζ

hold.
Σ is clearly a symmetric positive semidefinite matrix. The multivariate normal

distribution is called non–degenerate, if Σ is positive definite. This is the case if
and only if B has full row rank. Otherwise the distribution is called degenerate or
singular.

The multivariate normal distribution is uniquely determined by the expected–
value vector μ and the covariance matrix Σ , see, for instance, Tong [328]. We will
use the notation ζ ∼ N (μ,Σ), meaning that the random vector ζ has a normal
distribution with expected value vector μ and covariance matrix Σ .

If the multivariate normal distribution is non–degenerate, then it is absolutely
continuous w.r. to the Lebesgue–measure on �r, having the probability density
function

f (y) =
1

(2π)
n
2 |Σ | 12

e−
1
2 (y−μ)TΣ−1(y−μ) (2.51)

where |Σ | denotes the determinant of Σ .
Let R be the correlation matrix of ζ , defined as

Ri, j =
Σi j

σiσ j
, ∀i, j

where σi and σ j denote the standard deviations of ζi and ζ j, respectively. The non–
degenerate multivariate normal distribution is called standard multivariate normal
distribution, if the expected value vector is the zero–vector and the standard devia-
tion of the components of ζ is 1. It is defined by the following density function

ϕ(y;R) =
1

(2π)
n
2 |R| 12

e−
1
2 yTR−1y. (2.52)

The corresponding distribution function will be denoted byΦ(y;R). In the univariate
case we drop R in the notation; ϕ stands for the density function of the standard
normal distribution, that means, we have

ϕ(y) =
1√
2π

e−
x2
2

and the corresponding distribution function will be denoted by Φ .
Figure 2.4 shows the density– and distribution functions of the bivariate normal

distribution with correlation r = 0. In Figure 2.5 these functions are displayed for
the case r = 0.9.

Having a symmetric positive semidefinite matrix Σ and vector μ as primary data,
a lower–triangular matrix B for relation (2.50) can be computed by the Cholesky–
factorization for symmetric positive semidefinite matrices, see, for instance, Golub
and Van Loan [127].
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Fig. 2.4 The bivariate normal distribution function with correlation r = 0.
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Fig. 2.5 The bivariate normal distribution function with correlation r = 0.9.

From the definition it follows immediately, that any affine linear transformation
of a random vector with a multivariate normal distribution has again a multivariate
normal distribution.

Assume now, that the (n+ 1)–dimensional random vector ζT = (ηT,ξ )T has a
multivariate normal distribution:

ζ =

(
η
ξ

)
=

(
D
dT

)
· ζ̃ +

(
μ

μn+1

)
(2.53)

where D is an (n× s) matrix, d ∈�s, μ ∈�n. We get

ζ (x,η ,ξ ) = ηTx−ξ = (ηT,ξ )
(

x
−1

)

= ζ̃T
(
DTx−d

)
+μTx−μn+1.

(2.54)

It follows that ζ (x,η ,ξ ) is normally distributed with
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�[ζ (x,η ,ξ )] = μTx−μn+1

���[ζ (x,η ,ξ )] = ‖DTx−d‖2

= xTDDTx−2(Dd)Tx+‖d‖2,

(2.55)

where ‖ ·‖ denotes the Euclidean norm. The first term on the right–hand–side is the
variance of ηTx with DDT being the covariance matrix of η . In the second term
(Dd)Tx is the covariance between ηTx and ξ with Dd being the cross–covariance
vector between η and ξ . The third term is the variance of ξ .

If���[ζ (x,η ,ξ )] = 0 then ζ (x,η ,ξ ) =�[ζ (x,η ,ξ )], a.s., otherwise the stan-
dardized ζ (x,η ,ξ ) has a standard normal distribution.

In the case ‖DTx−d‖> 0 we obtain via standardization

G(x) =�( ζ (x,η ,ξ )≥ 0) = 1−�( ζ (x,η ,ξ )≤ 0)

= 1−�
(
ζ (x,η ,ξ )−�[ζ (x,η ,ξ )]

‖DTx−d‖ ≤ −μ
Tx+μn+1

‖DTx−d‖
)

= 1−Φ
(−μTx+μn+1

‖DTx−d‖
)
=Φ

(
μTx−μn+1

‖DTx−d‖
)
,

(2.56)

where in the last step we utilized the symmetry of the standard normal distribution,
that means, we made use of the relation Φ(x) = 1−Φ(−x), ∀x ∈�. Thus we get
the following formula for G(x):

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if DTx−d = 0
and μTx−μn+1 ≥ 0,

0, if DTx−d = 0
and μTx−μn+1 < 0,

Φ
(
μTx−μn+1

‖DTx−d‖
)
, if DTx−d �= 0.

(2.57)

Regarding the constraint G(x)≥ α , under the assumption DTx−d �= 0 we get

G(x)≥ α ⇐⇒ Φ
(
μTx−μn+1

‖DTx−d‖
)
≥ α

⇐⇒ Φ−1(α)‖DTx−d‖−μTx≤−μn+1.

(2.58)

In the case when DTx− d = 0 holds, the last inequality reduces to the first case in
(2.57), consequently the equivalence holds in all cases. Note that for α ≥ 1

2 we have
Φ−1(α)≥ 0. The Euclidean norm being convex, ‖DTx−d‖ is a convex function of
x. Consequently, assuming that α ≥ 1

2 holds, the function on the left–hand–side of
the last inequality in (2.58) is a convex function. This implies that the set of feasi-
ble solutions w.r. to this constraint is a convex set. We have derived the following
theorem:
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Theorem 2.5. Kataoka 1963 [178], Van de Panne and Popp 1963 [333]. Let the
(n+1)–dimensional random vector ζT = (ηT,ξ )T have a multivariate normal dis-
tribution and let α ≥ 1

2 . Then the set B(α) = {x | G(x)≥ α } is convex.

For the case, when α < 1
2 holds, we have the following assertion:

Theorem 2.6. Kall 1976 [154]. Let n > 1 and assume that the (n+1)–dimensional
random vector ζT = (ηT,ξ )T has a non–degenerate multivariate normal distribu-
tion. If α < 1

2 then either B(α) =�n holds or otherwise B(α) is a non–convex
set.

Proof: Let x̂ ∈ �n be such that x̂ �∈ B(α) holds. We will show, that under our
assumptions, there exist x(1) ∈ B(α) and x(2) ∈ B(α) such that x(1) �= x(2) and
x̂ = 1

2 (x
(1) + x(2)) holds. From this our assertion follows immediately.

n > 1 implies that there exists v ∈�n such that v �= 0 and μTv = 0 hold. Let us
consider the constraint (2.58) along the line x(λ ) = x̂+λv, λ ∈�:

Φ−1(α)‖DTx(λ )−d‖−μTx̂≤−μn+1,

where we used that μTx(λ ) = μTx̂, ∀λ ∈ � holds. We obviously have
‖DTx(λ )−d‖ ≥ ‖DTx(λ )‖−‖d‖, and an easy computation yields

‖DTx(λ )‖2 = λ 2vTDDTv+2λvTDDTx̂+ x̂TDDTx̂.

Matrix D has full row rank and v �= 0, therefore lim
λ→±∞

‖DTx(λ )− d‖ = ∞ holds.

Taking into account Φ−1(α) < 0, this implies that ∃λ0 ∈ �, such that both
x(λ0) ∈ B(α) and x(−λ0) ∈ B(α). Obviously x(λ0) �= x(−λ0) and
x̂ = 1

2 (x(λ0)+ x(−λ0)). �

For the probability function with reversed random inequalities, that means, for
Ĝ(x) :=�(ηTx≤ ξ ) =�(ζ (x,η ,ξ )≤ 0) we get

Ĝ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if DTx−d = 0 and μTx−μn+1 ≤ 0
0, if DTx−d = 0 and μTx−μn+1 > 0

Φ
(−μTx+μn+1

‖DTx−d‖
)
, if DTx−d �= 0.

(2.59)

This can either be derived by an analogous argumentation as above, or more directly
as follows. Observe that if ζ (x,η ,ξ ) has a normal distribution, then −ζ (x,η ,ξ )
also has a normal distribution with the same variance and with reversed sign of the
expected value. Thus (2.57) can be directly applied for −ζ (x,η ,ξ ), by writing Ĝ as
Ĝ(x) =�(−ζ (x,η ,ξ )≥ 0).

Utilizing the formulas (2.57) and (2.59), we obtain the following equivalent rep-
resentations of probability constraints:

�(ηTx≥ ξ )≥ α ⇐⇒ Φ−1(α)‖DTx−d‖−μTx≤−μn+1
�(ηTx≤ ξ )≥ α ⇐⇒ Φ−1(α)‖DTx−d‖+μTx≤ μn+1

(2.60)
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where for α ≥ 1
2 the functions on the left–hand–side of the equivalent inequalities

are convex, therefore the feasible domain determined by these inequalities is convex.
We turn our attention to the case with reverse inequalities in the constraints, that

means, we deal with G(x) ≤ β and Ĝ(x) ≤ β . In the case when the probability
distribution is degenerate, the previously used technique for deriving the equiva-
lent form leads to strict inequalities. Having DTx− d = 0, the formulas (2.57) and
(2.59) imply a strict inequality (the second cases in these formulas apply). Assuming
non–degeneracy of the probability distribution, we obtain the following equivalent
representations by reversing the inequalities in (2.60):

�(ηTx≥ ξ )≤ β ⇐⇒ Φ−1(β )‖DTx−d‖−μTx≥−μn+1

�(ηTx≤ ξ )≤ β ⇐⇒ Φ−1(β )‖DTx−d‖+μTx≥ μn+1
(2.61)

where, provided that β ≤ 1
2 holds, the functions on the left–hand–side of the equiva-

lent inequalities are concave, consequently the feasible domain determined by these
inequalities is convex.

In the case when the probability distribution is degenerate, we observe a similar
asymmetry as in the previous section on page 98 between the two formulations dif-
fering in the direction of the inequality (G(x)≥ α versus G(x)≤ β ). The remedy is
analogous: In practical modeling this difficulty can usually be overcome by working
with strict inequalities in the model formulation. For instance, taking the constraint
�ξ (ζ (x,ξ )< 0)≤ β , this can be equivalently formulated as

�ξ (ζ (x,ξ )≥ 0)≥ 1−β

which results according to (2.60) in the linear constraint

Φ−1(1−β )‖DTx−d‖−μTx≤−μn+1

thus determining a convex feasible domain for β ≤ 1
2 .

Next we turn our attention to models with probability functions in the objective
and restrict our discussion to the case, when ζT = (ηT,ξ )T has a non–degenerate
multivariate normal distribution. The distribution of ζ is non–degenerate, if and only

if the matrix
(

D
dT

)
has full row rank, see Definition 2.14. and (2.53). Consequently,

in the non–degenerate case DTx−d �= 0 holds for all x∈�n. In particular, choosing
x = 0 shows that d �= 0 holds.

In the non–degenerate case we have, see (2.57):

G(x) =Φ
(
μTx−μn+1

‖DTx−d‖
)
∀x ∈�n. (2.62)

In a maximization problem the desired property of G(x) would be pseudo–concavity.
Unfortunately, G(x) is not even quasi–concave. Quasi–concavity is namely equiva-
lent with the convexity of all of the upper level sets (see page 83). This is implied by
(2.60) for α ≥ 1

2 . For any 0 < α < 1
2 , however, the lower level set is convex accord-
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ing to (2.61). The upper level sets corresponding to the same α cannot be also con-
vex, because this would mean that both the upper– and the lower level sets are half–
spaces. This is not possible due to our non–degeneracy assumption ‖DTx−d‖ �= 0
for all x ∈�n. Consequently G(x) is not quasi–concave. An analogous reasoning
shows that G(x) is not quasi–convex, either.

Introducing the notation

g(x) =
μTx−μn+1

‖DTx−d‖
we get G(x) = Φ(g(x)). Fortunately, by restricting G(x) to certain half–spaces we
have

Proposition 2.36. If ζT = (ηT,ξ )T has a non–degenerate multivariate normal dis-
tribution, then both g(x) and G(x) are

a) pseudo–concave on the half–space {x | μTx≥ μn+1 } and
b) pseudo–convex on the half–space {x | μTx≤ μn+1 }.

Proof: Due to the non–degeneracy assumption ‖DTx−d‖> 0, ∀x ∈�n holds. Due
to Proposition 2.32. on page 83, the fractional function g(x) is pseudo–concave on
convex sets where the numerator is nonnegative, and pseudo–convex on convex sets
where the numerator is non–positive. From this the result regarding g(x) follows.
Utilizing the fact that Φ is a strictly monotonically increasing, differentiable func-
tion, with Φ ′(x) �= 0 ∀x∈�, the assertion concerning G(x) follows from the already
proved assertion regarding g(x) and from Proposition 2.33. on page 84. �

Let us consider (2.36) on page 90, which in our case has the form

max Φ
(
μTx−μn+1

‖DTx−d‖
)

s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.63)

According to Proposition 2.36., the objective function of this linearly constrained
problem is pseudo–concave, if x ∈B implies μTx≥ μn+1. Thus, in this case, (2.63)
is a convex programming problem. Taking into account the strict monotonicity of
Φ , (2.63) is equivalent to the following linearly constrained convex programming
problem

max
μTx−μn+1

‖DTx−d‖
s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.64)

This problem belongs to the class of fractional programming problems, see, for
instance, Avriel, Diewert, Schaible, and Zang [8] and Schaible [297]. Proposi-
tion 2.36. implies that the objective function in (2.64) is pseudo–concave in the half–
space {x | μTx≥ μn+1} and it is pseudo–convex in the half–space {x | μTx≤ μn+1}.
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Consequently, if μTx≥ μn+1 ∀x∈B holds, then (2.64) is a convex programming
problem. This property can be enforced, for instance, by including a linear inequal-
ity of the form μTx ≥ μn+1 into the definition of B. This might be well justified
if a high probability is to be achieved by maximizing �(ηTx ≥ ξ ). For achieving
high probabilities it is necessary to have�[ηTx]≥�[ξ ], which is just the required
inequality.

If the reverse inequality {x | μTx ≤ μn+1} holds over B, then our objective is
pseudo–convex, (2.64) involves maximizing a pseudo–convex function, and thus it
becomes much more difficult to solve numerically. In the general case, when none
of the two inequalities involving expectations holds uniformly over B, then (2.64)
becomes a general non–convex optimization problem. In this case efficient solution
methods are only available for rather low dimensions of x.

In the case when (2.63) and (2.64) are formulated as minimization problems, the
above results can be adapted in a straightforward manner. If we take
Ĝ(x) = �(ηTx ≤ ξ ) instead of G(x) then the above discussion applies with ex-
changed roles of the inequalities μTx≥ μn+1 and μTx≤ μn+1.

Finally we discuss the special case when ξ is deterministic. Note that the non–
degeneracy assumption above implies that all components of η as well as ξ have
non–degenerate univariate marginal distributions, that means, both the “technology
matrix” and the right–hand–side are stochastic. We assume now that ξ ≡ μn+1 := h
holds with h ∈� being deterministic. Considering (2.54), this means that d = 0
holds throughout. Non–degeneracy of the distribution in this case means that D has
full row rank.

The explicit form of Ĝ and the probability constraint can simply be obtained
by setting d = 0 in (2.59) and in (2.61), respectively. Considering the problem of
minimizing Ĝ(x) results in:

min
−μTx+h
‖DTx‖

s.t. x ∈B

⎫⎪⎬
⎪⎭ (2.65)

which makes only sense under the assumption 0 �∈B. We have seen that problem
(2.65) is a convex programming problem provided that μTx≥ h, ∀x ∈B holds.

Figure 2.6 shows the graph and the contour lines of the function

f (x1,x2) =
x1− x2√

(x1 + x2)2 +(x1− x2)2

which is the quotient of a linear and a convex function. In the contour plot darker
regions represent lower values. Let ε > 0; for the figure we have chosen ε = 0.1.
The function f is pseudo–concave for {x ∈�2 | x1 ≥ x2 + ε} and pseudo–convex
for {x ∈�2 | x1 ≤ x2− ε}.
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Fig. 2.6 Quotient of a linear and a nonlinear convex function.

Stable distributions

In the previous section, in the derivation of the explicit formula (2.58), it seems to
be essential at a first glance, that both the expected value and the variance exist for
ζ (x,η ,ξ ). A more careful analysis reveals, however, that quite other properties of
the normal distribution are those, which matter.

Before carrying out this analysis, we discuss classifications of univariate distri-
butions, which will be needed later on. We define a relation � between univariate
distribution functions, see Feller [92]. Let F and H be two univariate distribution
functions, then

F �H ⇐⇒ ∃a > 0, b : H(x) = F(ax+b) ∀x ∈�1 holds (2.66)

or equivalently

F �H ⇐⇒ ∃a > 0, b : H
(

x−b
a

)
= F(x) ∀x ∈�1. (2.67)

This relation is obviously reflexive, symmetric, and transitive. Consequently we ob-
tain a classification of all distribution functions. We may choose a representative
from each class, and consider it as a standard distribution for that class. Let D be a
class in this classification, and let H0 be the standard distribution in D . Then for any
F ∈ D we have: ∃a > 0, b, such that F(x) = H0(

x−b
a ), ∀x ∈�1 holds. a is called

the scale– and b the location parameter of F (w.r. to the standard distribution). The
classes in this classification are also called location–scale classes.

Let ζ be a random variable with Fζ ∈D . This fact will be denoted as ζ ∼D . Then
∃a,b ∈�, a > 0 such that Fζ (x) = H0(

x−b
a ) holds. This relation has the following

interpretation: Let χ = ζ−b
a . Then we have

�(χ ≤ x) =�(ζ ≤ ax+b) = Fζ (ax+b) = H0(x),
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that means, χ has the standard distribution of D . The transformation above is called
standardization of ζ . This can also be expressed as follows: for any ζ ∼D ∃a> 0, b,
such that ζ = aχ + b and Fχ = H0 holds. A final remark to this concept: let ζ be
a random variable with Fζ ∈ D , and let p > 0, q be real numbers. Then obviously
pζ +q∼D holds.

We consider next the set of symmetric distributions. A distribution is called sym-
metric if for the distribution function F the following relation holds (see Feller [92]):
F(x) = 1−F−(−x) ∀x ∈�, where F−(−x) stands for the left–sided limit of F at
−x. If the density function f exists then the condition for symmetry can be writ-
ten as f (x) = f (−x) ∀x ∈�. On the set of symmetric distributions the following
equivalence relation establishes a classification:

F �H ⇐⇒ ∃a > 0 : H(x) = F(ax) ∀x ∈�1.

The classes in this classification will be called symmetric scale classes.
If the random variable ζ has a symmetric distribution, this is clearly equivalent

with ζ and −ζ having the same distribution function, that means, with Fζ = F−ζ .
Let S be a class of symmetric distributions. Then ζ ∼ S implies pζ ∼ S
∀p∈�, p �= 0. For p> 0 this is clear from the definition. If p< 0 then we may write
pζ = (−p)(−ζ ). Now we have Fζ = F−ζ , and the assertion follows immediately.

If a location–scale class D contains a single symmetric distribution, then it obvi-
ously contains the whole symmetric scale class S of this distribution. In this case
the standard distribution can be selected as a symmetric distribution, that means,
H0 ∈S . Let ζ ∼D and p,q ∈�, p �= 0. Then, for such classes, pζ +q∼D holds.
For p > 0 this is clear from the definition. Let us assume that p < 0 holds. Standard-
ization gives that ∃a > 0,b such that ζ = aχ+b and Fχ = H0. Substitution results in
pζ +q = apχ+bp+q. From this follows apχ ∼S and consequently pζ +q∼D .

Let us introduce the notion of a stable distribution next. For this concept see, for
instance, Feller [92] and Uchaikin and Zolotarev [330].

A distribution function F , the corresponding probability distribution, and a ran-
dom variable having this distribution are called stable, if for any real numbers s1 > 0,
m1, s2 > 0, and m2 there exist real numbers s > 0 and m, such that

F
(

x−m1

s1

)
∗F

(
x−m2

s2

)
= F

(
x−m

s

)
, ∀x ∈�1 (2.68)

holds, where ∗ stands for the convolution operator. Let F be a stable distribution
function and let D be its class in the above classification. From (2.68) immediately
follows, that all H ∈ D are stable, that means, we may use the term class of stable
distributions. In particular, the standard distribution H0 ∈ D is also stable. Another
easy consequence of (2.68) is the following: if F ∈ D , H ∈ D , and D is a stable
class, then F ∗H ∈D holds. Using the fact, that the distribution function of the sum
of two stochastically independent random variables is the convolution of their distri-
bution functions, we get the following: Let D be a stable class, ζi ∼D , i = 1, . . . ,s,
λi ∈� λi > 0 ∀i. Assume that ζi, i = 1, . . . ,s are stochastically independent. Then
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the distribution function of
s
∑

i=1
λiζi also belongs to D . This property is, however, not

sufficient for our purposes: in (2.53) we deal with arbitrary linear combinations of
independent random variables.

A distribution function F , the corresponding probability distribution, and a ran-
dom variable having this distribution are called strictly stable, if for any real num-
bers s1 > 0 and s2 > 0 there exists a real number s > 0, such that

F
(

x
s1

)
∗F

(
x
s2

)
= F

(x
s

)
, ∀x ∈�1 (2.69)

holds, where ∗ stands as before for the convolution operator. In the following we
restrict our attention to symmetric distributions. Let F be a strictly stable distribu-
tion function and let S be its class in the classification of symmetric distributions.
The analogous results hold, as for stable distributions. In particular, if F ∈S and
H ∈ S , then F ∗H ∈ S follows. This implies for symmetric distributions the
following: Let S be a strictly stable class of symmetric distributions, ζi ∈ S ,
i = 1, . . . ,s, λi ∈� ∀i, and not all λi’s are zero. Assume that ζi, i = 1, . . . ,s are

stochastically independent. Then the distribution function of
s
∑

i=1
λiζi also belongs to

S .
As an example for a stable class of distributions let us shortly discuss the uni-

variate normal distribution. The univariate normal distribution functions form a
location–scale class, because they are of the form: F(x) = Φ

( x−b
a

)
, 0 < a ∈�,

b∈�, where Φ is the distribution function of the standard normal distribution. This
is a stable class. To see this, it is sufficient to check the stability of Φ . Considering
the convolution (2.68)

Φ
(

x−m1

σ1

)
∗Φ

(
x−m2

σ2

)
=Φ

(
x−m

s

)
, ∀x ∈�1,

where the left–hand–side is the distribution function of the sum of two indepen-
dent ξ ∼N (m1,σ2

1 ) and η ∼N (m2,σ2
2 ) random variables. We know that ξ +η

has a normal distribution. On the other hand, the expected value is additive w.r. to
summation, and the variance is also additive provided that the random variables are
stochastically independent. Therefore the above relation holds for m = m1 +m2 and

σ =
√
σ2

1 +σ2
2 . This argumentation also shows that the class of symmetric (cen-

tered) normal distribution functions F(x) =Φ
( x

a

)
, 0 < a ∈� form a strictly stable

class of symmetric distributions.
Now we take the proposed second look at the derivation of the explicit form for

G in Section 2.2.3.

1. The multivariate distribution of ζ was defined by the affine linear relations (2.53)
for the realizations, in terms of the i.i.d. (independent and identically distributed)
random variables ζ̃i, i = 1 . . .s. In that particular case the distribution of ζ̃i was
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standard normal, ∀i, which, as discussed above, belongs to the strictly stable class
of symmetric normal distributions.

2. Subsequently we have established in (2.54) an affine linear relation for ζ (x,η ,ξ ),
in terms of ζ̃ .

3. Considering the linear part, this is a linear combination of random variables with
distributions from a strictly stable class, therefore the linear combination belongs
also to that class. Due to the additive deterministic term, ζ (x,η ,ξ ) belongs to
the stable class of normal distributions. In addition, using the specific proper-
ties of the normal distribution, we were also able to compute the parameters of
ζ (x,η ,ξ ), in terms of our decision variables x.

4. Finally, in (2.54), we have standardized ζ (x,η ,ξ ) in order to derive a formula
for G(x), involving the distribution function of the standard distribution in the
location–scale class. Using this formula, the constraint G(x) ≥ α has been re-
formulated as (2.58). By good luck, this resulted in a constraint of the convex
programming type.

Another well–known stable univariate distribution is the Cauchy distribution, see,
for instance, Feller [92]. For this distribution the expected value and consequently
the variance do not exist. The density function of the Cauchy distribution C (m, t) is
the following:

f (x) =
1
π

t
t2 +(x−m)2 , −∞ < x < ∞,

where m is a location parameter and t > 0 is a scale parameter. Taking m = 0 the
resulting subclass of symmetric distributions is strictly stable. The distribution func-
tion of the standard Cauchy distribution C (0,1), defined by the density function
with t = 1

ψ(x) =
1
π

1
1+ x2 , −∞ < x < ∞,

will be denoted by Ψ . The following fact is also well-known, see, for instance,
Feller [92]: Let ξ ∼ C (m1, t1) and η ∼ C (m2, t2), and assume that ξ and η are
stochastically independent. Then ξ +η ∼ C (m1 +m2, t1 + t2) holds.

We will carry out the above procedure for a multivariate Cauchy distribution, see
Marti [222].

Definition 2.15. The r–dimensional random vector ζ has a non–degenerate multi-
variate Cauchy distribution, if there exist an (r× s) matrix B with full row rank and
having at least one nonzero in each of its columns and m ∈�r, such that

ζ = Bζ̃ +m, (2.70)

where ζ̃ is an s–dimensional random vector with its components being stochasti-
cally independent and ζ̃i having a standard Cauchy distribution, ∀i.

Let us assume, that the (n+ 1)–dimensional random vector ζT = (ηT,ξ )T has
a non–degenerate multivariate Cauchy distribution. In the same way, as in Sec-
tion 2.2.3, we get:
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ζ (x,η ,ξ ) = ζ̃T (DTx−d
)
+mTx−mn+1. (2.71)

Let us remark that ‖DTx− d‖ �= 0 holds for all x, due to the assumption that the

transformation matrix
(

D
dT

)
has full row rank (see also (2.53)). We conclude that

ζ (x,η ,ξ ) has a Cauchy distribution, and proceed by computing its parameters. If
(DTx−d)i �= 0 then ζ̃i(DTx−d)i ∼C (0, |(DTx−d)i|) holds. Consequently we have
ζ̃T
(
DTx−d

) ∼ C (0,‖DTx− d‖1), where for y ∈�s ‖y‖1 := ∑s
i=1 |yi|. Finally we

get:
ζ (x,η ,ξ )∼ C (mTx−mn+1,‖DTx−d‖1).

Using standardization, as in (2.57) we get the following formula for G(x):

G(x) = 1−Ψ
(−mTx+mn+1

‖DTx−d‖1

)
=Ψ

(
mTx−mn+1

‖DTx−d‖1

)
, (2.72)

where we utilized the symmetry of the standard Cauchy distribution. Comparing
this with the analogous formula (2.57) for the non–degenerate multivariate normal
distribution, it can be observed that the sole difference is the different norm in the
denominator.

We proceed now analogously as in (2.58) to arrive at:

G(x)≥ α ⇐⇒ Ψ−1(α)‖DTx−d‖1−mTx≤−mn+1. (2.73)

The standard Cauchy distribution being symmetric, for α ≥ 1
2 , Ψ−1(α) ≥ 0 holds.

Because norms are convex functions, ‖DTx− d‖1 is a convex function of x. As for
the normal distribution, we conclude that the function on the left–hand–side of the
inequality is a concave function, and the set of x vectors, for which this inequality
holds, is convex. We have derived the following theorem:

Theorem 2.7. Marti 1971 [222]. Let the (n + 1)–dimensional random vector
ζT = (ηT,ξ )T have a non–degenerate multivariate Cauchy distribution and let
α ≥ 1

2 . Then the set B(α) = {x | G(x)≥ α } is convex.

The alternative formulations of the probability constraints are analogous to those
for the normal distribution. The difference is that, instead of the Euclidean norm,
the ‖ · ‖1–norm is to be substituted throughout. This seems to introduce, however,
an additional difficulty: the ‖ · ‖1–norm is a non–differentiable function of its argu-
ment. Under the assumption α ≥ 1

2 , a second look reveals, however, that by intro-
ducing additional variables the constraint (2.73) can be equivalently formulated as
a set of linear constraints. In this respect, probability constraints are easier to deal
with for the Cauchy distribution as for the normal distribution. For discussing the
transformation let us formulate (2.73) in a detailed form:

Ψ−1(α)
s

∑
i=1
|DT

i x−di|−mTx≤−mn+1, (2.74)
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where Di is the ith column of D. This constraint is equivalent to the following system
of linear constraints:

−mTx +Ψ−1(α)
s
∑

i=1
yi ≤−mn+1

DT
i x − yk ≤ dk, k = 1, . . . ,s

DT
i x + yk ≥ dk, k = 1, . . . ,s,

(2.75)

in the following sense: Let x̄ be a feasible solution of (2.74). Choosing
ȳk = |DT

k x̄− dk| ∀k implies that (x̄, ȳk, k = 1, . . . ,s) is a feasible solution of (2.74).
Vice versa, let (x̂, ŷk, k = 1, . . . ,s) be feasible for (2.75). Then the inequality
|DT

k x̂−dk| ≤ yk holds ∀k, which implies that x̂ is feasible for (2.74).
There is an important special case, as observed by Marti [222], in which the

problem transforms into a deterministic LP problem, without introducing additional
variables and constraints. Let us assume that B ⊂�n

+ holds which is the case, for
instance, if the system of linear inequalities defining B includes x ≥ 0. Assume
further, that the components of (η ,ξ ) are stochastically independent and that they
have Cauchy distributions ηi ∼ C (mi, ti) i = 1, . . . ,n and ξ ∼ C (mn+1, tn+1). In this

case the matrix
(

D
dT

)
is a diagonal ((n+1) × (n+1)) matrix, with the ti’s on its

diagonal, see (2.2.3). Consequently we get ‖DTx− d‖1 =
n
∑

i=1
tixi + tn+1 and (2.73)

becomes a linear constraint.

A distribution–free approach

The sole assumption in this section is that the second moments of (ηT,ξ ) exist. Let
(μT,μn+1) = �[ (ηT,ξ ) ] and Σ be the covariance matrix of (ηT,ξ ). We assume
that Σ is positive definite and take the Cholesky factorization Σ = LLT with L be-
ing a lower triangular matrix (cf. the discussion on page 99). We consider L in the
partitioned form

L =

(
D
dT

)
,

where D is an (n×n) matrix and d ∈�n. For ζ (x,η ,ξ ) = ηTx−ξ we get the same
expression (2.55) as for the normal distribution

�[ζ (x,η ,ξ )] = μTx−μn+1

���[ζ (x,η ,ξ )] = ‖DTx−d‖2.

The general idea is to employ upper bounds on the probability function
G(x) =�(ηTx−ξ ≥ 0). Utilizing the Chebyshev–inequality we get
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G(x) = �((η−μ)Tx− (ξ −μn+1)≥−μTx+μn+1 )

≤ �( |η−μ)Tx− (ξ −μn+1)| ≥ −μTx+μn+1 )

≤ ���(ηTx−ξ )
(−μTx+μn+1)2 =

‖DTx−d‖2

(−μTx+μn+1)2 .

(2.76)

We consider the probability constraint G(x) ≤ β with β small, for instance,
β = 0.01. The idea is to require instead of this inequality the stronger inequality

‖DTx−d‖2

(−μTx+μn+1)2 ≤ β . (2.77)

For having a nonempty solution set of this inequality, for small β values we may
suppose that−μTx+μn+1 > 0 holds. This may be enforced by including a constraint
−μTx + μn+1 > ε , with ε > 0, into the set of linear constraints of the problem.
Assuming this, we can write (2.77) as follows

β−
1
2 ‖DTx−d‖+μTx≤ μn+1 (2.78)

which defines a convex set.
For the case when (η ,ξ ) has a multivariate normal distribution, we have derived

an equivalent formulation for G(x) ≤ β (first line in (2.59)). Slightly reformulated,
this constraint is

−Φ−1(β )‖DTx−d‖+μTx≤ μn+1 (2.79)

which is quite similar to (2.78). The sole difference is the different multiplier
for the term ‖DTx− d‖. Taking β = 0.01, for example, we have β−

1
2 = 10 and

−Φ−1(β ) ≈ 2.32. Thus, in the normally distributed case, requiring (2.78) instead
of (2.79), a much stronger inequality results. Consequently, the feasible domain be-
comes much smaller in general. A prototype substitute problem takes the form

min cTx
s.t. β−

1
2 ‖DTx−d‖+μTx ≤ μn+1

x ∈ B.

⎫⎪⎬
⎪⎭ (2.80)

If for a given distribution, like the multivariate normal or the Cauchy distribution,
an algebraic equivalent formulation exists, it makes no sense to use the stronger in-
equality (2.78). If, however, the distribution belongs to a class of distributions for
which no equivalent algebraic formulation is known, or we have incomplete infor-
mation regarding the distribution but have good estimates for the expected value and
the covariance matrix, the substitute constraint (2.78) may provide a valuable mod-
eling alternative. Notice that for any distribution with existing second moments,
employing (2.78) in the model ensures that for the solution x∗ the true inequality
G(x∗)≤ β holds also. In other words, employing (2.80) is a conservative approach,
which might be quite acceptable if, for instance, β represents the ruin probability of
a company. Nevertheless, it may happen that the optimal objective value in (2.80)
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becomes too high (too high costs, for instance), due to the narrower feasible domain
in comparison with the feasible domain according to the true constraint G(x)≤ β .

Analogously, if G(x) is to be minimized in an SLP model, one might consider a
substitute model with the upper bound from (2.76) in the objective. Thus, instead of

min G(x)
s.t. x ∈ B

}

we may consider the substitute problem

min
‖DTx−d‖2

(−μTx+μn+1)2

s.t. x ∈ B.

⎫⎪⎬
⎪⎭

Under the assumption that −μTx+μn+1 > 0 holds for all x ∈B, we get the equiv-
alent formulation

min
μTx−μn+1

‖DTx−d‖
s.t. x ∈ B,

⎫⎪⎬
⎪⎭ (2.81)

where equivalence means that the set of optimal solution of the two problems co-
incide. According to Proposition 2.32. on page 83, the objective function in (2.81)
is pseudo–convex over B, thus (2.81) is a convex programming problem. A com-
parison with (2.64) shows that the substitute problem and the original problem are
equivalent in the case of the non–degenerate multivariate normal distribution (notice
that (2.64) corresponds to maximizing G). In the general case, the optimal objective
value of the substitute problem (2.81) provides an upper bound on the optimal ob-
jective value of the original problem. Taking again the interpretation of G(x) as ruin
probability, for any optimal solution x∗ of (2.81), the ruin probability G(x∗) will
not exceed the optimal objective value of (2.81). Concerning applicability of this
approach, similar comments apply as for (2.80).

We would like to emphasize that, in general, both (2.80) and (2.81) are substitutes
for the corresponding original problems, in general they are not equivalent to the
true problems. Finally let us point out that this approach has first been suggested
by Roy [292] and is utilized in the safety–first approaches to portfolio optimization,
see Elton et al. [85].

2.2.4 The independent case

In this section we consider the joint probability function

G(x) =�ξ (T (ξ )x≥ h(ξ )) =�ξ ( tT
i (ξ )x≥ hi(ξ ), i = 1, . . . ,s),
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where the components of the n–dimensional random vector ti(ξ ) are the elements
of the ith row of the (s× n) random matrix T (ξ ). We will assume in this section
throughout that s > 1 holds.

Our basic assumption is that the random vectors

(tT
i (ξ ),hi(ξ )), i = 1, . . . ,s

are stochastically independent. Models of this type have first been formulated and
studied by Miller and Wagner [234].

The stochastic independence implies that the random vector ζ (x,ξ ), with
ζi(x,ξ ) = tT

i (ξ )x− hi(ξ ), i = 1, . . . ,s, has stochastically independent components.
Consequently, the probability function can be written in the independent case as
follows:

G(x) =�(ζ (x,ξ )≥ 0) =
s

∏
i=1
�(ζi(x,ξ )≥ 0)

=
s

∏
i=1
�( tT

i (ξ )x≥ hi(ξ )).
(2.82)

We observe, that the probability function G(x) is the product of probability functions
of the type, which have been studied in Section 2.2.3 on separate constraints; each
term in the product involves a single random inequality.

Let us discuss the case first, when ti(ξ )≡ ti ∀i holds, that means, we assume that
only the right–hand–side is stochastic. Setting h(ξ ) := ξ , we have

G(x) =�( tT
i x≥ ξi, i = 1, . . . ,s)

= Fξ1,...ξs( tT
1 x, . . . , tT

s x)

=
s

∏
i=1

Fξi( tT
i x).

(2.83)

Distribution functions being monotonously increasing, the terms of the product are
quasi–concave functions. This does not imply, however, the quasi–concavity of
the product. Assuming positivity of the distribution functions, a natural idea is to
transform the product into a sum, by a logarithmic transformation. The logarithm–
function being strictly monotonically increasing, this would be suitable also from
the optimization point of view. This way we get:

logG(x) =
s

∑
i=1

logFξi( tT
i x).

logG(x) will be concave, if the univariate distribution functions Fξi are logconcave.
As already noted by Miller and Wagner [234], log–concavity of univariate distribu-
tion functions is a thoroughly studied subject in statistics, more closely in reliability
theory. It has been found that many important distributions, including the normal
distribution, have logconcave distribution functions. For a recent summary see, for
instance, Sengupta and Nanda [303] and the references therein.
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Let us assume that the distribution functions Fξi are logconcave ∀i, in the sense
of the general Definition 2.13. on page 84. G(x), being the product of logconcave
functions, is logconcave (see page 85). Consequently, the probability constraint

G(x)≥ α

defines a convex set, ∀α ∈ [0,1]. If the distribution functions are positive, the con-
straint can also be written as

s

∑
i=1

logFξi( tT
i x)≥ logα (2.84)

for all α ∈ (0,1].
If we drop the assumption of stochastic independence, but keep the supposition

that only the right–hand–side is stochastic, then from (2.83) we see, that for the
logconcavity of G it is sufficient, that the joint distribution function Fξ1,...ξs is log-
concave. This is true for several important distributions, and will be the subject of
the subsequent Section 2.2.5.

Finally we discuss the situation under the stochastic independence assumption
and random coefficients in the inequalities, see (2.82). We assume that the joint
distributions of the rows are non–degenerate multivariate normal. For the separate
terms of the product we can use the explicit form (2.57), derived in the section on
separate probability constraints, thus resulting in:

G(x) =
s

∏
i=1

Φ

(
μ(i)Tx−μ(i)

n+1

‖D(i)x−d(i)‖

)
, (2.85)

where μ(i), D(i), and d(i) are the parameters of the normal distribution corresponding
to the ith row, ∀i. According to Proposition 2.36. on page 104, the terms of the
product in (2.85) are pseudo–concave functions, at least on appropriate half–spaces.
Unfortunately, this does not even imply that G(x) is quasi–concave. To ensure the
convexity of {x | G(x) ≥ α } quite strong additional assumptions are needed. This
topic will be further pursued in Section 2.2.6.

2.2.5 Joint constraints: random right–hand–side

In this section we consider a single probability constraint under the assumption that
T (ξ )≡ T holds, that means, we assume that the technology matrix is deterministic.
We also simplify the notation by setting h(ξ ) := ξ . Consequently, the probability
constraint has the following form:

G(x) :=�ξ (T x≥ ξ )≥ α (2.86)
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where T is an (s×n) matrix and ξ is an s–dimensional random vector. Employing
the probability distribution function Fξ , G(x) can be formulated as G(x) = Fξ (T x).
An alternative formulation for the probability constraint above is the following:

Fξ (y) ≥ α

y − T x = 0.
(2.87)

From these representations it is clear, that for the convexity of the feasible domain

B(α) = {x | G(x)≥ α }

it is sufficient, that the probability distribution function Fξ is quasi–concave.
In the next subsection we will introduce the notion of generalized–concave prob-

ability measures. Via generalized–concavity properties of density functions this
will lead to identifying several important classes of probability distributions for
which Fξ is quasi–concave. Subsequently we consider transformations which lead
to generalized–concave probability functions. In the final subsection we consider
SLP problems with joint probability functions in the objective.

Generalized–concave probability measures

We will assume in this section that the probability distribution Pξ is absolutely con-
tinuous (w.r. to the Lebesgue–measure), that means, we assume that the probabil-
ity measure is generated by a probability density function. We will discuss various
conditions concerning the probability measure Pξ induced by ξ , under which the
probability distribution function Fξ is quasi–concave.

We begin by discussing generalized means, see Hardy, Littlewood, and Pólya
[132].

Let a≥ 0, b≥ 0, and λ ∈ [0,1]. The generalized means M λ
γ (a,b) are defined as

follows: for ab = 0 let M λ
γ (a,b) = 0, for all γ ∈�∪{−∞}∪{∞}. Otherwise, that

is, if ab > 0 holds, we define

M λ
γ (a,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[λaγ +(1−λ )bγ ] 1
γ , if −∞ < γ < ∞

and γ �= 0

aλb1−λ , if γ = 0

min{a,b}, if γ =−∞

max{a,b}, if γ = ∞.

(2.88)

The following monotonicity property of these generalized means will be used, see
[132]:

γ1 < γ2 =⇒ M λ
γ1
(a,b)≤M λ

γ2
(a,b), ∀a,b≥ 0
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with the inequality being strict, unless a = b or ab = 0. Based on these generalized
means we define:

Definition 2.16. A nonnegative function f :�n→�+ will be called γ–concave, if
for any x, y ∈�n and λ ∈ [0,1] the following inequality holds:

f (λx+(1−λ )y)≥M λ
γ ( f (x), f (y)).

Let us note that in the literature this kind of generalized concave functions, as
well as the generalized concave measures introduced later in this section, are usually
called α–concave, see for instance, Dancs and Uhrin [48] and Norkin and Roenko
[245]. Because α is used for probability levels in this chapter, we use the term γ–
concave, instead.

Let f be a γ–concave function and C+ := {x | f (x) > 0}. The γ–concavity im-
mediately implies that C+ is a convex set. As already discussed for the logconcave
case (c.f. Proposition 2.34. on page 85), this observation leads to the following al-
ternative characterization: the nonnegative function f is γ–concave, if and only if
C+ is a convex set and the inequality in Definition 2.16. holds for all x,y ∈ C+.

For various γ values, γ–concavity can be interpreted over C+ as follows (see the
definition of the generalized means):

• γ =+∞: f is constant;
• 0 < γ < +∞: f γ is a concave function, note that γ = 1 corresponds to ordinary

concavity;
• γ = 0: f is logconcave, that means, log f is concave;
• −∞ < γ < 0: f γ is a convex function;
• γ =−∞: f is quasi–concave.

Notice that we have stated the properties only over C+. To see the reason, let us
discuss the case γ = 1. A nonnegative function f is 1–concave, if it is concave over
the convex set C+, where it is positive. If f is defined over�n, this does not mean
that f is a concave function there. The following nonnegative function g :�→�+

g(x) =
{

1− x2 if x ∈ [−1,1]
0 if x ∈ (−∞,−1) or x ∈ (1,∞)

is obviously 1–concave but it is not concave. Considering the well–known proper-
ties of concave functions, some caution is needed when 1–concave functions are
dealt with. For instance, let g :�→�+ and h :�→�+ be both 1–concave func-
tions, with C+

g := {x | g(x)> 0} and C+
h := {x | h(x)> 0}. Then for g+h we have

C+
g+h := {x | g(x)+ h(x) > 0} = C+

g ∪C+
h , which is a non–convex set in general.

Thus, the sum of 1–concave functions is not necessarily 1–concave.
The monotonicity property of the generalized means implies: if f is γ2–concave,

then it is γ1–concave, for all γ1 < γ2. In particular, if f is γ–concave for any
γ ∈ [−∞,∞] then f is quasi–concave. For the implications concerning the various
types of generalized concavity see Figure 2.8 on page 121.
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Although pseudo–concavity does not fit into the class of γ–concave functions,
logconcave functions, which are continuously differentiable over their domain of
positivity, are also pseudo-concave there, see Proposition 2.35. on page 86. Conse-
quently, for γ ≥ 0 the γ–concave functions, having the above smoothness property,
are also pseudo–concave over their positivity domain.

We wish to extend the notion of γ–concavity to probability measures. For this we
have to specify first, how a linear combination of sets should be defined. Let A and
B two subsets of�r and let λ ∈�. We employ the following definitions:

A+B = {x | ∃y ∈ A and∃z ∈ B, such that x = y+ z},
λA = {x | ∃y ∈ A such that x = λy}.

(2.89)

Figure 2.7 shows the convex combination of two sets. For the properties of these
operations on sets see, for instance, Rockafellar [281].

A Bλ A + (1-λ) B

1

2

3

1 2 3 4 5 6 7

Fig. 2.7 Convex combination of two sets with λ = 1
2 .

We will confine ourselves to the case, when both sets are convex. Let A and B
be convex sets; λ , μ ∈ �. The following properties are important for the future
discussion:

• A+B and λA are convex sets, see [281].
• Let λ ≥ 0 and μ ≥ 0. Then (λ + μ)A = λA+ μA (without the convexity of A

only (λ +μ)A⊂ λA+μA holds). See [281].
• If either A or B is open, then A+B is open.
• If both A and B are closed, and at least one of them is bounded, then A+B is

closed. The sum of two unbounded closed convex sets need not to be closed,
see [281]. If both A and B are closed then A+B is Borel–measurable, see, for
instance, [88].
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• If A is convex, then it is obviously Lebesgue–measurable, because the boundary
has Lebesgue–measure 0.

• If A is convex, then it is not necessarily Borel–measurable. To see this, let us
construct a convex set in �2 as follows: Let us take a non–Borel–measurable
set K on the interval [0,2π) (for the existence of such a set see, for instance,
Billingsley [21]) and let us map this set onto the boundary of the open unit disc
in �2 by the mapping Ψ : K →�2, x→ (cosx,sinx). The union of the open
unit disk and the image of K under Ψ is obviously convex, and, as a union of
a Borel–measurable set (the open unit disc), and a non–Borel–measurable set, it
cannot be Borel–measurable.

• The sum of two Borel–measurable sets is not necessarily Borel–measurable, see
Erdős and Stone [88].

As a next step, we will define generalized concavity properties of probability
measures, in analogy with Definition 2.16. Considering the list of properties above,
one must be careful in working with convex combinations of Borel–sets. Therefore
we formulate the definition as follows:

Definition 2.17. The probability measure � on the Borel–sets �r is called γ–
concave, if for any convex, measurable sets A and B and any λ ∈ [0,1], for which
λA+(1−λ )B is Borel–measurable, the following inequality holds:

�(λA+(1−λ )B)≥M λ
γ (�(A),�(B)).

A γ–concave probability measure with γ = −∞ will be called a quasi–concave. In
this case the defining inequality takes the form

�(λA+(1−λ )B)≥min{�(A),�(B)}.

For γ = 0 we have a logconcave probability measure, with the defining inequality

�(λA+(1−λ )B)≥ �(A)λ�(B)1−λ .

Let ξ be a random variable and�ξ the induced measure on�r. We denote by Fξ
the probability distribution function of ξ . For any convex, closed set A in�r let us
introduce the function ΓA(y) =�ξ (A+{y}). Then the following proposition holds.

Proposition 2.37. If�ξ is a γ–concave measure, then ΓA is a γ–concave function.

Proof: Let x, y ∈�r, λ ∈ [0,1]. Then we have

ΓA(λx+(1−λ )y) = �ξ (A+{λx+(1−λ )y})
= �ξ ( [λ +(1−λ )]A+{λx+(1−λ )y})
= �ξ (λ [A+{x}]+ (1−λ )[A+{y}])
≥M λ

γ (�(A+{x}),�(A+{y}))
= M λ

γ (ΓA(x),ΓA(y)).
�
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Let us assume that�ξ is γ–concave. Taking A=�r
− we get from Proposition 2.37.,

that Fξ is γ–concave. Consequently, {x | �ξ (T x ≥ ξ ) ≥ α } is a convex set,
∀α ∈ [0,1] (see (2.86)).

Let us consider
H(y) :=�ξ{y | ξ ≥ y}.

Choosing now A =�r
+, Proposition 2.37. implies, that H is also γ–concave. Con-

sequently, {x |�ξ (T x≤ ξ )≥ α } is also a convex set, ∀α ∈ [0,1].
The above considerations imply, that for showing that the distribution function F

is γ–concave, it is sufficient to prove the γ–concavity of the probability distribution
�ξ .

The following fundamental theorem links, for continuous distributions, the γ–
concavity of the probability density function with the γ–concavity of�ξ .

Theorem 2.8. Let f be a γ–concave probability density function for the probability
distribution of the r–dimensional random variable ξ . Let − 1

r ≤ γ ≤ ∞. Then�ξ is

an
γ

1+ rγ
–concave probability measure.

Proof: Let λ ∈ [0,1] and assume that the convex sets A, B, and
λA+(1−λ )B are Borel–measurable. The γ-concavity of f implies:

�ξ (λA+(1−λ )B) =
∫

λA+(1−λ )B
f (z)dz

≥ ∫
λA+(1−λ )B

( sup
λx+(1−λ )y=z

M λ
γ ( f (x), f (y)))dz.

Now we apply an integral–inequality, see Prékopa [266] ( for γ = 0 it is called
Prékopa’s inequality):

�ξ (λA+(1−λ )B) ≥ ∫
λA+(1−λ )B

( sup
λx+(1−λ )y=z

M λ
γ ( f (x), f (y)))dz

≥M λ
γ

1+rγ
(
∫
A

f (x)dx,
∫
B

f (y)dy)

= M λ
γ

1+rγ
(�ξ (A),�ξ (B))

which completes the proof. �

For some ranges of γ–values we summarize the assertion of the theorem, to-
gether with the implications from Theorem 2.37., see also Figure 2.8. For this let
C := {x | f (x)> 0} and let us assume that C is a convex set.

• f is constant over C =⇒ F
1
r and H

1
r are concave, consequently both F and H

are logconcave and therefore also quasi–concave.
• f is logconcave =⇒ F and H are logconcave and therefore quasi–concave, too.
• f−

1
r is convex =⇒ F and H are quasi–concave.
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Fig. 2.8 γ–concave density functions versus γ
1+rγ –concave distribution functions.

Logconcave functions have several nice properties. We will need the following
fact:

Theorem 2.9. Prékopa [259]. Let f :�n+m→�+ be a logconcave function. Then

g(x) :=
∫

�
m

f (x,y)dy

is a logconcave function on�n.

Proof: See Prékopa [266]. �

If f is a logconcave density function then this theorem implies that all marginal
density functions are logconcave, too.

If f and g are two logconcave density functions on �n then their convolution
is also logconcave. In fact, the logconcavity of f implies that h(x,y) := f (x− y) is
logconcave in�2n (see the remark on page 85). Thus f (x−y)g(y) is logconcave in
�

2n. Applying Theorem 2.9. yields the result.
For γ = 0 Theorem 2.8. has first been established by Prékopa in 1971 [258], by

Leindler 1972 [203], and in its final form by Prékopa 1973 [259]. Dinghas 1957
[72] proved the theorem for γ > 0. Borell proved the theorem in full generality in
1975 [31].

The breakthrough in the field of generalized concave measures and their applica-
tion in stochastic programming has been achieved by Prékopa, who developed the
theory of logarithmic concave probability measures. These fundamental results have
inspired several authors: papers with alternative proofs have appeared, the theory has
been extended to quasi–concave measures, and applications in stochastic program-
ming, statistics, and economics have been studied. For a comprehensive discussion
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of these results see Prékopa [266] and the references therein. Here we confine our-
selves to refer to Brascamp and Lieb [33], Dancs and Uhrin [48], Das Gupta [54],
Kallberg and Ziemba [173], Norkin and Roenko [245], and Rinott [277]. Converse
results have been obtained, for instance, by Borell [31], Brascamp and Lieb [33],
and Kall [154].

As applications of Theorem 2.8., below we give some examples for multivariate
probability distributions, for which the probability distribution function is quasi–
concave or even logconcave. The probability distribution– and density functions
will be denoted by F and f , respectively. For a square matrix D, its determinant will
be denoted by |D|. For multivariate distributions and their usage in statistics see, for
instance, Johnson and Kotz [149] and Mardia, Kent, and Bibby [216].

• Uniform distribution on a convex set. The density function is

f (x) =

{ 1
λ (C) if x ∈C

0 otherwise,

where C ⊂�s is a bounded convex set with a positive Lebesgue–measure λ (C).
f is obviously logconcave thus F is logconcave, too.

• Non–degenerate normal distribution. The density function of this distribution is
positive on�r and is given in (2.51) on page 99. Taking logarithm and neglecting
the additive constant results in

−1
2
(y−μ)TΣ−1(y−μ).

This is a concave function, because with Σ , Σ−1 is also positive definite, see for
instance, Horn and Johnson [141]. Thus f is logconcave implying the logcon-
cavity of F . Figure 2.9 shows the standard bivariate normal distribution function
and its logarithm.
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Fig. 2.9 The bivariate standard normal distribution function and its logarithm.
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• Dirichlet distribution. This is the joint distribution of the random variables

η j = ξ j

[
r
∑

i=0
ξi

]−1

, j = 1, . . . ,r, where ξ j, j = 0, . . . ,r are independent random

variables, ξ j having χ2–distribution with ν j > 0 degrees of freedom. The density
function of this distribution is

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ (
s
∑

j=0
θ j)

s
∏
j=0

Γ (θ j)
(1−

s
∑
j=1

x j)
θ0−1

s
∏
j=1

x
θ j−1
j , if x > 0,

r
∑
j=1

x j < 1,

0, otherwise,

where θ j, j = 0, . . . ,r are the parameters of the distribution; θ j =
1
2ν j ∀ j. On

the convex set C+ := {x | x > 0,
s
∑
j=1

x j < 1} the density function is positive and

it is zero if x �∈ C+. Therefore, see Proposition 2.34. on page 85, for checking
logconcavity, it is sufficient to consider log f (x) over C+. Apart of an additive
constant, we have for x ∈ C+:

log f (x) = (θ0−1) log(1−
s

∑
j=1

x j)+
s

∑
j=1

(θ j−1) logx j.

If θ j ≥ 1 ∀ j then this is a linear combination, with nonnegative coefficients, of
concave functions, therefore log f (x) is concave on C+. Let us remark that the
concavity of the first term in the right–hand–side follows from the fact, that sub-
stitution of an affine–linear function into a concave function preserves concavity.
We have got: provided that θ j ≥ 1 for j = 0, . . . ,s holds, f is logarithmic concave
implying the logconcavity of F .

• Wishart distribution. This is the joint distribution of the elements of the sample
covariance matrix for a multivariate normal population. Let us consider a sample
with sample–size N > s from a population consisting of s–dimensional random
vectors having a multivariate normal distribution with covariance matrix C. The
density function for this distribution is the following:

f (X) =

{
γ |X | 12 (N−s−2) e−

1
2 Tr(C−1X), if X is positive definite

0, otherwise,

where X is an (s× s) symmetric matrix and

γ = |C|−N−1
2

[
2

(N−1)s
2 π

s(s−1)
4

s

∏
j=1

Γ
(

N− j
2

)]−1

holds. For an (s× s) matrix D, TrD :=
s
∑
j=1

D j j denotes the trace of D. We

wish to check whether f is logconcave. For this we first observe that the set
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C+ := {X | X is symmetric positive definite} is obviously a convex subset of the
linear space of symmetric (s× s) matrices. Therefore it is sufficient to consider
log f on C+:

log f (X) = logγ+
1
2
(N− s−2) log |X |− 1

2
TrC−1X .

The third term is obviously linear in X . According to an inequality of Fan (see,
for instance, Beckenbach and Bellman [13]), the function |X | is a logconcave
function of X . Therefore, if N ≥ s− 2 then f is logconcave and so F is logcon-
cave, too.

• t–distribution (Student–distribution). We consider the joint distribution of

η j = ξ j

(
ζ√
ν

)−1
, j = 1, . . . ,r, where (ξ1, . . . ,ξr) has a joint standardized non–

degenerate multivariate normal distribution with correlation matrix R. ζ has a
χ–distribution with ν degrees of freedom. The density function for this distribu-
tion is positive on�s and has the analytical form

f (x) =
Γ ( 1

2 (ν+ s))

(πν)
s
2Γ ( ν2 )|R|

1
2
(1+

1
ν

xTR−1x)−
1
2 (ν+s),

where the parameters are R, a symmetric positive definite matrix, and the pos-
itive integer ν , interpreted as degrees of freedom. f−

1
s is, apart of a positive

multiplicative constant, as follows:

g(x) := (1+
1
ν

xTR−1x)
1
2 (1+

ν
s ),

which is a convex function on�s. To see this, let us remark first that

h(x) := (1+
1
ν

xTR−1x)
1
2 =

(
(xT,1)

(
R−1 0
0T 1

)(
x
1

)) 1
2

is convex because the positive definite matrix above induces a norm in�s+1. We
have g = h1+ ν

s , therefore the convexity of g follows from the fact, that substi-
tuting a convex function into a monotonically increasing convex function results
in a convex composite function. Thus f−

1
s is convex, implying that F is quasi–

concave.
• Univariate gamma distribution. The density function of this distribution is

f (x) =

{
λϑ
Γ (ϑ) xϑ−1 e−λx, if x > 0
0, otherwise,

where λ > 0 and ϑ > 0 are parameters. This distribution will be denoted by
G (λ ,ϑ). If λ = 1, then the distribution is called a standard gamma distribution.
Assuming x > 0 and taking logarithm we observe that f is logconcave, provided
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that ϑ ≥ 1 holds. If an s–dimensional random vector η has stochastically inde-
pendent components ηi ∼ G (λi,ϑi) and ϑi ≥ 1 ∀i holds, then η has a logconcave
distribution. This follows by considering the density function of η , which is the
product of the one–dimensional density functions of the components. The uni-
variate densities being logconcave, their product is logconcave, too.

Generalized–concave distribution functions

So far we have discussed one way for ensuring generalized concavity of the distri-
bution function Fξ . The method, applicable for continuous distributions, has been
the following: the generalized concavity of the probability density function has been
studied, which implied via Theorem 2.8. the generalized concavity of Fξ . For sev-
eral important multivariate distributions it turned out that Fξ is pseudo–concave, or
that they even have the more important logconcavity property.

Another possibility has been discussed in Section 2.2.4. Under the assumption
that the components of ξ are stochastically independent, the joint distribution func-
tion is the product of the one–dimensional marginal distribution functions, that
means,

Fξ (y) =
s

∏
i=1

Fξi(yi).

If the marginal distribution functions Fξi are logconcave then Fξ will be logconcave,
too.

In the sequel we explore further ways for ensuring generalized concavity proper-
ties of the probability distribution function. The idea is to apply transformations to
random vectors having generalized–concave distributions, in order to obtain distri-
butions for which the probability distribution function again has some generalized
concavity properties.

The subsequent theorems and the insight behind their application in stochastic
programming have been first found by Prékopa for the logconcave case. Their ex-
tension to the γ–concave case is straightforward.

The following general theorem gives a sufficient condition for generalized con-
cavity of composite functions. See, for instance, Prékopa [266] and for an extension
Tamm [324].

We consider the following probability function:

M(x) =�ξ{gi(x,ξ )≥ 0, i = 1, . . . ,s}=�ξ{g(x,ξ )≥ 0}, (2.90)

where gi :�n×�r→�, i = 1, . . . ,s; gT(x,ξ ) = (gT
1 (x,ξ ), . . . ,g

T
s (x,ξ )).

Theorem 2.10. Let gi, i = 1, . . . ,m be quasi–concave functions, that means, let
gi(·, ·) be jointly quasi–concave in both arguments. For the sake of simplicity we
also assume that g is continuous. Assume further, that ξ has a γ–concave probabil-
ity distribution. Then M(x) is a γ–concave function.
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Proof: Let H (x) := {z | g(x,z) ≥ 0} ⊂�s. Due to our assumptions these sets are
convex and closed ∀x and we have M(x) =�ξ (H (x)). Let λ ∈ (0,1), x,y ∈�n.
The basic ingredient of the proof is the following inclusion, which can be proved in
a straightforward way:

H (λx+(1−λ )y)⊃ λH (x)+(1−λ )H (y).

Using this and the γ–concavity of the probability measure, we immediately get:

M(λx+(1−λ )y) =�ξ (H (λx+(1−λ )y))
≥�ξ (λH (x)+(1−λ )H (y))

≥M λ
γ (�ξ (H (x)),�ξ (H (y)))

= M λ
γ (M(x), M(y)).

�

As an application of this theorem we will show, how it can be applied to prove
logconcavity of the log–normal distribution function.

• Log–normal distribution. Let the random variables ξ1, . . . ,ξs have a joint non–
degenerate multivariate normal distribution. The joint distribution of the random
variables ηi = eξi , i = 1, . . . ,s is called a multivariate log–normal distribution.
The density function of this distribution is not logconcave, see Prékopa [266].
For the joint distribution function Fη we have:

Fη(x1, . . . ,xs) =�η(η1 ≤ x1, . . . ,ηs ≤ xs )

=�ξ (x1− eξ1 ≥ 0, . . . ,xs− eξs ≥ 0).

In the preceding section we have seen that the probability measure of a non–
degenerate multivariate normal distribution is logconcave. Theorem 2.10. can be
applied with γ = 0 thus showing that Fη is a logconcave function.

Let us consider next the effect of linear transformations of random variables hav-
ing γ–concave distributions. The following theorem holds:

Theorem 2.11. Let ξ be an s–dimensional random vector, D an (r× s) matrix, and
ζ = Dξ + d. If ξ has a γ–concave distribution then the distribution of ζ is also
γ–concave.

Proof: Let λ ∈ (0,1) and let A, B, Cλ := λA+(1−λ )B be Borel–measurable convex
sets in �r. Then their inverse images in �s under the affine linear transformation
defined by D and d, that means,

Ā := {x | Dx+d ∈ A},
B̄ := {x | Dx+d ∈ B}, and
C̄λ := {x | Dx+d ∈Cλ }
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are Borel–measurable convex sets in�s. It is easy to see that

C̄λ ⊃ λ Ā+(1−λ )B̄

holds. Using this we get

�ζ (λA+(1−λ )B) =�ξ (C̄λ )

≥�ξ (λ Ā+(1−λ )B̄)

≥M λ
γ (�ξ (Ā),�ξ (B̄))

= M λ
γ (�ζ (A),�ζ (B)).

�

This theorem can be utilized to study generalized concavity properties of distri-
butions, which are derived in a similar way, as the multivariate normal distribution.
We take s stochastically independent continuous random variables, each of them
having a γ–concave density function. The joint density function is then the prod-
uct of the density functions of the components. If this joint density function is γ–
concave, then via Theorem 2.11., ζ = Dξ + d will have a γ–concave distribution.
Especially, if the components of ξ have logconcave densities (γ = 0), then the joint
density function of ξ will be logconcave (see page 85).

• The multivariate normal distribution. We consider the multivariate normal dis-
tribution, see Definition 2.14. on Page 98. In Section 2.2.5 we have proved, by
applying Theorem 2.8., that the non–degenerate multivariate normal distribution
is logconcave. Without the non–degeneracy assumption we can proceed as fol-
lows. Recall (Definition 2.14. on page 98) that the r–dimensional random vector
ζ has a multivariate normal distribution, if ζ = Bξ + μ holds, where B is an
(r× s) matrix, μ ∈�r holds, and the components of ξ are independent and have
a standard normal distribution. The joint probability distribution of ξ is then ob-
viously non–degenerate multivariate normal. Thus, Theorem 2.8. implies that ξ
has a logconcave probability distribution. Consequently, the application of The-
orem 2.11. yields the logconcavity of the probability distribution of ζ and thus
the logconcavity of the multivariate normal distribution in the general case.

• A multivariate gamma distribution. In the preceding section on Page 124 we
have seen that the univariate gamma distribution has a logconcave density func-
tion, therefore our technique can be used in this case, too. Prékopa and Szántai
[270] have defined a multivariate gamma distribution as follows. Let ξ be a
s = 2r − 1 dimensional random vector with stochastically independent compo-
nents. The components are assumed to have standard gamma distributions, see
Page 124. Let D be an (r× 2r − 1) matrix with nonzero columns and compo-
nents equal to 0 or 1. The distribution of ζ := Dξ is called a multivariate gamma
distribution. If for the parameter ϑ ≥ 1 holds, then Theorem 2.11. implies that
the distribution of ζ is logconcave. If ϑ < 1 then the distribution of ζ is not
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necessarily logconcave, but the joint distribution function Fζ is still a logconcave
function, see [270].
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Fig. 2.10 The graph of the bivariate standard Cauchy–distribution and the upper level set corre-
sponding to level 0.005.

In Section 2.2.3 we have considered a multivariate Cauchy distribution, which
is derived on the basis of an affine linear transformation as discussed above, see
Definition 2.15. on page 109. A natural idea is trying to apply Theorem 2.11. for de-
riving some γ–concavity property of the multivariate Cauchy distribution. Notice,
however, that the density function of the univariate Cauchy distribution is not log-
concave. Moreover, as it can easily be seen, the product of the density functions of
standard univariate Cauchy distributions is not even quasi–concave, see Figure 2.10.
Therefore, see Figure 2.8, the joint density function of ξ is not γ–concave, for any γ .
Consequently, our technique does not go through in this case. Notice, however, that
there are other generalizations of the Cauchy distribution to the multivariate case,
where the distribution is quasi–concave, see Prékopa [268].

Finally let us comment on the case when ξ has a finite discrete distribution.
Prékopa [266] gave a definition of logconcavity of such distributions and stud-
ied their properties. In Dentcheva et al. [65], the authors extend this notion to r–
concave discrete distributions, where r–concavity corresponds to γ–concavity (see
Section 2.2.5) in the continuous case, and is appropriately modified for the discretely
distributed case. The authors also report on algorithmically relevant applications by
providing bounds on the optimal objective value of SLP problems with probabilistic
constraints.

Maximizing joint probability functions

For the case when the probability function is in the objective, we formulate the
prototype problem

max G(x)
s.t. x ∈B,

(2.91)
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where G is the probability function G(x) =�ξ (T x ≥ ξ ) and B is a polyhedral set
determined by linear inequalities and/or equalities, see (2.8) on page 74.

If G is logconcave and differentiable then it is also pseudo–concave, see Propo-
sition 2.35. on page 86. This is the case, for instance, for the non–degenerate
multivariate normal distribution or for the log–normal distribution (see pages 122
and 126). Consequently, for logconcave distributions, (2.91) is a linearly con-
strained convex optimization problem. Some other distributions only have the
quasi–concavity property, like the multivariate t–distribution (see page 124). In such
cases (2.91) has a quasi–concave objective function and the problem may have local
maxima which are not global solutions; the problem becomes much more difficult
to solve numerically.

Note that (2.91) has been formulated as a maximization problem. Assuming
s > 1, that is, assuming that ξ is a random vector, this is the only way for arriving
at convex programming problems. Reversing the random inequality does not help
in this respect: with G the function Ĝ : Ĝ(x) =�ξ (T x≤ ξ ) is also logconcave, see
the discussion on page 120. For reversing the random inequality in the multivariate
case see also (2.31) on page 89. Thus, for ξ having a logconcave distribution and
assuming s > 1, the counterpart of (2.91) involving minimization is a much more
difficult problem numerically than (2.91).

2.2.6 Joint constraints: random technology matrix

In this section we consider the probability function in full generality

G(x) =�ξ ( x | T (ξ )x≥ h(ξ )),

where the (s× n) technology matrix T (ξ ) is also allowed to be stochastic. In Sec-
tion 2.2.3 on separate probability constraints we have assumed that s = 1 holds. We
have seen that the feasible domain is convex under various further assumptions con-
cerning the probability distribution and the probability level α . If s > 1, then the
convexity of the feasible domain can only be ensured under quite strong assump-
tions. We will discuss the case, when the joint distribution of the random entries is
multivariate normal.

The matrix of random entries (T (ξ ),h(ξ )) will be considered both column–wise
and row–wise, therefore we introduce the notation:

(T (ξ ),h(ξ )) =
(
ζ (1), . . . ,ζ (n),ζ (n+1))

)
=

⎛
⎜⎝
η(1)T

...
η(s)T

⎞
⎟⎠ .

Here the s–dimensional random vector ζ ( j) denotes the jth column of T (ξ ) for j≤ n,
and the right–hand–side h(ξ ) for j = n+1.
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Let ζT = (ζ (1)T, . . . ,ζ (n+1)T) be the random vector consisting of all random en-
tries in columns major order. The n+1–dimensional random vector η(i) stands for
the ith row, 1 ≤ i ≤ s, that is, η(i)T = (Ti1(ξ ), . . . ,Tin(ξ ),hi(ξ )). Let
ηT = (η(1)T, . . . ,η(s)T) be the random vector consisting of all random entries in
rows major order.

For any vector x ∈�n let x̂ ∈�n+1 be x̂T = (x1, . . . ,xn,−1). For simplicity of
notation in this section we drop the explicit reference to ξ in ζ (x,ξ ). We have the
following alternative representations

ζ (x) :=
n
∑

i=1
ζ (i)xi−ζ (n+1)

=
(
η(1)Tx̂, . . . ,η(s)Tx̂

)T
(2.92)

and
G(x) =�(ζ (x)≥ 0).

Please note that we distinguish between the random vector ζ and ζ (x) defined in
(2.92).

We assume that ζ has a multivariate normal distribution. This implies a multi-
variate normal distribution for η , as well as for the marginal distributions of ζ ( j)

and η(i), ∀i, j, and for the distribution of ζ (x) (see Section 2.2.3 and [328]).

Let μ(x) be the expected–value vector and Σ(x) be the covariance matrix of ζ (x).
We proceed with computing these moments in terms of the moments of ζ and η . To
this we introduce some further notation:

• M is the (s× (n+1)) matrix of expected values of (T (ξ ),h(ξ ));
• C(i, j) is the (s× s) covariance matrix of ζ (i) if i = j, otherwise the cross–

covariance matrix of ζ (i) and ζ ( j), i = 1, . . . ,n+1, j = 1, . . . ,n+1;
• C̄(i, j) is the ((n+ 1)× (n+ 1)) covariance matrix of η(i) if i = j, otherwise the

cross–covariance matrix of η(i) and η( j), i = 1, . . . ,s, j = 1, . . . ,s.

For the expected value of ζ (x) we immediately get

μ(x) =�[ζ (x)] =
n

∑
j=1
�[ζ ( j)]xi−�[ζ (n+1)] = Mx̂.

For the covariance matrix of ζ (x) we obtain two alternative forms corresponding
to the column–wise and row–wise representations, respectively. We proceed with
the column–wise form. For computing the covariance matrix, we note that ζ (x) is
defined by an affine linear transformation:
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ζ (x) =

⎛
⎜⎝

x1 . . . xn −1
. . . . . .

. . . . . .
x1 . . . xn −1

⎞
⎟⎠

⎛
⎜⎜⎜⎝

ζ (1)

...
ζ (n)

ζ (n+1)

⎞
⎟⎟⎟⎠ .

A straightforward computation gives for the covariance matrix of ζ (x):

Σ(x) = ���[ζ (x),ζ (x)]

=
n
∑

i, j=1
xix jC(i, j) +

n
∑
j=1

x jC(n+1, j) +C(n+1,n+1)

=
n+1
∑

i, j=1
x̂ix̂ jC(i, j).

(2.93)

In the alternative representation we observe:

ζ (x) =

⎛
⎜⎝

x̂T

. . .
x̂T

⎞
⎟⎠
⎛
⎜⎝
η(1)

...
η(s)

⎞
⎟⎠ ,

which immediately leads to

Σ(x) = ���[ζ (x),ζ (x)]

=

⎛
⎜⎜⎜⎝

x̂TC̄(1,1)x̂ . . . x̂TC̄(1,s)x̂

...
. . .

...

x̂TC̄(s,1)x̂ . . . x̂TC̄(s,s)x̂

⎞
⎟⎟⎟⎠ .

(2.94)

Next we observe that�(ζ (x)≥ 0) =�(−ζ (x)≤ 0), where −ζ (x) is also nor-
mally distributed with the same covariance matrix as ζ (x) and expected value vector
−μ(x). We will consider the case when all covariance matrices C(i, j) are multiples
of a fixed symmetric positive semidefinite matrix. Therefore it is sufficient to prove
convexity for one of the sets

B(α) := {x |�(ζ (x)≥ 0)≥ α },
A (α) := {x |�(ζ (x)≤ 0)≥ α },

the convexity of the other one follows immediately.

Theorem 2.12. Prékopa [261]. Let us assume that ζ has a joint multivariate nor-
mal distribution and that

1. either there exists an ((n + 1)× (n + 1)) matrix S and a symmetric positive
semidefinite matrix C, such that C(i, j) = Si jC holds, ∀i, j,
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2. or there exists an (s× s) matrix S̄ and a symmetric positive semidefinite matrix
C̄, such that C̄(i, j) = S̄i jC̄ holds, ∀i, j.

In both cases, if α ≥ 1
2 then A (α) is a convex set.

Proof: We begin with proving the first assertion of the theorem. We will assume that
S is nonsingular; for the general case see Prékopa [266]. For the covariance matrix
of ζ (x) we have (cf. (2.93) )

Σ(x) =
n+1

∑
i, j=1

x̂ix̂ jSi, jC =C · x̂TSx̂. (2.95)

In particular, for the variance we get

���[ζi(x)] =Ciix̂TSx̂, ∀i. (2.96)

We may assume that Cii > 0 holds ∀i.
In fact, Cii = 0 implies that ���[ζi(x)] = 0, ∀x. Consequently, the coefficients

and right–hand–side in the ith row of the system of random inequalities are a.s. con-
stant. Therefore (see the Remark on page 90) the ith inequality can be moved to the
set of deterministic constraints in the corresponding optimization problem.

From relation (2.96) immediately follows, that S is a symmetric positive semidef-
inite matrix. We have assumed that S is nonsingular, therefore S is positive definite.

Another implication of (2.95) is, that the correlation matrix R of ζ (x) does not
depend on x. In fact, Ri j :=����[ζi(x),ζ j(x)] =

Ci j√
CiiCj j

holds.

By standardizing ζ (x) (see page 99) we get:

�(ζ (x)≤ 0) =Φ

(
− μ1(x)√

C1,1x̂TSx̂
, . . . ,− μn+1(x)√

Cn+1,n+1x̂TSx̂
;R

)
,

where x̂TSx̂ > 0 holds, due to our assumption concerning S and the fact that x̂ �= 0
∀x ∈�n.

Let

hT(x) =
(
− μ1(x)√

C1,1
, . . . ,− μn+1(x)√

Cn+1,n+1

)
,

‖ẑ‖S =
(
ẑTSẑ

) 1
2 , ∀ẑ ∈�n+1,

where ‖ · ‖S is clearly a norm in�n+1. With this notation we have

�(ζ (x)≤ 0) =Φ
(

1
‖ẑ‖S

h(x);R
)
.
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Φ(z;R) is a multivariate distribution function, consequently it is monotonically
increasing in each of its arguments. This implies that Φ(zi)≥Φ(z;R) ∀i holds. Un-
der our assumption α ≥ 1

2 , we deduce that h(x)≥ 0 holds ∀x ∈A (α).

Let x∈A (α), y∈A (α), λ ∈ (0,1) and let x̂ and ŷ be the corresponding (n+1)–
dimensional vectors with their last coordinate being equal to -1, cf. page 130.

With the notation xλ = λx+(1−λ )y and x̂λ = λ x̂+(1−λ )ŷ, using the triangle
inequality for norms we get:

�(ζ (xλ )≤ 0) =Φ
(

1
‖x̂λ ‖S h(xλ );R

)

≥Φ
(

1
λ‖x̂‖S+(1−λ )‖ŷ‖S (λh(x)+(1−λ )h(y);R

)
.

(2.97)

We will make use of the following trivial fact: for A,B,C,D ∈�, C > 0, and D > 0
we have

A+B
C+D

= κ
A
C
+(1−κ)B

D

with κ = C
C+D ; 0 < κ < 1. Applying this componentwise in (2.97) with the setting

A = λh(x), B = (1− λ )h(y), C = λ‖x̂‖S, and D = (1− λ )‖ŷ‖S, and utilizing the
logconcavity of Φ(z;R) we get:

�(ζ (xλ )≤ 0) ≥Φ
(
κ 1
‖x̂‖S h(x)+(1−κ) 1

‖ŷ‖S h(y);R
)

≥Φ
(

1
‖x̂‖S h(x);R

)κ
Φ
(

1
‖ŷ‖S h(y);R

)1−κ

=�(ζ (x)≤ 0)κ�(ζ (y)≤ 0)1−κ

≥ ακα1−κ = α.

(2.98)

The proof of the second assertion runs along analogous lines. For the covariance
matrix of ζ (x) we now have (see (2.93) )

Σ(x) = S̄ · x̂TC̄x̂. (2.99)

For the variance we get

���[ζi(x)] = S̄iix̂TC̄x̂, ∀i. (2.100)

Arguing similarly as for the first assertion, we conclude that S̄ii > 0 ∀i may be as-
sumed. If C̄ is positive definite, then the rest of the proof runs analogously to the
proof of the first assertion. For the general case see Prékopa [266]. �

Let us remark, that the second assertion of the theorem has originally been
proved in [261] under the assumption of the stochastic independence of the rows
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of (T (ξ ),h(ξ )); the general case has been proved by Burkauskas [39].

2.2.7 Summary on the convex programming subclasses

SLP models with probability functions are non–convex in general but in the pre-
ceding sections we have found important subclasses consisting of convex program-
ming problems. From the practical modeling point of view it is important to know,
whether a particular model instance involving probability functions is a convex pro-
gramming problem. Having namely a convex programming problem there are good
chances for finding efficient solution algorithms, or in many cases general–purpose
software can be used for solving the problem.

Therefore, for the sake of easy reference, in this section we summarize those
model classes which consist of convex programming problems. For further such
model classes see Prékopa [266]. If a particular model instance does not belong to
any one of these model classes then most probably it is a non–convex optimization
problem. This is not certain in general, of course; further research is needed which
may lead to the discovery of new convex programming classes of SLP problems
with probability functions.

For direct reference we repeat some of the notation and introduce some new one:

G(x) = �ξ ( T (ξ )x≥ h(ξ ) )
Ĝ(x) = �ξ ( T (ξ )x≤ h(ξ ) )
B(α) = {x | G(x)≥ α }
B̂(α) = {x | Ĝ(x)≥ α }
D(β ) = {x | G(x)≤ β }
D̂(β ) = {x | Ĝ(x)≤ β },

where T (ξ ) denotes a random s×n matrix, h(ξ ) ∈�s stands for a random vector.
The components of the n–dimensional random vector ti(ξ ) are the elements of the
ith row of T (ξ ), ∀i and Tj(ξ ) stands for the jth column of T (ξ ), ∀ j. If s= 1 (separate
probability function) holds, we use the notation t(ξ ) = T (ξ ); μ =�[t(ξ )], μt+1 =
�[h(ξ )].

A. General cases: convex models are identified by choosing specific probability lev-
els. If α = 1 or α = 0 or β = 1 then B(α), B̂(α), D(β ), and D̂(β ) are all
convex sets. (Proposition 2.2. on page 92 and the discussion on page 92).

B. ξ has a finite discrete distribution: convex models are identified by choosing spe-
cific probability levels. If α is high enough (as precisely formulated in the as-
sumptions of Proposition 2.3. on page 95 and Proposition 2.4. on page 95) then
B(α) and B̂(α) are convex. In general, however, B(α), B̂(α), D(β ), and
D̂(β ) are non–convex sets. Equivalent linear mixed–integer programming re-
formulations are available, see (2.44) on page 94.
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C. Separate probability functions, s = 1: convex cases are identified by choosing
specific probability distributions and probability levels.

1. If only the right–hand–side is stochastic then B(α), B̂(α), D(β ), and D̂(β )
are half–spaces, determined by linear inequalities (Section 2.2.3) although for
D(β ), and D̂(β ) some care is needed if ξ does not have a continuous distri-
bution (page 98). (2.91) can be formulated as a deterministic linear program
if B is bounded, otherwise some caution is needed, see (2.49) on page 98.
These results hold for arbitrary values 0 < α < 1 and 0 < β < 1.

2. If (t(ξ ),h(ξ )) has a multivariate normal distribution and α ≥ 1
2 and β ≤ 1

2
hold, then B(α), B̂(α), D(β ), and D̂(β ) are convex sets, determined by con-
vex nonlinear constraints, see Section 2.2.3, (2.60), and (2.61) on page 103.
Some care is needed concerning D(β ) and D̂(β ), see (2.61) on page 103, in
the case when the distribution is degenerate, see page 103. If the distribution
is non–degenerate then G(x) is pseudo–concave on B, if μTx ≥ μn+1 holds
for all x ∈B. It is pseudo–convex on B, if μTx ≤ μn+1 holds for all x ∈B.
Similar assertions hold for Ĝ(x) with exchanged roles of the inequalities for
the expected values (Proposition 2.36.) on page 104. Thus (2.91) is a convex
programming problem if for all x ∈B, μTx≥ μn+1 holds. The corresponding
minimization problem is a convex programming problem provided that for all
x ∈B the reverse strict inequalities μTx≤ μn+1 hold.

3. If (t(ξ ),h(ξ )) has a multivariate Cauchy distribution, similar remarks apply
as in the normally distributed case, see Section 2.2.3. This section outlines
also a technique for carrying out the analysis for distributions belonging to
the class of stable distributions.

D. Stochastically independent random variables, s > 1: convex cases are identified
by choosing specific probability distributions. If only h(ξ ) is stochastic,
(h1(ξ ), . . . ,hs(ξ )) are stochastically independent, and each hi(ξ ) has a log–
normal distribution function, then G(x) is a logconcave function and B(α) is
convex (Section 2.2.4).

E. Only the right–hand–side is stochastic: convex cases are identified by choosing
specific probability distributions. In the case of s = 1 this has been discussed
above in item B.1 and under the assumption of stochastic independence the dis-
cussion can be found under item D. In the general case G(x) and Ĝ(x) are log-
concave for the following multivariate distributions: uniform (page 122), non–
degenerate normal (page 122), Dirichlet (page 123), Wishart (page 123), log–
normal (page 126), and gamma (page 127). The probability functions G and Ĝ(x)
are quasi–concave for the multivariate t–distribution (page 124). Consequently,
B(α) and B̂(α) are convex. Having G(x) or Ĝ(x) in the objective function,
(2.91) is a convex programming problem for the logconcave distributions listed
above. Regarding the case with reverse inequality constraints and the same dis-
tributions, D(β ), and D̂(β ) are non–convex sets in general and the minimization
variant of (2.91) is a non–convex optimization problem.
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F. Random technology matrix: for the case s = 1 the discussion can be found under
items C.2 and C.3. For s> 1, B(α) and B̂(α) are convex under the following as-
sumptions: (T1(ξ ), . . . ,Tn(ξ ),h(ξ )) have a joint multivariate normal distribution
and the covariance matrices of the columns as well as the cross–covariance ma-
trices are constant multiples of a fixed covariance matrix, then B(α) and B̂(α)
are convex sets. This holds also under the analogous assumption concerning the
rows. For both facts see Proposition 2.12. on page 131.

Exercises

2.4. Show the following assertion concerning probabilities, which has been utilized
in the proof of Theorem 2.2. on page 92:

�(A) =�(B) = 1 ⇒ �(A∩B) = 1.

2.5. Consider the following chance–constrained problem:

min 2x1 + x2

s.t. x1 ≥ 1

�(x1 + x2 ≥ ξ ) ≥ 0.9,

⎫⎪⎪⎬
⎪⎪⎭

with ξ ∈U (1,2), meaning that the random variable ξ is uniformly distributed over
the interval [1,2].

(a) Formulate the equivalent LP problem.
(b) Solve this LP graphically and solve the original problem by employing SLP–

IOR; compare the results.

2.6. In the proof of Proposition 2.36. on page 104 we have utilized the fact that
h(x) := ‖DTx−d‖ is a convex function. Prove that this holds for any norm ‖ · ‖.
2.7. Consider the following pair of chance–constrained problems:

min 2x1 + x2

s.t. x1 +x2 ≤ 8

�(x1 + x2 ≥ ξ1 ) ≥ 0.95

�(x1 ≥ ξ2 ) ≥ 0.95

x1, x2 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(S)

min 2x1 + x2

s.t. x1 +x2 ≤ 8

�

(
x1 + x2 ≥ ξ1

x1 ≥ ξ2

)
≥ 0.95

x1, x2 ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(J)

where the probability distribution of ξ = (ξ1,ξ2)
T is a normal distribution with

parameters �[ξ ] = (2,1)T, standard deviations σ [ξ ] = (0.5,0.5)T and correlation
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σ1,2(ξ1,ξ2) = 0.2. Problems (S) and (J) are formulated on the basis of the same
data–set, (S) with separate chance constraints and (J) with a joint chance con-
straint. In (S) the marginal distributions of (ξ1,ξ2) are chosen for the probability
distributions of ξ1 and ξ2. Notice that for both of the separate constraints the same
probability level is prescribed as for the joint constraint.

(a) Solve both problems by utilizing SLP–IOR and compare the optimal objective
values z∗S and z∗J .

(b) It will turn out that z∗S < z∗J holds. Show that this is not just by chance: if for-
mulating two chance–constrained problems on the same data–set in the above
way, the optimal (minimal) objective value for the problem with separate con-
straints never exceeds the optimal objective value of the optimization problem
with joint constraints.

2.3 Quantile functions, Value at Risk

One way for including simultaneously the loss size and the probability of loss into an
SLP model leads via quantiles. Recall that for a random variable ϑ with distribution
function Fϑ and for 0 < α < 1, z ∈� is an α–quantile, if both inequalities

�(ϑ ≤ z)≥ α and �(ϑ ≥ z)≥ 1−α

hold. The set of α–quantiles is a non–empty closed interval for 0 < α < 1, see, for
instance, Cramér [47]. We assume that 0 < α < 1 holds and assign the following
quality measure to random variables:

ρα
VaR

(ϑ) := ν(ϑ ,α) := min{z | Fϑ (z)≥ α}, ϑ ∈L
0

1 , (2.101)

defined on the set of all random variables over Ω . According to this definition, for
a given α , ν(ϑ ,α) is the left endpoint of the closed interval of α–quantiles of ϑ .

Similarly as in Section 2.2.3 on separate probability functions, for the sake of
simplicity of notation, we consider the random variable

ζ (x,η ,ξ ) := ηTx−ξ . (2.102)

We interpret positive values of ζ (x,η ,ξ ) as loss and negative values as gain. The
evaluation function corresponding to the risk measure (2.101) will be the following:

v(x,α) := min{z |Ψ(x,z)≥ α}, (2.103)

where Ψ(x, ·) denotes the probability distribution function of ζ (x,η ,ξ ). We will
call v(x,α) a quantile function. α will typically have a large value, for instance, α =
0.95. The interpretation of v(x,α) is in this case a minimal loss level, corresponding
to the decision vector x, with the following property: the probability of the event
that the loss will not exceed v(x,α) is at least α . In financial applications v(x,α) is
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called Value at Risk (VaR), see Elton et al. [85], and the references therein. We will
adopt this terminology for our more general setting.

We consider minimizing the sum of a linear function and VaR, under linear con-
straints:

min cTx+ v(x,α)

s.t. x ∈B.

}
(2.104)

By using the definition of v(x,α) and introducing an additional variable z, the fol-
lowing equivalent formulation results:

min cTx+ z
s.t. Ψ(x,z) ≥ α

x ∈B.

⎫⎬
⎭ (2.105)

The equivalence with (2.104) is immediate by noting that for each fixed x ∈ B
in (2.105), it is sufficient to take into account the minimal z in the constraint, this
minimal z is however v(x,α). Substituting the definition of Ψ finally leads to the
formulation

min cTx+ z
s.t. �(ηTx−ξ ≤ z) ≥ α

x ∈B.

⎫⎬
⎭ (2.106)

This model clearly belongs to the class of SLP models with separate probability
functions, see (2.46) with s = 1, in Section 2.2.3. The probability function in the
model above is a special case of the general form with the “technology vector”
containing a deterministic component

Ĝ(x,z) =�
(
(ηT,−1)

(
x
z

)
−ξ ≤ 0

)
.

It is an interesting fact, that the first SLP model for minimizing VaR has been for-
mulated by Kataoka [178] in the form (2.106) already in 1963.

Being a special case of SLP models with separate probability functions, the
whole machinery developed in Section 2.2.3 applies. We will illustrate this by dis-
cussing the case of the multivariate normal distribution. Let

ζ (x,z,η ,ξ ) := ηTx−ξ − z

and assume that (η ,ξ ) has a multivariate normal distribution (see page 100). For a
fixed (x,z), the z–term can be interpreted as merely modifying the expected value
of ξ , therefore for Ĝ(x,z) the explicit form (2.59) on page 102 applies with μn+1
replaced by μn+1 + z. Consequently, see (2.60) on page 102, (2.106) can be written
as

min cTx+ z
s.t. Φ−1(α)‖DTx−d‖+μTx− z ≤ μn+1

x ∈B.

⎫⎬
⎭ (2.107)
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At the optimal solution the nonlinear constraint is clearly active. This observation
leads, by eliminating z, to the following linearly constrained alternative formulation:

min cTx+Φ−1(α)‖DTx−d‖+μTx−μn+1
s.t. x ∈B.

}
(2.108)

Assuming that α ≥ 1
2 holds, due to the convexity of the Euclidean norm both models

(2.107) and (2.108) are convex programming problems.
Except of those cases, discussed in Section 2.2.3, which can be formulated as

convex programming problems, the model (2.106) is in general a non–convex opti-
mization problem.

Turning now our attention to SLP problems with VaR–constraints, we consider
problems of the following form:

min
x

cTx

s.t. min
z
{z |Ψ(x,z)≥ α} ≤ κ

x ∈B.

⎫⎪⎪⎬
⎪⎪⎭

(2.109)

Observe that the minimum in the minimization problem involved in the first con-
straint is attained. Therefore, for a fixed x this constraint holds, if and only if there
exists a z ∈� such that it holds for that z. Thus the optimization problem (2.109)
can be equivalently formulated as follows:

min
x,z

cTx

s.t. Ψ(x,z) ≥ α
z ≤ κ

x ∈B.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.110)

Finally, substituting the definition ofΨ results in

min
x,z

cTx

s.t. �(ηTx− z≤ ξ ) ≥ α
z ≤ κ

x ∈B.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.111)

Thus, also in this case, we have obtained an equivalent problem which belongs to
the class of SLP problems with separate probability functions, see Section 2.2.3.
Therefore, analogous comments and formulations apply, as for the SLP problem in
which VaR is minimized, see (2.106).

For further stochastic programming problems based on quantile functions see
Kibzun and Kan [182].
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2.4 Models based on expectation

The simplest way of including expectations into an SLP model is based on choosing
the quality measure

ρE(ϑ) :=�[ϑ ], ϑ ∈L
1

1 ,

defined on the linear space of random variables with finite expected value. We con-
sider the random variable

ζ (x,ξ ) = tT(ξ )x−h(ξ ),

where t(ξ ) is an n–dimensional random vector and h(ξ ) is a random variable. Un-
der the assumption that the expected value of (T (ξ ),h(ξ )) exists, we obtain the
following deterministic linear–affine evaluation function for x:

�[ζ (x,ξ )] = t̄Tx− h̄

with t̄ =�[t(ξ )] and h̄ =�[h(ξ )]. In the case when ζ (x,ξ ) is a random vector, this
holds componentwise. Consequently, the prototype models (2.7) and (2.9) become
linear programming problems. These LP’s are called expected value problems, cor-
responding to the SLP problem.

On the one hand, having an equivalent linear programming problem is an attrac-
tive feature from the numerical point of view. On the other hand, however, replacing
the probability distribution by a one–point distribution leads to a very crude approx-
imation of the original distribution in general. In some modeling situations it may
happen that the solution x̄ of the expected value problem also solves a correspond-
ing SLP problem. However, this is usually an indication of a modeling or data error:
the corresponding SLP model is not “truly stochastic”. Unfortunately, the expected
value problem is frequently used by modelers as a substitute for the SLP problem,
without further considerations. When doing this, extreme care is needed, since the
solution obtained this way may turn out to be quite risky when evaluated by an
alternative evaluation function. Taking the expected value problem should by no
means be used as the single way representing ζ (x,ξ ) in the model. Accompanied
with other constraints or objective functions, based on alternative quality measures,
utilizing ρE(ϑ) may lead to important and meaningful model formulations. As an
example we refer to the portfolio optimization model of Markowitz [217] which has
been applied with tremendous success in finance.

The picture radically changes if the expectation is taken separately for the
positive– or negative part of ζ (x,ξ ), or if conditional expectations are utilized. In
this section we will discuss several important model classes based on these ideas.

We shall need some basic facts from probability theory concerning expectations.
Let ϑ be a random variable and assume that �[ϑ ] exists. Recall from probability

theory, that this assumption means the finiteness of the integral
∫ ∞

−∞
|t|dFϑ (t), where

Fϑ denotes the probability distribution of ϑ .
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The following well–known integral representations will be used in this section,
for which, for the sake of completeness, we also present a proof. Introducing the
notation u+ := max{0,u} and u− := max{0,−u} for all u ∈�, we have

Proposition 2.38. Assume that�[ϑ ] exists. Then for all z ∈�
both�[(ϑ − z)+] and�[(ϑ − z)−] exist and we have:

�[(ϑ − z)+] =
∞∫

z

(1−Fϑ (t))dt

�[(ϑ − z)−] =
z∫

−∞

Fϑ (t)dt.

(2.112)

Proof: The existence of�[ϑ ] obviously implies the existence of the expected values
on the left–hand–side in (2.112). Using integration by parts we get for z < y

y∫

z

(t− z)dFϑ (t) = (t− z)Fϑ (t) ]
y
z−

y∫
z

Fϑ (t)dt

= −(y− z)(1−Fϑ (y))+
y∫
z
(1−Fϑ (t))dt

and consequently

�[(ϑ − z)+] =
∞∫

z

(t− z)dFϑ (t)

= lim
y→∞

y∫

z

(t− z)dFϑ (t) =
∞∫

z

(1−Fϑ (t))dt,

where we have used the fact that the existence of the expected value of ϑ implies that
lim
y→∞

y(1−Fϑ (y)) = 0 holds. For the second relation we get similarly via integration

by parts:

�[(ϑ − z)−] =
z∫

−∞

(z− t)dFϑ (t)

= (z− t)Fϑ (t) ]
z
−∞ +

z∫

−∞

Fϑ (t)dt =
z∫

−∞

Fϑ (t)dt,

where we used that lim
x→−∞

xFϑ (x) = 0 holds, due to the existence of the expected

value of ϑ . �
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2.4.1 Integrated chance constraints

Similarly as in Section 2.2 concerning probability functions, also in this section we
will distinguish two cases: first we discuss the case when ζ (x,ξ ) := T (ξ )x− h(ξ )
is a random variable (s = 1 holds, see (2.1) on page 71). Afterwards we consider the
general case when ζ (x,ξ ) := T (ξ )x− h(ξ ) is a random vector, that means, s ≥ 1
holds. We will assume throughout that the expected values of T (ξ ) and h(ξ ) exist.

Separate integrated probability functions

We consider the random variable

ζ (x,ξ ) := t(ξ )Tx−h(ξ ),

where t(ξ ) is an n–dimensional random vector and h(ξ ) is a random variable. De-
pending on whether positive or negative values of ζ (x,ξ ) are considered as losses,
the loss as a random variable can be written as

ζ+(x,ξ ) := [t(ξ )Tx−h(ξ )]+

or
ζ−(x,ξ ) := [t(ξ )Tx−h(ξ )]−,

respectively. Here we have made use of the notation z+ = max{0,z} and
z− = max{0,−z}, z ∈�. z+ will be called the positive part and z− the negative
part of the real number z.

For being in accordance with the literature, let us assume that losses are modeled
as negative values of ζ (x,ξ ). Using the notation above, the probability constraint
corresponding to the random linear inequality ζ (x,ξ )≥ 0 can obviously be written
in expectation terms (see (2.33) on page 90) as follows

�ξ (ζ (x,ξ )≥ 0)≥ α ⇐⇒ �ξ [χ(ζ−(x,ξ ))]≤ 1−α (2.113)

with the indicator function

χ(z) :=
{

0 if z≤ 0,
1 if z > 0.

In the second inequality in (2.113) the application of the function χ results in assign-
ing the constant value 1 to the loss irrespectively of its size. This can heuristically be
viewed as the source of the generally non–convex behavior of probability functions,
see the nice examples in Klein Haneveld [188] and Klein Haneveld and Van der
Vlerk [191]. This observation leads to integrated chance constraints by dropping χ
in (2.113) and by prescribing an upper bound for �ξ [ζ−(x,ξ )]. More specifically,
we choose two risk measures for random variables as
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ρ+
sic
(ϑ) := �[ϑ+],

ρ−
sic
(ϑ) := �[ϑ−], ϑ ∈L 1

1 ,
(2.114)

defined on the linear space of random variables with finite expected value. The cor-
responding evaluation functions K and H will be

K(x) := ρ+
sic
(ζ (x,ξ )) =�ξ [ζ+(x,ξ )] and

H(x) := ρ−
sic
(ζ (x,ξ )) =�ξ [ζ−(x,ξ )],

respectively. The functions K(x) and H(x) will be called separate integrated prob-
ability functions . Assuming, for instance, that losses correspond to negative values
of ζ (x,ξ ), a separate integrated chance constraint has the form

�ξ [ (ζ (x,ξ ))− ]≤ γ, (2.115)

where γ is a prescribed maximal tolerable expected loss. The following relation pro-
vides an explanation of the term “integrated”: due to Proposition 2.38. on page 141
we have

�ξ [ (ζ (x,ξ ))− ] =
0∫

−∞

�(ζ (x,ξ )≤ z)dz =
0∫

−∞

�(ζ (x,ξ )< z)dz.

The second equality holds because the set of jump-points of the distribution function
Ψ(x, ·) :=�(ζ (x,ξ )≤ z) is countable and therefore it has (Lebesgue) measure 0.

Let us define the positive– and negative–part functions ϕ+ and ϕ− according to
ϕ+(z) := z+ and ϕ−(z) := z− for z ∈�, respectively. Both of these functions are
obviously convex. From the optimization point of view the most attractive property
of separate integrated probability functions is formulated in the subsequent propo-
sition:

Proposition 2.39. Both H(x) and K(x), and consequently
�ξ [ |ζ (x,ξ )| ] = H(x)+K(x) are convex functions on�n.

Proof: The assertion follows easily from the convexity of the functions ϕ+(·) and
ϕ−(·). We prove the assertion for K(x); the proof for H(x) is analogous. We have
K(x) =�ξ [ϕ+(ζ (x,ξ )) ]. Because ζ (x,ξ ) is linear in x and ϕ+ is a convex func-
tion, ϕ+(ζ (x,ξ )) is convex for each fixed ξ . Taking the expected value preserves
convexity. For a formal proof let x,y ∈�n and 0≤ λ ≤ 1. We have

K(λx+(1−λ )y) = �ξ [ϕ+(ζ (λx+(1−λ )y,ξ )) ]
= �ξ [ϕ+(λζ (x,ξ )+(1−λ )ζ (y,ξ )) ]
≤ �ξ [λϕ+(ζ (x,ξ ))+(1−λ )ϕ+(ζ (y,ξ )) ]

= λK(x)+(1−λ )K(y).
�
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This result implies that K(x) and H(x) are convex, in particular also for finite dis-
crete distributions. This is in sharp contrast with probability functions, where (gen-
eralized) concavity holds only under various assumptions, excluding finite discrete
distributions in general.

With ζ+(x,ξ ) representing losses, the following prototype models will be con-
sidered:

min cTx
s.t. �ξ [ζ+(x,ξ )] ≤ γ

x ∈B

⎫⎪⎬
⎪⎭ (2.116)

and
min cTx+�ξ [ζ+(x,ξ )]

s.t. x ∈B,

}
(2.117)

where γ > 0 is a prescribed maximally tolerable loss level. Due to Proposition 2.39.,
both problems are convex programming problems. Convex functions being contin-
uous (see, for instance, Rockafellar [281]), the feasible set of (2.116) is obviously
closed.

Note that there is no way of building convex programming models of the above
type with reversed inequality constraints in (2.116) or with maximization in (2.117)
which are based on separate integrated probability functions. Because both K(x)
and H(x) are convex, it is immaterial whether the loss is represented by ζ+(x,ξ ) or
by ζ−(x,ξ ).

Next we assume that ξ has a finite discrete distribution with N realizations and
corresponding probabilities given in the tableau

(
p1 . . . pN

ξ̂ 1 . . . ξ̂N

)
(2.118)

with pi > 0 ∀i and
N
∑

i=1
pi = 1. We introduce the notation T k = T (ξ̂ k), hk = h(ξ̂ k),

k = 1, . . . ,N, and N = {1, . . . ,N}. The ith row of T k will be denoted by tk
i and if

s = 1 then the single row of T k will be denoted by tk. For notational convenience,
both tk

i and tk will be considered as row–vectors ((1×n) matrices).
Problems (2.116) and (2.117) can in this case be formulated as follows:

min cTx

s.t.
N

∑
k=1

pk(tkx−hk)+ ≤ γ

x ∈B

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.119)

and
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min cTx+
N

∑
k=1

pk(tkx−hk)+

s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.120)

These nonlinear programming problems can be equivalently formulated as linear
programming problems by introducing the auxiliary variables yk, k = 1, . . . ,N:

min cTx

s.t.
N

∑
k=1

pkyk ≤ γ

tkx −yk ≤ hk, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

x ∈B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.121)

and

min cTx+
N

∑
k=1

pkyk

s.t. tkx −yk ≤ hk, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.122)

The equivalence of (2.119) and (2.121) as well as the equivalence of (2.120) and
(2.122) follows easily from the following fact: if x̄, ȳk,k = 1, . . . ,N is a feasible
solution of either (2.121) or (2.122), then the following inequality holds:

N

∑
k=1

pk(tkx̄−hk)+ ≤
N

∑
k=1

pkȳk.

Let S (γ) = {x |�ξ [ζ+(x,ξ )] ≤ γ} be the set of feasible solutions corresponding
to the integrated chance constraint. The following representation holds, which plays
an important role in the dual decomposition algorithm (see Section 4.4.3).

Theorem 2.13. Klein Haneveld and Van der Vlerk [191]. For γ ≥ 0, S (γ) is a
polyhedral set. In fact the following representation holds:

{x | K(x)≤ γ}=
⋂

K ⊂N

{x | ∑
k∈K

pk(tkx−hk)≤ γ }. (2.123)

Proof: We have
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K(x) =�ξ [ζ+(x,ξ )] =
N

∑
k=1

pkζ+(x, ξ̂ k)

= ∑
k:ζ (x,ξ̂ k)>0

pkζ (x, ξ̂ k)

= max
K ⊂N

∑
k∈K

pkζ (x, ξ̂ k).

Using this representation we get

S (γ) = {x | K(x)≤ γ}=
⋂

K ⊂N

{x | ∑
k∈K

pkζ (x, ξ̂ k)≤ γ}

from which the result immediately follows. �

In (2.123), for K = /0 ⊂N the sum over the empty index set is interpreted as
having the value 0 thus the corresponding inequality holds for any x. Consequently,
S (γ) is represented by a system of 2N−1 proper linear inequalities. Models (2.116)
and (2.117) deliver identical solutions for random variables for which ζ+(x,ξ ) is
the same almost surely. This is not the case with the following variant of integrated
chance constraints:

�ξ [ζ+(x,ξ )]≤ α�ξ [|ζ (x,ξ )|] (2.124)

with α being prescribed. Because K(x)≥ 0 and K(x)≤�ξ [|ζ (x,ξ )|] obviously hold
for all x, it is sufficient to consider α–values with α ∈ [0,1]. Using the relations
z = z+ − z− and |z| = z+ + z−, z ∈ �, the above inequality can be equivalently
written as

(1−2α)�ξ [ζ+(x,ξ )]+α�ξ [ζ (x,ξ )]≤ 0 (2.125)

or as
(1−2α)�ξ [ζ+(x,ξ )]+α(t̄x− h̄)≤ 0 (2.126)

with t̄ =�ξ [t(ξ )] and h̄ =�ξ [h(ξ )].
This motivates the choice of the following quality measure for evaluating random

variables in our framework for constructing SLP models:

ρα
sic
(ϑ) := (1−α)�[ϑ+]−α�[ϑ−] = α�[ϑ ]+ (1−2α)�[ϑ+], ϑ ∈L

1
1 .

We obtain the evaluation function as usual by substituting ϑ = ζ (x,ξ ):

Kα(x) := α(t̄x− h̄)+(1−2α)�ξ [ζ+(x,ξ )].

Proposition 2.39. implies that Kα(x) is convex for α < 1
2 and it is concave for

α > 1
2 . For α = 1

2 the function is clearly linear–affine.
Choosing α such that α ∈ [0, 1

2 ] holds, the parameter α will be interpreted as a
risk–aversion parameter. Decreasing α means increasing risk–aversion. The proto-
type models will have the form
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min cTx
s.t. α(t̄x− h̄)+(1−2α)�ξ [ζ+(x,ξ )] ≤ 0

x ∈B

⎫⎪⎬
⎪⎭ (2.127)

and
min cTx+α(t̄x− h̄)+(1−2α)�ξ [ζ+(x,ξ )]

s.t. x ∈B

}
(2.128)

with α ∈ [0, 1
2 ] prescribed. Both problems are clearly convex programming prob-

lems.
Interpreting ζ+(x,ξ ) as gain (and, consequently, ζ−(x,ξ ) as loss), we choose

the parameter α such that α ∈ [ 1
2 ,1] holds. By utilizing Kα with α ∈ [ 1

2 ,1], the cor-
responding optimization problems are analogous to the two models above, with re-
versed inequality constraint in (2.127) and with changing “min” to “max” in (2.128).

If the probability distribution of ξ is finite discrete, problems (2.127) and (2.128)
can be equivalently formulated as linear programming problems. This can be done
analogously as above for (2.116) and (2.117), we leave the details as an exercise for
the reader.

For the case of a finite discrete distribution the feasible set is polyhedral; an
analogous representation holds as in Theorem 2.13.. We formulate it for the case
α ∈ [0, 1

2 ], the variant with α ∈ [ 1
2 ,1] can be obtained from this in a straightforward

way. Let Ŝ (α) = {x | Kα(x)≤ 0} be the set of feasible solutions corresponding to
this type of integrated chance constraint.

Theorem 2.14. Klein Haneveld and Van der Vlerk [191]. For γ ≥ 0, S (γ) is a
polyhedral set and the following representation holds:

{x | Kα(x)≤ 0}=
⋂

K ⊂N

{x | (1−2α) ∑
k∈K

pk(tkx−hk)+α(t̄x− h̄)≤ 0}.

Proof: The proof runs along the same lines as the proof for Theorem 2.13.. �

Joint integrated probability functions

Let s > 1 and ζ (x,ξ ) = T (ξ )x−h(ξ ). Analogously as before, define

ζ+(x,ξ ) := [T (ξ )x−h(ξ ) ]+

and
ζ−(x,ξ ) := [T (ξ )x−h(ξ ) ]−,

where on the right–hand–side the positive– and negative parts of the vectors are
defined in a componentwise fashion. For a heuristic introduction of joint integrated
chance constraints we proceed analogously as in the case s = 1. We assume that
losses are represented by negative values of ζ (x,ξ ). The probability constraint in
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expected value terms looks as follows (see (2.33) on page 90):

�ξ (ζ (x,ξ )≥ 0)≥ α ⇐⇒ �ξ [χ( max
1≤i≤s

ζ−i (x,ξ )) ]≤ 1−α.

Analogously to the special case s = 1, dropping χ results in the joint integrated
chance constraint (cf. (2.115)):

�ξ [ max
1≤i≤s

ζ−i (x,ξ ) ]≤ γ

with prescribed maximal tolerable loss γ . We proceed by defining the quality mea-
sures for random variables by

ρ+
jic
(ϑ) := �[ max

1≤i≤s
ϑ+

i ] and

ρ−
jic
(ϑ) := �[ max

1≤i≤s
ϑ−i ], ϑ ∈L

1
s .

This results in the evaluation functions

KJ(x) := ρ+
jic
(ζ (x,ξ )) =�ξ [ max

1≤i≤s
ζ+

i (x,ξ ) ] and

HJ(x) := ρ−
jic
(ζ (x,ξ )) =�ξ [ max

1≤i≤s
ζ−i (x,ξ ) ],

respectively. The functions KJ(x) and HJ(x) will be called joint integrated probabil-
ity functions .

The attractive property of convexity remains preserved by the generalization:

Proposition 2.40. Both HJ(x) and KJ(x) are convex functions on�n.

Proof: The proof is similar to the proof for Proposition 2.39.. For any fixed ξ ,
ζi(·,ξ )+ is a convex function for the same reasons as in the case s = 1, see the proof
of Proposition 2.39.. max

1≤i≤s
ζ+

i (·,ξ ) is the point–wise maximum of convex func-

tions, consequently this function is also convex for each fixed ξ (see, for instance,
Rockafellar [281]). Taking the expected value w.r. to ξ preserves convexity, see the
proof of Proposition 2.39., therefore KJ is a convex function. The proof for HJ is
analogous. �

Let us emphasize that the convexity property holds also for a random technology
matrix and without any restriction on the probability distribution of ξ , beyond the
existence of the expected value.

The prototype SLP problems are formulated as follows:

min cTx
s.t. �ξ [ max

1≤i≤s
ζ+

i (x,ξ ) ] ≤ γ

x ∈B

⎫⎪⎪⎬
⎪⎪⎭

(2.129)

and
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min cTx+�ξ [ max
1≤i≤s

ζ+
i (x,ξ ) ]

s.t. x ∈B

⎫⎬
⎭ (2.130)

with the prescribed maximal loss level γ ≥ 0. Both of them are obviously convex
programming problems and due to the convexity of KJ , the feasible set is closed also
for (2.129).

Reversing the inequality in the integrated chance constraint in (2.129) and chang-
ing min to max in (2.130) leads in general in both cases to non–convex optimization
problems.

There is no change in the behavior of the optimization problems if we utilize HJ
instead of KJ in the problem formulations.

Assume next that ξ has a finite discrete distribution, specified in (2.118). Then
(2.129) and (2.130) take the form

min cTx

s.t.
N

∑
k=1

pk max
1≤i≤s

( tk
i x−hk )+ ≤ γ

x ∈B

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.131)

and

min cTx+
N

∑
k=1

pk max
1≤i≤s

(tk
i x−hk)+

s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.132)

We introduce auxiliary variables yk
i and zk, i = 1, . . . ,s, k = 1, . . . ,N and formu-

late equivalent linear programming problems to (2.131) and (2.132) as follows (see
Klein Haneveld and Van der Vlerk [191]):

min cTx

s.t.
N

∑
k=1

pkzk ≤ γ

tk
i x −yk

i ≤ hk
i , k = 1, . . . ,N, i = 1, . . . ,s

−yk
i +zk ≥ 0, k = 1, . . . ,N, i = 1, . . . ,s

yk
i ≥ 0, k = 1, . . . ,N, i = 1, . . . ,s

zk ≥ 0, k = 1, . . . ,N

x ∈B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.133)

and
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min cTx+
N

∑
k=1

pkzk

s.t. tk
i x −yk

i ≤ hk
i , k = 1, . . . ,N, i = 1, . . . ,s

−yk
i +zk ≥ 0, k = 1, . . . ,N, i = 1, . . . ,s

yk
i ≥ 0, k = 1, . . . ,N, i = 1, . . . ,s

zk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.134)

The equivalence can readily be proved, based on the following fact: if x̄, ȳk
i , z̄k,

k = 1, . . . ,N, i = 1, . . . ,s is a feasible solution of either (2.133) or (2.134) then the
following inequality holds:

N

∑
k=1

pk max
1≤i≤s

( tk
i x̄−hk )+ ≤

N

∑
k=1

pkz̄k.

Let SJ(γ) = {x |�ξ [ max
1≤i≤s

ζ+
i (x,ξ ) ] ≤ γ}. For ξ having a finite discrete distri-

bution, Theorem 2.13. has the following generalization:

Theorem 2.15. Klein Haneveld and Van der Vlerk [191]. For γ ≥ 0, SJ(γ) is a
polyhedral set and the following representation holds:

{x | KJ(x)≤ γ}=
⋂

K ⊂N

⋂
l∈I K

{x | ∑
k∈K

pk(tk
lk x−hk

lk)≤ γ }, (2.135)

where I = {1, . . . ,s}, I K := { l := ( lk, k ∈K ) | lk ∈I for all k ∈K }, and tk
lk

is the l th
k row of T k.

Proof: We have

KJ(x) =�ξ [ max
1≤i≤s

ζ+
i (x,ξ ) ] =

N

∑
k=1

pk max
1≤i≤s

ζ+
i (x, ξ̂ k)

= ∑
k∈N +

pk max
1≤i≤s

ζi(x, ξ̂ k)

where N + := {k ∈N | max
1≤i≤s

ζi(x, ξ̂ k)> 0}. Thus we get for the constraint:

KJ(x)≤ γ ⇐⇒ ∑
k∈N +

pk max
1≤i≤s

ζi(x, ξ̂ k)≤ γ

⇐⇒ max
K ⊂N

∑
k∈K

pk max
1≤i≤s

ζi(x, ξ̂ k)≤ γ

⇐⇒ max
K ⊂N

max
l∈I K

∑
k∈K

pkζlk(x, ξ̂
k)≤ γ.
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Substituting the definition of ζi(x, ξ̂ k) and noting that the number of linear inequal-
ities which determine SJ(γ) is obviously finite yields the result. �

For counting the inequalities in (2.135) let us observe first that the number of
inequalities for a fixed index set K (the cardinality of I |K |) is s|K |. Adding up for
all subsets of N (except of /0) results in

N

∑
k=1

(
N
k

)
sk = (s+1)N −1.

The models in this section are due to Klein Haneveld [188] and have been subse-
quently investigated by Klein Haneveld and Van der Vlerk [191]. For further prop-
erties of integrated chance constraints see these references.

2.4.2 A model involving conditional expectation

We consider negative values of the random variable ζ (x,ξ ) as losses and will dis-
cuss constraints which are based on the conditional expectation of the loss given
that a loss occurs. This corresponds to the quality measure for random variables

ρcexp(ϑ) :=�[−ϑ | ϑ < 0], ϑ ∈L
1

1 , (2.136)

if �(ϑ < 0) > 0 and ρcexp(ϑ) := 0 otherwise. Assuming that ϑ has a continu-
ous distribution, we have the following close relation between ρcexp and the quality
measure ρ−

sic
which lead to integrated chance constraints (see (2.114) on page 143):

ρ−
sic
(ϑ) = ρcexp(ϑ)�(ϑ < 0). This follows immediately from

�[ϑ− ] =−
0∫

−∞

tdFϑ (t) =�[−ϑ | ϑ < 0] ·�(ϑ < 0).

Constraints of the form

�ξ [−ζ (x,ξ ) | ζ (x,ξ )< 0]≤ γ (2.137)

will be considered, with γ being a prescribed upper bound for the conditional loss
size. In general, constraints of this type result in non–convex optimization prob-
lems. In the special case when only the right–hand–side is stochastic, the feasible
set corresponding to the constraint (2.137) is convex for a broad class of univariate
distributions. We choose

ζ (x,ξ ) = tTx−ξ ,
where t ∈�n is a deterministic vector and ξ is a random variable.

The following result will be utilized:
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Proposition 2.41. Assume that ξ has a continuous distribution with a logconcave
density function. Assume furthermore that the expected value of ξ exists. Then

l(t) :=�[ξ − t | ξ − t > 0]

is a monotonically decreasing function of t.

Proof: This is a well–known fact in reliability theory where l(t) is called mean resid-
ual life. For a proof see, for instance, Prékopa [266]. �

We assume that for ξ the assumptions of the theorem hold. Then (2.137) takes
the form

l(tTx)≤ γ ⇐⇒ tTx≥ l−1(γ),

where l−1 is to be understood as a generalized inverse defined as follows
l−1(z) := inf{z | l(z)≤ γ}. Consequently, the constraint (2.137) can be reformulated
as a deterministic linear constraint.

2.4.3 Conditional Value at Risk

We assume that positive values of ζ (x,ξ ) represent losses. For motivating the qual-
ity (risk) measure which will be introduced, let us start with computing a con-
ditional expected value. Let ϑ be a random variable with finite expected value,
Fϑ its distribution function, 0 < α < 1, and να an α–quantile of the distribution
of ϑ (see Section 2.3 for the definition of quantiles). Note that due to α < 1,
�(ϑ < να) < 1 holds and consequently we have �(ϑ ≥ να) > 0. Introducing the
notation πα =�(ϑ ≥ να) we get

�[ϑ | ϑ ≥ να ] = 1
�(ϑ ≥ να )

∞∫

να

t dFϑ (t)

= 1
πα

⎡
⎣

∞∫

να

t dFϑ (t)−να
∞∫

να

dFϑ (t)+ναπα

⎤
⎦

= 1
πα

⎡
⎣

∞∫

να

(t−να)dFϑ (t)+ναπα

⎤
⎦

= να + 1
πα

∞∫

−∞

(t−να)+ dFϑ (t)

= να + 1
�(ϑ ≥ να )�[ (ϑ −να)+ ].

(2.138)
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If Fϑ is continuous, we have Fϑ (να) = α and �(ϑ ≥ να) = 1−α . Consequently,
in this case the above relation takes the form

�[ϑ | ϑ ≥ να ] = να +
1

1−α�[ (ϑ −να)+ ]. (2.139)

On the other hand, due to a well–known fact in probability theory, the following
optimization problem has a solution for any 0 < α < 1 and the solution set is the
interval of α–quantiles:

min
z

(
α�[(ϑ − z)+]+(1−α)�[(ϑ − z)−]

)
. (2.140)

Using z = z+− z−, we have

α(ϑ − z)+ +(1−α)(ϑ − z)− = (1−α)
[

z−ϑ +
1

1−α (ϑ − z)+
]
.

Taking expectation, this leads to the equivalent formulation of the objective function
of the unconstrained minimization problem (2.140) as

(1−α)(z+
1

(1−α)�[(ϑ − z)+])− (1−α)�[ϑ ]

which results in the following equivalent formulation of (2.140):

min
z

(
z+

1
(1−α)�[(ϑ − z)+]

)
, (2.141)

see Rockafellar and Uryasev [282]. Utilizing (2.38.) and introducing the notation
uc(z) for the objective function of this unconstrained optimization problem, we have

uc(z) := z+
1

(1−α)�[(ϑ − z)+] = z+
1

(1−α)
∞∫

z

(1−Fϑ (t))dt. (2.142)

The function uc(·) is obviously convex. In fact, for each fixed ϑ , (ϑ − z)+ is ob-
tained from the convex function (·)+ by substituting a linear function, therefore it
is convex. Taking the expected value clearly preserves convexity, see, for instance,
the proof of Proposition 2.39. on page 143. Thus (2.141) is a convex programming
problem. As mentioned above, the set of solutions of (2.141) consists of the set of
α–quantiles of the distribution of ϑ . This is easy to see under the assumption that
Fϑ is continuous. In fact, due to the integral representation in (2.142) it follows im-
mediately that uc(z) is continuously differentiable. Taking into account that (2.141)
is a convex programming problem, the set of optimal solutions is determined by the
equation d uc(z)

dz = 0 which can be written as

1− 1
(1−α) (1−Fϑ (z)) = 0 ⇐⇒ Fϑ (z) = α ,



154 2 Single–stage SLP models

which obviously has as solution set the interval of α–quantiles. Based on the fact
that for uc(z), being a convex function, the left– and right–sided derivatives exist
for all z ∈�, a proof for the general case can be found in Rockafellar and Uryasev
[283]. An elementary proof is given by Pflug [254].

The solution set of problem (2.141) being the interval of α–quantiles, it follows
that in particular the Value at Risk να := ν(ϑ ,α) (for the definition see (2.101) on
page 137) is an optimal solution of (2.140). Taking into account (2.139) it follows
that for continuous Fϑ the optimal objective value in (2.141) is�[ϑ |ϑ ≥ ν(ϑ ,α) ].
Consequently, in this case, the optimal objective value of (2.141) is the conditional
expected value of the loss, given that the loss is greater than or equal to VaR. This
motivates introducing the following risk measure for random variables:

ρα
CVaR

(ϑ) := νc(ϑ ,α) := min
z

[z+
1

1−α�[(ϑ − z)+] ], ϑ ∈L
1

1 , (2.143)

defined on the linear space of random variables with finite expected value. For the
case when Fϑ is continuous, we have

νc(ϑ ,α) =�[ϑ | ϑ ≥ ν(ϑ ,α) ], (2.144)

where ν(ϑ ,α) is the Value at Risk corresponding to ϑ and α , see (2.101) on
page 137.

Because the Value at Risk ν(ϑ ,α) is an optimal solution of (2.140), substituting
it for z in (2.140) immediately leads to the inequality

νc(ϑ ,α)≥ ν(ϑ ,α).

The risk measure νc(ϑ ,α) has been introduced by Rockafellar and Uryasev
[282] for a financial application where the authors call it Conditional Value–at–Risk
(CVaR). We will use this terminology also in our context. For the corresponding
evaluation function for x we consider the random variable

ζ (x,ξ ) := t(ξ )Tx−h(ξ ),

where t(ξ ) is an n–dimensional random vector and h(ξ ) is a random variable. The
evaluation function, denoted by vc(x,α), is

vc(x,α) := min
z

[
z+

1
1−α�[(ζ (x,ξ )− z)+]

]
.

Introducing the notation

wα
c (x,z) := z+

1
1−α�[(ζ (x,ξ )− z)+]

we have the shorthand form

vc(x,α) = min
z

wα
c (x,z).
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Let Ψ(x, ·) denote the probability distribution function of ζ (x,ξ ). For later ref-
erence we formulate the specialization of the general findings above for the case
ϑ = ζ (x,ξ ) as a separate proposition:

Proposition 2.42. Let x ∈�n be arbitrary and assume 0 < α < 1. For the uncon-
strained optimization problem

min
z

[
z+

1
1−α�[(ζ (x,ξ )− z)+]

]

the following assertions hold: this is a convex optimization problem; the optimal
solution exists and is attained; the set of optimal solutions coincides with the set of
α–quantiles ofΨ(x, ·).
Proof: The proof follows readily from the general case. �

Let us consider wα
c (x,z) as a function in the joint variables (x,z).

Proposition 2.43. wα
c is a convex function.

Proof: ζ (x,ξ )− z being a linear–affine function of (x,z) and (·)+ being a convex
function implies that the composite function (ζ (x,ξ )−z)+ is jointly convex in (x,z)
for each fixed ξ . Proceeding analogously as in the proof of Proposition 2.39. on
page 143 it is easy to see that taking the expected value preserves convexity. �

Next we formulate the corresponding optimization problems. SLP models in-
volving CVaR in the objective can be formulated as follows:

min
x

cTx+min
z

[
z+

1
1−α�[(ζ (x,ξ )− z)+]

]

s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.145)

This can obviously be written in the equivalent form

min
(x,z)

cTx+ z+ 1
1−α�[(ζ (x,ξ )− z)+]

s.t. x ∈B.

⎫⎬
⎭ (2.146)

The equivalence is due to the fact, that for each fixed x ∈B in (2.146) it is sufficient
to take into account the corresponding z for which the sum of the second and third
terms in the objective is minimal with fixed x (this minimum is attained for any x,
see the discussion above).

Proposition 2.43. immediately implies that (2.146) is a convex programming
problem for arbitrary probability distribution of ξ . Let (x∗,z∗) be an optimal so-
lution of (2.146). Then z∗ is an α-quantile ofΨ(x∗, ·) and we have

v(x∗,α) ≤ z∗

vc(x∗,α) = z∗+ 1
1−α�[(ζ (x∗,ξ )− z∗)+],
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where v(x∗,α) is the Value at Risk corresponding to x∗ (for VaR see (2.103) on
page 137).

Let us turn our attention to the particular case when ξ has a finite discrete distri-
bution with N realizations and corresponding probabilities given as

(
p1 . . . pN

ξ̂ 1 . . . ξ̂N

)
(2.147)

with pi > 0 ∀i and
N
∑

i=1
pi = 1. Let us introduce the notation tk := t(ξ̂ k), hk := h(ξ̂ k),

k = 1, . . . ,N. The optimization problem (2.146) specializes as follows:

min
(x,z)

cTx+ z+ 1
1−α

N

∑
k=1

pk(ζ (x, ξ̂ k)− z)+

s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.148)

Using a well–known idea in optimization, this nonlinear programming problem can
be transformed into a linear programming problem by introducing additional vari-
ables yk for representing (ζ (x, ξ̂ k)− z)+ for all k = 1, . . . ,N. The equivalent linear
programming problem is the following:

min
(x,z,y)

cTx+ z+ 1
1−α

N

∑
k=1

pkyk

s.t. ζ (x, ξ̂ k)− z − yk ≤ 0, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.149)

The equivalence can be seen as follows. If (x̄, z̄) is a feasible solution of (2.148) then
taking ȳk = (ζ (x̄, ξ̂ k)− z̄)+ for all k, the resulting (x̄, z̄, ȳk, k = 1, . . . ,N) is obviously
feasible in (2.149) with equal objective values. Vice versa, let (x̂, ẑ, ŷk, k = 1, . . . ,N)
be a feasible solution of (2.149). Then (x̂, ẑ) is evidently feasible in (2.148) and due
to the first constraint in (2.149), the corresponding objective value in (2.148) does
not exceed the objective value in (2.149). This proves the equivalence. Substituting
for ζ (x, ξ̂ k) results in the final form of the equivalent LP problem:

min
(x,z,y)

cTx+ z+ 1
1−α

N

∑
k=1

pkyk

s.t. tkx− z − yk ≤ hk, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.150)

Let us turn our attention to the optimization problems with CVaR constraints
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min cTx
s.t. vc(x,α) ≤ γ

x ∈B,

⎫⎬
⎭ (2.151)

where γ is a prescribed threshold. Substituting for vc(x,α) results in

min
x

cTx

s.t. min
z

wα
c (x,z) ≤ γ

x ∈B.

⎫⎪⎪⎬
⎪⎪⎭

(2.152)

Due to Proposition 2.42. the minimum in the first inequality is attained for any
x ∈ B. Therefore, for any fixed x, the first inequality holds if and only if there
exists a z ∈� for which wα

c (x,z)≤ γ holds. Substituting for wα
c (x,z), the following

equivalent formulation results:

min
(x,z)

cTx

s.t. z+ 1
1−α�[(ζ (x,ξ )− z)+] ≤ γ

x ∈B.

⎫⎪⎪⎬
⎪⎪⎭

(2.153)

This is a nonlinear optimization problem involving a nonlinear constraint. From
Proposition 2.43. immediately follows that this problem belongs to the class of con-
vex optimization problems, for an arbitrary probability distribution of ξ .

Let us consider the case of a finite discrete distribution of ξ , as specified in
(2.147). This leads to the specialized form

min
(x,z)

cTx

s.t. z+ 1
1−α

N

∑
k=1

pk(ζ (x, ξ̂ k)− z)+ ≤ γ

x ∈B.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.154)

Using the same transformation as for deriving (2.149), we get the equivalent formu-
lation as

min
(x,z,y)

cTx

s.t. z+ 1
1−α

N

∑
k=1

pkyk ≤ γ

ζ (x, ξ̂ k) −z −yk ≤ 0, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.155)

The final equivalent form is obtained by substituting for ζ (x, ξ̂ k):
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min
(x,z,y)

cTx

s.t. z+ 1
1−α

N

∑
k=1

pkyk ≤ γ

tkx −z −yk ≤ hk, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.156)

Finally let us discuss the interpretation of vc(x,α), 0 < α < 1. From our general
discussions at the beginning of this section it follows readily, that under the assump-
tion that the probability distribution functionΨ(x, ·) of the random variable ζ (x,ξ )
is continuous, we have the relation

vc(x,α) =�[ζ (x,ξ ) | ζ (x,ξ )≥ v(x,α)],

where v(x,α) is the Value at Risk corresponding to ζ (x,ξ ) and α . If ξ has for
example a finite discrete distribution then this relation does not hold anymore in
general.

For the following discussion let us consider again a random variable ϑ and as-
sume that the expected value exists. In this terms the above relation has been for-
mulated in (2.144) under the assumption that the distribution function Fϑ of ϑ is
continuous. It has the form

ρα
CVaR

(ϑ) =�[ϑ | ϑ ≥ ν(ϑ ,α) ],

where ν(ϑ ,α) is the VaR corresponding to ϑ and α , see (2.101) on page 137.
For general distributions an interpretation has been given by Rockafellar and

Uryasev in [283]. The conditional expectation relation above holds in general, if the
original distribution function Fϑ is replaced by the upper–tail distribution function
Fα
ϑ defined as follows:

Fα
ϑ (y) =

{
0 if y < ν(ϑ ,α)
Fϑ (y)−α

1−α if y≥ ν(ϑ ,α).

Another interpretation, representing α–CVaR as a mean over α of α–VaR, has been
found by Acerbi [3]. For further properties of CVaR see Rockafellar and Uryasev
[283] and Acerbi and Tasche [4]. In the latter paper several related risk measures
and their interrelations are also presented.

Exercises

2.8. With integrated chance constraints of the second kind the SLP–problems have
been formulated on page 147 as (2.127) and (2.128), with α ∈ [0, 1

2 ] prescribed.
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Formulate the equivalent linear programming problems for the case when ξ has a
finite discrete distribution.

2.9. Consider the following pair of SLP problems:

min
x

x1 + 2x2

s.t. �[ζ+(x,ξ ) ]≤ 0.8

x1 + x2 ≥ 3

x1, x2 ≥ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(ICC)

and
min
x,z

x1 + 2x2

s.t. ρα
CVaR

(ζ (x,ξ )) ≤ 0.8

x1 + x2 ≥ 3

x1, x2 ≥ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(CVaR)

with ζ (x,ξ ) := ξ1x1 + ξ2x2 − 0.5, α = 0.95 and (ξ1,ξ2) having a finite discrete
distribution with three realizations, given by the realizations tableau:

pk 0.2 0.5 0.3
ξ k

1 1 -0.5 0.5
ξ k

2 2 0.5 -0.5

Notice that both problems are set up on the same data–set; (ICC) is formulated with
an integrated chance constraint whereas (CVaR) is an SLP model with a CVaR–
constraint.

(a) Solve both problems by utilizing SLP–IOR and compare the optimal objective
values z∗ICC and z∗CVaR.

(b) You will see that z∗ICC < z∗CVaR holds. This is a typical result when setting
up and solving both type of problems based on the same data–set. Give an
explanation for this phenomenon.

2.5 Models built with deviation measures

In this section we deal exclusively with quality measures expressing risk. Similarly
as in Section 2.2.3, for the sake of simplicity we employ the notation η := t(ξ ) and
replace the right–hand–side h(ξ ) by ξ . Thus we consider the random variable

ζ (x,η ,ξ ) := ηTx−ξ ,
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where η denotes an n–dimensional random vector and ξ is a random variable. We
will assume in this section that the expected value of (ηT,ξ ) exists and will use the
notation μ :=�[η ] ∈�n and μn+1 :=�[ξ ] ∈�.

2.5.1 Quadratic deviation

The risk measure is chosen as

ρQ(ϑ) :=
√
�[ϑ 2] =

√
���[ϑ ]+ (�[ϑ ])2, ϑ ∈L

2
1 ,

defined on the linear space of random variables with finite variance. We assume that
the second moments for the random vector (ηT,ξ ) exist and the distribution is non–
degenerate, meaning that the covariance matrix of this random vector is positive
definite. The corresponding evaluation function will be denoted by Q(x) and has the
form

Q(x) :=
√
�[(ηTx−ξ )2] =

√
���[ηTx−ξ ]+ (μTx−μn+1)2. (2.157)

It is interpreted as measuring the deviation between the random variables ηTx and
ξ .

Proposition 2.44. Q is a convex function.

Proof: An elegant proof of this assertion can be obtained by combining Propositions
2.47. and 2.50. in Section 2.7. Here we present a direct elementary proof. Let us
consider the functions q :�n+1 →� and q̂ :�n+1 →� defined as q(x,xn+1) =
�[(ηTx+ ξxn+1)

2] and q̂(x,xn+1) =
√

q(x,xn+1), respectively. We will prove that
q̂ is a convex function. Due to the relation Q(x) = q̂(x,−1), the assertion follows
from this.

We consider q(x,xn+1) first. This function is obviously nonnegative,
q(x,xn+1)≥ 0 holds for all x ∈�n, xn+1 ∈�. The function is quadratic

�[(ηTx+ξxn+1)
2] = �

[
(xT,xn+1)

(
η
ξ

)
(ηT,ξ )

(
x
xn+1

)]

= (xT,xn+1)

(
�[ηηT] �[ξη ]
�[ξηT] �[ξ 2]

)(
x
xn+1

) (2.158)

therefore, because of the nonnegativity of q, the symmetric matrix in the second line
in (2.158) is positive semidefinite. Thus q is a convex function. In general, the square
root of a convex function need not to be convex (take z and

√
z for z≥ 0). In our case

q̂(x,xn+1) =
√

q(x,xn+1) is the square root of a positive semidefinite quadratic form,
therefore it is convex. To see this let D be an (n×n) symmetric positive semidefinite
matrix, we shall prove that d(x) :=

√
xTDx is a convex function. For this function

d(λx) = λd(x) holds obviously for all λ ≥ 0 and x∈�n. Therefore, for proving the
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convexity of d, it is sufficient to prove that d(x+ y) ≤ d(x)+ d(y) (subadditivity)
holds for all x,y ∈�n (see Proposition 2.46. on page 174). We have

d2(x+ y) = (x+ y)TD(x+ y) = xTD(x+ y)+ yTD(x+ y). (2.159)

By applying the Cauchy–Schwarz inequality to the first term on the right–hand–side
we get

xTD(x+ y) = [xTD
1
2 ][D

1
2 (x+ y)]≤

√
xTDx

√
(x+ y)TD(x+ y),

where D1/2 denotes the symmetric square root of the positive semidefinite matrix
D. The latter is defined as follows: take the spectral decomposition D = TΛT T of
D, where the columns of T consist of an orthonormal system of eigenvectors of D
and the diagonal elements of the diagonal matrix Λ are the corresponding eigen-
values. Taking D1/2 := TΛ 1/2T T we obviously have D = D1/2D1/2. Performing
analogously with the second term in (2.159) and substituting into (2.159) yields the
result. �

Applying (2.158) for η̂ and ξ̂ , defined as η̂ := η − μ and ξ̂ := ξ − μn+1, and
setting xn+1 =−1 from (2.158) it follows that

���[ηTx−ξ ] = xTV x−2dTx+ v

holds, where V := �[η̂η̂T] = ���[η ,η ] is the covariance matrix of η ,
d := �[η̂ ξ̂ ] = ���[η ,ξ ] is the cross–covariance vector between η and ξ , and
v := �[ξ̂ 2] =���[ξ ] is the variance of ξ . Note that V is a positive semidefinite
matrix. Thus we have have derived the formula

Q(x) =
√

xTV x−2dTx+ v+(μTx−μn+1)2.

We obtain the following convex optimization problems

min cTx
s.t.

√
xTV x−2dTx+ v+(μTx−μn+1)2 ≤√κ
x ∈B

⎫⎬
⎭ (2.160)

and
min

√
xTV x−2dTx+ v+(μTx−μn+1)2

s.t. x ∈B.

}
(2.161)

Due to the definition of Q, the expression under the square root is nonnegative for all
x ∈�n, and the positive square root function is strictly monotonically increasing,
consequently we have the equivalent formulation

min cTx
s.t. xTV x+(μTx−μn+1)

2−2dTx ≤ κ− v
x ∈B

⎫⎬
⎭ (2.162)
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and
min xTV x+(μTx−μn+1)

2−2dTx
s.t. x ∈B.

}
(2.163)

The matrix V is positive semidefinite, therefore both problems are convex optimiza-
tion problems. Note that (2.163) is a convex quadratic optimization problem.

A widely used variant of the above risk measure for random variables is the
standard deviation:

ρStd(ϑ) := σ(ϑ) :=
√
�[(ϑ −�[ϑ ])2], ϑ ∈L

2
1 .

The evaluation function becomes

Qd(x) =
√

xTV x−2dTx+ v (2.164)

leading to the convex optimization problems

min cTx
s.t. xTV x−2dTx ≤ κ− v

x ∈B

⎫⎬
⎭ (2.165)

and
min xTV x−2dTx
s.t. x ∈B.

}
(2.166)

An important special case is ξ ≡ 0. The evaluation function becomes

σ(x) :=
√
�[(ηTx−μTx)2] =

√
xTV x, (2.167)

where V is covariance matrix of η . Because of their practical importance we for-
mulate also the resulting optimization problems. For obvious reasons, these can
equivalently be formulated in terms of σ2(x) as follows:

min cTx
s.t. xTV x ≤ κ

x ∈B

⎫⎬
⎭ (2.168)

and
min xTV x
s.t. x ∈B.

}
(2.169)

Optimization problems of this type are widely used in financial portfolio optimiza-
tion, see Markowitz [217] and Elton et al. [85].
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2.5.2 Absolute deviation

Let the risk measure be

ρA(ϑ) :=�[ |ϑ | ], ϑ ∈L
1

1 , (2.170)

defined on the linear space of random variables with finite expected value. Assum-
ing that the expected value of (ηT,ξ ) exists we get the corresponding evaluation
function

A(x) :=�[ |ηTx−ξ | ], (2.171)

which is interpreted as measuring deviation between the random variables ηTx and
ξ . Let ζ (x,η ,ξ ) := ηTx−ξ . We have:

Proposition 2.45. A(·) is a convex function.

Proof: The absolute–value function being convex and ζ (·,η ,ξ ) being linear, the
composite function |ζ (·,η ,ξ )| is convex for any fixed realization of (η ,ξ ). Taking
expected value preserves convexity. The full proof runs analogously as the proof of
Proposition 2.39. on page 143. �

Thus the optimization problems

min cTx
s.t. �[ |ηTx−ξ | ] ≤ κ

x ∈B

⎫⎬
⎭ (2.172)

and
min �[ |ηTx−ξ | ]
s.t. x ∈B

}
(2.173)

are convex optimization problems for arbitrary random variables with finite ex-
pected value.

The model (2.173) is closely related to simple recourse problems. To see this
let η ≡ t with t being an n–dimensional deterministic vector and let us formulate
this problem equivalently as follows. We introduce the nonnegative random vari-
ables y and z and make use of the relations |u| = u+ + u− and u = u+− u− which
hold for any real number u. This results in the following equivalent simple recourse
formulation of (2.173)

min �[y+ z ]
s.t. tTx−ξ −y +z = 0

y ≥ 0
z ≥ 0

x ∈B,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.174)

where the constraints involving random variables are interpreted as usual: they
should hold in the almost sure sense. For proving the equivalence let x̂, along with



164 2 Single–stage SLP models

the random variables ŷ and ẑ be a feasible solution of (2.174). Then x̂ is obviously a
feasible solution of (2.173) and for the corresponding objective function values we
have

�[ ŷ+ ẑ ]≥�[ |ŷ− ẑ| ] =�[ |tTx̂−ξ | ].
In the reverse direction, when x̄ is a feasible solution of (2.173) then setting
ȳ = (tTx̄− ξ )+ and z̄ = (tTx̄− ξ )− we get a feasible solution to (2.174) and the
objective values are equal. This proves the equivalence.

Let us consider the case of a finite discrete distribution next. Assume that (ηT,ξ )
has N distinct realizations with corresponding probabilities given in the table:

⎛
⎝

p1 . . . pN
η̂1 . . . η̂N

ξ̂ 1 . . . ξ̂N

⎞
⎠ (2.175)

with pi > 0 ∀i and
N
∑

i=1
pi = 1. Let tk := (η̂k)T, hk := ξ̂ k, k = 1, . . . ,N. In this case

our optimization problems have the form

min cTx

s.t.
N

∑
k=1

pk|tkx−hk| ≤ κ

x ∈B

⎫⎪⎪⎬
⎪⎪⎭

(2.176)

and

min
N

∑
k=1

pk|tkx−hk|
s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.177)

Both of these problems are nonlinear programming problems. We utilize a trans-
formation, analogous to the transformation which leads to the formulation (2.174).
Introducing this time deterministic auxiliary variables yk and zk, k = 1, . . . ,N, we
obtain the equivalent deterministic linear programming formulations

min cTx

s.t.
N

∑
k=1

pk( yk +zk) ≤ κ

tkx −yk +zk = hk, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

zk ≥ 0, k = 1, . . . ,N

x ∈B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.178)

and
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min
N

∑
k=1

pk(yk + zk)

s.t. tkx −yk +zk = hk, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

zk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.179)

The proof of the equivalence of (2.177) and (2.179) runs along the same lines as the
proof for the equivalence of (2.173) and (2.174). For the equivalence of (2.176) and
(2.178) it is sufficient to remark, that for any feasible solution (x̂, ŷk, ẑk,k = 1, . . . ,N)
of (2.178), x̂ is feasible in (2.176), due to the following inequality:

N

∑
k=1

pk|tkx−hk|=
N

∑
k=1

pk|yk− zk| ≤
N

∑
k=1

pk(yk + zk)≤ κ.

Analogously to the quadratic measure, we consider the variant which measures
absolute deviations from the expected value and is called mean absolute deviation
(MAD):

ρMAD(ϑ) :=�[ |ϑ −�[ϑ ]| ], ϑ ∈L
1

1 .

The evaluation function becomes

Ad(x) = |(η−μ)Tx− (ξ −μn+1)|

leading to convex optimization problems, which are analogous to (2.172) and
(2.173). The linear programming formulations for the case of a finite discrete
distribution coincide with (2.178) and (2.179) when we set tk := (η̂k − μ)T and
hk := ξ̂ k−μn+1.

An important special case in practice (for instance, in portfolio optimization in
finance) is the case ξ ≡ 0 thus leading to the deviation measure

Ad(x) = |(η−μ)Tx|= |ηTx−μTx|. (2.180)

For the discretely distributed case we formulate the particular form of the optimiza-
tion problems explicitly. Let tk := η̂k (note that in (2.178) and (2.179) we have had
tk = (η̂k)T). (2.176) and (2.177) have the form now

min cTx

s.t.
N

∑
k=1

pk|(tk−μ)Tx| ≤ κ

x ∈B

⎫⎪⎪⎬
⎪⎪⎭

(2.181)

and
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min
N

∑
k=1

pk|(tk−μ)Tx|
s.t. x ∈B,

⎫⎪⎬
⎪⎭ (2.182)

respectively. The equivalent linear programming formulations can easily be ob-
tained from (2.178) and (2.179), by substituting tkx with (tk−μ)Tx there.

Models of this type have first been proposed in the framework of portfolio opti-
mization in finance by Konno and Yamazaki [194]. In this paper the authors propose
a variant for the equivalent linear program (2.179) (with the substitution described
above), by introducing fewer auxiliary variables on the cost of a larger amount of
constraints, as follows:

min
N

∑
k=1

pkyk

s.t. (tk−μ)Tx +yk ≥ 0, k = 1, . . . ,N

(tk−μ)Tx −yk ≤ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.183)

The equivalence with (2.179) can easily be seen, for instance, by considering sepa-
rately the cases (tk−μ)Tx≥ 0 and (tk−μ)Tx < 0.

Let us assume next that η has a non–degenerate multivariate normal distribu-
tion and let x ∈�n be fixed. Then the random variable ηTx, being a linear trans-
formation of a random vector with a non–degenerate normal distribution, is nor-
mally distributed (see Section 2.2.3). We obviously have μ̂ :=�[ηTx] = μTx and
σ̂2 :=���[ηTx] = xTV x. An easy computation gives:

�[|ηTx−μTx|] = σ̂�
[ ∣∣∣∣η

Tx− μ̂Tx
σ̂

∣∣∣∣
]

=
σ̂√
2π

∞∫

−∞

|z|e− z2
2 dz =

√
2
π
σ̂

∞∫

0

ze−
z2
2 dz

=

√
2
π
σ̂ =

√
2
π
√

xTV x.

This implies that for a non–degenerate normal distribution the models with absolute
deviation and those with quadratic deviation are equivalent. Note, however, that due
to the scaling factor

√
2π above, in the model (2.168) with a quadratic constraint, a

scaling in the parameter κ has to be accounted for.
From the statistical point of view the natural measure for absolute deviations

would be the absolute deviation from the median, instead of the expected value.
The difficulty is that we are dealing with linear combinations of random variables

ηTx=
n

∑
i=1

ηixi. The median of ηTx is in general by no means equal to the linear com-
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bination of the medians of the components of η . This makes it extremely difficult
to build numerically tractable median–based optimization problems of the deviation
type.

2.5.3 Quadratic semi–deviation

In both of the previous sections we employed risk measures which penalized de-
viations in both directions. The quadratic risk measure Q(x) =

√
�[(ηTx−ξ )2]

(2.157) evaluates upper– and lower deviations of ηTx with respect to the target ran-
dom variable ξ in the same manner. This observation holds also for the standard de-
viation σ(x) =

√
�[(ηTx−μTx)2] (2.167) with respect to the deterministic target

μTx, and for the absolute–deviation counterparts A(x) (2.171), and Ad(x) (2.180).
All of these risk measures model risk as deviation from a target, irrespectively of
the direction of this deviation.

In many modeling situations, however, the direction of deviation matters. In such
cases one of them is favorable (gain) and the other is disadvantageous (loss).

We introduce the following risk measures for random variables:

ρ+
Q
(ϑ) :=

√
�[(ϑ+)2],

ρ−
Q
(ϑ) :=

√
�[(ϑ−)2], ϑ ∈L 2

1 ,

both of them being defined on the linear space of random variables with finite vari-
ance and with z− = max{0,−z}, z+ = max{0,z} standing for the negative– and
positive part for a real number z, respectively.

Let us assume that the second moments for (ηT,ξ ) exist. The corresponding
evaluation functions, denoted by Q−(x) and Q+(x), respectively, are defined as

Q+(x) :=
√
�[ ( (ηTx−ξ )+ )2 ]

Q−(x) :=
√
�[ ( (ηTx−ξ )− )2 ].

(2.184)

These measures are interpreted as measuring the upper/lower deviation between ηTx
and ξ . Both Q+(x) and Q−(x) are convex functions; this will be proved in a general
framework in Section 2.7.2, see Propositions 2.47. and 2.50. there.

Let us assume that negative values of the random variable ζ (x,η ,ξ ) := ηTx−ξ
represent losses. Then the following prototype optimization problems result

min cTx
s.t.

√
�[ ( (ηTx−ξ )− )2 ] ≤√κ

x ∈B

⎫⎪⎬
⎪⎭ (2.185)

and
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min
√
�[ ( (ηTx−ξ )− )2 ]

s.t. x ∈B,

}
(2.186)

both of which are convex optimization problems. They can be equivalently written,
due to the fact that the function

√
z is strictly monotonically increasing, as

min cTx
s.t. �[ ( (ηTx−ξ )− )2 ] ≤ κ

x ∈B

⎫⎬
⎭ (2.187)

and
min �[ ( (ηTx−ξ )− )2 ]

s.t. x ∈B.

}
(2.188)

Let us discuss the case when (η ,ξ ) has a discrete distribution specified in (2.175)
on page 164. In this case our problems assume the form:

min cTx

s.t.
N

∑
k=1

pk((tkx−hk)− )2 ≤ κ, k = 1, . . . ,N

x ∈B

⎫⎪⎪⎬
⎪⎪⎭

(2.189)

and

min
N

∑
k=1

pk((tkx−hk)− )2

s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.190)

By introducing auxiliary variables yk, k = 1, . . . ,N, these problems can be written
equivalently as follows:

min cTx

s.t.
N

∑
k=1

pky2
k ≤ κ, k = 1, . . . ,N

tkx +yk ≥ hk, k = 1, . . . ,N
yk ≥ 0, k = 1, . . . ,N

x ∈B

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.191)

and

min
N

∑
k=1

pky2
k

s.t. tkx +yk ≥ hk, k = 1, . . . ,N
yk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.192)
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Problem (2.192) is a convex quadratic programming problem whereas (2.191) is a
quadratically constrained convex optimization problem.

For proving the equivalence of (2.189) and (2.191), as well as of (2.190) and
(2.192) let us make the following observation. If (x̂, ŷk,k = 1, . . . ,N) is a feasi-
ble solution of either (2.191) or (2.192), then the constraints imply the inequality
( tkx̂−hk )− ≤ yk for all k. Consequently, in both cases

N

∑
k=1

pk((tkx̂−hk)− )2 ≤
N

∑
k=1

pkŷ2
k

holds. From this the equivalence follows in a straightforward way; the detailed proof
is left as an easy exercise to the reader.

Analogously as in both previous sections we discuss the variants measuring de-
viations from the expected value:

ρ+
Std
(ϑ) := σ+(x) :=

√
�[( (ϑ −�[ϑ ])+ )2],

ρ−
Std
(ϑ) := σ−(x) :=

√
�[( (ϑ −�[ϑ ])− )2], ϑ ∈L 2

1 .

These are called upper standard semi–deviation and lower standard semi–deviation ,
respectively. The evaluation functions are obtained by performing the substitution
(η − μ)Tx− (ξ − μn+1) for ϑ , which leads to convex optimization problems anal-
ogous to (2.187) and (2.173). In the case of a finite discrete distribution, the linear
programming formulations coincide with (2.191) and (2.190) provided that the def-
initions tk := (η̂k−μ)T and hk := ξ̂ k−μn+1 are used.

We discuss the important special case where ξ ≡ 0 holds separately. The valua-
tion functions take the form:

σ+(x) :=
√
�[ ( (ηTx−μTx)+ )2 ]

σ−(x) :=
√
�[ ( (ηTx−μTx)− )2 ],

(2.193)

which are interpreted as measuring the upper/lower deviation between ηTx and its
expected value μTx. Because of its importance in practice we formulate the opti-
mization problems for the case when ξ has a finite discrete distribution explicitly.
With tk now considered as a column vector, (2.189) and (2.190) have the form:

min cTx

s.t.
N

∑
k=1

pk(((tk−μ)Tx)− )2 ≤ κ, k = 1, . . . ,N

x ∈B

⎫⎪⎪⎬
⎪⎪⎭

(2.194)

and

min
N

∑
k=1

pk(((tk−μ)Tx)− )2

s.t. x ∈B

⎫⎪⎬
⎪⎭ (2.195)
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whereas (2.191) and (2.192) assume the form

min cTx

s.t.
N

∑
k=1

pky2
k ≤ κ, k = 1, . . . ,N

(tk−μ)Tx +yk ≥ 0, k = 1, . . . ,N
yk ≥ 0, k = 1, . . . ,N

x ∈B

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.196)

and

min
N

∑
k=1

pky2
k

s.t. (tk−μ)Tx +yk ≥ 0, k = 1, . . . ,N
yk ≥ 0, k = 1, . . . ,N

x ∈B.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.197)

The importance of introducing this type of risk measures has first been recognized
by Markowitz [217] who also applied them in financial portfolio optimization.

2.5.4 Absolute semi–deviation

Similarly to the way for constructing a semi–deviation variant for quadratic devia-
tion, we get the following semi–deviation measures:

ρ+
sic
(ϑ) := �[ϑ+],

ρ−
sic
(ϑ) := �[ϑ−], ϑ ∈L 1

1 ,

defined on the space of random variables with finite expected value and with
z− = max{0,−z}, z+ = max{0,z} for any real number z. Note that we do not ob-
tain new risk measures: These risk measures have been already discussed in Sec-
tion 2.4.1, in connection with integrated chance constraints, see (2.114) on page 143.
Now we consider them again, this time in relation with the absolute–deviation risk
measure ρA defined in (2.170). Using the relations z = z+− z− and |z|= z++ z− we

obtain that z− =
1
2
(|z|− z) and z+ =

1
2
(|z|+ z) hold. Thus we have

ρ+
sic
(ϑ) = 1

2 (�[ |ϑ | ]+�[ϑ ] ) = 1
2

(
ρA(ϑ)+�[ϑ ]

)
ρ−

sic
(ϑ) = 1

2 (�[ |ϑ | ]−�[ϑ ] ) = 1
2

(
ρA(ϑ)−�[ϑ ]

)
.

(2.198)

The evaluation function A(x) (2.171) defined on page 163 has now the semi–
deviation counterparts:



2.6 Modeling risk and opportunity 171

K(x) =�[(ηTx−ξ )+] = 1
2

(
�[ |ηTx−ξ | ]+ (μTx−μn+1)

)
H(x) =�[(ηTx−ξ )−] = 1

2

(
�[ |ηTx−ξ | ]− (μTx−μn+1)

)
,

(2.199)

which are the separate integrated probability functions defined in Section 2.4.1 on
page 143. The following relations hold:

K(x) = 1
2

(
A(x)+(μTx−μn+1)

)
H(x) = 1

2

(
A(x)− (μTx−μn+1)

)
.

(2.200)

According to Proposition 2.45. on page 163 A(·) is a convex function, consequently
both K(x) and H(x) are convex functions, too.

Turning our attention to the case when the lower/upper absolute deviation is mea-
sured with respect to the expected value, we obviously have (see (2.198))

ρ+
MAD

(ϑ) :=�[ (ϑ −�[ϑ ])+ ] = 1
2ρMAD(ϑ)

ρ−
MAD

(ϑ) :=�[ (ϑ −�[ϑ ])− ] = 1
2ρMAD(ϑ).

This implies that the optimization model for minimizing the corresponding eval-
uation function will deliver the same results as its mean–absolute–deviation counter-
part. With the valuation function in the constraint, the only difference with respect
to (2.181) will be the right–hand–side of this constraint: with the semi–deviation
measure this will be 2κ .

Exercises

2.10. Give a direct, detailed proof for the fact that A(x) :=�[ |ηTx−ξ | ] is a convex
function.

2.11. Complete the proof of the equivalence of (2.189) and (2.191), as well as of
(2.190) and (2.192). The main ingredient of the proof is sketched in the paragraph
next to (2.192).

2.6 Modeling risk and opportunity

The different SLP model classes in the previous sections have been identified as
follows: a quality measure ρ has been chosen first which characterizes the model
class. Based on the selected quality measure, the corresponding evaluation function
V (x) := ρ(ζ (x,ξ )) was utilized in building SLP models belonging to the class of
models.

In this section we will take a look on some modeling issues concerning SLP
models. For the sake of simplicity we will consider the following pair of prototype
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problems {
min V (x)
s.t. x ∈B

{
max V (x)
s.t. x ∈B

(2.201)

with the evaluation functions V in the objective. Analogous reasoning applies for
SLP models involving constraints with V .

Before proceeding let us emphasize that the two problems in (2.201) are substan-
tially different from the numerical point of view. Assuming, for instance, that V is a
nonlinear convex function, this implies that the minimization problem is in general
much more easier to solve numerically than its maximization counterpart. Apply-
ing the usual trick for transforming the maximization problem into a minimization
problem involving −V in the objective, does not help in this respect, of course.

Let us point out next that, from the modeling viewpoint, the mere definition and
mathematical properties of a quality measure ρ do not a priori imply a selection
between the two possible models in (2.201). To see this, consider the standard de-
viation ρStd(ϑ) := σ(ϑ) := �[(ϑ −�[ϑ ])2]

1
2 as a quality measure, discussed in

Section 2.5.1. Notice that the implied evaluation function V is a convex function.
With this evaluation function, the SLP model (2.166) on page 162 corresponds to
the minimization formulation in (2.201). The usage of this model presupposes the
following modeling attitude: the modeler interprets any deviation from the expected
value as risk, quantifies the deviations by choosing the standard deviation as quality
measure, and seeks to minimize this quality measure. In this modeling context, the
quality measure ρStd can be interpreted as a risk measure. Note that assuming a sym-
metric distribution, a large standard deviation indicates that ϑ exhibits large devia-
tions both in the upward and downward direction with respect to the expected value.
Consider now a gambler. For she/he the upward deviations represent an opportunity
for winning, therefore larger standard deviations will be preferred to smaller values.
This modeler would choose the maximization problem in (2.201). Consequently,
for such a modeler the interpretation of the same quality measure ρStd is clearly an
opportunity measure. The modeler faces a non–convex optimization problem.

In the previous example the same quality measure served simultaneously as risk–
and opportunity–measure, the sole difference was the way, how it has been used for
building SLP models. Both for the risk–averse modeler and for the gambler the
standard deviation is not the best way for building an SLP model. To see this, and
to further explore the ways for modeling risk and opportunity, let us assume that

• negative values of ζ (x,ξ )−�[ζ (x,ξ )] are interpreted as something unpleasant,
like costs, loss in wealth, or loss in health;

• positive values of ζ (x,ξ )−�[ζ (x,ξ )] quantify something desirable, like mone-
tary gains or stability of an engineering structure;

• ζ (x,ξ )−�[ζ (x,ξ )] = 0 expresses neutrality in the risk–opportunity aspect.

Instead of the standard deviation, in this situation it makes sense to choose the
lower– and upper standard semi–deviations (see Section 2.5.3) as quality measures.
The risk–averse modeler would choose the lower semi–deviation
ρ−

Q
(ϑ) :=�[(ϑ−)2]

1
2 , interpreted as a risk measure. The corresponding optimiza-

tion problem is the minimization problem in (2.201). A modeler who does not care
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for risk would choose the upper semi–deviation ρ+
Q
(ϑ) :=�[(ϑ+)2]

1
2 with the cor-

responding maximization problem in (2.201). The corresponding evaluation func-
tions are convex functions for both the lower– and for the upper semi–deviation, see
the discussion on page 167. Therefore, again, the risk–averse modeler faces a con-
vex optimization problem whereas the modeler neglecting risk has a non–convex
optimization problem to solve. The idea of combining the two quality measures, for
instance as ρ−

Q
−λρ+

Q
with λ > 0, and minimizing the resulting evaluation function,

still results in a non–convex optimization problem.
Another possibility for employing a suitable quality measure is to work with

separate integrated probability functions, see Section 2.4.1. The risk–averse mod-
eler would choose ρ−

sic
(ϑ) :=�[ϑ−] with the corresponding minimization problem

whereas her/his risk–seeking counterpart would employ ρ+
sic
(ϑ) :=�[ϑ+] and the

maximization problem. Both corresponding evaluation functions are convex, see
Proposition 2.39., therefore analogous comments apply as for the semi–deviations.
There is, however, an essential difference: now it makes sense to combine the two
quality measures. This leads to the quality measure ρα

sic
discussed on page 146 with

α ∈ [0,1]. For α ∈ [0, 1
2 ) it serves as a risk measure with a convex evaluation func-

tion whereas for α ∈ ( 1
2 ,1] it can be interpreted as quantifying opportunity with a

corresponding concave evaluation function.
Finally let us discuss the usage of probability functions in modeling. Concerning

separate probability functions, we have seen in Section 2.2.3, that, for certain special
cases convex programming problems arise. This is true both for the risk–averse
and for the risk–seeking attitude. For joint probability constraints the situation is
different, see Section 2.2.5. Convex programming problems can only be obtained
when interpreting the quality measure as a measure of opportunity, that means, the
evaluation function is to be maximized.

2.7 Risk measures

We consider random variables of the form

ζ (x,η ,ξ ) := ηTx−ξ ,

where (ηT,ξ ) is an n+1–dimensional random vector defined on a probability space
(Ω ,F ,�); η denotes an n–dimensional random vector and ξ is a random vari-
able. Whenever the expected value of (ηT,ξ ) exists we will employ the notation
μ :=�[η ] ∈�n and μn+1 :=�[ξ ] ∈�.

In the previous sections we used a two–step scheme in presenting the various
stochastic programming model classes. In a first step we have specified a function
ρ :ϒ →� for evaluating random variables with ϒ being some linear space of ran-
dom variables, defined on a probability space (Ω ,F ,P). We have called ρ a quality
measure concerning random variables. In a second step, provided that ζ (x,η ,ξ )∈ϒ
holds for all x, we have substituted ζ (x,η ,ξ ) into ρ thus getting the evaluation func-
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tion V , V (x) := ρ(ζ (x,η ,ξ )). V has been subsequently used for building SLP mod-
els. Assuming that ρ quantifies risk, V has been built into SLP models as follows:
If in the objective, then V (x) was minimized and if in a constraint then constraints
of the type V (x) ≤ κ were employed. This modeling attitude justifies the usage of
the term “risk measure” for ρ . For optimization models involving V in the above
outlined fashion, the (generalized) convexity of V is clearly an advantageous prop-
erty. It leads to optimization problems for which we have good chances for finding
an efficient numerical solution procedure.

For fixed (η ,ξ ), ζ (·,η ,ξ ) is a linear–affine function, thus there is a close relation
between structural properties of ρ and (generalized) convexity properties of V . The
purpose of this section is to discuss properties of various risk measures and their
impact on the evaluation function.

Let (Ω ,F ,P) be a probability space and ϑ be a random variable on it. The
distribution function of ϑ will be denoted by Fϑ and Θ denotes the support of ϑ .
Recall, thatϒ has been chosen as one of the linear spaces listed in (2.6) on page 73.

A function g : X →�, defined on a linear space X , is called positively homo-
geneous, if for any λ ≥ 0 and x ∈ X , the relation g(λx) = λg(x) holds. g is called
subadditive, if for any x,y ∈ X the inequality g(x+ y)≤ g(x)+g(y) holds. For later
reference the following simple facts are formulated as an assertion:

Proposition 2.46. Let g : X →� be a function defined on a linear space X. Then

a) if g is both positively homogeneous and subadditive then it is convex.
b) Suppose that g is positively homogeneous and convex. This implies subadditivity.

Proof: In fact, let x,y ∈ X and λ ∈ (0,1) then we have

g(λx+(1−λ )y)≤ g(λx)+g((1−λ )y) = λg(x)+(1−λ )g(y),

where the inequality follows from subadditivity and the equality from positive ho-
mogeneity. This proves a). Suppose that g is positively homogeneous and convex
and let x,y ∈ X then

g(x+ y) = g(2 [
1
2

x+
1
2

y] ) = 2g(
1
2

x+
1
2

y)≤ g(x)+g(y)

from which b) follows. �

The next proposition establishes a relation between properties of ρ and properties
of the corresponding evaluation function V .

Proposition 2.47. Letϒ be a linear space of random variables and ρ :ϒ →�
a real–valued function on ϒ . Assume that ηTx− ξ ∈ ϒ holds for all x and let
V (x) := ρ(ηTx−ξ ). Then we have:

a) If ρ is convex then V is convex too.
b) If ξ ≡ 0 and ρ is subadditive then V is also subadditive.
c) If ξ ≡ 0 and ρ is positively homogeneous then V is also positively homogeneous.
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Proof:
a) Let x,y ∈�n and λ ∈ [0,1] then we have

V (λx+(1−λ )y) = ρ(ηT(λx+(1−λ )y)−ξ )
= ρ(λ (ηTx+ξ )+(1−λ )(ηTy+ξ ))
≤ λρ(ηTx+ξ )+(1−λ )ρ(ηTy+ξ )
= λV (x)+(1−λ )V (y).

Assertions b) and c) follow similarly. �

Notice that in the above assertions the stated properties of V hold for any prob-
ability distribution of ϑ ∈ϒ . Thus we obtain convex SLP problems under the sole
assumption ϑ ∈ϒ . By proving the convexity of a specific risk measure ρ , we obtain
alternative proofs of convexity of the corresponding SLP problems discussed in the
previous sections.

2.7.1 Risk measures in finance

In financial theory and praxis, more closely in portfolio optimization, an increasing
effort in research is devoted to identify those properties of risk measures, which are
distinguishing features. The general aim of the research is twofold. On the one hand,
the goal is to develop an axiomatically founded risk theory in finance. On the other
hand, the aim is to provide guidelines for practitioners for choosing an appropriate
risk measure in their daily work and to support the construction of appropriate stan-
dards for risk management in the finance industry. Several different definitions and
systems of axioms have been proposed in the financial literature. Below we simply
list some of the current definitions without discussing their intuitive background and
implications, these being application–specific. We assume throughout that positive
values of the random variables ϑ ∈ϒ represent losses.

Kijima and Ohnisi [186] propose the following definition: ρ is a risk measure, if
the following properties hold for any ϑ ,ϑ1,ϑ2 ∈ϒ and λ ,C ∈�, λ ≥ 0:

(K1) ρ(ϑ1 +ϑ2)≤ ρ(ϑ1)+ρ(ϑ2) (subadditivity)
(K2) ρ(λϑ) = λρ(ϑ) (positive homogeneity)
(K3) ρ(ϑ)≥ 0 (nonnegativity)
(K4) ρ(ϑ +C) = ρ(ϑ) for C ≥ 0 (shift invariance)

(2.202)

The important issue of axiomatic foundation of risk measures has first been ad-
dressed in the seminal paper of Artzner, Delbaen, Eber, and Heath [7]. The authors
propose the axioms below and explore their implications. We formulate the axioms
for random variables representing losses, whereas in the original paper the interpre-
tation is future value.
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(A1) ρ(ϑ1 +ϑ2)≤ ρ(ϑ1)+ρ(ϑ2) (subadditivity)
(A2) ρ(λϑ) = λρ(ϑ) (positive homogeneity)
(A3) If ϑ1 ≤ ϑ2 then ρ(ϑ1)≤ ρ(ϑ2) (monotonicity)
(A4) ρ(ϑ +C) = ρ(ϑ)+C (translation invariance)

(2.203)

The authors call a function ρ for which the above axioms hold a coherent risk mea-
sure. Concerning SLP models in general, in an intuitive sense the axiom A4 looks
rather unusual. The reason for including it in this form is that the authors consider
capital requirement problems, see [7]. For distinguishing between the different re-
quirements concerning translation in (2.202) and (2.203), we use the terms “shift
invariance” and “translation invariance”, respectively.

In the system of axioms of Föllmer and Schied [94], [95], subadditivity and pos-
itive homogeneity is replaced by the weaker requirement of convexity

(F1) ρ(ϑ) is a convex function (convexity)
(F2) If ϑ1 ≤ ϑ2 then ρ(ϑ1)≤ ρ(ϑ2) (monotonicity)
(F3) ρ(ϑ +C) = ρ(ϑ)+C (translation invariance)

(2.204)

leading to convex risk measures. Coherent risk measures are obviously convex;
a convex risk measure is coherent, if it is positively homogeneous (see Proposi-
tion 2.46.).

Rockafellar, Uryasev, and Zabarankin [284] introduce the notion of deviation
measure forϒ = L 1

1 . Their axioms are

(D1) ρ(ϑ1 +ϑ2)≤ ρ(ϑ1)+ρ(ϑ2) (subadditivity)
(D2) ρ(λϑ) = λρ(ϑ) (positive homogeneity)
(D3) ρ(ϑ)> 0 for ϑ non–constant,

ρ(ϑ) = 0 otherwise (nonnegativity)
(D4) ρ(ϑ +C) = ρ(ϑ) (shift invariance)

(2.205)

The authors also define an associated risk measure called expectation–bounded risk
measure, see [284], and explore the implications in portfolio theory. Notice that for
a deviation measure the axioms (2.202) hold; the axioms for a deviation measure
can be considered as a refinement (restriction) of (2.202).

Due to the different prescription for the case of a translation, the set of risk mea-
sures obeying (2.202) or (2.205) and the risk measures for which either (2.203) or
(2.204) hold, are disjunct sets.

We feel that there is not much chance that a general definition of a risk measure
can be given, which would be acceptable also beyond the field of finance. From our
general stochastic programming point of view, the convexity of a risk–measure is
surely a desirable property. Proposition 2.47. implies, namely, that the SLP models,
which are built on the basis of such a measure, are convex optimization problems.
From this viewpoint, a risk measure can be considered as more valuable, when be-
yond serving as a diagnostic metric, it can also be built into efficiently solvable op-
timization models which involve, for instance, minimizing risk. Without exception,
all of the above definitions correspond to risk measures of this type.
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2.7.2 Properties of risk measures

This section is devoted to discussing convexity properties of risk measures which
have been utilized for building stochastic programming models. Unless explicitly
referring to the axioms (2.204) of convex risk measures, under convexity we will
simply mean convexity of the risk–measure–function ρ . We will use the following
notation: the functions ϕ+ :�→�+ and ϕ− :�→�+ are defined as ϕ+(z) := z+

and ϕ−(z) = z−, respectively, where z+ = max{0,z} and z− = max{0,−z} are the
positive– and negative part of the real number z. Let further ϕA denote the absolute–
value function ϕA(z) := |z| for all z ∈�. The relation ϕA = ϕ+ +ϕ− obviously
holds. Note that ϕ+, ϕ−, and ϕA are positively homogeneous and subadditive func-
tions, therefore they are convex.

Proposition 2.48. The following risk measures are positively homogeneous and
subadditive. Moreover, they are also monotonously increasing and translation in-
variant. Consequently, they are convex risk measures in the sense of axioms (2.204)
and being positively homogeneous they are also coherent according to axioms
(2.203).

(A) ρE(ϑ) :=�[ϑ ], ϑ ∈L 1
1 , (Section 2.4);

(B) ρfat(ϑ) :=max
ϑ̂∈Θ

ϑ̂ , ϑ ∈L
∞

1 whereΘ is the support of ϑ (Section 2.1, page 76);

note that we have changed minimum to maximum for getting a risk measure.
ρfat is called the maximum loss risk measure.

(C) ρα
CVaR

(ϑ) := νc(ϑ ,α) := min
z

[z+
1

1−α�[(ϑ − z)+] ], ϑ ∈L
1

1 , 0 < α < 1,

(Section 2.4.3).

Proof:
(A): The assertion holds trivially because ρE is a linear function.

(B): Let λ ≥ 0 be a real number and ϑ ∈ L ∞
1 with support Θ . Then λΘ is a

closed set, therefore it is the support of λϑ . For the definition of the operation λΘ
see (2.89) on page 118. Thus we have

ρfat(λϑ) = max
ϑ̂∈λΘ

ϑ̂ = max
ϑ̄∈Θ

λϑ̄ = λρfat(ϑ).

For proving subadditivity let ϑ1, ϑ2 ∈L ∞
1 with supports Θ1 and Θ2, respectively.

Let Θ := Θ1 +Θ2 where the sum of the two sets is defined according to (2.89)
on page 118. From the discussion on that page it follows that Θ is a closed set.
Consequently, Θ contains the support of ϑ1 +ϑ2. Thus we have

ρfat(ϑ1 +ϑ2) = max
ϑ̂1+ϑ̂2∈supp{ϑ1+ϑ2}

[ ϑ̂1 + ϑ̂2 ]

≤ max
ϑ̂1+ϑ̂2∈Θ

[ ϑ̂1 + ϑ̂2 ]≤ max
ϑ̄1∈Θ1

ϑ̄1 + max
ϑ̄2∈Θ2

ϑ̄2.
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For any real number C, the support of ϑ +C isΘ +{C}, from which the translation
invariance immediately follows. If ϑ1(ω) ≤ ϑ2(ω) holds for all ω ∈ Ω then we
obviously have ρfat(ϑ1)≤ ρfat(ϑ2).
(C): Let λ ≥ 0 and ϑ ∈L1. If λ = 0, then we have

ρα
CVaR

(λϑ) = ρα
CVaR

(0) = min
z

[z+
1

1−α�[(−z)+] = 0,

where the last equality follows from

z+
1

1−α�[(−z)+] =
{

z if z≥ 0
(1− 1

1−α )z if z < 0.

Assuming λ > 0 we have

ρα
CVaR

(λϑ) = min
z

[z+
1

1−α�[(λϑ − z)+] ]

= λ min
z

[
z
λ
+

1
1−α�[(ϑ − z

λ
)+] ]

= λ min
y

[y+
1

1−α�[(ϑ − y)+] ] = λρα
CVaR

(ϑ).

For proving subadditivity we utilize the fact (see Section 2.4.3) that the minimum in
the definition is attained. Let ϑ1,ϑ2 ∈L1 and z1, z2 be corresponding solutions of
the minimization problem in the definition. For proving subadditivity it is sufficient
to prove convexity (see Proposition 2.46.). Let 0 < λ < 1, zλ be the minimum for
λϑ1 +(1−λ )ϑ2, and z̄λ = λ z1 +(1−λ )z2. Utilizing the convexity of ϕ+ we get

ρα
CVaR

(ϑ1 +ϑ2) = min
z

[z+
1

1−α�[ϕ+(λϑ1 +(1−λ )ϑ2− z)] ]

= zλ +
1

1−α�[ϕ+(λϑ1 +(1−λ )ϑ2− zλ )]

≤ z̄λ +
1

1−α�[ϕ+(λϑ1 +(1−λ )ϑ2− z̄λ )]

≤ ρα
CVaR

(ϑ1)+ρα
CVaR

(ϑ2).

Due to the fact that ϕ+ is a monotonically increasing function, the monotonicity of
ρα

CVaR
follows immediately. Let C ∈� then we have

ρα
CVaR

(ϑ +C) = min
z

[z+
1

1−α�[(ϑ − (z−C))+] ]

= C+min
z

[z−C+
1

1−α�[(ϑ − (z−C))+] ]

= ρα
CVaR

(ϑ)+C
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thus the translation invariance follows. �

For the next group of risk measures translation– or shift–invariance does not hold,
but we have:

Proposition 2.49. The risk measures listed below are positively homogeneous and
subadditive and they are also monotonous.

(D1) ρ+
sic
(ϑ) :=�[ϑ+], ϑ ∈L 1

1 , (Section 2.4.1);

(D2) ρ−
sic
(ϑ) :=�[ϑ−], ϑ ∈L 1

1 , (Section 2.4.1);

(E) ρα
sic
(ϑ) :=α�[ϑ ]+(1−2α)�[ϑ+]=αρE(ϑ)+(1−2α)ρ+

sic
(ϑ), ϑ ∈L 1

1 ,
0≤ α ≤ 1

2 , (Section 2.4.1).

Proof:
(D1): We have ρ+

sic
(ϑ) =�[ϕ+(ϑ)]. The function ϕ+ being positively homoge-

neous and subadditive, as well as monotonously increasing, the assertion follows
immediately. In fact, for proving subadditivity let ϑ1,ϑ2 ∈L1 then we have

ρ+
sic
(ϑ1 +ϑ2) =�[ϕ+(ϑ1 +ϑ2)]≤�[ϕ+(ϑ1)+ϕ+(ϑ2)] = ρ+

sic
(ϑ1)+ρ+

sic
(ϑ2).

The proof for positive homogeneity is analogous. ρ+
sic

turns out to be a monotoni-
cally increasing function.
(D2): In this case ρ−

sic
(ϑ) =�[ϕ−(ϑ)] holds. The positive homogeneity and sub-

additivity of ϕ− implies these properties for ρ−
sic

. ϕ− being monotonously decreas-
ing, ρ−

sic
is monotonically decreasing, too.

(E): This follows immediately from the linearity of the first term and from (D1). �

In the next group neither translation–invariance nor monotonicity holds. Never-
theless, we have

Proposition 2.50. The following risk measures are positively homogeneous and
subadditive.

(F) ρQ(ϑ) :=
√
�[ϑ 2], ϑ ∈L 2

1 , (Section 2.5.1);

(G) ρA(ϑ) :=�[ |ϑ | ], ϑ ∈L 1
1 , (Section 2.5.2);

(H) ρ+
Q
(ϑ) :=

√
�[(ϑ+)2] and

ρ−
Q
(ϑ) :=

√
�[(ϑ−)2], ϑ ∈L 1

1 , (Section 2.5.3).

Proof: The positive homogeneity is trivial for all cases therefore we confine our-
selves to proving subadditivity.
(F): Let ϑ1,ϑ2 ∈L2 then the Minkowski–inequality immediately yields

ρQ(ϑ1 +ϑ2) =
(
�[ (ϑ1 +ϑ2)

2 ]
) 1

2 =
(
�[ |ϑ1 +ϑ2|2 ]

) 1
2

≤ (�[ |ϑ1|2 ]
) 1

2 +
(
�[ |ϑ2|2 ]

) 1
2 = ρQ(ϑ1)+ρQ(ϑ2).
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(G): We have ρA(ϑ) =�[ϕA(ϑ) ] and the assertion follows from the subadditivity
of ϕA.
(H): We prove the assertion for ρ+

Q
, the proof for ρ−

Q
is analogous. We utilize the

subadditivity of ϕ+ and again the Minkowski-inequality:

ρ+
Q
(ϑ1 +ϑ2) =

(
�[ ( (ϑ1 +ϑ2)

+ )2 ]
) 1

2

≤ (�[ (ϑ+
1 +ϑ+

2 )2 ]
) 1

2

≤ (�[ (ϑ+
1 )2 ]

) 1
2 +

(
�[ (ϑ+

2 )2 ]
) 1

2 = ρ+
Q
(ϑ1)+ρ+

Q
(ϑ2).

�

Finally we turn our attention to the deviation measures in Section 2.5.

Proposition 2.51. The following risk measures are deviation measures according
to the axioms (2.205).

(I) ρStd(ϑ) := σ(ϑ) :=
√
�[(ϑ −�[ϑ ])2], ϑ ∈L 2

1 ;
(J) ρMAD(ϑ) :=�[ |ϑ −�[ϑ ]| ], ϑ ∈L 1

1 ;
(K) ρ+

Std
(ϑ) := σ+(x) :=

√
�[( (ϑ −�[ϑ ])+ )2] and

ρ−
Std
(ϑ) := σ−(x) :=

√
�[( (ϑ −�[ϑ ])− )2], ϑ ∈L 1

1 ;
(L) ρ+

MAD
(ϑ) :=�[ (ϑ −�[ϑ ])+ ] = 1

2ρMAD(ϑ) and

ρ−
MAD

(ϑ) :=�[ (ϑ −�[ϑ ])− ] = 1
2ρMAD(ϑ), ϑ ∈L 1

1 .

Proof: Note that each one of these risk measures results from an already considered
risk measure by substituting ϑ by ϑ −�[ϑ ]. Therefore it is clear that each one is
positively homogeneous and subadditive. All of them are nonnegative and can only
be zero if ϑ is constant. Finally the shift–property D4 holds trivially. �

Recall, that due to Proposition 2.46., the positive homogeneity and subadditivity
of the risk functions considered so far implies that all of them are convex.

The risk measures listed below have been used for building SLP models but have
not yet been considered:

(M) ρP(ϑ) :=�(ϑ ≥ 0), ϑ ∈ V , (Section 2.2);
(N) ρcexp(ϑ) :=�[−ϑ | ϑ < 0], ϑ ∈L 1

1 , (Section 2.4.2);
(O) ρα

VaR
(ϑ) := ν(ϑ ,α) :=min{z |Fϑ (z)≥α}, ϑ ∈V , 0<α < 1, (Section 2.3).

They are non–convex in general. Despite this fact, we have seen in the previous
sections that under some assumptions concerning the probability distribution and
parameter values, using these quality measures resulted in convex or in general-
ized convex optimization problems. The point is the following: having a convex risk
measure ρ, this leads automatically to convex evaluation functions (see Proposi-
tion 2.47.) and thus to convex optimization problems. In other words, the convexity
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of ρ is a sufficient condition for getting convex optimization problems. The convex-
ity of ρ is by no means also necessary for this, as the convex optimization models,
built on the basis of the above risk measures, and presented in the previous sections
demonstrate.

At last let us consider risk measures for random vectors, introduced in Sec-
tion 2.4.1 as

(P) ρ+
jic
(ϑ) :=�[ max

1≤i≤s
ϑ+

i ] and ρ−
jic
(ϑ) :=�[ max

1≤i≤s
ϑ−i ], ϑ ∈L

1
1 ,

where ϑ is now an s–dimensional random vector. These risk measures have the
properties:

Proposition 2.52. Both ρ+
jic

and ρ−
jic

are positively homogeneous and subadditive.
Moreover, both of them are monotonous.

Proof: The positive homogeneity is obvious. We prove the subadditivity for ρ+
jic

, the

proof for ρ−
jic

is analogous. Let ϑ (1),ϑ (2) ∈L 1
1 then we have

ρ+
jic
(ϑ (1) +ϑ (2)) =�[ max

1≤i≤s
(ϑ (1)

i +ϑ (2)
i )+ ]

≤�
[

max
1≤i≤s

[ (ϑ (1)
i )+ +(ϑ (2)

i )+]

]

≤�
[

max
1≤i≤s

[ (ϑ (1)
i )+ ]

]
+�

[
max
1≤i≤s

[ (ϑ (2)
i )+ ]

]

= ρ+
jic
(ϑ (1))+ρ+

jic
(ϑ (2))

where for the first inequality we used the subadditivity of ϕ+ and the second in-
equality follows from the properties of the max operator. From the properties of ϕ+

and ϕ− it is also clear that ρ+
jic

is monotonically increasing whereas ρ−
jic

is monoton-
ically decreasing. �

2.7.3 Portfolio optimization models

For illustrating the use of various risk measures in practice, we present some portfo-
lio optimization models. We consider a one–period financial portfolio optimization
problem with n risky assets. Let ηT = (η1, . . . ,ηn) be the vector of random returns
of the assets and ri :=�[ηi], i = 1, . . . ,n be the expected returns. The asset–weights
in the portfolio will be denoted by x1, . . . ,xn, thus ηTx represents the random port-
folio return. Since for risk measures we have interpreted positive values of random
variables as losses, we take ζ (x,η) :=−ηTx. With μp standing in this section for a
prescribed minimal expected portfolio return level, we consider optimization prob-
lems of the following form:
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ψ(μp) = min ρ(−ηTx)

s.t. rTx ≥ μp

1lTx = 1

x ∈B,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.206)

where B is a polyhedral set determined by additional linear constraints, ρ is a risk
measure, and 1lT = (1, . . . ,1) holds. The interpretation is the following: we are look-
ing for a portfolio with minimum risk, under prescribing a minimum acceptable
level μp of expected portfolio return. This formulation of the portfolio selection
problem is called a risk–reward model, with ρ(−ηTx) standing for risk and rTx
representing reward.

Some well–known particular cases, differing in the choice of the risk measure
are the following:

• ρ = ρStd corresponds to the classical minimum–variance model of
Markowitz [217];

• ρ = ρ−
Std

leads to the mean–semivariance model of Markowitz [217];
• ρ = ρMAD gives the mean–absolute–deviation model of Konno and

Yamazaki [194];
• ρ = ρα

CVaR
corresponds to the mean–CVaR model of Rockafellar and

Uryasev [282];
• ρ = ρα

VaR
results in the mean–VaR model widely used in the finance industry, see,

for instance, Jorion [151].

Note that all of these risk measures belong to the class of deviation measures. Al-
though problem (2.206) is also useful in its own right, in finance this problem is
considered as a parametric optimization problem with parameter μp. The optimal
objective value ψ(μp), as a function of μp, plays an important role. Its graph in
�

2 is called the efficient frontier, corresponding to the risk ρ and return μp. Tra-
ditionally, the efficient frontier is represented graphically with the horizontal axis
corresponding to risk and the vertical one corresponding to return.

The reason behind considering the efficiency curve is the following: we actually
face a bi–objective optimization problem, where we would like to maximize the
expected return and at the same time minimize risk. In all cases listed above, ψ(μp)
is strictly monotonically increasing in μp, on the interval where the constraint rTx≥
μp is active at the optimal solution. Consequently, on the ψ–interval corresponding
to this interval, ψ−1 exists and is strictly monotonically increasing. Thus it makes
sense to consider the following alternative representation of the efficiency curve:

μ(ψp) = max rTx

s.t. ρ(−ηTx) ≤ ψp

1lTx = 1

x ∈B,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.207)
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where nowψp > 0 plays the role of a parameter. The interpretation of this problem is
the following: we maximize expected return under the condition that the maximum
acceptable risk is ψp. The portfolio optimization model in the above form is called
a reward–risk model.

Due to the multi–objective character of the problem setting, it is not surprising
that a third characterization of the efficient frontier is via the optimization problem

max rTx−νρ(−ηTx)

s.t. 1lTx = 1

x ∈B,

⎫⎪⎪⎬
⎪⎪⎭

(2.208)

where in this case ν ≥ 0 is acting as a (risk–aversion) parameter for the efficiency
curve. The evaluation function for the risk is accounted for by an additive term with
a negative sign.

For details on the relationship between these three problems see, for instance,
Palmquist, Uryasev, and Krokhmal [249].

Let us finally remark that taking ζ (x,η ,ξ ) := ηTx−ξ instead of ζ (x,η) := ηTx
also leads to an important class of portfolio optimization problems. In this case ξ
may represent, for instance, the random return of a benchmark which can be, for
instance, an index like the Dow Jones Industrial Average.

2.7.4 Optimizing performance

In this section we consider random variables of the form

ζ (x,η ,ξ ) := ηTx−ξ

with positive values representing gains and negative values representing losses.
Gains will be measured via the expected value

f (x) :=�[ηTx−ξ ] = μTx−μn+1

(termed in this context as reward ), where we have employed the notation μ :=
�[η ] ∈ �n and μn+1 := �[ξ ] ∈ �. Losses will be measured via the evaluation
function corresponding to a risk measure by

g(x) := ρ(−ηTx+ξ ),

termed as risk. Notice that we have substituted ϑ = −ζ (x,η ,ξ ) into ρ(·) in order
to being in accordance with the convention in Section 2.7.1, where positive values
of ϑ represented losses.

As a performance measure we choose the reward–to–risk ratio
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f (x)
g(x)

=
�[ηTx−ξ ]
ρ(−ηTx+ξ )

=
μTx−μn+1

ρ(−ηTx+ξ )

representing reward per unit risk.
Note that the selection of an appropriate performance measure heavily depends

on the specific application. Considering, for example, financial portfolio optimiza-
tion, there is a wide variety of performance evaluation measures in use, see e.g.
Cogneau and Hubner [44]. In the financial portfolio optimization context (see Sec-
tion 2.7.3), our performance measure corresponds to the classical Sharpe–ratio when
choosing the standard deviation ρStd as the risk measure. The Sharpe–ratio is one of
the most widely used performance measure in the field of financial portfolio man-
agement.

The performance optimization problem is formulated as

max
x

f (x)
g(x)

s.t. x ∈B

⎫⎪⎬
⎪⎭ ≡

max
x

μTx−μn+1

ρ(−ηTx+ξ )

s.t. x ∈B,

⎫⎪⎬
⎪⎭ (2.209)

where B{x | Ax = b, x≥ 0} is a polyhedral set. Considering the financial portfolio
optimization case, the solutions of (2.209) are called tangential portfolios. Concern-
ing (2.209) we make the following assumptions:

A1. The set B of feasible solutions is nonempty and bounded.
A2. g(x)> 0 holds for all x ∈B.
A3. ∃x̂ ∈B for which f (x̂)> 0 holds.
A4. ρ is a positively homogeneous risk measure and g(x) is continuous.

Assumptions A1 and A4 imply that for (2.209) optimal solutions exist. Notice
also that A2 and A3 immediately imply that at optimal solutions x∗ the inequality
f (x∗)
g(x∗)

> 0 must hold, that is, f (x∗)> 0 holds.

From the optimization point of view problem (2.209) belongs to the class of frac-
tional programming problems. Assuming that f (x)≥ 0 holds for all x ∈B and that
ρ is a convex risk measure, Proposition 2.32. on page 83 implies that the objective
function of (2.209) is pseudo–concave, thus (2.209) has favorable properties from
the numerical point of view.

It is a well–known fact in fractional programming that under appropriate assump-
tions (2.209) can be equivalently formulated as a convex programming problem, see
e.g. Avriel et al. [8] and Schaible [298], [297]. Under the positive homogeneity as-
sumption A4 concerning ρ, the equivalent convex programming problem can be
further simplified, see Stoyanov, Rachev and Fabozzi [314].

For deriving the equivalent convex programming problem let us consider the
following problem first:
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max
y,t

μTy −μn+1 t

s.t. ρ(−ηTy+ξ t) = 1

Ay −bt = 0

y ≥ 0

t ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.210)

We observe that for any (y, t) for which the last three constraints hold we have: if
t = 0 then y = 0 follows. In fact, if t = 0 and y �= 0 then Ay = 0, y≥ 0 has a nontrivial
solution which contradicts the boundedness of B (cf. assumption A1 ).

We will show that under our assumptions (2.209) and (2.210) are equivalent. In
fact, let x be a feasible solution of (2.209). Then, due to the positive homogeneity of
ρ, with

t :=
1

g(x)
=

1
ρ(−ηTx+ξ )

> 0, y := tx,

(y, t) is a feasible solution of (2.210) and the corresponding objective function values
of the two problems are equal.
Conversely, assume that (y, t) is a feasible solution of (2.210). Then t > 0 must hold,
because otherwise, as we have seen above, y = 0 follows. But for (y, t) = (0,0) the
first constraint in (2.210) cannot hold since for the positively homogeneous ρ we

have ρ(0) = 0. Thus, for any feasible solution t > 0 holds. Then x :=
1
t

y is obviously
feasible in (2.209) and the positive homogeneity of ρ implies that the corresponding
objective function values are equal.

Consequently, (2.209) and (2.210) are equivalent. In particular, (2.210) has an
optimal solution (y∗, t∗) and the optimal objective values are equal. Since the opti-
mal objective value of (2.209) is positive, we have

μTy∗ −μn+1 t∗ > 0.

Next we consider the following relaxation of (2.210)

max
y,t

μTy −μn+1 t

s.t. ρ(−ηTy+ξ t) ≤ 1

Ay −bt = 0

y ≥ 0

t ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.211)

where the first equality constraint has been relaxed. We are going to prove that under
our assumptions the equivalence of (2.210) and (2.211) follows.

Since (2.211) is a relaxation of (2.210), the optimal objective value of (2.211)
must be positive provided that an optimal solution exists. Although y = 0,



186 2 Single–stage SLP models

t = 0 is a feasible solution of (2.211), it cannot be optimal since the correspond-
ing objective value is 0. In general, concerning optimality it is sufficient to consider
feasible solutions of (2.211) with positive objective function values.

Let (y, t) be a feasible solution with μTy− μn+1 t > 0. Assume that for such a
solution the first inequality constraint in (2.211) is inactive, that is, ρ(−ηTy+ξ t)<
1 holds. We take

γ :=
1

ρ(−ηTy+ξ t)
> 1, ȳ := γy, t̄ := γ t.

Then, due to the positive homogeneity of ρ, (ȳ, t̄) is obviously a feasible solution
of (2.211) with the first inequality constraint being active. For the corresponding
objective function value we get:

μTȳ−μn+1 t̄ = γ (μTy−μn+1 t) > μTy−μn+1 t.

Consequently, with any feasible (y, t) for which μTy− μn+1 t > 0 holds and for
which the first inequality constraint in (2.211) is inactive, we can associate a feasi-
ble solution (ȳ, t̄) having the following properties: it has a higher objective function
value than (y, t) and for this feasible solution the first constraint is active in (2.211).
This implies that problems (2.210) and (2.211) are equivalent, the optimal solution
of (2.211) exists and the first constraint in (2.211) is active at the optimum.

We have shown that the following proposition holds:

Proposition 2.53. Let us assume that A1–A4 hold. Then the fractional program-
ming problem (2.209) is equivalent to (2.211).

If ρ is a coherent risk measure, then (2.211) is clearly a convex programming
problem, serving as an equivalent formulation of the original fractional program-
ming problem (2.209).

For the equivalent reformulation the assumption g(x)> 0, ∀x ∈B is an essential
one. From the modeling point of view, enforcing this could be done by adding the
inequality g(x) ≥ ε to the set of constraints of (2.209), with some ε > 0. The diffi-
culty: if ρ is a convex risk measure, this is a reverse convex constraint, transform-
ing (2.209) and its reformulation (2.211) into non–convex optimization problems.
Therefore, we consider the following alternative formulation of (2.209):

min
x

g(x)
f (x)

s.t. x ∈B

⎫⎪⎬
⎪⎭ ≡ min

x

ρ(−ηTx+ξ )
μTx−μn+1

s.t. x ∈B.

⎫⎪⎬
⎪⎭ (2.212)

If f (x) > 0 and g(x) > 0 hold for ∀x ∈B then this problem is clearly equivalent
to (2.209). Therefore we keep assumptions A1, A2, A4 and replace A3 with the
stronger requirement

A3’. f (x)> 0 holds for all x ∈B.
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If g is a convex function then (2.212) involves the minimization of a pseudo–
convex objective function under linear constraints. For deriving the equivalent con-
vex program we proceed analogously as for the case of (2.209), cf. Stoyanov,
Rachev and Fabozzi [314]. We consider the problem

min
y,t

ρ(−ηTy+ξ t)

s.t. μTy −μn+1 t = 1

Ay −bt = 0

y ≥ 0

t ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.213)

If x is a feasible solution of (2.212) then

t :=
1

f (x)
=

1
μTx−μn+1

> 0, y := tx,

is feasible for (2.213), due to the positive homogeneity of ρ and the corresponding
objective values are equal. Conversely, let (y, t) be a feasible solution of (2.213) then

t > 0 must hold and x :=
1
t

y is feasible for (2.212) with the same objective value.
Thus, (2.212) and (2.213) are equivalent.

By relaxing the first equality constraint in (2.213) we get the following problem:

min
y,t

ρ(−ηTy+ξ t)

s.t. μTy −μn+1 t ≥ 1

Ay −bt = 0

y ≥ 0

t ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.214)

It is easy to see that the relaxed constraint must be active at any optimal solution
of (2.214). In fact, let us assume that for a feasible solution (y, t) the inequality
μTy−μn+1 t > 1 holds. Taking

κ :=
1

μTy−μn+1 t
< 1, ȳ := κy, t̄ := κt,

(ȳ, t̄) is obviously feasible for (2.214) and the first inequality constraint becomes
active. Utilizing the positive homogeneity of ρ, for the objective function values we
get

ρ(−ηTȳ+ξ t̄) = κ ρ(−ηTy+ξ t) < ρ(−ηTy+ξ t),

implying that the first inequality constraint in (2.214) must be active at optimum.
Consequently, the optimization problems (2.213) and (2.214) are equivalent.
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The results above can be summarized in

Proposition 2.54. Let us assume that A1, A2, A3’ and A4 hold. Then the fractional
programming problem (2.212) is equivalent to (2.214).

If ρ is convex then (2.214) is clearly a convex programming problem.
Concerning (2.212), the requirement f (x) > 0 for all x ∈B can be enforced by

adding a linear constraint of the form μTx− μn+1 ≥ ε to the defining set of linear
relations of B, with a suitably chosen ε > 0.

As we have seen, under our assumptions the optimization problems (2.212),
(2.213), (2.214) are equivalent formulations of the original fractional programming
problem (2.209). Notice that for proving the equivalence we merely needed the pos-
itive homogeneity of ρ. Assuming additionally that ρ is subadditive, the equivalent
problem (2.214) becomes a convex programming problem.

Exercises

2.12. The portfolio optimization model of Young [352] corresponds to the choice
of ρfat as a risk measure in our general portfolio optimization model (2.206). The
idea is to select a portfolio which minimizes the maximum loss. We consider the
case of a finite discrete distribution of the asset returns η : (pi, η̂ i), pi =�[η = η̂ i ],
i = 1, . . . ,N. Let r :=�[η ]. The model formulation is:

max
x

min
1≤i≤N

(η̂ i)Tx

rTx ≥ μp

1lTx = 1

x ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

with 1l = (1, . . . ,1)T.

(a) Explain why in the above model the maximum loss is minimized.
(b) Give for this model an equivalent linear programming formulation.

2.13. A portfolio optimization problem is given as follows. There are two risky as-
sets, with random returns η = (η1,η2), where (η1,η2) has a finite discrete distribu-
tion with three realizations, given by the scenario tableau:

pk 0.3 0.5 0.2
ηk

1 -0.003 0.02 0.01
ηk

2 0.06 -0.006 0.02

The minimum expected return is μp = 0.018. As the risk measure to be minimized
choose CVaR. With the random portfolio return ζ (x,η) = η1x1 +η2x2 this means
that the objective function in (2.206) will be ρα

CVaR
(−ζ (x,η)) where we choose
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α = 0.99. Set up the portfolio optimization problem and solve it by employing
SLP–IOR.

2.14. Prove the following fact: if x∗ is an optimal solution of (2.208) with ν > 0 then

(a) x∗ is an optimal solution of (2.206) with μp = rTx∗ and
(b) it is an optimal solution of (2.207) with ψp = ρ(−ηTx∗).



Chapter 3

SLP models with recourse

For various SLP models with recourse, we present in this chapter properties which
are relevant for the particular solution methods developed for various model types,
to be discussed later on.

3.1 The general multi-stage SLP

As briefly sketched in Section 1.1 an SLP with recourse is a dynamic decision model
with T ≥ 2 stages, as illustrated in Fig. 3.1,

ξ3 ξ
T

ξ2 ξ4

x
1 x

4
x
3

x
T

x
2

Fig. 3.1 Dynamic decision structure.

where for feasibility sets, emerging stagewise during the horizon T = {1,2, · · · ,T},

Bt(x1, · · · ,xt−1;ξ2, · · · ,ξt), t ∈T ,

we take successively

– a first stage decision x1 ∈B1 ⊂�n1 ; then, after observing the realization of a
random variable (or vector) ξ2,

– a second stage decision x2(x1;ξ2)∈B2(x1;ξ2)⊂�n2 ; then after observing the
realization of a further random variable (or vector) ξ3,

191P. Kall, J. Mayer, Stochastic Linear Programming, 2nd edition, International Series in 
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© Springer Science+Business Media, LLC 2011
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– a third stage decision x3(x1,x2;ξ2,ξ3) ∈ B3(x1,x2;ξ2,ξ3) ⊂�n3 ; and so on
until, after observing the realization of ξT , finally

– a T -th stage decision
xT (x1, · · · ,xT−1;ξ2, · · · ,ξT ) ∈BT (x1, · · · ,xT−1;ξ2, · · · ,ξT )⊂�nT .

Here the feasibility set Bt(x1, · · · ,xt−1;ξ2, · · · ,ξt) for xt is given by (random) linear
constraints, depending on the previous decisions x1, · · · ,xt−1 and the observations of
ξ2, · · · ,ξt .

For each stage t the decision xt(x1, · · · ,xt−1;ξ2, · · · ,ξt) involves the t-th stage
objective value cT

t (ξ2, · · · ,ξt)xt(x1, · · · ,xt−1;ξ2, · · · ,ξt), and the goal is to minimize
the expected value of the sum of these T objectives.

More precisely, with any set Ω �= /0, some σ -algebra G of subsets of Ω and
a probability measure P : G → [0,1], the general model may be stated as follows:
Given the probability space (Ω ,G ,P), random vectors ξt :Ω −→�rt , and the prob-
ability distribution�ξ induced by ξ = (ξT

2 , · · · ,ξT
T )

T :Ω −→�R, R= r2+ · · ·+rT ,

on the Borel σ -field of�R, with ζt = (ξT
2 , · · · ,ξT

t )
T being the state variable at stage

t, the multi-stage stochastic linear program (MSLP) reads as

min{cT
1 x1 +�

T

∑
t=2

cT
t (ζt)xt(ζt)}

A11x1 = b1

At1(ζt)x1 +
t

∑
τ=2

Atτ(ζt)xτ(ζτ) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where xt :�r2+···+rt −→�nt is to be Borel measurable, implying that xt(ζt(·)) :
Ω −→�nt is Ft -measurable, with Ft = σ(ζt) ⊂ G , the σ -algebra in Ω gener-
ated at stage t by {ζ−1

t [M] | M ∈ �r2+···+rt}. With ζ1 ≡ ξ1 = const and there-
fore F1 = { /0,Ω}, it follows that Ft ⊂ Ft+1 for t = 1, · · · ,T − 1, such that
F = {F1,F2, · · · ,FT} is a filtration. With xt(ζt(·)) being Ft -measurable for
t = 1, · · · ,T , the policy {xt(ζt(·)); t = 1, · · · ,T} is said to be F -adapted or else
nonanticipative.

The ξt :Ω −→�rt as random vectors defined on the probability space {Ω ,G ,P}
are obviously G -measurable. According to the definition in (2.6) on page 73, we
say that ξt ∈ L 2

rt := L 2
rt (Ω ,G ,�rt ) if, in addition, the ξt are square integrable,

i.e. if
∫
Ω
‖ξt(ω)‖2P(dω) exists. In particular, for any arbitrary Ft -simple function

γt(ω) := ∑K
i=1 gi · χMi(ω) with gi ∈�rt , χMi(ω) = 1 if ω ∈ Mi and χMi(ω) = 0

otherwise, Mi ∈Ft , Mi ∩Mj = /0 for i �= j, and ∪K
i=1Mi = Ω , it obviously follows

that γt ∈L 2
rt (Ω ,�rt ).

Assumption 3.1. Let

– ξt ∈L 2
rt := L 2

rt (Ω ,G ,�rt ) ∀t,
– Atτ(·),bt(·),ct(·) be linear affine in ζt (and therefore Ft -measurable), where

Atτ(·) is a mt ×nτ -matrix.
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Due to this assumption, also the elements of Atτ(·),bt(·),ct(·) are square-integrable
with respect to P. Hence, requiring that ξt ∈L 2

rt ∀t holds, Schwarz’s inequality (see
e.g. Zaanen [353]) implies in particular that�[cT

t (ζt)xt(ζt)], t = 2, · · · ,T , exist, such
that problem (3.1) is well defined.
Sometimes the following reformulation of (3.1) may be convenient: Given

– a probability space (Ω ,G ,P);
– Ft , t = 1, · · · ,T, being σ -algebras such that Ft ⊂ G ∀t and Ft ⊂ Ft+1 for

t = 1, · · · ,T −1 (i.e. {Ft | t = 1, · · · ,T} being a filtration);
– F := {F1, · · · ,FT}, where possibly, but not necessarily, FT = G ;
– Xt a linear subspace of L 2

nt (with respect to (Ω ,G ,P)), including the set of
Ft -simple functions;

– Mt the set of Ft -measurable functions Ω −→�nt and hence, Xt ∩Mt being a
closed linear subspace of Xt ;

then problem (3.1) may be restated as

min�

{
T

∑
t=1

cT
t xt

}

t

∑
τ=1

Atτxτ = bt a.s.

xt ≥ 0 a.s.
xt ∈ Xt ∩Mt

⎫⎪⎪⎬
⎪⎪⎭

t = 1, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

with Atτ ,bt ,ct assumed to be Ft -measurable for 1≤ τ ≤ t, t = 1, · · · ,T , and to have
finite second moments, as implied by Assumption 3.1. (remember: F1 = { /0,Ω},
such that A11,b1,c1 are constant).

Following S.E. Wright [347] various aggregated problems may be derived from
(3.2) by using coarser information structures, chosen as subfiltrations F̂ = {F̂t},
F̂t ⊂ F̂t+1, such that F̂t ⊆ Ft , ∀t, instead of the original filtration F = {Ft},
Ft ⊂Ft+1, t = 1, · · · ,T −1.
Denoting problem (3.2) as P(F ,F ), we then may consider

– the decision-aggregated problem P(F̂ ,F ),

min�

{
T

∑
t=1

ctxt

}

t

∑
τ=1

Atτxτ = bt a.s.

xt ≥ 0 a.s.
xt ∈ Xt ∩ M̂t

⎫⎪⎪⎬
⎪⎪⎭

t = 1, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where M̂t is the set of F̂t -measurable functions Ω −→�nt , thus requiring that
x = (xT

1 , · · · ,xT
T )

T is F̂ -adapted;
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– the constraint-aggregated problem P(F ,F̂ ),

min�

{
T

∑
t=1

ctxt

}

�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
= �

{
bt

∣∣∣ F̂t

}
a.s.

xt ≥ 0 a.s.
xt ∈ Xt ∩Mt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t = 1, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

i.e. x is F -adapted as in (3.2), and the constraints are stated in conditional
expectation given F̂t ;

– and the fully aggregated problem P(F̂ ,F̂ ) defined as:

min�

{
T

∑
t=1
�[ct | F̂t ]xt

}

�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
= �

{
bt

∣∣∣ F̂t

}
a.s. ∀t

xt ≥ 0 a.s. ∀t
xt ∈ Xt ∩ M̂t ∀t .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

Observe that by Assumption 3.1. the expected values

�

{
t

∑
τ=1

Atτxτ

}
and �{bt}

exist and hence, the conditional expectations in (3.4) and (3.5),

�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
and �

{
bt

∣∣∣ F̂t

}
,

are a.s. uniquely determined and F̂t -measurable due to the Radon-Nikodym theo-
rem (see e.g. Halmos [131]).

Denoting for the above problems P(F ,F ), P(F̂ ,F ), P(F ,F̂ ), P(F̂ ,F̂ )

– their feasible sets by B(F ,F ), B(F̂ ,F ), B(F ,F̂ ) and B(F̂ ,F̂ ), and
– their optimal values by inf(P(F ,F )), inf(P(F̂ ,F )), inf(P(F ,F̂ )) and

inf(P(F̂ ,F̂ )),

respectively, and with the usual convention that inf{ϕ(x) | x∈B}= ∞ if B = /0, the
following relations between the above problems are mentioned in S.E. Wright [347]:

Proposition 3.1. For the feasible sets of the above problems hold the inclusions
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B(F ,F )⊇B(F̂ ,F ) B(F ,F )⊆B(F ,F̂ )

B(F̂ ,F )⊆B(F̂ ,F̂ ) B(F ,F̂ )⊇B(F̂ ,F̂ ) ,

implying for the corresponding optimal values the inequalities

inf(P(F ,F̂ )) ≤ inf(P(F ,F )) ≤ inf(P(F̂ ,F ))

inf(P(F ,F̂ )) ≤ inf(P(F̂ ,F̂ )) ≤ inf(P(F̂ ,F )) .

Proof: The above inclusions result from the following observations:

B(F ,F )⊇B(F̂ ,F ): Any {xt} ∈B(F̂ ,F ) satisfies the constraints of (3.3) and

hence in particular the conditions xt ∈ Xt ∩ M̂t ∀t. Since F̂t ⊆Ft ∀t, we then have
xt ∈ Xt ∩Mt ∀t, such that {xt} ∈B(F ,F ).

B(F ,F )⊆B(F ,F̂ ): Any {xt} ∈B(F ,F ) is F -adapted and satisfies all other

constraints in (3.2), in particular the random vectors
t

∑
τ=1

Atτxτ and bt , measurable

w.r.t. Ft , coincide almost surely, such that for any sub–σ–algebras F̂t ⊆Ft their

conditional expectations�

{
t

∑
τ=1

Atτxτ
∣∣∣ F̂t

}
and�

{
bt

∣∣∣ F̂t

}
, being a.s. uniquely

determined and F̂t -measurable as mentioned above, coincide a.s. as well. Hence we
have {xt} ∈B(F ,F̂ ).

The two remaining inclusions,

B(F̂ ,F )⊆B(F̂ ,F̂ ) and B(F ,F̂ )⊇B(F̂ ,F̂ ),

as well as the inequalities for the optimal values, are now obvious. �

Remark 3.1. Concerning the fully aggregated problem (3.5) we have the following
facts:

• If F is infinite, i.e. at least one of the σ -algebras Ft = σ(ζt), t = 1, · · · ,T ,
is not finitely generated (equivalently, at least one random vector ζt has not a
finite discrete distribution), and F̂ is finite, then P(F̂ ,F̂ ) with finitely many
constraints and variables is clearly simpler to deal with than P(F ,F );

• for a sequence {F̂ ν} of (finite) filtrations with successive refinements, i.e.
F̂ ν

t ⊆ F̂ ν+1
t ∀t, under appropriate assumptions, e.g. for a corresponding se-

quence of measures Pν on F̂ ν
T converging weakly to P (see Billingsley [20]),

we may expect convergence of the optimal values of (3.5) to that one of (3.2);
• according to Prop. 3.1., in general there is no definite relationship between the

optimal values of (3.5) and of (3.2), as remarked for instance by Wright [347]
(p. 900); however there are special problem classes—in particular in the two-
stage case—and particular assumptions for the multi-stage case implying that
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inf(P(F̂ ,F̂ )) yields a lower bound for inf(P(F ,F )), which can be used in
designing solution methods, as we shall see later. �

First we shall deal with two-stage SLP’s. Under various assumptions on the model
structure and the underlying probability distributions, we shall reveal properties of
the recourse function and its expectation which turn out to be useful when design-
ing solution methods. Unfortunately, not all of these results can be generalized to
corresponding statements for multi-stage SLP’s in general.

3.2 The two-stage SLP: Properties and solution appraoches

In the previous section, for the T -stage SLP we had the following general proba-
bilistic setup: On some probability space (Ω ,G ,P) a sequence of random vectors
ξt : Ω −→�rt , t = 2, · · · ,T, was defined, such that ξ = (ξT

2 , · · · ,ξT
T )

T induced the
probability distribution �ξ on the Borel σ -field of �r2+···+rT . Then the random
vectors ζt = (ξT

2 , · · · ,ξT
t )

T, t = 2, · · · ,T, implied the filtration F = {F2, · · · ,FT}
in G with Ft = σ(ζt). Restricting ourselves in this section to the case T = 2 allows
for the following simplification of this setup.

Assume some probability space (Ω ,F ,P) together with a random vector ξ :
Ω →�r to be given, such that F = σ(ξ ). Then ξ induces the probability measure
�ξ on�r, the Borel σ -algebra in�r, according to�ξ (B) = P(ξ−1[B]) ∀B ∈�r.

Besides deterministic arrays A ∈�m1×n1 , b ∈�m1 , and c ∈�n1 , for the first
stage, let the random arrays T (ξ ) ∈�m2×n1 , W (ξ ) ∈�m2×n2 , h(ξ ) ∈�m2 , and
q(ξ ) ∈�n2 , be defined for the second stage as:

T (ξ ) = T +
r

∑
j=1

T j ξ j ; T, T j ∈�m2×n1 deterministic,

W (ξ ) = W +
r

∑
j=1

W j ξ j ; W, W j ∈�m2×n2 deterministic,

h(ξ ) = h+
r

∑
j=1

h j ξ j ; h, h j ∈�m2 deterministic,

q(ξ ) = q+
r

∑
j=1

q j ξ j ; q, q j ∈�n2 deterministic.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

Then, with ξ ∈L 2
r due to Assumption 3.1. and according to (3.2), the general two-

stage SLP with random recourse is formulated as

min�ξ
{

cTx+qT(ξ )y(ξ )
}

Ax = b
T (ξ )x + W (ξ )y(ξ ) = h(ξ ) a.s.

x ≥ 0
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y ∩M,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)
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where Y —corresponding to (3.2)—is a linear subspace of L 2
n2

(with respect to
(Ω ,F ,P)), including the set of F -simple functions; and M is the set of F -
measurable functions Ω −→�n2 . To avoid unnecessary formalism, we may just
assume, that Y = L 2

n2
which obviously contains the F -simple functions and satis-

fies Y ⊂M.
Hence problem (3.7) is equivalent to

min�ξ
{

cTx+qT(ξ )y(ξ )
}

Ax = b
T (ξ )x + W (ξ )y(ξ ) = h(ξ ) a.s.

x ≥ 0
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

A brief sketch on modeling situations leading to variants of the general two-stage
SLP (3.8) is given in Chapter 1 on page 4.

Remark 3.2. Instead of the constraints {Ax = b, x ≥ 0} in (3.8) we also could
consider constraints of the form {Ax ∝ b, l ≤ x≤ u} as in (1.1) on page 1, and the
constraints {W (ξ )y(ξ ) = h(ξ )−T (ξ )x, y(ξ ) ≥ 0 a.s.} of (3.8) could be replaced
as well by {W (ξ )y(ξ ) ∝ h(ξ )− T (ξ )x, l̃ ≤ y(ξ ) ≤ ũ a.s.}. However, in order to
have a unified presentation, for two-stage programs we stay with the formulation
chosen in (3.8). �

Except for particular cases where it is stated explicitly otherwise, instead of (3.6)
we shall restrict ourselves to W (·) ≡W , i.e. to fixed recourse. In general, problem
(3.8) contains implicitly the recourse function

Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ )) := inf
y

qT(ξ )y(ξ )

T (ξ )x + W (ξ )y(ξ ) = h(ξ ) a.s.
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.9)

To simplify the notation, we shall enter into the recourse function Q(x; ·) of (3.9),
in addition to the first stage decision variable x, only those parameter arrays be-
ing random in the model under consideration. For instance, Q(x;T (ξ ),h(ξ )) indi-
cates that T (·), h(·) are random arrays defined according to (3.6) whereas W (·) ≡
W, q(·) ≡ q; and Q(x;h(ξ )) stands for h(·) being a random vector due to (3.6) and
T (·)≡ T, W (·)≡W, q(·)≡ q being deterministic data.

Furthermore, in applications of this model, the selection of a decision x̂ feasible
for the first stage constraints Ax = b, x ≥ 0, appears to be meaningful only if it
allows almost surely to satisfy the second stage constraints W (ξ )y(ξ ) = h(ξ )−
T (ξ )x̂, y(ξ )≥ 0 a.s., since otherwise, according to the usual convention, we should
get for the recourse function
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Q(x̂;T (ξ ),h(ξ ),W (ξ ),q(ξ )) =
= inf

y∈Y
{qT(ξ )y(ξ ) |W (ξ )y(ξ ) = h(ξ )−T (ξ )x̂, y(ξ )≥ 0 a.s.}=+∞

with some positive probability. This implies

– either Q(x̂) :=�ξ [Q(x̂;T (ξ ),h(ξ ),W (ξ ),q(ξ ))] = +∞ ,
– or else the expected recourse Q(x̂) to be undefined if with positive probability

Q(x̂;T (ξ ),h(ξ ),W (ξ ),q(ξ )) =−∞ results simultaneously.

Clearly in anyone of these situations x̂ is not to be chosen since neither an infinite
nor an undefined objective value corresponds to our aim to minimize the objective
of (3.8). Hence, in general we may be faced with so-called induced constraints on
x, meaning that we require

x̂ ∈ K := {x | x ∈�n1 ; Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ ))<+∞ a.s.} .

For Ξ = supp�ξ—the support of �ξ , i.e. the smallest closed set in �r such that
�ξ (Ξ) = 1—being an infinite set, K is described in general by an infinite set of
constraints, which is not easy to deal with. If however Ξ is either finite, i.e. Ξ =
{ξ 1, · · · ,ξρ}, or else a convex polyhedron given by finitely many points as Ξ =
conv{ξ 1, · · · ,ξρ} (see Chapter 1, Def. 1.3. on page 10), then the induced constraints
imply x ∈ K with

K := {x | T (ξ j)x+W (ξ j)y j = h(ξ j), y j ≥ 0, j = 1, · · · ,ρ} ,

and, with B1 := {x | Ax = b, x≥ 0} ⊂�n1 , the first stage decisions have to satisfy
x ∈ B1 ∩K. A more detailed discussion of induced constraints may be found in
Rockafellar–Wets [285] and in Walkup–Wets [340] (see also Kall [154], Ch. III).

3.2.1 The complete fixed recourse problem (CFR)

If for a particular application it does not seem appropriate, that the future outcomes
of ξ affect the set of feasible first stage decisions, given as

B1 = {x | Ax = b , x≥ 0}, (3.10)

we might require at least relatively complete recourse:

∀x ∈B1 =⇒{y |W (ξ )y = h(ξ )−T (ξ )x, y≥ 0} �= /0 a.s. . (3.11)

Due to the Farkas lemma, Chapter 1, Prop. 1.13. on page 15, condition (3.11) is
equivalent to:

∀x ∈B1 holds :
[
W T(ξ )u≤ 0 =⇒ (h(ξ )−T (ξ )x)Tu≤ 0 a.s.

]
.
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Hence the requirement of relatively complete recourse is a joint restriction on B1
and on the range of h(ξ ),T (ξ ),W (ξ ) for ξ ∈ Ξ , simultaneously, which may be
difficult to verify, in general.

Therefore, in applications it is often preferred to assume complete fixed recourse
(CFR), which requires for W (ξ )≡W the following condition:

{z | z =Wy, y≥ 0}=�m2 . (3.12)

If this condition is satisfied, then for any x̂ feasible according to an arbitrary set of
first stage constraints in (3.8), and for any realization ξ̂ of the random vector ξ , the
second stage constraints in (3.9) are feasible. Furthermore, complete fixed recourse
is a condition on the matrix W only, and may easily be checked due to

Lemma 3.1. A matrix W ∈�m2×n2 satisfies the complete recourse condition (3.12)
if and only if

– rank(W ) = m2, and
– for an arbitrary set {Wi1 ,Wi2 , · · · ,Wim2

} of linearly independent columns of W,
the linear constraints

Wy = 0
yik ≥ 1 , k = 1, · · · ,m2 ,

y ≥ 0

⎫⎬
⎭ (3.13)

are feasible.

Proof: Assume that W is a complete recourse matrix. Then from (3.12) follows that
rank(W ) = m2 necessarily holds.

Furthermore, for some selection {Wi1 ,Wi2 , · · · ,Wim2
} of linearly independent

columns of W , let

ẑ =−
m2

∑
k=1

Wik .

By our assumption on W , we have {y |Wy = ẑ, y ≥ 0} �= /0. Hence, with the index
set { j1, · · · , jn2−m2} chosen such that

{i1, i2, · · · , im2}∩{ j1, · · · , jn2−m2} = /0
and {i1, i2, · · · , im2}∪{ j1, · · · , jn2−m2} = {1, · · · ,n2} ,

there exists a feasible solution ŷ of

m2

∑
k=1

Wik ŷik +
n2−m2

∑
l=1

Wjl ŷ j l = ẑ

= −
m2

∑
k=1

Wik

ŷi ≥ 0 , i = 1, · · · ,n2.

Hence, with
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yν =

{
ŷν +1 , ν = i1, i2, · · · , im2 ,
ŷν , ν = j1, j2, · · · , jn2−m2 ,

the constraints (3.13) are necessarily satisfied.

Assume now that the conditions of this lemma hold. Choose an arbitrary z̄∈�m2 .
Then the linear equation

m2

∑
k=1

Wik yik = z̄

has a unique solution {ȳi1 , · · · , ȳim2
}. If ȳik ≥ 0 for k = 1, · · · ,m2, we have a feasible

solution for the recourse equation Wy= z̄. Otherwise, set γ :=min{ȳi1 , · · · , ȳim2
}< 0.

Let ỹ be a feasible solution of (3.13). Then for

ŷν =

{
ȳν − γ ỹν , ν = i1, i2, · · · , im2 ,
−γ ỹν , ν = j1, j2, · · · , jn2−m2 ,

follows

Wŷ =
m2

∑
k=1

Wik ŷik +
n2−m2

∑
l=1

Wjl ŷ jl

=
m2

∑
k=1

Wik (ȳik − γ ỹik)︸ ︷︷ ︸
≥0

+
n2−m2

∑
l=1

Wjl (−γ ỹ jl )︸ ︷︷ ︸
≥0

= z̄− γ
n2

∑
r=1

Wrỹr

︸ ︷︷ ︸
=0

such that ŷ is a feasible solution of Wy = z̄, y≥ 0. �

Hence, to verify complete fixed recourse, we only have to determine rank(W )
and—if rank(W ) = m2 is satisfied—to check the feasibility of (3.13) by apply-
ing any algorithm for finding a feasible basic solution of this system, as e.g. the
method described in Section 1.2.4 on page 19. Throughout our discussion of two-
stage SLP’s we shall make the

Assumption 3.2. The recourse matrix W satisfies the complete fixed recourse con-
dition (3.12).

Even for the complete fixed recourse case if, with C P being the polar cone of
C = {y |Wy = 0, y≥ 0}, it happens that

Ξ ∩{ξ | −q(ξ ) ∈ C P} �= Ξ ,

then, due to Prop. 1.6. in Chapter 1 (p. 11) {ξ | −q(ξ ) ∈ C P} �= /0 is closed, such
that the definition of the support Ξ implies�ξ (Ξ ∩{ξ | −q(ξ ) ∈ C P})< 1.

Hence, with Ξ0 = Ξ \{ξ | −q(ξ ) ∈ C P}, by Prop. 1.7. in Chapter 1 (p. 12) fol-
lows Q(x;T (ξ ),h(ξ ),q(ξ ))=−∞ for ξ ∈Ξ0 with probability�ξ (Ξ0)> 0, yielding
Q(x) =−∞ ∀x ∈B1.
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Therefore, for allowing the objective of (3.8) to discriminate among various first
stage feasible solutions, we need to assume that −q(ξ ) ∈ C P ∀ξ ∈ Ξ , i.e. using the
Farkas lemma (Chapter 1, Prop. 1.13. on page 15) we add to Assumption 3.2. the
further

Assumption 3.3. The recourse matrix W together with q(·) satisfy

{u |W Tu≤ q(ξ )} �= /0 ∀ξ ∈ Ξ . (3.14)

Observe that due to (3.14) the requirement that−q(ξ ) ∈ C P∀ξ ∈ Ξ is equivalent to
dual feasibility of the recourse problem, a.s.

Lemma 3.2. Given Assumptions 3.2. and 3.3., for any x ∈�n1 there exists an opti-
mal recourse y(·) ∈ Y such that Q(x;T (ξ ),h(ξ ),q(ξ )) = qT(ξ )y(ξ ).

Proof: Due to Assumptions 3.2. and 3.3. the LP

minqT(ξ )y
s.t. Wy = h(ξ )−T (ξ )x

y ≥ 0

⎫⎬
⎭ (3.15)

is solvable for all ξ ∈Ξ . Let B(ν), ν = 1, · · · ,K, denote all bases out of W (i.e. all the
regular m2×m2-submatrices of W ). Partitioning W into the basic part B(ν) and the
nonbasic part N(ν) and correspondingly restating q(ξ ) ∼= (qB(ν) (ξ ),qN(ν) (ξ )) and
y ∼= (yB(ν) ,yN(ν) ), we know from Prop. 1.3. in Chapter 1 (p. 9) that with the convex
polyhedral set

Aν := {ξ | B(ν)−1
(h(ξ )−T (ξ )x)≥ 0, qT

B(ν) (ξ )B(ν)−1
N(ν)−qT

N(ν) (ξ )≤ 0}

y(ξ )∼=
(

yB(ν) (ξ ) = B(ν)−1
(h(ξ )−T (ξ )x),yN(ν) (ξ ) = 0

)
solves (3.15) for any ξ ∈

Aν . Furthermore, from (3.6) follows y(·) ∈ L 2
n2
(Aν ,�

r,�n2) for ν = 1, · · · .K.

Since—due to the solvability of (3.15) for all ξ ∈ Ξ—we have that
K⋃

ν=1

Aν ⊃ Ξ ,

this inclusion also holds for
K⋃

ν=1

ˆAν with the sets ˆAν being defined as ˆA1 = A1 and

ˆAν = Aν \⋃ν−1
μ=1 Aμ for ν = 2, · · · ,K.

Therefore, {Ξ ∩ ˆAν | ν = 1, · · · ,K} is a (disjoint) partition of Ξ with y(·) accord-
ing to

y(ξ )∼=
(

yB(ν) (ξ ) = B(ν)−1
(h(ξ )−T (ξ )x),yN(ν) (ξ ) = 0

)
for ξ ∈ ˆAν
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a solution of (3.15), being piecewise linear in ξ and hence belonging to Y , and
yielding Q(x;T (ξ ),h(ξ ),q(ξ )) = qT(ξ )y(ξ ). �

The above convex polyhedral sets Aν depend, by definition, on x, and so do the
pairwise disjoint sets ˆAν , which we may indicate by denoting them as ˆAν(x). Then
for some given x(i), i = 1,2, and any ξ ∈ Ξ there exist νi ∈ {1, · · · ,K} such that
ξ ∈ ˆAνi(x

(i)) and hence

Q(x(i);T (ξ ),h(ξ ),q(ξ )) = qT
B(νi)

(ξ )B(νi)
−1
(h(ξ )−T (ξ )x(i))

= ανi(ξ )+d(νi)
T
(ξ )x(i) ,

where ανi(ξ ) = qT
B(νi)

(ξ )B(νi)
−1

h(ξ ) ∈ L1

and −d(νi)(ξ ) = (qT
B(νi)

(ξ )B(νi)
−1

T (ξ ))T ∈ L1 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.16)

Since, due to the simplex criterion, u(νi) = B(νi)
−1T

qB(νi) (ξ ), i = 1,2, are dual
feasible with respect to (3.15), it follows for i �= j

ανi(ξ )+d(νi)
T
(ξ )x( j) = (h(ξ )−T (ξ )x( j))Tu(νi)

≤ (h(ξ )−T (ξ )x( j))Tu(ν j)

= αν j(ξ )+d(ν j)
T
(ξ )x( j)

= Q(x( j);T (ξ ),h(ξ ),q(ξ )) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

Now we are ready to show that (3.8) under appropriate assumptions is a mean-
ingful optimization problem.

Theorem 3.1. Let the Assumptions 3.2. and 3.3. be satisfied. Then the recourse
function Q(x;T (ξ ),h(ξ ),q(ξ )) is

a) finitely valued ∀x ∈B1, ξ ∈ Ξ ,
b) convex in x ∀ξ ∈ Ξ , and
c) Lipschitz continuous in x ∀ξ ∈ Ξ with a Lipschitz constant D(ξ ) ∈L 1

1 .

Proof:

a) The LP defining the recourse function Q(x;T (ξ ),h(ξ ),q(ξ )) is given by
(3.15) as

min{qT(ξ )y |Wy = h(ξ )−T (ξ )x, y≥ 0} ,
which due to Assumption 3.2. is primal feasible for arbitrary x ∈�n1 and ξ ∈
�

r, and according to Assumption 3.3. is also dual feasible ∀ξ ∈ Ξ ; therefore
it is solvable for all x ∈B1 and for all ξ ∈ Ξ , such that

Q(x;T (ξ ),h(ξ ),q(ξ )) is finitely valued ∀x ∈B1 and ∀ξ ∈ Ξ .

b) Hence for an arbitrary ξ̂ ∈ Ξ and some x(1),x(2) ∈B1 there exist y(i) for i =
1,2 such that



3.2 The two-stage SLP 203

Q(x(i);T (ξ̂ ),h(ξ̂ ),q(ξ̂ )) = qT(ξ̂ )y(i), where

Wy(i) = h(ξ̂ )−T (ξ̂ )x(i), y(i) ≥ 0.

Then for x̃ = λx(1) + (1−λ )x(2) with some λ ∈ (0,1) it follows that

ỹ = λy(1) + (1−λ )y(2) is feasible for Wy = h(ξ̂ )−T (ξ̂ )x̃, y≥ 0 .

Hence

Q(x̃;T (ξ̂ ),h(ξ̂ ),q(ξ̂ ))≤ qT(ξ̂ )ỹ = λqT(ξ̂ )y(1) + (1−λ )qT(ξ̂ )y(2) ,

showing the convexity of Q(x;T (ξ̂ ),h(ξ̂ ),q(ξ̂ )) in x.
c) For any two x(1) �= x(2) and any ξ ∈ Ξ , according to (3.16) there exist νi ∈

{1, · · · ,K}, i = 1,2, such that

Q(x(i);T (ξ ),h(ξ ),q(ξ )) = ανi(ξ )+d(νi)
T
(ξ )x(i) ,

and due to (3.17) holds

[αν1(ξ )+d(ν1)
T
(ξ )x(2)]− [αν1(ξ )+d(ν1)

T
(ξ )x(1)]

= d(ν1)
T
(ξ )(x(2)− x(1))

≤ Q(x(2);T (ξ ),h(ξ ),q(ξ ))−Q(x(1);T (ξ ),h(ξ ),q(ξ ))

≤ [αν2(ξ )+d(ν2)
T
(ξ )x(2)]− [αν2(ξ )+d(ν2)

T
(ξ )x(1)]

= d(ν2)
T
(ξ )(x(2)− x(1)) ,

such that

|Q(x(2);T (ξ ),h(ξ ),q(ξ ))−Q(x(1);T (ξ ),h(ξ ),q(ξ ))|
≤ max

i∈{1,2}
|d(νi)

T
(ξ )(x(2)− x(1))| ≤ max

i∈{1,2}
‖d(νi)(ξ )‖‖(x(2)− x(1))‖ .

Hence, with D(ξ ) = max
i∈{1,···,K}

‖d(νi)(ξ )‖ ∈ L1—due to (3.16)—follows the

proposition. �

Due to Chapter 1, Def. 1.10. (p. 54) a vector g ∈�n is a subgradient of a convex
function ϕ :�n −→� at a point x if it satisfies

gT(z− x)≤ ϕ(z)−ϕ(x) ∀z ,

and the subdifferential ∂ϕ(x) is the set of all subgradients of ϕ at x. In particular for
linear programs we have

Lemma 3.3. Assume that the LP
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min{cTx | Ax = b, x≥ 0}

is solvable ∀b ∈�m. Then its optimal value ϕ(b) (obviously convex in b) is sub-
differentiable at any b, and the subdifferential is given as ∂ϕ(b) = argmax{bTu |
ATu≤ c}, the set of optimal dual solutions at b.

Proof: For a given b̂ let û ∈ argmax{b̂ Tu | ATu≤ c}, such that ϕ(b̂) = b̂ Tû. Hence
û is also feasible for the LP ϕ(b̃) = max{b̃ Tu | ATu≤ c} for an arbitrary b̃ such that
b̃ Tû≤ ϕ(b̃) holds. Hence

ûT(b̃ − b̂)≤ ϕ(b̃)−ϕ(b̂)

showing that argmax{b̂ Tu | ATu≤ c} ⊂ ∂ϕ(b̂).
Assume now that g ∈ ∂ϕ(b̂) for some b̂ . Therefore, for any b holds

gT(b− b̂)≤ ϕ(b)−ϕ(b̂) .

With x̂ ∈ argmin{cTx | Ax = b̂ , x≥ 0} and x(i) = x̂+ ei(≥ 0), i = 1, · · · ,n, (ei the i-
th unit vector), by our assumption, for all b(i) = Ax(i), the LP’s ϕ(b(i)) = min{cTx |
Ax = b(i), x≥ 0} are solvable. Obviously we have ϕ(b(i))≤ cTx(i) such that

gTAei = gTA(x(i)− x̂) = gT(b(i)− b̂)
≤ ϕ(b(i))−ϕ(b̂)
≤ cTx(i)− cTx̂ = cTei, i = 1, · · · ,n,

implying ATg ≤ c, the dual feasibility of g. Then, due to the weak duality theorem
(Chapter 1, Prop. 1.9., page 13), we have gTb̂ −ϕ(b̂) ≤ 0. Assume that with some
α < 0 holds gTb̂ −ϕ(b̂)≤ α . For b̃ = 0 obviously follows ϕ(b̃) = 0 such that the
subgradient inequality, valid for all b, yields

0 = gTb̃ −ϕ(b̃)≤ gTb̂ −ϕ(b̂)≤ α < 0 .

This contradiction, implied by the assumption gTb̂ − ϕ(b̂) ≤ α < 0, shows that
gTb̂ = ϕ(b̂) and hence ∂ϕ(b̂)⊂ argmax{b̂ Tu | ATu≤ c} . �

Now we get immediately

Theorem 3.2. Let the Assumptions 3.2. and 3.3. be satisfied. Then the recourse
function Q(x;T (ξ ),h(ξ ),q(ξ )) is subdifferentiable in x for any ξ ∈ Ξ . For any x̂
holds (the subscript at ∂ indicating the variable of subdifferentiation)

∂xQ(x̂;T (ξ ),h(ξ ),q(ξ )) =
= {−T T(ξ )û | û ∈ argmax{(h(ξ )−T (ξ )x̂)Tu |W Tu≤ q(ξ )}} ∀ξ ∈ Ξ .

Proof: For an arbitrary ξ ∈ Ξ define b(x;ξ ) := h(ξ )−T (ξ )x. Introducing

ψ(b(x;ξ );ξ ) := Q(x;T (ξ ),h(ξ ),q(ξ ))
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= min{qT(ξ )y |Wy = b(x;ξ ), y≥ 0},

from Lemma 3.3 follows for the subdifferential of ψ(·;ξ ) at b(x̂;ξ )

∂bψ(b(x̂;ξ );ξ ) = argmax{bT(x̂;ξ )u |W Tu≤ q(ξ )}.

Then from Prop. 1.25. in Chapter 1 (p. 55) we know that

∂xQ(x̂;T (ξ ),h(ξ ),q(ξ )) = −T T(ξ )∂bψ(b(x̂;ξ );ξ )
= −T T(ξ )argmax{bT(x̂;ξ )u |W Tu≤ q(ξ )}.

�

Theorem 3.3. Since ξ ∈L 2
r (i.e. ξ square-integrable with respect to �ξ ), the ex-

pected recourse Q(x) is

a) finitely valued ∀x ∈B1 , and
b) a convex and Lipschitz continuous function in x.

Hence, (3.8) is a convex optimization problem with a Lipschitz continuous objective
function.

Proof:

a) Let x̂ ∈�n1 be fixed. Due to Assumptions 3.2. and 3.3., for any ξ ∈ Ξ there
exists an optimal feasible basic solution of the recourse program (3.15), i.e.
there is an (m2×m2)-submatrix B of W such that

B−1(h(ξ )−T (ξ ))x̂ ≥ 0 and

Q(x̂;T (ξ ),h(ξ ),q(ξ )) = qB(ξ )TB−1(h(ξ )−T (ξ )x̂)

}
, (3.18)

where the components of the m2 – subvector qB(ξ ) of q(ξ ) correspond to the
columns in B selected from W , as mentioned in Chapter 1, Prop. 1.2. (p. 9).
Together with the simplex criterion, Prop. 1.3. in Chapter 1 (p. 9), such a
particular basis is feasible and optimal on a polyhedral subset ΞB ⊂ Ξ , a so-
called decision region (also: stability region).
According to (3.6) and (3.18), the recourse function Q(x̂;T (ξ ),h(ξ ),q(ξ )) is,
in general, a quadratic function in ξ for ξ ∈ ΞB, such that, due to the assump-

tion that ξ ∈ L2, the integral
∫
ΞB

Q(x̂;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) exists. By the

Assumptions 3.2. and 3.3., the support Ξ is contained in the union of finitely
many decision regions, which implies that also

Q(x̂) =
∫
Ξ

Q(x̂;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) exists.

b) In Theorem 3.1., for any ξ ∈ Ξ , the recourse function Q(x;T (ξ ),h(ξ ),q(ξ ))
has been shown to be convex and Lipschitz continuous in x, with a Lipschitz
constant D(ξ ) ∈L 1

1 .
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Hence the convexity of Q(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) is obvious.

And for any two x(1) and x(2) we have

|Q(x(1))−Q(x(2))|
≤
∣∣∣∣
∫
Ξ
{Q(x(1);T (ξ ),h(ξ ),q(ξ ))−Q(x(2);T (ξ ),h(ξ ),q(ξ ))}�ξ (dξ )

∣∣∣∣
≤
∫
Ξ

∣∣∣Q(x(1);T (ξ ),h(ξ ),q(ξ ))−Q(x(2);T (ξ ),h(ξ ),q(ξ ))
∣∣∣�ξ (dξ )

≤
∫
Ξ

D(ξ )‖x(1)− x(2)‖�ξ (dξ ) = D‖x(1)− x(2)‖

with the Lipschitz constant D =
∫
Ξ D(ξ )�ξ (dξ ). �

Corollary 3.1. Given that the random entries q(ξ ) and (h(ξ ),T (ξ )) are stochasti-
cally independent, then with ξ ∈L 1

r (instead of ξ ∈L 2
r as before), the conclusions

of Th. 3.3. hold true, as well.

Proof: Only the existence of Q(x) =
∫
Ξ Q(x;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) has to be

proved, which follows, with ξ ∈L 1
r (Ω ,�r), from the independence of q(ξ ) and

(h(ξ ),T (ξ )) according to

∫
ΞB

Q(x;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ) =

=
∫
ΞB

qB(ξ )TB−1(h(ξ )−T (ξ )x)�ξ (dξ )

=

(∫
ΞB

qB(ξ )�ξ (dξ )
)T(∫

ΞB

B−1(h(ξ )−T (ξ )x)�ξ (dξ )
)
.

�

Remark 3.3. In Theorem 3.2. the subdifferential of the recourse function at any x̂
under the Assumptions 3.2. and 3.3. was derived as

∂xQ(x̂;T (ξ ),h(ξ ),q(ξ )) =
= {−T T(ξ )û | û ∈ argmax{(h(ξ )−T (ξ )x̂)Tu |W Tu≤ q(ξ )}} ∀ξ ∈ Ξ .

It can be shown, that then Q(·) is subdifferentiable at x̂ and

∂Q(x̂) =
∫
Ξ
∂xQ(x̂;T (ξ ),h(ξ ),q(ξ ))�ξ (dξ ), (3.19)
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where this integral is understood as the set
{∫

Ξ
G(ξ )�ξ (dξ )

}
for all functions

G(·) being measurable selections from ∂xQ(x̂;T (·),h(·),q(·)) such that the integral∫
Ξ
‖G(ξ )‖�ξ (dξ ) exists.

Finally, Q(·) is differentiable at x̂ if and only if ∂xQ(x̂;T (·),h(·),q(·)) is a singleton
a.s. with respect to�ξ .

To prove statements of this type involves several technicalities, like the existence
of measurable selections from subdifferentials or equivalently, from solution sets
of optimization problems, integrability statements like Lebesgue’s bounded con-
vergence theorem, and so on. Under specific assumptions, these problems were
considered for instance in Kall [152], Kall–Oettli [170], Rockafellar [280] (see
also Kall [154]), and the general case is dealt with in Ch. 2 of Ruszczyński–
Shapiro [295], where a sketch of a proof is presented.

Due to the fact that (sub)gradient methods will—in general—not be a central
part of our discussion of solution approaches for recourse problems later on, we
omit a proof of the interchangeability of subdifferentiation and integration, as stated
in (3.19). �

3.2.1.1 CFR: Direct bounds for the expected recourse Q(x)

Finally, assume that q(ξ )≡ q, i.e. q(·) is deterministic. Then we have

Proposition 3.2. Given the Assumptions 3.2. and 3.3. (the latter one now reading
as {u |W Tu≤ q} �= /0), Q(x;T (·),h(·)) is a convex function in ξ for any x ∈�n1 .

Proof: According to (3.6) for any fixed x ∈�n1 the right–hand–side of the LP

Q(x;T (ξ ),h(ξ )) := min{qTy |Wy = h(ξ )−T (ξ )x, y≥ 0}

is linear in ξ , which implies the asserted convexity. �

In this case we have a lower bound for Q(x), frequently used in solution methods,
which is based on Jensen’s inequality [148]:

Lemma 3.4. Let ξ ∈�r be a random vector with probability distribution�ξ such
that �ξ [ξ ] exists, and assume ϕ : �r −→� to be a convex function. Then the
following inequality holds true:

ϕ(�ξ [ξ ])≤�ξ [ϕ(ξ )] . (3.20)

Proof: Due to Chapter 1, Prop. 1.25. (p. 55), at any ξ̂ ∈�r there exists a nonempty,
convex, compact subdifferential ∂ϕ(ξ̂ ). Hence for any linear affine function �(·) out
of the family L̃ξ̂ for some ξ̂ ∈�r with
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L̃ξ̂ := {l(·) | l(ξ ) := ϕ(ξ̂ )+gT
ξ̂ (ξ − ξ̂ ), gξ̂ ∈ ∂ϕ(ξ̂ )} , ξ̂ ∈�r ,

the set of linear support functions to ϕ(·) at ξ̂ , we have the subgradient inequality

�(ξ ) = ϕ(ξ̂ )+gT
ξ̂ (ξ − ξ̂ )≤ ϕ(ξ ) ∀ξ ∈�r .

By integration with respect to�ξ follows

�ξ [�(ξ )] = �(�ξ [ξ ]) = ϕ(ξ̂ )+gT
ξ̂ (�ξ [ξ ]− ξ̂ )≤�ξ [ϕ(ξ )]

such that �(�ξ [ξ ]) yields a lower bound for�ξ [ϕ(ξ )].

Since�ξ [ξ ] ∈�r, due to the subgradient inequality, at any ξ̂ ∈�r holds

�(�ξ [ξ ]) = ϕ(ξ̂ )+gT
ξ̂ (�ξ [ξ ]− ξ̂ )≤ ϕ(�ξ [ξ ]) ∀�(·) ∈ L̃ξ̂ .

Hence, in {L̃ξ̂ , ξ̂ ∈�r}, the set of all possible linear support functions to ϕ(·), we
get

argmax
ξ̂
{�(�ξ [ξ ]) | �(·) ∈ L̃ξ̂ , ξ̂ ∈�r}=�ξ [ξ ] .

Therefore, among all linear support functions to ϕ(·) we get the greatest lower
bound for �ξ [ϕ(ξ )] by choosing ξ̂ =�ξ [ξ ], i.e. �(ξ ) = ϕ(�ξ [ξ ])+ gT

�ξ [ξ ]
(ξ −

�ξ [ξ ]), yielding
�(�ξ [ξ ]) = ϕ(�ξ [ξ ])≤�ξ [ϕ(ξ )] .

�

Whereas under the assumptions of Lemma 3.4 we know for sure that the in-
tegral

∫
�

r ϕ(ξ )�ξ (dξ ) is bounded below, it cannot be excluded in general that
�ξ [ϕ(ξ )] = +∞ holds. In contrast, under our assumptions for Prop. 3.2. we know
from Cor. 3.1. that Q(x) = �ξ [Q(x;T (ξ ),h(ξ ))] is finite for all x ∈�n1 . From
Prop. 3.2. and Lemma 3.4 follows immediately the Jensen lower bound for the ex-
pected recourse:

Theorem 3.4. Given the Assumptions 3.2. and 3.3., with ξ̄ =�ξ [ξ ], the expected
recourse Q(x) =�ξ [Q(x;T (ξ ),h(ξ ))] is bounded below due to

Q(x;T (ξ̄ ),h(ξ̄ ))≤Q(x) . (3.21)

Observe that in this case the lower bound for the expected recourse is defined by
the one-point distribution �η with �η({η | η = ξ̄}) = 1, which does not depend
on the particular recourse function, since

∫
Q(x;T (η),h(η))�η(dη) = Q(x;T (ξ̄ ),h(ξ̄ ))≤Q(x)
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holds true for any function Q(x;T (·),h(·)) being convex in ξ .
Concerning upper bounds for the expected recourse, the situation is more diffi-

cult. The first attempts to derive upper bounds for the expectation of convex func-
tions of random variables are assigned to Edmundson [83] and Madansky [210].
Hence, the basic relation is referred to as Edmundson–Madansky inequality (E–M):

Lemma 3.5. Let τ be a random variable with supp�τ ⊆ [α,β ] ⊂� such that the
expectation μ = �τ [τ] ∈ [α,β ]. Then, for any convex function ψ : [α,β ] −→�
holds

�τ [ψ(τ)]≤�τ̂ [ψ(τ̂)] , (3.22)

where τ̂ is the discrete random variable with the two-point distribution

�τ̂({τ̂ | τ̂ = α}) = β −μ
β −α , �τ̂({τ̂ | τ̂ = β}) = μ−α

β −α . (3.23)

Proof: With λτ =
β − τ
β −α we have λτα+(1−λτ)β = τ ∀τ ∈ [α,β ] and λτ ∈ [0,1].

Due to the convexity of ψ follows

ψ(τ) = ψ(λτα+(1−λτ)β )≤ λτψ(α)+(1−λτ)ψ(β ) ∀τ ∈ [α,β ]

and therefore, integrating both sides of this inequality with respect to�τ ,

�τ [ψ(τ)]≤ β −μ
β −α ·ψ(α)+

μ−α
β −α ·ψ(β ) =�τ̂ [ψ(τ̂)] .

�

3.2.1.2 CFR: Moment problems and bounds for Q(x)

It is worthwhile to observe the following relation to the theory of moment problems
and semi-infinite programs.

Under the assumptions of Lemma 3.5 consider, with P the set of probability
measures on [α,β ], as primal (P) the problem

sup
�∈P

{∫ β

α
ψ(ξ )�(dξ )

∣∣∣
∫ β

α
ξ�(dξ ) = μ,

∫ β

α
�(dξ ) = 1

}
, (3.24)

a so-called moment problem, and as its dual problem (D)

inf
y∈�2

{y1 +μy2 | y1 +ξy2 ≥ ψ(ξ ) ∀ξ ∈ [α,β ]}, (3.25)

the corresponding semi-infinite program.
Since, as required by the constraints of (D), a linear affine function majorizes

a convex function on an interval if and only if it does so on the endpoints, (D) is
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equivalent to

min
y∈�2

{y1 +μy2 | y1 +αy2 ≥ ψ(α), y1 +βy2 ≥ ψ(β )} .

Due to the fact that α ≤ μ ≤ β this LP is solvable, and hence so is its dual (P),
which now reads as

max
pα ,pβ
{ψ(α)pα +ψ(β )pβ | pα + pβ = 1, α pα +β pβ = μ; pα , pβ ≥ 0}

and has, as the unique solution of its constraints, the distribution of τ̂ as given in
(3.23). It is worth mentioning that in this case the solution of the moment prob-
lem (P), i.e. the E–M distribution yielding the upper bound, is independent of the
particular choice of the convex function ψ : [α,β ]−→�.

Suppose now that we have a random vector ξ ∈�r. Then, as mentioned in Kall–
Stoyan [171], Lemma 3.5 can immediately be generalized as follows:

Lemma 3.6. Let supp�ξ ⊂ Ξ = ∏r
i=1[αi,βi]⊂�r and assume the components of

ξ to be stochastically independent. With μ =�ξ [ξ ] ∈ Ξ let�ηi , i = 1, · · · ,r, be the
two-point distributions defined on [αi,βi] as

�ηi({ηi | ηi = αi}) = βi−μi

βi−αi
, �ηi({ηi | ηi = βi}) = μi−αi

βi−αi
. (3.26)

Then for the random vector η ∈�r with the probability distribution given as

�η =�η1 ×�η2 ×·· ·×�ηr on Ξ =
r

∏
i=1

[αi,βi] (3.27)

it follows for any convex function ϕ : Ξ −→� that

�ξ [ϕ(ξ )]≤�η [ϕ(η)] . (3.28)

Proof: With �ξi the marginal distribution of �ξ for ξi ∈ [αi,βi], the assumed
stochastic independence of the components of ξ implies that

�ξ =�ξ1
×�ξ2

×·· ·×�ξr .

Hence the asserted inequality (3.28) follows immediately from Lemma 3.5 by in-
duction to r, using the fact that the product measures�ξ and�η allow for iterated
integration, as known from Fubini’s theorem (see Halmos [131]). �

Also in this case we may assign a moment problem, with P the set of all product
measures on Ξ = ∏r

i=1Ξi = ∏r
i=1[αi,βi], stated as (P)

sup
�∈P

{∫
Ξ
ϕ(ξ )Pξ1

(dξ1) · · ·Pξr(dξr)

∣∣∣∣∣
∫
Ξi
ξiPξi(dξi) = μi,∫

Ξi
Pξi(dξi) = 1,

∀i
}
, (3.29)
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and its dual semi-infinite program (D)

inf
y∈�2r

{
r

∑
i=1

(yi
1 +μiyi

2) | yi
1 +ξiyi

2 ≥ ϕ̃i(ξi) ∀ξi ∈ Ξi∀i
}

(3.30)

where with Ξ/Ξi := Ξ1×·· ·×Ξi−1×Ξi+1×·· ·×Ξr

ϕ̃i(ξi) =∫
Ξ/Ξi

ϕ(ξ1, · · · ,ξr)�ξ1
(dξ1) · · ·�ξi−1

(dξi−1)�ξi+1
(dξi+1) · · ·�ξr(dξr)

is obviously a convex function in ξi. Therefore again, the constraints of (D) are
satisfied if and only if they hold in the endpoints αi and βi of all intervals Ξi. Hence
(D) is equivalent to

inf
y∈�2r

{
r

∑
i=1

(yi
1 +μiyi

2) | yi
1 +αiyi

2 ≥ ϕ̃i(αi), yi
1 +βiyi

2 ≥ ϕ̃i(βi) ∀i
}
,

which due to μi ∈ [αi,βi] is solvable again and hence so is its dual, the moment
problem

max

{
r

∑
i=1

(ϕ̃i(αi)pi
αi
+ ϕ̃i(βi)pi

βi
)

}

s.t. αi pi
αi
+βi pi

βi
= μi, pi

αi
+ pi

βi
= 1 ∀i.

Since the only feasible solution of its constraints coincides with the two-point mea-
sures (3.26), the product measure (3.27) solving the moment problem (P) is inde-
pendent of the particular convex function ϕ , again.

For later use we just mention the following fact, which due to the above results
is evident:

Corollary 3.2. Let supp�ξ ⊂ Ξ = ∏r
i=1[αi,βi]⊂�r with μ =�ξ [ξ ] and assume

the function ϕ : Ξ −→� to be convex separable, i.e. ϕ(ξ ) =
r

∑
i=1

ϕi(ξi). Then, with

the distributions�ηi given in (3.26), it follows that

�ξ [ϕ(ξ )] =
r

∑
i=1
�ξ [ϕi(ξi)]≤

r

∑
i=1
�ηi [ϕi(ηi)] . (3.31)

We shall refer to (3.22), (3.28) and (3.31) as the E–M inequality. For the expected
recourse we then get the E–M upper bound:

Theorem 3.5. Assume that the components of ξ are stochastically independent and
that supp�ξ ⊂ Ξ = ∏r

i=1[αi,βi] with μ =�ξ [ξ ] ∈ Ξ . Given the Assumptions 3.2.
and 3.3., with the E–M distribution defined by (3.26) and (3.27) the expected re-
course Q(x) =�ξ [Q(x;T (ξ ),h(ξ ))] is bounded above according to
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Q(x)≤�η [Q(x;T (η),h(η))] . (3.32)

According to Lemma 3.6 and Cor. 3.2. we have the E–M inequality for multi-
dimensional distributions either for random vectors with independent components
or for convex integrands being separable. However this upper bound does not remain
valid for arbitrary integrands and dependent components, in general, as shown by
the following example:

Example 3.1. Let ξ be the discrete random vector in�2 with the

distribution of ξ :

realizations: (0,0) (1,0) (0,1) (1,1)
probabilities: 0.1 0.2 0.1 0.6

yielding the expectation ξ̄ = (0.8,0.7). This implies the

marginal distributions of ξ1 and ξ2:

realizations: 0 1
probabilities�ξ1

: 0.2 0.8
probabilities�ξ2

: 0.3 0.7

being obviously stochastically dependent. Using these marginal distributions to
compute the E–M distribution according to Th. 3.5., we get the

E–M distribution of η:

realizations: (0,0) (1,0) (0,1) (1,1)
probabilities: 0.06 0.24 0.14 0.56

with the expectation η̄ = (0.8,0.7). Then for any convex function ϕ(·, ·) such that

ϕ(0,0) = ϕ(1,0) = ϕ(0,1) = 0 and ϕ(1,1) = 1

we get �ξ [ϕ(ξ )] = 0.6 and �η [ϕ(η)] = 0.56. Hence, in this case, with the E–M
distribution (3.27) as derived for the independent case, the E–M inequality (3.28)
does not hold. �

To generalize the E–M inequality for random vectors with dependent components
and supp�ξ ⊂ Ξ = ∏r

i=1[αi,βi], and for arbitrary convex integrands, according to
Frauendorfer [102] we may proceed as follows:

Assume first that for some ξ ∈Ξ we have the random vector ζ with the one-point
distribution�ζ ({ζ | ζ = ξ}) = 1. Obviously the components of ζ are stochastically
independent, and for ηi(ξi) with the two-point distributions
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�ηi(ξi)({ηi | ηi = αi}) = βi−ξi

βi−αi

�ηi(ξi)({ηi | ηi = βi}) =
ξi−αi

βi−αi

⎫⎪⎪⎬
⎪⎪⎭

(3.33)

holds
�ηi(ξi) [ηi] = ξi =�ζi [ζi] . (3.34)

Hence for the probability measure

�η(ξ ) =�η1(ξ1)×�η2(ξ2)×·· ·×�ηr(ξr) on Ξ =
r

∏
i=1

[αi,βi] , (3.35)

defined on the vertices vν of Ξ , ν = 1, · · · ,2r, we have the probabilities

�η(ξ )(v
ν) = ∏

i∈Iν

βi−ξi

βi−αi
·∏

i∈Jν

ξi−αi

βi−αi
,

where Iν = {i | vνi = αi} and Jν = {1, · · · ,r} \ Iν (with ∏
i∈ /0
{·} = 1). Thus we get

immediately

Lemma 3.7. For any convex function ϕ : Ξ −→�, Jensen’s inequality implies

ϕ(�ζ [ζ ]) = ϕ(ξ ) ≤
∫
Ξ
ϕ(η(ξ ))�η(ξ )(dη)

=
2r

∑
ν=1

ϕ(vν)�η(ξ )(v
ν) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.36)

Hence, with the probability measure� defined on the vertices vν of Ξ by

�(vν) =
∫
Ξ
�η(ξ )(v

ν)�ξ (dξ )

=
∫
Ξ

∏
i∈Iν

βi−ξi

βi−αi
·∏

i∈Jν

ξi−αi

βi−αi
�ξ (dξ ) ,

⎫⎪⎪⎬
⎪⎪⎭

(3.37)

we get the generalized E–M inequality

�ξ [ϕ(ξ )]≤
2r

∑
ν=1

ϕ(vν)�(vν) . (3.38)

Remark 3.4. Observe that for stochastically independent components of ξ , due to
(3.37) we get for the generalized E–M distribution

�(vν) = ∏
i∈Iν

βi−μi

βi−αi
·∏

i∈Jν

μi−αi

βi−αi
,
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such that in this case� coincides with the E–M distribution�η for the independent
case as derived in (3.26) and (3.27). �

Hence Theorem 3.5. may be generalized as follows:

Theorem 3.6. Assume that supp�ξ ⊂Ξ =∏r
i=1[αi,βi] such that also μ =�ξ [ξ ]∈

Ξ . Under the Assumptions 3.2. and 3.3. and with the generalized E–M distribu-
tion � as defined in (3.37), according to (3.38) the expected recourse Q(x) =
�ξ [Q(x;T (ξ ),h(ξ ))] is bounded above as

Q(x) ≤
∫
Ξ

Q(x;T (η),h(η))�(dη)

=
2r

∑
ν=1

Q(x;T (vν),h(vν))�(vν) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.39)

For any Λ ⊂ {1, · · · ,r} let m̂Λ (ξ ) := ∏
k∈Λ

ξk and denote the joint mixed moments of

{ξk | k ∈Λ} as μΛ :=
∫
Ξ

m̂Λ (ξ )�ξ (dξ ) for all Λ ⊂ {1, · · · ,r} (with m̂ /0(ξ )≡ 1 and

μ /0 = 1).
Then we have, for any vertex vν of Ξ , that m̂Λ (vν) = ∏

k∈Λ∩Iν

αk · ∏
k∈Λ∩Jν

βk, and

from (3.34) and (3.35) follows

∫
Ξ

m̂Λ (η)�η(ξ )(dη) = m̂Λ (ξ ) =
2r

∑
ν=1

m̂Λ (vν) ·�η(ξ )(v
ν) , (3.40)

such that (3.37) and (3.40) imply

2r

∑
ν=1

m̂Λ (vν)�(vν) =
∫
Ξ

2r

∑
ν=1

m̂Λ (vν)�η(ξ )(v
ν)�ξ (dξ )

=
∫
Ξ

m̂Λ (ξ )�ξ (dξ ) = μΛ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.41)

Hence the upper bound distribution � of Lemma 3.7 preserves all joint moments
of the original distribution �ξ , suggesting to consider, for P being the set of all
probability measures on Ξ , the moment problem (P)

γ(P) :=

sup
�∈P

{∫
Ξ
ϕ(ξ )�(dξ )

∣∣∣
∫
Ξ

m̂Λ (ξ )�(dξ ) = μΛ ∀Λ ⊂ {1, · · · ,r}
}
. (3.42)

For the dual of this problem we assign the variables y0 to Λ = /0 (μ /0 = 1) and yΛ to
any nonempty subset Λ ⊂ {1, · · · ,r}. This yields the semi-infinite program (D)
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δ (D) := inf

{
y0 + ∑

Λ �= /0
μΛ yΛ

∣∣∣y0 + ∑
Λ �= /0

m̂Λ (ξ )yΛ ≥ ϕ(ξ ) ∀ξ ∈ Ξ
}
. (3.43)

Requiring the constraints of (D) to hold only at the vertices of Ξ yields the mod-
ified problem (D̃)

δ (D̃) := inf

{
y0 + ∑

Λ �= /0
μΛ yΛ

∣∣∣y0 + ∑
Λ �= /0

m̂Λ (vν)yΛ ≥ ϕ(vν), ν = 1, · · · ,2r

}

and its dual (P̃), the moment problem searching for a measure � in PextΞ , the set
of probability distributions on the vertices of Ξ , becomes

γ(P̃) := sup
PextΞ

{
2r

∑
ν=1

ϕ(vν)pν
∣∣∣

2r

∑
ν=1

m̂Λ (vν)pν = μΛ ∀Λ ⊂ {1, · · · ,r}
}
.

Due to (3.41) the upper bound distribution� of Lemma 3.7 is feasible for this mo-
ment problem (P̃). Furthermore, since the matrix of the system of linear constraints
of (P̃), i.e.

H := (m̂Λ (vν); ν = 1, · · · ,2r, Λ ⊂ {1, · · · ,r}),
is regular, as shown in Kall [157], the generalized E–M distribution� is the unique
solution of (P̃) and independent of ϕ . Finally, according to linear programming du-
ality and since PextΞ ⊂P we have

δ (D̃) = γ(P̃)≤ γ(P) .

On the other hand for any ξ ∈ Ξ , given the regularity of H, the linear system

2r

∑
ν=1

m̂Λ (vν)qν(ξ ) = m̂Λ (ξ ), Λ ⊂ {1, · · · ,r} (3.44)

has the unique solution {qν(ξ ) = �η(ξ )(vν); ν = 1, · · · ,2r} due to (3.40), being
continuous in ξ . Then for any� feasible in (P) follows

∀Λ ⊂ {1, · · · ,r} : μΛ =
∫
Ξ

m̂Λ (ξ )�(dξ )

=
∫
Ξ

2r

∑
ν=1

m̂Λ (vν)qν(ξ )�(dξ )

=
2r

∑
ν=1

m̂Λ (vν)q̂ν with q̂ν =
∫
Ξ

qν(ξ )�(dξ ) .

Hence {q̂ν ; ν = 1, · · · ,2r} is a probability distribution on the vertices of Ξ which is

feasible for the moment problem (P). Since (3.44) also includes
2r

∑
ν=1

vνqν(ξ ) = ξ ,
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by the convexity of ϕ follows for the objective of (P)

2r

∑
ν=1

ϕ(vν)q̂ν =
∫
Ξ

2r

∑
ν=1

ϕ(vν)qν(ξ )�(dξ )≥
∫
Ξ
ϕ(ξ )�(dξ ) .

Therefore we have
γ(P̃)≥ γ(P) =⇒ γ(P̃) = γ(P) ,

such that the generalized E–M distribution� solves the moment problem (P), and
as shown in Kall [157], it is the unique solution of (P).

Remark 3.5. In the above cases we could reduce particular moment problems (P),
as e.g. (3.42), stated on P , the set of all probability measures on some support Ξ , to
moment problems (P̃) on Pd, some sets of probability measures with finite discrete
supports Ξd ⊂ Ξ , such that a solution of (P̃) was simultaneously a solution of (P).

This observation is not surprising in view of a very general result, mentioned in
Kemperman [181] and assigned to Richter [276] and Rogosinski [289], stated as
follows:

“Let f1, · · · , fN be integrable functions on the probability space (Ω ,G ,P). Then
there exists a probability measure P̃ with finite support in Ω such that

∫
Ω

fi(ω)P(dω) =
∫
Ω

fi(ω)P̃(dω) , i = 1, · · · ,N.

Even card(supp P̃)≤ N +1 may be achieved.”

Hence we can take advantage of the theory of semi-infinite programming. With

S, an arbitrary (usually infinite) index set, and
a : S−→�n, b : S−→�, c ∈�n arbitrary,

the problem
v(P) := inf{cTy | aT(s)y≥ b(s) ∀s ∈ S}

is called a (primal) semi-infinite program. Its dual program requires, for some si ∈
S, i = 1, · · · ,q≥ 1, to determine a positive finite discrete measure μ with μ(si) = xi
as a solution of the generalized moment problem

v(D) := sup

{
q

∑
i=1

b(si)xi |
q

∑
i=1

a(si)xi = c, xi ≥ 0, si ∈ S, q≥ 1

}
.

Whereas weak duality, i.e. v(D) ≤ v(P), is evident, a detailed discussion of state-
ments on (strong) duality as well as on existence of solutions for these two problems
under various regularity assumptions may be found in textbooks like Glasshoff–
Gustafson [126] and Goberna–López [128] (or in reviews as e.g. in Kall [158]).

Moment problems have been considered in detail in probability theory (see
e.g. Krein–Nudel’man [196]) and in other areas of applied mathematics (like e.g.
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Karlin–Studden [176]), and a profound geometric approach was presented in Kem-
perman [181].

In connection with stochastic programs with recourse moment problems were
investigated to find upper bounds for the expected recourse, also under assumptions
on the set Ξ containing supp�ξ and moment conditions being different from those
mentioned above.

For instance, for a convex function ϕ , Ξ being a (bounded) convex polyhedron,
and the feasible set of probability measures P given by the moment conditions∫
Ξ
ξ�(dξ ) = ξ̄ (= �ξ [ξ ]), the moment problem sup

�∈P

∫
Ξ
ϕ(ξ )�(dξ ) turns out

to be the linear program to determine an optimal discrete measure on the vertices
of Ξ where, in contrast to the above E–M measures, the solution depends on ϕ in
general (see e.g. Dupačová [74, 75]).

Furthermore, for a lower semi-continuous proper convex function ϕ and Ξ being
an arbitrary closed convex set, and again with

P =

{
�

∣∣∣
∫
Ξ
ξ�(dξ ) = ξ̄

}
,

the moment problem sup
�∈P

∫
Ξ
ϕ(ξ )�(dξ ), considered by Birge–Wets [28], am-

ounts to determine a finite discrete probability measure � on extΞ and a finite
discrete nonnegative measure ν on ext rcΞ (with rcΞ the recession cone of Ξ , see
Rockafellar [281]), which for infinite sets extΞ and ext rcΞ appears to be a dif-
ficult task, whereas it seems to become somewhat easier if Ξ is assumed to be a
convex polyhedral set as discussed e.g. in Edirisinghe–Ziemba [81], Gassmann–
Ziemba [122], Huang–Ziemba–Ben-Tal [144]). Also in these cases, the solutions of
the moment problems, i.e. the optimal measures, depend on ϕ , in general. For the
special situation where ϕ is convex and Ξ is a regular simplex, i.e.

Ξ = conv{v0,v1, · · · ,vr} ⊂�r , rank(v1− v0,v2− v0, · · · ,vr− v0) = r,

mentioned in Birge–Wets [27] and later investigated and used extensively by Frauen-
dorfer [103], the moment problem under the above first order moment conditions
has the unique solution of a regular system of linear equations, independent of ϕ
again.

Finally, for Ξ =�r with
∫
Ξ
ξ�ξ (dξ ) = μ and

∫
Ξ
‖ξ‖2

�ξ (dξ ) = ρ , (with ‖ · ‖
the Euclidean norm) moment problems with the nonlinear moment conditions

∫
Ξ
ξ�(dξ ) = μ and

∫
Ξ
‖ξ‖2

�(dξ ) = ρ

have been discussed, first for simplicial recourse functions ϕ by Dulá [73], and
then for more general nonlinear recourse functions in Kall [159]. In these cases,
the solutions of the moment problems depend on ϕ , in general. Under appropriate
assumptions on the recourse functions these moment problems turn out to be non-
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smooth optimization problems, solvable with bundle-trust methods as described in
Schramm–Zowe [299], for instance.

We have sketched possibilities to derive upper bounds for the expected recourse
using results from the theory on semi-infinite programming and moment problems.
Similarly, the theory on partial orderings of spaces of probability measures, as de-
scribed in Stoyan [313] and Müller–Stoyan [237], could be used. Attempts in this
direction may be found e.g. in Frauendorfer [103] and in Kall–Stoyan [171]. �

3.2.1.3 CFR: Approximation by successive discretization

Assuming that, for the given random vector ξ , we have supp�ξ ⊂Ξ =∏r
i=1[αi,βi],

due to Jensen and Edmundson–Madansky there follow for any convex function ϕ
and ξ̄ =�ξ [ξ ] the bounds

ϕ(ξ̄ )≤�ξ [ϕ(ξ )]≤�η [ϕ(η)] =
∫
Ξ
ϕ(η)�(dη) , (3.45)

where η has the discrete distribution � defined on the vertices of Ξ , as described
in Lemma 3.7. Hence these bounds result from finitely many arithmetic operations

provided the joint moments μΛ :=
∫
Ξ

m̂Λ (ξ )�ξ (dξ ) =�ξ [m̂Λ (ξ )] are known for

all Λ ⊂ {1, · · · ,r}.
The following observation is the basis of a method of discrete approximations

(of the distribution) to solve complete recourse problems.
Assume that,with half-open or closed intervals Ξk as the cells, a partition X of

the interval Ξ is given satisfying

X = {Ξk; k = 1, · · · ,K}, such that Ξk ∩Ξ� = /0 , k �= � , and
K⋃

k=1

Ξk = Ξ . (3.46)

Then there follows

Lemma 3.8. Under the above assumptions holds, with πk =�ξ (Ξk), for the lower
bounds of�ξ [ϕ(ξ )]

ϕ(ξ̄ ) ≤
K

∑
k=1

πkϕ(�ξ [ξ | ξ ∈ Ξk])

≤
K

∑
k=1

πk�ξ [ϕ(ξ ) | ξ ∈ Ξk]

= �ξ [ϕ(ξ )]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.47)

whereas for the upper bounds we get the inequalities
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�ξ [ϕ(ξ )] =
K

∑
k=1

πk�ξ [ϕ(ξ ) | ξ ∈ Ξk]

≤
K

∑
k=1

πk

∫
Ξk

ϕ(η)�k(dη)

≤
∫
Ξ
ϕ(η)�(dη) ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.48)

where�k is the E–M distribution on Ξk yielding μk
Λ :=�ξ [m̂Λ (ξ ) | ξ ∈ Ξk] for all

Λ ⊂ {1, · · · ,r} and k = 1, · · · ,K, and� is the E–M distribution on Ξ as described
in Lemma 3.7.

Proof: For any�ξ -integrable function ψ : Ξ −→�p, p ∈�, we have the equality

K

∑
k=1

πk�ξ [ψ(ξ ) | ξ ∈ Ξk] =�ξ [ψ(ξ )] . (3.49)

Hence, with ψ the identity, we have
K

∑
k=1

πk�ξ [ξ | ξ ∈ Ξk] = ξ̄ . Then, the convexity

of ϕ implies the first inequality of (3.47), whereas the second one follows from
the fact that Jensen’s inequality holds true for conditional expectations, as well (see
Pfanzagl [253]).

The first equation in (3.48) follows from (3.49) with ψ = ϕ . The following in-
equality holds true due to the fact, that the E–M inequality is valid for conditional
expectations, as well. For the probability measure�k holds for all Λ ⊂ {1, · · · ,r}

∫
Ξk

m̂Λ (ξ )�k(dξ ) = μk
Λ =�ξ [m̂Λ (ξ ) | ξ ∈ Ξk], k = 1, · · · ,K,

such that with ψ = m̂Λ due to (3.49)

K

∑
k=1

∫
Ξk

πkm̂Λ (ξ )�k(dξ ) =
K

∑
k=1

πk�ξ [m̂Λ (ξ ) | ξ ∈ Ξk] =�ξ [m̂Λ (ξ )] = μΛ .

Hence, the probability measure
K

∑
k=1

πk�k is feasible for the moment problem (3.42)

which is solved by�, thus implying the last inequality of (3.48). �

Hence, with any arbitrary convex function ϕ : Ξ −→� on the interval Ξ ⊂�r,
for any probability distribution �ξ on Ξ and for each choice of a partition X =
{Ξk; k = 1, · · · ,K} of Ξ , we have bounds on�ξ [ϕ(ξ )] by

– a discrete random vector η with distribution�ηX
yielding

∫
Ξ
ϕ(η)�ηX

(dη)≤�ξ [ϕ(ξ )] ,

the Jensen lower bound due to (3.47), and
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– a discrete random vector η with distribution�ηX
yielding

�ξ [ϕ(ξ )]≤
∫
Ξ
ϕ(η)�ηX

(dη) ,

the (generalized) E–M upper bound according to (3.48) (with the measure

�ηX
=

K

∑
k=1

πk�k in the above notation).

Let a further partition Y = {ϒl ; l = 1, · · · ,L} of Ξ be a refinement of X , i.e. each
cell of X is the union of one or several cells of Y , then as an immediate conse-
quence of Lemma 3.8 follows

Corollary 3.3. Under the above assumptions, the partition Y of Ξ being a refine-
ment of the partition X implies

∫
Ξ
ϕ(η)�ηX

(dη)≤
∫
Ξ
ϕ(η)�ηY

(dη)≤�ξ [ϕ(ξ )]

and
�ξ [ϕ(ξ )]≤

∫
Ξ
ϕ(η)�ηY

(dη)≤
∫
Ξ
ϕ(η)�ηX

(dη)

and hence an increasing lower and a decreasing upper bound.

Proof: Since Y is a refinement of X , for Y �= X there is at least one cell Ξk
of X being partitioned into some cells ϒlk1, · · · ,ϒlksk of Y , such that sk > 1 and

sk⋃
ν=1

ϒlkν = Ξk. Observing that with plkν =�ξ (ϒlkν) holds

�ξ [ξ | ξ ∈ Ξk] =
1
πk

sk

∑
ν=1

plkν�ξ [ξ | ξ ∈ϒlkν ] ,

due to
sk

∑
ν=1

plkν = πk the convexity of ϕ implies

ϕ(�ξ [ξ | ξ ∈ Ξk])≤ 1
πk

sk

∑
ν=1

plkνϕ(�ξ [ξ | ξ ∈ϒlkν ]) .

Therefore, this increases in (3.47) the k-th term

πkϕ(�ξ [ξ | ξ ∈ Ξk]) to
sk

∑
ν=1

plkνϕ(�ξ [ξ | ξ ∈ϒlkν ]) .



3.2 The two-stage SLP 221

In a similar way, the monotone decreasing of the upper bound may be shown, fol-
lowing the arguments in the proof of Lemma 3.8. �

Hence, refining the partitions of Ξ successively improves the approximation of
�ξ [ϕ(ξ )], by the Jensen bound from below and by the E–M bound from above.
Defining in some partition X = {Ξk; k = 1, · · · ,K} of Ξ the diameter of any cell
Ξk ∈X as

diamΞk := sup{‖ξ −η‖ | ξ , η ∈ Ξk}
and then introducing the grid width of this partition X as

gridX := max
k=1,···,K

diamΞk ,

we may prove convergence of the above bounds to �ξ [ϕ(ξ )] under appropriate
assumptions (see Kall [153]).

Lemma 3.9. Let supp�ξ ⊆ Ξ = ∏r
i=1[αi,βi] and ϕ : Ξ −→� be continuous. As-

sume a sequence {X ν} of successively refined partitions of Ξ to be given such that
lim
ν→∞

gridX ν = 0. Then, for {�ηX ν } and {�ηX ν } the corresponding sequences of

Jensen distributions and E–M distributions, respectively, follows

lim
ν→∞

∫
Ξ
ϕ(ξ )�ηX ν (dξ ) = lim

ν→∞

∫
Ξ
ϕ(ξ )�ηX ν (dξ ) =

∫
Ξ
ϕ(ξ )�ξ (dξ ) .

Proof: Due to our assumptions ϕ is uniformly continuous on Ξ implying

∀ε > 0 ∃δε > 0 such that |ϕ(ξ )−ϕ(η)|< ε ∀ξ ,η ∈ Ξ : ‖ξ −η‖< δε .

According to the assumptions on {X ν} there exists some ν(δε) such that
gridX ν < δε ∀ν > ν(δε) . Hence, for ν > ν(δε) and any cell Ξν

k ∈ X ν holds
|ϕ(ξ )−ϕ(η)| < ε ∀ξ ,η ∈ Ξν

k . The Jensen distribution �ηX ν assigns the proba-

bility πνk =�ξ (Ξν
k ) =

∫
Ξν

k

�ξ (dξ ) to the realization ξ̄ νk =�ξ [ξ | ξ ∈ Ξν
k ] . Hence

we get
∣∣∣
∫
Ξ
ϕ(ξ )�ηX ν (dξ )−

∫
Ξ
ϕ(ξ )�ξ (dξ )

∣∣∣

=
∣∣∣

Kν

∑
k=1

∫
Ξν

k

(ϕ(ξ̄ νk )−ϕ(ξ ))�ξ (dξ )
∣∣∣

≤
Kν

∑
k=1

∫
Ξν

k

|ϕ(ξ̄ νk )−ϕ(ξ )|�ξ (dξ )≤
Kν

∑
k=1

ε ·πνk = ε

such that
∫
Ξ
ϕ(ξ )�ηX ν (dξ )−→

∫
Ξ
ϕ(ξ )�ξ (dξ ) .
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The convergence of the E–M bound may be shown similarly. �

This result gives rise to introduce the following convergence concepts:

Definition 3.1. A sequence of probability measures�ν
ξ on�r (the Borel σ -algebra

on�r) is said to converge weakly to the measure �ξ if for the corresponding dis-
tribution functions Fν and F, respectively, holds

lim
ν→∞

Fν (ξ ) = F(ξ ) for every continuity point ξ of F .

Definition 3.2. Let {ψ; ψν , ν ∈�} be a set of functions on �r. The sequence
{ψν , ν ∈�} is said to epi-converge to ψ if for any ξ ∈�r

– there exists a sequence {ην −→ ξ} such that limsup
ν→∞

ψν(ην)≤ ψ(ξ ),

– for all sequences {ην −→ ξ} holds ψ(ξ )≤ liminf
ν→∞

ψν(ην).

Lemma 3.9 ensures that the sequences of measures {�ηX ν } and {�ηX ν }
converge weakly to �ξ , as shown in Billingsley [20, 21]. Under the Assump-
tions 3.2. and 3.3., for the recourse function Q(x;T (ξ ),h(ξ )) (with ξ ∈ Ξ , the
above interval) and for any sequence of probability measures �ν

ξ on Ξ converg-
ing weakly to �ξ , it follows that the approximating expected recourse functions

Qν(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ))�ν
ξ (dξ ) epi-converge to the true expected recourse

Q(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ))�ξ (dξ ), as has been shown e.g. in Wets [343]; re-

lated investigations are found in Robinson–Wets [279] and Kall [156]. The epi-
convergence of the Qν has the following desirable consequence:

Theorem 3.7. Assume that {Qν} epi-converges to Q . Then, with some convex
polyhedral set X ⊂�n, for the two-stage SLP with recourse we have

limsup
ν→∞

[inf
X
{cTx+Qν(x)}]≤ inf

X
{cTx+Q(x)}.

If
x̂ν ∈ argmin

X
{cTx+Qν(x)} ∀ν ∈� ,

then for any accumulation point x̂ of {x̂ν} it follows that

cTx̂+Q(x̂) = min
X
{cTx+Q(x)};

and for any subsequence {x̂νκ} ⊂ {x̂ν} with lim
κ→∞

x̂νκ = x̂ we have

cTx̂+Q(x̂) = lim
κ→∞
{cTx̂νκ +Q(x̂νκ )}.

A proof of this statement may be found for instance in Wets [343] (see also
Kall [155]).
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Due to this result discrete approximation algorithms (DAPPROX) for the solution
of two-stage SLP’s with recourse may be designed, based on successive partitions
{X ν} of Ξ , yielding lower bounds

Qν
LB(x) =

∫
Ξ

Q(x;T (ξ ),h(ξ ))�ηX ν (dξ ) (3.50)

and upper bounds

Qν
UB(x) =

∫
Ξ

Q(x;T (ξ ),h(ξ ))�ηX ν (dξ ) (3.51)

for Q(·) =�ξ [Q(·;T (ξ ),h(ξ ))] due to Jensen and Edmundson–Madansky, respec-
tively. In other words, a solution of

γ̂ := min
X
{cTx+Q(x)} (3.52)

may be approximated by an approach like

DAPPROX: Approximating CFR solutions

With Ξ an interval and supp�ξ ⊂Ξ , let X 1 := {Ξ} be the first (trivial) partition of
Ξ and�η

X 1 ,�η
X 1

the corresponding Jensen– and E–M – distributions determin-

ing, due to (3.50) and (3.51), the approximating expected recourse functions Q1
LB(x)

and Q1
UB(x).

With ν = 1 iterate the cycle of the following steps I.–III. until achieving the
required accuracy ε > 0 of an approximate solution.

I. Analyze the approximating problems

a) γ̂LB := min
X
{cTx+Qν

LB(x)} and b) γ̂UB := min
X
{cTx+Qν

UB(x)} .

{Observe that, since �ηX ν and �ηX ν are finite discrete distributions,
problems a) and b) are LP’s with decomposition structures.}

II. If the prescribed accuracy is achieved, stop the procedure; otherwise, go
on to step III.
{As an example, with a solution x̂ν of problem I.a) and its optimal value
γ̂νLB, the error estimate γ̂− γ̂νLB≤ cTx̂+Qν

UB(x̂
ν)− γ̂νLB =: δν might be used

to check whether δν ≤ ε , if this corresponds to the required accuracy.}
III. To improve the approximation, choose a partition X ν+1 as an appropriate

refinement of X ν . With the corresponding Jensen– and E–M – distribu-
tions�η

X ν+1 and�η
X ν+1

, defining Qν+1
LB (x) and Qν+1

UB (x) due to (3.50)
and (3.51), let ν := ν+1 and return to step I. above.
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{As mentioned above, due to the finite discrete Jensen– and E–M – distributions
the problems I.a) and I.b) generated in each cycle are LP’s with decomposition
structure as shown in (1.10) on page 4. For the error estimate mentioned at II.
the LP I.a) has to be solved, suggesting to apply an appropriate decomposition
algorithm. In general and due to many experiments, QDECOM (see p. 47) can be
considered as a proven reliable solver for this purpose. Nevertheless, keep in mind
Remark 1.2. (p. 48).} �

Obviously, this conceptual description of DAPPROX gives rise to quite a va-
riety of algorithms, depending on various strategies of refining the partitions. For
instance, the selection of the particular cells to be refined is relevant for the effec-
tiveness of the method. Or for a cell Ξν

k ∈X ν to be refined, in order to maintain
the assumed interval structure of the successive partitions, through this cell we need
a cut being perpendicular to one of the coordinate axes; but which coordinate axis
is to be preferred, and where is the cut to be located? These and further strategies,
playing a significant role for the efficiency of DAPPROX–solvers implementations,
will be discussed later in Section 4.7.2.

Exercises

3.1. Consider the two–stage SLP

max{2x1 + x2 +
3

∑
k=1

pkqTy(k)}
x1 +x2 ≤ 10
x1 +2x2 −y(k)1 +y(k)2 +2y(k)3 = h(k)1

x1 −x2 +2y(k)1 +3y(k)2 +y(k)3 = h(k)2 k = 1,2,3,
x j, y(k)ν ≥ 0 ∀ j, k, ν

with q = (−2,−3,−2)T, h(1) = (5,4)T, h(2) = (3,5)T, h(3) = (2,2)T.

(a) Has the problem the (relatively) complete recourse property?
(b) If not, determine the induced constraints for (x1, x2)

T (see page 198).
(c) Compute the first stage solution and its first stage objective of the problem.

You may verify your answers to items (a) and (c) using SLP-IOR.

3.2. Change the recourse matrix W of exercise 3.1 to the new recourse matric

W̃ =

(−1 1 −1
2 3 −5

)
;

(a) check the complete recourse property;
(b) compute the first stage solution (including its objective) and compare it to the

result of exercise 3.1.
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You may use SLP-IOR to confirm your answers.

3.3. Let the function ψ : [−1,1]× [0,2] −→� be defined as ψ(ξ ,η) := ϕ(ξ ) +

θ(η) with ϕ(ξ ) :=
{−ξ for −1≤ ξ ≤− 1

4
0.5+ξ for − 1

4 ≤ ξ ≤ 1
and θ(η) := 2η . Assume ξ and

η to be independent random variables with the densities gξ (ζ )≡
1
2

for ζ ∈ [−1,1]

and hη(ζ ) =
e−ζ

1− e−2 . Due to the independence of ξ and η holds

�[ψ(ξ ,η)] =
∫ 2

0

∫ 1

−1
ψ(ξ ,η)dξdη

=
∫ 1

−1
ϕ(ξ )dξ +

∫ 2

0
θ(η)dη = 0.781250+1.373929 = 2.155179 .

(a) Compute (ξ̄ , η̄) =�[(ξ ,η)] and Jensen’s bound ψ(ξ̄ , η̄) = ϕ(ξ̄ )+θ(η̄).
(b) Compute the E–M upper bound of�[ψ(ξ ,η)].
(c) Subdivide the support Ξ = [−1,1]× [0,2] into two rectangles,

(c1) either by dividing the ξ -interval I(ξ ) = [−1,1] at ξ̄ into I(ξ )1 and I(ξ )2

(c2) or by dividing the η-interval I(η) = [0,2] at η̄ into I(η)1 and I(η)2 .

Compute alternatively the two new Jensen bounds of �[ψ(ξ ,η)], as either
lb|ξ̄ :=�ξ (I

(ξ )
1 ) ·ϕ(�ξ [ξ | I(ξ )1 ])+�ξ (I

(ξ )
2 ) ·ϕ(�ξ [ξ | I(ξ )2 ])+θ(�η [η ]),

or else
lb|η̄ := ϕ(�ξ [ξ ])+�η(I

(η)
1 ) ·θ(�η [η | I(η)1 ])+�η(I

(η)
2 ) ·θ(�η [η | I(η)2 ]).

(d) How do the new Jensen bounds lb|ξ̄ and lb|η̄ compare to the first bound

ψ(ξ̄ , η̄), and how much does the above error estimate decrease at best?

3.4. Concerning the moment problem (3.24) and its dual, the semi-infinite program
(3.25), it was claimed, that

(a) a linear affine function majorizes a convex function ψ(·) on an interval, if and
only if it does so at the endpoints of the interval;

(b) due to the relation α ≤ μ ≤ β (with the natural assumption that α < β ) the
LP corresponding to (3.25) (due to (a)) is solvable and hence its dual, the LP
equivalent to the moment problem (3.24), is uniquely solvable.

Show that these claims hold true.

3.5. Let F be a convex function on a convex polyhedron B = conv{z(1), · · · ,z(k)},
the support of some distribution �ζ with expectation EX [ζ ] = μ ∈B. There is a
lower bound for F̄ =

∫
B F(z)�ζ (dz) given by F(μ) due to Jensen, and as mentioned

on page 217 referring to Dupačová, an upper bound can be determined by solving
an LP, which maximizes EX [F ] on the class P̃ of dicrete distributions on the vertices
of B, satisfying the moment conditions ∑i pi · z(i) = μ, ∑i pi = 1, pi ≥ 0 ∀i.
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As an example, define B := {ξ | ξ1 +2ξ2 ≤ 10 , 2ξ1 +ξ2 ≤ 8 , ξi ≥ 0}. Assume
some distribution�ξ on B with first moments μ =�[ξ ] = (2; 2)T. Finally define

on B a function F(ξ ) = ξTMξ + cTξ with M =

(
3 2
2 7

)
and c = (−18;−46)T.

(a) Is F(ξ ) a convex function on B (and why)? If so:
(b) Compute the Jensen lower bound of EX [F(ξ )] re�ξ .
(c) Find an upper bound of EX [F(ξ )] re �ξ as an LP-solution as described

above.

3.6. Consider the recourse problem

minx {cTx+�[Q(x; ξ ,η)] | Ax≤ b , x≥ 0} where
Q(x;ξ ,η) := miny {qTy |Wy = h(ξ ,η)−T x , y≥ 0} with

the data: c = (3,5)T; b = (18,18)T; q = (2,3,2,1)T; h = (12+ ξ ,22+η)T; the

arrays A =

(
1 3
3 2

)
; W =

(
1 1 1 −3
2 1 −4 2

)
; T =

(
2 2
5 3

)
; and the random variables

ξ and η , with ξ distributed with density ϕ(ζ ) = λ · e−λζ/(1− e9λ ) (exponential,
conditional to the interval [0,9], or else truncated at the confidence interval of p̂ =
0.95), and η distributed as U [−10,10] (uniform).

(a) Is this problem of complete fixed recourse?
(b) Compute on the support Ξ = [0,9]× [−10,10] of (ξ ,η) the lower (Jensen)

and upper (E–M) bound for the optimal value and the resulting error estimate.
(c) Compute (e.g with SLP-IOR) the corresponding bounds for partitioning the

support Ξ into two (dividing the η-interval) and four subintervals (dividing
the ξ– and the η-interval once, each).

3.2.2 The simple recourse case

For the special complete recourse case with q(ξ ) ≡ (q+T
,q−T

)T and W = (I,−I),
we get the generalized simple recourse (GSR) function

QG(x,ξ ) := min q+Ty+ + q−Ty−
Iy+ − Iy− = h(ξ )−T (ξ )x
y+, y− ≥ 0 .

⎫⎬
⎭ (3.53)

Given that ξ is a random vector in �R such that �ξ [ξ ] exists, we have the
expected generalized simple recourse (EGSR)

QG(x) :=�ξ [Q
G(x,ξ )] , (3.54)

yielding the two-stage SLP with generalized simple recourse (GSR)
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min{cTx+QG(x)}
Ax = b

x ≥ 0 .

⎫⎬
⎭ (3.55)

Before dealing with GSR problems, it is meaningful to discuss first the original
version of simple recourse problems, as first analyzed in detail by Wets [342].

3.2.2.1 The standard simple recourse problem (SSR)

In contrast to (3.53) it is now assumed in addition that T (ξ ) ≡ T . Then it is obvi-
ously meaningful to let h(ξ ) ≡ ξ ∈�m2 such that instead of (3.53) the standard
simple recourse (SSR) function is given as

Q(x;ξ ) := min q+Ty+ + q−Ty−
Iy+ − Iy− = ξ −T x
y+, y− ≥ 0 .

⎫⎬
⎭ (3.56)

This implies the expected simple recourse Q(x) =�ξ [Q(x;ξ )].
Obviously, problem (3.56) is always feasible; and it is solvable iff its dual pro-

gram
max(ξ −T x)Tu

u ≤ q+

u ≥ −q−

⎫⎬
⎭ (3.57)

is feasible, which in turn is true iff q++q− ≥ 0. Considering (3.57), we get imme-
diately the optimal recourse value as

Q(x,ξ ) =
m2

∑
i=1

[(ξ −T x)i]
+q+i +

m2

∑
i=1

[(ξ −T x)i]
−q−i (3.58)

where, for ρ ∈�,

[ρ]+ =

{
ρ if ρ > 0
0 else and [ρ]− =

{−ρ if ρ < 0
0 else.

This optimal recourse value Q(x,ξ ) is achieved in (3.56) by choosing

y+i = [(ξ −T x)i]
+ and y−i = [(ξ −T x)i]

−, i = 1, · · · ,m2. (3.59)

Introducing χ := T x, we get from (3.59) the optimal value of (3.56) as

Q̃(χ,ξ ) :=
m2

∑
i=1

{
q+i [ξi−χi]

+ +q−i [ξi−χi]
−}

=:
m2

∑
i=1

Q̃i(χi,ξi)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.60)
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with

Q̃i(χi,ξi) = q+i [ξi−χi]
+ +q−i [ξi−χi]

−

= min{q+i y+i +q−i y−i | y+i − y−i = ξi−χi; y+i ,y
−
i ≥ 0} . (3.61)

Hence the recourse function Q(x,ξ ) of (3.56) may be rewritten as a function
Q̃(χ,ξ ) being separable in (χi,ξi), implying the expected recourse Q(x) to be
equivalent to a function Q̃(χ), separable in χi (see Wets [342]), according to

Q̃(χ) =
m2

∑
i=1

Q̃i(χi) , where

Q̃i(χi) := �ξ [Q̃i(χi,ξi)] =�ξi [Q̃i(χi,ξi)] , i = 1, · · · ,m2 ,

⎫⎪⎬
⎪⎭ (3.62)

such that (3.55) may now be rewritten as

min{cTx+
m2

∑
i=1

Q̃i(χi)}
Ax = b
T x −χ = 0

x ≥ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.63)

with
In this case, as indicated by the operator �ξi , to compute the expected simple

recourse we may restrict ourselves to the marginal distributions of the single com-
ponents ξi instead of the joint distribution of ξ = (ξ1, · · · ,ξm2)

T. From (3.61) obvi-
ously follows that Q̃i(·,ξi) is a convex function in χi (and hence in x) for any fixed
value of ξi. Hence, the expected recourse Q̃i(·) is convex in χi as well.

If �ξ happens to be a finite discrete distribution with the marginal distribution
of any component given by pi j =�ξ ({ξ | ξi = ξ̂i j}), j = 1, · · · ,ki, then (3.63) is
equivalent to the linear program

min{cTx+
m2

∑
i=1

ki

∑
j=1

pi j(q+i y+i j +q−i y−i j)}
Ax = b
T x −χ = 0

y+i j −y−i j = ξ̂i j−χi ∀i, j

x, y+i j , y−i j ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.64)

which due to its special data structure can easily be solved.
If, on the other hand, �ξ or at least some of its marginal distributions �ξi are

of the continuous type, the corresponding expected recourse Q̃i(·) and hence the
program (3.63) may be expected to be nonlinear. Nevertheless, the simple recourse
functions Q̃i(χi,ξi) and their expectations Q̃i(χi) have some special properties, ad-
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vantageous in solution procedures and not shared by complete recourse functions
in general. To point out these particular properties we introduce simple recourse
type functions (referred to as SRT functions) and discuss some of their properties
advantageous for their approximation.

Definition 3.3. For a real variable z, a random variable ξ with distribution �ξ ,
and real constants α, β , γ with α+β ≥ 0, the function ϕ(·, ·) given by

ϕ(z,ξ ) := α · [ξ − z]+ +β · [ξ − z]−− γ

is called a simple recourse type function (see Fig. 3.2).
Then,�ξ [ξ ] provided to exist,

Φ(z) :=�ξ [ϕ(z,ξ )] =
∫ ∞

−∞
(α · [ξ − z]+ +β · [ξ − z]−)�ξ (dξ )− γ

is the expected SRT function (ESRT function).

z

ϕ(z,ξ)

z = ξ

Fig. 3.2 SRT function.

Obviously, the functions Q̃i(χi,ξi) and Q̃i(χi) considered above are SRT and
ESRT functions, respectively; however, SRT functions may also appear in models
different from (3.61)–(3.63), as we shall see later.

From Definition 3.3. follows immediately

Lemma 3.10. Let ϕ(·, ·) be a SRT function and Φ(·) the corresponding expected
SRT function. Then

• ϕ(z, ·) is convex in ξ for any fixed z ∈�;
• ϕ(·,ξ ) is convex in z for any fixed ξ ∈�;
• Φ(·) is convex in z.

Since (3.61)–(3.63) describes a particular complete fixed recourse problem, we
know already from Section 3.2.1 that, ξ provided to be integrable and q++q− ≥ 0,
the functions Q̃i(χi,ξi) and Q̃i(χi) are SRT and ESRT functions, respectively.
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Assuming μ :=�ξ [ξ ] to exist, Jensen’s inequality for SRT functions obviously
holds:

ϕ(z,μ) = ϕ(z,�ξ [ξ ])≤�ξ [ϕ(z,ξ )] =Φ(z) .

Furthermore, for ξ being integrable (with Fξ the distribution function of ξ ), the
asymptotic behaviour of the ESRT function may immediately be derived:

Lemma 3.11. For

Φ(z) := �ξ [ϕ(z,ξ )]

=
∫ ∞

−∞
(α · [ξ − z]+ +β · [ξ − z]−)dFξ (ξ )− γ

=

{
α ·

∫ ∞

z
[ξ − z]dFξ (ξ )+β ·

∫ z

−∞
[z−ξ ]dFξ (ξ )

}
− γ

holds:

Φ(z)−ϕ(z,μ) =Φ(z)− [α · (μ− z)− γ]−→ 0 as z→−∞

and analogously

Φ(z)−ϕ(z,μ) =Φ(z)− [β · (z−μ)− γ]−→ 0 as z→+∞ .

In particular follows:

If
{
�ξ (ξ < a) = 0
�ξ (ξ > b) = 0 then Φ(z) =

{
α · (μ− z)− γ = ϕ(z,μ) for z≤ a
β · (z−μ)− γ = ϕ(z,μ) for z≥ b .

Hence we have, as mentioned above,

ϕ(z,μ)≤Φ(z) ∀z

and, furthermore (see Fig. 3.3),

a := infsupp�ξ >−∞ =⇒ Φ(z) = ϕ(z,μ) ∀z≤ a

b := supsupp�ξ <+∞ =⇒ Φ(z) = ϕ(z,μ) ∀z≥ b .

Consider now an interval I = {ξ | a < ξ ≤ b} �⊇ supp�ξ —implying at least one
of the bounds a,b to be finite—with �ξ (I) > 0. Then Jensen’s inequality holds as
well for the corresponding conditional expectations.

Lemma 3.12. With μ |I =�ξ [ξ | ξ ∈ I] and
Φ |I (z) =�ξ [ϕ(z,ξ ) | ξ ∈ I], for all z ∈� holds

ϕ(z,μ |I)≤Φ |I (z) =
1

�ξ (I)

∫ b

a
ϕ(z,ξ )dFξ (ξ ) .

As shown in Kall-Stoyan [171], in analogy to Lemma 3.11 follows also
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  z

z = μ

a b

Φ(z)

ϕ(z,μ)

Fig. 3.3 SRT and expected SRT function (supp�ξ bounded).

Lemma 3.13. For any finite a and/or b, for I = (a,b] holds

Φ |I (z) =
{
ϕ(z,μ |I) for z≤ a
ϕ(z,μ |I) for z≥ b .

If in particular J := supp�ξ = [a,b] is a finite interval, then Lemma 3.11 yields

Φ(z) =Φ |J(z) = ϕ(z,μ |J) = ϕ(z,μ) for z≤ a or z≥ b , (3.65)

and for z∈ (a,b) Jensen’s inequality implies ϕ(z,μ)≤Φ(z). To get an upper bound
for z ∈ (a,b) and hence an estimate for Φ(z), the E–M inequality may be used:

Φ |J(z) =Φ(z)≤ b−μ
b−a

ϕ(z,a)+
μ−a
b−a

ϕ(z,b) =
b−μ |J
b−a

ϕ(z,a)+
μ |J−a
b−a

ϕ(z,b) .

Analogously, for an interval I = {ξ | a < ξ ≤ b} �⊇ supp�ξ and z ∈ int I follows

ϕ(z,μ |I)≤Φ |I(z)≤
b−μ |I
b−a

ϕ(z,a)+
μ |I−a
b−a

ϕ(z,b) . (3.66)

If ϕ(z, ·) happens to be linear on I, the lower and upper bounds of these inequalities
coincide such that Φ |I(z) = ϕ(z,μ |I) ∀z. If, on the other hand, ϕ(z, ·) is nonlinear
(convex) in I, the approximation of Φ |I(ẑ) for any ẑ ∈ (a,b) due to (3.66) can be
improved as follows: Partition I = (a,b] at a1 := ẑ into the two intervals I1 := (a0,a1]
and I2 := (a1,a2], where a0 := a and a2 := b. Observing that, with πI =�ξ (I) and

pν :=�ξ (Iν), ν = 1,2, we have
p1

πI
· μ |I1 +

p2

πI
· μ |I2 = μ |I as well as for arbitrary

�ξ -integrable functions ψ(·) the relation

�ξ [ψ(ξ ) | ξ ∈ I ] =
p1

πI
·�ξ [ψ(ξ ) | ξ ∈ I1]+

p2

πI
·�ξ [ψ(ξ ) | ξ ∈ I2] , (3.67)
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Lemma 3.12 implies

Lemma 3.14. Due to the convexity of ϕ(z, ·), we have

a) for arbitrary z ∈ (a0,a2)

ϕ(z,μ |I) = ϕ(z,
p1

πI
·μ |I1 +

p2

πI
·μ |I2)

≤ p1

πI
·ϕ(z,μ |I1)+

p2

πI
·ϕ(z,μ |I2)

≤ p1

πI
·Φ |I1 (z)+

p2

πI
·Φ |I2 (z)

= Φ |I(z) ;

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.68)

b) for aκ ∈ {a0,a1,a2}

Φ |Iν (aκ) = ϕ(aκ ,μ |Iν ) for ν = 1,2

Φ |I(aκ) =
2

∑
ν=1

pν
πI
Φ |Iν (aκ) =

2

∑
ν=1

pν
πI
ϕ(aκ ,μ |Iν ).

⎫⎪⎬
⎪⎭ (3.69)

Proof: The above relations are consequences of previously mentioned facts:

a) The two equations reflect (3.67), the first inequality follows from the convexity
of ϕ(z, ·), and the second inequality applies Lemma 3.12.

b) The first two equations apply Lemma 3.13, the last equation uses (3.67) again.

�

Based on Lemmas 3.12–3.14, similar to the general complete recourse case, approx-
imation schemes with successively refined discrete distributions may be designed.

3.2.2.2 SSR: Approximation by successive discretization

Eq. (3.68) yields with ϕ�(z,μ |I1 ,μ |I2) =
p1

πI
ϕ(z,μ |I1) +

p2

πI
ϕ(z,μ |I2) ≤ Φ |I(z) an

increased lower bound of Φ |I(z) as

ϕ�(z,μ |I1 ,μ |I2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(z,μ |I) for z ∈ (−∞,μ |I1)∪ (μ |I2 ,∞){(
p1

πI
β − p2

πI
α
)

z− p1

πI
βμ |I1 +

p2

πI
αμ |I2 − γ

}

for z ∈ [μ |I1 ,μ |I2 ] ,

(3.70)

and instead of the general upper bound (3.66) of Φ |I(z), with ẑ= a1 (3.69) yields the

exact value Φ |I(ẑ) =
p1

πI
ϕ(ẑ,μ |I1)+

p2

πI
ϕ(ẑ,μ |I2) = ϕ�(ẑ,μ |I1 ,μ |I2) (see Fig. 3.4).

If, on the other hand, the partition I = (a0,a1]∪ (a1,a2] = I1 ∪ I2 is given, from
Lemma 3.13 and 3.14 together with (3.67) follows
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Φl I (z)

z = μ

a0 a1 a2μ l I1
μ l I2

ϕ*
(z,
μ l I 1

 ,μ
 l I 2

)
 l I

Fig. 3.4 Expected SRT function: Increasing lower bounds.

Φ |I(z) =
p1

πI
ϕ(z,μ |I1)+

p2

πI
ϕ(z,μ |I2) for z≤ a0 or z≥ a2 or z = a1 ; (3.71)

hence Φ |I(z) >
p1

πI
ϕ(z,μ |I1) +

p2

πI
ϕ(z,μ |I2) may occur only if z ∈ int I1 ∪ int I2 ,

which implies that Φ |Iν (z) > ϕ(z,μ |Iν ) for z ∈ int Iν with ν = 1 or ν = 2 . Then
we may derive the following rather rough error estimate:

Lemma 3.15. For z ∈ int Iν , ν = 1,2, we have the parameter-free error estimate
Δν(z) satisfying

0≤ Δν(z) :=Φ |Iν −ϕ(z,μ |Iν )≤
1
2
(α+β )

aν −aν−1

2
.

Proof: Using the relations ϕ(z,μ |Iν ) = α[μ |Iν − z]+ +β [μ |Iν − z]−− γ from Defini-
tion 3.3. as well as the relations

Φ |Iν (aν−1) = ϕ(aν−1,μ |Iν ) and Φ |Iν (aν) = ϕ(aν ,μ |Iν )



234 3 SLP models with recourse

from Lemma 3.14, and furthermore the convexity of Φ |Iν according to Lemma 3.10,
we get for z = λaν−1 +(1−λ )aν with λ ∈ (0,1)

Δν(z) = Φ |Iν (z)−ϕ(z,μ |Iν )
≤ λΦ |Iν (aν−1)+(1−λ )Φ |Iν (aν)−ϕ(z,μ |Iν )
= λΦ |Iν (aν−1)+(1−λ )Φ |Iν (aν)

−
{
[α(μ |Iν − z)− γ] if z < μ |Iν
[β (z−μ |Iν )− γ] if z≥ μ |Iν

= λ [α(μ |Iν −aν−1)− γ]+ (1−λ )[β (aν −μ |Iν )− γ]

−
{
[α(μ |Iν − z)− γ] if z < μ |Iν
[β (z−μ |Iν )− γ] if z≥ μ |Iν .

Assuming

z≤ μ |Iν ⇐⇒ λ ≥ aν −μ |Iν
aν −aν−1

and 1−λ ≤ μ |Iν −aν−1

aν −aν−1

it follows that

Δν(z) ≤ λ [α(μ |Iν −aν−1)− γ]+ (1−λ )[β (aν −μ |Iν )− γ]
−[α(μ |Iν −λaν−1− (1−λ )aν)− γ]

= (1−λ )(α+β )(aν −μ |Iν )

≤ μ |Iν −aν−1

aν −aν−1
(α+β )(aν −μ |Iν ),

the maximum of the last term being assumed for μ |Iν =
aν−1 +aν

2
such that

Δν(z)≤ 1
2
(α+β )

aν −aν−1

2
.

For z≥ μ |Iν the result follows analogously. �

Taking the probabilities pν associated with the partition intervals Iν into account
yields an improved (global) error estimate:

Lemma 3.16. Given the interval partition {Iν ; ν = 1,2} of I and z ∈ Iκ , then the
(global) error estimate Δ(z) satisfies

0≤ Δ(z) =Φ |I(z)−
2

∑
ν=1

pν
πI

ϕ(z,μ |Iν )≤
1
2

pκ
πI

(α+β )
aκ −aκ−1

2

for z ∈ int Iκ , whereas for z �∈ (int I1∪ int I2) we have Δ(z) = 0.
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Proof: For z ∈ Iκ Lemma 3.13 yields Φ |Iν (z)−ϕ(z,μ |Iν ) = 0 for ν �= κ; hence from
Lemmas 3.14 and 3.15 follows for z ∈ int Iκ

Δ(z) = Φ |I(z)−
2

∑
ν=1

pν
πI

ϕ(z,μ |Iν )

=
2

∑
ν=1

pν
πI

(Φ |Iν (z)−ϕ(z,μ |Iν ))

=
pκ
πI

(Φ |Iκ (z)−ϕ(z,μ |Iκ ))

≤ 1
2

pκ
πI

(α+β )
aκ −aκ−1

2
,

and for z �∈ (int I1∪ int I2) from (3.71) follows that Δ(z) = 0. �

Due to (3.60) and (3.63) the simple recourse function Q̃(χ,ξ ) =
m2

∑
i=1

Q̃(i)(χi,ξi)

as well as the expected simple recourse function Q̃(χ) =
m2

∑
i=1

Q̃(i)(χi) are sepa-

rable, and their additive components Q̃(i)(χi,ξi) and Q̃(i)(χi) are SRT and ESRT
functions, respectively. Therefore, the properties derived for these functions allow
for modifications of the discrete approximation algorithms of the type DAPPROX,
as described on page 223 for the more general complete recourse case. This leads
for the standard simple recourse case to special algorithms (named SRAPPROX),
being more efficient than the general DAPPROX approach since, for an interval
I(i) ⊃ supp�ξi , at any partitioning point ξ̂i := χ̂i ∈ int I(i), instead of the E–M up-

per bound of Q̃
(i)
|I (χ̂) its exact value is—due to (3.71) and Lemma 3.14—easily

computed.

SRAPPROX: Approximating SSR solutions

Assume that supp�ξ ⊂Ξ :=
m2

∏
i=1

I(i) for some intervals I(i) = (a(i),b(i)] , i= 1, · · · ,m2.

For each component ξi of ξ choose as a first partition X (i) = {I(i)} corresponding
for Ξ ⊂�m2 to the first partition X = {X (1)×X (2)×·· ·×X (m2)}. For the triv-
ial discrete ditribution πi1 = �ξi({ξi ∈ I(i)1 }) = 1 ∀i, with I(i)1 = (a(i)0 ,a(i)1 ] = I(i)

and with Q̃(i)(χi,ξi) = q+i [ξi − χi]
+ + q−i [ξi − χi]

− due to (3.61), it follows for
μ |I(i)1

:=�ξi [ξi | ξi ∈ I(i)1 ] that Q̃(i)(χi,μ |I(i)1
)≤ Q̃

(i)

|I(i)1

(χi) =�ξi [Q̃i(χi,ξi) | ξi ∈ I(i)1 ].

With Ki = 1 ∀i iterate the following cycle:

I. Find a solution (x̂, χ̂) of
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min{cTx+
m2

∑
i=1

Ki

∑
ν=1

πiν Q̃(i)(χi,μ |I(i)ν
) | Ax = b, T x−χ = 0, x≥ 0}.

If χ̂i �∈ ∪Ki
ν=1int I(i)ν for all i∈{1, · · · ,m2}, then (x̂, χ̂) solves problem (3.63)

due to Lemma 3.13 and (3.67) and hence stop; otherwise continue.
II. With I(i)ν = (a(i)ν−1,a

(i)
ν ], ν = 1, · · · ,Ki, let Λ := {i | χ̂i ∈ int I(i)νi for one νi}.

For i ∈ Λ split up I(i)νi as I(i)νi = (a(i)νi−1, χ̂i]∪ (χ̂i,a
(i)
νi ] =: I(i)νi1

∪ I(i)νi2
and de-

termine the conditional expectations μ |I(i)νi j
:=�ξi [ξi | ξi ∈ I(i)νi j], j = 1,2.

Due to Lemma 3.14 this implies for Q̃
(i)

|I(i)νi

(χ̂i) a lower bound �
(i)
νi and the

exact value, respectively, to be given as

�
(i)
νi = Q̃(i)(χ̂i,μ |I(i)νi

)≤ Q̃
(i)

|I(i)νi

(χ̂i)

Q̃
(i)

|I(i)νi

(χ̂i) =
2

∑
j=1

pi j

πνi

Q̃(i)(χ̂i,μ
(i)
|Iνi j

)

with pi j =�ξi({ξi ∈ I(i)νi j}), j = 1,2.

If for δ (i) := πνi · (Q̃(i)

|I(i)νi

(χ̂i)− �
(i)
νi ) follows that δ (i) < ε ∀i ∈ Λ with ε a

prescribed tolerance, then stop with the required accuracy achieved;
otherwise continue with Λ̃ := {i ∈Λ | δ (i) ≥ ε}.

III. For (some) i ∈ Λ̃ extend X (i) to the new partition Y (i) by splitting up
the interval I(i)νi into the two subintervals I(i)νi j with πνi j := pi j, j = 1,2, and

adjust Ki := Ki + 1. With the new data I(i)νi j , πνi j , μ |I(i)νi j
(for j = 1,2) and

Ki, update the extended partitions to X (i) := Y (i) and return to step I.
�

This conceptual algorithm does, in contrast to DAPPROX, leave no choice of
where to split an interval I(i)νi , i ∈ Λ̃ , as long as the true value Q̃

(i)

|I(i)νi

(χ̂i), and thus

also the exact value of Q̃(i)(χ̂i), are of interest. On the other hand there are various
strategies for the selection of components i ∈ Λ̃ , for which the respective subinter-
vals I(i)νi are splitted up. A detailed description of an executable version of SRAP-
PROX, including the presentation of the implemented algorithm, can be found in
Section 4.7.2 of the next chapter.
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3.2.2.3 The multiple simple recourse problem

The simple recourse function (3.56) was extended by Klein Haneveld [188] to the
multiple simple recourse function. Here, instead of (3.61), for any single recourse
constraint the following value is to be determined:

ψ(z,ξ ) := min

{
K

∑
k=1

q+k y+k +
K

∑
k=1

q−k y−k

}

K

∑
k=1

y+k −
K

∑
k=1

y−k = ξ − z

y+k
y−k
≤
≤

uk−uk−1
lk− lk−1

}
, k = 1, · · · ,K−1,

y+k , y−k ≥ 0, k = 1. · · · ,K,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.72)

where
u0 = 0 < u1 < · · · < uK−1
l0 = 0 < l1 < · · · < lK−1 ,

and
q+k ≥ q+k−1 , q−k ≥ q−k−1 , k = 2, · · · ,K ,

with q+1 ≥−q−1 and q+K +q−K > 0 (to ensure convexity and prevent from linearity of
this modified recourse function).

According to these assumptions, for any value of τ := ξ − z it is obvious to
specify a feasible solution of (3.72), namely for any κ ∈ {1, · · · ,K} (with uK = ∞
and lK = ∞)

τ ∈ [uκ−1,uκ) =⇒

⎧⎪⎪⎨
⎪⎪⎩

y+k = uk−uk−1 , 1≤ k ≤ κ−1
y+κ = τ−uκ−1
y+k = 0 ∀k > κ
y−k = 0 k = 1, · · · ,K ;

τ ∈ (−lκ ,−lκ−1] =⇒

⎧⎪⎪⎨
⎪⎪⎩

y+k = 0 k = 1, · · · ,K
y−k = lk− lk−1 , 1≤ k ≤ κ−1
y−κ = τ− lκ−1
y−k = 0 ∀k > κ .

Furthermore, this feasible solution is easily seen to be optimal along the following
arguments:

– Due to the increasing marginal costs (for surplus as well as for shortage), as-
suming τ ∈ [uκ−1,uκ) and y−k = 0 ∀k, it is certainly meaningful to exhaust the
available capacities for the variables y1, · · · ,yκ−1 first. The same argument holds
true if τ ∈ (−lκ ,−lκ−1] and y+k = 0 ∀k.

– Assuming a feasible solution of (3.72) with some y+k1
as well as some y−k2

si-
multaneously being greater than some δ > 0, allows to reduce these variables to
ŷ+

k1
= y+k1

−δ and ŷ−k2
= y−k2

−δ , yielding a new feasible solution with the objec-
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tive changed by (−δ ) · (q+k1
+ q−k2

) with (q+k1
+ q−k2

) ≥ 0 due to the assumptions.
Therefore, the modified feasible solution is at least as good as the original one as
far as minimization of the objective is concerned.

Hence, for τ = ξ − z ∈ [uκ−1,uκ) with κ ∈ {1, · · · ,K} we get

ψ(z,ξ ) =

{
K

∑
k=1

q+k y+k +
K

∑
k=1

q−k y−k

}

=
κ−1

∑
k=1

q+k (uk−uk−1)+q+κ (τ−uκ−1)

=
κ−1

∑
k=1

q+k uk−
κ−2

∑
k=0

q+k+1uk +q+κ (τ−uκ−1)

=
κ−2

∑
k=1

(q+k −q+k+1)uk +q+κ−1uκ−1−q+1 u0 +q+κ (τ−uκ−1)

=
κ−1

∑
k=0

(q+k −q+k+1)uk +q+κ τ with u0 = 0 , q+0 = 0 .

Defining
α0 := q+1 , αk := q+k+1−q+k , k = 1, · · · ,K−1 ,

it follows immediately that

q+k =
k

∑
ν=1

αν−1 for k = 1, · · · ,K

such that

ψ(z,ξ ) =−
κ−1

∑
k=0

αkuk +
κ−1

∑
k=0

αk · τ =
κ−1

∑
k=0

αk(τ−uk) =
K−1

∑
k=0

αk[τ−uk]
+ .

Analogously, for τ = ξ − z ∈ (−lκ ,−lκ−1] with κ ∈ {1, · · · ,K} we get

ψ(z,ξ ) =
K−1

∑
k=0

βk[τ+ lk]−

with β0 := q−1 , βk := q−k+1−q−k , k = 1, · · · ,K−1, such that in general

ψ(z,ξ ) =
K−1

∑
k=0

αk[τ−uk]
+ +

K−1

∑
k=0

βk[τ+ lk]− .

Due to the assumptions on (3.72), we have α0 +β0 ≥ 0 as well as
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αk ≥ 0 , βk ≥ 0 , ∀k ∈ {1, · · · ,K−1} and
K−1

∑
k=0

(αk +βk) = q+K +q−K > 0 .

Hence, whereas the SRT function

ϕ(z,ξ ) := α · [ξ − z]+ +β · [ξ − z]−− γ

according to Definition 3.3. represents the optimal objective value with a simple re-
course constraint and implies for some application constant marginal costs for short-
age and surplus, respectively, we now have the objective’s optimal value for a so-
called multiple simple recourse constraint, allowing to model increasing marginal
costs for shortage and surplus, respectively, which may be more appropriate for par-
ticular real life problems.

To study properties of this model in more detail it is meaningful to introduce
multiple simple recourse type functions (referred to as MSRT functions) as follows.

Definition 3.4. For real constants {αk,βk,uk, lk;k = 0, · · · ,K−1} and γ , such that
α0 +β0 ≥ 0 and

αk ≥ 0, βk ≥ 0 for k = 1, · · · ,K−1 with
K−1

∑
k=0

(αk +βk)> 0 ,

u0 = 0 < u1 < · · · < uK−1 ,
l0 = 0 < l1 < · · · < lK−1 ,

the function ψ(·, ·) given by

ψ(z,ξ ) :=
K−1

∑
k=0
{αk · [ξ − z−uk]

+ +βk · [ξ − z+ lk]−}− γ

is called a multiple simple recourse type function (see Fig. 3.5).

Ψ(z) = �ξ [ψ(z,ξ )]

=
∫ ∞

−∞

K−1

∑
k=0
{αk · [ξ − z−uk]

+ +βk · [ξ − z+ lk]−}dFξ (ξ )− γ

is the expected MSRT function.

Remark 3.6. In this definition the number of “shortage pieces” and of “surplus
pieces” is assumed to coincide (with K). Obviously this is no restriction. If, for
instance, we had for the number L of “surplus pieces” that L < K, with the trivial
modification

lk = lk−1 +1, βk = 0 for k = L, · · · ,K−1

we would have that
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ψ(z,ξ ) :=
K−1

∑
k=0

αk · [ξ − z−uk]
+ +

L−1

∑
k=0

βk · [ξ − z+ lk]−}− γ

=
K−1

∑
k=0
{αk · [ξ − z−uk]

+ +βk · [ξ − z+ lk]−}− γ .

�

ξ − z-l1
-l2-l3

u1 u2 u3

α1 + α2 + α3

α1

α1 + α2

β1 + β2 + β3

β1

β1 + β2

ψ(z,ξ)

Fig. 3.5 MSRT function.

For the expected MSRT function we have

Ψ(z)+ γ =

=
K−1

∑
k=0

{
αk

∫ ∞

−∞
[ξ − z−uk]

+dFξ (ξ )+βk

∫ ∞

−∞
[ξ − z+ lk]−dFξ (ξ )

}

=
K−1

∑
k=0

{
αk

∫ ∞

z+uk

(ξ − z−uk)dFξ (ξ )+βk

∫ z−lk

−∞
(z− lk−ξ )dFξ (ξ )

}

=
K−1

∑
k=0

αk

∫ ∞

z
(η− z)dFξ (η+uk)+

K−1

∑
k=0

βk

∫ z

−∞
(z−ζ )dFξ (ζ − lk)

=
K−1

∑
k=0

αk

∫ ∞

−∞
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫ ∞

−∞
(ξ − z)− dFξ (ξ − lk) ,

using the substitutions η = ξ −uk and ζ = ξ + lk (and ξ = η and ξ = ζ in the last
expression).
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The last one of the above relations forΨ(z)+ γ , i.e.

Ψ(z)+ γ =
K−1

∑
k=0

αk

∫ ∞

−∞
(ξ − z)+ dFξ (ξ +uk)

+
K−1

∑
k=0

βk

∫ ∞

−∞
(ξ − z)− dFξ (ξ − lk) ,

(3.73)

indicates a formal similarity with an expected SRT function using a positive mixture
of the distribution functions Fξ (ξ +uk) and Fξ (ξ − lk), k = 0, · · · ,K−1,

H(ξ ) =
K−1

∑
k=0

αkFξ (ξ +uk)+
K−1

∑
k=0

βkFξ (ξ − lk) .

Due to Definition 3.4., H(·) is monotonically increasing, right-continuous, and sat-
isfies

H(ξ )≥ 0 ∀ξ , lim
ξ→−∞

H(ξ ) = 0, and lim
ξ→∞

H(ξ ) =
K−1

∑
k=0

(αk +βk)> 0 ,

such that standardizing H(·), i.e. dividing by W :=
K−1

∑
k=0

(αk +βk), yields a new dis-

tribution function as the mixture

G(ξ ) :=
H(ξ )

W
=

K−1

∑
k=0

αkFξ (ξ +uk)+
K−1

∑
k=0

βkFξ (ξ − lk)

W
. (3.74)

Assuming now thatΨ(·) may be represented as an expected SRT function using the
distribution function G(·) we get, with constants A, B and C to be determined later,
using the trivial relations ρ+ = ρ +ρ− and ρ− = −ρ +ρ+, and writing

∫
instead

of
∫ ∞
−∞ for simplicity,

Ψ(z)+C = A
∫
(ξ − z)+ dG(ξ )+B

∫
(ξ − z)− dG(ξ )

=
A
W

{
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)+ dFξ (ξ − lk)

}

+
B
W

{
K−1

∑
k=0

αk

∫
(ξ − z)− dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

}

=
A
W

{
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)dFξ (ξ − lk)

+
K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

}
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+
B
W

{
K−1

∑
k=0

αk

∫
(z−ξ )dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

+
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)

}

=
A
W

{
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk(μ+ lk− z)

+
K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

}

+
B
W

{
K−1

∑
k=0

αk(z−μ+uk)+
K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

+
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)

}
.

Hence we have

Ψ(z)+C =

=
A+B

W

K−1

∑
k=0

{
αk

∫
(ξ − z)+ dFξ (ξ +uk)+βk

∫
(ξ − z)− dFξ (ξ − lk)

}

+
A
W

K−1

∑
k=0

βk(μ+ lk− z)+
B
W

K−1

∑
k=0

αk(z−μ+uk) .

To get coincidence with equation (3.73) we ought to have, with Wα =
K−1

∑
k=0

αk and

Wβ =
K−1

∑
k=0

βk,

A+B
W

= 1 and

A
W

(
Wβ (μ− z)+

K−1

∑
k=0

βklk

)
+

B
W

(
Wα (z−μ)+

K−1

∑
k=0

αkuk

)
= C .

To assure that the left-hand side of the last equation is constant (in z), we have the
condition

A ·Wβ −B ·Wα = 0 ,

which together with A+B =W =Wα +Wβ implies that

A =Wα and B =Wβ ,

such that
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C =

Wα

K−1

∑
k=0

βklk +Wβ

K−1

∑
k=0

αkuk

W
.

Hence, for the multiple simple recourse problem (with one recourse constraint)

min{cTx+Ψ(z)}
Ax = b
tTx −z = 0

x ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

(3.75)

we have derived in an elementary way the following result, deduced first in Van
der Vlerk [334], based on a statement proved in Klein Haneveld–Stougie–Van der
Vlerk [189]:

Theorem 3.8. The multiple simple recourse problem (3.75) with the expected MSRT
function

Ψ(z) = (3.76)

=
K−1

∑
k=0

αk

∫
(ξ − z)+ dFξ (ξ +uk)+

K−1

∑
k=0

βk

∫
(ξ − z)− dFξ (ξ − lk)

is equivalent to the simple recourse problem with the expected SRT function

Ψ(z) = (3.77)(
K−1

∑
k=k

αk

)∫
(ξ − z)+ dG(ξ )+

(
K−1

∑
k=k

βk

)∫
(ξ − z)− dG(ξ )−C

using the distribution function

G(ξ ) =

K−1

∑
k=0

αkFξ (ξ +uk)+
K−1

∑
k=0

βkFξ (ξ − lk)

K−1

∑
k=0

(αk +βk)

(3.78)

and the constant

C =

(
K−1

∑
k=0

αk

)
K−1

∑
k=0

βklk +

(
K−1

∑
k=0

βk

)
K−1

∑
k=0

αkuk

K−1

∑
k=0

(αk +βk)

. (3.79)

As shown in Van der Vlerk [334], if Fξ represents a finite discrete distribution
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{(ξν , pν); ν = 1, · · · ,N} with pν > 0 ∀ν ,
N

∑
ν=1

pν = 1, (3.80)

then G corresponds to a finite discrete distribution with at most N · (2K− 1) pair-
wise different realizations (with positive probabilities). This distribution, disregard-
ing possible coincidences of some of its realizations, according to (3.78) and (3.80)
is given by the following set of realizations and their corresponding probabilities

ξν , πν 0 =
(α0 +β0)pν

γ
; ν = 1, · · · ,N; (κ = 0);

ξν −uκ , π−ν κ =
ακ pν
γ

; ν = 1, · · · ,N; κ = 1, · · · ,K−1;

ξν + lκ , π+
ν κ =

βκ pν
γ

; ν = 1, · · · ,N; κ = 1, · · · ,K−1;

with γ =
K−1

∑
k=0

(αk +βk) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.81)

3.2.2.4 The generalized simple recourse problem (GSR)

GSR functions according to (3.53) on page 226 are defined as

QG(x,ξ ) := min q+Ty+ + q−Ty−
Iy+ − Iy− = h(ξ )−T (ξ )x
y+, y− ≥ 0 .

⎫⎬
⎭

In contrast to (3.60) and (3.62) on page 227, neither GSR functions nor the corre-
sponding EGSR functions QG(x) := �ξ [QG(x,ξ )] can be converted in a similar
manner into separable functions in (χi,ξi) and in (χi), respectively.

Requiring Assumption 3.3., and hence in this case presuming that q++q− ≥ 0,
implies problem (3.53) to have the optimal value

QG(x,ξ ) =
m2

∑
i=1

QG
i (x,ξ

(i)) with

QG
i (x,ξ

(i)) = q+i [(ηi(x,ξ (i))]+ +q−i [(ηi(x,ξ (i))]− , i = 1, · · · ,m2 ,

⎫⎪⎬
⎪⎭ (3.82)

where η(x,ξ ) = h(ξ )−T (ξ )x, and ξ (i) is the subvector of ξ with those components
(of ξ ) affecting (hi(ξ )−Ti(ξ )x), the i-th row of (h(ξ )−T (ξ )x).

Observing that

ηi(x,ξ ) = [ηi(x,ξ )]+− [ηi(x,ξ )]− =⇒ [ηi(x,ξ )]+ = ηi(x,ξ )+ [ηi(x,ξ )]−
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and denoting by �ξ (i) integration with respect to the marginal distribution �ξ (i) of

ξ (i), it follows with q = q++q− and (h,T ) =�ξ [(h(ξ ),T (ξ )], that

QG(x) =�ξ [Q
G(x,ξ )] =

m2

∑
i=1
�ξ (i) [Q

G
i (x,ξ

(i))] =
m2

∑
i=1

QG
i (x), (3.83)

where

QG
i (x) = �ξ (i) [Q

G
i (x,ξ

(i))]

= q+i �ξ (i)

[
[(ηi(x,ξ (i))]+

]
+q−i �ξ (i)

[
[(ηi(x,ξ (i))]−

]

= q+i �ξ (i) [(ηi(x,ξ (i))]

+q+i �ξ (i)

[
[(ηi(x,ξ (i))]−

]
+q−i �ξ (i)

[
[(ηi(x,ξ (i))]−

]

= q+i (hi−T ix)+qi�ξ (i)

[
[(ηi(x,ξ (i))]−

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

As shown in Corollary 3.1. (p. 206) the expected recourse QG
i (x) is a convex func-

tion ∀q≥ 0, and hence also�ξ (i)

[
[(ηi(x,ξ (i))]−

]
is convex in x.

By defining S(i)(x) := {ξ (i) | ηi(x,ξ (i))< 0} for arbitrary x ∈�n, it follows

�ξ (i)

[
[(ηi(x,ξ (i))]−

]
=

∫
S(i)(x)

−ηi(x,ξ (i))�ξ (i) (dξ
(i))

=

∫
S(i)(x)

(Ti(ξ )x−hi(ξ ))�ξ (i) (dξ
(i))

and, with fixed x̃, arbitrary x, and with S(i)(x) the complement of S(i)(x), for

Li(x ; x̃) :=
∫

S(i)(x̃)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

=
∫

S(i)(x̃)∩S(i)(x)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

+
∫

S(i)(x̃)∩S(i)(x)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

︸ ︷︷ ︸
≤0

≤
∫

S(i)(x)
−ηi(x,ξ (i))�ξ (i) (dξ

(i)) =�ξ (i)

[
[(ηi(x,ξ (i))]−

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.84)

Hence, the function
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Li(x ; x̃) =
∫

S(i)(x̃)
−ηi(x,ξ (i))�ξ (i) (dξ

(i))

=

∫
S(i)(x̃)

(Ti(ξ (i))x−hi(ξ (i)))�ξ (i) (dξ
(i))

=

{∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i))

}
x−

∫
S(i)(x̃)

hi(ξ (i))�ξ (i) (dξ
(i))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.85)

is a lower bound for�ξ (i)

[
[(ηi(x,ξ (i))]−

]
, due to (3.85) linear affine in x, and sharp

for x = x̃, since Li(x̃ ; x̃) =�ξ (i)

[
[(ηi(x̃,ξ (i))]−

]
by (3.84). Due to q≥ 0 follows that

Li(x ; x̃) := q+i (hi−T ix)+qiLi(x ; x̃)

≤ q+i (hi−T ix)+qi�ξ (i)

[
[(ηi(x,ξ (i))]−

]
= QG

i (x) .

}
(3.86)

Furthermore Li(x̃ ; x̃) = QG
i (x̃), since Li(x̃ ; x̃) =�ξ (i)

[
[(ηi(x̃,ξ (i))]−

]
, such that

QG
i (x)−QG

i (x̃)≥
≥ Li(x ; x̃)−Li(x̃ ; x̃)

= q+i T i(x̃− x)+qi {Li(x ; x̃)−Li(x̃ ; x̃)}
=

{
−q+i T i +qi

∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i))

}
(x− x̃),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.87)

thus yielding a linear support function of QG
i (·) at x̃ as

Li(x ; x̃) = QG
i (x̃)+gi(x̃)(x− x̃) = Li(x̃ ; x̃)+gi(x̃)(x− x̃) (3.88)

with gi(x̃) a subgradient (row vector) of QG
i (·) at x̃ given as

gi(x̃) :=−q+i T i +qi

∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i)) ∈ ∂QG

i (x̃).

Assume the first stage feasible set

B1 := {x | Ax = b , x≥ 0}

to be nonempty and compact. As mentioned above QG
i (·), and thus also the related

EGSR function QG(·) = ∑m2
i=1 QG

i (·), are convex functions and hence, according to
Prop. 1.24. (p. 54), continuous. Therefore, Θ̂ := minx∈B1 QG(x) exists.

Then problem (3.55) (see p. 227) can be written as

min{cTx+QG(x) | x ∈B1}

or equivalently as

min{cTx+Θ | x ∈B1 , QG(x)−Θ ≤ 0}. (3.89)
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Obviously, Θ ≥ Θ̂ , and a fortiori Θ ≥ Θ̂ − γ with some γ > 0, holds for all (x,Θ)
being feasible in (3.89). On the other hand, to add the constraint Θ ≤ Θ̂ + γ has no
impact on the solution of problem (3.89). Thus

B+ := {(xT,Θ)T | x ∈B1 , Θ̂ − γ ≤ Θ̂ ≤Θ ≤ Θ̂ + γ} ⊂�n+1,

instead of B1 ⊂�n, is nonempty and compact again. Hence with z := (xT,Θ)T, the
contraint function F(z) := QG(x)−Θ (convex in z as well), and with the objective
dTz := (cT,1)z = cTx+Θ , the program (3.89) has the same set of solutions as

min{dTz | z ∈B+ , F(z)≤ 0}. (3.90)

Finally, since QG(·) =
m2

∑
i=1

QG
i (·) due to (3.83), from (3.88) follows obviously that

g(x̃) =
m2

∑
i=1

gi(x̃) ∈ ∂QG(x̃) at any arbitrary x̃, such that the function F(·) has at any

z̃ = (x̃T,Θ̃)T a subgradient (row vector), given as

f (z̃) := (g(x̃),−1)

=

(
m2

∑
i=1

gi(x̃),−1

)

=

(
m2

∑
i=1

{
−q+i T i +qi

∫
S(i)(x̃)

Ti(ξ (i))�ξ (i) (dξ
(i))

}
,−1

)
∈ ∂F(z̃) .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.91)

With these requisites the following procedure can be formulated:

GSR-CUT: Approximating GSR solutions by successive cuts

Find a solution x̂ of the LP min{cTx | x ∈B1}.
With û(1) := x̂ and J := 1 go to Step I..

I. Find a solution (x̂T,Θ̂)T of the LP

min{cTx+Θ}
x ∈ B1

m2

∑
i=1

Li(x ; û( j)) ≤ Θ , j = 1, · · · ,J,

⎫⎪⎪⎬
⎪⎪⎭

(3.92)

and denote this solution as ẑ(J) := (x̂T,Θ̂)(J)T.
II. If

Δ := F(ẑ(J)) =
m2

∑
i=1

QG
i (x̂)−Θ̂ =

m2

∑
i=1

Li(x̂ ; x̂)−Θ̂ ≤ 0 ,
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stop (in practice: if Δ ≤ ε with a prescribed tolerance ε , stop);

else, with J := J+1 and û(J) := x̂, return to Step I..

�

Remark 3.7. The following observations on the above procedure GSR-CUT may
be useful:

1) Due to (3.87), the Li(x ; û( j)) are linear support functions of QG
i (x) at û( j),

and their gradients ∇x Li(x ; û( j)) coincide due to (3.88) with the subgradients
of QG

i (û
( j)) given as gi(û( j)) ∈ ∂QG

i (û
( j)).

2) It follows immediately that, due to (3.91),

m2

∑
i=1

Li(x ; û( j))−Θ =

= {QG(û( j))−Θ̂ ( j)}+g(û( j))(x− û( j))+(−1)(Θ −Θ̂ ( j))

= F(ẑ( j))+ f (ẑ( j))(z− ẑ( j))

is a linear support function of F(z) = QG(x)−Θ at ẑ( j) = (x̂( j)T,Θ̂ ( j))T, and
since by (3.92) obviously holds Θ̂ (J) = max1≤ j≤J L (x̂(J); û( j)) for all J, from
the compactness of B1, the continuity of QG(·) as well as the uniform bound-
edness of the subgradients g(·) ∈ ∂QG(·) (see the proof of Prop. 1.29., p. 61),
follows the existence of an appropriate compact (polyhedral) set B+ ⊂�n+1

such that ẑ( j) ∈B+ for all solutions of (3.92) generated within the above it-
eration. In other words, in the above iteration we deal simultaneously with
problem (3.89) as well as with problem (3.90).

3) The standard convergence statements—convergence of ϕJ = cTx̂(J)+Θ̂ (J), the
optima of (3.92), to the optimal value of (3.89), and any accumulation point of
iterates {ẑ(J)}, generated by (3.92), being a solution of (3.89)—follow imme-
diately from Prop. 1.29. (p. 61), observing that procedure GSR-CUT is just the
application of Kelley’s cutting plane method (on page 61) to problem (3.90).

4) In (3.92) the evaluation of Li(x ; û( j)) = q+i hi − (q+i T i)x + qiLi(x ; û( j)) re-
quires according to (3.6) (p. 196) for hi and T i the expectations �ξ (i) [ξ

(i)]
and due to (3.85) in particular the computation of the integrals
{∫

S(i)(û( j))
Ti(ξ (i))�ξ (i) (dξ

(i))

}
and

{
−
∫

S(i)(û( j))
hi(ξ (i))�ξ (i) (dξ

(i))

}
.

Since in general for multivariate distributions of continuous type (described
by densities) there is no algebraic formula for these integrals, they need to be
approximated by some simulation approach, e.g. an appropriate variant of the
Monte Carlo method.
For a finite discrete distribution �ξ (i) (ξ

(i) = ξ (i)ν) = p(i)ν , ν = 1, · · · ,N(i),

the sets S(i)(û( j)) := {ξ (i) | ηi(û( j),ξ (i)) < 0} are replaced by the index sets
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K(i)(û( j)) := {ν | ηi(û( j),ξ (i)ν) < 0}, thus yielding �ξ (i) [ξ
(i)] =

N(i)

∑
ν=1

p(i)ν ξ (i)ν

and

Li(x ; û( j)) = q+i hi− (q+i T i)x+qi ∑
ν∈K(i)(û( j))

p(i)ν {hi(ξ (i)ν)−Ti(ξ (i)ν)x}.

�

Exercises

3.7. Consider the following two simple recourse problems:

min{cTx+�[qTy(ζ )]} with c = (3,1,2,4)T, q = (2,1,1,3,2,1,2,1)T

Ax ≤ b with A =

(
2 1 3 5
3 4 3 2

)
, b =

(
32
35

)

T x + Wy(ζ ) = h(ζ ) a.s. with T =

⎛
⎜⎜⎝

2 0 3 2
3 5 0 2
0 2 4 0
2 1 0 3

⎞
⎟⎟⎠ , h(ζ ) =

⎛
⎜⎜⎝

25+ξ1
15+ξ2
17+ξ3
23+ξ4

⎞
⎟⎟⎠

x, y(ζ ) ≥ 0 a.s.

where ζ with independent components has either a uniform or a normal distribution as

U {[−5,5]× [−7,7]× [−3,3]× [−8,8]} or
N {(0;2),(0;1.5),(0;2.2),(0;1.7)} with truncation probabilities of 0.999, each.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.93)

Solve both problems using SLP-IOR, applying SRAPPROX as well as DAPPROX.

(a) For each of the two problems compare, as indicators for the efficiency of
the two solvers, the number of iterations as well as the number of splits (or
subintervals, respectively) used by SLP-IOR to get the solutions with the pre-
set accuracy.

(b) How do you explain the difference with respect to the above indicators, in
particular the remarkable discrepancy of the numbers of splits/subintervals?

3.8. For the SRT function ϕ(z, ξ ) :=α[ξ−z ]++β [ξ−z ]−, α+β ≥ 0, and the cor-

responding ESRT function Φ(z) = α(ξ̄ − z)− (α+β )
∫ z

−∞
(ξ − z)�ξ (dξ ) assume

the distribution�ξ to be bounded to the interval [a,b ].

(a) Show that then the integral Ψ(z) :=
∫ z

−∞
(z− ξ )�ξ (dξ ) may be computed

with Θ(z1,z2,z3) := z3 +
∫
ξ≤a+z2

(z2 +a−ξ )�ξ (dξ ) as

Ψ(z) := minΘ(z1,z2,z3) subject to:

−z1 + z2 + z3 = z− ξ̄ , z1 ≥ ξ̄ −a, z2 ≤ b−a, (z1,z2,z3)≥ 0

}
. (3.94)
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(b) How doesΨ(z) and hence the ESRT function Φ(z) look like, if �ξ is given
as U {[a,b]}?

3.9. Assume for (3.93) of Exercise 3.7 the uniform distributions mentioned for the
right-hand sides hi(ζi) and formulate problem (3.93) according to the result of the
previous exercise as a quadratic program. If you have access to any convex pro-
gramming software package, than solve the quadratic program and compare the
solution with that one you have got with SLP-IOR applying SRAPPROX (and/or
DAPPROX).

3.2.3 CVaR and recourse problems

Assume the result of some process to be a loss, modelled as a random variable
ϑ ∈L 1

1 with a distribution function Fϑ (z). As mentioned in Section 2.1, an exam-
ple from finance could be a portfolio optimization problem with tT(ξ )x as random
return of a portfolio x ∈�n (usually represented as the mixture of different assets)
compared to h(ξ ), the random return of some benchmark portfolio. In this case ϑ :=
(tT(ξ )x−h(ξ )) is considered as loss if ϑ− > 0. With the α–VaR (value at risk) να ,
defined in Section 2.3 (p. 137) as να := να(ϑ) := min{z | Fϑ (z) ≥ α}, α ∈ (0,1),
the α–CVaR (conditional value at risk) νc

α := νc
α(ϑ)was introduced in Section 2.4.3

(p. 152) as

νc
α(ϑ) := να +

1
1−α�ϑ [(ϑ −να)+] = min

z

{
z+

1
1−α�ϑ [(ϑ − z)+]

}
. (3.95)

It is well known, that—in spite of the naming—for the α–CVaR holds the inequality
νc
α(ϑ)≥�ϑ [ϑ | ϑ ≥ να ], where equality can only be ensured for continuous distri-

bution functions Fϑ (·). Nevertheless, νc
α(ϑ) is widely used in finance applications

as risk measure. Whereas the VaR να(ϑ) is by definition the (smallest) threshold for
a realization ϑ̂ not being exceeded with a probability of at least α , for continuous
distributions the α–CVaR νc

α(ϑ) is then the conditional expectation of ϑ given that
ϑ ≥ ϑ̂ . Moreover, due to Prop. 2.48. the α–CVaR satisfies the axioms for coherent
risk measures presented in Artzner, Delbaen et al. [7], which is in general not true
for the α–VaR. A more detailed discussion of the concept of CVaR can be found in
Rockafellar–Uryasev [283].

Due to (3.95), computing the α–CVaR νc
α(ϑ) can be considered as solving a

single-stage stochastic program. However, νc
α(ϑ) can also be considered as the op-

timal value of a particular two-stage stochastic program with simple recourse.

Proposition 3.3. The α–CVaR as defined in (3.95) is the optimal value of the SSR
problem

νc
α = min

z
(z+�ϑ [Q(z;ϑ)], (3.96)

where
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Q(z ;ϑ) = min
η

{
1

1−α η
∣∣∣∣z+η ≥ ϑ , η ≥ 0

}
.

Proof: Obviously holds

(ϑ − z)+ = min
η
{η | η ≥ ϑ − z , η ≥ 0}= (1−α)Q(z ;ϑ) ,

thus yielding the proposition and allowing for the interpretation, that after the first-
stage decision on z a realization of ϑ has to be observed before taking the second-
stage decision on η . �

Assuming now that, instead of ϑ : Ω −→�, a random vector ξ : Ω −→ Ξ ⊂�r is
given with Ξ = suppξ , and f (x,ξ ) : X×Ξ −→� is defined as decision-dependent
(loss) function, where

– X ⊂�n is a closed convex set of feasible decisions,
– f (·,ξ ) is continuous in x ∀ξ ∈ Ξ ,
– f (x, ·) is ξ–measurable ∀x ∈ X , and
– �ξ [| f (x,ξ )|]< ∞ ∀x ∈ X .

With the distribution function Φ(x,z) :=�({ξ | f (x,ξ )≤ z}) the α–VaR of f (x,ξ )
is να(x) = min{z | Φ(x,z) ≥ α}, yielding in analogy to (3.95) the α–CVaR of
f (x,ξ ) as

νc
α(x) := min

z

{
z+

1
1−α�ξ [( f (x,ξ )− z)+]

}
.

If in addition to the above assumptions f (·,ξ ) is convex in x ∀ξ ∈ Ξ , then it follows
that νc

α(x) is convex in x as well. In this case Prop. 3.3. is modified to

Proposition 3.4. For f (·,ξ ) convex ∀ξ ∈ Ξ the α–CVaR denoted as νc
α(x) is a

convex function in x, computable as the optimal value of the convex CFR program

νc
α(x) := min

z∈�
{z+�ξ [Q(x,z ;ξ )]

with Q(x,z ;ξ ) := min
η∈�

{
1

1−α η
∣∣∣∣z+η ≥ f (x,ξ ), η ≥ 0

}
,

⎫⎪⎬
⎪⎭ (3.97)

or equivalently, the optimum of

νc
α(x) := min

z∈�,η(x,z ;·)∈L 1
1

{
z+�ξ

[
1

1−α η(x,z ;ξ )
]}

z+η(x,z ;ξ ) ≥ f (x,ξ ) a.s.
η(x,z ;ξ ) ≥ 0 a.s.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.98)

Proof: Introducing x as a parameter and replacing ϑ by f (x ;ξ ), (3.97) follows im-
mediately from (3.96). The integrability of f (x ;ξ ) with respect ot ξ implies the well
known fact, that for each (x,z) there exists an η(x,z ; ·) ∈L 1

1 such that η(x,z ;ξ ) =
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(1−α)Q(x,z ;ξ ) a.s. Finally, the convexity of Q(x,z ;ξ ) in (x,z) ∀ξ ∈ Ξ follows
trivially from (3.97), implying the convexity of �ξ [Q(x,z ;ξ )] in x for any fixed z
and thus the convexity of νc

α(x) in x. �

To be more specific, assume that X := {x | Ax = b, x ≥ 0} �= /0 is compact, and
that the loss function is defined as f (x,ξ ) := λ (h(ξ )−tT(ξ )x) with some coefficient
λ > 0. As an interpretation, think of a linear production function, transforming a
vector x of input factors with a random vector t(ξ ) of productivities into a random
output tT(ξ )x; on the other hand let h(ξ ) be a random demand to be covered by that
output, such that, given that h(ξ )− tT(ξ )x > 0, the above loss function f (x,ξ ) is
just proportional to this excess demand.

Different types of models may be set up in this situation, as for instance:

1) In addition to the linear constraints of an LP a further constraint, restricting

the α–CVaR νc
α(x) := νc

α( f (x ,ξ )) = min
z

{
z+

1
1−α�ξ [( f (x,ξ )− z)+]

}
of

the above loss function, may be inserted yielding the model

mincTx
s.t. Ax = b

νc
α(x) ≤ γ

x ≥ 0 ,

which according to (2.152), (2.153) on pages157/157 coincides with the con-
vex NLP

mincTx
s.t. Ax = b

z+
1

1−α�ξ [(λ (h(ξ )− tT(ξ )x)− z)+] ≤ γ
x ≥ 0,

a single stage problem.

2) Extending instead the linear term of an LP’s objective by adding the α–CVaR
νc
α(x) := νc

α( f (x ,ξ )) of the loss f (x ;ξ ) yields the NLP

min{cTx+νc
α(x)}

s.t. Ax = b
x ≥ 0 ,

which due to Prop. 3.4. can be restated as
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min{cTx+ z+�ξ [Q(x,z ;ξ )]}
Ax = b
x ∈�n

+ , z ∈�
where

Q(x,z ;ξ ) := min
η∈�

{
1

1−α η
∣∣∣∣z+η ≥ f (x,ξ ), η ≥ 0

}

= min
η∈�

{
1

1−α η
∣∣∣∣λ tT(ξ )x+ z+η ≥ λh(ξ ), η ≥ 0

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.99)

a particular two-stage generalized simple recourse SLP with the first stage
variables x ∈�n and z ∈� and the recourse variable η (which, as mentioned
above, can be chosen for each (x,z) as a function η(x,z ; ·) ∈L 1

1 ); in (2.150)
on page 156 this model was derived for the special case of a finite discrete
probability distribution.
Solution methods of the GSR-CUT type were considered for this problem by
Klein Haneveld and van der Vlerk [191] and by Künzi–Bay and Mayer [198],
assuming ξ to have a finite discrete distribution; since in this case (3.99) is
a special LP with decomposition structure, in accordance with Remark 1.2.
(p. 48) the main concern of the authors was to find appropriate cut generation
strategies for the corresponding decomposition algorithm to be as efficient as
possible.

Due to the above discussion on general GSR-Cut procedures, for continuous
distributions the cutting plane methods described on page 247 can be designed
to solve (3.99) as well.

3) For the two-stage model (3.99) it is assumed that the first-stage decision on
x implies the deterministic first-stage outcome cTx, and that the loss f (x ,ξ ),
given the first-stage decision x, is the random second-stage outcome deter-
mined by the realization of ξ (unknown when deciding on x). To take into
account the risk (due to the random loss f (x ,ξ )), this model aims at determin-
ing a minimizer x̂ for the overall objective given as the sum of the first-stage
outcome cTx with the α–CVaR of the second-stage outcome f (x ,ξ ).
Another two-stage model is based on the following view: With a convex poly-
hedral set X ⊂�n

+ of feasible first-stage decisions x, causing cTx as the de-
terministic part of of the first-stage outcome, and with a very general recourse
function

Q(x ;ξ ) := min
y
{qT(ξ )y | T (ξ )x+W (ξ )y = h(ξ ) , y≥ 0}, (3.100)

as the random part of the first-stage outcome, the overall first-stage objective
is defined as

f (x ;ξ ) := cTx+Q(x ;ξ ).

Now the decision maker wants to find any x̂ ∈ X which minimizes some mix-
ture of the mean of this outcome and some risk measure of it, e.g. the α–CVaR
of f . Thus, observing that due to Prop. 2.48. (page 177) the α–CVaR is trans-
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lation invariant, with some λ > 0 the problem to solve would be

min
x∈X
{�ξ [ f (x ;ξ )]+λνc

α( f (x ;ξ ))}=
= min

x∈X
{(1+λ )cTx+�ξ [Q(x ;ξ )]+λνc

α(Q(x ;ξ ))}.

This can be rewritten as the two-stage SLP

min
x,η ,y,θ

[
(1+λ )cTx+�ξ [q

T(ξ )y(ξ )]+λ
(
η+

1
1−α�ξ [θ(ξ )]

)]

x ∈ X , η ∈�
y(·) ∈L 2

n2
, θ(·) ∈L 1

1
W (ξ )y(ξ ) = h(ξ )−T (ξ )x a.s.

θ(ξ ) ≥ qT(ξ )y(ξ )−η a.s.
y(ξ ) ≥ 0 a.s.
θ(ξ ) ≥ 0 a.s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.101)

with first-stage variables (x,η) and second-stage decisions (y(ξ ),θ(ξ )), or
more precisely y(ξ ), since due to the objective of (3.101) automatically
θ(ξ ) = (qT(ξ )y(ξ )−η)+ a.s. will result. At present, it seems unlikely to
find an efficient solver for the above problem in this generality for continuous
distributions �ξ . Obviously one might think of approximating solutions via
constructing sequences of discrete distributions�ν

ξ , weakly converging to�ξ
and thus taking advantage of known results on the use of epi-convergence in
optimization, as presented for instance in Pennanen [251, 252], Robinson and
Wets [279], Wets [343], and Kall [156]. However, since in this generality the
recourse function Q(x ;ξ ) is not convex in ξ , neither Jensen’s inquality nor the
Edmundson–Madansky inequality apply. Hence, there seems to be no efficient
tool to check the approximation error (as e.g. in DAPPROX) and thus to ver-
ify a prescribed accuracy during such an iterative procedure. Obviously this
would change substantially, if for the recourse (3.100) holds q(ξ )≡ q ∈�n2

and W (ξ )≡W , a constant (m2×n2)–matrix, thus allowing for an approxima-
tion via successive discretization.

In the general case the situation becomes much better manageable for finite
discrete distributions of ξ given by �ξ (ξ = ξi) = pi , i = 1, · · · ,N. Then
(3.101) reads as

min
x,η ,y,θ

[
(1+λ )cTx+

N

∑
i=1

pi ·qi
Tyi +λ

(
η+

1
1−α

N

∑
i=1

pi ·θi

)]

x ∈ X , η ∈�
Wiyi = hi−Tix i = 1, · · · ,N
θi ≥ qi

Tyi−η i = 1, · · · ,N
yi ≥ 0 i = 1, · · · ,N
θi ≥ 0 i = 1, · · · ,N.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.102)
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This model, a linear program with decomposition structure, was recently an-
alyzed by Noyan [246], providing two variants of appropriate cuts within de-
composition procedures for solving this problem efficiently.

3.2.4 Some characteristic values for two-stage SLP’s

Among various paradigms of modeling two-stage stochastic linear programs we
have discussed so far the general (two-stage) stochastic program with recourse with
the optimal value RS given due to (3.8), (3.9) as

RS := min
x

{
cTx+�ξ [Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ ))]

}

s.t. Ax = b
x ≥ 0 ,

⎫⎪⎬
⎪⎭ (3.103)

where
Q(x;T (ξ ),h(ξ ),W (ξ ),q(ξ )) := infqT(ξ )y(ξ )

s.t. W (ξ )y(ξ ) = h(ξ )−T (ξ )x a.s.
y(ξ ) ≥ 0 a.s.
y(·) ∈ Y

with Y =L 2
n2

. As in (3.6), we assume that the random parameters in these problems
are defined as linear affine mappings on Ξ =�r by

T (ξ ) = T +
r

∑
j=1

T j ξ j ; T, T j ∈�m2×n1 deterministic,

W (ξ ) = W +
r

∑
j=1

W j ξ j ; W, W j ∈�m2×n2 deterministic,

h(ξ ) = h+
r

∑
j=1

h j ξ j ; h, h j ∈�m2 deterministic,

q(ξ ) = q+
r

∑
j=1

q j ξ j ; q, q j ∈�n2 deterministic.

Remark 3.8. Whereas by the modeling paradigm of problem (3.103), the second
stage decision on y(ξ ) is to be taken after observing the realization of ξ , and know-
ing the first stage decision on x, which was taken before having knowledge of the
realization of ξ—one possible interpretation being (see Fig. 3.1, p. 191) that, in
time, the decision on the first stage variables x is taken before the observation of a
realization of ξ , and the second stage variables y(ξ ) are determined afterwards—
other paradigms could be either to replace the random vector ξ in advance by its
expectation ξ , thus yielding the expected value problem (3.104), or else to delay the
first stage decision until a realization of ξ is known, such that now the second stage
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decision y(·) as well as the first stage decision x(·) depend on ξ , which leads to the
wait-and-see model (3.105). �

As just mentioned, replacing the random vector ξ by its expectation ξ̄ =�ξ [ξ ],
yields instead of RS the optimal value EV of the expected value problem,

EV := min
x,y
{cTx+qT(ξ̄ )y}

s.t. Ax = b
T (ξ̄ )x +W (ξ̄ )y = h(ξ̄ )

x, y ≥ 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.104)

Except for the first moment ξ̄ , this model does not take at all into account the distri-
bution of ξ . Hence the solution will always be the same, no matter of the distribution
being discrete or continuous, skew or symmetric, flat or concentrated, as long as the
expectation remains the same. In other words, the randomness of ξ does not play an
essential role in this model.

In contrast to the recourse model (3.103), in the wait-and-see model both, the
decisions on the first stage variables x and the second stage variables y, are taken
simultaneously only when the outcome of ξ is known, with the optimal values of
the family of LP’s

∀ξ ∈ Ξ : γ(ξ ) := min
x,y
{cTx+qT(ξ )y}

s.t. Ax = b
T (ξ )x +W (ξ )y = h(ξ )

x, y ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.105)

the so-called wait-and-see value WS is the expected value

WS :=�ξ [γ(ξ )] . (3.106)

Finally, with the first stage solution fixed as any optimal first stage solution x̂
of the EV problem (3.104), we may ask for the objective’s value of (3.103), the
expected result of the EV solution

EEV :=
= cTx̂+�ξ [miny{qT(ξ )y |W (ξ )y = h(ξ )−T (ξ )x̂, y≥ 0}] . (3.107)

Observe that, in contrast to the values RS, EV , and WS, the value EEV may not be
uniquely determined by (3.107): If the expected value problem (3.104) happens to
have two different solutions x̂ �= x̃, this may lead to EEV (x̂) �= EEV (x̃).

For the above values assigned in various ways to the two-stage stochastic pro-
gramming situations mentioned, several relations are known which, essentially, can
be traced back to Madansky [211].

Proposition 3.5. For an arbitrary recourse problem (3.103) and the associated
problems (3.106) and (3.107) the following inequalities hold:
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WS≤ RS≤ EEV . (3.108)

Furthermore, with the recourse function Q(x;T (ξ ),h(ξ )), allowing only for the
matrix T (·) and the right–hand–side h(·) to contain random data, it follows that

EV ≤ RS≤ EEV . (3.109)

Proof: Let x� be an optimal first stage solution of (3.103). Then obviously the in-
equality

γ(ξ )≤ cTx�+Q(x�;T (ξ ),h(ξ ),W (ξ ),q(ξ )) ∀ξ ∈ Ξ
holds, and therefore

WS =�ξ [γ(ξ )]≤ {cTx�+�ξ [Q(x�;T (ξ ),h(ξ ),W (ξ ),q(ξ ))]}= RS .

The second inequality in (3.108) is obvious.

To show the second part, for any fixed x̃ the recourse function

Q(x̃;T (ξ ),h(ξ )) = min{qTy |Wy = h(ξ )−T (ξ )x̃ , y≥ 0}

is convex in ξ . In particular, for the optimal first stage solution x� of (3.103) follows
with Jensen’s inequality and the definition (3.104) of EV , that

RS = cTx�+�ξ [Q(x�;T (ξ ),h(ξ ))]
≥ cTx�+Q(x�;T (ξ̄ ),h(ξ̄ ))
≥ EV

which implies (3.109). �

Proposition 3.6. Given the recourse function Q(x;h(ξ )) (i.e. only the right–hand–
side h(·) is random) it follows that

EV ≤WS .

Proof: For the wait-and-see situation we have

γ(ξ ) = min
x,y
{cTx+qTy | Ax = b, T x+Wy = h(ξ ); x,y≥ 0} ,

which is obviously convex in ξ . Then by Jensen’s inequality follows

γ(ξ̄ ) = EV ≤�ξ [γ(ξ )] =WS .

�

For more general recourse functions the inequality of Prop. 3.6. cannot be ex-
pected to hold true; for a counterexample see Birge–Louveaux [26].
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Furthermore, in Avriel–Williams [9] the expected value of perfect information
EV PI was introduced as

EV PI := RS−WS (3.110)

and may be understood in applications as the maximal amount a decision maker
would be willing to pay for the exact information on future outcomes of the random
vector ξ . Obviously due to Prop. 3.5. we have EV PI ≥ 0. However, to compute
this value exactly would require by (3.110) to solve the original recourse problem
(3.103) as well as the wait-and-see problem (3.106), both of which may turn out to
be hard tasks. Hence the question of easier computable and still sufficiently tight
bounds on the EV PI was widely discussed. As may be expected, the results on
bounding the expected recourse function mentioned earlier are used for this purpose
as well as approaches especially designed for bounding the EV PI as presented e.g.
in Huang–Vertinsky–Ziemba [143] and some of the references therein.

Finally, the value of the stochastic solution was introduced in Birge [22] as the
quantity

V SS := EEV −RS , (3.111)

which in applications may be given the interpretation of the expected loss for ne-
glecting stochasticity in determining the first stage decision, as mentioned with the
EV solution of (3.104). Obviously it measures the extra cost for using, instead of the
“true” first stage solution for the recourse problem (3.103), the first stage solution
of the expected value problem (3.104). Also in this case Prop. 3.5. implies V SS≥ 0.

If in the problem at hand there is no randomness around, in other words if with
some fixed ξ̂ ∈�r we have�ξ (ξ = ξ̂ ) = 1, then obviously follows EV PI =V SS =
0. In turn, if one of these characteristic values is strictly positive, it is often consid-
ered as a “measure of the degree of stochasticity” of the recourse problem. However,
one must be careful with this interpretation; it should be observed that examples can
be given for which either EV PI = 0 and V SS > 0 or, on the other side, EV PI > 0 and
V SS = 0 (see Birge–Louveaux [26]). Hence, the impact of stochasticity to the EV PI
and the V SS may be rather different. Although these values are not comparable in
general, there are at least some joint bounds:

Proposition 3.7. With the recourse function Q(x;T (ξ ),h(ξ )), allowing only for the
matrix T (·) and the right–hand–side h(·) to contain random data, the value of the
stochastic solution has the upper bound

V SS≤ EEV −EV . (3.112)

With the recourse function Q(x;h(ξ )), i.e. with only the right–hand–side h(·) being
random, the expected value of perfect information is bounded above as

EV PI ≤ EEV −EV . (3.113)

Proof: Due to (3.109) in Prop. 3.5., we have RS≥ EV and therefore

V SS = EEV −RS≤ EEV −EV .
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From Prop. 3.6. we know that with the recourse function Q(x;h(ξ )) holds EV ≤
WS. Hence, together with Prop. 3.5. we get

EV PI = RS−WS≤ EEV −EV .

�

The above bounds are due to Avriel–Williams [9] for the EV PI and Birge [22]
for the V SS.

In the literature, you may occasionally find statements claiming that the bounds
given in (3.112) and (3.113) hold true without the restrictions made in Prop. 3.7..
There are obvious reasons to doubt those claims. Concerning V SS the above argu-
ment for (3.109) using Jensen’s inequality fails as soon as we loose the convexity
of the recourse function in ξ for any fixed x̃. For the EV PI we present again the
following example (as mentioned in Kall [154]):

Example 3.2. With X =�+ let c = 2, W = (1,−1), q = (1,0)T and

�ξ {(T (1),h(1)) = (1,2)}=�ξ {(T (2),h(2)) = (3,12)}= 1
2
.

Then we have T̄ = 2, h̄ = 7 and

EV = min{2x+ y1 | 2x+ y1− y2 = 7; x≥ 0, y≥ 0}= 7 with x̂ =
7
2
.

With
Q(x̂;T (1),h(1)) = min

y
{y1 | y1− y2 = 2− x̂, y≥ 0}= 0

and
Q(x̂;T (2),h(2)) = min

y
{y1 | y1− y2 = 12−3x̂, y≥ 0}= 3

2

follows

EEV = 2 · 7
2
+

1
2
· 3

2
= 7.75

and hence EEV −EV = 0.75. On the other hand we get RS as optimal value from

min{2 · x+0.5 · y(1)1 +0.5 · y(2)1 }
1 · x+ 1 · y(1)1 −1 · y(1)2 = 2
3 · x+ 1 · y(2)1 −1 · y(2)2 = 12

x, y(1), y(2) ≥ 0 ,

yielding RS = 7 with x� = 2, y(2)1 = 6. To get the WS we compute

γ1 := min{2 · x+ y1 | 1 · x+1 · y1−1 · y2 = 2; x, y≥ 0}= 2

and
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γ2 := min{2 · x+ y1 | 3 · x+1 · y1−1 · y2 = 12; x, ,y≥ 0}= 8

yielding WS = 0.5 ·2+0.5 ·8 = 5 such that

EV PI = RS−WS = 2 > EEV −EV = 0.75 .

�

3.3 The multi-stage SLP

According to (3.1) on page 192 the general MSLP may be stated as

min{cT
1 x1 +�

T

∑
t=2

cT
t (ζt)xt(ζt)}

A11x1 = b1

At1(ζt)x1 +
t

∑
τ=2

Atτ(ζt)xτ(ζτ) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.114)

where on a given probability space (Ω ,G ,P) random vectors ξt : Ω −→ �rt

are defined, with ξ = (ξT
2 , · · · ,ξT

T )
T inducing the probability distribution �ξ on

�
r2+···+rT , and ζt = (ξT

2 , · · · ,ξT
t )

T the state variable at stage t.

Remark 3.9. Not to overload the notation, for the remainder of this section, in-
stead of ξ = (ξT

2 , · · · ,ξT
T )

T and ζt = (ξT
2 , · · · ,ξT

t )
T, we shall write ξ = (ξ2, · · · ,ξT )

and ζt = (ξ2, · · · ,ξt), understanding that ξ = (ξ2, · · · ,ξT ) ∈ �r2+···+rT and ζt =
(ξ2, · · · ,ξt) ∈�r2+···+rt , as before. �

Furthermore, the (random) decisions xt(·) are required to be Ft -measurable,
with Ft = σ(ζt) ⊂ G . Since {F1, · · · ,FT} is a filtration, this implies the nonan-
ticipativity of the feasible policies {x1(·), · · · ,xT (·)}. Finally, Assumption 3.1.,
page 192, prescribes the square-integrability of ξt(·) w.r.t. P for t = 1, · · · ,T , and
Atτ(·),bt(·),ct(·) are assumed to be linear affine in ζt . In addition, we have required
the square-integrability of the decisions xt(·).

Obviously, for ξ having a non-discrete distribution, to solve problem (3.114)
means to determine decision functions xt(·) (instead of decision variables) satisfy-
ing infinitely many constraints, which appears to be a very hard task to achieve, in
general. The problem becomes more tractable for the case of ξ having a finite dis-
crete distribution, a situation found or assumed in most applications of this model.
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3.3.1 MSLP with finite discrete distributions

Let ξ : Ω −→�R, R =
T

∑
t=2

rt , be a random vector with a finite discrete distribution,

having the realizations ξ̂ 1, ξ̂ 2, · · · , ξ̂ S with the probabilities q1,q2, · · · ,qS, respec-
tively.

Anyone of these realizations is also denoted as a scenario ξ̂ s = (ξ̂ s
2 , · · · , ξ̂ s

T )

with the probability �ξ{ξ = ξ̂ s} = qs, s ∈ S := {1, · · · ,S}. Then the time dis-
crete stochastic process {ζt ; t = 2, · · · ,T} with discretely distributed state variables
ζt may be assigned to a scenario tree as follows:

– The (deterministic) state of the system at stage 1 is assigned to node 1, the
unique root of the tree.

– Among all scenarios ξ̂ s, s = 1, · · · ,S, there are a finite number k2 having
pairwise different realizations ζ̂ s

2 of the stage 2 state variables, denoted as
ζ̂ ρ(n)

2 = ξ̂ ρ(n)
2 , n = 2, · · · ,1+ k2, and assigned to the nodes numbered as n =

2, · · · ,1+k2 =: K2. Here ρ(n) refers to the first of the scenarios ξ̂ s, s= 1, · · · ,S,
passing through the particular state ζ̂ s

2 . Node 1 is connected by an arc to each
of the k2 nodes in stage 2 due to the fact, that the corresponding states in stage
2 are realized by at least one scenario.

– Having assigned, according to all scenarios, up and until stage t < T the nodes
and arcs to all states and implied transitions between consecutive states (i.e.
given a scenario ξ̂ s = (ξ̂ s

2 , · · · , ξ̂ s
t−1, ξ̂

s
t , · · · , ξ̂ s

T ), implies a transition from state

ζ̂ s
t−1 = (ξ̂ s

2 , · · · , ξ̂ s
t−1) to ζ̂ s

t = (ξ̂ s
2 , · · · , ξ̂ s

t ) at least once), we consider for each

scenario ξ̂ s the state ζ̂ s
t+1 = (ξ̂ s

2 , · · · , ξ̂ s
t+1). Again, in stage t + 1 there is a

finite number kt+1 of different states denoted as ζ̂ ρ(n)
t+1 , n = Kt + 1, · · · ,Kt +

kt+1 =: Kt+1, and assigned to the nodes Kt + 1, · · · ,Kt + kt+1 =: Kt+1 (with
ρ(n) referring again to the first scenario passing through this particular state).
Finally, we insert the arcs from stage t to stage t + 1 according to the implied
transitions.

With this scenario tree, representing graphically the possible developments of the
stochastic process {ξ2, · · · ,ξT} over time, we may combine probabilistic informa-
tion to get a complete description of the process (see Fig. 3.6).

To this end, we may identify the leaf nodes of the tree (the stage T nodes)
KT−1 + 1, · · · ,KT with the scenarios ξ̂ s, s = 1, · · · ,S, and assign to these nodes the
probabilities qs of the respective scenario. Hence we have first the probabilities to
reach the leaf nodes n = KT−1 +1, · · · ,KT as pn = qn−KT−1 .

For all other nodes, i.e. for n ≤ KT−1, we then compute the probabilities pn to
pass through these nodes: Given node n, by the above construction of the scenario
tree we know the stage tn of this node as well as its corresponding state ζ̂ ρ(n)

tn ;

then with S (n) = {s | ζ̂ s
tn = ζ̂ ρ(n)

tn } we have {ξ̂ s | s ∈S (n)}, the set of scenarios
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passing through this state, called the scenario bundle of node n, and we get pn, the
total probability of this scenario bundle, as pn = ∑

s∈S (n)
qs.
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Fig. 3.6 Four-stage scenario tree representing a stochastic process.

After the above description of a scenario tree it seems to be meaningful to introduce
the following collection of specific variables and sets for discussing various issues
on scenario trees. These entities have shown to be useful when dealing with rather
complex problems defined on scenario trees, like e.g. multi-stage SLP’s with finite
discrete distributions, as to be discussed next. There we shall make use of the fol-
lowing

Notation for scenario trees:

(N ,A ) : rooted tree with nodes N ⊂� (n = 1 the unique root),
and A the set of arcs.
The nodes n ∈N are assigned to stages t = 1, · · · ,T ,
with n = 1 in stage t = 1, and with kt > 0 nodes for

t = 2, · · · ,T , and |N |= 1+
T

∑
t=2

kt .

The arcs in A connect selected nodes of stage t and
stage t +1, t = 1, · · · ,T −1, such that each node in
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some stage t < T has at least one immediate successor,
and each node in some stage t > 1 has exactly one
immediate predecessor.
Any path n1, · · · ,nT , with n1 = 1, tnt = t for t ≥ 2,
and (nt ,nt+1) ∈A for t = 1, · · · ,T −1, corresponds
one-to-one to the scenario ξ̂ s, s ∈S = {1, · · · ,S},
identified with the leaf node nT .

qs, s ∈S : qs =�ξ{ξ = ξ̂ s}, the probability of scenario ξ̂ s, and
hence the probability to reach the leaf node identified
with this scenario;

tn : the stage of node n ∈N ;

ρ(n) : the smallest s ∈S such that scenario ξ̂ ρ(n) passes
through the state ζ̂ s

tn assigned to node n;

ζ̂ n : ζ̂ n := ζ̂ ρ(n)
tn , the state in stage tn uniquely assigned to n;

D(t)⊂N : the set of nodes in stage t with |D(t)|= kt ;

hn : parent node (immediate predecessor) of n ∈N , n≥ 2;

H (n)⊂N : set of nodes in the unique path from n ∈N through the
successive predecessors back to the root, ordered by
stages, the history of n (including n);

S (n) : S (n) = {s | ζ̂ s
tn = ζ̂ ρ(n)

tn }, the index set identifying the
scenario bundle of node n;

pn : pn = ∑
s∈S (n)

qs, the probability to pass node n;

C (n)⊂N : the set of children (immediate successors) of node n;

Gs(n)⊆N : the future of node n along scenario ξ̂ s : s ∈S (n),
including node n, i.e. the nodes ntn = n, · · · ,nT
provided the path {n1, · · · ,ntn , · · · ,nT} corresponds to
scenario ξ̂ s (hence Gs(n) = /0 if s �∈S (n));

G (n)⊆N : the future of n ∈N , G (n) =
⋃

s∈S (n)

Gs(n);

qn→m : qn→m =
pm

pn
∀m ∈ G (n), the conditional probability to

reach node m given node n (provided that pn > 0).

To keep the following problem formulations simple, we introduce

Assumption 3.4. For any MSLP with a finite discrete distribution of the scenarios
ξ holds

qs =�ξ{ξ = ξ̂ s}> 0 ∀s ∈S . (3.115)
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By construction the following facts are obvious:

– Through each node passes at least one scenario, i.e. S (n) �= /0 ∀n ∈N ;
– given any stage t, each scenario passes through exactly one node in stage t, i.e.⋃

n∈D(t)

S (n) = S and S (n)∩S (m) = /0 ∀n,m ∈D(t) : n �= m .

Hence, it follows in general that

∑
n∈D(t)

pn = 1, t = 1, · · · ,T, (3.116)

and due to Assumption 3.4. holds

pn = ∑
s∈S (n)

qs > 0 ∀n ∈N . (3.117)

For the general MSLP (3.114), the decisions xt(ζt) in stage t are required to be
Ft -measurable with Ft = σ(ζt) ⊂ G . For ξ having a finite discrete distribution,
σ(ζt) is generated by the kt atoms ζ−1

t [ζ̂ ρ(n)
tn ], n = Kt−1 +1, · · · ,Kt . Then xt(·) has

to be constant on each of these atoms or equivalently, to each node n we have to
determine the decision vector xn := xtn(ζ̂ n). Observing that the expected values

� [cT
t (ζt)xt(ζt)] may now be written as

Kt

∑
n=Kt−1+1

pncT
tn(ζ̂

n)xn, problem (3.114) for a

discrete distribution reads as

min ∑
m∈N

pmcT
tm(ζ̂

m)xm

∑
m∈H (n)

Atntm(ζ̂
n)xm = btn(ζ̂ n) ∀n ∈N

xm ≥ 0 ∀m ∈N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.118)

with p1 = 1 and cT
t1(ζ̂

1) = c1, At1t1(ζ̂
1) = A11, bt1(ζ̂

1) = b1 being constant.
With an obvious simplification of the notation problem (3.118) may be rewritten
equivalently as

min ∑
m∈N

pmcT
tm(m)xm

∑
m∈H (n)

Atntm(n)xm = bn ∀n ∈N

xm ≥ 0 ∀m ∈N .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.119)

As the dual LP of (3.119) we have

max ∑
n∈N

bT
n un

∑
n∈G (m)

AT
tntm(n)un ≤ pmctm(m) ∀m ∈N .

⎫⎪⎪⎬
⎪⎪⎭

(3.120)
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Remark 3.10. If in particular, ∀n ∈N \{1} and for each node m ∈H (n) : tm <

tn−1, we have that Atntm(n) = Atntm(ζ̂ n) = 0, then with W1 := A11 and

Tn := Atntn−1(n) and Wn := Atntn(n) ∀n ∈N \{1}

problem (3.119) reads as

min ∑
m∈N

pmcT
tm(m)xm

W1x1 = b1
Tnxhn +Wnxn = bn ∀n ∈N \{1}

xn ≥ 0 ∀n ∈N .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.121)

Hence we have the same problem structure as assumed when discussing the nested
decomposition in section 1.2.7 of Chapter 1, in particular the structure of problem
(1.29) on page 33.

The general MSLP problem (3.114) can always be transformed to an equivalent
problem where Atτ = 0 holds for τ < t− 1, thus assuming the following staircase
form

min{cT
1 x1 +�

T

∑
t=2

cT
t (ζt)zt(ζt)}

W1z1 = b1
Tt(ζt)zt−1(ζt−1) +Wt(ζt)zt(ζt) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.122)

formally corresponding to (3.121), where now zt is an n1 + . . .+ nt–dimensional
variable and Tt and Wt have mt +n1 + . . .+nt rows. For specifying the transforma-
tion which maps (3.114) into (3.122) we will employ double indices. The transfor-
mation is as follows. Let

zT
t (ζt) = (zt,1(ζt), · · · ,zt,t−1(ζt),zt,t(ζt))

with zt,τ being an nτ–dimensional variable, τ = 1, . . . , t, and with ztt corresponding
to xt in (3.114). The matrices are defined as follows. Let W1 = A1,1. For 1 < t < T
we define

Tt(ζt) =

⎛
⎜⎜⎜⎝

At,1(ζt) . . . At,t−1(ζt)
I

. . .
I

⎞
⎟⎟⎟⎠

and
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Wt(ζt) =

⎛
⎜⎜⎜⎝

0 . . . 0 At,t(ζt)
−I 0

. . .
...

−I 0

⎞
⎟⎟⎟⎠

and for t = T let

TT (ζT ) = (AT,1(ζT ), . . . AT,T−1(ζT )) and WT (ζT ) = AT T (ζT ).

Loosely speaking, the auxiliary variables (zt,1, . . . ,zt,t−1) serve for “forwarding”
the solution to later stages. As an example let us consider an MSLP with T = 4 and
let us drop in the notation the dependency on ζt . The original structure is

A11x1 = b1

A21x1 +A22x2 = b2

A31x1 +A32x2 +A33x3 = b3

A41x1 +A42x2 +A43x3 +A44x4 = b4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

which transforms into

A11z11 = b1
A21z11 +A22z22 = b2

z11 −z21 = 0
A31z21 +A32z22 +A33z33 = b3

z21 −z31 = 0
z22 −z32 = 0

A41z31 +A42z32 +A43z33 +A44z44 = b4

In the literature, multi-stage SLP’s are often presented just in the so-called stair-
case formulation (3.121). Although problems of this form, at the first glance, look
simpler than problems in the lower block triangular formulation like (3.119), this
does not imply a computational advantage in general. Indeed, if the staircase for-
mulation results from the above transformation of (3.114) into (3.122), then the
numbers of variables and of constraints are increased. �

3.3.2 MSLP with non-discrete distributions

In Section 3.2.1 we have discussed two-stage SLP’s with complete fixed recourse
and with bounded distributions, i.e. with supp�ξ ⊆ Ξ = ∏r

i=1[αi,βi]. In particu-
lar, we considered the recourse function Q(x;T (ξ ),h(ξ )), which according to our
notation (see page 197) implies for the second stage problem (3.9) that only T (·)
and h(·) (or some elements of these arrays) are random. In this case, we could
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apply Jensen’s inequality to get in Theorem 3.4. a lower bound for the expected

recourse Q(x) =
∫
Ξ

Q(x;T (ξ ),h(ξ ))�ξ (dξ ) as Q(x;T (ξ̄ ),h(ξ̄ )) ≤ Q(x), where

ξ̄ := �ξ [ξ ]. In other words, introducing the Jensen distribution �η as the one-
point distribution with�η{η =�ξ [ξ ]}= 1, the Jensen inequality can formally be
written as ∫

Ξ
Q(x;T (η),h(η))�η(dη)≤Q(x) .

On the other hand, we have derived particular discrete probability distributions
�η on the vertices vν of Ξ , the E–M distribution for stochastically independent
components of ξ in Lemma 3.6 and the generalized E–M distribution for stochas-
tically dependent components of ξ in Lemma 3.7, respectively, which were shown
to solve two special types of moment problems. According to Theorems 3.5. and
3.6., using these distributions the E–M inequality provides an upper bound for the
expected recourse as

Q(x) ≤
∫
Ξ

Q(x;T (η),h(η))�η(dη)

=
2r

∑
ν=1

Q(x;T (vν),h(vν))�η(v
ν) .

For any disjoint interval partition X = {Ξk; k = 1, · · · ,K} of Ξ , we apply
Jensen’s inequality for the conditional expectations, meaning to introduce on the set
of conditional expectations {ξ̄k :=�ξ [ξ | ξ ∈ Ξk] | k = 1, · · · ,K} the correspond-
ing discrete distribution �ηX

, defined by �ηX
{ξ̄k} = �ξ{Ξk}, and to compute∫

Ξ
Q(x;T (η),h(η))�ηX

(dη) to get a lower bound for Q(x). Similarly, we apply

the E–M inequality using the distribution�ηX
=

K

∑
k=1
�ξ{Ξk} ·�ηΞk

, where�ηΞk

is either the E–M distribution or else the generalized E–M distribution solving the
corresponding conditional moment problems, conditioned with respect to the cell
Ξk ∈X . This way, according to Lemma 3.8 we get an increased lower bound as
well as a decreased upper bound.

For any sequence of appropriately refined interval partitions {X ν} the corre-
sponding sequences of discrete distributions {�ηX ν } and {�ηX ν } of Jensen dis-
tributions and E–M distributions, respectively, are shown in Lemma 3.9 to converge
weakly to the original distribution�ξ . For the corresponding sequences {Q̃ν} and
{Q̂ν} of Jensen lower bounds and E–M upper bounds, respectively, of the expected
recourse function Q, this implies epi-convergence of both sequences to Q. This
convergence behaviour, however, provides due to Theorem 3.7. promising condi-
tions to design approximation schemes for the solution of two-stage SLP’s with
complete fixed recourse.
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The question arises whether we may expect a similar approach to be applica-
ble for the solution of multi-stage SLP’s with more than two stages. To get a first
impression let us take a look at a rather simple three-stage example.

Example 3.3. Consider the complete fixed recourse problem

V � := min{2x+�[y1(ξ2)+2y2(ξ2)]+�[z1(ξ2,ξ3)+ z2(ξ2,ξ3)]}
s.t. x + y1(ξ2) − y2(ξ2) = ξ2

x + y1(ξ2) − y2(ξ2) + z1(ξ2,ξ3) − z2(ξ2,ξ3) = ξ3

x, y1, y2, z1, z2 ≥ 0

with ζ := (ξ2,ξ3)
T having the (joint) probability distribution �ζ on supp�ζ :=

Ξ = [0,1]× [0,1], given by the density

f (ξ2,ξ3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+ ε for 0≤ ξ2,ξ3 ≤ 0.5
1+ ε for 0.5≤ ξ2,ξ3 ≤ 1
1− ε for 0≤ ξ2 < 0.5 < ξ3 ≤ 1
1− ε for 0≤ ξ3 < 0.5 < ξ2 ≤ 1
0 else ,

where ε is some constant such that ε ∈ (−1,+1).

Ξ3
1

Ξ3
2

1 − ε

1 − ε
1 + ε

1 + ε

1 + ε

1 + ε

0 1

1

Ξ2

Fig. 3.7 supp�ζ = Ξ 2×Ξ 3 = Ξ 2× (Ξ 3
1 ∪Ξ 3

2 ) with density f (ξ2,ξ3).

For the marginal distribution of ξ2 we obviously get the marginal density as
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f2(ξ2) =
∫ 1

0
f (ξ2,ξ3)dξ3 =

{
1 for ξ2 ∈ [0,1]
0 else,

such that the corresponding distribution�ξ2
is U [0,1], the uniform distribution on

the interval [0,1]. According to the definition of f (ξ2,ξ3), for ξ3 follows the same
marginal distribution.

Considering, for instance, the interval Ξ̃ := {[0,0.5]× [0,0.5]} ⊂�2, we get

�ζ (Ξ̃) =
∫
Ξ̃

f (ζ )dζ =
1
4
(1+ ε) ,

whereas for the marginal distributions in U [0,1] follows

�ξ2
([0,0.5]) ·�ξ3

([0,0.5]) =
1
4
.

Hence, for ε �= 0 the random variables ξ2 and ξ3 are dependent.
Due to the objective of our recourse problem, for any given first stage solution

x≥ 0 the second stage solution yi(ξ2), i= 1,2, minimizing the second stage objective
y1(ξ2)+2y2(ξ2), has to satisfy the rules

a) ξ2 < x =⇒ y1(ξ2) = 0, y2(ξ2) = x−ξ2
b) ξ2 ≥ x =⇒ y1(ξ2) = ξ2− x, y2(ξ2) = 0.

Minimizing the third stage objective z1(ξ2,ξ3)+ z2(ξ2,ξ3) then yields, for both of
the cases a) and b) above,

x+ y1(ξ2)− y2(ξ2)≤ ξ3 =⇒ z1(ξ2,ξ3) = ξ3−ξ2, z2(ξ2,ξ3) = 0
x+ y1(ξ2)− y2(ξ2)> ξ3 =⇒ z1(ξ2,ξ3) = 0, z2(ξ2,ξ3) = ξ2−ξ3 .

Observe that a first stage decision x < 0 is not feasible. On the other hand, x > 1
cannot be optimal, since this would increase unnecessarily the overall objective,
more precisely the first stage cost 2x plus the expected second stage cost�[y1(ξ2)+
2y2(ξ2)] due to a) by at least 2(x−1)+2�[(x−ξ2)]> 4(x−1). Hence we compute
the objective value, for 0≤ x≤ 1, as

V (x) = 2x+
∫ x

ξ2=0
2(x−ξ2)dξ2 +

∫ 1

ξ2=x
(ξ2− x)dξ2+

+
∫
Ξ
|ξ3−ξ2| f (ξ2,ξ3)dξ2dξ3

= 2x+
3
2

x2− x+
1
2
+
∫
Ξ
|ξ3−ξ2| f (ξ2,ξ3)dξ2dξ3 .

For the last integral we get
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∫
Ξ
|ξ3−ξ2| f (ξ2,ξ3)dξ2dξ3 =

∫ 1

ξ2=0

∫ 1

ξ3=ξ2

(ξ3−ξ2) f (ξ2,ξ3)dξ2dξ3

︸ ︷︷ ︸
A

+
∫ 1

ξ3=0

∫ 1

ξ2=ξ3

(ξ2−ξ3) f (ξ2,ξ3)dξ2dξ3

︸ ︷︷ ︸
B

,

where A = B for symmetry reasons (see Fig. 3.7). For A, the integral taken over the
triangle above the line ξ3 = ξ2 in Fig. 3.7, we get by integration of (ξ3−ξ2) f (ξ2,ξ3)

A =
1
2
(1+ ε)

1
24

+
1
2
(1− ε)1

4
+

1
2
(1+ ε)

1
24

=
2− ε

12

such that A+B =
2− ε

6
and hence

V (x) =
3
2

x2 + x+
1
2
+

2− ε
6

=
3
2

x2 + x+
5− ε

6
.

Obviously, min
x≥0

V (x) is achieved at x̂ = 0 such that the optimal value of our problem

turns out to be
V � = min

x≥0
V (x) =

5− ε
6

.

Let us now discretize the distributions of ξ2 in stage two and ζ = (ξ2,ξ3)
T in

stage three by choosing the partitions X 2 of Ξ 2 and X 3 of Ξ 2×Ξ 3, respectively,
as follows:

Stage 2: X 2 = {Ξ 2} yielding for ξ2 the realization

ξ̄2 =�ξ2
[ξ2] =

1
2

with p2 =�({ξ2 ∈ [0,1]}) = 1;

Stage 3: X 3 =

{
Ξ 2×

[
0,

1
2

)
,Ξ 2×

[
1
2
,1
]}

yielding for ξ3 the realizations

ξ̄31 =�

[
ξ3 | ξ2 ∈ [0,1],ξ3 ∈

[
0,

1
2

)]
= �

[
ξ3 | ξ3 ∈

[
0,

1
2

)]
=

1
4

ξ̄32 =�

[
ξ3 | ξ2 ∈ [0,1],ξ3 ∈

[
1
2
,1
]]

= �

[
ξ3 | ξ3 ∈

[
1
2
,1
]]

=
3
4

with

p31 = �

({
ξ3 ∈

[
0,

1
2

)})
=

1
2

and

p32 = �

({
ξ3 ∈

[
1
2
,1
]})

=
1
2
.

Then the discretized problem reads as
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V := min
{

2x+ y1 +2y2 +
1
2
(z1

1 + z1
2)+

1
2
(z2

1 + z2
2)

}

s.t. x +y1− y2 =
1
2

x +y1− y2 +z1
1− z1

2 =
1
4

x +y1− y2 +z2
1− z2

2 =
3
4

x,y1,y2,z1
1,z

1
2,z

2
1,z

2
2 ≥ 0 .

Also in this case the optimum is achieved for x̃ = 0 with V =
3
4

. Comparing this

value with the optimum V � =
5− ε

6
of the original problem, we see that

V

⎧⎪⎨
⎪⎩
≤V � if ε ≤ 1

2

>V � if ε >
1
2
.

In conclusion, even for a rather simple situation like three stages, randomness in the
right–hand–sides only, and complete fixed recourse, we cannot expect in general
to get a lower bound of the optimum by discretization of the distributions in an
analogous manner as in the two-stage case. �

This example as well as the following considerations are essentially based on
discussions related to an idea, originally due to S. Sen, concerning refinements
of discretizations in order to improve discrete approximations for MSLP prob-
lems. The outcome of these endeavours was reported in Fúsek–Kall–Mayer–Sen–
Siegrist [108].

Obviously, with appropriate successive refinements of partitions X t
ν of the sets

[Ξ 2×·· ·×Ξ t ] ⊇ supp�ζt , t = 2, · · · , t; ν = 1,2, · · ·, we may expect weak conver-
gence of the associated discrete distributions {�ηtX t

ν
} and hence epi-convergence

of the related objective functions of the general MSLP (3.114), as shown by Pen-
nanen [251, 252]. Thus Th. 3.7. (page 222) suggests that a solution could be ap-
proximated by this kind of successive discretization of the distributions. However it
seems difficult to control this procedure since, in difference to the two-stage case,
for the general MSLP we do not have error bounds on the optimal value. According
to Ex. 3.3., even for the much simpler problem
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min{cT
1 x1 +�

T

∑
t=2

cT
t xt(ζt)}

A11x1 = b1

At1x1 +
t

∑
τ=2

Atτxτ(ζτ) = bt(ζt) a.s., t = 2, · · · ,T,

x1 ≥ 0, xt(ζt) ≥ 0 a.s., t = 2, · · · ,T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.123)

with complete fixed recourse and only the right–hand–sides being random, we can-
not expect to get at least lower bounds, in general.

Nevertheless, we shall discuss first, for the purpose of defining a fully aggregated
problem instead of the MSLP (3.114), how an arbitrary finite subfiltration F̂ and
the corresponding scenario tree can be generated. Again, we assume the supports
of the stagewise distributions to be bounded. Hence there exist intervals Ξ t ⊂�rt

such that supp�ξt ⊆ Ξ t , t = 2, · · · ,T . Then we proceed as follows:

Subfiltration and the corresponding scenario tree

– With Ω (1) :=Ω and F̂1 := {Ω , /0} define N1 := {1}.
– For the stages ν = 1, · · · ,T −1 repeat:

Let Nν+1 := /0.
Then for each node n in stage ν (i.e. tn = ν) and some rn ≥ 1:
Define a finite set Cn of children of n such that |Cn| = rn and, for any m with
m �= n, tm = tn = ν , that Cm ∩Cn = /0 as well as Cn ∩Nμ = /0 ∀μ ≤ ν holds.
Furthermore, let Nν+1 := Nν+1 ∪Cn and associate individually with the set
Cn := {k(n)1 , · · · ,k(n)rn } a partition of Ξν+1 into subintervals as

Ξν+1 =
rn⋃

l=1

Ξν+1
k(n)l

. (3.124)

– To generate the subfiltration, for t = 2, · · · ,T repeat:
For each n ∈ Nt and hn ∈ Nt−1, its unique parent node, and Ξ t

n the subin-
terval corresponding to node n in the partition of Ξ t associated with Chn , let
Ω (n) :=Ω (hn)∩ξ−1

t [Ξ t
n].

Define the subfiltration F̂ by F̂t := σ{Ω (n) | n ∈ Nt}, t = 2, · · · ,T , with
σ{Ω (n) | n ∈Nt} the σ -algebra generated by the sets Ω (n), n ∈Nt .

– The defining elements of the discretely distributed stochastic process corre-
sponding to the above finite subfiltration, i.e. the realizations ζ̂ n at node n and
their probabilities pn, may be assigned to the nodes as follows:
For any n ∈N \{1} let H (n) = {�1 = 1, · · · , �tn−1, �tn = n} be the history of
node n. By the above construction, each node �ν ∈H (n) corresponds uniquely
to a particular subinterval Ξν

lν of Ξν . Then for the discrete process we choose

the state ζ̂ n at node n and the corresponding probability pn as
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ζ̂ n = �
[
ζtn | ζtn ∈∏tn

ν=2Ξ
ν
�ν

]

pn = �ζtn

({
ζtn ∈∏tn

ν=2Ξ
ν
�ν

})
.

⎫⎪⎬
⎪⎭ (3.125)

Using this discrete process we may then replace the general MSLP (3.114), defined
with respect to the filtration F , by the fully aggregated problem with respect to the
subfiltration F̂ , as represented by the LP (3.118).

Whereas, according to Ex. 3.3., for problem (3.123) we cannot expect to achieve
lower bounds for the optimal value by discretization of the underlying stochastic
process in general, the situation will be better if Assumption 3.1. is modified as
follows:

Assumption 3.5. Let

– only the right–hand–sides bt be random (and linear affine in ζt );
– the distributions of ξt be bounded within some intervals Ξ t ⊂�rt ,

i.e. supp�ξt ⊆ Ξ t ;
– the random vectors ξ2, · · · ,ξT be stochastically independent;
– the Att be complete fixed recourse matrices ∀t.
With H (n) = {�1 = 1, · · · , �tn−1, �tn = n} the history of node n as before, the as-
sumed stochastic independence of ξ2, · · · ,ξT implies the distribution (3.125) to be
modified to

ζ̂ n = �
[
ζtn | ζtn ∈∏tn

ν=2Ξ
ν
�ν

]

= �

⎡
⎢⎣
ξ2 | ξν ∈ Ξν

�ν
, ν = 2, · · · , tn

...
...

ξtn | ξν ∈ Ξν
�ν
, ν = 2, · · · , tn

⎤
⎥⎦

=

⎛
⎜⎝
�[ξ2 | ξ2 ∈ Ξ 2

�2
]

...
�[ξtn | ξtn ∈ Ξ tn

�tn
]

⎞
⎟⎠

pn = �ζtn

({
ζtn ∈∏tn

ν=2Ξ
ν
�ν

})
=

tn

∏
ν=2
�ξν (Ξ

ν
�ν ) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.126)

Hence we replace problem (3.123) by the fully aggregated problem

min ∑
m∈N

pmcT
tmxm

∑
m∈H (n)

Atntmxm = btn(ζ̂ n) ∀n ∈N

xm ≥ 0 ∀m ∈N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.127)

using the distribution (3.126). Then we get
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Lemma 3.17. Let problem (3.123) satisfy Assumption 3.5.. Then for any subfiltra-
tion F̂ constructed as above, the optimal value of the aggregated problem (3.127)
is a lower bound of the optimum in (3.123).

Proof: It is well known that problem (3.123) can be formulated as a recursive se-
quence of optimization problems (see Olsen [247] and Rockafellar–Wets [286]). For
this purpose we use the following notation:

zt := {x1, · · · ,xt} for the sequence of decision vectors up to stage t;
ζt := (ξ2, · · · ,ξt) for the state variable at stage t, as before;
ζ̂t for any realization of ζt ;
Ξ t

n ⊆ Ξ t for node n in stage t due to (3.124), and ξ̄ n
t :=�[ξt | ξt ∈ Ξ t

n].

Now the above mentioned recursion may be formulated as follows:

Let ΦT+1(zT ; ζ̂T )≡ 0 ∀zT , ζ̂T . Determine iteratively for t = T,T −1, · · · ,2, and for
all nodes n in stage tn = t, using the assumed stagewise independence by applying
Fubini’s theorem (see Halmos [131]),

rt(zt−1; ζ̂t) := min
xt
{cT

t xt +Φt+1(zt ; ζ̂t)}

s.t. Attxt = bt(ζ̂t)−
t−1

∑
τ=1

Atτxτ , xt ≥ 0

Φt(zt−1; ζ̂t−1) := �[rt(zt−1;ζt) | ζt−1 = ζ̂t−1]

= �ξt [rt(zt−1; ζ̂t−1,ξt)]

= ∑
ν∈Chn

�ξt (Ξ
t
ν)�ξt [r(zt−1; ζ̂t−1,ξt) | ξt ∈ Ξ t

ν ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.128)

which finally yields

r1 = min
x1
{cT

1 x1 +Φ2(x1; ζ̂1)}

s.t. A11x1 = b1(ζ̂1)≡ b1, x1 ≥ 0 ,

the optimal value of (3.123), with ζ̂1 being the realization of ξ1 ≡ const due to the
fact that in the first stage there is only one (deterministic) state. The notation “�ξt ”
just indicates that the integral is taken with respect to�ξt only.

If Φt+1(zt , ζ̂t) is jointly convex in (zt , ζ̂t), as is trivially true for ΦT+1, then it
follows immediately, that

rt(zt−1; ζ̂t) = min
xt
{cT

t xt +Φt+1(zt ; ζ̂t)}

s.t. Attxt = bt(ζ̂t)−
t−1

∑
τ=1

Atτxτ , xt ≥ 0
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is jointly convex in (zt−1; ζ̂t) (recall that bt(ζ̂t) is linear affine in ζ̂t ). Thus, from
(3.128) follows that

Φt(zt−1; ζ̂t−1) =�ξt [rt(zt−1; ζ̂t−1,ξt)]

is jointly convex in (zt−1; ζ̂t−1) as well. Hence, by Jensen’s inequality holds

rt(zt−1; ζ̂t−1,�[ξt ])≤�ξt [rt(zt−1; ζ̂t−1,ξt)] =Φt(zt−1; ζ̂t−1) . (3.129)

In analogy to (3.128), for the discretized problem (3.127) withΨT+1 ≡ 0 we define
for t = T,T −1, · · · ,2, and for all nodes n in stage tn = t, the recursion

qt(zt−1; ζ̂t−1, ξ̄ n
t ) := min

xt
{cT

t xt +Ψt+1(zt ; ζ̂t−1, ξ̄ n
t )}

s.t. Attxt = bt(ζ̂t−1, ξ̄ n
t )−

t−1

∑
τ=1

Atτxτ , xt ≥ 0

Ψt(zt−1; ζ̂t−1) := ∑
ν∈Chn

�ξt (Ξ
t
ν)qt(zt−1; ζ̂t−1, ξ̄ νt ) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.130)

we’ll get
q1 := min

x1
{cT

1 x1 +Ψ2(x1; ζ̂1)}

s.t. A11x1 = b1(ζ̂1)≡ b1, x1 ≥ 0

as the optimal value of (3.127).
Provided that Ψt+1(zt ; ζ̂t) ≤ Φt+1(zt ; ζ̂t), as it is obviously the case for t = T ,

we conclude from (3.128) and (3.130), using Jensen’s inequality (3.129) (for condi-
tional expectations), that

qt(zt−1; ζ̂t−1, ξ̄ n
t ) ≤ rt(zt−1; ζ̂t−1, ξ̄ n

t )

≤ �ξt [rt(zt−1; ζ̂t−1,ξt) | ξt ∈ Ξ t
n]

and hence

Ψt(zt−1; ζ̂t−1) := ∑
ν∈Chn

�ξt (Ξ
t
ν)qt(zt−1; ζ̂t−1, ξ̄ νt )

≤ ∑
ν∈Chn

�ξt (Ξ
t
ν)�ξt [rt(zt−1; ζ̂t−1,ξt) | ξt ∈ Ξ t

ν ]

= Φt(zt−1; ζ̂t−1),

such that finally

q1 := min
x1∈B
{cT

1 x1 +Ψ2(x1; ζ̂1)} ≤ min
x1∈B
{cT

1 x1 +Φ2(x1; ζ̂1)}=: r1
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with B := {x1 | A11x1 = b1(ζ̂1)≡ b1, x1 ≥ 0}. �

As seen above, with Assumption 3.5., and observing Assumption 3.4. when gen-
erating a finite subfiltration F̂ and the corresponding scenario tree for problem
(3.123), as described on page 272, we get the fully aggregated problem (see (3.127))

min ∑
m∈N

pmcT
tmxm

∑
m∈H (n)

Atntmxm = bn ∀n ∈N

xm ≥ 0 ∀m ∈N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.131)

with bn = btn(ζ̂ n) and pn > 0 ∀n ∈N .

As the dual LP of (3.131) we have

max ∑
n∈N

bT
n un

∑
n∈G (m)

AT
tntmun ≤ pmctm ∀m ∈N .

⎫⎪⎪⎬
⎪⎪⎭

(3.132)

With the substitution un = pnπn (3.132) is equivalent to

max ∑
n∈N

pnbT
nπn

∑
n∈G (m)

qm→nAT
tntmπn ≤ ctm ∀m ∈N

⎫⎪⎪⎬
⎪⎪⎭

(3.133)

with qm→n the conditional probability to reach node n given node m.
For {x̂m, π̂n} to be a primal-dual pair of optimal solutions, according to Chapter

1, Prop. 1.12., the complementarity conditions

(ctm − ∑
n∈G (m)

qm→nAT
tntm π̂n)

Tx̂m = 0 ∀m ∈N (3.134)

have to hold (with qm→m = 1).

Discretization under special assumptions

Under Assumption 3.5. on problem (3.123) and Assumption 3.4. on the discretized
distributions (implying positive probabilities for all scenarios generated) we shall
discuss now, how a successive refinement of the partitions and hence a correspond-
ingly growing scenario tree can be designed, such that the approximation of (3.123)
by the generated problem (3.131) is improved.

To begin with, let F̂ be the coarse subfiltration with each F̂t being generated
by the elementary events {ξ−1

τ [Ξτ ], /0 | τ = 1, · · · , t} i.e. by {Ω , /0} . Then for node
n = t holds tn = n = t and Ξ tn

n = Ξ t , such that by (3.126) follows ζ̂ n = ζ̂ t =�[ζt ],
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yielding the aggregated problem

min
T

∑
t=1

ctxt

t

∑
τ=1

Atτxτ = bt(ζ̂ t) ∀t
xt ≥ 0 ∀t .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.135)

The corresponding basic scenario tree is shown in Fig. 3.8.

1 2 t-1 t t+1 t+2 T

Fig. 3.8 Basic scenario tree.

In the coarse subfiltration, F̂t was generated by {Ω , /0} ∀t ∈ {1, · · · ,T}. Let this sub-
filtration be refined into F̃ by partitioning Ξ t for a particular t > 1 into two subin-
tervals Ξ t

1,Ξ
t
2 (whereas in all other stages the trivial partitions {Ξ s, s �= t}remain

unchanged). Then it follows that

F̃s is generated by

⎧⎨
⎩
{Ω , /0} for s < t
{Ω ,ξ−1

t [Ξ t
1],ξ

−1
t [Ξ t

2], /0} for s = t
{Ω ,ξ−1

t [Ξ t
1],ξ

−1
t [Ξ t

2],ξ
−1
s [Ξ s], /0} for s > t .

The modification of the scenario tree, corresponding to splitting node n= t, is shown
in Fig. 3.9.

1 2 t-1

t t+1 t+2 T

t t+1 t+2 T

A

B

Fig. 3.9 Basic scenario tree: First split.

Obviously we have now two branches from stage t onwards, corresponding to
the subintervals Ξ t

1 and Ξ t
2 of the partition of Ξ t . Denoting the nodes of the two

scenarios as (t,A), t = 1, · · · ,T , and (t,B), t = 1, · · · ,T , the respective components
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ζ̂ (s,A)
τ of ζ̂ (s,A), s = 2, · · · ,T, are, due to (3.126), determined as

ζ̂ (s,A)
τ =

{
�[ξτ ] for τ �= t
�[ξt | ξt ∈ Ξ t

1] for τ = t ,

and analogously for ζ̂ (s,B), s = 2, · · · ,T, follows

ζ̂ (s,B)
τ =

{
�[ξτ ] for τ �= t
�[ξt | ξt ∈ Ξ t

2] for τ = t .

The corresponding node probabilities are

p(s,A) =
{

1 if s < t
�ξt (Ξ

t
1) if s≥ t and p(s,B) =

{
1 if s < t
�ξt (Ξ

t
2) if s≥ t .

Hence the new aggregated problem is

min

{
t−1

∑
τ=1

cT
τ x(τ,A) +

T

∑
τ=t

cT
τ
[
p(τ,A)x(τ,A) + p(τ,B)x(τ,B)

]}

s

∑
τ=1

Asτx(τ,A) = bs(ζ̂ (s,A)) ∀s
s

∑
τ=1

Asτx(τ,B) = bs(ζ̂ (s,B)) ∀s≥ t

x(s,B) = x(s,A) ∀s < t

x(s,A),x(s,B) ≥ 0 ∀s .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.136)

Assume now that T = (N ,A ) is the scenario tree associated with problem
(3.131). To split in this tree some node i > 1 into the nodes i1 and i2, or equiv-
alently to subdivide the corresponding Ξ ti

i ⊆ Ξ ti into two subintervals Ξ ti
i1

and Ξ ti
i2

(observing Assumption 3.4.), we have to run the following node splitting procedure:

Cut and paste

S1 Partition Ξ ti
i into Ξ ti

i1
and Ξ ti

i2
; compute

p̃iν =�ξti
(Ξ ti

iν ), ν = 1,2,

rν =
p̃iν
p̂i

, ν = 1,2, with p̂i =�ξti
(Ξ ti

i ),

biν =�ξti
[b̃i(ξti) | ξti ∈ Ξ ti

iν ], ν = 1,2, with b̃i(ξti) := bti(ζ̂ hi ,ξti),

such that r1 + r2 = 1 and r1bi1 + r2bi2 = bi .
S2 Let T1 = (N1,A1) with N1 ⊂ N , A1 ⊂ A be the maximal subtree of

T = (N ,A ) rooted at node i ∈N .
Let T2 = (N2,A2) be a copy of T1, with its root denoted as j �∈N and all
other node labels modified such that N2∩N = /0, A2∩A = /0.
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Assign to the nodes of T2 the same quantities as associated with the corre-
sponding nodes of T1.

S3 With H (i) the history of node i in T , and H̃ (n) the history within Tν for
n ∈Nν , ν = 1,2 respectively, update the values of the subtrees T1 and T2 as
follows:

T1 : Set b(1)i := bi1 , and for n ∈ G (i)\{i}, the future of i in T1, let
b(1)n := btn(ζ̂ n), with ζ̂ n computed according to (3.126), with the his-
tory of n being composed as {H (hi), i,H̃ (n)};
multiply the node probabilities by r1.

T2 : Set b(2)j = bi2 , and for m ∈ G ( j)\{ j}, the future of j in T2, let

b(2)m := btm(ζ̂m), with ζ̂m computed according to (3.126), with the
history of m being composed as {H (hi), j,H̃ (m)}, implying that
b(2)m equals the right–hand–side for the corresponding node in N1;
multiply the node probabilities by r2.
(Observe that H (hi) = H (h j) will be enforced in step S4.)

S4 Introduce a new edge from the parent node hi of i to the node j, the root of
T2, thus pasting T2 to T and yielding the new tree.

T + = (N +,A +), with
N + = N ∪N2 and
A + = A ∪A2∪{(hi, j)} .

In Fig. 3.10 one cycle of this procedure is illustrated.

1 2

i

hi

j

Fig. 3.10 Cut and paste.

It is easy to see that with the above procedure of cut and paste the optimal values
of the related primal LP’s are non-decreasing.

Proposition 3.8. With V being the optimal value of the fully aggregated problem
(3.131) corresponding to the scenario tree T , and V+ being the optimal value for
the corresponding LP on T + as generated by cut and paste, it follows that V+ ≥V .

Proof: Let {un, n ∈N } be a solution of the dual program (3.132) associated with
T . To each node n ∈N2 assign the vector un as determined for the corresponding
node n ∈N1 .
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Now define for n ∈N +, with rν from step S1,

ũn :=

⎧⎨
⎩

r1un if n ∈N1
r2un if n ∈N2

un else.

In order to show that {ũn, n ∈ N +} is a feasible solution to the dual program
(3.132) associated with T +, we have to distinguish the following cases:

1) m ∈N1

∑
n∈G (m)

AT
tntm ũn = r1

(
∑

n∈G (m)

AT
tntmun

)

≤ r1 pmctm = p̃mctm

with p̃m as defined in step S3 for m ∈N1.
2) m ∈N2

The analogous argument holds, with r2 instead of r1 .
3) m ∈N + \ (N1∪N2) =: ΔN

∑
n∈G (m)

AT
tntm ũn =

= ∑
n∈G (m)∩ΔN

AT
tntmun + ∑

n∈G (m)∩N1

(r1 + r2)AT
tntmun

≤ pmctm .

Hence, {ũn, n∈N +} is feasible for the dual program (3.132) corresponding to T +

and, with the right–hand–sides b̃n updated according to step S3, yields the objective
value

∑
n∈N +

b̃T
n ũn = ∑

n∈ΔN

bT
n un + ∑

m∈N1

(r1b(1)m + r2b(2)m )Tun

= ∑
n∈N

bT
n un .

This shows that the objective of the feasible solution {ũn, n ∈N +} for T + coin-
cides with the optimal value for T , such that V+ ≥V obviously has to hold. �

Corollary 3.4. Let V̂ be the optimal value of problem (3.123). If Assumption 3.5.
is satisfied, then each method, splitting succesively any nodes (except the root) in
the scenario tree according to the cut and paste procedure, converges to a value
V � ≤ V̂ .

Proof: Under the given assumptions, the optimal objective values of the aggregated
problems are

– monotonically nondecreasing according to Prop. 3.8., and
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– they are lower bounds of the optimal value of (3.123) due to Lemma 3.17. �

Although this cut and paste procedure seems to have a promising behaviour, we are
still left with two open questions:

1) Is there any criterion (even a heuristic one, maybe) for deciding on the next
node to be split?

2) Given this criterion, may it happen that for the limit V � in Corollary 3.4.
holds V � < V̂ ?

As to the first question, for a fixed node n > 1 let {x̂m | m ∈H (n)\{n}} and {π̂m |
m ∈ G (n)} be parts of solutions of (3.131) and (3.133), respectively, and consider
the LP

ϕn(bn) := min(ctn − ∑
m∈G (n)

qn→mAT
tmtn π̂m)

Txn

Atntnxn = bn− ∑
m∈H (n)\{n}

Atntm x̂m

xn ≥ 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.137)

Since {x̂k; k ∈N } solves (3.131), in particular x̂n is feasible in (3.137). Further-
more, the {π̂�; � ∈ N } being optimal in (3.133) and x̂n ≥ 0 due to (3.137), we
conclude, observing (3.134), that

0≤ (ctn − ∑
m∈G (n)

qn→mAT
tmtn π̂m)

Tx̂n = 0 ,

showing that x̂n with the optimal value ϕn(bn) = 0 solves the LP (3.137). Using
(3.126) we have that ζ̂ n = (ζ̂ hn ,�[ξtn | ξtn ∈ Ξ tn

n ]) . Replacing bn = btn(ζ̂ n) by the
random b̃n(ξtn) := btn(ζ̂ hn ,ξtn), it is obvious that the optimal value

ϕn(b̃n(ξtn)) := min(ctn − ∑
m∈G (n)

qn→mAT
tmtn π̂m)

Txn

Atntnxn = b̃n(ξtn)− ∑
m∈H (n)\{n}

Atntm x̂m

xn ≥ 0 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.138)

is a convex function in ξtn , such that due to Jensen

�[ϕn(b̃n(ξtn)) | ξtn ∈ Ξ tn
n ] ≥ ϕn(b̃n(�[ξtn | ξtn ∈ Ξ tn

n ])

= ϕn(btn(ζ̂ hn ,�[ξtn | ξtn ∈ Ξ tn
n ])

= ϕn(btn(ζ̂ n))
= ϕn(bn) = 0 ,

and we have the lower bound ln = 0 for �[ϕn(b̃n(ξtn)) | ξtn ∈ Ξ tn
n ] . On the other

hand, according to Lemma 3.7 (on page 213), we can determine the E–M upper
bound un for �[ϕn(b̃n(ξtn)) | ξtn ∈ Ξ tn

n ] . If, with some prescribed tolerance Δ > 0,
the splitting criterion
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un− ln > Δ (3.139)

is satisfied, we may decide to split node n as described in the cut and paste proce-
dure, in order to increase the lower bound and thereby to improve the approximative
solution. Observe however, that this criterion (un− ln > Δ ) to increase the lower
bound and thereby to improve the solution in a particular node, is based on a heuris-
tic argument. But it is one positive answer to the first question, at least. Moreover,
test runs with this criterion did work out surprisingly well.

To come to the second question, consider the following example:

Example 3.4. Assume the following problem to be given:

min{x1 + x2 +�[y1 + y2 + z1 + z2]}
x1− x2 = 0

x1 +2x2 + 3y1−3y2 = ξ2
x1 +3x2 + y1− y2 + 4z1−4z2 = ξ3

xi,yi,zi ≥ 0 ,

where ξ2 ∼U [0,6] and ξ3 ∼U [1,1.5], with U being the uniform distribution. The
fully aggregated problem with �[ξ2] = 3 and �[ξ3] = 1.25 as right–hand–sides is
easily seen to have the optimal solution

(x̂1, x̂2, ŷ1, ŷ2, ẑ1, ẑ2) = (0,0,1,0,
1
16

,0)

with the optimal value

V =
17
16

and the dual solution

π̂T =

(
1
4
,

1
4
,

1
4

)
.

Considering problem (3.138) for n = 2, we find that ϕ2(b̃2(ξt2))≡ 0 for ξ2 ∈ [0,6],
i.e. ϕ2 is linear on Ξ 2 implying that u2− l2 = 0. Analogously ϕ3(b̃3(ξt3)) ≡ 0 for
ξ3 ∈ [1,1.5] such that also ϕ3 is linear on Ξ 3 and therefore u3− l3 = 0. Hence the
above splitting criterion (3.139) cannot be satisfied, and the procedure would stop
with the above solution, with V � =V .

However, subdividing Ξ 2 = [0,6] into the intervals [0,3) and [3,6] and solving
the corresponding LP, would yield the optimal value

V+ =
18
16

>V ,

and the same result would be achieved with splitting, instead of Ξ 2, the interval
Ξ 3 = [1,1.5] into [1,1.25) and [1.25,1.5]. �

Hence, in this example the procedure, using the above splitting criterion (3.139),
had to be finished with un− ln = 0 for all nodes n > 1, although there was a substan-
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tial difference V̂ −V � > 0. This fact could (and can in general) only be discovered
by analyzing (sub)sets of nodes simultaneously in detail. In other words: For the
approach using the splitting criterion (3.139) so far there is not known any sim-
ple stopping rule stating the (near-)optimality of the present iterative solution for
problem (3.123).



Chapter 4

Algorithms

4.1 Introduction

The discussion of algorithms in this chapter is organized according to the framework
of different SLP model classes, as presented in the previous chapters. A computer
implementation of an algorithm will be called a solver.

For the algorithms presented in detail in this chapter, sufficient and reproducible
empirical evidence is available concerning the numerical efficiency of a correspond-
ing solver. On the one hand, this means that results of computational experiments
with several test problems or test problem batteries are available in the literature. On
the other hand, reproducibility presupposes the public availability of the solver. With
most of the algorithms, discussed in detail in this chapter, we have our own compu-
tational experience; several solvers have been implemented and tested by ourselves.
These solvers, along with further solvers provided by their authors, are publicly
available as connected to our modeling system SLP–IOR, see Section 4.9.2.

4.2 Single–stage models with separate probability functions

In this section we discuss algorithms for SLP models with separate probability func-
tions, presented in Chapter 2, Section 2.2.3. If only the right–hand–side is stochas-
tic then the models can be transformed into deterministic LP models, as discussed
in Chapter 2, Section 2.2.3. In this section we have also pointed out some pitfalls
which have to be taken into account in this approach. The equivalent LP models do
not have any SLP–specific structure, thus the recommended approach is to employ
general–purpose LP solvers.

In the general case we will consider probability functions of the form
G(x) = �ξ ( x | ηTx− ξ ≥ 0) where η is an n–dimensional random vector and
ξ is a random variable. We concentrate on constraints

�ξ ( x | ηTx−ξ ≥ 0)≥ α.

285P. Kall, J. Mayer, Stochastic Linear Programming, 2nd edition, International Series in 
Operations Research & Management Science 156, DOI 10.1007/978-1-4419-7729-8_4, 
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If the joint distribution of (η ,ξ ) is multivariate normal then the above constraint
can be written in the following equivalent form, see (2.60) on page 102

Φ−1(α)‖DTx−d‖−μTx≤−μn+1. (4.1)

Assuming that α > 1
2 holds, we can write (4.1) as

‖DTx−d‖ ≤ 1
Φ−1(α)

μTx− μn+1

Φ−1(α)
, (4.2)

which is called a second–order cone constraint. Models involving this type of con-
straints are called second–order cone programs (SOCP). Such models have been
first studied by Nesterov and Nemirovsky [242], who also proposed interior–point
methods for their solution.
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Fig. 4.1 The ice–cream cone, or Lorentz cone in�3.

The terminology has its roots in the fact that SOCP is intimately related to the
second–order cone (also called ice–cream cone or Lorentz cone)

Cm :=
{(

y
t

) ∣∣∣∣‖y‖ ≤ t, y ∈�m−1, t ∈�
}
,

where ‖ · ‖ stands for the Euclidean norm. See Figure 4.1 for a second–order cone
in�3. A general SOCP–constraint has the form

‖Ax+b‖ ≤ dTx+ f

with A denoting an m×n matrix, x∈�n, the other arrays having compatible dimen-
sions. This constraint can equivalently be written as the following cone–constraint

(
A
dT

)
x+

(
b
f

)
∈ Cm+1.
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For an overview on SOCP see Lobo et al. [206] and the references therein. The
state–of–the–art solution methods are primal–dual interior point methods, for a nice
unified presentation see Peng, Roos, and Terlaky [250].

Assuming additionally to the normal distribution that the components of (η ,ξ )
are stochastically independent, Seppälä and Orpana [304] propose a successive lin-
earization algorithm, which is also based on the second–order cone structure as
discussed above.

Weintraub and Vera [341] propose a different approach by applying the support-
ing hyperplane method of Veinott (see Section 1.3.2 in Chapter 1) for the general
normally distributed case.

In the case when (η ,ξ ) has a multivariate Cauchy distribution and assuming that
α ≥ 1

2 holds, the probabilistic constraint can be written in the following equivalent
form, see (2.73) on page 110

‖DTx−d‖1 ≤ 1
Ψ−1(α)

mTx− mn+1

Ψ−1(α)
(4.3)

which can be interpreted as a first–order cone constraint. This problem can be for-
mulated equivalently as an LP problem, see (2.74) on page 110, which can then be
solved by general–purpose LP solvers. Alternatively, special–purpose interior point
algorithms might be more efficient.

4.2.1 A guide to available software

The straightforward approach is to solve the deterministic equivalent problems by
employing a general–purpose solver. This is the only approach presently available
for the case of the Cauchy distribution.

For the case of the non–degenerate multivariate normal distribution, a much bet-
ter approach is to employ solvers for SOCP. There are several solvers available in
the public domain:

• SOCP (C and Matlab), developed by Miguel S. Lobo, Lieven Vandenberghe, and
Stephen Boyd, [206]
http://stanford.edu/∼boyd/old software/SOCP.html.

• SeDuMi (MatLab toolbox) Jos F. Sturm [316],
http://sedumi.ie.lehigh.edu/.

• SDPT3 version 3.02 (Matlab) Kim C. Toh, Reha Tütüncü, and Michael J. Todd
[327],
http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html.

For implementing your own solver see, for instance, Andersen et al. [6], Kuo and
Mittelmann [199], Lobo et al. [206], or Peng et al. [250].

Commercial solvers: MOSEK and LOQO, for further information see the Deci-
sion Tree for Optimization Software at node
http://plato.asu.edu/sub/nlores.html#semidef.
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For selecting an appropriate solver, see the benchmarks of Hans Mittelmann,
[236]; http://plato.asu.edu/bench.html.

If, additionally, the components of (η ,ξ ) are stochastically independent, the
solver CHAPS, developed by Seppälä and Orpana, T. [304], could prove to be an
efficient alternative.

4.3 Single–stage models with joint probability functions

This section is devoted to algorithms for solving models which involve joint proba-
bility functions, under the assumption that only the right–hand–side is stochastic.

The general case, where the technology matrix is also stochastic, has been dis-
cussed in Chapter 2, Section 2.2.6. In this case the probability function G is not
quasi–concave in general, implying that the SLP problems are non–convex opti-
mization problems. This is in general so, even if ξ has a multivariate normal distribu-
tion. However, under some assumptions concerning the structure of the correlation
matrices, convex optimization problems arise, as discussed in Section 2.2.6. Accord-
ing to our knowledge, there are no specialized deterministic algorithms available for
this type of problems. Consequently, presently there are two available approaches
for such problems. Either they can be treated as nonlinear optimization problems
and one can try to apply general–purpose algorithms of nonlinear optimization, or
in the non–convex case techniques of non–convex programming. The other possi-
bility is to employ stochastic algorithms for which the interested reader is referred
to Luedtke and Ahmed [207] and to Pagnoncelli et al. [248] (cf. Section 4.7.3 for
two–stage recourse problems).

Under the assumption that only the right–hand–side is stochastic, the joint prob-
ability function is defined as

G(x) =�ξ (T x≥ ξ ) =�ξ ( tT
i x≥ ξi, i = 1, . . . ,s), (4.4)

where T is an (s× n) matrix, ξ is an s–dimensional random vector, x ∈�n, and
the components of ti are the elements of the ith row of T . For separate probability
functions (s = 1), the corresponding SLP–problems are equivalent to LP–problems,
see Section 2.2.3 in Chapter 2. Consequently, we assume that s > 1 holds.

Concerning the probability distribution of ξ , we will discuss algorithms for two
cases.

On the one hand, we will assume that ξ has a continuous distribution, with a
logconcave probability distribution function F . The presentation will mainly be fo-
cused on the case when ξ has a non–degenerate multivariate normal distribution;
possible extensions to other logconcave distributions will be indicated via remarks.
Algorithmic issues for this case are the subject of the subsequent sections 4.3.1–
4.3.5.
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On the other hand, in Section 4.3.6 we assume that ξ has a finite discrete distri-
bution, and discuss different algorithmic approaches for this case.

The model formulations considered in this section are the following (see Chap-
ter 2, (2.29) and (2.30) on page 88 and (2.86) on page 115):

min cTx
s.t. F(T x) ≥ α

x ∈ B,

⎫⎬
⎭ (4.5)

where 0≤ α ≤ 1 is a probability level, and

max F(T x)
s.t. x ∈ B.

}
(4.6)

In both cases F denotes the joint probability distribution function of the random
right–hand–side ξ . It is sometimes advantageous to recast (4.5) as

min cTx
s.t. F(y) ≥ α

T x −y ≥ 0
x ∈ B.

⎫⎪⎪⎬
⎪⎪⎭

(4.7)

To see the equivalence of (4.5) and (4.7), let (x̄, ȳ) be a feasible solution of (4.7) and
let ŷ := T x̄. Due to the monotonicity properties of probability distribution functions,
(x̄, ŷ) is also a feasible solution of (4.7), with the same objective value. From this
the equivalence follows readily.

Taking the algorithmic point of view, let us consider, for instance, cutting plane
methods. When applying these methods, the matrix of cuts is usually dense. Assum-
ing that cuts are stored in the rows, in formulation (4.5) this matrix would involve
n columns whereas in formulation (4.7) the number of columns is s, where s is the
number of inequalities involved in the joint probability function. The point is that
usually s << m holds, therefore formulation (4.7) is more suitable from the point
of view of implementation, than (4.5).

4.3.1 Numerical considerations

In this section the general assumption will be that ξ has a non–degenerate multi-
variate normal distribution.

Notice, that we can assume that the distribution of ξ is standardized.

G(x) =�ξ

(
1
σi
(tT

i x−μi)≥ 1
σi
(ξi−μi), i = 1, . . . ,s

)

is equivalent to the formulation (4.4), where μi and σi are the expected value and
the standard deviation of ξi, respectively.
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Notice, that both problems (4.5) and (4.6) are nonlinear programming problems.
Although (4.6) is linearly constrained and (4.5) involves a linear objective and a sin-
gle nonlinear constraint, problems of the above type are hard to solve numerically in
general. Next we summarize the main sources of difficulties, see also Mayer [231].

Let us note, that the nonlinear function F , involved in the model formulations, is
in general not given via an algebraic formula. For computing function values F(x)
and gradient values ∇F(x), numerical integration is needed. For higher dimensions
of the random right–hand–side ξ , for instance for s = 20, the only way for com-
puting F(x) and ∇F(x) is utilizing Monte Carlo integration methods. This implies
on the one hand, that computing these quantities is relatively time–consuming com-
pared to the evaluation of algebraic formulas. On the other hand, the approximation
error is relatively large. Consequently, for higher values of s (for instance, s = 20),
there is no chance to obtain a solution of (4.5) or (4.6) with a high accuracy. There-
fore, according to our opinion, the main requirement which solution methods should
fulfill, is robustness.

Considering our optimization problems from the purely nonlinear programming
point of view, these problems are convex programming problems for a large class of
probability distributions, including the non–degenerate multivariate normal distri-
bution, see Chapter 2 Section 2.2.5. We observe, however, some quite unfavorable
features. Figure 4.2 shows the graph of the bivariate standard normal distribution
function.
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Fig. 4.2 The probability distribution function of the bivariate standard normal distribution.

Notice the large flat regions in the figure. Assume that we have an iteration point
x̂ somewhere in the flat region. For finding the next iteration point, the vast major-
ity of NLP algorithms utilizes local information, based on ∇F(x̂), and perhaps also
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requires curvature information which originate in higher–order derivatives. The dif-
ficulty is that derivatives are very small in that region and vary largely depending
on the location of x̂. The latter property indicates that this deficiency is difficult to
overcome, if not impossible, by scaling the problem. To illustrate, how derivatives
behave, let us consider the standard n–variate normal distribution with independent
random variables, in which case it is easy to compute derivatives. The order of
magnitude of ∂F(x̂)

∂x1
is displayed in Table 4.1, where x̂i = λ for all i. The different λ–

values correspond to the rows of the table. Let us take, for instance, the entry -3945,
corresponding to λ = −30 and s = 20. The interpretation is that the magnitude of
the partial derivative in the 20–dimensional case, in the point with all coordinates
being equal to -30, is 10−3945. This phenomenon can be interpreted as some kind of

s = 2 s = 10 s = 20 s = 30
-30 −394 −1972 −3945 −5918
-10 −46 −231 −462 −693

0 −1 −3 −7 −10
10 −23 −23 −23 −23
30 −196 −196 −196 −196

Table 4.1 Order of magnitude of derivatives of the multivariate normal distribution function.

hidden non–convexity of the convex optimization problem. The region, where the
derivatives have reasonable magnitude and thus iteration points can be well dealt
with by algorithms, is non–convex as can be seen in Figure 4.2.

As noted in Mayer [231], an additional difficulty is that the steepness of the func-
tion between the lower– and upper almost–horizontal parts becomes rather high
with increasing dimension s, as displayed in Figure 4.3. This implies that the re-
gion, where the derivatives have manageable values, becomes narrower for higher–
dimensional random vectors ξ .
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Fig. 4.3 The probability distribution function of the standard normal distribution along the line
yi = λ ∀i, for dimensions s = 2, 10, 30, and 50.
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All algorithms for the solution of (4.5) and (4.6), discussed in this book, require
the computation of the gradient ∇F . Assuming a continuous distribution and that
the density function f is a positive and continuous function, we have the following
well–known expression (see, for instance, Cramér [47]):

F(x1,x2, . . . ,xs) =

x1∫

−∞

x2∫

−∞

. . .

xs∫

−∞

f (t2, . . . ts | t1) f1(t1)dt1dt2, . . .dts,

where f (t2, . . . ts | t1) is the conditional density function of (ξ2, . . . ,ξs), given ξ1 = t1,
and f1 is the marginal density function of ξ1. By differentiating both sides with
respect to x1 we obtain

∂F(x)
∂x1

= f1(x1)
x2∫
−∞

. . .
xs∫
−∞

f (t2, . . . ts | x1)dt2, . . .dts

= F(x2, . . . ,xs | x1) f1(x1),

(4.8)

where F(x2, . . . ,xs | x1) stands for the conditional distribution function of (ξ2, . . . ,ξs),
given ξ1 = x1.

Analogous expressions hold for the partial derivatives with respect to the vari-
ables x2, . . . ,xs.

In the case of a non–degenerate multivariate standard normal distribution the
above formula takes an especially simple form. On the one hand, f1(x1) = ϕ(x1)
with ϕ denoting the density function of the univariate standard normal distribution.
On the other hand, it is well–known, see Mardia et al. [216], that the conditional dis-
tribution of (ξ2, . . . ,ξs), given ξ1 = x1, is also non–degenerate multivariate normal.
Denoting the correlation matrix of ξ by R = (ρi j), the parameters of this normal
distribution are

μ̂i = ρi1x1, i = 2, . . . ,s
Σ̂i j = ρi j−ρi1ρ j1, i, j = 2, . . . ,s,

where μ̂ ∈�s−1 is the expected value vector and the ((s−1)× (s−1)) covariance
matrix is denoted by Σ̂ . The matrix Σ̂ is in fact nonsingular, the proof of this is left as
an exercise for the reader. Thus, F(x2, . . . ,xs | x1) in (4.8) is the probability distribu-
tion function of a non–degenerate multivariate normal distribution, specified by the
above parameters μ̂ and Σ̂ . Consequently, having a numerical procedure for evaluat-
ing multivariate normal distribution functions, the same procedure can also be used
to compute the partial derivatives. This procedure for computing the gradient vector
of multivariate probability distribution functions was proposed by Prékopa [257].

Another case, where the above approach is especially well–suited is the case of
the Dirichlet distribution, for which the conditional distributions are also Dirichlet
distributions.

As pointed out above, our problems are nonlinear optimization problems. Pro-
vided that for computing F(x) and ∇F(x) we have numerical procedures at our dis-
posal, implemented in the appropriate programming language, a possible approach
to solve these problems could be employing general–purpose NLP solvers. In fact,
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Dupačová, Gaivoronski, Kos, and Szántai [77] report on a successful application of
the general–purpose solver Minos, for the solution of a problem of our type. The
point is, however, that the starting point for the iterations has been quite close to
the optimal solution (by far not somewhere in the flat regions). According to our
experience concerning the same numerical problem, the solver Minos gets stuck
in the starting point, as soon as the starting point is not that close to the optimum.
Nevertheless, in practical problems there are frequently good starting points avail-
able, thus, for such problems, the approach via a general–purpose NLP solver might
work.

In general, however, special–purpose algorithms and their implementation in
solvers is needed. The usual way for developing such algorithms is adapting gen-
eral nonlinear programming algorithms to the special structure and properties of
problems involving joint probability functions.

In the next section we present approaches based on cutting–plane algorithms and
will summarize the other approaches in Section 4.3.3.

4.3.2 Cutting plane methods

Cutting plane methods are discussed in detail in Section 1.3.2. In this section we
restrict ourselves to pointing out those features, which are taken into account in the
development of methods, adapted to the special structure and properties of (4.5).
The problem will be considered in the equivalent form (4.7).

We begin by considering the classical outer approximation methods of Kelley
[180], Kleibohm [187], and Veinott [338]. These methods involve outer polyhe-
dral approximations Bk of the feasible domain B of (4.5) and generate a sequence
x̂(k) ∈Bk as solutions of the LP min{cTx | x ∈Bk}. If x̂(k) ∈B then the algorithms
stop, otherwise Bk+1 is constructed by appending a cutting plane to the set of con-
straints in Bk.

In the algorithm proposed by Kelley, the cutting plane, based on ∇F(ŷ(k)) (with
ŷ(k) = T x̂(k)) is computed by linearizing F at the infeasible point ŷ(k). Infeasible
points correspond to the lower plateau in Figure 4.2 where the components of ∇F
are very small (see Table 4.1) and become practically zero not too far away from the
feasible domain.

In the algorithm of Kleibohm [187] and Veinott [338] a Slater–point xS, lying
on the upper plateau in Figure 4.2, is utilized as a navigation point. The intersection
z(k) of the line segment [y(k),xS] and the feasible domain’s boundary is computed and
the cut is constructed as a supporting hyperplane of the feasible domain at z(k). This
fits well the properties of F in our problem: at the feasible point z(k), ∇F behaves
well from the numerical point of view. On the basis of this supporting hyperplane
method, Szántai [320] developed an algorithm for solving (4.7), with the additional
feature of a moving Slater–point, as described in Section 1.3.2.

In the central cutting plane method of Elzinga and Moore [86], the sequence of
approximating polyhedra Bk and iteration points x(k) are computed differently: in-
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stead of solving the LP min{cTx | x ∈Bk}, the center of the largest inscribed sphere
of Bk is taken as the next iteration point x(k). The cut is constructed as follows. If,
with ŷ(k) = T x̂(k), ŷ(k) < α holds, then a Kelley cut is applied, otherwise a central
(objective) cut cTx≥ cTx̂(k) is utilized. For the same reason, as discussed above con-
cerning the cutting plane method of Kelley, this algorithm is unsuitable for solving
(4.7).

The remedy is obvious: in the case ŷ(k) < α , instead of the Kelley cut, a sup-
porting hyperplane should be applied. This presupposes again the availability of a
Slater point. A further idea concerns the moving of the Slater points. In the case
when a central cut is applied, and additionally ŷ(k) > α holds then (x̂(k), ŷ(k)) can be
employed as the next Slater point in the algorithm. This leads to a central cutting
plane method for solving (4.7), as proposed by Mayer [230]. For the details of the
algorithm see Section 1.3.2.

For both algorithms we need the existence of a Slater point, thus we require:

Assumption 4.6. Problem (4.7) is Slater regular, that means that there exists a fea-
sible solution (xS,yS) of (4.7), for which F(yS)> α holds.

Notice that for starting up the algorithms an initial starting point is needed. For
computing this, we employ problem (4.6) which involves maximizing the probabil-
ity. The problem can equivalently written as

max τ
s.t. logF(y) −τ ≥ 0

T x −y ≥ 0
x ∈ B

⎫⎪⎪⎬
⎪⎪⎭

(4.9)

where the function in the nonlinear constraint is concave, due to our assumptions.
Notice that for getting a convex optimization problem, we took logF(x) in the con-
straint. This is necessary in general, see the discussion concerning (2.25) in Chap-
ter 2, Section 2.1. Problem (4.9) is obviously Slater regular and for any x ∈B it
is easy to construct a Slater point by appropriately choosing τ . Thus, theoretically,
both cutting–plane methods can be applied for the solution of this problem. Consid-
ering our problem, we still have to overcome the difficulty that, depending on the
choice of x, y = T x may be in the domain where ∇F is practically zero. This can be
overcome by imposing individual lower bounds on the components of y. In the case
of a normal distribution these can be, for instance, yi ≥ μi− 3 ·σi, with μi and σi
being the expected value and standard deviation of the ith one–dimensional marginal
distribution of ξ , respectively. If the goal is just to find a Slater point for (4.7) then
the iterations can be stopped, when the current iterate is already a Slater point for
that problem.

Notice that the vehicle of imposing lower bounds on the components of y can also
be utilized when applying the algorithms for solving (4.7). Some care is needed in
this case, however. Applying too narrow lower bounds may result in a largely in-
creased number of iterations and possibly also in almost parallel supporting hyper-
planes. The reason is that in this case the iteration points may lay in a narrow region
along the boundary of the feasible domain.
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An important ingredient of both algorithms is the line–search procedure, for com-
puting the intersection of the line segment [y(k),xS] and the boundary of the feasible
domain. Introducing the notationΨ(λ ) := F(y(k) +λ (xS− y(k))), the problem is to
find a λ ∗, for which α ≥Ψ(λ )≥ α−ε holds, for some prescribed tolerance ε > 0.
The line–search is an important part of many nonlinear programming techniques
and the overall performance of the algorithm may critically depend on the proper
choice of the line–search procedure. There are several algorithms available for this
purpose, see, for instance, Bazaraa and Shetty [11]. In our case, computing F and
∇F is relatively time–consuming and can only be performed with a rather limited
accuracy, in general. As we will see later, for F there are some easily computable
lower– and upper bounds available. The idea is to utilize these bounds in the line–
search for reducing the number of steps where the value of F has to be computed.

For illustrating, let us consider bisection search which would run as follows:
Initially we have Ψ(0) < α − ε and Ψ(1) > α . We consider [0,1] as our starting
interval. ComputeΨ at the midpoint of the current interval, that is, computeΨ( 1

2 ).
IfΨ( 1

2 )< α− ε choose [ 1
2 ,1] as the next interval, otherwise take [0, 1

2 ]. Repeat the
procedure till the length of the interval becomes small enough.

Let us assume now that we have bounds FL(x) ≤ F(x) ≤ FU (x) available, with
ΨL and ΨU denoting the corresponding bounds on Ψ . If in the above procedure
ΨU (

1
2 ) < α − ε holds, then we can safely choose [ 1

2 ,1] as our next interval. If this
is not the case, then we check the inequality ΨL(

1
2 ) ≥ α . If this holds then we can

choose [0, 1
2 ] as the successor interval in the search. If none of these two inequalities

hold then we are forced to computeΨ( 1
2 ) and to decide on that basis. For the details

concerning implementation and further computational issues see Kall and Mayer
[166], Mayer [230], and Szántai [320].

4.3.3 Other algorithms

Several authors have proposed further algorithms, based on some general framework
of nonlinear programming.

The first algorithm for joint probabilistic constraints is due to Prékopa and Deák,
see Prékopa et al. [269]. This method was based on a feasible direction method of
Zoutendijk.

In the case, when F is a logconcave function, a natural idea is to work with loga-
rithmic barrier functions by takingΨ(x,κ) := cTx+κ logF(x)−α as the objective
function in the barrier subproblem. For fixed κ , Ψ(x,κ) is a concave function of x
on the set {x | F(x)≥ α}. This fact is by no means obvious, for a proof see Prékopa
[266]. An algorithm based on this idea has been developed by Rapcsák [275]. For
variants and applications see Prékopa [266] and for penalty and barrier methods in
general see, for example, Bazaraa and Shetty [11].

Komáromi [193] proposed a dual method, based on an appropriately constructed
dual problem, for a detailed exposition see also Prékopa [266].
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Mayer [228] constructed a reduced gradient type algorithm, with a suitably cho-
sen direction finding subproblem. For details see, for instance, Kall and Wallace
[172], Prékopa [266], and Mayer [230].

Gröwe [130] has developed algorithms for the case when the components of ξ
are stochastically independent and the marginal distributions are logconcave. The
algorithms are sample based and use techniques of non–parametric statistics for
building LP–approximations to the problem.

Deák [57] proposes a regression–based algorithm for the case when the probabil-
ity distribution has a logconcave density function; the basic idea is to approximate
the probability distribution function F(x) via quadratic regression and to work with
a sequence of the corresponding approximating problems.

Gaivoronski [109] proposes quasigradient methods and reports on their imple-
mentation. Prékopa [267] presents an approach for obtaining approximate solutions
by incorporating the bounds on the probability distribution function into the model
formulation.

For overviews on existing methods see Prékopa [263], [268] and Mayer [229];
for detailed exposition of the methods see Kall and Wallace [172], Mayer [230] and
Prékopa [266].

4.3.4 Bounds for the probability distribution function

The bounds in this section are distribution–free, meaning that they are valid irre-
spective of the probability distribution of the random vector ξ : Ω →�r, being
a random vector on a probability space (Ω ,F ,P). Our goal is to find lower– and
upper bounds on the probability distribution function F of ξ .

We consider a fixed x ∈�r and will derive bounds on F(x). We will proceed as
follows. In a step–by–step fashion we derive several alternative formulas and meth-
ods for computing F(x). It will turn out that, in general, none of them can be used in
practice for computing F(x) numerically. Nevertheless, finally we arrive at a formu-
lation which offers a natural framework for constructing numerically computable
bounds on F(x).

We introduce the notation

Ai(x) := {ω | ξi(ω)≤ xi}, i = 1, . . . ,r
Bi(x) := Ac

i (x) = {ω | ξi(ω)> xi}, i = 1, . . . ,r, (4.10)

where superscript c denotes the complement of a set. Notice that these sets depend
on x. Having a fixed x, for the ease of presentation we will suppress this dependency
in the notation, concerning also notions derived on the basis of the above sets.

Using the newly introduced notation, for the probability distribution function we
get

F(x1, . . . ,xs) = �(A1∩ . . .∩Ar ) =�((B1∪ . . .∪Br)
c ) =

= 1−�(B1∪ . . .∪Br ).
(4.11)
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Let furthermore ν : Ω → {0,1, . . . ,r} be a random variable which counts the
number of events which occur out of B1, . . . ,Br. Formally we have the definition
ν(ω) := |I(ω)|, with I(ω) := {1≤ i≤ r |ω ∈Bi }. Employing this random variable,
we obtain for the distribution function the following expression

F(x) = 1−�({ω | ν(ω)≥ 1}). (4.12)

The question remains open, how to compute the probability on the right–hand–side
of the above expression. We introduce the notation

S0 := 1, Sk := ∑
1≤i1<...<ik≤r

�(Bi1 ∩ . . .∩Bik ) for 1≤ k ≤ r (4.13)

and will call Sk the kth binomial moment of ν , k = 0,1, . . . ,r. Notice that for com-
puting all binomial moments, we have to evaluate all probabilities in (4.13), the
number of which grows exponentially with r. Anyhow, presupposing that all bino-
mial moments are known, the probability in question can be computed according to
the inclusion–exclusion formula, see Feller [91], as follows:

�(ν ≥ 1) = S1−S2 + . . .+(−1)r−1Sr. (4.14)

Using mathematical induction it is easy to prove that, for every even integer
0≤ m < r, we have the inequalities

m

∑
j=1

(−1) j−1S j ≤�(ν ≥ 1)≤
m+1

∑
j=1

(−1) j−1S j.

For m = 0 we get the well–known inequality concerning probabilities

0≤�(ν ≥ 1) =�(B1∪ . . .∪Br )≤
r

∑
j=1
�(B j )

and for m = 2 we obtain the inequalities

S1−S2 ≤�(ν ≥ 1)≤ S1−S2 +S3.

We wish to derive sharp bounds of this type. Let us associate with ν the random
variables (

ν
k

)
=

ν(ω)!
k!(ν(ω)− k)!

, k = 0,1, . . . ,r.

The following fact explains the term binomial moments concerning Sk:

Proposition 4.9. For k = 0, . . . ,r holds

�

[(
ν
k

)]
= Sk.
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Proof: Let χi : Ω →� be indicator variables defined as

χi(ω) =

{
1 if ω ∈ Bi
0 otherwise.

Then we obviously have that ν(ω) = χ1(ω) + . . .+ χr(ω) holds, for all ω ∈ Ω .
Consequently,

(
ν(ω)

k

)
=

(
χ1 + . . .+χr

k

)
= ∑

1≤i1<...<ik≤r
χi1χi2 . . .χik

holds. Taking expectation

�

[(
ν
k

)]
= ∑

1≤i1<...<ik≤r
�[χi1χi2 . . .χik ]

= ∑
1≤i1<...<ik≤r

�[Bi1 ∩ . . .∩Bik ] = Sk

yields the result. �

Utilizing that ν has a finite discrete distribution, the above result can also be
written as

Sk =�

[(
ν
k

)]
=

r

∑
i=k

(
i
k

)
�(ν(ω) = i), k = 0,1, . . .r. (4.15)

Assuming that the binomial moments Sk are known, (4.15) can be viewed as a sys-
tem of linear equations for the unknown probabilities �(ν(ω) = i), i = 0,1, . . . ,r.
Let us consider this system with added nonnegativity requirements concerning the
unknowns:

v0 +v1 +v2 + . . . +vr = S0
v1 +2v2 + . . . +rvr = S1

v2 + . . . +

(
r
2

)
vr = S2

. . .
...

vr = Sr

vi ≥ 0, i = 0, . . . ,r.

(4.16)

The coefficient matrix of the equation part of the system has an upper–triangular
structure with non–zeros along the main diagonal. Consequently, this matrix is
nonsingular implying that the equation part of (4.16) has the unique solution
v∗i =�(ν(ω) = i) ≥ 0, i = 0, . . . ,r (cf. (4.15)).

Thus we get

�(ν ≥ 1) =
r

∑
i=1
�(ν = i) =

r

∑
i=1

v∗i .
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Theoretically, this approach offers a possibility for computing �(ν ≥ 1) as fol-
lows. Compute all binomial moments Sk, k = 0,1, . . . ,r. Subsequently set up and
solve (4.16) and compute �(ν ≥ 1) according to the formula above. Finally com-
pute F(x) according to (4.12). From the numerical point of view the difficulty is
the very first step in this procedure: computing the binomial moments involves the
computation of probabilities according to (4.13), the number of which grows expo-
nentially with r. On the other hand, having computed the binomial moments, there
is no need to take the roundabout way via solving (4.16), because�(ν ≥ 1) can be
directly computed using the exclusion–inclusion formula (4.14).

The formulation via (4.14) offers, however, an elegant way for constructing
bounds by employing relaxation as follows. The idea is keeping only the equations
corresponding to the first few binomial moments. With the first and second binomial
moments, the LP formulation for the lower bound is the following:

Vmin =

min v1 +v2 + . . . +vr
s.t. v1 +2v2 + . . . +rvr = S1

v2 + . . . +

(
r
2

)
vr = S2

vi ≥ 0, i = 1, . . . ,r.

(4.17)

Notice that the system of linear equations in (4.16) has a unique solution
v∗ = (v∗0, . . . ,v

∗
r )

T. Therefore, when formulating it as an LP with the same objec-
tive as in (4.17), the resulting LP has the optimal solution v∗. Observing that (4.17)
is a relaxation of that LP, we immediately get that

Vmin ≤
r

∑
i=1

v∗i =�(ν ≥ 1)

holds, showing that the optimal objective value of (4.17) in fact provides a lower
bound. An upper bound Vmax can be obtained analogously, by simply changing in
(4.17) the direction of optimization to maximization.

Observe that both (4.17) and its counterpart for the upper bound are LP–problems
just having two equality constraints and for both problems the feasible domain be-
ing non–empty and bounded, both problems have optimal solutions. By taking into
account the special structure, closed form solutions can be derived for both LP prob-
lems as explained in detail in Kall and Wallace [172]. We get

Vmin = 2
k∗+1 S1− 2

k∗(k∗+1)S2, with k∗ :=
⌊

2S2
S1

⌋
+1,

Vmax = S1− 2
r S2,

(4.18)

where for any real number λ , �λ� denotes the floor of λ , meaning the greatest inte-
ger which is less than or equal to λ . The bounds (4.18) are called Boole–Bonferroni
bounds.
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The above way for deriving these bounds is due to Kwerel [201] and Prékopa
[262]. Bounds in explicit form, involving higher order binomial moments, have been
obtained by Kwerel [201] and Boros and Prékopa [32]. Algorithmically computable
bounds are presented in Prékopa [264]. For the details see Prékopa [266] and for
Boole–Bonferroni–type bounds in general see also Galambos and Simonelli [111].

Taking into account (4.12) and (4.18), we get for the probability distribution F(x)
the following bounds

1−S1(x)+
2
r

S2(x)≤ F(x)≤ 1− 2
k∗(x)+1

S1(x)+
2

k∗(x)(k∗(x)+1)
S2(x),

where we now explicitly indicate the dependency of the binomial moments on x (see
the remarks concerning (4.10)) and k(x) is given as specified in (4.18).

The final step in presenting an algorithm for computing the bounds consists of
specifying how the binomial moments S1(x) and S2(x) can be computed. For S1(x)
we have (cf. (4.13))

S1(x) =
r

∑
i=1
�(Bi(x)) = r−

r

∑
i=1
�(Ai(x))

= r−
r

∑
i=1

Fi(xi),

where Fi(xi) is the distribution function of the ith one dimensional marginal distri-
bution of ξ . Considering now S2(x), for fixed i and j we have

�(Bi∩B j ) = 1−�(Ai )−�(A j )+�(Ai∩A j ),

where�(Ai ) = Fi(xi) holds for all i and furthermore

�(Ai∩A j ) =�(ξi ≤ xi,ξ j ≤ x j ) = Fi j(xi,x j)

holds for all i and j. Here Fi j(xi,x j) is the probability distribution function corre-
sponding to the two–dimensional marginal distribution of (ξi,ξ j). Thus we get for
the binomial moment S2(x) the expression

S2(x) = ∑
1≤i< j≤r

�(Ai∩A j )

=

(
r
2

)
− (r−1)

r

∑
i=1

Fi(xi)+ ∑
1≤i< j≤r

Fi j(xi,x j).

If ξ has a non–degenerate multivariate normal distribution then all marginal dis-
tributions are non–degenerate normal distributions, see, for instance, Mardia et al.
[216]. Similar results hold for the Dirichlet and gamma distributions, see Prékopa
[266], cf. also Theorem 2.9. on page 121. For computing the value of univariate and
bivariate normal distribution functions see the next section.
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An alternative way for deriving bounds on F(x) is based on graphs. Our starting
point is the formulation (4.11). According to this relation, for deriving bounds on
F(x) it is sufficient to construct bounds on �(B1 ∪ . . .∪Br ). We will discuss an
upper bound for this probability, due to Hunter [145], which results in a lower bound
on F(x). The following relations obviously hold:

�(B1∪ . . .∪Br ) = �(B1 )+
r

∑
j=2
�(Bc

1∩ . . .∩Bc
j−1∩B j )

≤ �(B1 )+
r

∑
j=2
�(Bc

[ j]∩B j )

=
r

∑
j=1
�(B j )−

r

∑
j=2
�(B[ j]∩B j ),

(4.19)

where [ j] is any index in {1, . . . , j−1}. Thus, depending on the choice of the [ j]’s,
(4.19) provides altogether (r−1)! upper bounds. We would be interested in the best
of these bounds. A convenient way for dealing with the upper bounds in (4.19) is
via the following construction:

Let G = (V,E) be an undirected complete weighted graph with r nodes (ver-
tices). We associate the event Bi with vertex i and the intersection Bi∩B j with edge
(i, j) ∈ E, for all 1 ≤ i, j ≤ r, i �= j. The weights are associated to the edges via
(i, j) �→�(Bi∩B j ) for all (i, j)∈ E. The idea is to represent the second term on the
right–hand–side of (4.19) as the weight of a spanning tree in G. A spanning tree is a
subgraph T of G, which is a tree and has the same set of vertices as G. Consequently,
T has r−1 edges, it is connected, and it contains no cycles (see, for instance Ahuja
et al. [5]). The weight of the spanning tree, denoted by w(T ), is defined as the sum
of weights over all edges of T .

We observe that, for any fixed choice of [ j] for all j, the second sum in the
right–hand–side of (4.19) is equal to the weight of the following spanning tree of G.
Choose all edges ([ j], j) and consider the subtree T of G which has this set of edges
and the corresponding set of nodes. Notice that, for j = 2, [2] = 1 is the only avail-
able choice. Consequently, all nodes of G appear also as nodes of T . Furthermore,
due to its construction, T is obviously a tree with its weight equal to the sum under
consideration in (4.19).

Thus we have associated to each one of the (r− 1)! bounds in (4.19) a span-
ning tree in G. However, the number of different spanning trees of G is rr−2, see
Knuth [192] Volume 1, which is in general much higher than the number of pos-
sible bounds considered so far. Our next observation is the following. While the
left–hand–side and the first term in the right–hand–side of the inequality (4.19) are
both independent on the assignment of indices to the events, the second term on the
right–hand–side depends not only on the choice of the [ j]’s but also on the number-
ing of the events. Thus we can get further bounds by renumbering these events.

For accomplishing this let us now consider an arbitrary spanning tree T of G. We
associate with this tree a reordering of the indices of the events by the following r–
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step process. In step 1 choose any node i and assign the index 1 to Bi. In general, in
step ν (1 < ν ≤ r) proceed as follows. Select one of the already renumbered nodes,
which has a not yet renumbered neighbor Bk. Let κ be the already assigned new
index of this node. Assign the index ν to Bk and set [ν ] := κ . Due to the fact that T
is a tree, it is easy to see that this procedure can be carried out in r steps and that the
weight of the tree is equal to the corresponding sum in (4.19), according to the new
indexing of events.

Consequently, the best upper bound can be obtained by solving the following
optimization problem:

max
T∈T ∑

(i, j)∈ET

�(Bi(x)∩B j(x)), (4.20)

where T is the set of all spanning trees of G and ET is the set of edges of T . Let us
denote by T ∗(x) an optimal solution of (4.20). We obtain the following lower bound
for F(x) (see (4.11) and (4.19)):

1−S1(x)+w(T ∗(x))≤ F(x), ∀x ∈�r. (4.21)

Problem (4.20) is a classical problem in combinatorial optimization, where it is usu-
ally formulated as a minimization problem and is called the minimum spanning tree
problem. There are several thoroughly studied and well-tested algorithms available,
see Ahuja et al. [5]. It is easy to see that the direction of optimization does not mat-
ter; the same algorithms can be used for both variants, with obvious modifications.
In our case we have a dense graph (G is a complete graph), therefore Prim’s method
is well–suited for the solution of the problem, see Ahuja et al. [5]. The algorithm
builds the minimum spanning tree in a greedy manner in r−1 iterations, by adding
a new edge to the tree at each of the iterations. Wee will keep two lists: at iteration ν ,
Vν will be the list of vertices and Eν will be the list of edges of the current subtree.
The general framework of this algorithm for solving (4.20) is the following:

Step 1. Initialization
Look for a longest edge (i, j) = argmax(k,l)�(Bk ∩ Bl ). Set ν = 1,
E1 = {(i, j)}, and V1 = { i}.

Step 2. Choose the next edge
If ν = r− 1 then Stop, the current graph with set of edges Eν is a
maximum weight spanning tree of G. Otherwise look for the longest
edge with one of its vertices in Vν and the other one in V \Vν :

(p,q) := argmax(k,l){�(Bk ∩Bl ) | k ∈Vν , l ∈V \Vν}.

Step 3. Add a new edge to the tree
Let Eν+1 = Eν ∪ {(p,q)}; Vν+1 = Vν ∪ {q}; set ν := ν + 1 and
continue with Step 2 .
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Let us point out, that the above scheme is just the framework of the method; the
efficiency largely depends on the details of the implementation, especially on the
organization of the heap, see Ahuja et al. [5].

It is well–known that the Hunter bound is always at least as good, as the Boole–
Bonferroni bound, see Prékopa [266]. The bounds can be further improved by em-
ploying hypergraphs and hypertrees, see Bukszár and Prékopa [37], Szántai [321],
Szántai and Bukszár [322], and the references therein.

4.3.5 Computing probability distribution functions

The main goal of this section is to discuss algorithms for computing the value of
the multivariate normal probability distribution function. Besides this, we will also
outline ideas for computing the probability distribution function of some other mul-
tivariate distributions.

For computing the probability distribution function of the univariate normal dis-
tribution, there are ready–made functions available in almost all computing envi-
ronments. For computing the bivariate normal distribution function Fi j(xi,x j) sev-
eral well–tested procedures are available. One of the simplest tricks is based on the
following reformulation:

Fi j(xi,x j) =
∫ xi

−∞

∫ x j

−∞
fi j(x,y)dxdy

=
∫ xi

−∞

∫ x j

−∞
fi j(y | x) fi(x)dxdy

=
∫ xi

−∞
fi(x)

(∫ x j

−∞
fi j(y | x)dy

)
dx,

(4.22)

where fi j(y | x) is the conditional density function of ξ j, given ξi = x. For the normal
distribution, the conditional distributions are also normal distributions, see Mardia
et al. [216]. We obtain that fi j(y | x) is the density function of a univariate normal

distribution N (μ j +
(
ρi j

σ j
σi

)
(x−μi),σ2

j (1−ρ2
i j)), where μi denotes the expected

value and σi stands for the standard deviation of ξi, and ρi j denotes the correlation
coefficient between ξi and ξ j, for all i and j. Consequently the inner integrand in
(4.22) is just a normal univariate probability distribution function. Thus, Fi j(xi,x j)
can be evaluated by employing a univariate numerical quadrature for integration.
For a state–of–the art review for computing bivariate normal probabilities see Genz
[124]. This paper also presents methods for computing trivariate normal probabili-
ties.

Let us turn our attention to the multivariate case. Recall that the standard non–
degenerate multivariate normal distribution function has the following form (cf.
(2.52) on page 99):
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F(x) =
1

(2π)
r
2 |R| 12

∫

�
r

e−
1
2 yTR−1y dy, (4.23)

where R is the nonsingular correlation matrix of ξ . From the numerical point of
view the problem is to evaluate the above multivariate integral. In principle, this can
be done by standard nested quadrature methods of numerical analysis. For higher
dimensions, however, the specialities of the problem are to be taken into account.
Algorithms of this kind have been developed by several authors, mainly for the cases
of multivariate normal– and t–distributions, see the review papers of Genz and Bretz
[125] and Gassmann, Deák and Szántai [116], and the references therein.

In this book we will restrict ourselves to the Monte–Carlo approach and will
discuss two basic techniques for computing F(x). The two algorithms can also be
combined; for the resulting hybrid method see Gassmann et al. [116]. This paper
also provides a review on methods for computing multivariate normal probabilities.

A Monte–Carlo approach with antithetic variates

For the non–degenerate multivariate normal distribution, this method has been de-
veloped by Deák [55]. Recently, Genz and Bretz [125] extended the method to mul-
tivariate t–distributions. We will discuss the multivariate normal case.

The starting point is to transform the integral in (4.23) to a polar form. Let
R = LLT be the Cholesky–factorization of R with L being a lower–triangular matrix
(see Section 2.2.3). Applying the transformation y = Lz first results in

F(x) =
1

(2π)
r
2

∫

{z:Lz≤x}
e−

1
2 zTz dz.

For changing to polar coordinates apply the transformation z = ru with ‖u‖ = 1
which results in

F(x) =
1

(2π)
r
2

∫

{u:‖u‖=1}

∫ ρ2(u)

ρ1(u)
ρr−1e−

1
2 ρ dρ du, (4.24)

where
ρ1(u) = min{ρ | ρ ≥ 0, ρLu≤ x}
ρ2(u) = max{ρ | ρ ≥ 0, ρLu≤ x}

Notice that, apart of a normalizing constant, the integrand in (4.24) is the proba-
bility density function of the χ–distribution with r degrees of freedom, see Johnson
et al. [150]. In fact, the method can also be derived in a purely probabilistic fash-
ion, as it has been done in the original paper of Deák [55], see also Deák [56] and
Theorem 4.1.1 in Tong [328].

Normalizing (4.24) leads to the equivalent form
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F(x) =
1
γ

∫

{u:‖u‖=1}

∫ ρ2(u)

ρ1(u)
g(ρ)dρ du, (4.25)

where
g(ρ) = κ ρr−1e−

1
2 ρ

is the probability distribution function of the χ–distribution with r degrees of free-
dom and the normalizing constants γ and κ are

κ = 2
r
2−1Γ

( r
2

)
, γ =

2π
1
2 r

Γ ( r
2 )
,

where γ is the surface area of the r–dimensional unit sphere, see, for instance, Price
[272]. (4.25) can also be written as follows

F(x) =
1
γ

∫

{u:‖u‖=1}
h(u)du with h(u) :=

∫ ρ2(u)

ρ1(u)
g(ρ)dρ.

The idea is to evaluate the first (surface) integral by Monte–Carlo methods, whereas
for the second (univariate) integral numerical integration is used. Choosing a sample–
size N, the framework of the method is the following:

Step 1. Generating points on the unit sphere
Generate N sample points û1, . . . , ûN uniformly distributed on the unit
sphere in�r.

Step 2. Compute h
For each of the sample points ûk, k = 1, . . . ,N, in turn do:
• compute ρ1(ûk) and ρ2(ûk);
• evaluate hk := h(ûk) by numerical integration.

Step 3. Compute the Monte–Carlo estimator

F̂ =
1
N

N

∑
k=1

hk.

For computing uniformly distributed points on the r–dimensional unit sphere, the
standard method is the following:

Step 1. Generate r (i.i.d.) random numbers d1, . . . ,dr according to the standard
univariate normal distribution;

Step 2. compute d =
√

d2
1 + . . .+d2

r ;

Step 3. deliver uT = ( d1
d , . . . , dr

d ).

For this method and further methods for generating uniformly distributed points
on the r–dimensional unit sphere see Devroye [69]. The method discussed so far
would correspond to the “crude” Monte–Carlo method, with the estimator having
a variance proportional to 1

N . As in Monte–Carlo methods in general, it is of vital
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importance to include some variance reduction techniques, see, for instance, Ripley
[278] or Ross [291]. Deák proposes the following variant of the method of antithetic
variates, with m≤ r being a parameter of the algorithm:

Step 1. Generate points on the unit sphere
Generate N · r sample points ûk, j, k = 1, . . . ,N, j = 1, . . . ,r uniformly
distributed on the unit sphere in�r.

Step 2. Compute h
For each k = 1, . . . ,N, in turn do:
• Convert ûk1, . . . , ûkr into an orthonormal system v1, . . . ,vr, by em-

ploying, for instance, the standard Gram–Schmidt procedure. For
a possible (but very unlikely) linear dependency among the gener-
ated vectors, apply a heuristics based on dropping and recomput-
ing some of the vectors.

• Compute M := 2m
(

r
m

)
vectors on the unit sphere according to

w(s, j1, . . . , jm) :=
1√
m

m

∑
l=1

slv jl

with 1≤ j1 < .. . < jm ≤ r and with
s ∈ S, where S := {s ∈�m | si = 1 or si =−1, ∀i}.

• For each of these vectors compute ρ1(w(s, j1, . . . , jm)) and
ρ2(w(s, j1, . . . , jm)) and

• evaluate hk(s, j1, . . . , jm) := h(w(s, j1, . . . , jm)) by numerical inte-
gration.

• Compute

hk :=
1
M ∑

s∈S
∑

1≤ j1<...< jm≤r
hk(s, j1, . . . , jm).

Step 3. Compute the Monte–Carlo estimator

F̂ =
1
N

N

∑
k=1

hk.

Concerning the parameter m of the procedure, best results were reported for the
choices m = 1 and m = 3, see Gassmann, Deák, and Szántai [116]. For the imple-
mentation of the algorithm and recent improvements see Deák [58].

A Monte–Carlo approach based on probability bounds

This approach has been developed by Szántai [317], [318]. We discuss the technique
for computing the probability

PV :=�({ω | ν(ω)≥ 1}) =�(B1∪ . . .∪Br ),
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where the random variable ν counts the number of events which occur out of
B1, . . . ,Br, see page 297. Recall that according to Proposition 4.9. we have for all
k ≥ 1

�

[(
ν
k

)]
= Sk. (4.26)

The method will be based on the Boole–Bonferroni bounds

PL :=
2

k∗+1
S1− 2

k∗(k∗+1)
S2 ≤ P̂≤ S1− 2

r
S2 =: PU , (4.27)

see (4.18) where the definition of k∗ can also be found.
Having computed an estimate for P̂, the estimate for the probability distribution

function F(x) can be obtained according to (4.11).
The algorithm is based on the inclusion–exclusion formula (4.14) and on the

Boole–Bonferroni bounds. The idea is to compute three unbiased estimators for
P̂. Using these, a linear combination of them is computed with minimal variance,
which will be the final unbiased estimator.

The first estimator is the crude Monte–Carlo estimator, concerning the random
variable

ϑ0 =

{
0 if ν = 0
1 if ν > 0

}

for which we obviously have�[ϑ0] = PV .
For the second estimator we consider the difference between P̂ and the Boole–

Bonferroni lower bound
ΔL̂ := PV −PL.

Substituting the inclusion–exclusion formula (4.14) for the probability, and the ex-
pression for PL according to (4.27), we get

ΔL̂ =
r

∑
k=1

(−1)k∗−1Sk− 2
k∗+1

S1 +
2

k∗(k∗+1)
S2.

The method is based on the following observation: if we substitute the binomial
moments by the random variables from (4.26), then cancellation occurs according
to

ΔL :=
r

∑
k=1

(−1)k−1
(
ν
k

)
− 2

k+1

(
ν
1

)
+

2
k(k+1)

(
ν
2

)

=
1

k∗(k∗+1)
(ν− k∗)(ν− k∗ −1),

where we assumed ν ≥ 2 and have utilized the obvious relation

ν

∑
k=0

(−1)k−1
(
ν
k

)
= (1−1)ν ≡ 0.

Thus we will consider the random variable
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θ1 :=

⎧⎨
⎩

0 if ν ≤ 1
1

k∗(k∗+1)
(ν− k∗)(ν− k∗ −1) if ν ≥ 2

⎫⎬
⎭ .

According to the above considerations, ϑ1 := θ1 +PL is an unbiased estimator for
PV , that is,�[ϑ1] = PV holds.

For the third estimator we consider the difference between P̂ and the Boole–
Bonferroni upper bound

ΔÛ := P̂−PU

=
r

∑
k=2

(−1)k−1Sk +
2
r

S2.

Proceeding analogously as before, cancellation occurs again, and we end up with
the random variable

θ2 :=

{
0 if ν ≤ 1

1
r
(ν−1)(ν− r) if ν ≥ 2

}
.

With ϑ2 := θ2 +PU we have �[ϑ2] = PV . Thus, we obtained a third unbiased esti-
mator for PV .

The final estimate is obtained as follows. Let C be the covariance matrix of
(ϑ0,ϑ1,ϑ2). The estimate will have the form ϑ := w0ϑ0 +w1ϑ1 +w2ϑ2. Denoting
the vector of weights by wT = (w0,w1,w2), the variance of ϑ is obviously wTCw.
The weights are determined by solving the following minimum–variance problem

min wTCw
s.t. w0 +w1 +w2 = 1

}
(4.28)

which, with Lagrange–multiplier λ , is equivalent to solving the following system of
linear equations:

Cw−λe = 0
w0 +w1 +w2 = 1

}
(4.29)

where ei = 1 for i = 1,2,3 hold. Notice that, due to the constraint in (4.28), ϑ is also
an unbiased estimator of PV .

The algorithm runs as follows:

Step 0. Compute bounds
Compute the Boole–Bonferroni bounds PL and PU according to (4.27),
by numerical integration.

Step 1. Generate a sample
For k = 1, . . . ,N proceed as follows:
• Generate a random vector according to the distribution of ξ ;
• compute the realization of ν , ν̂k;
• compute corresponding realizations ϑ̂ k

0 , ϑ̂ k
1 , and ϑ̂ k

2 .
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Step 2. Compute first estimates
Compute the estimates

ϑ̂i :=
1
N

N

∑
k=1

ϑ̂ k
i , i = 1,2,3;

(for ϑ̂0 this is implemented via a counter, of course).
Step 3. Compute an estimate for the covariance matrix C

Using the sample, compute an estimate Ĉ for C.
Step 4. Compute weights which minimize variance

Compute the weights by solving (4.29) with C = Ĉ. Let the solution be
ŵT = (ŵ0, ŵ1, ŵ2).

Step 5. Compute final estimate
Compute ϑ̂ = ŵ0ϑ̂0 + ŵ1ϑ̂1 + ŵ2ϑ̂2.

Step 6. Deliver estimate for F(x)
According to (4.11), deliver F̂ := 1− ϑ̂ as an estimate for F(x).

For further development of the procedure involving bounds with higher–order
binomial moments and for graph–based bounds see Szántai [321]. For applying the
technique to the computation of other multivariate distribution functions, including
the Dirichlet distribution (cf. page 123) and the gamma distribution (cf. page 127)
see Szántai [318] and [319].

4.3.6 Finite discrete distributions

If ξ has a finite discrete distribution then the SLP problem with joint probabil-
ity function can be formulated as a disjunctive programming problem, see Chap-
ter 2 Section 2.2.2. Possible solution approaches are to solve the equivalent mixed–
integer linear problem (2.44) on page 94 by employing a general–purpose solver for
such problems, or to apply the general techniques for disjunctive programming, see,
for instance, Nemhauser and Wolsey [241].

In the case, when only the right–hand–side is stochastic, special–purpose algo-
rithms are available. The basic idea is the following disjunctive formulation of (4.7),
due to Prékopa [265] and Sen [300]:

max cTx

s.t. y ∈
S⋃

s=1

Ds

T x −y ≥ 0
x ∈ B,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.30)

where Ds is {y | y≥ ys}, with ys, s = 1, . . . ,S defined as follows. Let
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D := {y | F(y)≥ α and F(y− ε)< α for all ε ∈�s, ε > 0, ε �= 0}.

The set D is clearly a subset of all joint realizations of ξ , therefore D is a finite set.
With S denoting the number of elements in D , ys is the sth element, indexed in an
arbitrary order.

Clearly, ys ∈ D , if and only if F(ys) ≥ α holds and there exists no
y ≤ ys, y �= ys, such that F(y) ≥ α holds. For this reason, Prékopa[265] has coined
the following terminology: the elements of D are called p–level efficient points
(PLEP’s) of the probability distribution function F . The terminology corresponds to
the choice α := p for the probability level.
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Fig. 4.4 Distribution function and level sets of a bivariate finite discrete distribution function with
a PLEP at (2,2), corresponding to α = 0.5.

Figure 4.4 shows the probability distribution function for a discrete distribution
in �2, with four equally probable realizations (1,1), (2,1), (2,2), and (3,3). For
the level α = 0.5, the realization (2,2) is the single PLEP of F .

Problem (4.30) is a disjunctive programming problem with an especially simple
structure. Several algorithms, based on enumeration, cuts, and Lagrangean relax-
ation have been proposed to its solution, see Dentcheva et al. [65], Prékopa [266],
Prékopa et al. [271], Ruszczyński [294], and Sen [300], as well as the references
therein. For an overview see Prékopa [268].

For a recent approach for formulating and solving equivalent mixed–integer
problems see Luedtke et al. [208].
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4.3.7 A guide to available software

SLP problems with logconcave distribution functions

The following solvers have been developed by Mayer, see, for instance [231]. The
cutting plane method of Szántai is implemented as the solver PCSPIOR; the central
cutting plane method is implemented in Fortran as the solver PROBALL, and the
reduced gradient approach is implemented as the solver PROCON. These solvers
are for the case when the random right–hand–side has a non–degenerate multivari-
ate normal distribution; for computing the probability distribution function and its
gradient the subroutines of Deák and Szántai have been utilized, see the next sec-
tion. All implementations are in Fortran and use Minos (see Murtagh and Saunders
[239], [240]) for solving the LP subproblems. The solvers are available along with
the model management system SLP–IOR, as attached solvers, see Section 4.9.2 in
this chapter.

For aiding the selection of an appropriate solver, comparative computational re-
sults can be found in Kall and Mayer [164], [166], and Mayer [230], [231]. Ac-
cording to these tests, we recommend to use PROBALL. There are no independent
benchmark results available. However, as SLP–IOR is freely available for academic
purposes, the reader can test the solvers herself/himself.

Szántai [320] has implemented in Fortran his cutting plane method as the solver
PCSP. The authors of the methods discussed in Section 4.3.3 also report on solving
some test problems, the solvers might be available on request, we suggest to contact
the authors.

For the cases, when the problem is not a convex optimization problem, solvers
for global optimization might prove to be useful; for an overview on solvers see
Pintér [256].

Evaluating probability distribution functions

For choosing an appropriate algorithm for the evaluation of multivariate probability
distribution functions, guidelines, based on numerical experimentation, have been
published by Gassmann, Deák, and Szántai [116]. This paper also gives an overview
on currently available software. Here we just point out the following issues:

The programs of Alan Genz, implemented in Fortran and MatLab, are available
on his personal homepage
http://www.sci.wsu.edu/math/faculty/genz/homepage.

The algorithm in Section 4.3.5 has been implemented by Deák in the
Fortran subroutine package NORSET, see [58], whereas the methods discussed in
Section 4.3.5 have been implemented in Fortran by Szántai, see [321]. Szántai [319]
has also developed a Fortran subroutine package for computing multivariate non–
degenerate normal–, Dirichlet– and gamma distribution functions and their gradi-
ents. The availability of the programs is not clear from the papers, please contact
the authors.



312 4 Algorithms

SLP problems with finite discrete distributions

According to our knowledge, there is no publicly available solver for this class of
problems. The authors of the papers cited in Section 4.3.6 present illustrative nu-
merical examples, and report on implementation of solvers. These solvers might be
available on request; we suggest to contact the authors.

As we have seen in section 4.3.6, SLP problems in this class are equivalent to
disjunctive programming problems, a subclass of mixed–integer programs. They
belong to the class of NP–complete problems, implying that from the theoretical
worst–case point of view they are difficult to solve. We are not able to provide the
reader with guidance for selecting an algorithm or solver. On the one hand, we do
not have personally any numerical experiences with such problems. On the other
hand, as far as we see, comparative computational studies are completely missing in
the literature. The authors of the papers cited in section 4.3.6 merely provide some
illustrative examples, which is clearly insufficient to judge the practical value of the
methods (recall that the problems dealt with are NP–complete).

Exercises

4.1. In the introductory part of Section 4.3 we have reformulated the general model
with a joint probability constraint (4.5) as (4.7). Give an analogous reformulation of
(4.6) involving the maximization of F(y) and prove the equivalence.

4.2. On page 292 the proof of the following fact was left to the reader. Let the (s×s)
symmetric matrix R be partitioned as follows:

R =

(
1 ρT

ρ R̂

)

with R̂ having the size ((s−1)× (s−1)) and ρ ∈�s−1. Assume that R is positive
definite. Show that this implies that R̂−ρρT is positive definite too.

4.3. By utilizing SLP–IOR, perform a computational experiment involving ran-
domly generated test problems with a joint probability constraint and several solvers.
In the probability constraint only the right–hand side should be stochastic and the
joint distribution of the random variables should be multivariate normal. Please pro-
ceed as follows:

(a) Generate a test problem battery consisting of 10 randomly generated SLP–
problems with a joint probability constraint, having the following dimensions:
m1 = m2 = 5, n1 = 10, 5 random variables.

(b) Solve all problems in the battery by a selection of the available solvers
and compare the computational times for the different solvers. For available
solvers see Section 4.9.2.
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4.4 Single–stage models based on expectation

This section is devoted to discussing algorithms for expectation–based SLP prob-
lems, presented in Section 2.4. First we review those models, for which a de-
terministic LP–equivalent exists, thus offering the possibility of solving them by
general–purpose LP software. Subsequently we discuss the application of the dual
decomposition method, presented in Section 1.2.6, for solving various single–stage
expectation–based models, with a finite discrete distribution. The order of sections
does not follow the order of models in Section 2.4; the discussion is governed by the
logic of dual decomposition. The general idea is to solve those models via solving
their equivalent representations as two–stage recourse problems.

4.4.1 Solving equivalent LP’s

In this section we will summarize LP–equivalents of models based on expectation.
When reporting the dimensions of these problems we will not count nonnegativ-
ity constraints, or in general, individual bounds on the variables. Let us denote the
number of constraints in the definition of B by m.

SLP models involving integrated probability functions have been introduced and
discussed in Section 2.4.1. We consider the case when ξ has a finite discrete distri-
bution with N realizations.

For separate integrated probability functions, LP–equivalents are formulated in
(2.121) and (2.122), on page 145. (2.121) corresponds to an integrated chance con-
straint and has m + N + 1 rows and n + N variables. (2.122) involves minimiz-
ing an integrated probability function and has m + N rows and n + N variables.
Both problems have a dual block–angular structure, indicating, that in fact the un-
derlying optimization models can be formulated as two–stage recourse problems.
LP–equivalents for models with joint integrated probability functions are given in
(2.133) and (2.134). These models grow more rapidly with N, as their counterparts
with separate functions. In fact, (2.133) has m+2Ns+1 constraints and n+2N vari-
ables, where s is the number of inequalities involved in the joint constraint. (2.134)
has the same amount of variables and m+2Ns constraints.

In Section 2.4.2 we have discussed a model, based on conditional expectation.
Under the assumption that ξ has a logconcave density function, the stochastic con-
straint can be converted into a deterministic linear constraint. Consequently, the
equivalent LP has essentially the same size as the original problem.

Section 2.4.3 in Chapter 2 is devoted to SLP models involving Conditional
Value–at–Risk (CVaR) functions in the constraints or in the objective. Assuming
that ξ has a finite discrete distribution with N realizations, the LP–equivalents are
given as (2.149) on page 156 for minimizing CVaR, and as (2.156) on page 158
for a CVaR–constraint. (2.149) has m+N rows and n+N + 1 variables, whereas
(2.156) has the same number of variables and a single additional constraint. Both
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matrices have a dual block–angular structure pointing to the fact that the underlying
SLP models are essentially two–stage recourse problems.

In several cases discussed above we observed a dual block–angular structure.
This suggests using a dual decomposition method, instead of the brute force appli-
cation of general–purpose LP–solvers.

4.4.2 Dual decomposition revisited

The general dual decomposition algorithm has been discussed in Chapter 1, Sec-
tion 1.2.6, on page 26. The basis of the method is the decomposition algorithm of
Benders [14] which has been adapted to the structure of two–stage recourse prob-
lems with a finite discrete distribution by Van Slyke and Wets [336]; the latter au-
thors named the method “L–shaped method”. The method is a special case of nested
decomposition, corresponding to two stages, see Section 1.2.7. In this section we
will consider the case, where only the right–hand–side and the technology matrix
are stochastic in the recourse subproblem. For the sake of simplicity, we will also
assume that W has the complete recourse property.

Two–stage recourse problems are discussed in detail in Section 3.2. Here we will
need the following, slightly modified formulation:

min
x,w

cTx +w

s.t. �[Q(x;T (ξ ),h(ξ )) ] −w ≤ 0
x ∈ B,

⎫⎪⎬
⎪⎭ (4.31)

where B = {x | Ax = b,x≥ 0}. The recourse function Q(x;T (ξ ),h(ξ )) is defined
as

Q(x;T (ξ ),h(ξ )) := min qTy
s.t. Wy = h(ξ )−T (ξ )x

y ≥ 0,

⎫⎬
⎭ (4.32)

which can also be expressed via the LP–dual as

Q(x;T (ξ ),h(ξ )) = max (h(ξ )−T (ξ )x)Tu
s.t. W Tu ≤ q.

}
(4.33)

We assume that B �= /0 holds and that B is bounded.
Having the recourse function in the constraint, instead of the objective, recourse–

constrained problems arise. These have the form

min
x

cTx

s.t. dTx+�[Q(x;T (ξ ),h(ξ )) ] ≤ γ
x ∈ B

⎫⎪⎬
⎪⎭ (4.34)
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and have been introduced and first studied by Higle and Sen [138] and Yakowitz
[349]. We will set up the dual decomposition method for (4.31) and (4.34) simulta-
neously. For this reason we consider the problem

min
x(,w)

cTx +θw

s.t. dTx+�[Q(x;T (ξ ),h(ξ )) ] −w ≤ 0
x ∈ B.

⎫⎪⎬
⎪⎭ (4.35)

For the recourse problem (4.31) we choose θ = 1, d = 0, and both x and w are
considered as variables. For the recourse–constrained problem θ = 0 is chosen and
only x is considered as a variable whereas w = γ becomes a parameter.

As we have already discussed in Section 1.2.6, the recourse function is convex
and piecewise linear, and can equivalently be written in the form

Q(x;T (ξ ),h(ξ )) = max
u∈U

(h(ξ )−T (ξ )x)Tu, (4.36)

where U is the (finite) set of vertices of the polyhedral feasible domain of the re-
course problem in the dual form (4.33). Note that the feasible domain of the dual
recourse problem neither depends on x nor on ξ .

Let us assume now, that ξ has a finite discrete distribution with N realizations ξ̂ k

and corresponding probabilities pk > 0, k = 1, . . . ,N,
N

∑
k=1

pk = 1. The corresponding

realizations of (h(ξ ),T (ξ )) will be denoted by (hk,T k), k = 1, . . . ,N. Thus, for any
fixed x ∈B, we have to deal with N recourse subproblems, corresponding to the
realizations.

The recourse constraint in (4.35) takes the form

dTx +
N

∑
k=1

pkQ(x;T k,hk) −w ≤ 0,

which, due to the representation (4.36), can be written as

dTx +
N

∑
k=1

pk max
u∈U

(hk−T kx)Tu −w ≤ 0.

Due to the nonnegativity of probabilities, this single nonlinear inequality constraint
can be replaced by a system of linear inequality constraints

dTx +
N

∑
k=1

pk(hk−T kx)Tuk −w ≤ 0, uk ∈U ∀k, (4.37)

where the notation is to be understood as follows. For any

(û1, . . . , ûN) ∈U × . . .×U︸ ︷︷ ︸
N

:= UN ,



316 4 Algorithms

the system (4.37) contains exactly one inequality corresponding to the choice
uk = ûk, k = 1, . . . ,N. Stating this in a different way, the inequalities in (4.37) are
indexed by employing the index set UN . Consequently, the system of inequalities
consists of MN inequalities, where M = |U | is the number of elements of U .

Hence we can rewrite (4.35) as follows:

min
x(,w)

cTx +θw

s.t. dTx+
N

∑
k=1

pk(uk)
T(hk−T kx) −w ≤ 0, uk ∈U , ∀k

x ∈ B.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.38)

This problem will be called the full master problem. It involves, in general, a tremen-
dous amount of inequality constraints which are, as an additional difficulty, not
known explicitly. From the algorithmic point of view, the basic idea of the dual
decomposition method is constraint generation. The constraints in (4.38) are gener-
ated in a step–by–step manner in the hope that very much fewer inequalities, than in
(4.38), are sufficient to reach optimality. Instead of the full master problem, relaxed
master problems of the form

min
x(,w)

cTx +θw

s.t. dTx+
N

∑
k=1

pk(u
j
k)

T(hk−T kx) −w ≤ 0, j = 1, . . . ,ν

ūT(h̄− T̄ x) −w ≤ 0
x ∈ B

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.39)

are solved, where ν is the number of constraints generated so far and u j
k ∈ U

∀k, j holds. We have added the constraint ūT(h̄− T̄ x)−w≤ 0, where h̄ =�[h(ξ )],
T̄ =�[T (ξ )], and ū is any feasible solution of (4.33). Due to the Jensen–inequality
(see Section 3.2), the additional inequality is redundant in the full master problem
(4.38). Note that, due to the assumptions concerning B, and implied by the inclu-
sion of the additional constraint involving expectations, the optimal solution of the
relaxed master problem exists for any ν ≥ 0.

The decomposition method for the solution of (4.35) is an adaptation of the dual
decomposition method in Section 1.2.6. The formal description follows.

Step 1. Initialization
Set ν := 0, compute h̄ and T̄ , determine a feasible solution of the recourse
subproblem (4.32) (for instance, by the simplex method), and set up the
relaxed master problem (4.39).

Step 2. Solve the relaxed master problem
Solve (4.39), let a solution be (x∗,w∗), where in the recourse constrained
case w∗ = w(= γ) holds.

Step 3. Evaluate the expected recourse function
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3.a. For k = 1 to k = N do:
With x := x∗ and (h(ξ ),T (ξ )) := (hk,T k), solve the recourse sub-
problem (4.32), for instance, by the dual simplex method. Let u∗k
denote an optimal dual solution of the kth subproblem.

3.b. Compute the expected value of the recourse function as follows

Q(x∗) =
N

∑
k=1

pk(hk−T kx∗)Tu∗k .

Step 4. Check for optimality
If dTx∗+Q(x∗)≤ w∗ then Stop, otherwise continue with the next step.

Step 5. Add an optimality cut to the relaxed master
Set ν := ν+1, uνk = u∗k , k = 1, . . . ,N and add the corresponding cut to the
set of constraints of the relaxed master (4.39). Continue with Step 2 .

Using an analogous reasoning as for the dual decomposition method in
Section 1.2.6, it is clear that the algorithm terminates after a finite number of it-
erations and that in the case of stopping, the method delivers an optimal solution.

We discuss the special case of simple recourse next, see Section 3.2.2. Following
Klein Haneveld and Van der Vlerk [191], we consider the case when the technol-
ogy matrix T (ξ ) is also stochastic. Notice that this type of problems are called
generalized simple recourse (GSR) problems in our book and are discussed in Sec-
tion 3.2.2.4 where a conceptual cutting–plane method is also presented.

The minimization problem (3.53) on page 226, defining the recourse function, is
obviously separable in the components of (y+,y−) ∈�2m2 in our case, with the ith

subproblem given as

Qi(x;ξ ) := min q+i y+i + q−i y−i
y+i − y−i = hi(ξ )−T T

i (ξ )x
y+i , y−i ≥ 0,

⎫⎬
⎭ (4.40)

where Ti denotes the ith row of T , i = 1, . . . ,n2. The LP dual problem is

Qi(x;ξ ) = max (hi(ξ )−T T
i (ξ )x)ui

ui ≤ q+i
ui ≥ −q−i

⎫⎪⎬
⎪⎭ (4.41)

which has the optimal solution

u∗i =
{

q+i if hi(ξ )−T T
i (ξ )x > 0

−q−i if hi(ξ )−T T
i (ξ )x≤ 0.

(4.42)

The feasible domain of the dual recourse problem (3.57) is an m2–dimensional in-
terval, thus having 2m2 vertices. The set of vertices U consists of vectors u ∈�m2 ,
with either ui = q+i or ui =−q−i , i = 1, . . . ,m2. The explicit formula for the recourse
function, corresponding to (3.58) on page 227, is the following
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Q(x,ξ ) =
m2

∑
i=1

[hi(ξ )−T T
i (ξ )x]+q+i +

m2

∑
i=1

[hi(ξ )−T T
i (ξ )x]−q−i . (4.43)

Let us now turn our attention to the dual decomposition method, applied to sim-
ple recourse problems with a random technology matrix and to simple–recourse
constrained problems. The full master problem (4.38) has now 2n2N +2 constraints.
In the dual decomposition method only Step 3.a changes as follows:

Step 3.a For k = 1 to k = N do:
For i = 1 to i = m2 do:
Compute the optimal dual solution of the recourse subproblem
according to (4.42), by simply checking signs as follows

(u∗k)i =

{
q+i if hk

i − (T k
i )

Tx≥ 0
−q−i if hk

i − (T k
i )

Tx < 0.

The decomposition method for simple recourse problems with a random technol-
ogy matrix, as outlined above, has first been proposed by Klein Haneveld and Van
der Vlerk [191].

Finally let us point out that the adaptation discussed above corresponds to the
dual decomposition method with aggregate cuts. The adaptation of the multi–cut
version, as described in Section 1.2.6 on page 29 is left as an exercise for the reader.

4.4.3 Models with separate integrated probability functions

We consider the models (2.119) and (2.120) in Section 2.4.1, on page 144, involving
separate integrated probability functions, with a finite discrete distribution. We begin
with an observation, due to Higle and Sen [138]. Comparing the explicit formula
(4.43) for the recourse function with the model formulations (2.119) and (2.120), we
see immediately that (2.120) can be considered as a simple recourse problem and
(2.119) is equivalent to a problem with a simple–recourse constraint. In both cases
m2 = 1, q+ = 0, q− = 1, and d = 0 hold. Thus, the dual decomposition methods, as
described above can directly be applied.

We obviously have U = {0,1} and thus in Step 3.a of the dual decomposition
method (u∗k)i is computed as follows:

(u∗k)i =

{
0 if hk

i − (T k
i )

Tx≥ 0
−1 if hk

i − (T k
i )

Tx < 0.

Consequently the coefficients uk in the formulation of the full master problem (4.38)
are either 0 or 1, k = 1, . . . ,N. The N–dimensional binary vector (u1, . . . ,uN)

T can
in a one–to–one manner be identified with subsets of the index set N = {1, . . . ,N},
by choosing index i as an element of the subset, if and only if ui = 1 holds. In this
subset–language the full master problem (4.38) assumes the form
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min
x(,w)

cTx+ θw

s.t. ∑
k∈K

pk(T kx−hk) −w ≤ 0, K ⊂N

x ∈ B.

⎫⎪⎪⎬
⎪⎪⎭

(4.44)

Let us consider the recourse–constrained case with w = γ . Comparing (4.44) with
(2.123) in Theorem 2.13. of Chapter 2, it is clear that the derivation of (4.44) in-
cludes an alternative proof of that theorem. The relaxed master problem can be
formulated as

min
x(,w)

cTx+ θw

s.t. ∑
k∈K j

pk(T kx−hk) −w ≤ 0, j = 1, . . . ,ν

T̄ x− h̄ −w ≤ 0
w ≥ 0

x ∈ B,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.45)

where K j ⊂ N holds for all j ≥ 0 and we require K0 = /0. The constraint
w ≥ 0 corresponds to the choice K = /0 in the full master whereas the constraint
T̄ x− h̄−w ≤ 0 arises from the choice K = N and corresponds to the dual vari-
able ū = −1. The relaxed master problems will be constructed in such a way that
Ki �= K j holds throughout, for i �= j.

The final form of the decomposition algorithm is as follows.

Step 1. Initialization
Set ν := 0, compute h̄ and T̄ , choose ū = 1 as the dual–feasible solution
of the recourse subproblem (4.32), and set up the relaxed master problem
(4.45).

Step 2. Solve the relaxed master problem
Solve (4.45), let a solution be (x∗,w∗), where in the recourse constrained
case w∗ = w(= γ) holds.

Step 3. Evaluate the expected recourse function

3.a. Determine the index set K ∗ = {k | T kx∗ −hk > 0}.
3.b. Compute the expected value of the recourse function as follows

Q(x∗) = ∑
k∈K ∗

pk(T kx∗ −hk).

Step 4. Check for optimality
If Q(x∗)≤ w∗ then Stop, otherwise continue with the next step.

Step 5. Add an optimality cut to the relaxed master
Set ν := ν + 1, Kν = K ∗ and add the corresponding cut to the set of
constraints of the relaxed master (4.45). Continue with Step 2 .

For integrated chance constraints, the algorithm developed this way is identical with
the cutting–plane algorithm proposed by Klein Haneveld and Van der Vlerk [191].
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Let us next turn our attention to integrated probability functions of the second
kind. We consider the models (2.127) and (2.128). Analogously as before, (2.127)
can be interpreted as a simple–recourse constrained problem and (2.128) can be
viewed as a simple recourse problem. The adaptation of the dual decomposition
method can be developed along the same lines as for the previous type of inte-
grated probability functions, and is left as an exercise for the reader (note that now
d = 0 does not hold in general). Let us remark that similarly as before, we obtain
an alternative proof for Theorem 2.14. in Chapter 2, as a by–product of constructing
the method.

4.4.4 Models involving CVaR

In this section we will discuss the dual decomposition method as applied to the
models (2.146) on page 155 and (2.153) on page 157, both in Section 2.4.3. As
in Section 4.4.3, a comparison with (4.43) for the simple recourse function reveals
the following: Model (2.146) on page 155 involving CVaR–minimization is equiv-
alent to a generalized simple–recourse problem, whereas (2.153) on page 157 turns
out to be a generalized simple–recourse constrained problem. Furthermore, in the
recourse–constrained case d �= 0 holds (cf. (4.34)). In the framework of two–stage
recourse problems, a detailed presentation of these relationships can be found in
Section 3.2.3.

Proceeding analogously, as in Section 4.4.3, we arrive at the following full master
problem:

min
x,z,w

cTx+θw

s.t. z+ 1
1−α ∑

k∈K
pk

(
T kx−hk− z

)
−w ≤ 0, K ⊂N

x ∈ B,

⎫⎪⎪⎬
⎪⎪⎭

(4.46)

where now x and the free variable z are both first–stage variables. For formulating
the relaxed master problem let us introduce the notation κ := 1

1−α and τ := 1−κ .
Having 0 < α < 1, τ < 0 obviously holds. Using our notation, the relaxed master
problem can be given as

min
x,z,w

cTx+θw

s.t. κ ∑
k∈K j

pk(T kx−hk− z) +z −w ≤ 0, j = 1, . . . ,ν

κ(T̄ x− h̄) +τz −w ≤ 0
z −w ≤ 0

x ∈ B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.47)
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where for all j ≥ 0 K j ⊂ N holds with the prescription K0 = /0. Furthermore,
K j ⊂N , ∀ j and Ki �= K j, i �= j, hold. The constraint z−w ≤ 0 corresponds to
K = /0 in the full master problem and the constraint κ(T̄ x− h̄)+ τz−w≤ 0 arises
when choosing K = N . Note that the relaxed master problems (4.47) involve the
free variable z. Due to the additional constraints it is easy to show, however, that
the relaxed master problems have optimal solutions for any ν ≥ 0. Introducing the
notation

t[i] := κ ∑
k∈Ki

pkT k, h[i] := κ ∑
k∈Ki

pkhk, p[i] := κ ∑
k∈Ki

pk, (4.48)

the relaxed master problem can be written in the compact form

min
x,z,w

cTx +θw

s.t. t[i]x +(1− p[i])z −w ≤ h[i], i = 1, . . . ,ν

κT̄ x +τz −w ≤ κ h̄

z −w ≤ 0

x ∈ B.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.49)

Now we are prepared to formulate the dual decomposition method for the CVaR–
optimization problems.

Step 1. Initialization
Set ν := 0, compute h̄ and T̄ , and set up the relaxed master problem
(4.49).

Step 2. Solve the relaxed master problem
Solve (4.49), let a solution be (x∗,z∗,w∗), where in the recourse con-
strained case w∗ = w(= γ) holds.

Step 3. Evaluate the expected recourse function

3.a. Determine the index set K ∗ = {k | T kx− z∗ −hk > 0}.
3.b. Compute the expected value of the recourse function as follows

Q(x∗,z∗) = ∑
k∈K ∗

pk(T kx∗ − z∗ −hk).

Step 4. Check for optimality
If z∗+κQ(x∗,z∗)≤ w∗ then Stop, otherwise continue with the next step.

Step 5. Add an optimality cut to the relaxed master
Set ν := ν+1, compute t[ν ], h[ν ], and p[ν ] according to (4.48), and add the
corresponding cut to the set of constraints of the relaxed master (4.49).
Continue with Step 2 .

Let us finally formulate a CVaR–analogue of the polyhedral representation The-
orem 2.13. in Chapter 2, given for integrated chance constraints in Section 2.4.1.
Let
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D̃ :=

{
(x,z,w) |

N

∑
k=1

pk

(
ζ (x, η̂k, ξ̂ k)− z

)+
+ z−w≤ 0

}
.

We have the following polyhedral representation:

Proposition 4.10.

D =
⋂

K ∈N

{
(x,z,w) | ∑

k∈K
pk

(
(η̂k)Tx− ξ̂ k− z

)
+ z−w≤ 0

}
(4.50)

with the sum defined as zero for K = /0.

Proof: The proof follows directly from the method which leads to the full master
problem (4.46). An alternative, direct proof can also easily be given, along the lines
of the proof of Theorem 2.13. in Chapter 2; this is left as an exercise for the reader. �

For the solution of CVaR–minimization problems, the algorithm presented above
has been proposed by Künzi–Bay and Mayer [198].

4.4.5 Models with joint integrated probability functions

The subject of this section is a decomposition algorithm for the SLP–problems
(2.131) and (2.132), involving joint probability functions and a finite–discrete prob-
ability distribution. These problems do not fit into the general framework of the dual
decomposition, as discussed Section 4.4.2. Nevertheless, we present an algorithm
for the two problems simultaneously. We consider the optimization problem

min
x(,w)

cTx +θw

s.t.
N

∑
k=1

pk max
1≤i≤s

( tk
i x−hk )+ −w ≤ 0

x ∈ B.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.51)

Problem (2.131) involves a joint integrated chance constraint and can be obtained
from (4.51) by choosing θ = 0 and w = γ . In this case only x counts as variable. In
problem (2.132) a joint integrated probability function is included into the objective
function. This problem is also a special case of (4.51), corresponding to the choice
θ = 1; both x and w are considered as variables.

Note that (4.51) involves the expected value of a maximum of recourse functions
which still fits the general framework of recourse constrained programming, as de-
fined by Higle and Sen [138]. One way to develop an algorithm for (4.51) would
be to extend the dual decomposition method to recourse constrained models of the
discussed type. In this section we will chose the direct way by presenting the al-
gorithm directly based on the polyhedral representation theorem 2.13. (Chapter 2,
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page 145) of Klein Haneveld and Van der Vlerk. The starting point is an equivalent
representation of (4.51) in the form of a full master problem:

min
x(,w)

cTx +θw

s.t. ∑
k∈K

pk((tk
lk)

Tx−hk
lk) −w ≤ 0 l ∈I K , K ⊂N ,

x ∈ B,

⎫⎪⎪⎬
⎪⎪⎭

(4.52)

where I = {1, . . . ,s} is the set of row indices in the joint integrated probability
function, I K := { l := ( lk, k ∈K ) | lk ∈I for all k ∈K } holds, and tk

lk
is the l th

k

row of T k.
The following type of relaxed master problems will be utilized:

min
x(,w)

cTx +θw

s.t. ∑
(k,l)∈M j

pk((tk
l )

Tx−hk
l ) −w ≤ 0, j = 1, . . . ,ν

t̄T
i x− h̄i −w ≤ 0, i = 1, . . . ,s

w ≥ 0

x ∈ B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.53)

where M j ⊂ N ×I is a set of ordered pairs (k, l) with the property that each
k ∈ N appears at most once. We prescribe that K0 = /0 holds. Finally,
t̄i =�[ti(ξ )], h̄i =�[hi(ξ )] hold for all i. The constraint w≥ 0 arises when choosing
M = /0 in the full master problem, and t̄T

i x− h̄i−w ≤ 0 has its root in the choice
M = N ×{i}. That the additional expectation–based constraints are redundant in
the full master problem, can also be seen directly, by utilizing the obvious fact that
�[ϑi] ≤ �[ max

1≤ j≤M
ϑ j] holds for any random variables ϑi, i = 1, . . . ,M with finite

expected value. It is easy to show that under our assumptions (4.53) has an optimal
solution for any ν ≥ 0. Next we state the algorithm.

Step 1. Initialization
Set ν := 0, compute t̄i and h̄i, i = 1, . . . ,s, and set up the relaxed master
problem (4.53).

Step 2. Solve the relaxed master problem
Solve (4.53), let a solution be (x∗,w∗), where in the case of joint inte-
grated constraints w∗ = w(= γ) holds.

Step 3. Evaluate the joint integrated probability function

3.a. Determine the index set

M ∗ = {(k, l) | (tk
l )

Tx∗ −hk
l := max

1≤i≤s
((tk

i )
Tx∗ −hk

i )> 0}.

3.b. Compute the the joint integrated probability function as follows
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KJ(x∗) = ∑
(k,l)∈M ∗

pk((tk
l )

Tx∗ −hk
l ).

Step 4. Check for optimality
If KJ(x∗)≤ w∗ then Stop, otherwise continue with the next step.

Step 5. Add an optimality cut to the relaxed master
Set ν := ν + 1, Mν = M ∗ and add the corresponding cut to the set of
constraints of the relaxed master (4.53).
Continue with Step 2 .

Proposition 4.11. The above method terminates after a finite number of iterations,
with x∗ being an optimal solution of our problem.

Proof: The proof runs along the same lines as the proof of the analogous proposi-
tion for the dual decomposition. It is clear that in the case when M ∗ = M j holds
for some j ≤ ν , then the stopping criterium in Step 4. will hold and the algorithm
terminates. Having a finite number of different subsets in N ×I , this immediately
implies finiteness. For proving the rest, let us first consider the case θ = 1. In this
case cTx∗+w∗ is a lower bound and cTx∗+KJ(x∗) is an upper bound for the optimal
objective value of (4.51). Thus, the stopping criterion implies optimality of x∗. In the
case of an integrated chance constraint the optimal solution of the relaxed problem
turns out to be feasible in the original one, thus implying optimality. �

4.4.6 A guide to available software

For several models, based on expectation, LP–equivalents exist, see the discussion
in Section 4.4.1. The straightforward approach for solving these problems is to apply
general–purpose LP solvers to the LP–equivalents. However, having a large number
of realizations, this can become quite time consuming. Thus, if computing time
matters, special–purpose algorithms are preferable.

Models with separate integrated probability functions

The recommended approach is dual decomposition. One possibility is to formu-
late the equivalent two–stage simple recourse problem and to employ a dual–
decomposition solver for two–stage problems, see Section 4.7.5. A special–purpose
solver has been developed by Klein Haneveld and Van der Vlerk [191] in MatLab,
which might be available on request from the authors.
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Models with joint integrated probability functions

The same comment applies as in the previous section. Again, a special–purpose
solver, developed by Klein Haneveld and Van der Vlerk [191] in MatLab, might be
available on request from the authors.

Models involving CVaR

For models with CVaR–minimization, a dual decomposition solver named CVaRMin
has been developed in Delphi by Künzi–Bay and Mayer [198], for the LP subprob-
lems Minos (Murtagh and Saunders [240]) has been used. It is connected to the
modeling system SLP–IOR and is available along with this modeling system, see
Section 4.9.2.

Exercises

4.4. Consider the dual decomposition algorithm as formulated in Section 4.4.2. A
possible misinterpretation of this method is the following:
“The algorithm generates the constraints of the full master problem (4.38) in a step-
by-step manner, by adding new constraints in the form of cuts to the relaxed master
problem (4.39) in each of the iterations. Since the full master problem contains a
tremendous amount of constraints, see page 316, this results in a hopelessly slow
method for real–life problems.” What is wrong with this argumentation?

4.5. Formulate the multi–cut version of the adaptation of the dual decomposition
method, described in Section 4.4.2.

4.6. On the basis of the discussion in Section 4.4.3, formulate the adaptation of the
dual decomposition method for models with integrated probability functions of the
second kind, see (2.127) and (2.128).

4.5 Single–stage models involving VaR

Models involving quantiles have been the subject of Section 2.3 in Chapter 2. We
have seen that these models can equivalently be formulated as SLP models with
separate probability functions. Therefore, the considerations concerning algorithmic
approaches in Section 4.2 apply also for this case.

In finance, portfolio optimization problems involving VaR are quite important.
For algorithmic approaches, proposed for this particular application, see Larsen et
al. [202], and the references therein.
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4.6 Single–stage models with deviation measures

Models with deviation measures have been introduced in Section 2.5.
Let us discuss models involving quadratic deviation first. Having the quad-

ratic deviation in the objective, the equivalent nonlinear programming problems
(2.163) and (2.169) are convex quadratic programming problems without any spe-
cial structure. Thus, the numerical approach for their solution consists of employing
general–purpose algorithms of quadratic programming, see, for instance, Nocedal
and Wright [243].

Regarding the models (2.162) and (2.168), these are also convex programming
problems but they are much more difficult from the numerical point of view. Both
of them involve a nonlinear constraint with a convex quadratic function on the left–
hand–side. The straightforward approach is to apply a general–purpose solver for
nonlinear programming. A better idea is the following: the problems can be refor-
mulated as second order cone programming (SOCP) problems, see Lobo et al. [206]
and primal–dual interior point methods can be employed for their solution (see also
Section 4.2).

Considering models with quadratic semi–deviation, the situation is similar. We
only consider the case when the underlying probability distribution is finite dis-
crete. Having the risk measure in the objective, the convex quadratic programming
problems (2.192) and (2.197) arise. With quadratic semi–deviation functions in the
constraints, we get the convex programming models (2.191) and (2.196) involving a
quadratic constraint. Concerning solution algorithms, the same comments apply as
for the quadratic deviation case above. The models with quadratic semi–deviation
have a rather special structure, which could be utilized for developing algorithms
tailored to this structure.

Finally let us consider models with absolute deviation, under the assumption that
the underlying probability distribution is finite discrete. The straightforward way
of solving these models is via solving the corresponding equivalent LP problems
(2.178), (2.179) or (2.183).

An alternative way, resulting in a much more efficient solution approach, is via
equivalent simple recourse models. In Section 2.5.2 we have seen that the general
model (2.173) is equivalent to the simple recourse model (2.174), provided that
η ≡ t holds. This assumption has been chosen, however, merely for the sake of
simplicity of presentation. From the considerations in Section 2.5.2 it is clear that the
general models (2.172) and (2.173) can equivalently be formulated as the following
recourse models with a simple recourse structure:

min cTx
s.t. �[y+ z ] ≤ κ

ηTx−ξ −y +z = 0
y ≥ 0

z ≥ 0
x ∈B

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.54)
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and
min �[y+ z ]
s.t. ηTx−ξ −y +z = 0

y ≥ 0
z ≥ 0

x ∈B.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.55)

The above problem (4.54) is a recourse constrained problem in the sense of Higle
and Sen [138] and (4.55) is a recourse problem with a simple recourse structure and
a random technology matrix.

If for (4.55) η ≡ t holds, then the problem is a classical simple recourse problem.
Consequently, the general algorithms for simple recourse problems can be applied,
even without the assumption that the distribution is finite discrete.

Under the assumption that the probability distribution is finite discrete, the pro-
posed solution approach is dual decomposition, for both problems above. In Sec-
tion 4.4.2 of this chapter we have derived a general framework of dual decomposi-
tion for recourse models and for recourse constrained models, with simple recourse
structure, where the technology matrix may also be stochastic. Analogously as for
models involving integrated probability functions or CVaR, this approach results in
specialized versions of the dual decomposition method (see Section 4.2). Working
out the details is left as an exercise for the reader.

4.6.1 A guide to available software

Concerning solvers for SOCP, see Section 4.3.7 whereas for solvers for simple re-
course problems consult Section 4.7.5.

4.7 Two–stage recourse models

Two–stage recourse models have been discussed in Section 3.2.
A great variety of algorithms have been proposed for the solution of this type of

problems; in this book we confine ourselves to discuss some selected algorithmic
approaches. For further methods see, for instance, Birge and Louveaux [26] and
Ruszczyński and Shapiro [295], and the references therein.

If ξ has a finite discrete distribution, then the two–stage recourse problem can be
equivalently formulated as a (typically large scale) linear programming problem. A
natural idea is to apply interior–point methods for the solution of this LP problem.
Interior point methods have been discussed in Section 1.2.9.

Among these methods, algorithms based on the augmented system approach (see
(1.63)) turned out to be especially well–suited for the solution of the specially struc-
tured equivalent LP problem, see Maros and Mészáros [221] and Mészáros [233].
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In the next section we discuss some further algorithmic issues concerning decom-
position methods; the methods themselves have already been presented in Chapter 1.
The subsequent section is devoted to successive discrete approximation methods. In
Section 4.7.3 stochastic methods are discussed while the subsequent section 4.7.4
summarizes some algorithmic issues for the special case of simple recourse.

4.7.1 Decomposition methods

In this section we consider the two–stage problem (3.7), under the assumption that
ξ has a finite discrete distribution.

The basic dual decomposition algorithm for two–stage recourse problems is es-
sentially an application of Benders–decomposition [14], due to Van Slyke and Wets
[336], and is usually called the L–shaped method in the literature. In Section 1.2.6
we have discussed the dual decomposition method, under the assumption of fixed
recourse and presupposing a deterministic objective in the second stage. The al-
gorithm for the general case is discussed as the nested decomposition algorithm
for multi–stage problems in Section 1.2.7; the two–stage problem is clearly a spe-
cial case corresponding to T = 2. A variant, also suitable for recourse–constrained
problems, has been presented in Section 4.4.2. From the numerical point of view,
the basic dual decomposition has some unfavorable features. On the one hand, there
is no reliable way for dropping redundant cuts. On the other hand, especially at the
beginning phase of iterations, the algorithm tends to make inefficient long steps.

For overcoming these difficulties, an important improvement of the basic dual de-
composition algorithm is the regularized decomposition method, due to Ruszczyński
[293]. This algorithm has been the subject of Section 1.2.8. For recent achievements
concerning this method see Ruszczyński and Świȩtanowski [296].

Another way for avoiding inefficient long steps, generally known in nonlinear
programming, is the trust–region method. This idea has been applied for two–stage
recourse problems by Linderoth and Wright [204], by employing intervals as trust
regions. The authors report quite favorable computational results concerning their
method.

A common feature of all of the dual decomposition methods is the following:
in each of the iterations, having the current solution x∗ of the master problem, the
recourse subproblem has to be solved for all realizations of ξ , in turn. Assuming
fixed recourse and that q is not stochastic, the recourse subproblem (4.57) or its
dual (4.58) has to be solved with the setting ξ = ξ̂ k, for k = 1, . . . ,N, where N
stands for the number of realizations. Now it is clear that the dual problems (4.58),
corresponding to different realizations, differ only in their objective. Assume that we
have solved the first recourse subproblem, corresponding to ξ = ξ̂ 1, by employing
the simplex method. The optimal basis B will then be a dual feasible basis for all of
the subproblems corresponding to the other realizations. Consequently, if for the kth

(k ≥ 2) subproblem
yk := B−1(h(ξ̂ k)−T (ξ̂ k)x∗)≥ 0
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holds, then B is also primal feasible to this subproblem, therefore yk is optimal.
Consequently, for the kth subproblem we have obtained the optimal solution without
starting up the simplex method at all. The idea is that, after having solved a particular
subproblem, the above check is performed for the remaining subproblems, in order
to identify those for which the simplex method has to be started up subsequently.
This idea is called bunching and can reduce substantially the running time of the
decomposition method. For further details, and refinements called trickling down,
see Gassmann [112], Gassmann and Wallace [121] and Kall and Wallace [172].

Zakeri et al. [354] propose a variant of the dual decomposition method where the
subproblems need to be solved only approximately thus leading to inexact cuts.

Concerning the numerical implementation of the dual decomposition method,
Abaffy and Allevi [1] present a modification, based on the ABS method of numerical
linear algebra, which leads to a significant decrease in the number of arithmetic
operations needed to carry out the algorithm.

Another idea for decomposition is basis–decomposition. For two–stage recourse
problems, an algorithm of this type has been developed by Strazicky [315].

4.7.2 Successive discrete approximation methods

In this section we will make the following assumption

Assumption 4.7.

The first and second moments exist for ξ .
The model has fixed recourse, that is, W (ξ )≡W, i.e. W (·) is deterministic.
The recourse matrix W has the complete recourse property (3.12) (cf. Assump-
tion 3.2. in Section 3.2, on page 200).
q(ξ )≡ q, i.e. q(·) is deterministic.
For T (ξ ) and h(ξ ) the affine–linear relations (3.6) hold.
The recourse subproblem has a finite optimum for any x and any ξ (cf. Assump-
tion 3.3. in Section 3.2, on page 201).

Under this assumption, the recourse function Q(x;T (·),h(·)) is a convex function in
ξ for any x ∈�n1 , see Theorem 3.2. in Section 3.2.

Taking into account our assumptions, the two–stage recourse problem from Sec-
tion 3.2 has the following form

min cTx+�ξ [Q(x;T (ξ ),h(ξ )) ]

s.t. Ax = b
x ≥ 0,

⎫⎪⎬
⎪⎭ (4.56)

where the recourse function Q(x;T (ξ ),h(ξ )) is defined as
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Q(x;T (ξ ),h(ξ )) := min qTy

s.t. Wy = h(ξ )−T (ξ )x
y ≥ 0.

⎫⎪⎬
⎪⎭ (4.57)

Alternatively, via the duality theory of linear programming we have

Q(x;T (ξ ),h(ξ )) = max (h(ξ )−T (ξ )x)Tu

s.t. W Tu ≤ q.

}
(4.58)

Let B := {x | Ax = b, x ≥ 0} be the set of feasible solutions of (4.56). For the
sake of simplicity of presentation, we will assume additionally to Assumption 4.7.
that B �= /0 holds and that B is bounded.

Notice, that due to our assumptions, the optimal solution for (4.56) exists. Let x∗
denote an optimal solution. For later use, let us introduce the notation

Q(x) :=�ξ [Q(x;T (ξ ),h(ξ )) ]

for the expected–recourse function, f (x) := cTx+Q(x) for the objective function
of the recourse problem (4.56), and f ∗ := cTx∗+Q(x∗) for the optimal objective
value of (4.56).

According to Proposition 1.18. in Chapter 1 (page 24), the recourse function
Q(x;T (ξ ),h(ξ )) is a piecewise linear convex function in x for fixed ξ . Due to the
affine–linear relations (3.6), the recourse function is piecewise linear and convex
also in ξ for fixed x. The proof of this fact is analogous to the proof of the above–
mentioned Proposition and is left as an exercise for the reader.

Successive discrete approximation methods construct discrete approximations to
the probability distribution of ξ by successively partitioning a set Ξ ⊂�r, which
is supposed to contain the support of ξ . We will proceed as follows. First we dis-
cuss algorithms, for which Ξ is supposed to be an r–dimensional interval and at
each iteration the support of ξ is covered by a union of intervals. We concentrate on
methods for which we have our own computational experience. The other algorith-
mic approaches will be summarized in the separate subsection 4.7.2.

Computing the Jensen lower bound

Our Assumption 4.7. implies that Q(x;T (·),h(·)) is a convex function in ξ for any
x ∈�n1 (see Theorem 3.2. in Section 3.2). Jensen’s inequality applies, see Theo-
rem 3.4. in Section 3.2. Thus, for the expected recourse Q(x) we have the lower
bound

Q(x;T (μ),h(μ))≤Q(x), x ∈�n1 (4.59)

with μ :=�[ξ ]. Consequently,

f L(x) := cTx+Q(x;T (μ),h(μ))≤ cTx+Q(x), ∀x ∈B



4.7 Two–stage recourse models 331

holds. A lower bound on the optimal objective value f ∗ of (4.56) can be obtained
by solving

min cTx+Q(x;T (μ),h(μ))

s.t. Ax = b
x ≥ 0,

⎫⎪⎬
⎪⎭

which is obviously equivalent to the following LP problem

min cTx +qTy

s.t. T (μ)x +Wy = h(μ)
Ax = b

x ≥ 0
y ≥ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.60)

Problem (4.60) is called the expected value problem, corresponding to (4.56), cf.
(3.104).

Computing the E–M upper bound for an interval

The purpose of this section is to derive a formula for computing the generalized
E–M upper bound (3.38). For the sake of easy reference we begin by summarizing
the derivation of this bound, as given in Section 3.2. Let Ξ := ∏r

i=1 [αi,βi] be an
r–dimensional interval containing the support of the r–dimensional random vector
ξ and let

|Ξ | :=
r

∏
i=1

(βi−αi)

be the volume of the r–dimensional interval Ξ . Let, furthermore, ϕ : Ξ →� be
a convex function. Our goal is to derive an explicit formula for the generalized
Edmundson–Madansky upper bound on�[ϕ(ξ ) ].

For deriving the bound, the following construction will be used. For each fixed
ξ ∈ Ξ let η(ξ ) be an r–dimensional discretely distributed random vector, with
stochastically independent components having the following one–dimensional
marginal distributions ⎛

⎜⎝
αi βi

βi−ξi

βi−αi

ξi−αi

βi−αi

⎞
⎟⎠

for i = 1, . . . ,r, where the first row corresponds to realizations and the second row
contains the corresponding probabilities (cf. (3.33)). Thus, the set of joint realiza-
tions of η coincides with the set of vertices of Ξ . The probability of the realization
corresponding to vertex vν (1 ≤ ν ≤ 2r) is (due to the stochastic independence as-
sumption)
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pν(ξ ) :=
1
|Ξ | ∏i∈Iν

(βi−ξi ) ∏
i∈Jν

(ξi−αi ), (4.61)

where Iν = {i | vνi = αi} and Jν = {i | vνi = βi}. Next observe that, due to the con-
struction of η , we obviously have for each fixed ξ ∈ Ξ

�[η ] =

⎛
⎜⎝
�[η1]

...
�[ηr]

⎞
⎟⎠=

⎛
⎜⎝
ξ1
...
ξr

⎞
⎟⎠= ξ .

Consequently, the Jensen–inequality yields

ϕ(ξ ) = ϕ(�[ξ ])≤�[ϕ(η) ] = ∑
ν
ϕ(vν) pν(ξ )

with pν(ξ ) defined as (4.61). Taking expectation results in

�[ϕ(ξ ) ]≤∑
ν
ϕ(vν)�[ pν(ξ ) ], (4.62)

which is the multivariate generalization of the Edmundson–Madansky inequality
(3.38). For the independent case this inequality is due to Kall and Stoyan [171], the
extension to the dependent case has been given by Frauendorfer [102].

Now we are prepared to derive a formula for �[ pν(ξ ) ]. In the case when the
components of ξ are stochastically independent, we get immediately from (4.61)

�(vν) :=�[ pν(ξ ) ] =
1
|Ξ | ∏i∈Iν

(βi−�[ξi ] ) ∏
i∈Jν

(�[ξi ]−αi ). (4.63)

Otherwise, utilizing (4.61) a straightforward computation yields

pν(ξ ) =
1
|Ξ | ∑

Λ⊂{1,...,r}
(−1)|KνΛ | ∏

i∈Iν∩Λ c
βi ∏

i∈Jν∩Λ c
αi ∏

i∈Λ
ξi

with Λ c = {1, . . . ,r}\Λ , KνΛ = Iν ∩Λ ∪Jν ∩Λ c and with |KνΛ | denoting the num-
ber of elements in KνΛ . Taking expectation leads to the formula

�[ pν(ξ ) ] =
1
|Ξ | ∑

Λ⊂{1,...,r}
(−1)|KνΛ | ∏

i∈Iν∩Λ c
βi ∏

i∈Jν∩Λ c
αi hΛ (ξ ), (4.64)

which is an expression for �(vν) =�[ pν(ξ ) ], where the notation hΛ (ξ ) = ∏
i∈Λ

ξi

has been employed (see Section 3.2).
By choosing ϕ(ξ ) = Q(x;T (ξ ),h(ξ )), the above upper bound applies. In fact,

due to Assumption 4.7., Q(x;T (·),h(·)) is a convex function in ξ for any x ∈�n1

(see Theorem 3.2. in Section 3.2). We get the Edmundson–Madansky inequality for
two–stage recourse problems
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Q(x)≤
2r

∑
ν=1

Q(x;T (vν),h(vν))�(vν), x ∈�n1 , (4.65)

see Theorem 3.5. in Section 3.2. Consequently

cTx+Q(x)≤ cTx+
2r

∑
ν=1

Q(x;T (vν),h(vν))�(vν) := f U (x), ∀x ∈B

holds, which immediately implies that fU (x) is an upper bound on the optimal ob-
jective value f ∗ of (4.56), for any x ∈B. The best E-M upper bound on f ∗ could be
obtained by solving

min cTx+
2r

∑
ν=1

Q(x;T (vν),h(vν))�(vν)

s.t. Ax = b
x ≥ 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

which is equivalent to the linear programming problem

min cTx+
2r

∑
ν=1
�(vν)qTyν

s.t. T (vν)x +Wyν = h(vν), ν = 1, . . . ,2r

Ax = b
x ≥ 0

yν ≥ 0, ν = 1, . . . ,2r.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.66)

The size of this LP grows exponentially with the dimension r of the random variable
ξ , which makes this approach impracticable in a successive discretization frame-
work. In the discrete approximation method we will employ an upper bound with a
fixed x.

Computing the bounds for a partition

Similarly to the previous section, let Ξ := ∏r
i=1 [αi,βi] be an r–dimensional interval

containing the support of the r–dimensional random vector ξ . We consider a disjoint
partition (see Section 3.2) X := {Ξk; k = 1, · · · ,K} of Ξ , where the Ξk are half-
open or closed intervals, which will be called cells. We have Ξk ∩Ξ� = /0 for k �= �

and
K⋃

k=1

Ξk = Ξ holds. The probability measure of the cells will be denoted by πk,

that is, πk =�ξ (Ξk), k = 1, . . . ,K.
According to Lemma 3.8 in Section 3.2, the Jensen lower bounds corresponding

to the partition will be computed as follows. We consider the conditional distribution
of ξ , given ξ ∈ Ξk, for the cells separately, and compute the conditional moments
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μk :=�[ξ | ξ ∈ Ξk ] =
1
πk

∫
Ξk

ξ�ξ (dξ ).

Using these, the Jensen lower bounds

Lk(x) := πk Q(x;T (μk),h(μk))≤
∫
Ξk

Q(x;T (ξ ),h(ξ ))�ξ (dξ )

are obtained, for k = 1, . . . ,K, x ∈�n1 , see Section 4.7.2. By summing up the in-
equalities

LX (x) :=
K

∑
k=1

Lk(x) =
K

∑
k=1

πk Q(x;T (μk),h(μk))≤Q(x) (4.67)

results and consequently

f L
X
(x) := cTx+

K

∑
k=1

Lk(x)≤ cTx+Q(x), ∀x ∈B

holds. Finally, for obtaining a lower bound on f ∗,

min cTx +
K

∑
k=1

πkqTyk

s.t. T (μk)x +Wyk = h(μk), k = 1, . . . ,K
Ax = b

x ≥ 0
yk ≥ 0, k = 1, . . . ,K

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.68)

is solved. Denoting by xX a solution of this LP, we have

Lk := πkQ(xX ;T (μk),h(μk))≤
∫
Ξk

Q(xX ;T (ξ ),h(ξ ))�ξ (dξ ) (4.69)

and

f L
X

:= cTxX +
K

∑
k=1

Lk ≤ cTx+Q(x), ∀x ∈B. (4.70)

In particular, f L
X
≤ f ∗ holds meaning that f L

X
, corresponding to the current partition

X , is a lower bound on the optimal objective value of the recourse problem (4.56).
In summary, the computation of the Jensen lower bound for a partition X runs

as follows.

Computing the Jensen lower bound

Step 1. Compute moments
Compute the conditional probabilities πk = �ξ (Ξk ) and the condi-
tional expected values μk := �[ξ | ξ ∈ Ξk ], for k = 1, . . . ,K. The
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computation of these quantities is straightforward in the case when
ξ has a finite discrete distribution; for continuous distributions numer-
ical integration is needed, in general.

Step 2. Compute the lower bounds for the cells
Set up and solve the LP problem (4.68), let xX be an optimal solu-
tion. Compute the lower bounds Lk for the cells according to (4.69),
k = 1, . . . ,K.

Step 3. Compute the lower bound for the optimal objective value
Compute f L

X
according to (4.70).

For the E–M upper bound we proceed analogously. Again, we consider the con-
ditional distribution of ξ , given ξ ∈ Ξk, for the cells separately. If the components
of ξ are stochastically independent then solely the conditional probability and the
conditional expected value is needed. In general, we compute

μΛ ,k :=�[hΛ (ξ ) | ξ ∈ Ξk ] =
1
πk

∫
Ξk

hΛ (ξ )�ξ (dξ ).

The upper bounds are computed again according to Lemma 3.8, page 218. From
(3.48) it follows

∫
Ξk

Q(x;T (ξ ),h(ξ ))�ξ (dξ )≤ πk

2r

∑
ν=1

Q(x;T (vνk ),h(v
ν
k ))�k(v

ν
k ) :=Uk(x), (4.71)

where x ∈ �n1 , vνk is the ν th vertex of cell k, k = 1, . . . ,K and �k is computed
according to (4.63) in the stochastically independent case and according to (4.64) in
general, where in both cases the moments are replaced by the conditional moments
corresponding to the cells.

Summing up the above inequalities we get

Q(x)≤
K

∑
k=1

Uk(x) :=UX (x) (4.72)

and consequently

cTx+Q(x)≤ cTx+
K

∑
k=1

Uk(x) := f U
X
(x), ∀x ∈B. (4.73)

Notice that for any x ∈B, fU
X
(x) is an upper bound for the optimal objective value

f ∗. In the discrete approximation method we will choose x = xX , that is, we choose
an optimal solution of the LP problem (4.68), which served for computing the Jensen
lower bound. For this choice we introduce the notation Uk :=Uk(xX ). Thus we have

f ∗ = cTx∗+Q(x∗)≤ cTxX +
K

∑
k=1

Uk = f U
X
(xX ) := f U

X
. (4.74)
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Our choice also implies that the inequality

Lk ≤
∫
Ξk

Q(xX ;T (ξ ),h(ξ ))�ξ (dξ )≤Uk (4.75)

holds for k = 1, . . . ,K. The interpretation of this inequality is the following. Consid-
ering the interval–wise decomposition

Q(x) =�ξ [Q(x;T (ξ ),h(ξ )) ] =
K

∑
i=1

∫
Ξk

Q(x;T (ξ ),h(ξ ))�ξ (dξ ),

(4.75) provides upper and lower bounds for the kth term, corresponding to the kth

cell in the partition. The overall bounds f L
X

(see (4.70)) and f U
X

(see (4.73)) are then
obtained by summing up the cell–wise bounds in (4.75) and subsequently adding
the term cTxX .

Thus, Uk−Lk provides an error bound for the approximation over the kth cell. If,
for example, Q(xX ;T (·),h(·)) happens to be a linear–affine function over Ξk, then,
as it can easily be seen, Uk = Lk holds, and the error will be zero. The proof of this
fact is left as an exercise for the reader.

For computing the E–M upper bound for a fixed x ∈B, we proceed as follows.

Computing the E–M upper bound

Step 1. Compute moments
For each of the cells in turn do:
Compute the conditional probability πk. If the components of ξ are
stochastically independent then compute the conditional expected–
value vectors μk, otherwise compute all of the 2r − 1 conditional
cross–moments μΛ ,k.

Step 2. Compute distribution on the vertices and recourse function values
For each of the different vertices vνk , ν = 1, . . . ,2r, k = 1, . . . ,K do:
• Compute�k(vνk ) according to (4.63) or (4.64), depending whether

the components of ξ are stochastically independent or dependent,
respectively. In the computations replace the moments in the for-
mulas with the conditional moments μk and μΛ ,k, respectively.

• Compute Q(x;T (vνk ),h(v
ν
k )) by solving the linear programming

problem (4.57), with ξ := vνk .
Step 3. Compute the upper bounds for the cells

Compute the upper bounds Uk(x), according to (4.71),
k = 1, . . . ,K.

Step 4. Compute the upper bound on the optimal objective value
The E–M upper bound f U

X
is finally computed according to (4.72).
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The successive discrete approximation method

Corollary 3.3. in Section 3.2 formulates the basis for this method: Assume that X
and Y are two partitions of Ξ containing the support of ξ , such that Y is a refine-
ment of X . This means that each of the cells in X is the union of one or several
cells in Y . Then for each fixed x ∈B we have

LX (x)≤ LY (x)≤Q(x)≤UY (x)≤UX (x), (4.76)

see also (4.67) and (4.72). This fact suggests the following algorithmic idea: starting
with Ξ , a sequence of partitions of Ξ is generated by successive refinements of the
partition. For each partition X an approximate solution xX is computed by solving
(4.68) along with the bounds

f L
X
≤ f ∗ ≤ f U

X
,

see (4.70) and (4.74) The algorithm is stopped when the error bound f U
X
− f L

X
is

below a prescribed stopping tolerance.
A conceptual description of the method is presented in Section 3.2.1.3, beginning

at page 223. Convergence properties of this type of algorithms have been discussed
in Section 3.2, see Theorem 3.7. on page 222.

In this section we concentrate on various specific algorithmic issues. An imme-
diate implication of the monotonicity property (4.76) is that for the Jensen lower
bound the inequality

f L
X
≤ f L

Y
≤ f ∗

holds, see (4.70). Consequently, the lower bounds will be monotonically increasing
for a sequence of successive refinements of Ξ . The same will not be true for the E–
M upper bounds (4.74). The reason is that these bounds also depend on the current
approximate solution xX , whereas the Jensen bounds only depend on the current
partition.

Given a partition X , the question arises, how the next, refined partition should
be constructed. The key observation in this respect is that, according to (4.75), the
selection of the cells to be subdivided can be performed in a cell–wise fashion.

We will proceed as follows. Next a general framework of the algorithm will be
formulated and subsequently several issues related to the implementation of the
method will be discussed. The details and recommendations are based on the im-
plementation of the method, developed by the authors, and on our extensive com-
putational experience with this solver, named DAPPROX. The current version of
DAPPROX is for the case when the components of ξ are stochastically independent.
Let us emphasize, however, that this assumption does not require that the random
elements of the model (e.g. (h1(ξ ),h2(ξ ), . . . ,hm2(ξ ))) should be stochastically in-
dependent, see the affine–linear relations (3.6).

For specifying the algorithm, some further notation is needed. Considering
(4.69), we introduce

QL
k := Q(xX ;T (μk),h(μk))

thus having Lk = πkQL
k . Similarly for (4.71) with x = xX , let
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QU
k :=

2r

∑
ν=1

Q(xX ;T (vνk ),h(v
ν
k ))�k(v

ν
k )

resulting in Uk = πkQU
k .

Successive discrete approximation method

Step 1. Initialization
Let X = {Ξ } and set K := 1 for the number of cells in the partition.
Let π1 = 1. If the components of ξ are stochastically independent then
compute the expected–value vector μ1, otherwise compute all of the
2r−1 cross–moments μΛ ,1.
Let f U := ∞, this will be the best (lowest) upper bound found so far.
The subdivision process will be registered by employing a rooted bi-
nary tree where the nodes correspond to cells and branching represents
subdivision of the cells. Initially this tree consists of a single node,
which will be the root, with Ξ associated with it. Choose a stopping
tolerance ε∗ and a starting tolerance εS for subdivision. Set the itera-
tions counter ι = 1.

Step 2. Compute the Jensen lower bound for X
Apply the algorithm on page 334 for computing the Jensen lower
bound. Thereby skip Step 1 of that algorithm, because the moments
and probabilities are already computed. Thus we get a solution xX of
(4.68), the lower bounds Lk, k = 1, . . . ,K, for which (4.75) holds, and
a lower bound f L

X
for the optimal objective value f ∗ of the recourse

problem.
Step 3. Compute the E–M upper bound for X

With x = xX , employ the algorithm on page 336. This delivers the
upper bounds Uk, k = 1, . . . ,K, for which again (4.75) holds, as well
as an upper bound fU

X
on the optimal objective value of the recourse

problem.
Step 4. Check the stopping criterion

Set fU := min{ f U , f U
X
}. If Δι :=

f U − f L
X

1+ | f L
X
| ≤ ε∗ then Stop and de-

liver xX as an ε∗–optimal solution. Otherwise continue with the next
step.

Step 5. Setup a list of cells to be subdivided
Let S := {k | δ (QL

k ,Q
U
k ,πk,κk) ≥ εS } where δ is one of the selec-

tion functions specified below. κk is the number of subdivisions which
resulted in cell k; in the subdivision tree κk is the number of edges
between the root and the node representing the kth cell.
If S = /0, then set εS := 1

2 εS and repeat this step, otherwise continue
with the next step. With the suggested selection functions δ , this cycle
is finite since the algorithm did not stop in Step 4.
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Step 6. Carry out the subdivision
For each k ∈ S, with Ξk do
• Choose a coordinate direction. The subdivision of Ξk will be car-

ried out by employing a hyperplane perpendicular to the chosen
coordinate axis.

• Subdivide Ξk into two intervals, by applying a cutting plane across
the conditional expected value μk and perpendicular to the chosen
coordinate direction.

Step 7. Update the partition
Set K := K + |S|; renumber the cells and update X accordingly. For
each cell which has been subdivided, do the following
• For both of the new cells compute the corresponding conditional

probability and conditional moments.
• Append two edges to the corresponding node of the subdivision

tree with the child–nodes corresponding to the new cells.
Set ι = ι+1 and continue with Step 2.

There are several points in the algorithmic framework which need further speci-
fication.

Let us begin with the cell–selection function δ in Step 5. The following selection
functions are used:

• δ1(QL
k ,Q

U
k ,πk,κk) :=

QU
k −QL

k

1+ |QL
k |

• δ2(QL
k ,Q

U
k ,πk,κk) := πk

QU
k −QL

k

1+ |QL
k |

.

• δ3(QL
k ,Q

U
k ,πk,κk) := πk 2κk

QU
k −QL

k

1+ |QL
k |

.

Each of these involves the relative approximation error. In the second and third func-
tions the probability–multiplier enforces that, among cells with approximately the
same relative error, those with a higher probability content are considered first for
subdivision. The third function has been suggested by H. Gassmann. It has the ef-
fect that among cells which qualify according to the second selection function, those
cells will be selected which are the result of a higher number of subdivisions. This
selection function implements a depth–first selection criterion in the subdivision
tree. For further selection functions and strategies see Kall and Wallace [172]. We
have experimented with the above strategies and also with other, more sophisticated
strategies related to the subdivision tree. Based on our experience, we recommend
to use δ = δ2.

Having selected the cells to be subdivided, the next question arises, how to
choose an appropriate coordinate direction in Step 6. The basis for the differ-
ent methods is the following observation (already discussed on page 336): If
Q(xX ;T (·),h(·)) is a linear–affine function over Ξk, then Uk = Lk holds, that is,
the approximation error is zero. Therefore that coordinate direction will be chosen,
along which some measure of nonlinearity is maximal. The idea is the following.
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In Step 3 computing the E–M upper bound involved the solution of the recourse
subproblem (4.57) for all of the vertices ξ := vνk , ν = 1 . . . ,2r of Ξk. We assume that
for all of these vertices dual optimal solutions are also available, which is always
the case when the simplex method has been used. Let uνk be an optimal dual solu-
tion of (4.57), corresponding to vertex vνk . These optimal dual solutions are utilized
to construct nonlinearity measures for pairs of adjacent vertices. Let Ψ be such a
function, defined on adjacent vertices of Ξ , that is, if vi

k and v j
k are adjacent vertices

thenΨ(vi
k,v

j
k) will be the associated nonlinearity measure.

We introduce the following notation. For i = 1, . . . ,r let

Ai := {(a,b) | a and b are vertices of Ξ and
a and b differ only in their ith coordinate}.

From a geometrical point of view, the elements of Ai represent the set of edges of
Ξ , which are parallel to the ith coordinate direction. The coordinate–selection algo-
rithm runs as follows.

Coordinate–selection method

Step 1. Assign nonlinearity measures to coordinate–directions
For each of the coordinates i = 1, . . . ,r compute
Ψi := min

(a,b)∈Ai
Ψ(a,b).

Step 2. Choose coordinate
Choose a coordinate direction for whichΨi is maximal.

Several nonlinearity measures have been suggested, see Kall and Wallace [172].
Here we discuss the two measures which have been proposed by
Frauendorfer and Kall [105] and which are implemented in DAPPROX.

The first measure is based on the following observations. Due to our assumptions,
Q(xX ;T (·),h(·)) is a convex piecewise linear function. Let us consider two adjacent
vertices vi

k and v j
k of Ξk, with associated optimal dual solutions ui

k and u j
k. According

to Theorem 3.2. in Chapter 3 (page 204), the subgradients of Q(x;T (ξ ),h(ξ )) with
respect to x are the optimal dual solutions of the recourse subproblem (4.57), multi-
plied by a matrix independent on x. Due to the affine–linear relations (3.6), it can be
seen analogously that the subgradients of Q(x;T (ξ ),h(ξ )) with respect to ξ have a
similar form: they are again the optimal dual solutions of the recourse subproblem,
multiplied by a matrix which does not depend on ξ .

Assume now that the dual solutions are equal for the two vertices, that is, we
assume that ui

k = u j
k holds. The above considerations imply that the corresponding

subgradients of Q(xX ;T (ξ ),h(ξ )) with respect to ξ are also equal. Consequently,
Q(xX ;T (·),h(·)) is a linear–affine function along the edge, connecting these ver-
tices. Thus we may expect that the difference of dual solutions for adjacent vertices
indicates the degree of nonlinearity along the corresponding edge. This suggests the
first nonlinearity measure for adjacent vertices vi

k and v j
k

Ψ1(vi
k,v

i
k) := ‖ui

k−u j
k‖.
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The second measure is based on Lemma 3.3 (page 203) and on the convexity
of Q(xX ;T (·),h(·)). We take again two adjacent vertices vi

k and v j
k. With the corre-

sponding optimal dual solutions ui
k and u j

k we have (see (4.58))

Q(xX ;T (vi
k),h(v

i
k)) = (h(vi

k)−T (vi
k)xX )Tui

k

Q(xX ;T (v j
k),h(v

j
k)) = (h(v j

k)−T (v j
k)xX )Tu j

k.

Using these relations and Lemma 3.3 (page 203), we obtain by the subgradient
inequality

(ui
k)

T (h(v j
k)−T (v j

k)xX ) ≤ Q(xX ;T (v j
k),h(v

j
k))

(u j
k)

T (h(vi
k)−T (vi

k)xX ) ≤ Q(xX ;T (vi
k),h(v

i
k)).

Let us define

Δ i j
k := Q(xX ;T (v j

k),h(v
j
k))− (ui

k)
T (h(v j

k)−T (v j
k)xX )

Δ ji
k := Q(xX ;T (vi

k),h(v
i
k))− (u j

k)
T (h(vi

k)−T (vi
k)xX ).

The interpretation of Δ i j
k is the following: if we linearize Q(xX ;T (·),h(·)) at ξ = vi

k
using the subgradient ui

k, then Δ i j
k is the linearization error at ξ = v j

k. The interpre-
tation of Δ ji

k is analogous, by considering the linearization this time at ξ = v j
k.

We chose
Ψ2(vi

k,v
i
k) := min{Δ i j

k ,Δ ji
k }

as our second quality measure; for the heuristics behind choosing the minimum
above, see Frauendorfer and Kall [105] or Kall and Wallace [172].

According to our experience, none of the two nonlinearity measures can be con-
sidered as best. Our recommendation is the combined use of them. One possible
implementation is to switch between the two strategies if the improvement in Δι is
small for a specified number of subsequent iterations. As a starting strategy, the use
ofΨ2 is recommended.

Implementation

The successive discrete approximation method involves the solution of several LP
subproblems.

In Step 2, for computing the Jensen lower bound, the LP problem (4.68) has to
be solved. The straightforward approach for solving (4.68) is to apply a general–
purpose LP solver without any considerations concerning the special structure. This
may become quite time–consuming with an increasing number of cells.

A better approach is based on the observation that (4.68) is the LP equivalent of
a two–stage problem with a finite discrete distribution. The realizations of the ran-
dom vector are the conditional expectations μk and the corresponding probabilities
are the conditional probabilities πk of the cells. Thus, the number of realizations



342 4 Algorithms

equals the number of cells in the current partition X . The idea is to apply solvers
designed to solving two–stage recourse problems with a finite discrete distribution.
With DAPPROX we have quite good experiences by employing QDECOM for solv-
ing (4.68). The solver QDECOM is an implementation of the regularized decompo-
sition method of Ruszczyński [293], implemented by Ruszczyński. The algorithm
has been discussed in Section 1.2.8.

The next idea is due to Kall and Stoyan [171]. It consists of using a general–
purpose LP solver, but taking into account the specialities of the successive discrete
approximation procedure. In the successive decomposition method, as discussed in
the previous section, typically several cells are subdivided in a single iteration cycle.
For explaining the idea, we assume that a single cell is subdivided; the extension to
the general case is straightforward. The idea is that, instead of (4.68), its dual

max
K

∑
k=1

hT(μk)uk + bTv

s.t.
K

∑
k=1

T T(μk)uk + ATv ≤ c

W Tuk ≤ πk q, k = 1, . . . ,K

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.77)

is solved. Let X be the partition corresponding to this LP. Assume, for the sake of
simplicity, that the first cell Ξ1 ∈X is subdivided as Ξ1 = Ξ11 ∪Ξ12, with corre-
sponding probabilities π11, π12, and conditional expected values μ11, μ12. Thus we
have

π1 = π11 + π12
μ1 = π11 μ11 + π12 μ12.

(4.78)

The dual LP for the new partition will have the form

max hT(μ11)u11 +hT(μ12)u12 +
K

∑
k=2

hT(μk)uk +bTv

s.t. T T(μ11)u11+T T(μ12)u12+
K

∑
k=2

T T(μk)uk +ATv≤c

W Tu11 ≤π11 q
W Tu12 ≤π12 q

W Tuk ≤πk q,
k = 2, . . . ,K.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.79)

Let ( ūk, k = 1, . . . ,K; v̄) be a solution of (4.77). Then with

v̂ := v̄; û11 :=
π11

π1
ū1, û12 :=

π12

π1
ū1, ûk := ūk, k = 2, . . . ,K (4.80)

we have a feasible solution of (4.79), with the same objective value as the optimal
objective value of (4.77). This can easily be seen by utilizing (4.78) and the affine–
linear relations (3.6).
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Let us discuss the solution of the LP problems involved in Step 3 next. For com-
puting the E–M upper bound, the recourse subproblem (4.57) has to be solved for
each of the different vertices among all vertices vνk , ν = 1, . . . ,2r, k = 1, . . . ,K, in
the current partition X . This involves solving a huge amount of LP problems, in
general. The simplex method is especially well–suited for carry out this task, for
the following reason. Instead of solving (4.57), its dual (4.58) is solved. Notice that
the feasible domain of the dual problem does not depend on ξ . We have to solve a
sequence of LP problems. Except of the first one, hot start can be used. This means
that the optimal basis of the previous LP is taken as a starting basis for the next LP
problem.

In DAPPROX we use Minos for solving the LP subproblems, see Murtagh and
Saunders [239], [240].

The numerical efficiency of successive discrete approximation methods critically
depends on the data–structures used. Hence we give an overview on the basic data
structures used in DAPPROX.

3

2

1

v

3

2

1

v

4

Fig. 4.5 Partitions of Ξ .

As discussed above, for obtaining the E–M upper bound, the recourse subprob-
lem has to be solved for each of the vertices appearing in the current partition. The
straightforward idea of working purely in a cell–wise fashion and solving the LP
problems for the vertices of the cells in turn, is in general quite inefficient. To see
this, consider a vertex of a cell which lies in the interior of Ξ , see vertex v in the
partitions displayed in Figure 4.5. This vertex may have maximally 2r neighboring
cells, that is, it may belong to 2r different cells, see the partition at the right–hand–
side in Figure 4.5. Computing the E–M upper bounds cell–wise would mean that
the LP belonging to that specific vertex would be solved 2r times.

One possible remedy, implemented in DAPPROX, is the following: the different
vertices are stored in a separate vertex list. For each vertex vν in the partition, the
following quantities are stored: the coordinates of the vertex vν , the optimal objec-
tive value, and a pointer to an optimal dual solution. Considering the partitions in
Figure 4.5, the vertex list for the partition at the left–hand–side would consist of 8
elements, and the list for the partition at the right–hand side would have 9 elements.

Notice that the feasible domain of the dual (4.58) of the recourse subproblem
does not depend on ξ . According to numerical experience, the number of different
optimal dual solutions which appear in the procedure is usually much smaller than
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the number of different vertices of the cells. Therefore, the different dual solutions
are stored in a separate list, and the elements in the vertex list merely contain a
pointer to the corresponding dual solution. This idea is due to Higle and Sen [139],
who used it in the implementation of their stochastic decomposition method.

The information concerning the cells of the current partition is stored in a sepa-
rate list, too. For each of the cells the following quantities are stored: the two diame-
trally opposite vertices defining the cell, the conditional probability and expectation
of the cell, the upper and lower bounds corresponding to the cell, as well as a list of
pointers to the vertices of the cell in the vertex list.

The subdivision procedure is recorded by employing a binary tree, the nodes of
which correspond to cells and branching means subdivision. The leaves in the tree
correspond to the current partition. Further information associated with the nodes
includes cell probability, the bounds, and the split coordinate and split position.

The framework of an iteration of the algorithm, based on the data structures out-
lined above, is the following:

Implementation of the successive discrete approximation method

Step 1. Initialization
Initialize all lists in a straightforward fashion.

Step 2. Compute the Jensen lower bound for X
Traverse the list of cells and compute the conditional probabilities and
expectations. Set up and solve (4.77) and assign the obtained lower
and upper bounds to the cells. Finally compute f L

X
.

Step 3. Compute the E–M upper bound for X
• Traverse the vertex list and solve the corresponding LP problems.

For each vertex check whether a new dual solution appeared. If
yes, append it to the list of dual solutions.

• Traverse the list of cells and employing the pointers to the vertices
compute the E–M bound for the cells.

• Finally compute f U
X

.
Step 4. Check the stopping criterion

This is the same as in the general method.
Step 5. Setup a list of cells to be subdivided

This is also the same as in the general method, too.
Step 6. Carry out the subdivision

The procedure is the same as for the general method, based on passing
the list of cells once. For the coordinate–selection strategy Ψ2, paral-
lel edges are needed. This is implemented by setting up a list of the
corresponding pairs of node pointers.

Step 7. Update the partition
This means now updating the lists. For each of the cells which is sub-
divided, the two new cells are added to the list of cells, one of them
replacing the subdivided cell and the other appended to the list of cells.
The new vertices are appended to the vertex list.
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Next we discuss the case when ξ has a finite discrete distribution.

*

*

Fig. 4.6 Subdivisions of Ξ for a finite discrete distribution.

For explaining the idea let us consider Figure 4.6 first. In the figure, realizations
of a two dimensional random variable are indicated by black bullets. The left–hand–
side of the figure displays Ξ , which is in this case the smallest interval containing
all realizations. The assumed first cut is indicated by the horizontal dotted line. The
resulting first partition is shown in the middle part of the figure. Notice that for both
cells the smallest interval, containing all realizations, has been taken. Assume, that
the subsequent cut is performed according to the vertical dotted line. The resulting
partition is displayed in the right–hand–side part of the figure. Again, the intervals
for the new cells have been shrank. This means a change in the interpretation of a
partition. This is no more a partition of the original interval, but a partition of the
realizations, covered by the smallest possible intervals cell–wise.

This is also the general idea: after carrying out a subdivision, for each of the cells
in the new partition we take the smallest interval which contains all realizations be-
longing to the cell. This has the obvious disadvantage, that now typically there are
no common vertices of the cells. Thus, in the general case, all of the 2r vertices
for each of the cells have to be dealt with separately. According to numerical ex-
perience, however, the smaller cells result in much better E–M upper bounds, and
the overall numerical efficiency becomes significantly better (the overall number
of cells needed to achieve the required accuracy is much smaller). Edirisinghe and
Ziemba [82] call this kind of partitioning a cell redefining strategy.

From the point of view of implementation, an additional feature appears. To see
this, compare the partitions in the middle part and in the right–hand side part of the
figure. The point is, that some vertices in the middle partition vanish when carrying
out the next cut. These dummy vertices have to be removed from the vertex list,
which can either be done by appropriately modifying the update algorithm after
subdivision, or by periodically running a “garbage collection” procedure.

Finally we consider the case, when ξ has a finite discrete distribution and the
components of ξ are stochastically independent. Such a situation is displayed in
Figure 4.7. In the left–hand–side of the figure the interval Ξ contains all realiza-
tions. On the boundary of the interval, circles indicate the one dimensional marginal
distributions and as before, the black bullets represent the joint realizations. Unlike
in the general case (see Figure 4.6), the joint realizations are located now in a lattice.



346 4 Algorithms

*

1 2

Fig. 4.7 Subdivisions of Ξ for independent finite discrete distributions.

This regular pattern has important implications concerning the efficient implemen-
tation. For explaining the idea, we consider again Figure 4.7. Similarly as in the
general case with finite discrete distributions, the smallest interval Ξ containing all
realizations is taken as the starting point of the method, see the middle part of the
figure. Assume that the first cut is performed according to the vertical dotted line.
Performing the subdivision, the partition shown in the right–hand–side of the fig-
ure results, where again the smallest intervals containing all realizations have been
taken. Observe, that the cell Ξ1 is now one–dimensional, thus having just 2 vertices.

This is an important special feature also in the general case. According to numer-
ical experience, the dimensions of the cells collapse rapidly as the subdivision pro-
cess proceeds. Thus, instead of 2r, for a significant number of cells a much smaller
amount of LP problems need to be solved for the E–M upper bound. This presup-
poses, of course, that the implementation is tailored to account for this possibility.
Note, that the “collapsing dimensions” phenomenon has two roots: on the one hand,
the components of Ξ should be stochastically independent, and on the other hand,
the cells should be intervals.

Simple recourse

Simple recourse models have been the subject of Section 3.2.2. In this section we
discuss how the successive discrete approximation method specializes in this case.
The resulting algorithm is due to Kall and Stoyan [171]; a conceptual presentation
of the method is given in Section 3.2.2.2, see page 235.

The main special feature of simple recourse models is separability, see (3.60),
(3.63), and (3.62). For the sake of easy reference we reproduce some of the key
relations, with slightly changed notation: let z = T x then with
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Q̃i(zi,ξi) := q+i · [ξi− zi]
+ + q−i · [ξi− zi]

−

Q̃i(zi) := �ξi [ Q̃i(zi,ξi) ]
(4.81)

we have

Q̃(z,ξ ) =
m2

∑
i=1

Q̃i(zi,ξi)

Q̃(z) :=
m2

∑
i=1

Q̃i(zi).

(4.82)

The separability property implies that the discrete approximation can be built
in a coordinate–wise fashion. Instead of working with the r–dimensional interval
Ξ := ∏r

i=1 [αi,βi] containing the support, the approximation is built for the one–
dimensional intervals [αi,βi], i = 1, . . . ,r separately, by considering the correspond-
ing one–dimensional marginal distributions of ξi.

In the general complete recourse case we have constructed an upper bound for the
expected recourse function Q(x), at the point x = xX (see Step 3 of the algorithm
on page 338). In the simple recourse case the expected recourse function can be
computed by an explicit formula, hence we use the function value itself as an upper
bound on the optimal objective value. Next we discuss the formula for computing
the expected recourse.

Due to the separability property, for deriving the formula it is sufficient to con-
sider the case r = 1. Dropping the subscript 1, the recourse function has the form

Q̃(z,ξ ) = q+ · [ξ − z]+ + q− · [ξ − z]−,

see (4.81).
Let [α,β ] be an interval containing the support of the random variable ξ , sub-

divided as α = a0 < a1 < .. . < aK = β . Let I1 := [a0,a1] and Ik := (ak−1,ak] for
k ≥ 2, πk =�ξ ( Ik ), and μk :=�[ξ | ξ ∈ Ik ], k = 1, . . . ,K. Let, furthermore, k̄ be
the index of the interval in the partition which contains z, that is, z ∈ Ik̄ holds.

According to Lemma 3.14 on page 232, we have the formula

Q̃(z) = �ξ [ Q̃(z,ξ ) ] = π̂1 Q̃(z, μ̂1) + π̂2 Q̃(z, μ̂2)

= π̂1 q− [μ̂1− z]− + π̂2 q+ [μ̂2− z]+
(4.83)

with π̂1 = �ξ ( [α,z] ), π̂2 = �ξ ((z,β ] ), μ̂1 = �[ξ | ξ ∈ [α,z] ], and
μ̂2 =�[ξ | ξ ∈ (z,β ] ]. This approach has the following drawback: it does not de-
pend on the current partition; except of K = 2, the quantities π̂1, π̂2, μ̂1, and μ̂2 serve
solely for computing Q̃(z), the rest of the discrete approximation method makes no
use of them.

To see, how a better formula should look like, observe that Q̃(z,ξ ) as a func-
tion of ξ has a single kink at ξ = z (see Figure 3.2 on page 229). Thus it is linear
over all subintervals Ik in the partition, except of interval Ik̄ which contains z. There-
fore the approximation error is zero for all intervals Ik, k �= k̄, see the discussion in
Section 4.7.2. Consequently, in the approximation scheme it makes only sense to
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consider Ik̄ for further subdivision. It is also clear that the subdivision point should
be ξ = z, because after the subdivision the recourse function Q̃(z,ξ ), as a function
of ξ , will be linear on all of the subintervals for the current fixed z.

It is easy to see, that the following extension of (4.83) to several subintervals
holds:

�ξ [ Q̃(z,ξ ) ] =
K

∑
k=1

Q̃k(z) (4.84)

with

Q̃k(z) :=

⎧⎨
⎩

q− (z−μk)πk if k < k̄
q− (z−μ1

k )π
1
k +q+ (μ2

k − z)π2
k if k = k̄

q+ (μk− z)πk if k > k̄,

where for k = k̄, π1
k :=�ξ ((ak−1,z] ), π2

k :=�ξ ((z,ak] ), μ1
k :=�[ξ | ξ ∈ (ak−1,z] ],

and μ2
k :=�[ξ | ξ ∈ (z,ak] ] hold. If the interval Ik̄ happens to be subdivided in the

current iteration then these newly computed quantities can directly be used in the
next iteration.

For specifying the discrete approximation method some further notation is needed.
For j = 1, . . . ,r, let [α j,β j] be an interval containing the support of ξ j, X j be the cur-
rent partition of [α j,β j] into Kj subintervals I jk, let π jk = �ξ j( I jk ),
μ jk =�[ξ j | ξ j ∈ I jk ], for k = 1, . . . ,Kj.

In the subsequent description of the method we will just stress those parts which
are different with respect to the general method; for a detailed description we refer
to the general algorithm on page 338.

Successive discrete approximation for simple recourse

Step 1. Initialization
This is basically the same as in the general method, except that now
the initialization is carried out separately for j = 1, . . . ,r.

Step 2. Compute the Jensen lower bound
This is the same as in the general method, too. With z := xX we also
get, due to separability, the separate Jensen lower bounds

QL
j :=

Kj

∑
k=1

π jkQ j(z,μ jk), for j = 1, . . . ,r.

Step 3. Compute the recourse objective value
With z = T xX apply formula (4.84) for computing the marginal ex-
pected recourse function values QU

j := Q j(z j), for j = 1, . . . ,r. Ac-
cording to (4.82), compute fU

X
:= cTxX +Q(z), which will be an up-

per bound on f ∗.
Step 4. Check the stopping criterion

This step is the same as in the general method.
Step 5. Setup a list of coordinates for subdivision

Let J = { j | δ (QL
j ,Q

U
j ,π jk̄ j

,κ jk̄ j
) ≥ εS }, where k̄ j is the index of
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the interval containing z j, that is, z j ∈ I jk̄ j
holds. If J = /0, then set

εS := 1
2 εS and repeat this step, otherwise continue with the next step.

Step 6. Carry out the subdivision
For each j ∈J , split I jk̄ j

at the point z j into two intervals.
Step 7. Update the partition

For each j ∈J set Kj := Kj + 1; renumber the cells and update X
accordingly. Notice that for the new cells in the partition the proba-
bilities and the conditional expectations have already been computed
in Step 3, see (4.84). Update the subdivision trees; set ι = ι + 1 and
continue with Step 2.

In Step 2 of the algorithm, for computing the Jensen lower bound and the next
iteration point, the LP problem (4.68) must be solved. According to the discussion
in Section 4.7.2, an efficient way for solving this is solving the dual problem, which
assumes in the simple recourse case the following form.

max
r

∑
i=1

Kj

∑
k=1

hT(μ jk)u jk + bTv

s.t.
r

∑
j=1

Kj

∑
k=1

tT
j u jk + ATv ≤ c

−π jk q−j ≤ u jk ≤ π jk q+j , k = 1, . . . ,K,

j = 1, . . . ,r,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.85)

where the components of the n1–dimensional vector t j are the elements of the jth

row of T , for all j.
For a sequence of such problems, the Kall–Stoyan method (see page 342) can be

utilized to provide feasible starting points. Comparing (4.85) and the general coun-
terpart (4.79), we notice that in (4.85) we simply have individual lower and upper
bounds on the variables u jk, instead of the corresponding parts in (4.79), where the
recourse matrix W is involved. Due to this special structure, the Kall–Stoyan idea
can be improved to provide a feasible basic solution for the next iteration, with the
same or a better objective function value. This can be used for a hot start, which, ac-
cording to numerical experience, reduces dramatically the solution time for solving
(4.85). We assume for the sake of simplicity of presentation, that I11 has been split as
I11 = I1

11 ∪ I2
11, with corresponding probabilities π1

11, π2
11, and conditional expected

values μ1
11, μ2

11. For these quantities relation (4.78) can be formulated analogously.
The LP problem has the following form after the split:
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max hT(μ1
11)u

11
1 +hT(μ2

11)u
11
2 + ∑

( j,k)�=(1,1)
hT(μ jk)u jk + bTv

s.t. tT
1 u11

1 + tT
1 u11

2 + ∑
( j,k)�=(1,1)

tT
j u jk + ATv ≤ c

−π1
11 q−1 ≤ u11

1 ≤ π1
11 q+1

−π2
11 q−1 ≤ u11

2 ≤ π2
11 q+1

−π jk q−j ≤ u jk ≤ π jk q+j ,

k = 1, . . . ,K,
j = 1, . . . ,r,
( j,k) �= (1,1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.86)

The Kall–Stoyan feasible starting point will be, analogously as in (4.80),

û11
1 :=

π1
11
π11

ū11

û11
2 :=

π2
11
π11

ū11

and û jk := ū jk
1 for ( j,k) �= (1,1) as well as v̂ := v̄, where (ū, v̄) is a solution of

(4.85). If ū11 was a non–basic variable, then its value is either the corresponding
lower bound or the corresponding upper bound in (4.85). Then both û11 and û12 can
be declared as non–basic variables, both of them being on the analogous lower or
upper bound in (4.86). If ū11 was a basic variable, then the following can be done:
one of the variables û11

1 or û11
2 is shifted to the corresponding lower or upper bound

in (4.86) and the other one is shifted by the same amount in the opposite direction.
The variable shifted to a bound will be declared as non–basic and the other one as
basic. This can be done in such a way, that the objective function does not decrease.
The details are left as an exercise for the reader.

The authors have implemented the method as the solver SRAPPROX. To illus-
trate the efficiency, we refer to our paper Kall and Mayer [168] where we report
on computational results with test problem batteries consisting of simple recourse
problems with r = 300, which have been solved using SRAPPROX on a 660 MHz
PC in approximately half a minute.

Other successive discrete approximation algorithms

As discussed in Section 3.2.1, there are basically two different algorithmic ap-
proaches, depending on the geometry of Ξ . The approach which has been discussed
so far in this section, employs intervals. Thus, Ξ was an r–dimensional interval, and
at each iteration the support of ξ was covered by a union of intervals.
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Employing also intervals, Edirisinghe and Ziemba [82] report on the implemen-
tation of their variant of the successive discrete approximation method, with an ex-
tension to the case when also the recourse objective q is allowed to be stochastic.

A different approach, also based on interval–partitions, is due to Fábián and
Szőke [90]. The authors combine a bundle–type convex programming method with a
successive discrete approximation scheme. At each iteration a linear and a quadratic
programming problem is to be solved. For the underlying NLP method see the ref-
erences in the cited paper.

In the second approach Ξ is a regular simplex, which is partitioned into sub–
simplices as the procedure progresses. For this approach and its implementation
see Frauendorfer [103], who has also extended the algorithm for the case, when in
(4.57) the second stage objective vector q may also contain stochastic entries. The
approach has the advantageous property that for computing the E–M upper bound,
the recourse subproblem (4.57) has to be solved only on the r + 1 vertices of the
simplex representing a cell, whereas when employing intervals, 2r LP problems
have to be solved for a cell. The price for this algorithmic advantage is that the
simplex–based upper bounds may be much higher than the interval–based bounds;
for an example see Kall [160]. According to our knowledge, there is no comparative
computational study available in the literature for comparing the two approaches.

4.7.3 Stochastic algorithms

Sample average approximation (SAA)

In this section we will make the same assumptions and consider the same problem
formulation as in Section 4.7.2.

Employing the notation from Section 4.7.2, we consider the two–stage problem

min cTx+Q(x)

s.t. x ∈ B

}
(4.87)

with Q(x) := �ξ [Q(x;T (ξ ),h(ξ )) ] and with the recourse function Q defined by
the recourse–subproblem (second–stage problem) (4.57). Let f ∗ be the optimal ob-
jective value of (4.87) and let x∗ be an optimal solution. Finally, Ξ denotes in this
section the support of ξ .

We also introduce the notation

f (x;ξ ) := cTx+Q(x;T (ξ ),h(ξ )) (4.88)

which results in the reformulation of (4.87)

min �[ f (x;ξ ) ]

s.t. x ∈ B.

}
(4.89)
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Let ξ 1, . . . ,ξN be a sample according to the distribution of ξ . This means that
ξ 1, . . . ,ξN are independent and identically distributed (i.i.d.) random variables, hav-
ing the same distribution as ξ . Let us consider the following random variable

QN(x;ξ 1, . . . ,ξN) :=
1
N

N

∑
k=1

Q(x;T (ξ k),h(ξ k)), (4.90)

which is the sample–mean estimator for the expected value Q(x), for each fixed
x. From the viewpoint of simulation, QN(x;ξ 1, . . . ,ξN) is the crude Monte–Carlo
approximation to Q(x), see, for instance, Ripley [278]. For each fixed x, this is
clearly an unbiased estimator of Q(x):

�[QN(x;ξ 1, . . . ,ξN) ] =
1
N

N

∑
k=1
�[Q(x;T (ξ k),h(ξ k)) ] = Q(x), (4.91)

due to the fact that�[Q(x;T (ξ k),h(ξ k)) ] =�[Q(x;T (ξ ),h(ξ )) ] holds for all k.
In particular, choosing an arbitrary x̂ ∈B,

ϑU
N (x̂;ξ 1, . . . ,ξN) := cTx̂+

1
N

N

∑
k=1

Q(x̂;T (ξ k),h(ξ k)) =
1
N

N

∑
k=1

f (x̂;ξ k) (4.92)

is an unbiased estimator of�[ f (x̂;ξ ) ] and due to

�[ϑU
N (x̂;ξ 1, . . . ,ξN) ] =�[ f (x̂;ξ ) ]≥ f ∗ (4.93)

we have an upper bound on f ∗.
Based on the Monte–Carlo approximation (4.90), let us formulate the proplem

ϑL
N(ξ 1, . . . ,ξN) := min cTx+QN(x;ξ 1, . . . ,ξN)

s.t. x ∈B,

}
(4.94)

which, under our assumptions, defines the random variable on the left–hand–side.
Let xN(ξ 1, . . . ,ξN) be a solution of this problem. Problem (4.94) will be called a
sample average approximation (SAA) problem for the original two–stage problem
(4.87). Notice that the problem on the right–hand–side of (4.94) is not a single non-
linear optimization problem but a family of such problems, corresponding to the dif-
ferent realizations of ξ 1, . . . ,ξN . Considering a realization ξ̂ 1, . . . , ξ̂N of ξ 1, . . . ,ξN ,
and substituting the random variables with their realization in the minimization
problem above, results in a deterministic optimization problem. In accordance with
the literature, besides (4.94), this deterministic optimization problem will also be
called a SAA–problem. Viewing (4.94) as a random optimization problem, the de-
terministic optimization problem resulting from the substitution of a realization, can
be viewed as a realization of the SAA problem (4.94).

Based on the SAA problem, Mak, Morton, and Wood [214] proposed a lower
bound for f ∗:
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Proposition 4.12. The following inequality holds:

�[ϑL
N(ξ

1, . . . ,ξN) ] ≤ f ∗. (4.95)

Proof: We obviously have that ϑL
N(ξ 1, . . . ,ξN)≤ cTx+QN(x;ξ 1, . . . ,ξN) holds for

all x ∈B and all realizations of (ξ 1, . . . ,ξN), ξ k ∈ Ξ , for all k. Taking expectation
and utilizing (4.91) leads to

�[ϑL
N(ξ

1, . . . ,ξN) ]≤ cTx+Q(x).

Finally, taking the minimum over x ∈B on the right–hand–side, yields the desired
inequality. �

Notice that for N = 1 the above lower bound reduces to the wait–and–see lower
bound WS, see Proposition 3.5. in Section 3.2.4.

The following monotonicity property has been discovered by Mak et al. [214]
and, independently, by Norkin, Pflug, and Ruszczyński [244].

Proposition 4.13. Let ξ 1, . . . ,ξN ,ξN+1 be (i.i.d.) random variables, having the
same distribution as ξ . Then

�[ϑL
N(ξ

1, . . . ,ξN) ] ≤ �[ϑL
N+1(ξ

1, . . . ,ξN ,ξN+1) ]

holds.

Proof: Let J := {1, . . . ,N,N +1}. We utilize the following obvious reformulation
for sums of real numbers γ1, . . . ,γN ,γN+1

N+1

∑
k=1

γk =
N+1

∑
k=1

1
N ∑

j∈J , j �=k
γ j.

Thus we get

�[ϑL
N+1(ξ

1, . . . ,ξN ,ξN+1) ] =
1

N +1
�

[
min
x∈B

N+1

∑
k=1

f (x;ξ k)

]

=
1

N +1
�

[
min
x∈B

N+1

∑
k=1

1
N ∑

j∈J , j �=k
f (x;ξ j)

]

≥ 1
N +1

�

[
N+1

∑
k=1

1
N

min
x∈B ∑

j∈J , j �=k
f (x;ξ j)

]

=
1

N +1

N+1

∑
k=1

1
N
�

[
min
x∈B ∑

j∈J , j �=k
f (x;ξ j)

]

= �[ϑL
N(ξ

1, . . . ,ξN) ].
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�

This is an attractive property, implying that increased sample–size leads in average
to the same, or to an improved lower bound.

A second look on the facts and their proofs, discussed so far, reveals that only
the following properties of ξ and f have been used: f (x,ξ ) should be finite for all
ξ ∈ Ξ and for all x ∈B, �[ f (x,ξ ) ] should exist for all x ∈B, and the solutions
of the minimization problems involved should exist. In particular, the convexity of
f (·,ξ ) and of f (x, ·) did not play any role. In fact, the generality of results of the
above type allows for designing algorithms for stochastic global optimization, see
Norkin et al. [244].

Notice that the stochastic independence assumption concerning ξ 1, . . . ,ξN has
not been used in the argumentations and proofs above; they remain valid by merely
assuming that the random variables are identically distributed and that they have the
same probability distribution as ξ .

Let us now consider a sample (observations) of sample–size N, ξ̂ 1, . . . , ξ̂N , that
is, we take a realization of the (i.i.d.) random variables ξ 1, . . . ,ξN .

For computing the corresponding realization ϑU
N (x̂; ξ̂ 1, . . . , ξ̂N) of the statistic

ϑU
N , the recourse subproblem (4.57) has to be solved with fixed x = x̂ for the real-

izations ξ̂ k, for k = 1, . . . ,N.
Concerning the computation of the realization of the statistic ϑL

N , we observe that
the corresponding realization of he random program (4.94) is the two–stage recourse
problem

min cTx+
1
N

N

∑
k=1

Q(x;T (ξ̂ k),h(ξ̂ k))

s.t. x ∈B

⎫⎪⎬
⎪⎭ (4.96)

with a finite discrete distribution having the equally probable realizations ξ̂ k, for
k = 1, . . . ,N. This can be solved with any one of the methods designed for two–stage
recourse problems with a finite discrete distribution. For instance, under our assump-
tions the successive discrete approximation method discussed in Section 4.7.2 can
be used.

The question arises, how good the approximate solution obtained this way is.
Since both ϑU

N and ϑL
N are random variables, adequate answers to this question have

a probabilistic nature.
Mak et al. [214] propose to use confidence intervals for judging the quality of a

candidate solution x̂ ∈B. The idea is to construct confidence intervals on the opti-
mality gap�[ f (x̂;ξ ) ]− f ∗ by utilizing (4.93) and (4.95), which imply the following
upper bound on the optimality gap

�
[
ϑU

N (x̂;ξ 1, . . . ,ξN)−ϑL
N(ξ

1, . . . ,ξN)
] ≥ �[ f (x̂;ξ ) ]− f ∗.

The point is that, instead of estimating the upper and lower bounds from separate
samples, the same sample is used for both of them according to the above formula.
This corresponds to the variance–reduction technique common random numbers in
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Monte Carlo simulation, see, for instance, Ross [291]. The confidence intervals are
computed by utilizing the central limit theorem of probability theory; for the de-
tails see the above–cited paper [214]. In summary, the method works as follows. Let
M > 0 be fixed and choose a sample–size N. For ν = 1, . . . ,M carry out the follow-
ing procedure:

Testing the quality of x̂ ∈B

Step 1. Generate a sample
Generate a sample of size N, ξ̂ 1, . . . , ξ̂N , according to the probability
distribution of ξ , and independently of previously generated samples.

Step 2. Solve a realization of SAA
Solve the corresponding realization of (4.94), thus obtaining
ϑL

N(ξ̂ 1, . . . , ξ̂N).
Step 3. Solve recourse subproblems

Solve the recourse subproblems (4.57) for ξ = ξ̂ k, k = 1, . . . ,N and
compute ϑU

N (x̂; ξ̂ 1, . . . , ξ̂N) according to (4.92).
Step 4. Compute the ν th term for the estimator of the optimality gap

Compute Δν := ϑU
N (x̂; ξ̂ 1, . . . , ξ̂N)−ϑL

N(ξ̂ 1, . . . , ξ̂N).

Having executed the above procedure M times, construct the estimator 1
M

M

∑
ν=1

Δν

for the duality gap and compute a confidence interval as described in [214].
So far we have discussed, how the quality of a given approximate solution x̂ ∈B

can be judged. For obtaining an approximate solution of the two–stage recourse
problem (4.87), the SAA–based approach relies on solving realizations of the ap-
proximate SAA problem (4.94). Before specifying how the algorithm works, let us
summarize some theoretical results.

Let x̂∈B be fixed. As discussed above, QN(x̂;ξ 1, . . . ,ξN) is an unbiased estima-
tor of Q(x̂), for all N. Moreover, due to Kolmogorov’s strong law of large numbers,
QN(x̂;ξ 1, . . . ,ξN) converges to Q(x̂) almost surely. The question arises, whether we
also have almost sure convergence of the optimal objective values ϑL

N(ξ 1, . . . ,ξN)
of the SAA problems, to the true optimal objective value f ∗. This question can be
investigated by employing the theory of epi–convergence. For the case of deter-
ministic approximations, the main results based on this theory are summarized in
Theorem 3.7. on page 222. In the stochastic case we have epi–convergence in an
almost sure sense, see King and Rockafellar [183] and King and Wets [184], and
the references therein.

Results are also available concerning the speed of convergence of the solutions
of (4.94). Assuming, for instance, that the original problem (4.87) has a unique
solution x∗, under appropriate assumptions we have that

�(‖xN(ξ 1, . . . ,ξN)− x∗‖ ≥ ε )→ 0 for N→ ∞

holds for any ε > 0, and the rate of convergence is exponential, see Kaniovski,
King, and Wets [175]. Under specific assumptions regarding convexity properties



356 4 Algorithms

of f or considering the case when ξ has a finite discrete distribution, improved
results of this type have been found by Shapiro and Homem–de–Mello [308], see
also Linderoth et al. [205], and the references in these papers.

The SAA–algorithm relies on “external sampling”, meaning that sampling is per-
formed prior to solving the (approximate) problem. In contrast to this, “internal sam-
pling” means that sampling is performed as the algorithm proceeds; for an example
see stochastic decomposition in the next section.

Sample average approximation algorithm

Step 1. Initialization
Choose N > 0, M > 0.

Step 2. Generate samples
Generate M independent samples (batches) ξ̂ 1,ν , . . . , ξ̂N,ν , according
to the probability distribution of ξ , ν = 1, . . . ,M, each of which has
the sample–size N.

Step 3. Solve realizations of SAA
For each of these samples solve the corresponding realization of
(4.94), let ϑN,ν be the optimal objective value, ν = 1, . . . ,M.

Step 4. Estimate f ∗

Use 1
M

M

∑
ν=1

ϑN,ν as an estimator of f ∗.

Step 5. Test the quality of solution
This step involves statistical techniques for judging solution quality.
For instance, the method for estimating the optimality gap can be used,
as discussed on page 355.

For implementing this method, several important points have to be specified in a
much more detailed fashion.

In general, the crude Monte–Carlo method is notoriously slow, therefore variance–
reduction techniques have to be included, see, for instance Ross [291]. One such
method, relying on common random numbers, has been mentioned above, regard-
ing the optimality gap.

Assuming that the two–stage problem has a unique solution x∗, the solutions of
the realizations of the SAA–problems converge rapidly to x∗ for N→∞, in the sense
as discussed in this section. Consequently, for N large enough, we may expect that
the solution of SAA will be a good approximation to x∗. The question, how large N
should be for getting a good solution, remains open.

Consequently, testing the quality of an obtained approximate solution is of vital
importance. Two kinds of statistical approaches have been proposed for this. In the
first class of methods the optimality gap is estimated; we have discussed an example
for this technique above. For further methods belonging to this class see Bayraksan
and Morton [10]. The second class of methods tests the Kuhn–Tucker optimality
conditions, see Shapiro and Homem–de–Mello [307]. The practical procedure runs
as follows: the above algorithm is carried out for a starting selection of M and N.
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Subsequently the solution obtained this way is tested and if it turns out that it is not
yet satisfactory, the algorithm is repeated with increased N and/or M.

If the solution of (4.87) is not unique, then recognizing an optimal solution may
involve quite large samples. For further discussions of these problems and for other
variance–reduction techniques see Shapiro and Homem–de–Mello [307], [308] and
Linderoth, Shapiro, and Wright [205].

For statistical tests of optimality, based on duality theory, see Higle and Sen
[140].

Stochastic decomposition

The stochastic decomposition (SD) method is a stochastic analog of the dual de-
composition method, developed by Higle and Sen, see [136], [137] and [139]. The
dual decomposition method has been presented in Section 1.2.6 (page 23) and has
been further discussed in Section 4.4.2 of this Chapter.

The monograph [139] by Higle and Sen presents a detailed discussion of the
method, along with the statistical tests involved, and including issues related to the
implementation. For recent developments see Sen et al. [302]. Therefore, in this
book we confine ourselves to pointing out some of the main ideas of the algorithm.
Regarding (deterministic) dual decomposition, we will use the notation introduced
in Section 4.4.2.

Similarly as in Section 4.7.2, we consider the two–stage recourse problem
(4.56) under Assumption 4.7. on page 329. Additionally, for the sake of sim-
plicity of presentation, we will suppose that Q(x;T (ξ ),h(ξ )) ≥ 0 holds for all
x ∈B, almost surely. For a weaker assumption see Higle and Sen [139]. Our as-
sumption is fulfilled, for instance, if q≥ 0 holds, which will be presupposed for the
sake of simplicity.

Let Ξ denote the support of ξ in this section.
The SD algorithm relies on “internal sampling”; at iteration k we will have a

sample of sample-size k. Let ξ 1, . . . ,ξ k be (i.i.d.) random variables having the same
distribution as ξ . The idea is to construct a lower bounding approximation to the
sample–average approximation Qk(x;ξ 1, . . . ,ξ k) of Q(x) (cf. (4.90)), and to update
this approximation as iterations proceed.

Let us recall that due to weak duality and due to the fact that the feasible domain
of the dual (4.58) of the recourse subproblem does not depend on x nor on ξ , we
have the inequality

1
k

k

∑
t=1

(h(ξ t)−T (ξ t)x)Tut ≤ 1
k

k

∑
t=1

Q(x;T (ξ t),h(ξ t)), (4.97)

which holds for any ξ t ∈ Ξ , any x ∈ B, and any ut ∈ D , t = 1 . . . ,k, where D
denotes the feasible domain of the dual (4.58) of the recourse subproblem. The
lower–bounding function on the left–hand–side of (4.97) will be utilized to generate
a cut in the algorithm, and ut will be an optimal dual solution, t = 1, . . . ,k.
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In the subsequent iteration we deal with a sample ξ 1, . . . ,ξ k,ξ k+1. For ensuring
that the previously generated cut has the lower bounding property also for the new
sample–average approximation Qk+1(x;ξ 1, . . . ,ξ k,ξ k+1), the previous cut must be
updated. The most natural update relies on the following obvious inequality

1
k+1

k

∑
t=1

(h(ξ t)−T (ξ t)x)Tut ≤ 1
k+1

k

∑
t=1

Q(x;T (ξ t),h(ξ t))

≤ 1
k+1

k+1

∑
t=1

Q(x;T (ξ t),h(ξ t)),

(4.98)

which holds for any ξ t ∈ Ξ , any x ∈B, and any ut ∈ D , t = 1 . . . ,k. The relaxed
master problem (cf. (4.39)) will have the form

min cTx + w

s.t (β k
t )

Tx − w ≤ −αk
t , t = 1, . . . ,k

x ∈ B,

⎫⎪⎬
⎪⎭ (4.99)

where the coefficient vectors and constant terms concerning cuts have double in-
dices, due to the above–mentioned updating. The basic (conceptual) SD algorithm
can be specified as follows.

Basic stochastic decomposition method

Step 1. Initialization
Let k := 0, ξ 0 :=�[ξ ], and solve the corresponding expected–value
(EV) problem (3.104). Let x1 be a solution of the EV–problem. Set
V0 := /0. Vk will be the set of the different optimal dual solutions of
the recourse subproblem (4.57) (vertices of D), encountered up to it-
eration k.

Step 2. Generate the next sample point
Set k := k+1 and generate the next sample point ξ k of ξ .

Step 3. Solve a recourse subproblem
With ξ = ξ k solve the dual recourse subproblem (4.58) by using the
simplex method, let uk

k ∈D be an optimal basic solution. If uk
k �∈ Vk−1

then let Vk := Vk−1∪{uk
k}, otherwise let Vk := Vk−1.

Step 4. Generate a new cut

• Taking the current feasible solution xk ∈B, for each of the previ-
ous realizations choose the best vertex from Vk, that is, compute

uk
t ∈ argmax{(h(ξ t)−T (ξ t)xk)Tu | u ∈ Vk },

t = 1, . . . ,k−1.
• Compute the kth cut
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αk
k +(β k

k )
Tx :=

1
k

k

∑
t=1

(h(ξ t)−T (ξ t)x)Tuk
t .

Step 5. Update previous cuts
For t = 1, . . . ,k−1 compute

αk
t :=

k−1
k

αk−1
t and β k

t :=
k−1

k
β k−1

t .

Step 6. Solve the relaxed master problem
Solve (4.99); let xk+1 be an optimal solution.
Continue with Step 2 .

Notice that due to the fact that (4.97) holds for any ut ∈ D , the newly generated
cut in Step 4 has the lower bounding property. Due to the “argmax” procedure, the
best such cut is generated taking into account the dual–vertex information available
so far. The update formulas of the previous cuts in Step 5 imply that the lower
bounding property is preserved, see (4.99).

The algorithm above employs aggregate cuts. A version of the SD algorithm with
disaggregate cuts has been developed by Higle, Lowe, and Odio [135].

From the theoretical point of view, all that could be proved for the basic algo-
rithm, was the existence of a subsequence of the sequence of generated points xk,
k = 1,2, . . ., such that every accumulation point of this subsequence is an optimal
solution of the recourse problem (4.56), almost surely (see Higle and Sen [139]).

Therefore, the full version of the SD method of Higle and Sen employs incum-
bent solutions. Initially, the first incumbent solution is just the solution of the ex-
pected value problem, obtained in Step 1 of the basic algorithm. The current solution
of the relaxed master problem becomes the new incumbent, if the actual objective
value of the relaxed master problem is sufficiently lower than the approximate ob-
jective value at the incumbent. The cut corresponding to the current incumbent is
updated in each iteration, using the analogous “argmax” procedure as for construct-
ing the new cut in Step 4. Considering an appropriate subsequence of iterations,
where the incumbent changes, a numerically implementable procedure results for
identifying approximate solutions of (4.56), see Higle and Sen [139].

The idea of working with incumbent solutions is also the basis of the regular-
ized dual decomposition method of Ruszczyński [293], see Section 1.2.8. One of
the attractive features of regularized decomposition is that it provides a safe way of
removing redundant cuts. The accumulation of redundant cuts can become in fact
a numerical problem for the version of the SD algorithm discussed so far. Conse-
quently, Higle and Sen [137], [139] and Yakowitz [350] developed the regularized
SD algorithm, which can be viewed as a stochastic version of the regularized dual
decomposition method. Let us denote the incumbent solution at iteration k by x̄k.
In the regularized SD method, the objective function of the relaxed master problem
(4.99) includes a regularizing term, thus becoming

cTx+w+
1
2
‖x− x̄k‖2,
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otherwise the method is basically the same as SD. This regularized version of the
SD method can currently be considered as the best version of SD, see Higle and Sen
[139] for the details.

The reader might wonder that the basic SD method, as specified above, does not
contain a stopping rule. This is merely for the purpose of simplicity of presenta-
tion. For any stochastic method, the most important questions are how to stop the
algorithm and how to identify an approximate optimal solution of the two–stage re-
course problem, on the basis of results delivered by the method. We have discussed
this problem in the previous section, in connection with the SAA method. In fact,
most of the stopping rules proposed for the SAA method are essentially generaliza-
tions of stopping rules proposed by Higle and Sen for the SD method, see [139].
Three classes of stopping rules have been proposed. The first class contains rules
which are based on asymptotic properties regarding the sequence of incumbents.
The second type of rules utilizes estimates on the optimality gap, including also
bootstrap schemes. Finally, the third group is based on optimality conditions. For
the details see [139].

The authors have implemented stochastic decomposition as the solver
SDECOM, following [139] and some additional guidelines of Higle and Sen, which
were highly appreciated by the authors. The present version implements the SD
method with incumbents (not yet the regularized version). The stopping rule is a
rule based on asymptotic properties. The solver is connected to SLP-IOR, see Sec-
tion 4.9.2.

Other stochastic algorithms

The stochastic methods not yet discussed belong to the class of methods with “in-
ternal sampling”.

The stochastic quasi–gradient methods are stochastic versions of subgradient
methods. The basic idea is to work with stochastic quasi–gradients. At iteration
ν , a random variable vν is a stochastic quasi–gradient at xν , if

�[vν | x1, . . . ,xν ] ∈ ∂x(cTx+Q(xν))

holds. With step–size ρν , the next iteration point is computed by the projection onto
the feasible domain B: xν+1 := ∏B (xν−ρνvν). Under appropriate assumptions, in
particular, by choosing suitable sequences of step–sizes ρν , the algorithm converges
to a solution of the two–stage problem, almost surely. For details concerning these
methods see Ermoliev [89] and Gaivoronski [109], and the references therein. For
an introduction see Kall and Wallace [172].

For stabilizing the sequence of points in stochastic quasi–gradient methods, Marti
[223] and Marti and Fuchs [226], [227] propose algorithms where at certain itera-
tions deterministic descent directions are used, instead of stochastic quasi–gradients.
The authors call the methods in this class semi–stochastic approximation methods.
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Under appropriate assumptions concerning the probability distribution, these meth-
ods also converge to a solution, almost surely.

Besides stochastic decomposition, another stochastic version of the dual decom-
position method has also been developed, relying on importance sampling. For this
method see Dantzig and Glynn [52] and Infanger [146], [147].

Deák [57], [59] proposes an algorithm for the special case where the random
entries in the right–hand–side and in the technology matrix have a joint multivariate
normal distribution. The expected recourse function is computed via Monte–Carlo
integration, in the framework of a solution method based on successive regression
approximation technique.

4.7.4 Simple recourse models

Simple recourse models have been the subject of Section 3.2.2. From the point of
view of applications, simple recourse problems are an important subclass of two–
stage recourse problems; they can be solved numerically for a large amount of ran-
dom variables. Several authors have proposed algorithms for simple recourse prob-
lems; below we just mention some of the approaches.

One of the algorithms, based on successive discrete approximation, has been
the subject of Section 4.7.2. For the case, when ξ has a finite discrete distribution,
methods, utilizing the special basis–structure of the equivalent LP–problem have
been developed by Prékopa [265] and Wets [344]. Further methods include the al-
gorithms of Cleef [43] which employs a sequence of linear substitute problems, and
the method of Qi [273], who proposes an algorithm which involves solving linear
and nonlinear convex programming subproblems, in an alternating fashion. For the
other methods see the references in the above–cited papers.

Let us point out, that for several classes of probability distributions, simple re-
course problems can equivalently be formulated as nonlinear programming prob-
lems in algebraic terms, see, for instance, Kall [154].

Finally we consider models with multiple simple recourse, discussed in Sec-
tion 3.2.2. In the case when ξ has a finite discrete distribution, such models can
be transformed into a simple recourse problem, see Theorem 3.8. in Section 3.2.2.
Consequently, such problems can be efficiently solved by solving the equivalent
simple recourse problem.

4.7.5 A guide to available software

In the listing of solvers below, we include also solvers for multistage recourse prob-
lems; two–stage problems are clearly a special case for them.

Let us begin with SLP solvers for recourse problems, available at the NEOS
Server for optimization, http://www-neos.mcs.anl.gov/. The general idea of the
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NEOS server is, that users select a solver available at the server, send their prob-
lems, and obtain the solution, via the Internet. The SLP–problem must be sent to the
server in the SMPS format; for this see Gassmann [115], and the references therein.

• Bnbs (Bouncing nested Benders solver), is an implementation of the nested de-
composition method, for multistage recourse problems with a finite discrete dis-
tribution. It has been developed by Fredrik Altenstedt, Department of Mathemat-
ics, Chalmers University of Technology, Sweden. The source code of the solver
can also be downloaded from the author’s homepage
http://www-neos.mcs.anl.gov/.

• FortSP (the Stochastic Programming extensions to FortMP). The current version
is for two–stage recourse problems with a finite discrete distribution. It is the
SLP–solver in the stochastic programming integrated environment (SPinE), see
Valente et al. [332].

• MSLiP is an implementation of the nested decomposition algorithm, for multi-
stage recourse problems with a finite discrete distribution, developed by Gassmann
[112]. The code is available to universities and academic institutions for aca-
demic purposes, please contact the author.

The IBM stochastic programming system, OSLSE, designed for multistage re-
course problems with finite discrete distributions, is available for academic pur-
poses, in executable form. For OSLSE see King et al. [185]. Recently, IBM initiated
the project “COmputational INfrastructure for Operations Research” (COIN–OR).
As far as we know, a version of OSLSE is now available with an added facility,
which enables for the user to connect her/his LP solver to OSLSE, instead of the LP
solver OSL of IBM. For the details see
http://www-124.ibm.com/developerworks/opensource/coin/.

The solver SQG is an implementation of stochastic quasi–gradient methods, see
Gaivoronski [110]; the author of this paper encourages interested readers to contact
him.

An interior point method based on the augmented system approach has been
implemented by Csaba Mészáros [233] as the solver BPMPD. We do not know the
present status of this solver, interested readers might contact the author of BPMPD.

Almost all authors of algorithms, discussed in this section, report on computa-
tional experience. Concerning the availability of solvers, we suggest to contact the
authors.

For commercially available solvers we refer to the solvers OSLSE and
DECIS, both available with the algebraic modeling system GAMS, Brooke et al.
[35]. OSLSE has already been mentioned above, DECIS is an implementation of
the importance sampling algorithm, implemented by G. Infanger.

Finally we give a short list of solvers which are connected to our model man-
agement system SLP–IOR and have not been discussed so far in this section. They
are available for academic purposes along with SLP–IOR, in executable form. For
further details see Section 4.9.2. The following solvers, all of them developed for
the case of a finite discrete distribution, have been provided to us by their authors:
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• QDECOM, regularized decomposition method, implemented by A.
Ruszczyński, for two–stage fixed recourse problems.

• SHOR2, decomposition scheme of Shor, implemented by N. Shor and A. Likhovid,
for complete recourse problems.

• SHOR1, the same method and authors as for SHOR2, for simple recourse.
• SIRD2SCR, for simple integer recourse, implemented by J. Mayer and M.H. van

der Vlerk.
• MScr2Scr, for multiple simple recourse, implemented by J. Mayer and M.H. van

der Vlerk.

Finally we list our own solvers, which have already been mentioned in the preceding
sections. The solvers have been implemented by the authors of this book.

• DAPPROX implements the successive discrete approximation method, for com-
plete recourse problems, with a deterministic objective in the second stage, and
assuming the stochastic independence of the components of ξ . Probability dis-
tributions: finite discrete, uniform, exponential, and normal distributions.

• SRAPPROX is an implementation of the successive discrete approximation algo-
rithm for simple recourse problems. Stochastic independence is not required; the
marginal distributions should belong to one of the classes of distributions listed
with DAPPROX.

• SDECOM is an implementation of of the stochastic decomposition method.

The question, which of the available solvers should be chosen for solving a spe-
cific instance of a two–stage recourse problem, is a difficult one. There exists no
general answer to this question, the performance of algorithms and solvers may de-
pend substantially on the specific characteristics of the problem instance. The main
factors influencing solver performance are the type of the probability distribution,
the stochastic dependence properties of the components of ξ , which parts of the
model are stochastic, the number of random variables (dimension of ξ ), the number
of joint realizations in the discretely distributed case. For instance, having a com-
plete recourse problem with a 10–dimensional random vector ξ with stochastically
independent components, and each of the components having 10 realizations, results
in 1010 joint realizations. This rules out all solvers, based on solving the equivalent
LP problem, including solvers based on dual decomposition or the regularized ver-
sion of it.

Selecting an appropriate solver is clearly supported by comparative computa-
tional results; this seems to be a scarce resource in the SLP literature, though. Con-
cerning comparative computational results we refer to Kall and Mayer [164], [166],
[168] and to Mayer [230].

Exercises

4.7. Assume that in the successive discrete approximation algorithm, as presented
in Section 4.7.2, the recourse function Q(x;T (ξ ),h(ξ )) is a linear function of ξ on
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an interval Ξk in the subdivision of Ξ . Show that in this case the Jensen lower bound
Lk(x) and the Edmundson–Madansky upper bound Uk(x) are equal.

4.8. Let us consider the stochastic decomposition method, discussed in Section 4.7.3.

(a) On page 357 we assumed that Q(x;T (ξ ),h(ξ ))≥ 0 holds for all x∈B, almost
surely. Explain where this assumption has been utilized in the design of the
method.

(b) Discuss the main differences between the SAA method (Section 4.7.3) and
the SD algorithm. Why is the SD method called an internal sampling method?

4.8 Multistage recourse models

Multi–stage recourse models have been discussed in Section 3.3. Analogously to the
two–stage case (see Section 4.7), many algorithmic proposals have been published
for multistage recourse problems; we will discuss some of the main approaches.
For further algorithms see Birge and Louveaux [26] and Ruszczyński, and Shapiro
[295], and the references therein.

Most of the available algorithms are for the case, when ξ has a finite discrete
distribution specified in the form of a scenario tree. If the distribution of ξ is con-
tinuous, then the usual approach consists of generating a discrete approximation to
the distribution, in the form of a scenario tree, and subsequently solving the result-
ing multistage problem with the original distribution replaced by the approximate
discrete distribution. Constructing approximate scenario trees is called scenario gen-
eration and will be the subject of Section 4.8.2. Another class of methods consists
of algorithms, which combine the building of the scenario tree with the optimiza-
tion process. One of the algorithmic approaches relies of successive discrete ap-
proximation, employing a simplicial cover of the support of the random vectors,
see Frauendorfer [104], Frauendorfer and Schürle [106], [107], and the references
therein. These algorithms allow that also the objective function is stochastic, and
have been successfully applied in financial engineering.

4.8.1 Finite discrete distribution

The multistage recourse problem with a finite discrete distribution, the distribution
being specified in the form of a scenario tree, has been the subject of Section 3.3.1.

A great majority of solution methodologies for this type of problems has its roots
in the nested decomposition method, presented in Section 1.2.7. In that section we
have pointed out, that in the framework of the nested decomposition method, several
different variants of the algorithm can be built. The difference is in the sequence, in
which nodes of the tree are processed in the algorithm. Different sequencing pro-
tocols are possible, the description in Section 1.2.7 corresponds to the FFFB (fast–
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forward–fast–backward) protocol. For other sequencing protocols see, for instance,
Gassmann [112] and Dempster and Thompson [62], [63].

The above–mentioned (restricted) freedom of choice is due to Propositions 1.20.
and 1.21., both in Section 1.2.7. These propositions may also serve as guidelines for
building valid variants of nested decomposition.

A further remark concerns the presentation of the nested decomposition method.
For the sake of simplicity of presentation, we have assumed a form, where Atτ = 0
holds for τ < t−1 (for the general form see (3.114)). In Section 3.3.1 we have shown
that the general formulation can always be transformed into the special form. Note,
however, that this conceptual transformation is not needed when implementing the
algorithm; the method can be reformulated for the general case in a straightforward
way, see, for instance, Dempster and Thompson [63].

For recovering dual variables from the solution delivered by the nested decom-
position algorithm, see Gassmann [113].

Instead of employing a fixed sequencing protocol, the above–mentioned freedom
in choosing the next node to be processed allows also for dynamic sequencing algo-
rithms. Methods of this type have been developed by Dempster and Thompson [62],
[63]. The basic idea is using the expected value of perfect information (EVPI), at-
tached in this case to the nodes, to choose the next node to be processed among the
nodes having the highest EVPI–value. EVPI has been discussed in Section 3.2.4.
The multistage extension is due to Dempster [60], see also [63]. Another useful
idea, due to Dempster and Thompson [63], concerns stage–aggregation. According
to this, in the equivalent deterministic LP, stages can be aggregated, leading to equiv-
alent formulations of the MSLP problem involving fewer stages. The price for this
is an increase in the dimension of matrices Atτ , involved in the problem formulation.
This idea has also been utilized by Edirisinghe [80] for constructing bound–based
approximation for MSLP problems. Another idea in this paper concerns bounds
based on nonanticipativity aggregation. This leads us to our next subject.

The equivalent LP problem (1.28) of the MSLP problem is also called the com-
pact form or implicit form. The reason is that the nonanticipativity requirement is
ensured implicitly, by assigning the decision variables to the nodes of the scenario
tree. The compact form has the disadvantage that in the case, when the underlying
LP problem has some special structure (for instance, it is a transportation problem),
this structure will be partially lost in the equivalent LP.

Another idea for formulating an equivalent LP preserves the problem structure.
In this approach the decision variables are assigned to scenarios and nonanticipativ-
ity is enforced by explicit constraints. The resulting LP problems are called explicit
forms or split–variable forms. “split–variable” has the following interpretation: the
variables in the implicit form become split into several variables, according to sce-
narios. Below we present one variant of this type of problem formulation, for other
variants see, for instance, Kall and Mayer [169].
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where we assume that the scenarios, belonging to the same bundle, have been (ar-
bitrarily) ordered, and ρ(n) is the index of the first scenario in the scenario bundle
corresponding to node n, according to the ordering. As

tτ , bs
t , and cs

t denote the real-
ization of the corresponding random arrays, according to scenario s ∈S .

The last group of constraints obviously enforces the nonanticipativity require-
ment; we will call these constraints nonanticipativity constraints.

This form is ideally suited for Lagrangean relaxation. In fact, formulating the
Lagrange function with respect to the nonanticipativity constraints, the following
Lagrange–relaxation results:
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which is separable with respect to the scenarios s ∈S , and decomposes into S =
|S | separate subproblems.

Based on Lagrangean relaxation, several algorithms have been proposed for
solving multistage recourse problems with finite discrete distributions. As the
most well–known example, let us mention the progressive hedging algorithm of
Rockafellar and Wets [287], where augmented Lagrangians are utilized. For further
methods based on Lagrangean relaxation see, for instance, Birge and Louveaux [26]
and Ruszczyński and Shapiro (editors) [295].

4.8.2 Scenario generation

In stochastic programming, scenario generation means generating a discrete approx-
imation to the probability distribution of ξ , in the form of a scenario tree. In the
multistage recourse problem, the original probability distribution is then replaced
by this discrete approximation. The resulting multistage recourse problem is con-
sidered as an approximation of the original problem and can be solved, for instance,
by the nested decomposition method.
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The asymptotic properties of this discrete approximation are well–understood,
see, for instance, Pennanen [251], and the references therein. Considering for T ≥ 3
the present state of the art in scenario generation, there does not exist, at least accord-
ing to our knowledge, any practically implementable scenario generation method,
which would deliver for any (reasonable) error bound ε > 0 a scenario tree, such that
the deviation between the true objective value of the multistage problem and the op-
timal objective value of the approximating problem is less than ε . By “practically
implementable” we mean that all constants in the method are computable with a rea-
sonable numerical effort, and that the resulting scenario trees (and consequently the
equivalent LP problems) have a manageable size, for most problem instances. The
difficulty has its roots in computing upper bounds on the optimal objective value of
the original problem, see, for instance, Shapiro [305].

Therefore, according to our view, the presently available scenario generation
techniques are essentially heuristic algorithms. For overviews on scenario genera-
tion see Dupačová, Consigli, and Wallace [76] and the references therein. The book
Dupačová, Hurt, and Štěpán [79] contains a summary on scenario generation, along
with applications in economics and finance. A comparison of the different tech-
niques can be found in Kaut and Wallace [179]. In this book we confine ourselves to
discuss some of the main approaches and present two techniques in a more detailed
form.

For continuous distributions, a possible way for arriving at a discrete distribution
leads via sampling, followed by scenario reduction. The scenario reduction phase
can also be used in cases when the original probability distribution is already dis-
crete but involves an unmanageable amount of scenarios.

In a first step a sample ξ̂ k = (ξ̂ k
2 , . . . , ξ̂

k
T ), k = 1, . . . ,N, is generated, according to

the joint probability distribution of ξ . This can either be done directly, by generating
random vectors, or by simulating sample paths of the underlying stochastic process.
For appropriate techniques see the literature on simulation, for instance Deák [56],
Devroye [69], Ripley [278] or Ross [291].

The sample can be considered as a scenario tree, where each realization defines a

root–to–leaf path, each scenario has the same probability
1
N

, and the single branch-
ing point is the root. In the second step, this tree is reduced by employing distances
defined between probability distributions. For methods belonging to this class see
Dupačová, Gröwe–Kuska, and Römisch [78], Heitsch and Römisch [133], and the
references therein. Pflug [255] presents a related algorithm based on optimal dis-
cretization, in a financial application framework.

Another algorithmic approach proceeds in the reverse direction. The starting
point is a scenario tree with a single scenario, corresponding to the expected value
of ξ . This tree is then grown in an iterative fashion, by employing a cut–and–paste
operation, based on successive partitioning of the supports of the random variables
ξt (t ≥ 2). This method has been discussed in Section 3.3.2.

Next we discuss two of the main approaches in a more detailed form.
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Bundle–based sampling

The idea is to partition the support of ξ into a finite number of subsets which are
utilized for generating a scenario tree via sampling. We discuss the method un-
der some simplifying assumptions, the extension to the general case is straightfor-
ward. Let Ξt ⊂�rt be an interval containing the support of the random variable ξt ,
t = 2, . . . ,T , thus Ξ := ∏T

t=2 Ξt contains the support of ξ . For the sake of simplicity
let us assume that rt = r holds for all t.

Let us partition Ξ along each coordinate into d subintervals, resulting altogether
in dr(T−1) cells. This implies a partition of Ξ̂t := ∏t

τ=2 Ξτ into dr(t−1) cells, for
t = 2, . . . ,T . With the partition we associate a rooted tree as follows. The root corre-
sponds to t = 1. The child–nodes of the root correspond to the cells in the partition
of Ξ̂2 = Ξ2. In general, assume that the tree has been built up to stage t − 1 such
that the nodes in stage t−1 are associated with the cells in the partition of Ξ̂t−1. For
each of the nodes in stage t−1, define dr children, corresponding to the partition of
Ξt . Consequently, the nodes in stage t will correspond to the partition of Ξ̂t .

Taking a realization of ξ , we associate with it the cell of the partition of Ξ , which
contains it. In the tree, this implies an assignment to a scenario, that is, to the set of
nodes along a root–to–leaf path. The algorithm runs as follows:

Bundle–based sampling

Step 1. Initialize
Choose a sample–size N > 0 and choose the parameter d, defining the
number of coordinate–wise subintervals in the partition. Set up the tree
corresponding to the partition, as described above. With each node of
the tree associate a counter and initialize it with 0.

Step 2. Generate a sample
Choose N > 0 and randomly generate a sample ξ̂ k = (ξ̂ k

2 , . . . , ξ̂
k
T ),

k = 1, . . . ,N, according to the joint probability distribution of ξ .
Step 3. Assign probabilities and realizations to nodes

For each k, k = 1, . . . ,N, in turn, increase the counter by 1 for all nodes
along the path corresponding to realization ξ̂ k in the tree, and store
the corresponding realizations ξ̂ k

t node–wise. Subsequently, for each
of the nodes n ∈N do:
• Assign the probability pn := Nn

N , where Nn is the value of the
counter associated with node n.

• Compute a realization as the conditional sample mean of the real-
izations associated with the node. Assign this realization to node
n.

Step 4. Drop superfluous nodes
Drop all nodes with associated counter values zero. Obviously, after
this the graph remains still a tree.

The algorithm, as it stands above, is a conceptual framework. For instance, there
is no need to store realizations at the nodes, the conditional sample means can be
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updated at the same pass over the realizations, which serves for assigning counter
values.

For consistency properties of the above scheme see King and Wets [184]. The
approach clearly has its limitations, due to the combinatorial explosion. The num-
ber of scenarios is dr(T−1), which grows exponentially with the dimension r of the
random vector, and with the number of stages T .

A moment–matching heuristics

The subject of this section is a heuristic algorithm of Høyland, Kaut, and Wallace
[142]. According to this method, the scenario tree is being built in a node–wise fash-
ion, according to the following scheme:

Sequential framework for scenario generation

Step 1. Initialize
Set t = 1, assign probability 1 to the root node.

Step 2. Generate nodes in the next stage
For each of the nodes in stage t (t ≥ 1) proceed as follows:
specify conditional distributional properties (for instance, moments
and correlations), given the outcome corresponding to the specific
node. Generate outcomes (realizations of a random variable with a fi-
nite discrete distribution), which are consistent with the specification.
Define the corresponding child–nodes and assign to them the realiza-
tions and associated probabilities. If t = T −1 then stop, otherwise set
t := t +1 and repeat Step 2 .

In the rest of this section we will discuss the subproblem arising at the nodes:
given some distributional properties of a random vector, generate a finite discrete
distribution having the prescribed distributional properties. More closely, we con-
sider the following problem: Let ζ be an r–dimensional random vector with a finite
discrete distribution. We prescribe the number of realizations N, the probabilities
p1, . . . , pN of the realizations, the expected values, standard deviations, skewness,
and kurtosis for the 1–dimensional marginal distributions, as well as the correlation
matrix of ζ . Given these quantities, we wish to compute the realizations in such a
way that the resulting discrete distribution has the prescribed properties. The data
concerning the marginal distributions and the realizations zi j which we wish to com-
pute, are summarized in Table 4.2, where μi =�[ζi], σi = (�[(ζi−μi)

2] )
1
2 , and

• si =
�[(ζi−μi)

3]

σ3
i

is the skewness, and

• ki =
�[(ζi−μi)

4]

σ4
i

is the kurtosis

of ζi, i = 1, . . . ,r.
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p1 p2 . . . pN
ζ1 z11 z12 . . . z1N μ1 σ1 s1 k1
ζ2 z21 z22 . . . z2N μ2 σ2 s2 k2
...

...
...

...
...

...
...

...
...

ζr zr1 zr2 . . . zrN μr σr sr kr

Table 4.2 Marginal distribution data and realizations.

Additionally to the data summarized in the table, the correlation matrix of ζ is
also prescribed. Let R be the correlation matrix of ζ defined as

Ri j =
�[ (ζi−μi)(ζ j−μ j) ]

σiσ j
, i, j = 1, . . . ,r.

We assume throughout that R is nonsingular, consequently it is positive definite. The
Cholesky–factorization of R is R = LLT, where L is a lower triangular matrix.

It is clearly sufficient to solve the problem for standardized random variables. In
fact, let ξ be the standardized of ζ , that is,

ξi =
ζi−μi

σi
, ∀i.

Then we have

�[ξi] = 0, �[ξ 2
i ] = 1, �[ξ 3

i ] = si, �[ξ 4
i ] = ki,

and the correlation matrices of ζ and ξ are the same. Therefore, it is sufficient to
solve the above problem for standardized random variables. Having generated the
realizations xi j ∀i, j for ξ , then, according to ζi = σiξi + μi, we get the solution
zi j = σixi j + μi for the original problem. Consequently, μi = 0 and σi = 1 will be
assumed in the sequel, for all i.

We will utilize some transformations of random variables and random vectors.
The first one will be called moment–matching transformation and is defined for

random variables. Let ξ be a standardized random variable (r = 1) and assume
that the first 12 moments of this random variable exist and that these moments are
known. We consider a nonlinear transformation of the following form

η = Γ mom
s,k (ξ ) := a+bξ + cξ 2 +dξ 3

and wish to determine the coefficients a, b, c, and d of this cubic polynomial in
such a way, that �[η ] = 0, �[η2] = 1, �[η3] = s, and �[η4] = k hold, with s and
k > 0 prescribed. This requirement can be formulated as the following system of
nonlinear equations
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0 = �[η ] = �[a+bξ + cξ 2 +dξ 3] = P1(a,b,c,d),
1 = �[η2] = �[(a+bξi + cξ 2

i +dξ 3
i )

2] = P2(a,b,c,d),
s = �[η3] = �[(a+bξ + cξ 2 +dξ 3)3] = P3(a,b,c,d),
k = �[η4] = �[(a+bξ + cξ 2 +dξ 3)4] = P4(a,b,c,d),

(4.102)

where Pi(a,b,c,d), denotes a polynomial function of order i, in the variables a,
b, c, and d. The coefficients of these polynomials involve the moments of ξ , with
the highest moment having order 12 and appearing in P4(a,b,c,d). The analytical
form of these polynomials can be obtained by straightforward calculation, see [142].

If the system of equations (4.102) has a real solution, then we have the desired
transformation. It may happen, however, that there exists no real solution of it. For
accounting also for this case, the suggested way of numerical solution relies on min-
imizing the sum of quadratic deviations, for instance, by employing the Levenberg–
Marquardt method. Thus, if there does not exist a solution, the method will deliver a,
b, c and d, for which the deviation is minimal. For the sake of simplicity of presenta-
tion, we will assume that whenever this transformation is applied, the corresponding
system (4.102) has a real solution.

The second transformation will be called correlation–matching transformation,
or alternatively forward transformation, and is defined for random vectors. Let now
ξ be an r–dimensional standardized random vector and assume that the components
of ξ are uncorrelated (the correlation matrix of ξ is the identity matrix I). The
transformation is defined as the following nonsingular linear transformation

η = Γ cr
R (ξ ) := Lξ ,

where L is a lower–triangular matrix with R= LLT (Cholesky–factorization). Clearly
we have�[η ] =�[Lξ ] = L�[ξ ] = 0. Furthermore

�[η ηT ] = L�[ξξT ]LT = LI LT = R,

consequently the covariance matrix of η is R. In particular, we get that the variance
of ηi is 1, for all i and thus the correlation matrix of η is also R.

Next we take a look, how this transformation changes the third and fourth mo-
ments.

Proposition 4.14. Let us assume that the components of ξ are stochastically inde-
pendent. Then

�[η3
i ] =

i

∑
j=1

L3
i j�[ξ 3

j ]

�[η4
i ] = 3+

i

∑
j=1

L4
i j(�[ξ 4

j ]−3)
(4.103)

holds.

Proof: The first equality follows from
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�[η3
i ] =�[(Liξ )3] =

r

∑
j,k,l=1

Li jLikLil�[ξ jξkξl ] =
i

∑
j=1

L3
i j�[ξ 3

j ],

where Li is the i’th row of L and we have used the fact that, due to the stochas-
tic independence assumption, we have �[ξ jξkξl ] =�[ξ j]�[ξk]�[ξl ] = 0 for three
different indices j, k, l, and�[ξ jξ 2

k ] =�[ξ j]�[ξ 2
k ] = 0 for k = l, j �= k.

For the second equality in (4.103) observe:

�[η4
i ] =�[(Liξ )4] =

r

∑
j,k,l,m=1

Li jLikLilLim�[ξ jξkξlξm],

where, again implied by the stochastic independence assumption, all terms are zero,
except those where either all four indices are equal, or there exist two pairs of equal
indices. The number of possibilities for selecting the latter is 6, therefore, observing
�[ξ 2

j ] = 1 ∀ j, we have

�[η4
i ] =

i

∑
j=1

L4
i j�[ξ 4

j ]+3
i

∑
j=1

L2
i j

(
j−1

∑
k=1

L2
ik +

i

∑
k= j+1

L2
ik

)
.

We utilize that
i

∑
k=1

L2
ik = 1 holds for the Cholesky–factor, for all i, thus getting

j−1

∑
k=1

L2
ik +

i

∑
k= j+1

L2
ik = 1−L2

i j,

which proves the second equality in (4.103). �

Notice that in (4.103) we have two nonsingular triangular systems of linear equa-
tions which, given�[η3

i ] and�[η4
i ] for all i, can be solved for�[ξ 3

j ] and�[ξ 4
j ] ∀ j,

respectively:

�[ξ 3
i ] =

1
L3

ii

(
�[η3

i ]−
i−1

∑
j=1

L3
i j�[η3

j ]

)

�[ξ 4
i ] = 3+ 1

L4
ii

(
�[η4

i ]−3−
i−1

∑
j=1

L4
i j
(
�[η4

j ]−3
))

.

(4.104)

Now we are prepared to presenting a perfect matching algorithm for the solu-
tion of our problem. Assume that the standardized random vector ξ has indepen-
dent components and that ŝi :=�[ξ 3] and k̂i :=�[ξ 3] are computed according to
(4.104), with the setting�[η3

i ] = si and�[η4
i ] = ki, ∀i. The quantities ŝi and k̂i will

be called transformed target moments. Applying the forward transformation Γ cr
R to

ξ , η := Γ cr
R (ξ ) = Lξ will be a solution of our problem. Thus we have the following
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conceptual algorithm:

Perfect matching conceptual algorithm

Step 1. Initialization
Compute the Cholesky–factorization R = LLT. According to (4.104),
compute ŝi := �[ξ 3] and k̂i := �[ξ 3], using the target moments and
the Cholesky–factor of the target correlation matrix.

Step 2. Choose a starting distribution
Take any discretely distributed standardized r–dimensional random
vector ξ̃ , which has stochastically independent components, N joint
realizations and the prescribed probabilities p1, . . . , pN for the joint
realizations.

Step 3. Match the transformed target moments
Component–wise apply the moment matching transformation
ξ̃i := Γ mom

ŝi,k̂i
(ξ̃i), i = 1, . . . ,r. This results in a random vector ξ̃ , which

has independent components and moments 0, 1, ŝi, k̂i.
Step 4. Match the correlations

Apply the forward transformation η := Γ cr
R (ξ̃ ) = Lξ̃ , then η will be a

solution of our problem, with a perfect matching both for the first four
moments and for the correlation matrix.

The difficulty with the perfect matching method is that, using simulation, it is
not possible to generate a random vector with theoretically independent compo-
nents. Therefore, we will also need a transformation which decreases the “degree”
of dependence. Instead of ensuring independence, we are merely able to remove
correlations. Let ξ be a standardized random vector with correlation matrix R and

η = Γ 0cr
R (ξ ) := L−1ξ ,

then the correlation matrix of η will be I. In fact

�[ηηT] = L−1
�[ξξT](L−1)T = I.

This transformation will also be called backward transformation.
The heuristic scenario–generation method of Høyland, Kaut, and Wallace [142]

(HKW–method) is designed along the lines of the perfect matching algorithm. Step
1 is carried out without changes. The implementation of Step 2 consists of ran-
domly and independently generating N random vectors with independent compo-
nents, where the components are taken from a standard normal or from a uniform
distribution. Let us denote this discretely distributed random vector by ξ̃ and its cor-
relation matrix matrix by R̃. The problem is, that the components of ξ̃ will not be
independent in a theoretical sense.

After having carried out Steps 1 and 2 of the conceptual algorithm, the HKW–
method proceeds in two phases.

Phase I corresponds to Step 3 of the conceptual method. The goal is to construct
a discrete distribution, such that the components of a corresponding random vector
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ξ̃ are stochastically independent and have the first four prescribed marginal mo-
ments: (0, 1, ŝi, k̂i). Instead of the theoretically required independence, we only try
to achieve approximately zero correlations, and a hopefully good–enough approxi-
mation to the moments. The algorithm runs as follows.

Phase I: removing correlations and matching moments

Step 1. Initialization
Choose ε I

cr > 0 for the stopping tolerance concerning correlations. Ap-
ply ξ̃i := Γ mom

ŝi,k̂i
(ξ̃i) componentwise ∀i

(target moments are 0, 1 ŝi, k̂i ∀i).
{→ right transformed target moments←}

Step 2. Compute the correlation matrix and factorize it
Compute R̃. If ‖R̃− I‖ < ε I

cr then Stop, otherwise continue. Perform
the Cholesky–factorization of R̃, resulting in R̃ = L̃L̃T, with L̃ being
lower triangular.

Step 3. Remove correlations
Perform backward transformation:
ξ̃ := Γ 0cr

R̃ (ξ̃ ) = L̃−1ξ̃ . Store ξ̃ I := ξ̃ , which has zero correlations.
{→ zero correlations←}

Step 4. Achieve transformed target moments
Apply ξ̃i := Γ mom

ŝi,k̂i
(ξ̃i) componentwise ∀i; ξ̃i has the desired moments.

{→ right transformed target moments←}
Continue with Step 2 .

In the subsequent Phase II, Step 4 of the conceptual algorithm is implemented.
Similarly to Phase I, this is also carried out in an iterative manner. The method is
the following.

Phase II: simultaneous moment and correlation matching

Step 1. Initialization
Choose ε II

cr for the stopping tolerance regarding correlations.
Set ξ̃ := ξ̃ I , where ξ̃ I is the distribution, saved in Step 3 of Phase
I. Apply ξ̃i := Γ cr

R̃ (ξ̃ ) = Lξ̃ .
Step 2. Compute and factorize the correlation matrix

Compute R̃. If ‖R̃−R‖< ε II
cr then Stop, otherwise continue. Compute

the Cholesky–factorization R̃ = L̃L̃T.
Step 3. Remove correlations

Perform backward transformation: ξ̃ := Γ 0cr
R̃ (ξ̃ ) = L̃−1ξ̃ .

{→ zero correlations←}
Step 4. Forward transformation

Compute ξ̃i := Γ cr
R̃ (ξ̃i) = Lξ̃ . Store ξ̃ II := ξ̃ , which has the right cor-

relations.
{→ right target correlations←}
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Step 5. Achieve target moments
Apply ξ̃i := Γ mom

si,ki
(ξ̃i) componentwise ∀i.

{→ right target moments←}
Continue with Step 2 .

The HKW–algorithm is a heuristic scenario-tree generation procedure; there exist
no proofs of finite termination or of convergence for the iterative cycles involved,
neither for Phase I nor for Phase II. Høyland, Kaut, and Wallace [142] report on
successful practical applications and present some quite favorable computational
results. The authors of this book have also implemented the method; it is one of the
scenario–tree generation methods, available with SLP–IOR, see Section 4.9.2. Our
computational experience is also in favor of the algorithm.

4.8.3 A guide to available software

The solvers, available for multistage problems, have been discussed in Section 4.7.5.
The scenario generation algorithm in Section 4.8.2 is part of the modeling system

OSLSE of IBM, see King et al. [185]. We have also implemented a version, which
is available with SLP-IOR, see Section 4.9.2.

An experimental implementation of the HKW–method for scenario generation,
presented in Section 4.8.2, has been developed by the authors of the algorithm,
and can be downloaded in executable form from the homepage of Michal Kaut,
http://work.michalkaut.net/.

A commercial version of a scenario reduction method, presented in Dupačová
et al. [78], has been implemented by Nicole Gröwe as the solver SCENRED. It is
available with the algebraic modeling system GAMS, Brooke et al. [34], [35].

A comparison of the different scenario–generation methods can be found in Kaut
and Wallace [179], which may serve as a guide to choose an appropriate method.

4.9 Modeling systems for SLP

Modeling systems are aimed to provide support to the various stages in a model’s
life cycle including building, solving, and analyzing problem instances, and their
solution. They have a specified scope concerning model types and differ in their
scope, in the extent of support provided to the different stages in the model’s life–
cycle, and in the range of modeling tools offered by them. Modeling systems can
also be integrated systems, including links to modeling languages and solvers. Some
of the modeling systems are based on modeling languages.
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4.9.1 Modeling systems for SLP

Considering SLP, presently several modeling systems and tools are available; for an
introduction to a selection of these systems see Kopa [195]; see also the Stochastic
Programming Community home page at http://www.stoprog.org/.

Below we provide a short list of the most well–known systems. We just list some
of the major characteristic features of the systems, for the details see the cited pa-
pers.

• OSLSE is the stochastic programming system of IBM, see King, Wright, Parija,
and Entriken [185], for multistage recourse models with scenario trees. It is an
optimization system and a library of tools, supporting model building including
scenario generation, and the solution phase. The MSLP solver with the same
name OSLSE, is also separately available.

• SETSTOCH, developed by C. Condevaux–Lanloy and E. Fragnière [46]. This
is a modeling tool, with the main goal of supporting the linking of SLP solvers
to algebraic modeling systems. The authors report on the application of this tool
for linking the solver OSLSE to the algebraic modeling system GAMS. A gen-
eralized version, called SET (Structure–Exploiting Tool), has been developed by
E. Fragnière, J. Gondzio, R. Sarkissian and J.–P. Vial [101].

• SLP–IOR is our model management system for SLP and will be discussed in a
detailed fashion in Section 4.9.2.

• SMI, Stochastic Modeling Interface from the open–source COIN–OR project,
developed by Alan King. The system supports the building of multistage recourse
models with scenarios, it includes a scenario generation method and the genera-
tion of deterministic equivalents, see https://projects.coin-or.org/Smi.

• SPInE, a Stochastic Programming Integrated Environment, developed by P. Va-
lente, G. Mitra, and C.A. Poojari, see [332]. The scope of the system consists of
multistage recourse models with scenario trees and of chance constrained mod-
els. It serves for supporting the entire modeling life–cycle and has integrated fa-
cilities for accessing databases. A unique feature of this system is that it includes
an extension of the algebraic modeling language MPL, adding SLP–specific lan-
guage constructs to it.

• StAMPL A modeling tool for multistage recourse problems, with an emphasis
on the language constructs concerning the filtration process, developed by Fourer
and Lopes [99].

• StochasticsTM is a modeling system for generating large–scale MSLP problems
with scenario trees, developed by Dempster et al. It has a link to the algebraic
modeling system AMPL and to XPRESS-MP. Its component for stochastic mod-
eling is called stochgen. For an overview see Dempster, Scott, and Thompson
[61]. The main emphasis in this system is on modeling.

A modeling system for supporting different LP–equivalent formulations, accord-
ing to the needs of decomposition solvers, and including stage–aggregation, has
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been developed by Fourer and Lopes [98]. The targeted model class consists of
MSLP models with scenario trees.

An integrated modeling environment has been developed by Gassmann and Gay
[117], for MSLP models with scenario trees. The integration involves the algebraic
modeling language AMPL (Fourer, Gay, and Kernighan [97]) and Microsoft’s MS
Access and MS Excel.

A further modeling tool, also based on AMPL, is the open source tool of Thénié,
Van Delft and Vial [325] which supports the automatic formulation of scenario tree
based MSLP models.

Shapiro, Powell, and Bernstein [309] developed a Java–representation for stochas-
tic online operations research models.

General problems related to formulating SLP models in algebraic modeling sys-
tems are discussed by Entriken [87], Fragniére and Gondzio [100] and Gassmann
and Ireland [118]; for modeling languages and systems see Kallrath [174]. Specific
issues related to modeling support for SLP are the subject of the papers Gassmann
[114] and Kall and Mayer [165], [162]. M. Bielser [19] has developed in his
Thesis a new algebraic modeling language called SEAL, specifically designed for
SLP. Colombo, Grothey, Hogg, Wooksend and Gondzio [45] present a structure–
conveying algebraic modeling language as an extension of AMPL, which contains
features for modeling SLP problems with recourse.

In the development process of modeling systems and solvers it is important to
have a generally accepted standard input format for test problem instances. In the
field of SLP this is the SMPS input format. Originally it was developed for mul-
tistage recourse problems, see Birge et al. [24]. Gassmann and Schweitzer [120]
proposed an extension to other classes of SLP problems involving e.g., continuous
distributions and SLP–problems with probabilistic constraints. For detailed expla-
nations and examples concerning the SMPS format see also Gassmann [115] and
Gassmann and Kristjánsson [119]. A Fortran 90 toolkit for supporting the reading
of model instances in SMPS format has been developed by Gassmann and is freely
available at http://myweb.dal.ca/gassmann/. Recently an XML–based representation
of SLP model–instances has been proposed by Fourer et al. [96].

4.9.2 SLP–IOR

Our model management system SLP–IOR was one of the first modeling systems
for stochastic linear programming. The system design was published in Kall and
Mayer [161] in 1992, the first version of the system was available in the same year.
The scope of this version consisted of two–stage recourse models and models with
joint probability constraints. Since then, the system has been continually further–
developed, by extending the scope with new model types, by adding new modeling
tools, and by developing and connecting new solvers. For an overview see Kall and
Mayer [163] and Mayer [230], for the present state of development see Kall and
Mayer [167] and [169], as well as the user’s guide to SLP–IOR, available via the
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Internet at http://www.ior.uzh.ch/research/stochOpt.html.

For using the former versions, the user had to have her/his own version of the
algebraic modeling system GAMS (Brooke, Kendrick and Meeraus [34], Brooke
et al.[35], and Bussieck and Meeraus [40]). The reason is that the solver interface
of that versions was based on GAMS. Since 2001, this is no more a requirement,
SLP–IOR can be used in a stand–alone mode.

In the rest of this section we give a short overview on SLP–IOR, for the details
see our papers, cited above, and the user’s guide of SLP–IOR.

General issues

The scope of the present version of SLP–IOR consists of the following model types:

• Single stage models.

– Deterministic LP.
– Probability constraints (Section 2.2); separate (Section 2.2.3) and joint (Sec-

tion 2.2.5).
– Integrated probability functions as constraint or in the objective (Section 2.4.1);

separate and joint.
– CVaR as constraint or in the objective (Section 2.4.3).

• Multistage models.

– Deterministic LP.
– Two–stage recourse models (Section 3.2).
· Random recourse (Section 3.2).
· Fixed recourse (Section 3.2).
· Complete fixed recourse (Section 3.2.1).
· Simple recourse (Section 3.2.2); continuous recourse and integer recourse.
· Multiple simple recourse (Section 3.2.2).

– Multistage recourse.

The random entries of the arrays in the model are represented via affine linear
relations, see (3.6). The random variables may be independent, may form a single
group of dependent variables, or in the general case, mutually independent groups
of random variables can be specified.

Concerning probability distributions, the choice for univariate distributions con-
sists of 16 continuous and 7 discrete distributions, containing most of the well–
known statistical distributions. In the multivariate case, normal and uniform distri-
butions are available in the continuous case, empirical and uniform distributions in
the discrete case.

Deterministic LP’s, two–stage and multistage recourse models can be exported
and imported according to the SMPS data–format, see Gassmann [115]. The present
version uses the original specification by Birge, Dempster, Gassmann, Gunn, King,
and Wallace [24], that is, the extensions proposed in [115] are not yet implemented.
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Deterministic linear programs, formulated in the algebraic modeling language
GAMS (Brooke et al. [34], [35]), can be imported with the aim of formulating
stochastic versions of them.

The system includes an interface to the algebraic modeling system GAMS. Con-
sequently, if the user has a copy of GAMS, all solvers available with that partic-
ular GAMS distribution can also be used for solving SLP problems formulated in
SLP–IOR, provided, that an algebraic equivalent exists and the formulation of it is
supported by SLP–IOR. For instance, multistage recourse problems with a scenario
tree can also be solved this way via GAMS.

The user communicates with the system via an interactive, menu–driven inter-
face.

Analyze tools and workbench facilities

The analyze tools provide support for analyzing a model instance or its solution.
The tools are presently available for recourse models and include

• for two–stage models computing the solutions for the following associated prob-
lems: the expected value problem (EV), the wait–and–see solution (WS), the ex-
pected result (EEV), as well as computing the derived quantities expected value
of perfect information (EVPI), and value of stochastic solution (VSS). For the
definition of these characteristic values see Section 3.2.4. Computations are done
in the discretely distributed case directly, for continuous distributions sampling
is available.

• For two–stage models checking whether the model instance has the complete
recourse property and analyzing the model for finding out whether it has a hidden
simple recourse structure.

• For two–stage recourse models, computing the solution of the SAA problem, see
Section 4.7.3.

• Computing the recourse objective for a fixed first–stage vector x∗. The imple-
mentation of the procedures for testing the quality of a solution, discussed in
Section 4.7.3, is in progress.

The primary aim of the workbench facilities is to support the testing of solvers.
They include

• our test–problem generator GENSLP. This serves for randomly generating test
problem batteries consisting of model instances of recourse problems or prob-
lems with joint probability constraints. Several parameters can be chosen to con-
trol, for instance the nonzero density of the arrays, the type of recourse matrix
(for instance, complete fixed recourse can be prescribed), or the number of ran-
dom entries in the stochastic arrays (via the affine–linear relations (Section 3.6)).

• Generating test problem batteries by randomly perturbing the array–elements of
a single model instance.

• Running a selected collection of solvers on a battery of test problems, with the
aim of supporting comparative computational studies.
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Transformations

Two types of model transformations are supported.
On the one hand, a model instance can be transformed into an algebraic equiv-

alent provided that such an algebraic equivalent exists. As an example, let us con-
sider multistage recourse models with scenario trees. Such models can either be
transformed to an equivalent LP having the compact form, or into explicit forms
(presently 4 different such forms are supported), see Section 4.8.1 for a discussion
concerning the different equivalent LP forms. These LP problems can be subse-
quently exported in MPS form, for the sake of testing LP solvers, for instance.

On the other hand, a model instance can be transformed into an instance of an-
other model type, e.g., a two–stage recourse problem can be transformed into a
chance constrained model. Missing data are replaced by default values. The aim of
this facility is to support the formulation of different types of SLP models, on the
basis of the same underlying data–set.

Scenario generation

Scenario generation has been discussed in Section 4.8.2. In SLP–IOR two algo-
rithms are implemented: the bundle–based sampling method, discussed in Sec-
tion 4.8.2, and the moment matching heuristics of Høyland, Kaut, and Wallace
[142], see Section 4.8.2.

Besides these, the user can also build manually a scenario tree, via a graphical
interface. Several tools are available for supporting this, for instance a cut–and–paste
procedure, discussed in Section 3.3.2 in connection with discretization methods for
MSLP problems.

For the bundle–based simulation method several probability distributions are
available, see Section 4.9.2.

The solver interface

The solver interface of SLP–IOR is an open interface, in the sense that the user can
connect her/his own solver to the executable of SLP–IOR. For the details see the
user’s guide.

Several solvers are connected to SLP–IOR. Some of them are commercial
solvers, others have been developed by ourselves. Some have been obtained from
the authors of the solver, which we would like to gratefully acknowledge also in this
place. If the user has a copy of GAMS, then the general–purpose GAMS solvers
can also be called within SLP–IOR. A student version of GAMS with dimensional
limitations is freely available at http://www.gams.com/download/.

Here we confine ourselves to listing some of the solvers, for a full list see Kall
and Mayer [167], or the user’s guide.

• General–purpose LP solvers
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– HiPlex, variant of the simplex method by Maros [218], [219], Maros and Mi-
tra [220], implemented by I. Maros.

– HOPDM, an interior–point method of Gondzio [129], implemented by J.
Gondzio.

– Minos, a commercial solver for NLP, for LP problems it implements the
simplex method. See Murtagh and Saunders [240].

• Solvers for two–stage recourse problems

– BPMPD general–purpose LP solver, interior point method, implemented by
Cs. Mészáros [233], see also Section 4.7.5. Although a general–purpose

solver, it is especially well–suited for recourse problems with a finite discrete
distribution.

– DAPPROX, successive discrete approximation method, see Section 4.7.2, im-
plemented by P. Kall and J. Mayer.

– MSLiP, nested decomposition, implemented by H. Gassmann [112]. For the
nested decomposition method see Section 1.2.7.

– QDECOM, regularized decomposition method of Ruszczyński [293], imple-
mented by A. Ruszczyński. For the algorithm see
Section 1.2.8.

– SDECOM, stochastic decomposition method of Higle and Sen [136], [139],
implemented by P. Kall and J. Mayer. For the method see Section 4.7.3.

– SHOR2, decomposition scheme of Shor [310], Shor, Bardadym,
Zhurbenko, Likhovid, Stetsyuk [311], implemented by N. Shor and A. Likhovid.

• Specialized solvers for simple recourse

– SHOR1, the same method and authors, as for SHOR2, the algorithm has been
adapted to the special structure.

– SRAPPROX, successive discrete approximation method,
see Section 4.7.2, implemented by P. Kall and J. Mayer.

• Simple integer recourse

– SIRD2SCR, implements the convex hull algorithm of Klein Haneveld, Stougie,
and Van der Vlerk [189], implemented by J. Mayer and M.H. van der Vlerk.

• Multiple simple recourse

– MScr2Scr, transformation of Van der Vlerk [334], see
Section 3.2.2, implemented by J. Mayer and M.H. van der Vlerk.

• Models with integrated probability functions

– ICCMIN, dual decomposition method, see
Sections 4.4.3 and 4.4.5, implemented by A. Künzi–Bay and J. Mayer.

• Models involving CVaR

– CVaRMin, dual decomposition method, see
Section 4.4.4, implemented by A. Künzi–Bay and J. Mayer.
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• Joint probability constraints

– PCSPIOR, supporting hyperplane method of Szántai [320], implemented by
J. Mayer. For the method see Section 1.3.2 and Section 4.3.2.

– PROBALL, central cutting plane method, Mayer [230], implemented by J.
Mayer, see Section 1.3.2 and Section 4.3.2.

– PROCON, reduced gradient method, see Mayer [230], implemented by J.
Mayer. See Section 1.3.2 and Section 4.3.2.

System requirements and availability

The system runs under the Microsoft Windows32 operating system family; it has
been tested under Windows 95, Windows NT, Windows 2000, and Windows XP.

If the user has a copy of GAMS, then the GAMS–solvers can also be used from
SLP–IOR, see Section 4.9.2. Having GAMS is, however, not a prerequisite for using
SLP–IOR.

SLP–IOR, in executable form, is available free of charge for academic purposes.
For obtaining a copy please visit http://www.ior.uzh.ch/research/stochOpt.html, and
follow the instructions. From this site you can also download the User’s Guide. Fur-
thermore, tutorials concerning the installation and usage of the system, developed
by Humberto Bortolossi are also available.
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[264] A. Prékopa. Sharp bounds on probabilities using linear programming. Oper.
Res., 38:227–239, 1990.
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Exercises: Hints for answers

Section 1.1 (page 6)

1.1 In the standard formulation (1.3) (page 2) the problems read as

(a) mindTy+−dTy− (b) max− f Tz−gTy++gTy−
Ax− y++ y−− z = b −Az+By+−By−+ s = d

x, y+, y−, z ≥ 0 −Cz = e
z, y+, y−, s ≥ 0

1.2 The results to be derived are:

(a) The solution is (x̂, ŷ) = (1,2) with the optimal value γ = 7.
The expected supply shortage of the second product amounts to

�[(ξ − x̂− ŷ)+] =
1
2

∫ 4

3
(ξ −3)dξ =

1
4

.

(b) Here the second contraint—with the distribution function Fξ of ξ—reads as
�(x+ y ≥ ξ ) = Fξ (x+ y) ≥ 0.95 and hence as x+ y ≥ 3.9. Together with
the first constraint the solution can be found (e.g. graphically) as (x̃, ỹ) =
(0.1, 3.8) with the minimal value γ = 7.9.

(c) Now for the feasible supply shortage it is required that
�[(ξ − x− y)+] ≤ 0.05 · ξ = 0.15 < 0.25, i.e. it has to be less than that re-
sulting in case (a). It follows that x+ y > x̂+ ŷ has to hold. Assuming that
x+ y < 4, for the expected shortage follows

�[(ξ − x− y)+] =
1
2

∫ 4

x+y
(ξ − x− y)dξ =

(x+ y)2

4
−2(x+ y)+4 ,

which is to be bounded above by 0.05 ·ξ = 0.15. Hence this model reads as
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min3x+2y
s.t. 2x+ y ≥ 4

(x+ y)2−8(x+ y)+15.4 ≤ 0
x, y ≥ 0,

which—as to be seen later—is solved at (x̂, ŷ) = (
√

0.6, 4− 2 ·√0.6) with
the optimal value γ = 8−√0.6.

Section 1.2, part 1 (page 22)

1.3 Let x̂ be a feasible solution of {Ax = b, x ≥ 0} and I(x̂) = { j | x̂ j > 0}. If the
columns {A j, j ∈ I(x̂)} are linearly independent, then x̂ is basic.
Otherwise, the homogeneous system ∑

j∈I(x̂)
ξ jA j = 0 has a nontrivial solution ξ with

at least one ξ j > 0 (and ξ j = 0 ∀ j �∈ I(x̂)). Then, for μ̄ := max{μ | x̂− μξ ≥ 0}
follows that x̄ := x̂− μ̄ξ is feasible and |I(x̄)| ≤ |I(x̂)|−1 (with |I(x)| the cardinality
of I(x)). Now either the reduced feasible solution x̄ is basic, or this reduction can
be repeated. Obviously, this process has to end after finitely many reductions with a
basic solution.

1.4 Let x̃ be a solution of γ̃ := min{cTx | Ax = b, x ≥ 0}. If x̃ is not basic, then
the homogeneous system ∑

j∈I(x̃)
ξ jA j = 0 has a nontrivial solution ξ with at least

one ξ j > 0 (and ξ j = 0 ∀ j �∈ I(x̃)). Furthermore, cTξ = 0 has to hold due to the
optimality of x̃. Hence, z := x̃− μ̃ξ for μ̃ := max{μ | x̃−μξ ≥ 0} is optimal again,
i.e. cTz = γ̃ , and |I(z)| ≤ |I(x̃)|−1. If z is not basic, this reduction may be repeated
finitely often, at most.

1.5 For the dual pair (PP) and (DP) follows immediately:

(a) (x1 = 4, x2 = 0) is feasible in (PP), whereas the dual constraints

−u1 − 3u2 ≤ −10
2u1 + 9u2 ≤ −2

obviously cannot be satisfied with ui ≥ 0, i = 1,2;
(b) (DP) is unsolvable due to its infeasibility, whereas (PP) is feasible but un-

solvable as well (with γ =−∞); see Prop. 1.13. and Prop. 1.7..
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1.6 The correct answers are

(DP) FS FU NF
(PP)

FS YES NO NO

FU NO NO YES

NF NO YES YES

Here the “YES” follows for the case FS/FS from Prop. 1.11., for the case FU/NF
from Prop. 1.9., and for the case NF/FU from Prop. 1.9. as well, whereas for the
case NF/NF examples may be constructed, using the Farkas lemma Prop. 1.13. for
instance.

1.7 With the primal solution (x̂1, x̂2) = (0.5, 1.5), from the complementarity condi-
tions follows the dual solution (û1, û2, û3) = (0.5, 0.5, 0.0).

1.8 To verify your solution, use SLP-IOR and any LP solver to confirm the correct

result (x̂1, x̂2) = (
5
3
,

2
3
).

Section 1.2, part 2 (page 53)

1.9 The claimed facts follow immediately since

(a) the feasible sets of the successive master programs are monotonically de-
creasing, implying that the minima are monotonically increasing;

(b) by the general assumption it holds that {u |W Tu ≤ q} �= /0, and from the
additional assumption {y |Wy= ζ , y≥ 0} �= /0 ∀ζ then follows the solvability
of min{qTy |Wy = ζ , y≥ 0} ∀ζ due to Prop. 1.10..

1.10 The following answers are straight forward:

(a) The interior-point condition is satisfied for instance with x j =
1
3 ∀ j and s1 =

s2 =
1
3 , s3 =

4
3 .

(b) From the dual constraints follows s1(λ ) = s2(λ ) = −1− u(λ ) and s3(λ ) =
−u(λ ), where u(λ ) < −1 has to hold due to the requirement s j(λ ) > 0 ∀ j.
From the above equations for s j(λ ), the conditions (x j(λ ) · s j(λ ) = λ ), and
the primal constraint ∑3

j=1 x j(λ ) = 1 then follows that ũ := u(λ ) has to satisfy
the quadratic equation ũ2 +(1+ 3λ )ũ+ λ = 0; due to u(λ ) < −1 the only

possible solution is ũ = − 1+3λ
2 −

√
( 1+3λ

2 )2−λ , from which s j(λ ) follow
immediatly observing the above equations, which then imply the x j(λ ) due
to the central path conditions.

1.11 Hint: Show that the Jacobian J (x(μ),u(μ),s(μ)) is a regular matrix for all
μ > 0; then the assertion follows from the implicit function theorem.
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1.12 Due to the lower triangularity of L the Cholesky factorization of D, and hence
the solution of the system L ·LT = D for L, can be performed immediately.
With d = (7, 18, 10)T, solving the system Dx = d by solving successively Ly = d
for y and then LTx = y for x yields y = (7, 2, 3)T and x = (2, 1, 3)T.

Section 1.3 (page 69)

1.13 For a given ζ0 ∈�m holds

ϕ(ζ0) = min{cTx | Ax = ζ0, x≥ 0}= max{ζT
0 u | Au≤ c}= ζT

0 u0

for any optimal dual feasible u0.
For any ζ ∈�m then follows ϕ(ζ ) = max{ζTu | ATu≤ c} ≥ ζTu0 and therefore

ϕ(ζ )−ϕ(ζ0)≥ uT
0 (ζ −ζ0) and hence u0 ∈ ∂ϕ(ζ0) .

1.14 The pair (x̂, û) satisfying the KKT conditions (1.70) for this LP have the
following properties:

(i) feasibility of dual constraints,
(ii) complementarity (primal variables vs. dual constraints),
(iii) feasibility of primal constraints,
(iv) complementarity (dual variables vs. primal constraints),
(v) nonnegativity (primal),
(vi) nonnegativity (dual).

Hence, x̂ and û solve the primal LP and its dual, respectively.

1.15 The Lagrange function of min{cTx | Ax≥ 0} is L(x,u) = cTx+uT(b−Ax). It
follows that

max
u≥0

L(x,u) =
{

cTx if b−Ax≤ 0 (implying uT(b−Ax) = 0)
+∞ if b−Ax � 0

and

min
x∈�n

L(x,u) = min
x
{cTx+uT(b−Ax)}= min

x
{(cT−uTA)x+uTb}

=

{−∞ if ATu− c �= 0
bTu if ATu− c = 0

It follows that

L(x̂, û) = min
x∈�n

max
u≥0

L(x,u) = min
x
{cTx | b−Ax≤ 0}

= max
u≥0

min
x∈�n

L(x,u) = max{bTu | ATu− c = 0}

such that the saddle point (x̂, û) is a pair of primal-dual optimal solutions.
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1.16 For the NLP min{ f (x,y) | g(x,y) ≤ 0} with f (x,y) = x2 + 4xy + y2 and
g(x,y) = x2 + y2−1 the KKT conditions ∇ f +u∇g = 0, u ·g(x,y) = 0 yield either,
if x = 0, that y = u = 0 and hence f (x,y) = 0, or else, if x �= 0, that u = 1 and hence

y =−x, (x2+y2−1) = 0, yielding either x =
√

1
2 , y =−

√
1
2 or x =−

√
1
2 , y =

√
1
2

with the optimal value f (x,y) =−1. The nonoptimal KKT point (0, 0) appears due
to the nonconvexity of f (show: relation (1.67) (page 55) does not hold in general).

1.17 It is seen immediately, that (x̂ = 0, ŷ = 1, ẑ = 0) is the unique solution of the
NLP; however, the KKT conditions cannot be satisfied with (x̂, ŷ, ẑ). (Hint: check
the regularity condition RC 0 on page 56.)

1.18 That a solution x̂ of (P) solves (A), should be obvious.
For the particular problem, to find the minimum of a linear function cTx over the
unit ball is also geometrically immediate and yields as the unique solution x̂ = −c√

cTc
.

From the KKT conditions follows immediately an û such that (x̂, û) is a saddle point
of the Lagrangian, implying strong duality by Prop. 1.28..

1.19 With w = (x,y) the iteration begins with the optimal (infeasible) vertex ŵ(1) =
(0,0) and the corresponding boundary point wb(1)≈ (3.307,2.480) of the feasible
set (between ŵ and w̃) with the objective value zb(1) ≈ 15.71), and hence an error
estimate of Δ(1) ≈ 15.71, yielding after the third cycle wb(3) ≈ (3.85,2.02) with
zb(3) ≈ 13.96 and an error of Δ(3) ≈ 1.28. The exact solution is easily seen to be
ŵ = (3.9,2.01) with the optimal value ẑ = 13.95.

Section 2.1 (page 87)

2.1

(a) This follows immediately from the fact that the upper level sets of a concave
function are convex sets.

(b) For proving this assertion employ the following inequality for concave func-
tions:

f (y)− f (x)≤ ∇T f (x)(y− x), ∀x,y ∈C.

Having ∇T f (x)(y− x) ≤ 0, the above inequality directly implies that f (y) ≤
f (x) holds.

(c) g(x) := log[ f (x)] is a transformation of the concave function f (x) via the
monotonically increasing concave function log, consequently g is concave.

2.2

f1(x)= ex: Notice that this function is strictly convex. Nevertheless, since log f1(x)=
x holds, f1 is both logconcave and logconvex. Consequently, it belongs to all of the
classes of generalized concave functions, listed in the exercise.
f2(x) = x3: Since both the upper and the lower level sets are convex sets, the func-
tion is both quasi–convex and quasi-concave, that is, it is quasi–linear. It is neither



410 Exercises: Hints for answers

pseudo–concave nor pseudo convex, since with x̄ = 0 we have ∇ f2(x̄) = f ′2(x̄) = 0
and the implication in Definition 2.12. on page 83 does not hold. Because of missing
nonnegativity, f2 is neither logconcave nor logconvex.
f3(x1,x2) = e−x2

1−x2
2 : Taking logarithm shows that f3 is logconcave, consequently it

is also pseudo–concave and quasi–concave. Since the lower level sets
{(x1,x2)

T | f3(x1,x2)≤ γ} are non–convex for 0 < γ < 1, the function is not quasi–
convex. Consequently, it is not pseudo–convex or log–convex, either.

f4(x) =
{

1, if x ∈B,
0, if x �∈B.

: This function is logconcave. In fact, considering the defin-

ing inequality on page 84, this inequality holds trivially for f4 if the right–hand side
is zero. For 0 < λ < 1, the right–hand side can only be 1 if x,y ∈B holds. Due to
the convexity of B, λx+(1−λ )y ∈B follows, implying that for f4 the left–hand
side in the inequality is also 1. f4 is clearly quasi–concave since the upper level sets

are convex. The lower level set corresponding e.g., to level γ =
1
2

is clearly noncon-
vex, thus f4 is not quasi–convex and consequently it is not logconvex either. Since
f4 is not differentiable, it is neither pseudo–convex nor pseudo–concave, according
to our definition.

2.3

Apply Hölder’s inequality (see, e.g., Hardy et al. [132]):

a1b1 +a2b2 ≤
(
ap

1 +ap
2

) 1
p
(
bq

1 +bq
2

) 1
q ,

with a1,a2,b1,b2 > 0,
1
p
+

1
q
= 1, p,q > 1.

For 0 < λ < 1 choose p =
1
λ

, q =
1

1−λ , a1 = f (x)λ , a2 = g(x)λ , b1 = f (y)1−λ ,

b2 = g(y)1−λ to arrive at

f (x)λ f (y)1−λ +g(x)λg(y)1−λ ≤ [ f (x)+g(x)]λ [ f (y)+g(y)]1−λ .

Utilizing at the left–hand–side the logconvexity of f and of g completes the proof.

Section 2.2 (page 136)

2.4 With Dc denoting the complement of event D, we have

�((A∩B)c ) =�(Ac∪Bc)≤�(Ac)+�(Bc) = 0,

from which the proposition immediately follows.

2.5

(a) The equivalent LP is (cf. Section 2.2.3):
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min 2x1 + x2

s.t. x1 ≥ 1

x1 + x2 ≥ 1.9,

⎫⎪⎪⎬
⎪⎪⎭

where 1.9 on the right–hand side is the 0.9–quantile of the distribution of ξ ,
obtained by solving F(x) = 0.9 with F being the distribution function of ξ :

F(x) =

⎧⎨
⎩

0, if x < 1
x−1, if 1≤ x≤ 2

1, if x > 2.

(b) The optimal solution is x∗1 = 1, x∗2 = 0.9.

2.6

Let x,y ∈�n, 0 ≤ λ ≤ 1. Utilizing the triangle inequality and the positive homo-
geneity of the norm we get:

h(λx+(1−λ )y) = ‖DT(λx+(1−λ )y)−d‖= ‖λ (DTx−d)+(1−λ )(DTy−d)‖
≤ ‖λ (DTx−d)‖+‖(1−λ )(DTy−d)‖
= λ‖DTx−d‖+(1−λ )‖DTy−d‖= λh(x)+(1−λ )h(y).

2.7

(a) The solution of (S) is x∗S = (1.82,1.00) with optimal objective value z∗S = 4.65,
whereas the solution of (J) is x∗J = (1.97,1.00) with optimal objective value
z∗S = 4.95.

(b) The following inequality

�
(

tT
i x≥ ξi, i = 1, . . . ,r

) ≤ �( tT
k x≥ ξk )

holds for k = 1, . . . ,r, since the event that all random inequalities hold simul-
taneously implies the event that a particular selected inequality holds. Conse-
quently, the feasible domain of (J) is a subset of the feasible domain of (S).
This implies that the inequality z∗S ≤ z∗J must hold.

Section 2.4 (page 158)

2.8 The equivalent LP formulation for (2.127) on page 147 is
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min cTx

s.t. α t̄x + (1−2α)
N

∑
k=1

pkyk ≤ α h̄

tkx − yk ≤ hk, k = 1, . . . ,N

yk ≥ 0, k = 1, . . . ,N

x ∈ B;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

the LP–reformulation of (2.128) can be done analogously.

2.9

(a) The solution of (ICC) is x∗ICC = (2.6,0.4) with optimal objective value z∗ICC =
3.4; the solution of (CVaR) is x∗CVaR = (1.8,1.2) with z∗CVaR = 4.2. Thus we
have z∗ICC < z∗CVaR.

(b) The phenomenon is best to understand by considering the case when the dis-
tribution function of (ξ1,ξ2) is continuous. With positive values of ϑ repre-
senting losses and for α high enough we have:

ρ+
sic
(ϑ) =�[ϑ+] ≤ �[ϑ | ϑ ≥ ν(ϑ ,α) ] = ρα

CVaR
(ϑ),

where ν(ϑ ,α) is the Value–at–Risk corresponding to ϑ and α (cf. Sections
2.4.1 and 2.4.3). This implies that the feasible domain of (CVaR) is contained
in the feasible domain of (ICC) thus implying z∗ICC < z∗CVaR for a minimization
problem.
For our case with a discrete distribution this is a heuristic reasoning, of course,
which can be made precise by utilizing the upper–tail distribution function, see
Pflug [254] and Rockafellar and Uryasev [283].

Section 2.5 (page 171)

2.10 With 0≤ λ ≤ 1 we have

A(λx+(1−λ )y) = �[ |ηT(λx+(1−λ )y)−ξ | ]
= �[ |λ (ηTx−ξ )+(1−λ )(ηTy−ξ )| ]
≤ �[λ |ηTx−ξ |+(1−λ )|ηTy−ξ | ]
= λ�[ |ηTx−ξ | ]+ (1−λ )�[ |ηTy−ξ | ]
= λA(x)+(1−λ )A(y).

2.11 We sketch a proof of the equivalence of (2.189) and (2.191); for the other pair
of problems the proof is analogous.
Let x be a feasible solution of (2.189) and take yk := (tkx − hk)−, ∀k. Then
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(x,y1, . . . ,yN) is a feasible solution of (2.191) and the corresponding objective func-
tion values are equal.
Conversely, let (x,y1, . . . ,yN) be feasible in (2.191). Implied by the observation out-
lined in the paragraph next to (2.192), x is a feasible solution of (2.189) and the
objective function values in both problems are again equal.
Thus we were able to associate to any feasible solution of (2.189) a feasible solution
of (2.192) having the same objective function value, and vice versa. Consequently
the two problems are equivalent.

Section 2.7 (page 188)

2.12

(a) For any set B ⊂� we have

max
x∈B

min
1≤i≤N

(η̂ i)Tx =−min
x∈B

max
1≤i≤N

−(η̂ i)Tx.

Since the negative portfolio return−(η̂ i)Tx is the loss, this explains the model
formulation.

(b) An equivalent LP formulation is:

max
x,z

z

(η̂ i)Tx − z ≥ 0, i = 1, . . . ,N

rTx ≥ μp

1lTx = 1

x ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

For showing the equivalence of the two formulations, the basic observation is the
following: since z is maximized, it is sufficient to consider feasible solutions (x,z)
of the above problem for which z = min

1≤i≤N
(η̂ i)Tx holds.

2.13 Compute the expected asset returns r from the realizations tableau; you should
get rT = (r1,r2) = (0.0111,0.019). With α = 0.99 now set up the portfolio selection
problem (cf. (2.206)) to get

min ρ0.99
CVaR

(−(η1x1 +η2x2) )

s.t. r1x1 + r2x2 ≥ 0.018

x1 + x2 = 1

x1, x2 ≥ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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Solving this by employing SLP–IOR yields the optimal asset allocation
x∗ = (0.13,0.87) with the optimal (minimal) CVaR–value z∗ = 0.0027.

2.14 We prove (a); the proof of (b) runs analogously.
Assume that x∗ is not optimal in (2.206). Then there exists a feasible solution x̂ of
(2.206) for which

ρ(−ηTx∗) > ρ(−ηTx̂) and rTx∗ = μp ≤ rTx̂

holds. Multiplying the first inequality with −ν and adding the two inequalities re-
sults in:

rTx∗ −νρ(−ηTx∗) < rTx̂−νρ(−ηTx̂),

which contradicts the optimality of x∗ in (2.208) since x̂ is obviously feasible in
(2.208).

Section 3.2, part 1 (page 224)

3.1 The conditions of Lemma 3.1 are not satisfied, and the induced constraints
(resulting as x1 + x2 ≤ 2) show that the problem is not even of relatively complete
recourse.
The first stage solution follows (with the induced constraint) as x̂ = (2, 0)T.

3.3 With ξ̄ = 0 and (approximately) η̄ = 0.686965 the first Jensen lower bound of
�[ψ(ξ ,η)] amounts to ϕ(ξ̄ )+ θ(η̄) = 0.5+ 1.373929 = 1.873929. Furthermore,
it turns out that

(b) The first E–M bound amounts approximately to ub(ψ̄) = 2.6239 yielding as
first error estimate Δ = 2.6239−1.873929≈ 0.75.

(c) with I(ξ )1 = [−1,0] and I(ξ )2 = [0,1] follows
lb|ξ̄ = 1

2 · 1
2 + 1

2 · 1+ 1.373929 = 2.123929 and hence an increasing lower

bound, whereas with I(η)1 = [0,0.686965] and I(η)2 = [0.686965,2] we get
lb|η̄ = ϕ(�[ξ ])+θ(�[η ]) = 1.873929;

(d) partitioning the η-interval yields no increase of the lower bound as compared
to ψ(ξ̄ , η̄), which is due to the linearity of θ(·); consequently, also in a fur-
ther partioning step an increase of the lower bound can only be expected by
dividing the ξ -interval I(ξ )1 at ξ̄1 =�[ξ | I(ξ )1 ] = − 1

2 since ϕ(·) and θ(·) are

linear on I(ξ )2 and on the support of η , respectively. So far our best error esti-
mate is Δ = 2.6239−2.123929≈ 0.5.

3.4 For (a) just use the definition of convexity of ψ(·) and the linearity of the
function to be a majorant of ψ(·). Then (b) is an immediate consequence of (a),
where the uniqueness follows from the unique solvability of the constraints (due to
α < β ).
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3.5 As is well known, that a quadratic function is convex if an only if it is positive
definite, which is true iff the eigenvalues are nonnegative.

(a) From linear algebra it is well known that there exists a transformation T (here
a 2×2-matrix T ) such that Λ = T TMT , where Λ is the diagonal matrix with
the eigenvalues of M and the columns of T are the corresponding eigenvec-

tors. In our case it follows that Λ =

(
2.1716 0

0 7.8284

)
and for the transfor-

mation T =

(−0.9239 0.3827
0.3827 0.9239

)
, and hence the convexity of F .

(b) For μ = (2; 2)T the Jensen bound is F(μ) =−72.
(c) The vertices of B are obviously given as

{x(1) = (0;0)T , x(2) = (0;5)T , x(3) = (2;4)T , x(4) = (8;0)T} with
F(x(1)) = 0 , F(x(2)) =−55 , F(x(3)) =−64 , F(x(4)) = 48. Hence the LP to
solve is

max

{
4

∑
i=1

pi ·F(x(i))

∣∣∣∣∣
4

∑
i=1

pi · x(i) = μ ,
4

∑
i=1

pi = 1 , pi ≥ 0 ∀i
}

.

Results: The LP optimal value (the upper bound) is −10 with the opti-
mal probabilities of the vertices {p1, · · · , p4}= {0.35, 0.40, 0.00, 0.25}, and
Jensen’s lower bound amounts to −72.

3.6 The answers and results, respectively, are:

(a) The conditions for complete fixed recourse are satisfied.
(b) The first bounds are lb = 23.0590 and ub = 28.2166.
(c) For 4 subintervals (after crosswise partition) the bounds approximately are

lb = 23.7 and ub = 24.5; with the default stopping tolerance of Δ = 10−5

(relative error), DAPPROX yields after 33 Iterations and with 383 subinter-
vals the bounds lb = 24.0795; ub = 24.0760.

Section 3.2, part 2 (page 249)

3.7 The following consideration may serve as a heuristic argument for the different
performance of the two solvers on the given model instances:

For a prescribed accuracy of the solution and 4 random variables, for a simple
recourse problem the required accuracy Δ is certainly achieved if for each of the
4 components of the separable objective an accuracy of Δ/4 is obtained. If this
is the case for 5 subintervals per component, say, then for the overall accuracy at
most 20 splits are needed. The separability and the fact, that for any component it is
clear in advance whether partitioning a (sub-)interval of it improves the accuracy, is
explicitely made use of in SRAPPROX.

In contrast, DAPPROX is designed to operate—in our case—on the 4-dimensio-
nal support of the given random vector and on (again 4-dimensional) subintervals of
it. Although, from the (conditional) Jensen and E–M inequalities on any subinterval,
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it is also clear in this case if its subpartition can (and will) improve the accuracy, the
difficulty is to find out the (most) “profitable” of the 4 coordinates to be chosen for
subpartition; in the worst case this may need 4 subdivisions (one per coordinate)
to be successful. Hence, the most unfavourable incidence could require 45 = 1024
subdivisions.

The results for the given problems (3.93) are somewhat better than our worst
case consideration. Also, you’ll observe at the SLP-IOR output, that for both prob-
lems the number of splits/subdivisions grows much faster than the number of itera-
tions; the reason is that due to step III. of DAPPROX (page 223)—and similar for
SRAPPROX—at one iteration step it may be decided to subdivide various intervals
simultaneously.

3.8 To prove (a), show first that for all (z1,z2,z3) feasible in (3.94) holds Ψ(z) ≤
Θ(z1,z2,z3), and then determine for any of the three possibilities, z≤ a, a < z≤ b,
and z > b, a feasible solution (ẑ1, ẑ2, ẑ3) of (3.94) such thatΨ(z) =Θ(ẑ1, ẑ2, ẑ3).

As to (b), the uniform distribution of ξ on [a,b] leads for feasible (z1,z2,z3) to

Θ(z1,z2,z3) = z3+
1

b−a

∫ a+z2

a
(z2+a−ξ )dξ = z3+

1
2(b−a)

z2
2 and hence to con-

vex quadratic functionsΨ(z) andΦ(z). The fact, that simple recourse problems with
uniformly distributed right-hand sides can be reformulated as quadratic progams,
was first discovered by Beale [12].

3.9 Using for the simple recourse formulation of (3.93) the solvers SRAPPROX and
DAPPROX in SLP-IOR, and for the quadratic programming formulation, according
to Exercise 3.8, the solver MINOS (e.g. in GAMS), you should get for the first stage
variables {x1, · · · ,x4}, the first stage objective value Z f 1, and the overall objective
ZF

x1 x2 x3 x4 Z f 1 ZF

SRAPPROX 4.25 0.14 3.53 2.56 30.16 62.64
DAPPROX 4.26 0.14 3.53 2.55 30.16 62.64
MINOS 4.25 0.14 3.53 2.55 30.17 62.66

Section 4.3 (page 312)

4.1 The equivalent formulation of (4.6) is:

max F(y)
s.t. T x −y ≥ 0

x ∈ B.

⎫⎬
⎭ (E)

Showing the equivalence:
Let x be a feasible solution of (4.6) and choose y = T x. Then (x,y) is a feasible
solution of (E) and the corresponding objective function values are equal.
Conversely, let (x,y) feasible in (E). Since F is monotonically increasing in all
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of its arguments and we have a maximization problem, it is sufficient to consider
feasible solutions of (E) where y = T x holds. Then x is feasible in (4.6) with the
same objective value.

4.2 Let zT = (x,yT) with x∈� and y∈�s−1 The positive definiteness of R implies
that

zTRz = x2 +2xρTy+ yTR̂y > 0

holds for any z �= 0. Choosing x :=−ρTy, we get that yT(R̂−ρρT)y > 0 must hold
for any y �= 0. Consequently this matrix is positive definite.

4.3

(a) For generating the test problem battery choose the main-menu item
Workbench and subsequently on the pull–down menu GENSLP: joint chance
constraint. A pop–up menu appears where the parameters of the battery to be
generated can be specified. Clicking the <Generate> button results in gener-
ating the battery.

(b) For performing the run with the different solvers choose again Workbench
first and subsequently Test Problem Batteries. On the pop-up menu you can
choose the battery, the solvers and subsequently you can start up the run by
clicking the button <run test battery>. During this run all of the test prob-
lems in the battery will be solved in turn by all of the selected solvers. After
termination the computational results can be viewed/saved by clicking <view
results>.

See also Section 4.9.2 and for a detailed description see the User’s Guide of SLP–
IOR.

Section 4.4 (page 325)

4.4 The goal of the algorithm is by no means to generate all of the constraints of the
full master problem (4.39). Since the new constraints (cuts) are generated on the ba-
sis of an optimal solution of the previous relaxed master problem (4.39), the general
aim is to generate in a step–by–step manner constraints of the full master problem
which are binding in the vicinity of the optimal solutions of (4.39), including finally
those which are binding at an optimal solution of the full master problem.

4.5 The full master problem takes the following form:

min
x,w1,...,wN(,w)

cTx +θw

s.t. dTx +
N

∑
k=1

pkwk −w ≤ 0

(uk)
T(hk−T kx) −wk ≤ 0, uk ∈U , ∀k

x ∈B

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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and the relaxed master problems have to be changed accordingly. Step 5. of the
algorithm changes also: ν := ν +N, in the multi–cut version N cuts are added in
each of the iterations.

4.6 In the equivalent simple recourse model we have now m2 = 1, q+ = 0,
q− = 1−2α and d = α t̄x. The full master problem will be the following:

min
x(,w)

cTx+ θw

s.t. α t̄x+(1−2α) ∑
k∈K

pk(T kx−hk) −w ≤ α h̄, K ⊂N

x ∈ B;

⎫⎪⎪⎬
⎪⎪⎭

the relaxed master problems are to be formulated in accordance with this.

Section 4.7 (page 363)

4.7 Assume that Q(x;T (ξ ),h(ξ )) = aTξ +b holds for ξ ∈ Ξk, for a fixed x.
Regarding the Jensen lower bound we get (cf. page 334):

∫
Ξk

Q(x;T (ξ ),h(ξ ))�ξ (dξ ) =
∫
Ξk

(aTξ +b)�ξ (dξ ) = πk (aTμk +b)

= πk Q(x;T (μk),h(μk)) = Lk(x).

Concerning the Edmundson–Madansky upper bound we refer to the inequality
(4.62) on page 332, formulated for a convex function ϕ . If this function is linear
then the inequality holds obviously as equality. Taking ϕ(ξ ) = Q(x;T (ξ ),h(ξ ))
and the conditional probability and expected value, given ξ ∈ Ξk, we get (see (4.71)
on page 335):

∫
Ξk

Q(x;T (ξ ),h(ξ ))�ξ (dξ ) = πk

2r

∑
ν=1

Q(x;T (vνk ),h(v
ν
k ))�k(v

ν
k ) =Uk(x).

Thus Lk(x) =Uk(x) follows.

4.8

(a) The assumption has been utilized in the second inequality in (4.98) on page 358,
i.e., in the updating of the previous cuts.

(b) In the SAA method a full sample is drawn first and the resulting two–stage
recourse problem with a discrete distribution is solved, e.g., by utilizing reg-
ularized decomposition or a general–purpose LP solver. Based on the quality
tests, this procedure might be repeated with a larger sample.
In the SD method the sampling occurs within a dual decomposition type
method, at each of the iterations of the SD method a single new sample point
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is drawn. The sample is steadily growing as the iterations of the algorithm
proceed.
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