Chapter 1

A Complexity-Grounded Model
for the Emergence of Convergence
in CSCL Groups

Manu Kapur, John Voiklis, and Charles K. Kinzer

Abstract We advance a complexity—grounded, quantitative method for uncovering
temporal patterns in CSCL discussions. We focus on convergence because under-
standing how complex group discussions converge presents a major challenge in
CSCL research. From a complex systems perspective, convergence in group discus-
sions is an emergent behavior arising from the transactional interactions between
group members. Leveraging the concepts of emergent simplicity and emergent
complexity (Bar-Yam 2003), a set of theoretically-sound yet simple rules was
hypothesized: Interactions between group members were conceptualized as goal-
seeking adaptations that either help the group move towards or away from its goal,
or maintain its status quo. Operationalizing this movement as a Markov walk, we
present quantitative and qualitative findings from a study of online problem-solving
groups. Findings suggest high (or low) quality contributions have a greater positive
(or negative) impact on convergence when they come earlier in a discussion than
later. Significantly, convergence analysis was able to predict a group’s performance
based on what happened in the first 30—40% of its discussion. Findings and their
implications for CSCL theory, methodology, and design are discussed.

1.1 Introduction

One of the major challenges facing collaborative problem-solving research is to
understand the process of how groups achieve convergence in their discussions
(Fischer and Mandl 2005). For example, without some level of convergent or
shared assumptions and beliefs collaborators cannot define (perhaps not even
recognize) the problem at hand nor select among the possible solutions, much
less take action (Schelling 1960). A certain level of convergence—e.g., by what
names collaborators refer to the objects of the problem—is required simply to carry
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on a conversation (Brennan and Clark 1996). A deeper level of convergence—e.g.,
agreeing on the functional significance of the objects to which partners refer—is
required to carry out shared intentions on those objects (Clark and Lucy 1975). Not
surprisingly, Roschelle (1996) argued that convergence, as opposed to socio-cogni-
tive conflict, is more significant in explaining why certain group discussions lead
to more productive outcomes than others.

Although there has been considerable research towards understanding the cogni-
tive and social mechanisms of convergence in collaborative learning environments
(Clark and Brennan 1991; Fischer and Mandl 2005; Jeong and Chi 2007; Roschelle
and Teasley 1995; Stahl 2005), the problem of convergence—understanding the
complex process of how multiple actors, artifacts, and environments interact and
evolve in space and time to converge on an outcome is critical—remains a perennial
one (Barab et al. 2001). A substantial amount of literature attempts to understand
group processes using qualitative analytical methods (e.g., interactional analysis,
discourse analysis, conversation analysis), which provide insightful and meaningful
micro-genetic accounts of the complex process of emergence of convergence in
groups (e.g., Barron 2000, 2003; Teasley & Roschelle 1993; Stahl 2005). For the
present purposes, however, our proposal speaks to quantitative approaches, typically
involving quantitative content analysis (QCA) (Chi 1997) of interactional data;
the use of QCA is pervasive in examining the nature of interaction and participation
in CSCL research (Rourke Anderson 2004). However, quantitative measures and
methods for conceptualizing the femporal evolution of collaborative problem-solving
processes as well as the emergence of convergence remain lacking (Barab et al.
2001; Collazos et al. 2002; Hmelo-Silver et al. this book; Reimann 2009).

Increasingly, a realization of the inherent complexity in the interactional dynamics
of group members is giving way to a more emergent view of how groups function
and perform (Arrow et al. 2000; Kapur et al. 2007; Kapur et al. 2008; Stahl 2005).
However, the use of complex systems in the learning sciences is relatively sparse,
but gaining momentum (see Jacobson and Wilensky 2006). A major thrust of such
research is on the curricula, teaching, and learnability issues related to complex
systems, and how they influence learning and transfer. However, complex systems
also offer important theoretical conceptions and methodologies that can potentially
expand the research tool-kit in the learning sciences (Jacobson and Wilensky 2006;
Kapur and Jacobson 2009; Kapur et al. 2005, 2007). The work reported in this
chapter leverages this potential to better understand how convergence emerges in
group discussions.

From a complex systems’ perspective, convergence in group discussions can be
seen as a complex, emergent behavior arising from the local interactions between
multiple actors, and mediated by tools and artifacts. Convergence is therefore a
group-level property that cannot be reduced to any particular individual in the
group. Yet, it emerges from and constrains the interactions between the very indi-
viduals it cannot be reduced to. To understand this emergence, we first discuss the
concept of emergent behavior, particularly the distinction between emergent sim-
plicity and emergent complexity; a distinction that is central to our proposal.
Following that, we describe one way in which convergence in group discussions
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can be conceptualized and modeled. We support our case empirically, through find-
ings from a study of CSCL groups. We end by discussing the implications of our
work for CSCL theory, methodology, and design.

1.1.1 Unpacking Emergent Behavior: Emergent Simplicity
Versus Emergent Complexity

Central to the study of complex systems is how the complexity of a whole is related
to the complexity of its parts (Bar-Yam 2003). The concept of emergent behavior—
how macro-level behaviors emerge from micro-level interactions of individual
agents—is of fundamental importance to understanding this relationship. At the
same time, the concept of emergent behavior is rather paradoxical. On the one
hand, it arises from the interactions between agents in a system, e.g., individuals in
a collective. On the other hand, it constrains subsequent interactions between
agents and in so doing, seems to have a life of its own independent of the local
interactions (Kauffman 1995), and therefore, cannot be reduced to the very indi-
vidual agents (or parts) of the system it emerged from (Lemke 2000). For example,
social structures (e.g., norms, values, beliefs, lexicons, etc.) within social networks
emerge from the local interactions between individual actors. At the same time,
these structures shape and constrain the subsequent local interactions between indi-
vidual actors, but they cannot be reduced to the very individual actors’ behaviors
and interactions they emerged from (Lemke 2000; Watts and Strogatz 1998).
Therefore, it becomes fundamentally important to understand how macro-level
behaviors emerge from and constrain micro-level interactions of individual
agents.

Understanding the “how,” however, requires an understanding of two important
principles in complexity. First, simple rules at the local level can generate complex
emergent behavior at the collective level (Kauffman 1995; Epstein and Axtell
1996). For example, consider the brain as a collection of neurons. These neurons
are complex themselves, but exhibit simple binary behavior in their synaptic inter-
actions. This type of emergent behavior, when complexity at the individual-level
results in simplicity at the collective-level, is called emergent simplicity (Bar-Yam
2003). Further, these simple (binary) synaptic interactions between neurons col-
lectively give rise to complex brain “behaviors”—memory, cognition, etc.—that cannot
be seen in the behavior of individual neurons. This type of emergent behavior, when
simplicity at the individual-level results in complexity at the collective-level, is
called emergent complexity (Bar-Yam 2003).

The distinction between emergent simplicity and complexity is critical, for it
demonstrates the possibility that a change of scale (micro vs. macro level) can be
accompanied with a change in the type (simplicity vs. complexity) of behavior
(Kapur and Jacobson 2009). “Rules that govern behavior at one level of analysis
(the individual) can cause qualitatively different behavior at higher levels (the
group)” (Gureckis and Goldstone 2006, p. 1). We do not necessarily have to seek
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complex explanations for complex behavior; complex collective behavior may
very well be explained from the “bottom up” via simple, minimal information,
e.g., utility function, decision rule, or heuristic, contained in local interactions
(Kapur et al. 2006; Nowak 2004).

In this chapter, we use notions of emergent simplicity and complexity to concep-
tualize a group of individuals (agents) interacting with each other as a complex
system. The group, as a complex system, consists of complex agents, i.e., just like
the neurons, the individuals themselves are complex. Again, it is only intuitive to
think that their behavior can be anything but complex and any attempt to model it
via simple rules is futile. However, emergent simplicity suggests that this is not an
ontological necessity. Their behavior may very well be modeled via simple rules.
Further, emergent complexity suggests that doing so may reveal critical insights
into the complexity of their behavior as a collective. It is this possibility that we
explore and develop in the remainder of this chapter.

1.1.2 Purpose

We describe how convergence in group discussions can be examined as an
emergent behavior arising from theoretically-sound yet simple teleological rules
to model the collaborative, problem-solving interactions of its members. We
support our model empirically, through findings from a study of groups solving
problems in an online, synchronous, chat environment. Note that this study was
part of a larger program of research on productive failure (for more details, see
Kapur 2008, 2009, 2010; Kapur and Kinzer 2007, 2009). We first describe
the context of the study in which the methodology was instantiated before illus-
trating the methodology.

1.2 Methodology

1.2.1 Research Context and Data Collection

Participants included sixty 11th-grade students (46 male, 14 female; 16—17 years
old) from the science stream of a co-educational, English-medium high school in
Ghaziabad, India. They were randomized into 20 triads and instructed to collabo-
rate and solve either well- or ill-structured problem scenarios. The study was car-
ried out in the school’s computer laboratory, where group members communicated
with one another only through synchronous, text-only chat. The 20 automatically-
archived transcripts, one for each group, contained the group discussions as well as
their solutions, and formed the data used in our analyses.
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1.2.2 Procedure

A well-structured (WS) and an ill-structured (IS) problem scenario were developed
consistent with Jonassen’s (2000) design theory typology for problems (see Kapur
2008 for the problem scenarios). Both problem scenarios dealt with a car accident
scenario and targeted the same concepts from Newtonian Kinematics and Laws of
Friction to solve them. Content validation of the two problem scenarios was
achieved with the help of two physics teachers from the school with experience in
teaching those subjects at the senior secondary levels. The teachers also assessed
the time students needed to solve the problems. Pilot tests with groups of students
from the previous cohort further informed the time allocation for the group work,
which was set at 1.5 h.

The study was carried out in the school’s computer laboratory. The online syn-
chronous collaborative environment was a java-based, text-only chat application
running on the Internet. Despite these participants being technologically savvy in
using online chat, they were familiarized in the use of the synchronous text-only
chat application prior to the study. Group members could only interact within their
group. Each group’s discussion and solution were automatically archived as a text
file to be used for analysis. A seating arrangement ensured that participants of a
given group were not proximally located so that the only means of communication
between group members was synchronous, text-only chat.

To mitigate status effects, we ensured that participants were not cognizant of
their group members’ identities; the chat environment was configured so that each
participant was identifiable only by an alpha-numeric code. Cross-checking the
transcripts of their interactions revealed that participants followed the instruction
not to use their names and instead used the codes when referring to each other. No
help regarding the problem-solving task was given to any participant or group during
the study. Furthermore, no external member roles or division of labor were sug-
gested to any of the groups. The procedures described above were identical for both
WS and IS groups. The time stamp in the chat environment indicated that all groups
made full use of the allotted time of 1.5 h and solved their respective problems.

1.2.3 Hypothesizing Simple Rules

The concept of emergent simplicity was invoked to hypothesize a set of simple
rules. Despite the complexity of the individual group members, the impact of their
interactions was conceived to be governed by a set of simple rules. Group members
were conceived as agents interacting with one another in a goal-directed manner
toward solving a problem. Viewed a posteriori, these transactional interactions
seemed to perform a telic function, i.e., they operated to reduce the difference
between the current problematic state of the discussion and a goal state. Thus, local
interactions between group members can be viewed as operators performing a
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means-ends analysis in the problem space (Newell and Simon 1972). From this,
a set of simple rules follows naturally. Each interaction has an impact that:

1. Moves the group towards a goal state, or
2. Moves the group away from a goal state, or
3. Maintains the status-quo (conceptualized as a “neutral impact”).

Then, convergence in group discussion was conceived as an emergent complexity
arising from this simple-rule-based mechanism governing the impact of individual
agent-based interactions.

1.2.4 Operationalizing Convergence

Concepts from the statistical theory of Markov walks were employed to operation-
alize the model for convergence (Ross 1996). Markov walks are commonly used to
model a wide variety of complex phenomenon (Ross 1996). First, quantitative con-
tent analysis (QCA; Chi 1997), also commonly known as coding and counting, was
used to segment utterances into one or more interaction units. The interaction unit
of analysis was semantically defined as the impact(s) that an utterance had on
the group discussion vis-a-vis the hypothesized simple rule. Two trained
doctoral students independently coded the interactions with an inter-rater reliability
(Krippendorff’s alpha) of.85. An impact value of 1, —1, or 0 was assigned to each
interaction unit depending upon whether it moved the group discussion toward
(impact=1) or away (impact = —1) from the goal of the activity—a solution state
of the given problem—or maintained the status quo (impact=0). Therefore, each
discussion was reduced to a temporal string of 1 s, —1 s, and O s.

More formally, let n,, n_, and n, denote the number of interaction units
assigned the impact values 1, —1, and O respectively up to a certain utterance in a
discussion. Then, up to that utterance, the convergence value was,

c=0""1
n +n_

For each of the 20 discussions, convergence values were calculated after each
utterance in the discussion, resulting in a notional time series representing the
evolution of convergence in group discussion.

1.3 Results

Plotting the convergence value on the vertical axis and time (defined notionally with
utterances as ticks on the evolutionary clock) on the horizontal axis, one gets a rep-
resentation (also called a fitness curve) of the problem-solving process as it evolves
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Fitness Curves of Low Performing Groups

1 -
0.8 -
0.6 -
0.4 -
0.2 -
0
-0.2 A
-04 -

-0.6 -
-0.8 - ill-structured

Fitness

well-structured

Notional Time
Fitness Curves of High Performing Groups

1 -
o Md
0.6

0.4 - ill-structured

Fithess
o

-0.6
-0.8
=

Notional Time

Fig 1.1 Fitness curves of high and low performing groups across problem types

in time. Figure 1.1 presents four major types of fitness curves that emerged from the
discussion of the 20 problem-solving groups in our study. These four fitness curves
contrast the high- with the low-performing groups (group performance is operation-
alized in the next section) across the well- and ill-structured problem types.

1.3.1 |Interpreting Fitness Curves

It is easy to see that the convergence value always lies between —1 and 1. The closer
the value is to 1, the higher the convergence, and the closer the group is to reaching
a solution. The end-point of the fitness curve represents the final fitness level or
convergence of the entire discussion. From this, the extent to which a group was
successful in solving the problem can be deduced. Furthermore, one might imagine
that an ideal fitness curve is one that has all the moves or steps in the positive direc-
tion, i.e., a horizontal straight line with fitness equaling one. However, the data
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suggests that, in reality, some level of divergence of ideas may in fact be a good
thing (Kapur 2008, 2009; Schultz-Hardt et al. 2002), as can be seen in the fitness
curves of both the high-performing groups.

The shape of the fitness curve, therefore, is also informative about the paths
respective groups take toward problem solution. For example, in Fig. 1.1, both the
low-performing groups converged at approximately the same (negative) fitness
levels, but their paths leading up to their final levels were quite different. The well-
structured group showed a sharp fall after initially moving in the correct direction
(indicated by high fitness initially). The ill-structured group, on the other hand,
tried to recover from an initial drop in fitness but was unsuccessful, ending up at
approximately the same fitness level as the well-structured group. Further, comparing
the high-performing with the low-performing groups, one can see that the discus-
sions of high-performing groups had fewer utterances, regardless of problem type.
Finally, all fitness curves seemed to settle into a fitness plateau fairly quickly. What
is most interesting is that this descriptive examination of fitness curves provides a
view of paths to a solution that are lost in analysis systems that consider only a
given point in the solution process, thus assuming that similar behaviors or states at
a given point are arrived at in similar ways. As different paths can lead to similar
results, unidimensional analyses that consider only single points in time (often only
the solution state) are not consistent with what this study’s data suggest about
problem-solving processes.

Most important is a mathematical property of convergence. Being a ratio, con-
vergence is more sensitive to initial contributions, both positive and negative, than
those made later in the process. This can be easily seen because with each positive
(or negative) contribution, the ratio’s numerator is increased (or decreased) by
one. However, the denominator in the ratio always increases, regardless of the contri-
bution being positive or negative. Therefore, when a positive (or negative)
contribution comes earlier in the discussion, its impact on convergence is greater
because a unit increment (or decrement) in the numerator is accompanied by a
denominator that is smaller earlier than later. Said another way, this conceptualization
of convergence allows us to test the following hypothesis: “good” contributions
made earlier in a group discussion, on average, do more good than if they were
made later. Similarly, “bad” ones, on average, do more harm if they come earlier than
later in the discussion. To test this hypothesis, the relationship between convergence
and group performance was explored by running a temporal simulation on the data set.

1.3.2 Relationship between Convergence
and Group Performance

The purpose of the simulation was to determine if the level of convergence in group
discussion provided an indication of the eventual group performance. Group per-
formance was operationalized as the quality of group solution, independently rated
by two doctoral students on a nine-point rating scale (Table 1.1) with an inter-rater
reliability (Krippendorff’s alpha) of .95.
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Table 1.1 Rubric for coding quality of group solution

Quality  Description

0 Solution is weakly supported, if at all

1 Solution supported in a limited way relying either on a purely quantitative or
a qualitative argument with little, if any, discussion and justification of the
assumptions made

2 Solution is only partially supported by a mix of both qualitative and quantitative
arguments; assumptions made are not mentioned, adequately discussed, or justified
to support the decision

3 Solution synthesizes both qualitative and quantitative arguments; assumptions made
are not adequately discussed and justified to support the decision
4 Solution synthesizes both qualitative and quantitative arguments; assumptions made

are adequately discussed and justified to support the decision

Mid-point scores of .5, 1.5, 2.5, and 3.5 were assigned when the quality of solution was assessed
to be between the major units 0, 1, 2, 3, and 4, making the scale essentially a 9-point scale

The discussions of all 20 groups were each segmented into ten equal parts. At each
tenth, the convergence value up to that point was calculated. This resulted in 10 sets
of 20 convergence values; the first set corresponding to convergence in the discussion
after 10% of the discussion was over, the second after 20% of the discussion was over,
and so on until the tenth set, which corresponded to the final convergence value of the
discussion, i.e., after 100% of the discussion had occurred. A simulation was then
carried out by regressing group performance on convergence values at each tenth of
the discussion (hence, a temporal simulation), controlling for problem type (well-
or ill-structured) each time. The p-value corresponding to the statistical significance
of the predictive power of convergence at each tenth of the discussion on eventual
group performance was plotted on the vertical axis (see Fig. 1.2).

Cl1 through C10 denote the ten equally spaced instances in each discussion at which
the convergence values were calculated. The simulation suggested that, on average, at
some point after 30% but before 40% of the discussion is over (i.e., between C3 and
C4 in Fig. 1.2), the convergence value is able to predict eventual group performance at
the.05 level of significance or better. This shows that convergence is a powerful mea-
sure that is able to model the impact that early contributions have on eventual group
performance. This insight bears important implications for scaffolding group discus-
sions to achieve optimal outcomes. For example, if one’s primary aim is to maximize
group performance, the insight suggests a need for scaffolding early in the discussion,
since the impact of early interactional activity on eventual group performance seems
to be greater. Scaffolding earlier parts of a group discussion may increase its likelihood
of settling into higher fitness plateaus; the higher the fitness plateau, the better the
group performance, on average. This insight is in and of itself a significant finding, but
since participation in high-performing groups is consistently (and not surprisingly) a
strong predictor of subsequent individual learning gains (e.g., see Barron 2003; Cohen
et al. 2002), we believe it makes it all the more significant, for it demonstrates strong
connections to group and individual learning.

To delve deeper into what makes convergence a powerful measure, micro-analytical
interactional analysis sheds more light. We present a brief analysis of the following
excerpt containing an exchange between group members S1 and S2.
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Fig. 1.2 Simulation of the significance of convergence in predicting group performance

S1>are we going to apply frictional retardation for the reaction time also? -1
S$2>no, because reaction time is the time between watching the boy and applying the 1,1
brakes so in this time [the] car must be accelerating

S1>but I think we must not forget that the car is moving on the same road on which -1,-1
the incident occurs and the road is providing the retardation

82> but maximum speed is at the instant when he applied the brake 1

S1>but earlier you said that the car will accelerate after perceiving the boy -1

82> 1 said so because his foot must be on accelerator during reaction time 1

S1>Now I understand... please proceed to write your answer 1,1

Recall that the problem involved a car-accident scenario (see Kapur 2008, for
the problem scenario). In this excerpt, S1 and S2 are trying to decide whether or not
reaction time of the driver of the car that was involved in the accident should factor
into their calculations. The excerpt starts with S1 asking a question about applying
frictional retardation during the driver’s reaction time. Being a misconception, it
was rated as having a negative impact (—1). S2 evaluates S1’s question and says
‘no,’ attempting to correct the misconception. Hence, its positive (+1) impact rating.
In the same utterance, S2 elaborates why frictional retardation should not to be
applied, further positively impacting the group’s progress. The argument continues
with S1 persisting with the misconception (assigned negative impacts) until S2 is
able to convince S1 otherwise (assigned positive impacts), thereby converging on a
correct understanding of this aspect (dealing with friction during reaction time) of
the problem. Note that had S2 wrongly evaluated and agreed to S1’s misconception,
the impact ratings would have been negative, which, without any further correction,
would have led the group to diverge from a correct understanding of that very
aspect of the problem.

This analysis, albeit brief, shows that impact ratings are meaningful only in rela-
tion to preceding utterances (Bransford and Nitsch 1978) and take into account the
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sequence and temporality of collaborative interactions (Kapur et al. 2008). Other
examples of highly convergent discussion episodes would include agreement with
and positive evaluation and development of correct understandings of the problem,
solution proposals, and problem solving strategies. As a result, despite solving dif-
ferent types of problems (well- or ill-structured), group performance depended
mainly upon the convergence of their discussions. Because convergence takes into
account both the number as well as the temporal order of the units of analyses, it
utilizes a greater amount of information present in the data. This makes conver-
gence a more powerful measure, both conceptually and statistically, than existing
predictors that do not fully utilize the information present in interactional data. If
this is the case, then the following hypothesis should hold: convergence is a more
powerful predictor of group performance than existing, commonly-used interac-
tional predictors.

1.3.3 Comparing Convergence with Other Commonly-Used
Interactional Predictors

Many studies of collaborative problem solving, including this one, use QCA to
operationalize measures for problem-solving processes. These measures typically
result in data about the frequency or relative frequency of positive indicators
(e.g., higher-order thinking, questioning, reflecting, etc.), or negative indicators (e.g.,
errors, misconceptions, lack of cooperation, non-task, etc.), or a combination that
adjusts for both the positive and negative indicators (e.g., the difference between the
frequencies of high- and low-quality contributions in a discussion). In this study, we
operationalized three measures to represent typical measures:

1. Frequency (n,: recall that this is the number of interaction units in a discussion
with impact=1),
n

2. Relative Frequency, | — ™1 | and
n+n,+n_

3. Position, (n, —n_)).

n—n,

, formed the fourth measure.
n+n,

Convergence, (

Multiple linear regression was used to simultaneously compare the significance
of the four measures in predicting group performance, controlling for problem type
in each case. The overall model was significant, F'=6.391, p=.003. Results in
Table 1.2 suggest that, of the four predictors of group performance, convergence
was the only one significant, t=2.650, p = .019, thereby supporting our hypothesis.
In other words, consistent with our hypothesis, convergence seems to be a more
powerful predictor of problem-solving performance when compared to existing,
commonly-used predictors.
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Table 1.2 Regression parameter estimates of the interactional variables and problem type

B SE Beta t p
(Constant) -1.778 1.693 -1.051 311
Frequency .006 .021 .239 .268 193
Relative frequency 1.541 2.792 116 552 .590
Position -.012 .024 —-.446 -.513 .616
Convergence 5.338 2.014 .839 2.650 .019
Problem type -.050 544 -.021 -.092 928

1.4 Discussion

In this chapter, we have described a complexity-grounded model for convergence.
We argued that convergence in group discussions can be seen as a complex, emer-
gent behavior arising from the local interactions between multiple actors, and medi-
ated by tools and artifacts. That is, convergence is a group-level property that
cannot be reduced to any particular individual in the group. Yet, it emerges from
and constrains the interactions between the very individuals it cannot be reduced to.
A complexity-grounded model allowed us to model a complex, group-level emer-
gent behavior such as convergence using simple interactional rules between group
members. More specifically, we used the concepts of emergent simplicity and
emergent complexity to hypothesize a set of theoretically-sound yet simple rules to
model the problem-solving interactions between group members, and then examined
the resulting emergent complexity: Convergence in their discussion.

Despite the intentional simplicity of our model, it revealed novel insights into the
process of collaboration. The first insight concerned the differential impact of con-
tributions in a group discussion—high (or low) quality contributions have a greater
positive (or negative) impact on the eventual outcome when they come earlier than
later in a discussion. A corollary of this finding was that eventual group performance
could be predicted based on what happens in the first 30-40% of a discussion
because group discussions tended to settle into fitness plateaus fairly quickly.
Finally, convergence was shown to be a more powerful predictor of group perfor-
mance than some existing, commonly-used measures. These insights are significant,
especially since participation in high-performing groups is a strong predictor of
subsequent individual learning gains (e.g., see Barron 2003; Cohen et al. 2002). In
other words, this conceptualization and analysis of convergence demonstrates
strong connections to both group performance and individual learning.

1.4.1 Implications for Scaffolding

If, as our work suggests, group performance is highly sensitive to early exchanges in
a discussion, then this insight bears important implications for scaffolding synchro-
nous, small-group, CSCL discussions to achieve optimal outcomes. For example, if
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one primarily aims to maximize group performance, these early sensitivities suggest
a need for scaffolding early in the discussion, since the impact of early interactional
activity on eventual group performance seems to be greater. Scaffolding earlier parts
of a group discussion may increase its likelihood of settling into higher fitness
plateaus; better group performance is predicated by high fitness plateaus. This is also
consistent with the notion of fading, that is, having scaffolded the early exchange, the
scaffolds can be faded (Wood et al. 1976). For example, instead of scaffolding the
entire process of problem solving using process scaffolds, it may only be necessary
to scaffold how a group analyzes and frames the problem, as these problem categori-
zation processes often occur early in problem-solving discussions and can shape all
subsequent processes (Kapur and Kinzer 2007; Kapur et al. 2005; Voiklis 2008). Such
an approach stands in contrast with the practice of blanket scaffolding of the CSCL
processes (e.g., through the use of collaborative scripts). The above are testable
hypotheses that emerge from this study and we invite the field to test and extend this
line of inquiry.

1.4.2 Implications for Methodology: The Temporal
Homogeneity Assumption

Sensitivity to early exchange also underscores the role of temporality, and conse-
quently, the need for analytical methods to take temporal information into account.
According to Reimann (2009), “Temporality does not only come into play in quan-
titative terms (e.g., durations, rates of change), but order matters: Because human
learning is inherently cumulative, the sequence in which experiences are encoun-
tered affects how one learns and what one learns” (p. 1). Therefore, understanding
(1) how processes evolve in time, and (2) how variation in this evolution explains
learning outcomes, ranks among the more important challenges facing CSCL
research (Akhras and Self 2000; Hmelo-Silver et al. this book; Reimann 2009).

To derive methodological implications, let us first consider a prototypical case
of coding and counting in CSCL. Typically, one or more coding/rating schemes are
applied to the interaction data, resulting in a cumulative frequency or relative fre-
quency distribution of interactions across the categories of the coding/rating
scheme (e.g., depth of explanations, functional content of interactions, misconcep-
tions, quality, correctness, etc.). These distributions essentially tally the amount,
proportion, and type of interactions vis-a-vis the interactional coding/rating scheme
(Suthers 2006). Significant links are then sought between quantitatively-coded
interactional data and outcomes, such as quality of group performance and group-to-
individual transfer (see Rourke and Anderson 2004, for a discussion on the validity
of QCA).

Notwithstanding the empirically-supported significant links between the nature
of interactional activity and group performance, interpreting findings from interac-
tional coding/rating schemes is limited by the very nature of the information tapped
by these measures. For example, what does it mean if a group discussion has a high
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proportion of a certain category of interaction? It could be that interactions coded
in that category were spread throughout the discussion, or perhaps they were clus-
tered together in a coherent phase during the discussion. Therefore, interactions that
are temporally far apart in a discussion carry the same weight in the cumulative
count or proportion: one that comes later in a discussion is given the same weight
as one that comes earlier. Such an analysis, while informative, does not take the
temporality of interactions into account, i.e., the time order of interactions in the
problem-solving process. By aggregating category counts over time, one implicitly
makes the assumption of temporal homogeneity (Kapur et al. 2008). In light of the
complexities of interactional dynamics in CSCL, it is surprising how frequently this
assumption of temporal homogeneity is made without justification or validation
(Voiklis et al. 20006).

It follows, then, that we need methods and measures that take temporality into
account. These methods and measures can potentially allow us to uncover patterns
in time and reveal novel insights (e.g., sensitivity to early exchange) that may otherwise
not be possible. Consequently, these methods and measures can play an instrumental
role in the building and testing of a process-oriented theory of problem solving and
learning (Reimann 2009).

1.4.3 Implications for Theorizing CSCL Groups
as Complex Systems

Interestingly, sensitivity to early exchange exhibited by CSCL groups in our study
seems analogous to sensitivity to initial conditions exhibited by many complex
adaptive systems (Arrow et al. 2000; Bar-Yam 2003); the idea being that small
changes initially can lead to vastly different outcomes over time, which is what we
found in our study. Furthermore, the locking-in mechanism is analogous to attractors
in the phase space of complex systems (Bar-Yam 2003). Phase space refers to the
maximal set of states a complex system can possibly find itself in as it evolves.
Evidently, a group discussion has an infinite phase space, yet the nature of early
exchange can potentially determine whether it organizes into higher or lower fitness
attractors. Thus, an important theoretical and methodological implication from this
finding is that CSCL research needs to pay particular attention to the temporal
aspects of interactional dynamics (Hmelo-Silver et al. this book). As this study
demonstrates, studying the evolution of interactional patterns can be insightful,
presenting counterintuitive departures from assumptions of linearity in, and temporal
homogeneity of, the problem solving process (Voiklis et al. 20006).

At a more conceptual level, the idea that one can derive meaningful insights into
a complex interactional process via a simple rule-based mechanism, while compelling,
may also be unsettling and counter-intuitive. Hence, a fair amount of intuitive resis-
tance to the idea is to be expected. For instance, it is reasonable to argue that the
extreme complexity of group interaction—an interweaving of syntactic, semantic, and
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pragmatic structures and meanings operating at multiple levels—make it a different
form of emergence altogether and, therefore, insights into complex interactional
processes cannot be gained by using simple-rule-governed methods. However, a care-
ful consideration of this argument reveals an underlying ontological assumption that
complex behavior cannot possibly be explained by simple mechanisms. Saying it
another way, some may argue that only complex mechanisms (e.g., linguistic mecha-
nisms) can explain complex behavior (e.g., convergence in group discussion). Of
course, this is a possibility, but, notions of emergent simplicity and emergent complex-
ity suggest that this is not the “only” possibility (Bar-Yam 2003), especially given
our knowledge of the laws of self-organization and complexity (Kauffman 1995).

It is noteworthy that emergent complexity is also integral to the theory of
dynamical minimalism (Nowak 2004) used to explain complex psychological and
social phenomena. Dynamical minimalist theory attempts to reconcile the scientific
principle of parsimony—that simple explanations are preferable to complex ones in
explaining a phenomenon—with the arguable loss in depth of understanding of that
phenomenon because of parsimony. Using the principle of parsimony, the theory
seeks the simplest mechanisms and the fewest variables to explain a complex phe-
nomenon. It argues that this need not sacrifice depth in understanding because
simple rules and mechanisms that repetitively and dynamically interact with each
other can produce complex behavior: the very definition of emergent complexity.
Thus, parsimony and complexity are not irreconcilable, leading one to question the
assumption that complex phenomena necessarily require complex explanations
(Kapur and Jacobson 2009).

Therefore, the conceptual and methodological implication from this study is not
that complex group behavior ought to be studied using simple-rule-based mecha-
nisms, but that exploring the possibility of modeling complex group behavior using
simple rule-based mechanisms is a promising and meaningful endeavor. Leveraging
this possibility, we demonstrated one way in which simple-rule-based mechanisms
can be used to model convergence in group discussion, in turn revealing novel
insights into the collaborative process. The proposed measures of convergence and
fitness curves were intentionally conceived and designed to be generic and, there-
fore, may be potentially applicable to other problem-solving situations as well.
Thus, they also provide a platform for the development of more sophisticated mea-
sures and techniques in the future.

1.4.4 Some Caveats and Limitations

New methods and measures always raise more questions than answers, and ours is
not an exception. What is more important is that repeated application and modifica-
tion over multiple data sets is needed before strong and valid inferences can be
made (Rourke and Anderson 2004). At this stage, therefore, our findings remain
technically bound by the context of this study; it is much too early to attempt any
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generalization. There are also several issues that need to be highlighted when
considering the use of the proposed methodology:

Issues of coding: Clearly, drawing reliable and valid inferences based on the new
measures minimally requires that the coding scheme be reliable and valid. To this
end, a conscious, critical decision was our choice of the content domain: we chose
Newtonian kinematics because it is a relatively well-structured domain. This domain
structure clarified the task of differentiating those contributions to the problem-
solving discussion that moved the group closer to a solution from those that did not
and, thus, minimized the effort of coding the impact of interactional units (1, —1, and
0). For a more complex domain (e.g., ethical dilemmas) where the impact is not as
easy to assess, our method may not be as reliable, or perhaps not even applicable.

Model simplicity: It can be argued that the proposed model is a very simple one,
and could be seen as a limitation. The decision to keep the model simple was inten-
tional; we chose to keep the number of codes to a minimum, i.e., just —1, 0, or 1.
We reasoned that if we could reveal novel insights by using the simplest model,
then one could always “complexify” the model subsequently. For example, one
could easily build on this model to code impact on a five point scale from -2 to 2
so as to discriminate contributions that make a greater positive or negative impact
than others. At the same time, the model also collapses many dimensions (such as
social, affective, cognitive, meta-cognitive, and so on) into one dimension of
impact. Collapsing dimensions into a simple model allows for the easy and direct
interpretation of results, but this gain in interpretability comes with the cost of an
overly reductive model. Once again, we wanted to demonstrate that even with a
simple model, one could potentially gain insights, and having done so, one could
always embark on a building a more complex model. For example, it might be useful
to model the co-evolution of the various dimensions, investigate the co-evolving
fitness trajectories, and develop deeper understandings of the phenomenon.

Corroborating interpretations: Our model is essentially a quantitative model. In
reducing complex interactions into impact ratings, it is necessarily reductive. In
interpreting findings from such analyses, it is important to use the method as part
of a mixed-method analytical commitment. If not, it may be hard to differentiate
results that are merely a statistical or mathematical artifact from the ones that are
substantively and theoretically meaningful.

1.4.5 Future Directions

Going forward, we see the need for developing new temporal measures. We want
to focus particularly on those that can be easily implemented from a temporal
sequence of codes that QCA of group discussions normally results in. In particular,
we argue for two candidates:

1. Lag-Sequential Analysis (LSA): LSA treats each interactional unit (as defined
in a study) as an observation; a coded sequence of these observations forming the
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interactional sequence of a group discussion (e.g., Erkens et al. 2003). LSA
detects the various non-random aspects of interactional sequences to reveal how
certain types of interactions follow others more often than what one would expect
by chance (Wampold 1992). By examining the transition probabilities between
interactions, LSA identifies statistically significant transitions from one type of
interactional activity to another (Bakeman and Gottman 1997; Wampold 1992).
As aresult, the collaborative process can be examined as an evolving, multi-state
network, thereby allowing us to reveal temporal patterns that may otherwise
remain hidden (Kauffman 1995). For example, Kapur (2008) coded collabora-
tive problem solving interactions into process categories of problem analysis,
problem critique, criteria development, solution development, and solution eval-
uation, thereby reducing each group discussion into a temporal string of process
category events. Using LSA, the analysis revealed significant temporal patterns
that the typical coding and counting method could not reveal, that is, how some
process categories were more likely to follow or be followed by other process
categories significantly above chance level. More importantly, LSA demon-
strated how variation in temporal patterns—sequences of process categories—
was significantly related to variation in group performance.

2. Hidden Markov Models (HMMs): HMMs (Rabiner 1989) offer analysis at a
relatively coarser grain size than LSA by detecting the broader interaction phases
that a discussion goes through. For example, Soller and colleagues (2002) used
HMMs to analyze and assess temporal patterns in on-line knowledge sharing
conversations over time. Their HMM model could determine the effectiveness of
knowledge sharing phases with 93% accuracy, that is, 43% above what one
would expect by chance. They argued that understanding these temporal phases
that provide an insight into the dynamics of how groups share, assimilate, and
build knowledge together is important in building a process theory of facilitating
to increase the effectiveness of the group interactions. Conceiving a group dis-
cussion as a temporal sequence of phases, one can use several methods to isolate
evolutionary phases, including measures of genetic entropy (Adami et al. 2000),
intensity of mutation rates (Burtsev 2003) or, in the case of problem interactions,
the classification of coherent phases of interaction. With the phases identified,
one can calculate and predict the probabilities between phases using HMMs
(Rabiner 1989; for an example, see Holmes 1997). As a result, one may begin to
understand when and why phase transitions as well as stable phases emerge;
more importantly, one may begin to understand how the configuration of one
phase may influence the likelihood of moving to any other phase. Whether one
can control or temper these phases, or whether such control or temperance would
prove a wise practice remains an open question which, even if only partially
answered, will be a breakthrough in characterizing and modeling the problem
solving process.

It is worth reiterating that these methods should not be used in isolation, but as
part of a larger, multi-method, multiple grain size analytical program. At each grain
size, findings should potentially inform and be informed by findings from analysis
at other grain sizes—an analytical approach that is commensurable with the
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multiple levels (individual, interactional, group) at which the phenomenon unfolds.
Only then can these methods and measures can play an instrumental role in the
building and testing of a process-oriented theory of problem solving and learning
(Hmelo-Silver et al. this book; Reimann 2009; Reimann et al. this book).

1.5 Conclusion

In this chapter, we have advanced a complexity-grounded, quantitative method for
uncovering temporal patterns in interactional data from CSCL discussions. In
particular, we have described how convergence in group discussions can be exam-
ined as an emergent behavior arising from theoretically-sound yet simple teleo-
logical rules to model the collaborative, problem-solving interactions of its
members. We were able to design a relatively simple model to reveal a preliminary
yet compelling insight into the nature and dynamics of problem-solving CSCL
groups. That is, convergence in group discussion, and consequently group perfor-
mance, is highly sensitive to early exchanges in the discussion. More importantly,
in taking these essential steps toward understanding of how temporality affects
CSCL group processes and performance, we call for further efforts within this line
of inquiry.
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