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Abstract We advance a complexity−grounded, quantitative method for uncovering 
temporal patterns in CSCL discussions. We focus on convergence because under-
standing how complex group discussions converge presents a major challenge in 
CSCL research. From a complex systems perspective, convergence in group discus-
sions is an emergent behavior arising from the transactional interactions between 
group members. Leveraging the concepts of emergent simplicity and emergent 
complexity (Bar-Yam 2003), a set of theoretically-sound yet simple rules was 
hypothesized: Interactions between group members were conceptualized as goal-
seeking adaptations that either help the group move towards or away from its goal, 
or maintain its status quo. Operationalizing this movement as a Markov walk, we 
present quantitative and qualitative findings from a study of online problem-solving 
groups. Findings suggest high (or low) quality contributions have a greater positive 
(or negative) impact on convergence when they come earlier in a discussion than 
later. Significantly, convergence analysis was able to predict a group’s performance 
based on what happened in the first 30–40% of its discussion. Findings and their 
implications for CSCL theory, methodology, and design are discussed.

1.1  Introduction

One of the major challenges facing collaborative problem-solving research is to 
understand the process of how groups achieve convergence in their discussions 
(Fischer and Mandl 2005). For example, without some level of convergent or 
shared assumptions and beliefs collaborators cannot define (perhaps not even 
recognize) the problem at hand nor select among the possible solutions, much 
less take action (Schelling 1960). A certain level of convergence—e.g., by what 
names collaborators refer to the objects of the problem—is required simply to carry 
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on a conversation (Brennan and Clark 1996). A deeper level of convergence—e.g., 
agreeing on the functional significance of the objects to which partners refer—is 
required to carry out shared intentions on those objects (Clark and Lucy 1975). Not 
surprisingly, Roschelle (1996) argued that convergence, as opposed to socio-cogni-
tive conflict, is more significant in explaining why certain group discussions lead 
to more productive outcomes than others.

Although there has been considerable research towards understanding the cogni-
tive and social mechanisms of convergence in collaborative learning environments 
(Clark and Brennan 1991; Fischer and Mandl 2005; Jeong and Chi 2007; Roschelle 
and Teasley 1995; Stahl 2005), the problem of convergence—understanding the 
complex process of how multiple actors, artifacts, and environments interact and 
evolve in space and time to converge on an outcome is critical—remains a perennial 
one (Barab et al. 2001). A substantial amount of literature attempts to understand 
group processes using qualitative analytical methods (e.g., interactional analysis, 
discourse analysis, conversation analysis), which provide insightful and meaningful 
micro-genetic accounts of the complex process of emergence of convergence in 
groups (e.g., Barron 2000, 2003; Teasley & Roschelle 1993; Stahl 2005). For the 
present purposes, however, our proposal speaks to quantitative approaches, typically 
involving quantitative content analysis (QCA) (Chi 1997) of interactional data; 
the use of QCA is pervasive in examining the nature of interaction and participation 
in CSCL research (Rourke Anderson 2004). However, quantitative measures and 
methods for conceptualizing the temporal evolution of collaborative problem-solving 
processes as well as the emergence of convergence remain lacking (Barab et al. 
2001; Collazos et al. 2002; Hmelo-Silver et al. this book; Reimann 2009).

Increasingly, a realization of the inherent complexity in the interactional dynamics 
of group members is giving way to a more emergent view of how groups function 
and perform (Arrow et al. 2000; Kapur et al. 2007; Kapur et al. 2008; Stahl 2005). 
However, the use of complex systems in the learning sciences is relatively sparse, 
but gaining momentum (see Jacobson and Wilensky 2006). A major thrust of such 
research is on the curricula, teaching, and learnability issues related to complex 
systems, and how they influence learning and transfer. However, complex systems 
also offer important theoretical conceptions and methodologies that can potentially 
expand the research tool-kit in the learning sciences (Jacobson and Wilensky 2006; 
Kapur and Jacobson 2009; Kapur et al. 2005, 2007). The work reported in this 
chapter leverages this potential to better understand how convergence emerges in 
group discussions.

From a complex systems’ perspective, convergence in group discussions can be 
seen as a complex, emergent behavior arising from the local interactions between 
multiple actors, and mediated by tools and artifacts. Convergence is therefore a 
group-level property that cannot be reduced to any particular individual in the 
group. Yet, it emerges from and constrains the interactions between the very indi-
viduals it cannot be reduced to. To understand this emergence, we first discuss the 
concept of emergent behavior, particularly the distinction between emergent sim-
plicity and emergent complexity; a distinction that is central to our proposal. 
Following that, we describe one way in which convergence in group discussions 
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can be conceptualized and modeled. We support our case empirically, through find-
ings from a study of CSCL groups. We end by discussing the implications of our 
work for CSCL theory, methodology, and design.

1.1.1  Unpacking Emergent Behavior: Emergent Simplicity 
Versus Emergent Complexity

Central to the study of complex systems is how the complexity of a whole is related 
to the complexity of its parts (Bar-Yam 2003). The concept of emergent behavior—
how macro-level behaviors emerge from micro-level interactions of individual 
agents—is of fundamental importance to understanding this relationship. At the 
same time, the concept of emergent behavior is rather paradoxical. On the one 
hand, it arises from the interactions between agents in a system, e.g., individuals in 
a collective. On the other hand, it constrains subsequent interactions between 
agents and in so doing, seems to have a life of its own independent of the local 
interactions (Kauffman 1995), and therefore, cannot be reduced to the very indi-
vidual agents (or parts) of the system it emerged from (Lemke 2000). For example, 
social structures (e.g., norms, values, beliefs, lexicons, etc.) within social networks 
emerge from the local interactions between individual actors. At the same time, 
these structures shape and constrain the subsequent local interactions between indi-
vidual actors, but they cannot be reduced to the very individual actors’ behaviors 
and interactions they emerged from (Lemke 2000; Watts and Strogatz 1998). 
Therefore, it becomes fundamentally important to understand how macro-level 
behaviors emerge from and constrain micro-level interactions of individual 
agents.

Understanding the “how,” however, requires an understanding of two important 
principles in complexity. First, simple rules at the local level can generate complex 
emergent behavior at the collective level (Kauffman 1995; Epstein and Axtell 
1996). For example, consider the brain as a collection of neurons. These neurons 
are complex themselves, but exhibit simple binary behavior in their synaptic inter-
actions. This type of emergent behavior, when complexity at the individual-level 
results in simplicity at the collective-level, is called emergent simplicity (Bar-Yam 
2003). Further, these simple (binary) synaptic interactions between neurons col-
lectively give rise to complex brain “behaviors”—memory, cognition, etc.—that cannot 
be seen in the behavior of individual neurons. This type of emergent behavior, when 
simplicity at the individual-level results in complexity at the collective-level, is 
called emergent complexity (Bar-Yam 2003).

The distinction between emergent simplicity and complexity is critical, for it 
demonstrates the possibility that a change of scale (micro vs. macro level) can be 
accompanied with a change in the type (simplicity vs. complexity) of behavior 
(Kapur and Jacobson 2009). “Rules that govern behavior at one level of analysis 
(the individual) can cause qualitatively different behavior at higher levels (the 
group)” (Gureckis and Goldstone 2006, p. 1). We do not necessarily have to seek 



6 M. Kapur et al.

complex explanations for complex behavior; complex collective behavior may 
very well be explained from the “bottom up” via simple, minimal information, 
e.g., utility function, decision rule, or heuristic, contained in local interactions 
(Kapur et al. 2006; Nowak 2004).

In this chapter, we use notions of emergent simplicity and complexity to concep-
tualize a group of individuals (agents) interacting with each other as a complex 
system. The group, as a complex system, consists of complex agents, i.e., just like 
the neurons, the individuals themselves are complex. Again, it is only intuitive to 
think that their behavior can be anything but complex and any attempt to model it 
via simple rules is futile. However, emergent simplicity suggests that this is not an 
ontological necessity. Their behavior may very well be modeled via simple rules. 
Further, emergent complexity suggests that doing so may reveal critical insights 
into the complexity of their behavior as a collective. It is this possibility that we 
explore and develop in the remainder of this chapter.

1.1.2  Purpose

We describe how convergence in group discussions can be examined as an 
emergent behavior arising from theoretically-sound yet simple teleological rules 
to model the collaborative, problem-solving interactions of its members. We 
support our model empirically, through findings from a study of groups solving 
problems in an online, synchronous, chat environment. Note that this study was 
part of a larger program of research on productive failure (for more details, see 
Kapur 2008, 2009, 2010; Kapur and Kinzer 2007, 2009). We first describe 
the context of the study in which the methodology was instantiated before illus-
trating the methodology.

1.2  Methodology

1.2.1  Research Context and Data Collection

Participants included sixty 11th-grade students (46 male, 14 female; 16–17 years 
old) from the science stream of a co-educational, English-medium high school in 
Ghaziabad, India. They were randomized into 20 triads and instructed to collabo-
rate and solve either well- or ill-structured problem scenarios. The study was car-
ried out in the school’s computer laboratory, where group members communicated 
with one another only through synchronous, text-only chat. The 20 automatically-
archived transcripts, one for each group, contained the group discussions as well as 
their solutions, and formed the data used in our analyses.
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1.2.2  Procedure

A well-structured (WS) and an ill-structured (IS) problem scenario were developed 
consistent with Jonassen’s (2000) design theory typology for problems (see Kapur 
2008 for the problem scenarios). Both problem scenarios dealt with a car accident 
scenario and targeted the same concepts from Newtonian Kinematics and Laws of 
Friction to solve them. Content validation of the two problem scenarios was 
achieved with the help of two physics teachers from the school with experience in 
teaching those subjects at the senior secondary levels. The teachers also assessed 
the time students needed to solve the problems. Pilot tests with groups of students 
from the previous cohort further informed the time allocation for the group work, 
which was set at 1.5 h.

The study was carried out in the school’s computer laboratory. The online syn-
chronous collaborative environment was a java-based, text-only chat application 
running on the Internet. Despite these participants being technologically savvy in 
using online chat, they were familiarized in the use of the synchronous text-only 
chat application prior to the study. Group members could only interact within their 
group. Each group’s discussion and solution were automatically archived as a text 
file to be used for analysis. A seating arrangement ensured that participants of a 
given group were not proximally located so that the only means of communication 
between group members was synchronous, text-only chat.

To mitigate status effects, we ensured that participants were not cognizant of 
their group members’ identities; the chat environment was configured so that each 
participant was identifiable only by an alpha-numeric code. Cross-checking the 
transcripts of their interactions revealed that participants followed the instruction 
not to use their names and instead used the codes when referring to each other. No 
help regarding the problem-solving task was given to any participant or group during 
the study. Furthermore, no external member roles or division of labor were sug-
gested to any of the groups. The procedures described above were identical for both 
WS and IS groups. The time stamp in the chat environment indicated that all groups 
made full use of the allotted time of 1.5 h and solved their respective problems.

1.2.3  Hypothesizing Simple Rules

The concept of emergent simplicity was invoked to hypothesize a set of simple 
rules. Despite the complexity of the individual group members, the impact of their 
interactions was conceived to be governed by a set of simple rules. Group members 
were conceived as agents interacting with one another in a goal-directed manner 
toward solving a problem. Viewed a posteriori, these transactional interactions 
seemed to perform a telic function, i.e., they operated to reduce the difference 
between the current problematic state of the discussion and a goal state. Thus, local 
interactions between group members can be viewed as operators performing a 
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means-ends analysis in the problem space (Newell and Simon 1972). From this, 
a set of simple rules follows naturally. Each interaction has an impact that:

 1. Moves the group towards a goal state, or
 2. Moves the group away from a goal state, or
 3. Maintains the status-quo (conceptualized as a “neutral impact”).

Then, convergence in group discussion was conceived as an emergent complexity 
arising from this simple-rule-based mechanism governing the impact of individual 
agent-based interactions.

1.2.4  Operationalizing Convergence

Concepts from the statistical theory of Markov walks were employed to operation-
alize the model for convergence (Ross 1996). Markov walks are commonly used to 
model a wide variety of complex phenomenon (Ross 1996). First, quantitative con-
tent analysis (QCA; Chi 1997), also commonly known as coding and counting, was 
used to segment utterances into one or more interaction units. The interaction unit 
of analysis was semantically defined as the impact(s) that an utterance had on 
the group discussion vis-à-vis the hypothesized simple rule. Two trained 
doctoral students independently coded the interactions with an inter-rater reliability 
(Krippendorff’s alpha) of.85. An impact value of 1, −1, or 0 was assigned to each 
interaction unit depending upon whether it moved the group discussion toward 
(impact = 1) or away (impact = −1) from the goal of the activity—a solution state 
of the given problem—or maintained the status quo (impact = 0). Therefore, each 
discussion was reduced to a temporal string of 1 s, −1 s, and 0 s.

More formally, let 1n , 1n− , and 0n  denote the number of interaction units 
assigned the impact values 1, −1, and 0 respectively up to a certain utterance in a 
discussion. Then, up to that utterance, the convergence value was,
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For each of the 20 discussions, convergence values were calculated after each 
utterance in the discussion, resulting in a notional time series representing the 
evolution of convergence in group discussion.

1.3  Results

Plotting the convergence value on the vertical axis and time (defined notionally with 
utterances as ticks on the evolutionary clock) on the horizontal axis, one gets a rep-
resentation (also called a fitness curve) of the problem-solving process as it evolves 
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in time. Figure 1.1 presents four major types of fitness curves that emerged from the 
discussion of the 20 problem-solving groups in our study. These four fitness curves 
contrast the high- with the low-performing groups (group performance is operation-
alized in the next section) across the well- and ill-structured problem types.

1.3.1  Interpreting Fitness Curves

It is easy to see that the convergence value always lies between −1 and 1. The closer 
the value is to 1, the higher the convergence, and the closer the group is to reaching 
a solution. The end-point of the fitness curve represents the final fitness level or 
convergence of the entire discussion. From this, the extent to which a group was 
successful in solving the problem can be deduced. Furthermore, one might imagine 
that an ideal fitness curve is one that has all the moves or steps in the positive direc-
tion, i.e., a horizontal straight line with fitness equaling one. However, the data 

Fig 1.1 Fitness curves of high and low performing groups across problem types
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suggests that, in reality, some level of divergence of ideas may in fact be a good 
thing (Kapur 2008, 2009; Schultz-Hardt et al. 2002), as can be seen in the fitness 
curves of both the high-performing groups.

The shape of the fitness curve, therefore, is also informative about the paths 
respective groups take toward problem solution. For example, in Fig. 1.1, both the 
low-performing groups converged at approximately the same (negative) fitness 
levels, but their paths leading up to their final levels were quite different. The well-
structured group showed a sharp fall after initially moving in the correct direction 
(indicated by high fitness initially). The ill-structured group, on the other hand, 
tried to recover from an initial drop in fitness but was unsuccessful, ending up at 
approximately the same fitness level as the well-structured group. Further, comparing 
the high-performing with the low-performing groups, one can see that the discus-
sions of high-performing groups had fewer utterances, regardless of problem type. 
Finally, all fitness curves seemed to settle into a fitness plateau fairly quickly. What 
is most interesting is that this descriptive examination of fitness curves provides a 
view of paths to a solution that are lost in analysis systems that consider only a 
given point in the solution process, thus assuming that similar behaviors or states at 
a given point are arrived at in similar ways. As different paths can lead to similar 
results, unidimensional analyses that consider only single points in time (often only 
the solution state) are not consistent with what this study’s data suggest about 
problem-solving processes.

Most important is a mathematical property of convergence. Being a ratio, con-
vergence is more sensitive to initial contributions, both positive and negative, than 
those made later in the process. This can be easily seen because with each positive 
(or negative) contribution, the ratio’s numerator is increased (or decreased) by 
one. However, the denominator in the ratio always increases, regardless of the contri-
bution being positive or negative. Therefore, when a positive (or negative) 
contribution comes earlier in the discussion, its impact on convergence is greater 
because a unit increment (or decrement) in the numerator is accompanied by a 
denominator that is smaller earlier than later. Said another way, this conceptualization 
of convergence allows us to test the following hypothesis: “good” contributions 
made earlier in a group discussion, on average, do more good than if they were 
made later. Similarly, “bad” ones, on average, do more harm if they come earlier than 
later in the discussion. To test this hypothesis, the relationship between convergence 
and group performance was explored by running a temporal simulation on the data set.

1.3.2  Relationship between Convergence  
and Group Performance

The purpose of the simulation was to determine if the level of convergence in group 
discussion provided an indication of the eventual group performance. Group per-
formance was operationalized as the quality of group solution, independently rated 
by two doctoral students on a nine-point rating scale (Table 1.1) with an inter-rater 
reliability (Krippendorff’s alpha) of .95.
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The discussions of all 20 groups were each segmented into ten equal parts. At each 
tenth, the convergence value up to that point was calculated. This resulted in 10 sets 
of 20 convergence values; the first set corresponding to convergence in the discussion 
after 10% of the discussion was over, the second after 20% of the discussion was over, 
and so on until the tenth set, which corresponded to the final convergence value of the 
discussion, i.e., after 100% of the discussion had occurred. A simulation was then 
carried out by regressing group performance on convergence values at each tenth of 
the discussion (hence, a temporal simulation), controlling for problem type (well- 
or ill-structured) each time. The p-value corresponding to the statistical significance 
of the predictive power of convergence at each tenth of the discussion on eventual 
group performance was plotted on the vertical axis (see Fig. 1.2).

C1 through C10 denote the ten equally spaced instances in each discussion at which 
the convergence values were calculated. The simulation suggested that, on average, at 
some point after 30% but before 40% of the discussion is over (i.e., between C3 and 
C4 in Fig. 1.2), the convergence value is able to predict eventual group performance at 
the.05 level of significance or better. This shows that convergence is a powerful mea-
sure that is able to model the impact that early contributions have on eventual group 
performance. This insight bears important implications for scaffolding group discus-
sions to achieve optimal outcomes. For example, if one’s primary aim is to maximize 
group performance, the insight suggests a need for scaffolding early in the discussion, 
since the impact of early interactional activity on eventual group performance seems 
to be greater. Scaffolding earlier parts of a group discussion may increase its likelihood 
of settling into higher fitness plateaus; the higher the fitness plateau, the better the 
group performance, on average. This insight is in and of itself a significant finding, but 
since participation in high-performing groups is consistently (and not surprisingly) a 
strong predictor of subsequent individual learning gains (e.g., see Barron 2003; Cohen 
et al. 2002), we believe it makes it all the more significant, for it demonstrates strong 
connections to group and individual learning.

To delve deeper into what makes convergence a powerful measure, micro-analytical 
interactional analysis sheds more light. We present a brief analysis of the following 
excerpt containing an exchange between group members S1 and S2.

Table 1.1 Rubric for coding quality of group solution

Quality Description

0 Solution is weakly supported, if at all
1 Solution supported in a limited way relying either on a purely quantitative or 

a qualitative argument with little, if any, discussion and justification of the 
assumptions made

2 Solution is only partially supported by a mix of both qualitative and quantitative 
arguments; assumptions made are not mentioned, adequately discussed, or justified 
to support the decision

3 Solution synthesizes both qualitative and quantitative arguments; assumptions made 
are not adequately discussed and justified to support the decision

4 Solution synthesizes both qualitative and quantitative arguments; assumptions made 
are adequately discussed and justified to support the decision

Mid-point scores of .5, 1.5, 2.5, and 3.5 were assigned when the quality of solution was assessed 
to be between the major units 0, 1, 2, 3, and 4, making the scale essentially a 9-point scale
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S1 > are we going to apply frictional retardation for the reaction time also? −1
S2 > no, because reaction time is the time between watching the boy and applying the 

brakes so in this time [the] car must be accelerating
1, 1

S1 > but I think we must not forget that the car is moving on the same road on which  
the incident occurs and the road is providing the retardation

−1, −1

S2 > but maximum speed is at the instant when he applied the brake 1
S1 > but earlier you said that the car will accelerate after perceiving the boy −1
S2 > I said so because his foot must be on accelerator during reaction time 1
S1 > Now I understand… please proceed to write your answer 1, 1

Recall that the problem involved a car-accident scenario (see Kapur 2008, for 
the problem scenario). In this excerpt, S1 and S2 are trying to decide whether or not 
reaction time of the driver of the car that was involved in the accident should factor 
into their calculations. The excerpt starts with S1 asking a question about applying 
frictional retardation during the driver’s reaction time. Being a misconception, it 
was rated as having a negative impact (−1). S2 evaluates S1’s question and says 
‘no,’ attempting to correct the misconception. Hence, its positive (+1) impact rating. 
In the same utterance, S2 elaborates why frictional retardation should not to be 
applied, further positively impacting the group’s progress. The argument continues 
with S1 persisting with the misconception (assigned negative impacts) until S2 is 
able to convince S1 otherwise (assigned positive impacts), thereby converging on a 
correct understanding of this aspect (dealing with friction during reaction time) of 
the problem. Note that had S2 wrongly evaluated and agreed to S1’s misconception, 
the impact ratings would have been negative, which, without any further correction, 
would have led the group to diverge from a correct understanding of that very 
aspect of the problem.

This analysis, albeit brief, shows that impact ratings are meaningful only in rela-
tion to preceding utterances (Bransford and Nitsch 1978) and take into account the 

Fig. 1.2 Simulation of the significance of convergence in predicting group performance
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sequence and temporality of collaborative interactions (Kapur et al. 2008). Other 
examples of highly convergent discussion episodes would include agreement with 
and positive evaluation and development of correct understandings of the problem, 
solution proposals, and problem solving strategies. As a result, despite solving dif-
ferent types of problems (well- or ill-structured), group performance depended 
mainly upon the convergence of their discussions. Because convergence takes into 
account both the number as well as the temporal order of the units of analyses, it 
utilizes a greater amount of information present in the data. This makes conver-
gence a more powerful measure, both conceptually and statistically, than existing 
predictors that do not fully utilize the information present in interactional data. If 
this is the case, then the following hypothesis should hold: convergence is a more 
powerful predictor of group performance than existing, commonly-used interac-
tional predictors.

1.3.3  Comparing Convergence with Other Commonly-Used 
Interactional Predictors

Many studies of collaborative problem solving, including this one, use QCA to 
operationalize measures for problem-solving processes. These measures typically 
result in data about the frequency or relative frequency of positive indicators 
(e.g., higher-order thinking, questioning, reflecting, etc.), or negative indicators (e.g., 
errors, misconceptions, lack of cooperation, non-task, etc.), or a combination that 
adjusts for both the positive and negative indicators (e.g., the difference between the 
frequencies of high- and low-quality contributions in a discussion). In this study, we 
operationalized three measures to represent typical measures:

 1. Frequency ( 1n : recall that this is the number of interaction units in a discussion 
with impact = 1),

 2. Relative Frequency, 1

1 0 1

n

n n n−

 
  + +

, and

 3. Position, ( 1 1n n−− ).

Convergence, 1 1

1 1

n n

n n
−

−

 −
 + 

, formed the fourth measure.

Multiple linear regression was used to simultaneously compare the significance 
of the four measures in predicting group performance, controlling for problem type 
in each case. The overall model was significant, F = 6.391, p = .003. Results in 
Table 1.2 suggest that, of the four predictors of group performance, convergence 
was the only one significant, t = 2.650, p = .019, thereby supporting our hypothesis. 
In other words, consistent with our hypothesis, convergence seems to be a more 
powerful predictor of problem-solving performance when compared to existing, 
commonly-used predictors.
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1.4  Discussion

In this chapter, we have described a complexity-grounded model for convergence. 
We argued that convergence in group discussions can be seen as a complex, emer-
gent behavior arising from the local interactions between multiple actors, and medi-
ated by tools and artifacts. That is, convergence is a group-level property that 
cannot be reduced to any particular individual in the group. Yet, it emerges from 
and constrains the interactions between the very individuals it cannot be reduced to. 
A complexity-grounded model allowed us to model a complex, group-level emer-
gent behavior such as convergence using simple interactional rules between group 
members. More specifically, we used the concepts of emergent simplicity and 
emergent complexity to hypothesize a set of theoretically-sound yet simple rules to 
model the problem-solving interactions between group members, and then examined 
the resulting emergent complexity: Convergence in their discussion.

Despite the intentional simplicity of our model, it revealed novel insights into the 
process of collaboration. The first insight concerned the differential impact of con-
tributions in a group discussion—high (or low) quality contributions have a greater 
positive (or negative) impact on the eventual outcome when they come earlier than 
later in a discussion. A corollary of this finding was that eventual group performance 
could be predicted based on what happens in the first 30–40% of a discussion 
because group discussions tended to settle into fitness plateaus fairly quickly. 
Finally, convergence was shown to be a more powerful predictor of group perfor-
mance than some existing, commonly-used measures. These insights are significant, 
especially since participation in high-performing groups is a strong predictor of 
subsequent individual learning gains (e.g., see Barron 2003; Cohen et al. 2002). In 
other words, this conceptualization and analysis of convergence demonstrates 
strong connections to both group performance and individual learning.

1.4.1  Implications for Scaffolding

If, as our work suggests, group performance is highly sensitive to early exchanges in 
a discussion, then this insight bears important implications for scaffolding synchro-
nous, small-group, CSCL discussions to achieve optimal outcomes. For example, if 

Table 1.2 Regression parameter estimates of the interactional variables and problem type

B SE Beta t p

(Constant) −1.778 1.693 −1.051 .311
Frequency .006 .021 .239 .268 .793
Relative frequency 1.541 2.792 .116 .552 .590
Position −.012 .024 −.446 −.513 .616
Convergence 5.338 2.014 .839 2.650 .019
Problem type −.050 .544 −.021 −.092 .928
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one primarily aims to maximize group performance, these early sensitivities suggest 
a need for scaffolding early in the discussion, since the impact of early interactional 
activity on eventual group performance seems to be greater. Scaffolding earlier parts 
of a group discussion may increase its likelihood of settling into higher fitness 
plateaus; better group performance is predicated by high fitness plateaus. This is also 
consistent with the notion of fading, that is, having scaffolded the early exchange, the 
scaffolds can be faded (Wood et al. 1976). For example, instead of scaffolding the 
entire process of problem solving using process scaffolds, it may only be necessary 
to scaffold how a group analyzes and frames the problem, as these problem categori-
zation processes often occur early in problem-solving discussions and can shape all 
subsequent processes (Kapur and Kinzer 2007; Kapur et al. 2005; Voiklis 2008). Such 
an approach stands in contrast with the practice of blanket scaffolding of the CSCL 
processes (e.g., through the use of collaborative scripts). The above are testable 
hypotheses that emerge from this study and we invite the field to test and extend this 
line of inquiry.

1.4.2  Implications for Methodology: The Temporal  
Homogeneity Assumption

Sensitivity to early exchange also underscores the role of temporality, and conse-
quently, the need for analytical methods to take temporal information into account. 
According to Reimann (2009), “Temporality does not only come into play in quan-
titative terms (e.g., durations, rates of change), but order matters: Because human 
learning is inherently cumulative, the sequence in which experiences are encoun-
tered affects how one learns and what one learns” (p. 1). Therefore, understanding 
(1) how processes evolve in time, and (2) how variation in this evolution explains 
learning outcomes, ranks among the more important challenges facing CSCL 
research (Akhras and Self 2000; Hmelo-Silver et al. this book; Reimann 2009).

To derive methodological implications, let us first consider a prototypical case 
of coding and counting in CSCL. Typically, one or more coding/rating schemes are 
applied to the interaction data, resulting in a cumulative frequency or relative fre-
quency distribution of interactions across the categories of the coding/rating 
scheme (e.g., depth of explanations, functional content of interactions, misconcep-
tions, quality, correctness, etc.). These distributions essentially tally the amount, 
proportion, and type of interactions vis-à-vis the interactional coding/rating scheme 
(Suthers 2006). Significant links are then sought between quantitatively-coded 
interactional data and outcomes, such as quality of group performance and group-to-
individual transfer (see Rourke and Anderson 2004, for a discussion on the validity 
of QCA).

Notwithstanding the empirically-supported significant links between the nature 
of interactional activity and group performance, interpreting findings from interac-
tional coding/rating schemes is limited by the very nature of the information tapped 
by these measures. For example, what does it mean if a group discussion has a high 
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proportion of a certain category of interaction? It could be that interactions coded 
in that category were spread throughout the discussion, or perhaps they were clus-
tered together in a coherent phase during the discussion. Therefore, interactions that 
are temporally far apart in a discussion carry the same weight in the cumulative 
count or proportion: one that comes later in a discussion is given the same weight 
as one that comes earlier. Such an analysis, while informative, does not take the 
temporality of interactions into account, i.e., the time order of interactions in the 
problem-solving process. By aggregating category counts over time, one implicitly 
makes the assumption of temporal homogeneity (Kapur et al. 2008). In light of the 
complexities of interactional dynamics in CSCL, it is surprising how frequently this 
assumption of temporal homogeneity is made without justification or validation 
(Voiklis et al. 2006).

It follows, then, that we need methods and measures that take temporality into 
account. These methods and measures can potentially allow us to uncover patterns 
in time and reveal novel insights (e.g., sensitivity to early exchange) that may otherwise 
not be possible. Consequently, these methods and measures can play an instrumental 
role in the building and testing of a process-oriented theory of problem solving and 
learning (Reimann 2009).

1.4.3  Implications for Theorizing CSCL Groups  
as Complex Systems

Interestingly, sensitivity to early exchange exhibited by CSCL groups in our study 
seems analogous to sensitivity to initial conditions exhibited by many complex 
adaptive systems (Arrow et al. 2000; Bar-Yam 2003); the idea being that small 
changes initially can lead to vastly different outcomes over time, which is what we 
found in our study. Furthermore, the locking-in mechanism is analogous to attractors 
in the phase space of complex systems (Bar-Yam 2003). Phase space refers to the 
maximal set of states a complex system can possibly find itself in as it evolves. 
Evidently, a group discussion has an infinite phase space, yet the nature of early 
exchange can potentially determine whether it organizes into higher or lower fitness 
attractors. Thus, an important theoretical and methodological implication from this 
finding is that CSCL research needs to pay particular attention to the temporal 
aspects of interactional dynamics (Hmelo-Silver et al. this book). As this study 
demonstrates, studying the evolution of interactional patterns can be insightful, 
presenting counterintuitive departures from assumptions of linearity in, and temporal 
homogeneity of, the problem solving process (Voiklis et al. 2006).

At a more conceptual level, the idea that one can derive meaningful insights into 
a complex interactional process via a simple rule-based mechanism, while compelling, 
may also be unsettling and counter-intuitive. Hence, a fair amount of intuitive resis-
tance to the idea is to be expected. For instance, it is reasonable to argue that the 
extreme complexity of group interaction—an interweaving of syntactic, semantic, and 
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pragmatic structures and meanings operating at multiple levels—make it a different 
form of emergence altogether and, therefore, insights into complex interactional 
processes cannot be gained by using simple-rule-governed methods. However, a care-
ful consideration of this argument reveals an underlying ontological assumption that 
complex behavior cannot possibly be explained by simple mechanisms. Saying it 
another way, some may argue that only complex mechanisms (e.g., linguistic mecha-
nisms) can explain complex behavior (e.g., convergence in group discussion). Of 
course, this is a possibility, but, notions of emergent simplicity and emergent complex-
ity suggest that this is not the “only” possibility (Bar-Yam 2003), especially given 
our knowledge of the laws of self-organization and complexity (Kauffman 1995).

It is noteworthy that emergent complexity is also integral to the theory of 
dynamical minimalism (Nowak 2004) used to explain complex psychological and 
social phenomena. Dynamical minimalist theory attempts to reconcile the scientific 
principle of parsimony—that simple explanations are preferable to complex ones in 
explaining a phenomenon—with the arguable loss in depth of understanding of that 
phenomenon because of parsimony. Using the principle of parsimony, the theory 
seeks the simplest mechanisms and the fewest variables to explain a complex phe-
nomenon. It argues that this need not sacrifice depth in understanding because 
simple rules and mechanisms that repetitively and dynamically interact with each 
other can produce complex behavior: the very definition of emergent complexity. 
Thus, parsimony and complexity are not irreconcilable, leading one to question the 
assumption that complex phenomena necessarily require complex explanations 
(Kapur and Jacobson 2009).

Therefore, the conceptual and methodological implication from this study is not 
that complex group behavior ought to be studied using simple-rule-based mecha-
nisms, but that exploring the possibility of modeling complex group behavior using 
simple rule-based mechanisms is a promising and meaningful endeavor. Leveraging 
this possibility, we demonstrated one way in which simple-rule-based mechanisms 
can be used to model convergence in group discussion, in turn revealing novel 
insights into the collaborative process. The proposed measures of convergence and 
fitness curves were intentionally conceived and designed to be generic and, there-
fore, may be potentially applicable to other problem-solving situations as well. 
Thus, they also provide a platform for the development of more sophisticated mea-
sures and techniques in the future.

1.4.4  Some Caveats and Limitations

New methods and measures always raise more questions than answers, and ours is 
not an exception. What is more important is that repeated application and modifica-
tion over multiple data sets is needed before strong and valid inferences can be 
made (Rourke and Anderson 2004). At this stage, therefore, our findings remain 
technically bound by the context of this study; it is much too early to attempt any 



18 M. Kapur et al.

generalization. There are also several issues that need to be highlighted when 
considering the use of the proposed methodology:

Issues of coding: Clearly, drawing reliable and valid inferences based on the new 
measures minimally requires that the coding scheme be reliable and valid. To this 
end, a conscious, critical decision was our choice of the content domain: we chose 
Newtonian kinematics because it is a relatively well-structured domain. This domain 
structure clarified the task of differentiating those contributions to the problem-
solving discussion that moved the group closer to a solution from those that did not 
and, thus, minimized the effort of coding the impact of interactional units (1, −1, and 
0). For a more complex domain (e.g., ethical dilemmas) where the impact is not as 
easy to assess, our method may not be as reliable, or perhaps not even applicable.

Model simplicity: It can be argued that the proposed model is a very simple one, 
and could be seen as a limitation. The decision to keep the model simple was inten-
tional; we chose to keep the number of codes to a minimum, i.e., just −1, 0, or 1. 
We reasoned that if we could reveal novel insights by using the simplest model, 
then one could always “complexify” the model subsequently. For example, one 
could easily build on this model to code impact on a five point scale from −2 to 2 
so as to discriminate contributions that make a greater positive or negative impact 
than others. At the same time, the model also collapses many dimensions (such as 
social, affective, cognitive, meta-cognitive, and so on) into one dimension of 
impact. Collapsing dimensions into a simple model allows for the easy and direct 
interpretation of results, but this gain in interpretability comes with the cost of an 
overly reductive model. Once again, we wanted to demonstrate that even with a 
simple model, one could potentially gain insights, and having done so, one could 
always embark on a building a more complex model. For example, it might be useful 
to model the co-evolution of the various dimensions, investigate the co-evolving 
fitness trajectories, and develop deeper understandings of the phenomenon.

Corroborating interpretations: Our model is essentially a quantitative model. In 
reducing complex interactions into impact ratings, it is necessarily reductive. In 
interpreting findings from such analyses, it is important to use the method as part 
of a mixed-method analytical commitment. If not, it may be hard to differentiate 
results that are merely a statistical or mathematical artifact from the ones that are 
substantively and theoretically meaningful.

1.4.5  Future Directions

Going forward, we see the need for developing new temporal measures. We want 
to focus particularly on those that can be easily implemented from a temporal 
sequence of codes that QCA of group discussions normally results in. In particular, 
we argue for two candidates:

 1. Lag-Sequential Analysis (LSA): LSA treats each interactional unit (as defined 
in a study) as an observation; a coded sequence of these observations forming the 
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interactional sequence of a group discussion (e.g., Erkens et al. 2003). LSA 
detects the various non-random aspects of interactional sequences to reveal how 
certain types of interactions follow others more often than what one would expect 
by chance (Wampold 1992). By examining the transition probabilities between 
interactions, LSA identifies statistically significant transitions from one type of 
interactional activity to another (Bakeman and Gottman 1997; Wampold 1992). 
As a result, the collaborative process can be examined as an evolving, multi-state 
network, thereby allowing us to reveal temporal patterns that may otherwise 
remain hidden (Kauffman 1995). For example, Kapur (2008) coded collabora-
tive problem solving interactions into process categories of problem analysis, 
problem critique, criteria development, solution development, and solution eval-
uation, thereby reducing each group discussion into a temporal string of process 
category events. Using LSA, the analysis revealed significant temporal patterns 
that the typical coding and counting method could not reveal, that is, how some 
process categories were more likely to follow or be followed by other process 
categories significantly above chance level. More importantly, LSA demon-
strated how variation in temporal patterns—sequences of process categories—
was significantly related to variation in group performance.

 2. Hidden Markov Models (HMMs): HMMs (Rabiner 1989) offer analysis at a 
relatively coarser grain size than LSA by detecting the broader interaction phases 
that a discussion goes through. For example, Soller and colleagues (2002) used 
HMMs to analyze and assess temporal patterns in on-line knowledge sharing 
conversations over time. Their HMM model could determine the effectiveness of 
knowledge sharing phases with 93% accuracy, that is, 43% above what one 
would expect by chance. They argued that understanding these temporal phases 
that provide an insight into the dynamics of how groups share, assimilate, and 
build knowledge together is important in building a process theory of facilitating 
to increase the effectiveness of the group interactions. Conceiving a group dis-
cussion as a temporal sequence of phases, one can use several methods to isolate 
evolutionary phases, including measures of genetic entropy (Adami et al. 2000), 
intensity of mutation rates (Burtsev 2003) or, in the case of problem interactions, 
the classification of coherent phases of interaction. With the phases identified, 
one can calculate and predict the probabilities between phases using HMMs 
(Rabiner 1989; for an example, see Holmes 1997). As a result, one may begin to 
understand when and why phase transitions as well as stable phases emerge; 
more importantly, one may begin to understand how the configuration of one 
phase may influence the likelihood of moving to any other phase. Whether one 
can control or temper these phases, or whether such control or temperance would 
prove a wise practice remains an open question which, even if only partially 
answered, will be a breakthrough in characterizing and modeling the problem 
solving process.

It is worth reiterating that these methods should not be used in isolation, but as 
part of a larger, multi-method, multiple grain size analytical program. At each grain 
size, findings should potentially inform and be informed by findings from analysis 
at other grain sizes—an analytical approach that is commensurable with the 



20 M. Kapur et al.

multiple levels (individual, interactional, group) at which the phenomenon unfolds. 
Only then can these methods and measures can play an instrumental role in the 
building and testing of a process-oriented theory of problem solving and learning 
(Hmelo-Silver et al. this book; Reimann 2009; Reimann et al. this book).

1.5  Conclusion

In this chapter, we have advanced a complexity-grounded, quantitative method for 
uncovering temporal patterns in interactional data from CSCL discussions. In 
particular, we have described how convergence in group discussions can be exam-
ined as an emergent behavior arising from theoretically-sound yet simple teleo-
logical rules to model the collaborative, problem-solving interactions of its 
members. We were able to design a relatively simple model to reveal a preliminary 
yet compelling insight into the nature and dynamics of problem-solving CSCL 
groups. That is, convergence in group discussion, and consequently group perfor-
mance, is highly sensitive to early exchanges in the discussion. More importantly, 
in taking these essential steps toward understanding of how temporality affects 
CSCL group processes and performance, we call for further efforts within this line 
of inquiry.
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