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Introduction and Research Perspectives



Expertise in Mathematics Instruction:
Advancing Research and Practice
from an International Perspective

Yeping Li and Gabriele Kaiser

Abstract Expertise in mathematics instruction, as commonly recognized, varies
from one teacher to another and also affects their teaching performance. Studies
on expertise in mathematics instruction are thus important, albeit long overdue, to
reveal its specifics. To advance relevant research and practice for the improvement
of teacher expertise in mathematics instruction, this book takes a unique approach
to present new research from multiple education systems in the East and West. In
this introduction chapter, we highlight the background of this book project, three
important issues probed in this book, and the book’s content structure and overview.

Keywords Eastern culture · Expert teacher · International perspective ·
Mathematics instruction · Teacher expertise · Western culture

Introduction

There is a general consensus on the importance of having and developing expertise
in a professional field. Experts’ masterful performance in many fields, such as
sports, medicine, mathematics, and music often amazes us. Efforts to pursue excel-
lence in different fields have led not only to the better quality of work and
performance, but also to the on-going quest about the nature of expertise that
helps distinguish experts as they are from many others. Examining and knowing
the nature of expertise also helps us understand what it may take for a novice
to become an expert in that field. It is now commonly acknowledged that experts
are knowledgeable about what they do and they have a more structured knowledge
than non-experts (e.g., “Theoretical Perspectives, Methodological Approaches, and
Trends in the Study of Expertise” in the chapter by Chi, this book). Yet, much still

Y. Li (B)
Department of Teaching, Learning and Culture, College of Education and Human Development,
Texas A&M University, College Station, TX 77843-4232, USA
e-mail: yepingli@tamu.edu
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remains to be understood about the nature of expertise, especially in those fields
that often present complex and not well-structured tasks such as classroom instruc-
tion. Classroom teaching presents itself as such a task that relates to numerous
factors and no well-defined algorithm is available to guarantee a successful solu-
tion. Nevertheless, the quality of classroom instruction has continually been taken
as a key factor contributing to students’ learning. Examining and understanding the
nature of teacher expertise in mathematics instruction is certainly not a trivial task
for educational researchers, and is also imperative to those who seek ways to help
teachers improve the quality of their classroom instruction.

This book reflects the ever-increasing interest and effort in improving students’
learning of mathematics through enhancing teachers’ quality and their teaching.
While examining and learning about teachers’ classroom instruction and their exper-
tise have long been the interest of educational researchers and psychologists albeit
mainly in the West (e.g., Borko & Livingston, 1989; Leinhardt, 1989; Leinhardt &
Greeno, 1986; Livingston & Borko, 1990; Swanson, O’Connor, & Cooney, 1990),
there is a lack of systematic studies on teachers’ expertise in mathematics instruc-
tion. The initial development of this book project relates not only to the importance
and needs of further research on mathematics teachers’ expertise, but also to
recent international studies that documented distinct, yet often praised, teachers’
instructional performance and their knowledge in several high-achieving educa-
tional systems in East Asia. In particular, this book was initiated and motivated
with the following two reasons:

First, this book presents an extension of a recent ZDM thematic issue on exem-
plary mathematics instruction in East Asia (Li & Shimizu, 2009). As the thematic
issue of ZDM focused on exemplary mathematics instruction in six high-achieving
education systems in East Asia (i.e., China, Hong Kong, Japan, Singapore, South
Korea, and Taiwan), relevant studies illustrated what Asian teachers may do in car-
rying out their culturally valued lesson instruction but not the kind of expertise that is
needed to make exemplary teaching performance possible. With limited knowledge
now available about Asian teachers’ expertise in mathematics instruction, this book
thus contains a collection of studies on teachers’ expertise in mathematics instruc-
tion in five out of the same six high-achieving education systems in East Asia (i.e.,
China, Japan, Singapore, South Korea, and Taiwan).

Second, this book was also inspired by the well-publicized Ma’s work that
compared selected Chinese and US elementary teachers’ knowledge in mathe-
matics (Ma, 1999). Ma revealed the dramatic differences in elementary teachers’
knowledge in mathematics between China and the United States, which led to
further questions about the nature of expertise that may help connect or distin-
guish teachers’ instructional performance between the East and West. Therefore,
this book is taking an international perspective to include two sets of chapters
that focus on teachers’ expertise in mathematics instruction in the West and East,
respectively. The international perspective should allow us to reflect on teacher
expertise that is valued for developing high-quality classroom instruction in dif-
ferent education systems. Taken together, these intended extensions allow the book
to make unique contributions to the much-needed study of teachers’ expertise in
mathematics instruction.
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Indeed, the book presents a new scholarship in addressing what appears to be a
rather traditional topic in educational and psychological research. Although examin-
ing and understanding expertise is not a new endeavor, studying teachers’ expertise
in mathematics instruction is a challenging task. First of all, the challenge lies not
only in the complexity of mathematics instruction practices that do not have a com-
monly agreed-upon effectiveness, but also in the array of factors contributing to
classroom instruction that go beyond cognition. Rather than staying away from such
a challenging task, this book’s contributors undertook the challenge to develop or
adopt different perspectives and methods in examining various aspects of teachers’
expertise in mathematics instruction. Second, taking an international perspective in
this book is unique in that it presents not only an advantage, as mentioned above, but
also a challenge. The challenge is embedded in the nature of teaching as a cultural
activity (Stigler & Hiebert, 1999). What teachers do in mathematics classrooms is
fundamentally influenced by specific cultural values. Examining teachers’ exper-
tise in mathematics instruction thus calls for extra caution in understanding and
interpreting teachers’ expertise that contributes to culturally-valued instructional
practice in a specific system and cultural context. Therefore, what we can expect
to learn from this book will differ from a typical book on expertise in many ways,
and is irreplaceable due to the very nature of the task in focus.

Initiating and editing of this themed book also builds upon our ongoing research
interests in mathematics classroom instruction and mathematics teachers’ knowl-
edge (e.g., Blömeke, Kaiser, Lehmann, & Schmidt, 2008; Huang & Li, 2010;
Kaiser, Luna, & Huntley, 1999; Li & Shimizu, 2009). As editors of this themed
book, we contribute from our own extensive experiences in mathematics educa-
tion research and practices in the East and West. At the same time, we got intensive
insights into the nature of expertise and its successful practices in the East and West.
We are therefore convinced that the chapters in this book are valuable sources of
information for international readers to learn and reflect upon possible similarities
and differences in teachers’ expertise that is needed to develop culturally valued
instructional practices.

Examining and Understanding Expertise in Mathematics
Instruction in an International Context

As a cultural activity, mathematics teaching is situated in a specific cultural setting
and also presents unique challenges to teachers in that culture. TIMSS classroom
video studies (Hiebert et al., 2003; Stigler & Hiebert, 1999) have prompted further
interests and studies about specific teaching practices that are formed and nurtured
in a specific education system such as China (Fan, Wong, Cai, & Li, 2004), several
education systems in East Asia (e.g., Li & Shimizu, 2009; Lim, White, & Kaur,
2008), or different cultural traditions around the world (Clarke, Keitel, & Shimizu,
2006). However, neither TIMSS video studies nor some other existing studies on
classroom instruction aimed to analyze and discuss what teachers need to know and
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be able to do in each participating education system. Much remains to be under-
stood about the nature of teachers’ expertise that is valued in different education
systems in the East and West. Included in this book, the majority of individual
chapters can provide readers with its specifics about teacher expertise valued in
one education system. With these chapters being put together as a collection, this
book provides readers a platform to cross-examine and reflect on different aspects
and issues of teacher expertise that are specified and discussed in different educa-
tion systems. While readers can surely learn something beyond individual chapters
through reading the book, here we would like to highlight three issues that are
important for the broad readership in mathematics education and teacher education
internationally.

The Issue of Identifying and Selecting Teachers with Expertise

In order to study teachers’ expertise, it is a common approach to examine what
expert teachers know and are able to do while implementing mathematics teaching.
These studies were carried out either with a comparison to novices or without such
a comparison. However, identifying and selecting expert teachers is not a task that
is based on a commonly-accepted approach across different studies (e.g., Berliner,
1986, 2001). While some researchers may rely on teachers’ educational background
and their years of experience, others may emphasize their students’ academic per-
formance and administrators or peers’ recommendations. In fact, there is often a
lack of clear reference to teachers’ performance in classroom instruction or their
knowledge when identifying expert teachers. The situation is especially acute in
the West, where teachers’ instructional practices are not made public for scrutiny
and discussion (e.g., Kaiser & Vollstedt, 2008). The lack of commonly used criteria
in evaluating teachers and their teaching led researchers to make their own selec-
tion with different criteria in the past. Researchers’ judgement and determination
of different selection criteria, as often practiced in the West, do pose an inherent
difficulty when so-called or assumed expert teachers who may not possess expected
expertise are selected for studying their expertise. Thus, rather than solely rely-
ing on researchers’ judgement and decisions, some contributors of this book used
different approaches in identifying and selecting expert teachers. Expert teachers
can be those who have been pre-identified as meeting specific certification require-
ments in the United States (e.g., “Coordinating Characterizations of High Quality
Mathematics Teaching: Probing the Intersection” in the chapter by Silver & Mesa,
this book), or those who have obtained an advanced rank as meeting specific pro-
fessional requirements including classroom teaching in China (e.g., “Characterizing
Expert Teaching in School Mathematics in China – A Prototype of Expertise in
Teaching Mathematics” in the chapter by Li, Huang & Yang, this book). The use
of such alternative approaches enables researchers to focus on those teachers who
have already been identified and valued as expert teachers in a specific education
system.
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As it is generally acknowledged that classroom instruction is a complex and cul-
tural activity (Stigler & Hiebert, 1999), being an expert teacher for doing what
is culturally valued instructional practice is likely a culturally-related judgement
in different education systems. The identification and selection of expert teachers
remains to be a challenge to the fields of mathematics education and teacher edu-
cation. Nevertheless, the use of alternative approaches by some researchers in this
book provides us a direction for possible methodology changes in studying teacher
expertise especially in an international context.

The Issue of Specifying and Analyzing Aspects of Teachers’
Expertise in Mathematics Instruction

Acknowledging the importance of teacher expertise does not provide specific sug-
gestions or approaches for conceptualizing and studying teacher expertise. Because
studies on teachers’ expertise are not a new endeavor in the realm of educational
research, previous studies on teacher expertise can provide us with some hints for
the aspects of teacher expertise that have typically been focused on.

In the United States, many researchers took a personal expertise perspective to
examine individual expert teachers’ knowledge, their teaching practices, or teachers’
knowledge development from novice to expert (e.g., Berliner, 1986, 2001; Borko &
Livingston, 1989; Leinhardt & Smith, 1985). Over the years, different approaches
have been developed for examining teachers’ expertise. In particular, Sherin, Sherin,
and Madanes (2000) indicated that two main different approaches have been devel-
oped to conceptualize teachers’ expertise. One is a cognitive modeling approach
that focuses on classroom instruction process, and the other is a knowledge sys-
tem perspective that tends to specify knowledge components of teachers’ expertise.
Moreover, the development and exhibition of teachers’ expertise is also associated
with their beliefs and views of what can be counted as effective/good teaching.
Thus, past research has developed a repertoire of methodologies that can possi-
bly be used in studying teachers’ expertise in mathematics instruction. Given the
diverse aspects of teacher expertise that can possibly be focused on, we expect to
find different aspects and approaches being taken by contributors of this book. For
example, some contributors focused on teachers’ practices in classroom instruc-
tion (e.g., “Responding to Students: Enabling a Significant Role for Students in
the Class Discourse” in the chapter by Even & Gottlib, this book; “Expertise of
Mathematics Teaching Valued in Taiwanese Classrooms” in the chapter by Lin &
Li, this book), some focused on teachers’ knowledge and/or beliefs (e.g., “Teacher
Expertise Explored as Mathematics for Teaching” in the chapter by Simmt, this
book), while others took a combination of both instructional practices and knowl-
edge (e.g., “Characterizing Expert Teaching in School Mathematics in China – A
Prototype of Expertise in Teaching Mathematics” in the chapter by Li et al., this
book; “Cross-Nationally Comparative Results on Teachers’ Qualification, Beliefs,
and Practices” in the chapter by Vieluf & Klieme, this book).
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At the same time, some researchers examined the traditional teaching practices
of expert teachers in the context of current educational changes (e.g., Schoenfeld,
1988). This presents a holistic perspective that takes into account the large social
and cultural setting and related changes in valuing certain educational practices
demonstrated with specific expertise in mathematics and pedagogy for teaching.
Intuitively, results from this type of research pose a similar question and challenge
in understanding what is valued as teachers’ expertise in different system and cul-
ture settings, as teaching is now commonly acknowledged as a cultural activity.
Although we will further discuss the cultural issue in the next section, we want to
remind readers about possible social-cultural influences on teacher expertise that are
valued and examined in different chapters of this book.

The Issue of Understanding Expertise in Mathematics Instruction
that is Valued in Different Cultures

Understanding and evaluating teacher expertise has been a perplexing issue in many
education systems. By taking an international perspective, this book provides us
with a unique opportunity to better understand the nature of teacher expertise that
may be viewed and valued differently across the East and West. Indeed, taking an
international perspective has helped us to learn a great deal about our own edu-
cational policy and practices in mathematics curriculum (e.g., Leung & Li, 2010;
Li & Kulm, 2009), teachers’ classroom instruction (e.g., Clarke et al., 2006; Li &
Shimizu, 2009; Stigler & Hiebert, 1999), and teachers’ knowledge (e.g., Ma, 1999;
Sullivan & Wood, 2008). It is in the same spirit that the chapters of the book offer
insight into teacher expertise that is valued in other system and cultural contexts.

At the same time, possible differences in viewing and valuing teacher expertise
would also place a unique challenge for conducting cross-cultural examinations of
teacher expertise. Thus, this book was not proposed as a collection of cross-cultural
studies. Instead, this book contains a collection of studies of teacher expertise within
individual education systems in the East and West, respectively. Correspondingly,
studies on teacher expertise in individual education systems are grouped into two
separate sections with one for education systems in the East and the other for the
West. With this grouping we offer insight not only into teachers’ expertise of Eastern
and Western cultures, but also collective differences and similarities between the
East and West regions (i.e., across the two sections).

In addition, this book did not place or pre-specify any specific conception of
teacher expertise. In this way, our contributors were given much flexibility in iden-
tifying and examining what is valued in teacher expertise in different education
systems. The collection of individual studies from the East and West should help
to provide a glimpse of the nature of teacher expertise in mathematics instruction
that is also of interest to cognitive psychologists, and to explain what is valued for
and in mathematics classroom instruction in the East and West. Finally, without pre-
specifying a conception of teacher expertise, this book can also help raise questions
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and issues for mathematics education researchers to guide critical examination of
what can be learned from other education systems.

Overview of the Book

The book contains four parts. The first part provides an introduction and related
research summaries. It is structured as containing three chapters, with the first chap-
ter as this introduction chapter to this book including its organization and content
overview, the second chapter to provide an overview of related theoretical perspec-
tives and methodological approaches, and the third chapter to provide a review of
related research on this topic in the field of mathematics education. The second part
contains a series of five chapters that examined teacher expertise valued in a Western
setting. Correspondingly, the third part contains a similar set of five chapters as Part
II but with research focusing on an Eastern setting. Part IV is a part for reporting
a large cross-national study related to teacher expertise and commentary chapters.
Two commentary chapters are included to draw together research reported in Parts II
and III. While one is to reflect on teacher expertise, the other is to reflect on what we
can learn from this international collaborative effort and possible research directions
for the future.

This book structure allows readers to get relevant information about the three
issues highlighted in the above section “Examining and Understanding Expertise
in Mathematics Instruction in an International Context”. In particular, because each
chapter in Parts II and III tends to focus on those (expert) teachers and their expertise
valued in a specific education system in the East or West, we expect that readers can
gain much information about the first and second issues (see section “Examining and
Understanding Expertise in Mathematics Instruction in an International Context”)
from reading individual chapters. However, the third issue of understanding teacher
expertise in mathematics instruction that is valued in different cultures is not always
stated explicitly in each chapter. Thus, the book’s structure of separate parts for
the Western and Eastern regions (i.e., Parts II and III) should assist readers when
reading and reflecting on possible similarities and differences on teacher expertise
both within and across the Western and Eastern regions.

Part I: Introduction and Related Research Summaries

Three chapters included in this part aim to provide a general background about
this book and relevant research on expertise. The chapter written by Michelene Chi
provides an overview of psychological studies of expertise. With a focus on the
changes in theoretical perspectives and methodological approaches, Chi outlines
some major developments in psychological studies over the years. Although the
concept of expertise has always been related to knowledge, it took years of research
development to learn the importance of knowledge especially structured knowledge.
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Now, psychological researchers pay close attention to the acquisition of expertise.
Some current constructs include deliberate practice, adaptive expertise, and team
expertise. A new idea about the acquisition of expertise is also proposed as the
construct of a perspective shift. Nevertheless, Chi indicates that many questions still
remain to be explored about expertise and its acquisition.

Different from Chi’s overview of psychological studies on expertise, Russ,
Sherin, and Sherin focus on the concept of teaching expertise that are emerged in the
study of mathematics teaching. Thus, these researchers take a historical perspective
to trace the study of mathematics teaching in an attempt to capture emerged images
of teachers in mathematics teaching. In particular, four images have been identified:
mathematics teachers as diagnosticians of students’ thinking, conductors of class-
room discourse, architects of curriculum, or river guides who are flexible in the
moments of teaching. The identification of these images helps us not only under-
stand specific expertise that may be required behind different images, but also guide
further efforts in identifying and positioning possible new images in mathematics
teaching.

Part II: Understanding and Examining Teacher Expertise
in a Western Setting

There are five chapters that report on the study of teacher expertise in a Western set-
ting. These five chapters present diverse perspectives and approaches employed to
examine various aspects of teacher expertise in different education systems. While
the first three chapters make a close connection with teachers’ classroom instruc-
tion in studying teacher expertise, the remaining two chapters conceptualize teacher
expertise more in terms of knowledge or structured components.

In the first chapter, Silver and Mesa probed different approaches and their
intersections in characterizing high quality mathematics teaching. By taking three
different views of exceptional mathematics teaching, the researchers examined
empirically how lesson instruction and teachers’ commentaries on lessons submit-
ted by a group of teachers obtained the NBPTS (US National Board for Professional
Teaching Standards) certification may be similar or different from those by a
group of teachers who were not awarded the NBPTS certification. Their analy-
ses identified some strong interactions between the NBPTS view of accomplished
teaching and the effective use of cognitively demanding tasks in the mathematics
classroom, but not with the expected use of innovative pedagogical strategies to
engage students. Through these three different views, the study certainly enables us
to develop a better understanding about those NBPTS certified teachers’ instruc-
tional performance. At the same time, the results also illustrate those teachers’
strengths and weakness in selected aspects of teacher expertise in mathematics
instruction.

Pauli and Reusser developed the chapter, expertise in Swiss mathematics instruc-
tion, through drawing together data and findings from several video studies on
mathematics teaching in Switzerland. The researchers proposed a profile of teacher
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expertise that is associated with different components of a didactic triangle (i.e.,
content, teacher, and students). With the model of the didactic triangle, the
researchers aimed to identify possible strengths and weaknesses in expertise that
Swiss mathematics teachers in general (not just expert teachers) may have. In
particular, the researchers pointed out that Swiss mathematics teachers have par-
ticular strengths in the culture of communication, support, and relationships that
mainly connects teacher and students in the didactic triangle, and positive but
less strong in connecting content and students. They further suggested that Swiss
teachers need to improve their didactics of mathematics that connects teacher and
content.

The chapter written by Even and Gottlib focuses on an experienced high school
mathematics teacher’s classroom practices in responding to students. Different from
other chapters in the second part, the researchers provided a detailed analysis of
the teacher’s classroom instruction. The identification and selection of this expe-
rienced teacher was due to her reputation of involving and engaging students in
the class discourse. The teacher’s extensive involvement in some curriculum com-
mittees at the national and local levels also suggests her extensive knowledge in
mathematics curriculum and instruction. The detailed analyses of her teaching
in both a lower-achieving 9th grade class and a high-achieving 10th grade class
revealed how the teacher developed her instruction as building upon students’ talk.
Developing communication and relationships with students is apparently taken as
an important component for making effective instruction possible in this classroom.
Behind the teacher’s sensitivity about students’ talk and her skills in identifying
and developing learning opportunities for students, the researchers illustrated some
important aspects of teacher expertise that are valued in a mathematics classroom in
Israel.

Four researchers from Austria, Müller, Andreitz, Krainer and Mayr, contributed
this chapter to document the effects of a research-based learning approach (a four-
semester program of “Pedagogy and Subject Didactics for Teachers”) on teachers’
professional development. In addition to surveying teacher participants’ motivation,
learning strategies, and satisfaction with course, the researchers employed multiple
scales to capture possible changes in the program participants’ interests, competen-
cies, and knowledge. The substantial changes in the multiple scales of competence
and knowledge show not only the effectiveness of the program, but also several
aspects that are valued in Austria as teaching job-related expertise. In particular, the
use of a video task for teaching related analysis in the program confirms the idea
that teachers’ active participation and practices are essential for their professional
development.

In her chapter, Simmt focused on the nature of mathematics that teachers need to
work with to conceptualize teacher’s expertise as mathematics for teaching (MFT).
The model of MFT is further specified as a multi-layered and nested knowledge. In
this way, Simmt highlights the knowledge nature of mathematics teacher’s expertise
and its structure. The model is then used to illustrate teachers’ MFT and its changes
through analyzing the actions and interactions of a group of mathematics teachers
in a professional development session.
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Part III: Understanding and Examining Teacher Expertise
in an Eastern Setting

Similar to Part II, Part III also includes five chapters that individually present differ-
ent studies on teacher expertise in five different education systems in East Asia.
Different from Part II, all five chapters in this part tend to connect with teach-
ers’ instructional practices when addressing the issue of teacher expertise. Yet, the
diversity is evident in terms of their selection of focal aspects and use of different
perspectives across these five chapters.

The chapter, written by Li, Huang and Yang, aimed to characterize teacher’s
expertise through analyzing teachers’ lesson instruction, their lesson design and
reflections. The researchers focused on five selected expert teachers who are offi-
cially recognized with the teacher ranking system in China. A prototype view of
teaching expertise was used to identify six similarity-based central tendencies in
mathematics instruction that are shared among these expert teachers. The content
of teacher expertise is thus not pre-defined but revealed through teachers’ instruc-
tional practices in this study. Moreover, the researchers included a case analysis of
one expert teacher’s lesson instruction to provide rich descriptions and illustrations
of the prototype of these teachers’ teaching expertise. The findings help not only to
illustrate the complexity of mathematics teaching expertise, but also to inform of
the aspects of teacher’s expertise that are important for developing culturally valued
mathematics instruction in China.

Takahashi pointed out that “teaching the textbook” is taken as different from
“using the textbook to teach mathematics” in Japan. The distinction has been used in
Japan to differentiate and classify teachers into three levels in terms of their extents
of using textbooks for teaching. To take a closer look at possible knowledge and
expertise requirements behind these distinctions, Takahashi surveyed a small group
of teachers who were pre-classified as belonging to these three different levels. The
results reveal the differences in knowledge and expertise among these teachers in
three levels, and also provide a glimpse of the type of expertise in “using textbooks
to teach mathematics” that is valued and practiced in Japan.

Three researchers from Singapore took an alternative approach to examine what
is valued in Singapore’s mathematics instruction. Other than examining teachers’
lesson instruction directly, Lim-Teo, Chua and Yeo conducted a survey and inter-
views of primary schools’ mathematics department heads on their perceptions of
effective practices for learning mathematics. The results reveal that mathematics
department heads value those instructional practices that enhance conceptual learn-
ing and pupil motivation to learn. Although the results are not necessarily aligned
with the general perception of typical instructional practices in Singapore, the study
revealed much expected changes in what is valued in mathematics instruction in
Singapore.

Taking students’ engagement in meaningful discourse as an important instruc-
tional practice, Pang compared and contrasted more successful and less successful
teachers in carrying out such practice in Korea. The comparison focused on the
ways two selected teachers lead to the development of unequally successful
mathematics classrooms. As the two classes established similar social
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participation patterns but a different quality of mathematical discourse, the
results suggest important differences in teacher expertise that can contribute to the
establishment of different sociomathematical norms in these two classrooms.

Focusing on the case of Taiwan, Lin and Li also adopted the prototype view of
teaching expertise to explore similarity-based family resemblance in expert teach-
ers’ mathematics instruction. Three expert teachers were identified and selected
using a set of criteria that are valued in Taiwan. Those expert teachers’ lesson
instruction was analyzed in terms of: selecting and sequencing problems for and in
classroom instruction, selecting and sequencing students’ solutions for the whole-
class discussion, asking questions and responding to students during the class
discussion, and transitioning from one activity to another. The common features of
these expert teachers’ lesson instruction were thus revealed and further illustrated
with an expert teacher’s instructional practices.

Part IV: Researching and Reflecting on Teacher Expertise
in an International Context

This last part includes three chapters that do not place a focus on teacher exper-
tise solely in the East or West. The chapter contributed by Vieluf and Klieme
draws on data from the OECD-Teaching and Learning International Survey (TALIS)
collected from 23 countries. The researchers aimed to gain an overview of cross-
national similarities and differences in selected measures on teacher qualification,
beliefs, and practices. Their results reveal some global similarities in broad terms,
a finding consistent with the understanding of global similarities in schools and
instructional organization. At the same time, their results suggest the importance
of examining and understanding cross-national differences in profiles and con-
structs of teacher quality. The researchers pointed out that more cross-cultural
research on teacher expertise and teacher quality, both qualitative and quantitative, is
needed.

The last two chapters are reflections on teacher expertise and related research.
The chapter contributed by Schoenfeld addresses two important and related issues:
value-based variations in conceptualizing and measuring teacher expertise and the
development of teacher expertise itself. He first highlights possible variations in
teachers’ and researchers’ beliefs and values about what are “important” in the
act of teaching. Such differences directly relate to different ways to conceptualize
and consequently measure teacher expertise. Schoenfeld argues that it is ultimately
important to link teacher expertise with students’ enhanced performance, although
this has been a serious challenge to all researchers. He then shifts the focus to
teachers’ lesson instruction itself, and hypothesizes that the development of teacher
expertise should bear a direct connection to those aspects (i.e., teacher’s resources,
goals, and orientations) that will lead to the improvement of teacher’s instructional
performance.

In the concluding chapter by Kaiser and Li it is summarized what we can
learn from this book concerning the concept and nature of expertise, how it is
theoretically described and empirically measured. The chapter summarizes the



14 Y. Li and G. Kaiser

differences between Eastern and Western perspectives on expertise and exemplifies
their different orientation towards the teaching subject mathematics or the individ-
ual students. Furthermore the paper analyses our knowledge of the factual situation
referring to current studies and describes possible research directions for the future.

Significance and Limitations

By taking an international perspective, this book aims to provide a unique plat-
form for mathematics educators and teacher educators worldwide to develop a better
understanding about teacher expertise in mathematics instruction. The significance
of this scholarly work lies in its timely importance of developing and promoting
research on mathematics teachers’ quality and instruction. Similar to the case of
mathematics teaching, it is not surprising for us to learn some similarities as well
as differences in aspects of teacher expertise that are valued in different system and
cultural contexts. Gaining such knowledge from this book is necessary not only for
understanding the development of culturally-valued teaching performance in dif-
ferent education systems, but also for identifying aspects of teacher expertise for
improvement.

At the same time, we realize that it is impossible for the book to address all
the questions related to teacher expertise. In fact, we sincerely hope that this book
can stimulate further study and discussion of teacher expertise and its development
in different education systems. For example, although the book contains chapters
about teacher expertise from the East and West respectively, it is not clear whether
different aspects of teacher expertise valued in the East or West may link to stu-
dents’ enhanced learning (“Reflections on Teacher Expertise” in the chapter by
Schoenfeld, this book). Nor is it clear which aspect of teacher expertise may be more
important than others. Equally, if not more important, mathematics educators and
teacher educators would also be interested in learning about effective approaches
and practices used for developing teacher expertise in different education systems
(“Reflections and Future Prospects” in the chapter by Kaiser & Li, this book).
Indeed, the richness of the topic itself suggests that the book can well be a starting
point for developing the much needed research on this topic in the future.
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Theoretical Perspectives, Methodological
Approaches, and Trends in the Study
of Expertise

Michelene T. H. Chi

Abstract This chapter begins by briefly overviewing the early approaches,
perspectives, and findings in the expertise research. Basically, the approaches have
first focused on exceptional experts, then studies evolved into studying expert per-
formance relative to novices, with emphases on differences in their strategies of
searching for a solution, the structure of knowledge, and finally in representation.
Then three constructs emphasized in current research on expertise are described.
These constructs are ideas about deliberate practice, adaptive expertise, and team
expertise. The last section of the chapter proposes a new perspective for understand-
ing the acquisition of expertise, which is the idea of a perspective shift. Interleaved
throughout the chapter is discussion of how the acquisition of expertise can be
facilitated and/or accelerated.

Keywords Expertise trends · Perspective shift · Theoretical models

Research on expertise has spanned several decades. Because so many chapters
and edited volumes have been written about expertise (see for example, Ericsson,
Charness, Feltovich, & Hoffman’s 2006, Cambridge Handbook of Expertise and
Expert Performance), the goal of this chapter is not to review the many studies on
expertise. Instead, the first part of this chapter overviews very briefly the evolution of
the research focus and perspectives for the last four or so decades. The second part
of this chapter highlights the new constructs that are currently being explored about
expertise. The final section offers a new idea for how the acquisition of expertise
might be facilitated, the construct of a perspective shift.

Retrospective for the Past Three Decades

Researchers and lay people have always been fascinated by experts and exceptional
individuals. In the early days, exceptional individuals have been identified as those

M.T.H. Chi (B)
Department of Psychology, Arizona State University, Tempe, AZ, USA
e-mail: michelene.chi@asu.edu

17Y. Li, G. Kaiser (eds.), Expertise in Mathematics Instruction,
DOI 10.1007/978-1-4419-7707-6_2, C© Springer Science+Business Media, LLC 2011



18 M.T.H. Chi

individuals who are generally recognized and acknowledged by the public as great
people, such as popular composers (Kozbelt, 2004) and scientists who made great
discoveries (Chi & Hausmann, 2003), and so on. Studying exceptional individuals
has been referred to as an absolute approach (Chi, 2006).

Studying Exceptional Experts

There were four types of studies of exceptional individuals. One type of studies
described how they went about making their discoveries, by studying their notes and
diaries. These studies tried to capture when a discovery was made and under what
circumstances. The goal was to try and capture the cognitive processes underlying
their discoveries (Nersessian, 1992; Tweney, 1989).

A second type of studies looked at the societal and environmental conditions that
may have led to their superiority, such as their age of onset, their productivity profile,
and their parental influences (Lehman, 1953). A third type of studies tacitly assumed
that there is some innate talent or mental capacity to their greatness (Simonton,
1977), so such studies might investigate differences in their cognitive structures,
such as that exceptional individuals might have a larger memory capacity (Pascual-
Leone, 1978).

A final type of studies looked at how exceptional individuals perform in the tasks
in which they excel. For example, one might document and marvel at how a sin-
gle chess master can play many different games with many different players while
blindfolded (Binet, 1894), or how a great physician can diagnose a disease accu-
rately and quickly (Elstein, Shulman, & Sprafka, 1978; Barrows, Norman, Neufeld,
& Feightner, 1982; Neufeld, Norman, Barrows, & Feightner, 1981). In general,
when only exceptional individuals are being examined, it is difficult to validate or
refute hypotheses about how they became experts.

A Difference in Search Strategies

By the early seventies, the study of expertise introduced two new perspectives. One
new perspective is methodological, in that expertise studies introduced the relative
approach (Chi, 2006). A relative approach contrasts the performance of a more
advanced individual (referred to as the experts) with the performance of a more
novice individual. There are several advantages to the relative approach. First, the
relative approach makes the tacit assumption that a novice can become an expert,
because an expert is no longer viewed as a uniquely exceptional individual. Rather,
an expert is someone who is relatively more advanced, as measured in a number
of ways, such as academic qualifications, years of experience on the job, consensus
among peers, assessment based on some external independent task, or assessment
of domain-relevant content knowledge. Second, a relative approach also frees up
the constraint of making sure that the level of expertise across studies are defined in
exactly the same identical way, since a relative approach can tell us in what ways
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an expert excels over a novice, even without equating the index of expertise across
studies. Third, a relative approach defines expertise by the experts’ knowledge, and
not by any innate hardwired capacity.

The second perspective that was introduced in the seventies was theoretical,
due to the advent of computers. This new perspective – an information process-
ing approach, required a task analysis, that is, the decomposition of a complex task
such as problem solving, into three components: (a) the relevant background knowl-
edge, (b) the problem solving strategies or ways of searching through the space of
all possible moves. and (c), understanding or representing the problem in terms of
a space of all possible moves. To elaborate, the first component of relevant back-
ground knowledge refers to the amount of knowledge one has, indexed in some
objective way. So for instance, an expert might have more knowledge because s/he
has taken four algebra courses, whereas a novice might be someone who is just
starting to take algebra.

The second component of problem solving strategies can be explained more eas-
ily after we define the third component – the representation of a problem. The
representation of a well-defined problem consists of its elements, all the permis-
sible operators that can operate on the steps of the problem, the constraints on the
operators, and the goal of a problem. A representation of a problem usually refers
to knowing the elements in the problem, the allowable operators, the constraints on
the operators and the goal. The degree to which one has a complete representation
of all the components of a problem essentially is a measure of how well a student
understands a problem, because knowing the elements, the permissible operators,
the constraints on the operators and the goal, allows one to generate a complete rep-
resentation (or problem space) of all the permissible moves. Essentially it means
being able to represent the entire problem space of solution steps.

To illustrate, suppose a learner is asked to solve an algebra equation 5X + 2X
+ 10 = 31 for X. What is the representation of such a problem? A representation
consists of the elements, the permissible operators, the goal and so forth. Figure 1 is
a partial problem space of some of the permissible moves for this problem. The per-
missible operators in this problem are moving numbers from one side to the other
side of the equal sign, adding, subtracting, multiplying and dividing; and the goal is
finding X. More specifically, the space of all possible moves are: moving the 10 to
the right of the equal sign (see the first step in the last column of Fig. 1), subtracting
10 from 31, putting parenthesis around (5 + 2) then multiply by X, and so forth.
However, it is not permissible to decouple the X from the 2, as in making an opera-
tion such as 2(X + 10) from 2X + 10. These types of student errors can typically be
characterized as errors in not knowing the constraints on the operators. In any case,
representing the problem means knowing all the possible moves, knowing the ele-
ments, the constraint, and so forth. Successfully solving this well-defined problem
can be conceived of as finding the right path that leads to the correct solution.

The second component of a representation refers to the problem solving strate-
gies of how one searches the problem space of all possible moves. Looking at the
problem space shown in Fig. 1, one can search from top-down (or forward strategy),
starting from the given equation and moving toward the goal of finding X, or one
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Fig. 1 A partial search space

can search bottom-up in the figure (meaning a backward strategy), starting with the
goal, and working backward. Alternatively, an efficient way to search is to create a
sub-goal so that it reduces the portion of the space that has to be searched. Suppose
one sets a sub-goal of grouping all the X-terms. Such a sub-goal would eliminate
taking the second and third path at the first level of search.

Using this knowledge-search strategy-representation framework, it was typically
assumed back in the seventies, that the first and third components of problem solving
– knowledge and its representation, were not significant factors that differentiated
experts from novices because the problems used in problem solving research were
often knowledge-lean puzzle-type problems, such as the Tower of Hanoi. For the
Tower of Hanoi, the elements are the disks, the operators are the moves by each
disk, and the constraints are rules such as that a larger disk is not permitted to be
set on top of a smaller disk. These elements, operators and constraints are often in
fact given in the problem statement, so that a complete representation can be easily
generated without applying any other background knowledge. For example, for the
Tower of Hanoi problem, the goal is to move a stack of three disks, one at a time,
from the first peg to the last peg; and the constraints on the operators is that only one
disk can be moved at a time, and a larger disk may not be put on top of a smaller
disk. As can be seen in Fig. 2, it is quite simple to generate a problem space of
solution steps for the Tower of Hanoi problem. (Fig. 2 shows the complete problem
space of all possible moves.) Thus, understanding such a problem in the sense of
representing the entire problem space is not a difficult task. Therefore, solving such
a problem becomes an issue of searching for the optimum path through the problem
space of different solution steps. Little background knowledge is needed in order to
know how to begin to solve such a puzzle, since these puzzle-like problems required
little knowledge that is not already given. In short, it is not surprising that problem
solving research back then focused on the strategies by which the problem space
was being searched.
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Fig. 2 A complete search space for the Tower of Hanoi problem
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A Difference in the Structure of Knowledge

When researchers began to study problem solving beyond puzzle problems and
focused instead on academic disciplines, such as mathematics and physics, they
carried over the assumptions of solving puzzle problems. That is, they continued to
ignore potential differences in representation. Therefore, the findings of such stud-
ies continued to conclude that expert and novice physics problem solvers differed
in their problem solving performance primarily in the way they search their prob-
lem space. Figure 3a depicts the view that experts’ superior knowledge may have
dictated a difference in their search strategies in that their strategies might be supe-
rior to the novices’ strategies. This approach was fostered by the work of Simon
and Simon (1978). Figure 3a also shows a question mark in terms of whether or

a. Experts Novices

Capacity          ?          Capacity

Knowledge          >          Knowledge

(by definition)

Search Strategy     Search Strategy

Representation       =       Representation

b. Experts Novices

Capacity          ?      Capacity

Structured Knowledge     >     Structured Knowledge

 Search Strategy       Search Strategy

Representation       = Representation

c. Experts Novices

Capacity          =          Capacity

Structured Knowledge > Structured Knowledge

 Search Strategy     =/=  Search Strategy

Representation     Representation

Fig. 3 Assumptions about differences in problem solving components between experts and
novices
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not experts’ innate capacity is any different from novices, as there was no direct
evidence as yet.

The idea that experts and novices differed primarily in their search strategies vio-
lated some findings in the chess literature. In non-toy and knowledge-rich domains,
such as chess, it became apparent that search strategies per se did not differ sig-
nificantly between experts and novices. For example, deGroot (1966) found that
Master chess players searched the representation of all possible chess moves only
to a depth of two or three levels, much as novice players would. Therefore, a
competing assumption was that experts and novices have similar search strategies.
Moreover, the representation of all possible chess moves continue to be assumed to
be equivalent between experts and novices since they can be easily generated, once
a player knows what are the allowable moves. These alternative set of assumptions
are depicted in Fig. 3b.

From Fig. 3b, it seems that the only remaining difference between experts and
novices is the knowledge component. It did not seem adequate to simply claim that
experts had more knowledge. The relevant question remained: how does an expert’s
greater knowledge facilitate their superior performance, in terms of any kind of mea-
sures, such as speed, efficiency, search strategies, and so forth. The classic study by
Chase and Simon (1973) on chess expertise basically proposed that what differed
between experts and novices was not merely the amount of knowledge in a spe-
cific domain, but more importantly, how that knowledge is structured. Moreover,
they refuted the idea of an innate difference in mental structures. For example, they
showed that both experts and novices can recall about the same number of chess
pieces and their locations if the chess pieces were randomly placed on a chessboard,
suggesting that their memory capacity for chess piece locations were the same.
However, if the chess pieces were placed in the context of meaningful plays, then
the experts far outperformed the novices in recalling the location and identity of the
chess pieces. These two types of studies put to rest the ideas that exceptional indi-
viduals have better mental capacities and more superior search strategies. Instead,
these studies highlighted the importance of structured domain-relevant knowledge,
as indicated in Fig. 3b.

How is domain knowledge structured? The Chase and Simon work began to cap-
ture what is the structure of greater knowledge in the chess domain. One analysis
of structure was the idea of “chunks”, which is a cluster of related pieces that are
often placed in proximity on a chessboard. Thus these chess chunks were visual pat-
terns. The concept of “chunks” can of course be extended to many other domains.
For instance, a 3-digit number such as 100 is an important chunk or a meaningful
unit to an adult, but perhaps not to a child (Chi, 1976). The concept of the structure
of knowledge was important because it attempted to explain how greater knowl-
edge can have a bearing on task performance. In the context of memory for chess
board pieces, it explained how recall was a function of the size of chunks, and there-
fore, even if experts and novices could recall the same number of chunks, experts’
chunk structures were larger, therefore accounted for their superior recall in terms
of pieces. Many other studies followed in identifying and capturing the structure of
domain knowledge.



24 M.T.H. Chi

A Difference in Representation

Beyond the context of recall of chess pieces, how might knowledge influence per-
formance in more academic domains such as problem solving in mathematics or
physics? In attempting to answer this question, researchers in the early eighties
turned to the third component of problem solving. The third component is the com-
ponent of the representation of a problem. It turns out that when the domain is not
a toy domain but an academic domain, representing a problem is quite difficult,
and expert and novice problem solvers focused on different elements within a prob-
lem when representing it. Chi, Feltovich, and Glaser (1981) found, for instance,
that when given the same description of a physics problem to solve, advanced
graduate students represented the deep principle-based aspects of a common rou-
tine physics problem whereas novice students represented the superficial surface
elements of a problem, such as whether it described an inclined plane, a pulley,
or friction. This representational difference can be captured by looking at what
problems novices and experts considered to be similar. Figure 4a depicts the dia-
grams of two pairs of problems that novices considered to be similar; notice that
their judgments are based on similarity in the concrete elements describe in the
problem situations, such as round disks or inclined planes. Experts, on the other
hand, tended to consider problems to be similar if they are governed by the same
underlying principles. Figure 4b shows two pairs of problems advanced physics
students considered to be similar even though they have dissimilar surface or con-
crete elements; but they do share similar deep principles, such as problems solvable
requiring a consideration of energy, or “work is lost somewhere,” or by Newton’s
Second Law.

The finding of representational differences between experts and novices has
immediate and far-reaching implications. The immediate implication for expertise
research was that such representational differences obviously dictated why experts
and novices appeared to search the problem space differently. The difference reflects
a difference in their representations, so it is not the case that experts and novices have
the same problem space to search, as is commonly assumed back then in the prob-
lem solving literature, especially for knowledge-lean problems. In other words, the
differences between experts and novices in their representations of the same prob-
lem dictated and resulted in different searches in their problem spaces. Essentially,
this refuted the assumption made in earlier expertise research that the problem repre-
sentation of experts and novices were the same, which was a legitimate assumption
for toy domains but not for knowledge-rich academic domains. Thus, the origin
of search differences that were uncovered by studies such as Simon and Simon’s
(1978), is their representations as a function of prior knowledge, and not in a dif-
ference in search strategies per se. Figure 3c depicts the assumptions of this revised
view that knowledge differences allowed experts and novices to represent a given
problem differently, which in turn then dictated the kind of search strategies they
would use for solving the problem, which may or may not be the same. Since the
eighties, representational differences between experts and novices have since been
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Fig. 4 Pairs of problems that novices (a) and experts (b) considered to be similar

replicated in many studies and many domains. The idea that experts and novices
differ in the depth of their representations was characterized in many subsequent
studies on expertise in many different domains.

A far-reaching implication of representational differences between experts and
novices is that this means that teachers will generally have a normatively correct and
deeper representation of a topic or concept they are teaching, whereas novice stu-
dents will have a naïve, shallow, and incomplete representation. The consequence of
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such lack of correspondence between the representations of teachers and students
will undoubtedly lead to misunderstanding of a teacher’s explanations. We have
shown consistently in tutoring work that students have difficulty learning from hear-
ing a tutor’s explanations, whereas they learn better when the tutor scaffolds them
(Chi, Roy, & Hausmann, 2008). This inefficiency of explanations may be caused by
the lack of correspondence in representations.

Issues of Training

The focus on academic domains also brought to fore the idea that expertise should
be an attainable skill that novices should aspire to attain. Therefore, changes in the
conception of expertise in the literature also led to research that took much more of
a relative approach, in that, one should contrast more expert-like performers with
less expert-like performers, and not necessarily focus on the performance of excep-
tional experts. Therefore, many studies could simply contrast advanced students
with less advanced students, since such contrasts could potentially inform us on
ways to advance a novice student to be more skillful.

The critical question remains as to how one becomes an expert in the sense of
being able to represent a problem deeply. Little progress had been advanced to
understand this difficult issue. Although some attempts have been made to directly
teach novice students the way experts categorize problems or to directly teach them
to relate key words or explicit cues with one of the deep physics principle (Dufresne,
Gerace, Hardiman, & Mestre, 1992), it doesn’t appear as if this kind of training
can accelerate or shortcut the achievement of expertise readily, which is typically
claimed as requiring 10 years of practice, at minimum. In other words, to be more
specific, when a novice reads a physics problem statement, such as that

A block of mass M1 is put on top of a block of mass M2. In order to cause the top block
to slip on the bottom one, a horizontal force F1 must be applied to the top block. Assume a
frictionless table, find the maximum horizontal,

the explicit words in the problem statement itself does not elicit the relevant deep
physics principles. However, it is not the case that novices cannot identify the
relevant and important key words: In fact, novices can identify the relevant and
important key words in a problem statement quite adequately, as shown in Chi,
Glaser, and Rees (1982, Study 8). The issue is that the key words themselves do
not lead novices to make further inferences as they do for experts. In our data,
we found that a keyword such as “frictionless” would lead an expert to infer that
there are “no dissipative forces”, which in turn led the expert to further infer that
it’s a “Conservation of Momentum” problem. In short, the key words themselves
do not directly evoke the correct underlying principles; instead, intermediary or
secondary cues are first derived from the key words. If this is true, then it is not
clear how we can teach students to directly associate key words with the underlying
physics principles, and expect deep understanding, without also teaching them how
to derive the secondary cues from the keywords. If we must teach them how to derive
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the secondary cues from the keywords, then such instruction may not necessarily
accelerate the acquisition of expertise.

Another example can illustrate the potential flaw of this intervention approach of
directly teaching the relationship between the keywords and the principle. In a study
of 32 expert physicians in four different specialties (cardiologists, hematologists,
infectious disease specialists, and internists), we presented them with individual
patient cases and asked them to diagnose the disease of the patient cases and give
reasons for their diagnoses (Hashem, Chi, & Friedman, 2003). We then coded the
number of cues in the cases that they used to come up with their diagnoses. We
found that when a case matches the physicians’ specialty so that they have exper-
tise (such as a blood disease case diagnosed by a hematologist), they tended to
use multiple cues in the case statement to come up with the diagnoses. However,
when the case does not match their specialty (so that they are more novice), then
they tended to use only single cues to come up with the hypothesized diagnoses.
Presumably, using multiple cues is more accurate and physicians with more exper-
tise in a case were able to use multiple cues. Table 1 shows the frequency with
which they used single cues versus multiple cues as a function of whether the cases
matched or did not match their specialties. With respect to the training question
raised above, does this mean that we can accelerate the acquisition of expertise
by teaching physicians to use multiple cues? It does not seem obvious that one
can accelerate the association between cues and hypothesized diagnoses by telling
physicians what the cues are, since presumably they were taught the cues already.
Perhaps expertise involves not only the detection of individual cues within a case,
but in addition, perhaps the acquisition of expertise requires the development of
knowledge of the interaction of multiple cues and their relationship to a specific
diagnosis.

In summary, this section raced through three decades of work on expertise by
highlighting the underlying assumptions and conclusions of the different theoretical
and methodological perspectives and approaches to the study of expertise. Expertise
was always defined as having more knowledge, but knowledge originally played a
very minor role. Instead, expertise was defined by one’s ability to search efficiently
and effectively. In light of new evidence, it became clear that expertise did not nec-
essarily result in more efficient searches, rather expertise can be defined as having
more structured knowledge. Structured knowledge in turn dictated how experts rep-
resented a to-be-solved problem. Thus, the differences in the representation between

Table 1 The use of single or multiple cues as a function of the match between the case to-be-
diagnosed and the physician’s specialty (data taken from Hashem et al., 2003)

Cues and Specialty

Cases match their specialty Cases outside their specialty

Single cues 29 190
Multiple cues 61 45
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experts and novices dictated how they searched. Finally, we still have no obvious
insights about how expertise can be taught, or how we can accelerate the acquisition
of expertise.

The Current Constructs

Many questions remain about expertise, such as how to accelerate and facilitate its
acquisition. Three new constructs have been introduced and emphasized in the last
decade. The first construct is the idea of deliberate practice, attempting to answer
the question of how some individuals reach elite status of expertise and others
remain mediocre. The second construct is the idea of adaptive expertise, exploring
the notion of a more innovative expert, one who is not rigid and conventional. The
third construct is the idea of a team, group, or system-level expertise, bringing forth
new challenges in understanding how an expert team can be construed, since an
expert team does not appear to be composed of expert individuals, measured either
in terms of a team’s performance or learning. These three constructs are explored
briefly in this section.

Deliberate Practice

Deliberate practice is a construct advanced primarily by Ericsson (Ericsson &
Lehmann, 1996). The construct was introduced to account for the fact that not all
experts achieve elite status, some remain mediocre in the sense that some individ-
uals are satisfied in reaching an acceptable level of performance and continue in
maintaining that level of performance with minimal effort for years on end. In under-
standing how some individuals reach elite status, Ericsson proposed the construct of
“deliberate practice.” The assumption is that those experts who reach elite status are
the ones that engage in deliberate practice, even though they spend about the same
amount of time practicing as non-elite experts.

Deliberate practice is defined as expanding intentional efforts to achieve further
improvement through focused, concentrated, well-structured, programmatic, and
goal-oriented practice. Moreover, the goals of practice are set to go beyond one’s
current level of achievement, and evaluated by identification of errors, and so on. For
example, elite figure skaters spent more time on challenging jumps than less elite
skaters; the interpretation of this kind of practice is that they intentionally attempt
to achieve more challenging jumps in order to improve and move themselves up
in their level of expertise (Deakin & Cobley, 2003). They seek challenges because
they view failures as opportunities to improve. Deliberate practice is contrasted with
mindless performance or playful engagement (p. 15), or “merely executing profi-
ciently during routine work” (Ericssson, 2006, p. 683, Chapter 38, Handbook). As
Ericsson (2006, p. 691) puts it, “Those select group of individuals who eventu-
ally reach very high levels do not simply accumulate more routine experiences of
domain-related activities, but extend their active skill-building period for years or
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even decades.” For example, musicians who are the more elite experts are the ones
who concentrate on practicing with the intention of achieving beyond the level that
they are currently capable of performing (Ericsson, Krampe, & Tesch-Romer, 1993).
It is as if they are always reaching beyond their “zone of proximal” achievement.

Deliberate practice does involve many other players as well. It involves a coach
or a teacher who designs the targeted practice task, who continually guides, mon-
itors, and gives feedback to the expert in performing the task. Family members
also play a huge role in helping their children develop elite expertise. According
to Ericsson (2006), parents of elite experts are actively involved in helping them
find a good teacher, helping them with their practice, spending large amounts of
money for equipment, driving them to lessons, sometimes even relocating to be
closer to a specific teacher or training opportunities. These parental involvement
and sacrifices are reminiscent of parents of immigrant families, resulting in high
success rates of immigrant children on measures such as college completion, but it
is not clear whether children from immigrant families also achieve elite status. If
not, then these parental factors may only guarantee success, but not necessarily elite
expertise.

It is very difficult to say whether deliberate practice is the result of some per-
sonality or individual attributes, such as motivation or persistence, or whether it
is the nature of the designed deliberate practice task that is critical for achiev-
ing elite status. For example, elementary and secondary students seem to fall into
two types: intrinsically motivated versus extrinsically motivated (Dweck, 2000).
Intrinsically motivated students persist through challenging tasks by adopting high-
quality learning behaviors, while extrinsically-motivated students tend to adopt
tasks and behavior that may produce rewards or satisfies the requirements with-
out worrying about whether they have actually learned. In short, one type of learner
might be more likely and inclined to engage in deliberate practice to achieve elite
status.

If the hypothesis is true that some experts achieve elite status because of moti-
vational or other reasons rather than the nature of deliberate practice itself, then
we should see that having the guidance and help of a coach in designing tasks
for students will not succeed with all students, because these alternative factors
may come into play. Some related evidence might be interpreted in this context.
In the Chi et al. (2008) study, an expert tutor guided 10 students individually in
solving physics problems. These 10 students were asked to read and learn the rel-
evant materials from which the to-be-solved physics problems were taken. After
their independent unguided learning, they took a pre-test, so the pre-test in essence
assessed how well they could learn on their own. All 10 students had similar back-
ground knowledge about physics. The hatched bars in Fig. 5 show the amounts the
students could learn on their own (pre-test) and the dark bars show how much more
the tutor could help the students gain. As Fig. 5 shows, not surprisingly, there is a
difference in how much the sample of 10 students could learn on their own. What
is surprising is that the poorest three students gained the least amount whereas both
the intermediate students and the best students gained substantially more. What this
data tells us is that the same tutor could not design guidance and feedback that
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Fig. 5 Hatched bars show the tutees, divided into low (30–40%), medium (40–50%), and high
(60–70%) on the basis of their pre-test scores, and the solid bars show how much they improved
after tutoring

allows all the students to gain maximally. This suggests that individual differences
in learning and/or differences in one’s success in achieving elite expertise may not
be caused by deliberate practice necessarily (although no doubt engaging in delib-
erate practice can help), but by a myriad of other factors, such as a desire to excel,
persistence, ability to learn, and so forth. Thus, the basic question about achieving
elite status is not answered by the finding that the elite experts undertake deliber-
ate practice, because this finding basically regresses the basic question to another
question of understanding why some individuals engage in deliberate practice while
others do not.

Adaptive Expertise

The second construct that is currently intriguing scholars of expertise is the notion
of an adaptive expert. The construct of an adaptive expert was introduced promi-
nently by Hatano and Inagaki in 1986, as a contrast to a routine expert. Routine
experts, according to Hatano and Inagaki (1986, p. 266) are experts who are effi-
cient and are outstanding “in speed, accuracy, and automaticity of performance but
lack flexibility and adaptability to new problems.” Thus, routine experts are “able to
complete school exercises quickly and accurately without understanding,” whereas
adaptive experts have “the ability to apply meaningfully learned procedures flexibly
and creatively.” (Hatano, 2003, p. xi).

Adaptive experts, in short, are ones who “understand” the procedure or skill, in
the sense of understanding the principles and conceptual knowledge guiding the
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execution of the procedures or skills. With such deeper understanding, adaptive
experts obviously can “generalize” their skills to other non-routine problems. Of
course this definition of adaptive expertise requires further elaboration in defining
what is meant by “understanding” and “generalization.” Suppose we simply oper-
ationalize the meaning of “generalization” in an objective way without defining it,
such as by measuring in some graded way a learner’s ability to solve more and more
distantly related problems. With such an operational definition of what “general-
ization” is, we can provide two senses of the term “adaptive expertise” that have
been used in the literature. In so doing, we add our elaborations of what we think
“understanding” means in each sense.

The first and most common idea of adaptive expertise is the notion of know-
ing not only how to execute or apply a procedural skill, but an adaptive expert is
one who also has conceptual understanding of that skill (Schwartz, Lin, Brophy, &
Bransford, 1999). This dichotomy of knowing a procedural skill versus having con-
ceptual understanding of it exists at all stages of skill acquisition, not necessarily
only at the expert level. Here is one way of thinking about it. Suppose we have a
skill of solving a mathematical problem. The solution can be decomposed into a set
of If-Then rules as follows:

If A, Then do Y. [after doing Y, the resulting pattern is C];
If C, Then do Z.

For example, if the unknown variables of Xs are on both sides of the equal sign
(condition A), then use legitimate operators to move all the Xs onto one side of the
equal sign (execute action Y). Now the resulting equation has changed the condition
from A to C. Now If C is true, then action Z can be executed.

One can learn these two rules so well that one can solve all kinds of problems
efficiently and accurately in applying these two rules when the problems are similar
to the conditions of each rule (i.e., the A’s and the C’s), as in the case for rou-
tine experts. However, if the conditions presented change from A to A + B, then a
routine expert would not know what to do. In order to know what to do when con-
ditions A + B show up, one must have reflected on the If A, Then Y rule when one
is acquiring it. Reflection can include numerous processes, such as self-explaining
why action Y works when condition A is true, seeking what is the characteristics
of A for Y to apply. For example, if A is the number 5, one can reflect on whether
Y follows because A is a prime number, or because A is less than 10, and so forth.
The idea is basically to construct knowledge about A, in a way that generalizes
beyond the specific instance of A, thereby allowing the learner to have greater con-
ceptual understanding of A. Thus, we can say that procedural knowledge is simply
knowing the two rules, If A, Then Y and If C, Then Z; whereas having concep-
tual understanding can include understanding the nature of the conditions A and C,
their characteristics, the principles that explain their categorical structure, and so
forth. Thus, this first idea of adaptive versus routine expertise can be conceptualized
as being very much related to the distinctions between conceptual and procedural
understanding, a contrast and dilemma that have been around for decades.
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However, a more intriguing second idea of adaptive expertise is the notion of a
propensity or predisposition to learn while performing. That is, the idea is that while
practicing or executing a skill, adaptive experts are ones who seek to learn more
from the experience, seek help from others, experiment with new ideas, as if they
are not satisfied with what they already know and can do (Bransford & Schwartz,
2009). Thus, this definition of adaptive experts is similar to the characterization
of elite experts who intentionally seek challenges in their deliberate practice. In
effect, adaptive experts as defined here resemble all “effective learners,” and not
just adaptive experts. Perhaps only effective learners can become adaptive experts.

Even though this “effective learner” definition of adaptive expertise emphasizes
the learning aspect whereas the first definition proposed above emphasizes the con-
ceptual understanding aspect, the two definitions are related in that they have a
common component, namely that in order to acquire conceptual understanding, one
must reflect and self-explain the concepts or conditions of a rule, much like one
must reflect and self-explain while solving a problem or practicing a skill in order
to maximize learning. Both definitions can be said to require a constructive compo-
nent, where new knowledge is constructed while trying to understand the concepts
and conditions of rules or while performing the rules.

Not only are the two definitions of adaptive expertise described here similar to
the idea of the elite experts engaging in deliberate practice, but moreover, delib-
erate practice seems to have the components of engaging in reflective practice.
That is, in deliberate practice, one can be either reflecting on the conditions of
the rule, or reflecting on the outcome of the procedural execution, in order to seek
more challenging practice. In short, one could say that to achieve adaptive expertise
is to engage in constructive reflection during practice and performance, and such
constructive reflection allows one to further learn, generalize, and acquire deeper
conceptual understanding. The real question though, is why some learners engage in
such constructive reflection and others do not. We have alluded earlier to the notion
that motivation and other social and personal factors might be mitigating reasons,
but no evidence addresses these issues directly.

Team or Group Expertise

The third construct that has not been pursued very much in the literature is the idea
of group expertise. The idea of group expertise has many related and intriguing
issues and questions. For example, we know that groups most often perform better
than individuals, whether the group is a size of two (dyads), or three (triads), or
more (e.g., Barron, 2000; Pfister & Oehl, 2009; Schwartz, 1995; Webb, Nemer,
Chizhik, & Sugrue, 1998). But what we don’t understand is why. The most mundane
reason is to say that groups perform better because different individuals within the
group know different aspects of the to-be-solved problem, so that the combined
knowledge of the individuals allows more problems to be solved (Ploetzner, Fehse,
Kneser, & Spada, 1999). This is a “complementarity” idea. But more intriguing is
the notion that even if the individuals in the group have the same knowledge, it
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seems that they too, can solve more problems correctly (Hausmann, Chi, & Roy,
2004). This is the “co-construction” idea, that two or more people, together, can
create some new understanding that neither of them could create alone. Several
additional questions arise with respect to group expertise such as: What is the best
combination of group members in terms of levels of expertise to optimize the co-
construction of new ideas? What is collective knowledge? How can it be measured?

More recently, the challenge involves understanding group and team learning,
and not just team or group performance. A team is a pre-determined group in which
each member might have a pre-defined role. The question is how to create an expert
team that can not only perform effectively but also learn effectively, since groups and
teams often have to learn new innovations? That is, a team that performs and learns
expertly is not necessarily a team of individual experts, nor necessarily a team led
by an expert (Edmondson, Bohmer, & Pisano, 2001). There are other potent factors
such as coordination among team members. What is the nature and characteristics
of expert coordination (such as timing) is an issue that is being actively explored
currently (Cooke, Salas, Cannon-Bowers, & Stout, 2000).

In summary, the three constructs that are being explored in the expertise research
currently – deliberate practice, adaptive expertise, and group learning and perfor-
mance – are silent on the issue of how we can help learners become adaptive experts.
Besides the relatively new area of group learning, the first two constructs seem to be
mediated by some other unknown factor, such as motivation. There are also many
other social (family values, parental guidance) and cultural factors that seem diffi-
cult to reproduce for specific learners in order to make them more adaptive. In other
words, there are no obvious solutions for how we can train learners to become adap-
tive and elite experts. Two of the five catalysts mentioned by Martin and Schwartz
(2009) seem feasible to implement in training. One is the idea of providing vari-
ability instead of reducing variability as usually done in formal instruction. That is,
by intentionally introducing variability (as for example, in the condition of rules),
then students can see the variability more directly and easily, rather than having to
reflect on potential variability, as we postulated above. A second idea is what Martin
and Schwartz called “fault-driven adaption”. The idea is that if a situation contains
either new crisis or chronic bothersome snags, then an individual or a group might
decide to adapt. Fault-driven adaption is essentially an effective change caused by
an altered situation, in much the same way as conflict-driven conceptual change.
And we can imagine a training regime that can include faults such as new crisis,
chronic errors, or bothersome tedious repetitive actions. Both of these ideas can be
readily implemented in training so as to produce more adaptive experts.

Expertise as Perspective Shift

Besides the question of how to produce elite and adaptive experts, the more fun-
damental question of how we can accelerate the acquisition of expertise without a
decade of practice, is not a question that has a ready answer. One of the reasons
is that many of the results from contrastive studies on expertise (i.e., contrasting
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experts versus novices) do not translate easily into instructional intervention about
training for the acquisition of expertise. For example, if we find that experts can
see more patterns in an X-ray that novices cannot see (Lesgold et al., 1988), what
can we do to accelerate training other than going through what training already is
doing, which is to have experts point out x-ray flaws to novices? Similarly, if we find
experts to categorize and sort physics problems (Chi et al., 1981) or trees (Medin,
Lynch, Coley, & Atran, 1997) or birds (Tanaka & Taylor, 1991) differently from
novices, it is not clear how we can teach the categories to novices in a way that can
accelerate their learning. That is, they still have to learn the relationships between
the features in the objects that are relevant to the categories that the objects belong.

Occasionally, there are more mundane reasons for the length of time it takes to
acquire expertise, such as the need to encounter unusual situations. In that case,
simulations built to mimic the rare incidents would help accelerate the training of
novices, since they can encounter those incidents more often in a simulator (Gott,
Lesgold, & Kane, 1996). Lack of access also occurs in other scenarios, such as
in apprenticeship. In some workplace apprenticeships, the apprentices do not have
good access to the master, therefore they cannot acquire their skills readily and
quickly. These kinds of access issues (either accessing rare incidents or accessing
an expert) require solutions that can be more easily implemented, if feasible.

Aside from these access issues, no novel approaches have been taken to see if
expertise acquisition can be accelerated. One idea to be explored here is perspective
shift. Although perspective can be interpreted in many ways, such as spatial per-
spective, the idea proposed here is a perspective shift across ontological categories
(Chi, 1997). For example, a shift between objects and processes can be considered
a shift across ontological categories, or a shift between seeing the parts versus see-
ing the whole might be a second example, or a shift between individual entities
versus a system might be a third example. Let us consider two examples. In the
old data of experts and novices solving physics problems (Chi et al., 1981), there
were some protocols reported in which we asked experts and novices what kind of
cues in the problem statement allowed them to decide what kind of a problem it is
or how it should be solved. In analyzing two expert and two novices’ citations of
cues, gross differences emerged (Chi et al., 1981, Table 11, 1982, Table 14). The
cues could be either a specific object or concept in the problem statements, such
as a spring, an inclined plane or friction, or the cues could be more system level
processes, such as that the problem is a “before-and-after” situation, or there are
“interacting objects”. Table 2 below shows the difference of a single expert and a
single novice in the cues they cited as important for determining how a problem is to
be solved. The expert cited 21 concrete cues, whereas she cited 74 process cues. The
novice did just the opposite: he cited 39 object cues and 2 process cues. Thus, the

Table 2 Physics problem
cues (data taken from Chi
et al., 1981)

Object Process

Expert 21 74
Novice 39 2
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Table 3 Ratings of four swimmers (data taken from Leas & Chi, 1993)

Time Experts (N=2) Novices (N=2)

Swimmer 1 51.7 8.00 8.50
Swimmer 2 53.1 6.50 7.50
Swimmer 3 60.2 4.75 6.50
Swimmer 4 61.0 4.75 7.50

experts focused on the processes occurring among the elements within the problem
statement, whereas the novices focused primarily on the elements themselves. This
constitutes a concrete-object to process shift.

Another example comes from our work on examining expert swimming coaches
(Leas & Chi, 1993). In this study, expert swimming coaches (as recognized by
the US Swim Association, and with 12 years of coaching experiences) and novice
coaches (with 2 years of coaching experience) were asked to view underwater tapes
of four swimmers. Their task was to rate each swimmer on a scale ranging from
1 (bad) to 10 (good) and to diagnose what might be wrong with each swimmer’s
stroke. Table 3 shows the mean ratings of the two expert and two novice coaches,
compared with the actual swim times of each swimmer. As one can see from Table 3,
novices and experts had the same ranking of ratings, and moreover, these rankings
corresponded to the ranking of the swimmers’ times. This means that with a mini-
mum of 2 years of coaching experiences, coaches can adequately pick out the good
swimmers and differentiate them from the poorer swimmers. The accuracy of the
novice coaches makes sense because even a naïve spectator can often tell who is a
better swimmer (or dancer, or any other physical performer), and so forth, based on
qualitative overall features.

However, we further asked the coaches to give us the cues that they had used
to decide on their ratings of the swimmers. Here we found little overlap in the
cues cited by the expert and novices coaches. Moreover, there are characteris-
tic differences between the types of cues the novices cited versus the type that
experts cited. (Table 4 gives some examples of the cues they had used.) The

Table 4 Swimming diagnoses (data taken from Leas & Chi, 1993)

Object Process

Expert Unequal body roll
Rotates to right
Wide pull
Stroke unbalanced
Breathes to one side

Novice Elbow bent
Elbow lock out
Right arm not
underneath
Left arm not
extended

Nice body roll
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differences can be characterized again as either an object-process difference, or a
part-whole difference, or a static-dynamic difference. For example, novices tend to
cite a single body part (“elbow bent” or “right arm not underneath”) as the flaw
in a specific swimmer’s stroke, whereas experts tend to refer to the entire holistic
movement (“unequal body roll” or “stroke unbalanced”) as a flaw in a swimmer’s
stroke.

These characteristic differences are not incremental, but rather, represent signifi-
cant shift in perspectives. For example, if we view the difference as one between
objects and processes, these two perspectives are distinct ontological categories
(Chi, 1997). The difference is similar to the difference in physics cues cited ear-
lier, between citing an explicit concrete object (inclined plane or pulley) as the cue
for the kind of problem it is, versus citing cues referring to the entire system, such as
a before-and-after situation, meaning that the forces acting on the entire system are
equal before some interactions and after some interactions. The question of interest
is whether this perspective shift is trainable. For example, in solving simple mechan-
ics problems, would it be feasible to teach students to look for concepts such as a
balance-of-forces for the whole system, rather than to teach them to seek individual
forces acting on each mass? Similarly, for swimming coaches, can instruction for
diagnosis focus on movement of the entire body, rather than individual body parts?
Other related areas might be the difference between a focus on individual agents
or objects in a dynamic system (such as an eco system), versus teaching students
to focus on the entire population (Chi, 2008). This type of instructional approach
has not been tried, to our knowledge, to see if the acquisition of expertise can be
accelerated.

Conclusion

This chapter is not a review of the expertise literature. Instead, this chapter first out-
lined the major shifts in the literature in terms of understanding what makes experts
excel. Of course, more knowledge is assumed, by definition. But the first approach
to the study of expertise had assumed that what differentiated experts from novices
were the experts’ superior search strategies. However, in light of new empirical evi-
dence, this idea was replaced by another assumption, that what differed between
experts and novices was the structure of their greater knowledge. Finally, it was
shown that differences in the structure of knowledge led to differences in the way
a problem is represented by experts and novices. And the way a problem is rep-
resented led naturally to more efficient and more correct solutions. Although this
difference in representations offers many insights (for example, in understanding the
discrepancy between a teacher’s representation of a problem and a student’s repre-
sentation, thereby students will inherently misunderstand a teacher’s explanations),
how one can teach learners to construct better structured knowledge so that they can
construct a better representation remains a challenge. This instructional challenge
can be couched as how can we accelerate a learner’s understanding or how can we
create a more adaptive expert.
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The second part of this chapter highlights the three constructs that are being
emphasized in the current literature – deliberate practice, adaptive expertise, and
team expertise. On the surface, the first two constructs appear to refer to different
aspects of expertise: deliberate practice refers to how experts practice in order to
achieve elite status, and adaptive expertise refers to some experts who can general-
ize their understanding to new situations. But in some ways, these two constructs
are quite similar: they are both concerned with the production of some exceptional
experts, those who have deeper understanding and can generalize and transfer their
understanding to non-routine problems. The third construct is concerned with a
more concrete practical problem: how to create expert groups or teams, given the
nature of collaborative and team work that is required in the real world. Many ques-
tions remain unexplored so far about group and team expertise, such as what is the
best composition of an expert team, how to optimize a group’s learning, and so forth.

The last section of this chapter proposes a new way of thinking about differ-
ences between experts and novices. Instead of thinking about experts or more elite
and adaptive experts as ones who have conceptual understanding in addition to
procedural understanding, or as ones who can generalize their knowledge to non-
routine problems, or as ones who practice deliberately, we might want to explore
the source of this greater conceptual understanding or greater generalized under-
standing. One source might be the achievement of an ontological perspective shift.
That is, to achieve a certain level of eliteness and adaptive expertise means that
one has acquired another perspective. Viewed this way, it makes sense to consider
adaptive expertise at all levels of expertise. To enable the acquisition of adaptive
expertise then means that we have to understand what is the perspective of the
experts, and develop instruction from this perspective. Whether this approach will
be more successful at producing adaptive experts remains an empirical question
for now.
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Images of Expertise in Mathematics Teaching

Rosemary S. Russ, Bruce Sherin, and Miriam Gamoran Sherin

Abstract In this chapter we present a brief portrait of how researchers engaged
in the study of mathematics teaching have understood teaching expertise, a por-
trait that is attentive to the diversity that has existed and continues to exist in the
field. To do so we first adopt a historical perspective and attempt to capture some
of the trends in how teaching expertise has been conceptualized, with an empha-
sis on how these trends were driven by broader changes in educational research.
In particular, we trace the study of mathematics teaching through the traditions
of process-product research, cognitive research, subject-specific cognitive research,
situated cognition research, and design research. We then provide some sense for
the diversity of perspectives and approaches to mathematics teaching that are cur-
rently prominent by presenting four images of mathematics teaching practice. We
describe how researchers have tacitly conceived of mathematics teachers as either
diagnosticians of students’ thinking, conductors of classroom discourse, architects
of curriculum, or river guides who are flexible in the moments of teaching. An
awareness of these images of expertise will help the field both recognize and sit-
uate new images, allowing us to use them in productive ways to further understand
the work of mathematics teaching.

Keywords Mathematics · Teaching · Expertise

Our charge in this chapter is to discuss how teaching expertise has been concep-
tualized by researchers engaged in the study of mathematics teaching. Although
we accept that charge, we must note that there is no possibility of providing any-
thing approaching a unitary account of mathematics teaching expertise, or of the
research that seeks to understand that expertise. The problem is that teaching,
as a profession, requires its practitioners to engage in a diverse constellation of
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tasks. Mathematics teachers must plan lessons, work with students individually and
as a whole class, and they must present explanations, examples, and definitions.
Similarly, mathematics teachers develop assessments, grade student work, and keep
track of student progress. Complicating the situation still further is the problem that
each of these tasks can, in practice, exhibit enormous variability.

This complexity requires that researchers studying mathematics teaching exper-
tise, working as a field, adopt a divide-and-conquer approach. One way in which
the field may divide up the undertaking is for individual researchers to work on dif-
ferent subsets of the “diverse constellation of tasks” faced by teachers. So, some
researchers might choose to look at how teachers create lesson plans, while others
might look at how they lead classroom discussions.

But the situation is a bit more complicated than this divide-and-conquer story
suggests. The fact is that individual researchers may look at the problem of under-
standing teaching expertise from very different angles. Moreover, new perspectives
percolate through the field, changing with time, and spreading from one researcher
to another. As they do, the problem of understanding teaching expertise is divided
and re-divided in such a way that the work of multiple researchers does not fit
together cleanly.

The particular way that an individual researcher chooses to conceptualize and
study mathematics teaching is likely influenced by a number of factors. First, there
are the current trends in the broader landscape of education research – the per-
spectives that percolate through the field. A second and related influence is that
researchers each have their own particular commitments to and assumptions about
what aspects of the practice are important for successful teaching and learning.
Third, researchers must choose components of teaching practices that are tractable
and feasible to study.

In this chapter, we seek to present a brief portrait of how the field has under-
stood mathematics teaching expertise, a portrait that is attentive to the variability
and diversity that existed and continue to exist. We will do this in two ways. First,
we adopt a historical perspective and attempt to capture some of the broad trends
in how teaching expertise was conceptualized, with an emphasis on how these
trends were driven by broader changes in the landscape of educational research.
In describing these historical trends we treat the field as largely monolithic in its
approach and emphases. Our focus then shifts to the present and, in doing so, we
attempt to provide some sense for the diversity of perspectives and approaches
to mathematics teaching expertise that are currently prominent. To paint a pic-
ture of this diversity, we present four images of mathematics teaching practice.
In describing these images, we will also attempt to show how our current con-
ceptions of teaching expertise continue to be influenced by perspectives that were
prominent in the past. To do so, we first present a short teaching vignette from
an eighth-grade mathematics classroom that we will use to ground the discussion
throughout the chapter. To be clear, our goal is not to characterize expert mathemat-
ics teachers as a class of teachers distinct from novice teachers. Instead, we seek
to describe several key aspects of the expertise involved in teaching mathematics
today.
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A Vignette of Mathematics Teaching: The Crowd
Estimation Problem

It was December, and Mr. Louis’ 4th period class was nearing the end of a unit
on comparing and scaling (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1997b). At
the beginning of class, students were given a picture of a 14 cm × 9 cm rectan-
gle densely filled with dots (Fig. 1). Students were told to imagine that the picture
was an aerial photograph of a crowd at a rally and that each dot represented a per-
son. Their task was to estimate how many people attended the rally. Students began
by working on the problem in small groups as the teacher circulated throughout
the class. Mr. Louis then invited Tina’s group to the front of the room to share
their approach. Using the overhead projector to demonstrate, Tina explained that
they divided the original rectangle into 126 small squares that were 1 cm × 1 cm.
Then they counted 17 dots in one of the small squares. To estimate the total popu-
lation, they multiplied 17 by 126. Tina concluded, “and we got 2,142. That was our
approximate answer.”

Following the presentation, Mr. Louis turned to the class and asked, “What do
people think about this group’s method?” Among several comments from students,
Robert responded that Tina’s group would have gotten a more accurate estimate for
the total population if they had used bigger squares. When prompted to elaborate,
Robert explained that “with smaller squares there may be a bunch of dots packed
into a small area. In just that particular area or something. Or there might have been
not a lot of dots.” Robert’s point was that the number of dots in a larger square
might be more representative of the density of the picture than the number of dots
in a smaller square (see Fig. 2).

Fig. 1 Estimate the
population of the crowd
shown in the picture

Fig. 2 Two proposed
solutions to the crowd
estimation problem
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Mr. Louis again turned to the class for comments: “What do you think about
what Robert just said?” Several students said that they agreed with Robert, includ-
ing Amy, Jin, and Sal. In contrast, Jeff suggested an alternative method that involved
finding the average number of dots in 10 small squares. “It would have been better
if instead of . . .one small square. . . they took ten squares from all random spots
that were small size and divided the total of all the groups by 10.” After a few min-
utes, Mr. Louis drew the class’ attention specifically to Robert’s and Jeff’s ideas.
“We have two competing ideas here.” He drew a diagram to illustrate the different
approaches and encouraged the students to compare and contrast the two meth-
ods. “Which way do you think would produce the most accurate estimate of the
population?”

As the class discussed Robert’s and Jeff’s methods, students raised a number of
issues including the role of averaging (“[For] a better estimate you have to have an
average.”), the context in which the sample was drawn (“Robert’s methods would
be better if. . .the big squares had the same number of dots each time.”) and the
relationship between the samples (“Is Jeff’s method just. . . making the square ten
times larger?”) While aware of the productive discussion taking place, Mr. Louis
also realized that the bell would soon ring. He encouraged students to continue
thinking about the lesson: “There’s still a lot of really rich math in here, so let’s
try to think about what we think here.” He then assigned students their homework,
which included describing a way to estimate the number of blades of grass on a
football field and selecting an effective sample to use to determine the favorite rock
band of students at their school.

Research Paradigms in the Study of Mathematics Teaching

The prevailing paradigms of research in a given field at any given time heav-
ily influence and serve to organize the particulars of research carried out in that
field. Research on teaching in general and mathematics teaching in particular is
no exception. Here we review some of the major trends and traditions in the his-
tory of research on teaching to provide a background against which we can better
understand current research on mathematics teaching expertise.

Process-Product Research

Early research on teaching was driven by a desire to identify relationships and
find connections between classroom teaching and students’ learning. Described as
“process-product research,” these studies sought to answer questions that took the
general form of “What characteristics of teachers and teaching are linked, in some
causally relevant way, to desired student outcomes?” (Floden, 2001, p. 7). To answer
these questions this work focused largely on observable behaviors of teachers and
students in classrooms. Researchers would choose particular behaviors or attributes
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of teachers to examine (e.g. “experience”) and find ways to quantify those variables
(e.g. number of years of teaching) while simultaneously observing and measuring
outcome variables in students (e.g. scores on achievement tests). This work then
aimed to discover effective teaching strategies by documenting large numbers of
classrooms and identifying correlations and covariations between what the teachers
did and what the students learned (Rex, Steadman, & Graciano, 2006).

One assumption of this work was that effective teaching strategies were domain
general; researchers could look across teaching in different domains and make
generalizations about what teaching expertise looked like overall. Thus data from
mathematics classrooms was combined with data from science and history class-
rooms in order to perform these large-scale correlational studies. For example,
one productive line of research grounded in the process-product tradition revolved
around “wait time” (Rowe, 1974). In this work, the amount of time teachers wait
after asking a question and before evaluating a student response was examined in
relation to the frequency and complexity of students’ responses. Other research in
this tradition explored the influence of various classroom management techniques
as well as the influence of different types of teacher questions on student responses
(Dunkin & Biddle, 1974). In this work researchers observed teaching practice and
compared it to measurable student outcomes using domain general variables such
as “wait time,” management techniques, or types of questioning.

Let us now consider our vignette from the perspective of a researcher working
within the process-product paradigm. What slice of Mr. Louis’ practice would be
of interest to this researcher? Likely he would seek to isolate, observe, and quantify
individual features of the instruction or of Mr. Louis himself that contributed to his
students’ success or failure in the classroom. For example, the data might be used
to explore questions such as: Does the number of times a teacher asks his students
to explain their ideas – as Mr. Louis does with Tina, Robert, and Jeff – impact the
students’ achievement on a test of the same material? When teachers have students
work in small groups to solve problem – as Mr. Louis does with this problem – are
students more likely to turn in a correct problem solution? Furthermore, in seeking
to answer these questions, it would be assumed that the answers are not domain-
specific. So data from Mr. Louis’ mathematics class might be pooled with data from
science and social studies classrooms.

A First Look into the Mind of the Teacher

By the 1980s a new paradigm grounded in the intellectual traditions of cognitive
science and psychology began to drive research on teaching. Rather than observ-
ing and describing teacher behaviors, cognitivist researchers sought to generate
accounts of teacher knowledge and thinking. This “approach to the study of teach-
ing assume[d] that what teachers do is affected by what they think” (Clark & Yinger,
1987, p. 231). What might now seem relatively obvious was, against the backdrop of
behaviorism, revelatory. Indeed, the promise seemed to be great. It was hoped that
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researchers might gain more traction in understanding teacher practice if instead of
just directly describing behaviors, as research in the process-product tradition had
done, research first tried to understand the thinking of the teacher that gave rise to
that behavior. This work looked in particular at “three fundamental types of cogni-
tive processes” of teachers including “studies of [teachers’] judgment and policy, of
problem solving, and of decision making” (Shulman, 1986, pp. 23–24).

An example of cognitivist research on teaching is the study of teacher planning.
For example, Peterson and Clark (1978) interviewed teachers following instruction
as a way to explore the relationship between the teachers’ goals for a lesson and their
decisions about adapting the lesson during instruction. In related work, Clark and
Yinger (1979) identified different goals that teachers had in mind as they planned for
instruction (e.g., planning in order to structure a lesson versus planning in order to
develop an appropriate assessment activity). For researchers within this paradigm,
providing detailed accounts of teachers’ cognition was essential to understanding
and making sense of their classroom teaching. However, these accounts of teacher
cognition were still domain general; differences in domains were not considered
relevant for examining teacher thinking.

We return again to our vignette to demonstrate how early cognitivist researchers
might have attempted to make sense of Mr. Louis’ teaching. What slice of our
vignette might they have chosen to focus on? To start, such researchers may have
sought to uncover Mr. Louis’ plans for instruction, his “lesson image” (Morine-
Dershimer, 1978–79), and points in the lesson where Mr. Louis expected to shift
from one activity to the next. They may have shown Mr. Louis portions of the les-
son after instruction with the goal of having Mr. Louis reconstruct his thinking at
particular points in time. How did he decide when to move from small group work
to the group presentation? Did he have in mind a particular “wrap-up” for the lesson
that he then abandoned given time constraints? As in the process-product tradition,
these analyses of Mr. Louis’ teaching would not be substantively affected by the fact
that he teaches mathematics.

A Focus on Subject-Specific Teaching

As the cognitive revolution unfolded over the middle and latter twentieth century,
one lesson was clear: Looking across multiple populations and diverse fields, it was
repeatedly established that expertise is profoundly domain-specific (Glaser & Chi,
1988). To exhibit expertise in a domain, an expert must acquire a body of knowl-
edge that is specific to that domain. As Shulman summarized it, “the thrust of the
cognitive science research program in learning is subject matter specific rather than
generic” (Shulman, 1986, p. 25). The implication of this work for teaching was
doubly significant. First, it implied that we must expect teaching expertise to exhibit
the same kind of domain-specificity as any other discipline. Second, and more sub-
tly, teaching is a discipline that is concerned with helping others – students – to
acquire expertise. If student reasoning depends on domains then what teachers must
do to influence that reasoning will likely also depend on the domain. Thus, research
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into effectiveness in teaching, in addition to focusing on cognition, needed to focus
in particular on domain-specific cognition.

Shulman (1986) led the field’s advance into domain-specific cognitive research
on teaching. In particular, he contrasted teachers’ subject matter knowledge with
what he called their “pedagogical content knowledge.” Subject matter knowledge,
according to Shulman, concerned one’s understanding of the facts and concepts
within a domain, while pedagogical content knowledge, on the other hand, had to
do with an understanding of how to teach those facts and concepts. A wealth of
researchers elaborated on Shulman’s claims in the area of mathematics instruction,
identifying pedagogical content knowledge in varied domains such as elementary
fractions (Marks, 1989) and functions (Even, 1993). Others looked closely at the
role of pedagogical content knowledge during instruction, making claims that the
depth of one’s pedagogical content knowledge is what characterizes the accom-
plished mathematics teacher (Borko et al., 1992; Putnam, 1992; Sherin, 2002).
The assumption behind all of this work is that pedagogical content knowledge is
inherently domain specific and crucial for successful teaching practice.

Let us now return again to the case of Mr. Louis. What slice of his teaching
would cognitivists committed to domain specificity examine? Researchers from this
tradition would be particularly interested in the thinking that Mr. Louis does that
is mathematical in nature. For example, they might ask: What knowledge did Mr.
Louis use that allowed him to see Jeff and Robert’s ideas as competing alternatives?
What did Mr. Louis know about students’ common misconceptions in mathematics
that caused him to select this particular problem to help them understand sample
size? For these researchers, answering such questions would likely involve examin-
ing the classroom activity in detail and interviewing Mr. Louis about his thinking
both in the moment of instruction and during his planning.

A Situative Perspective on Teaching

Like all successful research paradigms, the cognitive perspective engendered a
backlash of sorts. At the heart of this backlash was the sense that, in the cogni-
tive tradition, too much explanatory emphasis was located on the in-the-moment
cogitations of individual actors. Instead, it was argued, a perspective is needed in
which the individual is understood as embedded in physical and social systems,
spread over space and time. This perspective has been known by many names; in its
more recent incarnations, the names situated cognition and situative perspective are
common. Though the situated perspective surged to prominence in the 1980s and
1990s, it traced its lineage to older traditions, including the instrumental psychol-
ogy of the Soviet psychologists, in which thinking was thought to arise first on an
interpsychological plane (e.g., Vygotsky, 1978).

Adopting a situative perspective has led researchers to see the mathematics class-
room as a place and community with a history, and to focus on interactions among
teachers, students, and artifacts. Studying mathematics teaching expertise then
involves studying, for example, the roles of participants in the classroom discourse
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(e.g., Moschkovich, 2007; Sfard, 2007), how artifacts and ideas are taken up among
community members (e.g., O’Connor, 2001), and how the teacher establishes an
environment in which responsibility for learning is shared among participants (e.g.,
Silver & Smith, 1996).

We return to our vignette once more to demonstrate the focus of attention of sit-
uative researchers. These researchers would be interested in questions such as: How
does the interaction between Mr. Louis and his students give rise to the various
approaches to the problem that are voiced? How do the artifacts and representations
used in the classroom mediate or afford the learning that occurs? When and how is
new knowledge and language appropriated by Mr. Louis’ students? Close examina-
tion of students’ work in the small groups and their discourse during the large group
discussion would be crucial to this analysis, including studying issues of power and
agency, the identities and roles the students and Mr. Louis develop or adopt during
the course of the lesson, and the negotiation of norms of participation and represen-
tation in the classroom. In addition to analyses of this particular moment from Mr.
Louis’ teaching, those with a situative perspective would also be interested in the
history of the class and the students themselves, and how that history impacts what
occurs in that moment.

Design Research: Teaching as Curriculum Adaptation

Among the more recent trends to influence research on teaching expertise is what
has been referred to as design research. Unlike the shifts described above, the design
research perspective does not constitute a fundamental change in the way that human
reasoning or social systems are understood. Rather, it represents a change in how
we conceptualize the relationship between research and practice. In some respects,
the relationship between research and practice is seen as more intimate. In design
research, design and theory development are carried out in tandem, and the bound-
ary between research and design is essentially eliminated (Edelson, 2002). In other
respects, the relationship between theory and practice is understood to be loosened.
It is explicitly recognized that designs are just that – designs – and that theories
of learning do not come close to determining all aspects of an instructional design
(Brown & Campione, 1996) Additionally, the design research perspective empha-
sizes that educational theories and designs must be portable in the sense that they
can survive diffusion into the world.

The design research perspective can be seen as having a variety of impacts on the
way we understand the nature of teacher expertise. Unlike the paradigms described
in the preceding sections, this perspective does not draw our attention primarily
to the reasoning and acting of the teacher. Instead, we are led to view the teacher
through the lens of the larger instructional system in which the intentions of a
curricular designer are brought to bear on students. More specifically, the teacher
is understood as playing a particular role within this larger system, as the interpreter
and applier of curriculum materials. Within this perspective, research on mathe-
matics teaching focuses on patterns in teachers’ use of curriculum materials. For
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example, Remillard (2005) examines the cognitive resources teachers bring to the
work of enacting curricula in their classrooms. In other work, Sherin and Drake
(2009) document the different ways that elementary mathematics teachers read,
evaluate, and adapt a new mathematics curriculum.

We can return once more to our vignette with the design research perspective in
mind. Design researchers entering Mr. Louis’ class would likely not be content to
observe and analyze only what occurred during his lesson enactment. Instead they
would examine how the lesson was enacted as compared to how it was designed
and seek to understand Mr. Louis’ reasons for adapting the lesson as he did. The
design researcher would be interested both in the adaptations Mr. Louis made while
planning before the class and those he made in the moments of instruction. For
example, Mr. Louis had students discuss their ideas with the entire group. A design
researcher would examine the curriculum documents to identify whether this was
a change from the original design. If so, why did Mr. Louis change this aspect of
the design? When did he decide to change the lesson? Did this change maintain
the original goals of the curriculum designers? Design researchers would seek to
understand Mr. Louis’ teaching as part of a system that includes not only the teacher
and the students but also the curriculum designers and the curriculum itself.

Current Research on Mathematics Teaching: Four Images
of Expertise

In the preceding sections, our perspective was historical; we attempted only to cap-
ture the trends in the field – changes to the broad landscape of education theory –
and the new understandings of expertise in teaching that grew out of these changes.
In doing so, we essentially treated the field as monolithic. Of course, at any point in
time, there is variability among researchers. In this section, we turn to the present
day, and we attempt to paint a picture of the variety that exists.

Capturing this diversity in a meaningful way is challenging. The perspectives
adopted by researchers are changeable, and boundaries are never clear. To paint
our picture we present four images of mathematics teaching expertise. Each of these
images encapsulates an orientation toward mathematics teaching expertise, and each
highlights some facets of expertise and ignores others. To help clarify the differences
among these images, we will highlight the kinds of questions that each image might
pursue relative to the crowd estimation lesson.

Mathematics Teacher as Diagnostician

One way to conceive of mathematics teaching today is that the central role of the
teacher is as a diagnostician. The teacher, like a doctor or mechanic, must examine
the mathematical thinking of students, look for symptoms (e.g., wrong or surpris-
ing answers), and diagnose their underlying cause (e.g., a faulty conceptualization).
Thus, the emphasis here is on the need for teachers to be able to discern the mean-
ing of the mathematical ideas and methods that students raise in class. This aspect
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of teaching practice has been referred to in a number of ways including “sizing
up students’ ideas” (Ball, Lubienski, & Mewborn, 2001), “observing student rea-
soning” (Kazemi & Franke, 2004), and “drawing inferences about student talk”
(Hammer & Schifter, 2001). The skill needed to interpret students’ mathemati-
cal ideas should not be underestimated (Even & Wallach, 2004). Students’ ideas
can be quite complex, and students do not always articulate their thinking clearly.
Furthermore, teachers are often expected to make sense of a student’s idea quite
quickly and with little in the way of resources that might offer potential interpreta-
tions for the teacher to consider. Wallach and Even (2005), for example, warn of the
potential for teachers to under-hear or over-hear as they work to make sense of the
methods students share in class.

Looking at Data

Researchers who adopt the stance of mathematics teacher as diagnostician tend to
look closely at interactions between teachers and students around specific math-
ematical content. They might focus, for example, on the questions teachers ask
students about their ideas or on the explanations teachers provide about students’
methods. This approach is strongly connected to the cognitivist’s commitment to
subject-specific cognition. The assumption is that the process of diagnosis involves
looking at mathematical content in a very detailed and up-close manner.

Studying Teacher Expertise

A focus on the teacher as diagnostician leads researchers to several related lines
of inquiry. One area of study examines what teachers understand about student
thinking in particular mathematical domains. For example, Even and Tirosh (2002)
discuss the extent to which seventh-grade teachers recognize students’ tendency to
simplify algebraic expressions without regard to “like terms.” Similarly, Son and
Crespo (2009) examine how elementary and secondary teachers reason about a
novel student method for dividing fractions. Closely related to such research are
investigations of what teachers’ themselves understand about various mathemat-
ics topics (see, for example, Borko et al., 1992; Stephens, 2008). The idea here is
that the ways teachers diagnose students’ ideas rest heavily on the teachers’ own
understanding of the mathematical content.

In other work, researchers aligned with the teacher-as-diagnostician perspective
delineate categories of knowledge that support teachers’ ability to interpret students’
thinking. This line of inquiry builds directly on Shulman’s (1986) introduction of
pedagogical content knowledge. For instance, Ball, Thames, and Phelps (2008)
define “specialized content knowledge” – a “kind of unpacking of mathematics” (p.
402) that allows teachers to, for example, identify common student misconceptions
and decide whether or not a novel student method is generalizeable. In other work,
Ma (1999) explains that teachers who possess “knowledge packages” (p. 118) –
collections of mathematical concepts that a teacher views as strongly connected –
are able to provide in-depth, conceptually-based responses to scenarios describing
student misconceptions. For these researchers, what is of interest is the kinds of
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mathematical knowledge that teachers draw on to successfully diagnose students’
thinking.

A third line of inquiry revolves around researchers’ efforts to help teach-
ers become more effective diagnosticians. For example, the Cognitively Guided
Instruction project organized professional development for elementary school teach-
ers around students’ understanding of addition and subtraction word problems
(Carpenter, Fennema, Peterson, & Carey, 1988). Franke, Carpenter, Levi, and
Fenemma (2001) report that, as a result, most participants learned to listen carefully
to their students’ ideas and that, in some cases, knowledge of students’ thinking
became generative for the teachers. In other words, teachers’ ability to analyze stu-
dents’ strategies influenced the teachers’ own learning of mathematics and informed
their instructional decisions.

The Crowd Estimation Lesson

We now consider how a researcher focused on studying the ways mathematics
teachers diagnose student thinking might examine the Crowd Estimation lesson.
Of particular interest to the researcher would be ongoing evidence of Mr. Louis
working to understand the ideas that students share in class. For example, during
the initial presentation, Mr. Louis requested clarification of the group’s approach,
asking if Jen “would write some of this down for us” and explain, “What did you do
after that?” Shortly after, when Robert suggested an alternative, Mr. Louis probed,
“That’s interesting. Why do you say that?” Similarly when Amy commented that
Robert’s method was good because of the bigger squares, Mr. Louis asked her to
expand, “Why would that make a difference?” One way to understand Mr. Louis’
frequent elaboration requests to students is that he is seeking more information
from which to diagnose their thinking. Furthermore, the researcher might also be
drawn to particular moments in the lesson where Mr. Louis appears to be draw-
ing on his knowledge of mathematics to diagnose students’ ideas. For example, Mr.
Louis’ understanding of ratio and proportion was likely an important resource in
understanding the difference between Robert’s and Jeff’s methods. Similarly, his
pedagogical content knowledge likely played a role in how he chose to represent
Robert’s and Jeff’s methods visually for the class.

Mathematics Teacher as Conductor

A second way to conceive of mathematics teaching expertise is to imagine the
teacher as a conductor, directing and shaping the classroom discourse. By many
accounts, discourse is an essential component of mathematics instruction today
(e.g., National Council of Teachers of Mathematics, 2000). Classroom discourse
communities support student participation in important mathematical practices
including explanation, argumentation, and justification. Furthermore, research has
demonstrated that classrooms in which students regularly talk about mathematics
provide valuable access to multiple ways of thinking about and solving problems.
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At the same time, managing classroom discourse effectively is not a simple task. As
Stein, Engle, Smith, and Hughes (2008) explain, “A key challenge that mathematics
teacher’s face. . .is to orchestrate whole-class discussions. . .in ways that advance the
mathematical learning of the whole class” (p. 314).

Looking at Data

Researchers who draw on the perspective of mathematics teacher as conductor typ-
ically focus their investigations on the conversations that take place during class.
They often look closely, for example, at who speaks and when, how teachers elicit
comments from students, the kinds of questions teachers (and students) ask, and
what counts as a valid explanation in a given discussion. This perspective draws
heavily on both the cognitive and situative paradigms for teaching. Discourse is
thought to involve thinking and meaning making on the part of the teacher; at
the same time discourse arises from communities and marks membership in that
community (Moschkovich, 2007).

Studying Teacher Expertise

Despite a common focus on the teachers’ role in classroom discourse, researchers
adopting this stance explore several different lines of inquiry. First, a number of
studies investigate stages through which teachers move as they develop their abil-
ities to effectively facilitate mathematical discourse. For instance, Smith (2000)
describes key phases in the development of a middle-school teachers’ questioning
techniques. In other work, Hufferd-Ackles, Fuson, and Sherin (2004) introduce a
four-step process of developing a “math-talk-learning community” (p. 4) in which
discourse shifted from teacher-directed to student-directed, and from a focus on
answers to a focus on mathematical thinking. The emphasis in all this work is on
the development of the teacher’s expertise as conductor of classroom discourse.

A second, related, approach concerns the teacher’s use of classroom norms for
communicating about mathematical ideas. Emphasis is on what Yackel and Cobb
(1996) define as “sociomathematical norms,” shared understandings of what “counts
as mathematically different, mathematically sophisticated, mathematically efficient,
and mathematically elegant” (p. 461). Of interest then, is uncovering how teachers
lay the groundwork for establishing such norms. For example, early in the year
Lampert (2001) explicitly encouraged students to add to one another’s ideas in order
to establish among the class appropriate ways to respond to, and even challenge, a
person’s ideas.

Third, some researchers who align with the teacher-as-conductor perspective pri-
marily investigate patterns in the ways that teachers engage in classroom discourse.
For example, Forman, Larreamendy-Joerns, Stein, and Brown (1998) describe the
use of revoicing and filtering in order to highlight and clarify students’ contributions.
In other work, Williams and Baxter (1996) and Nathan and Knuth (2003) illustrate
teachers’ use of analytic and social scaffolding design to support worthwhile dis-
cussions of student mathematical thinking during class discussions. This approach
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to research emphasizes the different strategies used repeatedly by teachers in their
role as conductors.

The Crowd Estimation Lesson

So how would researchers aligned with the teacher-as-conductor view of teach-
ing expertise analyze the Crowd Estimation lesson? To start, a single lesson would
not provide sufficient evidence to allow for an investigation of the development of
whole-class discourse in Mr. Louis’ classroom. While the researcher might be able
to draw a few related conclusions from the data (e.g., that this type of discourse
was familiar to students), without access to a series of discussions facilitated by Mr.
Louis such analysis would be difficult.

At the same time, the lesson does provide a rich context for examining other
aspects of the teacher-as-conductor perspective. First, there is evidence of several
sociomathematical norms in place, norms that are mediated by the teacher. For
example, Mr. Louis elicited multiple solutions to the estimation task from students,
and each strategy was allotted time for discussion. Researchers might also explore
patterns in Mr. Louis’ discourse with the class. For example, Mr. Louis consistently
encouraged students to comment on each other’s ideas. He did this by following
up a student’s comment with a general question to the class: “What you guys think
about Robert’s idea?” “What do other people think?” He also regularly asked stu-
dents to explain each other’s ideas and strategies: “Can someone summarize what
John said?” “What is Jared trying to say?” In exploring these patterns, researchers
would try to characterize the nature of the expertise needed to effectively take on
the role of teacher as conductor.

Mathematics Teacher as Architect

A third way to conceive of mathematics teaching expertise is that of the teacher
as architect. Of central concern in this perspective is the teacher’s role in select-
ing and implementing curriculum materials. Curricula are viewed as the primary
vehicle through which policy and reform recommendations reach students (Sykes,
1990). Yet at the same time, a wealth of research emphasizes that curricula
are not teacher-proof, and that instead, as teachers use curricula they necessar-
ily interpret and adapt the materials for their own use (Lappan, 1997a). The
perspective of teacher-as-architect emphasizes that effectively supporting student
learning of mathematics requires expertise on the part of the teacher both in choos-
ing tasks to use with students as well as deciding how those tasks should be
carried out.

Looking at Data

Researchers who adopt the perspective of mathematics teachers as architects tend
to look closely at one or more of several different activities in which teachers
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engage around the use of curriculum materials. For instance, researchers may focus
on the process through which teachers plan for instruction, or reflect on lessons
post-instruction. Alternatively, they may investigate particular components of cur-
riculum implementation. What is of interest is the reasoning that teachers engage in
as they design instruction. The teacher-as-architect stance draws on the perspectives
of both situated cognition and design research. In line with situated cognition, this
approach recognizes that curriculum materials are mediating tools used by teachers
to accomplish their goals (Brown, 2009). In addition, in line with design research is
the idea that teachers are consumers and adapters of designs, as well as designers of
classroom activity themselves. Even when using published curriculum materials, the
process through which teachers take the page as written and move to the lesson as
enacted can be thought of as a process of design (Silver, Ghousseini, Charalambous,
& Mills, 2009) As Brown (2009) explains, “Teaching by design is not so much a
conscious choice as an inevitable reality” (p. 19).

Studying Teacher Expertise

The focus on mathematics teacher as architect has increased in popularity over the
last 15 years and has resulted in several related lines of inquiry. One approach exam-
ines the extent to which the mathematics activities selected by teachers represent
cognitively demanding tasks – “problems that promote conceptual understanding
and the development of thinking, reasoning, and problem-solving skills” (Stein
et al., 2008, p. 315). Along the same lines are studies that examine whether teachers
maintain a high level of cognitive demand as a task is carried out (e.g. Smith, 2000).
Such research seeks to understand the expertise needed to carry out a mathematics
lesson in ways that maintain the integrity of the planned lesson.

In other work, researchers characterize teachers’ typical approaches to using
mathematics curriculum materials. For example, Remillard and Bryans (2004)
define one group of teachers as “thorough piloters” who allowed the published
materials to generally guide the structure of lessons in contrast to another group’s
“intermittent and narrow” use of the same curriculum (p. 375). Similarly, Nicol and
Crespo (2006) identified different ways that teachers adapted a traditional mathe-
matics curriculum: by extending activities suggested by the text or by creating new
problems and questions to insert in lessons. By looking at the impact of these differ-
ent approaches on instruction, researchers attempt to uncover some of the expertise
involved in designing and implementing effective mathematics lessons.

The Crowd Estimation Lesson

A researcher drawing on the teacher-as-architect perspective would likely find sev-
eral aspects of the Crowd Estimation lesson of interest. One issue might be how Mr.
Louis organized the lesson – with students initially working in groups, then a student
presentation followed by a whole class discussion, and finally with related home-
work problems assigned. How did this structure serve to meet Mr. Louis’ goals for
the lesson? Did Mr. Louis consider brainstorming strategies as a whole class first,
and then having students work in groups to pursue some of the strategies in more
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detail? How did the mathematical content of the lesson as well as students’ expe-
rience with similar tasks influence his decisions? The researcher might also want
to explore Mr. Louis’ choice to have Jen’s group present their method to the class.
Earlier, Mr. Louis circulated throughout the room as students worked on the task in
groups. Were there certain features of Jen’s group’s method that Mr. Louis wanted
the class to see, and wanted the class to see first? How did his choice of Jen’s group
enable or constrain Mr. Louis to move forward with his planned goals for the les-
son? While the lesson itself might provide some evidence related to these issues, the
researcher would likely want to interview Mr. Louis to examine both of these issues
in depth. In doing so, the researcher would endeavor to uncover ways in which Mr.
Louis’ expertise enabled him to serve in the role of lesson architect – designing and
carrying out the lesson in ways intended to support student learning.

Mathematics Teachers as River Guide

A fourth way to conceive of mathematics teaching expertise is that of the teacher
as a river guide, as one whose job it is to be flexible in the moment. Like a river
guide, a teacher has a carefully crafted plan; the “river” in this case is a lesson that
has been carefully reviewed and whose contingencies have been considered. Yet the
river guide’s true expertise comes to light during the ride, when the rapids change,
or a paddler makes an unexpected move. It is the river guide who must respond
quickly and effectively. In the same way, teaching expertise can be viewed as being
responsive to the context, to students, and to what occurs in the moment (Berliner,
1994). Our use of the river guide metaphor is intended to emphasize that teachers
are on the river with the students. We think of them not just as leading students down
the river but also as actively engaged with students in the journey.

Looking at Data

Researchers who adopt the perspective of mathematics teacher as river guide typ-
ically focus their investigations on the interactions in the classroom. In particular,
they try to identify moments of instruction in which teachers make on-the-fly deci-
sions about how to proceed. Through videotapes of instruction and/or interviews
with teachers, the researcher will explore, for example, moments in which teach-
ers deviate from their planned lessons, respond to unexpected student ideas, or
adapt an activity in the midst of instruction. This perspective draws on both the
cognitive and situated paradigms for teaching. From the cognitive perspective, the
teacher’s expertise as river guide is reflected in the teachers’ understanding of sub-
ject matter, students, and so on. From the situated perspective, it is reflected in the
way expert teachers react to and fluidly operate within changes in the setting and
context.

Studying Teacher Expertise

A focus on the teacher as river guide leads researchers to engage in several related
lines of inquiry. One approach involves exploring the nature of improvisation as
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it is exhibited in the act of teaching. For instance, Sawyer (2004) defines teaching
as “improvisational performance” and examines the knowledge teachers draw on
as they “think quickly and creatively” during instruction (p. 15). In other work,
Heaton (2000) studied the process through which her own mathematics teaching
was transformed as she came to “appreciate teaching as an improvisational activity”
(p. 60).

[Today] I moved away from the scripted lesson and made a move that went beyond asking
children to explain their thinking. I was connected to the work of teaching in ways that I
had not experienced before in mathematics. . .For a moment I was no longer in role of silent
bystander. I took control. I knew what I was doing. For a moment, I was teaching. (p. 59)

The emphasis here is the idea that teaching expertise necessarily involves improvi-
sation, deciding in the moment how to respond to the unfolding lesson.

Another approach that draws on the notion of teacher as river guide involves try-
ing to model the on-the-fly decision-making process in which teachers engage. For
the example, Schoenfeld (1998) illustrates that a mathematics teacher’s actions can
be modeled as a reaction to existing beliefs, knowledge, and goals. In particular,
he demonstrates how these resources come into play when something unexpected
happens in the classroom. Relatedly, Artzt and Armour-Thomas (2002) suggest that
teachers engage in cycles of active monitoring and regulating during instruction
that are mediated by their beliefs, knowledge, and goals. This line of work empha-
sizes the role of cognitive resources in enabling teachers to quickly and effectively
respond to classroom activity.

Third, some researchers who align with the teacher-as-river-guide perspective
focus specifically on the noticing that mathematics teachers engage in during
instruction (Jacobs, Lamb, & Philipp, 2010; Mason, 1998; van Es & Sherin, 2008).
The idea is that because the classroom is a complex environment with multiple
events happening at the same time, the teacher cannot pay equal attention to all
that is taking place. Instead, a key component of teacher expertise involves deciding
where to focus one’s attention and, according to Mason (2002) preparing oneself
to attend to particular kinds of events. Building on Goodwin (1994), Sherin (2007)
refers to this as “teacher’s professional vision” – the ability of teachers to iden-
tify significant events in the classroom. In this strand of work researchers examine
teachers’ abilities to parse and make sense of classroom activity, which in turn allow
teachers to be responsive to issues as they arise.

The Crowd Estimation Lesson

Returning to the Crowd Estimation Lesson, how might researchers aligned with the
teacher-as-river-guide perspective examine the lesson? One event that would likely
capture their attention is Mr. Louis’ decision to put Robert’s and Jeff’s ideas before
the class for comparison and further elaboration. “We have two competing ideas
here.” This is certainly a decision made by the teacher in the moment of instruction;
Mr. Louis could not have known beforehand precisely what ideas would be raised
in class, and in what ways. Instead, in the midst of instruction, with all that is taking
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place, Mr. Louis likely recognized some features of Robert’s and Jeff’s strategies
that he believed would be worthwhile for the class to investigate. “We have Robert
who says this. . .take a larger sample.. . . Jeff said something a little different. ‘Take
10 squares like this and average them together.’ What is Jeff saying. . .that we do?”
In exploring this episode from the lesson the researcher would try to uncover what
about Robert and Jeff’s ideas peaked the teacher’s attention in that moment and
how the teacher quickly made the decision to juxtapose those ideas against one
another.

Discussion

“It was December, and Mr. Louis’ 4th period class was nearing the end of a unit
. . ..” Thus began our summary of a single episode from a mathematics class-
room. Throughout this chapter, we only used this one vignette as a reference point.
But even this short vignette was enough to support numerous perspectives on the
mathematics teaching expertise possessed by Mr. Louis.

In some respects, this chapter may be understood as a “review of the literature.”
But the expansive nature of our subject matter (how the field has conceptualized
mathematics teaching expertise) and the limits of space (the usual chapter in an
edited volume) required that our “review” take a somewhat non-traditional form.
This was particularly true of our portrait of research on mathematics teaching exper-
tise as it exists in the present day. There, our review centered around four “images”
of the mathematics teacher: diagnostician, conductor, architect, and river guide.
Looking back at these images, we realize that the need to be concise has led us to
undertake a productive exercise. We have come to believe that it is productive to
see researchers as adopting one or more of a moderately small number of images of
mathematics teaching. This recognition helps us to understand some of the diversity
in the field, as well as why research has clustered in some areas. To be clear, while
we have described these images as independent, they are certainly related. Moving
forward, we can imagine it would also be productive for the field to explore the ways
that these four images are related.

Another way to understand the ideas presented in this chapter is as a “meta”
analysis of mathematics education research on teaching expertise. Just as it is useful
for our students of mathematics to be aware of their own thinking, we believe that
it is useful for us as researchers to be aware of the perspectives that we adopt in our
work, whether explicit or implicit. We expect that this will be particularly important
as our field continues to move forward. As new paradigms for understanding the
complex environment of the classroom emerge, so also will new images of expertise.
An awareness of those images of expertise that currently exist will help us both
recognize and situate new images, allowing us to use them in productive ways to
further understand the work of mathematics teaching.
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Coordinating Characterizations of High Quality
Mathematics Teaching: Probing the Intersection

Edward A. Silver and Vilma Mesa

Abstract We present an analysis that probed empirically the relationship among
three different views of exceptional mathematics teaching: (a) the operational defini-
tion of “highly accomplished teaching” of mathematics used by the National Board
for Professional Teaching Standards (NBPTS) in the United States, (b) the effective
use of cognitively demanding tasks in the mathematics classroom, and (c) the use of
innovative pedagogical strategies. We analyzed samples of instructional practice—
lesson artifacts and teachers’ commentaries on lessons—submitted by candidates
seeking NBPTS certification in the area of Early Adolescence/Mathematics. The
instructional samples were systematically probed for evidence of mathematical and
pedagogical features associated with the views of cognitive demand and innova-
tive pedagogy, and the features found in the submissions of applicants who were
awarded NBPTS certification are contrasted with those who were not awarded certi-
fication. Our analyses detected a fairly strong interaction between the NBPTS view
of accomplished teaching and the view of effective mathematics instruction asso-
ciated with cognitively demanding tasks. Nevertheless, even in these lessons that
teachers selected for display as “best practice” examples of their mathematics teach-
ing, innovative pedagogical approaches were not systematically used in ways that
supported students’ engagement with cognitively demanding mathematical tasks.

Keywords Mathematics teaching · Teaching quality · Cognitively demanding
tasks · Pedagogical innovation

In the United States at this time several characterizations of high quality mathemat-
ics teaching are receiving attention from mathematics educators and public policy
professionals. Each has at its core one or more important facets of teaching profi-
ciency. Typically these different characterizations are treated in isolation from each
other, emphasizing the distinctions between and among them rather than the ways

E.A. Silver (B)
School of Education, University of Michigan, Ann Arbor, MI 48109, USA
e-mail: easilver@umich.edu

63Y. Li, G. Kaiser (eds.), Expertise in Mathematics Instruction,
DOI 10.1007/978-1-4419-7707-6_4, C© Springer Science+Business Media, LLC 2011



64 E.A. Silver and V. Mesa

in which they might interact with each other. In this chapter we focus on one view
of high quality mathematics teaching that has garnered considerable attention from
the education policy community in the United States. We report the results of an
analysis in which we probed empirically the extent to which samples of teaching
practice associated with that view of highly accomplished mathematics teaching
also exhibited characteristic features associated with two alternative views of high
quality mathematics teaching: (a) the effective use of cognitively demanding math-
ematics tasks and (b) the use of progressive pedagogical practices. We performed
our empirical analysis on samples of instructional activity drawn from actual math-
ematics classrooms—samples that were selected by teachers as examples of their
“best practice.”

Characterizations of High Quality Mathematics Teaching

In this section we discuss the three views of high quality mathematics teachers and
teaching that we consider in the study reported here. We begin with the notion of
highly accomplished (mathematics) teachers and teaching proposed by the National
Board for Professional Teaching Standards (NBPTS). The approach taken by the
NBPTS was intended to characterize high quality teachers and teaching in a generic
way, and then to develop specific characterizations for several school subjects,
including mathematics. In the study reported here we begin with the NBPTS view
of highly accomplished teaching and teachers and examine the extent to which this
view is consistent with two other characterizations of high quality mathematics
teaching that derive from research in the field of mathematics education. In contrast
to the NBPTS approach, which considers first the features of high quality teaching in
general and then tries to specify particular versions for subject matter teachers and
teaching, the latter views we consider are derived from research that specifically
examined teachers and teaching in mathematics classrooms. In this section we also
describe these two alternative perspectives on high quality mathematics teaching.

Highly Accomplished Teaching: NBPTS Certification

As one means of improving the teaching profession in the United States, the NBPTS
was established in 1987 to recognize highly accomplished teachers by delineating
what high quality practice looks like and then devising a way to identify those who
exhibit it. To accomplish its goal, the NBPTS used professional consensus to estab-
lish standards for what accomplished teachers should know and be able to do, after
which it developed a national voluntary system to assess and certify teachers who
meet the standards. Thus, in this view, high quality teaching is what NBPTS certified
teachers do in their classrooms.

The NBPTS recognizes accomplished practice in a number of fields. Except for
generalist certifications, each field is defined by content area (e.g., mathematics)
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and students’ development level (e.g., Middle Childhood-Early Adolescence, ages
7–16). The NBPTS certification system began with the specification of standards
for professional practice, initially at a very broad general level, and then for
each content-area/age-level certification field. Figure 1 displays the 12 standards,
distributed across four broad areas of competence, along with some sample

Area of 
Competence 

Sample ElaborationsStandard

Commitment to all 
students  

I. Commitment to equity and access I. Accomplished mathematics teachers value 
and acknowledge the individuality and worth 
of each student; they believe that all students 
can learn and should have access to the full 
mathematics curriculum; and they demonstrate 
these beliefs in their practice by systematically 
providing all students equitable and complete 
access to mathematics. 

Knowledge of 
Students, 
Mathematics & 
Teaching 

II. Knowledge of students 
III. Knowledge of mathematics 
IV. Knowledge of teaching practice 

III. Accomplished mathematics teachers draw 
on their broad knowledge of mathematics to 
shape their teaching and set curricular goals. 
They understand significant connections 
among mathematical ideas and the application 
of those ideas not only within mathematics but 
also to other disciplines and the world outside 
of school. 

IV. Accomplished mathematics teachers rely 
on their extensive pedagogical knowledge to 
make curricular decisions, select instructional 
strategies, develop instructional plans, and 
formulate assessment plans. 

The Teaching of 
Mathematics  

V. The art of teaching 
VI. Learning environment 
VII. Using mathematics 
VIII. Technology & instructional resources 
IX. Assessment 

VI. Accomplished mathematics teachers create 
stimulating, caring, and inclusive 
environments. They develop communities of 
involved learners in which students accept 
responsibility for learning, take intellectual 
risks, develop confidence and self-esteem, 
work independently and collaboratively, and 
value mathematics. 

IX. Accomplished mathematics teachers 
integrate assessment into their instruction to 
promote the learning of all students. 
They design, select, and employ a range of 
formal and informal assessment tools to match 
their educational purposes. 
They help students develop self-assessment 
skills, encouraging them to reflect on their 
performance. 

Professional 
Development & 
Outreach 

X. Reflection & growth 
XI. Families & communities 
XII. Professional community  

X. Accomplished mathematics teachers 
regularly reflect on teaching and learning. 
They keep abreast of changes in mathematics 
and in mathematical pedagogy, continually 
increasing their knowledge and improving 
their practice. 

Fig. 1 NBPTS standards for early adolescence/mathematics (adapted from NBPTS, 1998,
pp. 11–12)
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elaborations, for Early Adolescence/Mathematics (EA/M), which is the certifica-
tion field we studied (see http://www.nbpts.org/for_candidates/certificate_areas1?
ID=8&x=42&y=8 for more information regarding current NBPTS certification
areas).

Applicants for NBPTS certification complete a series of assessment tasks in
which they are asked to demonstrate knowledge and professional practice of many
kinds, and their overall performance determines whether they receive NBPTS recog-
nition. Each component of the assessment is linked to one or more of the standards
for the certification area. The EA/M assessment consists of two parts: in one, teach-
ers complete an on-demand, test-center-administered set of exercises to evaluate
certain aspects of their content and pedagogical content knowledge; in the other,
candidates submit a portfolio that includes contextualized samples of their teaching
practice and reflections on their work. For applicants in 1998–1999, which is the
data set examined in this study, the portfolio component of the EA/M assessment
consisted of six entries, of which four were classroom–based entries. The two port-
folio entries (Developing Mathematical Understanding and Assessing Mathematical
Understanding) examined in this chapter captured teaching practice via classroom
artifacts, samples of student work, and teachers’ reflective narratives.

The NBPTS assessment process has been extensively evaluated. Technical anal-
yses of the reliability and validity of the assessment have been conducted (e.g.,
Bond, Smith, Baker, & Hattie, 2000), and there have been a number of studies
investigating the relationship between NBPTS certification and measures of teach-
ing practice and teacher effectiveness, especially in regard to student achievement
(e.g., Hakel, Koenig, & Elliott, 2008). In general, the research points to a strong
positive relationship between NBPTS certification and student achievement; that is,
students of teachers who have attained NBPTS certification tend to perform well on
standardized achievement measures.

Effective Use of Cognitively Demanding Mathematics Tasks

An alternative view of high quality mathematics teaching considered in this study
is one derived from research on classroom mathematics instruction in the United
States and elsewhere. International surveys of the mathematics achievement of stu-
dents around the world regularly indicate that the average performance of students
in the US is mediocre when compared to that of students in many other countries,
especially countries in Asia (e.g., Lemke et al., 2004; Mullis, Martin, Gonzalez, &
Chrostowski, 2004). A recent analysis of the performance of students in 12 countries
who participated in both TIMSS and PISA found that students in the United States
have specific weakness in using high-level cognitive processes, such as reasoning
and problem solving (Ginsburg, Cooke, Leinwand, & Pollock, 2005).

It is quite likely that the student deficiencies in using high-level cognitive pro-
cesses on mathematics test items are largely a consequence of the limited opportu-
nities they have to learn mathematics in classroom lessons. Mathematics classroom
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instruction is generally organized around and delivered through mathematical tasks,
activities, and problems. According to Doyle (1983, p. 161), “tasks influence learn-
ers by directing their attention to particular aspects of content and by specifying
ways of processing information.” In fact, tasks with which students engage consti-
tute, to a great extent, the domain of students’ opportunities to learn mathematics.
Students in all seven countries analyzed in the TIMSS Video Study (NCES, 2003)
spent over 80% of their time in mathematics class working on mathematical tasks.

Tasks can vary not only with respect to the mathematics content but also with
respect to the cognitive processes that they entail. Tasks that require students to
analyze mathematics concepts or to solve complex problems offer opportunities
for students to sharpen their thinking and reasoning in mathematics. In contrast,
tasks that require little more than memorization and repetition offer less opportunity
to develop proficiency with high-level cognitive processes. Moreover, the cogni-
tive demands of mathematical tasks can change as tasks are introduced to students
and/or as tasks are enacted during instruction (Stein, Grover, & Henningsen, 1996).
The Mathematical Tasks Framework (MTF) [see Fig. 2], models the progression of
mathematical tasks from their original form to the tasks that teachers actually pro-
vide to students and then to the tasks as they are enacted by the teacher and students
in classroom lessons.

Tasks as
given in

curricular
materials 

Tasks as
enacted by
teacher and

students
during

instruction

Tasks as set
up by the
teacher   

Student
Learning

Fig. 2 Mathematical tasks framework (adapted from Stein, Smith, Henningsen, & Silver, 2009,
p. xviii)

The tasks, especially as enacted, have consequences for student learning of math-
ematics. The leftmost two arrows in Fig. 2 identify critical phases in the instructional
life of tasks at which cognitive demands are susceptible to being altered.

In the TIMSS 1999 video study, the ability to maintain the high-level demands
of cognitively challenging tasks during instruction was the central feature that dis-
tinguished classroom teaching in countries where students exhibited high levels of
mathematics performance when compared with countries like the United States,
where performance was lower and teachers rarely maintained the cognitive demands
of tasks during instruction (NCES, 2003; Stigler & Hiebert, 2004; Hiebert et al.,
2005). In that study, a random sample of 100 eighth-grade mathematics classes in
each of seven countries was videotaped during the 1999–2000 school year. Although
17% of the tasks used by teachers in the United States were coded as high level,
none was implemented as intended. Instead, most “making-connections” problems
were transformed into procedural exercises. The authors concluded that 8th grade
students in the United States spent most of their time in mathematics classrooms
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practicing procedures regardless of the nature of the tasks they were given. This
claim is consistent with an analysis of mathematics instruction conducted by the
Horizon Research Institute, in which only 15% of observed mathematics lessons
were classified as providing opportunities for complex thinking, or for mathematical
reasoning or sense-making (Weiss & Pasley, 2004; Weiss, Pasley, Smith, Banilower,
& Heck, 2003).

Beyond the research documenting modal practice in US. classrooms some other
research recently conducted in a variety of American classroom contexts has found
that student learning does occur if cognitively demanding mathematical tasks are
used regularly and if the high-level cognitive demands are consistently maintained
in classroom lessons (Boaler & Staples, 2008; Hiebert & Wearne, 1993; Stigler &
Hiebert, 2004; Stein & Lane, 1996; Tarr et al., 2008). For example, in a longitudinal
comparison of three high schools over a 5-year period, Boaler and Staples (2008)
determined that the highest student achievement occurred at the school in which
students were supported to engage in high-level thinking and reasoning. Boaler and
Staples attribute students’ success to the teachers’ ability to maintain high-level
cognitive demands during instruction, especially the teachers’ use of pre-planned
questions that elicited and supported students’ thinking. Studies by Tarr and col-
leagues (2008) and by Stein et al. (1996) both found that classrooms in which
teachers consistently encourage students to use multiple strategies to solve prob-
lems and support students to make conjectures and explain their reasoning were
associated with higher student performance on measures of thinking, reasoning, and
problem solving.

Emerging from this array of theoretical and empirical work in and on mathemat-
ics classrooms is a view of high quality mathematics teaching in which teachers
regularly provide students with worthwhile and challenging tasks and generally
maintain the level of cognitive demand as students engage with the tasks in a lesson.
Thus, this view of high quality mathematics teaching is different from the NBPTS
characterization both in kind and in origin. Next we describe a third view that also
derives from research in mathematic classrooms, but that is different in kind from
both the NBPTS and cognitive demand characterizations.

Innovative Pedagogy

Another alternative view of high quality mathematics teaching encompasses a set
of instructional practices that are generally thought to represent progressive ideas
about mathematics teaching and that have been associated in various ways with
teaching mathematics for understanding. As noted earlier, research in mathematics
classrooms in the United States in the upper elementary and middle school grades
has found that classroom instruction typically eschews the use of technological tools
or concrete models for abstract ideas, tends to focus tasks that make little or no
connection to the world outside of school, and pays little or no attention to the devel-
opment of meaning (e.g., Stigler & Hiebert, 1999; Stodolsky, 1988). Such pedagogy
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is at odds with current conceptualizations of how people learn best when the goal is
developing understanding (Bransford, Brown, & Cocking, 1999). Certain innovative
pedagogical practices are often associated with the phrase, teaching mathematics for
understanding. Over at least the past 60 years a solid body of research evidence has
amassed pointing to the benefits of teaching for understanding (sometimes called by
various other names, including authentic instruction, ambitious instruction, higher-
order instruction, problem-solving instruction, and sense-making instruction) in
mathematics (e.g., Brownell & Moser, 1949; Brownell & Sims, 1946; Carpenter,
Fennema, & Franke, 1996; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989;
Cohen, McLaughlin, & Talbert, 1993; Fuson & Briars, 1990; Hiebert & Wearne,
1993; Hiebert et al., 1996; Newmann & Associates, 1996).

Although there are many unanswered questions about precisely how teaching
practices are linked to students’ learning with understanding (see Hiebert & Grouws,
2007), there has been increasing emphasis in the mathematics education community
in teaching practices that deviate from the canonical version of classroom math-
ematics instruction noted above and that appear to be more oriented toward the
development of students’ conceptual understanding. Among the hallmarks of this
conceptually oriented version of instruction are teaching practices that are suitable
to support multi-person collaboration and communication among students, and to
engage students with real-world applications or the use of technological tools or
physical models (e.g., Fennema & Romberg, 1999; Hiebert & Carpenter, 1992).

Advocates for conceptually oriented teaching in school mathematics (e.g.,
NCTM, 1989, 2000) have suggested the potential value of fostering communica-
tion and interaction among students in mathematics classrooms through the use
of complex tasks that are suitable for cooperative group work and that provide
settings in which students need to explain and justify their solutions. Moreover,
to increase students’ engagement with mathematical tasks and their understanding
of concepts, instructional reform efforts have also encouraged the use of hands-on
learning activities and technological tools, as well as connecting work done in the
mathematics classroom to other subjects and to the world outside school. Beyond
exhortations, there is also some research evidence to support these hypotheses about
pedagogy that might support students’ development of mathematical understand-
ing (e.g., Boaler, 1998; Fawcett, 1938; Fuson & Briars, 1990; Good, Grouws, &
Ebmeier, 1983; Hiebert & Wearne, 1993; Stein et al., 1996). Moreover, there is
evidence in some studies that these, and other innovative pedagogical strategies,
can be applied in superficial ways that emphasize non-mathematical aspects of the
activities and sacrifice the complexity of mathematics content (e.g., Cohen, 1990;
Ferrini-Mundy & Schram, 1997; Romagnano, 1994; Schoenfeld, 1988; Weiss et al.,
2003; Wilson & Floden, 2001).

Emerging from this array of theoretical and empirical work in and on mathemat-
ics classrooms is a view of high quality mathematics teaching in which teachers
regularly engage in innovative pedagogical practices; that is, pedagogy that deviates
from the canonical portrayal found in research on typical classroom teaching. This
view is different from both the NBPTS characterization and the cognitive demand
view presented above, and it is the third one considered in the study reported here.
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Study Methods

In this study, we examined samples of instructional practice—lesson artifacts and
teachers’ commentaries on lessons—submitted by applicants seeking NBPTS cer-
tification. The instructional samples were systematically probed for evidence of
mathematical and pedagogical features associated with the views of cognitive
demand and innovative pedagogy noted above.1

Sample

With the cooperation of the NBPTS, we obtained test center and portfolio exercise
score data for all candidates (N = 250) who applied for NBPTS EA/M certification
in 1998–1999. From this set of 250 applicants we selected a random sample of can-
didates (n = 32; nearly 13% of the population). Our sample was demographically
similar to the entire population of EA/M applicants in 1998–1999 and contained a
comparable ratio of successful to unsuccessful applicants to that of the full appli-
cant pool; our sample included 13 individuals who obtained NBPTS certification
and 19 who did not.2 The awarding of NBPTS certification is based on a composite
of weighted scores on 10 performance indicators (six portfolio entries and four test
center exercises), each with an independent, though not equal, contribution to an
applicant’s overall score.

Data

For each of the 32 individuals in our sample, we obtained copies of the two
artifact-based portfolio entries—Developing Mathematical Understanding (DU)
and Assessing Mathematical Understanding (AU). These artifact-based entries con-
tained extensive textual portrayals of instructional practice related to developing
and assessing student understanding of mathematical ideas, along with support-
ing artifacts (e.g., students’ work, tests, photographs). The DU entry required two
instructional activities, both focused on the same mathematical idea, which could
come from consecutive lessons or from nonconsecutive lessons. In contrast, the AU
entry required only one activity, and it was required to be different from the idea
that was the focus of the DU entry.

1This chapter extends another analysis of the same data set that has been reported in Silver, Mesa,
Morris, Star, and Benken (2009). In that chapter we reported an analysis of mathematical and
pedagogical features of submitted portfolio entries, but we did not distinguish between teachers on
the basis of NBPTS certification status. In addition, the purpose of the earlier analysis was different
from the intent in this chapter.
2Further details regarding the characteristics of our sample with respect to the total population of
applicants seeking NBPTS certification in 1998–1999 are given in Silver et al. (2009).
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Candidates were instructed to provide all of the following information in each
portfolio entry: a written description of the instructional context (e.g., grade, subject,
class characteristics); a written description of teacher planning (e.g., substantive
math idea, goals for instructional sequence, challenges inherent in teaching these
activities); analysis of student responses (actual student work samples for these
specific students were appended to the entry); and candidate’s reflections on the
outcomes of each lesson. For both entries, candidates were instructed to select
activities in which students were engaged in thinking and reasoning mathematically
(e.g. interactive demonstrations, long term projects, journal assignments, problem
solving); they were instructed not to select activities that focused on rote learning
(e.g., students’ memorizing procedures).

Data Analysis

Our examination of the NBPTS data consisted of quantitative and qualitative anal-
yses of the two portfolio entries submitted by our sample of 32 applicants. Trained
coders examined each entry for evidence of cognitively demanding mathematics
tasks and the presence of innovative pedagogical features, and they did so without
knowledge of the NBPTS certification status of the applicant whose portfolio entry
they were judging.3 Following the coding of all portfolio entries with respect to
cognitive demand and pedagogical features, we conducted further analyses using
these codes to compare the portfolio submissions of applicants who were awarded
NBPTS certification with those who were not.

Cognitive Demand of Mathematical Tasks in NBPTS Portfolio Submissions

To assess the cognitive demand character of the mathematical tasks in the portfolio
entries we developed coding criteria for high-demand and low-demand activi-
ties. Low-demand tasks were those that exclusively involved low-level cognitive
processes, such as recalling, remembering, implementing, or applying facts and pro-
cedures. In contrast, high-demand tasks were those that required students to use
high-level cognitive processes, such as analyzing, creating, evaluating, or engag-
ing in metacognitive activity. The framework used to code the cognitive demand of
instructional activities is provided in Table 1.

Two independent raters coded each task (64 in DU entries and 32 in AU entries);
the overall agreement was acceptably high (80 and 70% respectively); any instances
of disagreement were discussed, and a consensus rating was derived. In Table 2 we

3We provide here a summary of key points regarding our data analysis methods. Additional
information can be found in Silver et al. (2009).
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Table 1 Criteria for coding the cognitive demand of mathematics tasks

High cognitive demand
• Tasks require students to explain, describe, justify, compare, or assess
• Tasks require students to make decisions and choices, to plan, or to formulate questions or

problems
• Tasks require students to be creative in some way (e.g., to apply a known procedure in a

novel way)
• Tasks require students to work with more than one form of representation in a meaningful way

(e.g., to translate from one representation to another, interpreting meaning across two or more
representations)

Low cognitive demand
• Tasks require students to make exclusively routine applications of known procedures
• Tasks that are potentially demanding are made routine because of a highly guided or

constrained task structure (e.g., a complex task is subdivided into non-demanding subtasks; a
potentially challenging task is made routine because a particular solution method is imposed by
the teacher)

• Task complexity or demand is targeted at non-challenging or non-mathematical issues (e.g.,
explaining, assessing and describing work is targeted at procedures rather than justification;
required explanations are about non-mathematical aspects of a plan or solution)

provide examples of tasks classified as high-demand or low-demand, along with a
brief rationale for our decision in each case.4

Pedagogical Features of NBPTS Portfolio Submissions

We focused on four pedagogical features identified in the mathematics education
reform literature as being innovative and having the potential to cultivate the devel-
opment of students’ mathematical understanding: tasks that involved multi-person
collaboration and communication, considered applications in contexts other than
mathematics itself, employed technology, or used physical (hands-on) materials.
Because a teacher’s explanation of instructional context was generally not task-
specific for each of the two tasks in a DU entry, we treated the entire DU entry,
rather than each activity, as the unit of analysis for the coding of pedagogical fea-
tures. Thus, 64 items (rather than 96) were coded in this analysis—32 AU entries
and 32 DU entries. Agreement was nearly unanimous in the classification. Table 3
displays the judgment criteria we used in the coding and a portfolio entry excerpt
providing evidence of the presence of that feature.

4Our usage agreement governing the NBPTS materials does not allow us to provide verbatim
reproductions. The narrative summaries provide the essential aspects of the task that pertain to
decisions regarding cognitive demand.
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Table 2 Examples of tasks coded as high-demand and low-demand

Task summary Coding rationale

High cognitive demand
• Miniature Golf Course Task. Students had

to design a miniature golf course, using at
least four solids; they had to produce nets
for each shape – showing dimensions, and
an isometric drawing of the station.
Students had to pass a teacher and
peer-inspection that looked for description
of the station, nets, isometric drawing, and
overall appearance of the course.
Comments were expected to be addressed
after the inspection (DU)

Students had the liberty to choose the solids,
and had to come up with a sensible
course; they had many constraints to
consider and the net production involved
considering reasonable measures for each
of the shapes considered. There are also
many extracurricular activities involved,
which make the task even more complex.
This would not be a straightforward
activity

• Assessment is based on textbook
companion materials; there are 3 questions.
Q1 has 7 items, asking about conditions
under which systems of equations have
one, none, or multiple solutions (tell how
you know that a system of two equations
has no solutions). Students have to provide
examples; in the case of one solution,
students must provide at least two different
ways to solve the system. One item asks
the students to write a word problem that
can be solved using a system of 2
equations. Q2 has three items to be solved
using a graphing calculator. Q3 has three
items, all related to a diagram of a shaded
region between two lines in the same
plane. Students are expected to write a
system of inequalities that correspond to
the diagram; give a point that is a solution,
and a point that is not a solution (AU)

The questions are interesting in that they are
“flipped”. They are not asking for a
solution, but for the conditions to get one
or another solution. The demands are
higher than when the standard
problem/solution is asked for. Students
have to create problems that will satisfy a
given solution

Low cognitive demand
• Find Sale Price. Worksheet illustrating how

to calculate the price of an item on sale
(DU)

Students have to repeat step-by-step
procedures modeled in the example
provided

• Two-part assessment activity: “geometry
walk” and “who am I.” In the geometry
walk students are given a list of 12 shapes
and students have to sketch an object found
in the real world that has the shape; then
they pick 3 objects and explain why the
example has that shape. In the who am I
part students are given 14 statements (e.g.,
my angle degree is 63◦, who am I?) (AU)

The assessment confuses 2 dimensional
shapes and 3 dimensional objects.
Although the task is nonstandard the
performance demanded from students is
largely based on recalling memorized
information; scoring was tilted toward
reproduction rather than creativity
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Table 3 Criteria and sample excerpts used in coding pedagogical features

Pedagogical feature Description of criterion Sample excerpt

Use context outside
mathematics

Tasks that involve real-world
contexts encountered outside
of school, including those
related to students’
neighborhoods, interests, and
cultures

“The assessment is based on a
single situation – choosing a
car to rent”

Use hands-on materials Tasks that involve materials
used to create some object
(e.g., a poster, a physical
model) or to make or serve
as concrete models of
abstract notions (e.g.,
colored chips to illustrate
operations with negative
numbers)

“I gave each pair of students a
ball, a cylindrical tube, a
ruler, and a recording sheet.
Students built ramps”

Use multi-person collaboration Tasks that require that work be
done with a partner or in a
larger group of students

“They were heterogeneously
arranged in carefully
selected learning groups of
four to five students within
that homogeneously grouped
class”

Use technology Tasks in which technological
tools—such as calculators,
computers, software (e.g.,
electronic sheets or word
processors), and the
Internet—are used

“Nineteen students used
computer-generated graphs
to illustrate their data, while
five used pencil and paper”

Relating Mathematical and Pedagogical Features of the Portfolio Entries

We examined the extent to which teachers in our sample used the pedagogical strate-
gies in association with high-demand and low-demand tasks. For the 32 AU and
32 DU portfolio entries, we created 2-by-2 contingency tables, crossing cognitive
demand (high or low) with pedagogical feature (present or absent). For each ped-
agogical feature, each contingency table displayed the number of teachers in our
sample who submitted entries that were coded with the corresponding pair of char-
acteristics. For the DU entries, we collapsed the cognitive demand coding for the
two submitted activities, and we considered an entry to be high-demand if it con-
tained at least one task that was coded as high-demand. We analyzed the data in
these tables using chi-squared tests.

Relating NBPTS Certification Status to Mathematical and Pedagogical
Features

To ascertain the interaction between the NBPTS view of high quality teaching and
each of the other two views considered in this chapter—the cognitive demand view
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and innovative practice view—we examined the extent to which teachers in our
sample who were awarded (or not awarded) NBPTS certification included (or did
not include) high-demand tasks and reflected the presence (or absence) of each
pedagogical feature.

As with the other similar analyses, we created 2-by-2 contingency tables, cross-
ing NBPTS certification status (awarded or not awarded) with cognitive demand
(high or low) and also with pedagogical feature (present or absent). Each contin-
gency table displayed the number of teachers in our sample who submitted entries
that were coded with the corresponding pair of characteristics. We analyzed the data
in these tables using Chi-square tests.

Findings

Without knowledge of the NBPTS certification status of applicants, trained coders
examined portfolio entries with respect to cognitive demand of the mathematics
tasks and presence of innovative pedagogical features. After the portfolio entries
were completely coded, we used these judgments to contrast the portfolio entries
submitted by the 13 applicants who were awarded NBPTS certification with those
submitted by the 19 applicants who were not awarded certification. We report our
findings in this section: first with respect to the cognitive demand of the mathe-
matical tasks, next with respect to innovative pedagogical features, and finally with
respect to the interaction between cognitive demand and innovative pedagogy in the
two sets of portfolio entries.

NBPTS Status and Cognitive Demand

Overall, 17 teachers (slightly more than half of the sample) submitted at least one
high-demand task – 6 teachers submitted exactly one such task, 8 submitted exactly
two such tasks, and 3 teachers submitted all three tasks that were judged to be
cognitively demanding. Thus, 15 teachers submitted only low-demand tasks.

Figure 3 shows the percent of NBPTS certified (and non-certified) teachers who
submitted (or did not submit) at least one high-demand activity. These data suggest
a strong association between NBPTS certification and the submission of cognitively
demanding tasks. In particular, four of every five teachers who submitted exclu-
sively low-demand tasks in these two portfolio entries were not awarded NBPTS
certification. Similarly, only one in four teachers who obtained NBPTS certification
submitted exclusively low-demand tasks in the two portfolio entries we examined;
that is, three-fourths of the teachers who obtained NBPTS certification submitted at
least one high-demand task. A chi-square analysis indicated a statistically significant
association (χ2 (32, 1) = 4.98; p < 0.05) between a teacher’s NBPTS certification
status and the inclusion of at least one cognitively demanding task in his or her
portfolio.
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Fig. 3 Percent of teachers submitting (or not) high demand tasks by NBPTS certification status

NBPTS Status and Innovative Pedagogy

Across the portfolio entries we observed much more frequent use of innovative
pedagogical approaches than we found cognitively demanding tasks. Overall, the
percent of teachers submitting at least one portfolio entry exhibiting each of the
innovative features ranged from 100% for the use of contexts outside mathematics
to about 60% for the use of technology, with 84% using hands-on activity and 66%
including a task that called for collaborative activity. Table 4 shows the distribution
of NBPTS certified (and non-certified) teachers who submitted (or did not submit)
at least one activity that contained each of the pedagogical features we considered
in the portfolio entries we examined.

Because innovative pedagogy was so prevalent in the portfolio entries, these data
suggest no more than a weak association between NBPTS certification status and
use of the pedagogical features we examined. In fact, certified and non-certified
teachers used three of the four pedagogical practices—the use of hands-on activities,
contexts outside mathematics, and collaboration—in roughly the same proportion.
Only in the case of technology usage was there some difference, with teachers
who were awarded NBPTS certification employing this pedagogical feature more
frequently. About three of every four teachers who obtained NBPTS certification
employed technology in at least one of the two portfolio entries; non-certified
teachers were about as likely to submit as to not submit an entry that used technol-
ogy. Nevertheless, even in the case of technology use, the chi-squared analyses we
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Table 4 Number of NBPTS certified and Non-certified teachers giving evidence of using
pedagogical features in at least one portfolio entry

NBPTS certification status

Awarded (n=13) Not awarded (n=19)

Feature present
Feature not
present

Feature
present

Feature not
present

Use contexts outside mathematics 13 0 19 0
Use hands-on activities 11 2 16 3
Use multi-person collaboration 9 4 12 7
Use technology 10 3 9 10

performed did not indicate that any of these relationships or trends was statistically
significant.

Cognitive Demand and Innovative Pedagogy

We also examined the interaction between cognitive demand and innovative peda-
gogy. This is an analysis of the extent to which teachers appeared to use innovative
pedagogy in support of, or at in close association with, cognitively demanding
mathematics tasks. Table 5 shows the frequency of each innovative pedagogical
feature in the portfolio entries of teachers who submitted (or did not submit) at least
one cognitively demanding task.

Table 5 Number of teachers submitting activities with pedagogical feature by level of cognitive
demand of the portfolio entries

High cognitive demand in
the portfolio

Present Not present

Pedagogical feature
Use contexts outside mathematics 17 15
Use hands-on activities 16 11
Use multi-person collaboration 12 9
Use technology 10 9

From the data displayed in Table 5, we can see that there appears to be no
overall relationship between cognitive demand and pedagogical innovation. That
is, pedagogical features were detected about as frequently in portfolios in which
high-demand activities were included and in portfolios in which no high-demand
activities were present. Although the teachers in our sample used innovative ped-
agogy, these results suggest that they were not using these teaching practices in
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any systematic way to support students’ engagement with cognitively demanding
mathematics tasks.

NBPTS Status, Cognitive Demand and Innovative Pedagogy

Although the overall data do not indicate a relationship, the picture might change
if we also included NBPTS certification status in the analysis. Table 6 shows the
frequency of each innovative pedagogical feature in the portfolio entries of NBPTS
certified (or non-certified) teachers who submitted (or did not submit) at least one
cognitively demanding task.

Table 6 Number of teachers by NBPTS certification status submitting activities with pedagogical
feature by level of cognitive demand of the portfolio entries

Certified teachers
(n = 13)

Non-certified teachers
(n = 19)

High cognitive demand High cognitive demand

Present Not present Present Not present

Pedagogical feature
Use outside mathematical contexts 10 3 7 12
Use hands-on activities 9 2 7 9
Use multi-person collaboration 6 3 6 6
Use technology 7 3 3 6

Similar to Table 5, the display of data in Table 6 suggests that there is no clear
relationship between cognitive demand and pedagogical innovation when NBPTS
certification status is considered. For example, the three NBPTS certified teachers
whose portfolio entries did not contain any cognitively demanding tasks submitted
activities that used all of pedagogical features (with the exception of one teacher
who omitted hands-on activities). The pattern of usage was less uniform for the
NBPTS certified teachers whose portfolios contained cognitively demanding tasks,
and also for the teachers who were not awarded NBPTS certification, but no clear
pattern emerges from the data. Also, because the numbers are so small in the sub-
groups when all three dimensions are considered simultaneously, we were unable
to detect any statistically significant trend for any individual pedagogical feature
in relation to cognitive demand and NBPTS certification status simultaneously.
We also used cluster analysis considering the total number of pedagogical features
present in a portfolio entry in relation to the presence/absence of cognitive demand
and the NBPTS certification status of the teacher who submitted the entry. This
analysis did not detect statistically significant differences, but it did suggest that the
teachers awarded NBPTS certification tended to be more consistent (i.e., had less
variance) than their counterparts who did not receive NBPTS certification in the use
of pedagogical features in association with cognitively demanding tasks.
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Discussion

Our goal in this study was to probe empirically the extent to which samples
of teaching practice associated with a view of highly accomplished mathematics
teaching as defined by the National Board for Professional Teaching Standards
also exhibited characteristic features associated with two alternative views of high
quality mathematics teaching: (a) the effective use of cognitively demanding math-
ematics tasks and (b) the use of progressive pedagogical practices. Toward this end,
we examined samples of classroom instruction—lesson artifacts and teachers’ com-
mentaries on lessons—submitted by 32 applicants seeking NBPTS certification.
The instructional samples were systematically coded with respect to evidence of
cognitively demanding mathematical tasks and innovative pedagogy. Finally, we
examined the coded data to detect interactions between and among the different
views of high quality mathematics teaching.

Our analyses detected a fairly strong interaction between the NBPTS view of
accomplished teaching and the view of effective mathematics instruction associ-
ated with cognitively demanding tasks. In particular, we found that the teachers
who were awarded NBPTS certification were far more likely than their colleagues
who were not awarded certification to include high-demand mathematics tasks in
the portfolio submissions we examined. Although these two views appear to be
related in samples of actual instructional practice we examined in this study, they
are clearly not identical. Recall that the decision to award certification is made on
the basis of a composite judgment involving ten independent performance indicators
and that the judgment of these performances did not explicitly attend to the issue of
cognitively demanding mathematics tasks. In fact, when we examined the scores
assigned by NBPTS raters to the portfolio entries in our study in relation to our cod-
ing of those same entries, we found that the two rating approaches were judging
different aspects of the submissions. For example, 17 DU portfolio entries con-
tained two low-demand activities, yet 65% of these entries received “accomplished”
scores (a score 3 or greater) from the NBPTS assessors. Thus, the presence of low-
demand tasks did not reliably predict a low assessor score on a particular entry, even
though they appear to be related more generally to a low total score for the entire
NBPTS process. Thus, our findings suggest that these two views of high quality
mathematics teaching are related in the practice of teaching, but the relationship
is complex.

The picture that emerges from our data analyses regarding innovative pedagogy
suggests a different story. The innovative pedagogical features we examined—
applications in contexts other than mathematics, multi-person collaboration, tech-
nology, or physical (hands-on) materials—were heavily used by the teachers in
our sample, regardless of either their NBPTS certification status or their use of
cognitively demanding tasks. Although we found that teachers used innovative ped-
agogical strategies in their classrooms, they did not do so in a way that was closely
linked to supporting students’ encounters with challenging tasks. Even in our highly
select sample of teachers who applied for NBPTS certification—thereby indicating
that they thought of themselves as potentially highly accomplished teachers—we
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found little evidence that innovative pedagogy was used to support students’ engage-
ment with cognitively demanding tasks. Such findings are consistent with some
other research studies (e.g., Cohen, 1990; Ferrini-Mundy & Schram, 1997), and
many anecdotes, suggesting that teachers may implement reform pedagogy in a
superficial manner that does not realize its potential.

These findings appear to suggest that there is essentially no connection between
pedagogical innovation, as defined here, and either the NBPTS view of highly
accomplished mathematics teaching or the use of cognitively demanding mathe-
matics tasks in instruction. Yet, we did find an interesting interaction. The teachers
in our sample who not only were awarded NBPTS certification but also submitted at
least one cognitively demanding mathematics task appeared to be more consistent
than were other teachers in our sample in the use of innovative pedagogy. Though
we did not find statistically significant differences, the suggestion of a difference
regarding consistency of usage is worth pursuing in follow-up studies with larger
samples.

Our investigation of the portfolio entries was not intended to be a validation
study of the NBPTS certification process, and a replication involving a larger sam-
ple would be needed to make strong claims. Nevertheless, some of our findings
do offer some validation of that process. In particular, the lack of correspondence
between the awarding of NBPTS certification and the use of pedagogical features
can be taken as evidence that the portfolio evaluation process is not heavily influ-
enced by possibly superficial implementation of pedagogical innovation. And the
positive association of low-demand mathematics tasks with non-certified teach-
ers and high-demand mathematics tasks with certified teachers suggests that there
is some reason to think that the instructional practice of those teachers awarded
NBPTS certification is in fact “highly accomplished” in one mathematically impor-
tant way that is not an explicit part of the NBPTS certification process. Moreover,
the finding that at least some of the innovative pedagogy was used in connection
with high-demand tasks by NBPTS certified teachers and not by those who were
not awarded certification provides yet another indicator that the NBPTS certifi-
cation process is reasonably well aligned with some other views of high quality
mathematics teaching.

Given research evidence indicating both that teachers in the middle grades find
it difficult to enact cognitively demanding tasks in mathematics instruction (Stein
et al., 1996) and that the consistent, effective use of cognitively demanding tasks
in the mathematics classroom increases student achievement (Stein et al., 1996),
our findings suggest that there may be something to learn from NBPTS certified
teachers about how to utilize such tasks effectively in the mathematics classroom.
According to our analysis of the data examined in this study—teacher-selected sam-
ples of practice chosen by individuals seeking special recognition—the teachers
who were awarded NBPTS certification appeared to deploy cognitively demanding
tasks more proficiently than did their counterparts who were not awarded NBPTS
certification. One caveat worth noting, however, is that we used a generous crite-
rion when coding for cognitive demand—if some part of an activity exhibited high
demand characteristics, it was classified as highly demanding, even if other parts of
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the activity did not. If we had applied a more stringent criterion—such as requiring
that more than one half of an activity was judged to be cognitively demanding—the
number of portfolio entries containing high-demand tasks would have been consid-
erably smaller. Nevertheless, even if we applied a more stringent criterion, some
of the activities submitted by the teachers awarded NBPTS certification were quite
demanding and would likely have been so judged. Thus, it is left to future research to
determine how robust the relationship detected in this study would be if more sam-
ples of instructional practice were examined and if different criteria were applied.
But our findings clearly suggest a strong interaction between these two different
views of highly accomplished mathematics teaching.

In the interest of supporting other research inquiry, we wish to underscore two
special aspects of the data analyzed in this study that we think merit attention
from researchers seeking to understand high quality mathematics teaching. First,
the lesson materials and artifacts analyzed in this study were selected by teachers
and submitted for evaluation in a process intended to identify highly accomplished
teaching. Thus, it is reasonable to assume that the samples represented lessons that
the teachers considered to be their best practice. In large-scale observational stud-
ies of teaching and in surveys, it is common to request samples of or information
about typical teaching practice. Some scholars (e.g., Silver, 2003) have suggested
the potential value of also examining instruction that is atypical in some way to
detect, for example, what teachers might be capable of doing or inclined to do when
they try to exhibit their very best work. The NBPTS portfolio entries offer one exam-
ple of what such atypical data might look like, and our analysis of these data offers
one example of what might be learned.

Second, the data examined were of a hybrid form that combines some features
of the data collected via direct observation and data collected via survey responses.
Like direct observation, the portfolio entries displayed important details of class-
room lessons; similar to survey data, the portfolio entries permitted access to the
teacher’s perspective. Although the NBPTS portfolio data might appear to overly
limited as a source of information about teaching practice because the records do
not include direct observation of actual teaching, the data in the NBPTS portfolio
submissions are in many ways quite similar to those that have been used and val-
idated by other researchers to study classroom practice using alternatives to direct
observation and survey methods, such as “scoop” sampling of instructional arti-
facts (e.g., lesson plans, student work) to characterize instructional activity (Borko,
Stecher, & Kuffner, 2007) and using classroom assignments to judge instructional
quality (Clare & Aschbacher, 2001; Matsumura, Garnier, Pascal, & Valdés, 2002).
Researchers interested in alternatives to direct observation methods (which are
invasive, labor intensive, expensive, and impractical on a large scale) and survey
methods (which involve questions susceptible to multiple interpretations, have ques-
tionable validity, and provide little information about the details of instructional
lessons) might be wise to consider data like those collected in the NBPTS portfolio
process to open another window on classroom instructional practice.

At the outset we noted that different views of high quality mathematics teach-
ing are typically treated in isolation from each other, emphasizing the distinctions
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between and among them rather than the ways in which they might interact with
or complement each other. In this chapter we examined the interactions among
three ways of characterizing high quality mathematics teaching, and we identified
some patterns observed in the interactions detected in samples drawn form actual
classroom instruction. We hope that our report will stimulate further research that
probes characterizations of high quality mathematics teaching to generate additional
insights.
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Expertise in Swiss Mathematics Instruction

Christine Pauli and Kurt Reusser

Abstract This chapter draws on data and findings from several video studies to
describe the quality of mathematics teaching in Switzerland. The focus is on fea-
tures of instructional practice and quality as core components of classroom behavior
that reflect the teacher’s expertise in creating optimal learning opportunities. The
didactic triangle is used as the basis for describing the profile of expertise in Swiss
mathematics instruction in terms of three interdependent dimensions of instructional
quality. A core element of this profile can be identified in Swiss mathematics teach-
ers’ particular strengths in the culture of communication, support and relationships.
Findings also paint a generally positive picture of the culture of teaching, learning
and understanding (e.g., methods and choreography of teaching) in Swiss mathe-
matics classrooms. However, the culture of objectives, materials and tasks proves to
be rather average in international comparison in several respects (level of mathemat-
ical content, characteristics of the problems set and the way they are worked on in
lessons). In particular, there seems to be room for improvement in the specific con-
text of the didactics of mathematics (e.g., the level of cognitive and mathematical
challenge).

Keywords Quality of instruction · Mathematics education · Switzerland · Video
studies · Instructional reform

This chapter on expertise in Swiss mathematics instruction was prompted by the
findings of the Trends in International Mathematics and Science Study (TIMSS)
and the OECD’s Programme for International Student Assessment (PISA), which
paint a thoroughly positive picture of mathematics instruction in Switzerland (Moser
& Notter, 2000; Moser, Ramseier, Keller, & Huber, 1997; Zahner Rossier et al.,
2004; Zahner Rossier & Holzer, 2007). Swiss students at both lower and upper sec-
ondary level have performed very well in international assessments of mathematics
achievement to date. Moreover, Swiss mathematics teachers seem able to achieve
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good educational outcomes in a relatively positive and anxiety-free learning envi-
ronment: Swiss students’ self-confidence and interest scores have been found to
be average or slightly above average; their anxiety scores, well below the OECD
average (Zahner Rossier, 2005). Although there are doubtless numerous reasons for
these encouraging findings, it seems reasonable to infer that mathematics instruction
and teacher expertise play at least some role. This raises the question of what it is
that characterizes the expertise of Swiss mathematics teachers.

The main focus of the current literature on teacher expertise is often on mea-
suring and describing teachers’ professional competence in terms of components
of teacher knowledge and skills (Baumert & Kunter, 2006; Besser & Krauss, 2009;
Blömeke, Kaiser, & Lehmann, 2008; Kunter, Klusmann, & Baumert, 2009). Teacher
competence is seen as the first link in a chain of cause and effect running from teach-
ing practice or quality of instruction via student learning to academic achievement
and other cognitive and noncognitive outcomes (Pauli & Reusser, 2009; Reinisch,
2009). In this chapter, in contrast, we focus on aspects of instructional quality. This
approach is based on the idea that teacher expertise is manifested in the quality of
classroom teaching practice. According to current theoretical models of learning
and instruction, teaching offers a range of learning opportunities for student learn-
ing in the classroom (Fend, 1998; Helmke, 2009; Reusser & Pauli, 1999). Whereas
the provision of learning opportunities reflects the professional competence of the
teacher (knowledge, skills, beliefs, motivation), students’ actual learning outcomes
also depend on the extent to which they recognize and are able to take advantage of
these learning opportunities.

In this chapter, we therefore draw on expert ratings of videotaped lessons as well
as on student ratings of aspects of instructional quality to describe instructional prac-
tice and quality in Swiss mathematics lessons. Furthermore, we make a theoretical
distinction that has proved helpful in the assessment and description of instruction
(Aebli, 1983; Messner & Reusser, 2006; Oser & Baeriswyl, 2001), distinguishing
the surface level of lesson organization (e.g., methods, instructional scripts, lesson
choreography) from the deeper level of quality of instruction (quality of teaching
and learning processes, quality of teacher–student interaction). Drawing on video
and questionnaire data obtained from both teachers and students in the context
of several video studies, we describe Swiss mathematics instruction at both levels
and thus develop a profile of the expertise of Swiss mathematics teachers (sections
“Characteristics of Swiss Mathematics Instruction in International Comparison” and
“Student and Expert Judgments of the Instructional Quality of Swiss Mathematics
Teaching”). First, however, we describe the data sources available and provide some
background information on the context in which the participating teachers work.

In section “The Role of Instructional Reform”, we investigate the impact of
innovations and reform initiatives on the thinking and practice of Swiss mathe-
matics teachers. As research on teacher training has shown, teachers’ beliefs about
the processes of learning and instruction and about the role that students play in
these processes are of fundamental importance in the implementation of reforms
(Baumert & Kunter, 2006; Reusser, Pauli, & Elmer, 2011; Turner, Christensen,
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& Meyer, 2009). We therefore take Hans Aebli’s (1983) model of psychological
didactics, which has been widely adopted in teacher training programs in the
German-speaking part of Switzerland, as the starting point for our investigation of
how a specific reform initiative – based on the ideas of progressive education (indi-
vidualized learning, student orientation, and learner autonomy) – has influenced
teaching practice. Finally, we summarize and systematize the findings presented in
the chapter. By considering the strengths and weaknesses identified in terms of three
dimensions of instructional quality, we develop a profile of teacher expertise from
the didactic perspective.

Data Sources

Our main data source in this chapter is the TIMSS 1999 Video Study (Hiebert et al.,
2003) and the Swiss Video Study that was embedded in it. Designed as a video
survey (Stigler, 1998), the TIMSS 1999 Video Study aimed to document everyday
classroom instruction in a variety of countries and, on this basis, to describe patterns
of teaching practices within each country. There was a particular focus on compar-
ing mathematics teaching in the United States and in those countries that showed
comparatively high achievement on TIMSS assessments. To this end, representa-
tive samples of approximately 100 (Switzerland: 140) mathematics lessons each
were videotaped in Australia, the Czech Republic, Hong Kong, the Netherlands,
Switzerland, and the United States. Numerous features of both the structure of
lessons (e.g., forms of interaction, activities) and the mathematical content covered
(e.g., characteristics of the problems set and the way these problems were worked
on in the lesson) were analyzed. Japanese mathematics lessons collected for the
TIMSS 1995 Video Study were re-analyzed as part of the TIMSS 1999 Video Study
(Hiebert et al., 2003).

In Switzerland, the TIMSS 1999 Video Study was extended within the context
of the Swiss Video Study (Reusser, Pauli, & Waldis, 2010).1 In addition to the
video recordings obtained within the TIMSS 1999 Video Study, the Swiss database
includes extensive survey data (teacher and student questionnaires), a cognitive abil-
ities test, and mathematics assessments, embedded in a longitudinal design. In the
Swiss Video Study, the video data were reanalyzed in a number of respects. In
particular, the instructional quality of the lessons was assessed. The same quality
evaluations were conducted in a subsample of the German mathematics lessons
videotaped for the TIMSS 1995 Video Study (Clausen, Reusser, & Klieme, 2003),
thus making it possible to compare the quality of German and Swiss mathematics
lessons.

1This research was funded by the Swiss National Foundation (SNF grant 4033-054871), the
Ecoscientia Foundation (Zurich, Switzerland), and CORECHED (Swiss Conference for the
Coordination of Educational Research).



88 C. Pauli and K. Reusser

This chapter also draws on the findings of a video study investigating mathe-
matics instruction in Germany and Switzerland (Klieme, Pauli, & Reusser, 2009)
that was conducted in collaboration between a German research group (principal
investigator: Eckhard Klieme) and our Swiss research group (principal investigators:
Kurt Reusser, Christine Pauli). One of the features that distinguishes this German–
Swiss video study, which was based on a sample of 20 classes in each country,
from the Swiss Video Study described above is that more than one lesson delivered
by each teacher was recorded (two lesson units; five lessons in total), and that the
content taught was standardized. The study also included a teacher survey; approx-
imately 150 mathematics teachers in each country reported on aspects such as their
self-perceptions and experience of teaching.

The data provided by the TIMSS Video Study and the German–Swiss Video
Study make it possible to determine where Swiss mathematics teachers stand in
international comparison on various indicators of teaching expertise.

Characteristics of Swiss Mathematics Instruction
in International Comparison

Before drawing on selected findings from the TIMSS 1999 Video Study and the
Swiss Video Study to describe key characteristics of Swiss mathematics instruction,
we outline some particularities of the Swiss teaching context.

One defining characteristic of the Swiss context is that Switzerland has three
main language regions.2 These regions differ not only in the language of instruction
(German, French, Italian), but also in certain aspects of their education systems,
including pre- and in-service teacher training. As a federation of 26 cantons,
Switzerland does not have a centralized education system. Most cantons in the
German- and French-speaking areas (but not in the Italian-speaking areas) imple-
ment a three-track secondary system based on academic ability. Until a few years
ago, many cantons ran different training programs for candidate teachers aspiring
to teach in the different tracks (i.e., school types). Working conditions also differ
across the three tracks, as reflected in the data from the representative sample of
the TIMSS 1999 Video Study. For example, under 5% of the teachers at the least
academically demanding school type in the German-speaking part of Switzerland
(most of whom were all-rounders responsible for teaching several subjects) had at
least 2 years’ university-level training in mathematics (compared with 67% of teach-
ers in the intermediate school type and 100% of teachers in the most academically
demanding school type). A similar picture emerges for the French-speaking part
of the country. In contrast, the great majority (at least 85%) of the teachers in the
Italian-speaking part of the country studied mathematics at university.

2The three language regions and all school types were adequately represented in the Swiss sample
of the TIMSS 1999 Video Study (N = 140). It was not possible to include the country’s fourth
language (Romansh), which is spoken only in a small area.
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What then are the surface-level characteristics of mathematics instruction in
Switzerland? Analyses of data from the TIMSS 1999 Video Study make it possible
to examine how Switzerland compares with other high-achieving countries and the
United States in terms of lesson organization, instructional practices, and the math-
ematical content of lessons. With the exception of Japan, however, these analyses
have revealed many similarities in mathematics teaching across all countries exam-
ined, including the United States. In other words, Swiss mathematics lessons did
not deviate from the general international pattern of teaching practices that emerged
from these analyses. For example, the findings of the TIMSS 1999 Video Study
indicated that mathematics teaching in Switzerland is (also) dominated by problems
with a low level of complexity that can be solved within a few minutes by repeating
known procedures; most of these problems have no relevance to practical appli-
cations or to students’ everyday lives. Challenging mathematical activities such as
constructing mathematical proofs or exploring, presenting, and discussing multiple
solution methods were something of a rarity in the Swiss sample.

Analyses examining not only the frequency or duration, but the sequencing or
choreography of activities over the course of a lesson (Oser & Baeriswyl, 2001)
revealed a somewhat higher level of variability in the Swiss sample relative to the
other countries (Givvin, Hiebert, Jacobs, Hollingsworth, & Gallimore, 2005). In
international comparison, Swiss mathematics instruction thus seems to be charac-
terized less by the presence of certain lesson features or by a clearly identifiable
pattern of teaching practices, but by greater variability across lessons. It seemed
reasonable to hypothesize that this diversity might be attributable to systematic dif-
ferences across the country’s three main language regions. The empirical data did
not support this hypothesis, however. With few exceptions, the international video
coding system revealed no systematic differences across the language regions in the
features of teaching investigated (Pauli & Reusser, 2010b).

Instead, the function of the lesson in the learning process (introductory vs.
follow-up lesson) proved to be relevant. Surveys of the participating teachers (Pauli
& Reusser, 2010a) and of experts in pre- and in-service teacher training revealed
that – from both the teacher and the expert perspective – the arrangement of mathe-
matics lessons depends on whether new material is introduced (introductory lesson)
or known material is consolidated and practiced (follow-up lesson). Data obtained
through the international teacher questionnaire made it possible to categorize the
videotaped lessons as either introductory or practice/follow-up lessons. As expected,
the two lesson types differed in some aspects of teaching; for example, there was
more independent student work in practice and follow-up lessons than in introduc-
tory lessons. The distinction between introductory and follow-up lessons – which
was, incidentally, also observed to a certain extent in sequences of mathematics
lessons from the United States, Japan, and Germany, although in smaller samples
(Clarke et al., 2007) – can be interpreted as indicating that Swiss teachers plan their
lessons with a view to the different stages of the learning cycle, not all of which
can generally be covered in a single lesson (Aebli, 1983, p. 276). We return to
this “learning process orientation” as a defining characteristic of Swiss mathematics
teaching below.
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A certain diversity of instructional choreographies was also found within the
two lesson types, as an analysis of lessons in the German-speaking part of the
country showed (Hugener & Krammer, 2010). This finding is reflected in the
data of the teacher survey included in the Swiss Video Study. Based on the find-
ings of the TIMSS 1995 Video Study, Stigler and Hiebert (1999) developed the
idea of culture-specific instructional scripts. The Swiss Video Study sought to
assess these scripts through an open-ended question in the teacher questionnaire
asking participants to describe the typical structure of an everyday mathemat-
ics lesson (or of an introductory and a follow-up lesson). Content analysis of
these descriptions (Pauli & Reusser, 2010a) revealed that, for introductory lessons,
most teachers in all three language regions described a pattern of instruction that
corresponds to the typical structure of fragend-entwickelnder Unterricht, a kind
of instructional dialogue between teacher and students. However, some 27% of
descriptions in all three language regions revealed a second pattern, which can
be labeled “exploratory/discursive”. The descriptions of a typical follow-up les-
son also revealed two main lesson types. Whereas most teachers described a mix
of individual and teacher-directed collective work on problems and teacher-guided
discussion of solutions, 12% of teachers described an alternative approach, namely
individualized instruction with personal learning plans.

Overall then, the data indicate that there is no single teaching script dominat-
ing Swiss mathematics lessons. Rather, Swiss teachers seem to draw on different
instructional scripts, as further survey data confirm (Pauli & Reusser, 2003; Stebler
& Reusser, 2000). These data indicate that it is less the language region or the coun-
try in which a teacher works that determines the didactic approach taken, than the
degree to which innovations and reform initiatives are implemented in lessons (see
also Blömeke & Müller, 2008) in correspondence with the teacher’s personal beliefs
about teaching and learning (see section “The Role of Instructional Reform”). As a
federal state, moreover, Switzerland does not have a national curriculum or central-
ized teaching strategies. Rather, teachers have considerable freedom in their choice
of methods and approaches. Apart from the broad educational goals laid out in
cantonal curricula and a certain amount of compulsory teaching material, it is left
largely to individual teachers to decide whether and how to integrate new teaching
methods and reforms into their classroom practice.

This considerable freedom of discretion was not only apparent in the teacher
survey data and in the videotaped mathematics lessons, but also reflected in what
Swiss experts in mathematics teaching and teacher training expected to observe in
everyday mathematics classrooms in Switzerland. In group interviews conducted in
the run-up to the TIMSS 1999 Video Study, experts were unable to compile a single
“hypothesized country model” describing mathematics instruction in Switzerland
(Hiebert et al., 2003, pp. 209–211). Instead, they expected most lower secondary
mathematics teachers in the country to have a rather traditional, teacher-directed
instructional style, but another pattern of lessons to be seen in reform-oriented class-
rooms. Both approaches were seen to have a place. One advantage of this tolerance
of different methods is doubtless the pragmatic approach to instructional reform
that can be observed throughout Switzerland, which prevents the premature, overly
radical, or flawed implementation of proposed reform models (see section “The Role
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of Instructional Reform”). However, one potential disadvantage is the associated
lack of commitment to the systematic development of instruction. For example, it is
currently left largely to teachers to decide whether and to what extent to implement
individualized forms of teaching in their lessons. Given that the heterogeneity of
school classes is set to increase in the coming years, this model is bound to reach
its limits. New forms of and commitments to training and instructional development
will thus be required.

Student and Expert Judgments of the Instructional Quality
of Swiss Mathematics Teaching

Instructional research has repeatedly shown that it is less the surface features of
instruction that determine students’ learning outcomes than the deeper level aspects
of instructional quality (see, e.g., Brophy, 2006; Helmke, 2009; Helmke & Weinert,
1997; Klieme & Rakoczy, 2008; Seidel & Shavelson, 2007). The cognitive acti-
vation of students, a supportive learning environment or student-oriented teaching
style, clarity and structure of presentation, and efficient classroom management have
been identified as particularly important quality dimensions (Helmke, 2009; Klieme
et al., 2009; Kunter et al., 2006; Lipowsky et al., 2009). In this section, we examine
the extent to which these aspects of instructional quality are apparent in Swiss math-
ematics classrooms. To this end, we draw on the expert and student ratings obtained
for a representative sample of 140 mathematics lessons in the context of the Swiss
Video Study.

Using 4-point rating scales, the participating students assessed various aspects
of instructional quality; their responses were collated to form six scales: clarity and
structure, classroom management, individual support, cognitive activation, social
climate and student autonomy. As the analyses show, lower secondary students’
evaluations of their mathematics instruction were generally positive across the three
language regions of Switzerland examined (Fig. 1). The only instructional feature
to receive less favorable ratings was “scope for student autonomy” (Waldis, Grob,
Pauli, & Reusser, 2010b).

The question arises whether these positive student ratings are attributable to the
quality of instruction – that is, to the expertise of Swiss mathematics teachers –
or whether they are more a reflection of Swiss students’ fundamentally positive
attitudes toward learning mathematics. Various findings indicate that most Swiss
students have a positive approach to learning mathematics. In the Swiss Video
Study, for example, open-ended items in the student questionnaire tapping qual-
ity of motivation in mathematics lessons painted a thoroughly positive picture:
Both in grade 8 and at the second assessment in grade 9, Swiss students tended to
show a self-determined motivational orientation. In particular, they emphasized the
practical value of mathematics (Buff, Reusser, & Pauli, 2010). The student ques-
tionnaire further assessed mathematics interest on an 8-item scale and revealed
positive ratings overall, although the gender differences known from the literature
were apparent (with girls showing less interest), as were differences across school
types depending on the language region (Waldis, Grob, Pauli, & Reusser, 2010a). In
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Fig. 1 Mean student ratings of instructional quality. I-CH: Italian-speaking Switzerland (n = 27),
G-CH: German-speaking Switzerland (n = 74); F-CH: French-speaking Switzerland (n = 39).
Data base: Representative sample of 140 Swiss lessons (and classes) from TIMSS 1999 Video
Study (see also Waldis et al., 2010b, p. 189)

the German-speaking part of Switzerland, for example, students attending the least
academically demanding school type reported higher interest than did their peers in
the most academically demanding school type.

There is thus much evidence to suggest that Swiss students’ positive perceptions
of their instruction also reflect a generally positive attitude to learning mathematics.
However, this does not exclude the possibility that “objectively” measurable aspects
of the quality of instruction and of teacher expertise also contribute to the favorable
student ratings. Rather, a reciprocal relationship can be assumed.

As Fig. 2 shows, observer ratings of instructional quality in the videotaped
mathematics lessons were good to very good (clarity/structure) for all features
assessed: clarity/structure, classroom management, cognitive activation, and student
orientation (see Waldis et al., 2010b).

Overall, both students and observers evaluated the quality of Swiss mathematics
instruction favorably. The different school types revealed specific learning cultures
with respect to the “scope for student autonomy” and “cognitive activation,” with the
least academically demanding schools granting greater scope for student autonomy
within the German- and Italian-speaking areas and the most academically demand-
ing schools offering a higher level of cognitive activation within the German- and
French-speaking areas (not shown in Figs. 1 or 2). In the Italian-speaking region,
where students are not tracked to separate school types, but streamed within schools
according to their ability in certain subjects, no such pattern emerged.3

3It would go beyond the scope of this chapter to report the results for different school types; for
details, see Waldis et al. (2010b).
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Fig. 2 Mean expert ratings of instructional quality. I-CH: Italian-speaking Switzerland (n = 27),
G-CH: German-speaking Switzerland (n = 74); F-CH: French-speaking Switzerland (n = 39).
Data base: Representative sample of 140 Swiss lessons from TIMSS 1999 Video Study (see also
Waldis et al., 2010b, p. 196)

The profile of Swiss mathematics instruction can be further defined by compar-
ing observer ratings of the quality of instruction in Swiss and German mathematics
classrooms. Data from a subsample of 30 Swiss lessons (from the TIMSS 1999
Video Study) and 30 German mathematics lessons derived from the TIMSS 1995
Video Study (Clausen et al., 2003) showed that the Swiss lessons were rated higher
than the German lessons in terms of classroom management, individualization, and
student-oriented teaching, but ratings of cognitive activation and clarity/structure
did not differ. This general pattern of results was echoed in the later binational video
study of mathematics instruction in 20 German and 20 Swiss classes (Klieme et al.,
2009). Here again, the Swiss lessons scored higher on some features indicative of
motivationally supportive instruction, namely student perceptions of social related-
ness and autonomy support and observer ratings of room for autonomy (Rakoczy,
2008).4 In contrast, the German students perceived a higher level of competence
support and, to some extent, the observers evaluated the cognitive demands of the
German lessons to be higher (p. 187 ff.).

Interestingly, these findings are very much in line with an evaluation of instruc-
tional quality in three Swiss mathematics lessons selected by the project manage-
ment of the TIMSS 1999 Video Study as “typical.” In group interviews conducted
in four countries (Australia, Czech Republic, Hong Kong, United States), interna-
tional expert groups agreed that these three lessons showed a high level of teacher

4Note that the same instruments (student questionnaire, rating inventory) were not used in this
study.
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direction, a high level of student involvement, and a generally positive atmosphere.
However, the expert groups did not agree on the quality of the mathematical con-
tent (Givvin, Jacobs, Hollingsworth, & Hiebert, 2009; Petko, Krammer, Pauli, &
Reusser, 2010).

Overall, the findings summarized here suggest that Swiss mathematics teachers
have particular strengths in the domain of student-oriented teaching and creating
a supportive learning atmosphere, especially where granting students autonomy in
the learning process, individualization, and good classroom relations are concerned.
However, the cognitive demands of Swiss mathematics instruction and the level of
cognitive activation achieved are no higher than average.

The Role of Instructional Reform

One important component of teachers’ professional competence is the ability to
develop their instructional practice and to implement reforms successfully. Beliefs
about teaching and learning play an important role here (Philipp, 2007; Richardson
& Placier, 2001; Turner et al., 2009). In this section, we investigate the impact of a
specific reform initiative on mathematics instruction in the German-speaking part of
Switzerland.5 This initiative is characterized by a revised understanding of the role
that students play in the learning process.

Teacher training in the German-speaking part of Switzerland has traditionally
been strongly influenced by the model of “psychological didactics” proposed by
Hans Aebli, a student of Jean Piaget (Aebli, 1951). Aebli’s standard work on the
“basic forms of teaching” (Aebli, 1961, 1983) has been a core component of many
teacher training programs for decades. One key element of Aebli’s approach is
its focus on students’ learning processes (Messner & Reusser, 2006, pp. 67–68).
From Aebli’s perspective, it is less the surface features of instruction that are
decisive for lesson planning and hence the quality of instruction, than the deeper
level structures – that is, the extent to which instruction succeeds in enabling the
intended learning processes. The relatively large variation in teaching methods
observed in Swiss mathematics classrooms, and the distinction of introductory and
follow-up lessons (see section “Characteristics of Swiss Mathematics Instruction in
International Comparison”), can be seen as evidence that the thinking and practice
of many Swiss mathematics teachers is shaped by this approach.

Aebli’s approach was founded on a constructivist understanding of student
learning, based on Piaget’s constructivist epistemology and theory of cognitive
development. Like Piaget, Aebli maintained that learners actively construct and
transform knowledge by integrating new information and experience into what
they have previously come to understand, and by revising and reinterpreting old

5Because the reform situation differs across the three language regions in certain respects (e.g., dif-
fering models of reform, use of terminology, strategies of instructional development and in-service
training, etc.), we restrict our analyses to data from the German-speaking part of the country.
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knowledge in order to reconcile it with the new. But whereas Aebli agreed with
Piaget on the active role of the learner in the learning processes, unlike Piaget
he attributed a central role to the guidance and mediation of learning through
interaction with the teacher. This is expressed in his model of “problem-based
knowledge construction,” a teacher-guided problem-solving approach with the goal
of achieving deep and flexible understanding (see also Pauli, Reusser, & Grob,
2007).

However, models of student-oriented instruction rooted in progressive educa-
tion in the German tradition (Reformpädagogik) also have a long tradition in
Switzerland. These models emphasize student autonomy and co-determination of
learning arrangements. In the 1990s, these ideas saw a significant renaissance in
a teaching reform initiative that emerged essentially from classroom practice and
became known as “Extended Forms of Teaching and Learning” (ETL). This reform
model strives to extend the repertoire of teaching methods, focusing primarily on
the organization of learning activities, and aiming to give students more opportuni-
ties for co-determination and individualized learning. Typical learning arrangements
are individualized weekly learning plans, project teaching, and workstations (Croci,
Imgrüth, Landwehr, & Spring, 1995; Pauli et al., 2007). Whereas these forms
of teaching and learning primarily aim to provide organizational and procedural
autonomy support (Stefanou, Perencevich, DiCintio, & Turner, 2004), the aspect
of cognitive autonomy support has attracted increasing attention in recent years,
especially in the context of mathematics teaching. Against this background, the
ETL model also calls for more opportunities for students to engage in independent
problem solving and higher order thinking (see also Affolter et al., 2006).

The question arises of how this reform model has been received and implemented
by mathematics teachers in the German-speaking part of Switzerland. To assess
how familiar these teachers are with didactic principles and reform initiatives, the
teacher questionnaire administered to the teachers of the TIMSS 1999 Video Study
sample in the context of the Swiss Video Study included a question asking how
often they organized their lessons according to three didactic principles: (1) opera-
tive didactics ([guided]) problem-based knowledge construction; e.g., Aebli, 1983;
Wittmann, 1981); (2) the genetic–socratic exemplary approach (e.g., Wagenschein,
2008) and (3) the model of extended forms of teaching and learning (ETL). As Fig. 3
shows, the ETL model proved to be well known and frequently implemented in the
German-speaking mathematics classrooms of the TIMSS 1999 Video Study sam-
ple; only 2% of teachers stated that they were unfamiliar with the model. More than
41% stated that they “frequently” or “almost always,” and 52% that they “occasion-
ally,” taught according to the principles of ETL. There was somewhat less awareness
and implementation of operative didactics; nevertheless, 39% of teachers stated that
they “frequently,” and 22% that they “occasionally,” taught according to this prin-
ciple. Most teachers were also familiar with the genetic-Socratic approach, but its
implementation in the classroom was much more limited.

Given that a large group (41%) of teachers stated that they frequently or almost
always taught according to the principles of ETL, it was interesting to examine
what distinguishes the instruction of these reform-oriented teachers from that of
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Fig. 3 Teacher awareness and implementation of didactic principles (N = 66; teachers of German-
speaking areas of Switzerland, based on the TIMSS 1999 Video Study sample). Operative
didactics: (guided) problem-based knowledge construction (Aebli, Wittmann); genetic–socratic
exemplary approach (Wagenschein); ETL model: reform model of extended forms of learning and
teaching

their more traditionally oriented colleagues. This question was addressed in a series
of steps, drawing on data from both teacher self-reports and student and observer
ratings.

Based on the teacher self-reports, the classroom practice of reform-oriented and
traditionally oriented teachers was first compared in terms of aspects of instruc-
tion and social interaction. Specifically, teachers were given a list of 32 forms
of teaching and learning and asked to state the frequency with which each fea-
tured in their own practice (Pauli & Reusser, 2010a; Pauli, Reusser, Waldis, &
Grob, 2003). For those forms of teaching and learning characteristic of the ETL
model (e.g., weekly learning plans, workstations, individual guidance), a significant
difference in the expected direction was found between reform-oriented and tradi-
tionally oriented teachers, with higher levels of implementation in reform-oriented
classrooms (Pauli et al., 2003). However, few differences emerged in the forms of
teaching and learning typical of traditional instruction. Figure 4 compares selected
forms of instruction. In addition to the form of the teacher-led instructional dia-
logue that is typical of traditional instructional practice, the figure presents findings
for two forms of instruction representing the aspect of granting students scope for
self-directed learning that is central to the ETL model (weekly learning plan, work-
stations), and two forms of instruction that are characteristic of reform efforts in the
specific context of mathematics (discovering solution methods, discussing solution
methods).

Although the distribution of the teaching practices “weekly learning plan”
and “workstations” differed significantly in the expected direction, there were no
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statistically significant differences between the reform-oriented and the more tradi-
tional teachers in the other forms of teaching and learning. These findings indicate
that, in the teachers’ self-conceptions, the practice of ETL is characterized primarily
by creating more opportunities for self-regulated learning, and that there is less of an
emphasis on discursive approaches to mathematical problems. Indeed, further anal-
yses showed that there was no systematic relationship between the teacher-reported
frequency of these two reform-oriented teaching practices (Pauli et al., 2007) or
between reform-oriented instructional practice in terms of the organization of learn-
ing activities (opportunities for self-directed learning) and constructivist-oriented
beliefs about teaching and learning. Interestingly, the reform-oriented teachers did
not differ significantly from their more traditional colleagues in the frequency of
teacher-led instructional dialogue, which plays a major role in Aebli’s approach.
The proportion of reform-oriented teachers who facilitated an instructional dialogue
less than once a week is also relatively small at 25% (traditional teachers: 18%; see
Fig. 4). These findings indicate that the ETL reform model does not mean a radical
switch to open forms of instruction, but rather a broader spectrum of teaching prac-
tices at the organizational level, creating more opportunities for self-directed and
individualized learning. This does not necessarily include exploratory and discursive
approaches to mathematical problems.

Another interesting question is whether reform-oriented teaching practices influ-
ence student perceptions and expert ratings of instructional quality. Analyses
indicate that this is indeed the case. Students and experts rated reform-oriented
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teachers significantly higher on various dimensions of instructional quality (cog-
nitive activation, student orientation, clarity and structure), and students reported
higher levels of positive emotional experience (Pauli et al., 2007, 2003). However,
these findings were not reflected in the development of students’ interest and
achievement over the course of a school year, where neither a positive nor a negative
effect was observed (Pauli et al., 2007, 2003).

Based on the international video analyses and on further analyses conducted in
Switzerland, it was also possible to examine how the quality differences detected
were reflected in observable features of teaching practice. The international analyses
revealed few, rather weak relations between teacher orientation and classroom prac-
tice. Less whole-class work was observed in the reform-oriented teachers’ lessons,
but there were no significant differences in the culture of tasks (i.e., the quality of
mathematical content or the characteristics of the problems set and the way they
were worked on in the lesson). In other words, the reform-oriented teachers’ lessons
were also dominated by repetitive, low-complexity tasks that could be solved by
applying known procedures. More challenging mathematical activities were rarely
observed (Pauli, Reusser, & Grob, 2010).

However, differences between the two teacher groups were found for classroom
interaction and learning support, as a further analysis of the Swiss sample showed
(Krammer, 2009). A detailed analysis of the activities and interactions occurring in
phases of independent student work showed that reform-oriented teachers invested
significantly more time in cognitively activating forms of individual learning sup-
port (i.e., feedback that encouraged students to continue thinking independently)
and less time in evaluative feedback (feedback on the accuracy of task completion).
In addition, their students had more opportunity to cooperate during phases of inde-
pendent student work. In sum, Krammer’s (2009) findings indicate that, relative to
their more traditionally oriented colleagues, reform-oriented teachers dedicate more
lesson time to independent student work (either individually or in pairs/groups),
and that this time is used productively to guide and support individual learning
processes.

In summary, the analyses presented indicate that instructional reform initiatives
play a notable and generally positive role in lower secondary mathematics instruc-
tion in Switzerland. In particular, the ETL model, which is informed by the tradition
of progressive education, is widely known and its impact on instructional practice
and quality is perceptible to both students and observers. What characterizes this
reform model is that (in contrast to some concepts of open education) it does not
prescribe a radical transformation of traditional, teacher-directed instruction, but
strives to extend the repertoire of teaching methods in terms of both the organiza-
tion of learning activities (e.g., weekly learning plans) and ways of encouraging and
supporting student learning processes. The present analyses of data from several
video studies suggest that the ETL model is currently being implemented primarily
at the organizational level, with students being given greater scope for autonomy
through weekly learning plans and cognitively activating individualized learning
support. There is room for improvement in lesson content in terms of the level of
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cognitive and mathematical challenge, the quality of the problems set, and the way
they are worked on in lessons – that is, in the deep structure of teaching and learning
processes.

Conclusion

This chapter drew on data and findings from several video studies to describe the
quality of mathematics teaching in Switzerland. The chapter focused on features of
instructional practice and quality as core components of classroom behavior that
reflect the teacher’s expertise in creating optimal learning opportunities. Despite
this focus on instruction, it is important to remember that observable teacher behav-
ior and instructional quality are influenced by multiple factors at different levels
of the education system, as well as by the characteristics of those on the “uptake”
end – that is, the students and their parents. These relationships, which are artic-
ulated in the model of the provision and uptake of learning opportunities (Fend,
2002, 2008; Helmke, 2009; Reusser & Pauli, 2003), need to be taken into consid-
eration when interpreting the present findings on expertise in Swiss mathematics
instruction.

In terms of the students and parents on the “uptake” end of learning opportuni-
ties, for example, Swiss mathematics teachers have to date benefited from relatively
favorable conditions. A survey of German and Swiss mathematics teachers embed-
ded in the German–Swiss video study showed that Swiss teachers seem to be aware
of this fact (Lipowsky, Thussbas, Klieme, Reusser, & Pauli, 2003). Their ratings
of student and parental interest were fairly high; their ratings of student and par-
ent appreciation of their work, very high. Interestingly, the teacher ratings mirrored
the difference in student interest ratings found across school types in the German-
speaking part of Switzerland (see section “Student and Expert Judgments of the
Instructional Quality of Swiss Mathematics Teaching”): Overall, the teachers rated
students at the least academic school type to show much higher interest in mathe-
matics than students in the most academically demanding school type. The opposite
pattern of results was found in German teachers, whose overall ratings were also
lower than those of their Swiss colleagues. A similar pattern emerged for teacher
self-perceptions. For example, Swiss mathematics teachers had higher self-efficacy
than their German colleagues, and German teachers reported more stress than their
Swiss colleagues, with the least favorable constellation again being found in German
teachers working in the least academic track of the [three-tiered] German secondary
system, the Hauptschule. These findings indicate that teachers in Switzerland, even
at the least academically demanding schools, feel able to practice their profession to
the desired level. In the terms of the model of the provision and uptake of learning
opportunities, this too can be seen as a reciprocal relationship.

In the following, we use the model of the didactic triangle as the basis for present-
ing our conclusions on expertise in Swiss mathematics instruction. In this model, the
teacher, students, and content correspond to the points of the triangle describing the
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Fig. 5 Didactic triangle (Reusser, 2008, 2009)

teacher’s scope of practice in the classroom (Reusser, 2008, 2009). The three sides of
the triangle define three interdependent dimensions of instructional quality, namely
the culture of objectives and materials; the culture of teaching, learning, and under-
standing; and the culture of communication, support, and relationships (see Fig. 5).
Considering the empirical findings presented above in terms of these three quality
dimensions can help to build up a detailed profile of expertise in Swiss mathematics
instruction.

A core element of this profile can be identified in Swiss mathematics teachers’
particular strengths in the culture of communication, support, and relationships,
as reflected by the positive ratings of instructional quality given by both students
and independent observers in the video studies and as confirmed by the compari-
son of observer ratings of German and Swiss mathematics lessons (Clausen et al.,
2003). Data obtained through the PISA 2000 student questionnaire point in the
same direction: Swiss students rated their teachers to be supportive and, in par-
ticular, the quality of teacher–student relations to be high, but perceived levels of
pressure to achieve to be relatively low (Klieme & Rakoczy, 2003, p. 344). The
findings that Swiss students reported anxiety levels below the OECD average in
mathematics (see Introduction) and higher wellbeing in school than, for example,
German students (Fend, 1998) can be attributed to this generally positive culture
of communication, support, and relationships. However, these findings should not
be interpreted as indicating that there is no scope for teacher improvement in this
dimension of instructional quality. For example, Krammer’s (2009) analyses iden-
tify a need for enhancement of adaptive individual learning support. Overall, a rather
low proportion of the individual learning support provided was evaluated to be
cognitively activating (i.e., to stimulate further thought). This proportion was sig-
nificantly higher in the lessons of reform-oriented teachers than in those of their
traditionally oriented colleagues, highlighting the potential of the ETL model as a
platform for adaptive instruction.
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The findings presented also paint a generally positive picture of the culture
of teaching, learning and understanding – in other words, the actual process of
learning and its choreography – in Swiss mathematics classrooms. The various
video analyses give the impression of well-managed lessons with few disruptions,
guided primarily by the teacher, but also involving a fairly high proportion of inde-
pendent student work in international comparison. Although a form of instructional
dialogue also plays a key role in Swiss mathematics instruction, the video anal-
yses reveal a notable variety of teaching practices and methods. One reason for
this is that Swiss teachers deliberately include phases of consolidation and practice
in their lessons, as reflected in the distinction between introductory and follow-
up lessons observed in both the instructional scripts described by teachers and
the video recordings. Another reason is the relatively widespread implementation
of the ETL reform model. This model is characterized by its combination of tra-
ditional, teacher-directed forms of instruction and highly individualized forms of
instruction such as weekly learning plans, which has doubtless contributed to its
high acceptance among teachers. The model seems practicable because it can be
implemented to differing degrees and with differing focuses; it is flexible enough
to be adapted to different contexts and conditions (e.g., different schools, classes,
etc.). From the perspective of instructional research, it is also worth noting that
the risk of negative effects on academic outcomes – as have been found for some
radical concepts of “open education” (Giaconia & Hedges, 1982; Gruehn, 2000;
Lüders & Rauin, 2004) – is limited: unlike radical reform concepts, the ETL model
includes forms of direct instruction, which numerous empirical studies have shown
to play an important role in student learning (see, e.e., Brophy, 1999; Helmke,
2009).

Given the ETL model’s positive effects on student perceptions and experiences
of instruction – and in view of findings from international empirical studies demon-
strating positive effects of student-oriented instruction and good teacher–student
relations (Cornelius-White, 2007) – one potential point of intervention for devel-
oping teacher expertise in the culture of teaching and learning would therefore be
to encourage the more widespread implementation of the ETL reform model. The
model can also be regarded as offering useful strategies for dealing with heteroge-
neous classes. In view of the planned or already realized move away from special
classes and toward the inclusion of special needs students in mainstream educa-
tion and continuing immigration (in Switzerland and elsewhere), this heterogeneity
is bound to increase in the future. Whereas the literature criticizes the unreasonably
high expectations and “euphoric hopes” associated with didactic concepts of within-
class differentiation (Trautmann & Wischer, 2008), ETL seems to offer a practicable
approach that stands the empirical test, having demonstrably positive effects on
students’ experience of instruction and wellbeing, without negative effects on educa-
tional outcomes. However, the data suggest that although teachers’ implementation
of the ETL model has to date (positively) influenced the culture of communication
and support and extended their repertoire of teaching methods, there has been lit-
tle change in aspects of mathematics-specific instruction in the narrow sense (e.g.,
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the level of cognitive and mathematical challenge; provision for independent and
discursive approaches to challenging problems). There thus seems to be room for
improvement in the specific context of the didactics of mathematics.

Consequently, the culture of objectives, materials and tasks in Swiss mathematics
classrooms is rather average in international comparison in several respects (level
of mathematical content, characteristics of the problems set and the way they are
worked on in lessons). Analyses of the Swiss Video Study data revealed consid-
erable differences across school types in the German- and French-speaking parts
of the country. Data from the Italian-speaking part of the country, where students
are not tracked to separate secondary school types, but streamed within schools
according to their ability in certain subjects, show that these differences are only
partly the result of teachers adapting the level of challenge to better meet their stu-
dents’ cognitive needs: In the Italian-speaking region, observer ratings of cognitive
activation did not differ significantly across lessons at the two achievement lev-
els (Waldis et al., 2010b). It thus seems reasonable to surmise that the differences
are also partly attributable to the teachers’ training and responsibilities (see section
“Characteristics of Swiss Mathematics Instruction in International Comparison”):
In contrast to the Italian-speaking part of Switzerland, where the teachers at both
levels receive the same training (Pauli & Reusser, 2010a), almost all of the lessons
videotaped in the least academically demanding schools in the German-speaking
part of the country were taught by “all-rounders” with no university-level train-
ing in mathematics, whose teaching commitments included various subjects beside
mathematics. Given these teachers’ rather modest mathematical knowledge base
and the scarce time they have to prepare lessons, the implementation of didactically
more demanding models, as is called for in the current literature, does not seem
practicable. Since the data were collected, teacher training at tertiary level has been
restructured to place a much stronger focus on content knowledge and pedagogical
content knowledge, meaning more of a subject focus in teaching responsibilities. It
remains to be seen how these changes will influence the culture of materials and
tasks in Swiss mathematics classrooms.

In terms of instructional development, Swiss teachers evidently have a pragmatic
approach to instructional reform initiatives. As the principles of Hans Aebli’s psy-
chological didactics can be assumed to have an important influence on teaching
practice at least in the German-speaking region of Switzerland, this should not
come as any surprise. In Aebli’s approach, which is rooted in cognitive psychol-
ogy (Baer, Fuchs, Füglister, Reusser, & Wyss, 2006), didactic decisions are based
on not the surface-level characteristics of instruction, but on the deeper level of the
quality of student learning processes (see also Oser & Baeriswyl, 2001). Teachers
in the German-speaking part of Switzerland can thus be expected to have a learn-
ing process orientation that is manifested, for example, in a pragmatic approach
to different forms of instruction and social interaction in the classroom. In con-
trast to what is sometimes suggested in the current discussion of “constructivist
learning environments” (see Tobias & Duffy, 2009), Aebli did not consider teacher
guidance and support of learning activities to be at odds with a constructivist
understanding of learning. For Aebli, teacher-guided instructional dialogue was a
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key element, if not the key element, of cognitively guided instruction based on
a constructivist understanding of teaching and learning. Extending the repertoire
of teaching methods to include forms that grant students more self-direction and
autonomy is, however, certainly compatible with Aebli’s focus on student learning
processes, although Aebli himself paid little attention to these aspects in his own
work (Pauli, 2006).

One clear indication that teachers in German-speaking Switzerland have a
learning process orientation is that the Swiss Video Study found no systematic rela-
tionship between reform-oriented instructional practice in terms of the organization
of learning activities (opportunities for self-directed learning) and constructivist-
oriented beliefs about teaching and learning. In contrast, a constructivist orientation
correlated positively with the reported frequency of opportunities for independent
problem solving (Pauli et al., 2007) – in other words, with an instructional fea-
ture that focuses more on intended student learning processes than on the surface
structure of instruction. This learning process orientation offers a good basis for
instructional development, both from the perspective of general didactics and in the
context of mathematics-specific conceptualizations of challenging, cognitively acti-
vating, and adaptive instruction. It is important to capitalize on Swiss mathematics
teachers’ learning process orientation through innovative forms of in-service train-
ing and instructional development that are congruent with their subjective theories
of teaching and learning.
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Responding to Students: Enabling a Significant
Role for Students in the Class Discourse

Ruhama Even and Orly Gottlib

Abstract This is a case study of a highly regarded high-school mathematics teacher
in Israel. It examines the kinds of responses to students’ talk used repeatedly by the
teacher, directing and shaping the classroom discourse, during different parts of the
lesson. The main data source included 21 h of observations in two of this teacher’s
classrooms. Analysis of the video-taped lessons showed that almost the entire
whole-class work comprised of mathematical activity that was triggered by, built or
followed on, students’ talk. This was mainly due to the teacher’s responsiveness to
students. The most common teacher response was elaborating. Accompanying talk
occurred considerably less, and the teacher rarely expressed puzzlement or opposi-
tion when responding to students’ talk. The chapter demonstrates how the teacher
combined her attention to students’ talk, with the goal of making progress on the
main topic.

Keywords Teacher responsiveness · Classroom discourse · Instructional decisions ·
Expertise in math teaching · Elaborating talk · Accompanying talk

Introduction

Expertise in mathematics teaching is frequently associated in the literature with
devoting considerable class time to solving problems, proposing and justifying
alternative solutions, critically evaluating alternative courses of action, leading to
different methods of solving problems, not necessarily anticipated by the teacher
ahead of time (e.g., Cobb, Stephan, McClain, & Gravemeijer, 2001; Even & Lappan,
1994; National Council of Teachers of Mathematics, 2000). Expertise in teaching
mathematics is often linked to encouraging students to make conjectures, explain
their reasoning, validate their assertions, discuss and question their own thinking and
the thinking of others, and argue about what is mathematically true (Collins, Brown,
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& Newman, 1990; Even & Tirosh, 2002; Wood, Williams, & McNeal, 2006). Hence,
expertise in mathematics teaching implies, among other things, a significant and
influential role for students in the class discourse.

To enable a significant and influential role for students in the class discourse the
mathematics teacher needs to play the role of diagnostician (“Images of Expertise
in Mathematics Teaching” in the chapter by Russ, Sherin, & Sherin, this book).
Research and professional rhetoric suggest that awareness to, and understanding
of, students’ mathematics learning and thinking are central to good teaching (e.g.,
Barnett, 1991; Even, 1999; Even & Markovits, 1993; Fennema et al., 1996; Llinares
& Krainer, 2006; National Council of Teachers of Mathematics, 1991; Scherer &
Steinbring, 2006). Consequently, the development of such awareness and under-
standing has become part of the curriculum of teacher education for both prospective
and practicing teachers in recent years (e.g., Even, 1999, 2005a; Markovits & Even,
1999; Fennema et al., 1996; Tirosh, 2000).

Yet, improving teachers’ understanding of what their students say, write or do
still leaves the problem of how teachers may use this understanding to make better
instructional decisions. How they may encourage and enable a significant and influ-
ential role for students in the class mathematics discourse, while, as river guides
(“Images of Expertise in Mathematics Teaching” in the chapter by Russ et al., this
book), respond to the students, to the context, and to what occurs in the moment
(Berliner, 1994). This is not an easy task, as research suggests (Chazzan & Ball,
1999; O’Connor, 2001; Simon, 1997; Wood, 1994). For example, Even (2005b)
illustrates the difficulties teachers encounter when facing the need to address stu-
dents’ mistakes, even after the teachers developed rich and profound understandings
of the nature and sources of these mistakes. Ball (1993) describes the challenge of
responding to students who present novel ideas that are not in line with standard
mathematics, even in the case of an expert teacher with deep disciplinary under-
standings. Research suggests that expert teachers are better than novice teachers at
productively altering the direction of their lesson in response to students’ questions
or comments (Brown & Borko, 1992). Yet, as Ball’s study shows, responding to
students’ talk and action is problematic even for expert teachers.

A review of the literature provides limited information on the ways teachers
attend and respond to students during mathematics lessons. Most studies have
been conducted as part of intervention programs, involving a small number of
lessons. Moreover, information on the ways teachers respond to students’ talk
and action during mathematics lessons is often derived from studies that do not
specifically focus on that, but rather on class discourse (Even & Schwarz, 2003;
Forman, Larreamendy-Joerns, Stein, & Brown, 1998; Resnick, Salmon, Zeitz,
Wathen, & Holowchak, 1993; Sherin, 2002), patterns of interaction (Bauersfeld,
1988; Wood, 1994; Voigt, 1995; Lobato, Clarke, & Ellis, 2005), and teaching strate-
gies (Fraivilling, Murphy, & Fuson, 1999). Missing are studies that focus purposely
on teachers’ responses to students’ talk and action during a relatively long period of
regular mathematics lessons. Our study focuses on this.

The chapter examines how a teacher who has a reputation of encouraging a sig-
nificant and influential role for students in the class discourse, responds to students’
mathematical talk in class. The chapter examines the kinds of responses used
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repeatedly by the teacher, directing and shaping the classroom discourse, during
different parts of the lesson.

Methodology

This is a case study of an experienced high-school mathematics teacher, highly
regarded by her colleagues and other members of the mathematics education com-
munity in Israel. In addition to teaching high school mathematics, she has been a
central member of several curriculum development teams, was a member of the
national syllabus committee for junior-high mathematics, and has served as edu-
cator for prospective and practicing mathematics teachers. In her various roles she
regularly sought for innovations in content and ways of teaching, and systemat-
ically reflected on her own teaching and the learning processes of her students. In
numerous formal and informal conversations she often expressed the importance she
attributed to being attentive and responsive to students and to encouraging students
to take a significant role in the lesson.

The main data sources include observations of the teaching of mathematics in
two of this teacher’s classes. One of the classes the teacher taught was a 9th grade
class and the other a 10th grade class; both in the high-school where she regularly
taught mathematics – an academic oriented Jewish religious girl school. The 9th
grade class was composed of lower-achieving students whereas the 10th grade class
was composed of high-achieving students.

The second author observed 9 lessons in the 9th grade class and 8 lessons in
the 10th grade class (the length of each lesson ranged between 36 and 88 min).
Total time of observation was 21 h: about 10.5 h in each class. About one-
half of the observed lessons in the 9th grade class were on functions; the rest
were on geometry. Similarly, about one half of the observed lessons in the 10th
grade class were on analysis; and the rest were on geometry. This research design
enabled us to examine the nature of the teacher’s ways of attending to students’
talk and action during a rather long period of regular mathematics lessons, in
a variety of settings: different classes, and when teaching different mathematical
topics.

All 17 observed lessons were videotaped; notes were taken during and after each
observation, and informal conversations were often held with the teacher. At the
end of the data collection period, an 80-min long semi-structured interview was
held with the teacher. The interview focused on her way of teaching, students’ par-
ticipation in the lessons, her response to students’ talk, and differences in response
in different settings. Later on, two additional semi-structured interviews were held
with the teacher, focusing on her way of teaching, on the structure of a typical lesson
of hers, and on the teaching sequence in each observed lesson.

Of the 17 observed lessons, 16 lessons consisted of whole-class work, small
group/individual work, and class organization; one lesson consisted of small
group/individual work and class organization only. Detailed data analysis of the
lessons included only the talk during whole-class work, which comprised more than
one-half of all lesson time – close to 12 h. The interviews and observations of the
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small group/individual work were used to support or downplay interpretations and
to provide additional information about the teacher’s responsiveness to students.

Following Even and Schwarz (2003), analysis of teacher responsiveness included
an examination of the occurrence of four kinds of teacher responsiveness:
Accompanying talk refers to talk in which the teacher attended to a student’s
talk without elaboration, typically acknowledging that she follows the student’s
talk. Elaborating talk refers to talk in which the teacher elaborated utterances and
expressed deeper cognitive involvement. Opposition refers to talk in which the
teacher explicitly expressed disagreement and objection. Puzzlement points to talk
expressing confusion, perplexity or bewilderment.

Teacher responsiveness to students may be related to the purpose of the lesson
segment. Thus, data analysis focused also on identifying the purposes of differ-
ent components of the teaching sequence in each lesson. The coding we used for
this is based in part on the coding system developed in the TIMSS-Video Study
(Hiebert et al., 2003), but was modified to fit with the teacher’s view, as indicated
in interviews and conversations with her, and with the observational data. Thus, we
combined two categories from the TIMSS-Video Study’s coding system (Hiebert
et al., 2003) – “Introducing new content” and “Practicing new content” – into one
category, “Work on the main topic”, because this category fits better with the class
practice and with the teacher’s description of the structure of her lessons. We also
added to the TIMSS-Video Study’s coding system the category “Extending beyond
the main topic” because the teacher explicitly stated in a conversation that she often
does that intentionally. The resulting coding system for this study includes four main
categories. The first three categories center on mathematical work; the last one on
class organization:

• Work on the main topic: focuses on introducing, investigating, extending, and
deepening the main topic of the lesson.

• Reviewing content introduced previously: focuses on reminding students of, and
clarifying, content learned earlier in the lesson, in previous lessons, or in lower
grades.

• Extending beyond the main topic: focuses on extending and enriching students’
knowledge and understanding of mathematics.

• Class organization: focuses on mathematical organization (e.g., distributing
materials or homework assignments) or on non-mathematical work (e.g., disci-
plining students).

Finally, we examined what kinds of responses characterized each of the first three
lesson components.

Responsiveness to Students in the Lessons

Analysis of the data suggested that teacher responsiveness to students character-
ized the mathematical work during whole-class work sessions. Almost the entire
whole-class work comprised of mathematical activity that was triggered by, built
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or followed on, students’ talk. The teacher was attentive and responsive to dif-
ferent kinds of students’ talk, including students’ questions, answers, hypotheses,
claims, remarks, mistakes, etc. The nature of the mathematical activity triggered
by, built or followed on, students’ utterances varied, and included, for example,
discussing students’ answers, investigating students’ hypotheses, clarifying con-
cepts critical for work on assigned tasks, strengthening previously learnt materials,
answering students’ queries, explaining the nature of mathematics and the work of
mathematicians, etc.

Overall, two kinds of teacher response – elaborating and accompanying –
were used repeatedly by the teacher, whereas opposition and puzzlement seldom
occurred. The most common response was elaborating; accompanying occurred less
frequently. Nonetheless, both elaborating and accompanying talk occurred during
every lesson that included whole-class work.

Analysis of the data shows several similarities and some differences in the use of
the four kinds of teacher responsiveness among the three lesson components. Below
we describe and exemplify the kinds of responses practiced by the teacher dur-
ing each lesson component: work on the main topic, reviewing content introduced
previously, and extending beyond the main topic.

Work on the Main Topic

Work on the main topic comprised of introducing, investigating, extending, and
deepening the main topic of the lesson. This kind of activity occurred during every
lesson, and most of the total lesson time was devoted to it. Usually, the teacher initi-
ated this kind of mathematical work. Typically, it involved collaborative whole-class
work built on students’ small group/individual problem solving.

All four kinds of responses were enacted by the teacher when working on the
main topic. The most common response was elaborating; accompanying occurred
less frequently. Teacher opposition and puzzlement occurred only a small number
of times. Below are illustrations of the different kinds of teacher responsiveness to
students when working on the main topic.

Opposition During Work on the Main Topic

The teacher seldom expressed disagreement or objection to students’ ideas when
working on the main topic. When she did, it was when students’ suggestions
severely deviated from the main point. One of these rare events occurred when she
introduced the topic of similarity of polygons. The teacher started the lesson by ask-
ing the 10th grade students to explain the meaning of similarity in everyday life.
The first students’ suggestions were all closely tied to the mathematical notion of
similarity: “Same angles but not the same sides” or “The ratios between the sides
are equal”. The teacher repeatedly rejected these suggestions, emphasizing that she
was looking for something not in the mathematical world: “You explain it from a
mathematical point of view. I’d like a description from everyday life.”
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Elaborating Talk During Work on the Main Topic

A common teacher behavior was to elaborate students’ talk and express deep cog-
nitive involvement in students’ suggestions. For example, as part of the work on
the topic of similarity of polygons, following the previous exchange on what sim-
ilarity might mean in everyday life, yet before being given the formal definition
of similarity of polygons, the 10th grade class students were assigned the task
to imagine that they were using a camera or a photocopy machine. They were
asked then to draw polygons that would be similar to the ones in Fig. 1 (drawn
on triangular lattice), and to find the angle measures of the original and the new
polygons.

After small group/individual work, a whole class work began, focusing first on
the angle measures of the given shapes. The angles of the triangle in Fig. 1a were
easily found, based on the fact that it is an equilateral triangle. But the triangle in
Fig. 1c was a challenge. One student suggested that the top angle is a right angle
based on its appearance. As a result, a discussion on whether one can be sure of that
arose, eventually rejecting this method. This discussion was characterized by the
teacher elaborating students’ ideas and expressing profound cognitive involvement
in their suggestions:

S: There is an angle of 90◦.
T: How do you know? You see. Is it allowed?
S: I don’t know.
S: Is seeing allowed?
T: Seeing is allowed but you cannot decide based on seeing.

Work on finding the angle measures continued, led by the teacher who kept using
elaborating talk throughout this discussion. A student suggested that the left base-
angle is 60◦, based on what they found regarding the equilateral triangle in Fig. 1a
and the problem of whether “seeing” is allowed in mathematics (i.e., is a valid

Fig. 1 Shapes used in the
similarity activity
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tool for determining mathematical truths) emerged again, distinguishing between
the nature of “seeing” in each case:

S: There is also a 60◦ angle. It’s like the angle of triangle 1a.
T: Right. There is a 60◦ angle here. I agree. It’s like the angle of triangle 1a.
S: Can we do that? Do you allow us to do that?
T: What? What did we do?
S: According to the dots.
T: According to the dots we determined that
S: Ah, then everything will be much easier.
T: Sure. . . This is allowed, to “see” that there is an equilateral triangle here.

What is the difference between “seeing” that this is a 90◦ angle and between
“seeing” that there is an equilateral triangle?

S: Here it is 90◦ [incomprehensible] as if you see it. And here you can base
it. You know that their distance is equal [distances between dots on the
triangular lattice].

T: It is given to us that the distances are equal, so actually it is not based on
“seeing”. We decided that this is an equilateral triangle based on what is
given. It is given to us that the distances are equal, and it is given to us, and
it means that the triangle is an equilateral triangle. In contrast, here when I
look at the angle and it looks like 90◦. But maybe it is 91◦ So, can someone
continue and show. . .

A student then added the following construction (see Fig. 2a) and claimed that the
right base-angle is 30◦. She argued that the side AC is an angle bisector because
it is both a height and a median in an isosceles triangle. The teacher requested a
justification: “You claim that this is in the middle. Who wants to say, again it is a
bit ‘seeing’ and a bit, I’d like a clear strong explanation, why is it in the middle?”
Attempting to prove this, another student suggested to complete the triangle into
a rhombus, and added the following construction (see Fig. 2b). From here it was
straightforward for other students to point out that the diagonals of a rhombus form
right angles at their intersection and bisect each other. Thus, they concluded that the
side AC is indeed an angle bisector and the right base-angle is 30◦. Trying in vain
to use the Pythagorean theorem in order to prove that the top angle is 90◦, students
eventually suggested using the angle sum of a triangle property.

Fig. 2 Finding angle measures of the triangle in Fig. 1c
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This episode of finding the angle measures of the triangle in Fig. 1c exem-
plifies how work on the main topic that was led by the teacher, depended on,
and was responsive to, students’ talk. It illustrates how work on the main topic
comprised of the teacher elaborating students’ suggestions and taking part in
developing ideas students suggested. The teacher was attentive to students’ ideas,
and embraced their suggestions as a starting point for mathematical examina-
tions. Thus, problems were mostly solved according to students’ proposals and
suggestions. The teacher adopted students’ suggestions even when they were unpro-
ductive or mistaken, spending the time needed to examine their potential and
adequacy.

In addition to making students’ proposals and suggestions part of the content
dealt with in the lesson, the teacher was also attentive to students’ requests regarding
the issues and topics to be dealt with, and often accepted their requests. For example,
after finding the angle measures of the polygons in Fig. 1a–c the teacher shifted the
focus of the discussion in the 10th grade class to the formal definition of similarity
of polygons and to properties of similarity of different polygons. Then, just before
the end of the lesson, the teacher started to explain the homework assignment when
a student interrupted her, requesting to complete the task of finding the angle mea-
sures of the triangle in Fig. 1e. The teacher accepted this request and the rest of the
lesson time was devoted to discussing this. Even though it was the end of the lesson,
the teacher responded to students’ ideas using elaborating talk. For example, fol-
lowing a student’s remark that the triangle was not a 30-60-90◦ triangle, the teacher
asked the students whether they were certain of that. After students responded
positively she asked them to explain this claim. Finally the class discussed the
two explanations suggested by the students and another one suggested by the
teacher.

The discussions outlined above about similarity evolved after the teacher for-
mally opened up a whole-class discussion, asking the class to suggest how to find
the angle measures of the polygons in Fig. 1, orchestrating a collaborative whole-
class problem solving session. Yet, there were quite a few instances when work on
the main topic that comprised teacher’s elaborating students’ suggestions occurred
rather spontaneously. An example for that is an episode taken from a series of
lessons on the quadrilateral family in the 9th grade class. During one of the lessons,
the class worked on determining which quadrilaterals have reflective symmetry. The
students were asked to fold a paper in half, and cut out different quadrilaterals
(parallelogram, trapezoid, kite, rectangle, rhombus, square) using the fold line as
the line of symmetry. After several unsuccessful attempts to cut a parallelogram
that is not a rectangle, according to these instructions, one student noticed that
another student “succeeded” to cut such a parallelogram (in fact that student did
not use the fold line as the line of symmetry). Astonished, the student inquired,
“How did you do it?” The teacher overheard the conversation. She picked up the
cut paper, presented it to the whole class, declared that one student succeeded in
the task, and asked the class how the student managed to cut out the parallelogram.
Eventually, the class discovered that the student did not use the fold line as the line of
symmetry.
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Accompanying Talk During Work on the Main Topic

Another common teacher behavior was to attend to a student’s talk without elabora-
tion, typically acknowledging that she followed the student’s talk. There were a few
times when the teacher used only accompanying talk; yet, more often she combined
accompanying with elaborating talk.

Occasionally, when students gave correct answers, or when gathering students’
thoughts as a starting point for work on the main topic, the teacher attended to
students’ ideas without elaboration. The following illustration of using this type of
accompanying talk is taken from an episode that occurred after the teacher expressed
disagreement with the suggestions that the 10th grade students proposed for the
meaning of similarity in everyday life because they were all closely tied to the
mathematical notion of similarity. A student then proposed something different:

S: The same shape but smaller.
T: The same shape but smaller.
The teacher then asked the students to give her examples from everyday life for

similar shapes:
S: Perhaps Babushka [a Russian nested doll – Matryoshka doll]?
T: Ah, Babushka, Babushka dolls.

As can be seen, the teacher used in these short excerpts accompanying talk, basi-
cally repeating the student’s words: “The same shape but smaller”, “Ah, Babushka,
Babushka dolls.”

Another example for accompanying talk that is not embedded in elaborating talk
is taken from an activity that followed the activity described above of cutting out
different shapes using the fold line of a paper as the line of symmetry. The teacher
asked the 9th grade students to report which shapes they succeeded to cut out. The
list on the board included the following shapes: circle, square, rectangle that is not
square, rhombus that is not square, parallelogram that is not rectangle or rhombus,
trapezoid, and kite.

T: Okay, then out of all these – which ones did you succeed at [cutting out]?
S’s: Circle, square, rectangle that is not square,
T: [marks on the board each shape the students mention, holding her marker by

the next shape on the list: rhombus that is not square].
S: Parallelogram, no, parallelogram I didn’t succeed.
S’s: Rhombus, trapezoid, rhombus that is not square.
T: [continues to mark each shape the students mention. Eventually all shapes

are marked but the parallelogram]. Okay.

Later in the lesson, a student raised again the case of the parallelogram, and the
teacher responded by opening up a discussion regarding whether a parallelogram
has a line of symmetry. This time, as she often did, the teacher used accompany-
ing talk combined with elaborating talk. The following excerpt illustrates this. It
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occurred when the teacher drew a parallelogram with a straight line parallel to one
pair of its sides, and asked the students to prove that the two adjacent angles of the
parallelogram on opposite sides of the line are not equal to each other.

S: I think that the adjacent angles need to be 180◦.
T: Very good.
S: [incomprehensible] Never mind.
T: We said that this and this it’s 180◦. If they are equal then what?
S: 90◦.
T: And what will the parallelogram be then?
S: A rectangle.
T: If one is acute then what happens to the other one?
S: The other one is obtuse so that there is 180◦.

As can be seen in this excerpt, the teacher first used accompanying talk: “Very
good” and “We said that this and this it’s 180◦” which basically repeats a student’s
idea. But then she began to use elaborating talk, and actively participated in the
construction of the proof.

Puzzlement During Work on the Main Topic

Even though whole-class work on the main topic comprised of immense students’
participation, and teacher attention and responsiveness to students characterized
by-and-large the mathematical work during whole-class work sessions, the teacher
rarely expressed confusion when responding to students’ talk. One of these unusual
episodes where the teacher’s response reflected puzzlement occurred during a lesson
in the 9th grade class that centered on exploring relationships among rectangles that
have a fixed perimeter or a fixed area. When examining whether a fixed perimeter
implies a fixed area the teacher phrased the problem as: “If the perimeters of two
rectangles are equal then the areas are equal: Is this claim correct?” A student inter-
preted this as if the problem was whether there exists a rectangle whose perimeter
equals its area. For a few seconds the student and the teacher expressed puzzlement
until another student pointed out the reason for confusion. The teacher responded
rather astonished:

T: No! No, no, this is not what I meant!
S: Then what did you mean?
T: Not that the perimeter equals the area.
S: Then?
T: Rather that I have two rectangles [draws two rectangles on the board]. . .

Does the fact that the perimeter of this one equals the perimeter of that
one mean that the area of this one equals the area of that one? Not that the
perimeters equal the areas.
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The teacher, who sensed that she misunderstood what a student had said, insisted
in the episode described above on clarifying the confusion. However, there was one
time when the teacher acknowledged that she was puzzled by a student’s talk, yet
she chose not to clarify this confusion. It happened when the students’ talk was not
at the heart of the main point: When collecting students’ suggestions for rectangles
with a fixed area, a student provided a long complicated explanation on how she
found, without using a calculator, that 6 is the other dimension of a rectangle whose
area is 15 squared units and one of its dimensions is 2.5. The teacher acknowledged
that she was attentive, but confusedly concluded: “Okay, I didn’t really understand
what you said” and continued with the lesson.

Reviewing Content Introduced Previously

Reviewing content introduced previously comprised of reminding students of, and
clarifying, content learned earlier in the lesson, in previous lessons, or in lower
grades. This kind of mathematical activity occurred during most of the lessons. It
tended to be rather short and only a small part of the total lesson time was devoted
to it. Reviewing content introduced previously rarely occurred as a teacher initia-
tive during the observed lessons. In those few times that it did, it occurred at the
beginning of a lesson, and served as a means for the teacher to collect information
regarding students’ readiness for the planned work on the main topic. Nonetheless,
reviewing content introduced previously occurred almost always as a teacher’s
response to students’ queries or requests that emerged during work on the main
topic.

Two out of the four kinds of responses examined – elaborating and accompany-
ing – were performed by the teacher when reviewing content introduced previously.
The most common response was again elaborating; accompanying occurred less
frequently. Like in the case of work on the main topic, the teacher led the review –
triggered by students’ queries and requests – building on students’ active participa-
tion. Thus, the activity depended on, and was responsive to, not only the student’s
initial talk that initiated the review, but often also to on-going students’ talk. Below
are illustrations for elaborating talk and accompanying query used by the teacher
when reviewing content introduced previously.

Elaborating Talk During Reviewing Content Introduced Previously

To signal the end of the small group/individual work in the 10th grade class, regard-
ing the polygons in Fig. 1, as a transition to a whole class discussion, the teacher
said: “Girls, start to talk about, about the relationships between sides and angles.
Is there any connection between this and similarity?” The first student’s response
was: “What the heck is similarity anyhow?” The teacher responded by restating the
idea she presented before the small group/individual work: “We didn’t define it yet.
But we understand it as some kind of enlargement or reduction by a photocopy
machine.” Expressing deep involvement in the student’s query, the teacher aimed
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to make sure that they found common ground. She drew on the board two par-
allelograms, one of which was derived from the other by reducing only one pair
of opposite sides, asking the students to determine whether the two are similar to
each other. After a collaborative examination the class concluded that reduction (or
enlargement) by a photocopy machine (i.e., similarity) reduces (or enlarges) all sides
of a shape in the same proportion.

Another example for the teacher’s use of elaborating talk when reviewing con-
tent introduced earlier in response to students’ queries or requests is taken from
a concluding lesson on the quadrilateral family in the 9th grade class. In a previ-
ous lesson the teacher defined a rhombus as a parallelogram with one pair of equal
adjacent sides, and the class worked on the rhombus properties and relationships
with other members of the quadrilateral family. In the concluding lesson, after some
work on finding characteristics of a rhombus based on the definition and previous
work on parallelograms, one of the students pointed to one of the rhombus char-
acteristics found by the class – that all sides are equal – and questioned why the
teacher said previously that a rhombus is a parallelogram with one pair of equal
adjacent sides, whereas all the sides are equal. The teacher promised to address it
later. The class finished the planned work on finding rhombus characteristics, and
the teacher returned to the student’s query regarding what a rhombus is: a paral-
lelogram with one pair of equal adjacent sides (as defined in a previous lesson)
or a parallelogram in which all the sides are equal (as concluded in the current
lesson). Attending to the student’s confusion, the teacher responded by reviewing
the definition of a rhombus, clarifying the distinction between the definition that
was introduced in a previous lesson and the rhombus attributes found in the current
lesson:

[The student] said that if we know that a rhombus has four equal sides, then why did
we begin by saying such a thing [points to the definition of a rhombus on the board: a
parallelogram with two equal adjacent sides]? Does anyone have an idea?
[Pause]
Okay, let me tell you. We could have said that a rhombus is a parallelogram with four equal
sides, right? [But] in definitions we try to say as little as possible. That means, I don’t want
to say everything I know about a rhombus as its definition. I say as little as possible in the
definition, and all the rest I can prove by myself. In other words, we managed to prove,
based on the fact that we knew that this pair is equal, we managed to prove that all sides are
equal. This we managed to prove.

The teacher used elaborating talk also when reviewing content introduced in previ-
ous school years in response to students’ queries or requests. For example, during
an analysis lesson the teacher asked her 10th grade class to find the dimensions of a
square box (i.e., a right square prism) made from a 60 cm long string with the max-
imum volume. After the presentation of the problem, a student questioned whether
a square box could also be a cube. Even though the students have already studied
these shapes in lower grades, the teacher assessed that other students may also be
confused regarding the distinction and relationship between the two, and decided to
clarify it. She did not answer succinctly, but rather elaborated the distinction:
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Okay. Let us first clarify some concepts. What is a square box? I am sketching and sketch
with me. . . A square box is a box with a square base. It doesn’t have to be a cube. . . Make
it high enough so that it doesn’t look like a cube.

And the teacher continued to explain that square box is not synonym to cube. Rather,
it denotes a whole family of boxes in which a cube is only one special case.

Accompanying Talk During Reviewing Content Introduced Previously

Occasionally when reviewing content introduced previously the teacher used
accompanying talk, by and large combining it with elaborating talk. When the
teacher initiated the review it typically served as a means for collecting informa-
tion regarding students’ readiness for the planned work on the main topic. In such
cases the teacher often first attended to students’ ideas without elaboration, typically
acknowledging that she followed the student’s suggestions. For example, when start-
ing the topic of the quadrilateral family the teacher started the work by reviewing
what a parallelogram is:

T: Who remembers what a parallelogram is? Raise your hands. Who remembers
what a parallelogram is?

S: A quadrilateral with two opposite parallel sides.
T: A quadrilateral with two opposite parallel sides.

As can be seen, the teacher used in this short excerpt accompanying talk, basically
repeating the student’s words: “A quadrilateral with two opposite parallel sides.”

However, reviewing content introduced previously occurred almost always as a
teacher’s response to students’ queries or requests that emerged during work on the
main topic. In such cases when the teacher used accompanying talk she often com-
bined it with elaborating talk. For example, a short time after the teacher clarified
the distinction between square box and cube, a student announced that volume was
difficult for them. The teacher attended to this statement of difficulty and reviewed
the relevant content, which again had been already studied in a lower grade. She
started by unpacking the sources of difficulty, “Do you know how to calculate the
volume of a box?” After students responded saying “No”, the teacher reminded
them of a problem on which they worked in the previous school year, when they
were in the 9th grade. That problem dealt with finding the dimensions of an open
box constructed from a square cardboard sheet, which can hold the largest amount
of chocolate. The teacher drew a square box on the board, and together with the
class calculated its volume by making reference to filling the box with chocolate:

T: What is the volume? The number of 1 cm × 1 cm × 1 cm chocolate cubes
that fill. . . How many would fill the first layer? . . .How many would fill
the whole box?... Who wants to tell me how one calculates the volume of
a square box or a non-square?

S: The area of the base times the height.
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T: The area of the base times the height. Is it clear why?... Is there anyone who
doesn’t understand? The area of the base gives the number of cubes in the
first layer.

As can be seen in this excerpt, there was a time when the teacher used accompanying
talk, basically repeating the student’s words: “The area of the base times the height”.
But before and after this she used elaborating talk to remind the students of the
formula for calculating volume of boxes, which was needed in order to solve the
problem of maximum volume. While doing that, the teacher focused on explicating
the meaning of volume of a box by making connections to a problem on which the
class worked in the previous school year. She exhibited a systematic way of filling
the box with one-unit chocolate cubes – layer after layer – reflecting the structure
of the formula, emphasizing the meaning of a volume of a box as the number of
one-unit chocolate cubes that would completely fill it.

Extending Beyond the Main Topic

Extending beyond the main topic comprised of extending and enriching students’
knowledge and understanding of mathematics. Extending beyond the main topic
occurred during most lessons, tended to be rather short, and a rather small part of
the total lesson time was devoted to it. This kind of mathematical work was usually
triggered by students’ talk.

Three kinds of responses were enacted by the teacher when extending beyond the
main topic. The most common response was elaborating; accompanying occurred
less frequently, and teacher puzzlement occurred once. Below are illustrations of
the different kinds of teacher responsiveness to students when extending beyond the
main topic.

Elaborating Talk During Extending Beyond the Main Topic

The teacher often expressed deep cognitive involvement in students’ suggestions,
even when it meant deviating from the main topic of the lesson. Sometimes it
implied working on new mathematical content. For example, as part of the work on
the angle measures of the triangle in Fig. 1c, a student suggested to check whether
it is a right triangle, inquiring whether when one side of a triangle is one-half of a
second side, it implies that it is a “pretty” triangle: the name used in this class for a
right triangle with angle measures of 30-60-90◦. As a response, the teacher deviated
from the main topic and made this query an object of examination for the whole
class. Led by the teacher, the class unpacked the student’s query, clarifying what
the givens are in the implied conjecture. The teacher called students’ attention to
the fact that the conjecture is close to be the converse of a theorem they had proven
in a previous lesson: In a right triangle, the side opposite the 30◦ angle is one-half
of the hypotenuse. The class continued to work on rephrasing the conjecture, using
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more formal terms. Finally, the teacher assigned as homework checking whether the
conjecture was correct.

In the above episode, extending beyond the main topic comprised of work on new
mathematical content: phrasing, and proving or refuting a conjecture regarding right
triangles. The episode below had a similar nature. This episode occurred during one
of the lessons in the 9th grade class, which centered on finding all rectangles that
have a fixed perimeter or a fixed area. When working on the case of a fixed perimeter
of 16 units, one of the students found the 4×4 rectangle, which is also a square. She
then noticed that the perimeter of this square and its area are equal to each other, and
raised the question whether this is true for all squares. Later on, when collecting all
students’ suggestions for rectangles with a fixed perimeter of 16 units on the board,
the teacher pointed to the 4×4 rectangle, and repeated the student’s question:

[The student] asked this question, and I want you to examine this question: I have a square.
I saw that the perimeter and the area result in the same numbers. Is it true for all squares in
the world that their area and perimeter are the same?

Another student pointed to the 2×2 square, showing that its area does not equal its
perimeter. The teacher then explicated that this was a counter example, because it
showed that the claim is not true for all squares. By doing that, the class not only
worked on new mathematical content: proving or refuting a student’s conjecture
regarding the equality between a square’s area and perimeter, but the teacher also
explained an important general mathematical principle, of refutation by a counter
example.

Thus, as this episode illustrates, in addition to work on new mathematical
content, there were times when extending beyond the main topic comprised of devel-
oping students’ understanding about general norms and conventions in the discipline
of mathematics. The episode described earlier regarding the definition of a rhom-
bus in the 9th grade class also exemplifies this. In that episode, the teacher was
attentive to a student’s confusion regarding what a rhombus is: either a parallelo-
gram with one pair of equal adjacent sides or a parallelogram in which all the sides
are equal. Attending to the student’s confusion, the teacher responded by reviewing
the definition of a rhombus. Yet, she used the student’s question also as a vehi-
cle for explaining the minimalism principle of mathematical definitions, deepening
students’ understanding of mathematical norms and conventions beyond the main
topic:

In definitions we try to say as little as possible. That means, I don’t want to say everything
I know about a rhombus as its definition. I say as little as possible in the definition, and all
the rest I can prove by myself.

The teacher continued to explain that mathematical definitions are not like dictio-
nary definitions, which include as many characteristics as possible about the defined
words (concepts).
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Accompanying Talk During Extending Beyond the Main Topic

Occasionally, the teacher used only accompanying talk; but more often she com-
bined accompanying with elaborating talk. This happened, for example, in the above
illustration of elaborating talk, when a student suggested checking whether the tri-
angle in Fig. 1c is a “pretty” triangle (i.e., a right triangle with angle measures of
30-60-90◦):

S: If one side is one-half of the second, can we say that this is a “pretty”
triangle?

T: If a triangle has one side that is one-half of the second, I am repeating the
question, if a triangle has one side that is one-half of the second, does it imply
that the triangle is a right triangle?

S: And one angle is 60◦
T: And one angle is 60◦
. . .

T: If in a right triangle. . . there is an angle of 60◦ [incomprehensible] and the
ratio between the two sides that are not opposite the 60◦ angle. . .

S: She [another student] said: Can we say, the sides that include the angle?
T: The sides that include the angle. Great phrasing. And the sides that include

the angle: What about them?
S: Their ratio
T: And their ratio is 1–2. We succeeded to phrase it better. Earlier we said that

one [side] is one-half of the other, and now that the ratio is 1–2. Then
S: The triangle is a right triangle.
T: Very true. Then the triangle is a right triangle.
As can be seen, the teacher used in these short excerpts accompanying talk.

She basically repeated the students’ words, leading the class to unpack the
student’s question, clarifying what the givens are in the implied conjecture.
Yet, this accompanying talk was integrated with elaborating talk, situating
the conjecture as “almost” the converse of a theorem they had proven in a
previous lesson:

T: I repeat the theorem. It’s a converse of a theorem. . . It’s somewhat converse,
it’s not really converse, but it’s almost converse.

Puzzlement During Extending Beyond the Main Topic

The teacher response reflected puzzlement only once during whole-class work that
extended the main topic. It occurred when the teacher asked the 10th grade class
whether the fact that a theorem in mathematics is true implies that the converse of
that theorem is true as well. A student interpreted this question as if the teacher was
referring to a specific theorem with which the class dealt a few minutes earlier. For a
few seconds the student and the teacher expressed puzzlement until another student
pointed out the reason for confusion. The teacher explained to the whole class the
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source of confusion and called students’ attention to the potential problematic use
of language:

See how problematic language can be. I think of one thing and [the student] thinks of
another. And we try to communicate. It’s really a deaf persons dialog.

Conclusion

This chapter examined how an experienced high-school mathematics teacher, who
had a reputation of encouraging a significant and influential role for students in
the class discourse, responded to students’ mathematical talk in class. The chap-
ter examined the kinds of responses used repeatedly by the teacher, directing and
shaping the classroom discourse.

Analysis of the lessons showed that almost the entire whole-class work com-
prised of mathematical activity that was triggered by, built or followed on, students’
talk. This was true in general, and also during each lesson component (work on
the main topic, reviewing content introduced previously, and extending beyond the
main topic). Moreover, the teacher was attentive and responsive to different kinds
of students’ talk.

For example, the teacher made a student’s mistake regarding a parallelogram’s
line of symmetry an object for mathematical exploration for the whole class, and
made use of it to discuss an important mathematical topic. She incorporated an
examination of the student’s mistaken cut parallelogram into a public discussion,
revealing what the student did wrong, concluding eventually that a parallelogram
does not have a line of symmetry. The teacher attended to the student’s work,
and acknowledged its value, even though it was wrong, by asking the whole
class to examine its validity, and by showing how work on mistakes can advance
understanding.

On another occasion, the teacher answered a student’s specific question about
what a rhombus is, reviewing content introduced in a previous lesson. Yet, she did
not deviate from the main teaching sequence at a point that could have been confus-
ing for the class. Instead, she acknowledged the importance of a student’s question
by promising to respond to it later.

Still in a different occurrence, the teacher attended to a student’s hypothesis,
and acknowledged its value by asking the whole class to examine its validity. By
attending to the student’s hypothesis, the teacher deviated from the main topic and
made the student’s conjecture an object of examination, asking the class to prove or
refute the conjecture regarding the equality between a square’s area and perimeter.
She then exploited the opportunity and made use of a student’s answer not only to
respond to the student’s original hypothesis, but also to extend students’ knowledge
beyond the topic at stake, and explained an important general mathematical prin-
ciple, of refutation by a counter example. She signaled that raising hypotheses is a
valued activity, and used the opportunity to extend the problem solving activity the
class has been already doing. By expecting the other students to participate in the
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problem solving process, and by using a solution suggested by a student, the teacher
indicated also that students’ input counts.

The finding that almost the entire whole-class work comprised of mathematical
activity that was triggered by, built or followed on, students’ talk was mainly due
to the teacher’s responsiveness to students. The most common teacher response was
elaborating. The teacher constantly elaborated students’ utterances and expressed
profound cognitive involvement in what students said. In addition to being the most
common teacher response to students in general, elaborating was also the most
common teacher response during each of three different lesson components. When
working on the main topic the teacher embraced and elaborated students’ ideas both
as a starting point for mathematical examinations and throughout the work. She
embraced students’ suggestions for whole-class examination when they were pro-
ductive and correct and also when they were unproductive or mistaken, and she took
an active part in developing students’ ideas. Although reviewing content introduced
previously and extending beyond the main topic rarely occurred as a teacher initia-
tive, but rather were comprised mainly of the teacher’s response to students’ queries,
remarks or requests that emerged during work on the main topic, the teacher’s elab-
orating talk then was similar in nature to that during work on the main topic. Here
too the teacher seldom responded succinctly, but rather provided elaborated reviews
or extensions (triggered by students’ queries and remarks), building on students’
active participation.

Responding to students using accompanying talk occurred considerably less than
elaborating talk. Yet, the teacher often acknowledged that she followed the student’s
talk by attending to a student’s talk without elaboration. Typically the teacher com-
bined brief accompanying talks in much longer elaborating response; in general,
and also during each of three different lesson components. Occasionally, though,
accompanying talk was used not as a component of elaborating talk. Sometimes
this happened when students provided a correct answer, and the teacher then
repeated the student’s answer without elaboration and quickly returned to work
on the main topic. A few other times it occurred as a teacher initiative when
she gathered students’ thoughts, hypotheses or solutions, as a starting point for
whole-class work.

The teacher rarely expressed puzzlement or confusion when responding to stu-
dents’ talk. Because almost the entire whole-class work comprised of mathematical
activity that was triggered by, built or followed on, students’ talk, this reflects an
utter sensitivity, awareness and knowledge about students, and about their think-
ing and ways of talking. Teacher puzzlement regarding students’ talk occurred a
small number of times during work on the main topic and once when extending the
main topic, but not when reviewing content introduced earlier. Yet, there seems to
be no relationships between the occurrence of teacher puzzlement and the nature
of the lesson component. It appears that the teacher expressed confusion whenever
she could not follow students’ talk regardless of the part of the lesson in which it
occurred. Yet, she consistently insisted on clarifying the confusion unless it was
extremely remote from the main issue.
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Teacher responsiveness to students in the form of opposition also seldom
occurred. The teacher expressed disagreement or objection to students’ ideas a few
times during work on the main topic. In contrast with her practice during most of
the observed time, in those few events, when students’ ideas deviated considerably
from the main point, the teacher did not embrace or follow on students’ suggestions,
queries and remarks. Instead, she pointed out what they should focus on. Yet, this
response is quite different from the more common teacher practice of objection to
students’ wrong answer (Resnick et al., 1993).

This chapter examined the kinds of responses used repeatedly by an experienced
high-school mathematics teacher, directing and shaping the classroom discourse,
during different parts of the lesson. The chapter presents the ways in which the
teacher encouraged and enabled a significant and influential role for students in the
class mathematics discourse, while as river guide (“Images of expertise in math-
ematics teaching” in the chapter by Russ et al., this volume), responded to the
students, to the context, and to what occurred in the moment (Berliner, 1994).
The chapter demonstrates how the teacher combined her attention to students’ talk,
with the goal of making progress on the main topic. She was sensitive to stu-
dents’ difficulties in regard to content learned previously, but devoted only a short
time to reviewing content introduced previously, using these episodes to enhance
understanding. She also exploited opportunities to extend beyond the main topic,
developing understanding of the nature of work in mathematics and the nature of
the discipline.
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Effects of a Research-Based Learning Approach
in Teacher Professional Development

Florian H. Müller, Irina Andreitz, Konrad Krainer, and Johannes Mayr

Abstract The article examines the effects of teacher professional development,
which follows a research-based learning approach focused on “action research”
(Altrichter, Feldman, Posch & Somekh 2007). Using integrated research methods,
the study examines the extent to which the four-semester university programme,
“Pedagogy and Subject Didactics for Teachers” (PFL), has an impact on its par-
ticipants. The study follows a longitudinal design, which focuses on input factors,
processes, and outcomes. Its core component consists of testing for teaching-related
analysis components using a video task (Krammer et al., 2006) conducted before
and after the course. Based on an instructional video sequence on the topic of geom-
etry, the study assesses the extent to which participants of the PFL mathematics
course differ from those of other PFL courses.

Keywords Teacher professional development · Action research · Video
analysis · Competence in analyzing · Teacher interest · Learning
strategies · Mathematics teachers

Introduction

Teachers often participate in traditional professional development events which are
of short duration and communicate abstract knowledge; however, these have not
only been criticized frequently by participants, but they have also demonstrated lit-
tle overall effect (see Altrichter, 2010; Lipowsky, 2010; OECD, 2009; Scheerens,
2009).
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It appears that the possibility to examine one’s own profession or teaching in a
self-directed manner and during exchanges with colleagues, is a key to professional
development. This research-based learning approach has been reflected for some
time in theoretical and conceptual considerations, as well as in practical applica-
tions for a variety of professionalization measures (e.g., Altrichter, 2002; Dirks &
Hansmann, 2002; Feindt, 2009; Hollenbach & Tillmann, 2009; Horstkemper, 2003;
Roters, Schneider, Koch-Priewe, Thiele, & Wildt, 2009). In particular in the last
two decades, a variety of innovative models of teacher professional development
have been designed, implemented and evaluated all over the world. In the field of
mathematics teacher education, for example, such models are discussed not only in
research papers (like in the Journal of Mathematics Teacher Education, launched
1998) but also in the International Handbook of Mathematics Teacher Education
(Wood, Jaworski, Krainer, Sullivan, & Tirosh, 2008) and in several specific books
(e.g. Even & Loewenberg Ball, 2009). Studies analyzing research on mathematics
teachers’ professional growth (see e.g. Llinares & Krainer, 2006) show that teach-
ers’ learning is not only promoted by meaningful activities, but also by teachers’
(oral and written) reflections on these activities, in many cases related to students’ or
teachers’ own mathematical learning. Sustained and intensive professional develop-
ment, often designed as teachers’ participation in a “community of practice” (more
and more also virtual communities using new technological tools such as videopa-
pers, blogs, etc.) and integrated into the daily life of the school (see e.g. Krainer
& Wood, 2008; Sowder, 2007 or Wood et al., 2008) is more likely to be effec-
tive than short-term- and practice-distant professional development activities that
address teachers mainly as “single fighters”.

Concurrently, the degree of attention given to these innovative approaches is not
reflected in the amount of empirical research available. There are only few large-
scale findings relative to the conditions, processes, and effects of research-based
learning approaches for professional development (see e.g. Adler, Ball, Krainer, Lin,
& Novotná, 2005).

There are some indications regarding the effects of approaches similar to action
research. As part of a broadly based meta-analysis, Cordingley, Bell, Thomason,
and Evans (2003) were able to show that a collaborative Continuing Professional
Development approach (CPD) had positive effects on confidence, feelings of self-
efficacy, motivation to work in a team, and willingness to change one’s own actions
in a teaching setting (see also Cordingley, Bell, Thomason, Rundell, & Firth,
2005). As far as the students are concerned, the research overview revealed indi-
cations about the differences between collaborative and individual professional
development. These differences refer to outcomes, such as learning motivation, per-
formance, and attitude towards subjects, as well as active participation during the
course. It is also evident that the research overview offered by Cordingley and col-
leagues does not refer exclusively to action research as a method of professional
development, but to professional development and developmental measures that
consider several aspects of action research. Other overviews and individual studies
report similar findings, although these can vary significantly depending on the study
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and type of professional development. Nevertheless, recent research shows that
collaborative and reflective teacher professional training impacts teacher cognition
and partly students’ characteristics (e.g., Gärtner, 2007; Gough, Kiwan, Sutcliffe,
Simpson, & Houghton, 2003; Gow, Kember, & McKay, 1996; for a summary, see
e.g., Benke, Hospesová, & Tichá, 2008). On a global basis, however, research efforts
still remain too incomplete to allow valid statements to be made.

This article introduces findings from monitoring research conducted for the
university courses “Pedagogy and Subject Didactics for Teachers” (PFL) at the
University of Klagenfurt (Austria), which generally follow the action-research
approach. Initially, the theoretical background and concept behind the PFL courses
will be described, followed by a report and discussion of the research design and
selected results.

The starting point for learning-based research approaches, which extend beyond
teacher education and professional development, is based on the scientific insight
into and practical experience with professional development, which is not only an
intellectual and academic process, but is also an active practical, emotional, and
social process (Altrichter, 2002). A central consideration in this context is that the
simple transfer of scientific concepts and innovations is very difficult and at times,
impossible. There are many reasons for this; for example, theoretical knowledge is
often inert and was not obtained in authentic, complex and team orientated learning
situations.

Research-based learning aims at reducing the gap between knowledge and action
by focusing on one’s own actions. In this context, one of the most prominent
approaches taken to teacher education is so-called “Teacher Research” or action
research (see e.g., Burns, 2007; Altrichter, Feldman, Posch & Somekh, 2008; Elliott,
1991; Hollingsworth, 1997; Wittwer, Salzgeber, Neuhauser, & Altrichter, 2004;
Posch, Hart, Kyburz-Graber, & Robottom, 2006), which finds its theoretical basis
in the action theories of Schön (1987) and Stenhouse (1975), among others. In this
vein, professional development should be conceptualized through a repeated cycle
of action and reflection. Here, teachers systematically investigate their own teaching
practices, interpret the insights they gain, and create new action ideas (reflec-
tion), which are then implemented (action) and evaluated. Relative to this, Schön
(1987) notes the “reflective adoption of practical solutions to problems,” which is
based on having an experimental attitude regarding real life practices. Reflection is
viewed as one of the main competencies of those in the teaching profession, and
not just in action research (see e.g., Bromme, 1994). This ability is of particular
consequence relative to the implementation and objectives of teacher professional
development.

Another core concept of action research that is in line with Elliott (1991)
is that individual research and the further development of one’s own teaching
practices or those of the school, are embedded into a professional community.
The significance of professional communities in action research has been pointed
out by Altrichter (2002), who also established a systematic relationship between
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the concept of “situated learning” (see Lave & Wenger, 1991), and teacher
education.

To overcome the risk of excessive self-referencing1 of teacher groups (because
collegial cooperation can also prevent learning; see e.g. Corcoran, Fuhrman, &
Belcher, 2001), the support and intervention offered by outside colleagues or experts
can be integrated into action research projects. These act as a corrective factor or
“critical friends”.

The Philosophy of the PFL Programme

The University of Klagenfurt has been offering the 2-year university programme
“Pedagogy and Subject Didactics for Teachers” (PFL) since the early 1980s. The
PFL programme consists of several courses, each dedicated to one or more subjects
(Krainer, 1999). The courses are based primarily on the concept of action research
(Posch, Rauch, & Mayr, 2009). One maxim for these courses is the close linking of
pedagogical knowledge and pedagogical content knowledge (Shulman, 1987), and
identifying the teacher’s own actions as the starting point for teacher professional
development. In this context, academic issues are, at least initially, of secondary
importance. PFL courses initiate personal teaching-related development projects,
which the participants typically implement at their own school. The projects are
supported by experts from research and practice, and the intensive exchange of
information among teachers in terms of collegial advisory services forms a part
of the PFL course. During the course, participants prepare on average two reflective
papers that document the development process of teaching projects, the objective
of which is to evaluate one’s own teaching actions. The courses also integrate the
school environment by focusing not only on researching one’s own teaching actions,
but also observing the projects of colleagues and school development initiatives (see
e.g. Krainer, 2001). Beyond the project phases, as part of three, 1-week module
workshops held during the course, participants also receive information on subjects,
such as evaluation methods or new trends in pedagogical knowledge and pedagogi-
cal content knowledge, which they can link with their teaching projects. Additional
work group meetings offer more opportunities for exchange with colleagues.

The following box offers some competences the PFL courses aim at.

1It must be assumed that an experimental and reflective attitude towards one’s own teaching prac-
tice is not a given, nor can it be assumed that it exists for all teachers (cf. Copeland, Birmingham,
De la Cruz, & Lewin, 1993; Ferry & Ross-Gordon, 1998). To develop such an attitude must also
be seen as an objective of teacher professional development.
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Examples of Competences the PFL Courses Aim at

The PFL programme rather focuses on the development of pedagogical con-
tent knowledge, pedagogical knowledge, motivational orientation, attitudes
and beliefs, critical reflection or networking competences than on content
knowledge (for example content knowledge in mathematics or science).

Pedagogical Content Knowledge

– about students’ preconceptions
– about methods for cognitive activation
– about the use of different instructional methods

Pedagogical Knowledge

– about classroom management
– about social learning arrangements
– about evaluation strategies

Attitudes and Beliefs

– constructivist view of learning and teaching
– life-long learning

Self-Related Cognitions

– development or stabilization of teachers’ interest and motivation
– teachers’ self-esteem/self-efficacy

Reflection and Networking Competences

– critical reflection on classroom practice
– how to work in teams

At present, four parallel courses for secondary teachers are offered which include
mathematics, sciences, English, a cross-subject course for art, history and German
(ArtHist), as well as a course designed specifically for the primary level including
the issue of integration.

The following section outlines the concept of monitoring the research for PFL
courses. It will present and discuss the results of this research for the four teaching
courses held from 2006 to 2008 (respectively 2007–2009 for the PFL mathematics
course).
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Research Design

Theoretical Background

The monitoring study follows a longitudinal design which focuses on the present
courses with regard to input, ongoing processes, and outcome. The theoretical back-
ground is a concept which is based on the association between the experiences of
teachers, the opportunities to learn in the courses and the uses of the learning envi-
ronment (see Helmke & Weinert, 1997), which can be presented in a simplified form
as follows:

Participants enter the course with specific input conditions (expectations, inter-
ests, competencies, etc.), and encounter specific learning opportunities (in the form
of individuals, information, etc.). They employ these depending on their input con-
ditions and the quality of the learning environments (such as by applying specific
learning strategies). The learning benefits drawn from each course at the individual
level (expanding knowledge, changes in thinking, etc.) are viewed as being depen-
dent on the aforementioned input conditions, learning opportunities, and learning
strategies. The competencies developed as part of the course (in the widest sense,
see Allemann-Ghionda & Terhart, 2006) should have an impact on teaching actions,
so that the course contributes to a further development of teachers’ practice.

Research Plan and Questions

The research design (see Fig. 1) identifies four dates during which data collec-
tion took place. (1) Prior to each PFL course, participants were surveyed using an
online questionnaire that covered previous professional experience, interests, self-
assessed occupational competencies and existing knowledge, and the reasons for
participating in the course. (2) At the beginning of each course a video test was
conducted in order to measure teachers’ competences in analyzing lecture units.
(3) At the end of the first year, participants were asked to complete a questionnaire
regarding their assessment of the learning environments and their utilization (learn-
ing strategies). (4) All measurements were repeated at the end of the course and
supplemented with several additional questions regarding satisfaction with the PFL
and scales measuring the learning motivation of the participants. This article reports
on the findings of the initial survey, the two video tests, and the final survey.

With regard to this article, the following questions are considered leading
components of the research:

• What are the motivating factors behind a decision to participate in the PFL-
programme?

• What learning strategies do participants use during the course?
• Do the participants’ interests in the professional activities, and their own self-

assessment of competences and knowledge, change during the course?
• Is there a change in the ability to analyze lecture units with regard to the learning

opportunities of students (teaching video on the topic of geometry)?
• Are any differences noted between mathematics and other courses?
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before the course 1st year of the course 2nd year of the course 

previous 
experience 

interests 

competences 

motivation 
for the choice 

interests 

competences 

video- 
analysis 

video-
analysis 

learning 
motivation 

learning 
environment/ 

learning strategies 

learning 
environment/ 

learning strategies 

Fig. 1 Research design

Instruments

The following section outlines briefly the instruments used for collecting the survey
data, and it introduces the instruments used in the video tasks. Detailed statistical
information about the scales and items are described elsewhere (Müller, Andreitz,
& Mayr, 2010).

Questionnaires

Motivation to participate in a course (six scales)
The first two scales that focus on motives for participating in the course (see

also Fig. 1) were constructed on the basis of the self-determination theory
by Ryan and Deci (2002, 2008). Notably, a distinction was made between
the aspects “self-determined” motives (item example: I am taking the course
because I enjoy learning something new) and “controlled” motives (because
of the high prestige associated with university courses) (see also Müller,
Palekčić, Beck, & Wanninger, 2006). Further, scales were added that cap-
ture the interest in “Development of the school system” and “Development
of classroom teaching” as a motivation to take the course. In addition, scales
regarding the participation motivation of “Maintain and promote professional
motivation” and “Making social contacts” were prepared.

Job-related interests and competencies (eight scales each)
Slightly adapted versions of the six dimensions of teacher interest scales (LIST;

Mayr, 1998) were used prior to and at the end of the course to assess the inter-
ests and competencies for a teaching career (e.g., “Teaching” or “Address
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specific needs”). In addition, two areas that refer specifically to the con-
tent of PFL courses were included: “Reflect on own actions” and “School
development”. Each item referred to the teachers’ interest in the relevant
activity and the competence for conducting that activity.

PFL-specific knowledge areas (four scales)
The teachers were asked to assess the state of their knowledge before and after

professional development with regard to aspects that are considered to be
essential in the PFL courses. These are: (1) methods of promoting teaching
(measures of inside differentiation and individualization in the classroom);
(2) pedagogical content knowledge and pedagogical knowledge (newest con-
cepts); (3) knowledge about performance standards (educational standards);
and (4) management and evaluation (evaluation methods).

Learning strategies (five scales)
The three items with the highest factor loading for the scales “Create associ-

ations,” “Critical review,” and “Repeat,” and the scale “Effort,” were used
from the surveys on learning strategies (LIST; Wild, 2000). In addition,
the scale “Reflection” was created (item example: I think about how I can
improve my actions), since there were some indications that this learning
strategy is initiated particularly through the conception of PFL courses.

Satisfaction with the course
One item was formulated with regard to overall course satisfaction, two other

items referred to the satisfaction with the 1-week modules, and the working
groups.

Video Task

At the beginning and the end of the course, participants were asked to analyze
videographed sections of problem- and action-oriented mathematics lessons on the
topic of the “Pythagorean theorem” (from the DVD “Introductory Sequences” by
Reusser, Pauli, & Krammer, 2004). They were asked to identify learning opportuni-
ties that activate the students at a cognitive level and then substantiate their answers
(see Table 1). Exactly the same video scenes were used at the beginning and at the
end of the course.

Table 1 Tasks related to the video sequences

Questions on the video

➀ Learning opportunities/cognitive activation in the classroom
Identify events or moments from this lesson which activated the students’
learning and thinking processes. Briefly describe these and provide reasons
why you view them as learning opportunities for the students.

➁ Optimization opportunities
Please describe options which the teacher could use to further increase
learning opportunities for students in this lesson.
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The research design was adopted from the work group “Bi-national video-
supported professional development for teachers in Germany and Switzerland”2

(Krammer et al., 2006, 2008, 2009). In this study, however, the instructional
video was used only as a diagnostic instrument to measure the participants’ ana-
lytical competence. The objective of the video task was to evaluate whether
participants were using the pedagogical knowledge and pedagogical content knowl-
edge addressed in the course as they analyzed a video sequence, in addition to
self-assessing their knowledge and competence.

The open answers provided by participants were subjected to a content
analysis (Mayring, 2000) in which the category system by Krammer and col-
leagues (2009) was adopted. This category system contains seven main categories:
(A) Characteristics of instruction design with regard to content; (B) Characteristics
of instruction relative to interaction and social forms; (C) Characteristics of
instruction with the objective of achieving an active examination of the con-
tent by the learner; (D) Comprehension orientation; (E) Behavior characteris-
tics/Characteristics of the teacher; (F) Observation of student behavior; and (G)
Learning atmosphere. In addition, the categories Direct Instruction by Teacher (as
the main category I) and Reciprocal Teaching (as subcategory A1) are also formed,
since information was frequently provided for these aspects, particularly in t2, but
no provision was made for these categories in the German-Swiss research group.

Sample of the Study

Participants in the four PFL courses were surveyed between 2006 and 2009 (ques-
tionnaire: Nt1 = 131; Nt1 and Nt2 = 84; video task: Nt1 and Nt2 = 54). The average
age of teachers is 46 years (SD = 8.6); they teach at university entrance secondary
institutions (Gymnasien) (30%), vocational middle and secondary schools (28%),
general secondary schools (Hauptschulen) (27%) and other types of schools (15%).
Thirty-three teachers took part in the PFL mathematics course. This group will be
analyzed consistently relative to teachers who chose another PFL course (ArtHist,
English, Sciences) covering the same school types.

Results

Questionnaire Analysis

Table 2 provides an overview of the motivation for participation and illustrates that
the self-determined motivation towards taking the course is significantly higher than
controlled motivation. In this vein, the course is selected due to intrinsic motivation,

2The authors would like to express their thanks for being granted access to the required work
materials.
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Table 2 Motives for participating in the course: non mathematics, mathematics

Scales Items
Cronbach’s
alpha

Mt1 (SDt1)
(non math)

Mt1 (SDt1)
(math)

Reasons for selection (self-determination theory)
Self-directed 7 0.80 4.1 (0.6) 3.9 (0.8)
Controlled (extrinsic) 7 0.68 2.3 (0.6) 2.1 (0.6)

Reasons for selection (specific)
System development 2 0.72 3.4 (1.2) 3.4 (1.2)
Teaching development 2 0.75 4.7 (0.5) 4.7 (0.5)
Improve own motivation 2 0.65 3.7 (0.9) 3.5 (1.2)
Social contacts 1 – 3.1 (1.1) 3.2 (1.0)

N = 128; Scale: 1 = Does not apply, 5 = Applies (Question: “Why did you choose this course?”)

an interest in the topic, curiosity, and the desire to develop one’s own competence
in the area. Extrinsic motivation, such as obtaining a certificate, the prestige of the
course, or “feelings of guilt” if one does not participate in professional development
played a subordinate role.

However, with regard to the controlled motivation (extrinsic motivation), 20%
of participants demonstrated decidedly stronger values (means of greater than 3.5).
These participants had already attributed more importance to the significance of
tests, certificates, and associated career opportunities at the beginning of the course.
In this context, Posch et al. (2009, p. 212) point out that the courses can also repre-
sent the “starting point for an exit from the teaching profession,” and that they can
stimulate new career ideas and open new career options (see also Benke et al., 2008,
p. 289).

The primary motivation (relative to content) for selection of the course is the
development of one’s own teaching. All other kinds of content-related motivation
are ranked below.

No significant differences were found between PFL mathematics participants and
those of other PFL courses.

The high degree of self-determined motivation and the content’s focus on teach-
ing development are good motivating criteria for sustained learning processes in the
course (see also Smith & Gillespie, 2007). These concur as well with the alignment
of the PFL courses relative to content. It has been shown elsewhere that the partici-
pants in such courses remain highly self-determined over the 2-year period (Müller
et al., 2010).

Overall, the participants are very satisfied with the course (see Table 3). This
applies particularly to regional groups in which the participants work intensively
on their individual instructional project in cooperation with their colleagues and
support staff.

An observation of the learning strategies used by the participants shows that
different approaches are used to various extents (see Table 4). In particular, the
in-depth learning strategies of reflection, creating associations, and critical review
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Table 3 Assessment of satisfaction with course

Scales Mt2 (SDt2) (non math) Mt2 (SDt2) (math) T-test p

Satisfaction
With 1-week seminars 4.1 (0.8) 4.2 (0.9) n.s.
With regional groups 4.5 (0.8) 4.2 (0.8) 0.05
With the course overall 4.3 (0.8) 4.1 (0.7) n.s.

N = 84; Scale: 1 = Does not apply, 5 = Applies

Table 4 Learning strategies

Scales Items
Cronbach’s
alpha

Mt2 (SDt2)
(non math)

Mt2 (SDt2)
(math) T-test p

Scales from LIST
Create associations 3 0.70 4.3 (0.6) 4.5 (0.4) n.s.
Critical review 3 0.78 3.9 (0.7) 3.7 (0.9) n.s.
Effort 3 0.70 3.5 (0.7) 4.2 (0.5) 0.01
Repetition 3 0.68 3.6 (0.7) 4.4 (0.5) 0.01

Additionally constructed scale
Reflection 3 0.74 4.5 (0.5) 4.8 (0.3) 0.04

N = 84; Scale: 1 = Does not apply, 5 = Applies

are utilized. Relative to the research-based learning conception of professional
development, these represent results that correspond with expectations. Notably,
repetition strategies are used less frequently. Similarly, the Effort scale also features
a significantly lower mean.

In the PFL mathematics course, the two latter learning strategies of repetition
and effort are used significantly more often than in the other courses. However, it
remains to be seen whether these differences can be traced back to the learning
environment in the course or to the differences in the culture relative to the various
subjects.

The interest shown for different activities of teachers, and the competencies and
knowledge assessed by the teachers themselves were investigated in a longitudinal
study (see Table 5). That fact that interests changed little during the 2 years was to be
expected, even though a significant increase is noted regarding participant interest
in the “Development of school” scale, which was created specifically for the PFL
courses. This applies as well to the non-mathematical PFL courses regarding the
aspect “Reflect on one’s own actions.” These two aspects, school development and
development of own actions, are essential objectives of the PFL courses.

With regard to the competencies experienced, three scales indicate substantial
changes over the 2 year period of the study. For example, participants assess their
teaching competence somewhat higher after 2 years, along with the competence to
reflect on their own actions and conduct school development. With regard to PPL
mathematics, these changes are visible only for the “Development of the school
system” scale. There is no change for the scale ‘adress specific needs’ of students.
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All self-assessments of the knowledge areas increased significantly. In particu-
lar, the scales “Pedagogical content knowledge and pedagogical knowledge” and
“Management and Evaluation” achieved higher self-assessments at the end of the
course than at the beginning. These knowledge areas also featured the lowest values
at the beginning of the course, which indicates significant development potential.
Similarly, knowledge of methods for promoting learning and performance standards
also increased.

With regard to the scale “Performance standards,” a noticeable and highly signif-
icant difference between PFL mathematics (mean 4.1) and other PFL courses (mean
3.4) is observed for t2. This development stems primarily from the fact that the issue
of performance standard established a focus of the PFL mathematics course.

Video Task

The verbal responses for the video task were categorized initially by three
people independently, based on the category system of the research group “Bi-
national video-supported professional development for teachers in Germany and
Switzerland” (see section “Instruments”). Subsequently, the category assignments
were validated within the research group as part of a discussion. This article reports
on the results of the partial task “Identification of learning opportunities/cognitive
activation in the classroom”.

Figures 2 and 3 shows the average number of entries for some categories (‘G:
Learning atmosphere’ and ‘I: Direct instruction’) and subcategories (like ‘A4:
Situating’ or ‘A4: Reciprocal teaching’) by way of example. Because of the large
number of categories, the average number of entries for observation units in the
individual categories is low.

The sum of all entries for cognitive activation does not reflect any significant
increase for both groups in the longitudinal study (Mt1 = 5.08; Mt2 = 5.93; t-Test:
t = 1.2, p = 0.11). Hence, the changes refer to individual aspects:

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

I: Direct instruction

G: Learning atmosphere

C1: Motivate students to think

C2: Include student comments

B1: Cooperative learning

B2: Individual support

A1: Reciprocal teaching

A4: Situating

t1 (2006), non Mathematics

t2 (2008), non Mathematics

Fig. 2 Average number of entries for the categories of the video task (non mathematics)
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0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

I: Direct instruction

G: Learning atmosphere

C1: Motivate students to thinking..

C2: Include student comments..

B1: Cooperative learning

B2: Individual Support

A1: Reciprocal teaching

A4: Situating
t1 (2006), Mathematics

t2 (2008), Mathematics  

Fig. 3 Average number of entries for the categories of the video task (mathematics)

PFL Non-Mathematics
Significant increases (t-test, double sided; N = 34) are observed for the aspects

of “Individual support” (Mt1 = 0.22, SD = 0.77; Mt2 = 0.54, SD = 0.63;
p = 0.05), “Motivate students to think” (Mt1 = 0.38, SD = 0.99; Mt2 = 0.60,
SD = 0.95; p = 0.04), and “Direct teacher instructions” (Mt1 = 0.08,
SD = 0.40; Mt2 = 0.32, SD = 0.51; p = 0.02). No significant changes were
observed for most of the other categories; e.g., “Reciprocal teaching” for
“Situating,” “Inclusion of student comments” for “Cooperative learning,” or
“Learning atmosphere.”

PFL-Mathematics
Only the “Direct Instruction” category has significantly more entries at the end

of the course (Mt1 = 0.00; Mt2 = 0.45, SD = 0.54; N = 20). The category
of individual support is rarely mentioned for t2 and decreases significantly
compared to t1 (Mt1 = 0.45, SD = 0.60; Mt2 = 0.09, SD = 0.30). None
of the other categories undergo a significant change. This lack of significant
differences can be traced back to the small sample.

In addition to the number of individual entries, the “quality” of analyses was also
analyzed. In this case, quality has been defined as the reasoning for each entry
including an indication of associations to other passages of the teaching sequence.
Figure 4 denotes that the number of reasons provided increased significantly (t-test,
double sided, p = 0.02, d = 0.33). The correlation of the quality of analysis between
t1 and t2 is r = 0.57 (p < 0.01). Overall, however, teachers gave few explanatory
statements at both points in time. The number of reasons provided is lower for t1
with PFL mathematics than for other courses.

A differentiated look at the quality variance in the analyses shows that the number
of explantions provided and the associations only increase to a significant level,
from t1 to t2, if the participants analyzed and evaluated some in-house or external
teaching videos as part of the 2-year course (see Fig. 5). Nine of all 54 participants
in the video study were involved in this process as part of or external to the course.
The correlation between the quality of analysis and experience with video analyses
is r = 0.41 (p < 0.01).
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0

1

2

3

t2t1

PFL: non
mathematics
PFL: mathematics

Fig. 4 Change in analytical competence: quality of analyses

0

1

2

3

4

t1 t2

Did analyze videos

Did not analyze videos

Fig. 5 Change in analytical competence: quality of analyses in partial groups N = 54 (math and
non math PFL courses)

No differences were found between mathematics and other courses when
experience with video analyses was considered.

Predicting changes in analytical competence
In addition to the experiences acquired by participants with regard to the

analysis of teaching sequences during the course, two other aspects can
also be used to explain the increase in reasons provided. On the one hand,
analytical competence develops more strongly if the participants receive
explicit instructions from PFL-trainers regarding how these teaching issues
are analyzed (even if no teaching videos are used). The correlation between
this assessment and the quality of video analysis is r = 0.39 (p < 0.01). On
the other hand, a strong interest in course content as a motive for selecting
the course is a good prerequisite to expand one’s teaching-related analytical
competence. No other indications for predicting differences for analytical
competence were observed.
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Summary and Discussion of Findings

Professional development opportunities such as the PFL course, which focuses on a
research-based learning approach and on a close link between theory and individual
teaching approaches as well as supports teachers’ learning processes over a long
time period, are assessed postively by teachers. This applies particularly to working
in small groups (regional group meetings), which allows for in-depth discussion of
the development of one’s own teaching as part of a collegial exchange along with
the intensive support provided by experts. Of course, the high degree of self-directed
motivation, the strong interest in linking pedagogy and subject didactics, and an
interest in personal development of competences at the beginning of the course also
play roles in the high level of satisfaction and acceptance of these courses.

The participants primarily apply elaborative learning strategies, such as “critical
review” and “reflection.” However, it is not only the learning strategies employed
that correspond with the leading theme of “reflecting practitioner” in the PFL
courses, since the longitudinal study also shows that interest and self-assessed com-
petence regarding reflection on one’s own practice increase as well. Yet it is also
the periodic self-assessment of competence for teaching and a desire to participate
in school development processes that increase at the end of the course. The same
applies to course-specific knowledge areas such as pedagogical content knowledge
and pedagogical knowledge, management and evaluation, methods for supporting
learning processes, and knowledge of learning standards.

Given a careful interpretation, the change in interests and competencies can be
viewed as evidence of the effectiveness of the courses. However, it is not known
whether these subjective assessments also correspond with changes in behavior in
the classroom setting. To look more closely at this item, the research design must be
expanded to include the corresponding activities (e.g. teaching observations in the
PFL participants’ classrooms before and after the course).

In this study, the video task serves as a diagnostic instrument to measure the
teaching-related analytical competencies of the participants and to validate their self
assessed competencies. The categorization and number of entries indicate that at the
end of the course, teachers have become more sensitive regarding individual aspects
of learning situations. Overall, however, the difference in aggregated entries in the
video task is not significant between the two test dates.

An analysis of the quality of answers for the video task, which considers the rea-
sons provided and the associations made in the responses, results in increases from
t1 to t2. In this vein, mathematics teachers are not superior to other PFL course par-
ticipants. On the contrary, it is evident that the number of contributions (explanatory
statements and associations) for both t1 and t2 is less than the quality of contribu-
tions by PFL participants from other subjects. Finally, additional clarification to this
result can only be obtained through studies that involve larger samples. In the course
of such a study, factors such as the motivation of participants during their work on
the video task can also be taken into account, since they may influence the result.

The teachers who increased in their analytical competence were mainly those
who worked with teaching videos as part of the course, as well as participants who
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indicated that they were given explicit information on how experts analyze teaching-
related issues. The finding that an examination of teaching videos will increase
competence for video-based teaching analyses seems almost trivial, yet it shows
again that active application and the idea of practice are indeed significant factors in
professional development (see also Neuweg, 2010).

Outlook

Until now, externaly conducted research on university courses has been limited
to assessments by course participants with regard to their interests, competencies,
motivation, or learning strategies, as well as the illustrated video task that records
the competence found in analyzing one’s teaching. The effects on teachers’ actions;
i.e. on teaching practice as well as on students’ learning attitude and performance
have been only refined to teachers’ own investigations and some analyses by PFL
staff. Similarly, the effects of courses on individual schools and other colleagues
have not been investigated on a large scale.

Therefore, it is still an open question to what extent the results of this study
are really relevant to the teaching practice. Irrespective of this uncertainty, the find-
ings suggest that practice sequences should increasingly be built into research-based
learning approaches for teacher professional development.
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Teacher Expertise Explored as Mathematics
for Teaching

Elaine Simmt

Abstract The nature of the teacher’s encounter with mathematics has taken promi-
nence in the last decade as teacher educators research the mathematics of teaching.
In this chapter teacher’s expertise is articulated as mathematics for teaching (MFT).
A model, theorized from complex learning systems, is discussed in this chapter.
It posits MFT as multi-layered and nested knowledge involving subjective under-
standing at the core, enveloped by an understanding of the collective knowing
that emerges from the interaction among individuals, which in turn is nested in
knowledge of evolving and emergent curriculum structures, and further nested in
a knowledge of the broader culture of mathematics. In this chapter the MFT model
is read against the actions and interactions of a group of mathematics teachers in
a professional development session to reciprocally explore the teachers’ encounter
with mathematics while explicating the model.

Keywords Complexity theory · Teacher education · Binary opera-
tions · Commutativity · Mathematics for teaching

Over the past decade there has been a great deal of discussion in the mathematics
education community about the nature of the teacher’s encounter with mathemat-
ics.1 There is growing consensus that teachers engage in mathematics differently
than do research mathematicians and others who create and use mathematics as
part of their work (Ball, Hill, & Bass, 2005; Adler & Davis, 2006; Proulx &
Bednarz, 2008). Broadly speaking, the scientist and economist use mathematics
as a tool for understanding particular kinds of phenomena; the mathematician cre-
ates mathematics through the study of structure, change, invariance, etc. However,
the mathematics the teacher enacts is quite different. She begins with this body of
knowledge (systems, objects, processes. . .) we call mathematics (see Davis, 1996)
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and is charged with the responsibility of working with mathematics from this body
of knowledge with the children and youth she teaches. Different from the scien-
tist, economist or mathematician’s work the teacher’s work is an encounter with
mathematics as both a body of knowledge already established and as knowledge
that will emerge through an individual’s cognitive activity. For the teacher, math-
ematics is at once a product of a culture and a new production of the learner.
The teacher’s expertise then involves the ability to appropriately interpret the
mathematics of the learner as meaning-making acts by the individual and as acts
within the cultural domain of mathematics. The teacher’s expertise enables her
to negotiate the middle way between individual meaning making and cultural
knowledge.

Let us take the case of dividing fractions and speculate about the nature of the
teacher’s expertise and the potential impact of that expertise. She has access to
mathematical objects such as the algorithm, “invert the divisor and multiply” and
a variety of understandings of division and of rational numbers. Additionally, she
understands the student as a learner who makes meaning out of his experiences, she
has knowledge of the curriculum sequence and she understands the class dynamics.
Thus the teacher’s pedagogical moves (Powell & Hanna, 2006) take into account
the mathematical objects that exist in and for the community and individual mean-
ing making. It might be argued that in the case of dividing fractions that all too
often the teacher sacrifices individual meaning making while privileging the algo-
rithm (invert and multiply). This can result in students who are able to compute
a quotient but cannot explain why the algorithm works or what sort of situations
involves the division of fractions. This is not to say that there is not also the possibil-
ity that the teacher privileges individual meaning making by encouraging students
to generate their own algorithms (for example). In this case one consequence is
that it is possible that the students do not get access to a well-established cultural
object (algorithm noted above) that is efficient for working in an algebraic con-
text. In an attempt to understand the expertise needed for such mathematical lessons
I ask: What is the nature of the knowledge teachers “need” for teaching children
and youth mathematics? And, how might teachers develop expertise for teaching
mathematics?

Such questions have received a great deal of attention especially since Shulman
(1986) discussed teacher knowledge as general pedagogical knowledge, knowledge
of learners, knowledge of educational contexts, knowledge of educational purposes,
content knowledge, curriculum knowledge, and pedagogical content knowledge.
Ball and her colleagues (e.g., Ball, Thames, & Phelps, 2008) have been working to
further refine Shulman’s categories of content and pedagogical content knowledge.
Ball and her colleagues’ elaboration within subject matter knowledge distinguish
among common content knowledge, knowledge at the mathematical horizon and
specialized content knowledge. They make distinctions within pedagogical content
knowledge pointing to knowledge of content and students, knowledge of content
and teaching and knowledge of curriculum. In the research with my colleague
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Brent Davis2 (Davis & Simmt, 2006) we too have explored the nature of teachers’
mathematics. Although we find Ball et al.’s (2008) categories useful we frame our
work somewhat differently. For example, we understand mathematics for teaching
(MFT) not as an object or a set of skills stored in ones head but rather as an emergent
phenomenon that is enacted in the context of teaching mathematics (see also Powell
& Hanna, 2006). Also important to our work with teachers are two premises. Firstly,
knowledge is a process not a thing. Von Foerster’s (2003) definition of knowledge
is useful here. He explains that knowledge is persistently taken as a commodity or
a substance when it is the “processes which integrate past and present experience
to form new activities, either as nervous activity internally perceived as thought and
will or externally perceivable a speech and movement” (p. 200). Secondly we pre-
sume that teachers are knowers. In other words, we work from a surplus rather than
deficit model. We do not begin with what the teachers do not know but rather what
they do know. Teachers know mathematics; they know how to teach; and they know
how to learn. Further, we assume that this knowing emerges in the context of their
interactions with others (whom are most often but not always students).3

Mathematics for Teaching

In work already reported Davis and I used the case of the teachers exploring multi-
plication to develop a model for observing and interpreting MFT (Davis & Simmt,
2006). The model suggests MFT as nested knowledge (Fig. 1), with knowledge of
subjective understanding at the core, enveloped by an understanding of the collective
knowing that emerges from the interaction among the individuals, which in turn is
nested in knowledge of evolving and emergent curriculum structures, and further
nested in a knowledge of the broader culture of mathematics which is also growing
(mathematical objects).

Some elaboration on the various kinds of knowledge that comprise this model
for observing MFT is useful. Subjective understanding (Pirie & Kieren, 1989) and
classroom collectivity (Bowers & Nickerson, 2001) happen in “lived time” and
hence are commonly understood as dynamic and ever transforming. A teacher
observes the growth of these phenomena in the minutes, hours, days and weeks
when working with learners and classes of learners. However, it is not only subjec-
tive understanding and classroom collectivity that are dynamic. The outer-layered

2In this chapter I make extensive use of work done in collaboration with Brent Davis. Throughout
the chapter I use the “we” pronoun whenever I am talking about our shared research site or referring
back to ideas explored in earlier papers or discussions we have had. However the interpretations
of our work that you read here are my interpretations and Davis should not be held responsible for
errors or weaknesses in the arguments I present.
3This is a key assumption in our work and based on an enactivist theory of knowing (Varela,
Thompson, & Rosch, 1993).
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Fig. 1 Davis–Simmt model
with relative time scale for
observing MFT (adapted
from Davis & Simmt, 2006)

phenomena that are commonly thought of as fixed are better interpreted as mutable
(indeed dynamic) when re-thought as learning systems and observed over longer
periods of time. Curriculum structures are commonly thought of as either curricu-
lum resource materials or mandated programs of study. In the work of curriculum
theorist Ted Aoki (see Pinar & Irwin, 2005) we find an elaboration of the notion
of curriculum, one in which thought, action and relationships among the teacher,
learners and objects take shape as curriculum-as-lived. With this elaboration and the
recognition of the temporality of curriculum-as-planned (mandated) curriculum is
understood as dynamic, evolving, and transforming over days, weeks, months and
years. The fourth layer, mathematical objects, can be observed as dynamic when
one examines the history of mathematics over years, decades and centuries (Swetz,
1994). Indeed there are many accounts of the histories of mathematics that illustrate
the changing nature of mathematics. Those accounts point to the emergent collective
learning systems we identify as bodies of knowledge or disciplines.

Investigating Teachers’ Mathematics

In our work we offer teachers tasks and place them in situations that can be explored
mathematically with others and that have the potential to trigger their MFT. Our
challenge has been two-fold: to create learning environments for teachers that at
once enable their pedagogical awareness and their mathematics to be brought for-
ward into the situation so as to expand their professional knowing to engage in new
teaching situations; and to theorize the teacher’s mathematics knowing that emerges
within those research environments. One might recognize the former challenge as
offering professional development and the latter as a creating a research site. It is
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worth making a distinction here between this approach to exploring teachers’ math-
ematics and how other colleagues might explore teachers’ mathematics. Because we
begin with the assumption that teachers’ knowledge occurs in interaction with others
we do not observe for their activity with individual activities such as paper and pen-
cil questionnaires or one-on-one interviews. It is also assumed that the task itself
need not specifically call for a pedagogical question (that is questions about the
knowledge of students and teaching). The pedagogical considerations, as demon-
strated by Proulx (2009a) naturally arise for the teachers with the context of the
activity, as the teachers engage with each other in the tasks. My claim is that those
are precisely the specialized knowings that teachers enact as part of their MFT. I
believe another difference is in how we position ourselves in our research settings.
As professional development facilitators and as educational researchers we too are
working on our MFT. Our knowing and the environments we create evolve with the
actions and interactions of all the participants. It is not uncommon for us to come
to new mathematical and pedagogical insights as we work with the teachers as they
work on the tasks. Like other researchers and teacher educators we set general topics
for exploration based on our understanding of the needs and desires of the teachers
but we do not prescribe a set of learning outcomes to be achieved; rather we create
learning spaces to work on mathematics collectively (Proulx, 2009b).

Research Design

The data used for illustrative purposes in this chapter comes from research con-
ducted with a group of K-12 teachers from a school district in Western Canada.
A core group of 8–10 teachers met every 3–4 months in professional development
workshops over the course of 2 school years. Two of the teachers from this group
were observed in their classrooms a year after the in-service sessions. The teachers’
in the group varied from a first year teacher to a number of teachers with more than
10 years experience. The teachers in our study had a minimum of a 4-year univer-
sity degree. They would have taken at least one university mathematics course and
one curriculum and instruction course specific to mathematics. All of the teachers
taught mathematics as part of their load, although most of the K-6 grade teach-
ers were generalists and responsible for teaching a number of subjects. In spite of
their pre-service education and the years of experience they brought to our profes-
sional development sessions, the teachers further developed their expertise in those
sessions.

The sessions the teachers participated in were structured as workshops around a
particular area or concept taken from the school mathematics program of studies.
Because the teachers represented the K-12 curriculum we made a point of selecting
topics that provided numerous opportunities to make connections across as many
grades as possible. For example, multiplication turned out to be a particularly rich
site for the emergence of the teachers’ knowledge likely because of the significance
of that topic in the teachers’ histories. The teachers could connect with the topic and
found value in learning about what the students did in the grades prior to coming to
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their classes and what the students would do with multiplication when they moved
on to higher grade levels.

Each session was facilitated by two researcher/teacher educators (henceforth
referred to as the facilitators) and observed by one to three graduate student assis-
tants. The graduate students video taped the sessions and took field notes based
on their own particular interests. By asking the students to observe based on their
own interests we found we had a wider range of interpretations of the events brought
into our research discussions. Each session was de-briefed by the researchers. When
de-briefing we discuss the mathematics that emerged in the session, the mathemat-
ics and pedagogical insights that were new for us, the curricular connections that
were raised and other things that were notable for anyone of us. Then we return to
the videotapes to examine the things we marked for further analysis. We do not tran-
scribe the tapes in full but only those sections one of the research team selects for
further analysis/interpretation. Once those sections are transcribed a mathematical
activity trace is done (Reid, 1995). This trace highlights the mathematical actions,
objects, metaphors, analogies and explanations that emerge in the interactions of the
participants. The model for observing MFT was developed through holistic work
with the data informed by enactivism and complexity and each new session was
used to recursively inform and elaborate the theory.

An Illustration of the Emergence of MFT

Binary operations is a fundamental topic in elementary mathematics and foun-
dational to mathematical understanding. It goes without saying that a teacher’s
expertise involves much more than being able to carry out the binary operations or
being able to explain algorithms for binary operations. What follows is an illustra-
tion of teachers’ mathematics as it emerges in interaction among a group of teachers
(and two researchers) working on a prompt involving division.

In this particular session the teachers explored the question: What is division?
The first responses came quickly: “fair sharing” or “equal distribution.” But few
other suggestions followed. The question was followed up with a problem for the
teachers to work on taken from Silver and Cai (2005).

Pose a problem that can be solved using the division statement 540 ÷ 40 =?
How many different problems can you pose and solve?
Two problems will only be different if they give different answers [1].4

The teachers in the group individually and together came up with a number of
different problems that would require the operation 540 ÷ 40. [2]

• There are 540 kids in the school and 40 kids in a classroom. How many teachers
will be hired? [an example of grouping/sharing]

4I use numbers in square brackets to highlight key utterances, actions and interpretations in order
to refer back to them.
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• There are 40 streetlights along a street. How far apart will they be? [an example
of partitioning]

• 540 students. Put 40 kids on each bus. We need 14 buses. Just like you need 14
teachers! [grouping]

• Brandon has 40 girlfriends. He has $540. How much will he spend on each
girlfriend at Christmas? [partitioning]

Then, after some discussion of the particular problems the following interpretations
for division were added to the list.5 [3]

• Factors (find missing factors)
• Missing dimensions for area
• Repeated subtraction
• Subset making
• n groups?
• How many groups of n?
• Undoing multiplication

As the participants worked through these problems and discussed them with each
other and the facilitators the focus of the teachers’ collective thinking moved from
identifying some problems that would satisfy the constraints of the problem posed
(see examples noted above), to examining the different interpretations of division
that emerged (sharing or distributing/grouping, partitioning/making equal inter-
vals), to exploring the nature of the solution space (whole number, whole number
with remainders, rational, money and measures). The teachers’ collective expertise
involved all of those understandings of division. As the conversation was slowing
down the following exchange occurred.

Teacher16: The other thing I thought about [was] division and subtraction. [4] I
was thinking of my class [5th grade] [5]. They really have difficulty
in understanding that the big number comes first [6]. And they will
tell you that two divided by six is three, for sure. And I’d say, “do it
on your calculators, what do you get?” And they’d just go, “like there
must be something wrong.” And same thing [happens] with subtrac-
tion. They don’t understand. And somehow, saying that putting the
big number first isn’t enough. [7]

Teacher2: And when you say, “How many groups of so are in such and such?”
[8] And then—

Facilitator1: That would be carried on from addition and multiplication where
order doesn’t matter— [9]

5This list is a composite and does not reflect a particular order or the comments of a single teacher
or group.
6A comment about the notation used in the transcripts – an m-dash is used to indicate an
interruption in the speaker’s speech; ellipses are used to indicate missing speech.
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Teacher3: Yah! Suddenly, order matters and the learners—
Facilitator2: Addition and multiplication are commutative; order doesn’t matter.

Now [in the case of] subtraction and division, it’s not that the big
number comes first. It’s that order matters. . . [10]

Teacher4: It’s interesting you made a point about order mattering. . . most of
what I do is teach the Learning Assistance Class and children strug-
gle with reading. . . [11] There are a number of them who struggle
with attending to the order of the print. That’s a challenge. I wonder
if the two are connected?

This illustration is useful to us for discussing teachers’ expertise in terms of MFT
and for noting the gaps in their expertise that are revealed and subsequently filled
while working on their own mathematics. Using the Davis–Simmt MFT model
(Fig. 2) I classify the utterances and activity of the participants in the group and
of the group itself. An elaboration of the classification follows.

The session began with the prompt to find some problems that fit a particular
set of constraints; selecting the task is observed as an act of curriculum knowing
by the facilitators. With the selection and posing of this task, we observe the space
of the curriculum-as-planned and the curriculum-as-lived. This knowing is mapped
on to the Davis–Simmt model for observing MFT in the curriculum structures layer
[1]. As the participants contemplate the task and begin to suggest problems which
fit the constraints their knowledge of mathematics emerges and so too does their
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awareness of the participants within the group. The participants’ past experiences
as teachers are integrated with their present experience in this group of teachers.
Consider for example how two of the problems are drawn from the school context
and the fourth problem included the name of a young male teacher in the workshop
(the only male in the group). Such actions reflect the teachers’ understandings of
learning and learners and how to make meaning out of the shared experiences. The
teachers “know” that one way of making a problem relevant to the learner is to
set it in familiar contexts and include the learners themselves in the context; their
knowledge of subjective understanding is brought forth in these interactions [2].

After a few of the examples were shared among the group their attention was
drawn to the underlying understandings of division that were represented in the
examples provided as they shifted from talking about specific examples to dis-
cussing categories: division as fair shares, repeated subtraction, finding a factor,
finding a missing dimension in a measure and so on demonstrating the multi-
ple interpretations these teachers have of division. In discussion we observe the
emergence of the groups’ understanding of the mathematical object of division [3].

It was late in the workshop when the fifth grade teacher raised the issue of stu-
dents who confound the order an expression is written in. She expressed her concern
that students do not know to “put the big number first.” As already noted, the facil-
itators did not intentionally build in to the tasks pedagogical concerns. But the
teacher’s knowing in this context included her experiences with learners hence it
was completely complicit with her MFT. This teacher connected her experiences
with learners who make a similar error in division and subtraction and in doing so
reveals knowledge of learners, curriculum and mathematics all at once [4].7 Of par-
ticular note is the teacher’s comment, “And somehow, saying that putting the big
number first isn’t enough.” This is an interesting comment to unpack. On one hand
the teacher understands the learner’s need for more than simply being told some-
thing which is a demonstration of her understanding of subjective understanding [6]
and on the other hand she reveals a gap in her mathematics. She doesn’t seem to
have a mathematical explanation to offer the learners for ordering the mathemati-
cal expressions they write from particular contexts. This seems to be a gap in the
teacher’s understanding of commutativity (and non-commutativity) as it relates to
subtraction and division. This is particularly interesting since this teacher is very
unlikely to make a mistake writing an expression from a context, computing differ-
ences or quotients, or even discussing what subtraction or division is. Note that a
second teacher wondered if the student’s difficulty is in the meaning making. She
asked about how the learner understood division. By pointing out how the learner
might make sense of the operation as grouping revealed this second teacher’s under-
standing of both mathematics and subjective understanding [8], and at the same
time contributed meaning to the group of teachers working through these ideas at
that very moment.

7It is useful to note that students would have been subtracting and dividing prior to the fifth grade
but always with whole number solutions.
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One of the facilitators connected the problem the teacher encountered with
how the mathematics content was sequenced within the curriculum; that is the
non-commutative operation of subtraction follows addition and division follows
multiplication [9]. In doing so he demonstrated how he made meaning of math-
ematical objects as elements in the curriculum-as-planned. The second facilitator
conjectured that the problem for students whom make such mistakes is based on
an over-generalization of order not mattering in the cases of addition and multi-
plication, operations students learn prior to subtraction and division. This reveals
her understanding of the curriculum-as-planned and curriculum-as-lived structure,
the subjective understanding of the learner, and mathematical objects [10]. Finally, a
third teacher entered the conversation making a connection to her experiences teach-
ing children to read. With this utterance the conversation moved from the specifics of
teaching children binary operations to a more general conversation of the difficulty
some students experience learning to read, once again demonstrating the teacher’s
knowledge of subjective understanding [11].

Opportunities Missed and Made for Enhancing MFT:
Developing Expertise

In this discussion I address the opportunities missed and made for enhancing
teacher’s expertise (or her MFT). In particular I point to how the in-service session
provided opportunities for the teachers to further develop their MFT and speculate
how it came about that such fundamental gaps exist.

The task given to the teachers in the workshop (to find problems for the division
expression 540÷40) provided a particularly interesting space to explore the teach-
ers’ expertise in terms of their MFT. As a facilitator of the session, I thought the
problem would be very useful for exploring the explanations, models, metaphors
and strategies teachers use for division. However, I did not anticipate the gap in the
teacher’s understanding of commutativity. Because I am a teacher educator I am
ultimately faced with the question of what are the formative experiences for teach-
ers (both pre-service and in-service) that are most worthwhile. It is worth unpacking
how that gap may have been have been left/created in the teacher’s MFT in spite of
her formal tertiary education and experiences in the classroom.

The problem of order in binary operations (or reading) requires a teacher’s atten-
tion as she mediates the knowing of the individual and of the culture. Imagine a child
responding to the question, “If three birds fly away from a wire and there were five
to begin with, how many birds remain on the wire?” The child communicates his
meaning making with the response, “Three minus five equal two” or writes, 3–5=2.
The teacher (Teacher1) interacting with the child is confronted with the difference
between the way the child has expressed his knowing and the conventional from of
communicating this expression used in the mathematical community. We know the
teacher’s mathematics for teaching emerges in interaction with the learner. It is not
known how the mathematics teacher who posed this dilemma came to use “the big
number first” as a strategy with her learners but it is useful to speculate. She knows
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subtraction is not commutative, or maybe she knows that when communicating sub-
traction in an expression you first write down the minuend and take from it the
subtrahend (mathematical objects). It is possible that because her class of learners
are working strictly within the whole numbers she knows the children will not study
integers for a few more years (curriculum structure). Hence she anticipates that the
problems these particular learners will encounter at this point in time (classroom
collective) have been designed to only have whole number answers, so she thinks of
the situation as the big number coming first (subjective understanding).

The teacher’s expertise is demonstrated by how her actions integrate all four
aspects of MFT in the interactions she has with others. As is evident in the
illustration, at once MFT involves the mathematical objects, the curriculum struc-
tures, the classroom collective, and the subjective understandings. Difficulties arise
if the teacher ignores any one of those nested dimensions of MFT. Ignore the mathe-
matical objects as they exist in the culture and the child grows up with idiosyncratic
understanding; ignore the order of presentation of the curriculum and there is too
much to teach; ignore the child’s understanding and the child resorts to memory and
rote learning. Teacher1’s comment about the difficulties students experience when
beginning subtraction and division points to the need for a teacher to have expertise
across all four layers of MFT because she lives at the intersection of the body of
mathematics as a cultural artefact and mathematics as individual meaning making
in a curricular and classroom context.

It follows that MFT is a concern for the teacher educator whose task it is to
identify and create experiences for the novice (and experienced) teacher to develop
appropriate mathematics. Let us return to our example of commutativity to con-
sider pre-service education. In the undergraduate teacher education program at the
University of Alberta, Canada secondary mathematics majors are required to take 12
half-year mathematics courses and elementary mathematics minors are required to
take up to 4 half-year mathematics courses. In university mathematics the study of
commutativity usually occurs as a topic in the contexts of linear algebra and abstract
algebra. In those cases it is discussed as a property of a set and is generally used for
classification purposes; that is for distinguishing a set as commutative group or a
field. Knowing a set is commutative then allows one to use the set in particular ways
because you know how it behaves. Such knowledge is useful for the mathematician
but the teacher needs a further understanding of commutativity. She needs to know
what the implications of commutativity are for the teaching of binary operations on
whole numbers, integers, rationals and reals because her task is to offer appropriate
experiences for learners coming to understand number systems, binary operations
and elementary algebra.

In the work of the teacher commutativity is a significant concept as students learn
to operate on whole numbers. Indeed teachers place much emphasis on the fact that
addition is commutative, 2 + 3 = 3 + 2. Their experience with children as learn-
ers suggests the value of this kind of emphasis. On a number of occasions in our
study it was clear to us that the teachers take advantage of addition and multiplica-
tion being commutative to help children develop their sense of number and quantity
and to become more familiar with addition and multiplication “facts.” However, a
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pupil’s experience with addition comes first in arithmetic and is prior to the intro-
duction of negative numbers. Thus when the pupil moves on to subtraction there is
no reason for him to anticipate that the expression 5–3 does not equal 3–5; this is
a simple generalization of the child’s experience with addition. In contrast, when
teaching commutativity in a university algebra course the instructor has the advan-
tage of teaching students whom have an understanding of real numbers and already
understand that there are distinct outcomes to these two computations. As university
students are introduced to new groups they use existing understandings of commu-
tativity to make sense of objects (sets) that are not commutative. But for children
learning binary operations for the first time such understanding is not available to
them to work from. Hence a school teacher’s mathematics needs to include explicit
understanding that encountering the non-commutative situation of subtraction over
the whole numbers calls for a new kind of object, a new number system and for
more deliberately ordered expressions for communication purposes.

Although there exist many researched-based models for developing mathemati-
cal expertise for teaching in the context of in-service education and in pre-service
education there is little information about the extent to which these models are
having an impact on the broader programmatic decisions in pre-service teacher edu-
cation, at least in Canada.8 At the University of Alberta, the programmatic elements
with respect to disciplinary knowledge have remained relatively stable over the last
six decades. Secondary mathematics majors study most of their mathematics con-
tent with students from the Faculty of Science. Less than 20% of their instruction
in mathematics is focused on mathematics for teaching. In the case of the elemen-
tary generalist they study 50% of their mathematics in the Faculty of Education
where professors are using the research in MFT to inform their instruction how-
ever 50% is a single half-year course. They also take 1 half-year course offered by
the Department of Mathematics. That course is specifically designed for pre-service
teachers. The research in MFT speaks loudly about the need for rethinking the math-
ematics pre-service teachers study in their undergraduate programs. Fortunately, in
Alberta in-service education does not have the same constraints as does pre-service
education. Hence it is in this environment that I have been able to study MFT and
to design educational opportunities grounded in the research on MFT.

Concluding Remarks

With this chapter I join others in the mathematics education community to assert that
a teacher’s expertise involves a specific form of mathematics. That mathematics is
marked by a different kind of encounter than we find in the work of the research
mathematician and others who create and use mathematics. In other words, it is
not simply that the mathematics is different but there is also a difference in what

8One notable exception is the programming at the Université du Québec à Montréal See Bednarz
and Proulx (2005) for a description.
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teachers are expected to do with the mathematics and there is a difference in the
contexts in which they do their mathematics. Teachers’ expertise lies in that fact that
their mathematics is done in interaction with others. Their expertise lies in the fact
that they must understand mathematics as at once well-established knowledge and
as enacted knowing. Their expertise lies in the fact that they engage in mathematics
as both a cultural product and as personal constructing. Their expertise includes the
collective we call a class and within a structure we understand as the curriculum.

For teachers to be able to work effectively with children and youth there is a need
for teacher educators to understand the kinds of mathematics teachers will encounter
in their work life and provide courses that offer appropriate mathematical experi-
ences and content. As a community it is important for teacher educators to continue
to conduct research into teachers’ mathematics and to create teacher education pro-
grams that reflect the research we do. Our collective research is beginning to suggest
that university mathematics courses designed for the future scientist, economist and
research mathematician are inappropriate for future teachers (Proulx & Bednarz,
2008). As a community we have a need to examine our programs and offer new
possibilities grounded in research rather than tradition. Further research and cre-
ative program planning is needed to create courses within programs which focus
specifically on mathematics for teaching so that teacher education has the potential
to develop the mathematics teacher’s expertise.
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Part III
Expertise in Mathematics Instruction

in an Eastern Setting



Characterizing Expert Teaching in School
Mathematics in China – A Prototype
of Expertise in Teaching Mathematics

Yeping Li, Rongjin Huang, and Yudong Yang

Abstract This study aimed to characterize Chinese teachers’ expertise in
mathematics instruction through analyzing five selected expert teachers’ video-
taped lessons, their lesson designs and reflections. A prototype view of teaching
expertise was adopted and used to identify similarity-based central tendencies that
are shared among these expert teachers. Data analyses revealed six central tenden-
cies of these teachers’ lesson instruction and thinking. The case analysis of one
expert teacher’s lesson instruction was also used to provide rich descriptions and
illustrations of the prototype of these teachers’ teaching expertise. The findings help
us to develop a better understanding of the complexity of teaching expertise val-
ued in China, and are important to teacher educators in their efforts to improve
professional development for teachers.

Keywords Expert teacher · Teachers’ expertise · Chinese teacher ·
Prototype · Teacher thinking · Lesson instruction

Introduction

To improve the quality of classroom instruction, one popular approach used in
practices is to learn directly from expert teachers. This is especially the case in
China (Huang, Peng, Wang, & Li, 2010), where expert teachers are officially con-
ferred and socially recognized with teaching taken as a professional practice that
is open to public scrutiny and discussion (Li & Li, 2009). A school-based teaching
research system has long been established in China since 1952 and various teaching
research activities commonly exist in individual schools and beyond (Yang, 2009).
Exemplary teaching behavior is identified both formally and informally through fre-
quent classroom observations and exchanges of ideas among teachers in and outside
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of their own schools. Teachers’ work accomplishment is formally acknowledged
by rank and title according to not merely their years of experience, but more on
their teaching performance, teaching research outcomes, and level of instructional
leadership (Li, Huang, Bao, & Fan, 2011). Expert teachers in China are not just
experienced teachers; they are part of the teaching culture in China and also play
an important role in nurturing that culture. The policy and practices in ranking and
promoting teachers in China make it practically feasible for others to model after
expert teachers’ classroom instruction.

While the approach of learning from expert teachers is commonly practiced in
China, how Chinese expert teachers perform in classroom instruction has not been
well understood especially to outsiders. Although existing studies have revealed
that Chinese mathematics teachers have a profound understanding of the mathemat-
ics that they teach (An, Kulm, & Wu, 2004; Li & Huang, 2008; Ma, 1999), much
remains unknown about expert teachers and their teaching expertise that is valued in
China. The identification and examination of expert teachers’ expertise in teaching
also becomes necessary for teacher educators in China in their efforts to help other
teachers develop expert-like performance in classroom instruction. In this study we
thus aimed to explore teaching expertise valued in China through examining expert
teachers’ classroom instruction.

The importance of identifying and examining teachers’ expertise has long been
recognized in educational research. In the United States, many researchers iden-
tified unique features in expert teachers’ knowledge and their teaching practices
through comparing their behaviors and performances to those of novice teach-
ers (e.g., Borko & Livingston, 1989; Leinhardt, 1989; Leinhardt & Smith, 1985;
Livingston & Borko, 1990; Swanson, O’Connor, & Cooney, 1990). While the com-
parative approach has been effective in helping identify unique features that expert
teachers have (in comparison with novice teachers), possible findings are often
restricted to exclude those features that are not unique to one or two expert teachers
focused in individual studies. This limitation makes it difficult to justify whether
the identified features are shared by other expert teachers. Rather than contrasting
two diverse groups of teachers, we tended to focus on a group of expert teach-
ers in China and their classroom instruction in this study. It is an approach that
utilizes a prototype view of expertise in teaching to identify and examine possi-
ble resemblance in teaching performances among expert teachers (e.g., Smith &
Strahan, 2004; Sternberg & Horvath, 1995). Without comparing with novice teach-
ers in this study, we were less restricted in identifying and examining features that
are salient in expert teachers’ classroom instruction.

Existing studies on the issue of expertise often faced a dilemma in identify-
ing expert teachers and examining their expertise. On one hand, some researchers
tended to focus on expertise through studying experts. They faced the difficulty of
identifying those who can be taken as experts in their study. In fact, researchers
often used different criteria to identify and select “expert” teachers across studies
(e.g., Berliner, 1986, 2001). Some may rely on the measure of years of teachers’
teaching experience, whereas others may use students’ testing scores and/or local
educators and administrators’ recommendations. The inconsistency in identifying
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and selecting expert teachers makes it very difficult to compare and summarize find-
ings across different studies. On the other hand, others developed and utilized a list
of specified features to identify experts. But this method has also been criticized,
because there is not such a well-defined standard that can absolutely separate all
experts from non-experts (Sternberg & Horvath, 1995). The complexity in identify-
ing experts and examining expertise becomes acute in studying teachers’ expertise
in teaching in the West where teaching is not subject to public scrutiny (e.g., Kaiser
& Vollstedt, 2008). Expert teachers, who are not necessarily experts in teaching,
may be selected to examine their expertise in classroom instruction. However, it
presents less of a concern when identifying and studying expert teachers in China,
where the policy and practices in ranking teachers mainly in terms of their teaching
is widely used. Thus, we planned to use case study methodology to select a group
of expert teachers and then examine their shared similarities in teaching.

Chinese Expert Teaching in School Mathematics: Background
and Theoretical Considerations

Mathematics Teacher as a Profession in China

As a system with a long history in education, China has a deeply-rooted cultural
value orientation about teachers and teaching. Teaching is taken as a professional,
not private and personal, practice in China. There are common beliefs and values
of what teachers need to do for their students (Jiao Shu Yue Ren). Chinese teach-
ers are respected for having in-depth knowledge and being moral examples (e.g.,
Beishuizen, Hof, van Putten, Bouwmeester, & Asscher, 2001). In particular, expert
teachers in China are often identified as the ones who bear most of the culturally-
valued moral characters and expertise for others to follow. What teachers can learn
from others is the type of knowledge and skills that are publically valued and often
locally proven as effective. Individual teachers realize the need to improve their pro-
fessional knowledge, and they know what they can learn from others through their
daily teaching activities. Teachers’ expertise is practical, and teachers acknowledge
expertise differences from one teacher to another.

According to the regulation of secondary teacher’s position promotion in China,
the positions of secondary teacher include senior-rank teacher, secondary teacher
level 1 (intermediate), and secondary teacher level 2 (primary). For each level of
teacher position, there is a specification in terms of political, moral and academic
aspects. For example, the requirements for being a teacher at the senior rank include
(1) 5 or more years’ experience as a secondary school teacher at level 1 or with
a Ph.D. degree, and (2) demonstrating the ability to take the responsibility as a
“senior” secondary teacher. In particular, the second condition is further specified
as that the candidate should (a) have a systematic and sound academic training and
professional knowledge, have plentiful teaching experience for being able to teach
effectively, win prizes in teaching contests at the municipal level or beyond, or
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specialize in political and moral education and classroom management and have rich
experiences; (b) engage in secondary school education research and teaching and be
able to write teaching experience summaries, scientific reports and research papers
that integrate theory and practice at certain academic level, or make remarkable
contributions to the improvement of other teachers’ academic level and teaching
ability.

Teachers’ ranking and promotion policy functions as an important mechanism in
specifying aspects of teachers’ professional expertise that is valued for promotion
and supporting teachers’ professional development in China (Li et al., 2011). From
an academic perspective, it spells out in detail what the system values as teachers’
professionalism. In addition to the general regulation provided by the Ministry of
Education in China, the provincial regularity (e.g., Educational Bureau of Jiangsu
Province, 2004) provides more detailed requirements and methods, including even
quantitative measures. For example, in specifying the teaching quality of teachers
of an exceptional class ( , an honorary title for some senior-ranking teach-
ers), it is required that the teacher has developed his/her unique teaching style. The
teacher is a leader of the teaching subject at the municipal or county level, has shown
the quality of his/her teaching with some public and exemplary lessons, and has won
a prize of a teaching contest at the national level. In specifying the expected con-
tribution in education reform and research (esp. in teaching method research), it is
required that the teacher has a monograph or more than three research papers pub-
lished in journals at the provincial level or beyond. In this study, we refer expert
teachers as those with a senior rank including an honorary rank of exceptional
class.

Theoretical Considerations

Three models of expertise helped structure the framework of this study. The first is
the national teacher ranking and promotion system (NTRPS) developed and used in
China. As mentioned above, this system provides a ready model of expertise for this
study to identify and select expert teachers that are officially recognized in China.
Experts, or teachers with at least a senior rank based on NTRPS, are those who
demonstrate an accomplished practice in classroom instruction. The system used to
judge teacher practice is content specific and based on a consensus among practi-
tioners starting from the school level. Teachers who are evaluated as accomplished
in terms of NTRPS are awarded higher ranks that come with a monetary increase
and professional status change. All teachers who are selected in this study had an
advanced ranking (i.e., the senior rank) in the NTRPS model.

Although expert teachers in China are evaluated and promoted through the
NTRPS, expert teachers’ classroom instruction is often recognized locally among
teachers but has not been examined systematically to document their expertise in
teaching. To examine teaching expertise of Chinese expert teachers, we adopt a
prototype view of teaching expertise as a theoretical framework (i.e., the second
model of expertise in this study) to analyze, interpret, and describe the classroom
instruction practices of several expert teachers (Smith & Strahan, 2004; Sternberg



Characterizing Expert Teaching in School Mathematics in China 171

& Horvath, 1995). This theoretical framework is originally developed by Sternberg
and Horvath (1995). According to Sternberg and Horvath, teaching is a complex and
holistic practice that can exhibit various features across classrooms. Expert teaching
can better be described in terms of a “prototype that represents the central tendency
of all the exemplars in the category” (p. 9, emphasis in original). They called for
a “reconceptualization of teaching expertise” as a natural, similarity-based, family
resemblance category of expertise that is shared by expert teachers. A prototype of
teaching expertise is a summary representation of the central tendencies of teach-
ers’ classroom instruction in this category, and its content is evolving along with
the identification and assembly of such central tendencies from different studies.
Thus, a prototype view of teaching expertise should help us develop a more inclu-
sive understanding of teaching expertise than a pre-defined standard, and “provide
a basis for understanding apparent ‘general factors’ in teaching expertise” (p. 9).

Sternberg and Horvath (1995) developed this prototype view of teaching based
on Rosch’s (1973, 1978) notion of prototype in cognitive psychology research on
natural language concepts, and other psychological studies on expert performance
in various domains. In particular, they derived from psychological research a list of
prototypical features of expert teaching in knowledge (content knowledge, pedagog-
ical knowledge, practical knowledge), efficiency (automatization, executive control,
reinvestment of cognitive resources), and insight (selective encoding, selective com-
bination, selective comparison). For example, for the executive control, Sternberg
and Horvath listed three sub-category features including planning, monitoring and
evaluating. For the feature of planning, they specified that “expert anticipates diffi-
culties in the execution of a lesson plan” (p. 15). However, they did not carry out
specific studies of expert teaching by themselves. Instead, they called for studies
to validate their list of prototypical features and examine teaching expertise as a
similarity-based category. Smith and Strahan (2004) used Sternberg and Horvath’s
framework to study possible similarities among three expert teachers with diverse
profiles. Based on their analyses of a variety of data collected from classrooms
and professions (e.g., lesson observations, lesson transcripts, participant surveys,
structured interviews), Smith and Strahan derived six central tendencies in broad
categories (e.g., “these teachers maximize the importance of developing relation-
ships with students”, “these teachers show evidence that they are masters of their
content areas”, p. 365). As indicated by Smith and Strahan, their study comple-
ments Sternberg and Horvath’s examination to gain insights on teaching expertise
from a different angle. While Sternberg and Horvath examined teaching expertise
mainly on cognitive mechanism and/or ability, they focused on teachers’ practical
(or tacit) knowledge of teaching practices. Although Smith and Strahan’s study is
limited with only three expert teachers, their study illustrated the value of examining
teaching expertise with a prototype view.

Moreover, Lin (1999) used the prototype view of expertise in teaching to dif-
ferentiate elementary mathematics teachers’ expertise between novices and experts
through structured interviews about classroom events. As this study also showed
the value of this framework for capturing mathematics teachers’ expertise through
interviews, it should be pertinent to use the prototype view to guide the examination
of teachers’ performance in classroom instruction directly.
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By focusing on mathematics expert teachers in China, the current study
was designed to develop a prototype of mathematics teaching expertise through
examining commonly recognized expert teachers’ classroom instruction. With the
prototype view of teaching expertise, we aimed to provide a rich description of
similarities of what mathematics expert teachers do and say that will contribute to
our understanding of the teaching expertise valued in China. The rich description
and summary representations should provide the prototypical features, as shared by
expert teachers, to inform mathematics teacher educators in their efforts to improve
teachers’ professional practices.

The third model of expertise used in this study is the cognitive analysis of teach-
ers’ classroom instruction that helps us to understand what expert teachers do and
say in teaching. Classroom instruction is a dynamic and complex process that can
be analyzed using different lens with various details. Different from the cognitive
modeling of classroom instruction process that was commonly used in previous
studies on expertise (e.g., Leinhardt, 1989; Leinhardt & Greeno, 1986; Schoenfeld,
Minstrell, & van Zee, 2000), we intended to generate both rich descriptions and
summary representations of expert teachers’ instruction. In particular, we took a
similar lens as the 1999 TIMSS video study to focus on the three important aspects
in classroom instruction: content, students, and instruction (Hiebert et al., 2003).
These three aspects are further specified as below:

(a) Content aspects: the lesson’s content treatment, tasks used and connections
made;

(b) Student aspects: students’ learning and engagement in lesson activity;
(c) Instruction aspects: the teacher’s use of instructional methods and discourse in

content introduction and activity arrangement, lesson coherence, and activity
variations.

As this approach was feasibly used in analyzing Chinese teacher’s classroom
instruction in a previous study (Li & Li, 2009), we expected that instructional
analyses in these three important aspects would allow us to identify and examine
similarities in mathematics teaching shared by expert teachers in China.

The Current Study

This study aimed to investigate teaching expertise in school mathematics that is
valued in China. In particular, we took a case study approach to examine five
expert teachers’ video-taped exemplary lessons, their lesson designs and reflections
on their video-taped lessons. By taking a prototype view of expertise in teaching,
the study was designed to examine the extent of similarities in these expert teach-
ers’ thinking and instructional practices. In particular, the following three questions
guided collection and analysis of data:

(1) What similar components can be identified from these expert teachers’ class-
room instruction?
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(2) How similar are these expert teachers in their knowledge, thinking, organizing
and presenting content in teaching?

(3) To what extent are these expert teachers similar in engaging and guiding
students with different strategies?

Method

Data Sources

Five middle school mathematics teachers with a senior rank (hereafter, these teach-
ers are denoted as T1∼T5) were identified by local mathematics educators and
teachers as experts who demonstrated exemplary teaching (see Table 1 for their
background information). They were invited (and thus agreed) to participate in
this study. All participants were informed that the data collection was for research
purposes only.

Table 1 Background information of the five participating teachers

Education Teaching Teaching Participations
Teacher degree experience grade Award of teacher PDPs∗

T1 Bachelor 28 years 6–9 First prize of teaching
contest of young
teachers (D∗, C
levels)

Five years’ teacher
PDPs

T2 Master 14 years 6–12 First prize of teaching
contest of young
teachers (D, C levels)

Key teacher training
programs (D, C
levels)

T3 Bachelor 15 years 6–9 First prize of teaching
contest of young
teachers (D, C, N
levels)

Senior teacher study
programs, master
teacher candidate
training program

T4 Bachelor 16 years 7–8 First prize (D level) and
second prize (C level)
of teaching contest

Master teacher
workshop at district
level.

T5 Bachelor 12 years 6–9 First prize (D level) and
second prize (C level)
of teaching contest

Master teacher
workshop and math
gifted students coach.

Note: “∗” PDP denotes Professional Development Program; D, C, and N mean District, City and
National levels respectively.

Table 1 shows that all five teachers held a bachelor’s degree in mathematics,
one also with a master’s degree in mathematics education. These teachers had an
average of 17 years’ teaching experience, ranging from 12 to 28. All of them won
various awards in teaching contests at the municipal and/or national levels (for more
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information about different teaching contests in China, see Li & Li, 2009). They also
participated in a variety of professional development programs (PDPs).

Although these teachers all needed to teach different content topics in middle
schools, they were asked to provide a video-taped lesson in algebra that can rep-
resent his/her excellence and expertise in teaching. With the consent from all five
teachers, further data collection was carried out to get relevant information about
themselves and their teaching. In particular, the following two types of data were
also collected in this study:

(1) Participating teachers’ professional background. A questionnaire was designed
to collect background information about teachers themselves, their beliefs about
effective teaching, and their design and reflections of their own video-taped
lessons.

(2) Participating teachers’ views of others’ classroom instruction and their views on
effective mathematics instruction. Two video-taped lessons taught by two other
expert teachers were provided to these five participating teachers. In these two
video-taped lessons, the same topic, a system of linear equations, was taught
using different instructional approaches. The participants were asked to watch
the video-taped lessons and then share their views about the lessons by fill-
ing out a specifically designed questionnaire. We intended to use open-ended
questions in the questionnaire so that the respondents could comment on the
lessons based on what they value. In this way, the respondents’ comments can
help reveal not only their lesson evaluations but also the focal aspects in their
evaluation. In addition, they were asked to answer two open-ended questions
about good mathematics teaching and learning, and ways of evaluating the
effectiveness of a mathematics lesson.

Data Analysis

These expert teachers’ own video-taped lessons, their responses to the questionnaire
related to lesson design and their reflections were taken as the main data for anal-
yses in this study. These experts’ comments on two video-taped lessons and also
their views on effective mathematics teaching and learning were used as supple-
mentary materials. All the data for this study was analyzed in the original language
of Chinese. Selected data was translated into English to provide evidence in the
later sections of this chapter. In particular, these teachers’ videotaped lessons are
transcribed verbatim, along with some contextual information and time recording
for all the activities that happened in these lessons.

To address our three research questions directly, we analyzed these experts’
video-taped lessons both holistically and analytically (Li & Li, 2009). The holis-
tic approach aimed to capture overall features of the five expert teachers’ lesson
instruction in order to identify the main aspects of a possible prototype of expert
teaching. Our further analyses included the following stages: (1) identifying and
describing main segments of each lesson; (2) comparing these lesson segments and
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developing a common list of segments capturing the lesson structures across teach-
ers (Merriam, 1998); and (3) a special video analysis software, Studio-code, was
used to code all five lessons according to the developed segment list. This analysis
helped generate the baseline data to derive and describe similar features of these
experts’ teaching.

With regard to these teachers’ lesson designs, reflections and their comments
on others’ lessons, we developed a coding system through constant comparison
within and across cases (Corbin & Strauss, 2008). Three categories of codes
were developed and used: teacher knowledge, instructional process, and teaching
skills and teacher characteristics. Teacher knowledge includes subject content
knowledge (including treatment of important content points), treatment of difficult
content points, development of mathematical thinking and abilities, and mathe-
matical applications (problem solving and problem posing). Instructional process
includes student-centered activities (i.e., self exploratory learning, collaborative
and exchange), teacher-directed activities (e.g., presenting problems, explaining
concepts and summarizing key points), contextual learning, and learning motiva-
tion. Teaching skills and teacher characteristics include basic teaching skills (i.e.,
blackboard writing, teaching language, and use of multi media), and improvisa-
tional ability. A list of (sub-) categories with explanatory examples is provided in
Appendix 1.

Although the majority of these categories are self-explanatory, here we illus-
trated several selected categories. For example, T2 anticipated that “the majority of
students are used to memorize the meaning of proportion. It is very difficult for stu-
dents to understand the concept and its applications in real contexts”. This statement
is coded as “difficult points and treatment” under “teacher knowledge”. As another
example, T1 appreciated that in the video-taped lesson he watched, “the teacher
used a problem with real-world context (chickens and rabbits stay in the same cage)
to introduce the concept of system of linear equations”. Then, the statement is coded
as “contextual learning”.

Except the analyses of the five experts’ video-taped lessons as a whole, we also
identified an expert’s lesson as typical from the perspectives of content treatment,
instructional strategies, and students’ engagement. Then we provided some more
detailed descriptions and analyses of the selected lesson to provide a rich picture of
expert teaching.

Characterizing Expert Teachers’ Instruction: Results
and Discussion

This section is organized into two parts. First, the central tendencies of these expert
teachers’ teaching in terms of their instructional design, lesson instruction, and
reflection were presented and summarized. Secondly, an expert teacher’s classroom
instruction was described and analyzed to further illustrate the prototypical features
of experts’ teaching.
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Central Tendencies of These Experts’ Mathematics Teaching

The video-taped lessons provided by these five teachers include different con-
tent topics in algebra: percentage (T1), proportion properties (T2), the formula
method for solving quadratic equation (T3), a review of inverse proportion func-
tion (T4), and a review of linear and inverse proportion function (T5). The nature of
these lessons also has some variations, with three lessons on introducing new con-
tent topics (Lesson 1–3 as taught by T1–T3, respectively) and two review lessons
(Lesson 4–5 as taught by T4–T5, respectively). Being aware of these variations,
the analyses and reports of video-taped lesson instruction focus on the identifica-
tion of prototypical features and family resemblance across these experts’ lesson
instruction.

Based on the results from coding the five teachers’ comments and reflections
(see Appendix 2), we found seven commonly mentioned categories. Combined with
a consideration of the interconnection among these categories and some similari-
ties among these video-taped lessons, we identified six central tendencies of these
experts’ teaching in school mathematics. They include: (1) having sound subject
content knowledge of teaching topics; (2) appropriately identifying and dealing
difficult content points in students’ learning; (3) emphasizing the development of
students’ mathematical thinking and ability; (4) using mathematics problem solv-
ing and posing for developing effective classroom instruction; (5) emphasizing and
practicing student-centered instruction; and (6) motivating students.

These central tendencies will be explained and illustrated below with information
derived from lesson instruction, teachers’ explanation about their lesson designs,
and their reflections.

Central tendency 1: Having sound subject content knowledge of teaching topics

Subject content knowledge refers to school mathematic topics that these teachers
taught and the advanced mathematics related to teaching topics. All these expert
teachers had a sound subject content knowledge, which was evidenced with the fol-
lowing facts: their bachelors’ degree in mathematics, advanced professional rank,
wining various teaching contests, their performances in video-taped lessons, and
their opinions expressed in the questionnaires. First of all, teacher preparation
program in China is dominated with the perceived need of providing a sound math-
ematical content training for prospective teachers (e.g., Li, Huang, & Shin, 2008;
Li, Ma, & Pang, 2008). In particular, it intends to equip prospective mathemat-
ics teachers with: (1) a foundation for having profound mathematics knowledge
and highly advanced mathematics literacy, and (2) an extensive review and study
of school mathematics, with a focus on developing prospective teachers’ ability to
solve problems in school mathematics.

Secondly, as one of the prerequisite conditions of being promoted to the senior
ranking, teachers are expected to have systematic and sound acquisitions of fun-
damental mathematics content knowledge, plentiful teaching experience and good
teaching effectiveness, or to specialize in political and moral education, and class-
room management and achieve a high performance with a rich experience (Huang
et al., 2010). These five expert teachers’ senior ranking, as awarded through NTRPS
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in China, provides another strong indication of their in-depth content knowledge in
school mathematics they teach.

Thirdly, these expert teachers were all winners of various teaching contests orga-
nized in China. One of the critical aspects in evaluating contest lessons is about
the content being presented and organized in lessons (Li & Li, 2009). These expert
teachers’ winning in various teaching contests suggested that they need not only to
have a sound mathematics content knowledge by themselves but also to be able to
demonstrate their understanding and skills related to the subject content.

In these video-taped lessons provided by these expert teachers, they
demonstrated their in-depth understanding of the content topic being taught and
their thoughtful considerations in making pedagogical treatment of the content. In
fact, we did not find any mistakes in terms of content treatment (e.g., mathematical
accuracy of concepts and formula, dealing with students’ mistakes or misconcep-
tions in lesson instruction). In the following paragraphs, we gave some examples of
how these expert teachers thought about and dealt with important content points.

In their answers to the questionnaires, these expert teachers clearly expressed
their thinking about content treatment in terms of connections between previous
knowledge, knowledge being taught, and the knowledge to be learned in the future.
For example, T1 identified the instructional objectives of his video-taped lesson as
follows:

Understanding the connections and differences between percentages and fractions, and
mastering the conversion among percentages, fractions, and decimals.

This is a public lesson given to a sixth grade class in another school. The purpose
of this lesson is to demonstrate how this newly added topic (moved from grade 8 to
grade 6) can be taught innovatively. The video-taped lesson was prepared and used
for participating in a teaching contest. The teacher was highly satisfied with the
lesson, because “I introduced new knowledge through exploring a real life problem
and consolidated the learned knowledge through interactions between the teacher
and students, and extended students’ learning through homework.”

T1 further explained how to help students understand percent concept and mas-
ter the conversion among percentages, fractions, and decimals through discussing
contextual problems and using visual diagrams. In his teaching, he directly intro-
duced an environmental prevention problem about how serious sand storms can
harm human life (by showing photos on screen), and invited students to find out
possible ways to prevent or ease the impact of a sand storm. When some students
suggested planting trees, the teacher tabulated four types of trees, the total of planted
trees, and the total of survived trees (as shown in Fig. 1).

Then, he asked students which type of tree has the highest survival rate. One
student answered type D because it has the largest number of survived trees, while
another student explained it should be type C because 84 out of 100 planted trees
survived. Building on students’ responses, the teacher highlighted that it is necessary
to consider the rate of two numbers in order to decide which type of tree has the
highest survival rate.

After that, the teacher listed all the survival rates (fraction) of the four types
of trees. Immediately, the teacher asked students how to compare these fractions.
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Fig. 1 Situated problems of
environmental protection

Then one student said to transform fractions to have the same denominator. Another
student said to convert them into decimals. Following students’ suggestions, the
teacher listed all the fractions with the same denominator 100 correspondingly, and
students are asked to list all the decimals with their oral responses (See Table 2).
Finally, the teacher stated that the new special fractions (with the same denominator
of 100) were called percentages. It is denoted as %, and read as percentage Pai Fen
Hao. Then, the teacher presented the formal definition of percentage on the screen
and read the percentage of 85%. Students were asked to read three other percentages.

Table 2 Different
presentations of fractions

Fraction
Fraction with the
dominator of 100 Percentage Decimal

17

20

85

100
85% 0.85

23

25

92

100
92% 0.92

42

50

84

100
84% 0.84

81

100

81

100
81% 0.81

After that, two sets of problems focusing on conversions of percentages, dec-
imals, and fractions were provided for practices. As described above, the teacher
used a situated problem-solving approach to strategically construct and consoli-
date the new concept and procedure operations. The important content points were
emphasized and the treatment of important content seemed quite effective.
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As another example, T5 pointed out that “the salient features of review lessons
are to sum up, systematize and optimally re-organize learned knowledge, and illus-
trate the development, extension and internal connections of leaned knowledge”.
He aimed to achieve these goals through a problem-driven and technology-enriched
instructional approach. For example, with the appropriate use of technology (e.g.,
Sketchpad), the teacher successfully organized students to solve a series of intercon-
nected problems (See Table 3).

Table 3 Types of problems used in one review lesson

Types of problems Sample problems

(A) Judging whether an expression is an
inverse proportion function

y = 1

2x
, y = −2

x

(B) Finding the expression of an inverse
proportion function

Given an x-coordinate –1 of the intersection
point of an inverse proportion function and a
straight line y = −2x

(C) Comparing the value of the y-coordinate
of points on an inverse proportion function
(three methods: computation, graph, and
using properties)

1. Given A( − 2, y1), B( − 1, y2) which are the
points of an inverse proportion function

y = −4

x
?

2. Given three points A(x1, y1), B(x2, y2), and

C(x3, y3) of the function of y = k

x
(k < 0). If

x1 < 0 < x2 < x3, what are the relationships
among y1, y2, y3 in terms of their values?

(D) Comprehensive application Given a point P (x, y) on hyperbola y = k

x
(k > 0), passing the point to draw
perpendicular lines toward x-axis and y-axis
with the intersections A and B. Then, what
is the area of the rectangle of OAPB?

The difficulties of these problems are increased: from definition judgment to
comprehensive application. These problems address different aspects of the defini-
tion, graph and prosperities of inverse proportion functions. For problem type (A),
it is aimed to clarify the definition of inverse proportion functions (y = k

x (k �= 0));
the problem type (B) is aimed to build the connection between functional expres-
sions (linear function and inverse proportion function) and functional graphs, which
includes the mathematical thinking of integrating numerical and pictorial repre-
sentations; the problem type (C) is aimed to develop students’ ability in applying
the properties and graph of inverse proportion function flexibly; problem type
(D) is intended to develop students’ ability in comprehensive application of dif-
ferent strands of knowledge (e.g., graph of function, and area of rectangle) by
integrating numerical and pictorial representations. Through solving these prob-
lems, not only was students’ learned knowledge connected and extended, the
structure of their learned knowledge optimally organized, but also the underlying
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mathematical thinking method of integrating numerical and pictorial representations
was highlighted.

In summary, these efforts to enhance students’ conceptual understanding and
developing mathematics thinking methods and problem solving ability reflect that
these teachers not only had a sound understanding of the concepts they teach, but
also had a deep understanding of the mathematical thinking methods underlying
these concepts.

Central tendency 2: Appropriately identifying and dealing difficult content points
in students’ learning

Apart from identifying important content knowledge and designing instructional
strategies to help students master them, anticipating difficult content points and
designing possible ways to help students overcome these learning difficulties was
also the common feature of these experts’ teaching. Many different strategies were
developed and used to tackle students’ learning difficulties, including exploring con-
textual problems, playing games, solving a series of interconnected and varying
mathematical problems. For instance, T1 identified students’ learning difficulties of
percentage as the conversion between percentages, fractions and decimals, and he
thus designed a way to ease the difficulty through observing and discovering the
conversion methods (see the information presented in the aforementioned central
tendency 1 for details).

T2 identified students’ learning difficulties in her video-taped lesson as under-
standing the concept and properties of proportion, and she attempted to resolve these
difficulties through organizing a series of number games played as explained below:

The learning difficulty is embedded in self-exploring the properties of proportion. Thus, I
designed a series of games, and helped students understand the properties from numerical
presentations to symbolic representations through playing these games.

T3 indicated that creating problems by students themselves is difficult, and then
the teacher used the following strategies to help overcome the difficulty:

First I explained a worked-out example and summarized the procedures of solving quadratic
equations using a formula. Then, some common mistakes with the use of the formula
method of solving quadratic equations were provided for students to identify and correct,
which aimed to consolidate the use of the formula method. After that, a more difficult prob-
lem was provided for students to solve. Finally, the students were asked to create their own
equations.

T4 identified students’ difficulty in understanding inverse proportion func-
tion such as the features of increase and decrease. He thus provided a series of
interconnected and varying problems for students to practice as follows:

Prototype Question 1: Given A(−2, y1), B(−1, y2) which are the points of inverse
proportion function y = −4

x , what is the size relationship
between y1 and y2?

Variation 1: Given that A(−2, y1) and B(1, y2) are on the graph of inverse
proportion function y = −4

x , what is the size relationship
between y1 and y2?
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Variation 2: Given that A(x1, y1), B(x2, y2), C(x3, y3) are the points on
the graph of inverse proportion function y = k

x (k < 0), and
x1 < 0 < x2 < x3, then what is the size relationship among
y1, y2, y3?

Paying attention to appropriately identifying difficult content points and design-
ing effective ways to tackle students’ learning difficulties is crucial for success in
teaching. This is one of basic features in Chinese mathematics classroom instruction
(Huang & Li, 2009) and also highly valued by expert teachers in this study.

Central tendency 3: Emphasizing the development of students’ mathematical
thinking and ability

These experts also paid close attention to developing students’ mathematical think-
ing and ability. It presents another central tendency in Chinese experts’ teaching.
For example, T1 emphasized the “mathematical thinking of integrating numerical
and pictorial representations”, and the “classification and transformation think-
ing”, while T2 appreciated the importance of transformation thinking and the
development of rigorous mathematics thinking ability. In addition, T3 highlighted
the value of developing students’ mathematical thinking, and cultivating students’
mathematical abilities as stated in her instructional objectives:

Through applying the formula method in solving quadratic equations and creating problems,
the lesson is aimed at advancing students’ computation skills and knowledge application
ability, and developing a good computation habit.

Through experiencing the process of discovering the formula, it is aimed at developing
students’ rigorous reasoning ability, with an attention to developing their mathematical
thinking such as using symbols to represent numbers, classification, transformation, and
integrating numerical and pictorial representations.

T4 gave the following description of how to develop students’ mathematical
thinking through reviewing direct and inverse proportion functions:

In teaching, we implicitly introduced mathematical thinking methods such as transforma-
tion, integration of numerical and pictorial representations, and function and equation. It
was aimed to help students get an experience in solving daily life problems using function
and its graphs, develop their mathematical application ability, get an experience in using
graphical information to solve problems, and develop students’ visual thinking ability.

Likewise, T5 emphasized in students’ explorations of flexible and open-ended
problems and implicitly introduced the method of integrating numerical and
pictorial representations to motivate students to learn.

Central tendency 4: Using mathematics problem solving and posing for developing
effective classroom instruction

The use of problem solving and posing is commonly practiced in many classrooms
across different educational systems. For example, in all the seven systems that
participated in the TIMSS 1999 Video Study, Hiebert et al. (2003) reported that
eighth-grade mathematics classrooms were most commonly taught by spending
at least 80% of lesson time on working with mathematical problems. Likewise,
if taking mathematics problems as including routine and non-routine, symbolic
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and contextual problems, it is not surprising that we also identified a family-
resemblance feature of mathematics problem solving and posing in these Chinese
experts’ teaching.

In particular, these expert teachers demonstrated several features in how to use
problem solving and posing for making an effective mathematics lesson. They
emphasized the approaches of learning new knowledge through solving contextual
problems (T1) or symbolic problems (T2 and T3), and of consolidating knowledge
and developing students’ mathematical thinking and ability through investigating
deliberately selected problems (T1∼T5).

For example, T1 designed and used a contextual problem for students to
explore new concepts and to consolidate new knowledge as stated in his completed
questionnaire:

The concept of percentage was introduced through exploring a contextual problem situation
that requires students to compare the survival rate of planted trees. Through discussing
this situational problem, the environmental protection awareness was aroused. Meanwhile,
through solving practical problems, the students’ ability to apply knowledge was enhanced.
And students’ awareness of applying mathematics was also fostered. Most importantly, this
problem situation contains the elements for exploring the conversions among percentages,
fractions and decimals.

T2 indicated that she could improve her lesson in the following aspects:

By asking students to give more daily life examples related to proportion applications and
apply the proportion concept in solving contextual problems, it makes learning of the con-
cept more accessible and acceptable to students. Emphasizing proportion application itself
is one important element of learning the topic.

T3 was excited about her creative design of asking students to create their own
problems as illustrated below:

Through creating problems by students themselves, their motivation was stimulated, and
their computation skills and knowledge application ability were enhanced.

Both T4 and T5 highlighted the importance of selecting and making good prob-
lems in designing and organizing review lessons. For instance, T5 explained how to
creatively vary textbooks’ problems and solutions through modifying problems as
follows:

In review lessons, we should go beyond textbooks’ problems and solutions through varying
a problem from different aspects. For example, changing a problem’s conditions or results
can be used to examine if students understand relevant concepts in depth. It can also be used
to develop students’ reasoning and exploratory ability, and develop their creative thinking
and transfer ability. Through posing and solving such varying problems, we can cultivate
students’ problem exploration ability and help them make mathematical connections among
different problems and develop their problem-solving ability.

With regard to the selection of problems, these experts’ first priority is that
selected problems should focus on certain critical aspects of the concepts learned.
Second, the difficulty of the selected problems should be feasible for students and
the order of presenting problems should be arranged in terms of their difficulty to
increase step by step. For example, in order to apply the property of proportion, T2
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presented the following two questions: (1) Find unknown x, so that 2, 3, 4, and x
can form a proportion; and (2) if ad = bc (a, b, c, and d are not zero), then how
many proportions can be derived from the same equation? Students found different
solutions of x (6 and 8

3 ) based on different proportions (2 : 3 = 4 : x ; 3 : 4 = 2 : x ;
2 : 4 = 3 : x). Through solving this problem, it was found that at least two pro-
portions: 2 : 3 = 4 : x and 2 : 4 = 3 : x are derived from the same equation of
multiplication: 2x = 4 × 3. Then, the teacher raised one question: if ad = bc (a,
b, c, and d are not zero), then how many proportions can be derived from the same
equation? Some students found proportions such as, a : c = b : d and a : b = c : d.
The teacher concluded that based on the same equation with multiplications (sim-
plicity), we can derive many different proportions (multiplicity). In fact, the second
question was finally used as part of homework.

Moreover, these teachers preferred to use different ways to present and organize
examples and exercise problems. For example, one teacher wrote and explained the
process of solving problems with frequently questioning students. Another teacher
asked students to express their solutions orally while the teacher wrote down the stu-
dents’ solutions on the blackboard simultaneously. Another teacher asked students
to solve problems individually or in groups, then invited some students to write their
solutions on blackboard and organized a whole class discussion.

It is a common effort for these experts to solicit multiple solutions and highlight
the flexibility of using appropriate methods. For example, T2 asked students to find
all possible proportions consisting of a, b, c and d when ad = bc. T3 also high-
lighted the flexibility of using different methods to solve quadratic equations after
introducing four different methods. For example, equation x2 − 4x + 4 = 0 can be
solved using the formula method, but it is the most convenient to use the method of
making a complete square.

Overall, organizing classroom practice is also a common and important segment
of these experts’ teaching. Based on the analysis of the instructional activities in the
video-taped lessons, we noticed that these experts are thoughtful in their selection
and arrangement of problems, the ways of using problems and generating multiple
solutions.

Central tendency 5: Emphasizing and practicing student-centered instruction

In contrast to the teacher-led instruction, student-centered instruction refers to the
type of instructions that emphasize the following elements: students’ self explo-
ration, collaborative exchange, group activities, and students’ active participation.
These expert teachers appreciated and implemented student-centered instruction
through various strategies. For example, T1 indicated that he strives to stimulate
students’ active exploration and collaborative exchange in his lesson instruction. He
also valued lesson summary through interactions between the teacher and students,
and among students themselves. He pursued the learning process as “thinking-
manipulative-observation-synthesis”, and appreciated “students’ participation in
instructional activities actively, broadly and deeply.” T2 intended to develop stu-
dents’ ability of analysis, synthesis and exploration through their self-exploration
and comparison. In particular, she led students to discover rules, verify the rules,
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and prove the rules so that the meaning and properties of proportion were explored
through playing various games.

T3 emphasized students’ self-learning through organizing students’ problem pos-
ing activity, namely, creating quadratic equations for their classmates to solve. She
also realized that it would also be a good idea to ask students to collect relevant
mathematics history on quadratic equation development before class and share them
in the class. The teachers (T4 and T5) who taught lessons with a lecture-dominated
style still realized that they need to put more efforts to encourage students to actively
engage in the process of leaning when reflecting on their lessons. For example, T5
believed that “. . . hands-on activities, self exploration, and collaborative exchange
are important approaches of learning mathematics. The fundamental task of class-
room instruction is to implement the principle that students should be the center
of lesson instruction. Students’ willingness and active participation are important
indicators of students being the center of lesson activities.”

T1, T2 and T3 spent around 86% of their lesson time on student-centered activi-
ties (e.g., individual seatwork, collaborative problem solving in groups, discussions,
writing solutions on the blackboard, and students’ reflection and sharing) and inter-
active activities (between the teacher and students for constructing knowledge and
solving problems, and discussing important issues). As shown in our case analy-
ses in the next section, the student-centered instruction was obvious (e.g., about
90% of the lesson time was spent on these two types of activities). This finding
is supported by Huang and Li’s (2009) observation that “Chinese master teachers
greatly emphasized student-centered teaching, such as student participation, student
mathematical thinking, student self-exploratory learning, student problem-posing
and opinion-expressing, and collaborative discussions” (p. 305).

Central tendency 6: Motivating students

All five expert teachers emphasized the importance of motivating students. They
developed and used various strategies to stimulate students’ learning interests.
T1, T3 and T4 believed that “the most effective way of teaching mathematics
is to cultivate thier interest in learning mathematics.” T2 emphasized stimulating
students’ learning through organizing numerical games and presenting problems
from concrete to abstract ones. T4 also emphasized motivating students through
creating their familiar and interesting learning situations, and using inspiring ques-
tions. T5 emphasized in motivating students through mathematics application, using
multi-media and visual presentations. Meanwhile, through the process of teach-
ing, teachers should appreciate and encourage students so that students enjoy from
participating in problem-solving activities and being motivated.

For example, T1 created the environmental protection situation to motivate stu-
dents’ learning and lay a foundation for learning the new content of percentage (See
tendency 1 for details). While T2 motivated students through providing a series of
games with specific numbers (i.e., find unknown x so that 2, 3, 4, and x can form a
proportion) to abstract symbols (i.e., if ad = bc (a, b, c, and d are not zero), then
how many proportions can be derived from the same equation) (see tendency 4 for
details). Likewise, T3 tried to motivate students through introducing mathematics
history and problem posing.
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Characterizing Expert Teaching: A Case Analysis

In order to enrich the prototypical view of expert teaching, we deliberately selected
one expert teacher (T3, named Ms. Li hereafter) as the representative of this cohort
of expert teachers. Making this selection is due to the following considerations.
First, the content of the lesson is the formula method of solving quadratic equations
which is a classic, difficult, and core content in school algebra. Second, Ms. Li’s
approach of introducing a new topic through solving mathematical problems is the
most common method in mathematics lessons. Third, it contains the complete four
phases of a typical Chinese lesson: review, introduction, practicing, and summary
and assignment (e.g., Huang & Wong, 2007; Leung, 1995).

Our analysis of the lesson focused on the following dimensions: overall descrip-
tion of the lesson; the features of dealing with the important and difficult contents;
mathematics problems used; and students’ engagement and instructional strategies
(see Li & Li, 2009).

Overall Description of the Lesson

The video-taped lesson was given to a normal class with about 50 eighth graders
that Ms. Li had been teaching mathematics for more than 2 years. The whole lesson
lasted about 50 min. Ms. Li apparently had a good relationship with her students,
as students actively participated in the lesson’s instructional activities. According to
Ms. Li, the lesson showed her typical teaching style. The video-taped lesson was
well prepared for a teaching contest.

The lesson aimed to help students learn the formula method of solving quadratic
equations. It consisted of the four segments: (1) reviewing relevant knowledge,
(2) introducing the formula method through solving problems and discussion,
(3) applying and using the formula method, and (4) summarizing and assigning
homework.

Reviewing relevant knowledge. Through questioning, students recalled three
methods of solving some special quadratic equations: taking square root (for
ax2 = b), factoring, and making a complete square methods. Students were
asked to give the detailed procedure of completing square method step by
step.

Introducing the formula method through solving problems and discussion.
After reviewing, students were asked to solve a specific quadratic equation:
2x2−5x+1 = 0. Through solving this equation, the teacher intended to draw
students’ attention to two issues: (1) the condition of ensuring that equation
x2 = a has real solutions is a ≥ 0, and (2) no matter how the coefficients are
changed, the procedure of solving quadratic equations is the same. Thus, stu-
dents were motivated to search for a general formula/procedure for solving
any quadratic equations.

Immediately, the following equation ax2 + bx + c = 0 (a �= 0) was
given to students to solve individually. After a while, a student was asked
to write his solution on the blackboard and the teacher organized a whole
class discussion on the solution. Several critical questions were discussed:
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what is the condition for taking square root of b2 − 4ac, and why there is not
absolute sign in the formula although

√
a2 = |a| (all of them are prerequisite

for understanding the formula method to be introduced). Based on the stu-
dent solution, and relevant discussion, the teacher presented formula method
of solving quadratic equation: ax2 + bx + c = 0 (a �= 0). In sum, Ms. Li
indicated that there are four methods of solving quadratic equations.

Applying and using the formula method. Students were asked to solve follow-
ing equation: 2x2 − 5x = −1 by using the formula method directly, which is
more effective than making a complete square method. After summarizing
the procedures of using the formula method, students were asked to dis-
cern and correct five solutions of quadratic equations with typically common
mistakes. This exercise was aimed to draw students’ attention to correctly
using the formula method. Then, a little more complicated equation with
fractions and decimals coefficients was assigned to students individually and
their solutions were shared with the whole class. Finally, an activity of cre-
ating quadratic equations was organized in four student groups. Each group
needed to create several quadratic equations for classmates to solve using
the formula method. For example, one student as representative of that group
presented the following equation: 5(x + 1)2 + 2(x + 1) = 3 and explained
that they anticipate others’ use of a substitution method (i.e., X = x + 1
substitution method).

Summarizing and assigning homework. By questioning “what are your attain-
ment and experience in this lesson”, students were encouraged to express
their gains and experience. Finally, some homework both from textbooks
and self created ones was assigned.

The Treatment of Important and Difficult Content Points

Ms. Li stated the following instructional objectives: (1) solving quadratic equations
using formula method; (2) developing computation skills and knowledge applica-
tion ability, and nurturing good computation habits through the application of the
formula method and problem posing; (3) experiencing the process of inducing the
formula of solving quadratic equations, and further developing the rigor and pre-
ciseness of mathematical reasoning, and cultivating mathematical thinking methods
including using symbols to represent numbers, classifications, and transformations;
and (4) introducing relevant mathematics histories related to the development of the
formula method for solving quadratic equations and introducing Ancient Chinese
mathematician’s contributions to the development of the formula method.

The difficult content points of students’ learning include (1) discovering the for-
mula for solving quadratic equations, and (2) posing quadratic equations that have
solutions. To deal with the difficulty of introducing the formula, Ms. Li presented
a simple quadratic question that can be solved with the complete square method
first. After solving this problem, Ms. Li intended to help students become famil-
iar with the procedures of solving specific quadratic equations and a classification
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method for discussing different cases. These discussions should provide a base for
the follow-up student-led discovery of the formulas for solving general quadratic
equations.

To develop students’ computation and application ability, Ms. Li used a problem
posing activity which is anticipated as a difficult part of the lesson. She care-
fully designed the lesson to reduce this difficulty. First, she guided students to
complete a worked-out problem and sum up the procedures of solving quadratic
equations using the formula method. Then, Ms. Li arranged a set of exercise prob-
lems, discerning students’ common mistakes in using the formula method in order
to deepen students’ understanding of the formula application. After that, another
quadratic equation with fraction and decimal coefficients was provided to students
to solve using the formula method. When students became familiar with the formula,
they were ready (knowledge, skills and motivation) to create their own quadratic
equations to challenge their classmates.

Problems Used or Posed During the Lesson

All the problems used and proposed during the lesson and their instructional pur-
poses are summarized in Table 4. In segment 2, Ms. Li used problem 1 to help

Table 4 Problems used in different segments of the lesson

Segment Problem used/posed Instructional purpose

2 Two problems
P1: 2x2 − 5x + 1 = 0 ;

The first problem was used for helping
students become familiar with making a
complete square method and the
classification thinking method, and
motivating students to search for a general
formula

P2: ax2 + bx + c = 0(a �= 0) The second problem was used to introduce
the formula of solving quadratic equations

3 Four sets of problems:
P3: 2x2 − 5x = −1 ;

P4: One set of problems discerning
students’ typical mistakes;

P5:
1

3
x2 − x − 0.5 = 0 ;

P6: One activity: creating quadratic
equations – one set of problems
posed by students:
2x2 − 4x + 6 = 0 ;
3x2 − 6xy + y2 = 0 ;
5(x + 1)2 + 2(x + 1) = 3 ;
x2y2 + 3xy + 1 = 0

The first problem (P3) was used for helping
students become familiar with the
procedure of using the formula method

The second set of problems (P4) was used to
clarify and consolidate the application of
formula method

The third problem (P5) was used to
strengthen the use of the formula method

The fourth activity (P6) was used to challenge
students in using the formula
comprehensively and flexibly

The equations proposed by students require
using the formula numerically and
symbolically, and using the formula after
substituting the unknown (e.g., let
X = x + 1 or xy)
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students become familiar with previously learned procedures of making a complete
square method and the classification thinking method, and motivate students to learn
the new topic. She then used problem 2 to discover the formula for solving quadratic
equations. In the segment 3, a series of deliberately selected problems and activities
(P3–P6) were then used to help students become familiar with the formula method,
clarify and consolidate possible use of the formula, and develop student’s ability in
solving and posing problems related to quadratic equations.

Through solving these problems, the teacher aimed to help students develop
the formula method by students themselves and apply the formula systemati-
cally and progressively. Meanwhile, the underling mathematical methods including
generalizing from special cases, the classification thinking method, and the substi-
tution method were explored explicitly.

Student Engagement in Learning and Instructional Strategies

We examined student’s engagement through investigating time distribution to dif-
ferent activities and the features of classroom interactions. To examine students’
engagement, we identified three types of classroom activities: (1) teacher-led
activity, (2) teacher–student interactive activity, and (3) student-centered activity.
Teacher-led activity refers to presenting problems, explaining concepts, activ-
ity transition, and summarizing key points. Teacher–student interactive activity
includes all interactions between teacher and students when constructing knowl-
edge, solving problems, and discussing important issues. Student-centered activity
includes individual seatwork, collaborative group problem solving and discussions,
writing solutions on the blackboard, and students’ reflections and sharing. The time
spent in different activities was shown in Table 5. As a whole, the teacher spent
about 9% of the lesson time for presenting problems, explaining concept, transiting
activities, and summarizing key points. More than half of the lesson time (53%) was
used with teacher-student interactions in developing concepts, solving problems,
and sharing solutions. And about two-fifths of the lesson time (39%) was spent on
students-centered activities.

Table 5 Time spent for different activities in various segments

Segment
Teacher-led
activity

Interactive
activity

Student-centered
activity

1 1:00 (2%)∗
2 2:20 (4.5%) 11:40 (22.6%) 4:30 (8.7%)
3 1:45 (2.8%) 14:30 (28%) 13:30 (26%)
4 1:10 (2%) 2:10 (4.2%)
Total 5:15 (9%) 27:10 (53%) 20:10 (39%)

Note: “∗” 1:00 (2%) means 1 min and 0 seconds that is 2% of the lesson time.

Based on the time distribution, Ms. Li was very effective in using class time
without any task off period. She was very frugal in direct talk for activity organiza-
tion and transition (using a total of about 9% of the lesson time). Ms. Li tried very
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hard to get students engaged in the process of learning through frequent interaction
with students, and student-centered activities. On one hand, through questioning
and probing, the students were encouraged to construct new knowledge and con-
solidate knowledge through participating in various classroom activities (53% of
the lesson time). On the other hand, through individual or group activities, the
students were involved in independent thinking and collaborative exchanges. It is
impressive that students were organized in groups to create their own problems,
and explain their intentions in public. Moreover, Ms. Li encouraged students to
reflect on their learning experience and attainments. These student-centered activ-
ities (39% of the lesson time), not only motivated students’ learning interests, and
got them involved in the learning, but also benefited the development of their abil-
ity in problem posing and problem solving, and reflection on their own learning
process.

Summary of the Case of Expert Teaching

On the surface, this seems to be a typical lager-size whole class instruction, and the
teacher controlled the whole process of teaching. However, in no way, can we con-
clude that this was a students’ passive learning class. Actually, the aforementioned
analyses bring us the following observations. It is a well-organized, skillfully deliv-
ered lesson. The set of instructional objectives (Central tendency 1) was carefully
prepared and successfully implemented through appropriately dealing with diffi-
cult content points (Central tendency 2). Students actively discovered the formula
method of solving quadratic equations, and applied the formula method flexibly
and appropriately (Central tendency 5). Several mathematical thinking methods
such as using symbols to represent numbers, the classification thinking method,
and substitution thinking were realized and applied (Central tendency 3). The two
creative attempts of the lesson: equation posing and integrating mathematics history
in lesson instruction were implemented successfully and they resulted in positive
effects on motivating students and developing their creative ability (Central ten-
dency 3–6). All of these achievements were evidenced through students’ reflective
summarization of the lesson (Central tendency 5).

Ms. Li used a variety of strategies to engage students in mathematics learning.
These strategies include reading aloud individually and in chorus, solving problems
individually and in groups, presenting and explaining solutions, problem posing
and justification, reflecting on particular learning activities and the whole lesson
(Central tendency 5 & 6). The lesson looks like an art performance, unfolding
smoothly. There are several high climates, including students’ success in discover-
ing the formula, discerning typical mistakes, posing valuable equations, and sharing
their learning experiences.

In addition to Ms. Li’s excellent classroom management skills, the presentation
and exploration of deliberately selected problems played a crucial role. Essentially,
the lesson was unfolded in line with the progress of solving interconnected prob-
lems, which were used to discover new knowledge and apply knowledge in various
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situations from simple case to complex problems (Central tendency 4). The teacher
provided these problems one by one to help make a coherent lesson.

Discussion and Conclusion

In this study, we identified six central tendencies of teaching expertise in school
mathematics in the context of Chinese classrooms. They include: (1) having sound
subject content knowledge of teaching topics; (2) appropriately identifying and
dealing with difficult content points in students’ learning; (3) emphasizing the
development of students’ mathematical thinking and ability; (4) using mathemat-
ical problem solving and posing for developing effective classroom instruction;
(5) emphasizing and practicing student-centered instruction; and (6) motivating
students. We can further group these central tendencies into three broad cate-
gories: (a) teacher knowledge for teaching (e.g., content knowledge, and knowledge
about students’ learning and teaching); (b) mathematics-specific instruction (e.g.,
developing mathematical thinking methods and students’ mathematical ability, and
mathematics problem solving and posing); and (c) student-oriented approaches
(e.g., student-centered instruction and motivating students). A case of expert les-
son instruction was used to illustrate how these tendencies were embodied in an
expert teaching.

The findings of this study have some implications. On one hand, this study fur-
ther supports relevant findings on expert teachers’ knowledge and teaching strategies
(Berliner, 2001; Borko & Livingston, 1989; Smith & Strahan, 2004). These expert
teachers did demonstrate their sound knowledge in subject matter, student learn-
ing, and relevant teaching strategies. The prototypical features of Chinese experts’
teaching expertise are consistent with some others’ reporting in terms of: high effi-
ciency (Sternberg & Horvath, 1995) and coherence (Chen & Li, 2011; Li & Li,
2009), and the use of different and rich instructional strategies (Li & Li, 2009;
Lin, 1999). Student-centered instruction was in line with Smith and Strahan’s
findings, echoing with Huang and Li’s (2009) reporting about Chinese experts’
views of effective mathematics teaching. On the other hand, some central tenden-
cies revealed in this study further enrich our understanding of teaching expertise
valued in China. In particular, with a focus on experts’ mathematics teaching,
this study revealed that Chinese experts tended to pay close attention to identify-
ing students’ learning difficulties, developing mathematical thinking methods and
students’ problem-solving ability (see Zhang, Li, & Tang, 2004), and consolidat-
ing knowledge learning through solving deliberatively selected and interconnected
problems.

As pointed out by Sternberg and Horvath (1995), different dimensions of expert
teaching usually are interrelated. Our study seems to suggest that expert teachers’
profound knowledge for teaching led them to appropriately analyze important con-
tent points and difficult content points, and to select mathematically worthwhile
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problems and relevant strategies to construct, develop, consolidate and apply
knowledge. As pointed out by Borko and Livingston (1989), expert teachers should
have elaborate, interconnected and accessible cognitive schemata.

As discussed at the beginning, the articles written by Sternberg and Horvath
(1995) and Smith and Strahan (2004) provided us a great guidance in taking the
prototypical view of expert teaching. However, no real classroom instruction was
provided and described in either article to showcase expert’s teaching if putting
together their lists of prototypical features. In a way, readers would think that their
list of prototypical features of teaching expertise is ideal. Different from analyses
conducted by Sternberg and Horvath (1995) and Smith and Strahan (2004), we took
five expert teachers’ lesson instruction as main data sources to identify central ten-
dencies of teaching expertise valued in China. In fact, we can put our identified
prototypical features back together and use these experts’ video-taped lessons to
depict how teaching expertise can be manifested in real classrooms. Indeed, all the
video-taped lessons were carried out very smoothly and coherently. Not only did
these expert teachers have an in-depth knowledge about the content they teach,
but also performed as virtuoso (Paine, 1990) guiding students to construct new
knowledge and mathematics thinking, consolidate the new knowledge, experience
the learning process, and achieve their instructional objectives. These experts are
also flexible in using different strategies of introducing new content (e.g., reviewing
or problem solving), practicing new content (individual or group, problem solving or
problem posing, seat work or public sharing) and summarizing key points of lessons
(teacher-directed, or students self reflection). Without doubt, the experts conducted
these lessons efficiently (Sternberg & Horvath, 1995) by following certain explicit
patterns of mathematics teaching. They are knowledgeable in anticipating stu-
dents’ learning difficulties and developing and using relevant strategies to tackle
them.

The findings of this study allowed us to develop a better understanding of
Chinese mathematics teachers’ expertise in teaching that goes beyond what we
already learned about Chinese mathematics teachers’ in-depth understanding of
school mathematics they teach (e.g., Li & Huang, 2008; Ma, 1999). The use of
five expert teachers’ lesson instruction further helped us make direct connections
between expertise in teaching and experts’ teaching performances. It also extends
the prototypes of teaching expertise that Smith and Strahan (2004) and Sternberg
and Horvath (1995) have shown us. We believe that continued research will help
expand further about what we can learn about the nature of teaching expertise from
diverse angles.

Finally, this study aimed to focus on examining and understanding teach-
ing expertise that is valued in China. Yet, much remains unclear about how
Chinese experts may develop their expertise in teaching during their journeys of
pursuing professional development and promotion. As this is beyond the scope
of this study, further research will be needed to identify and examine possible
effective approaches and practices used in China to develop teachers’ expertise in
teaching.
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Appendix 1: The Categories and Examples of Teachers’ Comments
and Reflections

Categories Sub-categories Examples

Teacher
knowledge

Content knowledge Knowing the connection and differences
between percentage and fraction,
mastering the conversion between
percentage, fraction, decimals and
fraction (T1)

Students’ learning
difficulties and
treatment

The teacher appropriately anticipated
students’ difficulties when learning
system of linear equations, and designed
the strategies to overcome the difficulties
(T3)

Developing
mathematical
thinking methods and
abilities

I implicitly introduced the transformation
thinking method, the method of
integrating numerical and pictorial
representations, and the thinking method
of using function and equation (T4)

Developing
mathematical
application

To help students get an experience in
solving contextual problems by using
function and its graphs, and develop their
mathematical application ability (T4)

Instructional
process

Student-centered
activities

Through participating in various learning
activities, students are motivated to
explore, collaborate and develop their
affective experience in learning
mathematics (T1)

Teacher-directed
activities

I believe that in this lesson it would be
much better if the teacher directly
explained the concept. Because the
definition is rigorous, the teacher should
help students understand the rigor of the
definition (T3)

Contextual learning Knowing how to use mathematics language
to express real life situations concisely
through exposing various real life
examples of using percentage (T1)

Learning motivation Motivating students to learn through
exploratory activities from concrete to
abstract cases (T2)

Teaching skills
and teacher
characteristics

Basic teaching skills Board writing is good, teaching language is
concise (T3)

Use of multiple media Using colorful pictures to present real life
situations, using multiple media to teach
(T1)

Improvisational ability For teacher, the highest teaching ability
should be reflected in improvisational
ability in classrooms (T1)



Characterizing Expert Teaching in School Mathematics in China 193

Appendix 2: Frequencies of the Codes Appeared in the Five Teachers’
Comments and Reflections

Sub-categories T1 T2 T3 T4 T5

Content knowledge 6 6 5 5 5
Students’ learning difficulties and

treatment
1 9 2 2 1

Developing mathematics thinking
methods and abilities

6 4 4 8 9

Developing mathematics application 12 1 5 3 4
Student-centered activities 6 9 6 7 5
Teacher-directed activities 1 7 0 0 3
Contextual learning 10 2 1 3 1
Learning motivation 2 3 2 5 4
Basic teaching skills 0 0 2 3 3
Use of multiple media 1 0 0 1 1
Improvisational ability 1 0 0 0 1
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The Japanese Approach to Developing Expertise
in Using the Textbook to Teach Mathematics

Akihiko Takahashi

Abstract Japanese teachers and educators distinguish between “teaching the
textbook” and “using the textbook to teach mathematics.” In order to provide a
better learning experience for their students, all teachers should be able to use the
textbook to teach mathematics effectively. This means that teaching the textbook
is not enough. But what is the knowledge and expertise that Japanese teachers are
expected to develop, and when and how do Japanese prospective teachers and novice
teachers acquire that knowledge and expertise? A study was conducted with selected
Japanese prospective and practicing elementary school teachers to reveal the knowl-
edge and expertise they use to design a lesson based on the contents of a textbook
page. Using the findings from the study, I will discuss what this distinction between
“teaching the textbook” and “using the textbook to teach mathematics” means in
terms of teacher knowledge and expertise, and how Japanese teacher education
programs help teachers develop that knowledge and expertise.

Keywords Teaching · Problem solving · Professional development · Expertise

Introduction

Japanese public school teachers are required to use one of the government-
authorized textbooks as a major resource for teaching mathematics. Textbook
companies carefully examine the Course of Study (the national standards) and
follow the teaching guide published by the government when they create new
materials.

Although most teachers use textbooks as their primary instructional material
(McKnight et al., 1987; Tyson & Woodward, 1989), Japanese teachers and educators
recognize that there are different ways to use textbooks, and those ways have
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different impacts on student learning. Japanese teachers and educators distinguish
between “teaching the textbook” and “using the textbook to teach mathematics.” To
teach the textbook, teachers need little knowledge about mathematics; they can just
tell students what is in the textbook. But to use the textbook to teach mathematics,
teachers need a much deeper understanding of mathematics and of how students
learn, and expertise for teaching.

In order to provide a better learning experience for their students, all the teachers
should be able to use the textbook to teach mathematics effectively. This means
that teaching the textbook is not enough. But what is the knowledge and expertise
that Japanese teachers are expected to develop, and when and how do Japanese
prospective teachers and novice teachers acquire that knowledge and expertise?

In order to answer these questions, a study was conducted with selected Japanese
prospective and practicing elementary school teachers to reveal the knowledge and
expertise they use to design a lesson based on the contents of a textbook page.

Using the findings from the study, I will discuss what this distinction between
“teaching the textbook” and “using the textbook to teach mathematics” means in
terms of teacher knowledge and expertise, and how Japanese teacher education
programs help teachers develop that knowledge and expertise.

The Japanese View of Good Mathematics Teaching

The Japanese Problem Solving Approach

Although there are several beliefs and views of good mathematics teaching among
Japanese mathematics educators and teachers, problem solving has been a major
focus in Japanese mathematics curricula for nearly 50 years. Numerous teacher ref-
erence books and lesson plans using problem solving have been published since the
1960s. Government-authorized mathematics textbooks for elementary grades, pub-
lished by six private companies, have had more and more problem solving over the
years. As a result, almost every chapter in recent Japanese mathematics textbooks
for elementary grades begins with problem solving as a way to introduce students
to new concepts, and even to procedures.

A few key publications have greatly influenced how problem solving is used
in Japanese mathematics education. Polya’s How to Solve It (Polya, 1945) was
translated and published in Japanese in 1954, and studied by various researchers
and educators in Japan. Japanese researchers, teachers, and administrators worked
collaboratively through Lesson Study, a professional development approach that is
popular in Japan, to develop mathematics instruction based on Polya’s four phases
of problem solving (A. Takahashi, 2000). One of the results from the studies of
problem solving, the Open-ended Approach, was published in 1977 (Shimada). The
open-ended approach has been widely used in Japanese classrooms since then. The
Ministry of Education in Japan, in various documents since the beginning of the
1980s, has emphasized the need for students to develop problem-solving skills to
learn and use mathematics. The position statement from the NCTM’s An agenda for
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action: Recommendations for school mathematics of the 1980s (1980) that “prob-
lem solving must be the focus of school mathematics” was referenced in various
research articles and resource materials for teachers in Japan during the 1980s.
Also, Teaching Problem Solving: What, Why & How (Charles & Lester, 1982) was
translated into Japanese in 1983.

Stigler and Hiebert (1999) used the phrase “structured problem solving” to
describe Japanese mathematics lessons, and similar descriptions were reported in
the proceedings of the US-Japan Seminar of Mathematical Problem Solving (Becker
& Miwa, 1987; Becker, Silver, Kantowski, Travers, & Wilson, 1990). “Structured
problem solving” involves presenting students with challenging problems designed
to provoke creative mathematical activity and discussion through which students
acquire new knowledge and skills.

Japanese teachers believe that, with appropriate supports, students can success-
fully solve these challenging problems by themselves. But they also expect that
students will use a variety of approaches – incorrect and correct, naïve and sophisti-
cated. For students to learn from this experience, the good teacher must lead students
in a whole-class discussion around comparing individual approaches and solutions.
Through their extensive study of lessons based on problem solving, Japanese teach-
ers and educators have come to recognize that this whole-class discussion is the
heart of teaching through structured problem solving and have named this discussion
part neriage.

Neriage (Extensive Discussion)

The term neriage has been widely used among Japanese teachers and researchers of
mathematics education as a technical term since 1980s. Neriage is a noun form of a
verb neriageru, which means to “polish up”. Japanese teachers use it to describe the
dynamic and collaborative nature of a whole-class discussion in the lesson (Shimizu,
1999). The most important role of the teacher in neriage is to orchestrate students’
ideas for and approaches to solving the problem and to help them polish their solu-
tions in order to learn new mathematical content. During the process, a teacher
highlights the important mathematical ideas and concepts that are the goals of the
lesson. This is why Japanese teachers see neriage as the heart of teaching mathe-
matics through problem solving: the solving of the problem by each student at the
beginning of the lesson is preparation for neriage. It is important for students to
struggle with the problem and find their own way to solve the problem, because
this experience will be the foundation for them to make a connection between their
previous learning and the content that they will learn through neriage.

The following problem (see Fig. 1) is typical of one found in Japanese math-
ematics textbooks for 4th grade; it is presented to students who have just learned
the formulas for finding the area of rectangles and squares. (The actual texbook
page from which this problem comes can be found in the Appendix.) The objec-
tive is for students to understand how they might use formulas that they have
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learned previously, to find the area of shapes that they have not seen before. In
order to use their prior knowledge to find the area of this unfamiliar shape, the
students should use strategies like area-preserving transformations (cutting and re-
arranging) or area-doubling transformation (copying and re-arranging). Thus, the
teachers should be able to use this problem to help students learn general strate-
gies for using previously-learned area formulas to find the area of unfamiliar shapes
(Watanabe, Takahashi, & Yoshida, 2008).

In order for the students to accomplish the goal of the lesson, Japanese educators
expect the teachers to help the students develop the idea for finding the area of this
shape (Fig. 1) through neriage.

A structured problem solving approach to this lesson would begin by asking the
students to find the area by themselves. Students are expected to come up with
several different approaches and solutions.1 Japanese teachers usually monitor stu-
dents’ work during individual or group problem-solving time - using a seating chart,
for example, to record how each student approached the problem - and devise a plan
for the discussion.

Based on this plan, the teacher then assigns students to share their solutions. A
teacher might begin with one of the students who used the most common method
to share his/her method, and then ask another student to share a different one. At
this time, Japanese teachers usually avoid saying whether the answers are right or
wrong in order to provide students with the opportunity to think carefully about each
solution method. Teachers make careful use of the blackboard to help students see
all the solution methods and to help them understand each method.

Up to now, the class discussion is very similar to a favorite school activity, “Show
and Tell.” If the goal of the lesson were just to find a solution to the problem, the

Fig. 1 Reprint from the
Mathematics Textbooks For
Elementary Grade 4th grade
p. 58 (Sugiyama, Iitaka, &
Ito, 2006). Reprinted with
permission from Tokyo
Shoseki Publishing Co.

1Although the textbook page includes three diagrams implying possible solutions, Japanese edu-
cators generally encourage teachers not to show these diagrams unless the students really need
it. Experienced teachers typically show the problem on the board, and discourage students from
opening the book during the class.
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lesson could end here. But because the goal is for students to acquire new mathemat-
ical knowledge, a different kind of discussion is now needed. Neriage begins after
the students have presented their various solution methods, and takes the discussion
beyond “Show and Tell” (A. Takahashi, 2008).

Neriage is a critical component of a problem-solving lesson because this is
where, using the students’ own solution methods, teachers can lead students to
acquire new mathematical ideas and concepts. The effectiveness of the lesson as
a whole thus hinges on the quality of the neriage. But neriage is difficult to do well;
the expertise required for effective neriage is suggested by the existence in Japanese
of some technical terms used to describe its component skills, such as kikanshido,
hatsumon, and bansho (these terms will be described in the following section). In
planning for the neriage portion of a lesson, teachers have to use all their knowledge
of mathematics, their knowledge about teaching mathematics, their knowledge of
students, and their skill at facilitating whole-class discussion.

Because of the extent of knowledge and skill required for effective neriage, and
the careful planning required for it, Japanese educators believe that neriage is the
proving ground of a teacher’s knowledge and expertise, and that a teacher’s knowl-
edge and expertise can be revealed by how he or she plans for it. This connection
between a teacher’s expertise and how he or she plans for neriage is explored in a
study described later in this chapter.

Knowledge and Expertise Required for Using the Textbook
to Teach Mathematics

It is obvious that teachers cannot teach content beyond their knowledge (National
Mathematics Advisory Panel, 2008), but knowledge of content is not nearly enough
to teach effectively. For example, knowing the algorithm for multi-digit multipli-
cation is not the same as understanding why the algorithm works with any two
multi-digit numbers, which in turn is not the same as knowing how to help students
acquire understanding of and proficiency with that algorithm.

The steps for multiplying two multi-digit numbers are typically written out in
the textbook. A teacher might attempt to teach students how to multiply numbers by
telling them what the textbook says and correcting wrong errors that they make. This
is “teaching the textbook”; it doesn’t require much knowledge and is rarely, if ever,
effective. “Using the textbook to teach mathematics,” as will be seen later, involves
drawing on the textbook as a resource for designing lessons aimed at developing
student understanding, and doing so requires considerable knowledge and expertise.

Japanese mathematics educators and teachers identify three levels of expertise
between “teaching the textbook” and “using the textbook to teach mathematics”
(Sugiyama, 2008):

Level 1: The teacher can tell students important basic ideas of mathematics such as facts,
concepts, and procedures.



202 A. Takahashi

Level 2: The teacher can explain the meanings of and reasons behind the important basic
ideas of mathematics in order for students to understand them.
Level 3: The teacher can provide students opportunities to understand these basic ideas, and
support their learning so that the students become independent learners.

Sugiyama (2008) writes that during the early twentieth century, which is considered
an early stage of the Japanese public education system, most elementary school
teachers were at Level 1. They told their students the facts and expected them to
memorize those facts through practice, and textbooks of the time were designed to
support that form of instruction. Although it is very important for teachers to be
able to tell students important facts, a teacher at Level 1 is not today considered a
professional.

Teachers at Level 2 have to know mathematics beyond what is used in everyday
life or what is required to solve problems in elementary school textbooks. For exam-
ple, knowing the “invert and multiply” rule for division of fractions is enough to be
a Level 1 teacher but is not enough for Level 2 teachers. Level 2 teachers should be
able to explain how multiplying by the reciprocal of a fraction produces the quotient.
This type of knowledge is important for helping students understand mathematics.
Japanese mathematics educators regard a teacher at Level 2 as a professional.

Although Level 2 teachers are considered professionals, Japanese mathematics
educators believe that all teachers of mathematics should be at Level 3, because
Level 2 teachers cannot provide adequate opportunities for most students to develop
proficiency with understanding.

The differences between Level 3 teachers and teachers at the other levels can
be understood by looking at how they might use a problem in a textbook. A Level
1 teacher would present the problem and show the steps for solving it. A Level 2
teacher would show the steps and explain why those steps are correct and useful.
A Level 3 teacher, in contrast, would present students with the same problem, pro-
viding structure and guiding the conversation so that that students would arrive at a
new understanding as a result of their own efforts to solve it. The philosophy behind
Level 3 teaching is that students should have a reasonable amount of independent
work, such as problem solving, in order to develop knowledge of, understanding of,
and skill with mathematics (National Research Council, 1989; Polya, 1945).

These differences exist between teaching the textbook and using the textbook to
teach mathematics. But to make this happen in the classroom clearly requires much
greater knowledge and expertise.

What This Distinction Among Level 1, Level 2, and Level 3
Teachers Means in Terms of Teacher Knowledge and Expertise

Japanese mathematics educators can safely assume that most university students
have a Level 1 knowledge of mathematics. Their concern, therefore, is to move
those students toward Level 2. Sugiyama (2008) argues that one of the major goals
of teacher preparation is to develop a good understanding of the teaching materials.
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The courses for elementary mathematics teacher preparation in Japan mainly
focus on examining the contents of mathematics for elementary grades and devel-
oping deeper understanding of those contents. This process is often similar to
kyozaikenkyu, which means “studying teaching materials for establishing deeper
understanding for better teaching” (Watanabe et al., 2008).

For example, there are several formulas for finding the area of basic geometric
figures. Most students who come to a teacher preparation program already know
those formulas and how to use them to find areas of basic figures. Although some
students might forget those formulas, looking back at their elementary school text-
books can help them recall all the facts. The university courses help the teacher
candidate see how the formulas are developed, how they are related to each other,
how they are related to other areas in mathematics, and potential difficulties students
might have with learning the formulas. Investigating a topic in this way is typical
of kyozaikenkyu and is an essential part of teachers’ preparation for everyday teach-
ing; hence these courses also introduce the teacher candidates to kyozaikenkyu as a
critical skill for becoming a part of the teaching profession.

Because the contents of mathematics for all the elementary grades cannot be
covered in short courses, even becoming a Level 2 teacher may not be possible by
simply completing university courses. Therefore, preparing teacher candidates to
conduct kyozaikenkyu is important, as it equips them to continually deepen their
knowledge and understanding of mathematics throughout their career.

Moving student teachers to Level 3 is even further beyond the scope of what can
be accomplished during the university training. Because teaching is a cultural activ-
ity and cannot be learned like the use of a computer, the prospective teachers can
not become experts quickly by merely listening to lectures, reading textbooks, and
watching videos. Teaching is something that needs to be “learned implicitly, through
observation and participation, and not by deliberate study” (Stigler & Hiebert, 1999,
p. 86). Therefore, becoming a Level 3 teacher is demanding and time-consuming,
requiring continuous learning after the teacher preparation program is completed.

Although moving toward Level 3 requires continuous professional develop-
ment beyond the teacher preparation program, teacher candidates can learn what
is required for Level 3 through coursework. Their preparation should help the can-
didates understand what it means to be a Level 3 teacher, should aim to convince
the student teachers of the importance of striving to become Level 3 teachers, and
should show them the pathways by which they might get there.

As part of helping teacher candidates understand what it means to be a Level 3
teacher, the following major technical terms that describe the expertise involved in
Level 3 teaching are usually introduced and discussed during the university training.

The term hatsumon means “Posing key questions to students.” Hatsumon is
important for teaching through structured problem solving because the way a prob-
lem is posed influences students’ learning significantly. Good hatsumon provokes
students to think mathematically, using their prior learning to learn something new
(Shimizu, 1999).

Kikanshido and kikanjyunshi are both used to refer to the deliberate activity
of a teacher moving among the students’ desks while they work, monitoring and
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supporting them in their efforts. During kikanshido/kikanjyunshi, the classroom
teacher observes how each student is solving the problem, considers the order in
which students might be invited to present their solutions, and provides appropri-
ate support to individual students. The teacher does not spend too much time with
any one student, however, since a major goal of this phase is for the teacher to
know how all students are approaching the problem (Shimizu, 1999). Also, because
kikanshido/kikanjyunshi is for the teacher to prepare for polishing the students var-
ious solutions and helping them learn important mathematics through neriage, the
Japanese teachers avoid telling students how to find the answer to the problem at
this time.

Bansho is the word for blackboard writing. For Japanese teachers, blackboard
writing is a critical component of teaching, serving several purposes. One is to
organize various students’ approaches to the problem to enable comparison and
discussion of these approaches. It helps the students follow the neriage process.
Another is to help the students summarize the lesson when they take notes during
the class (Yoshida, 2005).

For teachers to become Level 3, using the textbook to teach mathematics,
Japanese mathematics educators believe that the teachers should have clear goals
for the lesson and plans for hatsumon, kikanshido, and bansho, none of which come
from the textbook page.

How do Level 1, Level 2, and Level 3 Teachers Plan a Lesson
Differently?

As a way to uncover the differences in teacher expertise at Level 1, Level 2, and
Level 3, an empirical study was conducted with selected prospective and practicing
teachers in Japan to see how they would plan a lesson from the same page of a
mathematics textbook.

The Subjects of the Study

The subjects of this study were selected from prospective teachers and practicing
teachers in one city in Japan. Level 1 teachers and Level 2 teachers were asked
to participate in this study voluntarily from the teacher preparation program at the
major university in the city. The participants were given questionaires in written
format and asked to complete them by themselves. This was not a part of their
course work.

Prospective teachers from the first year of the teacher preparation program
were selected as Level 1 teachers. All students demonstrated their proficiency
in elementary and junior secondary level mathematics by passing a rigorous and
comprehensive entrance examination which covered the major academic subjects,
including mathematics. They had not, however, completed the teaching methods
course for mathematics. For Level 2 teachers, students in the fourth year of the



The Japanese Approach to Developing Expertise 205

university teacher education program were selected. These students had com-
pleted the teaching methods courses as well as the student teaching requirements.
Japanese mathematics educators and teachers regard these students as well-prepared
to become teachers.

Level 3 teachers were selected from the teacher leaders in the area around the uni-
versity by one of the leading researchers in mathematics education in the area. These
teachers are respected among other teachers as knowleadgeble and experienced
classroom teachers in elementary school mathematics. Although they specialize
in elementary school mathematics, they are self-contained classroom teachers and
teach most subjects everyday in local elementary schools.

Method

Subjects were asked to complete a questionnaire designed to elicit how they use
their knowledge of mathematics and pedagogy to plan a lesson based on a text-
book. Teachers worked from one textbook page from the mathematics textbook
series most widely used in Japanese public elementary schools.2 All questions were
posed in Japanese and the subjects of this study wrote their responses in Japanese.
Four Level 1 teachers, four Level 2 teachers, and three Level 3 teachers participated
in this study, and all the responses from these teachers were analyzed in Japanese
and translated into English after the analysis.

In English, the questions that were posed to the prospective and practicing
teachers were these:

1. To teach this content, how would you segment your given 45 minutes. Please
explain how you would divide the lesson into segments and how many minutes
you would spend for each segment.

2. What is the most important point of the lesson for students to understand? Why
do you think it is important?

3. In order for students to understand the main point of this lesson, which part of
the lesson do you think should be emphasized? Why do you think that part of the
lesson should be emphasized?

4. This textbook page instructs students to find multiple ways to calculate the area
of the given shapes. Why do you think the textbook asks students to come up
with multiple ways?

5. What methods do you think students will come up with? Besides Naoko’s
answer, please anticipate students’ responses and give them in order from most
likely to least likely.

6. During and after the lesson, what point of view and method would you use to
evaluate whether (a) students have attained the goal of the lesson, and (b) if the
flow of the lesson and teacher’s questions/reactions were appropriate?

2See Appendix.
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Results

As the following summaries will show, there were clear differences in how teachers
at different levels would design a lesson based on the given textbook page.

1. To teach this content, how would you segment your given 45 minutes. Please
explain how you would divide the lesson into segments and how many minutes you
would spend for each segment.

The responses to this question among Level 2 teachers and Level 3 teachers were
quite similar, and quite distinct from responses from Level 1 teachers.

Each Level 1 teacher segmented the lesson differently. Three out of four allocated
time at the beginning of class to guide students to find a way to calculate the area of
the shape. Only one Level 1 teacher planned to ask the students to solve the problem
by themselves without any guidance. One of the Level 1 teachers planned to use all
the questions and tasks on the page while the other Level 1 teachers modified some
of the questions and tasks on the page.

Level 2 and Level 3 teachers segmented the lesson in very similar ways. The
lesson in the textbook begins with an introduction to the problem and asks students
to solve the problem by themselves without any guidance or hint to calculate the
area. One Level 2 teacher allocated time at the beginning of the lesson for reviewing
what the students had learned about finding area. After students spent time solving
the problem by themselves, all the Level 2 and Level 3 teachers planned to have
time for a class discussion to compare and discuss various methods for finding the
area of the shape. These responses clearly indicate that all the Level 2 and Level
3 teachers planned based on the form of structured problem solving that Stigler
and Hiebert (1999) described as characteristic of the Japanese approach to teaching
mathematics.

The major difference between Level 2 and Level 3 teachers was the length of the
time they allocated for individual problem solving versus whole class discussion. All
Level 3 teachers allocated more time for whole class discussion than for individual
problem solving. Among the Level 2 teachers, three of them allocated more time
for individual problem solving than for whole class discussion while the fourth one
allocated equal time.

Another difference was in the time allocated for practice. Although the textbook
page includes two similar problems at the bottom of the page, two of the Level
3 teachers allocated no time for the problems. According to the teacher’s manual
the textbook page is designed for one class period, 45 minutes. These two Level 3
teachers would apparently choose to spend all the class time on solving one problem,
leaving these two problems for homework exercises. Most Level 1 teachers and
Level 2 teachers included all the tasks on the textbook page in the 45 minutes lesson.

The following Table 1 shows an example from a teacher at each level.

2. What is the most important point of the lesson for students to understand? Why
do you think it is important?
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Table 1 Some of the responses to question 1

A Level 1 teacher’s response A Level 2 teacher’s response A Level 3 teacher’s response

Think about how to find the
area (5 min)

Review prior learning (5 min) Introduction to the problem:
encourage students to use
prior learning to find the
answer (10 min)

Explain Naoko’s idea [which is
described in the textbook]
(5 min)

Individual problem solving
(10 min)

Individual problem solving: let
each student explain the
solution method by using
diagrams, math sentences, or
words (10 min)

Ask students to describe other
approaches and make sure
all the approaches reach to
the same area (10 min)

Comparing and discussing
(10 min)

Whole class discussion for
examining each solution:
present own solution and
understand other solutions.
Find similarities and
differences among the
solutions (20 min)

Exercises (15 min) The first exercise (10 min) Summarizing: reflect on own
solution (5 min)

Check the answer for the
excises (10 min)

The second exercise (10 min)

All the responses to this question include either or both of the following two
points: that the area of the shape can be found several different ways, and under-
standing that the area of the shape can be found by using the prior knowledge of
how to find the area of basic figures such as rectangles and squares. All the Level 1
and Level 2 teachers point out one of these while all the Level 3 teachers mention
both.

Two Level 1 teachers argue that the most important point is to understand that
there are multiple approaches for finding the area. Both of them explain that it is
important to see a problem with multiple viewpoints. Another Level 1 teacher argues
that it is important for students to be aware that they can solve problems using their
prior learning because this thinking skill would help students when they grow up.

Three out of four Level 2 teachers highlighted that the most important point of the
lesson is for students understand that the area of the composed shape can be found
by manipulating the shape, such as by cutting it into two rectangles and rearranging
the parts into a rectangle or square without changing the area. Compared to the ideas
of the Level 1 teachers, these teachers identified an important generalization of the
different approaches. Another Level 2 teacher argues that the most important point
is to help students understand the merits of each approach for finding the area in
terms of simplicity and reliability.

Each Level 3 teacher provided a more comprehensive answer than the Level 1
and Level 2 teachers. In addition to the Level 1 and Level 2 teachers’ answers, Level
3 teachers were explicit about what the students should learn through comparing and
discussing multiple approaches for finding the area. For example, students should
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understand that some of the approaches that they discussed in the class might be
useful for finding the area of other shapes. Two of the Level 3 teachers also wrote
about helping students foster their ability to express their ideas by using mathemati-
cal expressions and diagrams. One of the Level 3 teachers wrote that the discussion
should help students develop the ability to foresee, with other geometric shapes, that
their area could be calculated using the formulas for area of rectangles and squares.

3. In order for students to understand the main point of this lesson, which part of
the lesson do you would think should be emphasized? Why do you think that part of
the lesson should be emphasized?

In responding to this question, most Level 1 teachers pointed to the part of the
lesson where the students think about how to find the area of the shape, while all the
Level 3 teachers emphasized the whole class discussion of comparing and exam-
ining the solution methods. The Level 2 teachers were evenly split between the
thinking part of the lesson and the discussion (See Fig. 2).

4. This textbook page instructs students to find multiple ways to calculate the area
of the given shapes. Why do you think the textbook asks students to come up with
multiple ways?

All the Level 1 teachers and two out of four Level 2 teachers responded that find-
ing multiple ways to calculate the area of the shape will help students think more
flexibly, but did not explain how this relates to the purpose of mathematics educa-
tion. On the other hand, two Level 2 teachers and all the Level 3 teachers provided
some rationale for how finding multiple ways to calculate the area would contribute
to learning mathematics. For example, one rationale was that finding multiple meth-
ods would help students understand the important idea, such as rearranging the
shape into a rectangle or a square in order to calculate the area of geometric shapes.
Others wrote that finding multiple ways would encourage students to seek better
ways to find the area.

0% 25% 50% 75% 100%

Level 3 teachers

Level 2 teachers

Level 1 teachers

Think about how to find the area

Whole class discussion of comparing
and examining the solution methods

Fig. 2 Responses to question 3 which part of the lesson you would think to be emphasized



The Japanese Approach to Developing Expertise 209

5. What methods do you think students will come up with? Besides Naoko’s answer,
please anticipate students’ responses and give them in order from most likely to
least likely.

Figure 3 shows the top anticipated solutions. Three out of four Level 1 teachers,
three out of four Level 2 teachers, and all three Level 3 teachers chose Solution A
as the most likely. One Level 1 teacher and one Level 2 teacher chose Solution C as
the most likely. All Level 1, Level 2, and Level 3 teachers included Solutions A, B
and C except for one Level 1 teacher who did not include Solution B. These three
solutions all involve considering the shape as two or three rectangles and calculating
the area of the shape using the formula for the area of rectangle. Only two teachers –
one Level 2 teacher and one Level 3 teacher – included Solution F, which divides
the shape into the unit squares and counts them to find the area. This is the only one
solution that does not require using any formula for finding the area.

(Solution A) Divide the shape 
into two rectangles and calculate 
each area by using the formula.

(Solution B) Divide the shape into 
three rectangles and calculate 
each area by using the formula.

(Solution C) Add a rectangle to 
the shape in order to change  it 
into a large rectangle. Use the 
formula to find the areas of the 
large and small rectangles. 
Subtract the area of the small 
rectangle from the large rectangle.

(Solution E) Duplicate the shape 
and arrange these two identical 
shape to make a large rectangle. 
Use the formula to calculate the 
area of the large rectangle. Then 
divide the area by two.

(Solution F) Count the number of 
the unit squares to find the area 
without using the formula for 
finding the area of rectangle.

(Solution D) Divide the shape
into two rectangles. Then move 
the small rectangle on the top of 
the shape to one side in order to 
change the shape into a long flat 
rectangle. Use the formula to find 
the area of that rectangle.

Fig. 3 Anticipated responses
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One of the notable differences between the Level 1 and Level 2 teachers on one
hand and the Level 3 teachers on the other concerns Solution C. Most Level 1 teach-
ers and Level 2 teachers anticipated that Solution C would be the most likely or the
second most likely. No Level 3 teacher thought it was the most or second most likely.

6. During and after the lesson, what point of view and method would you use to
evaluate whether (a) students have attained the goal of the lesson, and (b) if the
flow of the lesson and teacher’s questions/reactions were appropriate?

Level 1 teachers all said that they would evaluate if students attained the goal
of the lesson by asking students to solve similar problems. Their responses mainly
focus on whether the students can solve similar problems and how they solve the
problems at the end of the lesson or afterward. On the other hand, all the Level 2
teachers responded that they would base their evaluation upon the students’ work
during the class. They would also ask each student to write a journal response at
the end of the lesson as a way to evaluate if the flow of the lesson and teacher’s
questions and reactions were appropriate.

Level 3 teachers also planned to use the students’ work during the lesson.
Moreover, all three argued that careful observation of how the students respond
to the questions and tasks during the lesson is important to evaluate the lesson flow
and teacher’s questions and reactions.

Discussion

From the results of this study, two areas of expertise can be identified as important
for using the textbook effectively in mathematics teaching: expertise in structured
problem solving, and expertise in anticipating student responses.

Expertise in Structured Problem Solving

Stigler and Hiebert (1999) note that Japanese mathematics lessons often follow a
sequence of the following five activities:

Reviewing the previous lesson
Presenting the problem for the day
Students working individually or in groups
Discussing solution methods
Highlighting and summarizing the major points.

To teach mathematics using structured problem solving, teachers need to understand
the purpose of each of the five activities listed above.

Although all the teachers were asked to plan a lesson based on the same page
of the textbook, there are notable differences in how they used the contents of that
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page. The responses to question 1 demonstrate that Level 2 and Level 3 teachers
may share a common view of the lesson structure.

First, the Level 2 and Level 3 teachers plan to give the students the opportu-
nity to solve the problem by themselves. Second, the Level 2 and Level 3 teachers
include substantial time for the class discussion to compare and discuss various
approaches for finding the area of the shape. They did this even though the textbook
page includes no suggestions about having a whole-class discussion. Furthermore,
they argued that the whole-class discussion on students’ solution methods should be
the main point of the lesson. The teachers’ common responses regarding the struc-
ture of the lesson suggest that they share the structured problem solving framework
for designing their lessons and see the importance of having neriage in this lesson.
The Level 1 teachers, on the other hand, designed their lesson based on their own
idiosyncratic views of lesson structure.

The responses to question 3 show that all the Level 3 teachers agree that the main
point of the lesson is the whole class discussion around comparing and examining
the solution methods. In contrast, all the Level 1 teachers see the main point as
thinking about to how to find the area.

Although experienced Japanese teachers, like the Level 3 teachers in this study,
often emphasize that having a meaningful whole class discussion is more important
than letting each student find the area individually, it might not be easy for novice
teachers to understand this. The novice Level 2 teachers focus mainly on illuminat-
ing the merits of each approach for finding the area of the particular shape in the
problem. In contrast, Level 3 teachers see the purpose of the discussion as helping
students see how the ideas can be used for any composition of shapes. This is one of
the reasons why teachers must learn continuously to attain Level 3. The university
courses and student teaching may be able to teach what structured problem solving
lessons look like and teach the basic framework of that approach. But pre-service
preparation cannot equip teachers to see the most important points in each activity
during the lesson.

Another notable difference among three levels of teachers is how they use the
questions and tasks of the textbook pages.

Level 1 teachers tended to follow the instruction in the textbook. Level 2 and
the Level 3 teachers, on the other hand, tended to follow the flow of structured
problem solving. Although both Level 2 and Level 3 teachers would avoid explain-
ing how to solve the problem before individual students attack the problem, there
are some differences in segmenting the lesson. Level 2 teachers seem to try to
cover most or all the contents of the page. The Level 3 teachers seem less con-
cerned with covering everything on the page. Their lessons use the major task on
the page of the guiding questions and activities. This demonstrates that the Level
3 teachers chose to focus on the key question (hatsumon) for their students rather
than simply using what is on the textbook page. Thus, one might say that Level
1 and Level 2 teachers tend to teach the textbook by following the contents on
the page, whereas Level 3 teachers use the major tasks in the textbook to teach
mathematics.
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Expertise in Anticipating Students’ Responses

Although anticipating students’ responses is always important when designing a
lesson, it is especially essential for planning neriage, the whole-class discussion
of students’ solution methods. Because the discussion will change based on how
students solve the problem, anticipating all the solution methods, including possible
misunderstandings, helps teachers prepare to handle the discussion flexibly.

The responses to question 5 show that most of the teachers could anticipate a
variety of solution methods. The solutions include not only dividing the shape into
rectangles but also adding a rectangle to the shape to form a large rectangle, Solution
C. But, the Level 1 and 2 teachers anticipated Solution C as the most likely approach
whereas the Level 3 teachers considered it neither the first nor second most likely
approach. Level 1 and Level 2 teachers may be anticipating solutions based on their
own experience solving the problem, while the Level 3 teachers anticipate solu-
tions based on their insight into the students’ viewpoints. As with the ability to
understand the important points in a discussion, coursework and student teaching
are probably insufficient for developing the necessary expertise to see a problem
from the students’ perspective.

All the teachers in this study were able to find the area of the shape on the page in
several different ways, which suggests that they all possess the necessary knowledge
of mathematics for teaching this lesson. For designing the flow of the lesson, the
Level 2 teachers, like the Level 3 teachers, organized the lesson around structured
problem solving. But, the important differences in how Level 2 and Level 3 teachers
planned the lesson suggest that the knowledge about teaching mathematics acquired
in pre-service preparation is different from the expertise needed for Level 3 teaching.
In order to develop that expertise, teachers need to continue learning well after their
coursework is complete.

Helping Practicing Teachers Increase their Knowledge
and Expertise

Two Major Types of Professional Development

When designing professional development programs for practicing teachers, it is
useful to recognize that professional development falls into two categories.

The first category, which I call phase 1 professional development, focuses on
increasing a teacher’s knowledge for teaching mathematics. This includes content
knowledge of mathematics, pedagogical content knowledge for teaching mathemat-
ics, curricular knowledge for designing lessons, and general pedagogical knowledge
(Shulman, 1986). In order for teachers to develop such knowledge, phase 1 profes-
sional development usually provides opportunities to learn through reading books
and articles, listening to lectures, and watching videos or demonstration lessons.
Most university coursework falls into this category.

The second category, phase 2 professional development, focuses on developing
expertise for teaching mathematics. This includes the expertise needed to develop
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lessons for particular students, to use various questioning techniques, to design and
implement formative assessments, to anticipate students’ responses to questions and
tasks, and to make purposeful observations of students during class. For teachers to
develop such expertise, they need opportunities to plan lessons carefully, to teach
the lesson based on the plan, and to reflect upon the teaching and learning based
on careful observation. Japanese teachers and educators obtain these experiences
through lesson study (Lewis & Tsuchida, 1998; Stigler & Hiebert, 1999; Akihiko
Takahashi & Yoshida, 2004; Yoshida, 1999).

The Japanese Lesson Study Model

The practice of lesson study originated in Japan. It is the primary form of profes-
sional development there, and is credited with dramatically improving classroom
practices in the Japanese elementary school system (Fernandez, Chokshi, Cannon,
& Yoshida, 2001; Lewis, 2000; Lewis & Tsuchida, 1998; Stigler & Hiebert, 1999;
A. Takahashi, 2000; Yoshida, 1999).

Lesson study embodies many features that researchers have noted are effective
in changing teacher practice, such as using concrete practical materials to focus on
meaningful problems, taking explicit account of the contexts of teaching and the
experiences of teachers, and providing on-site teacher support within a collegial
network. It also avoids many shortcomings of typical professional development,
which has been criticized as short-term, fragmented, and externally administered
(Firestone, 1996; Huberman & Guskey, 1994; Little, 1993; Miller & Lord, 1994;
Pennel & Firestone, 1996).

Lesson study promotes and maintains collaborative work among teachers while
giving them systematic intervention and support. During lesson study, teachers col-
laborate to: (1) formulate long-term goals for student learning and development; (2)
plan and conduct lessons based on research and observation in order to address these
long-terms goals through actual classroom practices for particular academic content;
(3) carefully observe the level of students’ learning, their engagement, and their
behavior during the lesson; and (4) hold debriefing sessions with their collaborative
groups to discuss and revise the lesson accordingly (Lewis, 2002b).

One of the key components in these collaborative efforts is the research lesson –
a single lesson, typically prepared by a group of teachers, which is observed in the
classroom by the lesson study group and other practitioners, and is then analyzed
during the group’s debriefing session.

During the research lesson, the observers carefully note how the lesson unfolds,
gathering data based on the lesson plan that the lesson study group has prepared. The
research lesson is followed by a debriefing session, in which teachers review the data
together in order to: (1) make sense of educational ideas within their practice; (2)
challenge their individual and shared perspectives about teaching and learning; (3)
learn to see their practice from the student’s perspective; and (4) enjoy collaborative
support among colleagues (Akihiko Takahashi & Yoshida, 2004).

Through the lesson study process teachers have opportunities to develop the
skills for Level 3 teaching. This collaborative participant-centered professional
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development an effective approach for developing expertise based on the knowledge
that the teachers learned through phase 1 professional development.

A Framework for Designing Programs for Prospective
and Practicing Teachers

Providing a variety of effective programs and usable resources for prospective and
practicing teachers is an important role for the universties and the school systems.
The first step in designing such programs and resources is to develop a framework to
identify the purposes and target audiences. Based on the earlier discussion regarding
teacher knowledge and expertise, the three levels of teaching, and the phase 1 and
phase 2 categories of professional development, I propose the following matrix as a
framework for mathematics teacher education (Table 2).

Phase 1 for Level 1

Level 1 is the foundation for becoming a teacher of mathematics, since one cannot
teach mathematics if one does not know the content. Usually prospective teachers
who come to a university or a teacher-training institute already possess the basic
knowledge required for Level 1 teaching. If this is not the case, there should be
programs to review content knowledge, such as through online courses or individual
tutoring. Although they might be needed for only a small number of prospective
teachers, such programs could help more people become teachers. Online courses
and resources might be appropriate since the target audience may be small in number
but geographically widely spread.

Phase 1 and Phase 2 for Level 2

According to Japanese mathematics educators, developing knowledge and expertise
for Level 2 teaching should be the major focus of university teacher training pro-
grams for prospective teachers. Since knowing the content of mathematics is not
enough, Level 2 teaching requires knowledge beyond being able to solve mathemat-
ics problems for elementary and middle school students. For example, to teach the
formula for finding the area of a parallelogram, Level 2 teachers must know how the
formula was developed, why the formula works for any parallelogram regardless of
its size and orientation, and how the formula is related to other formulas for finding
the area of basic geometric shapes.

The knowledge required for Level 2 teaching is a special kind of knowl-
edge for mathematics teachers, and is often called pedagogical content knowledge
(Shulman, 1986). Since the knowledge is only required for teaching mathemat-
ics, universities and teacher-training institutes should design special courses and
resources for prospective teachers of mathematics. In other words, providing reg-
ular university level mathematics courses is not sufficient and not appropriate for
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Table 2 A framework for developing programs and resources for mathematics teacher education

To become a Level 1
teacher

To become a Level 2
teacher

To become a Level 3
teacher

Phase 1
Professional
development

Strengthen knowledge
of mathematics. . .

. . .through:
• Studying textbooks

and workbooks
• Using online resources

and courses

Acquire knowledge of
mathematics teaching
and learning–

• Pedagogical content
knowledge

• Knowledge of the
curriculum

• Knowledge of the
students

• Knowledge of
pedagogy. . .

. . .through:
• University courses
• Professional

development
workshops

• Online resources
• Classroom videos
• Classroom

observations,
including
participating in
research lessons

Update knowledge of
mathematics teaching
and learning. . .

. . .through:
• Workshops
• Evening and summer

coursework

Phase 2
Professional
development

Understand the process
of lesson study . . .

. . .through:
• Designing mock-up

research lessons as
part of university
coursework

• Lesson study during
student teaching

Develop expertise for
teaching (neriage
etc.). . .
. . .through Lesson

Study

prospective teachers. Providing dedicated courses and resources for prospective
teachers should be the major focus of Phase 1 professional development in preparing
Level 2 teachers.

At the same time, prospective teachers should develop an understanding of what
a good lesson looks like and how to design lessons. For example, Japanese teacher
candidates learn the basic form of structured problem solving, the sequence of five
activities and their roles, the technical terms hatsumon, kikanshido, and kansho and
the purpose and importance of the activities they denote.

Phase 2 professional development in Level 2 teaching should focus on introduc-
ing the idea and the process of lesson study. Engaging in lesson study offers teacher
candidates not only practice in developing lessons and teaching lessons based on
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a plan, but also practice in observing students’ learning processes and reflecting
upon a lesson.

Phase 1 and Phase 2 for Level 3

Achieving Level 3 is quite demanding and requires extensive Phase 2 professional
development. It is essential to understand the philosophy of teaching and learn-
ing mathematics, to develop a vivid image of the ideal mathematics class as a
model, and to know key instructional techniques for enabling students to learn math-
ematics independently. Most knowledge and understanding for Level 3 teaching
may be obtained through Phase1 professional development programs such as read-
ing books, listening to lectures, and observing well-designed mathematics classes.
However, acquiring the knowledge and understanding is not sufficient to develop
the expertise needed for Level 3 teaching. To develop this expertise requires consid-
erable teaching experience, with reflection. Japanese teachers and researchers work
collaboratively through lesson study to develop expertise for Level 3 teaching.

Conclusion

Japanese educators say that “good teachers know how to read between the lines
of the textbook.” We saw that in the results of the study described in this chapter.
The textbook makes no explicit mention of whole-class discussion, but the Level
3 teachers in this study said that the most important part of the lesson would be
the whole-class discussion on comparing and examining the various approaches to
finding the area of the shape.

Level 1 teachers might be able to teach the textbook, but they are not equipped
to use the textbook to teach mathematics. Level 2 teachers may be ready to use
the textbook to teach mathematics, but their teaching may not be very effective.
Because of their deep understanding of the content of school mathematics, their
ability to anticipate student responses to a task, and their skill at hatsumon, kikan-
shudo, and neriage, Level 3 teachers are able to use ideas from the textbook to help
their students learn new mathematics for themselves.

Japanese educators also say, “You can be a teacher if you complete the teacher
preparation program that universities provide. However, becoming a good teacher
is not so easy. It requires a life-long learning and collaboration with colleagues.”
This small-scale research study provides some insight into why this statement is
true, by revealing the depth of knowledge and expertise one needs to be a Level 3
teacher. Although a very few teachers might be able to attain Level 3 by themselves,
school systems and universities need to establish a system for helping the majority of
teachers develop both the knowledge and the expertise to become Level 3 teachers,
to be able to use their textbook to teach mathematics effectively.
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Appendix

Reprinted from the Mathematics Textbooks for Elementary Grade 4th grade, p. 58
(Sugiyama et al., 2006). Reprinted with permission from Tokyo Shoseki Publishing
Co. The English translations are added by the author
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Perceptions of School Mathematics Department
Heads on Effective Practices for Learning
Mathematics

Suat Khoh Lim-Teo, Kwee Gek Chua, and Joseph Kai Kow Yeo

Abstract Teachers’ knowledge of discipline-specific pedagogy affects classroom
practices which in turn affect learning by pupils. While there are many desirable
practices which demonstrate strong principles of mathematics-specific pedagogy,
teachers’ adoption and use of these practices in part depend on the value placed
on them by the school management. This chapter presents the quantitative and
qualitative findings of a survey as well as insights from interviews of primary
schools’ mathematics department heads on their perceptions of the importance of
various teachers’ practices in contributing towards effective mathematics teaching
and learning. The study shows that the department heads value practices which con-
tribute towards conceptual learning and pupil motivation to learn which go beyond
achievement in performance tests.

Keywords Mathematics teaching · Effective mathematics teaching practices ·
Mathematics heads of departments · Perceptions of effective teaching

Introduction

One of the most widely accepted axioms in education is that good teachers matter.
Good teachers are effective and their students learn. Teachers who make a difference
have been the focus of research for a long while. There have been studies looking at
generic teacher qualities and characteristics, teacher behaviors and actions in partic-
ular subject areas and factors determining these actions, and links between teacher
actions and student learning.

While teachers are the central “actors” in the classroom environment, their choice
of actions in crafting their lessons is affected by stakeholders including primarily
their pupils but also the school leaders, the parents of their pupils and, further
removed, the central education authorities determining the curriculum. Teacher
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educators who provide teacher preparation programs and professional development
courses have also significant inputs at various stages of teachers’ professional
careers. Teachers’ actions and practices are thus the result of making choices in
a complex environment which encompass situational factors and demands and
expectations of all the stakeholders.

In Singapore, mathematics teacher educators, grounded in educational theories
and necessarily strengthened through pedagogical experience, often have firm and
generally agreed ideas of what constitutes effective pedagogies which produce rich
mathematics learning. However, there appears to be a pervasive perception that
teacher educators at universities and experienced practitioners out in schools may
not be in agreement over what works in real classrooms and such differences may
result in tensions for beginning teachers moving from teacher preparatory programs
into the school environment. While the beginning teachers as professionals need to
work out their own choices of teaching actions, a deeper understanding by teacher
educators of the senior school practitioners’ viewpoints could help in resolving ten-
sions and result in easier transitions for beginning teachers from teacher preparatory
programs to schools.

The purpose of this chapter is to present a study which seeks to understand the
perceptions of school mathematics heads of departments on the effectiveness of
various practices carried out in mathematics teaching in terms of pupil learning.
This particular group of stakeholders is deemed to be very influential over teachers
as practitioners and thus such understanding would be highly informative to teacher
education faculty in their teacher education work.

Rationale for Study

The process-product research of the 1970s and 1980s addressed the issue of teacher
quality primarily by studying the impact of specific teacher behaviors on student
performance (see Brophy & Good, 1986; Doyle, 1986). Later studies on teacher
effectiveness have focused on how teacher cognition and decision-making affected
the quality of classroom instruction (Ball, 2000; Calderhead, 1996).

In mathematics education, Mewborn (2003) summarized that connections
between student achievement and teacher characteristics have not been conclusive
and that the relationship is nonlinear and threshold effects seem to occur. Although
research has not shown conclusively what these effective teacher qualities are and
how they develop or how exactly they result in student learning, there appears to
be general consensus about some characteristics of good teachers. According to
the National Commission on Teaching and America’s Future (2003), good teaching
requires that teachers have a deep knowledge of the subjects they teach, a reper-
toire of instructional skills to teach the content, knowledge about their students,
and attitudes that support high levels of learning for all students. The standards for
excellence in teaching mathematics in Australian schools (AAMT, 2006), which
was a joint effort of a professional body, the Australian Association of Mathematics
Teachers and mathematics educators/researchers at Monash University, stated the
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necessary expertise in three domains for teachers to be deemed as excellent in their
profession. The three domains are professional knowledge, professional attributes
and professional practice, each of which is shaped by and inter-related to the others.

Research studies can also explore the characteristics of effective mathematics
teachers as viewed from different perspectives by different groups of stakeholders.
Kaur (2004) studied the qualities of good mathematics teachers from the perspec-
tives of Singapore mathematics teachers and found that the desired teacher qualities
belonged to the following categories: Personal qualities, rapport/relationship with
students, teaching qualities and expectation of student work. Kaur also found that
good mathematics teachers constantly upgrade their knowledge of mathematics and
teaching of mathematics through professional development courses conducted by
institutions of higher learning or professional bodies. Sanders (2002) explored what
schools thought made a good mathematics teacher by looking at criteria listed by
80 secondary schools in the UK to candidates applying for the position of mathe-
matics teachers. She found that all the requirements fell into five broad categories –
qualifications, teaching skills, professional qualities, personal qualities and “value-
addedness” which included extra skills and knowledge beyond those which focused
on the mathematics classroom. It was interesting that the requirements for teaching
skills were generic and not specific to mathematics.

Mathematics teacher practices in classroom as a research area has been around
for a long time although not in Singapore due to difficulties in gaining access to
classrooms. This was changed with the setting up of the Centre for Research in
Pedagogy and Practice at the National Institute of Education, Singapore by the
Ministry of Education. In its first core study which was a very large scale study
to provide a window on Singapore lessons, students in mathematics classes were
observed to be mainly engaged in activities focusing on factual/rote knowledge
and procedural computation. Yeo and Zhu (2005) analyzed data collected from
59 primary five lessons and noted that answer checking, individual seatwork and
monologue teaching occupied 39%, 32% and 13% respectively of all the phases in
the mathematics lessons. While the large amount of time spent on teacher mono-
logue and questioning merely to elicit specific pre-determined “correct” answers
may seem to go against sound pedagogical principles, especially viewed in the
paradigm of constructivism, Luke (2005) who was in overall charge of this study
postulated that it could well be an effective approach for establishing the correct
concepts and use of terminology in subjects such as mathematics. Thus, while large
scale studies provide baseline data, comparative data across subjects are not really
informative and truly useful studies into effective teaching must therefore be subject
or discipline specific as they yield knowledge which can be applied in context. In
summarizing research on whether subject knowledge mattered, Darling-Hammond
(2006) wrote:

Knowing how students understand (or misunderstand) particular subjects and having a
repertoire of strategies to help students engage ideas central to the discipline is at the core
of pedagogical content knowledge (Shulman, 1987; Grossman & Schoenfeld, 2005). The
subject does matter centrally for teachers, not only in its own right as the grist for teaching,
but also as the context for developing understanding for teaching that enables learning.
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Any mathematics educator observing the TIMSS Video Study would realize that the
depth and richness of the discussions carried out in mathematics lessons in Japan
were facilitated by teachers who did not just have strong generic skills but who also
had deep pedagogical content knowledge for teaching mathematics. Through her
many studies of mathematics-specific teacher practices, Ball (2000) has stated that
depth of teachers’ understanding of Mathematics Pedagogical Content Knowledge
(MPCK) is a major determinant of teachers’ choice of examples, explanations, exer-
cises, items and reactions to children’s work. While mathematics teacher education
is a well-established area in educational research history of the United States, it is
still relatively new in Singapore.

In seeking to understand mathematics teachers’ pedagogical content knowledge
and what this expertise means in the Singapore context, a research project called
the MPCK project was undertaken from 2003 by a team from the Mathematics and
Mathematics Education Academic Group of the National Institute of Education.
Studies within the project had generated findings on pre-service primary mathemat-
ics teachers’ understanding of mathematics and mathematics teaching approaches
and strategies as could be determined from written tests (Cheang et al., 2007;
Lim-Teo, Chua, Cheang, & Yeo, 2007) and a similar but smaller study was also
carried out for practicing teachers from a few participating schools. However, while
these studies provided evidence or otherwise of the teachers’ knowledge and under-
standing, it is the ability to amalgamate, consolidate and translate such theoretical
understanding into actual practices and activities in mathematics lessons that will
result in effective pupil learning. Thus, as teacher educators, the MPCK project
team was also keen to find out whether what was deemed desirable practices were
actually taking place in schools and whether teachers were encouraged to value such
practices as effective for mathematics learning.

In Singapore schools, heads of various subject departments form the middle man-
agement and they are the ones who influence and guide teachers under their charge.
They are also expected to be pedagogical leaders since the school leaders cannot
be curriculum leaders in every discipline area. It is thus reasonable to expect that
the pedagogical practices of teachers are strongly influenced by the views of the
mathematics heads of department (HODs) of their schools even more than the ped-
agogical principles and methods encountered during pre-service preparation. These
reporting officers of the mathematics teachers would have their own professional
perceptions of the relative contributions towards pupils learning engendered by dif-
ferent teaching practices. Such perceptions, which reflect school cultures in terms
of what the school management values among various teaching practices, will affect
the teachers’ use of the different practices in their mathematics lessons. Knowing the
practices valued by heads of mathematics departments in schools will provide data
from the practitioners’ perspectives and also help the MPCK project researchers to
understand the rationale behind teachers’ choice of practices.

The MPCK project thus designed and implemented a study to examine the
perceptions of mathematics HODs in Singapore primary schools with regard to
pedagogical practices for effective learning of mathematics at the primary school
level. While acknowledging that generic teaching skills and teacher dispositions and
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characteristics are of great importance, the study focused specifically on practices
which applied to mathematics teaching and learning. This chapter will describe the
study and its findings.

The Study

Context

In the Singapore education system, the curriculum is determined centrally by
the Curriculum Planning and Development Division (CPDD) of the Ministry of
Education and implemented across all schools. Other than for very few special-
ized schools, all the mainstream schools implement this common curriculum due
to compulsory national examinations at milestone junctures of schooling. There are
regular communication sessions between CPDD and schools to ensure that curricu-
lum objectives are clearly understood and content changes or new emphases are
made known to the schools. In fact, all textbooks used by schools have to be certi-
fied by the CPDD as complying with the requirements of the curriculum in terms
of content and level of difficulty. There is thus a high degree of adherence to the
specified curriculum by all schools.

In addition, in this very centralized system, teachers are centrally employed by
the Ministry of Education and posted to the schools according to staffing needs. In
fact, the teachers are already appointed employees of the Ministry of Education
before being sponsored for pre-service teacher preparation at the single teacher
education in Singapore, the National Institute of Education (NIE). The NIE offers
all teacher preparation programs and a large portion of professional development
courses done by teachers in Singapore.

There are around 180 primary schools in Singapore and it must be noted that pri-
mary teachers in Singapore are not subject specialists but are generalists who teach a
range of subjects, the three main subjects being English, Mathematics and Science.
The three primary teacher preparation programs of NIE cover generic knowledge
and pedagogy courses in specific subject areas. The curriculum subjects to be taken
by pre-service teachers are mainly determined by the employer, the Ministry of
Education, based on the needs of the system and hence Mathematics is a subject
which is taken by almost all the student teachers. There are no pre-requisite require-
ments other than at the basic level of a credit pass at the Cambridge GCE “O” level
examinations and this can result in issues concerning the mathematics competency
level of the teachers.

Pedagogical practices of mathematics teachers are learned and developed in
two environments, firstly, during their teacher preparation programs or subse-
quent professional development courses and secondly, in the school environment.
Mathematics pedagogy courses in NIE’s teacher preparation programs tend to
encourage learner-centered constructivist approaches to teaching mathematics and
these practices are also endorsed and encouraged by the CPDD in the syllabus docu-
ments and communications with school curriculum leaders. However, as mentioned
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earlier, the actual practices observed in Singapore’s mathematics classrooms tended
to emphasize procedural correctness and knowledge of meanings of concepts with-
out discussion of the how these meanings could have been derived. While feedback
from student teachers indicates that the methods which they acquire and develop
during their teacher preparation courses are valued as meaningful and effective for
learning, there is also feedback from practicing teachers that such methods were
too time-consuming and thus impractical. This disconnect could be attributed to the
“achievement-in-examinations” culture which pervades the society and the school
system in Singapore. It appears that instrumental understanding is preferred as
the more time-efficient and effective way of achieving high student performance
at examinations, especially the high-stakes national examination at the primary
school-secondary school interface.

In the highly competitive environment of Singapore, not only are students and
parents concerned with individual examination performance, schools also are con-
cerned with the overall performance of their students in the national examination. In
such a context, it was of interest to the research team to find out whether math-
ematics HODs would value more the practices which efficiently generate better
examination results as compared to those which foster longer-term understanding
since the HODs are the reporting officers for teachers and are also responsible for
leading and setting directions for teachers teaching their subjects. Generally, schools
use the Ministry of Education’s Enhanced Performance Management System
(EPMS) forms for staff appraisal and rate their teachers using the performance indi-
cators which place great emphasis on generic pedagogy and class management. The
researchers do not know of any school which uses mathematics-specific appraisal
tools for assessing the performance of mathematics teachers.

In understanding the sample of the study, the reader should note that while there
is a growing proportion of graduate teachers in the primary schools, subject HODs
may or may not be graduates or have any specific academic qualifications for the
subject. These HODs would usually have started out as generalist teachers but, in
addition to recognition of their leadership capabilities, they get appointed to such
positions due to their experience and strengths in teaching the particular subject.
Once they assume such a management position, their teaching duties will, in gen-
eral, be limited to that specific subject. Teachers who are selected to be HODs by
schools are usually sent for a management program of which a small portion is
in the curriculum subject area. Also, while teaching excellence for and inclination
towards a particular subject and management potential are the usual factors affect-
ing the appointment of HODs, a requisite experience in terms of number of years is
not a necessary condition.

Procedure

The study was carried out through a questionnaire. These questionnaires were
mailed to all the primary school mathematics HODs. The questionnaire required
the HODs to rate a list of 35 items on practices carried out in mathematics lessons,
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assessing their importance in contributing to effective mathematics learning. The
questionnaires were returned by post.

After the quantitative analysis, a series of one-to-one interviews was conducted.
A sample of 10 HODs was chosen from the pool of respondents for the one-one
interviews to seek clarifications on their rating of the items and obtaining a fuller
picture of HOD’s thinking on practices in mathematics teaching. This sample com-
prised HODs with varying number of years of teaching experience, academic and
professional qualifications. Although the sample was small, it included HODs with
different demographic characteristics and who belonged to schools with differing
pupil abilities. More elaboration will be given in the qualitative analysis section.

The interview started, as an introduction, by eliciting information on how
these key personnel appraise their teachers’ mathematics teaching performance.
Questions were asked on the mathematics practices which they valued, particularly
those with very high ratings and those they valued the least. They were then asked
to elaborate on how these practices have impact on pupils’ learning in terms of
performance and attitude. Each interview lasted approximately 1 h.

The Instrument

The instrument used was a questionnaire in which the participants were asked to rate
a list of 35 practices of mathematics teachers which may be observable in mathemat-
ics teaching. The rates, on a scale of 0–10, were their assessment of the importance
of each practice as contributing to effective mathematics learning by pupils. There
were also some open-ended questions where the HODs could expand on their views.
While the open-ended questions were crafted for the purpose of elaboration on their
responses, the development of the items in the questionnaire was built upon earlier
work of the MPCK project team, to be explained below.

In the MPCK study, the project team developed an MPCK framework consisting
of four constructs which mathematics teachers were expected to have and to apply
to their teaching. These were: (i) Content knowledge with deep understanding, (ii)
Multiple representations of concepts, (iii) Understanding the cognitive demands of
mathematical tasks, and (iv) Ability to identify learner difficulties and misconcep-
tions. The first construct here does not refer to higher level of mathematics content
as covered at university levels but rather a deep understanding of content relevant
to the primary school mathematics curriculum. Interested readers may refer to Lim
et al. (2007) for more details of the project’s framework of MPCK.

While the constructs gave a framework to what we understood as MPCK, they
were rather abstract and it was necessary to actualize them into a list of teaching
approaches, practices or actions which could be observed or deduced from what
happened during mathematics lessons. These practices were identified through the:

(a) analysis of the video-recordings of some units of mathematics lessons con-
ducted by beginning teachers,
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(b) researchers’ experience through years of observing student-teachers in their
school practicum, and

(c) teaching methods advocated by the mathematics curriculum document of
Singapore’s Ministry of Education

The term coined for these practices was MPCK-in-action practices. The list of prac-
tices was distilled down to 35 practices which could be observed in mathematics
lessons. These 35 MPCK-in-action practices were considered by experienced math-
ematics teacher educators to be important for pupil learning and it was found that
they could be grouped under ten categories as given in Table 1. To check for con-
tent validity, experienced mathematics teacher educators not in the research team
were asked to examine and categorize these practices. In general, there was no
clear mapping of practices to the four MPCK constructs given earlier since know-
ing that a particular construct was present must be imputed from some combination
of practices exhibited by a teacher and this combination could vary between differ-
ent situations and contexts. Nevertheless, there was consensus that all the practices
taken holistically would cover the four MPCK constructs.

The titles of these categories, for example Sequencing of Activities and
Explanation, carried neither positive or negative values but each practice within
a category carried adjectival or adverbial descriptors for which an observer would
need to make a value judgment as to whether such a practice was demonstrated. For
example, while Explanation is a category, the item Explains Clearly and Concisely
carries the descriptors of “clearly” and “concisely”. While some categories con-
tained more items, there were some which contained only one or two practices,
because the category was rather holistic and could not be broken down into different
component practices.

In addition to these 35 items and the open-ended questions, the survey ques-
tionnaire also asked for demographic data pertaining to the HODs’ qualifications,
teaching experience and experience as a mathematics HOD. Also, the HODs were
given opportunities to clarify and elaborate their views through three open response
questions. Specifically, the questions provided opportunities for them (i) to explain
their ratings, (ii) to identify two most important practices which could include prac-
tices not listed among the 35 items and (iii) to explain how these valued practices
would influence pupils’ learning outcomes.

Analysis of Data

From the data collected, quantitative analysis included calculating the mean rat-
ings of each item and ranking the items in order of importance. The data was
also analyzed to see if the responses were affected by the HODs’ experience or
qualifications.

For qualitative data, the interviews were transcribed and studied mainly to pro-
vide elaboration on why the HODs regarded some practices were considered more
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Table 1 Survey items according to categories

General categories Observable mathematics teachers’ practices

Sequencing of activities 1. Sequences learning activities logically
2. Structures examples/tasks from simple to complex
3. Adopts the concrete-pictorial-abstract approach where applicable

Choice of activities 4. Identifies and selects the most suitable learning activity to teach a
certain topic

5. Designs/modifies learning activities to match pupils’ learning needs
6. Uses a variety of learning activities to develop the given concept

Connections between
topics and between
concepts

7. Builds on pupils’ prior knowledge to teach new knowledge
8. Relates/applies concepts to the real world context
9. Provides opportunity to integrate topics/concepts learnt

10. Makes links between topics/concepts
Balance between

concept development
and mathematical
procedures

11. Consciously emphasizes the underlying reasons/explanations for
the given mathematical procedure

12. Focuses the pupils on the essential steps and necessary conditions
in procedures

13. Emphasises computational speed and accuracy
14. Allows pupils to explore alternative procedures in solutions
15. Provides pupils the opportunity to identify and rectify errors in

presentation of solutions
16. Places due emphasis on conceptual understanding

Explanation 17. Explains mathematical terms accurately
18. Explanations are appropriate to the learners’ level
19. Explains clearly and concisely
20. Uses appropriate range of examples
21. Uses non-examples to enhance pupils’ understanding of concepts
22. Uses multiple modes of representations for developing concepts or

establishing procedures
23. Provides counter-examples for the concept/procedure

Role model in
demonstrating
mathematical
processes

24. Models exemplary mathematical behaviour (e.g., Being logical
and systematic in presentation, using mathematical instruments
correctly)

Mathematical
communication

25. Uses correct mathematical terms and language
26. Makes provision for pupils’ mathematical communication

Mathematics curriculum 27. Displays knowledge of Singapore mathematics curricular
emphasis and syllabus requirements

Questioning techniques 28. Monitors pupils’ understanding through appropriate questions
29. Uses structured questioning to facilitate development of concepts
30. Uses structured questioning to establish mathematical procedures
31. Asks questions to stimulate mathematical thinking processes e.g.,

comparing, classifying, generalizing, deducing etc
Responding to students 32. Detects pupils’ errors/misconceptions

33. Analyses the cause of pupils’ errors/misconceptions
34. Takes appropriate actions to rectify errors and/or correct

misconceptions
35. Adopts alternative explanation/representation when pupils

encounter difficulty in learning concepts/procedures
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important than others. The responses were examined to identify the themes and pat-
terns and whenever possible typical commentaries from the HODs were used to
illustrate these themes and patterns.

Findings

Quantitative Analysis of Survey Items

From all the primary schools in Singapore, 81 HODs responded by completing and
returning the questionnaire. The demographic data of these HODs showed that about
two-thirds of them had more than 10 years of teaching experience. The distribution
according to years of mathematics teaching experience is given in Table 2.

Table 2 Distribution of HODs across experience in teaching mathematics

Years of mathematics teaching experience Percentage of the 81 respondents (%)

Up to 5 years 11.1
6–10 years 22.2
11–20 years 23.5
More than 20 years 43.2

About 25% have a degree as their highest academic qualification though not
necessarily a degree in Science or Mathematics and 56% had taken a full-time pro-
fessional diploma specially tailored for preparing experienced teachers to become
department heads.

The Cronbach alpha for the whole instrument is 0.97. This high reliability coef-
ficient of the 35-item instrument coupled with the fact that each item is equally
weighted based on the first principal component analysis confirms that each item
contributed to an important aspect of the positive impact of good teacher practices.

A one-way ANOVA results on the mean of all items was employed to verify
whether the responses were affected by the respondents’ number of years of teach-
ing mathematics, number of years as HOD, their highest academic qualification and
professional qualifications. None of them yielded any significant differences at 0.05
level, showing that the HODs’ profile and background do not play any crucial role in
identifying similar good teachers’ practices in contributing to effective mathematics
learning.

On a scale of 0–10 rating, with 10 being the most important, the mean rating
score for each item fell between 7.46 and 9.35 and the standard deviation for each
item between 0.59 and 3.52.

There were nine items with very high mean ratings exceeding 9.10. For every
one of these items, at least 44% (36 HODs) gave a perfect rating of 10 and 73% or
more gave ratings of 9 and 10. These items are given in Table 3 in descending order
of mean ratings.
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Table 3 Highly rated items of mathematics teacher’s practices

Item no. Mathematics teacher’s practices Mean S.D.

19 Explains clearly and concisely 9.35 0.79
34 Takes appropriate actions to rectify errors

and/or correct misconceptions
9.30 0.59

18 Explanations are appropriate to the
learners’ level

9.28 0.90

35 Adopts alternative
explanations/representation when
pupils encounter difficulty in learning
concepts/procedures

9.21 0.89

33 Analyses the cause of pupils’
errors/misconceptions

9.19 0.90

32 Detects pupils’ errors/misconceptions 9.15 1.01
3 Adopts the concrete-pictorial-abstract

approach where applicable
9.14 1.32

5 Designs/modifies learning activities to
match pupils’ learning needs

9.12 1.07

2 Structures examples/tasks from simple to
complex

9.10 1.17

The high ratings of items 18 and 19 indicate the importance of clear and pre-
cise explanations. Also, all four items belonging to the last category Responding
to students which concerns detecting, analysing and rectify errors and misconcep-
tions appropriately are also very highly rated. These practices are very strongly
regarded by the HODs as essential to promote clear understanding by pupils and
strong performance in achievement tests.

Table 4 below shows the three items with the lowest ratings. These three items
were the only ones with mean ratings below 8.00. The lowest rated item 21 had a
low mean because three respondents gave it a zero rating, a fact which also accounts
for the high standard deviation. However, the same three HODs gave high ratings of
8 and above to item 23 which was to provide counter-examples for concept or pro-
cedure. Nonetheless, item 23 was also a comparatively low-rated practice. In item
23, the use of counter-examples was for procedures as well as concepts and this
item may have been rated more highly due to “procedures”. It is quite common for
teachers to show how pupils should not carry out procedures but uncommon for pri-
mary mathematics teachers to show non-examples of concepts or counter-examples
of statements. The relatively low rating of item 13 was a little surprising considering

Table 4 Three lowest rated items of mathematics teacher’s practices

Item no. Mathematics teacher’s practices Mean S.D.

21 Uses non-examples to enhance pupils’ understanding of concepts 7.46 3.52
13 Emphasises computational speed and accuracy 7.49 2.68
23 Provides counter examples for the concept/procedure 7.96 2.04
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that Singapore pupils’ good computational skills seem to indicate a strong emphasis
by their teachers.

Results from Open-Ended Questions

The responses to the open-ended questions in the survey showed the practices which
they valued contributed towards two overarching goals: (a) conceptual understand-
ing by pupils and (b) the affective aspects of motivating pupils through helping them
understand and enjoy mathematics. What came through in the open responses was
that HODs were very concerned with true mathematical learning beyond mere com-
putational speed and accuracy which also explained the relatively lower rating of
item 13. They valued the practices which contributed towards these goals and these
practices can be grouped into five themes as follows.

The first is that effective mathematics teachers should adopt the concrete-
pictorial-abstract (C-P-A) approach wherever possible in the teaching of mathemat-
ics to ensure pupils have correct conceptual understanding. This is not surprising
as the C-P-A approach has been advocated in the Singapore mathematics syllabus
since the 1980s. The HODs also saw activity-based lessons and the practice of using
manipulatives as effective for engaging learners.

The second theme substantiates the ratings of two of the top three items, i.e.,
the ability to present materials and explain clearly. Several HODs commented that
The teachers must be strong in mathematics pedagogies and must ensure that their
explanation is clear,. . ., presented in a logical and systematic way. Choice of activi-
ties, importance of sequencing the activities with clear explanations were perceived
as essential in mathematics pedagogy.

Yet another recurring theme is the recognition that mathematics is a hierarchical
subject, therefore there is a need to review prior knowledge and to teach from what
is familiar to a new concept which is unfamiliar. One HOD wrote, Mathematics is
a subject which requires pupils to build on prior knowledge and concepts learned
while another HOD shared that teachers must ensure that pupils have the foundation
before proceeding to the current topic.

The fourth theme is the importance of relating mathematics to the real world
context so that pupils can see meaning in the mathematics they are learning and
will be motivated to learn. As written by one of the HODs, I think it is essential
that pupils are able to relate what they have learnt to the real world because then
they will see meaning in what they are learning and by another, I certainly think
that relating the mathematical topics to real life context is absolutely necessary to
cultivate their interest in the subject.

The last theme is related to the second highest rated item and the ability to diag-
nose errors and remediate errors is also another important mathematics teaching
practice. As one HOD puts it, Teachers must have adequate intervention skills when
they diagnose a particular learning disability or lack of mastery of a mathematics
skill.
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For the last question in the questionnaire, the HODs did not refer to the list
of teaching practices to explain in depth how particular practices would influence
pupils’ mathematics learning outcomes. Instead they explained why the two main
goals as given above were important for pupil learning to take place. With regard to
conceptual understanding, one HOD wrote: Understanding concepts is crucial for
mathematics learning. No meaningful learning takes place if pupils are not aware of
underlying concepts within each topic. Another wrote: Experiential learning helps
pupils understand and “see” concepts on their own. From what they have stated, it
was clear that the HODs value the conceptual understanding and they expect teach-
ers are able to ensure that pupils gain conceptual understanding through different
learning experiences. The HODs saw value in experiential learning because pupils
were more likely to take ownership of their learning, have deeper understanding of
the concepts and have longer retention of what they have learnt.

Qualitative Analysis

The ten HODs selected for interview had varying years of teaching experience and
years as HOD. Table 5 below provides a matrix showing the characteristics of the
10 HODs, who are labelled C, E, G, K, L, N, P, R, T and W. The six HODs who
hold a bachelor’s degree or higher have their degrees indicated. Except for K and P,
all the others had undergone the diploma in departmental management program for
preparing them to be HODs.

As mentioned earlier, about two-thirds of the 81 HODs who responded to the
survey had more than 10 years of mathematics teaching experience and this was the
case for seven out of the ten selected for interview. However, compared to the overall
survey data where around a quarter were degree holders, among those HODs with
less teaching experience and those who were more newly appointed, such HODs
tended to be degree holders. This is also reflective of Singapore’s move towards
an all graduate teaching force in primary schools, through recruitment and through
upgrading of non-graduate teachers. As such, degree holders in primary schools
were expected to take on more leadership roles despite having less teaching experi-
ence. P, C and G are examples of those who were graduates recruited into teaching
while T, K and W were non-graduate teachers who subsequently went on to obtain
a degree.

Table 5 Experience of the HODs interviewed

Number of years of teaching mathematics

No. of years as HOD < 3 yrs 3–5 yrs 6–10 yrs 11–20 yrs > 20 yrs

< 3 yrs P (B.Sc) C (B.Sc) G (M.Ed) T (BA) K (BSc) W (B.Sc)
3–5 yrs E N
> 5 yrs L R
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In the one-to-one interviews, the HODs shared their experiences in their recent
appraisals of mathematics teachers, giving examples and some profile descriptions
of their mathematics teachers who were considered “strong” or “weak” teachers.
They also provided more information on what they value in pupils’ mathematics
learning in relation to Singapore mathematics curriculum framework. The analysis
of the HODs’ interviews surfaces some emerging trends which will be discussed
below.

Appraisal Procedures

Every school carries out lesson observation as part of the appraisal process. Most
teachers are observed once a year while “weaker” teachers were observed twice.
However, for some schools, only new teachers are observed. Most HODs regard
pre-conference sessions as developmental for the teachers. During their observa-
tions, eight of the ten HODs used school-designed observation checklists while the
rest used observation reports. These checklists and reports are given to teachers dur-
ing the post conference. The post conference sessions are generally considered as
feedback sessions by the reporting officer (HOD) and teachers are asked to reflect on
their practices in the observed lessons either orally or in written form. This is usually
done on the very day itself but if not possible, then within the week of observation.

HODs were also careful to include practices outside lesson time in their appraisal.
Other supplementary modes of appraisal include checking the quality of work-
sheets designed by teachers and whether they were appropriately customised for
the class level or ability. In assessing their quality of marking workbooks or work-
sheets, teachers are rated in terms of accuracy, comments and follow-up actions.
As mentioned earlier, many schools would use the Ministry of Education’s generic
EPMS framework for yearly appraisal of their teachers and the mathematics-specific
competencies would be slotted into the appropriate generic competencies.

Practices that Are Valued Highly by the HODs

The HODs gave certain important general competencies and attributes which were
not specific to mathematics teaching. Three HODs, E, R and N mentioned passion
as well as flexibility. They believed that without passion, teachers will not have the
motivation to continue to improve their practices and the commitment to exercise
desirable practices on a sustained basis. By flexibility, they meant the teacher’s abil-
ity to change their planned lesson as the lesson was carried out. Two HODs, R and
N, believed that without good class management, literally no teaching could be car-
ried out, much less effective teaching leading to effective learning. These general
aspects were not covered in our questionnaire because the project was focusing on
particular practices applicable to mathematics only. However, when the attribute
of “flexibility” was further explained in the context of monitoring pupil under-
standing and taking appropriate teaching actions to correct misconceptions or foster
understanding, this quality of an effective teacher could then be observed through a
combination of several of the MPCK-in-action practices.
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It was interesting that two HODs considered strong content to be a necessary
condition for strong PCK. While K considered a strong grasp of the subject as part
of a mathematics teacher’s “capability”, E stated that . . . without content knowl-
edge, I think the rest cannot be achieved. Even though the teacher may be able to
deliver, have very good rapport, but there is no communication. There’s no transfer
of knowledge. . .

Almost all HODs stressed that pedagogy was important although they tended
to be vague in what they meant by effective pedagogy before being prompted to
consider the practices given in the survey. They generally reiterated good mathe-
matics teaching practices which were not very different from those mentioned in
the open-ended response part of the survey. The interviews thus confirmed the val-
ued practices under the five themes as given earlier but added elaborations on their
reasons for placing importance on these practices.

In general, the sequencing of activities, the C-P-A approach and practices which
built up conceptual understanding and making connections to real world were seen
as very effective for learning. For the C-P-A approach or using real-world examples,
reasons given by three HODs, T, L and W, were that, due to the pupils’ develop-
mental level, there was need to scaffold from concrete materials, pictures or real
life experience to the “abstract” mathematical concepts. Another HOD, K, further
added motivation for the children to learn the concept(s) as a reason for using real
life examples in difficult topics such as rates. One of the HODs, N, mentioned that
the C-P-A approach or using manipulatives may not be necessary for upper primary
level classes as she felt teachers could use IT or other aids to establish concepts. She
also pointed out that teachers needed to build upon pupils’ experience. This practice
of building on prior knowledge was also cited by L who also saw logical sequencing
of activities as very crucial to developing concepts for “otherwise, the children will
get very confused”.

From the quantitative analysis of the survey, the cluster of practices to respond to
pupils’ misconceptions, errors were very highly rated to be very important. HODs
P, W, K and E viewed detecting pupils’ misconceptions and errors and analysing
the causes as the way to help teachers realize why children do not understand their
lessons. P and W further elaborated that unless the teacher probes into the thinking
of the pupils, it is futile for the teacher to conduct remedial lessons, teaching the
same thing over and over again. P also mentioned questioning techniques as one of
the methods for teachers to monitor pupils’ learning.

Beyond learning concepts, a few of the HODs moved to discuss problem solving
as a priority area. In this area, the profile of pupils in the school was an influencing
factor. C, who was HOD in a school which constantly produced top performers,
mentioned that “it is important that a mathematics teacher models alternative ways
of solving a problem” since this would teach the pupils the need to be flexible in their
mathematical problem solving. This view was also expressed by G who thought
questioning could be used to encourage pupils to look for different solutions. L,
who was the HOD of a school with a higher proportion of weaker pupils viewed
structuring simple to complex as very important because progression from simpler
tasks and questions to harder questions will “help and lead them to the solution.” In
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addition, she also regarded explains mathematical terms accurately as vital because
it helps pupils to understand word problems. Knowing how to use the mathematical
tools was also considered very important as her pupils need a lot of guidance in this
area. N, who was concerned that her pupils were not very strong in mathematics,
thought that teachers should ask structured questions with precise vocabulary to
guide pupils and that it was important for teachers to be accurate in mathematical
language.

During the interviews, the HODs sometimes referred to their own school sit-
uations and the above discussion suggests that the different reasons for HODs
valuing the good practices are very much dependent on two main factors: (a) their
pupils’ characteristics and abilities and how these practices can best assist and
motivate pupils in their learning, and (b) the HODs’ own views of the nature of
mathematics.

There are also external influences on HODs’ perceptions of good practices such
as cluster initiatives and professional development of the HODs themselves. For
instance, G mentioned that she saw questioning techniques as important to develop
in pupils a habit of looking for alternative solutions. This was in line with the project
Habits of Mind which her school had implemented after a workshop conducted at
cluster level. T stated that takeaways from the National Institute of Education’s
course for preparation of HODs and other in-service courses have impacted her
perceptions of what good MPCK-in-action meant.

Practices that Are Less Valued by HODs

Some anecdotal explanations of their lower ratings provided the researchers new
insights into their perceptions. While some of the practices are generally highly
valued, they were considered not appropriate for all pupils, especially the weaker
ones.

Confirming the quantitative findings, the use of counter examples, non-examples
and multiple representations as part of the teaching pedagogy was less valued. From
the interviews, W felt that “teachers were not ready for such a methodology” and
that if one was not careful in giving counter examples, “it could serve to confuse
the pupils”. This view was shared by P who noted that there were many ways of
representing a concept but children may be confused if too many representations
were used. It was noted by L that “it is difficult to find counter examples” which
accounted for her not rating that practice very highly.

Also, the researchers were a little surprised at the relatively low rating given
to the item emphasising computational speed and accuracy since it was expected
that Singapore pupils were generally strong in their computation skills and the
calculator was only allowed to be used in the national primary school leaving
examination in 2009. The interviews threw some light on this with two main
reasons. T and N explained that with changing times and use of technology
such as calculators and computers, computation skills were no longer deemed
as important. As a very experienced teacher, T showed her concern for pupil
development. She explained that lower ability pupils needed time to carry out
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their computations correctly and speed should take lower priority. Being against
teachers being over rigid, she had also rated the practice focuses the pupils on
the essential steps and necessary conditions in procedures rather low. Another
HOD, E, whose pupils were of higher mathematical ability, provided the reason
that, in the climate of developing pupils to be innovative and enterprising, over
focus on essential steps in problem solution may be too prescriptive and stifle
thinking.

The information from the interviews suggests some practices were regarded as
less important by HODS for a few reasons: the nature or characteristics of their
pupils, the relevance of the practices at the different grade levels, and the readiness
of the teachers in their schools.

Practices that Are Considered as Having an Impact on Pupils’ Mathematical
Development

The interviewed HODs have a broad view and a diverse blend of beliefs on what
constitutes pupil mathematical development. A number of them identified math-
ematical development to encompass areas like (i) test performance, (ii) ability to
appreciate how mathematics is related to daily life, (iii) stretching pupils cognitively
and (iv) having a positive attitude towards the subject.

K was of the view that mathematics is a hierarchical subject and therefore, a spi-
ral approach that builds on pupils’ existing knowledge and skills would be effective
in enhancing mathematical development. Two HODs, L and N, whose pupils’ math-
ematical ability were below-average also emphasised building on prior knowledge
for the same reason stated above. Two other HODs, R and W advocate a hands-on
approach through learning activities to help pupils enjoy mathematics. Though the
approach may not translate into better mathematics performance, they are confident
that it will have an impact on these pupils’ performance in the long run or positively
affect their dispositions towards mathematics.

One theme that emerged was that teachers are important role models in the math-
ematical development of pupils. Teachers’ modelling of how to overcome errors
and misconceptions is also found to be important as it will help pupils to perse-
vere in the event that they make mistakes or are stuck in problem solving. Teachers’
modelling of exemplary mathematical behavior like being logical and systematic
is also important because this will help pupils to be systematic and logical in their
presentation.

Another theme was the need to go beyond mathematical concepts and skills spec-
ified in the syllabus or textbooks. The HODs would want teachers to teach thinking
skills and processes, as well as make mathematics meaningful by moving beyond
textbook questions. They felt that this would serve to make learning holistic and
also improve pupils’ view of mathematics learning.

Generally, HODs’ evaluation of the practices that impact on pupils’ mathemati-
cal development depended to a large extent on the pupils’ characteristics, how the
pupils under their charge learn best and also how the HODs themselves defined
mathematical development.
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Implications and Conclusion

The study showed that in general, school mathematics heads of departments value
all the pedagogical practices given in the questionnaire and this finding gives assur-
ance that the curriculum leaders in schools would be emphasising such practices to
their teachers. The survey and interview findings also showed that the HODs value
more those practices which promote understanding of concepts and practices which
enhance their pupils’ attitude towards mathematics rather than those which only
concentrate on developing skills in procedures. The HODs’ evaluation of the effec-
tiveness of any particular practice is primarily determined by the characteristics of
pupils in their schools, their knowledge of their mathematics teachers’ readiness and
the HODs’ personal pedagogical practices, actions and experiences.

The findings of the study thus seem to contradict the view that, in general, math-
ematics teaching in Singapore tends to be didactical and instrumental, with great
emphasis on correct answers and correct procedures since these approaches were
seen to be effective in achieving high examination performance levels. There are
several reasons to explain this apparent contradiction. First, as is quite within cul-
tural norms, HODs in a perception survey could well be giving politically correct
responses as they clearly understand that teacher educators and the Ministry of
Education’s Curriculum Department are inclined towards deep conceptual learning
and nurturing desirable attitudes towards mathematics. Second, while HODs may
encourage teachers to provide time and energy towards understanding of mathemat-
ics concepts in lower levels, the examination-driven teaching strategies of having
intensive practice by pupils get increasingly emphasised in the last 2 years of
the primary school, leading to the very high stakes national primary school leav-
ing examination. These teaching strategies at this stage would emphasize speed,
accuracy and exposure to difficult examination-type word problems. Exploration of
alternative methods/conceptions or spending time on mathematical ideas become
unaffordable luxuries at this stage.

While the HODs strongly felt that the pedagogical practices listed in the ques-
tionnaire were desirable for effective teaching and learning of mathematics, there
were some concerns with the ability or readiness of their teachers to carry out
some of these practices well and the suitability of some of the practices for their
pupils. This was particularly the case for those practices which require teachers to
use counter-examples, non-examples and alternative methods. Effective use of such
practices requires the teachers to have deep understanding of mathematical concepts
and procedures far beyond the level at which they are teaching and the concerns
reflected by the HODs also imply some lack of deep mathematical understanding in
their teachers.

In our study, we have only sought to understand the HODs’ perceptions of what
teacher practices are important for effective learning by their pupils. We have not
gone further to understand the links between how these perceptions by HODs affect
or determine teachers’ choice of actions. The underlying assumption is that teach-
ers will be guided by their HODs’ expectations since the HODS are their reporting
officers’ holding positional authority over them and have considerable inputs in the
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teachers’ annual performance assessment. Due to the fact that many primary school
teachers are generalist teachers and not degree graduates, their sense of professional-
ism and self confidence may not be well established. Thus, in a culture where respect
for authority is strongly encouraged, the teachers would be strongly influenced by
their HODs’ expectations especially where there is a lack of conviction that they can
make better pedagogical decisions. Nevertheless, such influences may still not result
in actual practice as they could lack the capability of deeper understanding both of
content structures or pedagogical principles to carry out these practices valued by
their HODs or the Curriculum authorities. Teachers are also faced with dilemmas
of choosing between various courses of actions and lack of time for lesson prepa-
ration given the multi-faceted demands made on them from school leaders, pupils
and parents. Thus the interface between what HODs’ expectations and final actions
taken by teachers is affected by a whole range of factors and is an area for further
research.

While there is no shortage of professional development courses for Singapore
teachers, it has been the experience of NIE that teachers tend to select courses
which interest them rather than courses which they need to improve their practice.
Moreover, generalist teachers may also have some mathematics phobia themselves
which make them shy away from courses which demand deeper understanding
of mathematics concepts from themselves. The findings from other studies in the
MPCK project show that teachers are not particularly strong in articulating their
principles and providing pedagogically sound rationale for making decisions about
their teaching. They tended to use very general statements and are vague in their
explanations of what they would do in a particular teaching incident. In particular,
some were unable to produce simple counter-examples to illustrate a misconcep-
tion to pupils. It was shown in one of the studies (Cheang et al., 2007) that student
teachers who had taken a specially designed subject knowledge course for deepen-
ing their own mathematical understanding performed significantly better than those
who did not in the questions designed to test their own understanding of concepts.
This finding indicates that it is important for teachers who need to deepen their
own mathematical understanding to be helped to do so provided time and effort are
committed to such courses.

In Singapore, it is quite normal for schools to promote the latest initiative of
the Ministry of Education and to organize workshops or encourage their teachers
to take up courses in general areas such as Understanding by Design or Multiple
Intelligences. However, while these professional development efforts may provide
foundational understanding as a starting point, the project team is of the opinion
that, with the help of their HODs, mathematics teachers should analyze their own
practices more carefully, identify particular areas for improvement and seek means
to address these areas. It is important for school leaders and teachers to understand
that pedagogical content knowledge is to a large extent subject-specific and that
generic appraisal may not lead to improvement in their practices.

In their annual appraisal of mathematics teachers, the HODs used generic obser-
vation checklists/reports rather than a mathematics-specific instrument. The list of
35 items which this study has used could be a starting point for discussions within
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particular schools to determine the relevant and desirable mathematics teaching
practices for their teachers. With a more subject-specific checklist, HODs can then
help their teachers to do profiling with respect to their practices in teaching math-
ematics, thereby guiding and motivating them to be more focused and targeted in
professional development and improvement. HODs can also reflect on their own
responses to help them understand their own perceptions, leading them to develop
those under their charge more effectively.

The findings of this study and the other studies in the MPCK project provide
data and tools which mathematics curriculum leaders and teacher educators can
use for better understanding of teacher practices and capabilities in the teaching of
mathematics. While it is easy to share findings with teacher educators in Singapore
and to improve pre-service teacher education which is within the purview of the
NIE, communication to school practitioners needs to be carefully and sensitively
carried out so as to have better partnership in planning, designing, and implementing
teacher professional development.

Further research studies could be carried out on the actual effectiveness in
pupil learning which result from enhancing teachers’ practices in the classroom.
Such intervention studies would likely be resource intensive since they will need
researchers working together with teachers for extended periods at school level. As
Singapore’s education system progresses in becoming more research-guided, the
culture should evolve into a non-threatening and non-judgmental relationship where
researchers and teachers work together to improve the practice of teaching for the
benefit of our students.

Acknowledgements This chapter is based on work from the project Knowledge for Teaching
Primary Mathematics (EP 1/03 MQ), also known as the MPCK project. The authors acknowledge
the generous funding of the project from the Education Research Fund, Ministry of Education,
Singapore. The authors would like to express their thanks to Eric Chan, Wai Kwong Cheang and
Luan Eng Ng for their various contributions in the work of the project which has resulted in this
chapter.

References

AAMT. (2006, January 31). Standards for excellence in teaching mathematics in Australian
schools. Retrieved December 2, 2009, from http://www.aamt.edu.au/Standards/Standards-
document/AAMT-Standards-2006-edition

Ball, D. (2000). Bridging practices: Intertwining content and pedagogy in teaching and learning
how to teach. Journal of Teacher Education, 51, 214–247.

Brophy, J., & Good, T. (1986). Teacher behavior and student achievement. In M. Wittrock (Ed.),
Handbook of research on teaching (pp. 340–370). New York: Macmillan.

Calderhead, J. (1996). Teachers: Beliefs and knowledge. In D. Berliner & R. Calfee (Eds.),
Handbook of educational psychology (pp. 709–725). New York: Macmillan.

Cheang, W. K., Yeo, K. K. J., Chan, C. M. E., Lim-Teo, S. K., Chua, K. G., & Ng,
L. E. (2007). Development of mathematics pedagogical content knowledge in student teachers.
The Mathematics Educator, 10(2), 27–54.

Darling-Hammond, L. (2006). Powerful teacher education. San Francisco: Wiley.
Doyle, W. (1986). Classroom organization and management. In M. Wittrock (Ed.), Handbook of

research on teaching (pp. 392–425). New York: Macmillan.



Perceptions of School Mathematics Department Heads 241

Grossman, P., & Schoenfeld, A. (2005). Teaching subject matter. In L. Darling-Hammond &
J. Bransford (Eds.), Preparing teachers for a changing world: What teachers should learn and
be able to do. San Francisco: Jossey-Bass.

Kaur, B. (2004). Towards excellence in the mathematics classroom – A look at the teacher.
In B. Tadich, P. Sullivan, S. Tobias, & C. Brew (Eds.), Towards excellence in mathematics
(pp. 237–246). Melbourne: The Mathematical Association of Victoria.

Lim-Teo, S. K., Chua, K. G., Cheang, W. K., & Yeo, J. K. K. (2007). The development of Diploma
in Education student teachers’ mathematics pedagogical content knowledge. International
Journal of Science and Mathematics Education, 5(2), 237–261.

Luke, A. (2005). Making new Asian pedagogies: Classroom interaction in Singapore classrooms.
Keynote address. Redesigning pedagogy: Research, policy, practice. International conference
on Education, Singapore.

Mewborn, D. S. (2003). Teaching, teachers’ knowledge and their professional development. In J.
Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to the principles and
standards for school mathematics (pp. 45–52). Reston, VA: NCTM.

National Commission on Teaching and America’s Future. (2003). What matters most: Teaching for
America’s future. Washington, DC: National Commission on Teaching and America’s Future.

Sanders, S. (2002). What do schools think makes a good mathematics teacher? Educational
Studies, 28(2), 181–191.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard
Educational Review, 57(1), 1–22.

Yeo, S. M., & Zhu, Y. (2005). Higher-order thinking in Singapore mathematics class-
rooms. Unpublished conference paper, Redesigning pedagogy: Research, policy and practice.
International conference on Education, Singapore.



Exploring Korean Teacher Classroom Expertise
in Sociomathematical Norms

JeongSuk Pang

Abstract The teacher is expected to help students be engaged in meaningful dis-
course to support their mathematical development. Although there is widespread
awareness of such an expectation, the concern exists that many teachers do not quite
grasp the vision of the idea. This study compared and contrasted more successful
and less successful teachers in playing such a role in order to get a better understand-
ing of teacher expertise as practiced in actual mathematics classrooms. As such,
this study probed in what ways teachers contribute to creating unequally successful
mathematics classrooms and what kinds of learning opportunities would emerge for
the students. By identifying the differences and similarities between the teachers’
instructional behavior, the possibility is explored that the subtle but vital differ-
ences of teacher expertise have implications for the sociomathematical norms that
become established in the classrooms. Given that the two classes established similar
social participation patterns but a different quality of mathematical discourse, this
study highlights the importance of the teacher’s role in sustaining sociomathemati-
cal norms and discusses implications for the elements and development of teacher
expertise.

Keywords Teacher classroom expertise · Sociomathematical norms · Korean
mathematics instruction · Effective mathematical discourse · Changing teaching
practice

Introduction

With a vision of high quality teaching and learning, educational leaders have sought
to change not only what to teach but also how to teach mathematics (National
Council of Teachers of Mathematics [NCTM], 2000, 2007). Both content and
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process in school mathematics are emphasized. For this reason, the teacher is
requested to change her traditional instructional behavior which was focused mainly
on delivering well-packed information. She is rather expected to foster students’
sense-making about mathematics on the basis of sound knowledge of their mathe-
matical learning as well as that of mathematics and pedagogy (Hill, Sleep, Lewis, &
Ball, 2007). The teacher is supposed to provide students with mathematical tasks
that stimulate their intellect and orchestrate mathematical discourse by making
effective pedagogical decisions (Smith, Silver, & Stein, 2005). The teacher is also
expected to have the habit of analyzing her instruction by consistent reflection on
student learning (Artzt & Armour-Thomas, 2002; NCTM, 2007).

In the same vein, recently the Korea Institute of Curriculum and Evaluation
(KICE) established standards of mathematics teaching evaluation as a way to
improve mathematics teachers’ professionalism (Im & Choe, 2006). The standards
require the teacher to have solid knowledge of students as well as that of math-
ematics and pedagogy, to plan lessons aligned with the curriculum and tailored
to students’ ability, to implement the designs on the basis of establishing a good
learning environment, and to improve her own expertise by reflecting on her daily
teaching practice and collaborating with others.

However, such expectations of teacher expertise are not easily achieved. The
extent to which significant change occurs in the classroom depends largely on how
the teacher comes to make sense of high-quality instructional behavior and responds
to it. Despite the widespread endorsement of curricular and pedagogical changes,
many teachers have not grasped the full implications of such innovation (Kirshner,
2002). Teachers too easily adopt new teaching techniques such as the use of real-
world problems or manipulative materials, but without re-conceptualizing how such
an instructional change relates to fostering students’ conceptual understanding or
mathematical dispositions. More precisely, teachers encourage students to present
their solution methods but do not utilize such contributions as the catalyst for explor-
ing the underlying mathematics (Choppin, 2007). This is the case even for teachers
who are committed to implementing new recommendations (Fennema & Nelson,
1997; Smith et al., 2005).

Korean teachers are not exceptional in this matter. For instance, the teacher often
emphasizes the completion of each activity in the textbook rather than focusing
on the mathematical content embedded in the activity or mathematical connections
among such activities (Pang, 2002). Students are often busy doing activities with-
out necessarily thinking about mathematics. The real issue is then to understand
not the form but the quality of the teacher’s instructional behavior. What kinds of
mathematical and social exchanges occur and in what ways does the teacher play a
significant role in making such changes mathematically meaningful?

This study is intended to better understand teacher expertise as situated in actual
Korean mathematics classrooms. However, this study makes a significant depar-
ture from previous research trends where a single classroom is extensively studied.
Moreover, in previous studies the classroom is taught by a researcher rather than a
regular teacher or is supported by researchers who play an important role in shap-
ing the teacher’s instructional methods (e.g., Lampert & Ball, 1998; McClain, 2002;
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Stephan & Whitenack, 2003). Comparing and contrasting more successful and less
successful teachers can provide a unique opportunity to reflect on the subtle but
important issue of exploring teacher expertise at the classroom level. The plans and
implementation of mathematics instruction of teachers, as compared to researchers’
direct influence on such actions, can portray more realistically the challenges they
may encounter. Given this, this study probes in what ways teachers play a leading
role in creating more successful or less successful mathematics classrooms and what
kinds of learning opportunities are created for the students in these classrooms. This
study then identifies the similarities and differences between the teachers’ instruc-
tional behaviors in order to gain insights into the issues and challenges both for
teachers to pursue developing their expertise and for teacher educators to support
such efforts.

Theoretical Background

Social and Sociomathematical Norms

This study explores teacher expertise as it is activated in mathematics teaching.
A general guideline for the understanding of mathematics teaching practice is an
“emergent” theoretical framework (e.g., Cobb & Bauersfeld, 1995). In this per-
spective, mathematical meanings are neither decided by the teacher in advance, nor
discovered by students. Rather, they emerge in a continuous process of negotiation
through social interaction.

Along with the emergent perspective, two constructs of social norms and
sociomathematical norms are mainly used to characterize each mathematics class-
room (Yackel & Cobb, 1996). General social norms are the characteristics that
constitute the classroom participation structure. They include expectations, obliga-
tions, and roles adapted by classroom participants as well as overall patterns of
classroom activity. For example, the general social norms in an inquiry-oriented
classroom include the expectation that students invent, present, and justify their
own solution methods and the role that a teacher listens carefully to students’
contributions and rephrases them for further discussion.

Sociomathematical norms are the more fine-grained aspects of these general
social norms that relate specifically to mathematical discourse and activity. The
differentiation of sociomathematical norms from general social norms is of great
significance because emphasis is given to the ways of explicating and acting out
mathematical practices that are embedded in classroom social structure. Some
examples of sociomathematical norms include norms that determine what counts as
an acceptable, justifiable, easy, clear, different, efficient, elegant, and sophisticated
explanation (McClain & Cobb, 2001; Stephan & Whitenack, 2003; Yackel & Cobb,
1996). For instance, the sociomathematical norms in an inquiry-oriented classroom
may include the expectation that students should present their solution methods
by describing actions on mathematical objects rather than simply accounting for
computational manipulations.
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While participating in establishing social and sociomathematical norms, students
can develop the capability to make mathematical judgments and, more generally,
acquire mathematical beliefs and values which ultimately lead them to become
intellectually autonomous in mathematics (Yackel & Cobb, 1996). As such, the psy-
chological correlates of the sociomathematical norms are taken to be mathematical
beliefs and values.

However, several studies showed that sociomathematical norms have a posi-
tive influence not only on students’ mathematical dispositions but also on their
concept development. As students learn how to engage in the establishment and
maintenance of sociomathematical norms, they begin to develop mathematically ori-
ented explanations and justifications which, in turn, enrich their conceptual learning.
Specifically, Kazemi and Stipek (2001) attributed students’ conceptual thinking to
four specific sociomathematical norms: (a) an explanation based on a mathematical
argument, (b) understanding of mathematical relations among multiple strategies,
(c) errors as meaningful sources to re-conceptualize a problem, explore contradic-
tions, and pursue different strategies, and (d) collaborative work stemming from
individual accountability and consensus through mathematical argumentation. In
the same vein, Tatsis and Koleza (2008) identified the mathematical justification
norm, differentiation norm, validation norm, and relevance norm.

Recent studies also tend to broaden the meanings of sociomathematical norms.
Pang (2001) claims that previous studies tend to document briefly sociomathemat-
ical norms (and also social norms) mainly as a precursor to the detailed analysis
of the students’ conceptual learning established in the classroom community. She
instead explores the possibility of positioning the sociomathematical norms con-
struct as more centrally reflecting the quality of students’ mathematical engagement
in collective classroom processes and predicting their conceptual learning oppor-
tunities. Lopez and Allal (2007) use the term sociomathematical norms in a broad
sense by claiming that any norm of social interaction negotiated and interpreted
through mathematical meaning is a sociomathematical norm. Similarly, Clark,
Moore, and Carlson (2008) introduce the sociomathematical norm of “speaking with
meaning” in order to include meaning about any mathematical ideas, teaching, and
even student learning in a professional learning community beyond being limited
strictly to mathematical justifications or arguments.

Teacher Expertise in Establishing Social
and Sociomathematical Norms

Teacher expertise can be examined through various means including her knowledge
and belief of mathematics and mathematics teaching or teaching processes such as
lesson plans, implementation, and reflection. Regardless of different approaches,
teacher expertise is ultimately related to carrying out effective mathematics instruc-
tion. As such, this chapter investigates teacher expertise as situated in classroom
teaching, specifically with regard to orchestrating mathematical discourse. The
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quality of classroom discourse is the essential factor of meaningful mathematics
instruction (NCTM, 2007). Similarly, the ability to sustain quality mathematical
discourse is the critical element of teacher expertise. Given this, many studies have
recently focused on what and how a teacher needs to promote classroom discourse
in order to develop students’ mathematical ability (Walshaw & Anthony, 2008). For
instance, Hufferd-Ackles, Fuson, and Sherin (2004) describe a developmental tra-
jectory for the teacher to establish a reform-oriented classroom community in terms
of questioning, explaining mathematical thinking, sources of mathematical ideas,
and responsibility for learning. Stein and her colleagues (2008) specify five key
practices for the teacher to facilitate productive mathematical discussions: (a) antic-
ipation of students’ mathematical responses, (b) monitoring of their responses, (c)
purposeful selection of the responses for public discussion, (d) purposeful sequence
of the responses, and (e) connection of the responses.

Building on the prior studies on the teacher’s role in mathematical discourse,
this chapter intends to explore in what ways teacher expertise is enacted in actual
classrooms with regard to sociomathematical norms. The construct of sociomathe-
matical norms is expected to be a meaningful lens by which we can probe teacher
expertise in managing classroom discourse for students’ mathematical development.
To be clear, sociomathematical norms (and also social norms) are understood to be
established by social interaction between the teacher and the students (Stephan &
Whitenack, 2003; Yackel & Cobb, 1996). The development of sociomathematical
norms is based not only on the teacher’s guidance but also on students’ contribu-
tions in terms of their explanations, justifications, and argumentations of solution
methods. In this sense, students are regarded as playing an important role in devel-
oping and maintaining such norms. For instance, students sometimes stick to their
personally preferred mode of explanation even in the case that a specific sociomathe-
matical norm has been endorsed and implemented by the teacher (Levenson, Tirosh,
& Tsamir, 2006).

However, the teacher plays a leading role in establishing normative behavior
in the classroom. Levenson et al. (2006) report that certain social norms such as
explaining their own thinking were well established in the classroom whereas others
such as the challenging of peer ideas were still in need of the teacher’s prompting.
This happens more likely in the elementary school classroom in which students are
beginning to learn what it means to do and know mathematics. The teacher often
makes the decisive contribution to the classroom discourse (Smith et al., 2005).
Such decision-making process is not always easy for the teacher who needs both
to respect students’ own contributions and to consider the mathematical objective
(Ball, 1993; Hufferd-Ackles et al., 2004; McClain, 2002). The teacher is required
to judge consistently the essence of students’ activities and explanations against her
own pedagogical goals in order to make them mathematically meaningful.

The evolution of sociomathematical norms provides the teacher with an oppor-
tunity to have more direct influence on students’ mathematical development than is
true of the teacher who merely attends to general social norms. In fact, the teacher
can actively promote students’ mathematical development by taking a proactive role
in filtering students’ explanations and justifications through a mathematical lens,
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monitoring the path of discourse, and providing any necessary guidance as a repre-
sentative of the mathematical community (McClain, 2002; Stephan & Whitenack,
2003).

There have been many studies which identify various sociomathematical norms
established from elementary school to undergraduate mathematics class and illus-
trate the process by which such norms are constructed and negotiated in the
particular setting such as an inquiry-based mathematics classroom or teaching
experiments (e.g., Dixon, Egendoerfer, & Clements, 2009; Levenson et al., 2006;
Stephan & Whitenack, 2003; Yackel, Rasmussen, & King, 2001). Some stud-
ies mention the role of the teacher in initiating and guiding the establishment of
sociomathematical norms. Specifically, Yackel (2002) identifies different functions
a teacher might serve in the development of collective argumentation while analyz-
ing both productive and unproductive classroom episodes. As such, she elaborates
on the essence of the proactive role of the teacher in inquiry-based mathematics
classrooms. Similarly, Choppin (2007) suggests teachers’ specific actions that sup-
port the development of collaborative discussions: (a) seek warrants for students’
explanation to develop norms for mathematically acceptable explanations, (b) main-
tain a non-evaluative stance and seek comments from other students, (c) slow down
and clarify the discussion, and (d) attempt a synthesis or summary of a discussion.

Specifying the teacher’s role in mathematics discourse is a recent research
endeavor (Walshaw & Anthony, 2008). As a result, an understanding of what
a teacher expertise looks like in classroom teaching, specifically in relation to
sociomathematical norms, is still in its formative stages. Therefore, the teacher’s
role needs to be closely examined with regard to how the teacher pursues her
pedagogical goals based on students’ participation and contributions. This chap-
ter intends to explicate the teacher’s role with regard to establishing and sustaining
sociomathematical norms and to trace vividly in what ways such a role is closely tied
to support students’ conceptual understanding. This is based on Kazemi and Stipek
(2001)’s proposal that “the concept of sociomathematical norms provides a useful
framework for thinking about what teachers need to do to promote the development
of students’ mathematical ideas” (p. 78). The examples in this chapter can clarify to
what extent teachers can be successful in paying attention to students’ understanding
of mathematical concepts. By comparing and contrasting two teachers’ instructional
behavior, I pursue the possibility that the subtle but vital differences in terms of
teacher expertise as situated in classroom practice implicate the sociomathematical
norms that become established in the classrooms.

Method

This study is an exploratory, qualitative, comparative case study (Yin, 2002) for
which the primary data sources are classroom video recordings and transcripts. The
data used in this chapter are from a 1 year project of transforming teaching practices
in Korean elementary schools. As a kind of purposeful sampling, the classroom
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teaching practices of 15 elementary school teachers eager to improve their teaching
practices were preliminarily observed and analyzed. An open-ended interview with
each teacher was conducted to investigate his or her beliefs in mathematics and its
teaching.

Five classes from different schools that aspired to be compatible with current cur-
ricular and pedagogical recommendations were selected. Two mathematics lessons
per month in each of these classes were videotaped and transcribed. As noted,
most research on sociomathematical norms was conducted in a specific setting
in which the lessons were inquiry-based and carefully designed by the collabo-
ration between a research team and the classroom teacher in a way to promote
students’ understanding of specific mathematical contents. In contrast, this study
took place in a more naturalistic way in which the teacher decided the topics of
the videotaped lessons on the basis of her preference and implemented her own
lesson plans.

Individual interviews with the teachers were conducted three times to trace the
construction of their teaching approaches. These interviews were audiotaped and
transcribed. Additional data included videotaped inquiry group meetings in which
the participant teachers met once per month and watched the videotaped lessons
together. The main role of the researcher was to set the stage for the monthly
group meetings and to provide the teachers with opportunities to analyze their
own teaching practices as well as those of others. The teachers were encouraged
to discuss whatever seemed meaningful in relation to the videotaped lessons. In
this way, they talked about mathematics, curriculum, and pedagogy with the minor
help of the researcher. This was possible because the teachers participated in this
study voluntarily without enrolling in any specifically programmed workshops or
seminars. This design was a part of an attempt to examine teacher expertise in a
more naturalistic setting while helping them develop a keen sense of how to foster
students’ mathematical proficiency and understanding. The interview and inquiry
group data were used to understand the successes and difficulties that might occur
in the process of changing the culture of primary mathematics classrooms, as well
as the complex relationship among the teachers’ learning, beliefs, and classroom
teaching.

For the purpose of this chapter, two of the five teachers (Ms. K and Ms. Y)
were compared and contrasted with relation to social and sociomathematical norms
established in their classrooms. Both Ms. K and Ms. Y earned a master’s degree in
mathematics education and they had about 15 and 10 years of teaching experience,
respectively. Both teachers happened to teach the same grade during the project
period. While analyzing individual classes using general classroom flow, teacher’s
approaches, students’ approaches, and students’ learning opportunities, Ms. K was
particularly outstanding in that the students’ ideas and mathematical thinking were
consistently respected and meaningfully discussed. In addition, the other partici-
pant teachers designated Ms. K as the most powerful and influential teacher both
in the monthly meetings and in their interviews. Ms. Y was selected because she
demonstrated dramatic changes in her instructional approaches. The transformation
was noticeable not only by the researcher but by the participant teachers as well.
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Whereas she was successful in transitioning toward desirable teaching practices,
Ms. Y experienced some difficulties in the process.

Note that this chapter intentionally chose the most successful teacher and
less successful teacher instead of the least successful teacher. Such compari-
son between expert and novice teacher may be too obvious to provide practical
implications for teachers who are eager to improve their mathematics instruc-
tion but often meet some challenges in the process. Instead, comparison between
unequally successful teachers may provide us with subtle but significant issues
and challenges in the improvement of teacher classroom expertise in mathematics
instruction.

Data analyses had two stages: individual analysis of each classroom and com-
parative analysis. Because case study should be based on the understanding of the
case itself before addressing an issue or developing a theory (Stake, 1998), each
teacher’s teaching practice was very carefully scrutinized in a bottom-up fashion.
The central feature of the analysis was to compare and to contrast preliminary infer-
ences with new incidents in subsequent data in order to determine if the initial
conjectures were sustained throughout the data set. In addition, the interview and
monthly meeting data were used to explore in what ways the teachers would reflect
on their own teaching as well as peers’ instruction. The data were also included to
analyze whether there had been considerable changes in the teachers’ perceptions
of their teaching and what would be the reasons for such transformation. In this
way, the data provided useful background information in relation to the teacher’s
decision-making process in the classroom.

Next, the data from the individual classes were employed for comparison accord-
ing to the social norms and the sociomathematical norms of the two classrooms. The
social norms concern the classroom participation structures, whereas sociomathe-
matical norms concern the collective engagement patterns specific to mathematical
activity and discourse. The discussion of sociomathematical norms informed the
dynamics of understanding the teacher expertise by focusing on how the teacher and
the students struggled together to make sense of their mathematical activities. The
relationship between sociomathematical norms and teacher expertise was examined
in this part of the analysis. This was intended to explore the possibility of promoting
sociomathematical norms as a significant analytic tool through which we can under-
stand teacher expertise in terms of different qualities of classroom mathematical
discourse.

As described above, the topics of the videotaped lessons were selected by individ-
ual teachers in order to place them in a more naturalistic setting. If the lessons with
the same topics were analyzed, however, any subtle difference noted in teachers’
approaches would be more salient than those with different contents. For this rea-
son this chapter includes a keen analysis in relation to specific lessons with the
same topics by social norms and sociomathematical norms. For the purpose of this
chapter, the role of the teacher in initiating and sustaining such norms was high-
lighted and the quality of classroom discourse was analyzed in relation to students’
understanding of mathematical contents and processes.
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Results

Initial Difference in the Structure of Lessons Between Teachers

Ms. K’s teaching practice was consistent across lessons during the year. Each of her
lessons consisted of a brief review of the previous lesson, her introduction of new
activities, students’ individual or small-group work, and a whole-class discussion
and summary. The general characteristics of her teaching included reconstructing
the learning sequence or the activities in the textbook on the basis of mathematical
significance, providing detailed guidance for the new main tasks before students’
own activities, focusing on students’ thinking and contributions, and emphasizing
mathematically important contents during the whole-class discussion (see Pang,
2009 for details). These characteristics were coherent regardless of the mathemat-
ics contents to be covered in the instruction. Students were actively involved in
classroom activity and appropriately played their roles such as explaining their own
solution methods.

Ms. Y’s teaching practice evolved during the year. At first, Ms. Y taught math-
ematical contents step by step and provided appropriate praise and encouragement
within a permissive but very calm classroom atmosphere. Students complied with
the teacher and provided a short answer or choral response as requested. To be clear,
Ms. Y posed questions such as “What shall we do to solve this problem?”, “Who
will explain?”, or “Do you all agree?” However, students’ answers in most cases
were limited to short or pre-determined responses. Another noticeable observation
was that Ms. Y seemed to be very concerned about going through all the activities
and problems in the textbook. In fact, the teacher faithfully followed the sequence
of activities in the textbook, not necessarily recognizing the interrelations among
them.

Similarity Between Teachers: Similar Social Norms

A noticeable change in Ms. Y’s instructional behavior occurred after the first inquiry
group meeting in which she looked at Ms. K’s videotaped lessons. Since both teach-
ers were teaching sixth graders, Ms. Y could see more directly how a teacher’s
different approach even with the same contents and materials would result in dif-
ferent mathematical development on the part of students. In the meeting, Ms. Y
expressed her excitement about the variety and the depth of students’ mathematical
ideas in the Ms. K classroom, while contrasting them with her own instruction.

Ms. Y started to develop a worksheet intended for students to explore important
mathematical ideas for themselves. Note that the current Korean textbook includes
detailed guidance on how to solve a given problem with systematic questions. Since
the worksheet includes mainly the problem, students were expected to figure out
solution methods for themselves. Ms. Y often emphasized the process of problem
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solving and encouraged multiple ways to approach a problem. These changes made
the structure of her lessons remarkably similar to Ms. K’s by creating a desirable
environment in which students were more fully engaged in mathematical activity
and could communicate their ideas.

Consequently, both teachers were quite successful in establishing social norms
that could be consistent with the pedagogical approaches advocated in the new cur-
riculum (Ministry of Education, 1997; Ministry of Education and Human Resources
Development [MEHRD], 2007). Specifically, two norms need to be emphasized.
One was that students are expected to figure out the solution methods of given
problems for themselves. The other was that they are supposed to explain or jus-
tify their solution methods during the whole-class discussion period and to make
sense of explanations given by their peers. These norms proved to be highly consis-
tent regardless of the contents to be covered throughout the year. However, a social
norm reported frequently in the related previous studies – students are expected to
ask clarifying questions directly to classmates while indicating agreement or dis-
agreement with others’ reasoning – was not observed (e.g., Stephan & Whitenack,
2003). This may be related to Korean classroom microculture in which the teacher
plays the major role in managing classroom interaction and thus the turn-taking of
teacher and students rather than student and student is evident.

Critical Difference Between Teachers: Sociomathematical
Norm of Difference

Two teachers’ success in sustaining specific social norms described above facili-
tated the emergence of normative mathematical meanings. The nature and quality
of classroom discussion, however, were somewhat different to the extent of how the
teacher used students’ contributions and encouraged them to articulate mathemati-
cal reasons behind the correct answer. Within this analysis, I pursue the possibility
that the subtle but critical breakdown between teachers expertise has implications
for the sociomathematical norms that become established in their classrooms. In
this section, the lessons about a fundamental idea of permutations from sixth-grade
classrooms were analyzed to illustrate how the teachers initiated and promoted a
sociomathematical norm of difference which, in turn, had a different impact on the
depth of students’ mathematical understanding. The lessons were taught in the midst
of the project period.

As Koreans use only one elementary mathematics textbook series, we need to
look at how the idea of permutations is introduced in the textbook. The main activity
in the textbook is to figure out how to choose two representatives out of three can-
didates, followed by making 3-digit numbers with 3 or 4 number cards including
0. Whereas the textbook deals only with the case of permutations, its concomi-
tant workbook includes the case of selecting 2 representatives and that of choosing
1 president and 1 vice-president out of 3 candidates. It must be pointed out that
the workbook is mainly for students’ self-practice and that the textbook with the
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teacher’s manual is the major instructional resource for teachers. Given that Ms. K
and Ms. Y used the problem in the workbook, both teachers regarded the difference
between permutation and combination as an important content point in this lesson.
However, it is very different how they helped students appreciate such an essential
difference.

Many students in Ms. Y’s classroom produced the same answer, 6 possibilities,
both for the case of electing 2 representatives and for that of electing a president
and a vice-president. Some of them interpreted 2 representatives as 1 president and
1 vice-president. Ms. Y began with whole-class discussion by encouraging two stu-
dents to present their methods via an overhead projector. She intentionally chose
these students because they produced 6 and 3 possibilities respectively for the case
of electing 2 representatives from 3 people (Young-Dae, Hyung-Ju, and Bo-Mi).
Ms. Y then asked students how they derived such different answers.

Ms. Y: Where did the difference come from? Who will present? Yun-Jeong?
Yun-Jeong: One included the same choices but the other didn’t.
Ms. Y: That’s right. One included the same choices. Let’s look at this. (With

regard to the 6 possibilities shown on the projector, she pointed out
one by one where the repeated cases were.) So, what do you have to
do to solve the first case? Da-Hae?

Da-Hae: I think that it would be better to exclude the same choices.
Ms. Y: Anyone else? Kwon-Min?
Kwon-Min: I think it is correct to include the same choices.
Ms. Y: Include the same choices? Why do you think so?
Kwon-Min: Because, if Hyung-Ju were elected as the president, then Bo-Mi

couldn’t be a president.

Building on Yun-Jeong’s idea, Ms. Y expected students to agree to exclude the
repeated cases by pointing out each one of them. However, Kwon-Min disagreed
with the idea. Confronted with this difficulty, Ms. Y asked students to read the prob-
lems again and to find out the difference between the problems (i.e., electing 2
representatives and electing 1 president with 1 vice-president). She emphasized that
many students had the same answer to the two problems, indicating that the prob-
lems would be the same. Ms. Y asked Hae-Jin to explain the difference as indicated
in the problems.

Hae-Jin: I think the two [problems] are different. The first case is to elect
representatives, but the second is to elect a president and a vice-
president.

Ms. Y: Uh, that’s right. Anyone else? Yun-Seok?
Yun-Seok: In the first problem, you have to elect two representatives among

three people. Electing Young-Dae and Hyung-Ju are the same
as electing Hyung-Ju and Young-Dae. In the second [problem],
if Young-Dae were a president, then Hyung-Ju could be a vice-
president, and vice versa. Therefore, the two problems are different.
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Ms. Y: The two problems are different! But many of you answered six pos-
sibilities. What resulted in six possibilities? What resulted in three
possibilities? What was the factor?

Hyung-Ju: One included the same choices whereas the other didn’t.
Ms. Y: Yes, then what do you have to do? How can you conclude this

problem (electing two representatives)?
Seong-Gyun: For this problem, you have to exclude the same choices
Ms. Y: Um. Do you all agree? (Many students say “Yes”, but Ji-Sun raised

her hand)
Ji-Sun: I think differently from my friends because there are 6 possibilities.
Ms. Y: The reason is?
Ji-Sun: The reason is because a president and a vice-president are different

so you should include the repeated choices.
Ms. Y: Then, what does this problem ask for? Selecting representatives, or

selecting a president and a vice-president?
Students: Representatives.
Ms. Y: Then where can we apply what Ji-Sun said?
Students: The next [problem].
Ms. Y: Right. Now can you understand how you made a mistake?

Correct it.

Whereas Hae-Jin explained the problems per se with little mathematical thinking,
Yun-Seok came up with a clear idea of what made the two problems different and
justified his claim with specific examples. However, Ms. Y did not probe his math-
ematical thinking. She rather tended to reinforce what students had to do to get the
right answer. Note that Yun-Seok’s idea was presented by Kwon-Min in the pre-
vious dialogue but their conclusions were different. Kwon-Min used the example
to include the repeated choices, thus supporting 6 possibilities, whereas Yun-Seok
used it to exclude the ones supporting 3 possibilities. For this reason, this illustrative
example could have been explored further to differentiate permutations from com-
binations. Ms. Y instead focused on whether or not the repeated choices need to be
included while regarding students’ confusion as a mistake. However, students’ con-
fusion was not a trivial mistake as evidenced by Ji-Sun’s refusal even after the long
discussion. During the rest of the class Ms. Y gave students only two more problems
with permutations and checked the answers at the end. Consequently, students were
initially exposed to investigating the critical difference between permutations and
combinations but had limited opportunity to pursue it.

In contrast, Ms. K carefully orchestrated the path of classroom discourse towards
the mathematical distinction. Before students were engaged in solving the same
problems (i.e., selecting 2 representatives and selecting a president with a vice-
president), Ms. K first asked students to find out the difference between the problems
and to predict whether or not the answers would be the same. Within this pre-
activity, the teacher encouraged students to think about what it meant to consider
the order of an arrangement of objects. This made students solve successfully the
first set of problems. Ms. K then gave students a similar set of problems – electing 2
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representatives and electing a president with a vice-president out of 5 people – while
encouraging them to find out a pattern. After students answered 10 and 20 possi-
bilities respectively, Ms. K asked which had more possibilities and why. Students
found that the number of combinations is smaller than that of permutations because
it excludes the repeated choices.

Ms. K gave students the third problem: “There are 4 points, A, B, C, and D in
a circle. How many line segments can you make by connecting two points in the
circle?” Ms. K encouraged students to think about this problem in their heads, say-
ing that she posed this problem on the basis of what they had studied. In fact, this
problem was not included in the teacher’s original lesson plan. Since students had
successfully solved the previous two sets of problems, Ms. K expected students to
solve this problem without any difficulties. When asked whether or not they needed
to consider the order of points, however, students were confused. With the teacher’s
clarifying question of whether the line segment connecting A and B and that of B
and A would be the same, students agreed that the problem would not require the
order of points and came up with the 6 answer possibilities. Ms. K then posed a
concomitant problem on the spot: “There are 4 people, A, B, C, and D. How many
ways can you line two of them up?” While formulating this problem, Ms. K drew
students’ attention to deciding whether or not the order of people would matter, lead-
ing them to compare this with the previous circle problem. Students easily noticed
the difference and found the answer.

Ms. K then asked students to remember the three sets of problems they had solved
and to determine what they had in common with the present problem. After students
had time to think about this problem with their partner, Ms. K initiated the whole-
class discussion.

Ms. K: It seems that there is something in common. Who will present–
Jeong-Hoon?

Jeong-Hoon: The numbers are always even.
Ms. K: The numbers are always even! Yes, they look like they are. Anything

else? What is different when you consider the order and when you
don’t? Su-Hyang?

Su-Hyang: In the case of considering the order there is the same number per A,
B, C, D respectively [interrupted by the teacher].

Ms. K: She said something important! What Su-Hyang said was, when
there is the order, the possibilities after choosing A, those after
choosing B, C, or D are all the same. Right? What’s the next?

Su-Hyang: In case of not considering the order, if there were 3 possibilities in
A, there would be 2 in B and, so on, decreased by one.

Ms. K: She found a really important thing! Let’s look at it together. [With
the problem of selecting 2 out of A, B, C, and D, the teacher explains
in detail what Su-Hyang said.] Why is it decreasing?

Students: Because there is something repeated.

In this way, the topic of discussion changed from solving a problem to searching
for the similarities and the differences among the problems. During the discussion
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a student said that each pair of orders should be added in case that the order mat-
ters, whereas such orders should be subtracted if order does not matter. Given this,
students agreed that the number of combinations is smaller than that of permuta-
tions. Building on this agreement, Ms. K further probed the relationship between
combinations and permutations. A student answered that the number of permu-
tations divided by 2 is the number of combinations. Note that the three sets of
problems solved in this lesson dealt with selecting 2 out of 3, 4, and 5 objects respec-
tively. To build on the excitement of this idea, Ms. K even encouraged students to
explore whether or not this idea would work for the case of electing 3 in place
of 2 people as homework. In this way, Ms. K’s students had a chance to explore
the essential difference between permutation and combination throughout the les-
son, while experiencing challenging problems built on their understanding and
conjectures.

Subtle Difference Between Teachers: Sociomathematical Norm
of Notation

Another difference between the two teachers is related to the sociomathematical
norm of effective notation. From the beginning of the lesson, Ms. K was directive
in guiding how students were expected to represent their solution methods. With
regard to the first set of problems Ms. K asked students to use small rectangular-
shaped post-its with which they could easily paste and change the order (see below).
Ms. K encouraged students to use different colors or letters such as A, B, C to
represent people. The following was a representative example students used to solve
the problem of electing a president and a vice-president among 3 people.

When asked to write down the possibilities, students easily wrote pairs of orders
such as AB. Throughout the lesson students used the concrete manipulatives and
efficient notation initiated by the teacher. Note that the third set of problems included
A, B, C, and D to represent points in a circle as well as people. Regardless of what
A, B, C, and D signified, however, students could focus on the important decision
of whether or not they should consider the order of objects.

In contrast, Ms. Y did not provide any specific manipulatives for students. Rather,
students were expected to come up with ideas on how to represent the solution
process on the worksheet. As the first set of problems entailed finding out the possi-
bilities of selecting two representatives and a president with a vice-president among
Young-Dae, Hyung-Ju, and Bo-Mi, respectively, students wrote easily the names
in order. However, they had a considerable amount of difficulty with regard to the
second problem of arranging 4 runners among their small group members. As there
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were 24 possibilities, some students wrote repeated arrangements and others omit-
ted several arrangements. Generally speaking, students spent a lot of time writing
the exact names of the runners.

During the whole-class discussion, two students presented their solution meth-
ods, which happened to be very similar. The differences included writing surnames
of runners and using “-” or “→” between names. Both students applied a systematic
order to their arrangements: (a) arrange 4 runners randomly, (b) fix the first and the
second runners followed by trading the third runner by the fourth, and (c) change
the second runner and repeat the process. Being satisfied with the fact that a correct
and clear solution was presented, Ms. Y drew all students’ attention to figuring out
how to arrange 4 runners in a systematic way. Ms. Y then pushed students to agree
that there would be 24 possibilities because there were 4 runners and 6 possibilities
after the first runner was decided. With regard to the third problem of making 3 digit
numbers with 1, 2, and 3, students solved it easily by using a table or a tree diagram.
Ms. Y praised the students for the notations by which they could figure out visually
the solution methods at a glance.

In short, Ms. K explicitly communicated which notation she expected students
to use in solving a series of problems whereas Ms. Y gave students an opportunity
to devise their methods for each problem and approved them one by one. Writing
others’ names as well as one’s own might be fun for elementary school students.
However, arranging them in 24 ways requires a mathematically systematic method.
After most students spent a considerable amount of time in writing names per se,
Ms. Y indicated how and when particular notation might be used to illustrate their
mathematical ideas building on the presenting students’ contributions. In contrast,
Ms. K did not give students the opportunity to develop various types of notations
which might be mathematically rich and meaningful. She instead supported stu-
dents by a visual aid of post-its and short letters in place of long names as needed.
While preferring the pedagogically efficient method, Ms. K helped students appre-
ciate the essential difference between combinations and permutations behind the
given problems.

Discussion

Teacher’s Role in Sustaining Sociomathematical Norms

The results of this study lead us to probe the role of the teacher in promot-
ing students’ mathematical development. Both teachers implemented high-quality
mathematics instruction. The teachers gave students challenging tasks and encour-
aged them to solve by themselves and present their solution methods during the
whole-class discussion. They restated what the presenting students said or drew all
students’ attention to the mathematically important contents. More precisely, both
teachers even used the same task – electing 2 representatives or a president with a
vice-president among 3 people – and initiated a discussion which brought students’
attention to the mathematical concepts of permutations and combinations.
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Despite the similar, reasonable discourse structure, a closer analysis revealed sub-
tle but important differences in terms of the two teachers’ expertise. Ms. Y listened
to how students solved the given problems and noticed their difficulty of differ-
entiating combinations from permutations. After the right answers were presented,
however, the teacher directed students to move on to the next problem and followed
the sequence of activities as planned. She did not address students’ difficulty in
understanding the underlying mathematical differentiation for the rest of the les-
son. In contrast, Ms. K used students’ contributions and difficulties as a stepping
stone for delving into the conceptual issues between permutations and combina-
tions. Moreover, Ms. K posed a related problem on the spot to address students’
conceptual difficulties. It is a common feature of expert teachers that progressively
support students’ understanding of mathematical concepts to provide systematic
and interconnected problems (Smith et al., 2005). It was noticeable that Ms. K fur-
ther asked students to examine the mathematical similarities and differences among
the problems they had solved. The teacher’s interactions with the students regard-
ing what would make the problems mathematically different or similar allowed the
emergence of the relationship between permutations and combinations.

Another teacher expertise is related to the norm of mathematical notation. In
Ms. Y’s classroom, various notations were used to solve each problem, and, in
fact, multiple representations should be encouraged. Some of them such as writing
the names of runners may even reflect real-life situations but they are mathemati-
cally inefficient. Any notation was accepted as long as it served to obtain the right
answer. In contrast, only one type of notation suggested by the teacher was used to
solve all the problems in Ms. K’s classroom. The teacher’s explicit role in estab-
lishing the norm of mathematically effective notation drew students’ attention more
to the mathematical essence of the concept rather than to a resemblance to real-life
situations, visual appearance, or correctness.

The results show that students’ learning opportunities are very much constrained
by the mathematically significant distinctions embedded within the classroom dis-
course. The similarities and differences between Ms. Y’s and Ms. K’s teaching
practices clearly show that students’ learning opportunities do arise not from general
social norms but from sociomathematical norms of a classroom community. Recall
that sociomathematical norms concern the quality of students’ collective engage-
ment in mathematical practices of a classroom community (McClain & Cobb, 2001;
Stephan & Whitenack, 2003). Although both teachers in this study frequently used
an enjoyable activity format, how the teacher handled the activity was directly
related to the content and quality of students’ experiences. In this respect, the con-
struct of sociomathematical norms, not general social norms, should be the focus
for discussing teacher expertise in initiating and pursing mathematically meaningful
discourse (Kazemi & Stipek, 2001).

Elements and Development of Teacher Expertise

Recent pedagogical suggestions require teachers to monitor classroom discourse
carefully and to provide necessary support to ensure the quality of discourse as well
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as students’ mathematical development (MEHRD, 2007; NCTM, 2007). Playing
such a role requires a great deal of expertise on the part of the teacher. The challenge
for the teacher is to use the social structure of the classrooms to nurture students’
development of mathematical thinking as well as their understanding of specific
mathematical concepts and processes. For this reason, as stated by Choppin (2007),
“learning to develop and direct collaborative discussions effectively is a form of
expertise that is new to most teachers.” (p. 137)

The successes and challenges that Ms. Y experienced in the process of improv-
ing her instruction lead us to consider what matters regarding teacher expertise at
the classroom level. Recall that Ms. Y, with great enthusiasm for improving her
teaching practice, was quite successful in changing the classroom activity struc-
ture in a way that encouraged students’ participation and elicited students’ solutions
and elaboration of their solution methods. Such a promising change, however, did
not ensure mathematically powerful discourse. Certainly, the whole-class discussion
in Ms. Y’s classroom included the important content of permutations and com-
binations. Yet the teacher was not directive in presenting the correct answer and
explaining the underlying mathematics. She instead minimized such a role and gave
students an opportunity to present their own methods, often followed by applause
and praise. But the string of presentations was used mainly to complete each prob-
lem rather than to engage students in genuine mathematical inquiry, which was
relatively evident in Ms. K’s classroom.

In fact, many teachers find it easy to help students explain their thinking but
not to reflect on and build from students’ explanations to develop mathematical
ideas. It is indeed more challenging pedagogically to support the consequent devel-
opment of discourse beyond what might be apparent for students (Choppin, 2007;
Hufferd-Ackles et al., 2004; Kazemi & Stipek, 2001; Stein et al., 2008; Stephan
& Whitenack, 2003). The teacher needs to decide what to pursue in depth among
various presentations, when to provide additional information or questions that fur-
ther challenge students’ ideas, and how to modify her original lesson plan based on
students’ contributions in keeping with the mathematical agenda (Leikin & Dinur,
2007; NCTM, 2007). The teacher also needs to be sensitive to how her decisions
influence the opportunities for students’ understanding of mathematics (McClain,
2002; Smith et al., 2005). Such a decision-making process requires new ways of
thinking about the teaching and learning dynamic. This study clearly addresses the
need for a clear distinction between attending to the social practices of the classroom
and attending to students’ conceptual development within those social practices.
Reconceptualizing teaching and learning in this way can pose great difficulty even
if the teachers are eager and willing to teach differently, as demonstrated in Ms.Y’s
case. But these challenges must be met by teachers and teacher educators if teaching
expertise is ever to be realized in mathematics instruction.

Another topic to be discussed is what constitutes teacher expertise. Implementing
effective discourse requires a great deal of knowledge of students as well as math-
ematics and an accumulated set of experience on the part of the teacher. The two
teachers in this study showed their mathematical sense of what should be included
in the lesson as evident in selecting the main task (i.e., selecting 2 representatives
or a president with a vice-president out of 3 people) not from the textbook but from
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the workbook, which was rare in Korean contexts. Both teachers concentrated on
mathematical content throughout the lesson. This content-oriented instruction is
somewhat different from a process-oriented one in which students’ participation
is often emphasized at the expense of the development of mathematical ideas.

The difference between Ms. Y and Ms. K seems to result from their knowledge
of students rather than from their mathematical knowledge per se. In comparison
with Ms. K, Ms. Y was not sensitive to the difficulties her students experienced,
which could have been the catalyst to sharpen the understanding of the fundamental
difference between permutations and combinations. Most of the teacher’s com-
ments served to facilitate the flow of the discussion and to complete each problem.
Being sensitive to students’ constraints as well as their current capabilities requires a
deep understanding of students’ mathematical learning processes. Although Korean
teachers have relatively strong and sound knowledge of mathematics (Li, Ma, &
Pang, 2008), they often do not have equivalent knowledge of how students learn
mathematics. However, this knowledge becomes critical as long as the new role of
the teacher evolves beyond just explaining mathematical knowledge in a coherent,
progressive, and systematic way, which has been the common practice in Korea
(Grow-Maienza, Hahn, & Joo, 1999).

Note that Ms. Y was in the process of changing her instructional approaches by
participating in the project. As such, she needed to initiate social norms as well
as sociomathematical norms by which students’ ideas and contributions could be
the focus of the instruction. Because the sixth-grade students had been familiar
with participating in traditional mathematics instruction, the teacher might need to
help students understand her new expectations for their explanations beyond simple
answers. As students become more comfortable with their new roles, the teacher
may shift from soliciting students’ various ideas to communicating and reasoning
about mathematically important ones. During this transition process, as illustrated
by Ms. Y, the teacher may experience the tension between completing tasks with
correct solution methods and creating meaningful pedagogy tailored to students’
ideas as well as other challenges. This inherent tension seems inevitable for the
teacher who attempts to promote her teaching expertise (Ball, 1993; Dixon et al.,
2009; Simon, 1997).

The final remark is concerned with how to develop teacher expertise. The new
role requires more than adding a few new teaching techniques. Individual teacher’s
own commitment and enthusiasm may not be enough. Given that Ms. K’s expertise
as revealed through her instruction had a positive impact on Ms. Y’s teaching prac-
tice, it is important that teachers need to form a sustained community of practice to
develop their teaching expertise. As the subtle but pivotal difference in maintaining
mathematically significant norms may be evident only through the comparison and
contrast of teaching approaches, teachers need to accumulate such experience in a
community of practice in which participants discuss various practices and support
one another’s efforts for the purpose of improving their expertise. This chapter is
expected to contribute to our understanding of what teacher expertise means and
how it may be realized in mathematics instruction, in particular with regard to
sustaining mathematically powerful discourse in Korean contexts.
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Expertise of Mathematics Teaching Valued
in Taiwanese Classrooms

Pi-Jen Lin and Yeping Li

Abstract This study was designed to explore aspects of teaching expertise
displayed in expert teachers’ mathematical instruction valued in Taiwanese class-
rooms. Three expert teachers were identified and selected in this study. A prototyp-
ical view of teaching expertise was used to guide our analyses and identification of
similarity-based, family resemblance of expert teachers’ instruction. These expert
teachers’ mathematics instruction was examined in light of some common aspects
of good mathematics instruction, including problems or tasks being selected and
sequenced in classroom instruction, students’ solutions then being selected and
sequenced for the whole-class discussion, questions being asked and responses to
students during the class discussion, and the transition from one activity to another.
As a result, mathematics teachers’ expertise in teaching was revealed as prototypical
features in five aspects that are shared among these three expert teachers. The rich
description and summary features provide great details and insight to the teaching
expertise that is important for developing good mathematics classroom instruction
valued in Taiwan.

Keywords Expert teacher · Expertise · Mathematics teaching · Prototypical
features · Taiwanese classrooms

Introduction

Ma’s (1999) study suggests that sampled Chinese teachers, but not their counterparts
in the US, perceived mathematics concepts as interconnected and had a profound
understanding of school mathematics they teach. The result provides a contrasting
picture in teachers’ knowledge that is consistent with students’ achievement gap
in school mathematics between China and the United States documented in other
cross-national studies. Such results indicate that Chinese teachers tend to have a
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solid understanding of school mathematics they teach, which can help contribute
to effective mathematics instruction in China. However, if going beyond teach-
ers’ knowing and understanding of mathematics knowledge, much remains unclear
about the nature of expertise in mathematics instruction that contribute to effective
classroom instruction valued in China. As world-wide efforts to improve students’
learning of mathematics have led to ever-increasing interest in learning more about
educational policy and practices in East Asia, including the Chinese mainland and
Taiwan (e.g., Li & Kulm, 2009; Li & Shimizu, 2009), examining and understand-
ing Asia teachers’ expertise in mathematics teaching should be important to those
who strive to find ways to improve teachers’ quality and their classroom instruc-
tion in many education systems. In particular, in this chapter we aimed to identify
and examine the elements of expertise in mathematics teaching valued in Taiwanese
classrooms.

To examine the elements of expertise in mathematics teaching valued in Taiwan,
it becomes necessary for us to identify and examine expert teachers. However, there
is not a ready answer to the question of what counts as an “expert” specialized in
mathematics instruction in Taiwan. The question of identifying an expert teacher
bears a close and direct connection with the question of what counts as high-quality
classroom instruction. In a recent special issue of ZDM (Li & Shimizu, 2009),
high-quality classroom instruction in several education systems in East Asia was
identified through either public evaluation, locally defined informal criteria, or as
in line with recommended instruction in a system. It is a common characteristic for
those teachers, whose classroom instruction was identified as high quality, to have
more than 10 years of teaching experiences in several studies (e.g., Huang & Li,
2009; Kaur, 2009; Lin & Li, 2009; Pang, 2009; Shimizu, 2009). The development
of high-quality teaching highly relies on teachers’ years of teaching experience, but
an experienced teacher is not guaranteed to be an expert teacher (Berliner, 1994).
This suggests that teaching experience is an important factor, but to be an expert
teacher one must go beyond being an experienced teacher. Wade (1998) distin-
guishes an expert from an experienced teacher in that an expert teacher has more
efficient processing of information than an experienced teacher during the planning
and interactive phases of teaching. An expert teacher also has strong mathemat-
ics knowledge for teaching and enacts high quality mathematics instruction (Hill
et al., 2008). While few might disagree that expert teachers can develop and carry
out high-quality mathematics instruction, much remains to be understood about the
expertise of mathematics instruction that expert teachers may have. The purpose of
this article is to examine and describe the features of expertise displayed in expert
teachers’ classroom instruction valued in Taiwan.

The following sections are organized into four parts. In the first part (section
“Identifying and Examining Expert Teachers’ Classroom Instruction in Taiwan:
Research Background and Theoretical Perspectives”), the research background
and theoretical perspectives are presented and discussed. In particular, ways of
selecting expert teachers from Taiwanese’s perspectives will be identified and
summarized on the basis of a literature review. The theoretical perspectives for
examining experts’ teaching in this article will then be presented and discussed. In
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the second part (section “Method”), we focus on several selected experts’ teaching
and examine the prototypical features of expertise displayed in their mathemat-
ics instruction. The results obtained from data analyses are summarized in part 3
(section “Prototypical Features of Expertise Displayed in Experts’ Mathematics
Teaching”), and the prototypical features of experts’ teaching are illustrated with
one expert teacher’s mathematics instruction in six consecutive lessons. In the
last part (section “Concluding Remarks”), we summarize the prototypical features
of teaching expertise displayed in the three experts’ teaching and discuss some
important factors relevant to the development of these teachers’ expertise.

Identifying and Examining Expert Teachers’ Classroom
Instruction in Taiwan: Research Background and Theoretical
Perspectives

Identifying Expert Teachers from Taiwanese’s Perspectives

In this section, we aim to identify the criteria of an expert teacher. We will sum-
marize the findings from existing studies on the definition or the criteria of an
expert teacher. The literature includes Chinese journals, theses or dissertations, and
refereed conference proceedings in Chinese obtained online. Based on the litera-
ture review, we try to identify and summarize the commonly acceptable criteria for
identifying expert teachers.

Similar to the case of evaluating and identifying what counts as high quality
classroom instruction of mathematics, there is no universal agreement on the def-
inition of expert teachers. To generate acceptable criteria for identifying an expert
teacher involved in the study, searching for the key word from the database of pub-
lished papers via website was taken as the first step. There were 25 papers in Chinese
that emerged from the database. The expert teachers in published papers taught in
various subject areas. Of the 25 papers, six papers focus on mathematics teachers,
six on science teachers, and 13 on social science teachers. Generally speaking, the
studies on the identification of an expert teacher relied on the criteria of teachers’
years of teaching experience, their professional performance, and professional ser-
vice rather than on measuring their knowledge or skills. Table 1 summarizes relevant
information taken from six selected papers.

Table 1 indicates that among the six studies, the teaching experience of at least 10
years is a common feature for being an expert teacher in these studies (Chen, 2007;
Huang, 2002; Kao & Chen, 2002; Lee, 2004a, 2004b; Shiao, 1995). The experienced
teacher winning an award of the teaching contest at either the national or local level
is a commonly used criterion to identify and select an expert (Chen, 2007; Kao &
Chen, 2002; Lee, 2004a, 2004b). The award at the national level is highly reputable
among all the contests of classroom instruction in Taiwan. Likewise, to win an award
at the local level, the teacher’s instruction should be inspected with extremely rig-
orous criteria and approved by a committee consisting of reputed school teachers,
principals, and the education bureau at the local level.
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Table 1 Criteria of identifying and selecting an expert teacher from Taiwanese’s perspectives

Criteria of being an expert teacher Studies

More than 10 years of teaching
experience

Chen (2007), Huang (2002), Lee (2004a, 2004b), Kao
and Chen (2002), Shiao (1995)

Winning an award of teaching
contest(s)

Chen (2007), Lee (2004a, 2004b), Kao and Chen (2002)

Being a mathematics master teacher
at the national level

Chen (2007), Lee (2004a), Shiao (1995)

Recommended by school principals Lee (2004a, 2004b)
Other professional contributions:

writing mathematics textbooks; a
member of curriculum reviewing
committees

Lee (2004a, 2004b), Huang (2002)

In addition, most expert teachers are master teachers enlisted at the national level
(Chen, 2007; Lee, 2004a; Shiao, 1995). The master teachers are required to par-
ticipate in a master-teacher training program hosted by the Ministry of Education.
Master teacher’s instruction needs to be observed in public periodically. A mas-
ter teacher is also obligated to demonstrate a good model of instruction for other
teachers in a school or school district. Thus, exemplary lesson development led
by master teachers has been taken as an important approach to develop high qual-
ity classroom instruction valued in various innovative curricula. Finally, a teacher
identified as an expert could also be recommended by the school principal accord-
ing to the teacher’s experience and his/her professional contributions (Lee, 2004a,
2004b).

In summary, with more than 10 years of teaching experience, being a master
teacher, and winning an award of the mathematics teaching contest at the national
or local level have been commonly considered and used as basic requirements in
identifying and selecting an expert teacher participated in previous studies. Such
common requirements used in previous studies provide us a reference in identifying
expert teachers in this study.

Theoretical Perspectives

Two models of teaching expertise are used to structure our perspective of analyzing
experts’ mathematics teaching in this study. The first is a theoretical framework that
takes a prototype view of expertise in teaching (Smith & Strahan, 2004; Sternberg
& Horvath, 1995). The second is a model of teaching expertise that focuses on
commonly recognized features of exemplary mathematics instruction valued in East
Asia. The combination of these two models allows us to develop a perspective of
conceptualizing and identifying prototypical features of experts’ teaching valued in
Taiwanese classrooms.
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A Prototype View of Expertise in Mathematics Teaching

Examining expertise based on experts’ teaching is not a new idea in educational
research. In the United States, researchers tended to explore the nature of expert
teachers’ knowledge and instructional performance through comparing expert and
novice teachers’ classroom instruction (e.g., Borko & Livingston, 1989; Leinhardt,
1989; Livingston & Borko, 1990; Swanson, O’Connor, & Cooney, 1990). The com-
parative approach has been effective in identifying some features unique to expert
teachers. At the same time, it poses a possible restriction by looking for those fea-
tures that are not shared by novice teachers. In fact, it is questionable whether
expertise should refer to only those features that expert teachers have and novice
teachers do not. Rather than comparing two different groups of teachers, in this
study we aim to focus on a group of expert teachers in Taiwan.

To examine teaching expertise of expert teachers in Taiwan, we adopt a pro-
totype view of teaching expertise as a theoretical framework (Smith & Strahan,
2004; Sternberg & Horvath, 1995). This theoretical framework is originally devel-
oped by Sternberg and Horvath, who viewed teaching as a complex and holistic
practice that can exhibit various features across classrooms. Other than develop-
ing a list of necessary and sufficient features, Sternberg and Horvath proposed to
describe and examine experts’ teaching in terms of a “prototype that represents
the central tendency of all the exemplars in the category” (p. 9, emphasis in orig-
inal). Teaching expertise is conceptualized as a natural, similarity-based, family
resemblance that is shared by expert teachers. A prototype of teacher expertise is a
summary representation of the central tendencies of teachers’ classroom instruction
in this category.

Although Sternberg and Horvath (1995) did not carry out specific studies of
expert teaching by themselves, they derived from psychological research a list of
prototypical features of expert teaching in knowledge (content knowledge, pedagog-
ical knowledge, practical knowledge), efficiency (automatization, executive control,
reinvestment of cognitive resources), and insight (selective encoding, selective com-
bination, selective comparison). For example, for the executive control, Sternberg
and Horvath listed three sub-category features including planning, monitoring and
evaluating. For the feature of monitoring, they specified “expert detects students’
failures of comprehension or interest during the execution of a lesson plan” (p. 15).
Although they did not carry out specific studies of expert teaching by themselves,
they called for studies to validate their list of prototypical features and examine
teaching expertise as a similarity-based category. Later, some other researchers
used this framework in examining teachers’ expertise in teaching. For example,
Smith and Strahan (2004) used Sternberg and Horvath’s framework to study pos-
sible similarities among three expert teachers with diverse profiles (one certified in
the Early Adolescence/English Language Arts area, and two certified in the Middle
Childhood/Generalist area). With the analyses of a variety of data collected through
lesson instruction and interviews, Smith and Strahan derived six central tendencies
in broad categories, such as these teachers have a sense of confidence in them-
selves and in their profession. Likewise, Lin (1999) adopted the prototype view
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of expertise in teaching to differentiate elementary mathematics teachers’ expertise
between novices and experts through structured interviews about classroom events.
Although none of these studies focused on the analysis of mathematics teachers’
classroom instruction, these studies showed the feasibility and value of using this
framework to examine teachers’ expertise in different subject areas.

In our study, we plan to use a case study approach to identify several expert
teachers in Taiwan and examine their expertise in teaching. The prototype view of
teaching expertise becomes feasible as we intend to identify similarity-based pro-
totypical features of experts’ teaching valued in Taiwan. Different from previous
studies that used the prototype view of teaching expertise, we will adopt the proto-
type view to analyze, interpret, and describe classroom instruction practices of these
identified expert teachers.

Examining Experts’ Teaching in Light of Features of Good Mathematics
Instruction Valued in Various Countries

Classroom instruction is a dynamic and complex process that can be analyzed
using different lens with various details. In order to examine experts’ teaching
in this study, it becomes necessary for us to take a specific lens. Because class-
room instruction of these expert teachers selected in the current study is exemplary
in Taiwan, it occurs to us to describe and examine experts’ teaching in light of
features/characteristics of good mathematics instruction.

Recently, a special issue of ZDM (Li & Shimizu, 2009) was published with a
focus on the characteristics and development of exemplary mathematics instruction
valued in several selected high-achieving education systems in East Asia (e.g., Kaur,
2009; Lin & Li, 2009; Mok, 2009; Pang, 2009; Shimizu, 2009). In each article, the
features of exemplary classroom instruction are identified through either analyzing
classroom instruction, from master teachers’ perspective, professionally active and
experienced teachers’ perspective, or from students’ views. Kaur (2009) reviewed
the studies on effective teaching in Australia, New Zealand, the United Kingdom,
and the USA and summarized the features of effective instruction as follows: student
motivation and participation, skills in communicating mathematics, the provision of
cognitive scaffolding, the use of tasks and tools that afford challenging opportunities
for learning and rich assessment, linking to learners’ knowledge and interests, the
use of higher-order questioning, and coherence of curriculum.

Huang and Li (2009) also reviewed existing studies on effective teaching and
summarized some common features of Chinese mathematics instruction as follows:
(1) setting and achieving comprehensive and feasible teaching objective; (2) having
a detailed and well designed lesson plan that not only covers sufficient content to
teach but also offers alternatives to develop the content coherently; (3) emphasiz-
ing the formation and development of knowledge and mathematics reasoning; (4)
emphasizing knowledge connection and instruction coherence; (5) practicing new
knowledge with systematic variation problems; and (6) making a balance between
the teacher’s guidance and students’ self explorations; (7) summarizing main ideas
and providing proper homework. Table 2 summarizes the features of exemplary
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Table 2 Features of exemplary mathematics instruction documented in different studies

Features of good mathematics instruction Studies

Before teaching: developing a detailed and well
designed lesson plan

• Setting feasible instructional objectives Huang and Li (2009)
• Designing the tasks with high-level cognitive

demands
Hill et al. (2008)

• Designing contextual problems based on students’
experience

Lin and Li (2009), Pang (2009)

During teaching: having rich mathematics
• Achieving instructional objectives Lin and Li (2009), Pang (2009)
• Exploring mathematics concept(s) based on

students’ activities
Pang (2009)

• Absence of mathematics errors Hill et al. (2008)
• Discourse focused on mathematical thinking

(explanation, justification, and reasoning)
Huang and Li (2009), Hill et al. (2008),

Lin and Li (2009), Pang (2009)
• Identifying, selecting, and discussing various

solutions with a focus on its process
Lin and Li (2009), Pang (2009)

• Asking students various questions to promote
thinking and discussion during the process of
discussing students’ solutions

Lin and Li (2009), Pang (2009), Huang
and Li (2009)

• Appreciation in response to students Hill et al. (2008)
• Summarizing key points in due course and

assigning homework
Huang and Li (2009)

mathematics instruction displayed in the classroom that are valued in Korea, China,
and Taiwan.

Recent research also suggested that teachers’ mathematical knowledge for teach-
ing (MKT) is essential to effective classroom instruction (e.g., Hill et al., 2008;
Sowder, Phillip, Armstrong, & Shappelle, 1998). In particular, Hill et al. (2008)
indicated that the teachers who have strong mathematics knowledge for teaching
tend to enact high quality mathematics instruction in classrooms. They identified
the elements of high-quality mathematics instruction from relevant literature and
through their own analyses of classroom instruction, as also summarized in Table 2.
They indicated that the teachers with strong MKT provide students constant oppor-
tunities to think mathematically, to report on their thinking, and to politely agree or
disagree with one another. On the contrary, the teachers with weak MKT floundered
with the mathematical content.

The elements featured in exemplary mathematics instruction across several edu-
cation systems in East Asia include: Teachers make good preparations of a lesson;
teachers are used to construct a lesson based on their students’ learning; the lesson
is started with presenting students contextual problems; and the mathematical con-
cepts are often introduced through students’ exploration of mathematical activities.
The richness of mathematics embedded in instructional activities and discourses
constitutes the focus of classroom instruction (Huang & Li, 2009; Kaur, 2009; Lin
& Li, 2009; Mok, 2009; Pang, 2009; Shimizu, 2009). The mathematics richness



270 P.-J. Lin and Y. Li

includes: carefully identifying, selecting, and sequencing students’ various solution
methods before the whole-class discussion; explaining and justifying what they dis-
covered; comparing and contrasting various solutions in terms of mathematically
significant ideas; and frequently asking various questions to further clarify, compare,
diagnose, and extend students’ mathematical thinking.

Approaching to the end of a lesson, teachers summarize important mathematical
ideas and put them together with students. These elements of high-quality mathe-
matical instruction are to be used in helping guide our analyses of expert teachers’
classroom instruction in Taiwan in this study.

Method

Identification and Selection of Expert Teachers

The identification and selection of expert teachers in the current study were based
on their professional accomplishment, performance, contribution, and experience
of teaching. In particular, identifying a teacher as an expert in the current study was
completed through three steps. The first step was to recruit 25 experienced teachers
with more than 7 years of teaching who have participated in various teacher profes-
sional development programs, based on recommendations from teacher educators.
These programs help teachers to conceptualize the ideas of innovative effective
teaching emphasised in the standards-oriented curriculum. The second step was
to select candidates from the 25 experienced teachers based on (1) whether they
received awards at the national level or local level (e.g. “Shiu-Duau Award”, “Chu-
Chian Award”, etc), (2) whether they won a prize in mathematical teaching contests
at the national or local level, (3) whether being a master teacher of mathematics
at the national level, and (4) their experience in reviewing or writing textbooks.
The final step to identify an expert was that the candidate must be accredited by
his/her school principal as exhibiting the best quality in mathematics instruction. As
a result, one teacher (hereafter, named T1) successfully passed the three steps of
identification process, while two teachers (hereafter, named T2 and T3) passed all
three steps except the criterion of experience in reviewing or writing textbooks as
part of the second step.

Participants

The selection process resulted in three fifth-grade teachers, one male (T2) and two
female (T1 and T3), identified as expert teachers to participate in this study. They
all had at least 12 years of teaching experience and earned a master degree in math-
ematics education. T1 had been a master teacher of mathematics for 6 years; T2
and T3 had been master teachers for 6 and 3 years, respectively. Their classroom
instruction was frequently authorized and recommended by their school principal
for other teachers to observe. They were awarded as the “Power Teacher” and also
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won several prizes for mathematical activity design at the local level. T1 did not
teach at upper elementary grade levels until she started to be involved in a teacher
professional program. She has been a member of a textbook reviewing committee.
T2 had been teaching at the middle grade level and T3 at the high school level during
most of their years of teaching.

T1, T2, and T3 have participated in successive 3-year professional development
programs for 10, 8 and 6 years. The goals of the successive 3-year professional
development programs are to (1) help teachers identify accurately and critically
instructional objectives and construct logical sequences of the objectives; and (2)
carry out in-depth analyses of students’ difficulties in understating mathemati-
cal concepts. The participants involved in the program were routinely engaged in
designing and developing a lesson plan by comparing various textbooks on the same
content to be taught. After implementing the lesson plan in a classroom, they were
asked to reflect on the lesson instruction collaboratively, and plan for the follow-up
lesson.

T1 stayed in a school with 780 students that is located in a city area, while T2’s
and T3’s schools with about 260 students on average are located in a suburban area.
These three teachers’ classrooms shared some similarities in term of classroom
arrangements. Students’ desks were all arranged in groups of 5 or 6 to facilitate
students’ group work and collaboration that occurred during many of their lessons.
The aisles between the groups provided extra space for groups of students working
together on mathematical tasks and for visitors to sit beside students to observe.

Data Collection and Analysis

After identifying and selecting these expert teachers, extensive data were collected
for the study. Because the focus of the study was on the expertise in mathematics
instruction, the data collected for the study includes two units with 6 and 5 lessons
from each teacher throughout an entire year. Their lesson plans, videotaped lessons,
and lesson observations were taken as the main data sources. In addition, the inter-
views with teachers about their lesson planning and their reflections on program
participations conducted at the end of the year of the study were also used as the
data for analyses in this study.

All these collected data were transcribed and analysed in the original language
of Chinese. Selected data were translated into English to provide evidence in the
later sections of this chapter. All the transcriptions were assembled, and read repeat-
edly. We used a grounded theory methodology and open coding (Strauss & Corbin,
1998) to develop a better understanding of the aspects of expertise exhibited. A line-
by-line analysis was carried out to identify the categories of how different aspects
of expertise were developed. The similarities across the video-taped lessons were
identified in reference to the aforementioned elements of high-quality mathematical
instruction. Prototypical features of teaching expertise across mathematics content
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topics that emerged through contrast and comparison are categorized in the fol-
lowing five aspects: (1) developing and sequencing problems for and in classroom
instruction, (2) selecting and sequencing students’ solutions for the whole-class dis-
cussion, (3) creating more opportunities for students to engage in discussions and
interact with more students, (4) responding to students during the class discussion,
and (5) transiting from one activity to another. The first aspect is emerged from a
lesson preparation and the second aspect emerged after students solved a given prob-
lem individually or in groups. Other aspects are relevant to the process of classroom
discussion. The coding schema of these teachers’ video-taped lessons was devel-
oped as summarized in Table 3. The frequencies and the levels (on a scale from 1 to

Table 3 Coding schema used for video-taped lessons

Levels

Code Description of the code 5 4 3 2 1 Frequencies

1. Developing and sequencing problems for and in classroom
instruction
1.1 Creating and using tasks with high-level demands

and realistic context for evoking multiple solutions
and eliciting the anticipated solutions

√

1.2 Sequencing the problems to be posed
√

2. Selecting and sequencing students’ solutions
2.1 Predicting the anticipated multiple solution methods

√
2.2 Identifying the similarities and differences among

various solutions

√

2.3 Sequencing students’ various solutions for class
discussion on the basis of multiple representations
and conceptual development

√

3. Creating more opportunities for students to engage in
discussions and interact with more students
3.1 Asking various questions for different purposes

√
3.2 Asking key questions in time and asking follow-up

questions for various purposes

√

4. Responding to students during the class discussion
4.1 Interpreting students’ productions

√
4.2 Highlighting and summarizing the main point at the

end of the discussion

√

5. Transiting from one activity to another
5.1 Transiting from one activity to another

corresponding to students’ learning

√

5.2 Creating specific problems/tasks for assessing
students’ understanding and as a part of preparation
for the next lesson

√

Note: 1. “
√

” in the level column means that the coding is done by level 5, 4, 3, 2, and 1.
2. “

√
” in the frequencies column means that the code is counted by frequencies.
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5) of each sub-aspect were encoded. A score of 5 means very good, while 1 means
very poor.

Four graduate students who are in-service teachers served as the raters. They
were trained by the first author to identify the analysis unit and understand the mean-
ing of each category. There are 6 × 3 + 5 × 3 = 33 lessons to be coded, where 6
lessons in unit 1 and 5 lessons in unit 2 for each teacher. The coding was an inten-
sive work. The four graduate students were divided into 2 pairs. Initially, they read
lesson transcripts separately accompanied with watching lesson videos together and
then tried out their coding. Once completing the coding for a lesson, the raters’
reliability was checked as the agreement between two raters within each pair. The
reliability of two pairs for lesson one was 0.65 and 0.68, respectively. Two raters
of each pair discussed to resolve possible differences in order to reach a consensus.
Two raters of each pair then coded the second lesson again. Two pairs of rater’s reli-
ability became 0.83 and 0.85. Two raters in each pair discussed their different codes
altogether again. Then, the reliability of each pair from coding the third lesson was
0.95 and 0.96, respectively. And the reliability of cross-pair was 0.93. It means that
the rater’s reliability within or across pairs were high enough. After that, four raters
coded the lessons individually.

To enrich our understanding of the characteristics of the teaching expertise as
displayed in mathematics instruction, one expert teacher’s classroom instruction was
used for illustrations as needed. In particular, we use T1’s lessons of exploring the
area of various shapes including triangles, parallelograms, and trapezoids that span
six consecutive days (six 40-min lessons).

Before this sequence of six lessons, the fifth graders who were also in T1’s class
at grade 4 had learned about the area of rectangles. The instructional objectives of
the six consecutive days as described in the textbook include: (1) determining how
many square units are in given cardboard parallelograms; (2) exploring the area of
a parallelogram and developing students’ conceptual understanding of the formula
of a parallelogram; (3) determining the number of square units in a given cardboard
triangle; (4) developing the area formula of a triangle; (5) exploring the area formula
of trapezoid; and (6) calculating the area of given complicated figures composed of
various simple shapes.

Prototypical Features of Expertise Displayed in Experts’
Mathematics Teaching

The teaching expertise displayed in the three experts’ teaching has some common
features. In general, they mastered in designing and using tasks that support rich
mathematics thinking, in carefully selecting and sequencing students’ solutions for
whole-class discussion, questioning and using students’ errors or misconceptions for
instruction, responding to students’ questions adequately, and being able to summa-
rize main ideas for students. Each prototypical feature will be discussed below in
detail.
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Developing and Sequencing Problems or Tasks
for and in Classroom Instruction

Two units of lesson instruction for each teacher were coded in accordance with the
coding schema described in previously. The participating teachers have participated
in several terms of teacher professional programs, so that they were used to provid-
ing 2–4 problems for students to resolve in most of their lessons. The six lessons
on the trapezoid area are in the unit that is the same for the three teachers, and the
other unit for T1, T2 and T3 is proportion, ratio, and ratio respectively. Even though
the three teachers created new tasks for students, they still kept the same hours in a
unit as outlined in the teachers’ guide. As scheduled in the teachers’ guide, the les-
son hours for trapezoid area, proportion, and ratio are 6, 5, and 5, respectively. The
number of problems proposed by each teacher distributed in unit 1 with 6 lessons
and unit 2 with 5 lessons is summarized in Table 4.

Table 4 The number of problems proposed by each teacher distributed in unit 1 and unit 2

T1 T2 T3

U1 U2 U1 U2 U1 U2

Lesson 1 4 2 2 2 2 2
Lesson 2 3 3 2 3 2 2
Lesson 3 3 3 3 3 2 3
Lesson 4 3 3 4 3 4 4
Lesson 5 1 4 3 4 4 4
Lesson 6 4 − 4 − 4 −
Total 18 15 18 15 18 15

The levels of the three teachers’ developing and sequencing these problems for
and in lesson instruction are displayed in Table 5.

Skilled in Creating and Using Tasks with High-Level Demands and Realistic
Context for Evoking Multiple Solutions and Eliciting the Anticipated
Solutions

Table 5 shows that the frequencies of the highest level with scale 5 of the code 1.1
displayed in unit 1 for T1, T2, and T3 are 15, 16, and 14 out of 18, respectively,
where 18 is the number of problems used by each of these three teachers in unit 1.
Likewise, there are high frequencies at the highest level with scale 5 displayed in the
three teachers’ teaching of the unit 2 that has 15 problems proposed. This indicates
that the three teachers skilled in creating and using tasks with a high-level cognitive
demand in classrooms. They often used such tasks that require students to explore
and understand the nature of mathematical concepts or relationships. These teachers
can intervene to ensure the mathematics in the real-world examples reach students
and evoke multiple solutions and elicit anticipated solutions.
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For instance, T1 would not directly use the problems in the textbook which
present students the area formula for the trapezoid, but rather would create a
high-level demand task to explore the meaning of the area for the case of trapezoid.

In particular, after wrapping up a review of the area formulas for a rectangle,
parallelogram, and triangle, T1 presented the class with the following task (as Fig. 1)
with a high-level cognitive demand that she created for developing the area formula
for a trapezoid on the fifth day of the lesson sequence:

20 

14 

14 Fig. 1 Two congruent
cardboard trapezoids
provided by T1 with task 1

Task 1: Each student was given two congruent cardboard trapezoids as Fig.1 to
figure out the area of a trapezoid (altitude=14, upper-base=14, bottom-base=20):

The task was at the high cognitive demand level because it required students
to reflect on their previous experience and understand the relationships between
trapezoid, parallelogram, triangle, and rectangle. As a result, students presented 12
different solution methods. They tried to either place one adjacent to the other to
arrange them into a parallelogram or a rectangle or cut one of the two trapezoids
to rearrange them into a parallelogram or a rectangle. On the basis of students’
multiple solutions, this task evidently showed T1’s success in making mathemat-
ics challenging and accessible to students. Meanwhile, T1’s approach exhibited her
respect and value to students’ experiences. The task itself illustrates T1’s expertise
in mathematics and teaching.

Skilled in Sequencing the Problems to be Posed on the Basis
of Students’ Learning

Table 5 shows that the proportions of the highest level with scale 5 of the code 1.2
displayed in unit 1 for T1, T2, and T3 are 6, 5, and 5 out of 6, respectively, where 6 is
the number of sequences problems in unit 1. The number of ordering problems used
in a lesson was counted as 1, so that 6 frequencies were in total for the 6 lessons
of unit 1. Likewise, there is a high proportion at the highest level with the scale
of 5 displayed in the three teachers’ teaching of unit 2. This indicates that these
teachers were skilled in identifying what problem types or mathematical activities
are more difficult for students at a particular age. They were used to utilizing the
textbook with a critical perspective and being very skillful in logically restructuring
the learning sequence on the basis of mathematical significance and students’ prior
knowledge.

For instance, T1 realized that the area formula for a rectangle is often the first
formula students learn. Therefore, she clarified students’ understanding of the area
formula for a rectangle by providing the following sequence of activities before
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exposing students to other activities that are geared toward developing the area for-
mula for the parallelograms, triangles, and trapezoids. The sequence of activities
consisted of: (1) covering a given rectangle with arbitrary units and finding its area
by counting or multiplying the number of rows by the number of units in each row;
(2) covering the given rectangle with a standard unit such as square-centimeter units
and finding the area by multiplying the number of rows by the number of units in
each row; (3) developing a shortcut to cover the entire rectangle by showing that
it is only necessary to see how many rows by the number of units in each row; (4)
marking how many squares could fit across and down, continues to multiply to find
the area; (5) identifying and measuring the base and altitude of the rectangle; (6)
developing the area formula of a rectangle A = (length × width) that is multiply-
ing the number of rows by the number of units in each row as corresponding to the
number squares across the base (length) and down the altitude (width).

T1 realized that once students have worked on the area formula for a rectangle,
the area of a parallelogram or a triangle can be developed. Students were given the
opportunity of exploring the relationship between a parallelogram and rectangle by
cutting a given cardboard parallelogram to rearrange the pieces into a rectangle.
The next stage in developing the formula is to “discover” the relationship between
the area of a parallelogram and that of the corresponding rectangle with the same
length and width. Likewise, students’ understanding of the area of a triangle can
be developed from the case of parallelogram. She also realized that the formula of
trapezoid can be developed from a parallelogram or triangle.

Selecting and Sequencing Students’ Solutions for the Whole-Class
Discussion

Predicating students’ possible solutions and ordering students’ various solutions
that emerge during a lesson reflects the level of a teacher’s knowledge and com-
petence, so the coding was given as the level code. We also looked for how often
the three teachers identified possible similarities and differences among students’
various solutions, so the frequency counts were used for differentiation, as shown in
Table 6.

Skilled in Predicting the Anticipated Multiple Solution Methods

The level of predicting students’ various solutions including students’ misconcep-
tions shown on the lesson plan was coded from each problem. Each predication of
solutions for each problem was a unit of analysis. If there is no more solutions in
the real teaching than those given by the instructor in the lesson plan, then the code
of prediction is at level 5. The code at level 4 means that there was one solution that
was not anticipated in the lesson plan. The coding of the levels 3, 2, and 1 means
that there were 2, 3, and 4 or more solutions given by the students in the lesson but
they were not anticipated by the teacher.
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Table 6 shows that of the 18 problems given in the unit 1 by T1, T2 and T3,
they had 12, 11, and 11 problems respectively at the highest level of 5 of predicting
students’ possible solutions. No more than 3 solutions given by students in each
unit was not included in each teacher’s anticipation. Likewise, the three teachers
had good predictions of students’ various solutions for the problems given in the
unit 2. This indicates that the three teachers were knowledgeable about multiple
solution methods. Their prediction of multiple solution methods commonly used by
students showed that they understood the students. As we observed, students in the
three experts’ classes also appeared comfortable with having multiple methods to
solve a problem.

For instance, T1 anticipated that many methods of finding the area of a trape-
zoid would be provided by students before developing the area formula. In fact, for
Task 1 presented in section “Skilled in Creating and Using Tasks with High-Level
Demands and Realistic Context for Evoking Multiple Solutions and Eliciting the
Anticipated Solutions”, students did provide many different solutions (see Fig. 2) as
T1 anticipated.

(a) (b) (c)

Fig. 2 Students’ different
solutions to a given task in
T1’s lesson

Many teachers tend to draw a parallelogram placed in a horizontal position, as
shown in Fig. 3(1). T1 anticipated students’ difficulty in identifying the altitude
of parallelogram if placed in a different position. In her lesson, she provided a
parallelogram as shown in Fig. 3(2).

As T1 anticipated, Fig. 3(3) sketches a student’s error in drawing the altitude
of the base in Fig. 3(2). Apparently, T1 skilled in identifying the similarities and
differences among various solutions.

Table 6 shows that the frequencies of comparing the similarities and differences
among multiple solutions are the same across the three teachers. This indicates that
after students presented various solutions, teachers always asked students to iden-
tify possible similarities and differences among different methods from students. It
reveals teachers’ perceived differences among various methods. For instance, after
students presented various solutions for Task 1, T1 asked students to categorize their
solutions. Students sorted the solutions (see Fig. 4) into two categories: One was
using two given trapezoids to form a parallelogram or rectangle, such as solutions
(1) and (2) and the other was cutting a trapezoid to rearrange different geomet-
ric shapes, such as the solutions (3)–(11). Moreover, T1 distinguished solution #11

(1) 
base 

(2) 

base 

(3) 

Fig. 3 Students’ errors in
drawing the altitude
corresponding to the base
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Fig. 4 Students’ ways of rearranging a trapezoid into a rectangle

from the second category, since solution #11 transformed the trapezoid into a rect-
angle by adding a triangle and then deducted the area of the added triangle from that
of the rectangle.

Skilled in Sequencing Students’ Various Solutions for Class Discussion
on the Basis of Multiple Representations and Conceptual Development

Sequencing students’ various solutions in a logical order plays an essential role in
leading a successful classroom discourse. Table 6 shows that this is another element
of the teaching expertise displayed by these expert teachers. In order to getting stu-
dents’ attention to the whole class discussion in a short instructional time, these



Expertise of Mathematics Teaching Valued in Taiwanese Classrooms 281

teachers selected and sequenced the order carefully. The solutions being selected as
used by most students could have a wrong answer, incomplete answer, or correct
answer. For those solutions with the correct answer, the quality of those solutions
including multiple representations and conceptual development was also attended
to in making a selection.

For instance, solutions (3)–(5), and (6) in Fig. 4 selected for the whole class
discussion are commonly found by folding the altitude into half from a trapezoid
only, and T1 distinguished them by cutting them in various ways. Figure 4-(4), (5),
(6) were cut along the folded line and the upper part was placed adjacent to the
bottom part. For solutions of (5) and (6) in Fig. 4, the trapezoid was rearranged into
a rectangle.

Creating More Opportunities for Students to Engage
in Discussions and Interact with More Students

The three teachers tried hard to create more opportunities for students to engage in
discussion via initiating various questions for different purposes and asking key and
follow-up questions. We evaluated how often the teachers asked students questions
and what for, so that the types of questions characterized by the different purposes
were coded. Moreover, of the questions, we were also concerned with whether
the questions are good enough for stimulating students’ thinking mathematically
or if the questions would potentially ignite follow-up discussion. Thus, asking key
questions on time was coded as frequency count, as seen in Table 7.

Skilled in Asking Various Questions for Different Purposes

Table 7 shows that the total numbers of questions asked by T1 are 529 and 395 in
6 lessons of unit 1 and 5 lessons of unit 2, respectively. It means that T1 asked one
question in every half-minute on average. Likewise, it is similar with T2 and T3. The
data indicates that in these expert teachers’ classrooms, students had frequent oppor-
tunities to think mathematically and to report their thinking. In particular, these
teachers asked students to clarify how they get their answers, encouraged students
to explain their reasoning, asked students to distinguish one solution from another,
diagnosed students’ misconceptions, and helped correct students’ misconceptions.

In addition, Table 7 shows that making comparison among different solution
methods is ranked as the second highest frequency with 153 in these lessons. This
kind of questions asked by each teacher was about 8 times per lesson on average
(i.e., 153 times in 18 lessons, 116 times in 15 lessons) in one lesson. This indi-
cates that these teachers encouraged students to compare, and contrast multiple
solution methods. When a student proposed an incomplete solution or a diffi-
cult question, these expert teachers frequently put the question back to the whole
class and invited help from other students to continue to deal with the difficulty.
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Consequently, more and more students jumped into the discussion to resolve the
difficulty.

For instance, T1 recognized that there were many ways to develop the area for-
mula of a trapezoid as corresponding to various solutions presented in Fig. 4. One of
the easiest ways was to rely on the area of rectangle. She took advantage of solution
(1) in Fig. 4 as an example of finding the area of a trapezoid (b = upper-base, B =
bottom-base, h = altitude)

Fig. 4(1)

She asked students a series of questions as follows:

T1: What figure have you formed?
S12: A rectangle.
T1: What is its length?
S12: (14+20) or (b+B)
T1: What is its altitude?
S12: h
T1: What is its area?
S12: h × (b+B).
T1: How does the area of the trapezoid compare to the area of the rectangle?
S12: Half as much.
T1: How might we write a formula for the area of a trapezoid?

S12:
h(b + B)

2

Skilled in Asking Key Questions in Time and Asking Follow-Up Questions

The results presented in Table 7 show that the three teachers’ questioning skills
were frequently ranked at the level of 5. The proportions of T1’s, T2’s and T3’s
questioning skill ranked at the highest level were 510/529, 488/504, and 510/521
respectively. This indicates that these three teachers asked most questions properly.
After students explained their solution methods, the follow-up conversations were
devoted to asking students many questions with various purposes. These teachers
did not begin the lesson on the area formula of the trapezoid by reciting other for-
mulas from previous learning and ended the lesson by asking students to memorize
the new area formula. Rather, they displayed frequently the mathematical richness
evidenced in the questions they prompted or asked students.
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For instance, on the second day of the lesson sequence, the questions T1 asked
were geared toward the key concept for developing the area formula of a parallelo-
gram. The key concept was that the cutting line must be perpendicular to the base
when you cut the parallelogram and make it a rectangle. The critical questions asked
by T1, after her students’ seatwork, include: How did you decide your cutting line?
Why did you cut it and rearrange it into a rectangle? How did the length and width
of a rectangle correspond to the base and altitude of the parallelogram?

On the fifth day of the lesson sequence, the key idea behind finding the area
formula of a trapezoid was transforming the trapezoid into a parallelogram or a rect-
angle either by placing it adjacent to the original or cutting the trapezoid. For this
purpose, T1 asked some critical questions for clarifying students’ thinking, such as
Can only a rectangle be made from the two congruent trapezoids? Can it be a par-
allelogram? The question Should two trapezoids be used to make a parallelogram
to find the area of the trapezoid? was used to prompt students’ multiple solution
strategies. To help students find the area and length relationships between the two
geometric shapes, T1 asked the following questions Is the area of the rectangle the
same as that of the trapezoid being transformed?; What are the length and width
of the rectangle in relation to the original two trapezoids? and What are the length
and width of the rectangle corresponding to the original trapezoid? To help students
connect their concrete experience with the corresponding mathematics expression,
T1 asked the question: Is the meaning of the “ ÷ 2” in (34 × 14) ÷ 2 the same
as 34 × (14 ÷ 2)? To help students generalize the area formula, T1 asked Can the
formula (upper-base + bottom-base) × h ÷ 2 be used for computing the area of all
trapezoids?

Responding to Students During the Class Discussion

How the three teachers responded to students is another aspect of the expertise
displayed in mathematical instruction. These teachers sometimes responded to stu-
dents’ questions by interpreting students’ solutions or students’ comments. Thus the
frequencies of the teachers’ interpreting of students’ productions were coded. How
often the teacher helped students make a summary at the end of a discussion or at the
end of a lesson was counted as well. The results of teachers’ responding to students
are summarized in Table 8.

Skilled in Interpreting Students’ Productions

Table 8 shows that the three teachers tried to understand and appropriately interpret
students’ comments, questions, and solutions. Of all the interpretation of students’
responses, their interpretation of students’ solutions was the most frequent in the
classroom. This indicates that there were many occasions during the class discussion
for the expert teachers to respond to students. When a student offered the correct
answer, they did not take that answer outright, as many other inexperienced or
novice teachers often do. Instead, they pressed for a mathematical explanation. They
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appeared to be processing what students were saying. They were able to identify if
there was evidence indicating that students’ explanations were reasonable.

For instance, after students presented the answer (34×14)÷2 and 34×(14÷2) in
Fig. 4-(1), (5), respectively, T1 asked them to distinguish the meaning of the “÷2” in
the two expressions. The “÷2” in (34×14) ÷2 is half of the parallelogram composed
by two congruent trapezoids. The “÷2” in 34×(14÷2) is half of the altitude of the
given trapezoid.

Skilled in Highlighting and Summarizing the Main Point at the End
of the Discussion

Table 8 also shows that the frequencies of highlighting and summarizing the main
point at the end of the discussion occurring in the classroom is the same as the
number of the problems proposed in these two units. This indicates that the three
expert teachers always summarized the main point that often took place at the end
of the discussion for a problem or at the end of the lesson. One way of highlighting
or summarizing the main point at the end of the discussion for a problem was to
compare the similarity and difference among various solutions. The efficiency was
not the focus of comparing various solutions. Instead, the comparison was used to
identify which of the methods is successful in achieving the instructional objectives.

Another way of highlighting the main point occurring at the end of a lesson was
to summarize the instructional objectives for students, make a comparison among
different activities, or review the lesson. If time permitted, these teachers would pose
an extended task as an assignment that needs students to apply what they have just
learned in the current lesson.

Transiting from One Activity to Another

The smooth transition from one activity to another can be counted with a degree of
quality measure. For T1, the activities proposed within 6 lessons in unit 1 were 4, 3,
3, 3, 1, and 4. The total number of transition was 3 + 2 + 2 + 2 + 0 + 3 = 12, where
the first 3 is counted in lesson 1 as from activity 1 to activity 2, from activity 2 to
activity 3, and from activity 3 to activity 4. The total of 12 transitions was observed
in unit 1 with 18 lessons, shown in Table 9. Approaching the end of a lesson, the
three teachers sometimes created assessment tasks for students as their homework.
These tasks were initiated from their classroom discussion.

Skilled in Transition from One Activity to Another Corresponding
to Students’ Learning

Table 9 shows that the expertise displayed in these expert teachers’ lessons includes
their smooth transition from one activity to another as corresponding to students’
learning. For instance, before area formulas were introduced, T1 first provided stu-
dents with the opportunity to compare areas of different regions with and without
units. When introducing area units, T1 then let students experience covering a region
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with nonstandard and then standard units. At this stage, she helped students to under-
stand that a square unit is the standard unit used in area measurement. When students
were thoroughly familiar with counting the number of units covering the rectangles,
it was time for the teacher to introduce the area formula for a rectangle. After learn-
ing how to use the formulas, T1 then let students find the areas of regions in which
they have to combine formulas.

Skilled in Creating Specific Problems/Tasks for Assessing Students’
Understanding and as a Part of Preparation for the Next Lesson

Table 9 also shows that the three teachers would not create assessment tasks for
students at the end of each lesson, but rather they provided the assessment tasks at
the first three or four lessons when students’ conceptual knowledge was developed.
During the classroom instruction, asking students to solve specifically created prob-
lems to assess their learning is a pattern of teaching in the expert teachers’ lessons.
Students’ responses to given tasks helped the expert teachers understand the effect
of instruction and improved their awareness of where students may need extra help.
The assessment tasks can also be used for the purpose of extending the current
lesson instruction as part of the preparation for the next lesson. The classroom dis-
course on mathematical ideas was the major source of information for the expert
teachers to examine if individual students truly understand what he or she learned
in the lesson.

For instance, at the end of the fifth day’s lesson, T1 generated an assessment task
based on the classroom discourse as an assignment as follows.

Assignment task: During today’s instruction, you were asked to find the area of a
trapezoid (its bases are 14, 20 cm, its altitude is 14 cm). Ming’s answer was pre-
sented as (34×14)÷2 and Mei’s was 34×(14÷2). What do Ming and Mei’s answers
mean by “÷2”? Write down your explanation.

The assessment tasks as an assignment were also commonly used as a medium
for communicating about students’ learning with their parents.

In addition, these expert teachers exhibited versatile skills in mathematics
instruction. They made connections among mathematical ideas and created smooth
transitions between topics. To motivate students to learn, they used various methods,
such as doing group work, hands-on activities, and using information technologies.
To engage students in activities, they devoted to design tasks to meet students’
mathematical level. To promote high-quality student–teacher interactions, various
questions were asked to serve different instructional purposes. To inspire students
to move to an advanced level, these experts dared to face the challenge to deal with
students’ questions, misconceptions and difficulties.

Concluding Remarks

The above section presents rich descriptions of similarity-based features of teaching
expertise exhibited in these three expert teachers’ classroom instruction. Taken
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together, the summative aspects of teaching expertise displayed in these expert
teachers’ classroom instruction include designing and using good tasks for evok-
ing and eliciting students’ thinking mathematically, predicting students’ possible
methods of solutions, selecting and sequencing students’ solutions in a good order,
asking questions purposely at a right time, and responding timely to students. Each
aspect heavily relies on the expert teachers’ knowledge, in particular, knowledge of
mathematics and students’ learning. Although we did not measure teachers’ knowl-
edge, this study, in some ways, helps to demonstrate what strong knowledge may
be needed in order to exhibit such performance in mathematics instruction. This
study’s findings implicitly suggest these teachers’ strong content knowledge, peda-
gogical content knowledge, and knowledge of students’ learning that underpin the
various aspects of expertise exposed in the expert teachers’ performance in teaching.

Findings of this study provide a strong support for the three aspects of teach-
ing expertise (i.e., knowledge, efficiency, and insight) outlined by Sternberg and
Horvath (1995). At the same time, the study’s focus on expert mathematics teachers’
classroom instruction helps provide the rich content of the three aspects of teaching
expertise that is valued in Taiwan. In particular, these expert teachers carried out
their instruction with efficiency. They were willing and capable of restructuring the
instructional activities from the textbook, flexible in the transition from one activ-
ity to another when needed, skillful in asking questions to serve various purpose
and addressing students’ misconceptions along the ongoing process of classroom
instruction. In addition, these expert teachers were insightful about students’ solu-
tion methods and proficient in selecting and sequencing them in a good order for
the class discussions. They were also knowledgeable about students’ learning of
specific content topics that helped them anticipate students’ possible solutions and
difficulties.

As we indicated at the beginning of the chapter, the study of teachers’ expertise
in teaching is important not only for the improvement of classroom instruction but
also for the practices of teacher education. The rich description and prototypical fea-
tures obtained from this study reveal the type of insights that we can gain. Because
this study is still restricted to three expert teachers, further research is needed to
enrich our understanding of teacher expertise in mathematics teaching. Moreover,
as the development of teaching expertise is not the focus of this study, further
research is also needed to identify and examine possible factors and practices used
in Taiwan to mediate the development of expert teachers’ expertise in mathematics
instruction.
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Cross-Nationally Comparative Results on
Teachers’ Qualification, Beliefs, and Practices

Svenja Vieluf and Eckhard Klieme

Abstract A growing body of research compares educational processes and
outcomes cross-nationally, but up to now there are only few studies on teachers and
their expertise involving more than a handful of countries. Drawing on data from
the OECD-Teaching and Learning International Survey the present chapter aims at
filling this research gap. It compares different aspects of teacher quality – namely
mathematics teachers’ qualification, beliefs about the nature of teaching and learn-
ing and classroom teaching practices – across 23 countries. Results of descriptive
and multivariate analyses show the three facets and their subscales to be distinct but
interrelated across countries. At the same time significant differences in profiles are
observed cross-nationally. The findings suggest both, global and country-specific
effects on teacher quality.

Keywords Mathematics teachers · Teacher quality · Teacher beliefs · Conceptions
of teaching · Teaching practices · International comparisons · Cross-cultural

Introduction

Comparative research in education has been following different paradigms.
Qualitative approaches characterise educational regimes in two or more countries
or regions juxtaposing local findings and subsequently drawing conclusions about
similarities and country specifics (as an example, see Döbert, Klieme, & Sroka,
2004). In a second paradigm, direct empirical comparisons are made between select
countries; for example, there are multiple studies comparing mathematics education
in the USA and Japan (Becker, 1992; Stigler & Hiebert, 1999). A third approach –
cross-national large scale surveys involving representative samples from larger num-
bers of countries – additionally facilitates analysis of cross-cultural generalizability
and country level effects.
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The latter paradigm has become most influential in student assessment. In
research on teacher expertise on the other hand, there are only few attempts to exam-
ine a larger sample of countries. Even though mathematics has been a prominent
subject in international large scale surveys run both by the IEA (FIMS, SIMS, and
TIMSS) and OECD (PISA), they do not provide rich data on mathematics teachers.1

PISA does not survey teachers at all, and the IEA studies have focused on profes-
sional background variables such as a teacher’s level of training, the amount and
quality of teaching experience, and status as a professional worker.

More recently, the IEA has begun to cover cognitive and affective aspects of
teacher expertise as well. TIMSS 2011 will incorporate scales measuring teacher
motivation and self efficacy (Mullis, Martin, Ruddock, O’Sullivan, & Preuschoff,
2009, p. 108). In 2007–2009, the Teacher Education and Development Study
(TEDS-M) examined knowledge and beliefs of future teachers from 20 countries.
In parallel to these IEA initiatives, the OECD launched its Teaching and Learning
International Survey (TALIS) in 2008 (see OECD, 2009 for the initial report) which
covered – besides other aspects of school quality and teachers’ work places – several
scales related to teacher quality.

The present chapter builds on the TALIS data base2 to study three aspects of
teacher quality in cross-national comparison: mathematics teachers’ qualification,
their beliefs about the nature of teaching and learning, and profiles of classroom
teaching practices in mathematics lessons. In addition to comparing means and pro-
files the chapter also examines the generalizability of relations between these three
indicators. The next section will introduce the constructs used in our comparative
study and relate them to the overarching concepts of teacher quality and teacher
expertise.

Theoretical Background

Teacher Expertise and Teacher Quality in Mathematics

Within educational psychology, the constructs of expertise and professionalism, and
knowledge and competence can hardly be discriminated when the quality of teachers

1IEA is the International Association for the Evaluation of Educational Achievement, which
launched the First and the Second International Mathematics Study (FIMS 1964; SIMS 1977)
as well as the Third International Mathematics and Science Study (TIMSS 1995) which later
became the Trends in Mathematics and Science Study 1999, 2003, and 2007. The Programme
for International Student Assessment (PISA) was launched by the Organisation for Economic
Co-operation and Development (OECD).
2The authors of the present chapter have been affiliated with TALIS as research fellow and mem-
bers of the international TALIS expert group, respectively. They authored the chapter on Teacher
Beliefs and Teaching Practices in the initial report edited by OECD (Klieme & Vieluf, 2009). The
authors would like to thank Michael Davidson and Ben Jensen (project leaders, OECD), Ralph
Carstensen and Steffen Knoll (project managers at IEA-DPC, the international study contractor),
as well as David Baker, Aletta Grisay and Jaap Scheerens (members of the TALIS Questionnaire
Expert Group) for excellent collaboration.
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and/or teaching is discussed. Those who tend to use the notion of expertise (like
Bromme, 2008) understand teaching to depend on a combination of knowledge
structures, including schemata for perception and action, skills, and routines that
are developed through extended practice while moving from the status of a novice
to the status of an expert. When Bromme (2008; see also Bromme, 1997) equates
teacher expertise with teachers’ professional knowledge and skills related to teach-
ing and learning in school, however, he refers to the seminal work on professional
teacher knowledge done by Shulman (e.g., Shulman, 1987). In this tradition, three
forms of professional knowledge are frequently discussed: (1) content knowledge,
(2) pedagogical content knowledge, and (3) pedagogical knowledge (e.g., Borko
& Putnam, 1996; Helmke, 2003; Lipowsky, 2006). There is evidence that peda-
gogical content knowledge – that is knowing how a specific content area is taught
and learned – is most important in predicting the quality of teaching and learn-
ing processes, and finally the outcomes of student learning. Ball and Hill (2008)
as well as Baumert et al. (2009) developed tests of pedagogical content knowledge
in the area of elementary and secondary-level mathematics respectively, and were
able to predict student achievement growth from teachers’ test scores. However,
neither Shulman nor other authors have drawn a clear distinction between knowl-
edge and beliefs. (See section Teachers’ Beliefs About Teaching and Learning below
for a discussion of these notions). Therefore, Baumert and Kunter (2006) came up
with a rather comprehensive definition of professional teacher competence as the
interplay of the three knowledge dimensions with teachers’ beliefs, motivation, and
self-regulation competencies.

In their recent overview of teacher quality in mathematics, Ball and Hill (2008)
take an even broader perspective when discussing different approaches to measur-
ing the quality of teachers. They set out defining high-quality teachers as those who
“consistently and effectively foster students’ learning” (p. 95). However, they do not
establish student achievement growth as the measure of teacher quality, as econo-
metricians have done (e.g., Hanushek, 2002). Student achievement can hardy be
accounted to one teacher. Moreover, the effectiveness approach lacks the pedagog-
ical substance needed to guide teacher education. Therefore, Ball and Hill worry
about the “many problems with using direct measures of student learning to gauge
teacher quality” (2008, p. 95).

Ball and Hill also discuss teacher qualification – that is teacher education, cer-
tification, and experience – as another approach for measuring teacher quality.
Advanced academic degrees, a major in the subject being taught, and professional
experience have been described as desired qualifications or as indicators of teacher
quality. However, results regarding their association with student achievement are
inconsistent (for a summary of research see Zuzovsky, 2009; for teacher certifi-
cation see Libman, 2009). For the case of mathematics, Ball and Hill (2008, p.
85) conclude: “Overall, course taking and certification are relatively imprecise dis-
criminators of teacher quality”. This is also in line with results from economics
of education (Hanushek & Rivkin, 2007) and from international studies (Mullis
& Martin, 2007). Nevertheless, the professional background may have an impact
on teacher competence (as defined above) and teaching practices and thus a more
indirect effect on student learning.
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Instead of effectiveness and qualification measures, Ball and Hill prefer direct
measures of instructional practice, identifying “teachers who provide students with
error-free, substantial mathematics and who can manage with mathematical adept-
ness the range of students’ mathematical productions. There may also be other
dimensions of instructional quality, such as the cognitive challenge of students’
classroom work or the pedagogical aspects of classroom practice, that we would
want to include” (2008, p. 95).

To sum up, empirical research on teacher quality has been discussing a number of
different, though related constructs. Expertise is just one out of many notions used
in this context. No single study like the TALIS, which the present chapter is based
on, can cover all relevant aspects. Rather, following the broader view expressed
by Ball and Hill (2008), teacher qualification, teacher beliefs about the nature of
teaching and learning (chosen as a core element of professional competence), and
instructional practices are covered here. The TALIS framework for Teacher beliefs
and teaching practices (Klieme & Vieluf, 2009) assumed (1) teacher qualification,
including teacher education and professional development, to impact (2) teacher
beliefs about the nature of teaching and learning, which in turn would have an influ-
ence on (3) classroom teaching practices. This line of argument will be taken up in
the present chapter. Although the present study may well be considered a study on
teacher expertise, the more neutral term teacher quality will be used. Also, it should
be noted that TALIS was a domain-general survey, sampling teachers from all kinds
of subject areas, which did not allow subject-specific knowledge or beliefs to be
addressed. However, the present chapter exclusively studies the TALIS sub-sample
of mathematics teachers.

Teachers’ Beliefs About the Nature of Teaching and Learning

Teachers’ beliefs can be defined as “psychologically held understanding, premises,
or propositions about the world that are felt to be true” (Richardson, 2003, p. 2).
Within mathematics education, there has been a long history of research into teach-
ers’ as well as students’ beliefs (Leder, Pehkonen, & Törner, 2002). In his overview
of the state-of-the-art, Pehkonen (2004, p. 2) sees beliefs “situated in the ‘twi-
light zone’ between the cognitive and the affective domain”. Mathematics educators
have focused on beliefs about the nature of mathematics (e.g., Grigutsch, Raatz, &
Törner, 1998; Hannula, Kaasila, Laine, & Pehkonen, 2005; Törner & Grigutsch,
1994), but Pehkonen (2004) also mentions beliefs on mathematics learning and
teaching, self-related beliefs (such as self efficacy), and beliefs about the social
context of mathematics education.

Following the seminal work by Peterson, Fennema, Carpenter, and Loef (1989;
see also Fennema, Carpenter, & Loef, 1990), a reception/direct transmission view
on teaching and learning is often contrasted with a constructivist view. Although
these views were originally introduced as pedagogical content beliefs in the area of
mathematics, they may be applied to teaching and learning in general.
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– As a traditional strand of professional beliefs, the direct transmission approach –
according to Staub and Stern (2002) – is rooted in behaviorism, which pro-
poses a teacher directed approach to learning and instruction. Teachers should
explicitly communicate concrete knowledge and exemplary approaches to spe-
cific assignments in a clear and structured way. Also, attentiveness and discipline
in the classroom are considered to be highly important. Teachers who support this
approach tend to view their students as recipients of knowledge that is passed on
to them from their teachers.

– Constructivist beliefs assign students a more active role in the process of acquir-
ing knowledge. Constructivism – which many scholars regard as the more modern,
reform oriented kind of pedagogy – assumes that learning is embedded in its set-
tings and conditions, and that learners actively construct their knowledge based
on previous experiences. Many different instructional approaches are based on
constructivist theories. Central to these approaches is that teachers are not seen
as transmitters of information, but rather as facilitators of students’ self-regulated
learning processes. Thus, teachers holding this view emphasize facilitating stu-
dent inquiry, prefer to give students the chance to develop solutions to problems
on their own, and allow students to play an active role in instructional activities
(Staub & Stern, 2002).

As exemplified by Kirschner, Sweller, and Clark’s (2006) critique of construc-
tivist (minimal guidance) instruction and the scholarly debate it triggered (Tobias
& Duffy, 2009), the discussion about success and failure of constructivist vs. direct
instruction is still unsettled from a researchers’ perspective (see section Classroom
Teaching Practices on this issue). In the present context, however, it is important
to note that constructivist vs. direct transmission teacher beliefs still represent two
distinct ways of professional thinking which are quite popular among teachers, and
which in the case of mathematics may even be predictive of their students’ achieve-
ment trajectories (Staub & Stern, 2002). Therefore, TALIS attempted to study these
beliefs in an international comparison.

Classroom Teaching Practices

Classroom teaching practices have been shown to be related to effective class-
room learning and student outcomes (Brophy, 2000; Brophy & Good, 1986; Seidel
& Shavelson, 2007; Wang, Haertel, & Walberg, 1993). Existing evidence sug-
gests there is no single best way of optimizing instruction. Well-structured lessons
with close monitoring, adequate pacing and classroom management, clarity of
presentation, informative and encouraging feedback – which are known as key
aspects of direct instruction – bear a positive impact on student achievement.
However, researchers inspired by reform pedagogy and humanistic psychology, e.g.,
Deci and Ryan (1985), argue that student motivation and non-cognitive outcomes
require additional facets of quality, such as a classroom climate and teacher-student
relations which support autonomy, competence and social relatedness. Finally, in
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order to foster cognitive activity (Mayer, 2004) – rather than activity per se – and
conceptual understanding, instruction has to use deep, challenging content (Brown,
1994), which in the case of mathematics means making connections between math-
ematical facts, procedures, ideas, and representations (Hiebert & Grouws, 2007);
argumentation and non-routine problem solving should be promoted. Thus, teach-
ers have to orchestrate learning activities in a way that serves the needs of their
specific class.

Klieme, Pauli, and Reusser (2009) condensed this knowledge into a framework of
three basic dimensions of instructional quality: (a) clear, well-structured classroom
management, (b) supportive, student-oriented classroom climate, and (c) cognitive
activation with challenging content. Empirical support for the separation of these
dimensions and their impact on student learning comes from the German exten-
sion to the TIMSS 1995 video study (Klieme, Schümer, & Knoll, 2001), from a
German large scale study on mathematics teachers (Baumert et al., 2009), from a
Swiss-German video study in math instruction (Lipowsky et al., 2009), but also
from international work in educational effectiveness (e.g., Creemers & Kyriakides,
2008). By incorporating both (socio-)constructivist thinking and classical process-
product-research, the framework may help to build a bridge between constructivism
and direct instruction (Tobias & Duffy, 2009). Lipowsky et al. (2009) consider the
basic dimensions as latent factors which are related to, but not identical with specific
instructional practices.

We assume classroom practice to be influenced by teachers’ beliefs. Generally
teachers with direct transmission beliefs are expected to focus more on structure and
discipline and to use more lecturing, while on the other hand we anticipate a corre-
lation between constructivist beliefs and more student-centred practices as well as a
focus on self-regulated learning, collaboration, problem-solving and cognitive chal-
lenge. However, the results of studies examining these relationships are inconsistent.
While some studies showed beliefs to be related with classroom teaching prac-
tices in Western countries (e.g., Dubberke, Kunter, McElvany, Brunner, & Baumert,
2008; Peterson et al., 1989; Staub & Stern, 2002), but also in Asia (Kember & Kwan,
2000), other authors find no such link (e.g., Wilcox-Herzog, 2002). The inconsis-
tency of findings may be partly due to differences in the operationalization of the
constructs.

Cross-Cultural Comparison of Teacher Beliefs About the Nature
of Teaching and Learning and Classroom Teaching Practices

Cross-cultural studies examining teachers’ knowledge and beliefs mainly focus on
comparisons of the USA with East Asia and examine two or three countries only
(e.g., An, Kulm, & Wu, 2004; An, Kulm, Wu, Ma, & Wang, 2006; Cai, 2006; Correa,
Perry, Sims, Miller, & Fang, 2008; Ma, 1999; Zhou, Peverly, & Xin, 2006). These
studies highlight specific differences between countries, but they do not inform
about differences and similarities of beliefs on an overarching level. Some research
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comparing teachers or future teachers from a larger variety of countries comes from
IEA studies such as TIMSS and MT21. The results are mixed: Incremental vs.
entity beliefs about student abilities, epistemological beliefs about mathematics, and
instructional goals sometimes are shared and sometimes vary between countries (see
LeTendre, Baker, Akiba, Goesling, & Wiseman, 2001; Mullis et al., 2008; Schmidt
et al., 2007).

With regard to teaching practices in mathematics, SIMS already identified a
surprising level of similarity among systems. Teachers were using whole-class
instructional techniques, relying heavily on prescribed textbooks, and rarely giving
differentiated instruction or assignments (Burstein, 1992). Later, TIMSS – includ-
ing the 1995 and 1999 video studies – found global patterns regarding the general
repertoire of practices. Thus, a high degree of convergence was found across coun-
tries when the presence of certain features of lessons was examined (LeTendre
et al., 2001; Mullis & Martin, 2007). However, analysing the sequencing of lessons,
Stigler and Hiebert (1999) identified scripts that seemed to be country specific.
For example, teachers across most (industrialized) countries employ whole class
work, seat work and lecturing, but the sequence of these practices and the frequency
of shifts between them significantly vary (Givvin, Hiebert, Jacobs, Hollingsworth,
& Gallimore, 2005). When the TIMSS 1995 video study was published, many –
including Stigler and Hiebert – believed the instructional script found in Japanese
classrooms to be the cause for high level mathematics achievement in Japan. Later,
the 1999 TIMSS video study, which included another five high achieving countries
(i.e. Hong Kong, the Czech Republic, the Netherlands, Switzerland, and Australia),
revealed that those countries had quite different profiles in teaching practices, thus
devaluating any attempt at directly linking student achievement to teaching prac-
tices on a national level (Hiebert et al., 2003). Some early conclusions drawn from
the TIMSS video studies may be flawed due to ecological fallacy.

Aims and Hypotheses

As the previous sections have shown, cross-cultural research is still left with open
questions about cross-national differences and similarities of teacher quality. The
present chapter will shed light on this question by examining three indicators of
teacher quality across a large sample of 23 countries. More specifically, it aims to
answer the following research questions: (1) How similar or different are countries
with regards to the quality of their teacher population, considering (a) the compo-
sition of their mathematics teacher force in terms of their professional qualification
and experience, (b) profiles of beliefs about the nature of teaching and learning, and
(c) profiles of classroom teaching practices? (2) Are these three aspects of teacher
quality related, and are the relations similar across countries?

Based on previous research, especially the TIMSS study, we expect to find
characteristic differences between countries regarding the qualification of teachers
(Mullis et al., 2008). We further expect both, direct transmission and constructivist
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ideas, to be present across countries. However, influences of national cultures and
policies suggest differences in the magnitude and pattern of endorsement of the two
views. Regarding classroom teaching practices, comparative research, especially
the TIMSS video studies, has proven that mathematics teachers possess a similar
repertoire, and that more traditional activities dominate in almost all countries
(Hiebert et al., 2003). Thus, structureing practices would likely be more frequent
than student orientation and enhanced activities in every country. However, accord-
ing to previous research in comparative education (including TIMSS, PIRLS and
PISA), countries have quite different profiles in terms of alternative or enhanced
teaching practices, which we also expect for the present study.

Based on theoretical considerations and previous research (e.g., Dubberke et al.,
2008; Peterson et al., 1989; Staub & Stern, 2002) we further expect to find direct
transmission beliefs to be related to structuring and constructivist beliefs to correlate
with student orientation and enhanced activities.

Method

The research questions described are examined with data from the Teaching and
Learning International Survey (TALIS). TALIS uses a teacher and a principal ques-
tionnaire to gather information on teachers’ beliefs, attitudes and practices and their
conditions. The data collection for the first cycle took place in fall 2007 in the
Southern Hemisphere and in spring 2008 in the Northern Hemisphere. The target
population is all teachers who, as part of their regular duties, provide instruction in
programs at the lower secondary level (ISCED level 23) in one of the 23 participat-
ing countries. A two-stage stratified sample design was used. Firstly a representative
sample of schools providing lower secondary education was drawn, and secondly
a representative sample of teachers within these schools was selected. Therefore
the data has a multilevel structure with teachers nested within schools (for more
information see OECD, 2009, 2010).

Sample and Description of Population Characteristics

The analyses for this chapter are based on a subsample of the TALIS participants
who were randomly selected to represent the ISCED level 2 teaching force in the
23 participating countries. Within the questionnaire, teachers were asked to iden-
tify the first ISCED level 2 class they typically teach after 11 a.m. on Tuesdays.
Those teachers who reported to teach a mathematics class at this specific slot in the
timetable will be labelled mathematics teachers in the following. Altogether 73,100

3For a detailed description of ISCED levels see United Nations Educational, Scientific and Cultural
Organization (2006).
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teachers completed the TALIS questionnaire in 2008 and 2009. The sizes of the sam-
ples drawn vary by country, with Malta having the smallest teacher sample (1,143
teachers), and Brazil the largest (5,843 teachers; for a more detailed description of
sampling procedures see OECD, 2010). The subsample used for this article consists
of 9,259 mathematics teachers, which equals 13% of the total sample and 10–19%
of each of the total country samples. Between 132 mathematics teachers in Malta
and 957 mathematics teachers in Brazil are included.

Altogether 62% of the mathematics teachers are female and 38% male. Also
within 19 of the 23 participating countries the percentage of female mathematics
teachers is higher than that of male mathematics teachers.4 A majority of the math-
ematics teachers is between 30 and 50 years old, both in the total sample (58%)
and in most of the country-subsamples (44–77%). Only 18% of the mathematics
teachers are 30 years or younger, and 24% are 50 years or older.5

Measures

Individual background characteristics – gender, experience, level of education,
participation in professional development – are measured with single items. To
collect data on mathematics teachers’ beliefs, attitudes and practices items were
summarized to form scales.

Confirmatory factor analysis (CFA) was used to confirm the expected dimen-
sional structure of the scales. In accordance with scientific conventions (Hu &
Bentler, 1999; Schermelleh-Engel & Moosbrugger, 2002), the following values
for fit indexes were seen as indicative of an acceptable model fit: CFI > 0.90,
RMSEA < 0.08 and SRMR < 0.08. In addition to the general model fit across and
within each of the countries, the cross-cultural invariance of the factor loadings,
intercepts and residual variances was tested using multiple group confirmatory fac-
tor analysis (MGCFA) and different restrictions on the parameters. Such analysis of
cross-cultural equivalence informs about the generalizability of constructs (Van de
Vijver & Poortinga, 1982), but it can also be interpreted as a multi-method approach
to construct validation (Marsh, Martin, & Hau, 2006). The analysis was carried out
with the software Mplus, version 5.1 (Muthén & Muthén, 1997–2008). Additionally
the internal consistence (Cronbach’s Alpha) of the scales was also examined, both
across countries and for each country separately. (For detailed results see OECD,
2010).

For the assessment of mathematics teachers’ beliefs about the nature of
teaching and learning TALIS draws on scales developed by Fennema et al.
(1990) and adapted by Staub and Stern (2002). The original questionnaires
are designed to measure mathematics teachers’ agreement with a cognitive

4The five countries with a larger percentage of male mathematics teachers are Australia, Denmark,
Mexico, Norway, and Turkey.
5Noticeable exceptions are Italy where 60% of the teachers are 50 years or older, and Turkey where
56% are 30 years or younger.
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constructivist perspective vs. a direct transmission orientation as two poles of one
dimension. Many items are worded in a mathematics specific way, for example
referring to word arithmetic. Because TALIS examines teachers teaching different
subjects the items were revised to measure domain general beliefs. Moreover the
scales were shortened to fit in the time frame of the TALIS study. With the eight
items used in TALIS two scales were built: direct transmission beliefs and construc-
tivist beliefs. They were assessed on a four-point Likert scale, ranging from 1 =
strongly disagree to 4 = strongly agree. The two indices for teachers’ beliefs about
the nature of teaching and learning comprise the items shown in Table 1.

The fit of a confirmatory factor analysis (CFA) model is good for the total sample:
CFI = 0.94, TLI = 0.91, RMSEA = 0.04 and SRMR = 0.03. Reliabilities for the
two scales measuring mathematics teachers’ beliefs about the nature of teaching
and learning tended to be rather poor (α = 0.47 for direct transmission beliefs and
α = 0.61 for constructivist beliefs for the total sample). Furthermore, the scales are
not fully invariant across countries; the general structure and the factor loadings are
relatively similar, but intercepts and residual variances differ noticeably between
countries.

Classroom teaching practices were examined by teachers’ frequency estima-
tions on a 5-point scale, ranging from never or hardly ever to in almost every
lesson. Based on the triarchic model by Klieme, Lipowsky, Rakoczy, and Ratzka
(2006) three indices were established: structuring, student-orientation and enhanced
activities. The items measuring classroom teaching practices are detailed in
Table 2.

The model fit for the whole model including all three scales is acceptable for
the total sample (CFI = 0.90, TLI = 0.87, RMSEA = 0.06, and SRMR = 0.04).
Reliabilities for the three scales measuring classroom teaching practices are mostly
satisfactory, both for the whole sample (α = 0.73 for structuring, α = 0.70 for stu-
dent orientation and α = 0.72 for enhanced activities) and for single countries.
Across countries, the three scales measuring classroom teaching practice have a
similar structure and also relatively similar factor loadings, but they are also not
completely cross-culturally invariant.

Table 1 Items wording for beliefs about the nature of teaching and learning

Direct transmission beliefs Constructivist beliefs

Effective/good teachers demonstrate the
correct way to solve a problem.

My role as a teacher is to facilitate students’ own
inquiry.

Instruction should be built around problems
with clear, correct answers, and around
ideas that most students can grasp quickly.

Students learn best by finding solutions to
problems on their own.

How much students learn depends on how
much background knowledge they have;
that is why teaching facts is so necessary.

Students should be allowed to think of solutions to
practical problems themselves before the teacher
shows them how they are solved.

A quiet classroom is generally needed for
effective learning.

Thinking and reasoning processes are more
important than specific curriculum content.
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Table 2 Item wording for classroom teaching practices

Structuring Student orientation Enhanced activities

I explicitly state learning goals. Students work in small
groups to come up with a
joint solution to a
problem or task.

Students work on projects
that require at least 1
week to complete.

I review with the students the
homework they have
prepared.

I give different work to the
students that have
difficulties learning
and/or to those who can
advance faster.

Students make a product
that will be used by
someone else.

At the beginning of the lesson I
present a short summary of
the previous lesson.

I ask my students to suggest
or to help plan classroom
activities or topics.

I ask my students to write
an essay in which they
are expected to explain
their thinking or
reasoning at some length.

I check my students’ exercise
books.

Students work in groups
based upon their abilities.

Students hold a debate and
argue for a particular
point of view which may
not be their own.

I check, by asking questions,
whether or not the subject
matter has been understood.

Model fit and reliability are unsatisfactory in some cases, especially for teacher
beliefs about the nature of teaching and learning. However, scales have been shown
to work well for the total sample in most countries (OECD, 2010). Therefore, we
believe that we can trust in the psychometric quality of these scales – as long as we
restrict ourselves to correlation and regression models, without comparing country
means when scales are not equivalent across countries.

Statistical Modelling

The TALIS data have a hierarchical structure with teachers nested within schools.
Since the school samples of mathematics teachers are very small, no multilevel anal-
yses are carried out, but standard errors are corrected for possible cluster effects.
For all analyses Mplus factor scores were used as indicators for latent constructs
(for details regarding their computation also see OECD, 2010). Descriptive analy-
ses and correlations are computed with population weights and Balanced Repeated
Replicates (BRR) methodology with Fay’s adjustment for variance estimation. The
Software WesVar was used for the former and a special SPSS macro developed for
TALIS for the latter kind of analysis (for a more detailed description see OECD,
2010). To deal with missing data listwise deletion was used for all analyses.

To examine associations between the different indicators of teacher quality mul-
tiple group regression analysis with the program Mplus was used. Two models were
analysed respectively, one in which all beta weights are allowed to vary and one in
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which all beta weights are fixed to be equal across countries. Fit indexes are used
to judge the cross-national invariance of regression coefficients. Comparing the two
models �CFI > –0.01, �RMSEA > 0.01 and �SRMR > 0.01 are seen as indicative
of differences between countries (Chen, 2007; Cheung & Rensvold, 2002).

Standardized net effects (beta weights) are reported for the model with equal
regression weights and controlling for teacher’s gender, years of experience as a
teacher, and level of education (a Master’s degree or higher versus a lower level
of qualification). For standardization the standard deviations of the predicted vari-
able and those of continuous predictor variables are used. An effect is considered
statistically significant if the p-value is below 0.05.

Results

Teacher Qualification

Across all countries, one third of the mathematics teachers report more than 20 years
of professional experience, while 39% have been working in their job less than 10
years. Between 10 and 20 years of work experience are reported by 28% of the
mathematics teachers. Country differences are significant (Chi-Square = 1,095.87;
df = 132; p < 0.01). A comparatively large proportion of mathematics teachers with
more than 20 years of professional experience can be found in Austria, Italy, and
in the Eastern European countries (except Poland). Turkey, Malaysia, and Malta, on
the other hand, have comparatively less experienced teaching staff in mathematics.
Here more than 50% report less than 10 years of professional experience. All of the
other countries lie in between these extremes.

In most of the TALIS countries the initial training of mathematics teachers takes
place in colleges and universities and at least a Bachelor’s degree is required for
employment. Accordingly about 90% of the mathematics teachers across countries
report at least this level of educational attainment. Three exceptions are Austria,
Belgium and Slovenia, where more than 50% of mathematics teachers report to
have completed ISCED level 5B only. Continuing education until a Master’s degree
is common in Italy, Spain, the Eastern European countries (except Hungary) and, to
a lesser extent, Korea and Austria. In all of the other countries less than a third of the
mathematics teachers report this level of attainment. Finally a PhD is generally very
rare (1%). Differences between countries are significant (Chi-Square = 33563.46;
df = 88; p < 0.01).

The vast majority of mathematics teachers – 89% across countries – have taken
mathematics as a field of study during their academic training. Significant differ-
ences between countries are found (Chi-Square = 1205.45; df = 22; p < 0.01). All
European countries except Italy (86%) score at or above the average, while Australia
(86%), Brazil (84%), Iceland (73%), and Malaysia (85%) score below.

Professional development in TALIS refers to all “activities that develop an indi-
vidual’s skills, knowledge, expertise and other characteristics as a teacher” (OECD,
2009). Therewith TALIS adopts a broad definition, including both, traditional
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workshops and courses and more modern practices, that is observation visits to
other schools, participation in networks for professional development, individual
or collaborative research on a topic of professional interest, education conferences
or seminars, mentoring and/or peer observation, and coaching as part of a for-
mal school arrangement. Finally, extra occupational qualification programs (e.g.,
a degree program) are included as well.

Across countries, most of the mathematics teachers report they regularly par-
ticipate in at least one of these professional development activities. On average
teachers report to have spent 19 work days on professional development during the
preceding 18 months. However large variation is found regarding the total number
of days for the total sample (SD = 32) and for all country subsamples (SD = 6
to SD = 67). Moreover, the average reported days of attendance also vary between
countries (R2 = 0.09; F = 46.92; df = 20, p < 0.01). Belgium Fl., Ireland, and Malta
have the lowest means (6 days). Mexico has the most active teachers with regards to
their professional development (36 days on average) followed by Bulgaria, Poland,
Italy, and Spain (more than 20 days on average). The high mean scores can partly
be explained by the fact that many of the mathematics teachers in the countries con-
cerned report to attend qualification programs (Mexico, Bulgaria, Poland) and/or
individual and collaborative research activities (Mexico, Italy, Poland, Spain), which
are significantly more time consuming.

Across all countries workshops and courses are the most common forms of pro-
fessional development. In most countries, at least three out of four teachers have
participated in this kind of professional education, with the Slovak Republic and
Turkey as exceptions. Modern forms of professional development which involve
more cooperation and reflection are also present across all countries, but less com-
mon. For all programs significant differences between countries are found (p <
0.01; df = 22, and Chi-Square = 409.30, Chi-Square = 365.90, Chi-Square =
656.57, Chi-Square = 515.93, and Chi-Square = 463.12 for each of the variables
respectively). A comparatively large percentage (> 60 %) of teachers (a) partici-
pates in networks for professional development in Iceland, Slovenia, and Poland,
(b) observes other teachers’ instruction in Estonia, Korea, and Iceland, (c) partic-
ipates in mentoring arrangements in Korea, Poland, and the Slovak Republic, and
(d) reports research visits in Mexico, respectively. Thus in summary, the highest per-
centages of teachers involved in these more modern activities are found in Iceland,
Korea, and Poland.

Teachers’ Beliefs About the Nature of Teaching and Learning

Teachers’ beliefs about the nature of teaching and learning form two scales across
all participating countries, which are sufficiently invariant to compare correlations
across countries (see OECD, 2010 for an in-depth discussion on scale invari-
ance). These scales capture constructivist beliefs and direct transmission beliefs,
as expected. Thus, the two aspects can be identified within all countries. However,
multiple group confirmatory factor analysis (MGCFA) shows the item intercepts to
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vary significantly, which questions the validity of mean score comparisons (see sec-
tion Measures). Therefore, in the following mean score comparisons are reported
for single items only.

Figures 1, 2, 3 and 4 show that mathematics teachers’ agreement with all items
measuring teachers’ beliefs about the nature of teaching and learning is gener-
ally high: In a majority of countries the mean scores for all items are higher than
the theoretical average of the response scale (> 2.50). The items measuring direct
transmission beliefs receive slightly less support than those measuring construc-
tivist beliefs, but the differences are small. However, not all teachers agree with
the items to a similar extent. The standard deviations equal between 0.60 and 0.80
respectively.

Table 3 shows the variance within countries to be considerably larger than the
variance between countries: Country indicators (so called dummy variables) explain
2% to 19% of the total variance in each of the items measuring teachers’ beliefs
about the nature of teaching and learning. But even though the differences between
countries are small as compared to within country differences, they are still sig-
nificant for all of the items. The largest cross-country-differences can be found for
the importance of a quiet classroom for efficient instruction. Teachers in Mexico,
Iceland, the Slovak Republic, and Ireland have a low mean score for this item, while
teachers in Austria, Bulgaria, Portugal, Brazil, Turkey, and Italy put more empha-
sis on quietness in the classroom. Comparatively small country effects are found
for the statement that teachers’ main role is to facilitate students’ own inquiry, and
that thinking and reasoning processes are more important than specific curriculum
content.

Response patterns further seem to be related to geographical regions. Based on
the profiles four groups were built: Group A consists of the Northern European
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Fig. 2 Mean scores for all items measuring teachers’ beliefs about the nature of teaching and
learning by country (only Asian countries and Australia)
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Fig. 3 Mean scores for all items measuring teachers’ beliefs about the nature of teaching and
learning by country (only Eastern European countries)

countries, but also Estonia, Austria and the Flemish Part of Belgium. Asian coun-
tries and Australia form group B, and the former communist European countries
(except for Estonia) group C. Group D unites all Southern European and South
American countries plus Ireland. In group A teachers agree with items measuring
constructivist beliefs more strongly than with those measuring direct transmission
beliefs (Fig. 1). This tendency is also apparent, but less clear in group B, except
for Malaysia (Fig. 2). By contrast the average agreement with all items is relatively
similar in group C (Fig. 3) and especially in group D (Fig. 4).
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Fig. 4 Mean scores for all items measuring teacher beliefs about the nature of teaching and learn-
ing by country (only Southern European and South American Romanic countries and Ireland)

Table 3 Country effects on items measuring teacher’s beliefs about the nature of teaching and
learning

Demon-
strate
solution

Clear
problems/
ideas

Teaching
facts

Quiet
classroom

Facilitate
inquiry

Finding
solution

Think to
solve
problem

Thinking
vs. cur-
riculum

R2 0.06 0.07 0.09 0.19 0.02 0.08 0.06 0.03
F-value 30.16 44.42 39.64 41.11 23.28 33.69 14.84 11.33
df 22 22 22 22 22 22 22 22
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Classroom Teaching Practices and Their Relationship with
Teachers’ Beliefs About the Nature of Teaching and Learning

As for teacher beliefs about the nature of teaching and learning, our theoretical
expectation about the structure of classroom teaching practices was supported
across all countries. Three dimensions of classroom teaching practice – namely,
structuring student orientation, and enhanced activities – could be identified within
all countries. However, once again, the intercepts vary significantly, so that mean
score comparisons are reported for single items only.

The results show that, around the globe, most structuring and student orientation
are regularly employed by teachers. The country means are mainly above 2.00, indi-
cating that teachers use these practices at least in one out of four lessons. Checking
understanding is among the most frequently reported classroom teaching practices
in a large majority of countries (mean scores > 3.50). Relatively low mean scores
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are found on the other hand for student classroom planning, ability grouping, and
small group work (mean scores < 2.00 in a majority of countries). In mathematics
classrooms teachers across all countries also report an infrequent use of enhanced
activities (projects, students making products, debates/arguments, and written rea-
soning/essay). These practices are more common in science and the humanities (see
Klieme & Vieluf, 2009).

Again the within country variance is larger than the variance between countries,
which explains 5% to 16% respectively. But for all items country effects are sig-
nificant (see Table 4). Country dummies explain a comparatively large proportion
of variance for working in small groups, checking the exercise books, reason-
ing/essay writing and student classroom planning. Comparatively small country
effects are found for giving different work to the students that have difficulties
learning and/or to those who can advance faster, holding debates/arguments and
for checking understanding.

Regarding general patterns of classroom teaching practices, one basic differ-
ence between countries is illustrated by Figs. 5 and 6. They show that structuring
is reported to be considerably more frequent than student orientation in Southern
Europe. In contrast, Northern European teachers report lower frequencies for most
of the classroom teaching practices covered in TALIS, and especially for those that
aim at structuring the lesson. Some of the student oriented teaching practices on the
other hand are more common in Northern than in Southern Europe.

Thus, teachers in Northern countries do not only show strong support for con-
structivist compared to direct transmission beliefs, as discussed in section Teachers’
Beliefs About the Nature of Teaching and Learning, but they also use student ori-
ented teaching practices quite often as compared to their colleagues in Southern
Europe. This observation indicates a parallelism of beliefs and practices. With a case
number of 23 and a non-random selection of these countries, correlations between
both aspects cannot be statistically tested on the country level but the associations
can be examined within countries (see Table 5).

The results of regression analyses of classoom teaching practices on beliefs about
the nature of teaching and learning – controlling for gender, experience, and high-
est level of education – in fact show that structuring rather associated with direct
transmission beliefs, while student orientation rather goes along with constructivist
beliefs (Table 5). However, significant differences between countries exist: The
model fit drops substantially when the beta-weights are fixed to be equal across
countries (�CFI = 0.29–0.60 and �RMSEA = 0.04–0.05). A closer look at within
country regressions suggests that these differences mainly concern the strength of
associations, not the direction of coefficients. For structuring significant and positive
effects of direct transmission beliefs are found in seven countries, and significant
effects of constructivist beliefs in six. Constructivist beliefs have a positive effect on
student orientation in eight countries and on enhanced activities in nine. Relations
between direct transmission beliefs and the latter two practices are significant in
only three and five countries respectively. Also within countries the associations are
rather weak.
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Relationships Between Teachers’ Professional Background and
Their Beliefs About the Nature of Teaching and Learning and
Classroom Teaching Practices

Table 6 shows the results of multiple group regression analyses predicting teach-
ers’ beliefs about the nature of teaching and learning with indicators of professional
qualification. When all coefficients are restricted to be equal across countries, direct
transmission beliefs are positively related with professional experience and neg-
atively with participation in workshops and courses. None of the other effects is
significant.
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Table 5 Results of multiple group regression analyses explaining classroom teaching practices
with beliefs about the nature of teaching and learning. (Three regression analyses are reported,
each with two independent variables and teachers’ gender, experience, and level of education as
control variables)

Classroom teaching practices

Structuring
Student
orientation

Enhanced
activities

Direct transmission beliefs 0.11∗∗ 0.05∗∗ 0.05∗∗
Constructivist beliefs 0.06∗∗ 0.09∗∗ 0.04∗∗

Notes: ∗p ≤ .05; ∗∗ p ≤ .01

Table 6 Results of multiple group regression analyses explaining beliefs about the nature of teach-
ing and learning with teacher qualification (Two regression analyses are reported, each with seven
independent variables and teachers’ gender as control variable)

Beliefs about the nature of teaching and
learning

Direct transmission Constructivist

Professional experience 0.04∗∗ −0.01
Highest level of education (Bachelor

or below vs. Master/PhD)
0.01 0.03

Studied mathematics 0.05 −0.06
Days of professional development −0.00 0.00
Workshops/courses −0.10∗∗ 0.01
Networks for professional development −0.01 0.04
Mentoring 0.01 0.03

Notes: ∗p ≤ .05; ∗∗ p ≤ .01

Classroom teaching practices are more closely related with teacher qualifica-
tion: First of all, the level of education has a negative, but weak effect on student
orientation and enhanced activities. Moreover teachers who have studied mathemat-
ics report to use more structuring than out-of-field-teachers. Finally, attendance of
workshops and courses is positively related with student orientation, and teachers
participating in networks or mentoring programs report to use all three practices
more often, especially student orientation (Table 7).

Analysis of invariance shows that the correlations of indicators of teacher quali-
fication with beliefs about the nature of teaching and learning as well as correlations
with classroom teaching practices are not equivalent across countries. For all
regression models the fit drops noticeably when regression coefficients are restricted
to be equal (�CFI = 0.30–0.44 and �RMSEA = 0.03–0.04). However, more
detailed analyses of within country effects show that differences between countries
mainly concern the strength of the associations, not their direction.
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Table 7 Results of multiple group regression analyses explaining classroom teaching practices
with teacher qualification (Three regression analyses are reported, each with seven independent
variables, and teachers’ gender as control variable)

Classroom teaching practices

Structuring
Student
orientation

Enhanced
activities

Professional experience 0.02 0.02 0.01
Highest level of education (Bachelor or

below vs. Master/PhD)
0.00 −0.07∗ −0.04∗

Studied mathematics 0.12∗∗ −0.00 −0.00
Days of professional development 0.00 0.00 0.00
Workshops/courses 0.05 0.06∗ 0.03
Networks for professional development 0.07∗∗ 0.12∗∗ 0.08∗∗
Mentoring 0.14∗∗ 0.17∗∗ 0.11∗∗

Notes: ∗p ≤ .05; ∗∗ p ≤ .01

Discussion

While there are many studies comparing student achievement cross-nationally, most
empirical research on teachers focuses on single countries only. In the present
contribution we drew on a large international database to explore cross-cultural dif-
ferences and similarities regarding three aspects of teacher quality. The results show
both, similarities and differences across the 23 countries participating in TALIS.

Cross-National Differences and Similarities in Levels and Patterns
of Teacher Quality

Similarities Between Countries

First of all, the findings show that basic features of teacher qualification systems
are similar across participating countries. Almost all of the secondary mathematics
teachers have attained a university degree, and most (> 70%) have studied math-
ematics. Most common is a Bachelor’s degree, but about a third has also attained
a Master’s degree. A PhD is generally rare. To expand their teaching skills and to
stay up-to-date with instructional methods, teachers in all participating countries
attend professional development, especially courses and workshops. Arrangements
demanding a higher level of cooperation and active reflection – like networks for
professional development and mentoring – are also familiar cross-nationally, but
less widespread.

These results are consistent with findings from the TIMS-study. However, one
difference becomes apparent: In TIMSS only 78% of 8th grade students have teach-
ers with a university degree as compared to 90% of the TALIS teachers. A close
look at the data shows that this is mainly due to the fact that more developing
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countries (e.g., Tunisia, Algeria, Morocco, Ghana, Lebanon) participated in TIMSS
with higher rates of teachers who had completed secondary school only (Mullis
et al., 2008). Hence, differences in teacher qualification may be larger when less
affluent countries are also included in the sample.

Remarkably, TALIS shows that basic dimensions of teachers’ beliefs about the
nature of teaching and learning (namely constructivist vs. direct transmission views)
can be cross-nationally identified. The agreement with all items measuring teach-
ers’ beliefs about the nature of teaching and learning is high – a result that was also
found in MT21 (Schmidt et al., 2007). Hence, the instruments seem to cover well
what teaching and learning means to teachers in different countries. Moreover, it is
impressive to see that constructivist views are supported by a majority of mathemat-
ics teachers in all countries. This shows constructivist ideas to be present in different
philosophical traditions and educational discourses.

Dimensions of classroom teaching practices (namely structuring, student orienta-
tion, and enhanced activities) could also be measured cross-nationally. Like TIMSS
we found a similar repertoire in different regions of the world (Mullis & Martin,
2007; LeTendre et al., 2001): Across countries most mathematics teachers report
to regularly state learning goals, review homework, check exercise books, check
student understanding, use group work, and summarize the previous lesson.

Altogether these findings show that at more general levels of abstraction mathe-
matics teachers in different countries are quite similar regarding their qualification,
beliefs about the nature of teaching and learning and classroom teaching prac-
tices. However, going into more detail, significant differences regarding all three
indicators of teacher quality become apparent.

Differences Between Countries in Terms of Teacher Qualification

The most striking difference between countries regarding teachers’ level of edu-
cation is the high percentage of teachers without a Bachelor or Master degree in
Austria, Belgium and Slovenia. This can be explained by a peculiarity of the edu-
cation systems in these countries: the training of mathematics teachers used to take
place in special institutions – at least for some tracks or educational levels. However,
recently – in the course of the European Bologna process – equalization to other
systems is taking place in these European countries.

Aside from the level of education, differences are also found for the propor-
tion of out-of-field-teaching: This is comparatively low in Eastern Europe and
higher in many Southern, Northern and non-European countries. Mathematics
teachers who have studied mathematics are likely to have more content knowledge
and pedagogical content knowledge than out-of-field-teachers, and research sug-
gests a positive (but non-linear) relation of subject specific training with student
achievement (Darling-Hammond, 1999; Monk, 1994). Hence, teachers in countries
with a large percentage of out-of-field-teaching may be on average less well pre-
pared for their job. Moreover – as out-of-field teaching often concerns schools with
a socially disadvantaged student population (Ingersoll, 2003) – the cross-national
differences may be relevant for explaining system level variation in equity.
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While the attendance rates in workshops and courses for professional develop-
ment are relatively similar across countries, considerably more variance is found
regarding networks for professional development, observation visits, research vis-
its, and mentoring. Research suggests that professional development that involves
teachers in professional learning communities may be more effective in changing
classroom teaching practices, promoting student-centred approaches and enhancing
student achievement than traditional programs (e.g., Bolam et al., 2005; Supovitz,
2002; Supovitz & Turner, 2000; Vescio, Ross, & Adams, 2008). Thus, in countries
where this is common (e.g., Iceland, Korea and Poland) teachers are better supported
with becoming a reflective practitioner (Schön, 1983).

Differences Between Countries in Terms of Teacher Beliefs About the Nature
of Teaching and Learning

Significant country effects are further found for the level of endorsement of each
of the items measuring teachers’ beliefs about the nature of teaching and learning.
Such differences were expected, as teachers’ professional beliefs are considered
to be influenced by folk pedagogies (Bruner, 1996) or personal history-based lay
theories (Holt-Reynolds, 1992), and bearing in mind that previous research found
distinct patterns of teacher beliefs and practices even for countries that are very
close with regards to their cultural background and their education systems (e.g.,
Germany and Switzerland; Leuchter, Pauli, Reusser, & Lipowsky, 2006).

In the TALIS sample, the preference for constructivist beliefs is especially
pronounced in Northern and Central Europe, reflecting the long-standing tradi-
tion of reform pedagogy in this region. However, a comparatively strong relative
endorsement of constructivist views was also found in Korea, despite its differ-
ent philosophical traditions. Similar results have been reported for other Confucian
countries (Cheng, Chan, Tang, & Cheng, 2009; Lingbiao & Watkins, 2001; Tang,
2008), and in fact Lee (1996) and Shim (2008) pointed to some intersection of
Confucian philosophy with European constructivist ideas. In Southern Europe and
South America the pattern is less clear. Here, the relative agreement with a direct
transmission view as compared to a constructivist view is higher than in other coun-
tries. Interestingly, these regions are also characterized by comparatively traditional
general values (Inglehart, Basàñez, Díez-Medrano, Halman, & Luijkx, 2004). This
suggests that in addition to country specific pedagogic traditions there may also
be an influence of more general values on beliefs about the nature of teaching and
learning.

Differences Between Countries in Terms of Classroom Teaching Practices

Finally, just like TIMSS (Givvin et al., 2005), we also found characteristic
differences in profiles of classroom teaching practices. Most noticeable is the
comparatively frequent self-reported use of student oriented teaching practice in
the Northern European countries. It is especially group work and adaptive practices
which are more common in this region than in other parts of the world. At the same
time structuring teaching practices are reported to be common, but less frequently
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used than in Southern Europe. This may reflect the concern of the Nordic Model
for promoting weak and socially disadvantaged students in comprehensive school
systems (e.g., Lie, Linnakylä, & Roe, 2003).

Associations Between Different Indicators of Teacher Quality

The present study uses indicators of teacher quality from three different research tra-
ditions, namely teacher qualification, teachers’ beliefs about the nature of teaching
and learning, and classroom teaching practices. Results show that across countries
these different aspects are indeed associated with each other, but they still represent
quite distinct facets of teacher quality.

No significant correlation is found for teachers’ professional experience and their
level of initial education with beliefs about the nature of teaching and learning or
classroom teaching practices. This reflects the large body of research in economics
of education – mostly within countries, especially in the USA – that finally led to
the conclusion that teacher experience is a weak indicator for teacher quality (for a
more detailed discussion, see Ball & Hill, 2008). The finding is further consistent
with the observation that beliefs about the nature of teaching and learning are often
acquired prior to professional education and can be quite stable over the life span
(e.g., Borko & Putnam, 1996; Pajares, 1992; Wilson, 1990). However, it should
be noted that TALIS only asks for the level of educational attainment, while the
curricula, the specific content, and the quality of initial education programs may
also be relevant for the acquirement and differentiation of beliefs and a repertoire of
practices.

In contrast to initial teacher education, professional development is shown to be
associated with beliefs and practices in TALIS. The relationships are rather weak,
but significant for the total sample as well as the country subsamples. Networks and
mentoring have stronger effects than workshops and courses. Furthermore the for-
mer kinds of professional development – which regularly go along with an intensive
professional exchange and a high level of teacher commitment – are rather related
with student orientation and enhanced activities than with structuring. However, as
the study is cross-sectional, the causal chain behind this correlational pattern could
be twofold: Teachers with more diverse and/or more intensive didactical practices
may be more willing to participate in professional development, or professional
development may inspire teachers to use classroom teaching practices in a more
explicit way. Results of previous research on effects of professional development on
teacher behaviour and student achievement are rather inconsistent (for a discussion
see e.g., Buczynski & Hansen, 2010). To establish causality experimental settings
may be used in the future, comparing the effects of different kinds of professional
development programs in a variety of countries.

Correlations between beliefs and practices are in accordance with theoretical
expectations and previous research. Teachers who have a rather constructivist view
on the nature of teaching and learning also use more student orientation, while struc-
turing is less closely related to teachers’ beliefs is about the nature of teaching and
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learning. The associations are rather weak. This is consistent with previous research
(e.g., Levitt, 2001; Seidel, Schwindt, Rimmele, & Prenzel, 2008; Wilcox-Herzog,
2002), and in TALIS it can also be explained with the abstract nature of the beliefs
examined, which generally implies less relevance for actual behaviour (see e.g.,
Alisch, 1981). However, TALIS is the first study to show that the magnitude of
these associations also varies between cultures.

More generally, in comparing 23 countries it was found that the associations
between all different indicators for teacher quality differ between education systems.
It is mainly the strength of the association not the prefix that is different across
countries. Nevertheless these results suggest that it may be necessary to define and
examine teacher quality in a country-specific way.

Conclusions and Implications for Research and Practice

In summary, the results regarding cross-country differences in teacher qualification,
beliefs and practices neither support the theory of national cultures, which assumes
education to be largely culture specific (e.g., Bennett, 1987; Bracey, 1997), nor the
theory of institutional isomorphism which holds the influence of international insti-
tutions responsible for a general harmonization of education systems (e.g., Spindler
& Spindler, 1987). They are – if anything – consistent with the global culture
dynamics approach suggested by LeTendre et al. (2001). The authors argue that
organizational characteristics of schooling, but also instructional practices, are sim-
ilar around the world because “the modern institution of school has penetrated most
nations” (p. 5). At the same time their approach also assumes effects of national or
regional laws as well as “national, regional, or local systems, customs and expecta-
tions on schooling” (p. 12). Accordingly, we found similarities, but also significant
and characteristic differences between countries.

The finding of differences in profiles and structure of teacher quality emphasizes
the importance of a careful analysis of cross-national equivalence in any study aim-
ing at level oriented comparisons, but also whenever results and practices from one
country are transferred to another. The same conclusion may hold for related con-
structs such as teacher expertise, professional knowledge, and teacher competence.
Theoretical paradigms like the expert-novice-distinction, Shulman’s taxonomy of
professional knowledge, or the notion of competence (most often being defined as
a mixture of cognitive and attitudinal dispositions) have been used and empirically
applied in educational research world wide. However, the present study may induce
a more careful approach to these paradigms in cross-cultural contexts. Previous
research, being based on these globally accepted theoretical paradigms, seems to
have neglected the role of culture in defining, understanding, and measuring teacher
expertise and teacher quality. Especially, conceptions of constructivism have been
used without reflecting its cultural foundations. More cross-cultural research on
teacher expertise and teacher quality, both qualitative and quantitative, is needed.

Putting constructivism into perspective is another important message to
mathematics education practitioners. The triarchic model of instruction, which has
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been supported in the present study, assumes structure, support, and cognitive
activation to be basic dimensions of high-quality teaching. Pure constructivists tend
to neglect the dimension of structure, which is indispensable for cognitive learning
as well as for student motivation.

From a teacher education point of view it should be noted that structuring teach-
ing practices are implemented more often by teachers who had studied mathematics,
while all three dimensions seem to be correlated with professional networking and
mentoring.
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Reflections on Teacher Expertise

Alan H. Schoenfeld

Abstract This chapter offers some broad reflections on issues of mathematics
teacher expertise. The first main section stresses the importance of teachers’ and
researchers’ beliefs and values – more generally, their conceptual models regard-
ing “what counts” in the act of teaching. This raises the question of how one might
frame explorations of teacher expertise in general, an issue I explore in the con-
text of a general model of the research process. The second main section explores
the very nature of teaching itself. If expertise in teaching is the culmination of a
developmental process, then one should ask, “what develops?” That is: what does
a teacher draw upon, in the moment, as he or she teaches? I argue that a teacher’s
actions are a function of that teacher’s resources (including knowledge), goals, and
orientations. Hence the study of the development of expertise should focus on the
growth and change of teachers’ resources, goals, and orientations. The concluding
discussion reflects on these issues and considers some next steps in research the field
might undertake.

Keywords Teaching · Decision making · Resources · Goals · Beliefs · Orientations

Conceptualizing Research on Teaching Expertise

In this chapter I reflect on themes raised in this book and, more broadly, the literature
on (mathematics) teacher expertise. I begin with two stories. The first concerns an
experience I had more than 20 years ago, and which remains vividly with me today.
In the mid-1980s my research group was constructing computer software that was
intended to help students develop deep understandings of functions and graphs. My
programmer told me that his wife was interested in exploring our software. She had
previously had trouble with algebra – she had taken the course four times, and for-
gotten the contents each time – and she was interested in seeing what she could learn
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by using the software. I came into our laboratory as she was trying (unsuccessfully,
of course) to create a vertical line using the equation y = mx + b.

If the graph of the equation y = x is at 45◦ from the horizontal axis, she reasoned,
the graph of y = 2x should be at 90◦ – that is, vertical. After all, one is doubling the
coefficient of x, so shouldn’t the angle be doubled? She tried it. It didn’t work, so she
doubled the coefficient again, and then again; she was baffled. What followed was
an exchange in which I gave her varied opportunities to recall what she remembered
about slope (“rise over run”) and to rebuild her understandings from the ground up.
After almost an hour, she had an epiphany: on a vertical line the “run” would be
zero, and it is impossible to divide by zero. She shouted with joy – it made sense!
I was confident that this time the meaning of slope and what its computation meant
would “stick.”

We had taped this interaction, and I was proud of the tape. A few months later
a colleague came by, and I showed her the tape. She fidgeted through it, and then,
when it was over, said, “You know, Alan, when we build our instruction we work
with master teachers. A number of the teachers I work with could have explained
the content to this student in much more straightforward ways.” From her point of
view, my teaching was terrible.

The second story concerns a conversation with David Clarke about expert teach-
ing. As part of his research, Clarke has collected tapes of competent teaching from
around the world.1 The teachers whose tapes he collects have been selected by pro-
cedures that resemble many of those in this book: the teachers have been teaching
for some time, are often award winners, and are nominated either by researchers or
administrators for their expertise. Clarke, who is interested in the prioritization of
rich mathematical discourse in instruction, had been looking at a high school class-
room tape from a particular country. What the tape showed was, in essence, pure
lecture. At that time Clarke was being visited by a researcher from a country that
neighbors the one where the tape had been made. Trying to be neutral, Clarke said,
“I have this fascinating tape of a teacher who has been nominated as competent. In
the entire lesson, the students seldom speak, and then only to say the word: yes, and
this word is almost always a choral response by the whole class.” His colleague’s
response was, “So?” This scholar, like the one who had nominated the tape, saw
nothing problematic in a situation where high school students were the object of a
well constructed lecture.

The point of these stories is that beliefs and values, which I will subsume under
the more general category orientations, are of great importance not just when one
is teaching but when one is reflecting on or evaluating teaching. I thought that my
exchange with the student was an instance of exemplary teaching, because it got to
the heart of the student’s (mis)understanding and helped her make sense of some-
thing that had been deeply problematic for her; my colleague thought my teaching

1 Because he recognizes that the label “expert” is value laden, Clarke prefers to use to term “com-
petent teaching” instead of “expert teaching.” My purpose here is to problematize the term “expert
teaching” – so I use it here as many people do, and then show that judgments of expertise are
culture-bound.



Reflections on Teacher Expertise 329

was terrible because I wasted time and allowed her to get “lost” when I could have
laid out the content in a much more direct manner. Clarke found the teaching in
the videotape a challenge, because it was missing a dimension of classroom inter-
action that he – like many of the researchers represented in this volume – would
consider essential in the (Australian) classrooms with which he is most familiar. In
contrast the particular teacher had been recruited because of local acclamation as a
competent teacher. Nor did the other expert researcher with whom Clarke discussed
the tape see student spoken mathematics as an important aspect of mathematics
instruction, either as process or as product.

In short, our orientations as researchers to what counts in teaching are every bit
as consequential in shaping what we study and how we study it as teachers’ orien-
tations are consequential in shaping the ways they run their classrooms. They shape
our conceptual models of the teaching process, and of the process of conducting
research on teaching.

As noted in at least one chapter in this volume, there exists very little research on
teacher expertise that examines the ways in which teacher expertise has an impact
on student performance. That is because the field is young, and tools and techniques
for the robust characterization of teachers’ actions have yet to be developed and
used widely. It is probably safe to assume that once such tools and techniques have
been developed, the field will turn its attention to student outcomes. Yet, there is still
a problem: what will be used as outcome measures? Experimental or correlational
results might be very different if the outcome measures used focus on skills and
procedures, or if they focus on conceptual understanding and problem solving.

This is not a hypothetical issue. Consider the following, for example. Ridgway
et al. (2000) compared students’ performance at Grades 3, 5, and 7 on two exam-
inations. One examination was a standardized high-stakes, skills-oriented test (the
State of California’s STAR test). The other was an examination produced by the
Mathematics Assessment Resource Service (MARS). The MARS tests are designed
to cover a broad range of skills, concepts, and problem solving. Both tests were
administered to more than 16,000 students at grades 3, 5, and 7. Table 1 provides

Table 1 Comparison of students’ performance on two examinations (reproduced with permission
from Schoenfeld, 2007a)

SAT-9

MARS Not proficient Proficient

Grade 3 (N = 6136)
Not proficient 27% 21%
Proficient 6% 46%

Grade 5 (N = 5247)
Not proficient 28% 18%
Proficient 5% 49%

Grade 7 (N = 5037)
Not proficient 32% 28%
Proficient 2% 38%



330 A.H. Schoenfeld

the distribution of scores at the three grades. Student scores are recorded as being
either “proficient” or “not proficient.”

What one sees from the score distributions is the following. At every grade level,
if a student scores “proficient” on the MARS test, there is a very good chance that
the student will also score “proficient” on the SAT-9 (For example, 46/52 – about
89% – of those judged proficient on the MARS test at grade 3 were also judged
proficient on the SAT-9). However, the converse is not true. Only 46/67 – about
69% – of the third graders who scored proficient on the SAT-9 also scored proficient
on the MARS tests.

This study demonstrates how the choice of measures can make a big difference in
the ways one interprets the results of research. Suppose one were to define “teach-
ing expertise” as “demonstrating clearly how to perform mathematical procedures
and providing students with ample opportunities to practice those procedures.” If the
SAT-9 were used as an outcome measure of student performance, this kind of exper-
tise would, most likely, correlate with high student scores. If, however, the outcome
measure used was the MARS tests, then it is quite possible that this kind of teaching
“expertise” would result in relatively low test scores. In sum, a researcher’s concep-
tual model of what represents “students’ mathematical proficiency” will shape the
choice of measures the researcher employs – and thus the interpretations of findings.

Specifically, if one is oriented toward “direct instruction” and one picks teachers
who are good at it, then one can find measures that will “prove” that those teachers’
students do extremely well. This is not a hypothetical example: At the height of
the “math wars” in California, testimony before the California Board of education
attempted to prove that direct instruction is the superior teaching method, using
precisely this kind of approach (Schoenfeld, 2004).

In sum, researchers’ conceptualization of what counts as expertise is very much
a function of those researchers’ own orientations toward teaching. Their choice of
measures to “capture” what counts in classroom – whether those measures focus
on student scores, on the frequency of teacher behaviors (e.g., as in the process-
product paradigm), or on the documentation of student-student interactions – is
consequential. The researcher’s conceptual model of what is important shapes
what the researcher observes and privileges. The researcher’s conceptual models
of instruction and of instructional outcomes shape the researcher’s choice of mea-
sures, the ways those measures are implemented, and the ways that the results of
those measures are interpreted.

To be sure, this is not just the case in the study of teacher expertise. Research on
teacher expertise is no different than any other research: one’s conceptual models,
one’s measures, the ways one combines and reports data, the ways one “maps back”
from the data to interpret the results, can all be problematic. The complexities are
represented in Fig. 1, reproduced with permission from Schoenfeld (2007a), see
that chapter for a broad discussion of issues in conducting empirical studies such as
those in this volume.

Here I will simply point to some of the complexities involved in studies of teach-
ing expertise. The “real world situation” in Fig. 1 can be taken to be an instance, or
a series of instances, of expert teaching.
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A. A Real-World 
Situation

(1) Aspects of the
     situation are
     selected as the
     constructs of
     importance in the
     conceptual model.

F. The Real-World 
Situation

B. A Conceptual-
Analytic Model

E. The Conceptual-
Analytical Model

(2) Aspects of the
   conceptual
   model are
   captured in a
   representational
   system.

C. A Representational
System 

(3) Analyses are performed within the
      representational system. 

D. The Representational
System 

(4) The results of the
      formal manipulations
      are interpreted within
      the conceptual model.    

(5) Inferences are
made about
the original
situation.

Fig. 1 A schematic representation of the process of conducting empirical research (reproduced
with permission from Schoenfeld, 2007a)

Along arrow (1), what is the researcher’s model of teaching expertise? For exam-
ple, does it include giving a polished lecture, with clear explanations; is it focused on
relational teaching; is student-to-student interaction considered valuable (and under
what circumstances)? What the researcher values will shape the very data that are
collected, observed, and described or quantified.

Arrow (2) represents the investigator’s choice of representations of teaching prac-
tice and outcomes (These may vary from “rich, thick descriptions” of teaching to
counts of certain teacher behaviors to a choice of tests of student understanding).
Note that these choices, which reflect the researcher’s conceptual model, are conse-
quential. For example, will the researcher tally or otherwise indicate the frequency
of teacher questioning? Will the research indicate the nature of teacher questioning?
One teacher may ask a large number of questions, but they may all be in the form of
IRE sequences and be aimed purely at procedural mastery. Another teacher may ask
fewer questions, but they may be conceptual in nature. Does the researcher’s coding
scheme capture the differences? Will the complexity of the teacher’s questions be
examined? Some teachers, when students are having difficulty, ask questions that
simplify the task and reduce the level of challenge; other teachers maintain the level
of challenge. Does this matter to the researcher? If the outcomes are measures of
student proficiency, what tests, or interviews, or other measures are used? As the
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discussion of the MARS tests above indicates, one can draw very different infer-
ences about student proficiency (and thus about teacher expertise) depending on the
measures used.

Arrow (3) represents a more methodological concern: are the methods used to
analyze the data used appropriately? This concern applies to both quantitative and
qualitative studies. If statistics are used, are the entities that are captured in numbers
coded in reliable and replicable ways? (Recall the issue of teacher questions – is a
question simply “a question,” or does the nature of the question make a difference,
and if so, how reliable is the categorization scheme?) If qualitative descriptions are
offered, how much of the original data (videos, transcripts, or other source material)
must be offered before the reader can be confident of the representativeness and
accuracy of those descriptions?

With Arrow (4) we return to issues of interpretation related to conceptual models.
It may well be that the statistics employed in “direct instruction” studies referred to
earlier were correctly used – but the inference that direct instruction led to improved
student learning was highly questionable, given that the measures of student learning
used in those studies were limited to the performance of rote skills. Of course, for the
investigators, the ability of students to perform rote operations may have represented
“mathematical competency.” That is precisely why it is important to “unpack” the
conceptual models that researchers employ.

Finally, Arrow (5) represents the inferences drawn about the original situation –
and quite often the generalizations thereof. In the previous example, the conclu-
sions of individual experimental studies were “direct instruction is most effective
for student learning.” In the present context (that is, a book on teaching expertise),
one issue that needs to be problematized is the very notion of “expertise.” A useful
distinction is one introduced by Hatano and Inagaki (1986), the contrast between
“routine expertise” and “adaptive expertise.” A routine expert is someone whose
performance in a domain is highly competent, as long as the issues the individual
deals with fall within the realm of the familiar. An adaptive expert is someone who
is much more flexible – someone who, in addition to coping with familiar situations,
can also cope with the unexpected. On a personal note, this contrast between routine
expertise and adaptive expertise is an issue that bedeviled me early in my career. The
definition of a problem solving “expert” in the cognitive science literature when I
began doing my problem solving research was of a routine expert – a person who
knows the domain inside-out and can answer textbook problems without needing to
work hard. That definition ruled out of existence the very kinds of problem solv-
ing experts I cared about, those who were able to make progress on challenging
problems that they didn’t know how to solve at first glance! Similarly, is an expert
teacher the kind of teacher who presents material clearly and has an engaging class-
room, perhaps making good use of group work or other activity structures (routine
expertise)? Or, is a teaching expert in addition someone who can react to an unusual
comment from a student and use it as the starting point for productive classroom
interactions (adaptive expertise)?

We as a research community are navigating through very complex territory, and
recognition of the challenges inherent in Fig. 1 places significant burdens on us. As
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researchers it behooves us to: be as explicit as possible about our conceptual models,
so that others may better understand what we do and do not take into account; to
be comparably explicit about out methods, so that others can understand, replicate,
and apply them; and be cautious about drawing conclusions that are warranted by
assumptions, models, and data.

A Theory of Teaching; Deconstructing One Example of Expertise

Presumably a major reason for studying teacher expertise is that expertise is the
“target” for professional development: if one knows what comprises expert teaching,
one would hope to find ways to help teachers develop such competencies. I take that
to be a fundamental rationale for this volume.

But if one hopes to enhance teacher development, it helps to have a theory of what
develops. That is: if you hope to shape teacher’s decision-making in the classroom,
it helps to have a theory of how and why teachers make the decisions they do.

In the next few pages I shall try to suggest the dimensions of such a theory. The
full theory, exemplified in detail, requires a book-length exposition (Schoenfeld,
2010); here I tell one story briefly to suggest how things work, and what the foci of
attempts to develop (adaptive) expertise must be.

In view of the preceding discussion, I hasten to say that the lesson described
below is representative of a teaching style considered to be “expert” by some
researchers in the United States. However, the point of the example is not to elab-
orate on that style of teaching as representing “expertise.” Rather, the point is to
show that this teacher’s rather complex decision making can be modeled in very
fine detail using a small number of theoretical constructs. My claim is that the ana-
lytical approach illustrated below can be used to examine and elaborate all teachers’
decision-making, no matter what style of teaching is examined. Hence this kind
of approach can be used as a mechanism for developing deeper understandings of
teachers’ actions in the classroom, no matter which pedagogical goals are privileged
in that particular cultural context.

The lesson I discuss was taught by Jim Minstrell, a high school physics teacher-
researcher who, by any measure, meets the definition of “adaptive expert.” Minstrell
was a recipient of the US Presidential Award For Excellence in Science Teaching,
and he has written and reflected extensively on how and why he teaches the way
he does, and on the impact of his teaching on student learning (see, e.g., Minstrell,
1992; Minstrell & Stimpson, 1996; van Zee & Minstrell, 1997a, 1997b). Here I
discuss an introductory lesson, for which Minstrell has a number of major goals.
Minstrell wants his students to come to understand that physics is not a discipline
that consists of the mindless application of formulas, but rather that it is a disci-
pline of sense-making, where there is discretion in selecting and applying formulas;
that students can figure things out for themselves; that his classroom will function
as a community of inquiry, and that the content of the course should be grounded
in reason, not authority. These goals are driven by Minstrell’s orientations – his
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beliefs and values regarding his perception of physics as a discipline and how stu-
dents should interact with it. Minstrell has a substantial knowledge base, which he
employs in the service of his goals and orientations. This knowledge base includes
disciplinary (content) knowledge, of course; it includes pedagogical content knowl-
edge, for example conceptions and misconceptions his students are likely to reveal,
and how to build on the former and deconstruct the latter; and it involves a number of
pedagogical routines that, by virtue of their interactive form, solicit and build upon
ideas from the students. One such routine, which is shared by other accomplished
teachers who also share Minstrell’s orientation toward encouraging and building on
student ideas and sense-making, is given in Fig. 2.2 I will illustrate the use of the
routine by describing how Minstrell employed it early in the lesson, and then show
how his orientations toward teaching (in concert with his knowledge base) played a
major role in shaping his decision-making.

To make the point that human discretion is involved even in the application of
formulas, he had asked eight students to measure the width of a table. The values
they obtained were:

106.8; 107.0; 107.0; 107.5; 107.0; 107.0; 106.5; 106.0.

Minstrell’s major question for the day was, “What is the best number for the
width of the table?” The first stage of this discussion consisted of having the class
address the question of whether they should combine some or all of the numbers to
get the best value; and if it was just some of them, which ones they should be. This
question, posed repeatedly, led to discussions of why one might trust some numbers
more than others (e.g., if they were obtained by acknowledged experts), what one
should do with outliers, and whether and when one might exclude extreme values
from a computation (as, for example, e.g., in Olympic gymnastics competitions).

Once the class determined that all the numbers listed above would be used to
determine the width of the table, Minstrell asked how to combine those eight num-
bers to get a “best number.” In terms of the routine in Fig. 2, he had completed steps
A1 and A2. In response to Minstrell’s question about “best number” in step A2 a
student said “average them.” This was on target and did not raise other issues (in
the flow chart decision D1 = “no”), but it did call for elaboration (D3 = “yes”).

2 I hasten to add that Minstrell does not “follow” a flow chart or decision procedure when he
teaches. The flow chart replicates his decision-making, which in practice is totally fluid and natural.
That is part of the story about expertise: over time, an individual develops skills that are flexible
and look so casual and practiced that the structure underlying them is hard to see; indeed, the
decisions to do particular things may be automatic and not conscious. If any of the readers of this
chapter are practiced cooks, they can reflect on how easy it appears when they prepare a favorite
dish – but how it took a long time to develop the fluency that makes the preparation look easy. For
example, as he or she is preparing a dish an experienced cook might see that the temperature in a
sauté pan is too low or too high, and adjust accordingly. That cook certainly does not say to him or
herself, “I must monitor the temperature and look for certain signs. If they indicate that the pan is
not hot enough, I raise the heat; if they indicate that the pan is too hot, I lower the heat.” The point,
however, is that the cook’s actions can be modeled by such decision procedures.
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Fig. 2 A highly interactive routine for soliciting and working with student ideas (with permission
from Schoenfeld, 2002)

Thus Minstrell asked the student to flesh out his answer: “We might average them.
Now what do you mean by ‘average’ here?” The student’s response, “Add up all
the numbers and then divide by whatever amount of numbers you added up,” pro-
vided the explanation that Minstrell needed, so no further clarification was necessary
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(D3 = “no”). Minstrell then decided that some expansion would be useful (D4 =
“yes”). He continued by mentioning that the student’s specification of how to com-
pute the average is known as an “operational definition.” That discussion completed
one “tour” through the flow chart.

Having obtained and discussed one potential method for obtaining the “best num-
ber,” Minstrell returned to step A2 and opened the next round of conversation: “Any
other suggestions there for what we might do to get a best value?” A student com-
ment, “You’ve got a bunch of numbers that are the same number,” led to a discussion
of the fact that the number 107 appeared more frequently than any other number,
and that the number that appears most frequently, the mode, is also a good candidate
for “best number.” With the second round of conversation completed (in a manner
entirely consistent with the flow chart in Fig. 2), Minstrell returned to step A2:
“Anybody think of another way of giving a best value?” He expected a discussion
concerning the median. Either a student would suggest the median and he would
have the class clarify its meaning or, if no student generated the concept, he would
inject it into the conversation and ask what they thought. (This is what happened
later in the lesson.)

Instead, something unusual happened. In response to Minstrell’s request for
“another way,” a student said:

This is a little complicated but I mean it might work. If you see that 107 shows up 4 times,
you give it a coefficient of 4, and then 107.5 only shows up one time, you give it a coefficient
of one, you add all those up and then you divide by the number of coefficients you have.

This comment is decidedly out of the ordinary. It is oral, so it “vanishes” rapidly. It is
ambiguous – is the student referring to the total number of coefficients, eight, or the
number of different coefficients, five? In the former case the student is suggesting a
formula for weighted average; in the latter case the suggestion is not mathematically
productive.

Before proceeding I note that there is a wide range of possible responses to the
student’s comment. Some teachers might not know the formula for weighted average
or might not recognize the ambiguity in the student’s statement; some might wish
to stick to the curriculum; some might wish to explore the full ramifications of the
student’s suggestion, in its productive and unproductive versions.

That is, there are teachers whose response to the statement would be “That’s a
very interesting idea. I’ll talk to you about it after class.” From a teacher’s perspec-
tive there are advantages and disadvantages to this response. On the one hand, it
keeps the lesson on track and, if the teacher is uncertain about what the student
has said, may avoid a discussion that the teacher, because of uncertainty about the
content, might find uncomfortable.

Other teachers might recognize one interpretation of what the student said as
being the weighted average, and present the weighted average to the class. Doing so
does not take more than a few minutes, so the disruption to the teacher’s lesson plan
is not that great; more content is covered; and, the student is (tacitly) rewarded for a
making a suggestion that led to a productive classroom discussion.
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Yet other teachers might pursue the student’s comment in its full complexity,
exploring both interpretations of “divide by the number of coefficients you have”
and seeing where they lead. Such a discussion has the potential to take a long time,
especially if the teacher has the students work through the ideas. Thus, it could
derail the teacher’s intended agenda. However, it also makes very clear the fact that
the teacher takes student ideas seriously, and it provides tangible evidence of the
teacher’s commitment to having the class be a community of sense making.

Minstrell chose this last path. He skillfully navigated through both interpretive
paths, leading the class to a deeper understanding of the issues entailed by the stu-
dent’s comment. This exploration did take a significant amount of time, and the rest
of the lesson was more rushed than it normally would have been (See Schoenfeld,
2010, for extensive detail).

I tell this story for two reasons. Minstrell is a case in point both of teaching
in general and of teaching expertise. In what follows I describe the architecture of
teachers’ decision making, using Minstrell as an example. Then I point to relevant
issues in the study of expertise.

The fundamental argument I make in Schoenfeld (2010) is that teachers’ in-the-
moment decision making is a function of their orientations (their beliefs, values,
preferences, etc.), their goals (which are established in the light of their orienta-
tions), and their resources (especially their knowledge). I argue that if enough is
known about each of these for a specific teacher in a specific context, one can
explain that teacher’s actions on a line-by-line basis. Moreover, teachers’ actions
are typically of two kinds: the application of well-established routines to deal with
familiar and expected circumstances, and consequential in-the-moment decision
making (and possibly the choice of new routines) when unexpected circumstances
occur.

Minstrell’s hour-long lesson, described in Schoenfeld (2010) along with a num-
ber of other cases, provides perfect exemplification of these ideas. Minstrell entered
the class with a lesson plan that had been constructed in the light of his orientations
toward physics. Having taught this lesson numerous times in the past, Minstrell
had a well-articulated lesson image. Indeed, through the first parts of the lesson,
Minstrell’s resources, goals, and orientations play out as planned. Then comes a
consequential moment, when the student makes the unexpected comment.

As noted above, there is a wide range of possible responses to the student’s
comment. Minstrell’s choice of response – every teacher’s choice of response –
is fundamentally shaped by his orientations. For Minstrell, having his classroom
function as a community of inquiry and honoring sense-making comments from
his students are very high priorities. Thus, Minstrell will pursue the student’s ques-
tion, even though there is a cost in terms of time. In terms of formal modeling,
Minstrell establishes a new top-level goal: pursue the implications of the student’s
comment. The next (actually concurrent) question is, how will he do so? There,
Minstrell’s resource (knowledge) base is critically important; he must choose among
the alternatives he knows to be available. In his case, the routine described in Fig. 2
is a preferred modus operandi; it too is consistent with his orientations, in that it
solicits student ideas and engages them actively in the act of sense-making. Thus,



338 A.H. Schoenfeld

Minstrell’s highest priority goals for the time being become (a) to clarify the stu-
dent’s statement and (b) to pursue the implications of the clarifications; he pursues
them using the interactive routine in Fig. 2. Once he has done so, he has achieved
these new (emergent) goals. With the unexpected topic taken care of, the highest
priority goal is then the continuation of the discussion of “best number.” The class
has completed its discussions of average (mean) and mode, so his next goal is to
pursue the discussion of median. He is back on familiar territory, and uses a familiar
routine to pursue it.

My argument in general is that teacher’s in-the-moment classroom decision-
making can be characterized, on a moment-by-moment basis, using the theoretical
constructs illustrated above. That is, any teacher’s decision making in any particular
instructional context can be modeled as a function of that teacher’s orienta-
tions, goals, and resources.3 That being the case, the questions pertaining to (any
context-specific definition of) teaching expertise are (a) what orientations, goals and
resources represent that conception of teaching expertise, and (b) how to catalyze
their growth.

Let me turn to (a), the question of expertise, and use Minstrell as a starting point
for discussion. First, in line with the comments in the first part of this chapter, I
note that my characterization of Minstrell as an expert is a reflection of my values
as a researcher (and the values of others, notably the panel that awarded Minstrel
the Presidential Award for Excellence in Science Teaching). There are certainly
observers who would find Minstrell’s extended “detour” to address the student’s
comments to be time poorly spent; and there are some who would find his ques-
tioning strategies to be a poor use of time (Recall the colleague who told me that
“telling” is much more efficient when it comes to giving students information). Be
that as it may, Minstrell meets my definition of expertise. So, let us examine (a small
subset of) his orientations, goals, and beliefs.

Minstrell’s orientations are fundamentally concerned with the idea that physics
is a sense-making domain, and that students should experience it as such. His class-
room actions (and his goals for what his students will experience) are predicated on
these orientations. Such orientations come at many levels. For example, he actively
engages his students in sorting through complex issues. Other teachers wouldn’t
(One memory that has stuck with me for more than 25 years is of a discussion with
a teacher who took a very procedural approach to the class I was observing, giving
student step-by-step instructions on how to solve problems. I asked him, “Have you
ever thought of giving the students a challenging problem without instructions on
how to solve it, and seeing what they would do with it?” His response was, “Not
these students. It would just confuse them.” That teacher’s orientations resulted in
his students being deprived of sense making experiences). In short, Minstrell has
a set of orientations that are consistent with my view, as a teacher and researcher,

3 Of course, it is unreasonable to expect the reader to accept this argument on the basis of the brief
discussion given in this chapter. See Schoenfeld (2010) for extended documentation of this claim.
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of what an expert teacher’s orientations should be. These orientations lead to the
establishment of certain goals – to have the class discuss complex issues, to sort
through them, etc. But, goals are not enough. In Minstrell’s case, his resource base
is what allows him to meet those goals. Where other teachers might have to work
hard to understand and disambiguate the student’s unexpected comment, Minstrell’s
content knowledge enabled him to recognize (and then pursue) the entailments of
that comment without difficulty. He then had access to a number of productive
teaching routines. He could have lectured on the weighted average, for example;
but he preferred to have the content emerge from classroom discussion, and he
had the resources (the routine in Fig. 2, combined with his content knowledge,
which informed the choices he made while enacting the routine in Fig. 2). In short,
Minstrell’s expertise is a function of his expert orientations, goals, and resources.

It is worth noting that these expert orientations, goals, and resources are all tightly
linked, and they develop slowly (The literature on expertise indicates that in every
domain, expert-level proficiency takes between 5,000 and 10,000 h to develop). A
teacher might aspire to conducting an interactive sense-making classroom of the
type Minstrell conducts, but if the teacher lacks the content knowledge or the fluency
in using routines such as that described in Fig. 2, the teacher’s classroom actions will
fall short of his or her aspirations. And, developing that resource base takes time.
Thus, a program of moving teachers toward (one’s vision of) expertise must, of
necessity, focus on knowledge, goals and orientations simultaneously; and it must
expect to take some time to succeed.

Discussion

The two main sections of this chapter offer two views, at very different grain sizes,
of the processes of conducting research on teacher expertise. My purpose in the first
section was to problematize the enterprise – to show that the ways that researchers
frame and execute their studies of expertise depends on the researchers values
and orientations, and that there are many places in the conduct of such research
where tacit assumptions relating to the researchers’ conceptual frameworks, or their
measures, are highly consequential. In particular, any assumptions about teaching
expertise that are not grounded in proof of enhanced student performance are just
that – assumptions. I share the assumptions of many of the authors in this book, but
I also recognize that until I can “connect the dots” and provide an evidential link
between particular teacher actions and that teacher’s students’ enhanced learning, I
am acting on the basis of (well-founded) assumptions.

There is a substantial body of evidence to show that curricula that focus on sense
making in mathematics result in enhanced student performance: students who study
from such curricula tend to do as well on tests of skills as students who study
from skills-oriented curricula, and tend to outperform those students on tests of
conceptual understanding and problem solving (ARC Center, 2003; Schoenfeld,
2007b; Senk & Thompson, 2003). Thus, there is good reason to believe that the
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characterizations of expertise that typify this volume do indeed lead to enhanced
student learning. But, as a field, we need to be explicit about our assumptions and
the chains of evidence that justify our conclusions. Along those lines, I stress that the
nature of the measures used to characterize both teacher performance and student
learning is critically important: the inferences one can draw depend critically on the
character of those measures and on the generalizations one can legitimately make on
the basis of them (I am currently engaged in a project with Robert Floden in which
we are trying to develop a coding scheme to capture what we believe is proficient
teaching, and link it to student performance on student interviews and tasks that
provide students with the opportunity to demonstrate robust mathematical under-
standings. Given the complexities of the enterprise, I have substantial admiration
for the achievements of the authors of the chapters in this volume).

The second main part of this chapter offered the barest outline of a case study
(backed by numerous publications, e.g., Schoenfeld, 1998, 2002, 2008, 2010) sug-
gesting the main aspects of teachers’ in-the-moment decision making – and thus,
the things that need to grow (in the “right” directions) if teachers are to evolve into
experts. Attention to all these dimensions is necessary. Having the “right” orienta-
tions is critical, for a teacher’s orientations shape that teachers’ goals; but, teachers
need to employ resources (knowledge, routines, etc.) in the service of those goals,
so goals in the absence of such resources are unfulfillable (This is the reason for the
consistently large difference between the number of teachers who profess “student-
centered” teaching beliefs and who actually teach in a student-centered manner).
Thus, a major next step in research on helping teachers develop the kinds of exper-
tise described in this volume will be to chart the growth and change of teachers’
orientations, goals, and knowledge as they have the kinds of experiences intended
to help them develop expertise. Needless to say, the cautions discussed in the first
part of this chapter will apply to that research as well.
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Reflections and Future Prospects

Gabriele Kaiser and Yeping Li

Abstract This concluding chapter summarizes what can be learnt from this book
concerning the concept and nature of expertise, and how expertise is theoreti-
cally conceptualized and empirically measured. The chapter discusses differences
between the Eastern and Western perspectives on expertise, and exemplifies their
different orientations of teaching towards the subject of mathematics and the
individual students. Furthermore, we discuss and analyze the current state-of-art
research on expertise and possible research directions for the future.

Keywords Professional knowledge of teachers · Expertise · Novice-expert-model ·
Cultural differences

It is now common knowledge that teacher expertise in mathematics instruction
varies individually and affects teaching performance. However, there is still very
limited understanding of the nature of teacher expertise in mathematics instruction.
As teachers and teaching have become recognized as a vital part for enhancing stu-
dents’ academic achievement, understanding the nature of teachers’ expertise is an
unavoidable issue. In fact, with ever-increasing emphasis in current worldwide edu-
cational efforts to improve students’ mathematics learning, those who care about
finding ways of improving mathematics classroom instruction and teacher educa-
tion have stressed the importance of knowing and understanding what is needed
for making and developing expert-like mathematics. Towards this end, this book
makes a much-needed and important contribution to the international community of
mathematics education and teacher education.

Understanding and evaluating teacher expertise has been a perplexing issue in
many education systems for years. Taking an international perspective to examine
teacher expertise that is appreciated in the East and the West should help advance
our understanding of the issue. For example, existing cross-national studies have
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revealed remarkable differences between Japan, Hong Kong, and the United States
in mathematics classroom instruction (Hiebert et al., 2003; Stigler & Hiebert, 1999),
between Mainland China and the United States in teachers’ knowledge of math-
ematics for teaching (e.g., Ma, 1999). In particular, Ma’s study (1999) revealed
that Chinese elementary teachers had a profound understanding of the fundamental
mathematics they teach, whereas US teacher participants lacked a strong knowl-
edge base in mathematics. It is in the same spirit of expanding possibilities for
learning from many more education systems that this book succeeds in helping
readers develop a better understanding of teacher expertise that is valued in different
systems.

In this concluding chapter, we will discuss what we can learn from this book and
provide our prospects for research development in the future. In particular, consis-
tent with several issues being highlighted in the introduction chapter, we will focus
on (1) some similarities and differences between Eastern and Western perspectives
on teachers’ expertise or its specifications and (2) cultural differences in viewing
expert teachers and teaching. Based on these summaries and discussions, we will
then suggest directions for future research and the development of teaching practice
with regard to teacher expertise in mathematics instruction.

Conceptualizing and Specifying Teacher Expertise

In her fundamental chapter on theoretical perspectives and trends in research
on expertise, chapter “Theoretical Perspectives, Methodological Approaches, and
Trends in the Study of Expertise” by Chi (this book) develops an overall framework
for describing and conceptualizing the nature of expertise from a general perspec-
tive. She emphasizes that in contrary to what had been presumed so far, the amount
of knowledge is not an important aspect for discriminating experts from novices in
solving knowledge-lean tasks: the domain-relevant knowledge and its structure are
actually very important for successfully solving complex and knowledge-rich tasks.
Especially the representation of the domain-relevant knowledge seems to be a dis-
tinctive feature of expertise. Chi points out that teacher experts will generally have
a normatively correct and deeper representation of the topics they teach in compar-
ison to novice teachers, who will have a more shallow or incomplete representation
of the teaching topics and other important aspects.

A more concrete approach to elaborate on the construct of teacher expertise is
the approach by Blömeke (2002), who describes the importance and impacts of
(subject-related) knowledge on teacher expertise and its development. She describes
teachers with expertise as experts, can develop mental models of the situation in
the classroom by referring to previous knowledge especially under enormous time
pressure. These models allow them to select the relevant information out of a huge
amount of information, to process it, and to come to decisions of different kinds,
to recognize problems and to react sensitively and successfully from a pedagogical
point of view. On the level of the cognitive processes involved, this means the inclu-
sion of components of expertise such as rapid judgment in the situation, combining
and structuring of events observed in the classroom intercourse into a few categories,
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and the willingness to change the course of classroom interaction when necessary.
This description has the following consequences on the teaching profession: it is
consensus that teachers with expertise have a more adequate level of knowledge;
that they are able to structure the teaching-and-learning-processes more adequately
and in a goal oriented manner; that they see the teaching-and-learning-process in
a holistic way, combining the subject’s teaching requirement, the organization of
the teaching-and-learning-process, and the students’ needs as a whole using more
abstract concepts. Additionally, the knowledge of teachers with expertise is more
coherent and organized according to the teaching situation, not according to sin-
gle students (Bromme, 1992). Teaching expertise includes the transfer of learned
rule-knowledge to more complex if-then-rules, taking information on the teaching
situation into consideration.

Consistent with the above conceptualization of teacher expertise by Chi (this
book) and Blömeke (2002), teachers’ sound subject knowledge has been taken as
an important part of their expertise in mathematics instruction in many chapters of
this book. In fact, it becomes a common feature, which is highlighted by contribu-
tions from the East and the West in one way or another. Yet, there are also notable
differences both across and within the East and West in terms of the ways of speci-
fying knowledge as part of teacher expertise. In general, contributions from the East
tend to focus on teachers’ instructional practices to discuss and specify teachers’
expertise in a more holistic way. Thus, teachers’ knowledge as part of their exper-
tise is identified by analyzing teachers’ instructional practices, and is not taken as
a stand-alone facet but rather as an integrated aspect of what teachers are capable
of doing. Possible differences across the contributions from the East can be found
in the nature of instructional practices that have been analyzed, varying from class-
room teaching (chapter “Characterizing Expert Teaching in School Mathematics
in China – A Prototype of Expertise in Teaching Mathematics” by Li, Huang, &
Yang, this book; chapter “Expertise of Mathematics Teaching Valued in Taiwanese
Classrooms” by Lin & Li, this book; chapter “Exploring Korean Teacher Classroom
Expertise in Sociomathematical Norms” by Pang, this book), textbook use (chapter
“The Japanese Approach to Developing Expertise in Using the Textbook to Teach
Mathematics” by Takahashi, this book), to mathematics department heads’ percep-
tions (chapter “Perceptions of School Mathematics Department Heads on Effective
Practices for Learning Mathematics” by Lim-Teo, Chua, & Yeo, this book). In con-
trast, contributions from the West likely examine and analyze teachers’ knowledge
as an important, yet stand-alone aspect of teacher expertise. Teacher expertise is
regarded in an analytical way as containing different components, including knowl-
edge, beliefs, and teaching performance. Even further, chapter “Teacher Expertise
Explored as Mathematics for Teaching” by Simmt (this book) conceptualizes and
specifies teacher expertise as mathematics for teaching, which differs from the type
of mathematics that mathematicians use and talk about. The differences in con-
ceptualizing teacher expertise and the nature of mathematics knowledge in teacher
expertise suggest different perspectives and approaches that can possibly be used to
examine teacher expertise.

Apart from the central importance of structured knowledge as a key aspect of
expertise, Chi describes three constructs emphasized in current research on expertise
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in her chapter. In particular, the first construct is deliberate practice, which is
defined as “expanding intentional efforts to achieve further improvement through
focused, concentrated, well-structured, programmatic, and goal-oriented practice.
Moreover, the goals of practice are set to go beyond one’s current level of achieve-
ment, and evaluated by identification of errors, and so on.” (chapter “Theoretical
Perspectives, Methodological Approaches, and Trends in the Study of Expertise” by
Chi, this book) This construct is specifically crafted to explain why some teachers
can become real experts but others cannot. This question is of great interest to cog-
nitive psychologists and educational researchers. Yet, the construct itself does not
provide a detailed account for the development of structured knowledge in expertise
growth.

There is a general consensus that the development of expertise is a tedious
learning process, which may last for ten years. The learning theories which serve
as a basis to account for expertise development are more and more orientated
towards constructivism and emphasizing the domain-specificity of the knowledge.
For example, Blömeke adapts the model of Neuweg (1999) in order to describe the
development from novice to expert teachers (Blömeke, 2002, p. 81; own transla-
tion). This model describes the development of the teachers’ expertise concerning
various aspects identified as being important for teachers’ expertise in various
approaches. For example, how the teaching situation is perceived or how the behav-
ior of a teacher is determined. With this model a detailed description of a possible
development from novices to experts is provided referring to the different theoretical
models on the development of expertise (Fig. 1).

Concerning the development of expertise, Blömeke (2002) describes teachers
at the beginning of their teaching practice as being in transition from competence
level to mastery level, which means in detail to broaden the achieved competencies
through the development of everyday routines. These everyday routines allow the
experts to perceive the classroom situation as a whole and not only as consisting of

 level level competence level  level 

Considered 
elements 

Context-
free 

Context-
free and 
situational

Context-free 
and 
situational 

Context-
free and 
situational 

Context-
free and 
situational 

Sense for  the 
essentials 

No No Worked out Immediate Immediate 

Perception  of 
the whole 
situation 

Analytical Analytical Analytical Holistic Holistic 

Determination 
of the 
behavior 

By rules By rules 
and 
guidelines 

Through 
extensive 
planning 

Through 
limited 
planning 

Intuitive 

Fig. 1 Model on the development of expert teachers (Blömeke, 2002)
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single students. This enables the experts to recognize the essential aspects of a situ-
ation immediately without long analyses and it allows experts to teach competently
without having planned each detail of a lesson carefully in advance. This aspect is
emphasized in the study by Shimizu (2008) where novice teachers were compared
to experienced teachers.

In her framework, Blömeke (2002) emphasizes the necessity of content-related
knowledge and refers to the classification developed by Shulman (1985), which
comprises subject matter content knowledge, pedagogical content knowledge, ped-
agogical, and curricular knowledge. As discussed above, the necessity of high levels
of knowledge in these areas as a prerequisite for expertise is emphasized in the
various chapters of this book.

Likewise, Schoenfeld and Kilpatrick (2008) developed a framework for pro-
ficiency in teaching mathematics, consisting of a set of dimensions, which they
consider indispensable for expertise in mathematics teaching and which are strongly
related to teaching and learning processes. They name broad and in-depth, sound
knowledge of school mathematics, different heuristic strategies and meta-cognitive
control strategies as well as a growing competence to reflect teaching-and-learning
processes as dimensions of expertise. Knowledge of school mathematics, which
should be both deep and broad, plays a central role in their theoretical approach.
The breadth of knowledge covers the multiple ways of conceptualizing the rele-
vant mathematics as well as of representing it in various ways, of understanding
the key aspects of each topic, and of seeing connections to other topics at the same
level. The deepness refers to knowledge on the curricular origin and further con-
ceptual development of the content. Schoenfeld and Kilpatrick (2008) describe the
outcome of this kind of knowledge: it allows proficient teachers to prioritize and
organize content in such a way that students are introduced to basic/important ideas
and not lost in an abundance of details. Furthermore, this knowledge allows teach-
ers to respond flexibly to questions posed by students. This kind of knowledge
is called “knowledge of mathematics for teaching” by Ball, Thames, and Phelps
(2007) and according to Schoenfeld and Kilpatrick (2008) it involves “more than
‘just’ knowing the mathematics in the curriculum” (p. 322). Proficient teachers or
expert teachers can respond more flexibly to the students’ questions than novices.
Furthermore, expert teachers are able to craft and manage learning environments,
are able to develop classroom norms, and support classroom discourse in the sense
of teaching for understanding. To summarize, teachers with expertise show a greater
consciousness towards mathematical learning processes and their content as well as
towards the development of the students’ thinking processes than novices, which is
emphasized by Llinares and Krainer (2006) as well.

Cultural Differences

The aforementioned differences in conceptualizing teacher expertise between the
East and the West may also be linked to the unspoken difficulty of identifying
expert teachers between these two cultures. After having taken a careful read of
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the corresponding chapters in this book, readers can notice that not every chap-
ter focuses on expert teachers. In fact, identifying expert teachers can pose a bigger
challenge to researchers in the West than in the East, as teaching is regarded a private
practice in the West but not in the East (Kaiser & Vollstedt, 2007; Li & Li, 2009).
Thus, it is more understandable that researchers in the West take a more hypothetical
approach to conceptualize teacher expertise, which is regarded as being necessary
to be an expert teacher. In contrast, it is relatively easier for researchers in the East
to first identify those teachers who are expected to have expertise and then ana-
lyze their expertise in a holistic or analytical way. It presents a procedure similar
to many studies on expertise in psychology. Cross-cultural differences in teaching
practice and people’s views of teaching practices suggest an important dimension
when examining and understanding teacher expertise in different cultural contexts.

In different chapters describing an Eastern or Western background, another
apparent remarkable difference is the description on the various roles of expert
teachers. Chapter “Images of Expertise in Mathematics Teaching” by Russ, Sherin,
and Sherin (this book) develop four metaphors of expertise in their chapter:

• the role of teachers as diagnosticians, which refers mainly to the teacher’s ability
to interpret students’ thinking and students’ strategies;

• the role of teachers as conductors, shaping the classroom discourse and using
classroom norms for communicating about mathematical ideas;

• the role of teachers as architects selecting cognitively demanding tasks;
• the role of teachers as river guides, which involves improvisation, deciding on

the spot how to unfold the lesson;

This description of expertise clearly focuses on the learning process and the individ-
ual student, his or her learning and the organization of learning processes in order
to promote the students’ learning.

A comparison to the different aspects of expertise from an Eastern perspective
shows clear differences. Yang (2010) differentiates in his study on expert teachers
in China multiple roles, which have to be played by an expert teacher:

• expert in teaching, i.e., organizing good teaching processes;
• researcher, i.e., conduct teaching research and publish papers in professional and

academic journals;
• teacher educator, i.e., mentor non-expert teachers and facilitate non-expert

teachers’ professional development;
• scholar, i.e., an expert teacher should have profound knowledge base in mathe-

matics and other areas;
• expert in examination, i.e., have the ability to pose examination problems;
• exemplary model for students and colleagues.

Similar descriptions are developed by Li, Huang, and Yang in their study on expert
teachers in this book, in which they describe that expert teachers should serve as
moral role models who stand for culturally valued moral characteristics and exper-
tise for others to follow. They continue with the function of expert teachers as
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researchers and elaborate that it is important to engage in research and write sci-
entific papers in order to be identified as expert teachers. Being an expert teacher
needs to contribute to the improvement of other teachers’ academic level and teach-
ing ability, which includes the teacher educator role. From a Western perspective,
it is surprising that scientific research is widely required, especially as this means
that expert teachers must have written a monograph or more than three research
papers published in journals at the provincial level or beyond. They add that an
expert teacher should be the leader of the teaching subject at the municipal or
county level, who has shown high quality teaching with public and exemplary
lessons, and who should have won a prize at a teaching contest at the national
level. According to Huang and Li (2009) the teacher promotion system, commonly
practiced in China, provides a platform for teachers to value and pursue mathemat-
ics classroom instruction excellence. Yang (2009) emphasizes that in contrast to
Western culture, where the policy of closed classroom doors is followed (Kaiser &
Vollstedt, 2007), the classroom teaching of Chinese mathematics teachers is open
for colleagues’ observation, studies and discussions, mainly based on the Teaching
Research Groups.

Comparing Eastern and Western perspectives on expertise as related to expert
teachers’ roles, one can describe the Eastern perspective on teacher expertise as
more holistic, aiming for a systemic change of the teaching-and-learning processes
in school by strengthening teachers as researchers and developing expertise in sci-
entific work. Furthermore the holistic view in the East is accompanied by the public
recognition of expert teachers, who are responsible for the development of math-
ematics education on a broader basis including not only teachers, but curricular
aspects as well. The Western perspective is clearly focused on the teaching-and-
learning process within the classroom, where experienced teachers shall display
their expertise especially in interactions with the students. Characteristic for the
Western approach to expertise is the focus on the individual student, who is put
into the centre of reflections and actions; the promotion of learning processes of
individual students is a major goal of the classroom activities.

Therefore, the differences between the Eastern and the Western approaches con-
cern the different foci on levels of change: while in the Eastern conception a change
on a systemic level is desirable, the Western conception refers to changes on the
local level. These differences with systemic change focusing on groups of actors in
the Eastern conception and the local change with a focus on the individual student
relate to strong cultural differences, which are described by cultural psychology
as orientation towards collectivistic oriented countries in contrast to individualis-
tic oriented countries. In collectivistic oriented countries, societal actions are seen
as commitment against social networks, whereas in individualistic oriented coun-
tries the conviction that societal action is a result of freely negotiated contracts is
dominant (Hofstede, 1980, 2001; Mascolo & Li, 2004). Transferring this differenti-
ation to individualistic and collectivistic orientation towards education implies (cf.
Triandis, 1995) that in collectivistic oriented countries the role of social relations
is more strongly emphasized in the learning process: according to this theoreti-
cal approach students rather learn due to their commitment towards their teachers,
their family, and the social group, who conversely have the responsibility to provide
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every necessary support. Failing in school is in this social paradigm attributed to a
lack of effort and the required changes rather aim for higher efforts of the students
and not for a change of the schooling framework to the benefit of the individual
student. In individualistic oriented countries, students are more strongly seen as
autonomous subjects, who learn on an individual basis, mainly independent from
other individuals. Lacking learning success is explained by referring to inadequate
social conditions such as too difficult tasks, poor explanation skills of the teachers
or, in general, poor lessons and faults by the teacher. The changes required refer
to a change in these social conditions such as changing the teaching styles or the
lesson structure, the tasks, or even the school system, but do only seldom refer to
the individual student.

These differences in the cultural and psychological paradigms underlying Eastern
and Western educational approaches seem to be adequate to explain at least partly
the strong holistic focus on expertise in Eastern countries by embracing the profes-
sional development of whole teacher groups and in general the educational system,
including work on curricular aspects. In addition, the strong individualistic ori-
entation of Western cultures, which expects teachers to provide effective learning
environments, good classroom management and so on, leads to a conceptualization
of expertise which focuses on the individual student’s teaching-learning-processes.
Cai, Wang, Wang, and Garber (2009) confirm these results from another perspective:
namely effective mathematics teaching from the teachers’ perspective. They report
that most Asian teachers are more mathematics content-oriented, they emphasize
that an effective teacher should understand the content thoroughly and organize
teaching in well-structured lessons. This is in strong contrast to teachers from
America and Europe, who tend to be more person-oriented and emphasize that an
effective teacher should be passionate about mathematics, he or she should have
good listening skills and provide enough room and time for students to learn for
understanding.

Although there are these strong culturally-based differences between Eastern and
Western countries, the cross-national comparative results of the OECD-study TALIS
(Teaching and Learning International Survey) point out significant commonalities as
well as differences in the teachers’ beliefs about the nature of teaching and learning
between the participating countries that reveal a few unexpected results (Schmidt
et al., 2007). For example, Western countries emphasize the individual student, on
the other hand – rather unexpectedly – countries sharing Confucian traditions follow
the same constructivist ideas.

To summarize, there are apparently strong cultural differences concerning the
description of expertise in mathematics education. These might explain the different
ways of implementing expertise in mathematics education.

Areas of Future Research Directions

The above discussion highlights several aspects to be learned from this book. While
we can learn much from reading the book, many more questions can actually be
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raised about teacher expertise. Here we would like to share three areas of further
research with the readers.

The first area relates to teacher expertise itself. The aforementioned similari-
ties and differences in the conceptualization of expertise between the East and
West suggest some important aspects that need further examination. In particular,
although sound subject knowledge is commonly regarded as being an important part
of teacher expertise, it remains unclear what exactly expert or experienced teachers
know about mathematics. Further research is needed to examine the expert teachers’
level of knowledge about school mathematics, and to find out whether it is important
for them to also know advanced mathematics. Different from Ma’s study that com-
pares Chinese and US teachers’ mathematics knowledge, we suggest to examine
subject knowledge in expertise as a consistently changing and dynamic body of
knowledge. The nature of mathematics subject knowledge in teacher expertise may
vary dramatically between novice and expert teachers, and it is important for us to
know and understand what kind and level of structured knowledge expert teachers
need and how it is developed.

In Chi’s description of three current constructs on expertise research, the sec-
ond construct is adaptive expertise. Chi (this book) describes adaptive expertise as
“the notion of knowing not only how to execute or apply a procedural skill, but
an adaptive expert is one who also has conceptual understanding of that skill”.
She emphasizes that adaptive experts understand the procedures or the skills in a
profound way, so that they are able to generalize their skills to other non-routine
problems. In order to acquire a conceptual understanding, it seems to be necessary
to reflect and self-explain the solution of the problem during the problem solving
process, which leads to a deeper understanding. This emphasis and high importance
of reflection and metacognition is in accordance with new trends in mathematics
education, which stress the necessity of metacognition for higher-order thinking
processes. Chi’s discussion suggests adaptive expertise in mathematics instruction
as an important area of research studies. In mathematics education research, a grow-
ing number of studies investigates how to help students develop adaptive expertise in
problem solving (e.g., Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009), which
might help to develop similar studies for teachers. However, much remains unclear
about the nature of adaptive expertise in mathematics instruction. Research on adap-
tive expertise becomes especially important as it can help to understand what is
needed for being a real expert teacher and not a routine expert or just an experienced
teacher.

Looking into areas in which further research is needed, we take the development
of expertise and its wider promotion as one more area of research. As a continua-
tion of this book, Yeping Li and Ruhama Even will edit a special issue of ZDM –
The International Journal on Mathematics Education at the end of 2011. The issue
on “Approaches and Practices in Developing Teachers’ Expertise in Mathematics
Instruction” begins with the observation that while educational research has dra-
matically increased its emphasis on teachers and teaching practice over the past
few decades (e.g., Sikula, 1996; Townsend & Bates, 2007), the need for improving
teachers’ expertise has emerged ever-increasingly in various ways. This includes
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the need for practicing teachers’ continuous knowledge and practice development
in mathematics and pedagogy, teachers’ training for undertaking and implementing
changes in the curriculum and instruction, and teachers’ professional promotion.
While various approaches and practices (e.g., lesson study in Japan, teaching
research group and apprenticeship practice in China, and video case based learning
in the US) have been generated and implemented to address different needs across
educational systems, much remains to be learned about specific approaches and
practices that have been developed and used effectively. Knowing and understanding
effective approaches and practices for developing practicing teachers’ expertise in
mathematics instruction have become especially important to those who care about
the ways of improving mathematics classroom instruction and broad teacher pro-
fessional education. Li and Even emphasize, that until today, researchers have not
come to a consensus on how to define and assess teachers’ expertise. In contrast, as
described in this chapter, distinct differences between the various approaches com-
mon in the Eastern and the Western debate exist (Lappan & Li, 2002). This themed
issue is proposed as a sequel to this collaborative book publication on teachers’
expertise in mathematics instruction, for the international mathematics education
community to develop and share relevant research in the much-needed topic area
of approaches and practices utilized to develop such expertise. Hopefully, this book
will serve as a starter for rich and extensive debates on the definition and develop-
ment of expertise, how to promote it, and will lead to reflective ideas on its further
embedding in joint cross-cultural endeavors on expertise in mathematics teaching.
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