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Abstract Lantibiotics are lanthionine-containing peptide antibiotics. They are 
characterized by having meso-lanthionine(s) and/or b-methyllanthionine(s) or both. 
These intramolecular monosulfide cross-links render the peptide resistant against 
breakdown by peptidases. Moreover, in several cases, the (methyl)lanthionines 
are essential for interaction with the so-called docking molecule lipid II. The best 
known lantibiotic, nisin, highly effectively inhibits growth of target cells via two 
mechanisms: (1) abduction of the cell wall precursor lipid II from the septum 
and (2) formation of pores composed of lipid II and nisin. (Methyl)lanthionines 
result from two enzyme-catalyzed posttranslational modifications: dehydration of 
serines/threonines and coupling of the resulting dehydro amino acids to cysteines. 
Besides the localization of the thioether bridges and dehydro amino acids in the 
lantibiotics, also the three-dimensional structure of some lantibiotics has been 
resolved by NMR. Genes encoding proteins involved in the biosynthesis of lantibi-
otics are present in clusters and may comprise combinations of the following genes 
in varying order: a structural gene that encodes a leader peptide and the lantibiotic 
propeptide, modification enzyme(s), a transporter responsible for the export of the 
lantibiotic and in some cases for cleavage of the leader peptide, a leader peptidase, 
a so-called immunity protein involved in self-protection of the host cell, compo-
nents of a transporter also involved in self-protection, and two components of an 
autoinduction system.

Introduction

The name lantibiotics was introduced more than two decades ago (Schnell et al. 1988). 
Lantibiotics are ribosomally produced dehydroresidue- and (methyl)lanthionine-
containing peptides (Fig. 9.1). Lanthionines are thioether-bridged amino acids 
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(Fig. 9.2a). They are predominantly produced by Gram-positive bacteria, and those 
with antibiotic activity are principally effective against Gram-positive bacteria. 
Besides meso-lanthionine (Ala-S-Ala) and b-methyllanthionine, several other post-
translational modifications may occur in lantibiotics (Table 9.1).

Nisin was the first lantibiotic described in literature (Rogers and Whittier 1928) 
and is the most studied lantibiotic. It is produced by different Lactococcus lactis 
strains. Already in 1969, nisin was approved for use as a food preservative (Delves-
Broughton 2005). Nisin has a broad activity spectrum against Gram-positive bacteria, 
including strains of Staphylococcus, Streptococcus, Micrococcus, Lactobacillus, 
Bacillus, Listeria, and Clostridium, (Thomas et al. 2000), and has antimicrobial 
activity in the nanomolar range (de Vos et al. 1993). Despite its world wide applica-
tion as a food additive, virtually no resistance against nisin has occurred. Owing to 
their stability, high activity, and virtual absence of resistance development, lantibi-
otics are promising candidates for biomedical application. Their features make the 
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Fig. 9.1 Examples of lantibiotics. (a) nisin, (b) mersacidin, (c) duramycin, (d) sapB and 
(e) labyrinthopeptin A2. (Methyl)lanthionines and lysinoalanine in black are conserved within 
structural groups termed A, B, and C distinguished by Rink et al. (2005). The vertical dotted 
line indicates local structural symmetry in this morphogenetic lantibiotic (D). “Lab” in Figure 
E is labionine
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search for new lantibiotic variants that are further improved by genetic engineering 
an exciting and relevant approach in the battle against multiple-antibiotic-resistant 
pathogens (Kuipers et al. 1992; Rink et al. 2007b; Field et al. 2008).

Nisin, subtilin, epidermin, Pep5, and some similar lantibiotics were first desig-
nated as type A lantibiotics, which are rod-shaped, flexible with an elongated 
structure, and mainly act by forming pores in the bacterial membrane (Jung 1991). 
Type B lantibiotics (e.g., cinnamycin, duramycin, and ancovenin) were discerned 
as having a higher degree of cyclization resulting in structures that are more globular 
and being devoid of pore-forming activity. To date, more than 60 different lantibiotics 
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Fig. 9.2 (a) Enzyme-catalyzed dehydration and cyclization. (b) Hypothetical distributive mechanism 
of lantibiotic modification. A leader peptide binds to the modification enzyme, thus bringing the 
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Table 9.1 Residues occurring within lantibiotics

Residue Lantibiotic Reference

meso-Lanthionine Most lantibiotics Chatterjee et al. (2005b)
b-Methyllanthionine Most lantibiotics Chatterjee et al. (2005b)
2,3-Dehydroalanine Most lantibiotics Chatterjee et al. (2005b)
(Z)-2,3-Dehydrobutyrine Most lantibiotics Chatterjee et al. (2005b)
S-(Z)-Aminovinyl- 

D-cysteine
Epidermin, gallidermin, 

cypemycin
Allgaier et al. (1986), Kellner et al. 

(1988), Minami et al. (1994)
S-Aminovinyl-D-3-

methylcysteine
Mersacidin Chatterjee et al. (1992)

D-Alanine Lactocin S, lactocin 
3147

Skaugen et al. (1994); Martin 
et al. (2004)

Alloisoleucine Cypemycin Minami et al. (1994)
Dimethylalanine Cypemycin Minami et al. (1994)
Amide Nisin(1-32)amide Chan et al. (1989)
Erythro-3-hydroxy- 

L-aspartic acid
Cinnamycin, duramycin, 

duramycin B, 
duramycin C

Kessler et al. (1988); Naruse et al. 
(1989); Fredenhagen et al. 
(1991)

(2S, 8S)-Lysinoalanine Cinnamycin, duramycin, 
duramycin B, 
duramycin C

Kessler et al. (1988); Naruse et al. 
(1989); Fredenhagen et al. 
(1991)

2-Oxobutyryl Pep5 Kellner et al. (1989)
2-Oxopropionyl Lactocin S, epilancin 

K7 (3-31)
Skaugen et al. (1994); van de  

Kamp et al. (1995a)
Hydroxypropionyl Epilancin K7 van de Kamp et al. (1995b)
Acetyl Paenibacillin He et al. (2008)
Sulfoxide Actagardine Boakes et al. (2009)
disulfide Thermophilin 1277 Kabuki et al. (2009)
5-Chloro-trypthopan Microbisporicin Castiglione et al. (2008)
Mono-/bis-hydroxylated 

proline
Microbisporicin Castiglione et al. (2008)

Labionine Labyrinthopeptins Meindl et al. (2010)

have been discovered (Bierbaum and Sahl 2009), and several different posttransla-
tional modifications have been described (Willey and van der Donk 2007; Table 1). 
After the finding of many new lantibiotics, the clarity of the old type A and type B 
classification diminished, and two (Oman and van der Donk 2010) or three (Pag 
and Sahl 2002; Willey and van der Donk 2007) groups were proposed on the basis 
of novel criteria. The three-group classification placed all lantibiotics in one of 
three classes initially on the basis of the biosynthesis machinery used for maturation 
of the peptide (class I and class II) or the absence of antibiotic activity (class III). 
Moreover, in class III lantibiotics, LanM maturation enzymes might act via a 
mechanism distinct from that of class II LanM enzymes.

Several detailed reviews on all lantibiotics exist (Chatterjee et al. 2005b; Bierbaum 
and Sahl 2009; Asaduzzaman and Sonomoto 2009) and also reviews on clinical 
applications of lantibiotics (Smith and Hillman 2008), on subgroups of lanti-
biotics (Lawton et al. 2007; Dufour et al. 2007; Willey et al. 2006), on a single 
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lantibiotic (Lubelski et al. 2008), and on the application of lantibiotic enzymes for 
modifying nonlantibiotic peptides (Moll et al. 2010). In this chapter, we focus on 
the genetics, synthesis, structure, and mode of action of lantibiotics including the 
most recent developments.

Genetics and Biosynthesis

The genes involved in lantibiotic synthesis are arranged in clusters. These gene 
clusters can be organized on a transposon (nisin), on the chromosome (subtilin), or 
on a plasmid (epidermin). Genes on these clusters have been designated the generic 
locus symbol lan (de Vos et al. 1991). In 1993, the gene cluster involved in the nisin 
biosynthesis was unraveled (van der Meer et al. 1993, Kuipers et al. 1993a). 
Besides the gene products required for the biosynthesis of the peptides, proteins 
that are needed for the processing (LanP), translocation (LanT), self-protection/
immunity (LanI, LanEFG), and regulation (LanRK) are also encoded. Per type, 
many of these proteins encoded on the different gene clusters show amino acid 
homology, which indicates that indeed they have similar functions (Siezen et al. 
1996; Kuipers et al. 1993a; Qiao et al. 1996).

The lantibiotics nisin, epidermin, and Pep5 belong to the class I lantibiotics. 
In class I lantibiotics, the prepeptide LanA is modified by two distinct enzymes, 
LanB and LanC. The lantibiotic prepeptide contains a leader sequence that is 
thought to be necessary for targeting the propeptide part to the separate modifying, 
processing, and translocating enzymes. LanB dehydrates the serines and threonines 
in the propeptide part of LanA, and LanC couples these dehydrated residues regio- 
and stereoselectively to cysteines to form respectively mesolanthionines and 
b-methyllanthionines. After translocation of the modified peptide via an ABC 
transporter LanT, the leader part is, in most class I lantibiotic systems, removed by 
a protease LanP, releasing the active lantibiotic (Willey and van der Donk 2007).

In class II lantibiotics, e.g., lacticin 481, mersacidin, and actagardin, only one 
enzyme is responsible for dehydration and cyclization of the propeptide LanA. These 
bifunctional LanM enzymes as well as LanB enzymes are both composed of about 
1000 amino acids and share no sequence homology. The N-terminal parts of LanM 
enzymes are responsible for the dehydration reaction, but surprisingly, their sequences 
are about 400 amino acids shorter than those of LanB dehydratases, and they have no 
similarity to LanB enzymes. LanC enzymes are composed of around 400 amino acids. 
The C-terminal part of LanM enzymes has low sequence homology with the LanC 
enzymes (Siezen et al. 1996), including three zinc- coordinating amino acids (Patton 
and van der Donk 2005). Knockouts of one of these zinc ligands completely abol-
ished the cyclase activity of NisC or LctM (Li et al. 2006, Paul et al. 2007). Another 
dissimilarity to class I lantibiotics is the dual functionality of LanT. Before transloca-
tion of the modified peptide, the peptide is intracellularly processed by the conserved 
N-terminal protease part of LanT (Pag and Sahl 2002, Willey and van der Donk 
2007). Class II lantibiotics also comprises the two-component lantibiotics, 
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e.g., lacticin 3147 (Ryan et al. 1996) and haloduracin (McClerren et al. 2006). In the 
case of lacticin 3147, the two prepeptides LtnAa and LtnAb are each separately 
modified by the two corresponding enzymes, respectively, LtnM1 and LtnM2. After 
modification, both peptides are processed and translocated by one LtnT enzyme. The 
gene cluster of lacticin 3147 contains a gene coding for an additional posttransla-
tional modification enzyme, LtnJ. This enzyme converts some dehydroalanines in the 
prepeptides Ltna and Ltnb to D-alanines (Ryan et al. 1999).

The third class of lantibiotics was initially discerned as (methyl)lanthionine-
containing peptides often devoid of antimicrobial activity. Instead, they would have 
other –for instance, morphogenetic– features that may be beneficial to the producing 
cells. The three lantibiotics that were first found for this group were SapB (Kodani 
et al. 2004; Fig. 9.1d), SapT (Kodani et al. 2005), and AmfS (Ueda et al. 2002). 
SapB and SapT are believed to be biosurfactants that may have a positive effect on 
the surface of aerial hyphae of the producer strains. In addition, SapT has anti-
microbial activity against Bacillus cereus (Kodani et al. 2005). Interestingly, RamC, 
the presumed SapB modification enzyme has an N-terminal domain that resembles 
a Ser/Thr kinase and a central dimerization domain (Kodani et al. 2004). 
Furthermore, the enzymes involved in the biosynthesis of SapB and AmfS share 
homology with the C-terminal part of other LanM enzymes except for the zinc 
ligands, which are not conserved.

Three recent and exciting publications further characterized class III lantibiotics. 
Labyrinthopeptins were discovered by Meindl and coworkers by following the 
activity of labyrinthopeptin A2 against Herpex simplex virus. In addition, laby-
rinthopeptin A2 has an excellent efficacy against neuropathic pain in an in vivo 
mouse model. Labyrinthopeptins belong to class III lantibiotics and contain labionine, 
a carbacyclic triamino acid (Meindl et al. 2010; Fig. 9.1e). Subsequently, the 
in vitro reconstitution of the prelabyrinthopeptin A2 biosynthesis was demon-
strated, which required guanosine triphosphate for the phosphorylation and dehy-
dratation reaction of serines (Müller et al. 2010). A paper from the group of van der 
Donk demonstrated that a class III enzyme LanL comprises a kinase domain, 
which phosphorylates Ser/Thr, a phosphoSer/Thr lyase domain, and a cyclase 
domain comprising a zinc finger. It was proposed that LanL enzymes have evolved 
from stand-alone protein Ser/Thr kinases, phospho-Ser/Thr lyases, and enzymes 
catalyzing thiol alkylation. The name lantipeptides was suggested for compounds 
that by structure and biosynthesis are related to lantibiotics but that are not known 
to possess antimicrobial activity (Goto et al. 2010).

Engineering of Lantibiotics

With the elucidation of gene clusters involved in the biosynthetic pathways of lantibi-
otics, genetic engineering of lantibiotics became the next challenge. Much more stud-
ies have been performed on the engineering of the lantibiotics than on the mutagenesis 
of their leader peptides. The existence of natural variants among lantibiotics (e.g., nisin 
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A/nisin Z, nisin Q (Fukao et al. 2008), nisin U (Wirawan et al. 2006), epidermin/
gallidermin) and the high homology between certain lantibiotics (i.e., nisin/subtilin/
lantibiotic 97518 (Maffioli et al. 2009), mutacin II/lacticin 481) suggest that the iden-
tity of amino acids present at certain locations is flexible. Indeed, by site-directed 
mutagenesis of the structural genes and the development of expression systems, many 
lantibiotic variants were designed and produced in vivo (Cotter et al. 2005).

In 1992, the first nisin mutants were reported (Kuipers et al. 1992) followed by 
many other nisin mutants (reviewed by: Kuipers et al. 1996; Lubelski et al. 2008). 
Interestingly, a T2S mutant had increased activity (Kuipers et al. 1996) and some 
nisin hinge region mutants had antimicrobial activity against Gram-negative spe-
cies (Yuan et al. 2004). By altering the charge of the nisin lantibiotic, solubility 
could be improved (Yuan et al. 2004). Randomization of the codons of the amino 
acids in nisin’s ring A and ring B yielded a large number of mutants (Rink et al. 
2007b). Nisin ring A mutants I4K/S5F/L6I and I4K/L6I showed enhanced activity 
against some target strains (Rink et al. 2007b), as did mutations M21V, N20P, and 
K22T in the hinge region (Field et al. 2008). Ring A mutants were obtained with 
enhanced activity against some strains, mutants that were not recognized by the 
self-protection systems, whereas opening of ring B caused loss of antimicrobial 
activity while the induction capacity remained intact (Rink et al. 2007b). Early suc-
cessful mutagenesis studies also concerned subtilin (Liu and Hansen 1992) and 
gallidermin (Ottenwälder et al. 1995).

The first novel thioether bridge was introduced in Pep5. By the substitution 
A19C, a b- methyllanthionine was introduced in the peptide, which was formed 
between the Dhb on position 16 and the introduced cysteine at position 19. This 
mutant exhibited increased proteolytic stability against chymotrypsin and Lys-C. 
However, the novel thioether bridge had a negative effect on the antimicrobial activity 
of Pep 5 (Bierbaum et al. 1996). Also, in the class II lantibiotics, comprising mutacin II 
(Chen et al. 1998), mersacidin (Szekat et al. 2003), cinnamycin (Widdick et al. 2003), 
and actagardine (Boakes et al. 2009), new variants were made by site-directed 
mutagenesis. A systematic mutant analysis by alanine scanning of the two-peptide 
lantibiotic lacticin 3147 revealed the areas within the peptide that are amenable 
to changes and areas that are essential for the production. None of the mutants 
displayed an antimicrobial activity higher than that of the wild-type producer 
(Cotter et al. 2006). Succesful methods and strategies have been developed to engi-
neer new lantibiotic variants and analyze libraries (Cortés et al. 2009).

By random mutagenesis and NNK scanning of nukacin ISK-1, a series of nuka-
cin ISK-1 variants was generated to identify the positional importance of individual 
residues responsible for antimicrobial activity (Islam et al. 2009). Furthermore, by 
random mutagenesis of mersacidin, 80 mutants that produced mature mersacidin at 
good levels were made, and novel variants were obtained with improved overall 
bioactivity, such as F3W (Appleyard et al. 2009).

Novel lantibiotics with enhanced antimicrobial activity may be lethal for the 
producer itself. Many prelantibiotics are inactive; apparently, the presence of the 
N-terminal leader peptide keeps these prelantibiotics inactive. To avoid lethality of 
engineered lantibiotics, a production system can be used without leader peptidase 
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(Rink et al. 2007b). After production, the leader can be removed. Another 
approach is using an in vitro modification system. The lantibiotics lacticin 481 and 
the two peptide lantibiotic haloduracin were both modified successfully by incuba-
tion of the precursor peptide with the LanM enzymes in vitro (Xie et al. 2004; 
McClerren et al. 2006). Furthermore, NisC could successfully cyclize dehydrated 
prenisin (Li et al. 2006).

Lantibiotic chimeras of nisin and subtilin have been made (Chakicherla and 
Hansen 1995). By replacing the propeptide-encoding sequence of one lantibiotic by 
the propeptide-encoding sequence of another lantibiotic, lantibiotics have been 
produced by the biosynthesis machinery of a system within the same class (Kuipers 
et al 1993b; Patton et al. 2008), and also of another class. Class II pneumococcins 
have been dehydrated, cyclized, and exported by Class I enzymes from the nisin 
system (Majchrzykiewicz et al. 2010). Overall, the biosynthetic systems used for 
the biosynthesis of lantibiotics seem to have a remarkable flexibility.

Mechanistic Aspects of the Biosynthesis of Lantibiotics

Lantibiotic genes code for prepeptides, which are composed of a leader peptide and 
a modifiable propeptide. The leader peptide appears to have a leading role in the 
posttranslational modification processes and in export (Patton et al. 2008). It induces 
the LanB/LanM-catalyzed dehydration of serines and threonines, the LanC/LanM-
catalyzed cyclization, and the LanT-mediated export. However, it was demonstrated 
that presenting the leader in trans, not attached to the substrate, still leads to 
modification of the structural peptide (Levengood et al. 2007; Patton et al. 2008). 
Some, but only strongly reduced, LctM activity has also been demonstrated in the 
absence of the leader peptide. Since LanB, LanC, LanM, and LanT can be active in 
the absence of other lantibiotic enzymes, it is likely that each enzyme itself has a 
leader peptide-binding site. Possible roles of the leader could thus be stabilizing of an 
active conformation of the enzyme (Patton et al 2008) and bringing the modifiable 
substrate propeptide in the vicinity of the active center of the modification enzymes 
(Fig. 9.2b).

Alignments of leader peptides suggest at least two groups (Plat et al. 2010). One 
group containing an FNLD sequence, mainly occurring in Class I, LanB and LanC-
modified prelantibiotics (Chatterjee et al. 2005b; Table 9.2). Mutagenesis of residues 
in this box affected nisin biosynthesis (van der Meer et al. 1994) and Pep5 produc-
tion (Neis et al. 1997). Another group with an EVxxxEL sequence occur in Class II, 
LanM-modified prelantibiotics (Chatterjee et al. 2005b; Table 9.2). Some mutations 
of some leader peptide residues in mutacin II eliminated biosynthesis, whereas other 
mutations only affected the level of production (Chen et al. 2001). In the leader 
peptide of lacticin 481, not one of the conserved and not-conserved residues appears 
essential. Introduction of prolines, however, seems to interfere with the functionality 
of the leader peptide (Patton et al. 2008). For nukacin ISK-1, the importance of the 
a-helicity of the leader peptide was demonstrated (Nagao et al. 2009).
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The leader peptides from two component lantibiotics seem to differ from the 
aforementioned leader peptides, e.g., plantaricin Wa/Wß (Holo et al. 2001), staph-
ylococcin C55a/ß (Navaratna et al. 1999). The leader peptides from the two-
component lantibiotic cytolysin (Gilmore et al. 1994, Table 2) are processed at two 
cleavage sites in each peptide.

Most lantibiotic leader peptides are composed of about 20–35 amino acids. 
In contrast, the leader peptides from actagardine (Boakes et al. 2009), michiganin 
(Holtsmark et al. 2006, Table 9.2), and mersacidin (Bierbaum et al. 1995) are com-
posed of respectively 45, 47, and 48 amino acids, whereas the leader peptide from 
the globular-shaped lantibiotic cinnamycin (Kessler et al. 1988) is even composed 
of 59 amino acids (Widdick et al. 2003; Table 9.2). Structures of some leader 
peptide-dependent lantibiotic modification enzymes may provide further insight 
into the roles of the leader peptide in the intriguing biosynthesis of lantibiotics. 
Indeed, the structure of NisC indicates a leader peptide binding site (Li et al. 
2006).

Data on the substrate specificity of the lantibiotic modification enzymes have 
been obtained mainly for the nisin and lacticin 481 modification enzymes.  
The nisin biosynthesis machinery NisBTC proved to be highly versatile and can 
be used for the introduction of thioether rings in a broad spectrum of nonlantibiotic 
peptides (Rink et al. 2005; Kluskens et al. 2005; Rink et al. 2007c). Furthermore, 
successful dehydration of threonines/serines seems to be influenced by the flanking 
residues. Hydrophobic flanking residues on one or both sides may favor dehy-
dration, whereas the simultaneous presence of hydrophilic flanking residues on 
both sides seems to disfavor dehydration (Rink et al. 2007a). Lantibiotic cyclases 
can catalyze the coupling of dehydroalanines and dehydrobutyrines to cysteines 
yielding lanthionines and b- methyllanthionines, respectively. However, dehydro-
alanines are reactive and can, in the absence of cyclase action, also spontaneously 
form a lanthionine when reacting with a cysteine under mild conditions (Rink 
et al. 2007c). Such nonenzymatic ring closure can result in a mixture of stereoisomers 
(Burrage et al. 2000).

Table 9.2 Diversity of lantibiotic leader peptides. In bold: residues (partly) conserved within an 
alignment (sub)group

Lantibiotic Leader peptide sequence
References for peptide  
and/or alignment

Nisin MSTKDFNLDLVSVSKKDSGASPR Gross and Morell (1971); 
Chatterjee et al. (2005b)

Mutacin II MNKLNSNAVVSLNEVSDSELDTILGG Woodruff et al. (1998); 
Chatterjee et al. (2005b)

Cytolysin 
LS

MLNKENQENYYSNKLELVGPSFEELSLEE 
MEAIQGSGDVQAE

Gilmore et al. (1994)

Cinnamycin MTASILQQSVVDADFRAALLENPAAFGASA 
AALPTPVEAQDQASLDFWTKDIAATEAFA

Widdick et al. (2003)

Michiganin MNDILETETPVMVSPRWDMLLDAGEDTSP 
SVQTQIDAEFRRVVSPYM

Holtsmark et al. (2006)
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Not only are small thioether-bridged peptides synthesized by utilization of 
NisBTC, but a more complicated substrate peptide with the sequence ITPGC-
KATVECKITGPCKATVECK can also be successfully modified to a peptide with 
four thioether linkages. Also, introduction of intertwined thioether rings is possible, 
thanks to the stereo- and regiospecificity of NisC (Rink et al. 2007c).

The lacticin 3147 enzymes LtnT and LtnM2 were also successfully used in vivo 
for the introduction of thioether bridges in nonnatural peptide substrates. Before 
translocation of the nonnatural substrate by LtnT, the peptide first has to be pro-
cessed. The LtnA2 leader is intracellularly cleaved off by the same LtnT enzyme. 
Not all designed peptides could in vivo be produced via the Ltn enzymes. It is not 
clear whether the processing or the translocation itself limits the production of 
nonlantibiotic peptides in the case of cells containing LtnT (Kuipers et al. 2008).

Studies of lantibiotic biosynthesis systems for nisin, subtilin, and nukacin ISK1 
revealed that the modification enzymes and transporters are arranged in multimeric 
membrane-associated enzyme complexes (Siegers et al. 1996; Kiesau et al. 1997; 
Nagao et al. 2005). Additionally, a study suggested the presence of a multimeric 
enzyme complex and the importance thereof for optimal production of prenisin 
(van den Berg van Saparoea et al. 2008). Alternatively, the presence of thioether 
rings might impose a structure, which is transported more efficiently by NisT 
(Kuipers et al. 2008) and is capable of autoinduction (Kuipers et al. 1995).

The composing enzymes of the nisin synthethase complex are separately func-
tional in the absence of other lantibiotic enzymes (Kuipers et al. 2004, Kuipers 
et al. 2006). In the absence of other nisin enzymes, NisB-dehydrated peptides were 
exported via the Sec pathway when the nisin leader was preceded by a Sec signal 
sequence. Prenisin with or without preceding Sec or Tat signal was intracellularly 
fully modified by NisB and NisC in the absence of NisT, which precludes the 
necessity of either NisT or Sec action. In view of the above case, it is difficult to 
comprehend the proposed enzyme-complex-dependent NisT-driven-modification 
working model for nisin biosynthesis by Lubelski et al. (2009).

In vitro activity of the biosynthetic enzyme of lacticin 481 (Xie et al. 2004) of 
both haloduracin modification enzymes (McClerren et al. 2006), and of the cyclase 
of nisin (Li et al. 2006) has been attained (Li et al. 2009). Although LctM does not 
display an evident ATP-binding domain, ATP is necessary for functionality of LctM 
(Chatterjee et al. 2005a) and likely – in view of the kinase domain- ATP or GTP is 
necessary for RamC, the modification enzyme of SapB (Kodani et al. 2004). With 
the powerful in vitro thioether modification system, the substrate specificity and 
several mechanistic aspects of the LctM 481 enzyme were explored. Like NisB, 
LctM has high substrate promiscuity. LctM can dehydrate a range of nonlantibiotic 
peptides when attached to the N-terminal leader peptide (Chatterjee et al. 2006; 
Levengood and van der Donk 2008; Patton et al. 2008). Whereas hydrophilic amino 
acids, especially negatively charged amino acids, which flank dehydratable substrate 
residues, disfavor NisB-mediated dehydration, this does not appear to be the case for 
LctM (Chatterjee et al. 2006). Semisynthetic LctA derivates with nonproteinogenic 
amino acids like b-amino acids, D-amino acids, and N-alkyl amino acids, derived by 
expressed protein ligation, are successfully modified by LctM (Zhang and van der 
Donk 2007; Levengood et al. 2009a; Levengood et al. 2009b).
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LctM phosphorylates the serines and threonines of its substrate prior to the 
dehydration of these residues (Chatterjee et al. 2005a; You and van der Donk 2007). 
An LctM T405A mutant was not affected in phosphorylation of serines and thre-
onines of its substrate but was hampered in the phosphate-elimination step and 
thereby lost the ability to dehydrate its substrate. This mutant turned out to be a 
highly efficient kinase for a broad range of peptide substrates with serines, provided 
that the lacticin leader was N-terminally present (You et al. 2009). Recently, dis-
tributive and a tendency to an apparently directional behavior of the LctM enzyme 
were revealed (Lee et al. 2009). LctM has a high, though not strict, propensity for 
an apparent N- to C- directionality. When the leader peptide is present in trans, 
dehydrations were nondirectional. Also, intermediates were found, which were not 
completely dehydrated but already contained rings within their N-terminal region. 
This latter finding suggests that the dehydration and the cyclization activity of 
LctM can be alternating activities. This alternating feature was also observed 
for NisB- and NisC activity (Kuipers et al. 2008; Fig. 9.2b). The latter data were 
supported by data obtained by Lubelski et al., who also suggested that NisB and 
NisC are acting in an N- to C- direction (Lubelski et al. 2009). On the basis of the 
above observations, we propose a model depicted in Fig. 9.2b. When NisB and 
NisC have each a fixed leader peptide-binding site close to the active site, the dis-
tances of the residues that have to be modified in the prepeptide part of nisin to 
the active site are set. A residue that is located close to the leader and to the active 
site will have a much higher chance to be modified compared to a residue further 
away. The result will appear as directionality, but is actually the result of different 
binding constants of the residues determined by sequence and distance.

Lantibiotics and lantibiotic enzymes constitute a fascinatingly rich and diverse 
field of research. Important new mechanistic insights may follow from the crystal-
lization of lantibiotic enzymes other than the cyclase NisC (Li et al. 2006) and the 
decarboxylase MrsD (Blaesse et al. 2003). In vitro reconstitution of LanB activity, 
which has not been attained despite many efforts in several laboratories, will hope-
fully be realized one day and facilitate further mechanistic studies.

Structure

The (methyl)lanthionines give lantibiotics their unique features such as thermosta-
bility and proteolytic resistance, and most (methyl)lanthionines are essential for high 
antimicrobial activity. The primary structure of lantibiotics is highly variable. 
Aligning the sequences of unmodified propeptides led to three structural groups with 
one or more conserved (methyl)lanthionine positions, represented by nisin (Fig. 9.1a), 
mersacidin (Fig. 9.1b), and duramycin (Fig. 9.1c), and a remaining number of appar-
ently unrelated lantibiotics containing among others the morphogenetic sapB 
(Fig. 9.1d) (Rink et al. 2005). On the basis of primary lantibiotic structures also other 
groups have been discerned (Chatterjee et al. 2005b; Twomey et al. 2002).

Structural data have been reported on some lantibiotics that share the (methyl)
lanthionine positions of rings A and B of nisin (Fig. 9.1a). The structure of nisin 
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was elucidated by chemical degradation (Gross and Morell 1971) and further studied 
by nuclear magnetic resonance (NMR) spectroscopy in the presence and absence 
of membrane-mimicking agents (van de Ven et al. 1991; Lian et al. 1992; van 
den Hooven et al. 1993, Van den Hooven et al. 1996). The data indicated an 
overall extended conformation and the presence of two amphipathic screw-shaped 
domains consisting of the N-terminal A-, B-, and C-rings, and the C-terminal 
fused rings D and E that are joined by a flexible hinge region. Similarly, for galli-
dermin, in the presence of the structure-inducing solvent trifluoroethanol, an 
extended amphiphilic screw-shape structure was observed (Freund et al. 1991a, b). 
Also, the solution structure of mutacin 1140 measured in acetonitrile–water (80:20) 
indicated rigidity within the lanthionine rings as well as the flexibility of the C-terminal 
part (Smith et al. 2003).

NMR studies have also been performed on lantibiotics that share the position of 
the third ring of mersacidin (Fig. 9.1b). Mutacin II consists of an N-terminal helix 
formed by residues 1-8 (Novak et al. 1997). CD studies on SA-FF22 in lipid-
mimicking conditions indicated a significant change compared to the structure in 
aqueous environment (Jack et al. 1994). The NMR solution structure of plantaricin 
C indicates a flexible, positively charged N-terminus and a rigid globular C-terminal 
domain (Turner et al. 1999). The mersacidin NMR structure in methanol solution 
is globular and has three domains formed by the thioether ring spanning residues 
(Prasch et al. 1997; Hsu et al. 2003). The X-ray crystallography structure of mer-
sacidin (Schneider et al. 2000) largely resembled the solution structure. The NMR 
solution structure of actagardine was determined in a water–acetonitrile mixture. 
Actagardine has a compact globular structure composed of two domains. The 
N-terminal domain consists of a single lanthionine ring, while the C-terminal 
domain is composed of three intertwined methyllanthionine rings. Residues 7-8, 
9-12, and 17-19 form a small, three-stranded b-sheet with one antiparallel and two 
parallel strands (Zimmermann and Jung 1997). Preliminary NMR solution structure 
data of LtnA1 (Martin et al. 2004) indicate a globular shape resembling mersacidin 
(Hsu et al. 2003).

Detailed structural studies are also known for highly globular lantibiotics 
which share the (methyl)lanthionine and lysinoalanine structure of duramycin 
(Fig. 9.1c). The NMR solution structure of cinnamycin has been determined in 
DMSO and a water–acetic acid mixture (Kessler et al. 1991). The conformation 
of cinnamycin changes in the presence of SDS micelles (Kessler et al. 1992). The 
lipophilic part of cinnamycin changed in the presence of SDS bilayers (Kessler 
et al. 1992) and in the presence of 1-dodecanoyl-sn-glycerophosphoethanolamine 
(C12-LPE) (Wakamatsu et al. 1990) due to interactions with hydrophobic seg-
ments of the lipids.

Taken together, detailed structural information for several lantibiotics has been 
obtained in solution and in the presence of lipophilic membrane-mimicking agents. 
Generally, lantibiotics contain a few rigid domains, and their conformation changes 
when interacting with lipophilic or membrane-mimetic surroundings. Furthermore, 
mechanistically highly important structures describing the interaction of lantibiotics 
with docking molecules have been obtained (Hsu et al. 2004).
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Modes of Action

Pore Formation

Many studies have been performed on the capacity of several lantibiotics to 
permeabilize membranes. These studies involved liposomes, proteoliposomes, cell-
membrane vesicles, black lipid membranes, lipid monolayers, and intact cells and 
provided much information on the biophysical aspects of the interaction of lantibiotics 
with these different membrane models. However, up to three orders of magnitude 
higher concentrations of nisin were needed for permeabilization of model mem-
branes than for pore formation in intact cells. This difference was explained by an 
excellent study by Sahl and coworkers who were the first to demonstrate that nisin 
interacts with lipid II, a precursor in the cell wall synthesis. Nisin activity could be 
eliminated by adding ramoplanin, a compound interacting with lipid II (Brötz et al. 
1998a). Subsequent studies demonstrated that hybrid pores composed of nisin and 
lipid II with a stoichiometry of 1:2 were formed in the target cell membrane. The 
presence of lipid II in liposome strongly reduced the concentration of nisin required 
for pore formation (Breukink et al. 1999). The presence of lipid II in black lipid 
membranes reduced the required threshold membrane potential from about 100 mV 
to 5–10 mV, allowed the induction of pores by not only trans-negative but also 
trans-positive membrane potential, and strongly prolonged the lifetime of the 
formed nisin pores from milliseconds to seconds. Nisin can also form pores in cells 
when there is no transmembrane electrical potential at all (Moll et al. 1997). 
Dissipation of a transmembrane electrical potential by itself is not leading to 
growth inhibition, but dissipation of the transmembrane pH gradient is sufficient for 
complete growth inhibition (Moll et al. 1999). The structure of nisin lipid II com-
plexes reveals a pyrophosphate cage formed by ring A (Hsu et al. 2004). Interaction 
with lipid II, leading to pore formation, has also been suggested for a central part 
of the LtnA1 peptide from the two-component lantibiotic lacticin 3147 (Cotter 
et al. 2006). Interaction of LtnA1 with lipid II was experimentally demonstrated, 
and the role of LtnA2 in pore formation has been elucidated (Wiedemann et al. 
2006b). Pep5 and epilancin K7 do not interact with lipid II or lipid I but still have 
high antibacterial activity. Likely, this high activity might be explained in the future 
by the interaction with (an) other docking molecule(s).

Antibacterial Activity by Interaction With Lipid II 
Without Pore Formation

Resistance against vancomycin is increasingly threatening. Hybrids of vancomycin 
and just an N-terminal nisin fragment, nisin(1-12), which does not span the mem-
brane, could prevent the raise of such resistance. These hybrids simultaneously 
interact with two different sites of lipid II (Arnusch et al. 2008). Epidermin, which 
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shares the pattern of ring A and ring B with nisin, also interacts with lipid II. Likely, 
other lantibiotics, e.g., mutacin I, mutacin III, mutacin 1140, mutacin B-Ny266, 
gallidermin, ericin A, ericin S, subtilin, nisin Z, nisin Q, which all share this ring 
pattern of ring A and B interact with lipid II. Nisin can interact with lipid I and lipid 
II. Nisin and epidermin cause an accumulation of lipid I in in vitro peptidoglycan 
synthesis (Brötz et al. 1998b). Truncated nisin(1-23) variants have significant activity 
but are unable to dissipate the membrane potential (Rink et al. 2007b). Interaction 
of epidermin and mutacin 1140 with lipid II has been demonstrated. Epidermin 
whose activity can be even higher than that of nisin does not form pores, since it is 
too short to span the membrane; in thin model membranes, it does permeabilize the 
membrane. Breukink and coworkers demonstrated that nisin is able to dislocate 
lipid II from the septum, thus inhibiting growth of the cell wall (Hasper et al. 2006). 
It might be worthwhile to investigate whether this mechanism might be responsible 
for the activity of truncated nisin(1-23) and short lantibiotics that share the ring 
pattern of nisin’s ring A and ring B. Also, other mechanisms have been described. 
Plantaricin C forms complexes with lipid I and lipid II and inhibits lipid II synthesis 
and the addition of the first glycine of the pentapeptide chain of lipid II (Wiedemann 
et al. 2006a, b). Mersacidin and actagardine, whose structures are entirely different 
from nisin, also bind to lipid II but do not form pores (Brötz et al. 1995; 1997; 
1998b). Instead, they exert in vivo high antibacterial activity by blocking the trans-
glycosylation step in the peptidoglycan synthesis.

Inhibition of the Outgrowth of Spores

Some lantibiotics such as nisin and subtilin inhibit the germination of spores of the 
species from the genera Bacillus and Clostridium (Thomas et al. 2002). It was sug-
gested that the mechanism of inhibition resulted from the reaction of thiol groups 
in proteins of the spores with dehydroalanine in position 5 of subtilin and nisin 
(Morris et al. 1984). Indeed, replacement of the dehydroalanine in position 5 for an 
alanine caused loss of the capacity to inhibit the outgrowth of spores. However, 
nisin ringA mutants with other residues in position 5 even had enhanced activity in 
inhibiting the outgrowth of spores (Rink et al. 2007b).

Other Activities

Cinnamycin and its natural variant duramycin effectively inhibit phospholipase A2 
by binding to its phosphatidylethanolamine substrate (Märki et al. 1991). The stoi-
chiometry of the binding is 1:1, as measured by NMR, and binding appears to be 
specific for (lyso)phosphatidylethanolamine since no binding was observed with 
other phospholipids (Hosoda et al. 1996; Wakamatsu et al. 1990). Since in eukaryote 
cells amino phospholipids are usually localized in the inner layer of the plasma 
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membrane, either the lantibiotic has to translocate across the bilayer or it has to 
induce lipid flip-flop, or both. Lantibiotic-induced lipid flip-flop has been reported 
for nisin (Moll et al. 1998), but not yet for cinnamycin. Nisin and Pep5 induce 
autolysis of Staphylococcal strains. It is thought that these cationic peptides bind to 
lipoteichoic and teichoic acids and thereby displace and activate N-acetyl-alanine 
aminidase and N-acetylglucosaminidase, which normally interact with teichoic 
acids (Bierbaum and Sahl 1985). Ancovenin modulates the activity of angiotensin 
I-converting enzyme (Kido et al 1983). Antiviral activity and activity against neuro-
pathic pain have been reported for some class III lantibiotics (Meindl et al 2010).

Development of Resistance of Gram-Positive Bacteria 
Against Lantibiotics

Despite its worldwide application, little resistance has been developed against 
nisin. Resistance against lantibiotics can be due to among others changes of the cell 
wall and or the cell membrane and has been reviewed in detail (Chatterjee et al. 
2005b). Gravesen and coworkers have proposed that nisin resistance in a Listeria 
monocytogenes strain was due to shielding of lipid II from nisin through its binding 
to a penicillin-binding protein (Gravesen et al. 2001; Gravesen et al. 2004). Nisin 
resistance in M. flavus appeared to be independent of lipid II levels (Kramer et al. 
2004). Studies on a resistant Lactococcus lactis strain, which was able to grow at a 
75-fold higher nisin concentration than the parent strain, demonstrated that less 
nisin was able to bind to lipid II in the membranes of the resistant strain. The cell 
wall of the resistant strain displayed significantly increased thickness at the septum. 
Comparison of modifications in lipoteichoic acid revealed an increase in D-alanyl 
esters and galactose as substituents in the resistant strain, resulting in a less nega-
tively charged cell wall. Shielding lipid II and thereby decreasing abduction of lipid 
II and pore formation appeared to be a major defense mechanism of L. lactis against 
nisin (Kramer et al. 2008).

Lantibiotic Activities Exploited for Clinical Developments

Animal studies demonstrated the in vivo efficacy of several lantibiotics. Human 
cells do not possess the target of several lantibiotics, i.e., lipid II. Duramycin (also 
called: Moli1901) is being developed for the treatment of reduced mucociliary 
clearance in cystic fibrosis. The molecular target of duramycin is the phospholipid 
phosphatidylethanolamine present in the cellular membrane. Duramycin binds to 
the polar head of phosphatidylethanolamine and induces changes in intracellular 
calcium levels, which in turn activate calcium-dependent chloride channels. These 
alternative calcium-activated chloride channels produce an output of chloride and 
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water. This may compensate for reduced or absent cystic-fibrosis-transmembrane-
conductance-regulator/Cl− channel function in cystic fibrosis patients. A phase II 
study in cystic fibrosis patients showed that the inhalation of duramycin over 5 days 
resulted in an improvement in pulmonary function parameters (Grasemann et al. 
2007). Phase II clinical studies are also being carried out on duramycin for treating 
dry eyes (Grasemann et al. 2007). By opening the abovementioned alternate salt 
channel, duramycin promotes the hydration of epithelial tissue. Patients with dry 
eye disease may thereby experience increased hydration of the eyes. A product that 
contains Streptococus salivarius that produces salivaricin is marketed for oral care 
to counteract infections (Boakes and Wadman 2008).

Perspectives

Existing and novel effective lantibiotics are of great interest because of the increase 
in resistance to multiple antibiotics. The identification of docking molecules and 
the characterization of the detailed molecular interaction with docking molecules 
will enable contributions to the development of improved lantibiotics. Lantibiotics 
may also have therapeutic activities that are entirely different from antibiotic 
 activities such as the anti-inflammatory inhibition of pospholipase A2 by duramycin 
via binding of the phospholipase substrate, phosphatidylethanolamine. Mechanistic 
studies on the lantibiotic modification enzymes will allow for their directed engi-
neering and subsequent aimed for application. Thioether bridges may also stabilize 
a variety of peptides, which are drugs for diverse indications (Kluskens et al. 2005; 
Kluskens et al. 2009; Kuipers et al. 2009; Levengood and van der Donk 2008; Rink 
et al. 2010). By stabilization, these therapeutic peptides are less sensitive to prote-
olytic breakdown and accordingly need less frequent administration and/or in a 
lower dose. In addition, stabilization may allow oral and pulmonary delivery of 
short peptides (de Vries et al. 2010). These delivery ways are more patient-friendly 
than injection. Furthermore, the structural constraint resulting from the introduction 
of thioether bridges may enhance the receptor specificity and/or the efficacy of the 
receptor interaction, thus enhancing the therapeutic potential.
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