
Chapter 5

Matrices with Real or Complex Entries

A matrix M ∈Mn×m(K) is an element of a vector space of finite dimension n2. When
K = R or K = C, this space has a natural topology, that of Knm. Therefore we may
manipulate such notions as open and closed sets, and continuous and differentiable
functions.

5.1 Special Matrices

5.1.1 Hermitian Adjoint

When considering matrices with complex entries, a useful operation is complex
conjugation z �→ z̄. One denotes by M̄ the matrix obtained from M by conjugating
the entries. We then define the Hermitian adjoint matrix of M by

M∗ := (M̄)T = MT .

One has m∗
i j = m ji and detM∗ = detM. The map M �→ M∗ is an antiisomorphism,

which means that it is antilinear (meaning that (λM)∗ = λ̄M∗) and bijective. In
addition, we have the product formula

(MN)∗ = N∗M∗.

If M is nonsingular, this implies (M∗)−1 = (M−1)∗; this matrix is sometimes de-
noted M−∗.

The interpretation of the Hermitian adjoint is that if we endow Cn with the canon-
ical scalar product

〈x,y〉= x̄1y1 + · · ·+ x̄nyn,

and with the canonical basis, then M∗ is the matrix of the adjoint (uM)∗; that is,

〈Mx,y〉= 〈x,M∗y〉, ∀x,y ∈ Cn.
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5.1.2 Normal Matrices

Definition 5.1 A matrix M ∈ Mn(C) is normal if M and M∗ commute: M∗M =
MM∗.

If M has real entries, this amounts to having MMT = MT M.

Because a square matrix M always commutes with M, −M, or M−1 (assuming
that the latter exists), we can define sub-classes of normal matrices. The following
statement serves also as a definition of such classes.

Proposition 5.1 The following matrices M ∈ Mn(C) are normal.

• Hermitian matrices, meaning that M∗ = M
• Skew-Hermitian matrices, meaning that M∗ =−M
• Unitary matrices, meaning that M∗ = M−1

The Hermitian, skew-Hermitian, and unitary matrices are thus normal. One verifies
easily that H is Hermitian (respectively, skew-Hermitian) if and only if x∗Hx is real
(respectively, pure imaginary) for every x ∈ Cn.

For real-valued matrices, we have instead

Definition 5.2 A square matrix M ∈ Mn(R) is

• Symmetric if MT = M
• Skew-symmetric if MT =−M
• Orthogonal if MT = M−1

We denote by Hn the set of Hermitian matrices in Mn(C). It is an R-linear sub-
space of Mn(C), but not a C-linear subspace, becausee iM is skew-Hermitian when
M is Hermitian. If M ∈Mn×m(C), the matrices M+M∗, i(M∗−M), MM∗, and M∗M
are Hermitian. One sometimes calls 1

2 (M + M∗) the real part of M and denotes it
ℜM. Likewise, 1

2i (M−M∗) is the imaginary part of M and is denoted ℑM. Both are
Hermitian and we have

M = ℜM + iℑM.

This terminology anticipates Chapter 10.
A matrix M is unitary if uM is an isometry, that is 〈Mx,My〉 ≡ 〈x,y〉. This is

equivalent to saying that ‖Mx‖ ≡ ‖x‖. The set of unitary matrices in Mn(C) forms a
multiplicative group, denoted by Un. Unitary matrices satisfy |detM| = 1, because
detM∗M = |detM|2 for every matrix M and M∗M = In when M is unitary. The set of
unitary matrices whose determinant equals 1, denoted by SUn is obviously a normal
subgroup of Un.

A matrix with real entries is orthogonal (respectively, symmetric, skew-sym-
metric) if and only if it is unitary, Hermitian, or skew-Hermitian.

5.1.3 Matrices and Sesquilinear Forms

Given a matrix M ∈ Mn(C), the map



5.1 Special Matrices 85

(x,y) �→ 〈x,y〉M := ∑
j,k

m jkx jyk = x∗My,

defined on Cn ×Cn, is a sesquilinear form. When M = In, this is nothing but the
scalar product. It is Hermitian if and only if M is Hermitian. It follows that M �→
〈·, ·〉M is an isomorphism between Hn and the set of Hermitian forms over Cn. We
say that a Hermitian matrix H is degenerate (respectively, nondegenerate) if the
form 〈·, ·〉H is so. Nondegeneracy amounts to saying that x �→ Hx is one-to-one. In
other words, we have the following.

Proposition 5.2 A Hermitian matrix H is degenerate (respectively, nondegenerate)
if and only if detH = 0 (respectively, �= 0).

We say that the Hermitian matrix H is positive-definite if 〈·, ·〉H is so. Then
√〈·, ·〉H

is a norm over Cn. If −H is positive-definite, we say that H is negative-definite.
We denote by HPDn the set of positive-definite Hermitian matrices. If H and K are
positive-definite, and if λ is a positive real number, then λH +K is positive-definite.
Therefore HPDn is a convex cone in Hn. This cone turns out to be open. The Hermi-
tian matrices H for which 〈·, ·〉H is a positive-semidefinite Hermitian form over Cn

are called positive-semidefinite Hermitian matrices. They also form a convex cone
H+

n . If H ∈ H+
n and ε is a positive real number, then H + εIn is positive-definite.

Because H + εIn tends to H as ε → 0+, we see that the closure of HPDn is H+
n .

One defines similarly, among the real symmetric matrices, the positive-definite,
respectively, positive-semidefinite, ones. Again, the positive-definite real symmetric
matrices form an open cone in Symn(R), denoted by SPDn, whose closure Sym+

n is
made of positive-semidefinite ones.

The cone HPDn defines an order over Hn: we write K > H when K−H ∈HPDn,
and more generally K ≥ H if K−H is positive-semidefinite. The fact that

(K ≥ H ≥ K) =⇒ (K = H)

follows from the next lemma.

Lemma 6. Let H be Hermitian. If x∗Hx = 0 for every x ∈ Cn, then H = 0n.

Proof. Using (1.1), we have y∗Hx = 0 for every x,y ∈ Cn. Therefore Hx = 0 for
every x, which means H = 0n. ��

We likewise define an ordering on real-valued symmetric matrices, referring to
the ordering on real-valued quadratic forms.1

If U is unitary, the matrix U∗MU is similar to M, and we say that they are uni-
tary similar. If M is normal, Hermitian, skew-Hermitian, or unitary, and if U is
unitary, then U∗MU is still normal, Hermitian, skew-Hermitian, or unitary. When

1 We warn the reader that another order, a completely different one, although still denoted by the
same symbol ≥ , is defined in Chapter 8. The latter concerns general n×m real-valued matri-
ces, whereas the present one deals only with symmetric matrices. In practice, the context is never
ambiguous.
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O ∈ On(R) and M ∈ Mn(R), we again say that OT MO and M are orthogonally
similar.

We notice that Lemma 6 implies the following stronger result.

Proposition 5.3 Let M ∈ Mn(C) be given. If x∗Mx = 0 for every x ∈ Cn, then M =
0n.

Proof. We decompose M = H + iK into its real and imaginary parts. Recall that
H,K are Hermitian. Then

x∗Mx = x∗Hx+ ix∗Kx

is the decomposition of a complex number into real and imaginary parts. From the
assumption, we therefore have x∗Hx = 0 and x∗Kx = 0 for every x. Then Lemma 6
tells us that H = K = 0n. ��

5.2 Eigenvalues of Real- and Complex-Valued Matrices

Let us recall that C is algebraically closed. Therefore the characteristic polynomial
of a complex-valued square matrix has roots if n ≥ 1. Therefore every endomor-
phism of a nontrivial C-vector space possesses eigenvalues. A real-valued square
matrix may have no eigenvalues in R, but it has at least one in C. If n is odd,
M ∈ Mn(R) has at least one real eigenvalue, because PM is real of odd degree.

5.2.1 Unitary Trigonalization

If K = C, one sharpens Theorem 3.5.

Theorem 5.1 (Schur) If M ∈ Mn(C), there exists a unitary matrix U such that
U∗MU is upper-triangular.

One also says that every matrix with complex entries is unitarily trigonalizable.

Proof. We proceed by induction over the size n of the matrices. The statement is
trivial if n = 1. Let us assume that it is true in Mn−1(C), with n≥ 2. Let M ∈Mn(C)
be a matrix. Because C is algebraically closed, M has at least one eigenvalue λ . Let
X be an eigenvector associated with λ . By dividing X by ‖X‖, we can assume that
X is a unit vector. One can then find a unitary basis {X1,X2, . . . ,Xn} of Cn whose
first element is X . Let us consider the matrix V := (X1 = X |X2| · · · |Xn), which is
unitary, and let us form the matrix M′ := V ∗MV . Because

V M′e1 = MV e1 = MX = λX = λV e1,

one obtains M′e1 = λe1. In other words, M′ has the block-triangular form:
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M′ =
(

λ · · ·
0n−1 N

)
,

where N ∈ Mn−1(C). Applying the induction hypothesis, there exists W ∈ Un−1
such that W ∗NW is upper-triangular. Let us denote by Ŵ the (block-diagonal) matrix
diag(1,W ) ∈ Un. Then Ŵ ∗M′Ŵ is upper-triangular. Hence, U = VŴ satisfies the
conditions of the theorem. ��

A useful consequence of Theorem 5.1 is the following.

Corollary 5.1 The set of diagonalizable matrices is a dense subset in Mn(C).

Remark

The set of real matrices diagonalizable within Mn(R) is not dense in Mn(R). For
instance, the matrix (

0 1
−1 0

)
,

whose eigenvalues ±i are nonreal, is interior to the set of nondiagonalizable matri-
ces; this is a consequence of Theorem 5.2 of continuity of the spectrum. The set of
real matrices diagonalizable within Mn(C) is dense in Mn(R), but the proof is more
involved.

Proof. The triangular matrices with pairwise distinct diagonal entries are diagonal-
izable, because of Proposition 3.17, and form a dense subset of the triangular ma-
trices. Conjugation preserves diagonalizability and is a continuous operation. Thus
the closure of the diagonalizable matrices contains the matrices conjugated to a tri-
angular matrix, that is, all of Mn(C). ��

5.2.2 The Spectrum of Special Matrices

Proposition 5.4 The eigenvalues of Hermitian matrices, as well as those of real
symmetric matrices, are real.

Proof. Let M ∈ Mn(C) be an Hermitian matrix and let λ be one of its eigenvalues.
Let us choose an eigenvector X : MX = λX . Taking the Hermitian adjoint, we obtain
X∗M = λ̄X∗. Hence,

λX∗X = X∗(MX) = (X∗M)X = λ̄X∗X ,

or
(λ − λ̄ )X∗X = 0.

However, X∗X = ∑ j |x j|2 > 0. Therefore, we are left with λ̄ −λ = 0. Hence λ is
real. ��
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We leave it to the reader to show, as an exercise, that the eigenvalues of skew-
Hermitian matrices are purely imaginary.

Proposition 5.5 The eigenvalues of the unitary matrices, as well as those of real
orthogonal matrices, are complex numbers of modulus one.

Proof. As before, if X is an eigenvector associated with λ , one has

|λ |2‖X‖2 = (λX)∗(λX) = (MX)∗MX = X∗M∗MX = X∗X = ‖X‖2,

and therefore |λ |2 = 1. ��

5.2.3 Continuity of Eigenvalues

We study the continuity of the spectrum as a function of the matrix. The spectrum is
an n-uplet (λ1, . . . ,λn) of complex numbers. Mind that each eigenvalue is repeated
according to its algebraic multiplicity. At first glance, Sp(M) seems to be a well-
defined element of Cn, but this is incorrect because there is no way to define a natural
ordering between the eigenvalues; thus another n-uplet (λσ(1), . . . ,λσ(n)) describes
the same spectrum for every permutation σ . For this reason, the spectrum of M must
be viewed as an element of the quotient space An := Cn/R, where aRb is true if
and only if there exists a permutation σ such that b j = aσ( j) for all j. There is a
natural topology on An, given by the distance

d(ȧ, ḃ) := min
σ∈Sn

max
1≤ j≤n

|b j −aσ( j)|.

The metric space (An,d) is complete.
The way to study the continuity of

M �→ Sp(M)
Mn(C) → An

is to split this map into

M �→ PM �→ Sp(M) = root(PM),
Mn(C) → Unitn → An,

where Unitn is the affine space of monic polynomials of degree n, and the map root
associates with every element of Unitn its set of roots, counted with multiplicities.
The first arrow is continuous, because every coefficient of PM is a combination of
minors, thus is polynomial in the entries of M. There remains to study the continuity
of root. For the sake of completeness, we prove the following.

Lemma 7. The map root : Unitn → An is continuous.
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Proof. Let P ∈ Unitn be given. Let a1, . . . ,ar be the distinct roots of P, m j their
multiplicities, and ρ the minimum distance between them. We denote by D j the
open disk with center a j and radius ρ/2, and Cj its boundary. The union of the Cjs
is a compact set on which P does not vanish. The number

η := inf

{
|P(z)| ; z ∈

⋃
j

Cj

}

is thus strictly positive.
The affine space Unitn is equipped with the distance d(Q,R) := ‖Q−R‖ deriving

from one of the (all equivalent) norms of Cn−1[X ]. For instance, we can take

‖q‖ := sup

{
|q(z)| ; z ∈

⋃
j

Cj

}
, q ∈ Cn−1[X ].

If d(P,Q) < η , then we have

|P(z)−Q(z)|< |P(z)|, ∀z ∈Cj, ∀ j = 1, . . . ,r.

Rouché’s theorem asserts that if two holomorphic functions f and g on a disk D,
continuous over D, satisfy | f (z)− g(z)| < | f (z)| on the boundary of D, then they
have the same number of zeroes in D, counting with multiplicities. In our case, we
deduce that Q has exactly m j roots in D j. This sums up to m1 + · · ·+ mr = n roots
in the (disjoint) union of the D js. Because its degree is n, Q has no other roots.
Therefore d(root(P), root(Q)) < ρ .

This proves the continuity of Q �→ root(Q) at P. ��
As a corollary, we have the following fundamental theorem.

Theorem 5.2 The map Sp : Mn(C)→ An is continuous.

One often invokes this theorem by saying that the eigenvalues of a matrix are
continuous functions of its entries.

5.2.4 Regularity of Simple Eigenvalues

The continuity result in Theorem 5.2 cannot be improved without further assump-
tions. For instance, the eigenvalues of(

0 1
s 0

)

are ±√s, and thus are not differentiable functions, at least at the origin. It turns
out that the obstacle to the regularity of eigenvalues is the crossing of two or more
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eigenvalues. But simple eigenvalues are analytic (thus C ∞) functions of the entries
of the matrix.

Theorem 5.3 Let λ0 be an algebraically simple eigenvalue of a matrix M0 ∈
Mn(C). Then there exists an open neighbourhood M of M0 in Mn(C), and two
analytic functions

M �→Λ(M), M �→ X(M)

over M , such that

• Λ(M) is an eigenvalue of M.
• X(M) is an eigenvector, associated with Λ(M).
• Λ(M0) = λ0.

Remarks

• From Theorem 5.2, if M is close to M0, there is exactly one eigenvalue of M
close to λ0. Theorem 5.3 is a statement about this eigenvalue.

• The theorem is valid as well in Mn(R), with the same proof.

Proof. Let X0 be an eigenvector of M0 associated with λ0. We know that λ0 is also
a simple eigenvalue of MT

0 . Thanks to Proposition 3.15, an eigenvector Y0 of MT
0

(associated with λ0) satisfies Y T
0 X0 �= 0. We normalize Y0 in such a way that Y T

0 X0 =
1.

Let us define a polynomial function F over Mn(C)×C×Cn, with values in
C×Cn, by

F(M,λ ,x) := (Y T
0 x−1,Mx−λx).

We have F(M0,λ0,X0) = (0,0).
The differential of F with respect to (λ ,x), at the base point (M0,λ0,X0), is the

linear map

(μ,y) δ�→ (Y T
0 y,(M0 −λ0)y−μX0).

Let us show that δ is one-to-one. Let (μ,y) be such that δ (μ,y) = (0,0). Then
μ = μY T

0 X0 = Y T
0 (M0 −λ0)y = 0T y = 0. After that, there remains (M0 −λ0)y = 0.

Inasmuch as λ0 is simple, this means that y is colinear to X0; now the fact that
Y T

0 y = 0 yields y = 0.
Because δ is a one-to-one endomorphism of C×Cn, it is an isomorphism. We

may then apply the implicit function theorem to F : there exist neighborhoods M ,
V , and W and analytic functions (Λ ,X) : M → V such that(

(M,λ ,x) ∈W
F(M,λ ,x) = (0,0)

)
⇐⇒

(
M ∈M

(λ ,x) = (Λ(M),X(M))

)
.

Notice that F = 0 implies that (λ ,x) is an eigenpair of M. Therefore the theorem
is proved. ��
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5.3 Spectral Decomposition of Normal Matrices

We recall that a matrix M is normal if M∗ commutes with M. For real matrices,
this amounts to saying that MT commutes with M. Because it is equivalent for an
Hermitian matrix H to be zero or to satisfy x∗Hx = 0 for every vector x, we see that
M is normal if and only if ‖Mx‖2 = ‖M∗x‖2 for every vector, where ‖x‖2 denotes
the standard Hermitian (Euclidean) norm (take H = MM∗ −M∗M).

Theorem 5.4 In Mn(C), a matrix is normal if and only if it is unitarily diagonaliz-
able:

(M∗M = MM∗)⇐⇒ (∃U ∈ Un; M = U−1 diag(d1, . . . ,dn)U).

This theorem contains the following properties.

Corollary 5.2 Unitary, Hermitian, and skew-Hermitian matrices are unitarily di-
agonalizable.

Observe that among normal matrices one distinguishes each of the above families
by the nature of their eigenvalues. Those of unitary matrices have modulus one, and
those of Hermitian matrices are real. Finally, those of skew-Hermitian matrices are
purely imaginary.

Proof. A diagonal matrix is obviously normal. If U is unitary, a matrix M is normal
if and only if U∗MU is normal: we deduce that unitarily diagonalizable matrices are
normal.

We now prove the converse. We proceed by induction on the size n of the matrix
M. If n = 0, there is nothing to prove. Otherwise, if n ≥ 1, there exists an eigenpair
(λ ,x):

Mx = λx, ‖x‖2 = 1.

Because M is normal, M−λ In is, too. From the above, we see that ‖(M∗ − λ̄ )x‖2 =
‖(M−λ )x‖2 = 0, and hence M∗x = λ̄x. Let V be a unitary matrix such that V e1 = x.
Then the matrix M1 := V ∗MV is normal and satisfies M1e1 = λe1. Hence it satis-
fies M∗

1 e1 = λ̄e1. This amounts to saying that M1 is block-diagonal, of the form
M1 = diag(λ ,M′). Obviously, M′ inherits the normality of M1. From the induction
hypothesis, M′, and therefore M1 and M, are unitarily diagonalizable. ��

One observes that the same matrix U diagonalizes M∗, because M = U−1DU
implies M∗ = U∗D∗U−1∗ = U−1D∗U , because U is unitary.

Let us consider the case of a positive-semidefinite Hermitian matrix H. If HX =
λX , then 0≤ X∗HX = λ‖X‖2. The eigenvalues are thus nonnegative. Let λ1, . . . ,λp
be the nonzero eigenvalues of H. Then H is unitarily similar to

D := diag(λ1, . . . ,λp,0, . . . ,0).

From this, we conclude that rkH = p. Let U ∈ Un be such that H = UDU∗. Defin-
ing the vectors Xα =

√
λαUα , where the Uα are the columns of U , we obtain the

following statement.
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Proposition 5.6 Let H ∈ Mn(C) be a positive-semidefinite Hermitian matrix. Let p
be its rank. Then H has p real, positive eigenvalues, and the eigenvalue λ = 0 has
multiplicity n− p. There exist p column vectors Xα , pairwise orthogonal, such that

H = X1X∗
1 + · · ·+XpX∗

p .

Finally, H is positive-definite if and only if p = n (in which case, λ = 0 is not an
eigenvalue).

5.4 Normal and Symmetric Real-Valued Matrices

The situation is a bit more involved if M, a normal matrix, has real entries. Of
course, one can consider M as a matrix with complex entries and diagonalize it on
a unitary basis, but if M has a nonreal eigenvalue, we quit the field of real numbers
when doing so. We prefer to allow orthonormal bases consisting of only real vectors.
Some of the eigenvalues might be nonreal, thus one cannot in general diagonalize
M. The statement is thus the following.

Theorem 5.5 Let M ∈ Mn(R) be a normal matrix. There exists an orthogonal ma-
trix O such that OMO−1 is block-diagonal, the diagonal blocks being 1× 1 (those
corresponding to the real eigenvalues of M) or 2× 2, the latter being matrices of
direct similitude:2 (

a b
−b a

)
(b �= 0).

Likewise, OMT O−1 is block-diagonal, the diagonal blocks being eigenvalues or ma-
trices of direct similitude.

Proof. One again proceeds by induction on n. When n ≥ 1, the proof is the same as
in the previous section whenever M has at least one real eigenvalue.

If this is not the case, then n is even. Let us first consider the case n = 2. Then

M =
(

a b
c d

)
.

This matrix is normal, therefore we have b2 = c2 and (a−d)(b− c) = 0. However,
b �= c, because otherwise M would be symmetric, and hence would have two real
eigenvalues. Hence b =−c and a = d.

Now let us consider the general case, with n ≥ 4. We know that M has an eigen-
pair (λ ,z), where λ is not real. If the real and imaginary parts of z were colinear,
M would have a real eigenvector, hence a real eigenvalue, a contradiction. In other
words, the real and imaginary parts of z span a plane P in Rn. As before, Mz = λ z im-
plies MT z = λ̄ z. Hence we have MP⊂ P and MT P⊂ P. Now let V be an orthogonal

2 A similitude is an endomorphism of a Euclidean space that preserves angles. It splits as aR, where
R is orthogonal and a is a scalar. It is direct if its determinant is positive.
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matrix that maps the plane P0 := Re1 ⊕Re2 onto P. Then the matrix M1 := V T MV
is normal and satisfies

M1P0 ⊂ P0, MT
1 P0 ⊂ P0.

This means that M1 is block-diagonal. Of course, each diagonal block (of sizes 2×2
and (n−2)×(n−2)) inherits the normality of M1. Applying the induction hypothe-
sis, we know that these blocks are unitarily similar to a block-diagonal matrix whose
diagonal blocks are direct similitudes. Hence M1 and M are unitarily similar to such
a matrix. ��
Corollary 5.3 Real symmetric matrices are diagonalizable over R, through orthog-
onal conjugation. In other words, given M ∈ Symn(R), there exists an O ∈ On(R)
such that OMO−1 is diagonal.

In fact, because the eigenvalues of M are real, OMO−1 has only 1× 1 blocks. We
say that real symmetric matrices are orthogonally diagonalizable.

The interpretation of this statement in terms of quadratic forms is the following.
For every quadratic form Q on Rn, there exists an orthonormal basis {e1, . . . ,en} in
which this form can be written with at most n squares:3

Q(x) =
n

∑
i=1

aix2
i .

Replacing the basis vector e j by |a j|1/2e j, one sees that there also exists an orthog-
onal basis in which the quadratic form can be written

Q(x) =
r

∑
i=1

x2
i −

s

∑
j=1

x2
j+r,

with r + s ≤ n. This quadratic form is nondegenerate if and only if r + s = n. The
pair (r,s) is unique and called the signature or the Sylvester index of the quadratic
form. In such a basis, the matrix associated with Q is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . 0

1
−1

. . .
−1

0

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3 In solid mechanics, when Q is the matrix of inertia, the vectors of this basis are along the inertia
axes, and the a j , which then are positive, are the momenta of inertia.
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5.5 Functional Calculus

Given a square matrix A ∈ Mn(C) and a function f : U → C, we should like to
define a matrix f (A), in such a way that the maps A �→ f (A) and f �→ f (A) have
nice properties.

The case of polynomials is easy. If

P(X) = a0Xm +a1Xm−1 + · · ·+am−1X +am

has complex coefficients, then we define

P(A) = a0Am +a1Am−1 + · · ·+am−1A+amIn.

Remark that this definition does not need the scalar field to be that of complex
numbers.

An important consequence of the Cayley–Hamilton theorem is that if two poly-
nomials P and Q are such that the characteristic polynomial PA divides Q − P,
then Q(A) = P(A). This shows that what really matters is the behavior of P and
of a few derivatives at the eigenvalues of A. By few derivatives, we mean that if
� is the algebraic multiplicity of an eigenvalue λ , then one only needs to know
P(λ ), . . . ,P(�−1)(λ ). Actually, � can be chosen as the multiplicity of the root λ in
the minimal polynomial of A. For instance, if N ∈ Mn(k) is a nilpotent matrix, then
the Taylor formula yields

P(N) = P(0)In +P′(0)N + · · ·+ 1
(n−1)!

P(n−1)(0)Nn−1. (5.1)

This suggests the following treatment when f is a holomorphic function. Natu-
rally, we ask that its domain U contain SpA. We interpolate f at order n at every
point of SpA, by a polynomial P:

P(r)(λ ) = f (r)(λ ), ∀λ ∈ SpA, ∀0 ≤ r ≤ n−1.

We then define
f (A) := P(A). (5.2)

In order that this definition be meaningful, we verify that it does not depend upon
the choice of the interpolation polynomial. This turns out to be true, because if Q is
another interpolation polynomial as above, then Q−P is divisible by

∏
λ∈SpA

(X −λ )n,

thus by PA, and therefore Q(A) = P(A).

Proposition 5.7 The functional calculus with holomorphic functions enjoys the fol-
lowing properties. Below, the domains of functions are such that the expressions
make sense.
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• If f and g match at order n over SpA, then f (A) = g(A).
• Conjugation: If M is nonsingular, then f (M−1AM) = M−1 f (A)M.
• Linearity: (a f +g)(A) = a f (A)+g(A).
• Algebra homomorphism: ( f g)(A) = f (A)g(A).
• Spectral mapping: Sp f (A) = f (SpA).
• Composition: ( f ◦g)(A) = f (g(A)).

Proof. The first property follows directly from the definition, and the linearity is
obvious. The conjugation formula is already true for polynomials.

The product formula is true for polynomials. Now, if f and g are interpolated by P
and Q, respectively, at order n at every point of SpA, then f g is likewise interpolated
by PQ. This proves the product formula for holomorphic functions.

We now prove the spectral mapping formula. For this, let (λ ,x) be an eigenpair:
Ax = λx. Let P be an interpolation polynomial of f as above. Then

f (A)x = P(A)x = a0Amx+ · · ·+amx = (a0λ m + · · ·+am)x = P(λ )x = f (λ )x.

Therefore f (λ ) ∈ Sp f (A), which tells us f (SpA)⊂ Sp f (A).
Conversely, let R be a polynomial vanishing at order n over f (SpA). We have

R( f (A)) = (R ◦ f )(A) = 0n, because R ◦ f is flat at order n over SpA. Replacing A
by f (A) and f by R above, we have R(Sp f (A)) ⊂ Sp0n = {0}. We have proved
that if R vanishes at order n over f (SpA), then it vanishes at Sp f (A). Therefore
Sp f (A)⊂ f (SpA).

There remains to treat composition. Because of the spectral mapping formula,
our assumption is that the domain of f contains g(SpA). If f and g are interpolated
at order n by P and Q at g(SpA) and SpA respectively, then f ◦g is interpolated at
SpA at order n by P◦Q. The formula is true for polynomials, thus it is true for f ◦g
too. ��

Remark

As long as we are interested in polynomial functions only, Proposition 5.7 is valid
in Mn(k) for an arbitrary field.

5.5.1 The Dunford–Taylor Formula

An alternate definition can be given in terms of a Cauchy integral: the so-called
Dunford–Taylor integral.

Proposition 5.8 Let f be holomorphic over a domain U containing the spectrum
of A ∈ Mn(C). Let Γ be a positively oriented contour around SpA, contained in U .

Then we have
f (A) =

1
2iπ

∫
Γ

f (z)(zIn −A)−1dz.
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Proof. Because of the conjugation property, and thanks to Proposition 3.20, it is
enough to verify the formula when A = λ In +N where N is nilpotent. By translation,
it suffices to treat the nilpotent case.

So we assume that A is nilpotent. Therefore Γ is a disjoint union of Jordan curves.
It is oriented in the trigonometric sense with index one around the origin. Because
of nilpotence, we have

(zIn −A)−1 = z−1In + z−2A+ · · ·+ z−nAn−1.

Thanks to the Cauchy formula

1
2iπ

∫
Γ

f (z)z−m−1 dz =
1

m!
f (m)(0),

we obtain

1
2iπ

∫
Γ

f (z)(zIn −A)−1dz = f (0)In + f ′(0)A+ · · ·+ 1
(n−1)!

f (n−1)(0)A(n−1).

Now let P be a polynomial matching f at order n at the origin. We have

1
2iπ

∫
Γ

f (z)(zIn −A)−1dz = P(0)In +P′(0)A+ · · ·+ 1
(n−1)!

P(n−1)(0)A(n−1)

= P(A) = f (A),

where we have used Formula (5.1), and the definition of f (A). ��
Definition 5.3 The factor (zIn −A)−1 appearing in the Dunford–Taylor formula is
the resolvent of A at z. It is denoted R(z;A). The domain of z �→ R(z;A), which is the
complement of SpA, is the resolvent set.

5.5.2 Invariant Subspaces

An important situation occurs when f is an indicator function; that is, f (z) takes its
values in {0,1}. Because f is assumed to be holomorphic, hence continuous, the
closures of the subdomains

U0 := {z | f (z) = 0}, U1 := {z | f (z) = 1}

are disjoint sets. Because of the multiplicative property, we see that f (A)2 =
( f 2)(A) = f (A). This tells us that f (A) is a projector. If E and F denote its ker-
nel and range, we have Cn = E ⊕F .

Again, the multiplicative property tells us that f (A) commutes with A. This im-
plies that both E and F are invariant subspaces for A:

A(E)⊂ E, A(F)⊂ F.



5.5 Functional Calculus 97

Using Proposition 3.20 and applying Proposition 5.8 blockwise, we see that pass-
ing from A to f (A) amounts to keeping the diagonal blocks λ jIn j +Nj of the Dunford
decomposition for which f (λ j) = 1, while dropping those for which f (λ j) = 0.

In particular, when U1 contains precisely one eigenvalue λ (which may have
some multiplicity), f (A) is called an eigenprojector, because it is the projection onto
the characteristic subspace E(λ ) := ker(A−λ In)n, parallel to the other characteristic
subspaces.

5.5.2.1 Stable and Unstable Subspaces

The following notions are useful in the linear theory of differential equations, espe-
cially when studying asymptotic behavior as time goes to infinity.

Definition 5.4 Let A ∈ Mn(C) be given. Its stable invariant subspace is the sum of
the subspaces E(λ ) over the eigenvalues of negative real part. The unstable sub-
space is the sum over the eigenvalues of positive real part. At last, the central sub-
space is the sum over the pure imaginary eigenvalues.

These spaces are denoted, respectively, S(A), U(A), and C(A).

By invariance of E(λ ), the stable, unstable, and central subspaces are each invari-
ant under A. From the above analysis, there are three corresponding eigenprojectors
πs, πu, and πc, given by the Dunford–Taylor formulæ. For instance, πs is obtained by
choosing fs ≡ 1 over ℜz <−ε and fs ≡ 0 over ℜz > ε , for a small enough positive
ε . In other words,

πs =
1

2iπ

∫
Γs

(zIn −A)−1dz

for some large enough circle Γs contained in ℜz < 0.
Because fs + fu + fc ≡ 1 around the spectrum of A, we have

πs +πu +πc = fs(A)+ fu(A)+ fc(A) = 1(A) = In.

In addition, the properties fs fu ≡ 0, fs fc ≡ 0, and fc fu ≡ 0 around the spectrum
yield

πsπu = πuπc = πcπs = 0n.

The identities above give, as expected,

Cn = S(A)⊕U(A)⊕C(A).

We leave the following characterization to the reader.

Proposition 5.9 The stable (respectively, unstable) subspace of A is the set of vec-
tors x ∈ Cn such that the solution of the Cauchy problem

dy
dt

= Ay, y(0) = x

tends to zero exponentially fast as time goes to +∞ (respectively, to −∞).
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5.5.2.2 Contractive/Expansive Invariant Subspaces

In the linear theory of discrete dynamical systems, that is, of iterated sequences

xm+1 = φ(xm),

what matters is the position of the eigenvalues with respect to the unit circle. We
thus define the contractive subspace as the sum of E(λ )s over the eigenvalues of
modulus less than 1. The sum over |λ |> 1 is called the expansive subspace. At last,
the sum over |λ | = 1 is the neutral subspace. Again, Cn is the direct sum of these
three invariant subspaces.

The link with the stable/unstable subspaces can be described in terms of the expo-
nential of matrices, a notion developed in Chapter 10. The contractive (respectively,
expansive, neutral) subspace of expA coincides with S(A) (respectively, with U(A),
C(A)).

5.6 Numerical Range

In this paragraph, we denote ‖x‖2 the Hermitian norm in Cn. If A ∈ Mn(C) and x is
a vector, the expression rA(x) = x∗Ax is a complex number.

Definition 5.5 The numerical range of A is the subset of the complex plane

H (A) = {rA(x) |‖x‖2 = 1}.

The numerical range is obviously compact. It is unitarily invariant:

H (U∗AU) = H (A), ∀U ∈ Un,

because x �→Ux is a bijection between unitary vectors. It is thus enough to evaluate
the numerical range over upper-triangular matrices, thanks to Theorem 5.1.

5.6.1 The Numerical Range of a 2×2 Matrix

Let us begin with the case n = 2. As mentioned above, it is enough to consider trian-
gular matrices. By adding μIn, we shift the numerical range by a complex number
μ . Doing so, we may reduce our analysis to the case where TrA = 0. Next, multi-
plying A by z has the effect of applying similitude to the numerical range, whose
magnitude is |z| and angle is Arg(z). Doing so, we reduce our analysis to either

A = 02, or A = 2J2 :=
(

0 2
0 0

)
, or A = Ba :=

(
1 2a
0 −1

)
,
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for some a∈C. At last, conjugating by diag(1,eiβ ) for some real β , we may assume
that a is real, nonnegative.

Clearly, H (02) = {0}. The case of 2J2 is quite simple:

H (2J2) = {2yz | |y|2 + |z|2 = 1}.

This is a rotationally invariant set, containing the segment [0,1] and contained in the
unit disk, by Cauchy–Schwarz. Thus it equals the unit disk.

Let us examine the third case in details.

H (Ba) = {|y|2 −|z|2 +2aȳz | |y|2 + |z|2 = 1}.

At fixed moduli |y| and |z|, the number rBa(x) runs over a circle whose center is
|y|2 −|z|2 and radius is 2a|yz|. Therefore H (Ba) is the union of the circles C(r;ρ)
where the center r is real, and (r,ρ) is constrained by

a2r2 +ρ2 = a2.

Let E ∈ C ∼ R2 be the filled ellipse with foci ±1 and passing through z =√
1+a2. It is defined by the inequality

(ℜz)2

1+a2 +
(ℑz)2

a2 ≤ 1.

If z = r +ρeiθ ∈C(r;ρ), we have

(ℜz)2

1+a2 +
(ℑz)2

a2 =
r2

1+a2 +
ρ2

a2 +
2rρ

1+a2 cosθ − ρ2

a2(1+a2)
cos2 θ .

Considering this expression as a quadratic polynomial in cosθ , its maximum is
reached when the argument equals4 ra2/ρ and then it takes the value r2 + ρ2/a2.
The latter being less than or equal to one, we deduce that z belongs to E . Therefore
H (A)⊂ E .

Conversely, let z belong to E . The polynomial r �→ g(r) := (ℑz)2 +(ℜz− r)2 +
a2(r2−1) is convex and reaches its minimum at r0 = (ℜz)/(1+a2), which belongs
to [−1,1]. We have

g(r0) = (ℑz)2 +
a2

1+a2 (ℜz)2 −a2,

which is nonpositive by assumption. Because g(±1) ≥ 0, we deduce the existence
of an r ∈ [−1,1] such that g(r) = 0. This precisely means that z∈C(r;ρ). Therefore
E ⊂H (A).

Finally, H (A) is a filled ellipse whose foci are ±1. Its great axis is
√

1+a2

and the small one is a. Its area is therefore πa
√

1+a2, which turns out to equal

4 The value ra2/ρ is not necesssarily within [−1,1], but we don’t mind. When ra2/ρ > 1, the
circle is contained in the interior of E , whereas if ra2/ρ ≤ 1, it is interiorly tangent to E .
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|det[B∗
a,Ba]|1/2, because we have

[B∗
a,Ba] =

(−4a2 −4a
4a 4a2

)
.

We notice that the same formula holds true for the other cases A = 02 or A = 2J2.
Going backward to a general 2× 2 matrix through similitude and conjugation,

and pointing out that affine transformations preserve the class of ellipse, while mul-
tiplying the area by the Jacobian determinant, we have established the following.

Lemma 8. The numerical range of a 2× 2 matrix is a filled ellipse whose foci are
its eigenvalues. Its area equals

π
4
|det[A∗,A]|1/2 .

5.6.2 The General Case

Let us turn towards matrices of sizes n ≥ 3 (the case n = 1 being trivial). If z,z′
belong to the numerical range, we have z = rA(x) and z′ = rA(x′) for suitable unit
vectors. Applying Lemma 8 to the restriction of rA to the plane spanned by x and
x′, we see that there is a filled ellipse, containing z and z′, and contained in H (A).
Therefore the segment [z,z′] is contained in the numerical range and H (A) is con-
vex.

If x is a unitary eigenvector, then rA(x) = x∗(λx) = λ . Finally we have the fol-
lowing.

Theorem 5.6 (Toeplitz–Hausdorff) The numerical range of a matrix A ∈ Mn(C)
is a compact convex domain. It contains the eigenvalues of A.

5.6.2.1 The Case of Normal Matrices

If A is normal, we deduce from Theorem 5.4 that its numerical range equals that
of the diagonal matrix D with the same eigenvalues a1, . . . ,an. Denoting θ j = |x j|2
when x ∈ Cn, we see that

H (A) = {θ1a1 + · · ·+θnan |θ1, . . . ,θn ≥ 0 and θ1 + · · ·+θn = 1}.

This is precisely the convex envelope of a1, . . . ,an.

Proposition 5.10 The numerical range of a normal matrix is the convex hull of its
eigenvalues.
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5.6.3 The Numerical Radius

Definition 5.6 The numerical radius of A ∈ Mn(C) is the nonnegative real number

w(A) := sup{|z| ; z ∈H (A)} = sup
x �=0

|x∗Ax|
‖x‖ = sup

‖x‖=1
|x∗Ax|.

As a supremum of seminorms A �→ |x∗Ax|, it is a seminorm. Because of Proposi-
tion 5.3, w(A) = 0 implies A = 0n. The numerical radius is thus a norm. We warn the
reader that it is not a matrix norm (this notion is developed in Chapter 7) inasmuch
as w(AB) is not always less than or equal to w(A)w(B). For instance

w(JT
2 J2) = 1, and w(JT

2 ) = w(J2) =
1
2
.

However, the numerical radius satisfies the inequality w(Ak)≤ w(A)k for every pos-
itive integer k (see Exercise 8). A norm with this property is called superstable.

Because Mn(C) is finite dimensional, the numerical radius is equivalent as a
norm to any other norm, for instance to matrix norms. However, norm equivalence
involves constant factors, which may depend dramatically on the dimension n. It is
thus remarkable that the equivalence with the standard operator norm is uniform in
n:

Proposition 5.11 For every A ∈ Mn(C), we have

w(A)≤ ‖A‖2 ≤ 2w(A).

Proof. Cauchy–Schwarz gives

|x∗Ax| ≤ ‖x‖2‖Ax‖2 ≤ ‖A‖2‖x‖2
2,

which yields w(A)≤ ‖A‖2.
On the other hand, let us majorize |y∗Ax| in terms of w(A). We have

4y∗Ax = (x+y)∗A(x+y)−(x−y)∗A(x−y)+i(x+iy)∗A(x+iy)−i(x−iy)∗A(x−iy).

The triangle inequality and the definition of w(A) then give

4|y∗Ax| ≤ (‖x+ y‖2
2 +‖x− y‖2

2 +‖x+ iy‖2
2 +‖x− iy‖2

2
)

w(A)

= 4(‖x‖2
2 +‖y‖2

2)w(A).

If x and y are unit vectors, this means |y∗Ax| ≤ 2w(A). If x is a unit vector, we now
write

‖Ax‖2 = sup{|y∗Ax| ; ‖y‖2 = 1} ≤ 2w(A).

Taking the supremum over x, we conclude that ‖A‖2 ≤ w(A). ��
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Specific examples show that each one of the inequalities in Proposition 5.11 can
be an equality.

5.7 The Gershgorin Domain

In this section, we use the norm ‖ · ‖∞ over Cn, defined by

‖x‖∞ := max
i
|xi|.

Let A ∈ Mn(C), λ be an eigenvalue and x an associated eigenvector. Let i be an
index such that |xi|= ‖x‖∞. Then xi �= 0 and the majorization

|aii −λ |=
∣∣∣∣∣∑j �=i

ai j
x j

xi

∣∣∣∣∣≤ ∑
j �=i

|ai j|

gives the following.5

Proposition 5.12 (Gershgorin) The spectrum of A is included in the Gershgorin
domain G (A), defined as the union of the Gershgorin disks

Di(A) := D(aii;ri), ri := ∑
j �=i

|ai j|.

Replacing A by its transpose, which has the same spectrum, we have likewise

Sp(A)⊂G (AT ) =
n⋃

j=1

D′
j(A), D′

j(A) := D j(AT ) = D(a j j;r′j), r′j := ∑
i�= j

|ai j|.

One may improve this result by considering the connected components of G (A).
Let G be one of them. It is the union of the Dks that meet G. Let p be the number of
such disks. One has G = ∪i∈IDi(A) where I has cardinality p.

Theorem 5.7 There are exactly p eigenvalues of A in G, counted with their multi-
plicities.

Proof. For r ∈ [0,1], we define a matrix A(r) by the formula

ai j(r) :=
{

aii, j = i,
rai j, j �= i.

5 This result can also be deduced from Proposition 7.5: let us decompose A = D+C, where D is the
diagonal part of A. If λ �= aii for every i, then λ In−A = (λ In−D)(In−B) with B = (λ In−D)−1C.
Hence, if λ is an eigenvalue, then either λ is an aii, or ‖B‖∞ ≥ 1.
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It is clear that the Gershgorin domain Gr of A(r) is included in G (A). We observe
that A(1) = A, and that r �→ A(r) is continuous. Let us denote by m(r) the number
of eigenvalues (counted with multiplicity) of A(r) that belong to G.

Because G and G (A) \G are compact, one can find a Jordan curve, oriented in
the trigonometric sense, that separates G from G (A) \G. Let Γ be such a curve.
Inasmuch as Gr is included in G (A), the residue formula expresses m(r) in terms of
the characteristic polynomial Pr of A(r):

m(r) =
1

2iπ

∫
Γ

P′
r(z)

Pr(z)
dz.

Because Pr does not vanish on Γ and r �→ Pr,P′
r are continuous, r �→ m(r) is contin-

uous. Because m(r) is an integer and [0,1] is connected, m(r) remains constant. In
particular, m(0) = m(1).

Finally, m(0) is the number of entries a j j (eigenvalues of A(0)) that belong to G.
But a j j is in G if and only if D j(A)⊂ G. Hence m(0) = p, which implies m(1) = p,
the desired result. ��

An improvement of Gershgorin’s theorem concerns irreducible matrices.

Proposition 5.13 Let A be an irreducible matrix. If an eigenvalue of A does not
belong to the interior of any Gershgorin disk, then it belongs to every circle S(aii;ri).

Proof. Let λ be such an eigenvalue and x an associated eigenvector. By assumption,
one has |λ −aii| ≥ ∑ j �=i |ai j| for every i. Let I be the set of indices for which |xi| =
‖x‖∞ and let J be its complement. If i ∈ I, then

‖x‖∞ ∑
j �=i

|ai j| ≤ |λ −aii|‖x‖∞ =

∣∣∣∣∣∑j �=i
ai jx j

∣∣∣∣∣≤ ∑
j �=i

|ai j| |x j|.

It follows that ∑ j �=i(‖x‖∞ − |x j|)|ai j| ≤ 0, where all the terms in the sum are non-
negative. Each term is thus zero, so that ai j = 0 for j ∈ J. Because A is irreducible,
J is empty. One has thus |x j|= ‖x‖∞ for every j, and the previous inequalities show
that λ belongs to every circle. ��

5.7.1 An Application

Definition 5.7 A square matrix A ∈ Mn(C) is said to be

1. Diagonally dominant if

|aii| ≥ ∑
j �=i

|ai j|, 1 ≤ i ≤ n

2. Strongly diagonally dominant if it is diagonally dominant and in addition at least
one of these n inequalities is strict
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3. Strictly diagonally dominant if the inequality above is strict for every index i

Corollary 5.4 Let A be a square matrix. If A is strictly diagonally dominant, or if A
is irreducible and strongly diagonally dominant, then A is invertible.

In fact, either zero does not belong to the Gershgorin domain, or it is not interior
to the disks. In the latter case, A is assumed to be irreducible, and there exists a disk
D j that does not contain zero.

Exercises

1. Show that the eigenvalues of skew-Hermitian matrices, as well as those of real
skew-symmetric matrices, are pure imaginary.

2. Let P,Q ∈ Mn(R) be given. Assume that P + iQ ∈ GLn(C). Show that there
exist a,b ∈ R such that aP + bQ ∈ GLn(R). Deduce that if M,N ∈ Mn(R) are
similar in Mn(C), then these matrices are similar in Mn(R).

3. Given an invertible matrix

M =
(

a b
c d

)
∈ GL2(R),

define a map hM from S2 := C∪{∞} into itself by

hM(z) :=
az+b
cz+d

.

a. Show that hM is a bijection.
b. Show that h : M �→ hM is a group homomorphism. Compute its kernel.
c. Let H be the upper half-plane, consisting of those z ∈ C with ℑz > 0.

Compute ℑhM(z) in terms of ℑz and deduce that the subgroup

GL+
2 (R) := {M ∈ GL2(R) | detM > 0}

operates on H .
d. Conclude that the group PSL2(R) := SL2(R)/{±I2}, called the modular

group, operates on H .
e. Let M ∈ SL2(R) be given. Determine, in terms of TrM, the number of fixed

points of hM on H .

4. Show that M ∈ Mn(C) is normal if and only if there exists a unitary matrix U
such that M∗ = MU .

5. Let d : Mn(R)→ R+ be a multiplicative function; that is,

d(MN) = d(M)d(N)
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for every M,N ∈ Mn(R). If α ∈R, define δ (α) := d(αIn)1/n. Assume that d is
not constant.

a. Show that d(0n) = 0 and d(In) = 1. Deduce that P ∈ GLn(R) implies
d(P) �= 0 and d(P−1) = 1/d(P). Show, finally, that if M and N are simi-
lar, then d(M) = d(N).

b. Let D ∈ Mn(R) be a diagonal matrix. Find matrices D1, . . . ,Dn−1, similar
to D, such that DD1 · · ·Dn−1 = (detD)In. Deduce that d(D) = δ (detD).

c. Let M ∈ Mn(R) be a diagonalizable matrix. Show that d(M) = δ (detM).
d. Using the fact that MT is similar to M, show that d(M) = δ (detM) for every

M ∈ Mn(R).

6. Let A ∈ Mn(C) be given, and let λ1, . . . ,λn be its eigenvalues. Show, by induc-
tion on n, that A is normal if and only if

∑
i, j
|ai j|2 =

n

∑
1
|λ�|2.

Hint: The left-hand side (whose square root is called Schur’s norm) is invariant
under conjugation by a unitary matrix. It is then enough to restrict attention to
the case of a triangular matrix.

7. (Fiedler and Pták [13]) Given a matrix A ∈ Mn(R), we wish to prove the equiv-
alence of the following properties:

P1 For every vector x �= 0 there exists an index k such that xk(Ax)k > 0.
P2 For every vector x �= 0 there exists a diagonal matrix D with positive di-

agonal elements such that the scalar product (Ax,Dx) is positive.
P3 For every vector x �= 0 there exists a diagonal matrix D with nonnegative

diagonal elements such that the scalar product (Ax,Dx) is positive.
P4 The real eigenvalues of all principal submatrices of A are positive.
P5 All principal minors of A are positive.

a. Prove that Pj implies P(j+1) for every j = 1, . . . ,4.
b. Assume P5. Show that for every diagonal matrix D with nonnegative en-

tries, one has det(A+D) > 0.
c. Then prove that P5 implies P1.

8. (Berger) We show here that the numerical radius satisfies the power inequality.
In what follows, we use the real part of a square matrix

ℜM :=
1
2
(M +M∗).

a. Show that w(A) ≤ 1 is equivalent to the fact that ℜ(In − zA) is positive-
semidefinite for every complex number z in the open unit disc.

b. We now assume that w(A)≤ 1. If |z|< 1, verify that In− zA is nonsingular.
c. If M ∈ GLn(C) has a nonnegative real part, prove that ℜ

(
M−1

)≥ 0n. De-
duce that ℜ(In − zA)−1 ≥ 0n whenever |z|< 1.
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d. Let m ≥ 1 be an integer and ω be a primitive mth root of unity in C. Check
that the formula

1
1−Xm =

1
m

m−1

∑
k=0

1
1−ωkX

can be recast as a polynomial identity.
Deduce that

(In − zmAm)−1 =
1
m

m−1

∑
k=0

(In −ωkzA)−1,

whenever |z|< 1.
e. Deduce from above that

ℜ(In − zmAm)−1 ≥ 0n,

whenever |z| < 1. Going backward, conclude that for every complex num-
ber y in the open unit disc, ℜ(In − yAm)≥ 0n and thus w(Am)≤ 1.

f. Finally, prove the power inequality

w(Mm)≤ w(M)m, ∀M ∈ Mn(C), ∀m ∈ N.

Note: A norm that satisfies the power inequality is called a superstable
norm.

9. Given a complex n×n matrix A, show that there exists a unitary matrix U such
that M := U∗AU has a constant diagonal:

mii =
1
n

TrA, ∀i = 1, ...,n.

Hint: Use the convexity of the numerical range.
In the Hermitian case, compare with Schur’s theorem 6.7.

10. Let B ∈ GLn(C). Verify that the inverse and the Hermitian adjoint of B−1B∗
are similar. Conversely, let A ∈ GLn(C) be a matrix whose inverse and the
Hermitian adjoint are similar: A∗ = PA−1P−1.

a. Show that there exists an invertible Hermitian matrix H such that H =
A∗HA. Hint: Look for an H as a linear combination of P and of P∗.

b. Show that there exists a matrix B∈GLn(C) such that A = B−1B∗. Look for
a B of the form (aIn +bA∗)H.

11. a. Show that |det(In + A)| ≥ 1 for every skew-Hermitian matrix A, and that
equality holds only if A = 0n.

b. Deduce that for every M ∈ Mn(C) such that H := ℜM is positive-definite,

detH ≤ |detM|

by showing that H−1(M−M∗) is similar to a skew-Hermitian matrix. You
may use the square root defined in Chapter 10.
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12. Let A ∈ Mn(C) be a normal matrix. We decompose A = L + D +U in strictly
lower, diagonal, and strictly upper-triangular parts. Let us denote by � j the Eu-
clidean length of the jth column of L, and by u j that of the jth row of U .

a. Show that

k

∑
j=1

u2
j ≤

k

∑
j=1

l2
j +

k

∑
j=1

j−1

∑
m=1

u2
m j, k = 1, . . . ,n−1.

b. Deduce the inequality

‖U‖S ≤
√

n−1‖L‖S,

for the Schur–Frobenius norm

‖M‖S :=

(
n

∑
i, j=1

|mi j|2
)1/2

.

c. Prove also that
‖U‖S ≥ 1√

n−1
‖L‖S.

d. Verify that each of these inequalities is optimal. Hint: Consider a circulant
matrix.

13. For A ∈ Mn(C), define

ε := max
i�= j

|ai j|, δ := min
i�= j

|aii −a j j|.

We assume in this exercise that δ > 0 and ε ≤ δ/4n.

a. Show that each Gershgorin disk D j(A) contains exactly one eigenvalue of
A.

b. Let ρ > 0 be a real number. Verify that Aρ , obtained by multiplying the ith
row of A by ρ and the ith column by 1/ρ , has the same eigenvalues as A.

c. Choose ρ = 2ε/δ . Show that the ith Gershgorin disk of Aρ contains exactly
one eigenvalue. Deduce that the eigenvalues of A are simple and that

d(Sp(A),diag(a11, . . . ,ann))≤ 2nε2

δ
.

14. Let A ∈ Mn(C) be given. We define

Bi j(A) = {z ∈ C | |(z−aii)(z−a j j)| ≤ ri(A)r j(A)}.

These sets are Cassini ovals. Finally, set

B(A) :=
⋃

1≤i< j≤n

Bi j(A).
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a. Show that SpA ⊂B(A).
b. Show that this result is sharper than Proposition 5.12.
c. When n = 2, show that in fact SpA is included in the boundary of B(A).

Note: It is tempting to make a generalization from the present exercise and
Proposition 5.12, and conjecture that the spectrum is contained in the union of
sets defined by inequalities

|(z−aii)(z−a j j)(z−akk)| ≤ ri(A)r j(A)rk(A)

and so on. However, the claim is already false with this third-order version.
15. Let I be an interval of R and t �→ P(t) be a map of class C 1 with values in

Mn(R) such that for each t, P(t) is a projector: P(t)2 = P(t).

a. Show that the rank of P(t) is constant.
b. Show that P(t)P′(t)P(t) = 0n.
c. Let us define Q(t) := [P′(t),P(t)]. Show that P′(t) = [Q(t),P(t)].
d. Let t0 ∈ I be given. Show that the differential equation U ′ = QU pos-

sesses a unique solution in I such that U(t0) = In. Show that P(t) =
U(t)P(t0)U(t)−1.

16. Show that the set of projectors of given rank p is a connected subset in Mn(C).
17. Let E be an invariant subspace of a matrix M ∈ Mn(R).

a. Show that E⊥ is invariant under MT .
b. Prove the following identity between characteristic polynomials:

PM(X) = PM|E(X)PMT |E⊥(X). (5.3)

18. Prove Proposition 5.9.
19. (Converse of Lemma 8.) Let A and B be 2×2 complex matrices, that have the

same spectrum. We assume in addition that

det[A∗,A] = det[B∗,B].

Prove that A and B are unitarily similar. Hint: Prove that they both are unitarily
similar to the same triangular matrix.
Deduce that two matrices in M2(C) are unitarily similar if and only if they have
the same numerical range.

20. Prove the following formula for complex matrices:

logdet(In + zA) =
∞

∑
k=0

(−1)k+1

k
Tr(Ak)zk.

Hint: Use an analogous formula for log(1+az).
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