
Chapter 13

Approximation of Eigenvalues

13.1 General Considerations

The computation of the eigenvalues of a square matrix is a problem of considerable
difficulty. The naive idea, according to which it is enough to compute the character-
istic polynomial and then find its roots, turns out to be hopeless because of Abel’s
theorem, which states that the general equation P(x) = 0, where P is a polynomial
of degree d ≥ 5, is not solvable using algebraic operations and roots of any order.
For this reason, there exists no direct method, even an expensive one, for the com-
putation of Sp(M).

Dropping half of that program, one could compute the characteristic polynomial
exactly, then compute an approximation of its roots. But the cost and the instability
of the computation are prohibitive. Amazingly, the opposite strategy is often used: a
standard algorithm for computing the roots of a polynomial P∈C[X ] of high degree
consists in forming its companion matrix1 Bp and then applying to this matrix the
QR algorithm to compute its eigenvalues with good accuracy.

Hence, all the methods are iterative and use the matrices directly. We need a
notion of convergence, thus we limit ourselves to the cases K = R or C. The general
strategy consists in constructing a sequence of matrices

M(0),M(1), . . . ,M(m), . . . ,

pairwise similar. Each method is conceived in such a way that the sequence con-
verges to a simple form, triangular or diagonal, because then the eigenvalues can
be read on the diagonal. Such a convergence is not always possible. For example,
an algorithm in Mn(R) cannot converge to a triangular form when the matrix under
consideration possesses a pair of nonreal eigenvalues.

1 Fortunately, the companion matrix is a Hessenberg matrix; see below for this notion and its
practical aspects.
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13.1.1 Stability

In the course of the calculations, it is fundamental that the sequence

M(0),M(1), . . . ,M(m), . . .

remain bounded, in order to keep away from overflow, as well as to be allowed to
apply Theorem 5.2. This is not guaranteed a priori, because the set of matrices sim-
ilar to M is unbounded in general. For instance, the following matrices are pairwise
similar for all values of a ∈ K∗: (

0 a
a−1 0

)
.

This boundedness is one important issue among others. When passing from M(k)

to M(k+1), the conjugation by a matrix Q yields to an amplification of the round-
off errors by a factor that can be estimated as the condition number of Q, namely
κ(Q) := ‖Q‖2‖Q−1‖2. We recall that κ(Q) ≥ 1, with equality if and only if Q is
the matrix of a similitude. In order to keep control of the roundoff error, it thus
seems necessary that the product of the numbers κ(Q(k))) remain bounded. Because
this is an infinite product, we need that κ(Q(k)) → 1 as k → +∞. In other words,
the distance from Q(k) to C ·Un must tend to zero. Notice that a scalar factor in Q
is harmless inasmuch as it cancels with the inverse factor in Q−1. For the sake of
simplicity, we thus ask that each iteration be a unitary conjugation: each M(k) is
unitary similar to M, thus remains bounded because Un is compact. When dealing
with matrices in Mn(R), we employ orthogonal conjugation instead.

13.1.2 Expected Convergence

We thus assume that M(k+1) = Q−1
k M(k)Qk for a unitary Qk. Set Pj := Q0 · · ·Q j−1,

which is unitary too. We have M( j) = P−1
j M(0)Pj. Because Un is compact, the

sequence (Pj) j∈N possesses cluster values. Let P be one of them. Then M′ :=
P−1M(0)P = P∗M(0)P is a cluster point of (M( j)) j∈N and is conjugated to M. If
the sequence (M( j)) j converges, its limit is therefore (unitarily) similar to M, and
hence has the same spectrum.

This argument shows that in general, the sequence (M( j)) j does not converge to a
diagonal matrix, because then the eigenvectors of M would be the columns of P. In
other words, M would have an orthonormal eigenbasis: M would be normal. Except
in this special case, one expects merely that the sequence (M( j)) j converges to a
triangular matrix, an expectation that is compatible with Theorem 5.1. But even this
hope is too optimistic in general.
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13.1.3 Initialization

Given M ∈ Mn(C), there are two strategies for the choice of M(0). One can naively
take M(0) = M. But because an iteration on a generic matrix is rather costly, one
often uses a preliminary reduction to a simple form (e.g., the Hessenberg form, in
the QR algorithm), which is preserved throughout the iterations. With a few such
tricks, certain methods can be astonishingly efficient.

13.2 Hessenberg Matrices

We recall the notion of Hessenberg matrices.

Definition 13.1 A square matrix M ∈ Mn(K) is called upper Hessenberg (one
speaks simply of a Hessenberg matrix) if m jk = 0 for every pair ( j,k) such that
j− k ≥ 2.

A Hessenberg matrix thus has the form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x · · · · · ·
y

. . .

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 z t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular, an upper-triangular matrix is a Hessenberg matrix.

From the point of view of matrix reduction by conjugation, one can attribute two
advantages to the Hessenberg class, compared with the class of triangular matrices.
First of all, if K = R, many matrices are not trigonalizable in R, although all are
trigonalizable in C. Even within complex numbers, the trigonalization cannot be
done in practice, because it would require the computation of the eigenvalues. On the
contrary, we show that every square matrix with real or complex entries is similar to
a Hessenberg matrix over the real or complex numbers, respectively. This is obtained
after a finite number of operations.

13.2.1 Stability of the Hessenberg Form

If M is Hessenberg and T upper-triangular, the products T M and MT are still Hes-
senberg.2 For example, if M admits an LU factorization, then L is Hessenberg, and

2 But the product of two Hessenberg matrices is not Hessenberg in general.
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thus has only two nonzero diagonals, because L = MU−1. Likewise, if M ∈GLn(C)
is Hessenberg, then the factor Q in the factorization M = QR is again Hessenberg,
because Q = MR−1. An elementary compactness and continuity argument shows
that the same fact holds true for every M ∈ Mn(C).

13.2.2 Hessenberg Form versus Irreducibility

We have seen in Proposition 3.26 that a Hessenberg matrix such that the m j+1, js
are nonzero has geometrically simple eigenvalues. The algebraic multiplicity can,
however, be arbitrary, as shown in the following example

M =
(

1 1
−1 −1

)
.

13.2.3 Transforming a Matrix into a Hessenberg One

Theorem 13.1 For every matrix M ∈ Mn(C) there exists a unitary transformation
U such that U−1MU is a Hessenberg matrix. If M ∈ Mn(R), one may take U ∈ On.

Moreover, the matrix U is computable in 4n3/3 + O(n2) multiplications and
4n3/3+O(n2) additions.

Proof. Let X ∈Cm be a unit vector: X∗X = 1. The matrix of the unitary (orthogonal)
symmetry with respect to the hyperplane X⊥ is S = Im − 2XX∗. In fact, SX = X −
2X =−X , and Y ∈ X⊥ (i.e., X∗Y = 0) implies SY = Y .

We construct a sequence M1 = M, . . . ,Mn−1 of unitarily similar matrices. The
matrix Mn−r is of the form (

H B
0r,n−r−1 Z N

)
,

where H ∈ Mn−r(C) is Hessenberg and Z is a vector in Cr. Hence, Mn−1 is Hessen-
berg.

One passes from Mn−r to Mn−r+1, that is, from r to r− 1 as follows. Let e1 be
the first vector of the canonical basis of Cr. If Z is already colinear to e1, one does
nothing besides defining Mn−r+1 = Mn−r. Otherwise, one chooses X ∈ Cr so that
SZ is parallel to e1 (we discuss below the possible choices for X). Then one sets

V =
(

In−r 0n−r,r
0r,n−r S

)
,

which is a unitary matrix, with V ∗ =V−1 =V (such a matrix is called a Householder
matrix). We then have
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V−1Mn−rV =
(

H BS
0n,n−r−1 SZ SNS

)
.

We thus define Mn−r+1 = V−1Mn−rV .
There are two possible choices for S, given by

X± :=
1

‖Z±‖Z‖2q‖2
(Z±‖Z‖2q), q =

z1

|z1|e
1.

It is always advantageous to choose the sign that gives the largest denominator,
namely the positive sign. One thus optimizes the roundoff errors in the case where
Z is almost aligned with e1.

13.2.4 Complexity

Let us consider now the complexity of the (n− r)th step. Only the terms of order
r2 and r(n− r) are meaningful. The computation of X , in O(r) operations, is thus
negligible, like that of X∗ and of 2X . The computation of BS = B−(BX)(2X∗) needs
about 4r(n− r) operations. Then 2NX needs 2r2 operations, as does 2X∗N. We
next compute 4X∗NX , and then form the vector T := 4(X∗NX)X −2NX at the cost
O(r). The product T X∗ takes r2 operations, as 2X(X∗N). Then N +T X∗−X(2X∗N)
needs 2r2 additions. The complete step is thus accomplished in 2r2 + 4rn + O(n)
operations. A sum from r = 1 to n−2 yields a complexity of 8

3 n3 +O(n2), in which
one recognizes 4

3 n3 +O(n2) multiplications, 4
3 n3 +O(n2) additions, and O(n) square

roots. ��

13.2.5 The Hermitian Case

When M is Hermitian, the matrix U−1MU is still Hermitian. Because it is Hessen-
berg, it is tridiagonal, with a j, j+1 = ā j+1, j and a j j ∈ R. The symmetry reduces the
complexity to 2n3/3+O(n2) multiplications. One can then use the Hessenberg form
of M in order to localize its eigenvalues.

Proposition 13.1 If M is tridiagonal Hermitian and if the entries m j+1, j are nonzero
(i.e., if M is irreducible), then the eigenvalues of M are real and simple. Further-
more, if Mj is the (Hermitian, tridiagonal, irreducible) matrix obtained by keeping
only the j last rows and columns of M, the eigenvalues of Mj strictly separate those
of Mj+1.

The separation, not necessarily strict, of the eigenvalues of Mj+1 by those of Mj
has already been proved, in a more general framework, in Theorem 6.5.
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Proof. The geometric simplicity of the eigenvalues has been stated in Proposition
3.26. Because M is Hermitian, it is diagonalizable: geometric multiplicity equals the
algebraic one. Thus the eigenvalues are simple. In addition, an Hermitian matrix has
a real spectrum.

We proceed by induction on j. If j ≥ 1, we decompose the matrix Mj+1 block-
wise: ⎛

⎜⎜⎜⎜⎜⎝

m ā 0 · · · 0
a
0 Mj
...
0

⎞
⎟⎟⎟⎟⎟⎠ ,

where a �= 0 and m ∈ R. Let P� be the characteristic polynomial of M�. We compute
that of Mj+1 by expanding the determinant with respect to the first column:

Pj+1(X) = (X −m)Pj(X)−|a|2Pj−1(X), (13.1)

where P0 ≡ 1 by convention.
The induction hypothesis is as follows. The polynomials Pj and Pj−1 have real

coefficients and have, respectively, j and j−1 real roots μ1, . . . ,μ j and σ1, . . . ,σ j−1,
with

μ1 < σ1 < μ2 < · · ·< σ j−1 < μ j.

In particular, they have no other roots, and their roots are simple. The signs of the
values of Pj−1 at points μ j thus alternate. Because Pj−1 is positive over (σ j−1,+∞),
we have (−1) j−kPj−1(μk) > 0.

This hypothesis clearly holds at step j = 1. If j ≥ 2 and if it holds at step j, then
(13.1) shows that Pj+1 ∈ R[X ]. Furthermore,

(−1) j−kPj+1(μk) =−|a|2(−1) j−kPj−1(μk) < 0.

From the intermediate value theorem, Pj+1 possesses a root λk in (μk−1,μk). Fur-
thermore, Pj+1(μ j) < 0, and Pj+1(x) is positive for x & 1 ; hence there is another
root in (μ j,+∞). Likewise, Pj+1 has a root in (−∞,μ1). Hence, Pj+1 possesses j+1
distinct real roots λk, with

λ1 < μ1 < λ2 < · · ·< μ j < λ j+1.

Because Pj+1 has degree j+1, it has no root other than the λks, and these are simple.
��

The sequence of polynomials Pj is a Sturm sequence, which allows us to compute
the number of roots of Pn in a given interval (a,b). A Sturm sequence is a finite
sequence of real polynomials Q0, . . . ,Qn, with Q0 a nonzero constant such that

• If Q j(x) = 0 and 0 < j < n, then Q j+1(x)Q j−1(x) < 0. In particular, Q j and Q j+1
do not share a common root.
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• Likewise, if Q0(c) = 0 for some c ∈ (a,b), then

Q0(x)Q1(x)
x− c

< 0, ∀x ∈ (c− ε,c+ ε)

for some ε > 0.

If a ∈ R is not a root of Qn, we denote by V (a) the number of sign changes in the
sequence (Q0(a), . . . ,Qn(a)), in which the zeroes play no role and can be ignored.

Proposition 13.2 If Qn(a) �= 0 and Qn(b) �= 0, and if a < b, then the number of
roots of Qn in (a,b) is equal to V (a)−V (b).

Let us remark that it is not necessary to compute the polynomials Pj in order to
apply them to this proposition. Given a ∈ R, it is enough to compute the sequence
of values Pj(a).

Once an interval (a,b) is known to contain an eigenvalue λ and only that one (by
means of Proposition 13.2 or Theorem 5.7), one can compute an approximate value
of λ , either by dichotomy, or by computing the numbers V ((a + b)/2), . . . , or by
the secant or Newton method. In the latter case, one must compute Pn itself. The last
two methods are convergent, provided that we have a good initial approximation at
our disposal, because P′

n(λ ) �= 0.

13.3 The QR Method

The QR method is considered the most efficient one for the approximate computa-
tion of the whole spectrum of a general square matrix M ∈ Mn(C). One employs
it only after having reduced M to Hessenberg form, because this form is preserved
throughout the algorithm, whereas each iteration is much cheaper than it would be
for an arbitrary matrix.

13.3.1 Description of the QR Method

Let A ∈ Mn(K) be given, with K = R or C. We construct a sequence of matrices
(A j) j∈N, with A0 = A. The induction A j �→ A j+1 consists in performing the QR
factorization of A j, A j = Q jR j, and then defining A j+1 := R jQ j. We have

A j+1 = Q−1
j A jQ j,

which shows that A j+1 is unitarily similar to A j. Hence,

A j = (Q0 · · ·Q j−1)−1A(Q0 · · ·Q j−1) (13.2)

is conjugate to A by a unitary transformation.
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13.3.1.1 Obstructions

• If A is unitary, then A j = A for every j, with Q j = A and R j = In. The conver-
gence occurs but is useless, because the limit A is not simpler than the data. We
show later on that the reason for this bad behavior is that the eigenvalues of a
unitary matrix have the same modulus. The QR method does not do a good job
of separating the eigenvalues of close modulus.

• Another bad situation is when our matrix has at least two eigenvalues of the same
modulus. This happens in particular if A has real entries. In the latter case, then
each Q j is real orthogonal, R j is real, and A j is real. This is seen by induction on
j. A limit A′ is not triangular if some eigenvalues of A are nonreal, namely if A
possesses a pair of complex conjugate eigenvalues.

Let us sum up what can be expected in a brave new world. If all the eigenvalues of
A ∈ Mn(C) have distinct moduli, the sequence (A j) j might converge to a triangular
matrix, or at least its lower-triangular part might converge to⎛

⎜⎜⎜⎝
λ1
0 λ2
...

. . . . . .
0 · · · 0 λn

⎞
⎟⎟⎟⎠ .

When A ∈ Mn(R), let us make the following assumption. Let p be the number of
real eigenvalues and 2q that of nonreal eigenvalues ; then there are p + q distinct
eigenvalue moduli. In that case, (A j) j might converge to a block-triangular form,
the diagonal blocks being 2×2 or 1×1. The limits of the diagonal blocks trivially
provide the eigenvalues of A.

Herebelow, we treat the complex case with eigenvalues of pairwise distinct mod-
uli. The case with real entries and pairs of complex conjugate eigenvalues has been
treated in [23].

13.3.2 The Case of a Singular Matrix

When A is not invertible, the QR factorization is not unique, raising a difficulty in the
definition of the algorithm. The computation of the determinant would immediately
detect the case of noninvertibility, but would not provide any cure. However, if the
matrix has been first reduced to the Hessenberg form, then a single QR iteration
makes a diagnosis and does provide a cure. Indeed, if A is Hessenberg and singular,
then in A = QR, Q is Hessenberg and R is singular. If a21 = 0, the matrix A is
block-triangular and we may reduce our calculations to the case of a matrix of size
(n−1)×(n−1) by deleting the first row and the first column. Otherwise, there exists
j ≥ 2 such that r j j = 0. The matrix A1 = RQ is then block-triangular, because it is



13.3 The QR Method 255

Hessenberg and (A1) j, j−1 = r j jq j, j−1 = 0. Again, we may reduce our calculations
to that of the spectra of two matrices of sizes j× j and (n− j)×(n− j), the diagonal
blocks of A1. After finitely many such steps (not larger than the multiplicity of the
null eigenvalue), there remain only Hessenberg invertible matrices to deal with. We
assume therefore from now on that A ∈ GLn(K).

13.3.3 Complexity of an Iteration

An iteration of the QR method requires the factorization A j = Q jR j and the compu-
tation of A j+1 = R jQ j. Each part costs O(n3) operations if it is done on a generic
matrix (using the naive way of multiplying matrices). The reduction to the Hessen-
berg form has a comparable cost, therefore we loose nothing by reducing A to this
form. Actually, we make considerable gains in two aspects. First of all, the cost of
each QR iteration is reduced to O(n2). Secondly, the cluster values of the sequence
(A j) j must have the Hessenberg form too.

Let us first examine the Householder method of QR factorization for a generic
matrix A. In practice, one computes only the factor R and matrices of unitary sym-
metries whose product is Q. One then multiplies these unitary matrices by R on the
left to obtain A′ = RQ.

Let a1 ∈Cn be the first column vector of A. We begin by determining a unit vector
v1 ∈ Cn such that the hyperplane symmetry H1 := In − 2v1v∗1 sends a1 to ‖a1‖2e1.
The matrix H1A has the form

Ã =

⎛
⎜⎜⎜⎜⎝
‖a1‖2 x · · ·

0
...

...
...

0 y · · ·

⎞
⎟⎟⎟⎟⎠ .

We then perform these operations again on the matrix extracted from Ã by deleting
the first rows and columns, and so on. At the kth step, Hk is a matrix of the form(

Ik 0
0 In−k −2vkv∗k

)
,

where vk ∈Cn−k is a unit vector. The computation of vk requires O(n−k) operations.
The product HkA(k), where A(k) is block-triangular, amounts to that of two square
matrices of size n− k, one of them In−k − 2vkv∗k . We thus compute a matrix N −
2vv∗N from v and N, which costs about 4(n− k)2 operations. Summing from k = 1
to k = n−1, we find that the complexity of the computation of R alone is 4n3/3 +
O(n2). As indicated above, we do not compute the factor Q, but compute all the
matrices RHn−1 · · ·Hk. That necessitates 2n3 + O(n) operations. The complexity of
one step of the QR method on a generic matrix is thus 10n3/3+O(n2).
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Let us now analyze the situation when A is a Hessenberg matrix. By induction
on k, we see that vk belongs to the plane spanned by ek and ek+1. Its computation
needs O(1) operations. Then the product of Hk and A(k) can be obtained by simply
recomputing the rows of indices k and k + 1, about 6(n− k) operations. Summing
from k = 1 to n− 1, we find that the complexity of the computation of R alone
is 3n2 + O(n). The computation of the product (RHn−1 · · ·Hk+1)Hk needs about 6k
operations. Finally, the complexity of the QR iteration on a Hessenberg matrix is
6n2 +O(n), in which there are 4n2 +O(n) multiplications.

To sum up, the cost of the preliminary reduction of a matrix to Hessenberg form
is less than or equal to what is saved during the first iteration of the QR method.

13.3.4 Convergence of the QR Method

As explained above, the best convergence statement assumes that the eigenvalues
have distinct moduli.

Let us recall that the sequence Ak is not always convergent. For example, if A
is already triangular, its QR factorization is Q = D, R = D−1A, with d j = a j j/|a j j|.
Hence, A1 = D−1AD is triangular, with the same diagonal as that of A. By induction,
Ak is triangular, with the same diagonal as that of A. We have thus Qk = D for every
k, so that Ak = D−kADk. The entry of index (�,m) is thus multiplied at each step by
a unit number z�m, which is not necessarily equal to one if � < m. Hence, the part
above the diagonal of Ak may not converge.

Summing up, a convergence theorem may concern only the diagonal of Ak and
what lies below it.

Lemma 24. Let A ∈ GLn(K) be given, with K = R or C. Let Ak = QkRk be the
sequence of matrices given by the QR algorithm. Let us define Pk = Q0 · · ·Qk−1 and
Uk = Rk−1 · · ·R0. Then PkUk is the QR factorization of the kth power of A:

Ak = PkUk.

Proof. From (13.2), we have Ak = P−1
k APk; that is, PkAk = APk. Then

Pk+1Uk+1 = PkQkRkUk = PkAkUk = APkUk.

By induction, PkUk = Ak. However, Pk ∈ Un and Uk is triangular, with a positive real
diagonal, as a product of such matrices. ��
Theorem 13.2 Let A∈GLn(C) be given. Assume that the moduli of the eigenvalues
of A are distinct:

|λ1|> |λ2|> · · ·> |λn| (> 0).

In particular, the eigenvalues are simple, and thus A is diagonalizable:

A = Y−1diag(λ1, . . . ,λn)Y.
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Assume also that Y admits an LU factorization. Then the strictly lower-triangular
part of Ak converges to zero, and the diagonal of Ak converges to

D := diag(λ1, . . . ,λn).

Proof. Let Y = LU be the factorization of Y . We also make use of the QR factor-
ization of Y−1 : Y−1 = QR. Because Ak = Y−1DkY , we have PkUk = Y−1DkY =
QRDkLU .

The matrix DkLD−k is lower-triangular with unit numbers on its diagonal. Each
term is multiplied by (λi/λ j)k, therefore its strictly lower-triangular part tends to
zero, because |λi/λ j| < 1 for i > j. Therefore, DkLD−k = In + Ek with Ek → 0n
as k → +∞. Hence, PkUk = QR(In + Ek)DkU = Q(In + REkR−1)RDkU = Q(In +
Fk)RDkU, where Fk → 0n. Let OkTk = In +Fk be the QR factorization of In +Fk. By
continuity, Ok and Tk both tend to In. Then

PkUk = (QOk)(TkRDkU).

The first product is a unitary matrix, whereas the second is a triangular one. Let
|D| be the “modulus” matrix of D (whose entries are the moduli of those of D),
and let D1 be |D|−1D, which is unitary. We also define D2 = diag(u j j/|u j j|) and
U ′ = D−1

2 U . Then D2 is unitary and the diagonal of U ′ is positive real. From the
uniqueness of the QR factorization of an invertible matrix we obtain

Pk = QOkDk
1D2, Uk = (Dk

1D2)−1TkRDk
1D2|D|kU ′,

which yields

Qk = P−1
k Pk+1 = D−1

2 D−k
1 O−1

k Ok+1Dk+1
1 D2,

Rk = Uk+1U−1
k = D−1

2 D−k−1
1 Tk+1RDR−1T−1

k Dk
1D2.

Because D−k
1 and Dk+1

1 are bounded, we deduce that Qk converges, to D1. Likewise,
Rk −R′

k → 0n, where
R′

k = D−1
2 D−k

1 RDR−1Dk−1
1 D2. (13.3)

The fact that the matrix R′
k is upper-triangular shows that the strictly lower-triangular

part of Ak = QkRk tends to zero (observe that the sequence (Rk)k∈N is bounded, be-
cause the set of matrices unitarily conjugate to A is bounded). Likewise, the diagonal
of R′

k is |D|, which shows that the diagonal of Ak converges to D1|D|= D. ��

Remark

Formula (13.3) shows that the sequence Ak does not converge, at least when the
eigenvalues have distinct complex arguments. However, if the eigenvalues have
equal complex arguments, for example, if they are real and positive, then D1 = αIn
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and Rk → T := D−1
2 R|D|R−1D2; hence Ak converges. Note that the limit αT is not

diagonal in this case.

The odd assumption about Y (LU factorization) in Theorem 13.2 is fulfilled in
most practical situations:

Theorem 13.3 Let A ∈ GLn(C) be an irreducible Hessenberg matrix whose eigen-
values are of distinct moduli:

|λ1|> · · ·> |λn| (> 0).

Then the QR method converges; that is, the lower-triangular part of Ak converges
to ⎛

⎜⎜⎜⎝
λ1
0 λ2
...

. . .
. . .

0 · · · 0 λn

⎞
⎟⎟⎟⎠ .

Proof. In the light of Theorem 13.2, it is enough to show that the matrix Y in the
previous proof admits an LU factorization. We have YA = diag(λ1, . . . ,λn)Y . The
rows of Y are thus the left eigenvectors: � jA = λ j� j.

If x ∈ Cn is nonzero, there exists a unique index r such that xr �= 0, and j > r
implies x j = 0. By induction, quoting the Hessenberg form and the irreducibility
of A, we obtain (Amx)r+m �= 0, while j > r + m implies (Amx) j = 0. Hence, the
vectors x,Ax, . . . ,An−rx are linearly independent. A linear subspace, invariant for A
and containing x, is thus of dimension greater than or equal to n− r +1.

Let F be a linear subspace, invariant for A, of dimension p≥ 1. Let r be the small-
est integer such that F contains a nonzero vector x with xr+1 = · · · = xn = 0. The
minimality of r implies that xr �= 0. Hence, we have p ≥ n− r +1. By construction,
the intersection of F and of linear subspace [e1, . . . ,er−1] spanned by e1, . . . ,er−1

reduces to {0}. Thus we also have p +(r− 1) ≤ n. Finally, r = n− p + 1, and we
see that

F ⊕ [e1, . . . ,en−p] = Cn.

Let us choose F = [�1, . . . , �q]⊥, which is invariant for A. Then p = n−q, and we
have

[�1, . . . , �q]⊥⊕ [e1, . . . ,eq] = Cn.

This amounts to saying that det(� je
k)1≤ j,k≤q �= 0. In other words, the leading prin-

cipal minor of order q of Y is nonzero. By Theorem 11.1, Y admits an LU factoriza-
tion. ��

13.3.5 The Case of Hermitian Matrices

The situation is especially favorable for tridiagonal Hermitian matrices. To begin
with, we may assume that A is positive-definite, up to the change of A into A+ μIn
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with μ > −ρ(A). Next, we can write A in block-diagonal form, where the diagonal
blocks are tridiagonal irreducible Hermitian matrices. The QR method then treats
each block separately. We are thus reduced to the case of an Hermitian positive-
definite, tridiagonal, and irreducible matrix. Its eigenvalues are real, strictly positive,
and simple, from Proposition 13.1: we have λ1 > · · · > λn > 0. Theorems 13.2 and
13.3 can then be applied.

Corollary 13.1 If A ∈ HPDn and if A0 is a Hessenberg matrix, unitarily similar to
A (e.g., a matrix obtained by Householder’s method), then the sequence Ak defined
by the QR method converges to a diagonal matrix whose diagonal entries are the
eigenvalues of A.

Indeed, the lower-triangular part converges, hence the whole matrix, because it
is Hermitian.

13.3.6 Implementing the QR Method

The QR method converges faster as λn, or merely λn/λn−1, becomes smaller. We
can obtain this situation by translating Ak �→ Ak−αkIn. The strategies for the choice
of αk are described in [27]. This procedure is called Rayleigh translation. It yields a
significant improvement of the convergence of the QR method. If the eigenvalues of
A are simple, a suitable translation places us into the case of eigenvalues of distinct
moduli. This trick has a nonnegligible cost if A is a real matrix with a pair of complex
conjugate eigenvalues, inasmuch as it requires a translation by a nonreal number α .
As mentioned above, the computations become much more costly in C than they are
in R.

As k increases, the triangular form of Ak shows up first at the last row. As a by-
product, the sequence (Ak)nn converges more rapidly than other sequences (Ak) j j.
When the last row is sufficiently close to (0, . . . ,0,λn), the Rayleigh translation must
be selected in such a way as to bring λn−1, instead of λn, to the origin; and so on.

With a clever choice of Rayleigh translations, the QR method, when it converges,
is of order two for a generic matrix, and is of order three for an Hermitian matrix.

13.4 The Jacobi Method

The Jacobi method gives an approximate value of the whole spectrum of a real
symmetric matrix A ∈ Symn. As in the QR method, one constructs a sequence of
matrices, unitarily similar to A. In particular, the roundoff errors are not amplified.
Each iteration is cheap (O(n) operations), and the convergence may be quadratic or
even faster when the eigenvalues are distinct. It is thus a rather efficient method.
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13.4.1 Conjugating by a Rotation Matrix

Let 1 ≤ p,q ≤ n be two distinct indices and θ ∈ [−π,π) an angle. We denote by
Rp,q(θ) the matrix of rotation of angle θ in the plane spanned by ep and eq. For
example, if p < q, then

R = Rp,q(θ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ip−1
... 0

... 0
· · · cosθ · · · sinθ · · ·
0

... Iq−p−1
... 0

· · · −sinθ · · · cosθ · · ·
0

... 0
... In−q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

If H is a symmetric matrix, we compute K := R−1HR = RT HR, which is also sym-
metric, with the same spectrum. Setting c = cosθ , s = sinθ the following formulæ
hold.

ki j = hi j if i, j �= p,q,
kip = chip − shiq if i �= p,q,
kiq = chiq + ship if i �= p,q,

kpp = c2hpp + s2hqq −2cshpq,

kqq = c2hqq + s2hpp +2cshpq,

kpq = cs(hpp −hqq)+(c2 − s2)hpq.

The cost of the computation of entries ki j for i, j �= p,q is zero; that of kpp,kqq, and
kpq is O(1). The cost of this conjugation is thus 6n + O(1) operations, keeping in
mind the symmetry KT = K.

Let us remark that the conjugation by the rotation of angle θ ±π yields the same
matrix K, up to signs. For this reason, we limit ourselves to angles θ ∈ [−π/2,π/2).

13.4.2 Description of the Method

One constructs a sequence A(0) = A,A(1), . . . of symmetric matrices, each one conju-
gate to the previous one by a rotation as above: A(k+1) = (R(k))T A(k)R(k). At step k,
we choose two distinct indices p and q (in fact, pk,qk) in such a way that a(k)

pq �= 0 (if
it is not possible, A(k) is already a diagonal matrix similar to A). We then choose θ
(in fact θk) in such a way that a(k+1)

pq = 0. From the formulæ above, this is equivalent
to

cs(a(k)
pp −a(k)

qq )+(c2 − s2)a(k)
pq = 0.

This amounts to solving the equation

cot2θ =
a(k)

qq −a(k)
pp

2a(k)
pq

=: σk. (13.4)
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This equation possesses two solutions in [−π/2,π/2), namely θk ∈ [−π/4,π/4)
and θk ± π/2. There are thus two possible rotation matrices, which yield to two
distinct results. Once the angle has been selected, its computation is useless (it would
actually be rather expensive). In fact, t := tanθk solves

2t
1− t2 = tan2θ ;

that is,
t2 +2tσk −1 = 0.

The two angles correspond to the two possible roots of this quadratic equation. We
then obtain

c =
1√

1+ t2
, s = tc.

We show below that the stablest choice is the angle θk ∈ [−π/4,π/4), which corre-
sponds to the unique root t in [−1,1).

The computation of c,s needs only O(1) operations, so that the cost of an iteration
of the Jacobi method is still 6n+O(1). Observe that an entry that has vanished at a
previous iteration becomes in general nonzero after a few more iterations.

13.4.3 The Choice of the Pair (p,q)

We use here the Schur norm ‖M‖ = (TrMT M)1/2, also called the Frobenius norm,
denoted elsewhere by ‖M‖F . We wish to show that A(k) converges to a diagonal
matrix, therefore we decompose A(k) = Dk +Ek, where Dk = diag(a(k)

11 , . . . ,a(k)
nn ). To

begin with, because the sequence is formed of unitarily similar matrices, we have
‖A(k)‖ = ‖A‖.

Lemma 25. We have
‖Ek+1‖2 = ‖Ek‖2 −2

(
a(k)

pq

)2
.

Proof. It suffices to redo the calculations of Section 13.4.1, noting that

k2
ip + k2

iq = h2
ip +h2

iq

whenever i �= p,q, whereas k2
pq = 0. ��

We deduce from the lemma that ‖Dk+1‖2 = ‖Dk‖2 +2
(

a(k)
pq

)2
. The convergence

of the Jacobi method then depends on the choice of the pair (p,q) at each step.
Notice that the choice of the same pair at two consecutive iterations is inadvisable,
inasmuch as it yields A(k+1) = A(k).

There are essentially three strategies for chosing the pair (p,q) at a given step.
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Optimal choice. One chooses a pair (p,q) for which the modulus of apq is maxi-
mal among off-diagonal entries of A(k). At first glance, this looks to be the most
efficient choice, but needs a comparison procedure whose cost is about n2 logn.
If a careful storage of the order of moduli at previous steps is made, the com-
parison reduces to about n2 operations, still costly enough, compared to the 6n
operations needed in the conjugation.

Sequential choice. Here the pair is a periodic function of k. Typically, one chooses
first (1,2) then (2,3), . . . , (n−1,n), (1,3), (2,4), . . . , (1,n). Variant: because the
position (2,3) was affected by the operations made around (1,2), it might be bet-
ter to find an order beginning with (1,2), (3,4), . . . , in such a way that an index
p is not present in two consecutive pairs, in order to treat all the entries as fast as
possible.

Random choice. The set of pairs (p,q) with 1 ≤ p < q ≤ n is equipped with
the uniform probability. The pair (p,q) is taken at random at step k, and inde-
pendently of the previous choices. Some variants of the random choice can be
elaborated.

13.4.4 Convergence with the Optimal Choice

Theorem 13.4 With the “optimal choice” of (pk,qk) and with the choice θk ∈
[−π/4,π/4), the Jacobi method converges in the following sense. There exists a
diagonal matrix D such that

‖A(k)−D‖ ≤
√

2‖E0‖
1−ρ

ρk, ρ :=

√
1− 2

n2 −n
.

In particular, the spectrum of A consists of the diagonal terms of D and the limit of
Dk; the Jacobi method is of order one at least.

This kind of convergence is called linear, because it is typical of methods in
which the error obeys a linear inequality εk+1 ≤ ρεk, with ρ < 1. We also say that
the convergence is of order one at least. This is a rather slow convergence that we
already encountered in iterative methods for linear systems (Chapter 12).

Proof. With the optimal choice of (p,q), we have

(n2 −n)
(

a(k)
pq

)2 ≥ ‖Ek‖2.

Hence,

‖Ek+1‖2 ≤
(

1− 2
n2 −n

)
‖Ek‖2 = ρ2‖Ek‖2.

It follows that ‖Ek‖ ≤ ρk‖E0‖. In particular, Ek tends to zero as k → +∞.
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It remains to show that Dk converges too. A calculation using the notation of
Section 13.4.1 and the fact that kpq = 0 yields

kpp −hpp =−thpq.

Because |θk| ≤ π/4, we have |t| ≤ 1, so that |a(k+1)
pp − a(k)

pp | ≤ |a(k)
pq |. Likewise,

|a(k+1)
qq − a(k)

qq | ≤ |a(k)
pq |. The other diagonal entries are unchanged, thus we have

‖Dk+1 −Dk‖ ≤ ‖Ek‖.
We therefore have

‖D�−Dk‖ ≤ ‖E0‖(ρ�−1 + · · ·+ρk)≤ ‖E0‖ ρk

1−ρ
, � > k.

The sequence (Dk)k∈N is thus Cauchy, hence convergent. Because Ek tends to zero,
A(k) converges to the same limit D. This matrix is diagonal, with the same spectrum
as A, because this is true for each A(k). Finally, we obtain

‖A(k)−D‖2 = ‖Dk −D‖2 +‖Ek‖2 ≤ 2
(1−ρ)2 ‖Ek‖2.

��

We analyze, in Exercise 10, the (bad) behavior of Dk when we make the opposite
choice π/4 ≤ |θk| ≤ π/2.

13.4.5 Optimal Choice: Super-Linear Convergence

The following statement shows that the Jacobi method compares rather well with
other methods.

Theorem 13.5 The Jacobi method with optimal choice of (p,q) converges super-
linearly when the eigenvalues of A are simple, in the following sense. Let N = n(n−
1)/2 be the number of elements under the diagonal. Then there exists a number
c > 0 such that

‖Ek+N‖ ≤ c‖Ek‖2,

for every k ∈ N.

In the present setting, the order of the Jacobi method can be estimated at least as
ν := 21/N , which is slightly larger than 1. This is typical of a method where the error
obeys an inequality of the form εk+1 < cst ·(εk)ν (mind, however, that the inequality
given in the theorem is not exactly of this form). The convergence is much faster
than a linear one. We expect in practice that the order be even larger than ν . For
instance, Exercise 15 gives the order (1+

√
5)/2 when n = 3. The exact order for a

general n is still unknown.
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Proof. We first remark that if i �= j with {i, j} �= {p�,q�}, then

|a(�+1)
i j −a(�)

i j | ≤ |t�|
√

2‖E�‖, (13.5)

where t� = tanθ�. To see this, observe that 1− c ≤ t and |s| ≤ t whenever |t| ≤ 1.
However, Theorem 13.4 ensures that Dk converges to diag(λ1, . . . ,λn), where the
λ js are the eigenvalues of A. Because these are distinct, there exist K ∈N and δ > 0
such that, if k ≥ K, then

min
i�= j

|a(k)
ii −a(k)

j j | ≥ δ

for k ≥ K. We have therefore

|σk| ≥ δ√
2‖Ek‖

k→+∞−→ +∞.

It follows that tk tends to zero and, more precisely, that

tk ≈− 1
2σk

.

Finally, there exists a constant c1 such that

|tk| ≤ c1‖Ek‖.

Let us then fix k larger than K, and let us denote by J the set of pairs (p�,q�) when
k ≤ �≤ k +N−1. For such an index, we have ‖E�‖ ≤ ρ�−k‖Ek‖ ≤ ‖Ek‖. In partic-
ular, |t�| ≤ c1‖Ek‖.

If (p,q) ∈ J and if � < k + N is the largest index such that (p,q) = (p�,q�), a
repeated application of (13.5) shows that

|a(k+N)
pq | ≤ c1N

√
2‖Ek‖2.

If J is equal to the whole set of pairs (i, j) such that i < j, these inequalities ensure
that ‖Ek+N‖ ≤ c2‖Ek‖2. Otherwise, there exists a pair (p,q) that one sets to zero
twice: (p,q) = (p�,q�) = (pm,qm) with k ≤ � < m < k + N. In that case, the same
argument as above shows that

‖Ek+N‖ ≤ ‖Em‖ ≤
√

2N|a(m)
pq | ≤ 2

√
Nc1(m− �)‖Ek‖2.

��

Remarks

We show in Exercise 13 that when the eigenvalues of A are simple, the distance be-
tween the diagonal and the spectrum of A is O(‖Ek‖2), and not O(‖Ek‖) as expected
from Theorem 5.7.
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13.4.6 Convergence with the Random Choice

Recall that we choose the pair (p,q) independently of those chosen at previous steps,
according to the uniform distribution. The matrix A(k) is therefore a function of A(k)

and of the random variable (pk,qk); as such, it is a random variable.
We are interested in the expectation of the norm of the error ‖Ek+1‖2. To begin

with, we consider the conditional expectation, knowing ‖Ek‖2. We have

e
[‖Ek+1‖2 |‖Ek‖2]=

2
n2 −n ∑

1≤p<q≤n
‖Ek+1(p,q)‖2.

Because of Lemma 25, we obtain

e
[‖Ek+1‖2 |‖Ek‖2] =

2
n2 −n ∑

1≤p<q≤n

(
‖Ek‖2 −|a(k)

pq |2
)

= ‖Ek‖2 − 2
n2 −n ∑

1≤p<q≤n
|a(k)

pq |2

=
(

1− 2
n2 −n

)
‖Ek‖2 = ρ2‖Ek‖2.

Taking now the expectation with respect to the previous choices, we obtain

e
[‖Ek+1‖2]= ρ2e

[‖Ek‖2] .
By induction, this yields

e
[‖Ek‖2]= ρ2ke

[‖E0‖2] . (13.6)

Let β be a number given in the interval (ρ,1). Let us denote c0 := e
[‖E0‖2

]
.

Then the probability that ‖Ek‖ is larger than β k is less than c0(ρ/β )2k, according to
(13.6). We therefore have

∞

∑
k=0

P

(
‖Ek‖> β k

)
< ∞. (13.7)

Thanks to the theorem of Borel–Cantelli, this implies that for almost every choice
of the sequence (pk,qk)k∈N, the inequality ‖Ek‖≤ β k is true for all but finitely many
indices k ; in other words, ‖Ek‖ ≤ β k is true for large enough k. When this happens,
we may apply the same analysis of the diagonal part Dk as that made in Section
13.4.4. Finally, we have the following theorem.

Theorem 13.6 Consider the Jacobi method with random choice, the pairs (pk,qk)
being independent and chosen according to the uniform distribution.

For every ε > 0, the error ‖Ek‖ decays almost surely as an O
(
(ρ + ε)k

)
, with
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ρ :=

√
1− 2

n2 −n
.

Provided the angle θk is chosen in the interval (−π/4,π/4], the diagonal con-
verges as soon as the error tends to zero, and the diagonal entries of its limit are the
eigenvalues of A.

13.5 The Power Methods

The power methods are designed for the approximation of a single eigenvalue. Con-
sequently, their cost is significantly lower than that of the QR or the Jacobi methods.
The standard power method is used in particular when searching for the optimal pa-
rameter in the SOR method for a tridiagonal matrix, where we have to compute the
spectral radius of the Jacobi iteration matrix (Theorem 12.2).

13.5.1 The Standard Method

Let M ∈ Mn(C) be a matrix. We search for an approximation of its eigenvalue of
maximum modulus, whenever only one such exists. The standard method consists
in choosing a norm on Cn, a unit vector x0 ∈ Cn, and then successively computing
the vectors xk by the formula

xk+1 :=
1

‖Mxk‖Mxk.

The justification of this method is given in the following theorem.

Theorem 13.7 One assumes that SpM contains only one element λ of maximal
modulus (that modulus is thus equal to ρ(M)).

If ρ(M) = 0, the method stops because Mxk = 0 for some k < n.
Otherwise, let Cn = E ⊕F be the decomposition of Cn, where E,F are invariant

linear subspaces under M, with Sp(M|E) = {λ} and λ �∈ Sp(M|F). Assume that
x0 �∈ F. Then Mxk �= 0 for every k ∈ N and

lim
k→+∞

‖Mxk‖ = ρ(M). (13.8)

In addition,

V := lim
k→+∞

(
λ̄

ρ(M)

)k

xk

is a unit eigenvector of M, associated with the eigenvalue λ . If Vj �= 0, then
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lim
k→+∞

(Mxk) j

xk
j

= λ .

Proof. The case ρ(M) = 0 is obvious because M is then nilpotent.
Assume otherwise that ρ(M) > 0. Let x0 = y0 + z0 be the decomposition of x0

with y0 ∈E and z0 ∈F . By assumption, y0 �= 0. Because M|E is invertible, Mky0 �= 0.
Because Mkx0 = Mky0 + Mkz0, Mky0 ∈ E, and Mkz0 ∈ F , we have Mkx0 �= 0. The
algorithm may be rewritten as3

xk =
1

‖Mkx0‖Mkx0.

We therefore have xk �= 0.
If F �= {0}, then ρ(M|F) < ρ(M) by construction. Hence there exist (from The-

orem 7.1) η < ρ(M) and C > 0 such that ‖(M|F)k‖ ≤ Cηk for every k. Then
‖(M|F)kz0‖ ≤C1ηk. On the other hand, ρ((M|E)−1) = 1/ρ(M), and the same argu-
ment as above ensures that ‖(M|E)−k‖ ≤ 1/C2μk, for some μ ∈ (η ,ρ(M)), so that
‖Mky0‖ ≥C3μk. Hence,

‖Mkz0‖% ‖Mky0‖,
so that

xk ≈ 1
‖Mky0‖Mky0.

We are thus led to the analysis of the case where z0 = 0, namely when M has no
eigenvalue but λ . That is assumed from now on.

Let r be the degree of the minimal polynomial of M. The vector space spanned
by the vectors x0,Mx0, . . . ,Mr−1x0 contains all the xks. Up to the replacement of
Cn by this linear subspace, we may assume that it equals Cn. Then we have r = n.
Furthermore, because ker(M−λ )n−1, a nontrivial linear subspace, is invariant under
M, we see that x0 �∈ ker(M−λ )n−1.

The vector space Cn then admits the basis

{v1 = x0,v2 = (M−λ )x0, . . . ,vn = (M−λ )n−1x0}.

With respect to this basis, M becomes the Jordan matrix

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 . . . . . .

1
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0

. . . 0 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

3 One could normalize xk at the end of the computation, but we prefer doing it at each step in order
to avoid overflows, and also to ensure (13.8).
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The matrix λ−kM̃k depends polynomially on k. The coefficient of highest degree, as
k → +∞, is at the intersection of the first column and the last row. It equals(

k
n−1

)
λ 1−n,

which is equivalent to
(k/λ )n−1

(n−1)!
. We deduce that

Mkx0 ∼ kn−1λ k−n+1

(n−1)!
vn.

Hence,

xk ∼
(

λ
|λ |
)k−n+1 vn

‖vn‖ .

Because vn is an eigenvector of M, the claims of the theorem have been proved. ��

The case where the algebraic and geometric multiplicities of λ are equal (i.e.,
M|E = λ IE ), for example, if λ is a simple eigenvalue, is especially favorable. Indeed,
Mky0 = λ ky0, and therefore

xk =
(

λ
|λ |
)k 1

‖y0‖ y0 +O
(‖Mkz0‖

|λ |k
)

.

Theorem 7.1 thus shows that the error

xk −
(

λ
|λ |
)k 1

‖y0‖ y0

tends to zero faster than (
ρ(M|F)+ ε

ρ(M)

)k

,

for every ε > 0. The convergence is thus of order one, and becomes faster as the ra-
tio |λ2|/|λ1| becomes smaller (arranging the eigenvalues by nonincreasing moduli).
However, the convergence is much slower when the Jordan blocks of M relative to
λ are nontrivial. The error then behaves like 1/k in general.

The situation is more delicate when ρ(M) is the modulus of several distinct
eigenvalues. The vector xk, suitably normalized, does not converge in general but
“spins” closer and closer to the sum of the corresponding eigenspaces. The obser-
vation of the asymptotic behavior of xk allows us to identify the eigendirections
associated with the eigenvalues of maximal modulus. The sequence ‖Mxk‖ does
not converge and depends strongly on the choice of the norm. However, log‖Mxk‖
converges in the Cesaro sense, that is, in the mean, to logρ(M) (Exercise 12).
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Remark

The hypothesis on x0 is generic, in the sense that it is satisfied for every choice of
x0 in an open dense subset of Cn. If by chance x0 belongs to F , the power method
theoretically furnishes another eigenvalue, of smaller modulus. In practice, a large
enough number of iterations always leads to the convergence to λ . In fact, the num-
ber λ is rarely exactly representable in a computer. When it is not, the linear sub-
space F does not contain any nonzero representable vector. Thus the vector x0, or
its computer representation, does not belong to F , and Theorem 13.7 applies.

13.5.2 The Inverse Power Method

Let us assume that M is invertible. The standard power method, applied to M−1,
furnishes the eigenvalue of least modulus, whenever it is unique, or at least produces
its modulus in the general case. The inversion of a matrix is a costly operation,
therefore we involve ourselves with that idea only if M has already been inverted,
for example if we had previously had to make an LU or a QR factorization. That
is typically the situation when one begins to implement the QR algorithm for M. It
might look strange to involve a method giving only one eigenvalue in the course of
a method that is expected to compute the whole spectrum.

The inverse power method is thus subtle. Here is how it works. One begins by
implementing the QR method until one gets coarse approximations μ1, . . . ,μn of
the eigenvalues λ1, . . . ,λn. If one persists in the QR method, the proof of Theorem
13.2 shows that the error is at best of order σ k with σ = max j |λ j+1/λ j|. When
n is large, σ is in general close to 1 and this convergence is rather slow. Like-
wise, the method with Rayleigh translations, for which σ is replaced by σ(η) :=
max j |(λ j+1−η)/(λ j−η)|, is not satisfactory. However, if one wishes to compute a
single eigenvalue, say λp, with full accuracy, the power method, applied to M−μpIn,
produces an error on the order of θ k, where θ := |λp − μp|/min j �=p |λ j − μp| is a
small number, since λp −μp is small.

In practice, the inverse power method is used mainly to compute an approxi-
mate eigenvector, associated with an eigenvalue for which one already had a good
approximate value.

Exercises

1. Given a polynomial P ∈ R[X ], use Euclidean division in order to define a se-
quence of nonzero polynomials Pj in the following way. Set P0 = P, P1 = P′.
If Pj is not constant, −Pj+1 is the remainder of the division of Pj−1 by Pj:
Pj−1 = Q jPj −Pj+1, degPj+1 < degPj.
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a. Assume that P has only simple roots. Show that the sequence (Pj) j is well
defined, that it has only finitely many terms, and that it is a Sturm sequence.

b. Use Proposition 13.2 to compute the number of real roots of the real poly-
nomials X2 +aX +b or X3 + pX +q in terms of their discriminants.

2. (Wilkinson [40], Section 5.45.) Let n = 2p− 1 be an odd number and Wn ∈
Mn(R) be the symmetric tridiagonal matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p 1

1
. . . . . .
. . . 1

. . .
. . . . . . 1

1 p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The diagonal entries are thus p, p−1, . . . ,2,1,2, . . . , p−1, p, and the subdiag-
onal entries are equal to 1.

a. Show that the linear subspace

E ′ = {X ∈ Rn |xp+ j = xp− j,1 ≤ j < p}

is invariant under Wn. Likewise, show that the linear subspace

E ′′ = {X ∈ Rn |xp+ j =−xp− j,0 ≤ j < p}

is stable under Wn.
b. Deduce that the spectrum of Wn is the union of the spectra of the matrices

W ′
n =

⎛
⎜⎜⎜⎜⎜⎜⎝

p 1

1
. . . . . .
. . . . . . . . .

1 2 1
2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, W ′′
n =

⎛
⎜⎜⎜⎜⎜⎜⎝

p 1

1
. . . . . .
. . . . . . . . .

1 3 1
1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(we have W ′
n ∈ Mp(R) and W ′′

n ∈ Mp−1(R)).
c. Show that the eigenvalues of W ′′

n strictly separate those of W ′
n.

3. For a1, . . . ,an ∈ R, with ∑ j a j = 1, form the matrix
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M(a) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 an

a2 b2 a3
...

...
...

a3 a3 b3
...

...

a4 · · ·
...

· · · · · · an
an · · · · · · · · · an bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where b j := a1 + · · ·+a j−1 − ( j−2)a j.

a. Compute the eigenvalues and the eigenvectors of M(a).
b. We limit ourselves to n-uplets a that belong to the simplex S defined by

0 ≤ an ≤ ·· · ≤ a1 and ∑ j a j = 1. Show that for a ∈ S, M(a) is bistochastic
and b2 −a2 ≤ ·· · ≤ bn −an ≤ 1.

c. Let μ1, . . . ,μn be an n-uplet of elements in [0,1] with μn = 1. Show that
there exists a unique a in S such that {μ1, . . . ,μn} is equal to the spectrum
of M(a) (counting with multiplicity).

4. Show that the cost of an iteration of the QR method for an Hermitian tridiagonal
matrix is 20n+O(1).

5. Show that the reduction to the Hessenberg form (in this case, tridiagonal form)
of an Hermitian matrix costs 7n3/6+O(n2) operations.

6. (Invariants of the algorithm QR.) For M ∈ Mn(R) and 1 ≤ k ≤ n− 1, let us
denote by (M)k the matrix of size (n−k)×(n−k) obtained by deleting the first
k rows and the last k columns. For example, (I)1 is the Jordan matrix J(0;n−
1). We also denote by K ∈ Mn(R) the matrix defined by k1n = 1 and ki j = 0
otherwise.

a. For an upper-triangular matrix T , explicitly compute KT and T K.
b. Let M ∈ Mn(R). Prove the equality

det(M−λ I−μK) = (−1)nμ det(M−λ I)1 +det(M−λ I).

c. Let A ∈ GLn(R) be given, with factorization A = QR. Prove that

det(A−λ I)1 =
detR
rnn

det(Q−λR−1)1.

d. Let A′ := RQ. Show that

rnn det(A′ −λ I)1 = r11 det(A−λ I)1.

e. Generalize the previous calculation by replacing the index 1 by k. Deduce
that the roots of the polynomial det(A−λ I)k are conserved throughout the
QR algorithm. How many such roots do we have for a general matrix? How
many for a Hessenberg matrix?
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7. (Invariants; continuing.) For M ∈ Mn(R), let us define PM(h;z) := det((1−
h)M +hMT − zIn).

a. Show that PM(h;z) = PM(1− h;z). Deduce that there exists a polynomial
QM such that PM(h;z) = QM(h(1−h);z).

b. Show that QM remains constant throughout the QR algorithm: if Q ∈
On(R), R is upper-triangular, and M = QR, N = RQ, then QM = QN .

c. Deduce that there exist polynomial functions Jrk on Mn(R), defined by

PM(h;z) =
n

∑
r=0

[r/2]

∑
k=0

(h(1−h))kzn−rJrk(M),

that are invariant throughout the QR algorithm. Verify that the Jr0s can be
expressed in terms of invariants that we already know.

d. Compute explicitly J21 when n = 2. Deduce that in the case where Theorem
13.2 applies and detA > 0, the matrix Ak converges.

e. Show that for n ≥ 2,

J21(M) =−1
2

Tr
(
(M−MT )2) .

Deduce that if Ak converges to a diagonal matrix, then A is symmetric.

8. In the Jacobi method, show that if the eigenvalues are simple, then the product
R1 · · ·Rm converges to an orthogonal matrix R such that R∗AR is diagonal.

9. Extend the Jacobi method to Hermitian matrices. Hint: Replace the rotation
matrices (

cosθ sinθ
−sinθ cosθ

)
by unitary matrices (

z1 z2
z3 z4

)
.

10. Let A ∈ Symn(R) be a matrix whose eigenvalues, of course real, are simple.
Apply the Jacobi method, but selecting the angle θk so that π/4 ≤ |θk| ≤ π/2.

a. Show that Ek tends to zero, that the sequence Dk is relatively compact, and
that its cluster values are diagonal matrices whose diagonal terms are the
eigenvalues of A.

b. Show that an iteration has the effect of permuting, asymptotically, a(k)
pp and

a(k)
qq , where (p,q) = (pk,qk). In other words

lim
k→+∞

|a(k+1)
pp −a(k)

qq |= 0,

and vice versa, permuting p and q.
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11. The Bernoulli method computes an approximation of the root of largest mod-
ulus for a polynomial a0Xn + · · ·+ an, when that root is unique. To do so, one
defines a sequence by a linear induction of order n:

zk =− 1
a0

(a1zk−1 + · · ·+anzk−n).

Compare this method with the power method for a suitable matrix.
12. Consider the power method for a matrix M ∈Mn(C) of which several eigenval-

ues are of modulus ρ(M) �= 0. Again, Cn = E ⊕F is the decomposition of Cn

into linear subspaces stable under M, such that ρ(M|F) < ρ(M) and the eigen-
values of M|E are of modulus ρ(M). Finally, x0 = y0 + z0 with y0 ∈ E, z0 ∈ F ,
and y0 �= 0.

a. Express
1
m

m−1

∑
k=0

log‖Mxk‖

in terms of ‖Mmx0‖.
b. Show that if 0 < μ < ρ(M) < η , then there exist constants C,C′ such that

Cμk ≤ ‖Mkx0‖ ≤C′ηk, ∀k ∈ N.

c. Deduce that log‖Mxk‖ converges in the mean to logρ(M).

13. Let M ∈ Mn(C) be given. Assume that the Gershgorin disk D� is disjoint from
the other disks Dm, m �= �. Show that the inverse power method, applied to
M −m��In, provides an approximate computation of the unique eigenvalue of
M that belongs to D�.

14. The ground field is R.

a. Let P and Q be two monic polynomials of respective degrees n and n− 1
(n≥ 2). We assume that P has n real and distinct roots, strictly separated by
the n−1 real and distinct roots of Q. Show that there exist two real numbers
d and c, and a monic polynomial R of degree n−2, such that

P(X) = (X −d)Q(X)− c2R(X).

b. Let P be a monic polynomial of degree n (n ≥ 2). We assume that P has
n real and distinct roots. Build sequences (d j,Pj)1≤ j≤n and (c j)1≤ j≤n−1,
where d j,c j are real numbers and Pj is a monic polynomial of degree j,
with

Pn = P, Pj(X) = (X −d j)Pj−1(X)− c2
j−1Pj−2(X), (2 ≤ j ≤ n).

Deduce that there exists a tridiagonal matrix A, which we can obtain by
algebraic calculations (involving square roots), whose characteristic poly-
nomial is P.
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c. Let P be a monic polynomial. We assume that P has n real roots. Prove that
one can factorize P = Q1 · · ·Qr, where each Q j has simple roots, and the
factorization requires only finitely many operations. Deduce that there is a
finite algorithm, involving no more than square roots calculations, which
provides a tridiagonal symmetric matrix A, whose characteristic polyno-
mial is P (a tridiagonal symmetric companion matrix).

15. We apply the Jacobi method to a real 3× 3 matrix A. Our strategy is one that
we have called “optimal choice”.

a. Let (p1,q1), (p2,q2), . . . , (pk,qk), . . . be the sequence of index pairs that
are chosen at consecutive steps (recall that one vanishes the off-diagonal
entry of largest modulus). Prove that this sequence is cyclic of order three:
it is either the sequence

. . . ,(1,2),(2,3),(3,1),(1,2), . . . ,

or
. . . ,(1,3),(3,2),(2,1),(1,3), . . . .

b. Assume now that A has simple eigenvalues. At each step, one of the three
off-diagonal entries is null, and the two other ones are small, because the
method converges. Say that they are 0,xk,yk with 0 < |xk| ≤ |yk| (if xk van-
ishes then one diagonal entry is an eigenvalue and the method ends one step
further). Show that yk+1 ∼ xk and xk+1 ∼ 2xkyk/δ , where δ is a gap between
two eigenvalues. Deduce that the method is of order ω = (1 +

√
5)/2, the

golden ratio, meaning that the error εk at step k satisfies

εk+1 = O(εkεk−1).

c. Among the class of Hessenberg matrices, we distinguish the unit ones,
which have 1s below the diagonal:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · · · · ∗
1

. . .
...

0
. . .

...
. . . . . . . . .

...
0 · · · 0 1 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

i. Let M ∈Mn(k) be a unit Hessenberg matrix. We denote by Mk the sub-
matrix obtained by retaining the first k rows and columns. For instance,
Mn = M and M1 = (m11). We set Pk the characteristic polynomial of Mk.
Show that

Pn(X) = (X −mnn)Pn−1(X)−mn−1,nPn−2(X)−·· ·−m2nP1(X)−m1n.
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ii. Let Q1, . . . ,Qn ∈ k[X ] be monic polynomials, with degQk = k. Show
that there exists one and only one unit Hessenberg matrix M such that,
for every k = 1, . . . ,n, the characteristic polynomial of Mk equals Qk.
Hint: Argue by induction over n.

Note: The roots of the polynomials P1, . . . ,Pn are called the Ritz values of
M.
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